
The Common Object Request Broker:
Architecture and Specification

Editorial Revision: CORBA 2.4.2: February 2001
Editorial Revision: CORBA 2.4.1: November 2000
Revision 2.4: October 2000

 paid up,
fied
 copyright
ving
Copyright 1998, 1999, Alcatel
Copyright 1997, 1998, 1999 BEA Systems, Inc.
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright 1995, 1996, 1998, Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996, Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996, 1998, 1999, Hewlett-Packard Company
Copyright 1998, 1999, Highlander Communications, L.C.
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998, 1999, Inprise Corporation
Copyright 1996, 1997, 1998, International Business Machines Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1998, 1999, Inprise Corporation
Copyright 1998, International Computers, Ltd.
Copyright 1995, 1996, 1998, 1999, IONA Technologies, Ltd.
Copyright 1998, 1999, Lockheed Martin Federal Systems, Inc.
Copyright 1998, 1999, Lucent Technologies, Inc.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1998, NEC Corporation
Copyright 1998, Netscape Communications Corporation
Copyright 1998, 1999, Nortel Networks
Copyright 1998, 1999, Northern Telecom Corporation
Copyright 1995, 1996, 1998, Novell USG
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991- 2001 Object Management Group, Inc.
Copyright 1998, 1999, Objective Interface Systems, Inc.
Copyright 1998, 1999, Object-Oriented Concepts, Inc.
Copyright 1998, Oracle Corporation
Copyright 1998, PeerLogic, Inc.
Copyright 1996, Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996, 1998, 1999, Sun Microsystems, Inc.
Copyright 1995, 1996, SunSoft, Inc.
Copyright 1996, Sybase, Inc.
Copyright 1998, Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1998, TIBCO, Inc.
Copyright 1998, 1999, Tri-Pacific Software, Inc.
Copyright 1996, Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

ire use
 be

at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
 form or
nd

 in

IDL,
, Inc.

ers to
PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
i

-1

1-1

1-2
1-2

1-3
-4

1-4
-4

1-5

1-6

1-6
1-7

1-7
1-8
-8
-8
-8
-8

-9

1-9

-9
10

-1

2-1
2-6
Preface .

1. The Object Model . 1

1.1 Overview .

1.2 Object Semantics .
1.2.1 Objects .

1.2.2 Requests .
1.2.3 Object Creation and Destruction. 1

1.2.4 Types .
1.2.4.1 Basic types . 1
1.2.4.2 Constructed types

1.2.5 Interfaces .

1.2.6 Value Types .
1.2.7 Abstract Interfaces .

1.2.8 Operations .
1.2.8.1 Parameters .
1.2.8.2 Return Result . 1
1.2.8.3 Exceptions . 1
1.2.8.4 Contexts . 1
1.2.8.5 Execution Semantics 1

1.2.9 Attributes . 1

1.3 Object Implementation .

1.3.1 The Execution Model: Performing Services . . . 1
1.3.2 The Construction Model 1-

2. CORBA Overview . 2

2.1 Structure of an Object Request Broker
2.1.1 Object Request Broker
CORBA, v2.4.2 February 2001 1

Contents

-7
-7

2-8
-8

-8

2-9
-9

-9
10

-10
-10

-11
11

-11
11

-12
-12

12

-12

-13

-15

-17

-17

-17

1

3-2

3-3
3-5

3-6
-6
-6

-7
-8
-8
-9
0

10
1

3-11
2.1.2 Clients . 2
2.1.3 Object Implementations 2

2.1.4 Object References. .
2.1.5 OMG Interface Definition Language 2

2.1.6 Mapping of OMG IDL to Programming
Languages . 2

2.1.7 Client Stubs .
2.1.8 Dynamic Invocation Interface. 2

2.1.9 Implementation Skeleton 2
2.1.10 Dynamic Skeleton Interface 2-

2.1.11 Object Adapters . 2
2.1.12 ORB Interface. 2

2.1.13 Interface Repository . 2
2.1.14 Implementation Repository 2-

2.2 Example ORBs. 2
2.2.1 Client- and Implementation-resident ORB 2-

2.2.2 Server-based ORB . 2
2.2.3 System-based ORB. 2

2.2.4 Library-based ORB . 2-

2.3 Structure of a Client . 2

2.4 Structure of an Object Implementation 2

2.5 Structure of an Object Adapter. 2

2.6 CORBA Required Object Adapter. 2

2.6.1 Portable Object Adapter 2

2.7 The Integration of Foreign Object Systems 2

3. OMG IDL Syntax and Semantics. 3-

3.1 Overview .

3.2 Lexical Conventions. .
3.2.1 Tokens .

3.2.2 Comments. .
3.2.3 Identifiers . 3

3.2.3.1 Escaped Identifiers 3

3.2.4 Keywords . 3
3.2.5 Literals . 3

3.2.5.1 Integer Literals . 3
3.2.5.2 Character Literals 3
3.2.5.3 Floating-point Literals 3-1
3.2.5.4 String Literals . 3-
3.2.5.5 Fixed-Point Literals 3-1

3.3 Preprocessing .
2 CORBA, v2.4.2 February 2001

Contents

-11

16

-16

-17
-17

17
18

18
-19

-24
-24
24
24
5

-25
25
26

26
27

27
28

-29

-29
-30

-33

-34
35
35
35
36
36
36
36

-36
-37
37
-38

-40
-41
41
42
42

-42
42

-43
3.4 OMG IDL Grammar. 3

3.5 OMG IDL Specification . 3-

3.6 Module Declaration . 3

3.7 Interface Declaration . 3
3.7.1 Interface Header . 3

3.7.2 Interface Inheritance Specification 3-
3.7.3 Interface Body . 3-

3.7.4 Forward Declaration . 3-
3.7.5 Interface Inheritance . 3

3.8 Value Declaration . 3
3.8.1 Regular Value Type. 3

3.8.1.1 Value Header . 3-
3.8.1.2 Value Element . 3-
3.8.1.3 Value Inheritance Specification 3-2
3.8.1.4 State Members . 3
3.8.1.5 Initializers . 3-
3.8.1.6 Value Type Example 3-

3.8.2 Boxed Value Type. 3-
3.8.3 Abstract Value Type . 3-

3.8.4 Value Forward Declaration 3-
3.8.5 Valuetype Inheritance . 3-

3.9 Constant Declaration . 3

3.9.1 Syntax. 3
3.9.2 Semantics . 3

3.10 Type Declaration . 3

3.10.1 Basic Types. 3
3.10.1.1 Integer Types . 3-
3.10.1.2 Floating-Point Types 3-
3.10.1.3 Char Type. 3-
3.10.1.4 Wide Char Type 3-
3.10.1.5 Boolean Type . 3-
3.10.1.6 Octet Type . 3-
3.10.1.7 Any Type . 3-

3.10.2 Constructed Types . 3
3.10.2.1 Structures . 3
3.10.2.2 Discriminated Unions 3-
3.10.2.3 Enumerations . 3

3.10.3 Template Types. 3
3.10.3.1 Sequences . 3
3.10.3.2 Strings . 3-
3.10.3.3 Wstrings . 3-
3.10.3.4 Fixed Type . 3-

3.10.4 Complex Declarator . 3
3.10.4.1 Arrays . 3-

3.10.5 Native Types . 3
CORBA, v2.4.2 February 2001 3

Contents

-46

-47
47

-48
-48

-49

-49

-50

3-51

-51
-53

-56

4-1

4-1

4-2

-7
-7
-7

-8
-8

4-8
-9
-9
-9
10

-10

4-11

13
13

-13
13
-13

-13
13

14
-14

14
-14

15
15
16

16
16
3.11 Exception Declaration . 3

3.12 Operation Declaration . 3
3.12.1 Operation Attribute. 3-

3.12.2 Parameter Declarations. 3
3.12.3 Raises Expressions . 3

3.12.4 Context Expressions . 3

3.13 Attribute Declaration . 3

3.14 CORBA Module. 3

3.15 Names and Scoping .

3.15.1 Qualified Names. 3
3.15.2 Scoping Rules and Name Resolution 3

3.15.3 Special Scoping Rules for Type Names 3

4. ORB Interface. .

4.1 Overview .

4.2 The ORB Operations .

4.2.1 Converting Object References to Strings 4
4.2.1.1 object_to_string . 4
4.2.1.2 string_to_object . 4

4.2.2 Getting Service Information 4
4.2.2.1 get_service_information 4

4.2.3 Thread-Related Operations
4.2.3.1 work_pending . 4
4.2.3.2 perform_work . 4
4.2.3.3 run . 4
4.2.3.4 shutdown . 4-
4.2.3.5 destroy . 4

4.3 Object Reference Operations .

4.3.1 Determining the Object Interface 4-
4.3.1.1 get_interface . 4-

4.3.2 Duplicating and Releasing Copies of Object
References . 4

4.3.2.1 duplicate . 4-
4.3.2.2 release . 4

4.3.3 Nil Object References. 4
4.3.3.1 is_nil . 4-

4.3.4 Equivalence Checking Operation 4-
4.3.4.1 is_a . 4

4.3.5 Probing for Object Non-Existence 4-
4.3.5.1 non_existent . 4

4.3.6 Object Reference Identity 4-
4.3.6.1 Hashing Object Identifiers 4-
4.3.6.2 Equivalence Testing 4-

4.3.7 Getting Policy Associated with the Object 4-
4.3.7.1 get_policy . 4-
4 CORBA, v2.4.2 February 2001

Contents

17
17

-18
18

18
18

19
-19

4-19

0

22

4
5
5

26

6

-27
27

-28
29
-29
-29
-29
-30
30
-31

-31

-32

2
32
33
33

33
34
34
34

-35

35

6
-38
4.3.7.2 get_client_policy 4-
4.3.7.3 get_policy_overrides 4-

4.3.8 Overriding Associated Policies on an Object
Reference . 4

4.3.8.1 set_policy_overrides 4-

4.3.9 Validating Connection 4-
4.3.9.1 validate_connection 4-

4.3.10 Getting the Domain Managers Associated with
the Object . 4-

4.3.10.1 get_domain_managers 4

4.4 ValueBase Operations .

4.5 ORB and OA Initialization and Initial References 4-20
4.5.1 ORB Initialization . 4-2

4.5.2 Obtaining Initial Object References 4-
4.5.3 Configuring Initial Service References. 4-24

4.5.3.1 ORB-specific Configuration 4-2
4.5.3.2 ORBInitRef . 4-2
4.5.3.3 ORBDefaultInitRef 4-2
4.5.3.4 Configuration Effect on

resolve_initial_references 4-
4.5.3.5 Configuration Effect on

list_initial_services . 4-2

4.6 Context Object . 4
4.6.1 Introduction . 4-

4.6.2 Context Object Operations 4
4.6.2.1 get_default_context 4-
4.6.2.2 set_one_value . 4
4.6.2.3 set_values . 4
4.6.2.4 get_values . 4
4.6.2.5 delete_values . 4
4.6.2.6 create_child . 4-
4.6.2.7 delete . 4

4.7 Current Object . 4

4.8 Policy Object . 4

4.8.1 Definition of Policy Object. 4-3
4.8.1.1 Copy . 4-
4.8.1.2 Destroy . 4-
4.8.1.3 Policy_type . 4-

4.8.2 Creation of Policy Objects 4-
4.8.2.1 PolicyErrorCode 4-
4.8.2.2 PolicyError . 4-
4.8.2.3 Create_policy . 4-

4.8.3 Usages of Policy Objects 4
4.8.4 Policy Associated with the Execution

Environment . 4-

4.8.5 Specification of New Policy Objects 4-3
4.8.6 Standard Policies . 4
CORBA, v2.4.2 February 2001 5

Contents

-41
41

-42
-42
43
44

-44
-44
44
45
45
5

46
6

-47
48
49

4-49

50
-50

52
3
4
4
4
4
4
4
4
5

5
5
5
5
55
55
55
6
6
6

6
6
56
6
6

7
7

4.9 Management of Policies . 4
4.9.1 Client Side Policy Management 4-

4.9.2 Server Side Policy Management 4
4.9.3 Policy Management Interfaces 4

4.9.3.1 interface PolicyManager 4-
4.9.3.2 interface PolicyCurrent 4-

4.10 Management of Policy Domains . 4
4.10.1 Basic Concepts . 4

4.10.1.1 Policy Domain . 4-
4.10.1.2 Policy Domain Manager 4-
4.10.1.3 Policy Objects . 4-
4.10.1.4 Object Membership of Policy Domains 4-4
4.10.1.5 Domains Association at Object

Reference Creation . 4-
4.10.1.6 Implementor’s View of Object Creation 4-4

4.10.2 Domain Management Operations 4
4.10.2.1 Domain Manager 4-
4.10.2.2 Construction Policy 4-

4.11 Exceptions .

4.11.1 Definition of Terms . 4-
4.11.2 System Exceptions . 4

4.11.3 Standard System Exception Definitions 4-
4.11.3.1 UNKNOWN . 4-5
4.11.3.2 BAD_PARAM 4-5
4.11.3.3 NO_MEMORY 4-5
4.11.3.4 IMP_LIMIT . 4-5
4.11.3.5 COMM_FAILURE 4-5
4.11.3.6 INV_OBJREF . 4-5
4.11.3.7 NO_PERMISSION 4-5
4.11.3.8 INTERNAL . 4-5
4.11.3.9 MARSHAL . 4-5
4.11.3.10 INITIALIZE . 4-5
4.11.3.11 NO_IMPLEMENT 4-5
4.11.3.12 BAD_TYPECODE 4-5
4.11.3.13 BAD_OPERATION 4-5
4.11.3.14 NO_RESOURCES 4-
4.11.3.15 NO_RESPONSE 4-
4.11.3.16 PERSIST_STORE 4-
4.11.3.17 BAD_INV_ORDER 4-5
4.11.3.18 TRANSIENT . 4-5
4.11.3.19 FREE_MEM . 4-5
4.11.3.20 INV_IDENT . 4-5
4.11.3.21 INV_FLAG . 4-5
4.11.3.22 INTF_REPOS 4-
4.11.3.23 BAD_CONTEXT 4-5
4.11.3.24 OBJ_ADAPTER 4-5
4.11.3.25 DATA_CONVERSION 4-5
4.11.3.26 OBJECT_NOT_EXIST 4-5
4.11.3.27 TRANSACTION_REQUIRED 4-57
4.11.3.28 TRANSACTION_ROLLEDBACK . . 4-57
4.11.3.29 INVALID_TRANSACTION 4-57
6 CORBA, v2.4.2 February 2001

Contents

7

8
8

58

-59

5-1

5-1

5-2

-3
5-3

-4
5-4

5-4
5-4
-4
-5

-5
-5
-5

-6

5-6
-6

5-7

5-7
-8

5-8

5-8

5-9
9

-9
-9

10

-10
11

-11

-15

-1

6-1

6-1

6-3
4.11.3.30 INV_POLICY 4-5
4.11.3.31 CODESET_INCOMPATIBLE 4-57
4.11.3.32 REBIND. 4-5
4.11.3.33 TIMEOUT . 4-5
4.11.3.34 TRANSACTION_UNAVAILABLE . 4-58
4.11.3.35 TRANSACTION_MODE 4-58
4.11.3.36 BAD_QOS . 4-

4.11.4 Standard Minor Exception Codes 4

5. Value Type Semantics .

5.1 Overview .

5.2 Architecture .

5.2.1 Abstract Values . 5
5.2.2 Operations .

5.2.3 Value Type vs. Interfaces 5
5.2.4 Parameter Passing. .

5.2.4.1 Value vs. Reference Semantics
5.2.4.2 Sharing Semantics
5.2.4.3 Identity Semantics 5
5.2.4.4 Any parameter type 5

5.2.5 Substitutability Issues . 5
5.2.5.1 Value instance -> Interface type 5
5.2.5.2 Value instance -> Value type 5

5.2.6 Widening/Narrowing . 5

5.2.7 Value Base Type .
5.2.8 Life Cycle issues . 5

5.2.8.1 Creation and Factories

5.2.9 Security Considerations
5.2.9.1 Value as Value . 5
5.2.9.2 Value as Object Reference

5.3 Standard Value Box Definitions .

5.4 Language Mappings .
5.4.1 General Requirements 5-

5.4.2 Language Specific Marshaling 5
5.4.3 Language Specific Value Factory Requirements 5

5.4.4 Value Method Implementation 5-

5.5 Custom Marshaling . 5
5.5.1 Implementation of Custom Marshaling 5-

5.5.2 Marshaling Streams . 5

5.6 Access to the Sending Context Run Time 5

6. Abstract Interface Semantics . 6

6.1 Overview .

6.2 Semantics of Abstract Interfaces .

6.3 Usage Guidelines .
CORBA, v2.4.2 February 2001 7

Contents

6-3

6-4
6-4

1

7-1
7-2

-4
7-4

7-4

7-5
7-7

-8
7-8

7-8
7-9

7-9
7-9

-10
-10

-10
-10

-11

-12

-13
-14
4

4
14
14
15
-15
16

-16

-16
-17

-17
-17

-17
-18
6.4 Example .

6.5 Security Considerations .
6.5.1 Passing Values to Trusted Domains

7. Dynamic Invocation Interface . 7-

7.1 Overview .
7.1.1 Common Data Structures

7.1.2 Memory Usage . 7
7.1.3 Return Status and Exceptions

7.2 Request Operations .

7.2.1 create_request .
7.2.2 add_arg .

7.2.3 invoke . 7
7.2.4 delete .

7.2.5 send .
7.2.6 poll_response .

7.2.7 get_response .
7.2.8 sendp .

7.2.9 prepare . 7
7.2.10 sendc. 7

7.3 ORB Operations . 7
7.3.1 send_multiple_requests 7

7.3.2 get_next_response and poll_next_response . . . 7

7.4 Polling . 7
7.4.1 Abstract Valuetype Pollable 7-13

7.4.1.1 is_ready . 7
7.4.1.2 create_pollable_set 7

7.4.2 Abstract Valuetype DIIPollable 7-1

7.4.3 interface PollableSet. 7-1
7.4.3.1 create_dii_pollable 7-
7.4.3.2 add_pollable . 7-
7.4.3.3 get_ready_pollable 7-
7.4.3.4 remove . 7
7.4.3.5 number_left . 7-

7.5 List Operations. 7

7.5.1 create_list . 7
7.5.2 add_item. 7

7.5.3 free . 7
7.5.4 free_memory . 7

7.5.5 get_count . 7
7.5.6 create_operation_list . 7
8 CORBA, v2.4.2 February 2001

Contents

-1

8-1

8-2

8-3

8-3

8-4

8-4
-5

-1

9-1

9-3
9-8

-8
10

0

1

11

11
1
2
2

2

3

15

15
16

17
-20

21
22

22
23

9-24

4
-24

5

8. Dynamic Skeleton Interface. 8

8.1 Introduction .

8.2 Overview .

8.3 ServerRequestPseudo-Object .
8.3.1 ExplicitRequest State:

ServerRequestPseudo-Object

8.4 DSI: Language Mapping .

8.4.1 ServerRequest’s Handling of Operation
Parameters .

8.4.2 Registering Dynamic Implementation Routines 8

9. Dynamic Management of Any Values 9

9.1 Overview .

9.2 DynAny API .
9.2.1 Locality and usage constraints

9.2.2 Creating a DynAny object 9
9.2.3 The DynAny interface 9-

9.2.3.1 Obtaining the TypeCode associated
with a DynAny object 9-1

9.2.3.2 Initializing a DynAny object from
another DynAny object 9-1

9.2.3.3 Initializing a DynAny object from an
any value . 9-

9.2.3.4 Generating an any value from a DynAny
object . 9-

9.2.3.5 Comparing DynAny values 9-1
9.2.3.6 Destroying a DynAny object 9-1
9.2.3.7 Creating a copy of a DynAny object 9-1
9.2.3.8 Accessing a value of some basic type

in a DynAny object . 9-1
9.2.3.9 Iterating through components of a

DynAny . 9-1

9.2.4 The DynFixed Interface 9-

9.2.5 The DynEnum interface 9-
9.2.6 The DynStruct interface 9-

9.2.7 The DynUnion interface 9-
9.2.8 The DynSequence interface 9

9.2.9 The DynArray interface 9-
9.2.10 The DynValue interface 9-

9.2.11 The DynValue interface 9-
9.2.12 The DynValueBox interface 9-

9.3 Usage in C++ Language. .

9.3.1 Dynamic creation of CORBA::Any values 9-2
9.3.1.1 Creating an any that contains a struct . . . 9

9.3.2 Dynamic interpretation of CORBA::Any values 9-2
CORBA, v2.4.2 February 2001 9

Contents

25

-1

0-1

0-2

10-4
0-4

10-5

0-6
0-6

0-6

-7

-9

10
-11
-11
11

-11
-12
13
-14
-17
18

19
-20
-21
21

22

-22
-22
23

-23
-23
-24
24

-24
-24
25

-25
-25
25

-25
-25
26
9.3.2.1 Filtering of events 9-

10. The Interface Repository . 10

10.1 Overview . 1

10.2 Scope of an Interface Repository . 1

10.3 Implementation Dependencies .
10.3.1 Managing Interface Repositories 1

10.4 Basics .

10.4.1 Names and Identifiers . 1
10.4.2 Types and TypeCodes . 1

10.4.3 Interface Repository Objects 1
10.4.4 Structure and Navigation of the

Interface Repository . 10

10.5 Interface Repository Interfaces . 10

10.5.1 Supporting Type Definitions. 10-
10.5.2 IRObject . 10

10.5.2.1 Read Interface . 10
10.5.2.2 Write Interface . 10-

10.5.3 Contained . 10
10.5.3.1 Read Interface . 10
10.5.3.2 Write Interface . 10-

10.5.4 Container . 10
10.5.4.1 Read Interface . 10
10.5.4.2 Write Interface . 10-

10.5.5 IDLType . 10-
10.5.6 Repository . 10

10.5.6.1 Read Interface . 10
10.5.6.2 Write Interface . 10-

10.5.7 ModuleDef . 10-

10.5.8 ConstantDef . 10
10.5.8.1 Read Interface . 10
10.5.8.2 Write Interface . 10-

10.5.9 TypedefDef . 10
10.5.10 StructDef . 10

10.5.10.1 Read Interface 10
10.5.10.2 Write Interface 10-

10.5.11 UnionDef . 10
10.5.11.1 Read Interface 10
10.5.11.2 Write Interface 10-

10.5.12 EnumDef . 10
10.5.12.1 Read Interface 10
10.5.12.2 Write Interface 10-

10.5.13 AliasDef . 10
10.5.13.1 Read Interface 10
10.5.13.2 Write Interface 10-
10 CORBA, v2.4.2 February 2001

Contents

26

-26
-27

-27
-27

-28
28

-28
-28
28

-29
-29
29

29
-30
30

-30
-31
32

-32
-33
34

-34
-34
35

-35
-36
36

-37
-37
38

-38
-40
40

41
-41
41

-41

-42
42

-43
44

45
45
45

-45
-48
10.5.14 PrimitiveDef . 10-

10.5.15 StringDef . 10
10.5.16 WstringDef . 10

10.5.17 FixedDef. 10
10.5.18 SequenceDef. 10

10.5.18.1 Read Interface 10
10.5.18.2 Write Interface 10-

10.5.19 ArrayDef. 10
10.5.19.1 Read Interface 10
10.5.19.2 Write Interface 10-

10.5.20 ExceptionDef . 10
10.5.20.1 Read Interface 10
10.5.20.2 Write Interface 10-

10.5.21 AttributeDef . 10-
10.5.21.1 Read Interface 10
10.5.21.2 Write Interface 10-

10.5.22 OperationDef . 10
10.5.22.1 Read Interface 10
10.5.22.2 Write Interface 10-

10.5.23 InterfaceDef . 10
10.5.23.1 Read Interface 10
10.5.23.2 Write Interface 10-

10.5.24 AbstractInterfaceDef . 10
10.5.24.1 Read Interface 10
10.5.24.2 Write Interface 10-

10.5.25 LocalInterfaceDef. 10
10.5.25.1 Read Interface 10
10.5.25.2 Write Interface 10-

10.5.26 ValueMemberDef . 10
10.5.26.1 Read Interface 10
10.5.26.2 Write Interface 10-

10.5.27 ValueDef. 10
10.5.27.1 Read Interface 10
10.5.27.2 Write Interface 10-

10.5.28 ValueBoxDef . 10-
10.5.28.1 Read Interface 10
10.5.28.2 Write Interface 10-

10.5.29 NativeDef . 10

10.6 RepositoryIds . 10
10.6.1 OMG IDL Format. 10-

10.6.2 RMI Hashed Format . 10
10.6.3 DCE UUID Format. 10-

10.6.4 LOCAL Format . 10-
10.6.5 Pragma Directives for RepositoryId 10-

10.6.5.1 The ID Pragma 10-
10.6.5.2 The Prefix Pragma 10
10.6.5.3 The Version Pragma 10
CORBA, v2.4.2 February 2001 11

Contents

9

50

50

0-51

-51
-55

-56

60

-1

1-1

1-2

1-2
-4

1-6
7

-8
1-9

0
11
11
11
2

12

-12

-12
-13

1-14
14

-15
-15

18
-18
-18
-19
-19
-20

20
20
-20

-22

22
23
10.6.5.4 Generation of OMG IDL - Format IDs . 10-4

10.6.6 For More Information . 10-

10.6.7 RepositoryIDs for OMG-Specified Types. 10-

10.7 TypeCodes . 1

10.7.1 The TypeCode Interface 10
10.7.2 TypeCode Constants . 10

10.7.3 Creating TypeCodes . 10

10.8 OMG IDL for Interface Repository 10-

11. The Portable Object Adapter . 11

11.1 Overview . 1

11.2 Abstract Model Description . 1

11.2.1 Model Components . 1
11.2.2 Model Architecture. 11

11.2.3 POA Creation . 1
11.2.4 Reference Creation . 11-

11.2.5 Object Activation States 11
11.2.6 Request Processing . 1

11.2.7 Implicit Activation . 11-1
11.2.8 Multi-threading . 11-

11.2.8.1 POA Threading Models 11-
11.2.8.2 Using the Single Thread Model 11-
11.2.8.3 Using the ORB Controlled Model 11-1
11.2.8.4 Using the Main Thread Model 11-
11.2.8.5 Limitations When Using Multiple

Threads . 11

11.2.9 Dynamic Skeleton Interface 11
11.2.10 Location Transparency 11

11.3 Interfaces . 1
11.3.1 The Servant IDL Type 11-

11.3.2 POAManager Interface 11
11.3.2.1 Processing States 11
11.3.2.2 Locality Constraints 11-
11.3.2.3 activate . 11
11.3.2.4 hold_requests . 11
11.3.2.5 discard_requests 11
11.3.2.6 deactivate . 11
11.3.2.7 get_state . 11

11.3.3 AdapterActivator Interface 11-
11.3.3.1 Locality Constraints 11-
11.3.3.2 unknown_adapter 11

11.3.4 ServantManager Interface. 11
11.3.4.1 Common Information for Servant

Manager Types . 11-
11.3.4.2 Locality Constraints 11-
12 CORBA, v2.4.2 February 2001

Contents

23
-23
-24

-25
26
27

27

28
28
29
29
30
30
-30
2

-32
32
-32
33
-34
35
-35
-35
35
35
36
-36
-36
-36
-37
-37
37
-38
-38
39

-39
-40
-40
-41
-41
-41

-42
42
42
-42
-43

-43

-49

1-50
-50
11.3.5 ServantActivator Interface 11-
11.3.5.1 incarnate . 11
11.3.5.2 etherealize . 11

11.3.6 ServantLocator Interface 11
11.3.6.1 preinvoke . 11-
11.3.6.2 postinvoke . 11-
11.3.6.3 ServantLocator and Location

Determination . 11-

11.3.7 POA Policy Objects . 11-
11.3.7.1 Thread Policy . 11-
11.3.7.2 Lifespan Policy 11-
11.3.7.3 Object Id Uniqueness Policy 11-
11.3.7.4 Id Assignment Policy 11-
11.3.7.5 Servant Retention Policy 11-
11.3.7.6 Request Processing Policy 11
11.3.7.7 Implicit Activation Policy 11-3

11.3.8 POA Interface . 11
11.3.8.1 Locality Constraints 11-
11.3.8.2 create_POA . 11
11.3.8.3 find_POA . 11-
11.3.8.4 destroy . 11
11.3.8.5 Policy Creation Operations 11-
11.3.8.6 the_name . 11
11.3.8.7 the_parent . 11
11.3.8.8 the_children . 11-
11.3.8.9 the_POAManager 11-
11.3.8.10 the_activator . 11-
11.3.8.11 get_servant_manager 11
11.3.8.12 set_servant_manager 11
11.3.8.13 get_servant . 11
11.3.8.14 set_servant . 11
11.3.8.15 activate_object 11
11.3.8.16 activate_object_with_id 11-
11.3.8.17 deactivate_object 11
11.3.8.18 create_reference 11
11.3.8.19 create_reference_with_id 11-
11.3.8.20 servant_to_id . 11
11.3.8.21 servant_to_reference 11
11.3.8.22 reference_to_servant 11
11.3.8.23 reference_to_id 11
11.3.8.24 id_to_servant . 11
11.3.8.25 id_to_reference 11

11.3.9 Current Operations . 11
11.3.9.1 get_POA . 11-
11.3.9.2 get_object_id . 11-
11.3.9.3 get_reference . 11
11.3.9.4 get_servant . 11

11.4 IDL for PortableServer Module . 11

11.5 UML Description of PortableServer. 11

11.6 Usage Scenarios . 1
11.6.1 Getting the Root POA. 11
CORBA, v2.4.2 February 2001 13

Contents

-51

51

52

-53

55
-57

57
57

60

1

2-1
-2

-2
-3

-3

-4

2-4

2-5
2-5

2-5
2-5

-5

2-8
-8

2-8
-9

2-9

-10

3-1

3-2
-2

13-3
11.6.2 Creating a POA. 11
11.6.3 Explicit Activation with POA-assigned

Object Ids . 11-
11.6.4 Explicit Activation with User-assigned

Object Ids . 11-

11.6.5 Creating References before Activation 11
11.6.6 Servant Manager Definition and Creation 11-53

11.6.7 Object Activation on Demand 11-
11.6.8 Persistent Objects with POA-assigned Ids 11

11.6.9 Multiple Object Ids Mapping to a
Single Servant. 11-

11.6.10 One Servant for All Objects 11-

11.6.11 Single Servant, Many Objects and Types,
Using DSI . 11-

12. Interoperability Overview . 12-

12.1 Elements of Interoperability . 1
12.1.1 ORB Interoperability Architecture 12

12.1.2 Inter-ORB Bridge Support 12
12.1.3 General Inter-ORB Protocol (GIOP) 12

12.1.4 Internet Inter-ORB Protocol (IIOP) 12
12.1.5 Environment-Specific Inter-ORB

Protocols (ESIOPs). 12

12.2 Relationship to Previous Versions of CORBA 1

12.3 Examples of Interoperability Solutions 1
12.3.1 Example 1. 1

12.3.2 Example 2. 1
12.3.3 Example 3. 1

12.3.4 Interoperability Compliance 12

12.4 Motivating Factors . 1
12.4.1 ORB Implementation Diversity 12

12.4.2 ORB Boundaries. 1
12.4.3 ORBs Vary in Scope, Distance, and Lifetime . . 12

12.5 Interoperability Design Goals . 1

12.5.1 Non-Goals . 12

13. ORB Interoperability Architecture 13-1

13.1 Overview . 1

13.1.1 Domains . 1
13.1.2 Bridging Domains . 13

13.2 ORBs and ORB Services .
14 CORBA, v2.4.2 February 2001

Contents

3-3

3-3
3-4

3-5
-5

-6

3-7
3-7

3-7
-8
-8
-9
9
10

10

11

-11

12

-14

14
-14
6

16
17

-17
8

18
-19

20
-20

0
-21
22
4
4

25
25
25
-26

-26

3-30
-30
13.2.1 The Nature of ORB Services 1

13.2.2 ORB Services and Object Requests 1
13.2.3 Selection of ORB Services 1

13.3 Domains . 1
13.3.1 Definition of a Domain. 13

13.3.2 Mapping Between Domains: Bridging 13

13.4 Interoperability Between ORBs . 1
13.4.1 ORB Services and Domains 1

13.4.2 ORBs and Domains . 1
13.4.3 Interoperability Approaches 13

13.4.3.1 Mediated Bridging 13
13.4.3.2 Immediate Bridging 13
13.4.3.3 Location of Inter-Domain Functionality 13-
13.4.3.4 Bridging Level . 13-

13.4.4 Policy-Mediated Bridging 13-

13.4.5 Configurations of Bridges in Networks 13-

13.5 Object Addressing . 13

13.5.1 Domain-relative Object Referencing 13-
13.5.2 Handling of Referencing Between Domains. . . 13-12

13.6 An Information Model for Object References 13

13.6.1 What Information Do Bridges Need? 13-
13.6.2 Interoperable Object References: IORs 13

13.6.2.1 The TAG_INTERNET_IOP Profile . . . 13-1
13.6.2.2 The TAG_MULTIPLE_COMPONENTS

Profile . 13-
13.6.2.3 IOR Components 13-

13.6.3 Standard IOR Components 13
13.6.3.1 TAG_ORB_TYPE Component 13-1
13.6.3.2 TAG_ALTERNATE_IIOP_ADDRESS

Component . 13-
13.6.3.3 Other Components 13

13.6.4 Profile and Component Composition in IORs . 13-
13.6.5 IOR Creation and Scope 13

13.6.6 Stringified Object References. 13-2
13.6.7 Object URLs. 13

13.6.7.1 corbaloc URL . 13-
13.6.7.2 corbaloc:rir URL 13-2
13.6.7.3 corbaloc:iiop URL 13-2
13.6.7.4 corbaloc Server Implementation 13-
13.6.7.5 corbaname URL 13-
13.6.7.6 Future corbaloc URL Protocols 13-
13.6.7.7 Future URL Schemes 13

13.6.8 Object Service Context 13

13.7 Code Set Conversion . 1
13.7.1 Character Processing Terminology 13
CORBA, v2.4.2 February 2001 15

Contents

-30
-31

-31
31
-32
-32
2
32

32
-33

-33
-33
-33

-34
-34
4

36

6
-37
-38

-41
42
42

-43
-43

-43

-43

-43
-44

-44
-46
-47
48

1

4-1

4-2

-3
-3

4-4

14-5

4-6

4-6

4-7
13.7.1.1 Character Set . 13
13.7.1.2 Coded Character Set, or Code Set 13
13.7.1.3 Code Set Classifications 13
13.7.1.4 Narrow and Wide Characters 13-
13.7.1.5 Char Data and Wchar Data 13
13.7.1.6 Byte-Oriented Code Set 13
13.7.1.7 Multi-Byte Character Strings 13-3
13.7.1.8 Non-Byte-Oriented Code Set 13-
13.7.1.9 Char Transmission Code Set (TCS-C) and

Wchar Transmission Code Set (TCS-W) 13-
13.7.1.10 Process Code Set and File Code Set . . 13
13.7.1.11 Native Code Set 13
13.7.1.12 Transmission Code Set 13
13.7.1.13 Conversion Code Set (CCS) 13

13.7.2 Code Set Conversion Framework 13
13.7.2.1 Requirements . 13
13.7.2.2 Overview of the Conversion Framework 13-3
13.7.2.3 ORB Databases and Code Set

Converters . 13-
13.7.2.4 CodeSet Component of IOR

Multi-Component Profile 13-3
13.7.2.5 GIOP Code Set Service Context 13
13.7.2.6 Code Set Negotiation 13

13.7.3 Mapping to Generic Character Environments. . 13
13.7.3.1 Describing Generic Interfaces 13-
13.7.3.2 Interoperation . 13-

13.8 Example of Generic Environment Mapping 13
13.8.1 Generic Mappings . 13

13.8.2 Interoperation and Generic Mappings 13

13.9 Relevant OSFM Registry Interfaces 13

13.9.1 Character and Code Set Registry 13
13.9.2 Access Routines . 13

13.9.2.1 dce_cs_loc_to_rgy 13
13.9.2.2 dce_cs_rgy_to_loc 13
13.9.2.3 rpc_cs_char_set_compat_check 13
13.9.2.4 rpc_rgy_get_max_bytes 13-

14. Building Inter-ORB Bridges . 14-

14.1 Introduction . 1

14.2 In-Line and Request-Level Bridging 1

14.2.1 In-line Bridging . 14
14.2.2 Request-level Bridging 14

14.2.3 Collocated ORBs . 1

14.3 Proxy Creation and Management .

14.4 Interface-specific Bridges and Generic Bridges 1

14.5 Building Generic Request-Level Bridges 1

14.6 Bridging Non-Referencing Domains 1
16 CORBA, v2.4.2 February 2001

Contents

4-7

-1

5-2

5-2

5-3
5-3

5-4

5-4
-5
-5
-6
-7

-10
-10
-10

11
11
-11
12
12
-12

-12
12
3

-14
-15
6

-17
19
19
9

-19
22
-22

-23
-23
29
29
29
29

-30

-30

5-30
-31

5-33
-33
-36
14.7 Bootstrapping Bridges . 1

15. General Inter-ORB Protocol. 15

15.1 Goals of the General Inter-ORB Protocol 1

15.2 GIOP Overview . 1

15.2.1 Common Data Representation (CDR) 1
15.2.2 GIOP Message Overview 1

15.2.3 GIOP Message Transfer 1

15.3 CDR Transfer Syntax . 1
15.3.1 Primitive Types . 15

15.3.1.1 Alignment . 15
15.3.1.2 Integer Data Types 15
15.3.1.3 Floating Point Data Types 15
15.3.1.4 Octet . 15
15.3.1.5 Boolean . 15
15.3.1.6 Character Types 15

15.3.2 OMG IDL Constructed Types. 15-
15.3.2.1 Alignment . 15-
15.3.2.2 Struct . 15
15.3.2.3 Union . 15-
15.3.2.4 Array . 15-
15.3.2.5 Sequence . 15
15.3.2.6 Enum . 15
15.3.2.7 Strings and Wide Strings 15-
15.3.2.8 Fixed-Point Decimal Type 15-1

15.3.3 Encapsulation . 15
15.3.4 Value Types . 15

15.3.4.1 Partial Type Information and Versioning 15-1
15.3.4.2 Example . 15
15.3.4.3 Scope of the Indirections 15-
15.3.4.4 Null Values . 15-
15.3.4.5 Other Encoding Information 15-1
15.3.4.6 Fragmentation . 15
15.3.4.7 Notation . 15-
15.3.4.8 The Format . 15

15.3.5 Pseudo-Object Types . 15
15.3.5.1 TypeCode . 15
15.3.5.2 Any . 15-
15.3.5.3 Principal . 15-
15.3.5.4 Context . 15-
15.3.5.5 Exception . 15-

15.3.6 Object References. 15

15.3.7 Abstract Interfaces . 15

15.4 GIOP Message Formats . 1
15.4.1 GIOP Message Header 15

15.4.2 Request Message . 1
15.4.2.1 Request Header 15
15.4.2.2 Request Body . 15
CORBA, v2.4.2 February 2001 17

Contents

-36
-37
38

5-40
-40

-40
-41

-42
-42
43

44

-44
-44

-44

5-45

-46
47
8

-48

-48

-50
-50

51
54

-55

7
58

58

-59

-59
63

4

6-1

6-1

-2

6-2
6-3

6-4
6-5

6-5
6-6
15.4.3 Reply Message . 15
15.4.3.1 Reply Header . 15
15.4.3.2 Reply Body . 15-

15.4.4 CancelRequest Message 1
15.4.4.1 Cancel Request Header 15

15.4.5 LocateRequest Message 15
15.4.5.1 LocateRequest Header. 15

15.4.6 LocateReply Message. 15
15.4.6.1 Locate Reply Header 15
15.4.6.2 LocateReply Body 15-
15.4.6.3 Handling ForwardRequest Exception

from ServantLocator . 15-

15.4.7 CloseConnection Message 15
15.4.8 MessageError Message. 15

15.4.9 Fragment Message . 15

15.5 GIOP Message Transport . 1

15.5.1 Connection Management 15
15.5.1.4 Connection Closure 15-
15.5.1.5 Multiplexing Connections 15-4

15.5.2 Message Ordering. 15

15.6 Object Location . 15

15.7 Internet Inter-ORB Protocol (IIOP) 15
15.7.1 TCP/IP Connection Usage 15

15.7.2 IIOP IOR Profiles . 15-
15.7.3 IIOP IOR Profile Components 15-

15.8 Bi-Directional GIOP . 15

15.8.1 Bi-Directional IIOP . 15-5
15.8.1.1 IIOP/SSL considerations 15-

15.9 Bi-directional GIOP policy . 15-

15.10 OMG IDL. 15

15.10.1 GIOP Module . 15
15.10.2 IIOP Module. 15-

15.10.3 BiDirPolicy Module . 15-6

16. The DCE ESIOP. 1

16.1 Goals of the DCE Common Inter-ORB Protocol 1

16.2 DCE Common Inter-ORB Protocol Overview 16

16.2.1 DCE-CIOP RPC . 1
16.2.2 DCE-CIOP Data Representation 1

16.2.3 DCE-CIOP Messages . 1
16.2.4 Interoperable Object Reference (IOR) 1

16.3 DCE-CIOP Message Transport . 1
16.3.1 Pipe-based Interface . 1
18 CORBA, v2.4.2 February 2001

Contents

-8
-8

6-8
10
-11

6-11
-11
-11
12

-12
-13
-13

-14
-14

-15
-15
-16

-16

17
18
18

-19
-19

20
20

-21
22

23
23

24
24
4
4

25

6-26

1

7-2
-2

7-3
-3

-4
-4

7-8
16.3.1.1 Invoke . 16
16.3.1.2 Locate . 16

16.3.2 Array-based Interface . 1
16.3.2.1 Invoke . 16-
16.3.2.2 Locate . 16

16.4 DCE-CIOP Message Formats. 1
16.4.1 DCE_CIOP Invoke Request Message. 16

16.4.1.1 Invoke request header 16
16.4.1.2 Invoke request body 16-

16.4.2 DCE-CIOP Invoke Response Message 16
16.4.2.1 Invoke response header 16
16.4.2.2 Invoke Response Body 16

16.4.3 DCE-CIOP Locate Request Message 16
16.4.3.1 Locate Request Header 16

16.4.4 DCE-CIOP Locate Response Message 16
16.4.4.1 Locate Response Header 16
16.4.4.2 Locate Response Body 16

16.5 DCE-CIOP Object References . 16

16.5.1 DCE-CIOP String Binding Component 16-
16.5.2 DCE-CIOP Binding Name Component 16-

16.5.2.1 BindingNameComponent 16-

16.5.3 DCE-CIOP No Pipes Component 16
16.5.4 Complete Object Key Component 16

16.5.5 Endpoint ID Position Component. 16-
16.5.6 Location Policy Component 16-

16.6 DCE-CIOP Object Location. 16
16.6.1 Location Mechanism Overview 16-

16.6.2 Activation . 16-
16.6.3 Basic Location Algorithm 16-

16.6.4 Use of the Location Policy and the Endpoint ID16-
16.6.4.1 Current location policy 16-
16.6.4.2 Original location policy 16-2
16.6.4.3 Original Endpoint ID 16-2

16.7 OMG IDL for the DCE CIOP Module 16-

16.8 References for this Chapter . 1

17. Interworking Architecture. 17-

17.1 Purpose of the Interworking Architecture 1
17.1.1 Comparing COM Objects to CORBA Objects . 17

17.2 Interworking Object Model . 1
17.2.1 Relationship to CORBA Object Model. 17

17.2.2 Relationship to the OLE/COM Model 17
17.2.3 Basic Description of the Interworking Model. . 17

17.3 Interworking Mapping Issues . 1
CORBA, v2.4.2 February 2001 19

Contents

7-8
-9

-9
10

10

-11
11
2
2
3

-13

3

14

16

7

18

18
-19

19

19

20
20

1
2

3

-23
-23

3
24

-26
27

28
28

30
0
0

17.4 Interface Mapping . 1
17.4.1 CORBA/COM . 17

17.4.2 CORBA/Automation . 17
17.4.3 COM/CORBA . 17-

17.4.4 Automation/CORBA . 17-

17.5 Interface Composition Mappings . 17
17.5.1 CORBA/COM . 17-

17.5.1.1 COM/CORBA . 17-1
17.5.1.2 CORBA/Automation 17-1
17.5.1.3 Automation/CORBA 17-1

17.5.2 Detailed Mapping Rules 17
17.5.2.1 Ordering Rules for the

CORBA->MIDL Transformation 17-13
17.5.2.2 Ordering Rules for the

CORBA->Automation Transformation 17-1

17.5.3 Example of Applying Ordering Rules 17-

17.5.4 Mapping Interface Identity 17-
17.5.4.1 Mapping Interface Repository

IDs to COM IIDs . 17-1
17.5.4.2 Mapping COM IIDs to CORBA

Interface IDs . 17-

17.6 Object Identity, Binding, and Life Cycle 17-
17.6.1 Object Identity Issues . 17

17.6.1.1 CORBA Object Identity and Reference
Properties . 17-

17.6.1.2 COM Object Identity and Reference
Properties . 17-

17.6.2 Binding and Life Cycle 17-
17.6.2.1 Lifetime Comparison 17-
17.6.2.2 Binding Existing CORBA Objects

to COM Views . 17-2
17.6.2.3 Binding COM Objects to CORBA Views 17-2
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation

Life Cycle . 17-2

17.7 Interworking Interfaces . 17
17.7.1 SimpleFactory Interface 17

17.7.2 IMonikerProvider Interface and Moniker Use . 17-2
17.7.3 ICORBAFactory Interface 17-

17.7.4 IForeignObject Interface. 17
17.7.5 ICORBAObject Interface 17-

17.7.6 ICORBAObject2. 17-
17.7.7 IORBObject Interface. 17-

17.7.8 Naming Conventions for View Components. . . 17-
17.7.8.1 Naming the COM View Interface 17-3
17.7.8.2 Tag for the Automation Interface Id . . . 17-3
17.7.8.3 Naming the Automation View
20 CORBA, v2.4.2 February 2001

Contents

30

31

-31
32

-32
32

33

-34

34

-34
34
35
-35

-36

1

8-1

-2

-2
8-2

-3
-4
-4
-5

-5

-6
8-8

-8
-8
-9

-9
-11
1

11
21
22
24
4

-26

-26
-29
29
31
Dispatch Interface . 17-
17.7.8.4 Naming the Automation View Dual

Interface . 17-
17.7.8.5 Naming the Program Id for the COM

Class . 17
17.7.8.6 Naming the Class Id for the COM Class 17-

17.8 Distribution . 17
17.8.1 Bridge Locality. 17-

17.8.2 Distribution Architecture 17-

17.9 Interworking Targets . 17

17.10 Compliance to COM/CORBA Interworking 17-

17.10.1 Products Subject to Compliance 17
17.10.1.1 Interworking solutions 17-
17.10.1.2 Mapping solutions 17-
17.10.1.3 Mapped components 17

17.10.2 Compliance Points . 17

18. Mapping: COM and CORBA . 18-

18.1 Data Type Mapping . 1

18.2 CORBA to COM Data Type Mapping 18

18.2.1 Mapping for Basic Data Types 18
18.2.2 Mapping for Constants 1

18.2.3 Mapping for Enumerators. 18
18.2.4 Mapping for String Types 18

18.2.4.1 Mapping for Unbounded String Types . 18
18.2.4.2 Mapping for Bounded String Types . . . 18

18.2.5 Mapping for Struct Types 18

18.2.6 Mapping for Union Types. 18
18.2.7 Mapping for Sequence Types 1

18.2.7.1 Mapping for Unbounded Sequence
Types . 18

18.2.7.2 Mapping for Bounded Sequence Types 18
18.2.8 Mapping for Array Types 18

18.2.9 Mapping for the any Type. 18
18.2.10 Interface Mapping . 18

18.2.10.1 Mapping for interface identifiers 18-1
18.2.10.2 Mapping for exception types 18-
18.2.10.3 Mapping for Nested Types 18-
18.2.10.4 Mapping for Operations 18-
18.2.10.5 Mapping for Oneway Operations 18-
18.2.10.6 Mapping for Attributes 18-2
18.2.10.7 Indirection Levels for Operation

Parameters . 18

18.2.11 Inheritance Mapping. 18
18.2.12 Mapping for Pseudo-Objects 18

18.2.12.1 Mapping for TypeCode pseudo-object 18-
18.2.12.2 Mapping for context pseudo-object . . . 18-
CORBA, v2.4.2 February 2001 21

Contents

2

-32

33
33

-34
-34

35
35
36

36
37

37
38
38
39

40
40
0
1

43
-44
4
4
47
47
47
48

49
49
50
2

-2
-2

-3

9-3

-4

5

9-9
-9

-10

0

18.2.12.3 Mapping for principal pseudo-object . 18-3

18.2.13 Interface Repository Mapping 18

18.3 COM to CORBA Data Type Mapping 18-
18.3.1 Mapping for Basic Data Types 18-

18.3.2 Mapping for Constants 18
18.3.3 Mapping for Enumerators. 18

18.3.4 Mapping for String Types 18-
18.3.4.1 Mapping for unbounded string types . . . 18-
18.3.4.2 Mapping for bounded string types 18-
18.3.4.3 Mapping for Unicode Unbounded

 String Types . 18-
18.3.4.4 Mapping for unicode bound string types 18-

18.3.5 Mapping for Structure Types 18-
18.3.6 Mapping for Union Types. 18-

18.3.6.1 Mapping for Encapsulated Unions 18-
18.3.6.2 Mapping for nonencapsulated unions . . 18-

18.3.7 Mapping for Array Types 18-
18.3.7.1 Mapping for nonfixed arrays 18-
18.3.7.2 Mapping for SAFEARRAY 18-4

18.3.8 Mapping for VARIANT 18-4

18.3.9 Mapping for Pointers . 18-
18.3.10 Interface Mapping . 18

18.3.10.1 Mapping for Interface Identifiers 18-4
18.3.10.2 Mapping for COM Errors 18-4
18.3.10.3 Mapping of Nested Data Types 18-
18.3.10.4 Mapping of Names 18-
18.3.10.5 Mapping for Operations 18-
18.3.10.6 Mapping for Properties 18-

18.3.11 Mapping for Read-Only Attributes 18-
18.3.12 Mapping for Read-Write Attributes 18-

18.3.12.1 Inheritance Mapping 18-
18.3.12.2 Type Library Mapping 18-5

19. Mapping: Automation and CORBA. 19-1

19.1 Mapping CORBA Objects to Automation 19
19.1.1 Architectural Overview 19

19.1.2 Main Features of the Mapping 19

19.2 Mapping for Interfaces . 1

19.2.1 Mapping for Attributes and Operations 19

19.2.2 Mapping for OMG IDL Single Inheritance . . . 19-
19.2.3 Mapping of OMG IDL Multiple Inheritance . . 19-6

19.3 Mapping for Basic Data Types . 1
19.3.1 Basic Automation Types. 19

19.3.2 Special Cases of Basic Data Type Mapping . . . 19
19.3.2.1 Converting Automation long to

CORBA unsigned long 19-1
22 CORBA, v2.4.2 February 2001

Contents

1

11

11

11

12

-12

-15
-15

16

-17

9-18

-19

20
21

-22
-24

25
-25

26

27
29
9

30

30
30
31
-32
33
-34

6

-36

36
38
19.3.2.2 Demoting CORBA unsigned long to
Automation long . 19-1

19.3.2.3 Demoting Automation long to CORBA
 unsigned short . 19-

19.3.2.4 Converting Automation boolean to
CORBA boolean and CORBA boolean to
Automation boolean . 19-

19.3.3 Mapping for Strings . 19-

19.4 IDL to ODL Mapping . 19-

19.4.1 A Complete IDL to ODL Mapping for the Basic
Data Types . 19

19.5 Mapping for Object References . 19
19.5.1 Type Mapping. 19

19.5.2 Object Reference Parameters and
IForeignObject . 19-

19.6 Mapping for Enumerated Types . 19

19.7 Mapping for Arrays and Sequences 1

19.8 Mapping for CORBA Complex Types 19

19.8.1 Mapping for Structure Types 19-
19.8.2 Mapping for Union Types. 19-

19.8.3 Mapping for TypeCodes 19
19.8.4 Mapping for anys . 19

19.8.5 Mapping for Typedefs. 19-
19.8.6 Mapping for Constants 19

19.8.7 Getting Initial CORBA Object References 19-
19.8.8 Creating Initial in Parameters for Complex

Types . 19-
19.8.8.1 ITypeFactory Interface 19-
19.8.8.2 DIObjectInfo Interface 19-2

19.8.9 Mapping CORBA Exceptions to Automation
Exceptions . 19-

19.8.9.1 Overview of Automation Exception
Handling . 19-

19.8.9.2 CORBA Exceptions 19-
19.8.9.3 CORBA User Exceptions 19-
19.8.9.4 Operations that Raise User Exceptions . 19
19.8.9.5 CORBA System Exceptions 19-
19.8.9.6 Operations that raise system exceptions 19

19.8.10 Conventions for Naming Components of the
Automation View . 19-3

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions 19

19.8.12 Automation View Interface as a Dispatch
Interface (Nondual) . 19-

19.8.13 Aggregation of Automation Views 19-
CORBA, v2.4.2 February 2001 23

Contents

-38

-38
38

-39
40

40
40

41
42
-42

-43
-43

3

3

43

-44
-46

-47
48
8

-48

8
9

-49

49

9-51

51

1

55

0-1

-2

20-2
0-3
19.8.14 DII and DSI . 19

19.9 Mapping Automation Objects as CORBA Objects. 19
19.9.1 Architectural Overview 19-

19.9.2 Main Features of the Mapping 19
19.9.3 Getting Initial Object References 19-

19.9.4 Mapping for Interfaces 19-
19.9.5 Mapping for Inheritance 19-

19.9.6 Mapping for ODL Properties and Methods . . . 19-
19.9.7 Mapping for Automation Basic Data Types . . . 19-

19.9.7.1 Basic automation types 19

19.9.8 Conversion Errors . 19
19.9.9 Special Cases of Data Type Conversion 19

19.9.9.1 Translating COM::Currency to
Automation CURRENCY 19-4

19.9.9.2 Translating CORBA double to
Automation DATE . 19-4

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation
boolean to CORBA boolean 19-

19.9.10 A Complete OMG IDL to ODL Mapping for
the Basic Data Types . 19

19.9.11 Mapping for Object References 19

19.9.12 Mapping for Enumerated Types 19
19.9.13 Mapping for SafeArrays 19-

19.9.13.1 Multidimensional SafeArrays 19-4
19.9.14 Mapping for Typedefs. 19

19.9.15 Mapping for VARIANTs 19-4
19.9.16 Mapping Automation Exceptions to CORBA. . 19-4

19.10 Older Automation Controllers . 19

19.10.1 Mapping for OMG IDL Arrays and Sequences
to Collections . 19-

19.11 Example Mappings. 1
19.11.1 Mapping the OMG Naming Service to

Automation. 19-

19.11.2 Mapping a COM Service to OMG IDL 19-5
19.11.3 Mapping an OMG Object Service to

Automation. 19-

20. Interoperability with non-CORBA Systems 20-1

20.1 Introduction . 2

20.1.1 COM/CORBA Part A . 20

20.2 Conformance Issues .
20.2.1 Performance Issues . 2
24 CORBA, v2.4.2 February 2001

Contents

0-3

-3

0-4

0-5

0-6
-6

0-7
7
-8

-8

20-8

20-9
-10

10
11
11
11

-11

11
M
11

-12
12

12
-12

13
13

13
3

14
14

-15

-16
16

17

0-19
-19

-20

-21
20.2.2 Scalability Issues . 2

20.2.3 CORBA Clients for DCOM Servers 20

20.3 Locality of the Bridge . 2

20.4 Extent Definition . 2

20.4.1 Marshaling Constraints. 2
20.4.2 Marshaling Key . 20

20.4.3 Extent Format . 2
20.4.3.1 DVO_EXTENT 20-
20.4.3.2 DVO_IFACE . 20
20.4.3.3 DVO_IMPLDATA 20-8
20.4.3.4 DVO_BLOB . 20

20.5 Request/Reply Extent Semantics .

20.6 Consistency .
20.6.1 IValueObject . 20

20.6.2 ISynchronize and DISynchronize 20-
20.6.2.1 Mode Property . 20-
20.6.2.2 SyncNow Method 20-
20.6.2.3 ReCopy Method 20-

20.7 DCOM Value Objects. 20

20.7.1 Passing Automation Compound Types as DCOM
Value Objects . 20-

20.7.2 Passing CORBA-Defined Pseudo-Objects as DCO
Value Objects . 20-

20.7.3 IForeignObject . 20
20.7.4 DIForeignComplexType 20-

20.7.5 DIForeignException . 20-
20.7.6 DISystemException . 20

20.7.7 DICORBAUserException 20-
20.7.8 DICORBAStruct. 20-

20.7.9 DICORBAUnion. 20-
20.7.10 DICORBATypeCode and ICORBATypeCode. . 20-1

20.7.11 DICORBAAny . 20-
20.7.12 ICORBAAny . 20-

20.7.13 User Exceptions In COM 20

20.8 Chain Avoidance . 20
20.8.1 CORBA Chain Avoidance 20-

20.8.2 COM Chain Avoidance. 20-

20.9 Chain Bypass . 2
20.9.1 CORBA Chain Bypass 20

20.9.2 COM Chain Bypass . 20

20.10 Thread Identification . 20
CORBA, v2.4.2 February 2001 25

Contents

1-1

1-1
1-2

21-2

1-3

4

1-4

-4
-5

-6
1-6

1-7
-8

21-8

1-9

2-1

2-2

2-2
2-4
-4
-5

2-6
2-6
-7

2-7
-7
-7
7

2-8
-8
-8
-8
-9
-9
-9

-10
10
10
10
11
21. Interceptors . 2

21.1 Introduction . 2
21.1.1 ORB Core and ORB Services 2

21.2 Interceptors .

21.2.1 Generic ORB Services and Interceptors 21-2
21.2.2 Request-Level Interceptors 2

21.2.3 Message-Level Interceptors 21-3
21.2.4 Selecting Interceptors . 21-

21.3 Client-Target Binding. 2

21.3.1 Binding Model . 21
21.3.2 Establishing the Binding and Interceptors 21

21.4 Using Interceptors . 21
21.4.1 Request-Level Interceptors 2

21.4.2 Message-Level Interceptors 21-7

21.5 Interceptor Interfaces . 2
21.5.1 Client and Target Invoke. 21

21.5.2 Send and Receive Message.

21.6 IDL for Interceptors . 2

22. CORBA Messaging . 2

22.1 Section I - Introduction . 2

22.2 Messaging Quality of Service . 2
22.2.1 Rebind Support . 2

22.2.1.1 typedef short RebindMode 22
22.2.1.2 interface RebindPolicy 22

22.2.2 Synchronization Scope 2
22.2.2.1 typedef short SyncScope 2
22.2.2.2 interface SyncScopePolicy 22

22.2.3 Request and Reply Priority. 2
22.2.3.1 struct PriorityRange 22
22.2.3.2 interface RequestPriorityPolicy 22
22.2.3.3 interface ReplyPriorityPolicy 22-

22.2.4 Request and Reply Timeout 2
22.2.4.1 interface RequestStartTimePolicy 22
22.2.4.2 interface RequestEndTimePolicy 22
22.2.4.3 interface ReplyStartTimePolicy 22
22.2.4.4 interface ReplyEndTimePolicy 22
22.2.4.5 interface RelativeRequestTimeoutPolicy 22
22.2.4.6 interface RelativeRoundtripTimeoutPolicy 22

22.2.5 Routing . 22
22.2.5.1 typedef short RoutingType 22-
22.2.5.2 struct RoutingTypeRange 22-
22.2.5.3 interface RoutingPolicy 22-
22.2.5.4 interface MaxHopsPolicy 22-
26 CORBA, v2.4.2 February 2001

Contents

-11
11
11

2-12
-12

-12
-13

-13

-15

-15
-16
6
6
-17

-18
8
8
-19

20

20
0

-21

-22

3

23

-24

-25

-25
-25

-25
26

-26

26

27

28

-29
-29

2-30
22.2.6 Queue Ordering . 22
22.2.6.1 typedef short Ordering 22-
22.2.6.2 interface QueueOrderPolicy 22-

22.3 Propagation of Messaging QoS . 2
22.3.1 Structures . 22

22.3.2 Messaging QoS Profile Component 22
22.3.3 Messaging QoS Service Context 22

22.4 Section II - Introduction . 22

22.5 Running Example. 22

22.6 Async Operation Mapping . 22
22.6.1 Callback Model Signatures (sendc) 22

22.6.1.1 Implied-IDL for Operations 22-1
22.6.1.2 Implied-IDL for Attributes 22-1
22.6.1.3 Example . 22

22.6.2 Polling Model Signatures (sendp). 22
22.6.2.1 Implied-IDL for Operations 22-1
22.6.2.2 Implied-IDL for Attributes 22-1
22.6.2.3 Example . 22

22.7 Exception Delivery in the Callback Model. 22-

22.7.1 Generic ExceptionHolder Value 22-
22.7.2 Type-Specific ExceptionHolder Mapping. 22-2

22.7.3 Example . 22

22.8 Type-Specific ReplyHandler Mapping 22
22.8.1 ReplyHandler Operations for

NO_EXCEPTION Replies 22-2

22.8.2 ReplyHandler Operations for Exceptional
Replies . 22-

22.8.3 Example . 22

22.9 Generic Poller Value . 22

22.9.1 operation_target . 22
22.9.2 operation_name . 22

22.9.3 associated_handler . 22
22.9.4 is_from_poller . 22-

22.10 Type-Specific Poller Mapping . 22

22.10.1 Basic Type-Specific Poller 22-
22.10.1.1 Poller operations for Interface

operations . 22-
22.10.1.2 Poller operations for Interface

attributes . 22-

22.10.2 Persistent Type-Specific Poller 22
22.10.3 Example . 22

22.11 Example Programmer Usage . 2
CORBA, v2.4.2 February 2001 27

Contents

30

30

32

32

32

34

37

9
39
0

42
-44

-45

2-46

2-46
-48

-48
-48
49
-50

-50
50
-50
-51
-51
51
51
-51
51
52
-52
-52
-52

-53
3

54
5

-55
-55

57
8

22.11.1 Example Programmer Usage (Examples Mapped
to C++) . 22-

22.11.2 Client-Side C++ Example for the Asynchronous
Method Signatures . 22-

22.11.3 Client-Side C++ Example of the Callback
Model . 22-

22.11.3.1 C++ Example of Generated
ExceptionHolder . 22-

22.11.3.2 C++ Example of Generated
ReplyHandler . 22-

22.11.3.3 C++ Example of User -Implemented
ReplyHandler . 22-

22.11.3.4 C++ Example of Callback Client
Program . 22-

22.11.4 Client-Side C++ Example of the Polling Model 22-3
22.11.4.1 C++ Example of Generated Poller . . . 22-
22.11.4.2 C++ Example of Polling Client Program 22-4
22.11.4.3 C++ Example of Using PollableSet

in a Client Program . 22-
22.11.5 Server Side . 22

22.12 Section III - Introduction . 22

22.13 Routing Object References. 2

22.14 Message Routing . 2
22.14.1 Structures . 22

22.14.1.1 MessageBody 22
22.14.1.2 RequestMessage 22
22.14.1.3 ReplyDestination 22-
22.14.1.4 RequestInfo . 22

22.14.2 Interfaces . 22
22.14.2.1 ReplyHandler . 22-
22.14.2.2 Router . 22
22.14.2.3 send_request . 22
22.14.2.4 send_multiple_requests 22
22.14.2.5 UntypedReplyHandler 22-
22.14.2.6 reply . 22-
22.14.2.7 PersistentRequest 22
22.14.2.8 readonly attribute reply_available 22-
22.14.2.9 get_reply . 22-
22.14.2.10 attribute associated_handler 22
22.14.2.11 PersistentRequestRouter 22
22.14.2.12 create_persistent_request 22

22.14.3 Routing Protocol. 22
22.14.3.1 Invoking Client 22-5
22.14.3.2 Initial Request Router 22-
22.14.3.3 Request Routing Algorithm 22-5
22.14.3.4 Intermediate Request Router 22
22.14.3.5 Target Router . 22
22.14.3.6 Replying to a Type-specific

ReplyHandler . 22-
22.14.3.7 Replying to an UntypedReplyHandler 22-5
28 CORBA, v2.4.2 February 2001

Contents

58

58
58
59

-59
-63

-63

-63
63

-63
63
-63
63
4

64
-64

-64
64
-65
-65
-65
-65

-1

3-2

3-2

3-2

3-3
3-3

3-4
-4

3-5

3-5

3-5

3-5
3-5

3-6
3-6
-6
-6
-7
-7
-7
3-7

3-7
22.14.3.8 Handling of Service Contexts 22-
22.14.3.9 Handling LOCATION_FORWARD

Replies . 22-
22.14.3.10 Routing of Replies 22-
22.14.3.11 UntypedReplyHandler 22-

22.15 Router Administration . 22
22.15.1 Constants . 22

22.15.1.1 typedef short RegistrationState 22

22.15.2 Exceptions . 22
22.15.2.1 exception InvalidState 22-

22.15.3 Values . 22
22.15.3.1 RetryPolicy . 22-
22.15.3.2 ImmediateSuspend 22
22.15.3.3 UnlimitedPing 22-
22.15.3.4 LimitedPing 22-6
22.15.3.5 DecayPolicy . 22-
22.15.3.6 ResumePolicy 22

22.15.4 Interfaces . 22
22.15.4.1 RouterAdmin . 22-
22.15.4.2 register_destination 22
22.15.4.3 suspend_destination 22
22.15.4.4 resume_destination 22
22.15.4.5 unregister_destination 22

23. Minimum CORBA. 23

23.1 Introduction . 2

23.2 IDL. 2

23.3 CORBA Omitted Features . 2

23.4 ORB Interface Omissions. 2
23.4.1 ORB . 2

23.4.2 Object . 2
23.4.3 ConstructionPolicy . 23

23.5 Dynamic Invocation Interface . 2

23.6 Dynamic Skeleton Interface . 2

23.7 Dynamic Any . 2

23.8 Interface Repository . 2
23.8.1 TypeCode . 2

23.9 Portable Object Adapter . 2
23.9.1 Interfaces . 2

23.9.1.1 POA . 23
23.9.1.2 Current . 23
23.9.1.3 Policy interfaces 23
23.9.1.4 POAManager . 23
23.9.1.5 AdapterActivator 23
23.9.1.6 ServantManagers 2

23.9.2 Policies . 2
CORBA, v2.4.2 February 2001 29

Contents

-7
-8
-8
-8
-8

3-8

3-9

-9

10

3-10

3-10

-10
-10

11

-11
14

-14
14

-14
-22

-29

-1

4-2

4-2

4-3

4-4
-4

-4
-5

-5
4-6

4-6

-6
-7

7

4-8

4-8

-9
-9
23.9.2.1 ThreadPolicy . 23
23.9.2.2 LifespanPolicy . 23
23.9.2.3 ObjectIdUniquenessPolicy 23
23.9.2.4 IdAssignmentPolicy 23
23.9.2.5 ServantRetentionPolicy 23
23.9.2.6 RequestProcessingPolicy 2
23.9.2.7 ImplicitActivationPolicy 23-9

23.10 Interoperability. 2

23.10.1 DCE Interoperability . 23

23.11 COM/CORBA Interworking . 23-

23.12 Interceptors . 2

23.13 Language Mappings . 2

23.13.1 C++ Mapping Specific Issues 23
23.13.2 Java Mapping Specific Issues 23

23.14 minimumCORBA OMG IDL . 23-

23.14.1 ORB Interface. 23
23.14.2 Dynamic Invocation Interface. 23-

23.14.3 Dynamic Skeleton Interface 23
23.14.4 Dynamic Management of Any Values 23-

23.14.5 Interface Repository . 23
23.14.6 Portable Object Adapter 23

23.14.7 Interceptors. 23

24. Real-Time CORBA . 24

24.1 Overview . 2

24.2 Goals of the Specification . 2

24.3 Extending CORBA. 2

24.4 Approach to Real-Time CORBA . 2
24.4.1 The Nature of Real-Time 24

24.4.2 Meeting Real-Time Requirements 24
24.4.3 Activities . 24

24.4.4 End-to-End Predictability 24
24.4.5 Management of Resources 2

24.5 Compatibility . 2

24.5.1 Interoperability . 24
24.5.2 Portability . 24

24.5.3 CORBA - Real-Time CORBA Interworking. . . 24-

24.6 Compliance . 2

24.7 Real-Time Architecture . 2

24.7.1 Real-Time CORBA Modules 24
24.7.2 Real-Time ORB . 24
30 CORBA, v2.4.2 February 2001

Contents

4-9
10

0

0
10

11

11
-11

-12
12

-12
12

12
-13

-13
4

14

-15

-16

-17

-17

8
9

9
20

-20

-21

22

22
23

24
24

-25

-26
7

8
8

29
24.7.3 Thread Scheduling . 2
24.7.3.1 Threads for part of an activity 24-

24.7.4 Real-Time CORBA Priority 24-1

24.7.5 Native Priority and PriorityMappings. 24-1
24.7.6 Real-Time CORBA Current 24-

24.7.7 Priority Models. 24-
24.7.8 Real-Time CORBA Mutexes and Priority

Inheritance . 24-
24.7.9 Threadpools . 24

24.7.10 Priority Banded Connections 24
24.7.11 Non-Multiplexed Connections 24-

24.7.12 Invocation Timeouts . 24
24.7.13 Client and Server Protocol Configuration. 24-

24.7.14 Real-Time CORBA Configuration 24-
24.7.15 Scheduling Service . 24

24.8 Real-Time ORB . 24
24.8.1 Real-Time ORB Initialization. 24-1

24.8.2 Real-Time CORBA System Exceptions 24-

24.9 Real-Time POA . 24

24.10 Native Thread Priorities . 24

24.11 CORBA Priority . 24

24.12 CORBA Priority Mappings . 24

24.12.1 C Language Binding for PriorityMapping 24-1
24.12.2 C++ Language Binding for PriorityMapping . . 24-1

24.12.3 Ada Language Binding for PriorityMapping . . 24-1
24.12.4 Java Language Binding for PriorityMapping . . 24-

24.12.5 Semantics . 24

24.13 Real-Time Current . 24

24.14 Real-Time CORBA Priority Models 24-

24.14.1 PriorityModelPolicy . 24-
24.14.2 Scope of PriorityModelPolicy 24-

24.14.3 Client Propagated Priority Model 24-
24.14.4 Server Declared Priority Model 24-

24.14.5 Setting Server Priority on a Per-object
Reference Basis . 24

24.15 Priority Transforms . 24
24.15.1 C Language Binding for PriorityTransform . . . 24-2

24.15.2 C++ Language Binding for PriorityTransform . 24-2
24.15.3 Ada Language Binding for PriorityTransform . 24-2

24.15.4 Java Language Binding for PriorityTransform . 24-
CORBA, v2.4.2 February 2001 31

Contents

-29

-30

4-31
33

33
-34

-34

35

-35

37
37

-39

-39

-40
-40

-42
42

43
-44

-44

-50

-51

4-52

4-52

-53
-54

-54
24.15.5 Semantics . 24

24.16 Mutex Interface . 24

24.17 Threadpools . 2
24.17.1 Creation of Threadpool without Lanes 24-

24.17.2 Creation of Threadpool with Lanes 24-
24.17.3 Request Buffering. 24

24.17.4 Scope of ThreadpoolPolicy. 24

24.18 Implicit and Explicit Binding . 24-

24.19 Priority Banded Connections . 24

24.19.1 Scope of PriorityBandedConnectionPolicy. . . . 24-
24.19.2 Binding of Priority Banded Connection 24-

24.20 PrivateConnectionPolicy . 24

24.21 Invocation Timeout . 24

24.22 Protocol Configuration . 24
24.22.1 ServerProtocolPolicy . 24

24.22.2 Scope of ServerProtocolPolicy 24
24.22.3 ClientProtocolPolicy. 24-

24.22.4 Scope of ClientProtocolPolicy 24-
24.22.5 Protocol Configuration Semantics 24

24.23 Consolidated OMG IDL. 24

24.24 Introduction . 24

24.25 OMG IDL. 24

24.26 Semantics . 2

24.27 Example . 2

24.27.1 Server C++ Example Code 24
24.27.2 Client C++ Example Code 24

24.27.3 Explanation of Example 24

Appendix A - OMG IDL Tags . A-1
32 CORBA, v2.4.2 February 2001

Preface
G
ct-

s at
ll
 by
 and

rted
 and
nted

ide a
,
ous
p a

ed.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OM
and X/Open Co Ltd. ensures joint review and cohesive support for emerging obje
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to fu
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 i

st of

 the
sion

tain,

t
by

 tests
rried

e
G

uted,
e

vides

ce

ive

d

o
on
g,

d in
X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems. X/Open’s strategy for achieving its mis
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These con
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs a
the source code level. The APIs also enhance the interoperability of applications
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is ca
only on products that comply with the CAE specifications.

Intended Audience

The architecture and specifications described in this manual are aimed at softwar
designers and developers who want to produce applications that comply with OM
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distrib
interoperating objects. As defined by the Object Management Group (OMG) in th
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB pro
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Referen
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in this manual.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicati
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are containe
CORBAservices: Common Object Services Specification.
ii Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

,
stem
ity.

ond
.

lls.
n

ards
G,

ests

only

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facil
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects corresp
to the traditional notion of applications, so they are not standardized by OMG
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving ca
Combined with the Object Services, it ensures meaningful communication betwee
CORBA-compliant applications.

Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It also provides information about the policies and procedures of OM
such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

• CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requ
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org
CORBA, v2.4.2 Associated Documents February 2001 iii

ng is

hey
e,
ng

d

Core
e

e,

re

lient
Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-11

CORBA Interoperability , as specified in Chapters 12-16

CORBA Interworking , as specified in Chapters 17-21

Note – The CORBA Language Mappings have been separated from the CORBA
and each language mapping is its own separate book. Refer to CORBA Languag
Mappings at the OMG Formal Document web area for this information.

Structure of This Manual

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this prefac
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architectu
and includes information about CORBA interfaces and implementations.

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that c
objects call and object implementations provide.
iv Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

ct

by

does
 is

uch
dge

es

ral
r-

ces

l
t,
r-
Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and obje
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semantics explains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interface describes the DSI, the server’s-side
interface that can deliver requests from an ORB to an object implementation that
not have compile-time knowledge of the type of the object it is implementing. DSI
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Management of Any Values details the interface for the
Dynamic Any type. This interface allows statically-typed programming languages s
as C and Java to create or receive values of type Any without compile-time knowle
that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manag
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; gene
and Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inte
ORB protocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Servi
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protoco
(GIOP) and includes information about the GIOP’s goals, syntax, format, transpor
and object location. This chapter also includes information about the Internet inte
ORB protocol (IIOP).
CORBA, v2.4.2 Structure of This Manual February 2001 v

ing

 of

ndix

rity

at
Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (includ
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appe
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Interceptors defines ORB operations that allow services such as secu
to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA
designed for systems with limited resources.

Chapter 24 - Real-Time CORBA defines an optional set of extensions to CORBA
tailored to equip ORBs to be used as a component of a Real-Time system.

Acknowledgements

The following companies submitted and/or supported parts of the specifications th
were approved by the Object Management Group to become CORBA:

• Alcatel

• BEA Systems, Inc.

• BNR Europe Ltd.

• Borland International, Inc.

• Cooperative Research Centre for Distributed Systems Technology (DSTC)
vi Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

• Defense Information Systems Agency

• Digital Equipment Corporation

• Ericsson

• Expersoft Corporation

• France Telecom

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• Hewlett-Packard Company

• Highlander Communications, L.C.

• Humboldt-University

• HyperDesk Corporation

• ICL, Plc.

• Inprise Corporation

• International Business Machines Corporation

• International Computers, Inc.

• IONA Technologies, Plc.

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• Micro Focus Limited

• MITRE Corporation

• Motorola, Inc.

• NCR Corporation

• NEC Corporation

• Netscape Communications Corporation

• Nortel Networks

• Northern Telecom Corporation

• Novell, Inc.

• Object Design, Inc.

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Oracle Corporation

• PeerLogic, Inc.

• Siemens Nixdorf Informationssysteme AG

• SPAWAR Systems Center

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• TIBCO, Inc.
CORBA, v2.4.2 Acknowledgements February 2001 vii

rk

,

C

o-

, S.
• Tri-Pacific Software, Inc.

• University of Rhode Island

• Visual Edge Software, Ltd.

• Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
viii Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

The Object Model 1
 the

et

ject

le,
es.

y
This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by
Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation s
is provided in this document’s preface.)

Contents

This chapter contains the following sections.

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG ob
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for examp
by defining the form of request parameters or the language used to specify typ

• It may populate the model by introducing specific instances of entities defined b
the model, for example, specific objects, specific operations, or specific types.

Section Title Page

“Overview” 1-1

“Object Semantics” 1-2

“Object Implementation” 1-9
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 1-1

1

on

In

such
atures.
epts

l to
t of

ys

 of the
e are

epts
uded
and
l
-
d nor

what
o or

ation

 the

cepts

a
• It may restrict the model by eliminating entities or placing additional restrictions
their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface.
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including
concepts as object creation and identity, requests and operations, types and sign
It then describes concepts related to object implementations, including such conc
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningfu
clients. The discussion of object implementation is more suggestive, with the inten
allowing maximal freedom for different object technologies to provide different wa
of implementing objects.

There are some other characteristics of object systems that are outside the scope
object model. Some of these concepts are aspects of application architecture, som
associated with specific domains to which object technology is applied. Such conc
are more properly dealt with in an architectural reference model. Examples of excl
concepts are compound objects, links, copying of objects, change management,
transactions. Also outside the scope of the object model are the details of contro
structure: the object model does not say whether clients and/or servers are single
threaded or multi-threaded, and does not specify how event loops are programme
how threads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide
service to perform. In the classical model, a message identifies an object and zer
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpret
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the con
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by
client.
1-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

1

ciated

 or

, zero

iple

eate
e

t

an

 may
t. A

 for

n is

o

d to
1.2.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally asso
with that initiation. For example:

• the client receives the final response associated with that request from the server,

• the server carries out the associated operation in case of a oneway request,

• the sequence of events associated with the request terminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object
or more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed mult
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to cr
an invocation structure, add arguments to the invocation structure, and to issue th
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-objec
values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically,
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it
also have a request context that provides additional information about the reques
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined
the request.

If an abnormal condition occurs during the performance of a request, an exceptio
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may als
return a single return result value, as well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guarantee
be preserved.
CORBA, v2.4.2 Object Semantics February 2001 1-3

1

eters

.4,

ecial
d as

client

a

e.

E
• The order in which aliased output parameters are written is not guaranteed.

• The return result and the values stored into the output and input-output param
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no sp
mechanism for creating or destroying an object. Objects are created and destroye
an outcome of issuing requests. The outcome of object creation is revealed to the
in the form of an object reference that denotes the new object.

1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An entity satisfies a
type if the predicate is true for that entity. An entity that satisfies a type is called
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of entities that satisfy the type at any particular tim

An object type is a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

1.2.4.1 Basic types

• 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

• Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEE
floating point numbers.

• Fixed-point decimal numbers of up to 31 significant digits.

• Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

• A boolean type taking the values TRUE and FALSE.

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems.

• Enumerated types consisting of ordered sequences of identifiers.
1-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

1

h of
y

and

type.

airs.

e is
ator

le

type

ce of

 legal
• A string type, which consists of a variable-length array of characters; the lengt
the string is a non-negative integer, and is available at run-time. The length ma
have a maximum bound defined.

• A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer,
is available at run-time. The length may have a maximum bound defined.

• A container type “any,” which can represent any possible basic or constructed

• Wide characters that may represent characters from any wide character set.

• Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

1.2.4.2 Constructed types

• A record type (called struct), which consists of an ordered set of (name,value) p

• A discriminated union type, which consists of a discriminator (whose exact valu
always available) followed by an instance of a type appropriate to the discrimin
value.

• A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

• An array type, which consists of a fixed-shape multidimensional array of a sing
type.

• An interface type, which specifies the set of operations that an instance of that
must support.

• A value type, which specifies state as well as a set of operations that an instan
that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The
entities are shown in . No particular representation for entities is defined.
CORBA, v2.4.2 Object Semantics February 2001 1-5

1

st of
ice
ons.
e

nce

on

s of

here

d
d of
crete
Figure 1-1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may reque
an object, through that interface. It provides a syntactic description of how a serv
provided by an object supporting this interface, is accessed via this set of operati
An object satisfies an interface if it provides its service through the operations of th
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

The interface type for a given interface is an object type, such that an object refere
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the compositi
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consist
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used w
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces an
structs. It is a description of both a set of operations that a client may request an
state that is accessible to a client. Instances of a value type are always local con
implementations in some programming language.

Short
Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed
Char
Wchar
String
Wstring
Boolean
Octet
Enum
Any

Struct
Sequence
Union
Array

Basic ValueEntity

Constructed Values

Object Reference

Value Type

Abstract Interface
1-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

1

erit

e
y
ss-by-

e
 as

ers

the

n.

ly

DL

 of
tion
A value type, in addition to the operations and state defined for itself, may also inh
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value types describes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see
Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pur
bundle of operations with no state. Unlike an abstract value type, it does not impl
pass-by-value semantics, and unlike a regular interface type, it does not imply pa
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of servic
provision that can be requested. The act of requesting an operation is referred to
invoking the operation. An operation is identified by an operation identifier.

An operation has a signature that describes the legitimate values of request paramet
and returned results. In particular, a signature consists of:

• A specification of the parameters required in requests for that operation.

• A specification of the result of the operation.

• An identification of the user exceptions that may be raised by an invocation of
operation.

• A specification of additional contextual information that may affect the invocatio

• An indication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniform
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in I
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected
requests for this operation; the default semantics are exactly-once if the opera
successfully returns results or at-most-once if an exception is returned.
CORBA, v2.4.2 Object Semantics February 2001 1-7

1

ot

ll

d in

ully.

a

tions

t

ctly
• The <op_type_spec> is the type of the return result.

• The <identifier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the
modifiers in , out , or inout to indicate the direction in which the information flows
(with respect to the object performing the request).

• The optional raises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is n
provided, no user-defined exceptions will be signaled.

• The optional context expression indicates which request context information wi
be available to the object implementation; no other contextual information is
required to be transported with the request.

1.2.8.1 Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value, which may be passe
the directions dictated by the mode.

1.2.8.2 Return Result

The return result is a distinguished out parameter.

1.2.8.3 Exceptions

An exception is an indication that an operation request was not performed successf
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As
record, it may consist of any of the types described in Section 1.2.4, “Types,” on
page 1-4.

All signatures implicitly include the system exceptions; the standard system excep
are described in Section 4.11.2, “System Exceptions,” on page 4-50.

1.2.8.4 Contexts

A request context provides additional, operation-specific information that may affec
the performance of a request.

1.2.8.5 Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed exa
once; if it returns an exception indication, it was performed at-most-once.
1-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

1

turn
f the

vents

r

pair
value

is

eded
ing
al

The

at

ge the

gine.

e

• Best-effort: a best-effort operation is a request-only operation (i.e., it cannot re
any results and the requester never synchronizes with the completion, if any, o
request).

The execution semantics to be expected is associated with an operation. This pre
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous o
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a
of accessor functions: one to retrieve the value of the attribute and one to set the
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities ne
to effect the behavior of requested services. These activities may include comput
the results of the request and updating the system state. In the process, addition
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed.
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code th
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may chan
state of the system.

Code that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution en
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing th
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.
CORBA, v2.4.2 Object Implementation February 2001 1-9

1

d input-
assed

on an
sible
o an

f
ods,
 and
ds.
ith

n
ong
 also
When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output an
output parameters and return result value (or exception and its parameters) are p
back to the requestor.

Performing a requested service causes a method to execute that may operate up
object’s persistent state. If the persistent form of the method or state is not acces
to the execution engine, it may be necessary to first copy the method or state int
execution context. This process is called activation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior o
requests. These mechanisms include definitions of object state, definitions of meth
and definitions of how the object infrastructure is to select the methods to execute
to select the relevant portions of object state to be made accessible to the metho
Mechanisms must also be provided to describe the concrete actions associated w
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate i
providing an appropriate set of services. An implementation typically includes, am
other things, definitions of the methods that operate upon the state of an object. It
typically includes information about the intended types of the object.
1-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

CORBA Overview 2

ures
icies,
omes

e
ct
The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the feat
may not be apparent at first, but as we discuss the range of implementations, pol
optimizations, and usages we expect to encompass, the value of the flexibility bec
more clear.

Contents

This chapter contains the following sections.

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. Th
Client is the entity that wishes to perform an operation on the object and the Obje
Implementation is the code and data that actually implements the object.

Section Title Page

“Structure of an Object Request Broker” 2-1

“Example ORBs” 2-11

“Structure of a Client” 2-12

“Structure of an Object Implementation” 2-13

“Structure of an Object Adapter” 2-15

“CORBA Required Object Adapter” 2-17

“The Integration of Foreign Object Systems” 2-17
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 2-1

2

e
lient

ct’s

r
icate

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive th
request, and to communicate the data making up the request. The interface the c
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the obje
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broke
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows ind
whether the ORB is called or performs an up-call across the interface.

Client Object Implementation

ORB

Request
2-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

e
cific

MG
n
imes.

 be

ing

ects,

s
Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the sam
interface independent of the target object’s interface) or an OMG IDL stub (the spe
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the O
IDL generated skeleton or through a dynamic skeleton. The Object Implementatio
may call the Object Adapter and the ORB while processing a request or at other t

Definitions of the interfaces to objects can be defined in two ways. Interfaces can
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects accord
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as obj
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in thi
document) and the Interface Repository have equivalent expressive power.

Client Object Implementation

��������������������������������
��������������������������������
��������������������������������

������������������������������������
������������������������������������
������������������������������������

�������������������������������
�������������������������������
�������������������������������

��������������������������������
��������������������������������
��������������������������������

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core
��������������������������������
��������������������������������
��������������������������������

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
CORBA, v2.4.2 Structure of an Object Request Broker February 2001 2-3

2

ject
e
r by

ked.

d
mic
 the
ome
,
The client performs a request by having access to an Object Reference for an ob
and knowing the type of the object and the desired operation to be performed. Th
client initiates the request by calling stub routines that are specific to the object o
constructing the request dynamically (see Figure 2-3).

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invo

The ORB locates the appropriate implementation code, transmits parameters, an
transfers control to the Object Implementation through an IDL skeleton or a dyna
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and
object adapter. In performing the request, the object implementation may obtain s
services from the ORB through the Object Adapter. When the request is complete
control and output values are returned to the client.

Client

�������������������������������
�������������������������������
�������������������������������

Dynamic

Invocation

IDL
Stubs

ORB Core
�������������������������������
�������������������������������

Interface identical for all ORB implementations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
eq

u
est

R
eq

u
est
2-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

n is

ade
DL
bs

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decisio
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is m
available to clients and object implementations. The interface is defined in OMG I
and/or in the Interface Repository; the definition is used to generate the client Stu
and the object implementation Skeletons.

Object Implementation

�����������������������������
�����������������������������
�����������������������������

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

����������������������������������
����������������������������������
����������������������������������
����������������������������������

�����������������������������
�����������������������������
�����������������������������

������������������������������
������������������������������
������������������������������

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
CORBA, v2.4.2 Structure of an Object Request Broker February 2001 2-5

2

d in

nent,
e
s:

ith
ices

ies.

ss to

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is store
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single compo
but rather it is defined by its interfaces. Any ORB implementation that provides th
appropriate interface is acceptable. The interface is organized into three categorie

1. Operations that are the same for all ORB implementations

2. Operations that are specific to particular types of objects

3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together w
the IDL compilers, repositories, and various Object Adapters, provide a set of serv
to clients and implementations of objects that have different properties and qualit

There may be multiple ORB implementations (also described as multiple ORBs),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have acce

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
2-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

Bs
t

jects

RB
s.

s

ss
ient
be a

uage
ally
ports
ed
ject

g

vior
ects

,

port

okes
ices
two object references managed by different ORB implementations. When two OR
are intended to work together, those ORBs must be able to distinguish their objec
references. It is not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of ob
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the O
Core, which provide interfaces that can mask the differences between ORB Core

2.1.2 Clients

A client of an object has access to an object reference for the object, and invoke
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or proce
initiating requests on an object, it is important to recognize that something is a cl
relative to a particular object. For example, the implementation of one object may
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a lang
mapping, bringing the ORB right up to the programmer’s level. Clients are maxim
portable and should be able to work without source changes on any ORB that sup
the desired language mapping with any object instance that implements the desir
interface. Clients have no knowledge of the implementation of the object, which ob
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by definin
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the beha
of the object. In some cases, the primary function of the object is to have side-eff
on other things that are not objects.

A variety of object implementations can be supported, including separate servers
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to sup
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client inv
the object. Object implementations may select interfaces to ORB-dependent serv
by the choice of Object Adapter.
CORBA, v2.4.2 Structure of an Object Request Broker February 2001 2-7

2

B.
es

ject

lly

of the
ss

ct

y
 the

 for
lent

ory,

nts

r to
e
-
of the

ge

t stub
2.1.4 Object References

An Object Reference is the information needed to specify an object within an OR
Both clients and object implementations have an opaque notion of object referenc
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Ob
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usua
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent
particular ORB. The language mapping may also provide additional ways to acce
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all obje
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects b
specifying their interfaces. An interface consists of a set of named operations and
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary
there to be IDL source code available for the ORB to work. As long as the equiva
information is available in the form of stub routines or a run-time interface reposit
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clie
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefe
access CORBA objects in different ways. For object-oriented languages, it may b
desirable to see CORBA objects as programming language objects. Even for non
object-oriented languages, it is a good idea to hide the exact ORB representation
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Langua
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the clien
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.
2-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

the

d
es

ss to

rs to

sing
ore.
 the
o

ire

r

all or
 be
m an
ion
ther.

 there
ace
nes

t stub

ns
A language mapping also defines the interaction between object invocations and
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated an
control returned to the program. In such cases, additional language-specific routin
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non–object–oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present acce
the OMG IDL-defined operations on an object in a way that is easy for programme
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB u
interfaces that are private to, and presumably optimized for, the particular ORB C
If more than one ORB is available, there may be different stubs corresponding to
different ORBs. In this case, it is necessary for the ORB and language mapping t
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not requ
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particula
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a c
sequence of calls. The client code must supply information about the operation to
performed and the types of the parameters being passed (perhaps obtaining it fro
Interface Repository or other run-time source). The nature of the dynamic invocat
interface may vary substantially from one programming language mapping to ano

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter,
will be an interface to the methods that implement each type of object. The interf
will generally be an up-call interface, in that the object implementation writes routi
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding clien
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementatio
dynamically for languages such as Smalltalk.
CORBA, v2.4.2 Structure of an Object Request Broker February 2001 2-9

2

t is,
ation,
o the

ic
r
 also

rs to

tput
re of
age

amic

vices

n
,
 to

nd
t is
le
r

e for
 most
ton,
ll
ts.
2.1.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. Tha
rather than being accessed through a skeleton that is specific to a particular oper
an object’s implementation is reached through an interface that provides access t
operation name and parameters in a manner analogous to the client side’s Dynam
Invocation Interface. Purely static knowledge of those parameters may be used, o
dynamic knowledge (perhaps determined through an Interface Repository) may be
used, to determine the parameters.

The implementation code must provide descriptions of all the operation paramete
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any ou
parameters, or an exception, to the ORB after performing the operation. The natu
the dynamic skeleton interface may vary substantially from one programming langu
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dyn
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses ser
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generatio
and interpretation of object references, method invocation, security of interactions
object and implementation activation and deactivation, mapping object references
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, a
other properties make it difficult for the ORB Core to provide a single interface tha
convenient and efficient for all objects. Thus, through Object Adapters, it is possib
for the ORB to target particular groups of object implementations that have simila
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the sam
all ORBs and does not depend on the object’s interface or object adapter. Because
of the functionality of the ORB is provided through the object adapter, stubs, skele
or dynamic invocation, there are only a few operations that are common across a
objects. These operations are useful to both clients and implementations of objec
2-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

nt the
on
 the

ine

nes

e

n.

 the

 is
of
e

RB

nted
her

nts.
2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represe
IDL information in a form available at run-time. The Interface Repository informati
may be used by the ORB to perform requests. Moreover, using the information in
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determ
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routi
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locat
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such informatio
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository
a common place to store additional information associated with implementations
ORB objects. For example, debugging information, administrative control, resourc
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common O
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be impleme
in routines resident in the clients and implementations. The stubs in the client eit
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clie
CORBA, v2.4.2 Example ORBs February 2001 2-11

2

ts to

th the

s a
e
e
ions,
,

ctual
e data
ta.

ion on
ed,
urned

ation
 an
hat

rmal

en
bs
2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clien
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate wi
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided a
basic service of the underlying operating system. Object references could be mad
unforgeable, reducing the expense of authentication on each request. Because th
operating system could know the location and structure of clients and implementat
it would be possible for a variety of optimizations to be implemented, for example
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the a
methods. This assumes that it is possible for a client program to get access to th
for the objects and that the implementation trusts the client not to damage the da

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocat
a different object. Invocation of an object involves specifying the object to be invok
the operation to be performed, and parameters to be given to the operation or ret
from it.

The ORB manages the control transfer and data transfer to the object implement
and back to the client. In the event that the ORB cannot complete the invocation,
exception response is provided. Ordinarily, a client calls a routine in its program t
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the no
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client th
passes that object reference to the stub routines to initiate an invocation. The stu
2-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

rform
l

r

thod
itiate

en a
 on
 a
 and

string.

e

have access to the object reference representation and interact with the ORB to pe
the invocation. (See the C Language Mapping specification for additional, genera
information on language mapping of object references.)

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, fo
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the me
being invoked, and performs a sequence of calls to specify the parameters and in
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. Wh
client is also an implementation, it receives object references as input parameters
invocations to objects it implements. An object reference can also be converted to
string that can be stored in files or preserved or communicated by different means
subsequently turned back into an object reference by the ORB that produced the

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. Th
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

Client Program
Language-dependent object references

ORB object r eferences

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
CORBA, v2.4.2 Structure of an Object Implementation February 2001 2-13

2

n-
t, as

ays
es. It
o

tive
ble

that a
t
 data

tion.

procedures for activating and deactivating objects and will use other objects or no
object facilities to make the object state persistent, to control access to the objec
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of w
to establish its identity, to create new objects, and to obtain ORB-dependent servic
primarily does this via access to an Object Adapter, which provides an interface t
ORB services that is convenient for a particular style of object implementation.

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be defini
about how an object implementation is structured. See the chapters on the Porta
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange
call is made to the appropriate method of the implementation. A parameter to tha
method specifies the object being invoked, which the method can use to locate the
for the object. Additional parameters are supplied according to the skeleton defini
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Object Implementation

ORB object references

Methods for
Interface A

Library Routines

Object data

Skeleton for

Interface A
Object adapter

routines

U
p-

ca
l l

to
M

et
ho

d

Dynamic

Skeleton

br
2-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

 find
lf as

he
ides

ely
ored
t is
vice,
em.

ct
object
rface

nts
asks.
When a new object is created, the ORB may be notified so that it knows where to
the implementation for that object. Usually, the implementation also registers itse
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to t
ORB and object adapter. For example, although the Portable Object Adapter prov
some persistent data associated with an object (its OID or Object ID), that relativ
small amount of data is typically used as an identifier for the actual object data st
in a storage service of the object implementation’s choosing. With this structure, i
not only possible for different object implementations to use the same storage ser
it is also possible for objects to choose the service that is most appropriate for th

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an obje
implementation to access ORB services such as object reference generation. An
adapter exports a public interface to the object implementation, and a private inte
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional compone
necessary. Often, an object adapter will maintain its own state to accomplish its t
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.
CORBA, v2.4.2 Structure of an Object Adapter February 2001 2-15

2

e
bject

ice

easy

le to
does
rage

 it is

ple,
ands
uld

Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter is implicitly involved in invocation of th
methods, although the direct interface is through the skeletons. For example, the O
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of serv
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be ab
store them in the object reference for those ORBs that permit it. If the ORB Core
not provide this feature, the Object Adapter would record the value in its own sto
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For exam
an object-oriented database system may wish to implicitly register its many thous
of objects without doing individual calls to the Object Adapter. In such a case, it wo

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
2-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

2

state.
tions,
t

r
there
ject
ices
ly

RB
pter
an

 be a

ject, or
to be
t and

ne.

ing

nge
g
 be
y may
be impractical and unnecessary for the object adapter to maintain any per-object
By using an object adapter interface that is tuned towards such object implementa
it is possible to take advantage of particular ORB Core details to provide the mos
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapte
interface is something that object implementations depend on, it is desirable that
be as few as practical. Most object adapters are designed to cover a range of ob
implementations, so only when an implementation requires radically different serv
or interfaces should a new object adapter be considered. In this section, we brief
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most O
objects with conventional implementations. (See the Portable Object Adapter cha
for more information.) The intent of the POA, as its name suggests, is to provide
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can
servant started and ended for a single method call, a separate servant for each ob
a shared servant for all instances of the object type. It allows for groups of objects
associated by means of being registered with different instances of the POA objec
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start o
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapp
is the definition of the Servant type.)

2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide ra
of object systems (see Figure 2-9 on page 2-18). Because there are many existin
object systems, a common desire will be to allow the objects in those systems to
accessible via the ORB. For those object systems that are ORBs themselves, the
be connected to other ORBs through the mechanisms described throughout this
manual.
CORBA, v2.4.2 CORBA Required Object Adapter February 2001 2-17

2

eive
ar to

e a

ject
 in
r

h a
ered
Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and rec
invocations through the ORB, one approach is to have those object systems appe
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act lik
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA ob
implementation. An object adapter could be designed for objects that are created
conjunction with the ORB and that are primarily invoked through the ORB. Anothe
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In suc
case, a more appropriate object adapter might allow objects to be implicitly regist
when they are passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
2-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

OMG IDL Syntax and Semantics 3
ives
This chapter describes OMG Interface Definition Language (IDL) semantics and g
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Lexical Conventions” 3-3

“Preprocessing” 3-11

“OMG IDL Grammar” 3-11

“OMG IDL Specification” 3-16

“Module Declaration” 3-16

“Interface Declaration” 3-17

“Value Declaration” 3-24

“Constant Declaration” 3-29

“Type Declaration” 3-33

“Exception Declaration” 3-46

“Operation Declaration” 3-47

“Attribute Declaration” 3-49

“CORBA Module” 3-50

“Names and Scoping” 3-51
Common Object Request Broker Architecture (CORBA), v2.4.2 February 20013-1

3

e

ded

e
ght

cal
 in
MG

-51.

MG
f this

a
d by

rmat
3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe th
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information nee
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on th
facilities available in the client language. For example, an OMG IDL exception mi
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL’s lexical conventions is presented in Section 3.2, “Lexi
Conventions,” on page 3-3. A description of OMG IDL preprocessing is presented
Section 3.3, “Preprocessing,” on page 3-11. The scope rules for identifiers in an O
IDL specification are described in Section 3.15, “Names and Scoping,” on page 3

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “O
IDL Grammar,” on page 3-11 and associated semantics is described in the rest o
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in
specification; the textual location of these pragmas may be semantically constraine
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this fo
and their meaning.

Table 3-1 IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time
3-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

tion.

kens.
n unit.

rals,
s
lank)
3.2 Lexical Conventions

This section1 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitu
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of to
Such a sequence of tokens, that is, a file after preprocessing, is called a translatio

OMG IDL uses the ASCII character set, except for string literals and character lite
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set i
divided into alphabetic characters (letters) digits, graphic characters, the space (b
character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

1. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it
differs in the list of legal keywords and punctuation.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent
CORBA, v2.4.2 Lexical Conventions February 2001 3-3

3

Table 3-3 lists the decimal digit characters.

Table 3-4 shows the graphic characters.

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 3-3 Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

Table 3-2 The 114 Alphabetic Characters (Letters) (Continued)

Char. Description Char. Description
3-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

nts
to

token
en.
The formatting characters are shown in Table 3-5.

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comme
(collective, “white space”), as described below, are ignored except as they serve
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next
is taken to be the longest string of characters that could possibly constitute a tok

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

Table 3-4 The 65 Graphic Characters (Continued)

Char. Description Char. Description
CORBA, v2.4.2 Lexical Conventions February 2001 3-5

3

e end
cial
the
ents
d,

ore

e 3-3

lly

ame
or.

ntly

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at th
of the line on which they occur. The comment characters //, /*, and */ have no spe
meaning within a // comment and are treated just like other characters. Similarly,
comment characters // and /* have no special meaning within a /* comment. Comm
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form fee
and newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and undersc
(“_”) characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 3-2 on pag
defines the equivalence mapping of upper- and lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identica
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the s
identifier for a constant and an interface, for example, produces a compilation err

For example:

module M {
typedef long Foo;
const long thing = 1;
interface thing { // error: reuse of identifier

void doit (
in Foo foo // error: Foo and foo collide and refer to

different things
);

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

};
};

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadverte
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
3-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

uage
mes

hat
s

ces
ewly

nly
ally

e
language code that depends upon that IDL will have to change as well. The lang
mapping rules for the renamed IDL identifiers will cause the mapped identifier na
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention t
ONLY turns off keyword checking. The resulting identifier follows all the other rule
for identifier processing. For example, the identifier _AnIdentifier is treated as if it
were AnIdentifier .

The following is a non-exclusive list of implications of these rules:

• The underscore does not appear in the Interface Repository.

• The underscore is not used in the DII and DSI.

• The underscore is not transmitted over “the wire.”

• Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {

attribute boolean abstract; // error: abstract collides with
// keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier
};

};

To avoid unnecessary confusion for readers of IDL, it is recommended that interfa
only use the escaped form of identifiers when the unescaped form clashes with a n
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are o
recommended for IDL that expresses legacy interface, or for IDL that is mechanic
generated.

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not b
used otherwise, unless escaped with a leading underscore.

Table 3-6 Keywords

abstract double local raises typedef

any exception long readonly unsigned

attribute enum module sequence union

boolean factory native short ValueBase

case FALSE Object string valuetype

char fixed octet struct void

const float oneway supports wchar
CORBA, v2.4.2 Lexical Conventions February 2001 3-7

3

e
le,

en)
 be
of
The

XC.
Keywords must be written exactly as shown in the above list. Identifiers that collid
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For examp
“boolean ” is a valid keyword; “Boolean ” and “BOOLEAN ” are illegal identifiers.

For example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with

// the keyword boolean;
};

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base t
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen).
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0

context in out switch wstring

custom inout private TRUE

default interface public truncatable

Table 3-7 Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 3-8 Preprocessor Tokens

! || &&

Table 3-6 Keywords
3-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

al).
l
rd
he

e of
e

elow in
nd

s

gits
ists of
ken

 by
teral.
l
ly
ce of
3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x.’
Character literals have type char .

A character is an 8-bit quantity with a numerical value between 0 and 255 (decim
The value of a space, alphabetic, digit, or graphic character literal is the numerica
value of the character as defined in the ISO Latin-1 (8859.1) character set standa
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). T
value of a null is 0. The value of a formatting character literal is the numerical valu
the character as defined in the ISO 646 standard (see Table 3-5 on page 3-5). Th
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined b
Table 3-9. Note that escape sequences must be used to represent single quote a
backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior i
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal di
that are taken to specify the value of the desired character. The escape \xhh cons
the backslash followed by x followed by one or two hexadecimal digits that are ta
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed
one, two, three or four hexadecimal digits. This represents a unicode character li
Thus the literal “\u002E” represents the unicode period ‘.’ character and the litera
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid on
with wchar and wstring types. Because a wide string literal is defined as a sequen

Table 3-9 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal number \xhh

unicode character \uhhhh
CORBA, v2.4.2 Lexical Conventions February 2001 3-9

3

g
ence

s not
nt is

ssign

 the

n e
th
ction
and

ter

kept

tes,

a
.
wide character literals a sequence of \u literals can be used to define a wide strin
literal. Attempts to set a char type to a \u defined literal or a string type to a sequ
of \u literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that i
an octal digit or a hexadecimal digit, respectively. The value of a character consta
implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 = L'X';

Attempts to assign a wide character literal to a non-wide character constant or to a
a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from
ISO 8859-1 character set.

3.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, a
or E, and an optionally signed integer exponent. The integer and fraction parts bo
consist of a sequence of decimal (base ten) digits. Either the integer part or the fra
part (but not both) may be missing; either the decimal point or the letter e (or E)
the exponent (but not both) may be missing.

3.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Charac
Literals,” on page 3-9) surrounded by double quotes, as in “...”.

Adjacent string literals are concatenated. Characters in concatenated strings are
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quo
after concatenation. Within a string, the double quote character " must be preceded by
a \.

A string literal may not contain the character ‘\0’.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign
non-wide string literal to a wide string constant result in a compile-time diagnostic
3-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

 ISO

art
(base
; the

 the
ion."
L

or.
e rest
f the
of

rce
nd
the

Both wide and non-wide string literals must be specified using characters from the
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction p
and a d or D. The integer and fraction parts both consist of a sequence of decimal
10) digits. Either the integer part or the fraction part (but not both) may be missing
decimal point (but not the letter d (or D)) may be missing.

3.3 Preprocessing

OMG IDL is preprocessed according to the specification of the preprocessor in
"International Organization for Standardization. 1998. ISO/IEC 14882 Standard for
C++ Programming Language. Geneva: International Organization for Standardizat
The preprocessor may be implemented as a separate process or built into the ID
compiler.

Lines beginning with # (also called “directives”) communicate with this preprocess
White space may appear before the #. These lines have syntax independent of th
of OMG IDL; they may appear anywhere and have effects that last (independent o
OMG IDL scoping rules) until the end of the translation unit. The textual location
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a sou
file by placing a backslash character (“\”), immediately before the newline at the e
of the line to be continued. The preprocessor effects the continuation by deleting
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-5), a file name as in a #include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
if it appeared in the including file. The #pragma directive that is used to include
RepositoryIds is described in Section 10.6, “RepositoryIds,” on page 10-42.

3.4 OMG IDL Grammar
(1) <specification> ::= <definition> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
CORBA, v2.4.2 Preprocessing February 2001 3-11

3

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”
(4) <interface> ::= <interface_dcl>

| <forward_dcl>
(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> } *

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

(13) <value> ::= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19)<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)

<type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>

“(“ [<init_param_decls>] “)” “;”
(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> } *
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”
(27) <const_dcl> ::= “const” <const_type>

<identifier> “=” <const_exp>
(28) <const_type> ::= <integer_type>
3-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>
(42) <type_dcl> ::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
CORBA, v2.4.2 OMG IDL Grammar February 2001 3-13

3

| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } ∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
3-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member> +

(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case> +

(75) <case> ::= <case_label> + <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{” <enumerator> { “,” <enumerator> } ∗ “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

(83) <array_declarator> ::= <identifier> <fixed_array_size> +

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
(85) <attr_dcl> ::= [“readonly”] “attribute”

<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”
(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”

| “(” “)”
CORBA, v2.4.2 OMG IDL Grammar February 2001 3-15

3

>.

-46
(91) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

(92) <param_attribute> ::= “in”
| “out”
| “inout”

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } ∗ “)”

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } ∗ “)”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<positive_int_const> “>”

(97) <fixed_pt_const_type> ::= “fixed”
(98) <value_base_type> ::= “ValueBase”
(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

(1) <specification> ::= <definition> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”

See Section 3.6, “Module Declaration,” on page 3-16, for the specification of
<module>.

See Section 3.7, “Interface Declaration,” on page 3-17, for the specification of
<interface>.

See Section 3.8, “Value Declaration,” on page 3-24, for the specification of <value

See Section 3.9, “Constant Declaration,” on page 3-29, Section 3.10, “Type
Declaration,” on page 3-33, and Section 3.11, “Exception Declaration,” on page 3
respectively for specifications of <const_dcl> , <type_dcl> , and <except_dcl> .

3.6 Module Declaration

A module definition satisfies the following syntax:

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”
3-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

 in

ame

nces
ce

6-1.
The module construct is used to scope OMG IDL identifiers; see Section 3.14,
“CORBA Module,” on page 3-50 for details.

3.7 Interface Declaration

An interface definition satisfies the following syntax:

(4) <interface> ::= <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

3.7.1 Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface , and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described
the next section.

The <identifier> that names an interface defines a legal type name. Such a type n
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold refere
to an object, the meaning of a parameter or structure member, which is an interfa
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular”
interfaces, as described in Section 6.2, “Semantics of Abstract Interfaces,” on page
They also follow different language mapping rules.

3.7.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> } *

(11) <interface_name> ::= <scoped_name>
CORBA, v2.4.2 Interface Declaration February 2001 3-17

3

-19

” on

type
33.

e

 and
es of
ult of

on,”

rface

lly

t
(12) <scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must denote a
previously defined interface. See Section 3.7.5, “Interface Inheritance,” on page 3
for the description of inheritance.

3.7.3 Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.9, “Constant Declaration,
page 3-29.

• Type declarations, which specify the type definitions that the interface exports;
declaration syntax is described in Section 3.10, “Type Declaration,” on page 3-

• Exception declarations, which specify the exception structures that the interfac
exports; exception declaration syntax is described in Section 3.11, “Exception
Declaration,” on page 3-46.

• Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.13, “Attribute
Declaration,” on page 3-49.

• Operation declarations, which specify the operations that the interface exports
the format of each, including operation name, the type of data returned, the typ
all parameters of an operation, legal exceptions that may be returned as a res
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.12, “Operation Declarati
on page 3-47.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the inte
body.

3.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optiona
the keyword abstract , followed by the keyword interface , followed by an
<identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not ye
been seen:

module Example {
interface base; // Forward declaration
3-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

are
n,

nce

that
4,

 a

re

more
wing
// ...

interface derived : base {}; // Error
interface base {}; // Define base
interface derived : base {}; // OK

};

3.7.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may decl
new elements (constants, types, attributes, exceptions, and operations). In additio
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits refere
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names
have been inherited; the scope rules for such names are described in Section 3.1
“CORBA Module,” on page 3-50.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec> .

An interface may be derived from any number of base interfaces. Such use of mo
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface
than once; it may be an indirect base interface more than once. Consider the follo
example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }
interface E: A, B { ... }; // OK
CORBA, v2.4.2 Interface Declaration February 2001 3-19

3

”

base
eption
e

on or

t is

 is a
The relationships between these interfaces is shown in Figure 3-1. This “diamond
shape is legal, as is the definition of E on the right.

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a
interface element is ambiguous if the name is declared as a constant, type, or exc
in more than one base interface. Ambiguities can be resolved by qualifying a nam
with its interface name (that is, using a <scoped_name>). It is illegal to inherit from
two interfaces with the same operation or attribute name, or to redefine an operati
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 l_1);

};

interface B {
typedef short L1;
L1 opB(in long l);

};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC(in L3 l_3); // all OK no ambiguities

};

References to constants, types, and exceptions are bound to an interface when i
defined (i.e., replaced with the equivalent global <scoped_name> s). This guarantees
that the syntax and semantics of an interface are not changed when the interface
base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {

A

B C

D

A

B C

D

E

3-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ntees

and

nd

efined

c
ject

utes
typedef float coord[L]:
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A { }; // what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guara
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations
attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct a
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be red
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thus in

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

Operation and attribute names are used at run-time by both the stub and dynami
interfaces. As a result, all operations attributes that might apply to a particular ob
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attrib
with the same name.

interface A {
void make_it_so();

};

interface B: A {
CORBA, v2.4.2 Interface Declaration February 2001 3-21

3

ong

as

r,

l

n

verted
 base

o
short make_it_so(in long times); // Error: redefinition of make_it_so
};

For a complete summary of allowable inheritance and supporting relationships am
interfaces and valuetypes see Table 3-10 on page 3-28.

3.7.6 Local Interface

3.7.6.1 Semantics

The semantics associated with local types are as follows:

• An interface declaration containing the keyword local declares a local interface.
An interface declaration not containing the keyword local is referred to as an
unconstrained interface. An object implementing a local interfaces is referred to
a local object.

• A local interface may inherit from other local or unconstrained interfaces.

• An unconstrained interface may not inherit from a local interface. An interface
derived from a local interface must be explicitly declared local .

• A valuetype may support a local interface.

• Any IDL type, including an unconstrained interface, may appear as a paramete
attribute, return type, or exception declaration of a local interface.

• A local interface is a local type, as is any non-interface type declaration
constructed using a local interface or other local type. For example, a struct ,
union , or exception with a member that is a local interface is also itself a loca
type.

• A local type may be used as a parameter, attribute, return type, or exception
declaration of a local interface or of a valuetype .

• A local type may not appear as a parameter, attribute, return type, or exceptio
declaration of an unconstrained interface or as a state member of a valuetype .

• Local types cannot be marshaled and references to local objects cannot be con
to strings. Any attempt to marshal a local object, such as via an unconstrained
interface, as an Object , or as the contents of an any, or to pass a local object to
ORB::object_to_string , shall result in a MARSHAL system exception with
OMG minor code 2.

• The usage of client side language mappings for local types shall be identical t
those of equivalent unconstrained types.

• The DII is not supported on local objects, nor are asynchronous invocation
interfaces.

• The non_existent , is_equivalent and hash CORBA::Object pseudo-operations
shall be supported by references to local objects.
3-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ns,

ses

y
ntext

ible

s as

 by

ues
• The is_a , get_interface , get_domain_managers , get_policy ,
get_client_policy , set_policy_overrides , get_policy_overrides , and
validate_connection pseudo-operations, and any DII support pseudo-operatio
may result in a NO_IMPLEMENT system exception with minor code 3 when
invoked on a reference to a local object.

• Language mappings shall specify server side mechanisms, including base clas
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

• Invocations on local objects are not ORB mediated. Specifically, parameter cop
semantics are not honored, interceptors are not invoked, and the execution co
of a local object does not have ORB service Current object contexts that are
distinct from those of the caller. Implementations of local interfaces are respons
for providing the parameter copy semantics expected by clients.

• Local objects have no inherent identities beyond their implementations’ identitie
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

• Instances of local objects defined as part of OMG specifications to be supplied
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained from resolve_initial_references .

3.7.6.2 LocalObject

Local interfaces are implemented by using CORBA::LocalObject to provide
implementations of Object pseudo operations and any other ORB specific support
mechanisms that are appropriate for such objects. Object implementation techniq
are inherently language mapping specific. Therefore, the LocalObject type is not
defined in IDL, but is specified by each language mapping.

The LocalObject type provides implementations of the following Object pseudo-
operations that raise the NO_IMPLEMENT system exception:

• is_a

• get_interface

• get_domain_managers

• get_policy

• get_client_policy

• set_policy_overrides

• get_policy_overrides

• validate_connection

Additionally, it provides implementations of the following pseudo-operations:

• non_existent - always returns false.

• hash - returns a hash value that is consistent for the lifetime of the object.
CORBA, v2.4.2 Interface Declaration February 2001 3-23

3

ong

alue

uses

 is

n of
• is_equivalent - returns true if the references refer to the same LocalObject
implementation.

Attempting to use a LocalObject to create a DII request results in a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify a LocalObject results in a MARSHAL system exception with
standard minor code 4. Narrowing and widening of references to LocalObjects must
work as for regular object references.

For a complete summary of allowable inheritance and supporting relationships am
interfaces and valuetypes see Table 3-10 on page 3-28.

3.8 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed v
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.8.1 Regular Value Type

A regular value type satisfies the following syntax:

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(21) <value_element> ::= <export>

| < state_member> |
| <init_dcl>

3.8.1.1 Value Header

The value header consists of two elements:

1. The value type’s name and optional modifier specifying whether the value type
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification
described in the next section.

3.8.1.2 Value Element

A value can contain all the elements that an interface can as well as the definitio
state members, and initializers for that state.
3-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ype

om

ent
 either
 the
state

d to
e

 the
lly

y be
ame
ived
ived
3.8.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>
{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>

Each <value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.8.5, “Valuet
Inheritance,” on page 3-28 for the description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a cust
value.

3.8.1.4 State Members

(22) <state_member> ::= (“public” | “private”)
<type_spec> <declarators> “;”

Each <state_member> defines an element of the state, which is marshaled and s
to the receiver when the value type is passed as a parameter. A state member is
public or private. The annotation directs the language mapping to hide or expose
different parts of the state to the clients of the value type. The private part of the
is only accessible to the implementation code and the marshaling routines.

Note that certain programming languages may not have the built in facilities neede
distinguish between the public and private members. In these cases, the languag
mapping specifies the rules that programmers are responsible for following.

3.8.1.5 Initializers

(23) <init_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)” “;”

(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define
signatures of initializers (or constructors) for non abstract value types. Syntactica
these look like local operation signatures except that they are prefixed with the
keyword factory , have no return type, and must use only in parameters. There ma
any number of factory declarations. The names of the initializers are part of the n
scope of the value type. Initializers defined in a valuetype are not inherited by der
valuetypes, and hence the names of the initializers are free to be reused in a der
valuetype.
CORBA, v2.4.2 Value Declaration February 2001 3-25

3

y of
he

with
lue

have
e.

If no initializers are specified in IDL, the value type does not provide a portable wa
creating a runtime instance of its type. There is no default initializer. This allows t
definition of IDL value types, which are not intended to be directly instantiated by
client code.

3.8.1.6 Value Type Example

interface Tree {
void print()

};

valuetype WeightedBinaryTree {
// state definition

private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};
valuetype WTree: WeightedBinaryTree supports Tree {};

3.8.2 Boxed Value Type

(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and
a single state member. A shorthand IDL notation is used to simplify the use of va
types for this kind of simple containment, referred to as a “value box.”

Value box is particularly useful for strings and sequences. Basically one does not
to create what is in effect an additional namespace that will contain only one nam

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1);
};

};

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.
3-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

uction

ed
ation.

alue
ied.
ation

.

refer
module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
};
interface Bar {

void doIt (in FooSeq seq);
};

};

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a constr
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be us
subsequent to its initial use and prior to the completion of the boxed value declar

3.8.3 Abstract Value Type

(15) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“{“ <export>* “}”

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. No <state_member> or <initializers> may be specif
However, local operations may be specified. Essentially they are a bundle of oper
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type

3.8.4 Value Forward Declaration

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keyword valuetype followed by an <identifier> that names the value
type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would
to a normal value type.
CORBA, v2.4.2 Value Declaration February 2001 3-27

3

yet

us to
ce,”

for
f a
once.
 of

mber

only

ent
y

hat it

e ->
arent
 the
e to

eiving

lse.
It is illegal to inherit from a forward-declared value type whose definition has not
been seen.

3.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogo
that used to describe interface inheritance (see Section 3.7.5, “Interface Inheritan
on page 3-19).

The name scoping and name collision rules for valuetypes are identical to those
interfaces. In addition, no valuetype may be specified as a direct abstract base o
derived valuetype more than once; it may be an indirect abstract base more than
See Section 3.7.5, “Interface Inheritance,” on page 3-19 for a detailed description
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any nu
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first elem
specified in the inheritance list of the value declaration’s IDL. It may be followed b
other abstract values from which it inherits. The interface and abstract interfaces t
supports are listed following the supports keyword.

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it is to “truncate” (see Section 5.2.5.2, “Value instanc
Value type,” on page 5-5) an instance to be an instance of any of its truncatable p
(stateful) value types under certain conditions. Note that all the intervening types in
inheritance hierarchy must be truncatable in order for truncation to a particular typ
be allowed.

Because custom values require an exact type match between the sending and rec
context, truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything e

These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit from: Interface Abstract
Interface

Abstract
Value

Stateful Value Boxed value

Interface multiple multiple no no no

Abstract Interface no multiple no no no
3-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

3.9 Constant Declaration

This section describes the syntax for constant declarations.

3.9.1 Syntax

The syntax for a constant declaration is:

(27) <const_dcl> ::= “const” <const_type>
<identifier> “=” <const_exp>

(28) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

Abstract Value
supports single supports

multiple
multiple no no

Stateful Value
supports single supports

multiple
multiple single (may be

 truncatable)
no

Boxed Value no no no no no

Table 3-10 Allowable Inheritance Relationships

May inherit from: Interface Abstract
Interface

Abstract
Value

Stateful Value Boxed value
CORBA, v2.4.2 Constant Declaration February 2001 3-29

3

to
e
 an
 the

is

d to
and
d

se.
(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>

3.9.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined
name of an <integer_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet_type> , or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned
integer type (short , long , long long) constants. Only positive integer values can b
assigned to unsigned integer type constants. If the value of the right hand side of
integer constant declaration is too large to fit in the actual type of the constant on
left hand side, e.g.,

const short s = 655592;

or is inappropriate for the actual type of the left hand side, e.g.,

 const octet o = -54;

it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point type (float , double , long double) constants. If the value of
the right hand side is too large to fit in the actual type of the constant to which it
being assigned it shall be flagged as a compile time error.

Fixed point literals have fixed point values. Only fixed point values can be assigne
fixed point type constants. If the fixed point value in the expression on the right h
side is too large to fit in the actual fixed point type of the constant on the left han
side, then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of the
Infix operators are applicable only to integer, float and fixed types.
3-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

eral
iling
or

 infix

n,

n
ted.
If the type of an integer constant is long or unsigned long , then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant is long long or unsigned long long , then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double , then each subexpression of the
associated constant expression is treated as a double. It is an error if any
subexpression value exceeds the precision of double .

If the type of a floating-point constant is long double , then each subexpression of the
associated constant expression is treated as a long double . It is an error if any
subexpression value exceeds the precision of long double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point lit
has the apparent number of total and fractional digits, except that leading and tra
zeros are factored out, including non-significant zeros before the decimal point. F
example, 0123.450d is considered to be fixed<5,2> and 3000.00D is fixed<1,-3> .
Prefix operators do not affect the precision; a prefix + is optional, and does not change
the result. The upper bounds on the number of digits and scale of the result of an
expression, fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

A quotient may have an arbitrary number of decimal places, denoted by a scale ofs inf.
The computation proceeds pairwise, with the usual rules for left-to-right associatio
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation the
proceeds as one literal operand of the next pair of fixed-point literals to be compu

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + s inf , s inf>
CORBA, v2.4.2 Constant Declaration February 2001 3-31

3

h it
are 2’s

ion
e

e; if

fted
ts.

ifted
its.

t

ft

error.
Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are
applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to whic
is applied should be generated. For the purposes of such expressions, the values
complement numbers. As such, the complement can be generated as follows:

The “%” binary operator yields the remainder from the division of the first express
by the second. If the second operand of “%” is 0, the result is undefined; otherwis

 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegativ
not, the sign of the remainder is implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shi
left the number of bits specified by the right operand, with 0 fill for the vacated bi
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be sh
right the number of bits specified by the right operand, with 0 fill for the vacated b
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and righ
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the le
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

 const octet O1 = 0x1;
 const long L = 3;
 const octet O2 = 5 + L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
3-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

The
ames

e one

ge-

data

d
An enum constant can only be defined using a scoped name for the enumerator.
scoped name is resolved using the normal scope resolution rules Section 3.15, “N
and Scoping,” on page 3-51. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {
enum Size { small, medium, large };

};
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denot
of the enumerators defined for the enumerated type of the constant. For example:

const Color col = red; // is OK but
const Color another = M::medium; // is an error

3.10 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C langua
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a
type via the struct , union , enum , and native declarations; the syntax is:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent type
values. The syntax is as follows:

(44) <type_spec> ::= <simple_type_spec>
| <constr_type_spec>

(45) <simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
CORBA, v2.4.2 Type Declaration February 2001 3-33

3

sign
cted
| <value_base_type>
(47) <template_type_spec> ::= <sequence_type>

| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } ∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type
introduced by an interface declaration (<interface_dcl> - see Section 3.7, “Interface
Declaration), a value declaration (<value_dcl> , <value_box_dcl> or
<abstract_value_dcl> - see Section 3.8, “Value Declaration) or a type declaration
(<type_dcl> - see Section 3.10, “Type Declaration). Note that exceptions are not
considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to as
data types to operation parameters. The next sections describe basic and constru
type specifiers.

3.10.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type> ::= “float”
| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
3-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

uage

tion.
 may
al

e

t 15

n.

le-
des a

n is
n to

tation
igit
nd
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate lang
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invoca
The invocation mechanism (client stub, dynamic invocation engine, and skeletons)
signal an exception condition to the client if an attempt is made to convert an illeg
value. The standard system exceptions that are to be raised in such situations ar
defined in Section 4.11, “Exceptions,” on page 4-49.

3.10.1.1 Integer Types

OMG IDL integer types are short , unsigned short , long , unsigned long , long
long and unsigned long long , representing integer values in the range indicated
below in Table 3-11.

3.10.1.2 Floating-Point Types

OMG IDL floating-point types are float , double and long double . The float type
represents IEEE single-precision floating point numbers; the double type represents
IEEE double-precision floating point numbers.The long double data type represents
an IEEE double-extended floating-point number, which has an exponent of at leas
bits in length and a signed fraction of at least 64 bits. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specificatio

3.10.1.3 Char Type

OMG IDL defines a char data type that is an 8-bit quantity that (1) encodes a sing
byte character from any byte-oriented code set, or (2) when used in an array, enco
multi-byte character from a multi-byte code set. In other words, an implementatio
free to use any code set internally for encoding character data, though conversio
another form may be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and represen
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, d
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, a

Table 3-11 Range of integer types

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
CORBA, v2.4.2 Type Declaration February 2001 3-35

3

g

 a
tional

ter
ly for
uired

e

on

pe.

pping
 value

in
Table 3-4 on page 3-4). The meaning and representation of the null and formattin
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example,
character may be converted to and from the appropriate representation in interna
character sets.

3.10.1.4 Wide Char Type

OMG IDL defines a wchar data type that encodes wide characters from any charac
set. As with character data, an implementation is free to use any code set internal
encoding wide characters, though, again, conversion to another form may be req
for transmission. The size of wchar is implementation-dependent.

3.10.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of th
values TRUE and FALSE.

3.10.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversi
when transmitted by the communication system.

3.10.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL ty

An any logically contains a TypeCode (see Section 3.10, “Type Declaration,” on
page 3-33) and a value that is described by the TypeCode. Each IDL language ma
provides operations that allow programers to insert and access the TypeCode and
contained in an any.

3.10.2 Constructed Types

Structs , unions and enums are the constructed types. Their syntax is presented
this section:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(48) <constr_type_spec> ::= <struct_type>
3-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

so

be

field

y

t
| <union_type>
| <enum_type>

(99) <constr_forward_decl> ::= “struct” <identifier>
| “union” <identifier>

3.10.2.1 Structures

The syntax for struct type is

(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member> +

(71) <member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may al
be named using a typedef declaration.

Name scoping rules require that the member declarators in a particular structure
unique. The value of a struct is the value of all of its members.

3.10.2.2 Discriminated Unions

The discriminated union syntax is:

(72) <union_type> ::= “union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case> +

(75) <case> ::= <case_label> + <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag
that determines which union member to use for the current instance of a call. The
<identifier> following the union keyword defines a new legal type. Union types ma
also be named using a typedef declaration. The <const_exp> in a <case_label>

must be consistent with the <switch_type_spec> . A default case can appear at mos
once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer , char , boolean or enum type.
CORBA, v2.4.2 Type Declaration February 2001 3-37

3

ular

the

ith

he

ition
iven
type.

ent.

OP or
nd

,
the

g a

Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules require that the element declarators in a partic
union be unique. If the <switch_type_spec> is an <enum_type> , the identifier for
the enumeration is in the scope of the union; as a result, it must be distinct from
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together w
one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of the
element associated with that case statement;

• If a default case label was specified, the value of the element associated with t
default case label;

• No additional value.

The values of the constant expressions for the case labels of a single union defin
must be distinct. A union type can contain a default label only where the values g
in the non-default labels do not cover the entire range of the union's discriminant

Access to the discriminator and the related element is language-mapping depend

Note – While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in a union definition whose discriminator type is char , not all of these
characters are present in all transmission code sets that may be negotiated by GI
in all native code sets that may be used by implementation language compilers a
runtimes. When an attempt is made to marshal to CDR a union whose discriminator
value of char type is not available in the negotiated transmission code set, or to
demarshal from CDR a union whose discriminator value of char type is not available
in the native code set, a DATA_CONVERSION system exception is raised. Therefore
to ensure portability and interoperability, care must be exercised when assigning
<case_label> for a union member whose discriminator type is char . Due to these
issues, use of char types as the discriminator type for union s is not recommended.

3.10.2.3 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

(78) <enum_type> ::= “enum” <identifier>
“{” <enumerator> { “,” <enumerator> } ∗ “}”

(79) <enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representin
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
3-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ation.
d

n of
a
wed
f a

as
).
ymous

pe

ll
n

ust

re

e
rently
successor/predecessor functions on enumerators must conform to this ordering rel
The <identifier> following the enum keyword defines a new legal type. Enumerate
types may also be named using a typedef declaration.

3.10.3 Constructed Recursive Types and]Forward Declarations

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types with the exceptio
valuetypes is through the use of the sequence template type. The component of
recursive sequence must identify a struct, union, or valuetype. (A valuetype is allo
to have a member of its own type either directly or indirectly through a member o
constructed type—see Section 3.8.1.6, “Value Type Example,” on page 3-26.) For
example, the following is legal:2

struct Foo {
long value;
sequence<Foo> chain; // Deprecated (see Section 3.10.3)

}

See “Sequences” on page 3-41 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (
well as for valuetypes—see Section 3.8.1.6, “Value Type Example,” on page 3-26
Because anonymous types are deprecated (see Section 3.10.7, “Deprecated Anon
Types,” on page 3-44), the previous example is better written as:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;
FooSeq chain;

};

The forward declaration for the structure enables the definition of the sequence ty
FooSeq , which is used as the type of the recursive member.

Forward declarations are legal for structures and unions. Up to the point of the fu
definition of a forward-declared structure or union, that structure or union type ca
appear only as the element type of a sequence type definition.

If a structure or union is forward declared, a definition of that structure or union m
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if this rule is violated. Multiple forward declarations of the same structu
or union are legal.

If a recursive structure or union member is used, the element type of the recursiv
sequence member must be the forward-declared name of a structure or union cur
under definition. For example

2.See Section 3.10.4.1, “Sequences,” on page 3-41 for details of the sequence template type.
CORBA, v2.4.2 Type Declaration February 2001 3-39

3

he
 of
struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Bar {

long value;
FooSeq chain; //Illegal, Foo is not an enclosing struct or union

};

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define forward-declared union

case 0:
long l_mem;

case 1:
struct Foo {

double d_mem;
BarSeq nested;// OK, recurse on enclosing type being defined

};
};

A sequence type that has a forward-declared element type can be used only as t
recursive member type of a structure or union member until after the full definition
the structure or union. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;

interface I {
FooSeq op(); // Illegal, definition of Foo not known

};

struct Foo { // Provide definition of Foo
long l_mem;
FooSeq chain;

};

interface J {
FooSeq op(); // OK, Foo is known

};

Compilers shall issue a diagnostic if this rule is violated.

3.10.4 Template Types

The template types are:

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
3-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

d a

the
ence

nce is

s a
e-

 be

 For

g”.
te the
en.

pe,
on),
he

itive
| <fixed_pt_type>

3.10.4.1 Sequences

OMG IDL defines the sequence type sequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) an
length (which is determined at run time).

The syntax is:

(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of
sequence. If a positive integer constant is specified for the maximum size, the sequ
is termed a bounded sequence. If no maximum size is specified, size of the seque
unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or a
field in a structure or union), the length of the sequence must be set in a languag
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type.
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of lon
Note that for nested sequence declarations, white space must be used to separa
two “>” tokens ending the declaration so they are not parsed as a single “>>” tok

3.10.4.2 Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any ty
prior to passing a string as a function argument (or as a field in a structure or uni
the length of the string must be set in a language-mapping dependent manner. T
syntax is:

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a pos
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.
CORBA, v2.4.2 Type Declaration February 2001 3-41

3

built-in
pe
n be

 null.
har
ed

t
mber
ways

he
at
to
Strings are singled out as a separate type because many languages have special
functions or standard library functions for string manipulation. A separate string ty
may permit substantial optimization in the handling of strings compared to what ca
done with sequences of general types.

3.10.4.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character
The type wstring is similar to that of type string, except that its element type is wc
instead of char. The actual length of a wstring is set at run-time and, if the bound
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

3.10.4.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significan
digits. The scale factor is a non-negative integer less than or equal to the total nu
of digits (note that constants with effectively negative scale, such as 10000, are al
permitted).

The fixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then t
IDL mapping for that language will provide a fixed point data type. Applications th
use the IDL fixed point type across multiple programming languages must take in
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed type is:

(97) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<positive_int_const> “>”

(98) <fixed_pt_const_type> ::= “fixed”

3.10.5 Complex Declarator

3.10.5.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

(83) <array_declarator> ::= <identifier> <fixed_array_size> +

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
3-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ed as

ay

ype
r.

r to

 the

there
r

 of a

at

n

The array size (in each dimension) is fixed at compile time. When an array is pass
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an arr
index as a parameter may yield incorrect results.

3.10.6 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque t
whose representation is specified by the language mapping for that object adapte

The syntax is:

(42) <type_dcl> ::= “native” <simple_declarator>
(51) <simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is simila
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how
native type is mapped into that programming language.

A native type may be used to define operation parameters and results. However,
is no requirement that values of the type be permitted in remote invocations, eithe
directly or as a component of a constructed type. Any attempt to transmit a value
native type in a remote invocation may raise the MARSHAL standard system
exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in th
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++
and the activate_object operation would map to the following C++ member functio
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.
CORBA, v2.4.2 Type Declaration February 2001 3-43

3

r
of
n
rs to
r to

mple:

struct

s

rule
e
ption,
Note – The native type declaration is provided specifically for use in object adapte
interfaces, which require parameters whose values are concrete representations
object implementation instances. It is strongly recommended that it not be used i
service or application interfaces. The native type declaration allows object adapte
define new primitive types without requiring changes to the OMG IDL language o
OMG IDL compiler.

3.10.7 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For exa

struct Foo {
long value;
sequence<Foo> chain; // Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and use a typedef to
name such types instead. Compilers need not issue a warning if a deprecated con
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymou
types.

Anonymous bounded string and bounded wide string types are deprecated. This
affects constant definitions, attribute declarations, return value and parameter typ
declarations, sequence and array element declarations, and structure, union, exce
and valuetype member declarations. For example

const string<5> GREETING = “Hello”; // Deprecated

interface Foo {
readonly attribute wstring<5> name; // Deprecated
wstring<5> op(in wstring<5> param); // Deprecated

};
typedef sequence<wstring<5> > WS5Seq; // Deprecated
typedef wstring<5> NameVector [10]; // Deprecated
struct A {

wstring<5> mem; // Deprecated
};
// Anonymous member type in unions, exceptions,
// and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;
3-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

ns,
ations,
typedef wstring<5> ShortWName;
interface Foo {

readonly attribute ShortWName name;
ShortWName op(in ShortWName param);

};
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {

GreetingType mem;
};

Anonymous fixed-point types are deprecated. This rule affects attribute declaratio
return value and parameter type declarations, sequence and array element declar
and structure, union, exception, and valuetype member declarations.

struct Foo {
fixed<10,5> member; // Deprecated

};

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {

MyType member;
};

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {
case 1:

long array_mem[10]; // Deprecated
case 2:

sequence<long> seq_mem; // Deprecated
case 3:

string<5> bstring_mem;
};

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {

case 1:
LongArray array_mem;

case 2:
LongSeq seq_mem;

case 3:
ShortName bstring_mem;

};
CORBA, v2.4.2 Type Declaration February 2001 3-45

3

or a

ple is

may

he
hich

e
d, no

e
m
Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;
typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, f
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following exam
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long l_mem;
double d_mem;

} bar_mem_1; // OK, not anonymous
Bar bar_mem_2; // OK, not anonymous

};
typedef sequence<Foo::Bar> FooBarSeq; // Scoped names are OK

3.11 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then t
value of the exception identifier is accessible to the programmer for determining w
particular exception was raised.

If an exception is declared with members, a programmer will be able to access th
values of those members when an exception is raised. If no members are specifie
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-tim
errors, which may occur during the execution of a request. These standard syste
exceptions are documented in Section 4.11, “Exceptions,” on page 4-49.
3-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

tax

n

is

s a

ntext
sions

e is

rt

;
.
3.12 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syn
is:

(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(89) <op_type_spec> ::= <param_type_spec>
| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operatio
attributes are described in Section 3.12.1, “Operation Attribute,” on page 3-47.

• The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specify the void
type.

• An identifier that names the operation in the scope of the interface in which it
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.12.2, “Parameter
Declarations,” on page 3-48.

• An optional raises expression that indicates which exceptions may be raised a
result of an invocation of this operation. Raises expressions are described in
Section 3.12.3, “Raises Expressions,” on page 3-48.

• An optional context expression that indicates which elements of the request co
may be consulted by the method that implements the operation. Context expres
are described in Section 3.12.4, “Context Expressions,” on page 3-49.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.12.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribut
optional. The syntax for its specification is as follows:

(88) <op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effo
implies that the operation will be invoked at most once. An operation with the oneway
attribute must not contain any output parameters and must specify a void return type.
An operation defined with the oneway attribute may not include a raises expression
invocation of such an operation, however, may raise a standard system exception
CORBA, v2.4.2 Operation Declaration February 2001 3-47

3

n
urns

tax:

the

n

t and
If an <op_attribute> is not specified, the invocation semantics is at-most-once if a
exception is raised; the semantics are exactly-once if the operation invocation ret
successfully.

3.12.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syn

(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”
| “(” “)”

(91) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

(92) <param_attribute> ::= “in”
| “out”
| “inout”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such a
action is undefined.

If an exception is raised as a result of an invocation, the values of the return resul
any out and inout parameters are undefined.

3.12.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } ∗ “)”

The <scoped_name> s in the raises expression must be previously defined
exceptions.
3-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

These

he
ws:

n

t be
string.
.

ed as
 of
lue of
In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of system exceptions that may be signalled by the ORB.
standard system exceptions are described in Section 4.11.3, “Standard System
Exception Definitions,” on page 4-52. However, standard system exceptions may not
be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

3.12.4 Context Expressions

A context expression specifies which elements of the client’s context may affect t
performance of a request by the object. The syntax for its specification is as follo

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } ∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation whe
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string mus
an alphabetic character. An asterisk may only be used as the last character of the
Some implementations may use the period character to partition the name space

The mechanism by which a client associates values with the context identifiers is
described in Section 4.6, “Context Object,” on page 4-27.

3.13 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defin
part of an interface. An attribute definition is logically equivalent to declaring a pair
accessor functions; one to retrieve the value of the attribute and one to set the va
the attribute.

The syntax for attribute declaration is:

(85) <attr_dcl> ::= [“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:
CORBA, v2.4.2 Attribute Declaration February 2001 3-49

3

3-6:

 name

n

.,
interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_’s is removed by application of the
Escaped Identifier rule described in Section 3.2.3.1, “Escaped Identifiers,” on page

• • •
float __get_radius ();
void _ _set_radius (in float r);
material_t _ _get_material ();
void _ _set_material (in material_t m);
position_t _ _get_position ();
• • •

The actual accessor function names are language-mapping specific. The attribute
is subject to OMG IDL’s name scoping rules; the accessor function names are
guaranteed not to collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of system exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See Section 3.14, “CORBA Module,” on page 3-50 for more information on
redefinition constraints and the handling of ambiguity.

3.14 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In a
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA:: ” prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
typedef CORBA::TypeCode TypeCode;// OK
3-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

es are

he

is

t
n of

s.

ed in
};

The file orb.idl contains the IDL definitions for the CORBA module. Except for
CORBA::TypeCode , the file orb.idl must be included in IDL files that use names
defined in the CORBA module. CORBA::TypeCode can be used in IDL files without
having to include orb.idl .

The version of CORBA specified in this release of the specification is version <x.y> ,
and this is reflected in the IDL for the CORBA module by including the following
pragma version (see Section 10.6.5.3, “The Version Pragma,” on page 10-48):

#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line,
which in effect associates that version number with the CORBA entry in the IR. The
version number in that version pragma line must be changed whenever any chang
made to any remotely accessible parts of the CORBA module in an officially released
OMG standard.

3.15 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in t
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. Th
allows natural mappings to case-sensitive languages. So for example:

module M {
typedef long Long; // Error: Long clashes with keyword long
typedef long TheThing;
interface I {

typedef long MyLong;
myLong op1(// Error: inconsistent capitalization

in TheThing thething; // Error: TheThing clashes with thething
);

};
};

3.15.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by firs
resolving the qualifier <scoped-name> to a scope S, and then locating the definitio
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scope

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule describ
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.
CORBA, v2.4.2 Names and Scoping February 2001 3-51

3

he
ty

d

f

e of

nt
n
 other
ted.

t,

ct, to
 the
ults
er.

.

ple:
Prior to starting to scan a file containing an OMG IDL specification, the name of t
current root is initially empty (“”) and the name of the current scope is initially emp
(“”). Whenever a module keyword is encountered, the string “::” and the associate
identifier are appended to the name of the current root; upon detection of the
termination of the module , the trailing “::” and identifier are deleted from the name o
the current root. Whenever an interface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the nam
the current scope; upon detection of the termination of the interface , struct , union ,
or exception , the trailing “::” and identifier are deleted from the name of the curre
scope. Additionally, a new, unnamed, scope is entered when the parameters of a
operation declaration are processed; this allows the parameter names to duplicate
identifiers; when parameter processing has completed, the unnamed scope is exi

The global name of an OMG IDL definition is the concatenation of the current roo
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-10).

Inheritance causes all identifiers defined in base interfaces, both direct and indire
be visible in derived interfaces. Such identifiers are considered to be semantically
same as the original definition. Multiple paths to the same original identifier (as res
from the diamond shape in Figure 3-1 on page 3-20) do not conflict with each oth

Inheritance introduces multiple global OMG IDL names for the inherited identifiers
Consider the following example:

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);

};

In this example, the exception is known by the global names ::A::E and ::B::E .

Ambiguity can arise in specifications due to the nested naming scopes. For exam

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};
3-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

s
s.

ced
ide a
ve of

ely
of
its
e
f

such

d

ot be
interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

The declaration of attribute Title in interface C is ambiguous, since the compiler doe
not know which string_t is desired. Ambiguous declarations yield compilation error

3.15.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referen
by #include statements, forms a naming scope. Definitions that do not appear ins
scope are part of the global scope. There is only a single global scope, irrespecti
the number of source files that form a specification.

The following kinds of definitions form scopes:

• module

• interface

• valuetype

• struct

• union

• operation

• exception

The scope for module, interface, valuetype, struct and exception begins immediat
following its opening ‘{‘ and ends immediately preceding its closing ‘}’. The scope
an operation begins immediately following its ‘(‘ and ends immediately preceding
closing ‘)’. The scope of an union begins immediately following the ‘(‘ following th
keyword switch , and ends immediately preceding its closing ‘}’. The appearance o
the declaration of any of these kinds in any scope, subject to semantic validity of
declaration, opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module an
hence its scope, allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception or a module may n
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

module M {
typedef short M; // Error: M is the name of the module

 // in the scope of which the typedef is.
interface I {
CORBA, v2.4.2 Names and Scoping February 2001 3-53

3

at

 of the

s is

reated
void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a surrounding scope is introduced into a scope if it is used in th
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope
scoped name. For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK

};
}

The declaration of Inner2::inner1 is OK because the identifier Inner1 , while visible
in module Inner2 , has not been introduced into module Inner2 by actual use of it. On
the other hand, if module Inner2 were:

module Inner2{
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK

};

The definition of inner1 is now an error because the identifier Inner1 referring to the
module Inner1 has been introduced in the scope of module Inner2 in the first line of
the module declaration. Also, the declaration of S1 in the last line is OK since the
identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first
line.

Only the first identifier in a qualified name is introduced into the current scope. Thi
illustrated by Inner1::S1 in the example above, which introduces “Inner1 ” into the
scope of “Inner2 ” but does not introduce “S1.” A qualified name of the form
“ ::X::Y::Z ” does not cause “X” to be introduced, but a qualified name of the form
“X::Y::Z ” does.

Enumeration value names are introduced into the enclosing scope and then are t
like any other declaration in that scope. For example:

interface A {
enum E { E1, E2, E3 }; // line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
// into the A scope in line 1 above

};

interface C {
3-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

. In
e

nto

enum AnotherE { E1, E2, E3 };
};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b;// OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding

// the switch type specification!!)
};

};

Type names defined in a scope are available for immediate use within that scope
particular, see Section 3.10.2, “Constructed Types,” on page 3-36 on cycles in typ
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking i
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2

};
};

module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration of ArgType used on line l5 :

1. Scope of N::Y before the use of ArgType .

2. Scope of N::Y ’s base interface M::B . (inherited scope)

3. Scope of module N before the definition of N::Y.

4. Global scope before the definition of N.

M::B::ArgType is found in step 2 in line l3 , and that is the definition that is used in
line l5 , hence ArgType in line l5 is string . It should be noted that ArgType is not
char in line l5 . Now if line l3 were removed from the definition of interface M::B
then ArgType on line l5 would be char from line l4 , which is found in step 3 .

Following analogous search steps for the types used in the operation M::B::opb on
line l2 , the type of AType used on line l2 is long from the typedef in line l1 and the
return type ArgType is string from line l3.
CORBA, v2.4.2 Names and Scoping February 2001 3-55

3

 Use
s well
e
type.
3.15.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module or
interface. For example:

module M {
typedef long ArgType;
interface A {

typedef string ArgType; // OK, redefined in nested scope
struct S {

ArgType x; // x is a string
};

};
typedef double ArgType; // Error: redefinition in same scope

};

Once a type identifier has been used anywhere within the scope of an interface or
valuetype, it may not be redefined within the scope of that interface or valuetype.
of type names within nested scopes created by structs, unions, and exceptions, a
as within the unnamed scope created by an operation parameter list, are for thes
purposes considered to occur within the scope of the enclosing interface or value
For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

ArgType x[I]; // x is a long[10], ArgType and I are used
long y; // Note: a new y is defined; the existing Y is not used

};
typedef string ArgType; // Error: ArgType redefined after use
enum I {I1, I2}; // Error: I redefined after use
typedef short Y; // OK because Y has not been used yet!

};
};

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long

};

typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
3-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

3

};
};
CORBA, v2.4.2 Names and Scoping February 2001 3-57

3

3-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 ORB Interface 4
d

rface
se

Contents

This chapter contains the following sections.

4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, an
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the inte
to those ORB functions that do not depend on which object adapter is used. The
operations are the same for all ORBs and all object implementations, and can be

Section Title Page

“Overview” 4-1

“The ORB Operations” 4-2

“Object Reference Operations” 4-11

“ValueBase Operations” 4-19

“ORB and OA Initialization and Initial References” 4-20

“Context Object” 4-27

“Current Object” 4-31

“Policy Object” 4-32

“Management of Policies” 4-41

“Management of Policy Domains” 4-44

“Exceptions” 4-49
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 4-1

4

e
icit
 that
Base

e not

ke

ecific
performed either by clients of the objects or implementations. The Object interfac
contains operations that are implemented by the ORB, and are accessed as impl
operations of the Object Reference. The ValueBase interface contains operations
are implemented by the ORB, and are accessed as implicit operations of the Value
Reference.

Because the operations in this section are implemented by the ORB itself, they ar
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, ma
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any sp
object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration

typedef short PolicyErrorCode;
// for the definition of consts see “PolicyErrorCode” on page 4-34
typedef unsigned long PolicyType;

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

// StructMemberSeq defined in Chapter 10
// UnionMemberSeq defined in Chapter 10
// EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;
4-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

native ValueFactory;

interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);

boolean poll_next_response();

void get_next_response(
CORBA, v2.4.2 The ORB Operations February 2001 4-3

4

out Request req
);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
4-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);
CORBA, v2.4.2 The ORB Operations February 2001 4-5

4

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations

// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);
};

};
4-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

 in

n

e,” on

ific

ject
stent
ms
All types defined in this chapter are part of the CORBA module. When referenced
OMG IDL, the type names must be prefixed by “CORBA:: ”.

The operations object_to_string and string_to_object are described in
“Converting Object References to Strings” on page 4-7.

For a description of the create_list and create_operation_list operations, see
Section 7.4, “Polling,” on page 7-12. The get_default_context operation is
described in the section Section 4.6.2.1, “get_default_context,” on page 4-29. The
send_multiple_requests_oneway and send_multiple_requests_deferred
operations are described in the section Section 7.3.1, “send_multiple_requests,” o
page 7-10. The poll_next_response and get_next_response operations are
described in the section Section 7.3.2, “get_next_response and poll_next_respons
page 7-11.

The list_intial_services and resolve_initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References,” on page 4-22.

The Type code creation operations with names of the form create_<type>_tc are
described in Section 10.7.3, “Creating TypeCodes,” on page 10-56.

The work_pending , perform_work , shutdown , destroy and run operations are
described in Section 4.2.3, “Thread-Related Operations,” on page 4-8.

The create_policy operations is described in Section 4.8.2.3, “Create_policy,” on
page 4-34.

The register_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Spec
Value Factory Requirements,” on page 5-9.

4.2.1 Converting Object References to Strings

4.2.1.1 object_to_string

string object_to_string (
in Object obj

);

4.2.1.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the ob
reference itself is not a convenient value for storing references to objects in persi
storage or communicating references by means other than invocation. Two proble
CORBA, v2.4.2 The ORB Operations February 2001 4-7

4

t can
rned

 that

 on

A

ble

e is
RB).

e

h the

w the
ining
ters,
must be solved: allowing an object reference to be turned into a value that a clien
store in some other medium, and ensuring that the value can subsequently be tu
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference,
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed
different ORBs.

4.2.2 Getting Service Information

4.2.2.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORB
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type , the
values defined by constants in the CORBA module. If service information is availa
for that type, that is returned in the out parameter service_information , and the
operation returns the value TRUE. If no information for the requested services typ
available, the operation returns FALSE (i.e., the service is not supported by this O

4.2.3 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. Thes
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Bot
ORB::run and ORB::shutdown are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allo
main thread to be used for all kinds of asynchronous processing by the ORB. Def
these operations on the ORB also allows the ORB to support multiple object adap
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.
4-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

work

it of

e
.
aded
t

d
rly.
4.2.3.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some
and a result of FALSE indicates that the ORB does not need the main thread.

4.2.3.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined un
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

The work_pending() and perform_work() operations can be used to write a simpl
polling loop that multiplexes the main thread among the ORB and other activities
Such a loop would most likely be needed in a single-threaded server. A multi-thre
server would need a polling loop only if there were both ORB and other code tha
required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

};

Once the ORB has shutdown, work_pending and perform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.2.3.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threade
ORB implementations, need the use of the main thread in order to function prope
For maximum portability, an application should call either run or perform_work on
its main thread. run may be called by multiple threads simultaneously.
CORBA, v2.4.2 The ORB Operations February 2001 4-9

4

ted

nnot

ted
d. In
oot

 an

l (or

. An

all
This operation will block until the ORB has completed the shutdown process, initia
when some thread calls shutdown .

4.2.3.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they ca
exist in the absence of an ORB. Shut down is complete when all ORB processing
(including request processing and object deactivation or other operations associa
with object adapters) has completed and the object adapters have been destroye
the case of the POA, this means that all object etherealizations have finished and r
POA has been destroyed (implying that all descendent POAs have also been
destroyed).

If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing
invocation, the BAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE , then shutdown may not have
completed upon return. An ORB implementation may require the application to cal
have a pending call to) run or perform_work after shutdown has been called with
its parameter set to FALSE , in order to complete the shutdown process.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed
implementation may impose a time limit for requests to complete while a shutdown
is pending.

Once an ORB has shutdown, only object reference management operations(duplicate ,
release and is_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise the BAD_INV_ORDER system exception
with the OMG minor code 4.

4.2.3.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another c
to ORB_init with the same ORBid will return a reference to a newly constructed
ORB.
4-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

own

,

 call

ions in
on to
ct

bove,
If destroy is called on an ORB that has not been shut down, it will start the shut d
process and block until the ORB has shut down before it destroys the ORB. If an
application calls destroy in a thread that is currently servicing an invocation, the
BAD_INV_ORDER system exception will be raised with the OMG minor code 3
since blocking would result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always
shutdown and destroy on all ORB instances before exiting.

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operat
the normal sense, in that they are implemented directly by the ORB, not passed
the object implementation. We will describe these as being operations on the obje
reference, although the interfaces actually depend on the language binding. As a
where we used interface Object to represent the object reference, we define an
interface for Object :

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef sequence<PolicyType> PolicyTypeSeq;
exception InvalidPolicies { sequence <unsigned short> indices; };

interface Context; // forward declaration

typedef string Identifier;
interface Request; // forward declaration
interface NVList; // forward declaration
struct NamedValue{}; // an implicitly well known type
typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
CORBA, v2.4.2 Object Reference Operations February 2001 4-11

4

in RepositoryId logical_type_id
);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type

);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type

);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

boolean validate_connection(
out PolicyList inconsistent_policies

);
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations,” on page 7-4.
4-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

ss to

 the

tory.
nts

clients

ate,
 was

t
d by
Unless otherwise stated below, the operations in the IDL above do not require acce
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

An operation on the object reference, get_interface , returns an object in the Interface
Repository, which provides type information that may be useful to a program. See
Interface Repository chapter for a definition of operations on the Interface Reposi
The implementation of this operation may involve contacting the ORB that impleme
the target object.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplic
and that the implementation cannot distinguish whether the original or a duplicate
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is no
involved, and that neither the object itself nor any other references to it are affecte
the release operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();
CORBA, v2.4.2 Object Reference Operations February 2001 4-13

4

ver

 if

il at
e
his

y
 in
pe

ther
An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.3.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references o
the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId).
The operation returns true if the object is really an instance of that type, including
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible with the logical_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fa
either the local or the remote end. If is_a cannot make a reliable determination of typ
compatibility due to failure, it raises an exception in the calling application code. T
enables the application to distinguish among the TRUE, FALSE , and indeterminate
cases.

This operation exposes to application programmers functionality that must alread
exist in ORBs which support “type safe narrow” and allows programmers working
environments that do not have compile time type checking to explicitly maintain ty
safety.

This operation always return TRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (ra
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist; otherwise, it returns false.
4-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

nt
e” to
 as a
e,

 the
n-

s,
e not

joint
e
ance

y be

h

h

sh
l use

e

could
t
Services that maintain state that includes object references, such as bridges, eve
channels, and base relationship services, might use this operation in their “idle tim
sift through object tables for objects that no longer exist, deleting them as they go,
form of garbage collection. In the case of proxies, this kind of activity can cascad
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements
target object. Such an attempt may fail at either the local or the remote end. If no
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object reference
services need to support a notion of object reference identity. Such services includ
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into dis
groups of potentially equivalent references, and the other supports more expensiv
pairwise equivalence testing. Together, these operations support efficient mainten
and search of tables keyed by object references.

4.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers which may indirectl
accessed by applications using the hash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any has
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references has
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the ha
value returned by the ORB. The lower bound of that value is zero. Since a typica
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and th
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there
be many proxy objects representing a given “real” object. Those proxies would no
necessarily hash to the same value.
CORBA, v2.4.2 Object Reference Operations February 2001 4-15

4

bject

nct

can
n
are
ects.

able.

hers

cy

s

any
4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target o
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two disti
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service,
make such determination impractically expensive. This means that a FALSE retur
from is_equivalent should be viewed as only indicating that the object references
distinct, and not necessarily an indication that the references indicate distinct obj

A typical application use of this operation is to match object references in a hash t
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, ot
during idle time.

4.3.7 Getting Policy Associated with the Object

4.3.7.1 get_policy

The get_policy operation returns the policy object of the specified type (see “Poli
Object” on page 4-32), which applies to this object. It returns the effective Policy for
the object reference. The effective Policy is the one that would be used if a request
were made. This Policy is determined first by obtaining the effective override for the
PolicyType as returned by get_client_policy . The effective override is then
compared with the Policy as specified in the IOR. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy . If the intersection is empty, the standard system exception INV_POLICY is
raised. Otherwise, a Policy with a value legally within the intersection is returned a
the effective Policy . The absence of a Policy value in the IOR implies that any legal
value may be used. Invoking non_existent on an object reference prior to
get_policy ensures the accuracy of the returned effective Policy . If get_policy is
invoked prior to the object reference being bound, the returned effective Policy is
implementation dependent. In that situation, a compliant implementation may do
of the following: raise the standard system exception BAD_INV_ORDER, return
some value for that PolicyType which may be subject to change once a binding is
4-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

ct of

on

e

s” at
performed, or attempt a binding and then return the effective Policy . Note that if the
effective Policy may change from invocation to invocation due to transparent
rebinding.

Policy get_policy (
in PolicyType policy_type

);

Parameter(s)
policy_type - The type of policy to be obtained.

Return Value

A Policy object of the type specified by the policy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy obje
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operati
(e.g., DomainManager::get_domain_policy for some security policies) for some
policy types.

4.3.7.2 get_client_policy

Policy get_client_policy(
in PolicyType type

);

Returns the effective overriding Policy for the object reference. The effective overrid
is obtained by first checking for an override of the given PolicyType at the Object
scope, then at the Current scope, and finally at the ORB scope. If no override is
present for the requested PolicyType , the system-dependent default value for that
PolicyType is used. Portable applications are expected to set the desired “default
the ORB scope since default Policy values are not specified.

4.3.7.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

Returns the list of Policy overrides (of the specified policy types) set at the Object
scope. If the specified sequence is empty, all Policy overrides at this scope will be
returned. If none of the requested PolicyTypes are overridden at the Object scope,
an empty sequence is returned.
CORBA, v2.4.2 Object Reference Operations February 2001 4-17

4

r

rride

 of

e

t be
4.3.8 Overriding Associated Policies on an Object Reference

4.3.8.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
SetOverrideType indicates whether these policies should be added onto any othe
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to ove
any other policy will result in the raising of the CORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter(s)

policies - a sequence of Policy objects that are to be associated with the new copy
the object reference returned by this operation

set_add - whether the association is in addition to (ADD_OVERRIDE) or as
replacement of (SET_OVERRIDE) any existing overrides already associated with th
object reference.

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add .

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that canno
overridden.

4.3.9 Validating Connection

4.3.9.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);
4-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

r as

bind

it

lue
dard
e

 the
dard

ain
ith at

nts

value
tually
Returns the value TRUE if the current effective policies for the Object will allow an
invocation to be made. If the object reference is not yet bound, a binding will occu
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a re
will be attempted regardless of the setting of any RebindPolicy override. The
validate_connection operation is the only way to force such a rebind when implic
rebinds are disallowed by the current effective RebindPolicy . The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB. Returns the va
FALSE if the current effective policies would cause an invocation to raise the stan
system exception INV_POLICY. If the current effective policies are incompatible, th
out parameter inconsistent_policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be exhaustive. If
binding fails due to some reason unrelated to policy overrides, the appropriate stan
system exception is raised.

4.3.10 Getting the Domain Managers Associated with the Object

4.3.10.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies,” on page 4-41), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one dom
manager is always returned in the list since by default each object is associated w
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that impleme
the target object.

4.4 ValueBase Operations

ValueBase serves a similar role for value types that Object serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all
types. Any operations that are required to be supported for all values are concep
defined on ValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.
CORBA, v2.4.2 ValueBase Operations February 2001 4-19

4

.

s.

).

A

ace

t the
root
nd
A

ore

tion
is is
 The
ld.
.
Analogous to the definition of the Object interface for implicit operations of object
references, the implicit operations of ValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def() operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.27, “ValueDef,” on page 10-38)

4.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environment

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects

The following operations are provided to initialize applications and obtain the
appropriate object references:

• Operations providing access to the ORB. These operations reside in the CORB
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization,” on page 4-20.

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interf
and are described in Section 4.5.2, “Obtaining Initial Object References,” on
page 4-22.

4.5.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to ge
ORB pseudo-object reference and possibly an OA object reference (such as the
POA). This serves two purposes. First, it initializes an application into the ORB a
OA environments. Second, it returns the ORB pseudo-object reference and the O
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring bef
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an applica
in the ORB and get its pseudo-object reference is not performed on an object. Th
because applications do not initially have an object on which to invoke operations.
ORB initialization operation is an application’s bootstrap call into the CORBA wor
The ORB_init call is part of the CORBA module but not part of the ORB interface
4-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

is
nces

 the

n is

ot
e
lti-

mes

 This

ssary
eters
Applications can be initialized in one or more ORBs. When an ORB initialization
complete, its pseudo reference is returned and can be used to obtain other refere
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which
pseudo-object reference is required, and an arg_list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initializatio
as follows:

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The identifier for the ORB will be a name of type CORBA::ORBid . All ORBid
strings other than the empty string are allocated by ORB administrators and are n
managed by the OMG. ORBid strings other than the empty string are intended to b
used to uniquely identify each ORB used within the same address space in a mu
ORB application. These special ORBid strings are specific to each ORB
implementation and the ORB administrator is responsible for ensuring that the na
are unambiguous.

If an empty ORBid string is passed to ORB_init , then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned.
is achieved by searching the arg_list parameters for one preceded by “-ORBid ” for
example, “-ORBid example_orb ” (the white space after the “-ORBid ” tag is
ignored) or “-ORBidMyFavoriteORB ” (with no white space following the “-ORBid ”
tag). Alternatively, two sequential parameters with the first being the string “-ORBid ”
indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list , for
example, “Hostname ,” “ SpawnedServer ,” and so forth. To allow for other
parameters to be specified without causing applications to be re-written, it is nece
to specify the parameter format that ORB parameters may take. In general, param
shall be formatted as either one single arg_list parameter:

–ORB<suffix><optional white space> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>
CORBA, v2.4.2 ORB and OA Initialization and Initial References February 20014-21

4

n. If

RB
rings
,

ame
nt

ces.

he

e

ion
bject
set of
 be a

e
Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the arg_list arguments are examined to determine if any ORB parameters are give
a non-empty ORBid string is passed to ORB_init , all ORBid parameters in the
arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of
significance during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that
match the -ORB<suffix> pattern described above and that are recognized by that O
implementation, along with any associated sequential parameter strings. If any st
in arg_list that match this pattern are not recognized by the ORB implementation
ORB_init will raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the s
ORB reference when the same ORBid string is passed, either explicitly as an argume
to ORB_init or through the arg_list . All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent calls to ORB_init .

4.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object referen
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) T
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service b
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local vers
of the Naming Service that applications can use to obtain a small, defined set of o
references which are essential to its operation. Because only a small well-defined
objects are expected with this mechanism, the naming context can be flattened to
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolv
initial object references.

list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier
4-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

nents

tain

 the
h
) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than
the Naming Service’s NamingContext . The interface differs from the Naming
Service’s resolve in that ObjectId (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the compo
of the name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To main
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the ObjectId name space requires careful management. To achieve this,
OMG may, in the future, define which services are required by applications throug
this interface and specify names for those services.

Currently, reserved ObjectIds are RootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent,
DynAnyFactory, ORBPolicyManager, PolicyCurrent , NotificationService and
TypedNotificationService .

Table 4-1 ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.8, “POA Interface,” on
page 11-32

POACurrent PortableServer::Current Section 11.3.8, “POA Interface,” on
page 11-32

InterfaceRepository CORBA::Repository Section 10.5.6, “Repository,” on
page 10-20

NameService CosNaming::
NamingContext

Naming Service specification
(formal/00-06-19), the CosNaming
Module section.

TradingService CosTrading::Lookup Trading Object Service
specification (formal/00-06-27), the
Functional Interfaces section.

SecurityCurrent SecurityLevel1::Current or
SecurityLevel2::Current

Security Service specification
(formal/00-06-25), the Security
Operations on Current section.

TransactionCurrent CosTransaction::Current Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces section.

DynAnyFactory DynamicAny::
DynAnyFactory

Section 9.2.2, “Creating a DynAny
object,” on page 9-8
CORBA, v2.4.2 ORB and OA Initialization and Initial References February 20014-23

4

the

le at
the

ther

 or

y
To allow an application to determine which objects have references available via
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList , which is a sequence of ObjectIds .
ObjectIds are typed as strings. Each object, which may need to be made availab
initialization time, is allocated a string value to represent it. In addition to defining
id, the type of object being returned must be defined (i.e., “InterfaceRepository ”
returns an object of type Repository , and “NameService ” returns a
CosNaming::NamingContext object).

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

Specifications for Object Services (see individual service specifications) state whe
it is expected that a service’s initial reference be made available via the
resolve_initial_references operation or not (i.e., whether the service is necessary
desirable for bootstrap purposes).

4.5.3 Configuring Initial Service References

4.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrar
object reference from CORBA::ORB::resolve_initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

ORBPolicyManager CORBA::PolicyManager Section 4.9.3, “Policy Management
Interfaces,” on page 4-42

PolicyCurrent CORBA::PolicyCurrent Section 4.9.3, “Policy Management
Interfaces,” on page 4-42

NotificationService CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService CosTypedNotifyChannelAdmin::Typed
EventChannelFactory

Notification Service specification
(formal/00-06-20)

Table 4-1 ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference
4-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

lid

d a
4.5.3.2 ORBInitRef

The ORB initial reference argument, -ORBInitRef , allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB ...

-ORBInitRef NotificationService=corbaloc::555objs.com/NotificationService

-ORBInitRef TradingService=corbaname::555objs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA
specification, such as NameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Sections 13.6.6 to 13.6.7 CORBA 2.3
Specification). If a URL is syntactically malformed or can be determined to be inva
in an implementation defined manner, ORB_init raises a BAD_PARAM exception.

4.5.3.3 ORBDefaultInitRef

The ORB default initial reference argument, -ORBDefaultInitRef , assists in
resolution of initial references not explicitly specified with -ORBInitRef .
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character an
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::555objs.com

A call to resolve_initial_references(“NotificationService”) with
this argument results in a new URL:

corbaloc::555objs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService
CORBA, v2.4.2 ORB and OA Initialization and Initial References February 20014-25

4

ed

s.

nt
om

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object . (In this example,
Prod/Local/NameService represents a stringified CosNaming::Name).

Section 13.6.7 provides details of the corbaloc and corbaname URL schemes. The
-ORBDefaultInitRef argument naturally extends to URL schemes that may be defin
in the future, provided the final part of the URL is an object key.

4.5.3.4 Configuration Effect on resolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

1. Resolve with -ORBInitRef for this <ObjectID> if possible

2. Resolve with an -ORBDefaultInitRef entry if possible

3. Resolve with pre-configured ORB settings.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of -ORBDefaultInitRef may have unintended resolution side effect
For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a clie
from unknowingly diverting the ORB’s reference to an implementation repository fr
another vendor. To prevent this, an ORB is allowed to ignore the -ORBDefaultInitRef
argument for any or all <ObjectID> s for those services that are not OMG-specified
services with a well-known service name as accepted by resolve_initial_references .
An ORB can only ignore the -ORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

4.5.3.5 Configuration Effect on list_initial_services

The <ObjectID> s of all -ORBInitRef argument s to ORB_init appear in the list of
tokens returned by list_initial_services as well as all ORB-configured <ObjectID> s.
Any other tokens that may appear are implementation-dependent.

The list of <ObjectID> s returned by list_initial_services can be a subset of the
<ObjectID> s recognized as valid by resolve_initial_references .
4-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

ing

nt
ent

has
ntext

that
e

ay

ent is
ia
hich

ed

L
rty

“*.”

ty

y be

ay be
4.6 Context Object

4.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a str
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environme
that is meant to be propagated to (and made implicitly part of) a server’s environm
(for example, a window identifier, or user preference information). Once a server
been invoked (i.e., after the properties are propagated), the server may query its co
object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, allowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties
may be of interest to a particular operation. These context properties comprise th
minimum set of properties that will be propagated to the server’s environment
(although a specified property may have no value associated with it). The ORB m
choose to pass more properties than those specified in the operation declaration.

When a context clause is present on an operation declaration, an additional argum
added to the stub and skeleton interfaces. When an operation invocation occurs v
either the stub or Dynamic Invocation interface, the ORB causes the properties w
were named in the operation definition in OMG IDL and which are present in the
client’s context object, to be provided in the context object parameter to the invok
method.

Context property names (which are strings) typically have the form of an OMG ID
identifier, or a series of OMG IDL identifiers separated by periods. A context prope
name pattern is either a property name, or a property name followed by a single
Property name patterns are used in the context clause of an operation definition and in
the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A proper
name pattern of the form “<name>*” matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties ma
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there m
conventions for having them supplied to calls by default.
CORBA, v2.4.2 Context Object February 2001 4-27

4

text
tion
ext

s in

.

amed
It may be possible to keep context information in persistent implementations of con
objects, while other implementations may be transient. The creation and modifica
of persistent context objects, however, is not addressed in this specification. Cont
objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those propertie
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Context get_values call.
Context objects may be named for purposes of specifying a starting search scope

4.6.2 Context Object Operations

When performing operations on a context object, properties are represented as n
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see Section 3.2.3,
“Identifiers,” on page 3-6 for the valid set of characters that are allowed). The Context
interface is shown below.

module CORBA {

interface Context { // PIDL
void set_one_value (

in Identifier prop_name, // property name to add
in string value // property value to add

);
void set_values (

in NVList values // property values to be changed
);
void get_values (

in Identifier start_scope, // search scope
in Flags op_flags, // operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);
void delete_values (

in Identifier prop_name // name of property(s) to delete
);
void create_child (

in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object
);
void delete (

in Flags del_flags // flags controlling deletion
);

};
};
4-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

-7

ult

tem

bute
4.6.2.1 get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB
interface (see Section 4.2.1, “Converting Object References to Strings,” on page 4
for the complete ORB definition).

void get_default_context (// PIDL
out Context ctx // context object

);

This operation returns a reference to the default process context object. The defa
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and Sys
context objects.

4.6.2.2 set_one_value

void set_one_value (// PIDL
in Identifier prop_name, // property name to add
in string value // property value to add

);

This operation sets a single context object property.

4.6.2.3 set_values

void set_values (// PIDL
in NVList values // property values to be changed

);

This operation sets one or more property values in the context object. In the NVList ,
the flags field must be set to zero, and the TypeCode field associated with an attri
value must be TC_string .

4.6.2.4 get_values

void get_values (// PIDL
in Identifier start_scope, // search scope
in Flags op_flags, // operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a
trailing wildcard character (“*”), then all matching properties and their values are
returned. The values returned may be freed by a call to the list free operation.
CORBA, v2.4.2 Context Object February 2001 4-29

4

s.

ified

e

h

n the
), if

,
If prop_name is an empty string then the BAD_PARAM standard system exception
is raised. If a property named by prop_name is not found then the
BAD_CONTEXT standard system exception is raised and no property list is
returned. The NO_MEMORY exception is raised if dynamic memory allocation fail

Scope indicates the context object level at which to initiate the search for the spec
properties (e.g., “_USER”, “ _SYSTEM”). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified context object. If th
specified scope name is not found, an exception is returned.

The following operation flag may be specified:

• CORBA::CTX_RESTRICT_SCOPE - Searching is limited to the specified searc
scope or context object.

4.6.2.5 delete_values

void delete_values (// PIDL
 in Identifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailing wildcard character (“*”), then all property names that
match will be deleted.

Search scope is always limited to the specified context object.

If prop_name is an empty string the BAD_PARAM standard system exception is
raised. If no matching property is found, the BAD_CONTEXT standard system
exception is raised.

4.6.2.6 create_child

void create_child (// PIDL
in Identifier ctx_name, // name of context object
out Context child_ctx // newly created context object

);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches o
child context object will look in the parent context (and so on, up the context tree
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see Section 3.2.3
“Identifiers,” on page 3-6).
4-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

n is

 the

oose

d

 and
.

ill
o
4.6.2.7 delete

void delete (// PIDL
in Flags del_flags // flags controlling deletion

);

This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object
and all of its descendent context objects, as well.

The standard system exception BAD_PARAM is raised if there are one or more
child context objects and the CTX_DELETE_DESCENDENTS flag was not set.

4.7 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This informatio
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from
CORBA module's Current . Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references . For
example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may ch
to do so.

module CORBA {
// interface for the Current object
 interface Current {
};

};

Operations on interfaces derived from Current access state associated with the threa
in which they are invoked, not state associated with the thread from which the Current
was obtained. This prevents one thread from manipulating another thread's state,
avoids the need to obtain and narrow a new Current in each method's thread context

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. Current s are per-process singleton objects, s
no destroy operation is needed.
CORBA, v2.4.2 Current Object February 2001 4-31

4

ffect
s

 to do

e

to

r
o
r
4.8 Policy Object

4.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that a
its operation. This information is accessed in a structured manner using interface
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose
so. The Security Service in particular uses this technique for associating Security Policy
with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;

};

PolicyType defines the type of Policy object. In general the constant values that ar
allocated are defined in conjunction with the definition of the corresponding Policy
object. The values of PolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bit Vendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits. The VPVIDs 0
through \xf are reserved for OMG. All values for the standard PolicyTypes are
allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for
experimental use and OMGVMCID (Section 4.11.3, “Standard System Exception
Definitions,” on page 4-52) is reserved for OMG use. These will not be allocated
anybody. Vendors can request allocation of VPVID by sending mail to tag-
request@omg.org.

When a VMCID (Section 4.11, “Exceptions,” on page 4-49) is allocated to a vendo
automatically the same value of VPVID is reserved for the vendor and vice versa. S
once a vendor gets either a VMCID or a VPVID registered they can use that value fo
both their minor codes and their policy types.

4.8.1.1 Copy

Policy copy();
4-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

 that

t to

 as
Return Value

This operation copies the policy object. The copy does not retain any relationships
the policy had with any domain, or object.

4.8.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy objec
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it
cannot be destroyed.

4.8.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds
to the type of the Policy object.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided
described in this section.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
CORBA, v2.4.2 Policy Object February 2001 4-33

4

d to

y

d

};
};

4.8.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:

BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for
that PolicyType .

BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is
not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a valid
type and within the valid range for that type, but this valid value is not currently
supported.

4.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passe
the ORB::create_policy operation. Possible reasons are described above.

4.8.2.3 Create_policy

The ORB operation create_policy can be invoked to create new instances of polic
objects of a specific type with specified initial state. If create_policy fails to
instantiate a new Policy object due to its inability to interpret the requested type an
content of the policy, it raises the PolicyError exception with the appropriate reason
as described in “PolicyErrorCode” on page 4-34.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - the PolicyType of the policy object to be created.

val - the value that will be used to set the initial state of the Policy object that is created.

ReturnValue

Reference to a newly created Policy object of type specified by the type parameter
and initialized to a state specified by the val parameter.
4-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

itial

 is

licy,

y
t

OA,

ct

jects

ith
e

 the

tion
B

. The
tion
,
n
nt

 an
ewly
Exception(s)

PolicyError - raised when the requested policy is not supported or a requested in
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it
expected that the IDL type and the valid values that can be passed to create_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific po
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Polic
object is associated with another object to associate the contained policy with tha
object.

Objects with which policy objects are typically associated are Domain Managers, P
the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy obje
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual ob
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in the Portable Object Adapter chapter. The use of
Policy objects in the context of the Security services, involving their association w
Domain Managers as well as with the Execution Environment are discussed in th
Security Service specification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies,” on page 4-41
use of Policy objects in association with Domain Managers is discussed.

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invoca
credentials, etc.) are associated by default with the process/capsule(RM-ODP)/OR
instance (hereinafter referred to as “capsule”) when the application is instantiated
together with the capsule. By default these policies are applicable whenever an
invocation of an operation is attempted by any code executing in the said capsule
Security service provides operations for modulating these policies on a per-execu
thread basis using operations in the Current interface. Certain of these policies (e.g.
invocation credentials, qop, mechanism, etc.) which pertain to the invocation of a
operation through a specific object reference can be further modulated at the clie
end, using the set_policy_overrides operation of the Object reference. For a
description of this operation see Section 4.3.8, “Overriding Associated Policies on
Object Reference,” on page 4-18. It associates a specified set of policies with a n
created object reference that it returns.
CORBA, v2.4.2 Policy Object February 2001 4-35

4

local

rence

cates
bject
 with

.
y

y
then
f
le is
ct of

re

ial
a

the
The association of these overridden policies with the object reference is a purely
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object refe
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent dupli
of this new object reference apply to all invocations that are done through these o
references. The overridden policies apply even when the default policy associated
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation
These are listed in the Security specification. Attempts to override any other polic
will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first b
determining if that policy type has been overridden in that object reference. if so
the overridden policy is used. if not then if the policy has been set in the thread o
execution then that policy is used. If not then the policy associated with the capsu
used. For policies that matter, the ORB ensures that there is a default policy obje
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Specification of New Policy Objects

When new PolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy a
legal and which are not:

• Specify the assigned CORBA::PolicyType and the policy's interface definition.

• If the Policy can be created through CORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the init
state/behavior of that Policy (such as initial values of attributes). For example, if
Policy has multiple attributes and operations, it is most likely that create_policy
will receive some complex data for the implementation to initialize the state of
specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
 readonly attribute long high;
4-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

s
y

t to
ith

ice

are
xact

ce
s an

res.

ed.

or
 be

ase,
};

If this sample MyPolicy can be constructed via create_policy , the specification of
MyPolicy will have a statement such as: “When instances of MyPolicy are created,
a value of type MyPolicyRang e is passed to CORBA::ORB::create_policy and
the resulting MyPolicy’s attribute ‘low’ has the same value as the MyPolicyRange
member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange
member ‘high.’

• If the Policy can be passed as an argument to POA::create_POA , specify the
effects of the new policy on that POA. Specifically define incompatibilities (or
inter-dependencies) with other POA policies, effects on the behavior of invocation
on objects activated with the POA, and whether or not presence of the POA polic
implies some IOR profile/component contents for object references created with
that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

• If the component that is used to carry this information can be set within a clien
tune the client’s behavior, specify the policy’s effects on the client specifically w
respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of serv
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies
stated. For policies that cause service contexts to be added to requests, the e
details of this addition are given.

• If the Policy can be used with POA creation to tune IOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy’s presen
from both the client and server. It is strongly recommended to avoid this case! A
exercise in completeness, most POA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful featu
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be describ

• Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (
policies change due to rebind). If the newly specified policy is mutable, it must
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the c
the policy specification must clearly state what happens if such overrides are
attempted.
CORBA, v2.4.2 Policy Object February 2001 4-37

4

BA
4.8.6 Standard Policies

Table 4-2 lists the standard policy types that are defined by various parts of COR
and CORBA Services in this version of CORBA.

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag Defined in
Sect./Page

Uses
create_
policy

SecClientInvocationAccess SecurityAdmin::
AccessPolicy

1 Security Service
specification
(formal/00-06-25)

No

SecTargetInvocationAccess SecurityAdmin::
AccessPolicy

2 No

SecApplicationAccess SecurityAdmin::
AccessPolicy

3 No

SecClientInvocationAudit SecurityAdmin::AuditPolicy 4 No

SecTargetInvocationAudit SecurityAdmin::AuditPolicy 5 No

SecApplicationAudit SecurityAdmin::AuditPolicy 6 No

SecDelegation SecurityAdmin::Delegation
Policy

7 No

SecClientSecureInvocation SecurityAdmin::
SecureInvocationPolicy

8 No

SecTargetSecureInvocation SecurityAdmin::
SecureInvocationPolicy

9 No

SecNonRepudiation NRService::NRPolicy 10 No

SecConstruction CORBA::SecConstruction 11 CORBA Core -
ORB Interface
(chapter 4)

No

SecMechanismPolicy SecurityLevel2::
MechanismPolicy

12 Security Service
specification
(formal/00-06-25)

Yes

SecInvocationCredentialsPolicy SecurityLevel2::
InvocationCredentialsPolicy

13 Yes

SecFeaturesPolicy SecurityLevel2::
FeaturesPolicy

14 Yes

SecQOPPolicy SecurityLevel2::QOPPolicy 15 Yes
4-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

THREAD_POLICY_ID PortableServer::
ThreadPolicy

16 CORBA Core -
Portable Object
Adapter
(chapter 11)

Yes

LIFESPAN_POLICY_ID PortableServer::
LifespanPolicy

17 Yes

ID_UNIQUENESS_POLICY_ID PortableServer::
IdUniquenessPolicy

18 Yes

ID_ASSIGNMENT_POLICY_ID PortableServer::
IdAssignmentPolicy

19 Yes

IMPLICIT_ACTIVATION_POLICY_ID PortableServer::
ImplicitActivationPolicy

20 Yes

SERVENT_RETENTION_POLICY_ID PortableServer::
ServentRetentionPolicy

21 Yes

REQUEST_PROCESSING_POLICY_ID PortableServer::
RequestProcessingPolicy

22 Yes

REBIND_POLICY_TYPE Messaging::RebindPolicy 23 CORBA Core
Asynchronous
Messaging
(chapter 22)

Yes

SYNC_SCOPE_POLICY_TYPE Messaging::
SyncScopePolicy

24 Yes

REQUEST_PRIORITY_POLICY_TYPE Messaging::
RequestPriorityPolicy

25 Yes

REPLY_PRIORITY_POLICY_TYPE Messaging::
ReplyPriorityPolicy

26 Yes

REQUEST_START_TIME_POLICY_TYPE Messaging::
RequestStartTimePolicy

27 Yes

REQUEST_END_TIME_POLICY_TYPE Messaging::
RequestEndTimePolicy

28 Yes

REPLY_START_TIME_POLICY_TYPE Messaging::
ReplyStartTimePolicy

29 Yes

REPLY_END_TIME_POLICY_TYPE Messaging::
ReplyEndTimePolicy

30 Yes

RELATIVE_REQ_TIMEOUT_POLICY_TYPE Messaging::
RelativeRequestTimeoutPolicy

31 Yes

RELATIVE_RT_TIMEOUT_POLICY_TYPE Messaging::
RelativeRoundtripTimeout
Policy

32 Yes

ROUTING_POLICY_TYPE Messaging::RoutingPolicy 33 Yes

MAX_HOPS_POLICY_TYPE Messaging::MaxHopsPolicy 34 Yes

QUEUE_ORDER_POLICY_TYPE Messaging::
QueueOrderPolicy

35 Yes

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag Defined in
Sect./Page

Uses
create_
policy
CORBA, v2.4.2 Policy Object February 2001 4-39

4

FIREWALL_POLICY_TYPE Firewall::FirewallPolicy 36 Firewall
specification
(orbos/98-05-04)

Yes

BIDIRECTIONAL_POLICY_TYPE BiDirPolicy::
BidirectionalPolicy

37 CORBA Core -
General Inter-
ORB Protocol
(chapter 15)

Yes

SecDelegationDirectivePolicy SecurityLevel2::
DelegtionDirectivePolicy

38 Security Service
specification
(formal/00-06-25)

Yes

SecEstablishTrustPolicy SecurityLevel2::
EstablishTrustPolicy

39 Yes

PRIORITY_MODEL_POLICY_TYPE RTCORBA::
PriorityModelPolicy

40 CORBA Core -
Real-Time
CORBA
(chapter 24)

Yes

THREADPOOL_POLICY_TYPE RTCORBA::
ThreadpoolPolicy

41 Yes

SERVER_PROTOCOL_POLICY_TYPE RTCORBA::
ServerProtocolPolicy

42 Yes

CLIENT_PROTOCOL_POLICY_TYPE RTCORBA::
ClientProtocolPolicy

43 Yes

PRIVATE_CONNECTION_POLICY_TYPE RTCORBA::
PrivateConnectionpolicy

44 Yes

PRIORITY_BANDED_CONNECTION_
POLICY_TYPE

RTCORBA::
PriorityBandedConnection
Policy

45 Yes

TransactionPolicyType CosTransactions::
TransactionPolicy

46 Object
Transaction
Service
specification
(formal/00-06-28)

Yes

IMMEDIATE_SUSPEND_POLICY_TYPE valuetype MessageRouting::
ImmediateSuspend

50 CORBA Core-
Asynchronous
Messaging
(chapter 22)

No

UNLIMITED_PING_POLICY_TYPE valuetype MessageRouting::
UnlimitedPing

51 No

LIMITED_PING_POLICY_TYPE valuetype MessageRouting::
LimitedPing

52 No

DECAY_POLICY_TYPE valuetype MessageRouting::
DecayPolicy

53 No

RESUME_POLICY_TYPE valuetype MessageRouting::
ResumePolicy

54 No

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag Defined in
Sect./Page

Uses
create_
policy
4-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

ned.

cies
B

A

no

ugh
ride
ssors

ct
ies
4.9 Management of Policies

4.9.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the
following contexts:

• ORB-level Policies - A locality-constrained PolicyManager is accessible through
the ORB interface. This PolicyManager has operations through which a set of
Policies can be applied and the current overriding Policy settings can be obtai
Policies applied at the ORB level override any system defaults. The ORB’s
PolicyManager is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of
“ORBPolicyManager.”

• Thread-level Policies - A standard PolicyCurrent is defined with operations for
the querying and applying of quality of service values specific to a thread. Poli
applied at the thread level override any system defaults or values set at the OR
level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references , specifying an identifier of “PolicyCurrent.”
When accessed from a newly spawned thread, the PolicyCurrent initially has no
overridden policies. The PolicyCurrent also has no overridden values when a PO
with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to have
overridden values.

• Object-level Policies - Operations are defined on the base Object interface thro
which a set of Policies can be applied. Policies applied at the Object level over
any system defaults or values set at the ORB or Thread levels. In addition, acce
are defined for querying the current overriding Policies set at the Object level, and
for obtaining the current effective client-side Policy of a given PolicyType . The
effective client-side Policy is the value of a PolicyType that would be in effect if
a request were made. This is determined by checking for overrides at the Obje
level, then at the Thread level, and finally at the ORB level. If no overriding polic

INVOCATION_POLICY_TYPE CosTransactions::
InvocationPolicy

55 Object
Transaction
Service
(formal/00-06-28)

Yes

OTS_POLICY_TYPE CosTransactions::
OTSPolicy

56 Yes

NON_TX_TARGET_POLICY_TYPE CosTransactions::
NonTxTargetPolicy

57 Yes

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag Defined in
Sect./Page

Uses
create_
policy
CORBA, v2.4.2 Management of Policies February 2001 4-41

4

s are

OA.

 the
ates.

ence
at

 but
ce

et at
icy
nism
he

et of
are set at any level, the system-dependent default value is returned. Portable
applications are expected to override the ORB-level policies since default value
not specified in most cases.

4.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a P
Since all policy objects are derived from interface Policy , those that are applicable to
server-side behavior can be passed as arguments to POA::create_POA . Any such
Policies that affect the behavior of requests (and therefore must be accessible to
ORB at the client side) are exported within the Object references that the POA cre
It is clearly noted in a POA Policy definition when that Policy is of interest to the
Client. For those policies that can be exported within an Object reference, the abs
of a value for that policy type implies that the target supports any legal value of th
PolicyType .

Most Policies are appropriate only for management at either the Server or Client,
not both. For those Policies that can be established at the time of Object referen
creation (through POA Policies) and overridden by the client (through overrides s
the ORB, thread, or Object reference scopes), reconciliation is done on a per-Pol
basis. Such Policies are clearly noted in their definitions and describe the mecha
of reconciliation between the Policies that are set by the POA and overridden in t
client. Furthermore, obtaining the effective Policy of some PolicyTypes requires
evaluating the effective Policy of other types of Policies. Such hierarchical Policy
definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current s
policies and for overriding these settings are encapsulated in the PolicyManager
interface.

4.9.3 Policy Management Interfaces

module CORBA {

 interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

 interface PolicyCurrent : PolicyManager, Current {
};

};
4-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

are

at

s.

nt for
4.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at
a particular scope. For example, an instance of the PolicyCurrent is used for
specifying Policy overrides that apply to invocations from that thread (unless they
overridden at the Object scope as described in Section 4.9.1, “Client Side Policy
Management,” on page 4-41).

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter
ts a sequence of overridden policy types identifying the policies th

are to be retrieved.

Return Value
policy list the list of overridden policies of the types specified by ts.

Exceptions

none

Returns a PolicyList containing the overridden Polices for the requested PolicyType
If the specified sequence is empty, all Policy overrides at this scope will be returned.
If none of the requested PolicyTypes are overridden at the target PolicyManager , an
empty sequence is returned. This accessor returns only those Policy overrides that
have been set at the specific scope corresponding to the target PolicyManager (no
evaluation is done with respect to overrides at other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter
policies a sequence of policies the are to be overridden.

set_add specifies whether these policies are to be added as replaceme
existing policies or simply added to the existing set of policies.

Return Value
none.
CORBA, v2.4.2 Management of Policies February 2001 4-43

4

at

d

 at
her

e this
ribing

in
nd
ect
more
cale
her
Exceptions
InvalidPolicies a list of indices identifying the position in the input policies list th

are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The
first parameter policies is a sequence of references to Policy objects. The second
parameter set_add of type SetOverrideType indicates whether these policies shoul
be added onto any other overrides that already exist (ADD_OVERRIDE) in the
PolicyManager , or they should be added to a clean PolicyManager free of any
other overrides (SET_OVERRIDE). Invoking set_policy_overrides with an empty
sequence of policies and a mode of SET_OVERRIDE removes all overrides from a
PolicyManager . Only certain policies that pertain to the invocation of an operation
the client end can be overridden using this operation. Attempts to override any ot
policy will result in the raising of the CORBA::NO_PERMISSION exception. If
the request would put the set of overriding policies for the target PolicyManager in
an inconsistent state, no policies are changed or added, and the exception
InvalidPolicies is raised. There is no evaluation of compatibility with policies set
within other PolicyManagers .

4.9.3.2 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread
scope. A reference to a thread’s PolicyCurrent is obtained through an invocation of
CORBA::ORB::resolve_initial_references .

4.10 Management of Policy Domains

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitat
aspect of management is described in this section together with the section desc
Policy objects.

4.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that doma
apply. These objects are the domain members. The policies represent the rules a
criteria that constrain activities of the objects which belong to the domain. On obj
reference creation, the ORB implicitly associates the object reference with one or
policy domains. Policy domains provide leverage for dealing with the problem of s
in policy management by allowing application of policy at a domain granularity rat
than at an individual object instance granularity.
4-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

in
ain

add
sibly

in a
he

ach.
licy
ted

icy,

ject

ion
ences
ain
t

at
e
or
This
s to
ing

ay

nd
licy

in
4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the doma
manager, which has associated with it the policy objects for that domain. The dom
manager also records the membership of the domain and provides the means to
and remove members. The domain manager is itself a member of a domain, pos
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated
policy object is associated with the domain by associating the policy object with t
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for e
There is at most one policy of each type associated with a policy domain. The po
objects are thus shared between objects in the domain, rather than being associa
with individual objects. Consequently, if an object needs to have an individual pol
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating ob
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the applicat
that is creating object references using POA operations to ensure that object refer
to the same object are not created by the server of that object with different dom
associations. Henceforth whenever the concept of “object membership” is used, i
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In th
case the object is governed by all policies of its enclosing domains. The referenc
model allows an object to be a member of multiple domains, which may overlap f
the same type of policy (for example, be subject to overlapping access policies).
would require conflicts among policies defined by the multiple overlapping domain
be resolved. The specification does not include explicit support for such overlapp
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), a
then uses the policy object returned to enforce the policy. The caller finding a po
and then enforcing it does not see the domain manager objects and the doma
structure.
CORBA, v2.4.2 Management of Policy Domains February 2001 4-45

4

 to

ope of

hem;
ed to

tion
tly be

e

 with a
a
 be

ed
cy is
eates

he
 one

ject,

ain to
d
• The administrative interfaces used to set policies (e.g., specifying which events
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the sc
what he is administering.

Note – This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between t
changing the domain structure and adding, changing, and removing policies appli
the domains.

4.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

• One or more Policy Domains, defining all the policies to which the object
associated with the object reference is subject.

• The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference crea
operations of the POA is called. Some or all of these associations may subsequen
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of som
other activity, such as moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated
new domain. Within a given domain a construction policy can be associated with
specific object type thus causing a new domain (i.e., a domain manager object) to
created whenever an object reference of that type is created and the newly creat
object reference associated with the new domain manager. This construction poli
enforced at the same time as the domain membership (i.e., by the POA when it cr
an object reference).

4.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating t
object proceeds as follows. The application (which may be a generic factory) calls
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating ob
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the dom
which the parent belongs. Non-object applications on the client side are associate
with a default, per-ORB instance policy domain by the ORB.
4-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

e are
set, it

eded,
ect. A

 the
may

the
ain

 no
ons.

ains
l be

 it is
 that

rs and

are

s
 to
le
Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified typ
to be associated their own separate domains. Once such a construction policy is
can be reversed by invoking make_domain_manager again with the constr_policy
parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is ne
the ORB creates both the requested object reference and a domain manager obj
reference to this domain manager can be found by calling get_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized,
interface from the ORB to the policy object is assumed to be a private one, which
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of
enclosing domain. The ORB will always arrange to provide a default enclosing dom
with default ORB policies associated with it, in those cases where there would be
such domain as in the case of a non-object client invoking object creation operati

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management interfaces, which wil
defined in the future.

Since the ORB has control only over domain associations with object references,
the responsibility of the creator of new object to ensure that the object references
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain manage
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies
associated with domains.

This section also includes the interface to the construction policy object, as that i
relevant to domains. The basic definitions of the interfaces and operations related
these are part of the CORBA module, since other definitions in the CORBA modu
depend on these.

module CORBA {
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};
CORBA, v2.4.2 Management of Policy Domains February 2001 4-47

4

.

r

aces
t
const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagersList;
};

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, fo
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interf
for adding new policies to domains or for changing domain memberships have no
currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see
Section 4.3.7, “Getting Policy Associated with the Object,” on page 4-16 and
Section 4.3.10, “Getting the Domain Managers Associated with the Object,” on
page 4-19).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

Parameter(s)

policy_type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described in the
Security Service specification, Security Policies Introduction section.

Return Value

A reference to the policy object for the specified type of policy in this domain.
4-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

f that

ffect

 the

 the
olicy

y in

be

main.
es

rms
a list
Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object o
type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in e
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by
input parameter is created, a new domain manager will be created and the newly
created object reference will respond to get_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate
newly created object reference with the domain associated with the creator. This p
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the polic
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

object_type - The type of the object references for which Domain Managers will
created. If this is nil, the policy applies to all object references in the domain.

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this do
If FALSE construction policy is set to associate the newly created object referenc
with the domain of the creator or a default domain as described above.

4.11 Exceptions

The terms “system” and “user” exception are defined in this section. Further the te
“standard system exception” and “standard user exception” are defined, and then
of “standard system exceptions” is provided.
CORBA, v2.4.2 Exceptions February 2001 4-49

4

gh
ises
nd

itly

of

d

ilar
 due
ent
ses
4.11.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards
documents to refer to exceptions:

Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even thou
they are not declared in a raises clause. These exceptions cannot appear in a ra
clause. These have the structure defined in section 3.17.2 “System Exception,” a
they are of type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA
Standard as enumerated in section 3.17. (e.g., BAD_PARAM). These are enumerated
in Section 3.17.2 “Standard System Exceptions.”

Non-Standard System Exceptions: System exceptions that are proprietary to a
particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explic
declare them in the raises clause of their signature. These exceptions are of type
USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG
standard (e.g., WrongTransaction). These are documented in the documentation
individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any publishe
OMG specification.

4.11.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many sim
exceptions. For example, an operation invocation can fail at many different points
to the inability to allocate dynamic memory. Rather than enumerate several differ
exceptions corresponding to the different ways that memory allocation failure cau
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.
4-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

e

e

h
s that

m
on

o the
module CORBA {
 const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION

};
};

Each system exception includes a minor code to designate the subcategory of th
exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor
Minor Codeset ID”(VMCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by th
VMCID assigned to OMG, defined as the unsigned long constant
CORBA::OMGVMCID , which has the VMCID allocated to OMG occupying the hig
order 20 bits. The minor exception codes associated with the standard exception
are found in Table 4-3 on page 4-59 are or-ed with OMGVMCID to get the minor code
value that is returned in the ex_body structure (see Section 4.11.3, “Standard Syste
Exception Definitions,” on page 4-52 and Section 4.11.4, “Standard Minor Excepti
Codes,” on page 4-59).

Within a vendor assigned space, the assignment of values to minor codes is left t
vendor. Vendors may request allocation of VMCIDs by sending email to tag-
request@omg.org.

The VMCID 0 and 0xfffff are reserved for experimental use. The VMCID OMGVMCID
(Section 4.11.3, “Standard System Exception Definitions,” on page 4-52) and 1
through 0xf are reserved for OMG use.
CORBA, v2.4.2 Exceptions February 2001 4-51

4

tion
tions

hen
an
rom

ndard
ption
 the

L,
ing

Each system exception also includes a completion_status code that takes one of the
values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. These
have the following meanings:

Client applications must be prepared to handle system exceptions other than the
standard system exception defined below in Section 4.11.3, “Standard System
Exception Definitions,” on page 4-52, both because future versions of this specifica
may define additional standard system exceptions, and because ORB implementa
may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are
discouraged because they are non-portable. A non-standard system exception, w
passed to an ORB that does not recognize it, shall be presented by that ORB as
UNKNOWN standard system exception. The minor code and completion status f
the unrecognized exception shall be preserved in the UNKNOWN exception.

Non-standard system exceptions shall have the same structure as of standard sta
system exceptions as specified in section Section 4.11.3, “Standard System Exce
Definitions,” on page 52 (i.e., they have the same ex_body). They also shall follow
same language mappings as standard system exceptions. Although they are PID
vendors should ensure that their names do not clash with any other names follow
the normal naming and scoping rules as they apply to regular IDL exceptions.

4.11.3 Standard System Exception Definitions

The standard system exceptions are defined in this section.

module CORBA { // PIDL

exception UNKNOWN ex_ body; // the unknown exception
exception BAD_PARAM ex_ body; // an invalid parameter was passed
exception NO_MEMORY ex_body; // dynamic memory allocation failure

COMPLETED_YES The object implementation has completed processing
prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated prior
to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is
indeterminate.
4-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

m
r
o the
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_ body; // ORB internal error
exception MARSHAL ex_body; // error marshaling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation unavailable
exception BAD_TYPECODE ex_ body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_ body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet available

exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; // transient failure - reissue request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface repository
exception BAD_CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body; // transaction required
exception TRANSACTION_ROLLEDBACK ex_body; // transaction rolled back
exception INVALID_TRANSACTION ex_ body; // invalid transaction
exception INV_POLICY ex_body; // invalid policy
exception CODESET_INCOMPATIBLE ex_body // incompatible code set
exception REBIND ex_body; // rebind needed
exception TIMEOUT ex_body; // operation timed out
exception TRANSACTION_UNAVAILABLE ex_body; // no transaction
exception TRANSACTION_MODE ex_body; // invalid transaction mode
exception BAD_QOS ex_body; // bad quality of service

};

4.11.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expression. UNKNOWN is also raised if the server returns a syste
exception that is unknown to the client. (This can happen if the server uses a late
version of CORBA than the client and new system exceptions have been added t
later version.)
CORBA, v2.4.2 Exceptions February 2001 4-53

4

RB
 (for

n
 hold
 the
or

,
been

ple,

tect

s
4.11.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An O
may raise this exception if null values or null pointers are passed to an operation
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating requests with
incorrect parameters using the DII.

4.11.3.3 NO_MEMORY

The ORB run time has run out of memory.

4.11.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB ru
time. For example, an ORB may reach the maximum number of references it can
simultaneously in an address space, the size of a parameter may have exceeded
allowed maximum, or an ORB may impose a maximum on the number of clients
servers that can run simultaneously.

4.11.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress
after the request was sent by the client, but before the reply from the server has
returned to the client.

4.11.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For exam
the repository ID may have incorrect syntax or the addressing information may be
invalid. This exception is raised by ORB::string_to_object if the passed string does
not decode correctly.

An ORB may choose to detect calls via nil references (but is not obliged to do de
them). INV_OBJREF is used to indicate this.

4.11.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

4.11.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB ha
detected corruption of its internal data structures.
4-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

eply
ssage

ire

t has

ion

 an

ject

 time

ish a
4.11.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if a r
from the server indicates that the message contains 1000 bytes, but the actual me
is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can
also be caused by using the DII or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

4.11.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acqu
networking resources or detecting a configuration error.

4.11.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (i
an IDL definition), no implementation for that operation exists. NO_IMPLEMENT
can, for example, be raised by an ORB if a client asks for an object's type definit
from the interface repository, but no interface repository is provided by the ORB.

4.11.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with
invalid TCKind value).

4.11.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the ob
does not support the operation that was invoked.

4.11.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run
may have reached the maximum permissible number of open connections.

4.11.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.

4.11.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establ
database connection or corruption of a database.
CORBA, v2.4.2 Exceptions February 2001 4-55

4

. For
l

 not
r

. This
use

eap

ed
 IDL

est).

ther

sed

ver
er a

rs.
4.11.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order
example, it can be raised by an ORB if an application makes an ORB-related cal
without having correctly initialized the ORB first.

4.11.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is
an indication that an object does not exist. Instead, it simply means that no furthe
determination of an object's status was possible because it could not be reached
exception is raised if an attempt to establish a connection fails, for example, beca
the server or the implementation repository is down.

4.11.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of h
corruption or memory segments being locked.

4.11.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be rais
if, for example, an identifier passed to the interface repository does not conform to
identifier syntax, or if an illegal operation name is used with the DII.

4.11.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII requ

4.11.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some o
failure relating to the interface repository is detected.

4.11.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the pas
context does not contain the context values required by the operation.

4.11.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a ser
may have made an attempt to register itself with an implementation repository und
name that is already in use, or is unknown to the repository. OBJ_ADAPTER is also
raised by the POA to indicate problems with application-supplied servant manage
4-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

r if

 and

old
n

Thus,
use

ed

ility

een
on
4.11.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character codeset conversion fails, o
an ORB cannot convert floating point values between different representations.

4.11.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a
deleted object was performed. It is an authoritative “hard” fault report. Anyone
receiving it is allowed (even expected) to delete all copies of this object reference
to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may h
(for example, proxy objects used in reference translation). The clients could in tur
purge any of their own data structures.

4.11.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

4.11.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back.
the requested operation either could not be performed or was not performed beca
further computation on behalf of the transaction would be fruitless.

4.11.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurr
when trying to register a resource.

4.11.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatib
between Policy overrides that apply to the particular invocation.

4.11.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible betw
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,”
page 13-34.
CORBA, v2.4.2 Exceptions February 2001 4-57

4

e

ve
 QoS

t
ervice

 of
cs
4.11.3.32 REBIND

REBIND is raised when the current effective RebindPolicy , as described in
Section 22.2.1.2, “interface RebindPolicy,” on page 22-5, has a value of NO_REBIND
or NO_RECONNECT and an invocation on a bound object reference results in a
LocateReply message with status OBJECT_FORWARD or a Reply message with
status LOCATION_FORWARD . This exception is also raised if the current effectiv
RebindPolicy has a value of NO_RECONNECT and a connection must be re-
opened. The invocation can be retried once the effective RebindPolicy is changed to
TRANSPARENT or binding is re-established through an invocation of
CORBA::Object::validate_connection .

4.11.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-li
period has been exceeded. It is a standard system exception because time-to-live
can be applied to any invocation.

4.11.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it canno
process a transaction service context because its connection to the Transaction S
has been abnormally terminated.

4.11.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a
mismatch between the TransactionPolicy in the IOR and the current transaction
mode.

4.11.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality
service required by an invocation parameter that has a quality of service semanti
associated with it.
4-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

gned

e

4.11.4 Standard Minor Exception Codes

The following table specifies standard minor exception codes that have been assi
for the standard system exceptions. The actual value that is to be found in the minor
field of the ex_body structure is obtained by or-ing the values in this table with th
OMGVMCID constant. For example “Missing local value implementation” for the
exception NO_IMPLEMENT would be denoted by the minor value 0x4f4d0001 .

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

UNKNOWN 1 Unlisted user exception received by client

2 Non-standard System Exception not supported.

BAD_PARAM 1 Failure to register, unregister, or lookup value factory.

2 RID already defined in IFR.

3 Name already used in the context in IFR.

4 Target is not a valid container.

5 Name clash in inherited context.

6 Incorrect type for abstract interface.

7 string_to_object conversion failed due to bad scheme name.

8 string_to_object conversion failed due to bad address.

9 string_to_object conversion failed due to bad bad schema
specific part.

10 string_to_object conversion failed due to non specific reason.

11 Attempt to derive abstract interface from non-abstract base
interface in the Interface Repository.

12 Attempt to let a ValueDef support more than one non-abstract
interface in the Interface Repository.

13 Attempt to use an incomplete TypeCode as a parameter.

14 Invalid object id passed to POA::create_reference_by_id .

15 Bad name argument in TypeCode operation.

16 Bad RepositoryId argument in TypeCode operation.

17 Invalid member name in TypeCode operation.

18 Duplicate label value in create_union_tc .

19 Incompatible TypeCode of label and discriminator in
create_union_tc .

20 Supplied discriminator type illegitimate in create_union_tc .

21 Any passed to ServerRequest::set_exception does not
contain an exception.

22 Unlisted user exception passed to
ServerRequest::set_exception .
CORBA, v2.4.2 Exceptions February 2001 4-59

4

BAD_PARAM 23 wchar transmission code set not in service context.

24 Service context is not in OMG-defined range.

25 Enum value out of range.

IMP_LIMIT 1 Unable to use any profile in IOR.

INV_OBJREF 1 wchar Code Set support not specified.

MARSHAL 1 Unable to locate value factory.

2 ServerRequest::set_result called before
ServerRequest::ctx when the operation IDL contains a
context clause.

3 NVList passed to ServerRequest::arguments does not
describe all parameters passed by client.

4 Attempt to marshal Local object.

BAD_TYPECODE 1 Attempt to marshal incomplete TypeCode .

2 Member type code illegitimate in TypeCode operation.

NO_IMPLEMENT 1 Missing local value implementation.

2 Incompatible value implementation version.

3 Unable to use any profile in IOR.

4 Attempt to use DII on Local object.

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this
object.

2 Attempt to destroy indestructible objects in IFR.

3 Operation would deadlock.

4 ORB has shutdown

5 Attempt to invoke send or invoke operation of the same
Request object more than once.

6 Attempt to set a servant manager after one has already been
set.

7 ServerRequest::arguments called more than once or after
a call to ServerRequest:: set_exception .

8 ServerRequest::ctx called more than once or before
ServerRequest::arguments or after
ServerRequest::ctx, ServerRequest::set_result or
ServerRequest::set_exception .

9 ServerRequest::set_result called more than once or before
ServerRequest::arguments or after
ServerRequest::set_result or
ServerRequest::set_exception .

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
4-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

4

.

BAD_INV_ORDER 10 Attempt to send a DII request after it was sent
previously .

11 Attempt to poll a DII request or to retrieve its result before the
request was sent.

12 Attempt to poll a DII request or to retrieve its result after the
result was retrieved previously.

13 Attempt to poll a synchronous DII request or to retrieve
results from a synchronous DII request.

TRANSIENT 1 Request discarded due to resource exhaustion in POA.

2 No usable profile in IOR

OBJ_ADAPTER 1 System exception in POA::unknown_adapter .

2 Servant not found [ServantManager].

3 No default servant available [POA policy].

4 No servant manager available [POA Policy].

5 Violation of POA policy by ServantActivator::incarnate .

DATA_CONVERSION 1 Character does not map to negotiated transmission code set

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an
object reference.

2 POAManager::incarnate failed to create POA.

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA, v2.4.2 Exceptions February 2001 4-61

4

4-62 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Value Type Semantics 5
IDL
bed
 no

bject
t’s
ke a

ives a
t
Contents

This chapter contains the following sections.

5.1 Overview

Objects, more specifically, interface types that objects support, are defined by an
interface, allowing arbitrary implementations. There is great value, which is descri
in great detail elsewhere, in having a distributed object system that places almost
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an o
by value, rather than by reference. This may be particularly useful when an objec
primary “purpose” is to encapsulate data, or an application explicitly wishes to ma
“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value rece
description of the “state” of the object. It then instantiates a new instance with tha

Section Title Page

“Overview” 5-1

“Architecture” 5-2

“Standard Value Box Definitions” 5-8

“Language Mappings” 5-9

“Custom Marshaling” 5-10
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 5-1

5

eter
o

 and

 they

an

ignal
ils be
me
s.

pings.

l.
ays
have
.

ct
same.
pped
 to

ting:

alue
state but having a separate identity from that of the sending side. Once the param
passing operation is complete, no relationship is assumed to exist between the tw
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

• They support description of complex state (i.e., arbitrary graphs, with recursion
cycles)

• Their instances are always local to the context in which they are used (because
are always copied when passed as a parameter to a remote call)

• They support both public and private (to the implementation) data members.

• They can be used to specify the state of an object implementation (i.e., they c
support an interface).

• They support single inheritance (of valuetype) and can support an interface .

• They may be also be abstract .

5.2 Architecture

The basic notion is relatively simple. A value type is, in some sense, half way
between a “regular” IDL interface type and a struct. The use of a value type is a s
from the designer that some additional properties (state) and implementation deta
specified beyond that of an interface type. Specification of this information puts so
additional constraints on the implementation choices beyond that of interface type
This is reflected in both the semantics specified herein, and in the language map

An essential property of value types is that their implementations are always loca
That is, the explicit use of value type in a concrete programming language is alw
guaranteed to use a local implementation, and will not require a remote call. They
no identity (their value is their identity) and they are not “registered” with the ORB

There are two kinds of value types, concrete (or stateful) value types, and abstra
(stateless) ones. As explained below the essential characteristics of both are the
The differences between them result from the differences in the way they are ma
in the language mappings. In this specification the semantics of value types apply
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by suppor

• single derivation (from other value types)

• supports a single interface

• arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using v
types.
5-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

arshals
tiates
te. It

e

state

alue
ally

ver,
),
pon

ngs

 They
al

 only
by a

assed

 copy
 not

ces of
A
d as a

d
• null value semantics

When an instance of such a type is passed as a parameter, the sending context m
the state (data) and passes it to the receiving context. The receiving context instan
a new instance using the information in the GIOP request and unmarshals the sta
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e., only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wir
format to support the carrying of an optional call back object (CodeBase) to the
sending context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. Only concrete types derived from them may be actu
instantiated and implemented. Their implementation, of course, is still local. Howe
because no state information may be specified (only local operations are allowed
abstract value types are not subject to the single inheritance restrictions placed u
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappi
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type.
are considered to be stateful, may be instantiated, marshaled and passed as actu
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can
be local. Because these operations are local, they must be directly implemented
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types p
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA object reference semantics) and that a
is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is
mediated by the ORB, although the API to be used is specified in the language
mapping.

The (copy) semantics for instances of value type are only guaranteed when instan
these value types are passed as a parameter to an operation defined on a CORB
interface, and hence mediated by the ORB. If an instance of a value type is passe
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used an
programming language reference semantics apply.
CORBA, v2.4.2 Architecture February 2001 5-3

5

f the
ce no

pes

pe
A

in a
i.e.,
e.

de by
ing
ace
s

e

alue
d by
 IDL
 sharing
 an

ally

py of
ndent
Operations on the value type are supported in order to guarantee the portability o
client code for these value types. They have no representation on the wire and hen
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value ty
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value ty
supports an interface type. In this case instances of the type may support CORB
object reference semantics (if they are registered with the ORB using an object
adapter).

5.2.4 Parameter Passing

This section describes semantics when a value instance is passed as parameter
CORBA invocation. It does not deal with the case of calling another non-CORBA (
local) programming method, which happens to have a parameter of the same typ

5.2.4.1 Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is ma
examining the parameter’s formal type (i.e., the signature of the operation it is be
passed to). If it is a value type then it is passed by value. If it is an ordinary interf
then it is passed by reference (the case today for all CORBA objects). This rule i
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of th
rules.

5.2.4.2 Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., v
types support sharing and null semantics. Instances of a value type can be share
others across or within other instances. They can also be null. This is unlike other
data types such as structs, unions, and sequences that can never be shared. The
of values within and between the parameters to an operation, is preserved across
invocation (i.e., the graph that is reconstructed in the receiving context is structur
isomorphic to the sending context’s).

5.2.4.3 Identity Semantics

When an instance of the value type is passed as a parameter, an independent co
the instance is instantiated in the receiving context. That copy is a separate indepe
entity and there is no explicit or implicit sharing of state.
5-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

he

s
d to be
sed as

meter

 We
is the

ith

ving
m.

eds,

,
d an
ne.
 re-

needs
5.2.4.4 Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing
instances to an any, it is the responsibility of the implementer to insert and extract t
value according to the language mapping specification.

5.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happen
when an instance of a derived value type is passed as a parameter that is declare
a base value type or an instance of a value type that supports an interface is pas
a parameter that is declared as the interface type.

There are two cases to consider: the parameter type is an interface, and the para
type is a value type.

5.2.5.1 Value instance -> Interface type

Assume that we have an instance of a value type that supports an interface type.
have an IDL operation whose signature contains a parameter whose formal type
interface. The following rule applies to this situation:

• If the value type instance (in the sending context) has not been registered w
ORB, then an OBJECT_NOT_EXIST exception with standard minor code 1 is
raised. Otherwise the instance’s object reference is used and it is passed as
normal.

5.2.5.2 Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the recei
context currently has the appropriate implementation class then there is no proble

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succe
OK.

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because
from a structural point view base types structurally subsume a derived type an
object created in the receiving context bears no relationship with the original o
However, it might be semantically puzzling, as the derived type may completely
interpret the meaning of the state of the base. For that reason a derived value
to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the
NO_IMPLEMENT exception with standard minor code 1.
CORBA, v2.4.2 Architecture February 2001 5-5

5

 other
tions

. If

ation

tting

iven
age”
Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;
// initializer
factory init(in string name, in string SSN);

};

valuetype ManagerRecord: truncatable EmployeeRecord {
// state definition
private sequence<EmployeeRecord> direct_reports;

};

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to
value types. Each language mapping is responsible for specifying how these opera
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed
the interface designer wants to allow the receiving context to create a local
implementation of the value type (i.e., a value representing the interface) an oper
that returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type called ValueBase . This is a type, which
fulfills a role that is similar to that played by Object . Conceptually it supports the
common operations available on all value types. See Section 4.4, “ValueBase
Operations,” on page 4-19 for a description of those operations. In each language
mapping ValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as ge
meta information about the type, may be found in the specifics for each language
mapping.

5.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a g
language mapping an instance of a value type is always created as a local “langu
object with no POA semantics attached to it initially.
5-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

iving
o

ed by
,

 with
ot
licy

al”

d and

 as

ing
 have
 be

 box

hose
l,

 are

lue
e

isms
l
ter,
her
g as
When passed using a CORBA invocation, a copy of the value is made in the rece
context and that copy starts its life as a local programming language entity with n
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be pass
reference when the formal parameter type is an interface type (see Section 5.2.4
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered
the ORB (e.g., POA::activate_object() before they can be passed by reference. N
registering the value as a CORBA object and/or not associating an appropriate po
with it results in an exception when trying to use it as a remote object, the “norm
behavior. The exception raised shall be OBJECT_NOT_EXIST with standard minor
code 1.

5.2.8.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshale
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositoryID, which is passed over the wire
part of an invocation. The mapping between the type (as specified by the
RepositoryID) and the factory is language specific. In certain languages it may be
possible to specify default policies that are used to find the factory, without requir
that specific routines be called. In others the runtime and/or generated code may
to explicitly specify the mapping on a per type basis. In others a combination may
used. In any event the ORB implementation is responsible for maintaining this
mapping See Section 5.4.3, “Language Specific Value Factory Requirements,” on
page 5-9 for more details on the requirements for each language mapping. Value
types do not need or use factories.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to t
involved with the use of IDL structs. Instances of value types are mapped to loca
concrete programming language constructs. Except for providing the marshaling
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: how value types
manifest themselves as concrete programming language constructs and how they
transmitted.

To see this consider how value types are actually used. The IDL definition of a va
type in conjunction with a programming language mapping is used to generate th
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechan
in the programming language to instantiate an instance. This is instance is a loca
programming language construct. It is not “registered” with the ORB, object adap
etc. The programmer may manipulate this programming construct just like any ot
programming language construct. So far there are no security implications. As lon
CORBA, v2.4.2 Architecture February 2001 5-7

5

lly
f the

s
pe, or

any

 the

en

lues
the

. The
g the
 a
 the
f

y a
 an

llow
 not

n of
 to
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local,” non ORB-mediated calls to any loca
implemented operations. Any assignments to the construct are the responsibility o
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these construct
through an orb-mediated invocation (i.e., calls a stub that uses it as a parameter ty
uses the DII). There are two cases to consider: 1) Value as Value and 2) Value as
Object Reference.

5.2.9.1 Value as Value

The formal type of the parameter is a value. This case is no different from using
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is th
unmarshaled to fill in the newly created construct. This is similar to using other va
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to
ORB’s skeleton/DSI engine.

5.2.9.2 Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value
program must have “registered” the value with an object adapter and is really usin
returned object reference (see for the specific rules.) Thus this case “reduces” to
regular CORBA invocation, using a regular object reference. An IOR is passed to
receiving context. All the “normal” security considerations apply. From the point o
view of the receiving context, the IOR is a “normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimatel
reference to an implementation that was created from instantiating and registering
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to a
the ORB-mediated invocation to proceed. The fact that a value type is involved is
material.

5.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmissio
nulls are likely to be important, the following value box type definitions are added
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

};
5-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

Java,

 Java,

on
ss is
tion,

 the

s are
be

y
uch

licit
 an
ctory,

 as
5.4 Language Mappings

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each
programming language, plus possibly some helper classes where appropriate. In
C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementati
classes with “extra” data members and methods. When an instance of such a cla
used as a parameter, only the portions that correspond directly to the IDL declara
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and
entry point for custom marshaling/unmarshaling.

5.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositoryID
used to find the appropriate factory for an instance of a value type so that it may
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automaticall
using RepositoryIDs that are in common formats to find the appropriate factory. S
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both exp
and implicit. The registration must occur before an attempt is made to unmarshal
instance of a value type. If the ORB is unable to locate and use the appropriate fa
then a MARSHAL exception with standard minor code 1 is raised.

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

// IDL
native ValueFactory;

};
CORBA, v2.4.2 Language Mappings February 2001 5-9

5

uired
ge

their
 to

ions

y in

ted
 show
elp

ire an

tation
the
r a

5.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the req
IDL operations. The means by which this association is accomplished is a langua
mapping “detail” in much the same way that an IDL compiler is.

5.5 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide
own way to encode/decode their state. Custom marshaling is intended to be used
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specificat
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitl
the IDL. This explicit declaration has two goals:

• type safety - stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

• efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is trea
the same as that of a non custom value type for mapping purposes (i.e., the fields
up in the same fashion in the concrete programming language). It is provided to h
with application portability.

A custom marshaled value type is always a stateful value type.

// Example IDL

custom valuetype T {
// optional state definition

...
};

Custom value types can never be safely truncated to base (i.e., they always requ
exact match for their RepositoryId in the receiving context).

Once a value type has been marked as custom, it needs to provide an implemen
that marshals and unmarshals the valuetype. The marshaling code encapsulates
application code that can marshal and unmarshal instances of the value type ove
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.
5-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

e
the

 use

ot
ough
tom

m

IDL

B

ffers)

at.
5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value type, CustomMarshal , as part of the
implementation of the value type. CustomMarshal encapsulates the application cod
that can marshal and unmarshal instances of the value type over a stream using
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {

void marshal (in DataOutputStream os);
void unmarshal (in DataInputStream is);

};
};

CustomMarshal is an abstract value type that is meant to be used by the ORB, n
the user. Semantically it is treated as a custom valuetype’s implicit base class, alth
the custom valuetype does not actually inherit it in IDL. The implementor of a cus
value type provides an implementation of the CustomMarshal operations. The
manner in which this is done is specified for each language mapping. Each custo
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementor can use the skeletons generated by the
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal , doing so will not make the type custom, nor will it cause the OR
to treat it as custom.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e., the marshal bu
have to be manipulated.

5.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR form

module CORBA {

typedef sequence<any> AnySeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;
typedef sequence<wchar> WCharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<short> ShortSeq;
typedef sequence<unsigned short> UShortSeq;
CORBA, v2.4.2 Custom Marshaling February 2001 5-11

5

typedef sequence<long> LongSeq;
typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<long double> LongDoubleSeq;

abstract valuetype DataOutputStream {
void write_any (in any value);
void write_boolean (in boolean value);
void write_char (in char value);
void write_wchar (in wchar value);
void write_octet (in octet value);
void write_short (in short value);
void write_ushort (in unsigned short value);
void write_long (in long value);
void write_ulong (in unsigned long value);
void write_longlong (in long long value);
void write_ulonglong (in unsigned long long value);
void write_float (in float value);

void write_double (in double value);
void write_longdouble (in long double value);
void write_string (in string value);
void write_wstring (in wstring value);
void write_Object (in Object value);
void write_Abstract (in AbstractBase value);

void write_Value (in ValueBase value);
void write_TypeCode (in TypeCode value);

void write_any_array(in AnySeq seq,
in unsigned long offset,
in unsigned long length);

void write_boolean_array(in BooleanSeq seq,
in unsigned long offset,
in unsigned long length);

void write_char_array(in CharSeq seq,
in unsigned long offset,
in unsigned long length);

void write_wchar_array(in WCharSeq seq,
in unsigned long offset,
in unsigned long length);

void write_octet_array(in OctetSeq seq,
in unsigned long offset,
in unsigned long length);

void write_short_array(in ShortSeq seq,
in unsigned long offset,
in unsigned long length);

void write_ushort_array(in UShortSeq seq,
in unsigned long offset,
5-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

in unsigned long length);
void write_long_array(in LongSeq seq,

in unsigned long offset,
in unsigned long length);

void write_ulong_array(in ULongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_ulonglong_array(in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_longlong_array(in LongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_float_array(in FloatSeq seq,
in unsigned long offset,
in unsigned long length);

void write_double_array(in DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

void write_long_double_array(in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length);

};

abstract valuetype DataInputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(inout AnySeq seq,
in unsigned long offset,
in unsigned long length);

void read_boolean_array(inout BooleanSeq seq,
in unsigned long offset,
CORBA, v2.4.2 Custom Marshaling February 2001 5-13

5

 the
ions.
 not
ritten
g
in unsigned long length);
void read_char_array(inout CharSeq seq,

in unsigned long offset,
in unsigned long length);

void read_wchar_array(inout WCharSeq seq,
in unsigned long offset,
in unsigned long length);

void read_octet_array(inout OctetSeq seq,
in unsigned long offset,
in unsigned long length);

void read_short_array(inout ShortSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ushort_array(inout UShortSeq seq,
in unsigned long offset,
in unsigned long length);

void read_long_array(inout LongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ulong_array(inout ULongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ulonglong_array(inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_longlong_array(inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_float_array(inout FloatSeq seq,
in unsigned long offset,
in unsigned long length);

void read_double_array(inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

void read_long_double_array(inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

};
};

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing
value’s encoding. The application marshaling code merely calls the above operat
The details of writing the value tag, header information, end tag(s) are specifically
exposed to the application code. In particular the size of the custom data is not w
by the application. This guarantees that the custom marshaling (and unmarshalin
code) cannot corrupt the other parameters of the call.
5-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

5

al
 and
 do

sary.)
ities
 is

iate
).

RB

ay
ch a

n the

 not
If an inconsistency is detected, then the standard system exception MARSHAL is
raised.

A possible implementation might have the engine determine that a custom marsh
parameter is “next.” It would then write the value tag and other header information
then return control back to the application defined marshaling policy, which would
the marshaling by calling the DataOutputStream operations to write the data as
appropriate. (Note the stream takes care of breaking the data into chunks, if neces
When control was returned back to the engine, it performs any other cleanup activ
to complete the value type, and then proceeds onto the next parameter. How this
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropr
indirections or null encodings (even when used from the custom streaming policy

There are no explicit operations for creating the streams. It is assumed that the O
implicitly acts as a factory. In a sense they are always available.

5.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

• To attempt the downloading of some missing implementation for the value.

• To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It m
optionally be supported by the sending context (it can be seen as a service). If su
callback object is supported its IOR may be added to an optional service context i
GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServiceID SendingContextRunTime contains an
encapsulation of the IOR for a SendingContext::RunTime object. Because ORBs
are always free to skip a service context they don’t understand, this addition does
impact IIOP interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
// sending context run time
// services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence

<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

// Operation to obtain the IR from the sending context
CORBA::Repository get_ir();
CORBA, v2.4.2 Access to the Sending Context Run Time February 2001 5-15

5

f

ue

iece

or

BA
at

(s)
debase
alue

ext on
 value

// Operations to obtain a location of the implementation code
URL implementation(in CORBA::RepositoryId x);
URLSeq implementations(in CORBA::RepositoryIdSeq x);

// Operations to obtain complete meta information about a Value
// This is just a performance optimization the IR can provide
// the same information
CORBA::FullValueDescription meta(in CORBA::RepositoryId x);
ValueDescSeq metas(in CORBA::RepositoryIdSeq x);

// To obtain a type graph for a value type
// same comment as before the IR can provide similar
// information
CORBA::RepositoryIdSeq bases(in CORBA::RepositoryId x);

};
};

Supporting the CodeBase interface for a given ORB run time is an issue of quality o
service. The point here is that if the sending context does not support a CodeBase ,
then the receiving context will simply raise an exception with which the sending
context had to be prepared to deal. There will always be cases where a receiving
context will get a value type and won’t be able to interpret it because:

• It can’t get a legal implementation for it (even if it knows where it is, possibly d
to security and/or resource access issues).

• Its local version is so radically different that it cannot make sense out of the p
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 4.11.4, “Standard Min
Exception Codes,” on page 4-59).

Under certain conditions it is possible that when several values of the same COR
type (same repository id) are sent in either a request or reply, that the reality is th
they have distinct implementations. In this case, in addition to the codebase URL
sent in the service context, each value that has a different codebase may have co
URL(s) associated with it. This is encoded by using a different tag to encode the v
on the wire.

The sending context does not need to resend the same value for this service cont
subsequent requests over the same underlying connection. Resending a different
for this service context is only necessary if the callback object reference in use is
changed by the sending context within the lifetime of the underlying connection.
5-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Abstract Interface Semantics 6
 to

this
ight
This chapter describes the semantics of abstract interfaces. Other details specific
particular aspects of the ORB may be found in other chapters.

Contents

This chapter contains the following sections.

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides
capability. See Section 6.4, “Example,” on page 6-3 for an example of when this m
be useful.

6.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

Section Title Page

“Overview” 6-1

“Semantics of Abstract Interfaces” 6-1

“Usage Guidelines” 6-3

“Example” 6-3

“Security Considerations” 6-4
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 6-1

6

f the
n

ace
 is a

ct

e
bject

types
bject

 the

he

nd
s.

one
1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type o
actual parameter (regular interface or value) is used to make this determinatio
using the following rules:

• The actual parameter is passed as an object reference if it is a regular interf
type (or a subtype of a regular interface type), and that regular interface type
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

• The actual parameter is passed as a value if it cannot be passed as an obje
reference but can be passed as a value. Otherwise, a BAD_PARAM exception is
raised.

2. The GIOP encoding of an abstract interface type is a union with a boolean
discriminator (TRUE if it is an IOR, FALSE if it is a value) followed by either th
IOR or the value. This allows the demarshaling code to determine whether an o
reference or a value was passed.

3. Abstract interfaces do not implicitly inherit from CORBA::Object. This is because
they can represent either value types or CORBA object references, and value
do not necessarily support the object reference operations (see Section 4.3, “O
Reference Operations,” on page 4-11). If an IDL abstract interface type can be
successfully narrowed to an object reference type (a regular IDL interface), then
CORBA::Object operations can be invoked on the narrowed object reference.

4. Abstract interfaces implicitly inherit from CORBA::AbstractBase . This type is
defined as native. It is the responsibility of each language mapping to specify t
actual programming language type that is used for this type.

module CORBA {
// IDL

native AbstractBase;
};

5. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 a
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these difference

6. Abstract interfaces may only inherit from other abstract interfaces.

7. Value types may support any number of abstract interfaces, but no more than
regular interface.

8. In other respects, abstract interfaces are identical to regular IDL interfaces.
For example, consider the following operation m1() in abstract interface foo :
6-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

6

le
ular
place
time

a list
 a
n

lays

assed

 of
the
;
e
abstract interface foo {
void m1(in AnInterfaceType x, in AnAbstractInterfaceType y,

in AValueType z);
};

x’s are always passed by reference,

z’s are:

• passed as copied values if foo refers to an ordinary interface.

• passed as non-copied values if foo refers to a value type

y’s are:

• passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractInterfaceType (registered with the ORB), no matter what foo ’s
concrete type is.

• passed as copied values if their concrete type is value and foo ’s concrete type is
ordinary interface.

• passed as non-copied values if their concrete type is value and foo ’s concrete type
is value.

6.3 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compi
time whether an object reference or a value will be passed. In other cases, a reg
interface or value type should be used. Abstract interfaces are not intended to re
regular CORBA interfaces in situations where there is no clear need to provide run
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

6.4 Example

For example, in a business application it is extremely common to need to display
of objects of a given type, with some identifying attribute like account number and
translated text description such as “Savings Account.” A developer might define a
interface such as Describable whose methods provide this information, and
implement this interface on a wide range of types. This allows the method that disp
items to take an argument of type Describable and query it for the necessary
information. The Describable objects passed in to the display method may be either
CORBA interface types (passed in as object references) or CORBA value types (p
in by value).

In this example, Describable is used as a polymorphic abstract type. No instances
type Describable exist, but many different instances have interfaces that support
Describable type abstraction. In C++, Describable would be an abstract base class
in Java, an interface. In statically typed languages, the compiler can check that th
actual parameter type passed by callers of display is a valid subtype of Describable
and therefore supports the methods defined by Describable . The display method can
simply invoke the methods of Describable on the objects that it receives, without
concern for any details of their implementation.
CORBA, v2.4.2 Usage Guidelines February 2001 6-3

6

e

ly we

bject

L:

,

faces
ause

 or a
e
r by
rity
on is
 can
g
sing

icies
the
ess
Describable could not be declared as a regular IDL interface. This is because
arguments of declared interface type are always passed as object references (se
Section 5.2.4, “Parameter Passing,” on page 5-4) and we also want the display method
to be able to accept value type objects that can only be passed by value. Similar
cannot define Describable as a value type because then the display method would
not be able to accept actual parameter objects that only support passing as an o
reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following ID

abstract interface Describable {
string get_description();

};

interface Example {
void display (in Describable anObject);

};

interface Account : Describable {// passed by reference
 // add Account methods here
};

valuetype Currency supports Describable {// passed by value
 // add Currency methods here
};

If Describable were defined as a regular interface instead of an abstract interface
then it would not be possible to pass a Currency value to the display method, even
though the Currency IDL type supports the Describable interface.

6.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular inter
and values (see Section 5.2.9, “Security Considerations,” on page 5-7). This is bec
an abstract interface formal parameter type allows either a regular interface (IOR)
value to be passed. Likewise, an operation defined in an abstract interface can b
implemented by either a regular interface (with “normal” security considerations) o
a value type (in which case it is a local call, not mediated by the ORB). The secu
implication of making the choice between these alternatives a runtime determinati
that the programmer must ensure that for both alternatives, no security violations
occur. For example, a technique similar to that described in Section 6.5.1, “Passin
Values to Trusted Domains,” on page 6-4 could be used to avoid inadvertently pas
values outside a domain of trust.

6.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control pol
will apply to any attempt to access anything through that object reference. When
underlying object is passed as a value, the granularity and level/semantics of acc
6-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

6

nd
the
value
 said

ly in
ling

 be
 level

control are different. In the “by value” case, all the data for the object is passed, a
method invocations on the passed object are local calls that are not mediated by
ORB. Whether the server wants to use the (potentially more permissive) pass by
access control or not could depend on the security domain, which is receiving the
object or object reference.

Consider the case where the server S has an object O that it is willing to pass on
the form of an object reference Or' to a domain Du that it does not trust, but is wil
to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to
written to either always pass references or always pass values, irrespective of the
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter type MyType can be declared as an
abstract interface and the method invocation can be coded along the lines of

myExample->foo(security_check(myExample,mydata));

where the security_check function determines the level of trust of
myExample 's domain and returns an regular interface subtype of MyType for
untrusted domains and a value subtype of MyType for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.
CORBA, v2.4.2 Security Considerations February 2001 6-5

6

6-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Dynamic Invocation Interface 7
that
this

tains

 The

nts

The Dynamic Invocation Interface (DII) describes the client’s side of the interface
allows dynamic creation and invocation of request to objects. All types defined in
chapter are part of the CORBA module.

Contents

This chapter contains the following sections.

7.1 Overview

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object ob
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operation, and a list of parameters.
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as eleme
of a list. Each element is an instance of a NamedValue (see Section 7.1.1, “Common
Data Structures,” on page 7-2). Each parameter is passed in its native data form.

Section Title Page

“Overview”” 7-1

“Request Operations” 7-4

“ORB Operations” 7-10

“Polling” 7-12

“List Operations” 7-16
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 7-1

7

eters

r
quest.
pes

utines

RB

 a
 use
inted
d.

sed to
 in the
Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the param
defined for the operation in the Interface Repository.

The standard user exception WrongTransaction is defined in the CORBA module,
prior to the definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).

7.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used eithe
as a parameter type directly or as a mechanism for describing arguments to a re
The type NVList is a pseudo-object useful for constructing parameter lists. The ty
are described in OMG IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; // argument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};

};

The NamedValue and NVList structures are used in the request operations to
describe arguments and return values. They are also used in the context object ro
to pass lists of property names and values. Despite the above declaration for NVList ,
the NVList structure is partially opaque and may only be created by using the O
create_list operation.

For out parameters, applications can set the argument member of the NamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If
non-null storage pointer is provided for an out parameter, the ORB will attempt to
the storage pointed to for holding the value of the out parameter. If the storage po
to is not sufficient to hold the value of the out parameter, the behavior is undefine

A named value includes an argument name, argument value (as an any), length of the
argument, and a set of argument mode flags. When named value structures are u
describe arguments to a request, the names are the argument identifiers specified
OMG IDL definition for a specific operation.
7-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

IDL.

age

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-10, an any

consists of a TypeCode and a pointer to the data value. The TypeCode is a well-
known opaque type that can encode a description of any type specifiable in OMG
See this section for a full description of TypeCode s.

For most data types, len is the actual number of bytes that the value occupies. For
object references, len is 1. Table 7-1shows the length of data values for the C langu
binding. The behavior of a NamedValue is undefined if the len value is inconsistent
with the TypeCode.

The arg_modes field is defined as a bitmask (long) and may contain the following
flag values:

Table 7-1 C Type Lengths

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of
elements */

CORBA::ARG_IN The associated value is an input only argument.

CORBA::ARG_OUT The associated value is an output only argument.

CORBA::ARG_INOUT The associated value is an in/out argument.
CORBA, v2.4.2 Overview February 2001 7-3

7

 flag
with

n-

ded

When

t, the

al

, the
These flag values identify the parameter passing mode for arguments. Additional
values have specific meanings for request and list routines, and are documented
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementatio
specific flags.

7.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unboun
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine.
the list is deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument lis
programmer is responsible for freeing each out parameter using CORBA_free() ,
which is discussed in the C Language Mapping specification (Mapping for Structure
Types section).

7.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exception
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus
return type of these routines is void.

7.2 Request Operations

The request operations (except create_request) are defined in terms of the Request
pseudo-object. The Request routines use the NVList definition defined in the
preceding section.

module CORBA {

native OpaqueValue;

interface Request { // PIDL

void add_arg (
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);

void invoke (
7-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

 of
in Flags invoke_flags // invocation flags
);

void delete ();

void send (
in Flags invoke_flags // invocation flags

);

void get_response () raises (WrongTransaction);

boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
};

};

In IDL, The native type OpaqueValue is used to identify the type of the
implementation language representation of the value that is to be passed as a
parameter. For example in the C language this is the C language type (void *) .
Each language mapping specifies what OpaqueValue maps to in that specific
language.

For each Request pseudo-object instance, only one call to either the invoke or the
send operations is legal during the lifetime of the Request object. In addition, once
a Request object was passed to one of the send_multiple_requests_* operations,
neither invoke nor send can be called, nor can it be passed in another invocation
send_multiple_request_* operation.Violations raise BAD_INV_ORDER with
standard minor code 5.

7.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface
(see Section 4.3, “Object Reference Operations,” on page 4-11 for the complete
interface definition). The create_request operation is performed on the Object that
is to be invoked.

module CORBA{

interface Object{ // PIDL
.

void create_request (
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
CORBA, v2.4.2 Request Operations February 2001 7-5

7

t is

-3.

using
g

 also
and
ion.

ow
ame.

n

th

r
f
 on
re

inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);
};

};

This operation creates an ORB request. The actual invocation occurs by calling invoke
or by using the send / get_response calls.

The operation name specified on create_request is the same operation identifier that
is specified in the OMG IDL definition for this operation. In the case of attributes, i
the name as constructed following the rules specified in the ServerRequest interface
as described in the DSI in Section 8.3, “ServerRequestPseudo-Object,” on page 8

The arg_list , if specified, contains a list of arguments (input, output, and/or
input/output) that become associated with the request. If arg_list is omitted (specified
as NULL), the arguments (if any) must be specified using the add_arg call below.

Arguments may be associated with a request by passing in an argument list or by
repetitive calls to add_arg . One mechanism or the other may be used for supplyin
arguments to a given request; a mixture of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call
has completed (or the request has been deleted), the ORB assumes that arg_list (and
any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may
be specified; if so indicated, arguments are validated for data type, order, name,
usage correctness against the set of arguments expected for the indicated operat

An implementation of the request services may relax the order constraint (and all
arguments to be specified out of order) by doing ordering based upon argument n

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context informatio
passed to it.

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following
flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated wi
the argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism fo
out-arg memory (output arguments, for which memory is dynamically allocated). I
OUT_LIST_MEMORY is specified, an argument list must also have been specified
the create_request call. When output arguments of this type are allocated, they a
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.
7-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

ns

 via

ns,

ated,
st the

ow
ame.

en
If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remai
available until the programmer explicitly frees it with procedures provided by the
language mappings (see the C Language Mapping specification, Argument Passing
Considerations section; C++ Language Mapping specification, NVList section; and the
COBOL Language Mapping specification, Argument Passing Considerations section).

The implicit object reference operations non_existent , is_a , and get_interface may
be invoked using DII. No other implicit object reference operations may be invoked
DII.

To create a request for any one of these allowed implicit object reference operatio
create_request must be passed the name of the operation with a “_” prepended, in
the parameter “operation.” For example to create a DII request for “is_a ”, the name
passed to create_request must be “_is_a .” If the name of an implicit operation that
is not invocable through DII is passed to create_request with a “_” prepended,
create_request shall raise a BAD_PARAM standard system exception. For
example, if “_is_equivalent ” is passed to create_request as the “operation ”
parameter will cause create_request to raise the BAD_PARAM standard system
exception.

7.2.2 add_arg

void add_arg (// PIDL
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may also be specified. If so indic
arguments are validated for data type, order, name, and usage correctness again
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and all
arguments to be specified out of order) by doing ordering based upon argument n

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has be
deleted).

Arguments may be associated with a request by specifying them on the
Object::create_request call or by adding them via calls to add_arg . Using both
methods for specifying arguments for the same request is not supported.
CORBA, v2.4.2 Request Operations February 2001 7-7

7

 on
an

ed

, by

h.

ple,

 will
In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2, arg_flags may also take the flag value IN_COPY_VALUE .
The argument passing flags defined in Section 7.1.1, “Common Data Structures,”
page 7-2 may be used here to indicate the intended parameter passing mode of
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and us
instead. This flag is ignored for inout and out arguments.

7.2.3 invoke

void invoke (// PIDL
in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placed in the result
argument specified on create_request . Calling invoke on a Request after invoke ,
send , or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 10.

7.2.4 delete

void delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e.
using the IN_COPY_VALUE flag) is also freed.

7.2.5 send

void send (// PIDL
in Flags invoke_flags // invocation flags

);

Send initiates an operation according to the information in the Request . Unlike
invoke, send returns control to the caller without waiting for the operation to finis
To determine when the operation is done, the caller must use the get_response or
ORB::get_next_response operations described below. The out parameters and
return value must not be used until the operation is done.

Although it is possible for some standard system exceptions to be raised by the send
operation, there is no guarantee that all possible errors will be detected. For exam
if the object reference is not valid, send might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception
be raised when get_response is called.
7-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

me

 This

quest

e out

st had

t of

ns a
If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, and
the effective SyncScopePolicy does not have a value of WITH_SERVER or
WITH_TARGET, then get_response does not need to be called. In such cases, so
errors might go unreported, since if they are not detected before send returns there is
no way to inform the caller of the error.

The following invocation flags are currently defined for send :

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to
be subject to the effective SyncScopePolicy . If the SyncScopePolicy has a
value of NONE or WITH_TRANSPORT, the invoker will not receive a response,
nor does it expect any of the output arguments (in/out and out) to be updated.
option may be specified even if the operation has not been defined to be oneway .

7.2.6 poll_response

// PIDL
boolean poll_response ();

poll_response determines whether the request has completed. A TRUE return
indicates that it has; FALSE indicates it has not.

Return is immediate, whether the response has completed or not. Values in the re
are not changed.

7.2.7 get_response

//PIDL
void get_response () raises (WrongTransaction);

get_response returns the result of a request. If get_response is called before the
request has completed, it blocks until the request has completed. Upon return, th
parameters and return values defined in the Request are set appropriately and they
may be treated as if the Request invoke operation had been used to perform the
request.

A request has an associated transaction context if the thread originating the reque
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise the WrongTransaction exception if the request
has an associated transaction context, and the thread invoking get_response either
has a null transaction context or a non-null transaction context that differs from tha
the request.

7.2.8 sendp

sendp initiates an operation according to the information in the Request and retur
reference to a MessageRouting::PersistentRequest as a CORBA::Object . As
with send , the results of invocations made with sendp will be available once the
caller uses get_response or get_next_response . The out parameters and return
CORBA, v2.4.2 Request Operations February 2001 7-9

7

se to

d
ions

d

y had
 it in

n

d
tions
value must not be used before the operation is done. A new CORBA::Request may
be constructed (in this same or a different process) and used to poll for the respon
this request by calling create_request , properly associating the out arguments and
return value with that request and then passing the PersistentRequest reference to
the new Request’s prepare (described below). The caller can then invoke
get_response or get_next_response to obtain the operation results.

As with send , sendc may raise a standard system exception if a failure is detecte
before control is returned to the client, but this is not guaranteed. All other except
will be raised when get_response is called.

7.2.9 prepare

prepare is called to associate an initialized CORBA::Request with a previous
operation that was initiated via sendp . The Request must be created and associate
with the operation’s out arguments and return value prior to calling prepare . Once
prepare has been called, it is as if that prepared Request was the one that actuall
sendp used. Each Request is subject only to one of these operations, which puts
a valid state for an invocation of get_response : send , sendp , sendc , or
prepare . Invoking prepare on a Request that had previously been used for a send (or
one of its variants) raises the standard system exception BAD_INV_ORDER.
Invoking prepare with an object reference that was not previously returned from a
invocation of sendp raises the standard system exception BAD_PARAM.

7.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike
send , the results of invocations made with sendc will be available through the
callback Messaging::ReplyHandler passed into sendc as a base
CORBA::Object . A truly dynamic client can implement this ReplyHandler using
the DSI. Specifying a nil ReplyHandler is equivalent to invoking send with a flag of
CORBA::INV_NO_RESPONSE .

As with send , sendc may raise a standard system exception if a failure is detecte
before control is returned to the client, but this is not guaranteed. All other excep
will be passed to the ReplyHandler .

7.3 ORB Operations

7.3.1 send_multiple_requests

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.
7-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

tion

here
ey are
void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);
};

};

send_multiple_requests initiates more than one request in parallel. Like send,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on a request after invoke , send , or send_multiple_requests for that
request was called raises BAD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request after invoke , send , or
send_multiple_requests for that request was called raises BAD_INV_ORDER
with standard minor code 10. If send_multiple_requests raises
BAD_INV_ORDER, the actual number of requests that were sent is implementa
dependent.

7.3.2 get_next_response and poll_next_response

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.

boolean poll_next_response();

void get_next_response(
out Request req

) raises (WrongTransaction);
};

};

Poll_next_response determines whether any request has completed. A TRUE return
indicates that at least one has; FALSE indicates that none have completed. Return is
immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, t
is no guaranteed ordering among the completed requests, so the order in which th
returned from successive get_next_response calls is not necessarily related to the
order in which they finish.
CORBA, v2.4.2 ORB Operations February 2001 7-11

7

st had

fore

h
ingle

on)
 the

ers.
nc
ich

 (in
ilar

:

t or

e.

A request has an associated transaction context if the thread originating the reque
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise the WrongTransaction exception if the
request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

Calling poll_response before send or send_multiple_requests for that request
raises BAD_INV_ORDER with standard minor code 11. Calling poll_response
after calling invoke raises BAD_INV_ORDER with standard minor code 13.
Calling poll_response after calling get_response raises BAD_INV_ORDER
with standard minor code 12. Calling poll_response after that request was returned
by get_next_response raises BAD_INV_ORDER with standard minor code 12.

Calling get_next_response or poll_next_response at a time when no requests are
outstanding raises BAD_INV_ORDER with standard minor code 11. If concurrent
calls to get_next_response or poll_next_response are in progress, the exact
outcome is implementation dependent; however, get_next_response is guaranteed
not to return the same completed request to more than one caller.

7.4 Polling

There are two types of Polling model invocations that allow a client to proceed be
the request finishes: The DII’s send (which supports deferred synchronous
invocations) and the typed sendp variants of the interface stubs (which support bot
deferred synchronous and asynchronous invocations). This section describes a s
mechanism that allows a client to query or block on the completion of outstanding
requests.

• For the typed polling model (sendp), a client invokes the request’s type-specific
Poller to receive the response. This poll can either block (wait for the completi
or return immediately if the request isn’t finished yet, depending on the value of
first parameter. Alternately, a client can simply query whether the request has
completed by using the generic non-blocking CORBA::Pollable::is_ready()
operation defined on the base interface that is inherited by all type-specific poll
For the sake of efficiency, it must be possible to query or block on multiple asy
pollers in a single operation. To do this, it is necessary to identify precisely, wh
such pollers are to be polled.

• A client might want to mix deferred typed and dynamic operations. Deferred DII
some unholy combination of language mappings) has operations somewhat sim
to those of the typed Poller: ORB::poll_next_response and
ORB::get_next_response . It should be possible to mix the two kinds of polling
typed and dynamic.

• Other potential happenings might occur that are susceptible to polling in curren
future CORBA. This mechanism is designed for extensibility so that other ORB
services can perform a poll as a part of the single poll operation described her

The mechanism for generalized polling on multiple types of occurrences uses the
CORBA::PollableSet interface.
7-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

 with
ings
module CORBA {

 interface PollableSet;

 abstract valuetype Pollable {
boolean is_ready(

in unsigned long timeout
);

PollableSet create_pollable_set();
};

 abstract valuetype DIIPollable : Pollable { };

 interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DIIPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable poll get_ready_pollable(
in unsigned long timeout

) raises(NoPossiblePollable);

void remove(
in Pollable potential

) raises(UnknownPollable);

unsigned short number_left();
};

};

7.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered
a pollable set to allow a single client thread to block on multiple potential happen
at the same time.

7.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);
CORBA, v2.4.2 Polling February 2001 7-13

7

 be

.

 The
have

Returns the value TRUE if and only if the specific happening represented by the
pollable is ready to be consumed. Returns the value FALSE if the pollable is not yet
ready to be consumed. If the timeout argument is the maximum value for unsigned
long , the operation will block until it can return the value TRUE indicating that its
happening is ready to be consumed. If the timeout argument is the value 0, the
operation returns immediately.

7.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is a Pollable , it is possible to create a set of such pollables, which can
queried or upon which a client can block. The create_pollable_set operation creates
a PollableSet object reference for an object with an empty set of pollable entities

7.4.2 Abstract Valuetype DIIPollable

The specific Pollable that indicates interest in DII requests. A DIIPollable can be
used in conjunction with a pollable set to allow a client to block or poll for the
completion of DII requests, similar to the use of
CORBA::ORB::get_next_response . When the DIIPollable is returned from
PollableSet::poll , the reply to some DII request must be ready for processing.

7.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed.
client adds potential happenings to the set and later queries the set to see if any
occurred. PollableSet is a locality constrained object.

Note – There is a factory for PollableSet on the generic Pollable interface. Some
implementation of this interface, such as a type-specific poller value, must first be
accessible before a client can create a PollableSet .

7.4.3.1 create_dii_pollable

DIIPollable create_dii_pollable();

Returns an instance of DIIPollable that can subsequently be registered to indicate
interest in replies to DII requests.

7.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);
7-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

ss.

r

on

d
gh its

 for

The add_pollable operation adds a potential happening to the PollableSet . The
supplied Pollable parameter is some implementation that can be polled for readine
To register interest in DII requests, an instance of DIIPollable is added to the pollable
set.

7.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout

) raises(NoPossiblePollable);

The get_ready_pollable operation asks the PollableSet if any of its potential
happenings have occurred. The timeout parameter indicates how many milliseconds
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the standard system exception
TIMEOUT. Any delegated invocations used by the implementation of this polling
operation are subject to the single timeout parameter, which supersedes any ORB o
thread-level timeout quality of service. Two specific values are of interest:

• 0 - the call is a non-blocking poll query that raises the standard system excepti
NO_RESPONSE if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be
used. The query will not return until the reply is available.

If the PollableSet contains no potential happenings, the NoPossiblePollable
exception is raised. If an actual happening is returned, the PollableSet removes that
happening from the set. For the typed Poller , removing the happening is necessary
since its usefulness ends once the Poller completes. In the case of a DII happening,
there may still be deferred requests outstanding; if this is the case, the client
application must add the DIIPollable again to the PollableSet .

When the get_ready_pollable operation blocks, the ORB has control of the threa
and can process any work it has (such as receiving and dispatching requests throu
Object Adapter). The get_ready_pollable operation can be used in an “event-style
main loop” using ORB::work_pending and ORB::perform_work .

If the ORB supports multiple threads, one thread may be blocking on a PollableSet
while another is adding and removing potential happenings from the set. It is valid
the PollableSet to change dynamically while a poll is in progress. If another thread’s
PollableSet::remove operation leaves the PollableSet empty, any blocked threads
raise the NoPossiblePollable exception.

7.4.3.4 remove

void remove(
in Pollable potential

) raises(UnknownPollable);
CORBA, v2.4.2 Polling February 2001 7-15

7

ble
set, in

s that
ace

d

 the
The remove operation deletes the potential happening identified by the potential
parameter from the PollableSet . If it was not a member of the set, the
UnknownPollable exception is raised.

7.4.3.5 number_left

unsigned short number_left();

The number_left operation returns the number of potential happenings in the polla
set. A returned value of zero means that there are no potential happenings in the
which case a query on the set would raise the NoPossibleHappening exception.

7.5 List Operations

The list operations use the named-value structure defined above.The list operation
create NVList objects are defined in the ORB interface described in the ORB Interf
chapter, but are described in this section. The NVList interface is shown below.

interface NVList { // PIDL
void add_item (

in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);
void free ();
void free_memory ();
void get_count (

out long count // number of entries in the list
);

};

Interface NVList is defined in the CORBA module.

7.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface an
excerpted below.

void create_list (//PIDL
in long count, // number of items to allocate for list
out NVList new_list // newly created list

);

This operation allocates a list and clears it for initial use. The specified count is a
“hint” to help with the storage allocation. List items may be added to the list using
add_item routine. Items are added starting with the “slot() ,” in the next available
slot.
7-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

7

ate

ed

is

l to

e
An NVList is a partially opaque structure. It may only be allocated via a call to
create_list.

7.5.2 add_item

void add_item (// PIDL
in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2, item_flags may also take the following flag values:
IN_COPY_VALUE , DEPENDENT_LIST. The argument passing flags defined in
Section 7.1.1, “Common Data Structures,” on page 7-2 may be used here to indic
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and us
instead.

If a list structure is added as an item (e.g., a “sublist”), the DEPENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list
freed.

7.5.3 free

void free (); // PIDL

This operation frees the list structure and any associated memory (an implicit cal
the list free_memory operation is done).

7.5.4 free_memory

void free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with th
list. The list structure itself is not freed.

7.5.5 get_count

void get_count (// PIDL
out long count // number of entries in the list

);
CORBA, v2.4.2 List Operations February 2001 7-17

7

n

efined
This operation returns the total number of items added to the list.

7.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (// PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

);

This operation returns an NVList initialized with the argument descriptions for a give
operation. The information is returned in a form that may be used in Dynamic
Invocation requests. The arguments are returned in the same order as they were d
for the operation.

The list free operation is used to free the returned information.
7-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 Dynamic Skeleton Interface 8
ns.
lar
s

t side’s
e
y)

bject
ct it
 but
The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocatio
That is, rather than being accessed through a skeleton that is specific to a particu
operation, an object’s implementation is reached through an interface that provide
access to the operation name and parameters in a manner analogous to the clien
Dynamic Invocation Interface. Purely static knowledge of those parameters may b
used, or dynamic knowledge (perhaps determined through an Interface Repositor
may also be used, to determine the parameters.

Contents

This chapter contains the following sections.

8.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an o
implementation that does not have compile-time knowledge of the type of the obje
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons,
serves the same architectural role.

Section Title Page

“Introduction” 8-1

“Overview” 8-2

“ServerRequestPseudo-Object” 8-3

“DSI: Language Mapping” 8-4
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 8-1

8

t is

ine
t the

e
itors

ving
).
ld be

bject
ed in
nd the
n
ject

ters
,
DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DII). Just as the implementation of an object cannot distinguish whether its clien
using type-specific stubs or the DII, the client who invokes an object cannot determ
whether the implementation is using a type-specific skeleton or the DSI to connec
implementation to the ORB.

.

Figure 8-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses includ
interactive software development tools based on interpreters, debuggers and mon
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

8.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by ha
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR
Since in any language binding all DIRs have the same signature, a single DIR cou
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the o
that was invoked and the operation that was requested. The information is encod
the request parameters. The DIR can use the invoked object, its object adapter, a
Interface Repository to learn more about the particular object and invocation. It ca
access and operate on individual parameters. It can make the same use of an ob
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adap
that provide a DSI. See Section 11.6.11, “Single Servant, Many Objects and Types
Using DSI,” on page 11-60 for the specification of the DSI for the Portable Object
Adapter.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
8-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

8

SI,
an

e
t will

for

the

ill

nce

r in

lues

tains
8.3 ServerRequestPseudo-Object

8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the D
analogous to the Request pseudo-object in the DII. The object adapter dispatches
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {
...
interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
};

The identity and/or reference of the target object of the invocation is provided by th
object adapter and its language mapping. In the context of a bridge, the target objec
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's “most-derived” interface. Note that the operation names
getting and setting attributes are _get_<attribute_name> and
set<attribute_name> , respectively. The operation attribute can be accessed by
DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values w
be retrieved, with arguments . Unless it calls set_exception , the DIR must call
arguments exactly once, even if the operation signature contains no parameters. O
arguments or set_exception has been called, calling arguments on the same
ServerRequest will result in a BAD_INV_ORDER system exception with standard
minor code 7. The DIR must pass in to arguments an NVList initialized with
TypeCodes and Flags describing the parameter types for the operation, in the orde
which they appear in the IDL specification (left to right). A potentially-different NVList
will be returned from arguments , with the “in” and “inout” argument values supplied.
If it does not call set_exception , the DIR must supply the returned NVList with return
values for any “out” arguments before returning, and may also change the return va
for any “inout” arguments.

When the operation is not an attribute access, and the operation's IDL definition con
a context expression, ctx will return the context information specified in IDL for the
operation. Otherwise it will return a nil Context reference. Calling ctx before
CORBA, v2.4.2 ServerRequestPseudo-Object February 2001 8-3

8

e

 a

hen

e
ser

tion

 of the

 to it
g the
its

l

 not

ed to

arguments has been called or after ctx , set_result , or set_exception has been
called will result in a BAD_INV_ORDER system exception with standard minor cod
8.

The set_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type,
set_result must be called exactly once before the DIR returns. If the operation has
void result type, set_result may optionally be called once with an Any whose type is
tk_void . Calling set_result before arguments has been called or after set_result or
set_exception has been called will result in a BAD_INV_ORDER system exception
with standard minor code 8. Calling set_result without having previously called ctx w
the operation IDL contains a context expression will result in a MARSHAL system
exception with standard minor code 2. If the NVList passed to arguments did not
describe all parameters passed by the client, it may result in a MARSHAL system
exception with standard minor code 3.

The DIR may call set_exception at any time to return an exception to the client. Th
Any passed to set_exception must contain either a system exception or one of the u
exceptions specified in the raises expression of the invoked operation’s IDL definition.
Passing in an Any that does not contain an exception will result in a BAD_PARAM
system exception with standard minor code 21. Passing in an unlisted user excep
will result in either the DIR receiving a BAD_PARAM system exception with standard
minor code 22 or in the client receiving an UNKNOWN system exception with
standard minor code 1.

See each language mapping for a description of the memory management aspects
parameters to the ServerRequest operations.

8.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid
in the language mapping. This section provides general information about mappin
Dynamic Skeleton Interface to programming languages. Each language provides
own mapping for DSI.

8.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a genera
argument in OMG IDL operations, or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules appli
data passed from skeletons into statically typed implementation routines, and vice
versa.
8-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

8

ugh
eton
8.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely thro
the Object Adapter. An Object Adapter does not have to support the Dynamic Skel
Interface but, if it does, the Object Adapter is responsible for the details.
CORBA, v2.4.2 DSI: Language Mapping February 2001 8-5

8

8-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Dynamic Management of Any Values 9
he

ially

the
An any can be passed to a program that doesn’t have any static information for t
type of the any (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving the any
does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at
runtime and extraction of the primitive constituents of the data value. This is espec
helpful for writing powerful generic servers (bridges, event channels supporting
filtering).

Similarly, this facility enables the construction of an any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools).

Contents

This chapter contains the following sections.

9.1 Overview

Unless explicitly stated otherwise, all IDL presented in Section 9.1, “Overview,” on
page 9-1 through Section 9.3, “Usage in C++ Language,” on page 9-24 is part of
DynamicAny module.

Section Title Page

“Overview” 9-1

“DynAny API” 9-3

“Usage in C++ Language” 9-24
Common Object Request Broker Architecture (CORBA), v2.4.2 February 20019-1

9

ds

h

rrent

tion

ed by

nt

.

ata

each
 of

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. A DynAny object is associated with a data value, which correspon
to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAny s.
For DynAny s representing a basic type, such as long , or a type without components,
such as an empty exception, the ordered collection of components is empty. Eac
DynAny object maintains the notion of a current position into its collection of
component DynAny s. The current position is identified by an index value that runs
from 0 to n−1, where n is the number of components. The special index value −1
indicates a current position that points nowhere. For values that cannot have a cu
position (such as an empty exception), the index value is fixed at −1. If a DynAny is
initialized with a value that has components, the index is initialized to 0. After crea
of an uninitialized DynAny (that is, a DynAny that has no value but a TypeCode that
permits components), the current position depends on the type of value represent
the DynAny . (The current position is set to 0 or−1, depending on whether the new
DynAny gets default values for its components.)

The iteration operations rewind , seek , and next can be used to change the current
position and the current_component operation returns the component at the curre
position. The component_count operation returns the number of components of a
DynAny . Collectively, these operations enable iteration over the components of a
DynAny , for example, to (recursively) examine its contents.

A constructed DynAny object is a DynAny object associated with a constructed type
There is a different interface, inheriting from the DynAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

A constructed DynAny object exports operations that enable the creation of new
DynAny objects, each of them associated with a component of the constructed d
value.

As an example, a DynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for
structure member. The DynStruct object exports operations that enable the creation
new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (constructed) DynAny object,
such as a DynAny representing a structure member that was created from a
DynStruct , the member DynAny is logically contained in the DynStruct .

Destroying a top-level DynAny object (one that was not obtained as a component of
another DynAny) also destroys any component DynAny objects obtained from it.
Destroying a non-top level DynAny object does nothing. Invoking operations on a
destroyed top-level DynAny or any of its descendants raises
OBJECT_NOT_EXIST. Note that simply releasing all references to a DynAny
object does not delete the DynAny or components; each DynAny created with one of
the create operations or with the copy operation must be explicitly destroyed to avoid
memory leaks.
9-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

reate

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first c
a DynAny for the component and, after that, make a copy of the created DynAny
object.

The behavior of DynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access. DynAny
objects are intended to be used for traversing values extracted from any s or
constructing values of anys at runtime. Their use for other purposes is not
recommended.

9.2 DynAny API

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

// IDL
// File: DynamicAny.idl
#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_
#pragma prefix “omg.org”
#include <orb.idl>

module DynamicAny {

interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);

void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);

void insert_char(in char value)
raises(TypeMismatch, InvalidValue);

void insert_short(in short value)
raises(TypeMismatch, InvalidValue);

void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);
CORBA, v2.4.2 DynAny API February 2001 9-3

9

void insert_long(in long value)
raises(TypeMismatch, InvalidValue);

void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);

void insert_float(in float value)
raises(TypeMismatch, InvalidValue);

void insert_double(in double value)
raises(TypeMismatch, InvalidValue);

void insert_string(in string value)
raises(TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);

void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);

void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);

void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);

void insert_any(in any value)
raises(TypeMismatch, InvalidValue);

void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);

void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()
raises(TypeMismatch, InvalidValue);

octet get_octet()
raises(TypeMismatch, InvalidValue);

char get_char()
raises(TypeMismatch, InvalidValue);

short get_short()
raises(TypeMismatch, InvalidValue);

unsigned short get_ushort()
raises(TypeMismatch, InvalidValue);

long get_long()
raises(TypeMismatch, InvalidValue);

unsigned long get_ulong()
raises(TypeMismatch, InvalidValue);

float get_float()
raises(TypeMismatch, InvalidValue);

double get_double()
raises(TypeMismatch, InvalidValue);

string get_string()
raises(TypeMismatch, InvalidValue);
9-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

Object get_reference()
raises(TypeMismatch, InvalidValue);

CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);

long long get_longlong()
raises(TypeMismatch, InvalidValue);

unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);

long double get_longdouble()
raises(TypeMismatch, InvalidValue);

wchar get_wchar()
raises(TypeMismatch, InvalidValue);

wstring get_wstring()
raises(TypeMismatch, InvalidValue);

any get_any()
raises(TypeMismatch, InvalidValue);

DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);

ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count();
DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

};

 interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

};

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
CORBA, v2.4.2 DynAny API February 2001 9-5

9

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

};

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len) raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
9-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

};

interface DynValueBox : DynValueCommon {
any get_boxed_value()

raises(InvalidValue);
void set_boxed_value(in any boxed) raises(TypeMismatch);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny

create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

};
}; // module DynamicAny

#endif // _DYNAMIC_ANY_IDL_
CORBA, v2.4.2 DynAny API February 2001 9-7

9

ch

ith
ill

s

nt
9.2.1 Locality and usage constraints

DynAny and DynAnyFactory objects are intended to be local to the process in whi
they are created and used. This means that references to DynAny and
DynAnyFactory objects cannot be exported to other processes, or externalized w
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception.

Since their interfaces are specified in IDL, DynAny objects export operations defined
in the standard CORBA::Object interface. However, any attempt to invoke operation
exported through the Object interface may raise the standard NO_IMPLEMENT
exception.

An attempt to use a DynAny object with the DII may raise the NO_IMPLEMENT
exception.

9.2.2 Creating a DynAny object

A DynAny object can be created as a result of:

• invoking an operation on an existing DynAny object

• invoking an operation on a DynAnyFactory object

A constructed DynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constituent. DynAny
objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the
DynAnyFactory object. A reference to the DynAnyFactory object is obtained by
calling CORBA::ORB::resolve_initial_references with the identifier parameter
set to “DynAnyFactory” .

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)

raises(InconsistentTypeCode);
};

The create_dyn_any operation creates a new DynAny object from an any value. A
copy of the TypeCode associated with the any value is assigned to the resulting
DynAny object. The value associated with the DynAny object is a copy of the value
in the original any. The create_dyn_any operation sets the current position of the
created DynAny to zero if the passed value has components; otherwise, the curre
position is set to −1. The operation raises InconsistentTypeCode if value has a
TypeCode with a TCKind of tk_Principal or tk_native.
9-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

f a

f

o

The create_dyn_any_from_type_code operation creates a DynAny from a
TypeCode . Depending on the TypeCode , the created object may be of type
DynAny , or one of its derived types, such as DynStruct . The returned reference can
be narrowed to the derived type.

For both create_dyn_any and create_dyn_any_from_type_code , the source type
code is copied into the DynAny object unchanged. This means that, after creation o
DynAny object, the source type code and the type code inside the DynAny must
compare equal as determined by TypeCode::equal . The same is true for type codes
extracted from a DynAny with the type operation and for type codes that are part o
any values that are constructed from a DynAny : such type codes compare equal to t
the type code that was originally used to create the DynAny . For a given parent
DynAny with its associated TypeCode , the TypeCode of a component DynAny
also compares equal to the corresponding results of the member_type or
component_type operation on the parent TypeCode .

Creation of DynAnys with TCKind tk_null and tk_void is legal and results in the
creation of a DynAny without a value and with zero components.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The
default values of basic types are:

• FALSE for Boolean

• zero for numeric types

• zero for types octet , char , and wchar

• the empty string for string and wstring

• nil for object references

• a type code with a TCKind value of tk_null for type codes

• for any values, an any containing a type code with a TCKind value of tk_null
type and no value

For complex types, creation of the corresponding DynAny assigns a default value as
follows:

• For DynSequence , the operation sets the current position to −1 and creates an
empty sequence.

• For DynEnum , the operation sets the current position to −1 and sets the value of
the enumerator to the first enumerator value indicated by the TypeCode .

• For DynFixed , operations set the current position to −1 and sets the value zero.

• For DynStruct , the operation sets the current position to −1 for empty exceptions
and to zero for all other TypeCode s. The members (if any) are (recursively)
initialized to their default values.

• For DynArray , the operation sets the current position to zero and (recursively)
initializes elements to their default value.
CORBA, v2.4.2 DynAny API February 2001 9-9

9

r
at

e of

• For DynUnion , the operation sets the current position to zero. The discriminato
value is set to a value consistent with the first named member of the union. Th
member is activated and (recursively) initialized to its default value.

• DynValue and DynValueBox are initialized to a null value.

Dynamic interpretation of an any usually involves creating a DynAny object using
DynAnyFactory::create_dyn_any as the first step. Depending on the type of the
any, the resulting DynAny object reference can be narrowed to a DynFixed ,
DynStruct , DynSequence , DynArray , DynUnion , DynEnum , or DynValue
object reference.

Dynamic creation of an any involves creating a DynAny object using
DynAnyFactory::create_dyn_any_from_type_code , passing the TypeCode
associated with the value to be created. The returned reference is narrowed to on
the complex types, such as DynStruct , if appropriate. Then, the value can be
initialized by means of invoking operations on the resulting object. Finally, the to_any
operation can be invoked to create an any value from the constructed DynAny .

9.2.3 The DynAny interface

The following operations can be applied to a DynAny object:

• Obtaining the TypeCode associated with the DynAny object.

• Generating an any value from the DynAny object.

• Comparing two DynAny objects for equality.

• Destroying the DynAny object.

• Creating a DynAny object as a copy of the DynAny object.

• Inserting/getting a value of some basic type into/from the DynAny object.

• Iterating through the components of a DynAny.

• Initializing a DynAny object from another DynAny object.

• Initializing a DynAny object from an any value.

9.2.3.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode
value determines the type of the value handled through the DynAny object. The type
operation returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime of the DynAny object.
9-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

e
ses
ses
9.2.3.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the
value associated with another DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny , the
operation raises TypeMismatch. The current position of the target DynAny is set to
zero for values that have components and to −1 for values that do not have
components.

9.2.3.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

The from_any operation initializes the value associated with a DynAny object with
the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny , the
operation raises TypeMismatch. If the passed Any does not contain a legal value
(such as a null string), the operation raises InvalidValue. The current position of the
target DynAny is set to zero for values that have components and to −1 for values that
do not have components.

9.2.3.4 Generating an any value from a DynAny object

any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the
TypeCode associated with the DynAny object is assigned to the resulting any. The
value associated with the DynAny object is copied into the any.

9.2.3.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares two DynAny values for equality and returns true of the
DynAny s are equal, false otherwise. Two DynAny values are equal if their
TypeCodes are equivalent and, recursively, all component DynAnys have equal
values. The current position of the two DynAny s being compared has no effect on th
result of equal . To determine equality of object references, the equal operation u
Object::is_equivalent . To determine equality of type codes, the equal operation u
TypeCode::equivalent .
CORBA, v2.4.2 DynAny API February 2001 9-11

9

f

s

ent

e
n

s

t
Note – If two DynAny s happen to contain *values* of type TypeCode , these values
are compared using TypeCode::equal . The type codes that *describe* the values o
DynAny s are always compared using TypeCode::equivalent , however. (In the case
of comparing two DynAny s containing type code values, the type codes describing
these type code values are tk_TypeCode in each DynAny , and will therefore always
compare as equivalent.)

9.2.3.6 Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resource
used to represent the data value associated with a DynAny object. destroy must be
invoked on references obtained from one of the creation operations on the
DynAnyFactory interface or on a reference returned by DynAny::copy to avoid
resource leaks. Invoking destroy on component DynAny objects (for example, on
objects returned by the current_component operation) does nothing.

Destruction of a DynAny object implies destruction of all DynAny objects obtained
from it. That is, references to components of a destroyed DynAny become invalid;
invocations on such references raise OBJECT_NOT_EXIST.

It is possible to manipulate a component of a DynAny beyond the life time of the
DynAny from which the component was obtained by making a copy of the compon
with the copy operation before destroying the DynAny from which the component
was obtained.

9.2.3.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of th
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it o
one of the types derived from DynAny , such as DynStruct , creates the derived type
but returns its reference as the DynAny base type.

9.2.3.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type value
into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and
insert_wstring . These operations raise the InvalidValue exception if the string
inserted is longer than the bound of a bounded string.

Calling an insert or get operation on a DynAny that has components but has a curren
position of −1 raises InvalidValue .
9-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

nt

es

f
Get operations raise TypeMismatch if the accessed component in the DynAny is of a
type that is not equivalent to the requested type. (Note that get_string and
get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value if its TypeCode is equivalent to
the TypeCode contained in the DynAny or, if the DynAny has components, is
equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal with any
values that contain another any . The operations behave identically to get_any and
insert_any , but use parameters of type DynAny (instead of any); they are useful to
avoid otherwise redundant conversions between any and DynAny .

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basic DynAny objects but are also helpful to
handle constructed DynAny objects. Inserting a basic data type value into a
constructed DynAny object implies initializing the current component of the
constructed data value associated with the DynAny object. For example, invoking
insert_boolean on a DynStruct implies inserting a boolean data value at the curre
position of the associated struct data value. If dyn_construct points to a
constructed DynAny object, then:

result = dyn_construct->get_boolean();

has the same effect as:

DynamicAny::DynAny_var temp =
dyn_construct->current_component();

result = temp->get_boolean();

Calling an insert or get operation on a DynAny whose current component itself has
components raises TypeMismatch.

In addition, availability of these operations enable the traversal of anys associated with
sequences of basic data types without the need to generate a DynAny object for each
element in the sequence.

9.2.3.9 Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the valu
pointed to by DynStruct , DynSequence , DynArray , DynUnion , DynAny , and
DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection o
components, together with a current position.

boolean seek(in long index);
CORBA, v2.4.2 DynAny API February 2001 9-13

9

urns

n to

ation
ise.

the

res,
rays,
if the
r

ent
rence

 a
The seek operation sets the current position to index . The current position is indexed
0 to n−1, that is, index zero corresponds to the first component. The operation ret
true if the resulting current position indicates a component of the DynAny and false if
index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current position to −1 to indicate
no component and returns false. Passing a non-negative index value for a DynAny that
does not have a component at the corresponding position sets the current positio−
1 and returns false.

void rewind();

The rewind operation is equivalent to calling seek(0);

boolean next();

The next operation advances the current position to the next component. The oper
returns true while the resulting current position indicates a component, false otherw
A false return value leaves the current position at −1. Invoking next on a DynAny
without components leaves the current position at −1 and returns false.

unsigned long component_count();

The component_count operation returns the number of components of a DynAny .
For a DynAny without components, it returns zero. The operation only counts the
components at the top level. For example, if component_count is invoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of
member.

For sequences, the operation returns the current number of elements. For structu
exceptions, and valuetypes, the operation returns the number of members. For ar
the operation returns the number of elements. For unions, the operation returns 2
discriminator indicates that a named member is active; otherwise, it returns 1. Fo
DynFixed and DynEnum , the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call to rewind , next , or seek return the
same component.

The returned DynAny object reference can be used to get/set the value of the curr
component. If the current component represents a complex type, the returned refe
can be narrowed based on the TypeCode to get the interface corresponding to the to
the complex type.

Calling current_component on a DynAny that cannot have components, such as
DynEnum or an empty exception, raises TypeMismatch. Calling
current_component on a DynAny whose current position is−1 returns a nil
reference.
9-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

itrary

as

iling

ises
The iteration operations, together with current_component , can be used to
dynamically compose an any value. After creating a dynamic any, such as a
DynStruct , current_component and next can be used to initialize all the
components of the value. Once the dynamic value is completely initialized, to_any
creates the corresponding any value.

9.2.4 The DynFixed Interface

DynFixed objects are associated with values of the IDL fixed type.

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

Because IDL does not have a generic type that can represent fixed types with arb
number of digits and arbitrary scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed .

The set_value operation sets the value of the DynFixed . The val string must contain
a fixed string constant in the same format as used for IDL fixed-point literals.
However, the trailing d or D is optional. If val has more fractional digits than specified
by the scale of the DynFixed , the extra digits are truncated. If the truncated value h
more digits than the DynFixed , the operation raises InvalidValue. If the value is not
too large, set_value returns TRUE if no truncation was required, FALSE otherwise.
The return value is TRUE if val can be represented as the DynFixed without loss of
precision. If val has more fractional digits than can be represented in the DynFixed ,
fractional digits are truncated and the return value is FALSE . If val does not contain a
valid fixed-point literal or contains extraneous characters other than leading or tra
white space, the operation raises TypeMismatch.

9.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};

The get_as_string operation returns the value of the DynEnum as an IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value
whose IDL identifier is passed in the value parameter. If value contains a string that
is not a valid IDL identifier for the corresponding enumerated type, the operation ra
InvalidValue.
CORBA, v2.4.2 DynAny API February 2001 9-15

9

es

The get_as_ulong operation returns the value of the DynEnum as the enumerated
value’s ordinal value. Enumerators have ordinal values 0 to n−1, as they appear from
left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of the DynEnum as the enumerated
value’s ordinal value. If value contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation raises InvalidValue.

The current position of a DynEnum is always −1.

9.2.6 The DynStruct interface

DynStruct objects are associated with struct values and exception values.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If the DynStruct represents an empty exception, the operation rais
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being
manipulated may not contain the names of members.
9-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

es

he

mbers

rrent
pty

 that
es
 with

he

.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns the TCKind associated with the member at the
current position. If the DynStruct represents an empty exception, the operation rais
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing t
name and the value of each member in the struct associated with a DynStruct object.
The sequence contains members in the same order as the declaration order of me
as indicated by the DynStruct ’s TypeCode . The current position is not affected. The
member names in the returned sequence will be empty strings if the DynStruct ’s
TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the cu
position to zero if the passed sequences has non-zero length; otherwise, if an em
sequence is passed, the current position is set to−1.

Members must appear in the NameValuePairSeq in the order in which they appear in
the IDL specification of the struct. If one or more sequence elements have a type
is not equivalent to the TypeCode of the corresponding member, the operation rais
TypeMismatch. If the passed sequence has a number of elements that disagrees
the number of members as indicated by the DynStruct ’s TypeCode , the operation
raises InvalidValue.

If member names are supplied in the passed sequence, they must either match t
corresponding member name in the DynStruct ’s TypeCode or must be empty strings,
otherwise, the operation raises TypeMismatch. Members must be supplied in the
same order as indicated by the DynStruct ’s TypeCode . (The operation makes no
attempt to assign member values based on member names.)

The get_members_as_dyn_any and set_members_as_dyn_any operations have
the same semantics as their Any counterparts, but accept and return values of type
DynAny instead of Any .

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct

9.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion : DynAny {
DynAny get_discriminator();
CORBA, v2.4.2 DynAny API February 2001 9-17

9

n
a
r and
is a

tor

er,
void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidValue);

CORBA::TCKind discriminator_kind();
DynAny member()

raises(InvalidValue);
FieldName member_name()

raises(InvalidValue);
CORBA::TCKind member_kind()

raises(InvalidValue);
};

The DynUnion interface allows for the insertion/extraction of an OMG IDL union
type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active member. The component_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()
raises(InvalidValue);

The get_discriminator operation returns the current discriminator value of the
DynUnion .

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the
specified value. If the TypeCode of the d parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation raises TypeMismatch.

Setting the discriminator to a value that is consistent with the currently active unio
member does not affect the currently active member. Setting the discriminator to
value that is inconsistent with the currently active member deactivates the membe
activates the member that is consistent with the new discriminator value (if there
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discrimina
value indicates a non-existent union member (has_no_active_member returns true
in this case). Otherwise, if the discriminator value indicates a named union memb
the current position is set to 1 (has_no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);
9-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

o

es
o and

a

tly

tive
s

the
er,
The set_to_default_member operation sets the discriminator to a value that is
consistent with the value of the default case of a union; it sets the current position t
zero and causes component_count to return 2. Calling set_to_default_member
on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

The set_to_no_active_member operation sets the discriminator to a value that do
not correspond to any of the union’s case labels; it sets the current position to zer
causes component_count to return 1. Calling set_to_no_active_member on a
union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an explicit case label). Calling this
operation on a union that has a default case returns false. Calling this operation on
union that uses the entire range of discriminator values for explicit case labels returns
false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns the TCKind value of the discriminator’s
TypeCode .

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active
member’s TypeCode . Calling this operation on a union that does not have a curren
active member raises InvalidValue.

DynAny member()
raises(InvalidValue);

The member operation returns the currently active member. If the union has no ac
member, the operation raises InvalidValue. Note that the returned reference remain
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

The member_name operation returns the name of the currently active member. If
union’s TypeCode does not contain a member name for the currently active memb
the operation returns an empty string. Calling member_name on a union without an
active member raises InvalidValue.
CORBA, v2.4.2 DynAny API February 2001 9-19

9

f a
isting

ded

ises

cting
g the
CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the TypeCode of the
currently active member. If the union has no active member, the operation raises
InvalidValue.

9.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(TypeMismatch, InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length o
sequence adds new elements at the tail without affecting the values of already ex
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-ad
element if the previous current position was −1. Otherwise, if the previous current
position was not −1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound ra
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affe
the value of those elements that remain. The new current position after decreasin
length of a sequence is determined as follows:

• If the length of the sequence is set to zero, the current position is set to −1.

• If the current position is −1 before decreasing the length, it remains at −1.
9-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

d

he

es

e
, the
nt
• If the current position indicates a valid element and that element is not remove
when the length is decreased, the current position remains unaffected.

• If the current position indicates a valid element and that element is removed, t
current position is set to −1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length of value . The current position is set to zero if
value has non-zero length and to −1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the
element TypeCode of the DynSequence , the operation raises TypeMismatch. If
the length of value exceeds the bound of a bounded sequence, the operation rais
InvalidValue.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics, but accept and return values of type DynAny instead of Any .

9.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray .

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the DynArray to contain the passed elements. If th
sequence does not contain the same number of elements as the array dimension
operation raises InvalidValue. If one or more elements have a type that is inconsiste
with the DynArray ’s TypeCode , the operation raises TypeMismatch.
CORBA, v2.4.2 DynAny API February 2001 9-21

9

s in
The get_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics as their Any counterparts, but accept and return values of type
DynAny instead of Any .

Note that the dimension of the array is contained in the TypeCode , which is
accessible through the type attribute. It can also be obtained by calling the
component_count operation.

9.2.10 The DynValue interface

DynValueCommon provides operations supported by both the DynValue and
DynValueBox interfaces.

interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

boolean is_null();

The is_null operation returns TRUE if the DynValueCommon represents a null
valuetype.

void set_to_null();

The set_to_null operation changes the representation of a DynValueCommon to a
null valuetype.

void set_to_value();

If the DynValueCommon represents a null valuetype, then set_to_value replaces it
with a newly constructed value, with its components initialized to default values a
DynAnyFactory::create_dyn_any_from_type_code . If the DynValueCommon
represents a non-null valuetype, then this operation has no effect.

9.2.11 The DynValue interface

DynValue objects are associated with non-boxed valuetypes.

interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()
9-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

ers
.
 and

a

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

The DynValue interface can represent both null and non-null valuetypes. For a
DynValue representing a non-null valuetype, the DynValue 's components comprise
the public and private members of the valuetype, including those inherited from
concrete base valuetypes, in the order of definition. A DynValue representing a null
valuetype has no components and a current position of -1.

The remaining operations on the DynValue interface generally have equivalent
semantics to the same operations on DynStruct . When invoked on a DynValue
representing a null valuetype, get_members and get_members_as_dyn_any raise
InvalidValue. When invoked on a DynValue representing a null valuetype,
set_members and set_members_as_dyn_any convert the DynValue to a non-
null valuetype.

Note – Warning: Indiscriminately changing the contents of private valuetype memb
can cause the valuetype implementation to break by violating internal constraints
Access to private members is provided to support such activities as ORB bridging
debugging and should not be used to arbitrarily violate the encapsulation of the
valuetype.

9.2.12 The DynValueBox interface

DynValueBox objects are associated with boxed valuetypes.

interface DynValueBox : DynValueCommon {
any get_boxed_value()

 raises(InvalidValue);
void set_boxed_value(in any boxed)

raises(TypeMismatch);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};

The DynValueBox interface can represent both null and non-null valuetypes. For
DynValueBox representing a non-null valuetype, the DynValueBox has a single
component of the boxed type. A DynValueBox representing a null valuetype has no
components and a current position of -1.

any get_boxed_value()
 raises(InvalidValue);

The get_boxed_value operation returns the boxed value as an any. If the
DynBoxedValue represents a null valuetype, the operation raises InvalidValue.
CORBA, v2.4.2 DynAny API February 2001 9-23

9

e

void set_boxed_value(in any boxed)
raises(TypeMismatch);

The set_boxed_value replaces the boxed value with the specified value. If the
DynBoxedValue represents a null valuetype, it is converted to a non-null value.

The get_boxed_value_as_dyn_any and set_boxed_value_as_dyn_any have
the same semantics as their any counterparts, but accept and return values of typ
DynAny instead of any.

9.3 Usage in C++ Language

9.3.1 Dynamic creation of CORBA::Any values

9.3.1.1 Creating an any that contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};

The following example illustrates how a CORBA::Any value may be constructed on
the fly containing a value of type MyStruct :

// C++
CORBA::ORB_var orb = ...;
DynamicAny::DynAnyFactory_var dafact

= orb->resolve_initial_references(“DynAnyFactory”);
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::Long value1 = 99;
CORBA::Boolean value2 = 1;
mems.length(2);
mems[0].name = CORBA::string_dup(“ member1”);
mems[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup(“ member2”);
mems[1].type

= CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
“ IDL:MyStruct:1.0”,
“ MyStruct”,
mems

);
9-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

9

s,

ent

// Construct the DynStruct object. Values for members are
// the value1 and value2 variables

DynamicAny::DynAny_ptr dyn_any
= dafact->create_dyn_any(new_tc);

DynamicAny::DynStruct_ptr dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);

CORBA::release(dyn_any);
dyn_struct->insert_long(value1);

dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

9.3.2 Dynamic interpretation of CORBA::Any values

9.3.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those event
which correspond to a data structure containing a member called is_urgent whose
value is true.

The following fragment of code corresponds to a method that determines if an ev
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

// C++
CORBA::Boolean Tester::eval_filter(

DynamicAny::DynAnyFactory_ptr dafact,
const CORBA::Any & event

)
{

CORBA::Boolean success = FALSE;
DynamicAny::DynAny_var;
try {

// First, convert the event to a DynAny.
// Then attempt to narrow it to a DynStruct.
// The _narrow only returns a reference
// if the event is a struct.
dyn_var = dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct

= DynamicAny::DynStruct::_narrow(dyn_any);
if (!CORBA::is_nil(dyn_struct)) {

CORBA::Boolean found = FALSE;
do {

CORBA::String_var member_name
= dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
CORBA, v2.4.2 Usage in C++ Language February 2001 9-25

9

} while (!found && dyn_struct->next());
if (found) {

// We only create a DynAny object for the member
// we were looking for:
DynamicAny::DynAny_var dyn_member

= dyn_struct->current_component();
success = dyn_member->get_boolean();

}
}

}
catch(...) {};
if (!CORBA::is_nil(dyn_var))

dyn_var->destroy();
return success;

}

9-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 The Interface Repository 10
rage

es
Contents

This chapter contains the following sections.

10.1 Overview

The Interface Repository is the component of the ORB that provides persistent sto
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provid
for the storage, distribution, and management of a collection of related objects’
interface definitions.

Section Title Page

“Overview” 10-1

“Scope of an Interface Repository” 10-2

“Implementation Dependencies” 10-4

“Basics” 10-5

“Interface Repository Interfaces” 10-9

“RepositoryIds” 10-42

“TypeCodes” 10-51

“OMG IDL for Interface Repository” 10-60
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 10-1

10

f the
of

that

(i.e.,

itory

nd

r).

.8,

 that
ce

f the

n

ctural

ate
ons,
 the
For an ORB to correctly process requests, it must have access to the definitions o
objects it is handling. Object definitions can be made available to an ORB in one
two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository
as interface objects accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repos
to interpret and handle the values provided in a request to:

• Provide type-checking of request signatures (whether the request was issued
through the DII or through a stub).

• Assist in checking the correctness of interface inheritance graphs.

• Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients a
services. For example, the Repository can be used to:

• Manage the installation and distribution of interface definitions.

• Provide components of a CASE environment (for example, an interface browse

• Provide interface information to language bindings (such as a compiler).

• Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 10
“OMG IDL for Interface Repository,” on page 10-60; however, fragments of the
specification are used throughout this chapter as necessary.

10.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects
are accessible through a set of OMG IDL-specified interface definitions. An interfa
definition contains a description of the operations it supports, including the types o
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used i
other interface and value definitions or might simply be defined for programmer
convenience and it stores typecodes, which are values that describe a type in stru
terms.

The Interface Repository uses modules as a way to group interfaces and to navig
through those groups by name. Modules can contain constants, typedefs, excepti
interface definitions, and other modules. Modules may, for example, correspond to
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.
10-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

 or

ause

ies.

 for

.
 a
e.

w
t
The Interface Repository consists of a set of interface repository objects that represent
the information in it. There are operations that operate on this apparent object
structure. It is an implementation’s choice whether these objects exist persistently
are created when referenced in an operation on the repository. There are also
operations that extract information in an efficient form, obtaining a block of
information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur bec

• two ORBs have different requirements for the implementation of the Interface
Repository,

• an object implementation (such as an OODB) prefers to provide its own type
information, or

• it is desired to have different additional information stored in different repositor

The use of typecodes and repository identifiers is intended to allow different
repositories to keep their information consistent.

As shown in Figure 10-1 on page 10-3, the same interface Doc is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use
Because it has the same repository id, even though the Doc interface is stored in
different repository and is nested in a different module, it is known to be the sam

Meanwhile at SoftCo, someone working on a new Doc interface has given it a ne
repository id 456, which allows the ORBs to distinguish it from the current produc
Doc interface.

Figure 10-1 Using Repository IDs to establish correspondence between repositories

SoftCo, Inc., Repository

module softco {
interface Doc <id 123> {

void print();
};

};

module newrelease {
interface Doc <id 456> {

void print();
};

};

Customer, Inc., Repository

module testfirst {
module softco {

interface Doc <id 123> {
void print();

};
};

};
CORBA, v2.4.2 Scope of an Interface Repository February 2001 10-3

10

ees
 will

n
al

er.
ary to
y

ible
face

ject

e
on a
ple
oss

ided

er
ts of
tency
ny

 the

t to

ams,
 care

do
Not all interfaces will be visible in all repositories. For example, Customer employ
cannot see the new release of the Doc interface. However, widely used interfaces
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving informatio
from the repository as well as creating definitions within it. There may be addition
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs togeth
When an object is passed in a request from one ORB to another, it may be necess
create a new object to represent the passed object in the receiving ORB. This ma
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in the sending ORB, it is poss
to look up the interface in a repository in the receiving ORB. To succeed, the inter
for that object must be installed in both repositories with the same repository id.

10.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent ob
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provid
object storage, there may be only a single copy of a set of interfaces maintained
single machine. Alternatively, if an OODB is used to provide object storage, multi
copies of interface definitions may be maintained each of which is distributed acr
several machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions prov
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy p
community of users. The object store may also determine whether or not all clien
an interface set see exactly the same set at any given point in time or whether la
in distributing copies of the set gives different users different views of the set at a
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

10.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attemp
access the interface repository at any time by using the get_interface operation on
the object reference. Once information has been installed in the repository, progr
stubs, and objects may depend on it. Updates to the repository must be done with
to avoid disrupting the environment. A variety of techniques are available to help
so.
10-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

on of
ate

 so
ugh
pear

red

n
s.

their
ome
ral
y
sult

tion,
itory
 but
y or
 the
 that
ory

 may

e

 the
or
cy

the
IDs
rned.

cify

A coherent repository is one whose contents can be expressed as a valid collecti
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplic
operation names or other name collisions, all parameters have known types, and
forth. As information is added to the repository, it is possible that it may pass thro
incoherent states. Media failures or communication errors might also cause it to ap
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a sha
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository IDs, the repositories ca
establish the identity of the interfaces and other information across the repositorie

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to
repositories, but administrators may control updates to widely used repositories. S
repository implementations might permit sharing of information, for example, seve
developers’ repositories may refer to parts of a shared repository. Other repositor
implementations might instead copy the common information. In any case, the re
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent informa
and it may be possible to enter information that does not make sense. The repos
will report errors that it detects (e.g., defining two attributes with the same name)
might not report all errors, for example, adding an attribute to a base interface ma
may not detect a name conflict with a derived interface. Despite these limitations,
expectation is that a combination of conventions, administrative controls, and tools
add information to the repository will work to create a coherent view of the reposit
information.

Transactions and concurrency control mechanisms defined by the Object Services
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update th
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as
Transaction interface, which contains the transaction management operations. (F
more information about Object Services, including the Transaction and Concurren
Control Services, refer to the individual CORBA Services specifications).

Often, rather than change the information, new versions will be created, allowing
old version to continue to be valid. The new versions will have distinct repository
and be completely different types as far as the repository and the ORBs are conce
The IR provides storage for version identifiers for named types, but does not spe
any additional versioning mechanism or semantics.

10.4 Basics

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

• Names and Identifiers
CORBA, v2.4.2 Basics February 2001 10-5

10

,
face

. They

 data
e
ore

s.

nts,

s,

ns,
• Types and TypeCodes

• Interface Repository Objects

• Structure and Navigation of the Interface Repository

10.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface, struct,
union, exception and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, value types, value members
value boxes, constant, typedefs, exceptions, attributes, and operations in an Inter
Repository.

Repository identifiers globally identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, and operations
can be used to synchronize definitions across multiple ORBs and Repositories.

10.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a
value called a TypeCode. From the TypeCode alone it is possible to determine th
complete structure of a type. See Section 10.7, “TypeCodes,” on page 10-51 for m
information on the internal structure of TypeCodes.

10.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is
maintained as a collection of interface repository objects of the following types:

• Repository : the top-level module for the repository name space; it contains
constants, typedefs, exceptions, interface or value type definitions, and module

• ModuleDef : a logical grouping of interfaces and value types; it contains consta
typedefs, exceptions, interface or value type definitions, and other modules.

• InterfaceDef : an interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

• AbstractInterfaceDef : an abstract interface definition; it contains lists of
constants, types, exceptions, operations, and attributes.

• LocalInterfaceDef : a local interface definition; it contains lists of constants, type
exceptions, operations, and attributes.

• ValueDef : a value type definition that contains lists of constants, types, exceptio
operations, attributes and members

• ValueBoxDef : the definition of a boxed value type.

• ValueMemberDef : the definition of a member of the value type.
10-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

s or

n.

 An
 the

es,

ay
 the
• AttributeDef : the definition of an attribute of the interface or value type.

• OperationDef : the definition of an operation of the interface or value type; it
contains lists of parameters and exceptions raised by this operation.

• TypedefDef : base interface for definitions of named types that are not interface
value types.

• ConstantDef : the definition of a named constant.

• ExceptionDef : the definition of an exception that can be raised by an operatio

The interface specifications for each interface repository object lists the attributes
maintained by that object (see Section 10.5, “Interface Repository Interfaces,” on
page 10-9). Many of these attributes correspond directly to OMG IDL statements.
implementation can choose to maintain additional attributes to facilitate managing
Repository or to record additional (proprietary) information about an interface.
Implementations that extend the IR interfaces shall do so by deriving new interfac
not by modifying the standard interfaces.

The CORBA specification defines a minimal set of operations for interface repository
objects. Additional operations that an implementation of the Interface Repository m
provide could include operations that provide for the versioning of entities and for
reverse compilation of specifications (i.e., the generation of a file containing an
object’s OMG IDL specification).

10.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set of interface
repository objects. These objects are structured the same way definitions are
structured—some objects (definitions) “contain” other objects.
CORBA, v2.4.2 Basics February 2001 10-7

10

e
The containment relationships for the interface repository objects types in the Interface
Repository are shown in Figure 10-2

Figure 10-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining an InterfaceDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the InterfaceDef object that corresponds to a particular repository
identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using the get_interface operation on
the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on th
object.

Repository

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The Repository IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

the scope of a module.

The Module IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

the scope of the module.

An Interface IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation IR objects reference
exception objects.

ValueDef
ValueBoxDef
ModuleDef

ConstantDef
TypedefDef
ExceptionDef

[Abstract | local]InterfaceDef

ValueDef

ValueBoxDef
ModuleDef

value boxes and modules that are defined outside

value boxes and other modules defined within

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef Operation IR objects reference

exception objects.

A Valuetype IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

ValueMemberDef
10-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

sible

ue.
ce

tion

ory.

9-1

ions

 and
Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is pos
to obtain entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally uniq
By using the same identifier in two repositories, it is possible to obtain the interfa
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional informa
about the interface.

Analogous operations are provided for manipulating value types.

10.5 Interface Repository Interfaces

Several interfaces are used as base interfaces for objects in the IR. These base
interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Reposit
These operations are defined in the interfaces IRObject , Container , and Contained
described below. All IR objects inherit from the IRObject interface, which provides an
operation for identifying the actual type of the object. Objects that are containers
inherit navigation operations from the Container interface. Objects that are contained
by other objects inherit navigation operations from the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types. The TypedefDef interface is
inherited by all named non-interface types.

The base interfaces IRObject , Contained , Container , IDLType , and TypedefDef
are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 885
coded character set.

Interface Repository operations indicate error conditions using the system except
BAD_PARAM and BAD_INV_ORDER with specific minor codes. The specific
operations that raise these exceptions are documented in the description of the
operations. For a description of how these minor codes are encoded in the ex_body of
standard exceptions see Section 4.11.2, “System Exceptions,” on page 4-50 and
Section 4.11.4, “Standard Minor Exception Codes,” on page 4-59. The exceptions
minor codes that are used by Interface Repository interfaces are as follows:

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception Minor Code Explanation

BAD_PARAM 2 RID is already defined in IFR

3 Name already used in the context in IFR

4 Target is not a valid container
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-9

10

lue
d

s

10.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface

};
};

Identifier s are the simple names that identify modules, interfaces, value types, va
members, value boxes, constants, typedefs, exceptions, attributes, operations, an
native types. They correspond exactly to OMG IDL identifiers. An Identifier is not
necessarily unique within an entire Interface Repository; it is unique only within a
particular Repository, ModuleDef , InterfaceDef , ValueDef or OperationDef .

A ScopedName is a name made up of one or more Identifier s separated by the
characters “::”. They correspond to OMG IDL scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifie
a definition in a Repository . An absolute ScopedName in a Repository
corresponds to a global name in an OMG IDL file. A relative ScopedName does not
begin with “:: ” and must be resolved relative to some context.

5 Name clash in inherited context

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this
object

2 Attempt to destroy indestructible objects in IFR

Table 10-1Standard Exceptions used by the Interface Repository Operations

Exception Minor Code Explanation
10-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

e

g

se

t
ept
A RepositoryId is an identifier used to uniquely and globally identify a module,
interface, value type, value member, value box, native type, constant, typedef,
exception, attribute or operation. As RepositoryId s are defined as strings, they can b
manipulated (e.g., copied and compared) using a language binding’s string
manipulation routines.

A DefinitionKind identifies the type of an IR object.

10.5.2 IRObject

The base interface IRObject represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};
};

10.5.2.1 Read Interface

The def_kind type_name attribute identifies the type of the definition.

10.5.2.2 Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container ,
destroy is applied to all its contents. If the object contains an IDLType attribute for an
anonymous type, that IDLType is destroyed. If the object is currently contained in
some other object, it is removed. If destroy is invoked on a Repository or on a
PrimitiveDef then the BAD_INV_ORDER exception is raised with minor value 2.
Implementations may vary in their handling of references to an object that is bein
destroyed, but the Repository should not be left in an incoherent state. Attempt to
destroy an object that would leave the repository in an incoherent state shall cau
BAD_INV_ORDER exception to be raised with the minor code 1.

10.5.3 Contained

The base interface Contained is inherited by all Interface Repository interfaces tha
are contained by other IR objects. All objects within the Interface Repository, exc
the root object (Repository) and definitions of anonymous (ArrayDef , StringDef,
WstringDef, FixedDef and SequenceDef), and primitive types are contained by
other objects.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-11

10

ration
module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

};

10.5.3.1 Read Interface

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing
Container object. It also has a version attribute that distinguishes it from other
versioned objects with the same name . IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions will require mechanisms and policy not specified in this document.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the ope
from another interface). If an object is contained through inheritance, the defined_in
attribute identifies the InterfaceDef or ValueDef from which the object is inherited.
10-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

t is
r
nherit

ce.
e

ed

he

re
The absolute_name attribute is an absolute ScopedName that identifies a
Contained object uniquely within its enclosing Repository . If this object’s
defined_in attribute references a Repository , the absolute_name is formed by
concatenating the string “::” and this object’s name attribute. Otherwise, the
absolute_name is formed by concatenating the absolute_name attribute of the
object referenced by this object’s defined_in attribute, the string “:: ”, and this object’s
name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The within operation returns the list of objects that contain the object. If the objec
an interface or module it can be contained only by the object that defines it. Othe
objects can be contained by the objects that define them and by the objects that i
them.

The describe operation returns a structure containing information about the interfa
The description structure associated with each interface is provided below with th
interface’s definition. The kind of definition described by name of the structure
returned is provided with the returned structure. The kind field of the returned
Description struct shall give the DefinitionKind for the most derived type of the
object. For example, if the describe operation is invoked on an attribute object, the
kind field contains dk_Attribute name field contains “AttributeDescription” and the
value field contains an any, which contains the AttributeDescription structure. The
kind field in this must contain dk_attribute and not the kind of any IRObject from
which the attribute object is derived. For example returning dk_all would be an error.

10.5.3.2 Write Interface

Setting the id attribute changes the global identity of this definition. A BAD_PARAM
exception is raised with minor code 2 if an object with the specified id attribute
already exists within this object’s Repository .

Setting the name attribute changes the identity of this definition within its Container .
A BAD_PARAM exception is raised with minor code 1 if an object with the specifi
name attribute already exists within this object’s Container . The absolute_name
attribute is also updated, along with any other attributes that reflect the name of t
object. If this object is a Container , the absolute_name attribute of any objects it
contains are also updated.

The move operation atomically removes this object from its current Container , and
adds it to the Container specified by new_container must satisfy the following
conditions:

• It must be in the same Repository. If it is not, then BAD_PARAM exception is
raised with minor code 4.

• It must be capable of containing this object’s type (see Section 10.4.4, “Structu
and Navigation of the Interface Repository,” on page 10-7). If it is not, then
BAD_PARAM exception is raised with minor code 4.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-13

10

e
• It must not already contain an object with this object’s name (unless multiple
versions are supported by the IR). If this condition is not satisfied, then
BAD_PARAM exception is raised with minor code 3.

The name attribute is changed to new_name , and the version attribute is changed to
new_version .

The defined_in and absolute_name attributes are updated to reflect the new
container and name . If this object is also a Container , the absolute_name
attributes of any objects it contains are also updated.

10.5.4 Container

The base interface Container is used to form a containment hierarchy in the Interfac
Repository. A Container can contain any number of objects derived from the
Contained interface. All Container s, except for Repository , are also derived from
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs
10-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-15

10
in InterfaceDefSeq base_interfaces,
);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

AbstractInterfaceDef create_abstract_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
};

};
10-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

 with

d
.
ects
e
, and
10.5.4.1 Read Interface

The lookup operation locates a definition relative to this container given a scoped
name using OMG IDL’s name scoping rules. An absolute scoped name (beginning
“::”) locates the definition relative to the enclosing Repository . If no object is found,
a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherite
into the object. The operation is used to navigate through the hierarchy of objects
Starting with the Repository object, a client uses this operation to list all of the obj
contained by the Repository, all of the objects contained by the modules within th
Repository, and then all of the interfaces and value types within a specific module
so on.

limit_type If limit_type is set to dk_all “all”, objects of all
interface types are returned. For example, if this is an
InterfaceDef , the attribute, operation, and exception
objects are all returned. If limit_type is set to a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute
“AttributeDef”.

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE , all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.

The lookup_name operation is used to locate an object by name within
a particular object or within the objects contained by that object. Use of
values of levels_to_search of 0 or of negative numbers other than -1 is
undefined.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well.

Setting levels_to_search to -1 searches the current object and all
contained objects. Setting levels_to_search to 1 searches only the
current object. Use of values of levels_to_search of 0 or of negative
numbers other than -1 is undefined.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-17

10

es

a

10.5.4.2 Write Interface

The Container interface provides operations to create ModuleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, InterfaceDef s, ValueDef s
ValueBoxDef s, and NativeDef s as contained objects. The defined_in attribute of a
definition created with any of these operations is initialized to identify the Container
on which the operation is invoked, and the containing_repository attribute is
initialized to its Repository .

The create_<type> operations all take id and name parameters that are used to
initialize the identity of the created definition. A BAD_PARAM exception is raised
with minor code 2 if an object with the specified id already exists in the Repository .
A BAD_PARAM exception with minor code 3 is raised if the specified name already
exists within this Container and multiple versions are not supported.Certain interfac
derived from Container may restrict the types of definitions that they may contain.
Any create_<type> operation that would insert a definition that is not allowed by
Container will raise the BAD_PARAM exception with minor code 4.

The create_module operation returns a new empty ModuleDef . Definitions can be
added using Container::create_<type> operations on the new module, or by using
the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type
and value .

The create_struct operation returns a new StructDef with the specified members .
The type member of the StructMember structures is ignored, and should be set to
TC_void . See Section 10.5.10, “StructDef,” on page 10-23 for more information.

The create_union operation returns a new UnionDef with the specified
discriminator_type and members . The type member of the UnionMember
structures is ignored, and should be set to TC_void . See Section 10.5.11, “UnionDef,”
on page 10-24 for more information.

The create_enum operation returns a new EnumDef with the specified members .
See Section 10.5.12, “EnumDef,” on page 10-25 for more information.

The create_alias operation returns a new AliasDef with the specified
original_type .

The describe_contents operation combines the contents operation and
the describe operation. For each object returned by the contents
operation, the description of the object is returned (i.e., the object’s
describe operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.
10-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

s

g
The create_interface operation returns a new empty InterfaceDef with the specified
base_interfaces . Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new InterfaceDef . OperationDefs
can be added using InterfaceDef::create_operation and AttributeDefs can be
added using Interface::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_abstract_interface operation returns a new empty
AbstractInterfaceDef with the specified base_interfaces . Type, exception, and
constant definitions can be added using Container::create_<type> operations on the
new AbstractInterfaceDef . OperationDef s can be added using
AbstractInterfaceDef::create_operation and AttributeDef s can be added using
AbstractInterfaceDef::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_local_interface operation returns a new empty LocalInterfaceDef with
the specified base_interfaces . Type, exception, and constant definitions can be
added using Container::create_<type> operations on the new LocalInterfaceDef .
OperationDef s can be added using LocalInterfaceDef::create_operation and
AttributeDef s can be added using LocalInterfaceDef::create_attribute .
Definitions can also be added using the Contained::move operation.

The create_value operation returns a new empty ValueDef with the specified base
interfaces and values (base_value , supported_interfaces , and
abstract_base_values) as well as the other information describing the new value
characteristics (is_custom , is_abstract , is_truncatable , and initializers). Type,
exception, and constant definitions can be added using Container::create_<type>
operations on the new ValueDef . OperationDefs can be added using
ValueDef::create_operation and AttributeDefs can be added using
Value::create_attribute . Definitions can also be added using the Contained::move
operation.

The create_value_box operation returns a new ValueBoxDef with the specified
original_type_def .

The create_exception operation returns a new ExceptionDef with the specified
members. The type member of the StructMember structures should be set to
TC_void .

The create_native operation returns a new NativeDef with the specified name .

10.5.5 IDLType

The base interface IDLType is inherited by all IR objects that represent OMG IDL
types. It provides access to the TypeCode describing the type, and is used in definin
other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {

readonly attribute TypeCode type;
};
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-19

10

 The
pes,

nt

};

The type attribute describes the type defined by an object derived from IDLType .

10.5.6 Repository

Repository is an interface that provides global access to the Interface Repository.
Repository object can contain constants, typedefs, exceptions, interfaces, value ty
value boxes, native types, and modules. As it inherits from Container , it can be used
to look up any definition (whether globally defined or defined within a module or
interface) either by name or by id .

Since Repository derives only from Container and not from Contained , it does not
have a RepositoryId associated with it. By default it is deemed to have the
RepositoryId "" (the empty string) for purposes of assigning a value to the
defined_in field of the description structure of ModuleDef , InterfaceDef ,
ValueDef , ValueBoxDef, TypedefDef , ExceptionDef , and ConstantDef that are
contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environme
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.

module CORBA {
interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);
10-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

f

in

FixedDef create_fixed(
in unsigned short digits,
in short scale

);
};

};

10.5.6.1 Read Interface

The lookup_id operation is used to lookup an object in a Repository given its
RepositoryId . If the Repository does not contain a definition for search_id , a nil
object reference is returned. The lookup_id operations always return a nil reference i
the value of search_id is IDL:omg.org/CORBA/Object:1.0 , or
IDL:omg.org/CORBA/ValueBase:1.0 , signifying the fact that the implicit base
types are not contained in the Interface Repository.

The get_canonical_typecode operation looks up the TypeCode in the Interface
Repository and returns an equivalent TypeCode that includes all repository ids ,
names , and member_names . If the top level TypeCode does not contain a
RepositoryId , such as array and sequence TypeCodes , or TypeCodes from older
ORBs, or if it contains a RepositoryId that is not found in the target Repository ,
then a new TypeCode is constructed by recursively calling
get_canonical_typecode on each member TypeCode of the original TypeCode .

The get_primitive operation returns a reference to a PrimitiveDef (see
Section 10.5.14, “PrimitiveDef,” on page 10-26) with the specified kind attribute. All
PrimitiveDef s are immutable and are owned by the Repository .

10.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous
types. As these interfaces are not derived from Contained , it is the caller’s
responsibility to invoke destroy on the returned object if it is not successfully used
creating a definition that is derived from Contained . Each anonymous type definition
must be used in defining exactly one other object.

1. The create_string operation returns a new StringDef with the specified bound ,
which must be non-zero. The get_primitive operation is used for unbounded
strings.

2. The create_wstring operation returns a new WstringDef with the specified
bound , which must be non-zero. The get_primitive operation is used for
unbounded strings.

3. The create_sequence operation returns a new SequenceDef with the specified
bound and element_type .

4. The create_array operation returns a new ArrayDef with the specified length
and element_type .
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-21

10

,

ions
5. The create_fixed operation returns a new FixedDef with the specified number of
digits and scale. The number of digits must be from 1 to 31, inclusive.

10.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types
value boxes, native types and other module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};
};

The inherited describe operation for a ModuleDef object returns a
ModuleDescription .

10.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};
};

10.5.8.1 Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The
type of a constant must be one of the primitive types allowed in constant declarat
(see Section 3.9, “Constant Declaration,” on page 3-29). The type_def attribute
identifies the definition of the type of the constant.
10-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

alue

The value attribute contains the value of the constant, not the computation of the v
(e.g., the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription .

10.5.8.2 Write Interface

Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to
the type attribute of the ConstantDef .

10.5.9 TypedefDef

The base interface TypedefDef is inherited by all named non-object.types (structures,
unions, enumerations, and aliases). The TypedefDef interface is not inherited by the
definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription .

10.5.10 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {

struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-23

10

ited

};
};

10.5.10.1 Read Interface

The members attribute contains a description of each structure member. The inher
type attribute is a tk_struct TypeCode describing the structure.

10.5.10.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure should be set
to TC_void .

A StructDef used as a Container may only contain StructDef , UnionDef , or
EnumDef definitions.

10.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

10.5.11.1 Read Interface

The discriminator_type and discriminator_type_def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member. The label of
each UnionMemberDescription is a distinct value of the discriminator_type .
Adjacent members can have the same name . Members with the same name must also
have the same type . A label with type octet and value 0 indicates the default union
member.

The inherited type attribute is a tk_union TypeCode describing the union.
10-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
10.5.11.2 Write Interface

Setting the discriminator_type_def attribute also updates the discriminator_type
attribute and setting the discriminator_type_def or members attribute also updates
the type attribute.

When setting the members attribute, the type member of the UnionMember
structure should be set to TC_void .

A UnionDef used as a Container may only contain StructDef , UnionDef , or
EnumDef definitions.

10.5.12 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};
};

10.5.12.1 Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

10.5.12.2 Write Interface

Setting the members attribute also updates the type attribute.

10.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};

10.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-25

10

s

The inherited type attribute is a tk_alias TypeCode describing the alias.

10.5.13.2 Write Interface

Setting the original_type_def attribute also updates the type attribute.

10.5.14 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived from TypedefDef or Contained .

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};
};

The kind attribute indicates which primitive type the PrimitiveDef represents. There
are no PrimitiveDef s with kind pk_null . A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
IDL type Object . A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase .

The inherited type attribute describes the primitive type.

All PrimitiveDef s are owned by the Repository. References to them are obtained
using Repository::get_primitive .

10.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type i
represented as a PrimitiveDef . As string types are anonymous, this interface is not
derived from TypedefDef or Contained .

module CORBA {
interface StringDef : IDLType {

attribute unsigned long bound;
};

};
10-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

d

is

ous,
The bound attribute specifies the maximum number of characters in the string an
must not be zero. The inherited type attribute is a tk_string TypeCode describing
the string.

10.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented as a PrimitiveDef . As wide string types are anonymous, this interface
not derived from TypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of wide characters in a wide
string, and must not be zero. The inherited type attribute is a tk_wstring TypeCode
describing the wide string.

10.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {

attribute unsigned short digits;
attribute short scale;

};
};

The digits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. The scale attribute specifies the position of the
decimal point.

The inherited type attribute is a tk_fixed TypeCode , which describes a fixed-point
decimal number.

10.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonym
this interface is not derived from TypedefDef or Contained .

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-27

10

 A

.

10.5.18.1 Read Interface

The bound attribute specifies the maximum number of elements in the sequence.
bound of zero indicates an unbounded sequence.

The type of the elements is described by element_type and identified by
element_type_def . The inherited type attribute is a tk_sequence TypeCode
describing the sequence.

10.5.18.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute.
Setting the bound or element_type_def attribute also updates the type attribute.

10.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived from TypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};

10.5.19.1 Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by
element_type_def . Since an ArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects, one
per array dimension. The element_type_def attribute of the ArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to the ArrayDef
representing the next index to the right, and so on. The innermost ArrayDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array

The inherited type attribute is a tk_array TypeCode describing the array.

10.5.19.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute.
Setting the bound or element_type_def attribute also updates the type attribute.
10-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

s,

s

e.
10.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, union
and enums.

module CORBA {
interface ExceptionDef : Contained, Container {

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

10.5.20.1 Read Interface

The type attribute is a tk_except TypeCode describing the exception. The member
attribute describes any exception members. The describe operation for a
ExceptionDef object returns an ExceptionDescription .

10.5.20.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure is ignored and
should be set to TC_void .

An ExceptionDef used as a Container may only contain StructDef , UnionDef , or
EnumDef definitions.

10.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interfac

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-29

10

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};
};

10.5.21.1 Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an
AttributeDescription .

10.5.21.2 Write Interface

Setting the type_def attribute also updates the type attribute.

10.5.22 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
10-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

 of

r

g

kes
single

 the
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};
};

10.5.22.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the
operation. The result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence
ParameterDescription structures. The order of the ParameterDescription s in the
sequence is significant. The name member of each structure provides the paramete
name. The type member is a TypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. The mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.

The kind attribute indicates whether the OperationDef represents an IDL operation
(OP_IDL), or an accessor for a an IDL attribute (OP_ATTR). For an OperationDef
representing an attribute accessor, the name parameter is generated by concatenatin
either “_get_” or “_set_” with the name attribute of the corresponding AttributeDef .
Only the “_get_” accessor is provided for readonly attributes. A “_get_” accessor ta
no parameters and its result type is the attribute type. A “_set_” accessor takes a
in parameter of the attribute type, and its result type is void. The mode attribute of
accessor operations is OP_NORMAL . Accessor OperationDef s are contained in the
same OperationDef s as their corresponding AttributeDef s.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

The exceptions attribute specifies the list of exception types that can be raised by
operation.

The inherited describe operation for an OperationDef object returns an
OperationDescription .
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-31

10
10.5.22.2 Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if the result is TC_void and all
elements of params have a mode of PARAM_IN .

10.5.23 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);
10-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

r

 If
OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};
};

10.5.23.1 Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits.

The is_a operation returns TRUE if the interface on which it is invoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE . If the value of interface_id is
IDL:omg.org/CORBA/Object:1.0 , is_a returns TRUE signifying the fact that all
interfaces are implicitly derived from the base type Object .

The describe_interface operation returns a FullInterfaceDescription describing
the interface, including its operations and attributes. The operations and attributes
fields of the FullInterfaceDescription structure include descriptions of all of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

The inherited describe operation for an InterfaceDef returns an
InterfaceDescription .

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations eithe
defined or inherited in this InterfaceDef . If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned.
the exclude_inherited parameter is set to FALSE , all attributes and operations are
returned.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-33

10

se

n

n

s. Its
10.5.23.2 Write Interface

Setting the base_interfaces attribute causes a BAD_PARAM exception with minor
code 5 to be raised if the name attribute of any object contained by this InterfaceDef
conflicts with the name attribute of any object contained by any of the specified ba
InterfaceDef s.

The create_attribute operation returns a new AttributeDef contained in the
InterfaceDef on which it is invoked. The id , name , version, type_def , and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute
is initialized to identify the containing InterfaceDef . A BAD_PARAM exception
with standard minor code 2 is raised if an object with the specified id already exists in
the Repository . BAD_PARAM exception with standard minor code 3 is raised if a
object with the same name already exists in this InterfaceDef .

The create_operation operation returns a new OperationDef contained in the
InterfaceDef on which it is invoked. The id , name , version , result_def , mode ,
params , exceptions , and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
InterfaceDef . A BAD_PARAM exception with standard minor code 2 is raised if a
object with the specified id already exists in the Repository . BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name
already exists in this InterfaceDef .

An InterfaceDef used as a Container may only contain TypedefDef , (including
definitions derived from TypedefDef), ConstantDef , and ExceptionDef definitions.

10.5.24 AbstractInterfaceDef

An AbstractInterfaceDef object represents a CORBA 2.3 abstract interface
definition. It can contain constants, typedefs, exceptions, operations, and attribute
base interfaces can only contain AbstractInterfaceDef s.

module CORBA {
interfaceAbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;

interface AbstractInterfaceDef : InterfaceDef {
};

};

10.5.24.1 Read Interface

The inherited base_interfaces attribute returns a list of abstract interfaces from
which this abstract interface inherits.

Note – base_interfaces is of type InterfaceDefSeq , but since
AbstractInterfaceDef is derived from InterfaceDef , a list of
AbstractInterfaceDefs can legitimately be returned in an InterfaceDefSeq .
10-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

ned

he

n only
The inherited is_a operation returns TRUE if the interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the abstract interface
identified by its interface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/AbstractBase:1.0 . Otherwise it returns FALSE .

The inherited describe_interface operation returns a FullInterfaceDescription
describing the abstract interface, including its operations and attributes.

The inherited describe operation for an AbstractInterfaceDef returns an
InterfaceDescription .

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this AbstractInterfaceDef and the list of attributes and
operations either defined or inherited in this AbstractInterfaceDef . If the
exclude_inherited parameter is set to TRUE, only attributes and operations defined
within this abstract interface are returned. If the exclude_inherited parameter is set
to FALSE , all attributes and operations are returned.

10.5.24.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contai
by this AbstractInterfaceDef conflicts with the name attribute of any object
contained by any of the specified base AbstractInterfaceDef s. If any of the
InterfaceDef s in base_interface are not AbstractInterfaceDef s then a
BAD_PARAM exception with standard minor code 11 is raised.

The inherited create_attribute operation returns a new AttributeDef contained in
the AbstractInterfaceDef on which it is invoked. The id , name , version ,
type_def , and mode attributes are set as specified. The type attribute is also set. The
defined_in attribute is initialized to identify the containing AbstractInterfaceDef .
A BAD_PARAM exception with standard minor code 2 is raised if an object with t
specified id already exists in the Repository . BAD_PARAM exception with
standard minor code 3 is raised if an object with the same name already exists in this
AbstractInterfaceDef .

The inherited create_operation operation returns a new OperationDef contained in
the AbstractInterfaceDef on which it is invoked. The id , name , version ,
result_def , mode , params , exceptions , and contexts attributes are set as
specified. The result attribute is also set. The defined_in attribute is initialized to
identify the containing AbstractInterfaceDef . A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specified id already exists in the
Repository . BAD_PARAM exception with standard minor code 3 is raised if an
object with the same name already exists in this AbstractInterfaceDef .

10.5.25 LocalInterfaceDef

An LocalInterfaceDef object represents a local interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes. Its base interfaces ca
contain InterfaceDefs or LocalInterfaceDefs .
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-35

10

e,

ed

s

ned

e
module CORBA {
interfaceLocalInterfaceDef;
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;

interface LocalInterfaceDef : InterfaceDef {
};

};

10.5.25.1 Read Interface

The inherited base_interfaces attribute returns a list of interfaces, local or otherwis
from which this local interface inherits.

Note – base_interfaces is of type InterfaceDefSeq , but since LocalInterfaceDef
is derived from InterfaceDef , a list that consists of some regular InterfaceDefs and
some LocalInterfaceDefs can legitimately be returned in an InterfaceDefSeq .

The inherited is_a operation returns TRUE if the local interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the local interface identifi
by its interface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/LocalBase:1.0 . Otherwise it returns FALSE .

The inherited describe_interface operation returns a FullInterfaceDescription
describing the local interface, including its operations and attributes.

The inherited describe operation for a LocalInterfaceDef returns an
InterfaceDescription .

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this LocalInterfaceDef and the list of attributes and operation
either defined or inherited in this LocalInterfaceDef . If the exclude_inherited
parameter is set to TRUE, only attributes and operations defined within this local
interface are returned. If the exclude_inherited parameter is set to FALSE , all
attributes and operations are returned.

10.5.25.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contai
by this LocalInterfaceDef conflicts with the name attribute of any object contained
by any of the specified base InterfaceDef s (local or otherwise).

The inherited create_attribute operation returns a new AttributeDef contained in
the LocalInterfaceDef on which it is invoked. The id , name , version , type_def ,
and mode attributes are set as specified. The type attribute is also set. The
defined_in attribute is initialized to identify the containing LocalInterfaceDef . A
BAD_PARAM exception with standard minor code 2 is raised if an object with th
10-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

e

.

.

specified id already exists in the Repository . BAD_PARAM exception with
standard minor code 3 is raised if an object with the same name already exists in this
LocalInterfaceDef .

The inherited create_operation operation returns a new OperationDef contained in
the LocalInterfaceDef on which it is invoked. The id , name , version , result_def ,
mode , params , exceptions , and contexts attributes are set as specified. The
result attribute is also set. The defined_in attribute is initialized to identify the
containing LocalInterfaceDef . A BAD_PARAM exception with standard minor
code 2 is raised if an object with the specified id already exists in the Repository .
BAD_PARAM exception with standard minor code 3 is raised if an object with th
same name already exists in this LocalInterfaceDef .

10.5.26 ValueMemberDef

A ValueMemberDef IR Object represents a value member.

module CORBA {
typedef short Visibility;

const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

};
};

10.5.26.1 Read Interface

The type attribute provides the TypeCode describing the type of this value member
The type_def attribute identifies the object defining the type of this value member
The access attribute specifies private or public access for this value member. The
describe operation for a ValueMemberDef object returns a ValueMember .
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-37

10

s,
10.5.26.2 Write Interface

Setting the type_def attribute also updates the type attribute.

10.5.27 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedef
exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};

typedef sequence<Initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
10-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};
};
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-39

10

ts.

l

rs

de to
10.5.27.1 Read Interface

The supported_interfaces attribute lists the interfaces that this value type suppor

The initializers attribute lists the initializers this value type supports.

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this
value inherits.

The is_abstract attribute is TRUE if the value is an abstract value type.

The is_custom attribute is TRUE if the value uses custom marshaling.

The is_truncatable attribute is TRUE if the value inherits “safely” (i.e., supports
truncation) from another value.

The is_a operation returns TRUE if the value on which it is invoked either is identica
to or inherits, directly or indirectly, from the interface or value identified by its id
parameter or if the value of id is IDL:omg.org/CORBA/ValueBase:1.0. Otherwise
it returns FALSE .

The describe_value operation returns a FullValueDescription describing the value,
including its operations and attributes.

The inherited describe operation for an ValueDef returns an ValueDescription .

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this ValueDef and the list of attributes, operations and membe
either defined or inherited in this ValueDef . If the exclude_inherited parameter is
set to TRUE, only attributes, operations and members defined within this value are
returned. If the exclude_inherited parameter is set to FALSE , all attributes,
operations and members are returned.

10.5.27.2 Write Interface

Setting the supported_interfaces, base_value, or abstract_base_values
attribute causes a BAD_PARAM exception with minor code 5 to be raised if the
name attribute of any object contained by this ValueDef conflicts with the name
attribute of any object contained by any of the specified bases. If an attempt is ma
set the supported_interfaces attribute to an InterfaceDefSeq that contains more
than one InterfaceDef that is not an AbstractInterfaceDef , then the BAD_PARAM
exception shall be raised with standard minor code 12.

The create_value_member operation returns a new ValueMemberDef contained in
the ValueDef on which it is invoked. The id , name , version, type_def , and access
attributes are set as specified. The type attribute is also set. The defined_in attribute
is initialized to identify the containing ValueDef . A BAD_PARAM exception with
minor code 2 is raised if an object with the specified id already exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the same name already exists in this ValueDef .
10-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

h

L
The create_attribute operation returns a new AttributeDef contained in the
ValueDef on which it is invoked. The id , name , version, type_def , and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute
is initialized to identify the containing ValueDef . A BAD_PARAM exception with
minor code 2 is raised if an object with the specified id already exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object
with the same name already exists in this ValueDef .

The create_operation operation returns a new OperationDef contained in the
ValueDef on which it is invoked. The id , name , version , result_def , mode ,
params , exceptions , and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
ValueDef . A BAD_PARAM exception with minor code 2 is raised if an object wit
the specified id already exists in the Repository . A BAD_PARAM exception with
minor code 3 is raised if an object with the same name already exists in this
ValueDef .

A ValueDef used as a Container may only contain TypedefDef , (including
definitions derived from TypedefDef), ConstantDef , and ExceptionDef definitions.

10.5.28 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the ID
type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {

attribute IDLType original_type_def;
};

};

10.5.28.1 Read Interface

The original_type_def attribute identifies the type being boxed. The inherited type
attribute is a tk_value_box TypeCode describing the value box.

10.5.28.2 Write Interface

Setting the original_type_def attribute also updates the type attribute.

10.5.29 NativeDef

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

};

The inherited type attribute is a tk_native TypeCode describing the native type.
CORBA, v2.4.2 Interface Repository Interfaces February 2001 10-41

10

 in
re,
atter

G

MG

d by

jor

se

e of
10.6 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information
the repository. A RepositoryId is represented as a string, allowing programs to sto
copy, and compare them without regard to the structure of the value. It does not m
what format is used for any particular RepositoryId . However, conventions are used
to manage the name space created by these IDs.

RepositoryId s may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OM
IDL source, or they might be supplied with the package to be installed. Ensuring
consistency of RepositoryId s with the IDL source or the IR contents is the
responsibility of the programmer allocating Repositoryid s.

The format of the id is a short format name followed by a colon (“:”) followed by
characters according to the format. This specification defines four formats:

1. one derived from OMG IDL names,

2. one that uses Java class names and Java serialization version UIDs,

3. one that uses DCE UUIDs, and

4. another intended for short-term use, such as in a development environment.

Since new repository ID formats may be added from time to time, compliant IDL
compilers must accept any string value of the form

“<format>:<string>”

provided as the argument to the id pragma and use it as the repository ID. The O
maintains a registry of allocated format identifiers. The <format> part of the ID may
not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generate
the IDL compiler using the IDL format.

10.6.1 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and ma
and minor version numbers.

The RepositoryId consists of three components, separated by colons, (“:”)

1. The first component is the format name, “IDL.”

2. The second component is a list of identifiers, separated by “/” characters. The
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_”),
hyphen (“-”), and period (“.”) characters. Typically, the first identifier is a unique
prefix, and the rest are the OMG IDL Identifiers that make up the scoped nam
the definition.
10-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

al

m)

 the
 in

nd
ay

a to
sed

h is

then

ed

3. The third component is made up of major and minor version numbers, in decim
format, separated by a “.”. When two interfaces have RepositoryId s differing only
in minor version number it can be assumed that the definition with the higher
version number is upwardly compatible with (i.e., can be treated as derived fro
the one with the lower minor version number.

10.6.2 RMI Hashed Format

The OMG IDL format defined above does not include any structural information.
Identity of IDL types determined for this format depends upon the names used in
RepositoryID being correct. For interfaces, if stubs and skeletons are not actually
synch, even though the RepositoryIds report they are, the worst that can happen is
that the result of an invocation is a BAD_OPERATION exception. With value types,
these kinds of errors are more problematic. An inconsistency between the stub a
skeleton marshaling/unmarshaling code can confuse the marshaling engine and m
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Jav
IDL Mapping (see the Java/IDL Language Mapping document). It is computed ba
upon the structural information of the original Java definition. Whenever the Java
definition changes, the hash function will (statistically) produce a hash code, whic
different from the previous one. When an ORB run time receives a value with a
different hash from what is expected, it is free to raise a BAD_PARAM exception. It
may also try to resolve the incompatibility by some means. If it is not successful,
it shall raise the BAD_PARAM exception.

An RMI Hashed RepositoryId consists of either three or four components, separat
by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned by the getName method of
java.lang.Class . Any characters not in ISO Latin 1 are replaced by “\U”
followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value.

For classes that do not implement java.io.Serializable , and for interfaces, the
hash code is always zero, and the RepositoryID does not contain a serial version
UID.

For classes that implement java.io.Externalizable , the hash code is always
the 64-bit value 1.

For classes that implement java.io.Serializable but not
java.io.Externalizable , the hash code is a 64-bit hash of a stream of bytes.
An instance of java.lang.DataOutputStream is used to convert primitive data
types to a sequence of bytes. The sequence of items in the stream is as follows:

1. The hash code of the superclass, written as a 64-bit long.
CORBA, v2.4.2 RepositoryIds February 2001 10-43

10

ava

e

a
x

n

ash

d
for
2. The value 1 if the class has no writeObject method, or the value 2 if the class
has a writeObject method, written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by J
field name, in increasing order:

a. Java field name, in UTF encoding

b. field descriptor, as defined by the Java Virtual Machine Specification, in UTF
encoding

The National Institute of Standards and Technology (NIST) Secure Hash Algorithm
(SHA-1) is executed on the stream of bytes produced by DataOutputStream ,
producing a 20 byte array of values, sha[0..19]. The hash code is assembled from th
first 8 bytes of this array as follows:

long hash = 0;
for (int i = 0; i < Math.min(8, sha.length); i++) {

hash += (long)(sha[i] & 255) << (i * 8);
}

If the actual serialization version UID for the Java class differs from the hash code,
colon and the actual serialization version UID (transcribed as a 16 digit upper-case he
string) shall be appended to the RepositoryId after the hash code.

Examples for the valuetype ::foo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetype ::foo::bar would be

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java class x\u03bCy that contains a Unicode character not in ISO Latin 1, a
example RepositoryId is

RMI:foo.x\U03BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard h
algorithm defined above.

10.6.3 DCE UUID Format

DCE UUID format RepositoryId s start with the characters “DCE:” and are followe
by the printable form of the UUID, a colon, and a decimal minor version number,
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1”.
10-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

y

s
nt to

e

t not
stood

ich

ll be
ne.
10.6.4 LOCAL Format

Local format RepositoryId s start with the characters “LOCAL:” and are followed b
an arbitrary string. Local format IDs are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local ID
that are just consecutive integers might be used within a development environme
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

10.6.5 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitrary RepositoryId formats and still support the OMG IDL RepositoryId format
with minimal annotation. The prefix and version pragma directives apply only to th
IDL format. An IDL compiler must interpret these annotations as specified.
Conforming IDL compilers may support additional non-standard pragmas, but mus
refuse to compile IDL source containing non-standard pragmas that are not under
by the compiler.

10.6.5.1 The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within wh
the pragma is contained.The <id> must be a repository ID of the form described in
Section 10.6, “RepositoryIds,” on page 10-42.

An attempt to assign a repository ID to the same IDL construct a second time sha
an error unless the repository ID used in the attempt is identical to the previous o

interface A {};
#pragma ID A “IDL:A:1.1”
#pragma ID A “IDL:X:1.1” // Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1”
#pragma ID B “IDL:BB:1.1” // OK, same ID

It is also an error to apply an ID to a forward-declared IDL construct (interface,
valuetype, structure, and union) and then later assign a different ID to that IDL
construct.

10.6.5.2 The Prefix Pragma

An OMG IDL pragma of the format:
CORBA, v2.4.2 RepositoryIds February 2001 10-45

10

on of
nd

nd
.
d so

 end
file
of the
#pragma prefix “<string>”

sets the current prefix used in generating OMG IDL format RepositoryId s. For
example, the RepositoryId for the initial version of interface Printer defined on
module Office by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0”.

This format makes it convenient to generate and manage a set of IDs for a collecti
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), a
the IDL compiler or other tool can synthesize all the needed IDs.

Because RepositoryId s may be used in many different computing environments a
ORBs, as well as over a long period of time, care must be taken in choosing them
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, an
forth, are preferable to generic names such as “document.”

The specified prefix applies to RepositoryIds generated after the pragma until the
of the current scope is reached or another prefix pragma is encountered. An IDL
forms a scope for this purpose, so a prefix resets to the previous prefix at the end
scope of an included file:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

// C.idl
interface C {};

// D.idl
#pragma prefix “D”
#include “C.idl”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly
resets to the empty prefix:
10-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

a

t have
fixes
// E.idl
interface E {};

// F.idl
module M {

 #include <E.idl>
 };

The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains
prefix pragma, the included file's prefix takes precedence, for example:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
module M {
#include “A.idl”
};

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) mus
the same prefix in effect wherever they appear. Attempts to assign conflicting pre
to a forward-declared construct result in a compile-time diagnostic. For example:

#pragma prefix “A”
interface A; // Forward decl.

#pragma prefix “B”
interface A; // Compile-time error

#pragma prefix “C”
interface A { // Compile-time error

void op();
};

A prefix pragma of the form

#pragma prefix “”

resets the prefix to the empty string. For example:
CORBA, v2.4.2 RepositoryIds February 2001 10-47

10

refix

a

ame

with
#pragma prefix “X”
interface X {};
#pragma prefix “”
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the p
pragma does not affect the repository ID for an ID pragma, but does affect the
repository ID for a version pragma:

#pragma prefix “A”
interface A {};
interface B {};
interface C {};
#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

The repository IDs for this specification are

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing
#pragma prefix elsewhere has undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior
{
// ...

};

10.6.5.3 The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
RepositoryId for a specific OMG IDL name. The <name> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL n
lookup rules relative to the scope within which the pragma is contained. The <major>
and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified
an ID pragma, a compliant compiler shall emit a diagnostic:
10-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

e, a
 is in

fix
 of
plies
e
interface A {};
#pragma ID A “IDL:myA:1.1”
#pragma version A 9.9 // Compile-time error

If an attempt is made to assign a version to the same IDL construct a second tim
compile-time diagnostic shall be emitted, regardless of whether the second version
conflict or not:

interface A {};
#pragma version A 1.1
#pragma version A 2.2 // Compile-time error

interface B {};
#pragma version B 1.1
#pragma version B 1.1 // Compile-time error

10.6.5.4 Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID
pragma is encountered for it.

The ID string can be generated by starting with the string “IDL:”. Then, if any pre
pragma applies, it is appended, followed by a “/” character. Next, the components
the scoped name of the definition, relative to the scope in which any prefix that ap
was encountered, are appended, separated by “/” characters. Finally, a “:” and th
version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};

specifies types with the following scoped names and RepositoryId s:

::M1::T1IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
CORBA, v2.4.2 RepositoryIds February 2001 10-49

10

ue.
.

pes,

IDs
even

gma

ut

 the
::M2::M3::T3IDL:P2/T3:1.0

::M2::T4IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be uniq
Two non-colliding options are suggested: Internet domain names and DCE UUIDs

Furthermore, in a distributed world where different entities independently evolve ty
a convention must be followed to avoid the same RepositoryId being used for two
different types. Only the entity that created the prefix has authority to create new
by simply incrementing the version number. Other entities must use a new prefix,
if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};
typedef long T4;

#pragma version T4 2.4
};

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

10.6.6 For More Information

Section 10.8, “OMG IDL for Interface Repository,” on page 10-60 shows the OMG
IDL specification of the IR, including the #pragma directive. Section 3.3,
“Preprocessing,” on page 3-11 contains additional, general information on the pra
directive.

10.6.7 RepositoryIDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including b
not limited to CORBA, CORBA Services, and CORBA Facilities, depends on
unambiguous specification of RepositoryId s for all IDL-defined types in such
specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of
file (e.g., “w3c.org ”).
10-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

ting
es,

y the

es.

face
sitory

te
Revisions to existing OMG specifications must not change the definition of an exis
type in any way. Two types with different repository Ids are considered different typ
regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability
requires it to derive a new interface from the standard interface, rather than modif
standard definition.

10.7 TypeCodes

TypeCode s are values that represent invocation argument types and attribute typ
They can be obtained from the Interface Repository or from IDL compilers.

TypeCode s have a number of uses. They are used in the dynamic invocation inter
to indicate the types of the actual arguments. They are used by an Interface Repo
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of the any type.

Abstractly, TypeCode s consist of a “kind” field, and a set of parameters appropria
for that kind. For example, the TypeCode describing OMG IDL type long has kind
tk_long and no parameters. The TypeCode describing OMG IDL type
sequence<boolean,10> has kind tk_sequence and two parameters: 10 and
boolean .

10.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;
CORBA, v2.4.2 TypeCodes February 2001 10-51

10
interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, tk_value,
// and tk_except
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value
Visibility member_visibility(in unsigned long index)
10-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

om

 for

on

he
raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
};

With the above operations, any TypeCode can be decomposed into its constituent
parts. The BadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode . The equal operation returns
TRUE if and only if for the target TypeCode and the TypeCode passed through the
parameter tc, the set of legal operations is the same and invoking any operation fr
that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence
values stored in an IDL any. TypeCodes are considered equivalent based on the
following semantics:

• If the result of the kind operation on either TypeCode is tk_alias , recursively
replace the TypeCode with the result of calling content_type , until the kind is no
longer tk_alias .

• If results of the kind operation on each typecode differ, equivalent returns false.

• If the id operation is valid for the TypeCode kind , equivalent returns TRUE if
the results of id for both TypeCodes are non-empty strings and both strings are
equal. If both ids are non-empty but are not equal, then equivalent returns FALSE .
If either or both id is an empty string, or the TypeCode kind does not support the
id operation, equivalent will perform a structural comparison of the TypeCodes
by comparing the results of the other TypeCode operations in the following bullet
items (ignoring aliases as described in the first bullet.). The structural comparis
only calls operations that are valid for the given TypeCode kind . If any of these
operations do not return equal results, then equivalent returns FALSE . If all
comparisons are equal, equivalent returns true.

• The results of the name and member_name operations are ignored and not
compared.

• The results of the member_count , default_index , length , digits , scale, and
type_modifier operations are compared.

• The results of the member_label operation for each member index of a union
TypeCode are compared for equality. Note that this means that unions whose
members are not defined in the same order are not considered structurally
equivalent.

• The results of the discriminator_type, member_type , and
concrete_base_type operation and for each member index, and the result of t
content_type operation are compared by recursively calling equivalent .

• The results of the member_visibility operation are compared for each member
index.
CORBA, v2.4.2 TypeCodes February 2001 10-53

10

type

,

as the
 the

or a
Applications that need to distinguish between a type and different aliases of that
can supplement equivalent by directly invoking the id operation and comparing the
results.

The get_compact_typecode operation strips out all optional name and member
name fields, but it leaves all alias typecodes intact.

The kind operation can be invoked on any TypeCode . Its result determines what
other operations can be invoked on the TypeCode .

The id operation can be invoked on object reference, valuetype, boxed valuetype,
abstract interface, local interface, native, structure, union, enumeration, alias, and
exception TypeCode s. It returns the RepositoryId globally identifying the type.
Object reference, valuetype, boxed valuetype, native and exception TypeCode s
always have a RepositoryId . Structure, union, enumeration, and alias TypeCode s
obtained from the Interface Repository or the ORB::create_operation_list operation
also always have a RepositoryId . Otherwise, the id operation can return an empty
string. When the id operation is invoked on an object reference TypeCode that
contains a base Object , the returned value is IDL:omg.org/CORBA/Object:1.0 ,
When it is invoked on a valuetype TypeCode that contains a ValueBase , the returned
value is IDL:omg.org/CORBA/ValueBase:1.0 .

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, abstract interface, local interface, value type, boxed valuetype
native, and exception TypeCode s. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository , the name returned
from a TypeCode may not match the name of the type in any particular Repository ,
and may even be an empty string.

The order in which members are presented in the interface repository is the same
order in which they appeared in the IDL specification, and this ordering determines
index value for each member. The first member has index value 0. For example f
structure definition:

struct example {
short member1;
short member2;
long member3;

};

In this example member1 has index = 0, member2 has index = 1, and member3
has index = 2. The value of member_count in this case is 3.

The member_count and member_name operations can be invoked on structure,
union, non-boxed valuetype, exception, and enumeration TypeCode s.
Member_count returns the number of members constituting the type.
Member_name returns the simple name of the member identified by index . Since
names are local to a Repository , the name returned from a TypeCode may not match
the name of the member in any particular Repository , and may even be an empty
string.
10-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

e
he
no

ber

 and
es, it

i-

e

 an
e

 the

with

,
The member_type operation can be invoked on structure, non-boxed valuetype,
exception and union TypeCode s. It returns the TypeCode describing the type of the
member identified by index .

The member_label , discriminator_type , and default_index operations can only
be invoked on union TypeCode s. Member_label returns the label of the union
member identified by index . For the default member, the label is the zero octet. Th
discriminator_type operation returns the type of all non-default member labels. T
default_index operation returns the index of the default member, or -1 if there is
default member.

The member_visibility operation can only be invoked on non-boxed valuetype
TypeCodes . It returns the Visibility of the valuetype member identified by index.

The member_name , member_type , member_label and member_visibility
operations raise Bounds if the index parameter is greater than or equal to the num
of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype
alias TypeCode s. For sequences and arrays, it returns the element type. For alias
returns the original type. For boxed valuetype, it returns the boxed type.

An array TypeCode only describes a single dimension of an OMG IDL array. Mult
dimensional arrays are represented by nesting TypeCode s, one per dimension. The
outermost tk_array Typecode describes the leftmost array index of the array as
defined in IDL. Its content_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-
boxed valuetype TypeCodes . The type_modifier operation returns the
ValueModifier that applies to the valuetype represented by the target TypeCode . If
the valuetype represented by the target TypeCode has a concrete base valuetype, th
concrete_base_type operation returns a TypeCode for the concrete base, otherwise
it returns a nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bound, with zero indicating
unbounded string or sequence. For arrays, it returns the number of elements in th
array. For wide strings, it returns the bound, or zero for unbounded wide strings.

10.7.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a
TypeCode constant. See the language mapping rules for more information about
names of the generated TypeCode constants. TypeCode constants include tk_alias
definitions wherever an IDL typedef is referenced. These constants can be used
the dynamic invocation interface and other routines that require TypeCodes .

The predefined TypeCode constants, named according to the C language mapping
are:
CORBA, v2.4.2 TypeCodes February 2001 10-55

10

d in

TC_null
TC_void
TC_short
TC_long
TC_longlong
TC_ushort
TC_ulong
TC_ulonglong
TC_float
TC_double
TC_longdouble
TC_boolean
TC_char
TC_wchar
TC_octet
TC_any
TC_TypeCode
TC_Object = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{0}/// unbounded
TC_ValueBase = tk_value {ValueBase}

For the TC_Object TypeCode constant, calling id returns
"IDL:omg.org/CORBA/Object:1.0 " and calling name returns "Object ." For the
TC_ValueBase TypeCode constant, calling id returns
"IDL:omg.org/CORBA/ValueBase:1.0 ," calling name returns "ValueBase ,"
calling member_count returns 0, calling type_modifier returns
CORBA::VM_NONE , and calling concrete_base_type returns a nil TypeCode .

10.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specifie
terms of object references, and the TypeCode s describing them are generated
automatically.

In some situations, such as bridges between ORBs, TypeCode s need to be constructed
outside of any Interface Repository. This can be done using operations on the ORB
pseudo-object.

module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id;
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
10-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);
CORBA, v2.4.2 TypeCodes February 2001 10-57

10

ype

e
TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);
};

};

Most of these operations are similar to corresponding IR operations for creating t
definitions. TypeCode s are used here instead of IDLType object references to refer to
other types. In the StructMember , UnionMember and ValueMember structures,
only the type is used, and the type_def should be set to nil.

Typecode creation operations that take name as an argument shall check that the nam
is a valid IDL name or is a null string. If not, they shall raise the BAD_PARAM
exception with standard minor code 15. Operations that take a RepositoryId
argument shall check that the argument passed in is a string of the form
<format>:<string> and if not, then raise a BAD_PARAM exception with standard
minor code 16. Operations that take content or member types as arguments shall
10-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10

er
f the

. It

,

tion

of this

get

ple,

g

check that they are legitimate (i.e., that they don't have kinds tk_null , tk_void or
tk_exception). If not, they shall raise the BAD_TYPECODE exception with
standard minor code 2. Operations that take members shall check that the memb
names are valid IDL names and that they are unique within the member list, and i
name is found to be incorrect, they shall raise a BAD_PARAM with standard minor
code 17.

The create_union_tc operation shall check that there are no duplicate label values
shall also check that each label TypeCode compares equivalent to the discriminator
TypeCode . If a duplicate label is found, raise BAD_PARAM with standard minor
code 18. If incompatible TypeCode of label and discriminator is found, raise
BAD_PARAM with standard minor code 19. The create_union_tc operation shall
also check that the supplied discriminator type is legitimate, and if the check fails
raise BAD_PARAM with standard minor code 20.

Note – The create_recursive_sequence_tc operation is deprecated. No new code
should make use of this operation. Its functionality is subsumed by the new opera
create_recursive_tc . The create_recursive_sequence_tc operation will be
removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to create TypeCodes
describing recursive sequences that are members of structs or unions. The result
operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc
operations. The offset parameter specifies which enclosing struct or union is the tar
of the recursion, with the value 1 indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions. For exam
the offset would be 1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

};

Once the recursive sequence TypeCode has been properly embedded in its enclosin
TypeCodes , it will function as a normal sequence TypeCode . Invoking operations
on the recursive sequence TypeCode before it has been embedded in the required
number of enclosing TypeCodes will result in undefined behavior. Attempt to
marshal incomplete typecodes shall raise the BAD_TYPECODE exception with
standard minor code 1. Attempt to use an incomplete TypeCode as a parameter of any
operation when detected shall cause the BAD_PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, the concrete_base parameter is a TypeCode for
the immediate concrete valuetype base of the valuetype for which the TypeCode is
being created. If the valuetype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.
CORBA, v2.4.2 TypeCodes February 2001 10-59

10

e

The create_recursive_tc operation is used to create a recursive TypeCode , which
serves as a place holder for a concrete TypeCode during the process of creating
TypeCode s that contain recursion. The id parameter specifies the repository id of th
type for which the recursive TypeCode is serving as a place holder. Once the
recursive TypeCode has been properly embedded in the enclosing TypeCode , which
corresponds to the specified repository id, it will function as a normal TypeCode .
Invoking operations on the recursive TypeCode before it has been embedded in the
enclosing TypeCode will result in undefined behavior. For example, the following
IDL type declarations contain recursion:

struct foo {
long value;
sequence<foo> chain;

};

valuetype V {
public V member;

};

To create a TypeCode for valuetype V, you would invoke the TypeCode creation
operations as shown below:

// C++
TypeCode_var recursive_tc

= orb->create_recursive_tc(“IDL:V:1.0”);

ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0].name = string_dup(“member”);
v_seq[0].type = recursive_tc;
v_seq[0].access = PUBLIC_MEMBER;
TypeCode_var v_val_tc

= orb->create_value_tc(“IDL:V:1.0”,
“V”,
VM_NONE,
TypeCode::_nil(),
v_seq);

10.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

#pragma prefix “omg.org”

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;
10-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface

};

interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {

// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-61

10
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface InterfaceDef;
interface ExceptionDef;
interface NativeDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;
interface ValueBoxDef;
interface AbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;
interface LocalInterfaceDef;
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};
typedef sequence <Initializer> InitializerSeq;

 struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;
10-62 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
interface Container : IRObject {
// read interface

Contained lookup (
in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-63

10
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def
10-64 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version,

);

AbstractInterfaceDef create_abstract_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);
};

interface IDLType : IRObject {
readonly attribute TypeCode type;

};

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

};

interface Repository : Container {
// read interface
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-65

10
Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,

 in IDLType element_type
);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed (
in unsigned short digits,
in short scale

);
};

interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;
10-66 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
};

interface TypedefDef : Contained, IDLType {

};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

};

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

};

interface NativeDef : TypedefDef {
};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};

interface StringDef : IDLType {
attribute unsigned long bound;

};

interface WstringDef : IDLType {
attribute unsigned long bound;

};

interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

};
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-67

10
interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;
};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
10-68 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;
typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (
in RepositoryId interface_id

);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-69

10
};

FullInterfaceDescription describe_interface();

// write interface
AttributeDef create_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
10-70 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
attribute IDLType type_def;
attribute Visibility access;

};

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-71

10
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};

interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

};

interface AbstractInterfaceDef : InterfaceDef {
};

interface LocalInterfaceDef : InterfaceDef {
};

enum TCKind { // PIDL
pragma version TCKind 2.3

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
10-72 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
tk_native,
tk_abstract_interface,
tk_local_interface

};

typedef short ValueModifier; // PIDL
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode { // PIDL
pragma version TypeCode 2.3

exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises (BadKind, Bounds);

// for tk_struct, tk_union, tk_value, and tk_except
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-73

10
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box, and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_scale() raises (BadKind);

// for tk_value
Visibility member_visibility(in unsigned long index)

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};

// Only the TypeCode related part of interface ORB shown below.
// For complete description of interface ORB see Chapter 4.

interface ORB { // PIDL
pragma version ORB 2.3

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
10-74 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

10
in StructMemberSeq members
);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
CORBA, v2.4.2 OMG IDL for Interface Repository February 2001 10-75

10
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);
};

};
10-76 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 The Portable Object Adapter 11
n
by a

een

 is
e
This chapter describes the Portable Object Adapter, or POA. It presents the desig
goals, a description of the abstract model of the POA and its interfaces, followed
detailed description of the interfaces themselves.

Contents

This chapter contains the following sections.

11.1 Overview

 The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable betw
different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA
designed to allow programmers to build object implementations that can provid
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

Section Title Page

“Overview” 11-1

“Abstract Model Description” 11-2

“Interfaces” 11-14

“IDL for PortableServer Module” 11-43

“UML Description of PortableServer” 11-49

“Usage Scenarios” 11-50
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 11-1

11

s.

or.
 the
e
e
, and

ts,
been
n.

s

ional
pts

nded

re
me of

g

at is
 both
• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and
overhead.

• Provide support for implicit activation of servants with POA-allocated Object Id

• Allow object implementations to be maximally responsible for an object’s behavi
Specifically, an implementation can control an object’s behavior by establishing
datum that defines an object’s identity, determining the relationship between th
object’s identity and the object’s state, managing the storage and retrieval of th
object’s state, providing the code that will be executed in response to requests
determining whether or not the object exists at any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual objec
their identities, where their state is stored, whether certain identity values have
previously used or not, whether an object has ceased to exist or not, and so o

• Provide an extensible mechanism for associating policy information with object
implemented in the POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computat
model. This section presents that model and defines terminology and basic conce
that will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its inte
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model a
present in the model described here, but there are some new components, and so
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the followin
components:

• Client—A client is a computational context that makes requests on an object
through one of its references.

• Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note that client and
server are roles that programs play with respect to a given object. A program th
a client for one object may be the server for another. The same process may be
client and server for a single object.
11-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

 an
d in
tity,
ce.

f a
 ORB
ect’s
eted

lied

naged
by
s

d by

al

gh

A

ore
le, it
e

lly
e

 the
cter

ild)

jects

to

a
• Object—In this discussion, we use object to indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and
implementation. From a client’s perspective, the object’s identity is encapsulate
the object’s reference. This specification defines the server’s view of object iden
which is explicitly managed by object implementations through the POA interfa

• Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context o
server process. Requests made on an object’s references are mediated by the
and transformed into invocations on a particular servant. In the course of an obj
lifetime it may be associated with (that is, requests on its references will be targ
at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supp
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and ma
by the implementation. Object Id values are hidden from clients, encapsulated
references. Object Ids have no standard form; they are managed by the POA a
uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device use
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logic
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application developer, althou
the SYSTEM_ID policy enables the POA to generate Object Id values for the
application.

• Object Reference—An object reference in this model is the same as in the CORB
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain m
information, such as the location of the server and POA in question. For examp
might contain the full name of the POA (the names of all POAs starting from th
root and ending with the specific POA). The reference might not, in fact, actua
contain the Object Id, but instead contain more compact values managed by th
ORB that can be mapped to the Object Id. This is a description of the abstract
information model implied by the POA. Whatever encoding is used to represent
POA name and the Object Id must not restrict the ability to use any legal chara
in a POA name or any legal octet in an Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or ch
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for ob
within a server.

• Policy—A Policy is an object associated with a POA by an application in order
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA’s threading model as well as
CORBA, v2.4.2 Abstract Model Description February 2001 11-3

11

ions
ts

tate
cause
n also

r
rs to
e
bject

s or

e

er

ist.

 and
to
ed
ore
ests.

d the
 By
n
veral
variety of other options related to the management of objects. Other specificat
may define other policies that affect how an ORB processes requests on objec
implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing s
of one or more POAs. Using operations on a POA manager, the developer can
requests for the associated POAs to be queued or discarded. The developer ca
use the POA manager to deactivate the POAs.

• Servant Manager—A servant manager is an object that the application develope
can associate with a POA. The ORB will invoke operations on servant manage
activate servants on demand, and to deactivate servants. Servant managers ar
responsible for managing the association of an object (as characterized by its O
Id value) with a particular servant, and for determining whether an object exist
not. There are two kinds of servant managers, called ServantActivator and
ServantLocator ; the type used in a particular situation depends on policies in th
POA.

• Adapter Activator—An adapter activator is an object that the application develop
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently ex
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA,
the interactions between various components. The ORB is an abstraction visible
both the client and server. The POA is an object visible to the server. User-suppli
implementations are registered with the POA (this statement is a simplification; m
detail is provided below). Clients hold references upon which they can make requ
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

Figure 11-1 on page 11-5 shows the detail of the relationship between the POA an
implementation. Ultimately, a POA deals with an Object Id and an active servant.
active servant, we mean a programming object that exists in memory and has bee
presented to the POA with one or more associated object identities. There are se
ways for this association to be made.
11-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

tive

r an
nt to
m the

e one

try
rs to

a
Figure 11-1 Abstract POA Model

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map,
that associates Object Ids with active servants, each association constituting an ac
object. If the POA has the USE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives fo
object not present in the Active Object Map, the POA either uses the default serva
perform the request or it invokes the servant manager to obtain a servant to perfor
request. If the RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process th
request.

In this specification, the term active is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an en
that associates an Object Id with an existing servant. When this specification refe
active Object Ids and active servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map. An Object Id can appear in
POA's Active Object Map only once.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
CORBA, v2.4.2 Abstract Model Description February 2001 11-5

11

 a

tial
oot
.
Figure 11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain
POA object. A distinguished POA object, called the root POA, is managed by the ORB
and provided to the application using the ORB initialization interface under the ini
object name “RootPOA.” The application developer can create objects using the r
POA if those default policies are suitable. The root POA has the following policies

• Thread Policy: ORB_CTRL_MODEL

• Lifespan Policy: TRANSIENT

• Object Id Uniqueness Policy: UNIQUE_ID

• Id Assignment Policy: SYSTEM_ID

• Servant Retention Policy: RETAIN

• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.
11-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

ation
rent
OA to
e

nique

 ORB.
iate

ts,

 POA

 POA
ility

A
f the

ported

and
as

into
• Implicit Activation Policy: IMPLICIT_ACTIVATION

The developer can also create new POAs. Creating a new POA allows the applic
developer to declare specific policy choices for the new POA and to provide a diffe
adapter activator and servant manager (these are callback objects used by the P
activate objects and nested POAs on demand). Creating new POAs also allows th
application developer to partition the name space of objects, as Object Ids are
interpreted relative to a POA. Finally, by creating new POAs, the developer can
independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_POA operation on
the parent POA. When a POA is created, the POA is given a name that must be u
with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the
It is the responsibility of the server application to create and initialize the appropr
POA objects during server initialization or to set an AdapterActivator to create POA
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objec
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the
that created the object reference as well as all of its ancestor POAs. To ensure
portability, each POA must be created with the same name as the corresponding
in the original server process and with the same policies. (It is the user’s responsib
to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its PO
names and the POA names chosen by other applications. It is the responsibility o
ORB implementation to provide a way to support this behavior.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be ex
to clients.

From this model’s perspective, object references encapsulate object identity
information and information required by the ORB to identify and locate the server
POA with which the object is associated (that is, in whose scope the reference w
created.) References are created in the following ways:

• The server application may directly create a reference with the create_reference
and create_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object
existence, but do not associate it with an active servant.
CORBA, v2.4.2 Abstract Model Description February 2001 11-7

11

ject

ce
rated
 may

nce

ariety
n be

n.

tity of
ses
ct.

f
any
s,
 the

e.

e

red

g the
his
• The server application may explicitly activate a servant, associating it with an ob
identity using the activate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using the servant_to_reference or id_to_reference
operations.

• The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object referen
corresponding to an inactive servant, the POA may automatically assign a gene
unique Object Id to the servant and activate the resulting object. The reference
be obtained by invoking POA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a refere
type in programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a v
of ways. It can be advertised through the OMG Naming and Trading Services. It ca
converted to a string via ORB::object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocatio

Once a reference becomes available to a client, that reference constitutes the iden
the object from the client’s perspective. As long as the client program holds and u
that reference, requests made on the reference should be sent to the “same” obje

Note – The meaning of object identity and “sameness” is at present the subject o
debate in the OMG. This specification does not attempt to resolve that debate in
way, particularly by defining a concrete notion of identity that is exposed to client
beyond the existing notions of identity described in the CORBA specifications and
OMA guide.

The states of servers and implementation objects are opaque to clients. This
specification deals primarily with the view of the ORB from the server’s perspectiv

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an activ
servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are ente
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

• The server application instructs the POA to activate objects on demand by havin
POA invoke a user-supplied servant manager. The server application registers t
servant manager with set_servant_manager .
11-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

tly
 a

t with

 a
int of

 not

s the
sues
eded)

ty to
 user-
hen

. The
hat

t
rvant

n the
• Under some circumstances (when the IMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implici
activate an object when the server application attempts to obtain a reference for
servant that is not already active (that is, not associated with an Object Id).

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servan
set_servant .

If the POA has the NON_RETAIN policy, for every request, the POA may use either
default servant or a servant manager to locate an active servant. From the POA’s po
view, the servant is active only for the duration of that one request. The POA does
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well a
identification of the POA that created the target object reference. When a client is
a request, the ORB first locates an appropriate server (perhaps starting one if ne
and then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportuni
re-create the required POA by using an adapter activator. An adapter activator is a
implemented object that can be associated with a POA. It is invoked by the ORB w
a request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA
further processing of that request depends both upon the policies associated with t
POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find ou
if there is a servant associated with the Object Id value from the request. If such a se
exists, the POA invokes the appropriate method on the servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

• If the POA has the USE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception with standard minor code 3.

• If the POA has the USE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invoke incarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends o
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises the OBJ_ADAPTER system exception
with standard minor code 4.
CORBA, v2.4.2 Abstract Model Description February 2001 11-9

11

tly

t in
le of
.

 be
t Id

ctive
ed
amic

d

 an

n

 an

s in
 the

t
• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not direc
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility.
Any system exception raised by the servant manager will be returned to the clien
the reply. In addition to standard system exceptions, a servant manager is capab
raising a ForwardRequest exception. This exception includes an object reference
The ORB will process this exception as stated below.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policy, IMPLICIT_ACTIVATION , also requires the SYSTEM_ID and
RETAIN policies. When a POA supports implicit activation, an inactive servant may
implicitly activated in that POA by certain operations that logically require an Objec
to be assigned to that servant. Implicit activation of an object involves allocating a
system-generated Object Id and registering the servant with that Object Id in the A
Object Map. The interface associated with the implicitly activated object is determin
from the servant (using static information from the skeleton, or, in the case of a dyn
servant, using the _primary_interface() operation).

The operations that support implicit activation include:

• The POA::servant_to_reference operation, which takes a servant parameter an
returns a reference.

• The POA::servant_to_id operation, which takes a servant parameter and returns
Object Id.

• Operations supported by a language mapping to obtain an object reference or a
Object Id for a servant. For example, the _this() servant member function in C++
returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant to
object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and
servant_to_id operations will always perform implicit activation, even if the servant is
already associated with an Object Id. The behavior of language mapping operation
the MULTIPLE_ID case is specified by the language mapping. For example, in C++,
_this() servant member function will not implicitly activate a MULTIPLE_ID
servant if the invocation of _this() is immediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the objec
reference used to issue the request.
11-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

r
t
 (for

eeded
rvers
in a

a

vide
RB.
 in a

 in

by

r. All
 with

aded
 This

may

Note – The exact timing of implicit activation is ORB implementation-dependent. Fo
example, instead of activating the object immediately upon creation of a local objec
reference, the ORB could defer the activation until the Object Id is actually needed
example, when the object reference is exported outside the process).

11.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is n
from a threads package. However, in order to allow the development of portable se
that utilize threads, the behavior of the POA and related interfaces when used with
multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does pro
support for multi-threading, these are the behaviors that will be supported by that O
This allows a programmer to take advantage of multiple ORBs that support threads
portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run , and shutdown .

11.2.8.1 POA Threading Models

The POA supports three models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled, single thread and main-thread
behavior. The three models can be used together or independently. All can be used
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created
including a ThreadPolicy object in the policies parameter of the POA’s create_POA
operation. Once a POA is created with one model, it cannot be changed to the othe
uses of the POA within the server must conform to that threading model associated
the POA.

11.2.8.2 Using the Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-thre
environment, upcalls made by this POA to servants shall not be made concurrently.
provides a degree of safety for code that is multi-thread-unaware.

Note – In a multi-threaded environment, requests to distinct single-threaded POAs
be processed concurrently.

The POA will still allow reentrant calls from an object implementation to itself, or to
another object implementation managed by the same POA.
CORBA, v2.4.2 Abstract Model Description February 2001 11-11

11

er
RB.

n of

a

ished
,

 will

mmer

de

pe-
nt the

rface
nt.
me
11.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the develop
wants the ORB/POA to control the use of threads in the manner provided by the O
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destructio
threads used with one or more POAs.

11.2.8.4 Using the Main Thread Model

Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are made in
manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distingu
"main" thread, servant upcalls will be processed on that thread. (See Section 4.2.3
“Thread-Related Operations,” on page 4-8.)

Note – Not all environments have such a special requirement. If not, while requests
be processed sequentially they might not all be processed by the same thread.

11.2.8.5 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server progra
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and co
with it in mind.

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by OMG IDL compilers, or

• dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as ty
specific servants. Servants connected to dynamic skeletons are used to impleme
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific
servant is transparent to its clients. Two CORBA objects supporting the same inte
may be incarnated, one by a DSI servant and the other with a type-specific serva
Furthermore, a CORBA object may be incarnated by a DSI servant only during so
period of time, while the rest of the time is incarnated by a static servant.
11-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

ding

g

rted

 able
SI

ts to

the

, the
get
 the

pe-
I

nless
lies
e a
ion if

e
bject
The mapping for POA DSI servants is language-specific, with each language provi
a set of interfaces to the POA. These interfaces are used only by the POA. The
interfaces required are the following.

• Take a CORBA::ServerRequest object from the POA and perform the processin
necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface suppo
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be
to handle any request in the way the programmer wishes to handle it. A single D
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servan
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for
example, an IDL interface Window in module GraphicalSystem will generate a
type-specific skeleton class called Window in namespace POA_GraphicalSystem.
A type-specific servant that is directly derived from the
POA_GraphicalSystem::Window skeleton class may incarnate several CORBA
objects at a time, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime
Interface Repository Id identifying the most-derived interface supported by the tar
CORBA object in a request. The POA should be able to determine this by asking
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the ty
specific skeleton class from which the servant is directly derived. In the case of DS
servants, the POA obtains that information by using the second language-specific
interface above.

11.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. U
explicitly stated to the contrary, all POA behavior described in this specification app
regardless of whether the client is local (same process) or remote. For example, lik
request from a remote client, a request from a local client may cause object activat
the object is not active, block indefinitely if the target object's POA is in the holding
state, be rejected if the target object's POA is in the discarding or inactive states, b
delivered to a thread-unaware object implementation, or be delivered to a different o
if the target object's servant manager raises the ForwardRequest exception. The
Object Id and POA of the target object will also be available to the server via the
Current object, regardless of whether the client is local or remote.
CORBA, v2.4.2 Abstract Model Description February 2001 11-13

11

ire
ent in

ation
not

s.

 by
 Some

an
used
Note – The implication of these requirements on the ORB implementation is to requ
the ORB to mediate all requests to POA-based objects, even if the client is co-resid
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specific
does not prohibit (nonstandard) POA extensions to support object behavior that is
location-transparent.

11.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module,
the PortableServer module. It consists of these interfaces:

• POA
• POAManager
• ServantManager
• ServantActivator
• ServantLocator
• AdapterActivator
• ThreadPolicy
• LifespanPolicy
• IdUniquenessPolicy
• IdAssignmentPolicy
• ImplicitActivationPolicy
• ServantRetentionPolicy
• RequestProcessingPolicy
• Current

In addition, the POA defines the Servant native type.

11.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interface
Each language mapping must specify how Servant is mapped to the programming
language data type that corresponds to an object implementation. The Servant type
has the following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them
user programs. They can be passed as parameters to certain POA operations.
language mappings may allow Servant values to be implicitly converted to object
references under appropriate conditions.

• Values of type Servant support a language-specific programming interface that c
be used by the ORB to obtain a default POA for that servant. This interface is
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.
11-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

bject

 of

ess

ssing
n
an

ager
is

As
16
of

tate
 state
l

n just
• Values of type Servant provide default implementations of the standard object
reference operations get_interface , is_a , and non_existent . These operations can
be overridden by the programmer to provide additional behavior needed by the o
implementation. The default implementations of get_interface and is_a operations
use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default
implementation of the non_existent operation returns FALSE . These operations are
invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method
accessing the invocation context are available.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or addr
space in which they are generated.

11.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the proce
state of the POAs it is associated with. Using operations on the POA manager, a
application can cause requests for those POAs to be queued or discarded, and c
cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA man
object is provided at POA creation time, a POA manager is created when a POA
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

11.3.2.1 Processing States

A POA manager has four possible processing states; active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated PO
and the disposition of requests received by those POAs. Figure 11-3 on page 11-
illustrates the processing states and the transitions between them. For simplicity
presentation, this specification sometimes describes these states as POA states,
referring to the POA or POAs that have been associated with a particular POA
manager. A POA manager is created in the holding state. The root POA is therefore
initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a s
change are not shown. For example, if a POA is in “active” state, it does not change
due to an activate operation. Such operations complete successfully with no specia
notice.

The only exception is the inactive state: a “deactivate” operation raises an exceptio
the same as every other attempted state change operation.
CORBA, v2.4.2 Interfaces February 2001 11-15

11

rt
Note
 the

eived

at

l
arded,
 to
 may
Figure 11-3 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and sta
processing requests (assuming that appropriate thread resources are available).
that even in the active state, a POA may need to queue requests depending upon
ORB implementation and resource limits. The number of requests that can be rec
and/or queued is an implementation limit. If this limit is reached, the POA should
return a TRANSIENT system exception, with standard minor code 1, to indicate th
the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the
discarding, holding, or inactive state by calling the discard_requests ,
hold_requests , or deactivate operations, respectively. The POA enters the active
state through the use of the activate operation when in the discarding or holding state.

Discarding State

When a POA manager is in the discarding state, the associated POAs will discard al
incoming requests (whose processing has not yet begun). When a request is disc
the TRANSIENT system exception, with standard minor code 1, must be returned
the client-side to indicate that the request should be re-issued. (Of course, an ORB
always reject a request for other reasons and raise some other system exception.)

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
11-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

re the

eing
ager
ed.

g
If this

uld
sons

d
ation

e the
 in

sm
o
ld
te

d
ation
In addition, when a POA manager is in the discarding state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that requi
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of the discarding state is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is b
flooded with requests. It is expected that the application will restore the POA man
to the active state after correcting the problem that caused flow-control to be need

A POA manager can legally transition from the discarding state to either the active,
holding, or inactive state by calling the activate , hold_requests , or deactivate
operations, respectively. The POA enters the discarding state through the use of the
discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incomin
requests. The number of requests that can be queued is an implementation limit.
limit is reached, the POAs may discard requests and return the TRANSIENT system
exception, with standard minor code 1, to the client to indicate that the client sho
reissue the request. (Of course, an ORB may always reject a request for other rea
and raise some other system exception.)

In addition, when a POA manager is in the holding state, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invoc
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from the holding state to either the active,
discarding, or inactive state by calling the activate , discard_requests , or
deactivate operations, respectively. The POA enters the holding state through the use
of the hold_requests operation when in the active or discarding state. A POA
manager is created in the holding state.

Inactive State

The inactive state is entered when the associated POAs are to be shut down. Unlik
discarding state, the inactive state is not a temporary state. When a POA manager is
the inactive state, the associated POAs will reject new requests. The rejection
mechanism used is specific to the vendor. The GIOP location forwarding mechani
and CloseConnection message are examples of mechanisms that could be used t
indicate the rejection. If the client is co-resident in the same process, the ORB cou
raise the OBJ_ADAPTER system exception, with standard minor code 1, to indica
that the object implementation is unavailable.

In addition, when a POA manager is in the inactive state, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invoc
of an adapter activator will be rejected, as described in the previous paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the
inactive state from either the active, holding, or discarding states.
CORBA, v2.4.2 Interfaces February 2001 11-17

11

 (if

ject.
be

ith
ill

s.
to be

A,
 any
ed
ged to

A the
e
If the transition into the inactive state is a result of calling deactivate with an
etherealize_objects parameter of

• TRUE - the associated POAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed processing
the POAs have the RETAIN and USE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the ob
If there are any queued requests that have not yet started executing, they will
treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

11.3.2.2 Locality Constraints

A POAManager object must not be exported to other processes, or externalized w
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POAManager object with
the DII may raise the NO_IMPLEMENT exception.

11.3.2.3 activate

void activate()
raises (AdapterInactive);

This operation changes the state of the POA manager to active. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the active state enables the associated POAs to process requests.

11.3.2.4 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager to holding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the holding state causes the associated POAs to queue incoming request
Any requests that have been queued but have not started executing will continue
queued while in the holding state.

If the wait_for_completion parameter is FALSE , this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this PO
this operation does not return until either there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were start
prior to the state change have completed) or the state of the POA manager is chan
a state other than holding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this PO
BAD_INV_ORDER system exception with standard minor code 3 is raised and th
state is not changed.
11-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

ests.
re

ly
an
A,
 any
ed
ged to

A the
e

ve not

rable

ad is
s this
 any
ed

11.3.2.5 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

This operation changes the state of the POA manager to discarding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the discarding state causes the associated POAs to discard incoming requ
In addition, any requests that have been queued but have not started executing a
discarded. When a request is discarded, a TRANSIENT system exception with
standard minor code 1 is returned to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediate
after changing the state. If the parameter is TRUE and the current thread is not in
invocation context dispatched by some POA belonging to the same ORB as this PO
this operation does not return until either there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were start
prior to the state change have completed) or the state of the POA manager is chan
a state other than discarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this PO
BAD_INV_ORDER system exception with standard minor code 3 is raised and th
state is not changed.

11.3.2.6 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

raises (AdapterInactive);

This operation changes the state of the POA manager to inactive. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised.
Entering the inactive state causes the associated POAs to reject requests that ha
begun to be executed as well as any new requests.

After changing the state, if the etherealize_objects parameter is

• TRUE - the POA manager will cause all associated POAs that have the RETAIN and
USE_SERVANT_MANAGER policies to perform the etherealize operation on the
associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecove
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE and the current thre
not in an invocation context dispatched by some POA belonging to the same ORB a
POA, this operation does not return until there are no actively executing requests in
of the POAs associated with this POA manager (that is, all requests that were start
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects , all invocations of etherealize have completed for POAs having
CORBA, v2.4.2 Interfaces February 2001 11-19

11

ng to

 are

ay

 with
that

OAs
 it is
essing.

to

OA

cts
the RETAIN and USE_SERVANT_MANAGER policies. If the parameter is TRUE
and the current thread is in an invocation context dispatched by some POA belongi
the same ORB as this POA the BAD_INV_ORDER system exception with standard
minor code 6 is raised and the state is not changed.

If the ORB::shutdown operation is called, it makes a call on deactivate with a TRUE
etherealize_objects parameter for each POA manager known in the process; the
wait_for_completion parameter to deactivate will be the same as the similarly
named parameter of ORB::shutdown .

If deactivate is called multiple times before destruction is complete (because there
active requests), the etherealize_objects parameter applies only to the first call of
deactivate; subsequent calls with conflicting etherealize_objects settings will use
the value of the etherealize_objects from the first call. The wait_for_completion
parameter will be handled as defined above for each individual call (some callers m
choose to block, while others may not).

11.3.2.7 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

11.3.3 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA
the ability to create child POAs on demand, as a side-effect of receiving a request
names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE. An application server that creates all its needed P
at the beginning of execution does not need to use or provide an adapter activator;
necessary only for the case in which POAs need to be created during request proc

While a request from the POA to an adapter activator is in progress, all requests
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new P
before requests are delivered to that POA.

11.3.3.1 Locality Constraints

An AdapterActivator object must be local to the process containing the POA obje
it is registered with.

11.3.3.2 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);
11-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

 that
for
the

turn

ll

ciated

ed

e is

ith
sing
e

t,

side-
This operation is invoked when the ORB receives a request for an object reference
identifies a target POA that does not exist. The ORB invokes this operation once
each POA that must be created in order for the target POA to exist (starting with
ancestor POA closest to the root POA). The operation is invoked on the adapter
activator associated with the POA that is the parent of the POA that needs to be
created. That parent POA is passed as the parent parameter. The name of the POA to
be created (relative to the parent) is passed as the name parameter.

The implementation of this operation should either create the specified POA and re
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will
proceed with processing the request. If the operation returns FALSE, the ORB wi
return OBJECT_NOT_EXIST with standard minor code 2 to the client. If multiple
POAs need to be created, the ORB will invoke unknown_adapter once for each POA
that needs to be created. If the parent of a nonexistent POA does not have an asso
adapter activator, the ORB will return the OBJECT_NOT_EXIST system exception
with standard minor code 2.

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER system exception with standard minor code 1.

Note – It is possible for another thread to create the same POA the AdapterActivator
is being asked to create if AdapterActivator s are used in conjunction with other
threads calling create_POA with the same POA name. Applications should be prepar
to deal with failures from either the manual or automatic (AdapterActivator) POA
creation request. There can be no guarantee of the order of such calls.

For example, if the target object reference was created by a POA whose full nam
“A,” “B,” “C,” “D” and only POAs “A” and “B” currently exist, the
unknown_adapter operation will be invoked on the adapter activator associated w
POA “B” passing POA “B” as the parent parameter and “C” as the name of the mis
POA. Assuming that the adapter activator creates POA “C” and returns TRUE, th
ORB will then invoke unknown_adapter on the adapter activator associated with
POA “C,” passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the
POA with which the AdapterActivator is associated, the specified child does not exis
and the activate_it parameter to find_POA is TRUE. If unknown_adapter creates
the specified POA and returns TRUE, that POA is returned from find_POA .

Note – This allows the same code, the unknown_adapter implementation, to be used
to initialize a POA whether that POA is created explicitly by the application or as a
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.
CORBA, v2.4.2 Interfaces February 2001 11-21

11

 with
ed at
ct, to

ger; it
ssing.

,

olicy

rn a
the

 and

e

n

nd

ng)

11.3.4 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA
the ability to activate objects on demand when the POA receives a request target
an inactive object. A servant manager is registered with a POA as a callback obje
be invoked by the POA when necessary. An application server that activates all its
needed objects at the beginning of execution does not need to use a servant mana
is used only for the case in which an object must be activated during request proce

The ServantManager interface is itself empty. It is inherited by two other interfaces
ServantActivator and ServantLocator .

The two types of servant managers correspond to the POA’s RETAIN policy
(ServantActivator) and to the NON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using each p
are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and retu
servant and the second to deactivate a servant. The operations differ according to
amount of information usable for their situation.

11.3.4.1 Common Information for Servant Manager Types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed
appropriate (for example, OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).

Note – If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that
exception. It is the user’s responsibility to deactivate the object if it had been
previously activated.

The incarnate and preinvoke operation may also raise a ForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request
subsequent requests to the object denoted in the forward_reference member of the
exception. The behavior of this mechanism must be the functional equivalent of th
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exceptio
should be returned to the client in a reply message with LOCATION_FORWARD
reply status. If some other protocol or delivery mechanism was used, the ORB is
responsible for providing equivalent behavior, from the perspectives of the client a
the object denoted by the new reference.

If a ServantManager returns a null Servant (or the equivalent in a language mappi
as the result of an incarnate() or preinvoke() operation, the POA will return the
OBJ_ADAPTER system exception with standard minor code 3 as the result of the
11-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

e

s it

Map

ate

ation
in
 this

.

s.
request. If the ServantManager returns the wrong type of Servant, it is indeterminat
when that error is detected. It is likely to result in a BAD_OPERATION with standard
minor code 5 or MARSHAL exception at the time of method invocation.

11.3.4.2 Locality Constraints

A ServantManager object must be local to the process containing the POA object
is registered with.

11.3.5 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are
ServantActivator s. When using such servant managers, the following statements
apply for a given ObjectId used in the incarnate and etherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object
with objects they have activated.

• Invocations of incarnate on the servant manager are serialized.

• Invocations of etherealize on the servant manager are serialized.

• Invocations of incarnate and etherealize on the servant manager are mutually
exclusive.

• Incarnations of a particular object may not overlap; that is, incarnate shall not be
invoked with a particular ObjectId while, within the same POA, that ObjectId is in
use as the ObjectId of an activated object or as the argument of a call to incarn
or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactiv
and the etherealization (during which outstanding requests are being processed)
which arriving requests on that object should not be passed to its servant. During
period, requests targeted for such an object act as if the POA were in holding state until
etherealize completes. If etherealize is called as a consequence of a deactivate call
with an etherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate . There may be a
period of time after the POA invokes incarnate and before that method returns in
which arriving requests bound for that object should not be passed to the servant

A single servant manager object may be concurrently registered with multiple POA
Invocations of incarnate and etherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in which etherealize is invoked.

11.3.5.1 incarnate

Servant incarnate (
in ObjectId oid,
in POA adapter)
CORBA, v2.4.2 Interfaces February 2001 11-23

11

n

t.
ed.

A has

ject

use
s do

g the

he

ith

raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for a
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming reques
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the ObjectId value if possible.
incarnate returns a value of type Servant , which is the servant that will be used to
process the incoming request (and potentially subsequent requests, since the PO
the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the same ObjectId value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Ob
Id and if the POA also has the UNIQUE_ID policy, the incarnate has violated the POA
policy and is considered to be in error. The POA will raise an OBJ_ADAPTER
system exception for the request. In this case, etherealize is not called by the POA
because the servant was never added to the Active Object Map.

Note – If the same servant is used in two different POAs, it is legal for the POAs to
that servant even if the POAs have different Object Id uniqueness policies. The POA
not interact with each other in this regard.

11.3.5.2 etherealize

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assumin
POA has the USE_SERVANT_MANAGER and RETAIN policies. Note that an active
servant may be deactivated by the servant manager via etherealize even if it was not
incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. T
adapter parameter is an object reference for the POA in whose scope the object was
active. The serv parameter contains a reference to the servant that is associated w
the object being deactivated. If the servant denoted by the serv parameter is associated
with other objects in the POA denoted by the adapter parameter (that is, in the POA 's
11-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

d.
 be

jects

nt

ts
r

t
the
e able

Active Object Map) at the time that etherealize is called, the
remaining_activations parameter has the value TRUE. Otherwise, it has the value
FALSE .

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize
operation is that either the deactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter is FALSE , the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

• When an object is deactivated explicitly by an invocation of
POA::deactivate_object .

• When the ORB or POA determines internally that an object must be deactivate
For example, an ORB implementation may provide policies that allow objects to
deactivated after some period of quiescence, or when the number of active ob
reaches some limit.

• If POAManager::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the
POA can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow serva
managers to safely destroy servants. Specifically, the servant’s entry in the Active
Object Map corresponding to the target object is removed before etherealize is called.
Because calls to incarnate and etherealize are serialized, this prevents new reques
for the target object from being invoked on the servant during etherealization. Afte
removing the entry from the Active Object Map, if the POA determines before
invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize until all active methods for
the target object have completed. Therefore, when etherealize is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, the POA ignores the
exception.

11.3.6 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are
ServantLocators . Because the POA knows that the servant returned by this servan
manager will be used only for a single request, it can supply extra information to
servant manager’s operations and the servant manager’s pair of operations may b
to cooperate to do something different than a ServantActivator .

When the POA uses the ServantLocator interface, immediately after performing the
operation invocation on the servant returned by preinvoke , the POA will invoke
postinvoke on the servant manager, passing the ObjectId value and the Servant
CORBA, v2.4.2 Interfaces February 2001 11-25

11

y

t

ect

e to

ect
sult,

g to

uest

n

t.
ed.
value as parameters (among others). The next request with this ObjectId value will
then cause preinvoke to be invoked again. This feature may be used to force ever
request for objects associated with a POA to be mediated by the servant manager.

When using such a ServantLocator , the following statements apply for a given
ObjectId used in the preinvoke and postinvoke operations:

• The servant returned by preinvoke is used only to process the single request tha
caused preinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Obj
Map.

• When the invocation of the request on the servant is complete, postinvoke will be
invoked for the object.

• No serialization of invocations of preinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations of preinvoke for the same ObjectId .
(However, if the SINGLE_THREAD_MODEL policy is being used, that policy will
serialize these calls.)

• The same thread will be used to preinvoke the object, process the request, and
postinvoke the object.

• The preinvoke and postinvoke operations are always called in pairs in respons
any ORB activity. In particular, for a response to a GIOP Locate message a GIOP-
conforming ORB may (or may not) call preinvoke to determine whether the obj
could be served at this location. If the ORB makes such a call, whatever the re
the ORB does not invoke a method, but does call postinvoke before respondin
the Locate message.

Note – The ServantActivator interface does not behave similarly with respect to a
GIOP Locate message since the etherealize operation is not associated with req
processing.

11.3.6.1 preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for a
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming reques
The adapter is an object reference for the POA in which the object is being activat
11-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

r
ed

POA

 is,
lly

n; the

 was
the
at

 the

of an
 with
The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the ObjectId value if possible.
preinvoke returns a value of type Servant , which is the servant that will be used to
process the incoming request.

The Cookie is a type opaque to the POA that can be set by the servant manager fo
use later by postinvoke . The operation is the name of the operation that will be call
by the POA when the servant is returned.

11.3.6.2 postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the
has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object.That
the request is not complete until postinvoke finishes. If the method finishes norma
but postinvoke raises a system exception, the method's normal return is overridde
request completes with the exception.

The oid parameter contains the Object Id value of the object on which the request
made. The adapter parameter is an object reference for the POA in whose scope
object was active. The the_servant parameter contains a reference to the servant th
is associated with the object.

The Cookie is a type opaque to the POA; it contains any value that was set by the
preinvoke operation. The operation is the name of the operation that was called by
POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

11.3.6.3 ServantLocator and Location Determination

Under certain circumstances, an ORB may need to determine the actual location
object's implementation. For objects that are managed by a POA that is configured
a ServantLocator , it may invoke preinvoke and postinvoke or it may determine
the object’s location by some other means. If it invokes preinvoke and postinvoke
under these circumstances it shall use the argument “_locate .”
CORBA, v2.4.2 Interfaces February 2001 11-27

11

 are
A.

B-
s

ed

that is
lls

h

ust

ing
d,
hread

red by
11.3.7 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such as the root POA. Policy objects
specified when a POA is created. Policies may not be changed on an existing PO
Policies are not inherited from the parent POA.

11.3.7.1 Thread Policy

Objects with the ThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to the POA::create_POA
operation to specify the threading model used with the created POA. The value
attribute of ThreadPolicy contains the value supplied to the
POA::create_thread_policy operation from which it was obtained. The following
values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an OR
controlled POA to threads. In a multi-threaded environment, concurrent request
may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are process
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner
safe for code that is multi-thread-unaware. The POA will still allow reentrant ca
from an object implementation to itself, or to another object implementation
managed by the same POA.

• MAIN_THREAD_MODEL - Requests for all main-thread POAs are processed
sequentially. In a multi-threaded environment, all upcalls made by all POAs wit
this policy to servants are made in a manner that is safe for code that is multi-
thread-unaware. If the environment has special requirements that some code m
run on a distinguished “main” thread, servant upcalls will be processed on that
thread. (See Section 4.2.3, “Thread-Related Operations,” on page 4-8.)

If no ThreadPolicy object is passed to create_POA , the thread policy defaults to
ORB_CTRL_MODEL .

Note – In some environments, calling multi-thread-unaware code safely (that is, us
the MAIN_THREAD_MODEL) may mean that the POA will use only the main threa
in which case the application programmer is responsible to ensure that the main t
is given to the ORB, using ORB::perform_work or ORB::run .

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is sha
multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible
threading primitives in a multi-threaded environment.
11-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

he

 the

ry to

ted

ject

on
11.3.7.2 Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. T
following values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the POA
instance in which they are first created. Once the POA is deactivated, use of any
object references generated from it will result in an OBJECT_NOT_EXIST
system exception with standard minor code 2.

• PERSISTENT - The objects implemented in the POA can outlive the process in
which they are first created.

• Persistent objects have a POA associated with them (the POA that created them).
When the ORB receives a request on a persistent object, it first searches for
matching POA, based on the names of the POA and all of its ancestors.

• Administrative action beyond the scope of this specification may be necessa
inform the ORB's location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will not
conflict with its own POA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA , the lifespan policy defaults to
TRANSIENT.

11.3.7.3 Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the
POA::create_id_uniqueness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the crea
POA must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Ob
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

Note – Use of UNIQUE_ID policy is meaningless in conjunction with NON_RETAIN
policy. A conforming application should not use this policy combination. A
conforming orb may, but need not, report an error during create_POA if this
combination is used. If an orb permits this combination of policies to be used, the
resulting POA shall not treat the use of the same servant for concurrent requests
different object ids as an error.
CORBA, v2.4.2 Interfaces February 2001 11-29

11

.

d

d

the
11.3.7.4 Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied

• USER_ID - Objects created with that POA are assigned Object Ids only by the
application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the
POA. If the POA also has the PERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

11.3.7.5 Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the created POA retains active
servants in an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default is RETAIN .

Note – The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

11.3.7.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the create
POA . The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the
Active Object Map, an OBJECT_NOT_EXIST system exception with standard
minor code 2 is returned to the client. The RETAIN policy is also required.

• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a default servant has been
registered with the POA using the set_servant operation, the request is dispatche
to the default servant. If no default servant has been registered, an
OBJ_ADAPTER system exception with standard minor code 3 is returned to
client. The MULTIPLE_ID policy is also required.
11-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

o

of

bject

r

es

 for

r

 it

call.
• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a servant manager has been
registered with the POA using the set_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If n
servant manager has been registered, an OBJ_ADAPTER system exception with
standard minor code 4 is returned to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining the USE_ACTIVE_OBJECT_MAP_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object
activation (that is, the POA searches only the Active Object Map).

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active O
Map and a ServantManager .

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map fo
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tri
to determine the servant by means of invoking incarnate in the ServantManager
(specifically a ServantActivator) registered with the POA. If no ServantManager
is available, the POA raises the OBJ_ADAPTER system exception with standard
minor code 4.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined
all requests involving unknown objects.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map fo
use in later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If
does not find such a servant, it uses the default servant. If no default servant is
available, the POA raises the OBJ_ADAPTER system exception with standard
minor code 3.

NON-RETAIN and USE_SERVANT_MANAGER

This combination represents the situation where one servant is used per method
CORBA, v2.4.2 Interfaces February 2001 11-31

11

d for

ill
The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call preinvoke on the
ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJ_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant define
all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the
appropriate operation on the default servant registered with the POA. If no default
servant is available, the POA will raise the OBJ_ADAPTER system exception.

11.3.7.7 Implicit Activation Policy

Objects with the ImplicitActivationPolicy interface are obtained using the
POA::create_implicit_activation_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires the SYSTEM_ID and RETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION .

11.3.8 POA Interface

A POA object manages the implementation of a collection of objects. The POA
supports a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.

11.3.8.1 Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POA object with the DII
may raise the NO_IMPLEMENT exception.

11.3.8.2 create_POA

POA create_POA(
11-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

me
the

 the

ire

licy

 race
ceive
een
ator
dapter
ed,

ild
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

This operation creates a new POA as a child of the target POA. The specified na
identifies the new POA with respect to other POAs with the same parent POA. If
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and
associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the
attribute name the_POAManager .

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects requ
prior administrative action that has not been performed, an InvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending po
object.

Note – Creating a POA using a POA manager that is in the active state can lead to
conditions if the POA supports preexisting objects, because the new POA may re
a request before its adapter activator, servant manager, or default servant have b
initialized. These problems do not occur if the POA is created by an adapter activ
registered with a parent of the new POA, because requests are queued until the a
activator returns. To avoid these problems when a POA must be explicitly initializ
the application can initialize the POA by invoking find_POA with a TRUE activate
parameter.

11.3.8.3 find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to the
target POA), that child POA is returned. If a child POA with the specified name does
not exist and the value of the activate_it parameter is TRUE, the target POA 's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the ch
POA , that child POA is returned. Otherwise, the AdapterNonExistent exception is
raised.
CORBA, v2.4.2 Interfaces February 2001 11-33

11

ss.

s

 the

e

de.
n the

d

tion
se

al
11.3.8.4 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs . All descendant POAs are
destroyed (recursively) before the destruction of the containing POA. The POA so
destroyed (that is, the POA with its name) may be re-created later in the same proce
(This differs from the POAManager::deactivate operation that does not allow a re-
creation of its associated POA in the same process. After a deactivate, re-creation i
allowed only if the POA is later destroyed.)

When destroy is called the POA behaves as follows:

• The POA calls destroy on all of its immediate descendants.

• After all descendant POAs have been destroyed and their servants etherealized,
POA continues to process requests until there are no requests executing in the POA.
The apparent destruction of the POA occurs only after all executing requests in th
POA have completed. After destruction has become apparent, the POA may be re-
created via either an AdapterActivator or a call to create_POA .

• If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy,
and a servant manager is registered with the POA, the etherealize operation on the
servant manager is called for each active object in the Active Object Map. The
apparent destruction of the POA occurs before any calls to etherealize are ma
Thus, for example, an etherealize method that attempts to invoke operations o
POA receives the OBJECT_NOT_EXIST exception. Once apparent destruction
has occurred, the POA behaves as if its POAManager is in the holding state until
destruction is complete. Thus, for example, an invocation of create_POA with the
same name blocks until POA destruction has finished.

The wait_for_completion parameter is handled as follows:

• If wait_for_completion is TRUE and the current thread is not in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
destroy operation returns only after all active requests have completed and all
invocations of etherealize have completed.

• If wait_for_completion is TRUE and the current thread is in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
BAD_INV_ORDER system exception with standard minor code 3 is raised an
POA destruction does not occur.

• If wait_for_completion is FALSE , the destroy operation destroys the POA and
its children but waits neither for active requests to complete nor for etherealiza
to occur. If destroy is called multiple times before destruction is complete (becau
there are active requests), the etherealize_objects parameter applies only to the
first call of destroy . Subsequent calls with conflicting etherealize_objects
settings use the value of etherealize_objects from the first call. The
wait_for_completion parameter is handled as defined above for each individu
call (some callers may choose to block, while others may not).
11-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

. The

 the
be

ild
11.3.8.5 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value
application is responsible for calling the inherited destroy operation on the returned
reference when it is no longer needed.

11.3.8.6 the_name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when
POA is created. The name of the root POA is system-dependent and should not
relied upon by the application.

11.3.8.7 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

11.3.8.8 the_children

readonly attribute POAList the_children;

This attribute identifies the current set of all child POAs of the POA. The set of ch
POAs includes only the POA's immediate children, and not their descendants.

11.3.8.9 the_POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.
CORBA, v2.4.2 Interfaces February 2001 11-35

11

ated
r the

n

t

is

 set
11.3.8.10 the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly cre
POA has no adapter activator (the attribute is null). It is system-dependent whethe
root POA initially has an adapter activator; the application is free to assign its ow
adapter activator to the root POA.

11.3.8.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servan
manager has been associated with the POA, it returns a null reference.

11.3.8.12 set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

If the ServantRetentionPolicy of the POA is RETAIN, then the ServantManager
argument (imgr) shall support the ServantActivator interface (e.g., in C++ imgr is
narrowable to ServantActivator). If the ServantRetentionPolicy of the POA is
NON_RETAIN, then the ServantManager argument shall support the
ServantLocator interface. If the argument is nil , or does not support the required
interface, then the OBJ_ADAPTER system exception with standard minor code 4
raised.

This operation sets the default servant manager associated with the POA. This
operation may only be invoked once after a POA has been created. Attempting to
the servant manager after one has already been set will result in the
BAD_INV_ORDER system exception with standard minor code 6 being raised.

11.3.8.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.
11-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

has

 This
ject

e

e

ot

ll
This operation returns the default servant associated with the POA. If no servant
been associated with the POA, the NoServant exception is raised.

11.3.8.14 set_servant

void set_servant(in Servant p_servant)
raises(WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant.
servant will be used for all requests for which no servant is found in the Active Ob
Map.

11.3.8.15 activate_object

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the
Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and th
specified servant in the Active Object Map. The Object Id is returned.

11.3.8.16 activate_object_with_id

void activate_object_with_id(
in ObjectId oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy
exception is raised.

If the CORBA object denoted by the Object Id value is already active in this POA
(there is a servant bound to it in the Active Object Map), the ObjectAlreadyActive
exception is raised. If the POA has the UNIQUE_ID policy and the servant is already
in the Active Object Map, the ServantAlreadyActive exception is raised.
Otherwise, the activate_object_with_id operation enters an association between th
specified Object Id and the specified servant in the Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was n
generated by the system or for this POA, the activate_object_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect a
such invalid Object Id values, but a portable application must not invoke
CORBA, v2.4.2 Interfaces February 2001 11-37

11

re no

ize)

then

nt

.

ject Id
ay

f its
activate_object_with_id on a POA that has the SYSTEM_ID policy with an Object
Id value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.

11.3.8.17 deactivate_object

void deactivate_object(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy
exception is raised.

This operation causes the ObjectId specified in the oid parameter to be deactivated.
An ObjectId that has been deactivated continues to process requests until there a
active requests for that ObjectId . A deactivated ObjectId is removed from the Active
Object Map when all requests executing for that ObjectId have completed. If a servant
manager is associated with the POA, ServantActivator::etherealize is invoked with
the oid and the associated servant after the ObjectId has been removed from the
Active Object Map. Reactivation for the ObjectId blocks until etherealization (if
necessary) is complete. This includes implicit activation (as described in ethereal
and explicit activation via POA::activate_object_with_id . Once an ObjectId has
been removed from the Active Object Map and etherealized (if necessary) it may
be reactivated through the usual mechanisms.

The operation does not wait for requests or etherealization to complete and always
returns immediately after deactivating the ObjectId .

Note – If the servant associated with the oid is serving multiple Object Ids,
ServantActivator::etherealize may be invoked multiple times with the same serva
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id

11.3.8.18 create_reference

Object create_reference (
in CORBA::RepositoryId intf)
raises (WrongPolicy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy
exception is raised.

This operation creates an object reference that encapsulates a POA-generated Ob
value and the specified interface repository id. The specified repository id, which m
be a null string, will become the type_id of the generated object reference. A
repository id that does not identify the most derived interface of the object or one o
base interfaces will result in undefined behavior.
11-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

 may
 the
ct Id

.

Id and
ing,
s
ill

 may
 the

ot

B
n

,
This operation does not cause an activation to take place. The resulting reference
be passed to clients, so that subsequent requests on those references will cause
appropriate servant manager to be invoked, if one is available. The generated Obje
value may be obtained by invoking POA::reference_to_id with the created reference

11.3.8.19 create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf);

This operation creates an object reference that encapsulates the specified Object
interface repository Id values. The specified repository id, which may be a null str
will become the type_id of the generated object reference. A repository id that doe
not identify the most derived interface of the object or one of its base interfaces w
result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference
be passed to clients, so that subsequent requests on those references will cause
object to be activated if necessary, or the default servant used, depending on the
applicable policies.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was n
generated by the system or for this POA, the create_reference_with_id operation
may raise the BAD_PARAM system exception with standard minor code 14. An OR
is not required to detect all such invalid Object Id values, but a portable applicatio
must not invoke this operation on a POA that has the SYSTEM_ID policy with an
Object Id value that was not previously generated by the system for that POA, or, if the
POA also has the PERSISTENT policy, for a previous instantiation of the same POA.

11.3.8.20 servant_to_id

ObjectId servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy or a combination of
the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies;
if not present, the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified
servant is active, the Object Id associated with that servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and
either the POA has the MULTIPLE_ID policy or the specified servant is not active
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and that Object Id is returned.
CORBA, v2.4.2 Interfaces February 2001 11-39

11

a

 a
ent

tivate

,

ified

ap

d that
3. If the POA has the USE_DEFAULT_SERVANT policy, the servant specified is the
default servant, and the operation is being invoked in the context of executing
request on the default servant, then the ObjectId associated with the current
invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

11.3.8.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires the RETAIN policy and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executing
request on the specified servant and the policies specified previously are not pres
the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified
servant is active, an object reference encapsulating the information used to ac
the servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and
either the POA has the MULTIPLE_ID policy or the specified servant is not active
the servant is activated using a POA-generated Object Id and the Interface Id
associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the spec
servant, the reference associated with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

Note – The allocation of an Object Id value and installation in the Active Object M
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produce
will behave appropriately (that is, yield a consistent Object Id value when asked
politely).

11.3.8.22 reference_to_servant

Servant reference_to_servant (
in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.
11-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

ctive

t

ject

t.

t Id
If the POA has the RETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the A
Object Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a
default servant has been registered with the POA, this operation returns the default
servant. Otherwise, the ObjectNotActive exception is raised.

If the object reference was not created by this POA, the WrongAdapter exception is
raised.

11.3.8.23 reference_to_id

ObjectId reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference .
This operation is valid only if the reference was created by the POA on which the
operation is being performed. If the reference was not created by that POA, a
WrongAdapter exception is raised. The object denoted by the reference does no
have to be active for this operation to succeed.

11.3.8.24 id_to_servant

Servant id_to_servant(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified ObjectId is in the Active Object
Map, this operation returns the servant associated with that object in the Active Ob
Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a default
servant has been registered with the POA, this operation returns the default servan
Otherwise the ObjectNotActive exception is raised.

11.3.8.25 id_to_reference

Object id_to_reference(
in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy
exception is raised.

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Objec
value is not active in the POA, an ObjectNotActive exception is raised.
CORBA, v2.4.2 Interfaces February 2001 11-41

11

thod

s.

ntext

.

xt of

e
11.3.9 Current Operations

The PortableServer::Current interface, derived from CORBA::Current , provides
method implementations with access to the identity of the object on which the me
was invoked. The Current interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use of Current in the context of both locally and remotely invoked operation

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched by the POA to
obtain the POA and ObjectId that identify the object on which that operation was
invoked.

11.3.9.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose co
it is called. If called outside the context of a POA-dispatched operation, a NoContext
exception is raised.

11.3.9.2 get_object_id

ObjectId get_object_id()
raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is called
If called outside the context of a POA-dispatched operation, a NoContext exception
is raised.

11.3.9.3 get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the conte
which it is called. If called outside the context of a POA dispatched operation, a
NoContext exception is raised.

Note – This reference is not guaranteed to be identical to the original reference th
client used to make the invocation, and calling the Object::is_equivalent operation
to compare the two references may not necessarily return true.
11-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

ntext
11.3.9.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose co
it is called. If called outside the context of a POA dispatched operation, a NoContext
exception is raised.

11.4 IDL for PortableServer Module

#pragma prefix "omg.org"
module PortableServer {

interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef sequence<octet> ObjectId;

exception ForwardRequest {
Object forward_reference;

};

// Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL

};

 interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

interface LifespanPolicy : CORBA::Policy {
CORBA, v2.4.2 IDL for PortableServer Module February 2001 11-43

11
readonly attribute LifespanPolicyValue value;
};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

// POAManager interface
11-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11
interface POAManager {
pragma version POAManager 2.3

exception AdapterInactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

void hold_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion)
raises(AdapterInactive);

State get_state();
};

// AdapterActivator interface

interface AdapterActivator {
boolean unknown_adapter(

in POA parent,
in string name);

};

// ServantManager interface

interface ServantManager{ };

interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
CORBA, v2.4.2 IDL for PortableServer Module February 2001 11-45

11
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};

// POA interface

interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

// POA creation and destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);
11-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11
IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

// POA attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAList the_children;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

// Servant Manager registration:

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)

raises (WrongPolicy);

// operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);
CORBA, v2.4.2 IDL for PortableServer Module February 2001 11-47

11
// reference creation operations

Object create_reference (
in CORBA::RepositoryId intf)

raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf)

raises (WrongPolicy);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, WrongPolicy);

ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};

// Current interface

interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);
11-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

 with
sion
Servant get_servant()
raises(NoContext);

};
};

11.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated
the cardinalities of the associations. They are intended to be an aid in comprehen
to those who enjoy such representations. They are not normative.

Figure 11-4 UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

policy_type : CORBA::PolicyType

copy()

destroy()

the_name : string
th e_parent : Portab leS erver::P O A

th e_m an ager : P ortab le Serve r::PO AM an ager
the_activator : PortableServer::AdapterActivator

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

0..n 1

the_parent

1..1
the_manager

1..n

0..n

0..n

0..1

0..1

the_servant_manager : PortableServer::ServantManager

get_state()

 the_children : PortableServer::POAList

7
enforces

*

CORBA, v2.4.2 UML Description of PortableServer February 2001 11-49

11

citly

ctly
trates
Figure 11-5 UML for PortableServer Policies

11.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in
applications.

Note – In some of the following C++ examples, PortableServer names are not expli
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

11.6.1 Getting the Root POA

All server applications must obtain a reference to the root POA, either to use it dire
to manage objects, or to create new POA objects. The following example demons
how the application server can obtain a reference to the root POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
orb->resolve_initial_references(“RootPOA”);

= {USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

IdAssignmentPolicy

value:IdAssignmentPolicyValue
IdUniquessPolicy

value:IdUniquenessPolicyValue

ImplicitActivationPolicy

value:ImpliciActivationPolicyValue

LifespanPolicy

value:LifespanPolicyValue
RequestProcessingPolicy

value:RequestProcessingPolicyValue

ThreadPolicy

value:ThreadPolicyValue

ServantRetentionPolicy

value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

= {RETAIN, NON_RETAIN}

= {ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,

= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}= {UNIQUE_ID, MULTIPLE_ID}= {USER_ID, SYSTEM_ID}

= {TRANSIENT,
PERSISTENT}

MAIN_THREAD_MODEL}
11-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

he
hild

nd

eeds
main
e, the
nt.

ct Id
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

11.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. T
POA is created as a child of an existing POA. In this example, it is created as a c
of the root POA.

// C++
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
rootPOA->create_POA(“my_little_poa”,
PortableServer::POAManager::_nil(), policies);

11.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this
approach, objects are activated by performing the activate_object operation on the
POA with the object in question. For this operation, the POA allocates, assigns, a
returns a unique identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id n
to be valid only as long as the servant is active in the server. The Object Ids can re
completely hidden and no servant manager need be provided. When this is the cas
identity and lifetime of the servant and the abstract object are essentially equivale
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Obje
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that has the SYSTEM_ID,
USE_SERVANT_MANAGER , and RETAIN policies.

Assume this interface:

// IDL
interface Foo {

long doit();
};

This might result in the generation of the following skeleton:
CORBA, v2.4.2 Usage Scenarios February 2001 11-51

11

his
tain
ts

or a

be
). If
he
tities

ion

class POA_Foo : public ServantBase
{

public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{

public:
MyFooServant(POA_ptr poa, Long value)
: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() {CORBA::release(my_poa);}
virtual POA_ptr _default_POA()

{return POA::_duplicate(my_poa);}
virtual Long doit() {return my_value;}

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably in main() :

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

11.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. T
may be done for several reasons. For example, a programmer may know that cer
objects are commonly used, or act as initial points of contact through which clien
access other objects (for example, factories). The server could be implemented to
create and explicitly activate these objects during initialization, avoiding the need f
servant manager.

If an implementation has a reasonably small number of servants, the server may
designed to keep them all active continuously (as long as the server is executing
this is the case, the implementation need not provide a servant manager. When t
server initializes, it could create all available servants, loading their state and iden
from some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operat
would be used to activate all of the existing objects managed by the server during
server initialization. Assuming the POA has the USE_SERVANT_MANAGER policy
11-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

A for

em

 is
tions

ject

s

e
ause
e,

and no servant manager is associated with a POA, any request received by the PO
an Object Id value not present in the Active Object Map will result in an
OBJ_ADAPTER exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate th
with well-known Object Id values during server initialization, before activating the
POA. This approach ensures that the objects are always available when the POA
active, and doesn’t require writing a servant manager. It has severe practical limita
for a large number of objects, though.

This example illustrates the explicit activation of an object using a user-chosen Ob
Id. This example presumes a POA that has the USER_ID,
USE_SERVANT_MANAGER , and RETAIN policies.

The code is like the previous example, but replace the last portion of the example
shown above with the following code:

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(“myLittleFoo”);
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

11.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. Thi
example extends the previous example to illustrate this option:

// C++
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), “IDL:Foo:1.0”);
Foo_var foo = Foo::_narrow(obj);

// ...later...
MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

11.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of th
requirements of object implementations necessary for their intended function. Bec
servant managers are local objects, and their use is limited to a single narrow rol
some simplifications in their implementation are possible. Note that these
simplifications are suggestions, not normative requirements. They are intended as
examples of ways to reduce the programming effort required to define servant
managers.
CORBA, v2.4.2 Usage Scenarios February 2001 11-53

11

ault
-

ed that
icies

ary:
A servant manager implementation must provide the following things:

• implementation code for either

• incarnate() and etherealize() , or

• preinvoke() and postinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the def
servant manager on the root POA already supplies this implementation code. User
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expect
most servant managers can be activated on the root POA with its default set of pol
(see “POA Creation” on page 11-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy so that a servant manager can easily be activated.
Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER , and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a
ServantActivator . The ORB supplies a servant activator skeleton class in a libr

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
};

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public

POA_PortableServer::ServantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

11-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

an
n the
e
ted

sly
 as it

s
est to

rvant
lts
h the
String_var s = PortbleServer::ObjectId_to_string
(oid);

if (strcmp(s, “myLittleFoo”) == 0) {
return new MyFooServant(poa, 27);

else {
throw CORBA::OBJECT_NOT_EXIST();

}
}

void etherealize(
const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};

11.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for
object with which no servant is associated at the time the client makes a request o
reference. It is the responsibility of the ORB, in collaboration with the POA and th
server application to find or create an appropriate servant and perform the reques
operation on it. Such an object is said to be incarnated (or incarnation) when it has an
active servant. Note that the client had to obtain the reference in question previou
from some source. From the client’s perspective, the abstract object exists as long
holds a reference, until it receives an OBJECT_NOT_EXIST system exception in a
reply from an attempted request on the object. Incarnation state does not imply
existence or non-existence of the abstract object.

Note – This specification does not address the issues of communication or server
process activation, as they are immaterial to the POA interface and operation. It i
assumed that the ORB activates the server if necessary, and can deliver the requ
the appropriate POA.

To support object activation on demand, the server application must register a se
manager with the appropriate POA. Upon receiving the request, if the POA consu
the Active Object Map and discovers that there is no active servant associated wit
target Object Id, the POA invokes the incarnate operation on the servant manager.
CORBA, v2.4.2 Usage Scenarios February 2001 11-55

11

sulate
 must
n a
 in
 POA

bject
tion
tivate
nt in

is
hat it
s the

 for

Id in

n a
ger

ize it

r
t the

Note – An implication that this model has for GIOP is that the object key in the
request message must encapsulate the Object Id value. In addition, it may encap
other values as necessitated by the ORB implementation. For example, the server
be able to determine to which POA the request should be directed. It could assig
different communication endpoint to each POA so that the POA identity is implicit
the request, or it could use a single endpoint for the entire server and encapsulate
identities in object key values. Note that this is not a concrete requirement; the o
key may not actually contain any of those values. Whatever the concrete informa
is, the ORB and POA must be able to use it to find the servant manager, invoke ac
if necessary (that requires the actual Object Id value), and/or find the active serva
some map.

The incarnate invocation passes the Object Id value to the servant manager. At th
point, the servant manager may take any action necessary to produce a servant t
considers to be a valid incarnation of the object in question. The operation return
servant to the POA, which invokes the operation on it. The incarnate operation may
alternatively raise an OBJECT_NOT_EXIST system exception that will be returned
to the invoking client. In this way, the user-supplied implementation is responsible
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object
the Active Object Map. (This example presumes the RETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contai
key for a record in a database that contains the object’s state. The servant mana
would retrieve the state from the database, construct a servant of the appropriate
implementation class (assuming an object-oriented programming language), initial
with the state from the database, and return it to the POA.

The example servant manager in the last section (Section 11.6.6, “Servant Manage
Definition and Creation,” on page 11-53) could be used for this scenario. Recall tha
POA would have the USER_ID, USE_SERVANT_MANAGER , and RETAIN
policies.

Given such a ServantActivator , all that remains is initialization code such as the
following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);

CORBA::Object_var obj = poa->create_reference_with_id(
oid, “IDL:foo:1.0”);

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();
11-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

h the

 may
th
OA

e

ame

ed to
s

e

ful
n be

ate

stem.
11.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, wit
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value,
whether it was assigned by the POA or the user. By doing this, an implementation
provide a servant manager that associates the POA-allocated Object Id values wi
persistently stored state. It may also pass the POA-allocated Object Id values to P
operations such as activate_object_with_id and create_reference_with_id .

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in th
same or a different process. A POA with both the SYSTEM_ID and PERSISTENT
policies generates Object Id values that are unique across all instantiations of the s
POA.

11.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allow
support multiple object identities simultaneously. If a POA allows multiple identitie
per servant, the POA’s treatment of the servants is affected in the following ways:

• Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

• A servant cannot be mapped onto or converted to an individual object referenc
using that POA, since the identity is potentially ambiguous.

11.6.10 One Servant for All Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA
that will use a single servant to implement all of its objects. This approach is use
when there is very little data associated with each object, so little that the data ca
encoded in the Object Id.

The following example illustrates this approach by using a single servant to incarn
all CORBA objects that export a given interface in the context of a server. This
example presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

Two interfaces are defined in IDL. The FileDescriptor interface is supported by
objects that will encapsulate access to operations in a file associated with a file sy
Global operations in a file system, such as the ones necessary to create
FileDescriptor objects, are supported by objects that export the FileSystem
interface.

// IDL
interface FileDescriptor {

typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (
CORBA, v2.4.2 Usage Scenarios February 2001 11-57

11

s

s
in long num_bytes);
void destroy ();

};

interface FileSystem {
...
FileDescriptor open (

in string file_name,
in long flags);

...
};

Implementation of these two IDL interfaces may inherit from static skeleton classe
generated by an IDL to C++ compiler as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};

A single servant may be used to serve all requests issued to all FileDescriptor objects
created by a FileSystem object. The following fragment of code illustrates the step
to perform when a FileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
11-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

cal

f

e
eing
nd,

 in
 value

ch
ms
{
fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

};

The following fragment of code illustrates how FileDescriptor objects are created as
a result of invoking an operation (open) exported by a FileSystem object. First, a
local file descriptor is created using the appropriate operating system call. Then a
CORBA object reference is created and returned to the client. The value of the lo
file descriptor will be used to distinguish the new FileDescriptor object from other
FileDescriptor objects. Note that FileDescriptor objects in the example are
transient, since they use the value of their file descriptors for their ObjectIds, and o
course the file descriptors are only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

 oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

};

Any request issued to a FileDescriptor object is handled by the same servant. In th
context of a method invocation, the servant determines which particular object is b
incarnated by invoking an operation that returns a reference to the target object a
after that, invoking POA::reference_to_id . In C++, the operation used to obtain a
reference to the target object is _this() . Typically, the ObjectId value associated
with the reference will be used to retrieve the state of the target object. However,
this example, such a step is not required since the only thing that is needed is the
for the local file descriptor and that value coincides with the ObjectId value associated
with the reference.

Implementation of the read operation is rather simple. The servant determines whi
object it is incarnating, obtains the local file descriptor matching its identity, perfor
the appropriate operating system call, and returns the result in a DataBuffer sequence.

// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =
CORBA, v2.4.2 Usage Scenarios February 2001 11-59

11

t are
 the

 the
e

esn't

gacy

OA

 of
entries
pe of
tions
the

 an
PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

};

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs tha
not object-oriented (system calls in the Unix environment, as we have shown in
example).

• In another case, this technique is useful in handling scalability issues related to
number of CORBA objects that can be associated with a server. In the exampl
above, there may be a million FileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA do
introduce scalability problems but provides mechanisms to handle them.

11.6.11 Single Servant, Many Objects and Types, Using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to le
systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes a P
that supports the USER_ID, USE_DEFAULT_SERVANT , and RETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each
them representing a separate entry in a Database. There may be several types of
in the Database, representing different entity types in the Database model. Each ty
entry in the Database is associated with a separate interface that comprises opera
supported by the Database on entries of that type. All these interfaces inherit from
DatabaseEntry interface. Finally, an object supporting the DatabaseAgent interface
supports basic operations in the database such as creating a new entry, destroying
existing entry, etc.

// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;
11-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

c
};
...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);

void destroy_entry (
in string key);
...

};

Implementation of the DatabaseEntry interface may inherit from the standard dynami
skeleton class as follows:

// C++
class DatabaseEntryImpl :

public PortableServer::DynamicImplementation
{

public:
DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _default_POA()
{

return poa;
}

};

On the other hand, implementation of the DatabaseAgent interface may inherit from a
static skeleton class generated by an IDL to C++ compiler as follows:

// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{

protected:
DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
virtual void destroy_entry (const char * key);
CORBA, v2.4.2 Usage Scenarios February 2001 11-61

11

 is

g

mmon
~DatabaseAgentImpl ();
};

A single servant may be used to serve all requests issued to all DatabaseEntry objects
created by a DatabaseAgent object. The following fragment of code illustrates the
steps to perform when a DatabaseAgent servant is created. First, access to the
database is initialized. As a result, some kind of descriptor (a DatabaseAccessPoint
local object) used to operate on the database is obtained. Finally, a servant will be
created and associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};

The code used to create DatabaseEntry objects representing entries in the database
similar to the one used for creating FileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the correspondin
DatabaseEntry object. All requests issued to a DatabaseEntry object are handled by
the same servant because references to this type of object are associated with a co
POA created with the USE_DEFAULT_SERVANT policy.

// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);

return entry;
};
11-62 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

11

 in
the

oking

t the

s
ere is
.

Any request issued to a DatabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database
order to invoke operations on the entry. If that is the case, the servant may obtain
type of an entry based on the interface supported by the DatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of inv
the get_interface operation exported by the reference to the DatabaseEntry object.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request

...
};

Note that in this example, we may have a billion DatabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the ORB a
server). No permanent storage is required for references to DatabaseEntry objects at
the server. Actually, references to DatabaseEntry objects will only occupy space:

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenario
where this scalability causes no penalty in terms of performance (basically, when th
no need to restore the state of an object, each time a request to it is being served)
CORBA, v2.4.2 Usage Scenarios February 2001 11-63

11
11-64 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Interoperability Overview 12
neous
 its

ols
Contents

This chapter contains the following sections.

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heteroge
CORBA-compliant ORBs. The approach to “interORBability” is universal, because
elements can be combined in many ways to satisfy a very broad range of needs.

12.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB protoc
(ESIOPs) that are optimized for particular environments such as DCE.

Section Title Page

“Elements of Interoperability” 12-1

“Relationship to Previous Versions of CORBA” 12-4

“Examples of Interoperability Solutions” 12-5

“Motivating Factors” 12-8

“Interoperability Design Goals” 12-9
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 12-1

12

g

on
ed to

s of
OPs)

es”
, and

.
rior

y

erse
 from
B

able
dge
er

l in
oses

.
12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for definin
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet Inter-ORB Protocol (IIOP) forms the comm
basis for broad-scope mediated bridging. The inter-ORB bridge support can be us
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any detail
that ORB’s implementation, such as what particular IPC or protocols (such as ESI
are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridg
that communicate using the IIOP. This approach works for both stand-alone ORBs
networked ones that use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired
Since ORBs are not required to use the IIOP internally, the goal of not requiring p
knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In man
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must trav
a bridge. The role of a bridge is to ensure that content and semantics are mapped
the form appropriate to one ORB to that of another, so that users of any given OR
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to en
the easy construction of interoperability bridges between ORB domains. Such bri
products could be developed by ORB vendors, Sieves, system integrators, or oth
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely genera
nature, do not impact other ORB operation, and can be used for many other purp
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages, and dynamically generating implementations
12-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

12

n-
 of
A

tax

ts a

RPC
 is

 than

uch

e

tral
ow).

itated
at
t

ing
d
 by
sed

The inter-ORB bridge support can also be used to provide interoperability with no
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease
doing this will depend on the extent to which those systems conform to the CORB
Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syn
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that mee
minimal set of assumptions. It does not require or rely on the use of higher level
mechanisms. The protocol is simple, scalable and relatively easy to implement. It
designed to allow portable implementations with small memory footprints and
reasonable performance, with minimal dependencies on supporting software other
the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between s
networking domains.

12.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages ar
exchanged using TCP/IP connections. The IIOP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neu
transport layer. It can also be used as the protocol between half-bridges (see bel

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necess
by the specific design center or intended operating environment of the ORB. In th
sense it represents the basic inter-ORB protocol for TCP/IP environments, a mos
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapp
to OMG IDL; the GIOP may be mapped onto a number of different transports, an
specifies the protocol elements that are common to all such mappings. The GIOP
itself, however, does not provide complete interoperability, just as IDL cannot be u
to build complete programs. The IIOP and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 12-1 on page 12-4.
CORBA, v2.4.2 Elements of Interoperability February 2001 12-3

12

cific

g

cific
g to

ons

es to

ices

een
ted.

to

on
Figure 12-1 Inter-ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Spe
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computin
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the spe
environment, ESIOPs might support specialized capabilities such as those relatin
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specificati
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridg
be built between ORB domains that use the IIOP and ORB domains that use a
particular ESIOP.

12.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services and their domains. (ORB Serv
are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The
architecture defines the problem of ORB interoperability in terms of bridging betw
those domains, and defines several ways in which those bridges can be construc
The bridges can be internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions
previous versions of CORBA to support request-level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request-level bridges. It is the server-side analogue of the Dynamic Invocation
Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skelet
Interface chapter.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
12-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

12

rt
ce
e is

RB
y of
e

vide

ent-

for
 GUI

 will
ed to
port

 a
hat
ed to
B C
 by

 half-

• APIs for managing object references have been defined, building on the suppo
identified for the Relationship Service. The APIs are defined in Object Referen
Operations in the ORB Interface chapter of this book. The Relationship Servic
described in the Relationship Service specification; refer to the CosObjectIdentity
Module section of that specification.

12.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-O
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variet
ways to satisfy particular product and customer needs. This section provides som
examples.

12.3.1 Example 1

ORB product A is designed to support objects distributed across a network and pro
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows bridges to be built between it and other ORBs that use environm
specific or proprietary protocols. To accomplish this, ORB A uses the IIOP and
provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support
objects located on a single machine. For example, to support thousands of Fresco
objects operated on at near function-call speeds. In addition, some of the objects
need to be accessible from other machines and objects on other machines will ne
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to sup
the Internet IOP for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses
particular environment-specific protocol based on distributed computing services t
are commonly available at the target customer sites. In addition, ORB C is expect
interoperate with other arbitrary ORBs from other vendors. To accomplish this, OR
provides inter-ORB bridge support and a companion half-bridge product (supplied
the ORB vendor or some third-party) provides the connection to other ORBs. The
bridge uses the IIOP to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:
CORBA, v2.4.2 Examples of Interoperability Solutions February 2001 12-5

12

n

nd
of

 half-

se
ere

e

, the
ther
tion
ge
ay
s

reat
• In the CORBA Core part of this specification, standard APIs are provided by a
ORB to enable the construction of request-level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, a
by the object identity operations described in the Interface Repository chapter
this book.

• An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB
Brdiges chapter) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to u
the other protocols defined by the CORBA interoperability specifications must adh
to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that ar
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example
standard APIs may be used to construct “half bridges” to the IIOP, relying on ano
“half bridge” to connect to another ORB. The standard APIs also support construc
of “full bridges,” without using the Internet IOP to mediate between separated brid
components. ORBs may also use the Internet IOP internally. In addition, ORBs m
use GIOP messages to communicate over other network protocol families (such a
Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to t
it as an independent compliance point.
12-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

12
Figure 12-2 Examples of CORBA Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
CORBA, v2.4.2 Examples of Interoperability Solutions February 2001 12-7

12

s. A
a
everal
e
 on a

.

ns to

 to
ake

t
two
ts
ven
rs
.

t
al to

er a

s,

 by
12.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user need
large diversity of implementation techniques is evident. For example, the time for
request ranges over at least 5 orders of magnitude, from a few microseconds to s
seconds. The scope ranges from a single application to enterprise networks. Som
ORBs have high levels of security, others are more open. Some ORBs are layered
particular widely used protocol, others use highly optimized, proprietary protocols

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reaso
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible
access objects in one domain from another. For example, an “internet ORB” may m
public information widely available, but a “company ORB” will want to restrict wha
information can get out. Even if they used the same ORB implementation, these
ORBs would be separate, so that the company could allow access to public objec
from inside the company without allowing access to private objects from outside. E
though individual objects should protect themselves, prudent system administrato
will want to avoid exposing sensitive objects to attacks from outside the company

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure withou
limiting the set of objects that might be damaged by bugs, and it may be impractic
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until eith
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configuration
resources, management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data) might also be done
creating sub-ORBs.
12-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

12

asons
rs in
 more

e

late

game
cess
 the

 to

ress
em,
g

 is no

een

ocol

rint,

ld
12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are re
why some of the objects an application might use would be in one ORB, and othe
another ORB. Some objects and services are accessed over long distances, with
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectations for the clients of th
objects.

One ORB might be used to retain links to information that is expected to accumu
over decades, such as library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the
is over. Although while it is running, it makes sense for “chess ORB” objects to ac
the “archives ORB,” we would not expect the archives to try to keep a reference to
current board position.

12.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

• Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another.

• Reference Embedding, where invocation using a native object reference delegates
a special object whose job is to forward that invocation to another ORB.

• Alternative ORBs, where ORB implementations agree to coexist in the same add
space so easily that a client or implementation can transparently use any of th
and pass object references created by one ORB to another ORB without losin
functionality.

In general, there is no single protocol that can meet everyone's needs, and there
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge betw
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common prot
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high-performance, small footp
lightweight interoperability solutions.

• The design should scale, should not be unduly difficult to implement, and shou
not unnecessarily restrict implementation choices.
CORBA, v2.4.2 Interoperability Design Goals February 2001 12-9

12

B

• Interoperability solutions should be able to work with any vendors’ existing OR
implementations with respect to their CORBA-compliant core feature set; those
implementations are diverse.

• All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORB pseudo-object and all the
operations on CORBA:Object) as well as type management (e.g., narrowing, as
needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
12-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

ORB Interoperability Architecture 13
-

Contents

This chapter contains the following sections.

13.1 Overview

The original Request for Proposal on Interoperability (OMG Document 93-9-15)
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It further identifies general requirements including in
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each
other’s implementation.

Section Title Page

“Overview” 13-1

“ORBs and ORB Services” 13-3

“Domains” 13-5

“Interoperability Between ORBs” 13-7

“Object Addressing” 13-11

“An Information Model for Object References” 13-14

“Code Set Conversion” 13-30

“Example of Generic Environment Mapping” 13-43

“Relevant OSFM Registry Interfaces” 13-43
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 13-1

13

B

e
ate

 be
ents
ility

ution

ude
e”
axes

RB
more.
d by
ins.
 used

n
pping

tion
• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across OR
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to b
independent of whether they are on the same or different ORBs, and not to mand
fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must
supported within a single ORB environment, such as location transparency. Elem
of ORB functionality often correspond directly to such transparencies. Interoperab
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a distrib
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains incl
naming domains, trust groups, resource management domains and other “run-tim
characteristics of a system. Technology domains identify common protocols, synt
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the O
itself: common object references, network addresses, security mechanisms, and
However, it is possible for there to be multiple domains of the same type supporte
a given ORB: internal representation on different machine types, or security doma
Conversely, a domain may span several ORBs: similar network addresses may be
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translatio
required when an object request traverses domain boundaries. Conceptually, a ma
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destina
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability.

• At ORB level, built into the ORB itself.
13-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

f
e
t,

ese

RB’s
 in

en
em,

.
 and
s, or

ge
 and

est.
es,
rvices

ices

ice

.

nd
f
13.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation o
objects and the communication of requests. The ORB Core therefore supports th
minimum functionality to enable a client to invoke an operation on a server objec
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. Th
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an O
core. It is an aim of this specification to allow for new ORB Services to be defined
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability betwe
ORBs, the ORB services used in the ORBs, and the correspondence between th
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions
ORB Services range from fundamental mechanisms such as reference resolution
message encoding to advanced features such as support for security, transaction
replication.

An ORB Service is often related to a particular transparency. For example, messa
encoding – the marshaling and unmarshaling of the components of a request into
out of message buffers – provides transparency of the representation of the requ
Similarly, reference resolution supports location transparency. Some transparenci
such as security, are supported by a combination of ORB Services and Object Se
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many
ORB Services include components which correspond to conventional Object Serv
in that they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Serv
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies a
other request attributes to span multiple ORBs. This requires the establishment o
relationships between supporting ORB Services in the different ORBs.
CORBA, v2.4.2 ORBs and ORB Services February 2001 13-3

13

 it is

ect,
tain

t,
ver

 be
f a
iple

ract

er is

blish
ight

 true
and
ne or

he
order

ides

er to
amic
tate,
nd
In order to discuss how the relationships between ORB Services are established,
necessary to describe an abstract view of how an operation invocation is
communicated from client to server object.

1. The client generates an operation request, using a reference to the server obj
explicit parameters, and an implicit invocation context. This is processed by cer
ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming reques
transforming it into a form directly suitable for invoking the operation on the ser
object.

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not
one-to-one and in some circumstances may be far more complex. For example, i
client application requests an operation on a replicated server, there may be mult
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may inte
with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a serv
replicated.

• Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

• Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to esta
which ORB Services are required and how they are provided. Service selection m
in general require negotiation to select protocols or protocol options. The same is
between different ORBs: it is necessary to agree which ORB Services are used,
how each transforms the request. Ultimately, these choices become manifest as o
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of t
others and, in appropriately constructed ORBs, services could be layered in any
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA prov
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in ord
invoke operations on a server object. Correspondingly, where a client requires dyn
attributes to be associated with specific invocations, or administrative policies dic
it must be possible to cause the appropriate ORB Services to be used on client a
13-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

mple,

ted

f

 used

t of

g by
and

ains).

 a

t and

 them
ver,
rent
server sides of the invocation path. Where this is not possible - because, for exa
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

13.3 Domains

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presen
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions o
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concep
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abidin
common rules. It is a powerful modelling concept which can simplify the analysis
description of complex systems. There may be many types of domains (e.g.,
management domains, naming domains, language domains, and technology dom

13.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modelled as an objec
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within
which characterize a domain. This information is disjoint between domains. Howe
an object may be a member of several domains, of similar kinds as well as of diffe
kinds, and so the sets of members of domains may overlap.

Representation Representation

Reference Reference

Security

Networking
CORBA, v2.4.2 Domains February 2001 13-5

13

in is

of

l

ithin
ed to

g

tion
fers

re

e
d,

s the
erior

ed to
t

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one doma
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protoco

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained w
another domain, and federation, where two domains are joined in a manner agre
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mappin
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destina
domain. Note that the use of the term “bridge” in this context is conceptual and re
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these a
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain ar
transformable into concepts in other domains with which interoperability is require
or that if the bridge mechanism filters such a concept out, nothing is lost as far a
supported objects are concerned. In other words, one domain may support a sup
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains ne
be compatible. This specification assumes that both domains are strictly complian
with the CORBA Object Model and the CORBA specifications. This includes the use
of OMG IDL when defining interfaces, the use of the CORBA Core Interface
Repository, and other modifications that were made to CORBA. Variances from this
model could easily compromise some aspects of interoperability.
13-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

eive

RB
on

must
s
e.g.,
een
ctly:

ne
nal

e
cture
nd
nge

 all

es
e

hich

th
ries
r

,
lly
13.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and rec
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” O
interoperability extends this definition to cases in which client and server objects
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging
be bidirectional: that is, it must work as effectively for object references passed a
parameters as for the target of an object invocation. Were bridging unidirectional (
if one ORB could only be a client to another) then transparency would not have b
provided, because object references passed as parameters would not work corre
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only o
direction. This is purely to simplify discussions, and does not imply that unidirectio
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can b
considered independently and associated with different domain types. The archite
does not, however, prescribe any particular decomposition of ORB functionality a
interoperability into ORB Services and corresponding domain types. There is a ra
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is
CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain typ
would be pre-determined and allowance made for additional domain types to b
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those w
can arise with a single type of ORB (e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, wi
different Principal identifiers. Requests crossing those security domain bounda
will need to establish locally meaningful Principals for the caller identity, and fo
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types
and so requests crossing type domain boundaries would need to establish loca
meaningful type identifiers (and perhaps more).
CORBA, v2.4.2 Interoperability Between ORBs February 2001 13-7

13

 of a

ing

be

y
l

and
es. It
cies

ls or

or
eed,
e

m, or
e the
ing
tions.

een

main

nt
Conversely, not all of these problems need to appear when connecting two ORBs
different type (e.g., two different products). Examples include:

• They could be administered to share user visible naming domains, so that nam
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they ma
support different concepts or models, between which there are no direct or natura
mappings. CORBA only specifies the application level view of object interactions,
requires that distribution transparencies conceal a whole range of lower level issu
follows that within any particular ORB, the mechanisms for supporting transparen
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal mode
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse
superficial to allow detailed analysis of interoperability issues between ORBs. Ind
it becomes clear that an ORB instance is an elusive notion: it can perhaps best b
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanis
bridge, is required to transform relevant elements of the interaction as they travers
boundary. There are essentially two approaches to achieving this: mediated bridg
and immediate bridging. These approaches are described in the following subsec

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on betw
the two domains.

13.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that do
and an agreed, common form.

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreeme
between two particular ORB/domain implementations to a universal standard.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging
13-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

atic

each

are

f one

iated
but

en
sary

le

RB
achine
f a
n
ems.
of
ing to

in
s
en
as
e
• There can be more than one common form, each oriented or optimized for a
different purpose.

• If there is more than one possible common form, then which is used can be st
(e.g., administrative policy agreed between ORB vendors, or between system
administrators) or dynamic (e.g., established separately for each object, or on
invocation).

• Engineering of this approach can range from in-line specifically compiled (comp
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the common form.

13.4.3.2 Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form o
domain and the internal form of the other.

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not med
via a third party, and can be specifically engineered for each pair of domains)
sacrifices flexibility and generality of interoperability to achieve this.

• This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e., there is no change of technology). For example, wh
crossing security administration domains between similar ORBs, it is not neces
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishab
when private mechanisms are used between ORB/domain implementations.

13.4.3.3 Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span O
boundaries and ORBs can span machine and system boundaries; conversely, a m
may support, or a process may have access to more than one ORB (or domain o
given type). From an engineering viewpoint, this means that the components of a
inter-domain bridge may be dispersed or co-located, with respect to ORBs or syst
It also means that the distinction between an ORB and a bridge can be a matter
perspective: there is a duality between viewing inter-system messaging as belong
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-doma
bridge could be implemented wholly within the ORB and thus be invisible as far a
ORB interoperability is concerned. A similar situation arises when a bridge betwe
two ORBs or domains is implemented wholly within a process or system which h
access to both. In such cases, the engineering issues of inter-domain bridging ar
CORBA, v2.4.2 Interoperability Between ORBs February 2001 13-9

13

 all
lely

o an
vel”

 not
nly
 set
ging

d to

main
 hide
eal

ses

ds of

o

affic
cy-
cific,

n of
cture
confined, possibly to a single system or process. If it were practical to implement
bridging in this way, then interactions between systems or processes would be so
within a single domain or ORB.

13.4.3.4 Bridging Level

As noted at the start of this section, bridges may be implemented both internally t
ORB and as layers above it. These are called respectively “in-line” and “request-le
bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton
Interface, to receive and issue requests. However, there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is
at this time exposed through general purpose public APIs. (Those APIs expose o
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent
with the Transaction Service is that special purpose APIs are defined to allow brid
of each kind of context. This means that request-level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, an
make the appropriate API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of do
boundaries should be transparent to requests: that the goal of interoperability is to
such boundaries. However, if this were always the goal, then there would be no r
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such ca
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kin
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need t
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the tr
being bridged. It could in general be an application-specific policy, and many poli
mediated bridges could be parts of applications. Those might be organization-spe
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the additio
policy mediation components, without loss of access to any other system infrastru
that may be needed to identify or enforce the appropriate policies.
13-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

be

his
 a
a
ble

 full-

n’t

bject
ame
d by
13.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the IIOP is specifically expected to serve.) T
use of “backbone topology” is true both on a large scale and a small scale. While
large scale public data network provider could define its own backbone ORB, on
smaller scale, any given institution will probably designate one commercially availa
ORB as its backbone.

Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges does
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

13.5 Object Addressing

The Object Model (see Chapter 1, Requests) defines an object reference as an o
name that reliably denotes a particular object. An object reference identifies the s
object each time the reference is used in a request, and an object may be denote
multiple, distinct references.

Backbone ORB

ORB A

ORB CORB D

ORB B
CORBA, v2.4.2 Object Addressing February 2001 13-11

13

 to
iding
t.

. That

B”

 the

eed

 the
bject

ive
dge
) the

ges in
r,

each

to
d
and
The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need
distinguish between references to objects in a local ORB or in a remote one. Prov
this transparency can be quite involved, and naming models are fundamental to i

This section of this specification discusses models for naming entities in multiple
domains, and transformations of such names as they cross the domain boundaries
is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with
referencing domain; this is purely to simplify the discussion. In other contexts, “OR
can usefully denote other kinds of domain.

13.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an
object reference. This is called “domain-relative” referencing (or addressing) and n
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since
bridge knows from which ORB each request (or response) came, including any o
references embedded in it.

13.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s nat
format. Also, in cases where that object originated from some other ORB, the bri
must associate each newly created “proxy” object reference with (what it sees as
original object reference.

Several basic schemes to solve these two problems exist. These all have advanta
some circumstances; all can be used, and in arbitrary combination with each othe
since CORBA object references are opaque to applications. The ramifications of
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference in
the new domain. The bridge must then manage state on behalf of each bridge
object reference, map these references from one ORB’s format to the other’s,
vice versa.
13-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

s
iple
 still
ieves
ary

r

jects

y path
igh
2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme hold
some state in the bridge. However, it supports sharing that state between mult
object references by adding a domain-based route identifier to the proxy (which
holds the original reference, as in the reference encapsulation scheme). It ach
this by providing encoded domain route information each time a domain bound
is traversed; thus if a reference D0.R, originating in domain D0, traversed domains
D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, and so
on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1,
xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well-known” (e.g., global) domain identifier rathe
than an encoded path. Thus a reference R, originating in domain D0 would be
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as
follows:

• Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local ob
as alien references.

• A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by an
traversing the same sequence of domains, such optimization has particularly h
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
CORBA, v2.4.2 Object Addressing February 2001 13-13

13

ing,
ence
PIs
ce)

ce
s.

ame

nd
of

tion.

y

a
ny
s. It
idges.

ns,
• With the general purpose APIs defined in CORBA, object reference translation can
be supported even by ORBs not specifically intended to support efficient bridg
but this approach involves the most state in intermediate bridges. As with refer
encapsulation, a topology service could optimize individual object references. (A
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interfa

• The chain of addressing links established with both object and domain referen
translation schemes must be represented as state within the network of bridge
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical n
spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Model for Object References

This section provides a simple, powerful information model for the information fou
in an object reference. That model is intended to be used directly by developers
bridging technology, and is used in that role by the IIOP, described in the General
Inter-ORB Protocol chapter, Object References section.

13.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted and never support operation invoca

• What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

• What ORB Services are available? As noted in “Selection of ORB Services” on
page 13-4, several different ORB Services might be involved in an invocation.
Providing information about those services in a standardized way could in man
cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) dat
structure has been provided. This data structure need not be used internally to a
given ORB, and is not intended to be visible to application-level ORB programmer
should be used only when crossing object reference domain boundaries, within br

This data structure is designed to be efficient in typical single-protocol configuratio
while not penalizing multiprotocol ones.
13-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

d to

se
ains

here
-54)

 a
module IOP { // IDL

// Standard Protocol Profile tag values

typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {
ProfileId tag;
sequence <octet> profile_data;

};

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles;

};

// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.

typedef unsigned long ComponentId;
struct TaggedComponent {

ComponentId tag;
sequence <octet> component_data;

};
typedef sequence <TaggedComponent> MultipleComponentProfile;

};

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports nee
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of tho
profile entries are wholly specified by these protocols. A bridge between two dom
may need to know the detailed content of the profile for those domains’ profiles,
depending on the technique it uses to bridge the domains1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined
are for the IIOP (see Section 15.7.3, “IIOP IOR Profile Components,” on page 15
and for use in “multiple component profiles.” Profile tags in the range 0x80000000
through 0xffffffff are reserved for future use, and are not currently available for
assignment.

1. Based on topology and policy information available to it, a bridge may find it prudent to add
or remove some profiles as it forwards an object reference. For example, a bridge acting as
firewall might remove all profiles except ones that make such profiles, letting clients that
understand the profiles make routing choices.
CORBA, v2.4.2 An Information Model for Object References February 200113-15

13

pe
he

 or

ons
der
s

tory,
 to

rver
t
he
t the
ated
 but
or

B

ning

r

f the

of

B
the
Null object references are indicated by an empty set of profiles, and by a “Null” ty
ID (a string which contains only a single terminating character). A Null TypeID is t
only mechanism that can be used to represent the type CORBA::Object . Type IDs
may only be “Null” in any message, requiring the client to use existing knowledge
to consult the object, to determine interface types supported. The type ID is a
Repository ID identifying the interface type, and is provided to allow ORBs to
preserve strong typing. This identifier is agreed on within the bridge and, for reas
outside the scope of this interoperability specification, needs to have a much broa
scope to address various problems in system evolution and maintenance. Type ID
support detection of type equivalence, and in conjunction with an Interface Reposi
allow processes to reason about the relationship of the type of the object referred
and any other type.

The type ID, if provided by the server, indicates the most derived type that the se
wishes to publish, at the time the reference is generated. The object’s actual mos
derived type may later change to a more derived type. Therefore, the type ID in t
IOR can only be interpreted by the client as a hint that the object supports at leas
indicated interface. The client can succeed in narrowing the reference to the indic
interface, or to one of its base interfaces, based solely on the type ID in the IOR,
must not fail to narrow the reference without consulting the object via the “_is_a”
“_get_interface” pseudo-operations.

13.6.2.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-OR
Protocol. The ProfileBody of this profile, described in detail in Section 15.7.2, “IIOP
IOR Profiles,” on page 15-51, contains a CDR encapsulation of a structure contai
addressing and object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOP profile also includes a sequence<TaggedComponent>
that can contain additional information supporting optional IIOP features, ORB
services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with IIOP by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create o
understand any other profile, nor are they required to create or understand any o
components defined for other protocols that might share the TAG_INTERNET_IOP
profile with IIOP.

13.6.2.2 The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is
type MultipleComponentProfile . In this case, the profile consists of a list of
protocol components, indicating ORB services accessible using that protocol. OR
services are assigned component identifiers in a namespace that is distinct from
profile identifiers. Note that protocols may use the MultipleComponentProfile data
13-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

es.
is
rent

d in

 The

e

ust

ese
structure to hold profile components even without using
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile, and
need not use a MultipleComponentProfile to hold sets of profile components.

13.6.2.3 IOR Components

TaggedComponent s contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rul
If the component value is encoded as a CDR encapsulation, the IDL type that
encapsulated and the GIOP version which is used for encoding the value, if diffe
than GIOP 1.0, must be specified as part of the component definition.

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

• At most once: whether more than one instance of this component can be include
a profile.

Specification of protocols must describe how the components affect the protocol.
following should be specified in any protocol definition for each TaggedComponent
that the protocol uses:

• Mandatory presence: Whether inclusion of the component in profiles supporting th
protocol is required (MANDATORY PRESENCE) or not required (OPTIONAL
PRESENCE).

• Droppable: For optional presence component, whether component, if present, m
be retained or may be dropped.

13.6.3 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles, and may
apply to IIOP, other GIOPs, ESIOPs, or other protocols. An ORB must not drop th
components from an existing IOR.

module IOP {
const ComponentId TAG_ORB_TYPE = 0;
const ComponentId TAG_CODE_SETS = 1;
const ComponentId TAG_POLICIES = 2;
const ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3;

const ComponentId TAG_ASSOCIATION_OPTIONS = 13;
CORBA, v2.4.2 An Information Model for Object References February 200113-17

13

ified

an
, or

MG

will

will

r
ped.

the
const ComponentId TAG_SEC_NAME = 14;
const ComponentId TAG_SPKM_1_SEC_MECH = 15;
const ComponentId TAG_SPKM_2_SEC_MECH = 16;
const ComponentId TAG_KerberosV5_SEC_MECH = 17;
const ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;
const ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
const ComponentId TAG_SSL_SEC_TRANS = 20;
const ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;
const ComponentId TAG_ GENERIC_SEC_MECH = 22;
const ComponentId TAG_JAVA_CODEBASE = 25;

};

The following additional components that can be used by other protocols are spec
in the DCE ESIOP chapter of this document and CORBAServices, Security Service, in
the Security Service for DCE ESIOP section:

const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;
const ComponentId TAG_ENDPOINT_ID_POSITION = 6;
const ComponentId TAG_LOCATION_POLICY = 12;
const ComponentId TAG_DCE_STRING_BINDING = 100;
const ComponentId TAG_DCE_BINDING_NAME = 101;
const ComponentId TAG_DCE_NO_PIPES = 102;
const ComponentId TAG_DCE_SEC_MECH = 103; // Security Service

13.6.3.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB
object reference is coming from, to work around problems with that particular ORB
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long ,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the O
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and
receive a new ORB type ID in return. A list of ORB type descriptions and values
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. Fo
profiles supporting IIOP 1.1 or greater, it is optionally present and may not be drop

13.6.3.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location,
following standard IOR Component is defined for support in IIOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of
type

struct {
string HostID,
13-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

ort

5,

,

ter

on
short Port
};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type
may be included in a version 1.2 TAG_INTERNET_IOP Profile. Each of these
alternative addresses may be used by the client orb, in addition to the host and p
address expressed in the body of the Profile. In cases where one or more
TAG_ALTERNATE_IIOP_ADDRESS components are present in a
TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

13.6.3.3 Other Components

The following standard components are specified in various OMG specifications:

• TAG_CODE_SETS (See Section 13.7.2.4, “CodeSet Component of IOR Multi-
Component Profile,” on page 13-36.)

• TAG_POLICIES (See CORBA Messaging specification - currently orbos/98-05-0
will be incorporated into CORBA 3.0).

• TAG_SEC_NAME (See Section 15.10.2 Mechanism Tags, Security chapter -
CORBAServices).

• TAG_ASSOCIATION_OPTIONS (See Section 15.10.3 Tag Association Options
Security chapter - CORBAServices).

• TAG_SSL_SEC_TRANS (See Section 15.10.2 Mechanism Tags, Security chap
- CORBAServices).

• TAG_GENERIC_SEC_MECH and all other tags with names in the form
TAG_*_SEC_MECH (See Section 15.10.2 Mechanism Tags, Security chapter -
CORBAServices).

• TAG_JAVA_CODEBASE (See the Java to IDL Language Mapping,
Section 1.4.9.3, “Codebase Transmission,” on page 1-33).

• TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key
Component,” on page 16-19).

• TAG_ENDPOINT_ID_POSITION (See Section 16.5.5, “Endpoint ID Position
Component,” on page 16-20).

• TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component,”
on page 16-20).

• TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-CIOP String Binding
Component,” on page 16-17).

• TAG_DCE_BINDING_NAME (See Section 16.5.2, “DCE-CIOP Binding Name
Component,” on page 16-18).

• TAG_DCE_NO_PIPES (See Section 16.5.3, “DCE-CIOP No Pipes Component,”
page 16-19).
CORBA, v2.4.2 An Information Model for Object References February 200113-19

13

t

gle

es

n an

ons
ate

e by

gs.
 will

r
l
13.6.4 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall no
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a sin
profile, possibly with some information (e.g., components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profil
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile withi
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definiti
are those whose tag and data format is specified in OMG documents. For priv
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for us
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component ta
Neither allocation nor registration indicates any “standard” status, only that the tag
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

13.6.5 IOR Creation and Scope

IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whateve
form they find appropriate, including possibly using the IOR structure. Bridges wil
normally use IORs to mediate transfers where that standard is appropriate.

13.6.6 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_string operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.
13-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

he

rse
B

nt

 This

 IOR,
IOP
.)

four

e of
There can be a variety of reasons why being able to parse this string form might not
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than t
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and pa
stringified IORs, so that in some cases an object reference stringified by one OR
could be destringified by another.

To allow a stringified object reference to be internalized by what may be a differe
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format.
helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

(1) <oref> ::= <prefix> <hex_Octets>
(2) <prefix> ::= “IOR:”
(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
(4) <hex_Octet> ::= <hexDigit> <hexDigit>
(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

| “6” | “7” | “8” | “9”
(7) <a> ::= “a” | “A”
(8) ::= “b” | “B”
(9) <c> ::= “c” | “C”
(10) <d> ::= “d” | “D”
(11) <e> ::= “e” | “E”
(12) <f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an
and then encapsulating the IOR using the encoding rules of CDR, as specified in G
1.0. (See Section 15.3, “CDR Transfer Syntax,” on page 15-4 for more information
The content of the encapsulated IOR is then turned into hexadecimal digit pairs,
starting with the first octet in the encapsulation and going until the end. The high
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.7 Object URLs

To address the problem of bootstrapping and allow for more convenient exchang
human-readable object references, ORB::string_to_object allows URLs in the
corbaloc and corbaname formats to be converted into object references. If
conversion fails, string_to_object raises a BAD_PARAM exception with the
following minor codes:
CORBA, v2.4.2 An Information Model for Object References February 200113-21

13

ples
• BadSchemeName

• BadAddress

• BadSchemeSpecificPart

• Other

13.6.7.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more
easily manipulated by users than IOR URLs. Currently , corbaloc URLs denote
objects that can be contacted by IIOP or resolve_initial_references. Other
transport protocols can be explicitly specified when they become available. Exam
of IIOP and resolve_initial_references (rir:) based corbaloc
URLs are:

corbaloc::555xyz.com/Prod/TradingService

corbaloc:iiop:1.1@555xyz.com/Prod/TradingService

corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService

corbaloc:rir:/TradingService

corbaloc:rir:/NameService

A corbaloc URL contains one or more:

• protocol identifiers

• protocol specific components such as address and version information.

When the rir protocol is used, no other protocols are allowed.

After the addressing information, a corbaloc URL ends with a single object key.

The full syntax is:

<corbaloc> = “corbaloc:”<obj_addr_list>[“/”<key_string>]

<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>

<obj_addr> = <prot_addr> | <future_prot_addr>

<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>”:”

<rir_prot_token> = “rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = “:” | <iiop_prot_token>”:”

<iiop_prot_token> = “iiop”

<iiop_addr> = defined in Section 13.6.7.3, “corbaloc:iiop
URL”

<future_prot_addr> = <future_prot_id><future_prot_addr>

<future_prot_id> = <future_prot_token>”:”
13-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

on.
bject

RL.

t

-

6

ped,
<future_prot_token> = possible examples: “atm” | “dce”

<future_prot_addr> = protocol specific address

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address informati
This list is used in an implementation-defined manner to address the object An o
may be contacted by any of the addresses and protocols.

Note – If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The
comma ‘,’ and ‘/’ characters are specifically prohibited in this component of the U

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does no
have a version tag or address. See Section 13.6.7.2

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS
style host name or IP address. See Section 13.6.7.3, “corbaloc:iiop URL” for
the iiop specific definitions.

future_prot_addr : a placeholder for future corbaloc protocols.

future_prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop ” and “rir”
are defined.

future_prot_addr : a protocol specific address and possibly protocol version
information. An example of this for iiop is “1.1@555xyz.com ”

key_string: a stringified object key

The key_string corresponds to the octet sequence in the object_key member of
a GIOP Request or LocateRequest header as defined in section 15.4 of
CORBA 2.3. The key_string uses the escape conventions described in RFC 239
to map away from octet values that cannot directly be part of a URL. US-ASCII
alphanumeric characters are not escaped. Characters outside this range are esca
except for the following:

“;” | “/” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.
CORBA, v2.4.2 An Information Model for Object References February 200113-23

13

r

ts

-

13.6.7.2 corbaloc:rir URL

The corbaloc:rir URL is defined to allow access to the ORB’s configured initial
references through a URL.

The protocol address syntax is:

<rir_prot_addr> = <rir_prot_token>”:”

<rir_prot_token> = “rir”

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version o
address information when rir is used.

rir_prot_token: The token “rir” identifies this protocol..

For a corbaloc:rir URL, the <key_string> is used as the argument to
resolve_initial_references. An empty <key_string> is interpreted as the default
“NameService”.

The rir protocol can not be used with any other protocol in a URL.

13.6.7.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environmen
The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = <iiop_default> | <iiop_prot_token>”:”

<iiop_default> = “:”

<iiop_prot_token> = “iiop”

<iiop_addr> = <version> <host> [“:” <port>]

<host> = DNS-style Host Name | ip_address

<version> = <major> “.” <minor> “@” | empty_string

<port> = number

<major> = number

<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS
style host name or IP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop”

iiop_address: a single address

host: DNS-style host name or IP address.
13-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

If

is

is

 be

.7.1,

s:
version: a major and minor version number, separated by ‘.’ and followed by ‘@’.
the version is absent, 1.0 is assumed.

ip_address: numeric IP address (dotted decimal notation).

port: port number the agent is listening on (see below). The default port is 2809.

13.6.7.4 corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there
must be a software agent listening on the host and port specified by the URL. Th
agent must be capable of handling GIOP Request and LocateRequest messages
targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement
lightweight object location forwarding agents that respond to GIOP Request
messages with Reply messages with a LOCATION_FORWARD status, and respond to
GIOP LocateRequest messages with LocateReply messages.

13.6.7.5 corbaname URL

The corbaname URL scheme is described in Chapter 3 of the CORBAservices
specification. It extends the capabilities of the corbaloc scheme to allow URLs to
denote entries in a Naming Service. Resolving corbaname URLs does not require a
Naming Service implementation in the ORB core. Some examples are:

corbaname::555objs.com#a/string/path/to/obj

This URL specifies that at host 555objs.com , a object of type NamingContext
(with an object key of NameService) can be found, or alternatively, that an agent
running at that location which will return a reference to a NamingContext . The
(stringified) name a/string/path/to/obj is then used as the argument to a
resolve_str operation on that NamingContext . The URL denotes the object
reference that results from that lookup.

corbaname:rir:#a/local/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative
to the naming context returned by resolve_initial_references(“NameService”).

13.6.7.6 Future corbaloc URL Protocols

This specification only defines use of iiop and rir with corbaloc. New protocols can
added to corbaloc as required. Each new protocol must implement the
<future_prot_addr> component of the URL and define a described in Section 13.6
“corbaloc URL.”

A possible example of a future corbaloc URL that incorporates an ATM address i

corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX
CORBA, v2.4.2 An Information Model for Object References February 200113-25

13

ns
e
g

ly

ext
sts

t
 be

eless

any
e
 and
13.6.7.7 Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.
Implementations may choose to provide these or other URL schemes to support
additional ways of denoting objects with URLs.

Table 13-1 lists the required and some optional formats.

13.6.8 Object Service Context

Emerging specifications for Object Services occasionally require service-specific
context information to be passed implicitly with requests and replies. (Specificatio
for OMG’s Object Services are contained in CORBAservices: Common Object Servic
Specifications.) The Interoperability specifications define a mechanism for identifyin
and passing this service-specific context information as “hidden” parameters. The
specification makes the following assumptions:

• Object Service specifications that need additional context passed will complete
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume cont
information at appropriate points in the process of sending and receiving reque
and replies.

• It is an ORB’s responsibility to determine when to send service-specific contex
information, and what to do with such information in incoming messages. It may
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but neverth
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service–specific information. It does not describe
service-specific information. It only describes a mechanism for transmitting it in th
most general way possible. The mechanism is currently used by the DCE ESIOP
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB
Protocol (GIOP).

Table 13-1 URL formats

Scheme Description Status
IOR: Standard stringified IOR format Required

corbaloc: Simple object reference. rir: must be
supported.

Required

corbaname: CosName URL Required

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is
accessible via ftp protocol.

Optional

http:// Specifies an HTTP URL that returns an object
URL/IOR.

Optional
13-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

gh
t ID

ce-
d in

et
andle

list.
 that

gh
text
 for

Each Object Service requiring implicit service-specific context to be passed throu
GIOP will be allocated a unique service context ID value by OMG. Service contex
values are of type unsigned long . Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};
typedef sequence <ServiceContext>ServiceContextList;

const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;
const ServiceId ChainBypassCheck = 2;
const ServiceId ChainBypassInfo = 3;
const ServiceId LogicalThreadId = 4;
const ServiceId BI_DIR_IIOP = 5;
const ServiceId SendingContextRunTime = 6;
const ServiceId INVOCATION_POLICIES = 7;
const ServiceId FORWARDED_IDENTITY = 8;
const ServiceId UnknownExceptionInfo = 9;

};

The context data for a particular service will be encoded as specified for its servi
specific OMG IDL definition, and that encoded representation will be encapsulate
the context_data member of IOP::ServiceContext . (See Section 15.3.3,
“Encapsulation,” on page 15-14). The context_id member contains the service ID
value identifying the service and data format. Context data is encapsulated in oct
sequences to permit ORBs to handle context data without unmarshaling, and to h
unknown context data types.

During request and reply marshaling, ORBs will collect all service context data
associated with the Request or Reply in a ServiceContextList , and include it in the
generated messages. No ordering is specified for service context data within the
The list is placed at the beginning of those messages to support security policies
may need to apply to the majority of the data in a request (including the message
headers).

Each Object Service requiring implicit service-specific context to be passed throu
GIOP will be allocated a unique service context ID value by the OMG. Service con
ID values are of type unsigned long. Object service specifications are responsible
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.
CORBA, v2.4.2 An Information Model for Object References February 200113-27

13

xt
. A
n
cific

 IDs
ice

t

-
r.

0-19.

ce

The high-order 20 bits of service-context ID contain a 20-bit vendor service conte
codeset ID (VSCID); the low-order 12 bits contain the rest of the service context ID
vendor (or group of vendors) who wish to define a specific set of system exceptio
minor codes should obtain a unique VSCID from the OMG, and then define a spe
set of service context IDs using the VSCID for the high-order bits.

The VSCID of zero is reserved for use for OMG-defined standard service context
(i.e., service context IDs in the range 0-4095 are reserved as OMG standard serv
contexts).

The ServiceId s currently defined are:

• TransactionService identifies a CDR encapsulation of the
CosTSInteroperation::PropogationContext defined in CORBAservices:
Common Object Services Specifications.

• CodeSets identifies a CDR encapsulation of the
CONV_FRAME::CodeSetContext defined in Section 13.7.2.5, “GIOP Code Se
Service Context,” on page 13-37.

• DCOM-CORBA Interworking uses three service contexts as defined in "DCOM
CORBA Interworking" in the “Interoperability with non-CORBA Systems”chapte
They are:

• ChainBypassCheck , which carries a CDR encapsulation of the struct
CosBridging::ChainBypassCheck . This is carried only in a Request
message as described in Section 20.9.1, “CORBA Chain Bypass,” on page 2

• ChainBypassInfo , which carries a CDR encapsulation of the struct
CosBridging::ChainBypassInfo . This is carried only in a Reply message as
described in Section 20.9.1, “CORBA Chain Bypass,” on page 20-19.

• LogicalThreadId , which carries a CDR encapsulation of the struct
CosBridging::LogicalThreadId as described in Section 20.10, “Thread
Identification,” on page 20-21.

• BI_DIR_IIOP identifies a CDR encapsulation of the
IIOP::BiDirIIOPServiceContext defined in Section 15.8, “Bi-Directional GIOP,”
on page 15-55.

• SendingContextRunTime identifies a CDR encapsulation of the IOR of the
SendingContext::RunTime object (see Section 5.6, “Access to the Sending
Context Run Time,” on page 5-15).

• UnknownExceptionInfo identifies a CDR encapsulation of a marshaled instan
of a java.lang.throwable or one of its subclasses as described in Java to IDL
Language Mapping, Section 1.4.8.1, “Mapping of UnknownExceptionInfo Service
Context,” on page 1-32.

• The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of
the IIOP::ProfileBody_1_1 type, described in Section 15.7.2, “IIOP IOR
Profiles,” on page 15-51.
13-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

el

s

 be
hen
 of

ctly

r
 a
• The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of the MultipleComponentProfile type, which is a sequence of
TaggedComponent structures, described in Section 13.6, “An Information Mod
for Object References,” on page 13-14.

• The component_data member identifies a CDR encapsulation of a
BindingNameComponent structure, described in Section 16.5.2.1,
“BindingNameComponent,” on page 16-18.

Note – For more information on INVOCATION_POLICIES refer to the Asynchronou
Messaging specification - orbos/98-05-05. For information on
FORWARDED_IDENTITY refer to the Firewall specification - orbos/98-05-04.

Service context IDs are associated with a specific version of GIOP, but will always
allocated in the OMG service context range. This allows any ORB to recognize w
it is receiving a standard service context, even if it has been defined in a version
GIOP that it does not support.

The following are the rules for processing a received service context:

• The service context is in the OMG defined range:

• If it is valid for the supported GIOP version, then it must be processed corre
according to the rules associated with it for that GIOP version level.

• If it is not valid for the GIOP version, then it may be ignored by the receiving
ORB, however it must be passed on through a bridge. No exception shall be
raised.

• The service context is not in the OMG-defined range:

• The receiving ORB may choose to ignore it, process it if it “understands” it, o
raise a system exception, however it must be passed on through a bridge. If
system exception is raised, it shall be BAD_PARAM with an OMG standard
minor code of 1.

The association of service contexts with GIOP versions, (along with some other
supported features tied to GIOP minor version), is shown in Table 13-2.

Table 13-2Feature Support Tied to Minor GIOP Version Number

Feature Version 1.0 Version 1.1 Version 1.2

Transaction Service Context yes yes yes

Codeset Negotiation Service Context yes yes

DCOM Bridging Service Contexts:
ChainBypassCheck
ChainBypassInfo
LogicalThreadId

yes

Object by Value Service Context:
SendingContextRunTime

yes
CORBA, v2.4.2 An Information Model for Object References February 200113-29

13

d the

ntrol
hip
e
s
13.7 Code Set Conversion

13.7.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understan
character processing portions of this document.

13.7.1.1 Character Set

A finite set of different characters used for the representation, organization, or co
of data. In this specification, the term “character set” is used without any relations
to code representation or associated encoding. Examples of character sets are th
English alphabet, Kanji or sets of ideographic characters, corporate character set
(commonly used in Japan), and the characters needed to write certain European
languages.

Bi-Directional IIOP Service Context:
BI_DIR_IIOP

yes

Java Language Throwable Service
Context:
UnknownExceptionInfo

yes

IOR components in IIOP profile yes yes

TAG_ORB_TYPE yes yes

TAG_CODE_SETS yes yes

TAG_ALTERNATE_IIOP_ADDRESS yes

TAG_ASSOCIATION_OPTION yes yes

TAG_SEC_NAME yes yes

TAG_SSL_SEC_TRANS yes yes

TAG_GENERIC_SEC_MECH yes yes

TAG_*_SEC_MECH yes yes

TAG_JAVA_CODEBASE yes

IOR component nn yes

Extended IDL data types yes yes

Bi-Directional GIOP Features yes

Table 13-2Feature Support Tied to Minor GIOP Version Number (Continued)

Feature Version 1.0 Version 1.1 Version 1.2
13-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

ric
term

ji, etc.)

ters.”
ngle-
pical
s

nese,
 and

heme

on

acters
yte-

.

 32-
13.7.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or nume
value. In this specification, the term “code set” is used as an abbreviation for the
“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which
includes Roman characters, Japanese hiragana, Greek characters, Japanese kan
and Unicode.

13.7.1.3 Code Set Classifications

Some language environments distinguish between byte-oriented and “wide charac
The byte-oriented characters are encoded in one or more 8-bit bytes. A typical si
byte encoding is ASCII as used for western European languages like English. A ty
multi-byte encoding which uses from one to three 8-bit bytes for each character i
eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chi
Japanese, etc., where the number of combinations offered by 8 bits is insufficient
a fixed-width encoding is needed. A typical example is Unicode (a “universal”
character set defined by the The Unicode Consortium, which uses an encoding sc
identical to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An
extended encoding scheme for Unicode characters is UTF-16 (UCS Transformati
Format, 16-bit representations).

The C language has data types char for byte-oriented characters and wchar_t for
wide characters. The language definition for C states that the sizes for these char
are implementation-dependent. Some environments do not distinguish between b
oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a
character is implementation-dependent. The following table illustrates code set
classifications as used in this document.

13.7.1.4 Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters
Typically the narrow characters are considered to be 8-bit long and are used for
western European languages like English, while the wide characters are 16-bit or

Table 13-3Code Set Classification

Orientation Code Element
Encoding

Code Set Examples C Data
Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1),
EBCDIC, ...

char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big5, ...char[]

non-byte-
oriented

fixed-length ISO 10646 UCS-2 (Unicode), ISO
10646 UCS-4, UTF-16, ...

wchar_t
CORBA, v2.4.2 Code Set Conversion February 2001 13-31

13

ber of
e
yte
 as

r”

en

code

 can

e
ets).
lti-

code

 after

d.
bit long and are used for languages like Chinese, Japanese, etc., where the num
combinations offered by 8 bits are insufficient. However, as noted above there ar
common encoding schemes in which Asian characters are encoded using multi-b
code sets and it is incorrect to assume that Asian characters are always encoded
“wide” characters.

Within this specification, the general terms “narrow character” and “wide characte
are only used in discussing OMG IDL.

13.7.1.5 Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose IDL types have be
specified as char or string . Likewise “wchar data” refers to data whose IDL types
have been specified as wchar or wstring .

13.7.1.6 Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy one or more bytes. A byte as used in this specification is
synonymous with octet, which occupies 8 bits.

13.7.1.7 Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character
occupy one or more bytes is called a multi-byte character string. Typically, wide
characters are converted to this form from a (fixed-width) process code set befor
transmitting the characters outside the process (see below about process code s
Care must be taken to correctly process the component bytes of a character’s mu
byte representation.

13.7.1.8 Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy fixed 16 or 32 bits.

13.7.1.9 Char Transmission Code Set (TCS-C) and Wchar Transmission
Code Set (TCS-W)

These two terms refer to code sets that are used for transmission between ORBs
negotiation is completed. As the names imply, the first one is used for char data and
the second one for wchar data. Each TCS can be byte-oriented or non-byte oriente
13-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

rmat

s, and

me

 with

r data
code

sing
 is
de set

ts
e

lity to
13.7.1.10 Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width fo
which allows for efficient representation and manipulation. This internal format is
called a “process code set.” The process code set is irrelevant outside the proces
hence to the interoperation between CORBA clients and servers through their
respective ORBs.

When a process needs to write international character information out to a file, or
communicate with another process (possibly over a network), it typically uses a
different encoding called a “file code set.” In this specification, unless otherwise
indicated, all references to a program’s code set refer to the file code set, not the
process code set. Even when a client and server are located physically on the sa
machine, it is possible for them to use different file code sets.

13.7.1.11 Native Code Set

A native code set is the code set which a client or a server uses to communicate
its ORB. There might be separate native code sets for char and wchar data.

13.7.1.12 Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for characte
transfer between a client’s ORB and a server’s ORB. There are two transmission
sets established per session between a client and its server, one for char data (TCS-C)
and the other for wchar data (TCS-W). Figure 13-6 illustrates these relationships:

Figure 13-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.
However, this specification does allow both types of characters to be transmitted u
the same transmission code set. That is, the selection of a transmission code set
orthogonal to the wideness or narrowness of the characters, although a given co
may be better suited for either narrow or wide characters.

13.7.1.13 Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code se
for which an ORB can convert all code points or character encodings between th
native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the abi
use that code set for transmitted data in addition to the native code set.

ORB ORB
transmission

code set

native
client process server processcode sets

code set

native
CORBA, v2.4.2 Code Set Conversion February 2001 13-33

13

hich
ft-JIS
lity

re:

d
tically
ns.

e by
),

 set)

 to
the

 to
le, if
r
IR)

ed on
 the
t

ale.

ate
cess

es a
ile

ce
13.7.2 Code Set Conversion Framework

13.7.2.1 Requirements

The file code set that an application uses is often determined by the platform on w
it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shi
is used on PCs. Code set conversion is therefore required to enable interoperabi
across these platforms. This proposal defines a framework for the automatic
conversion of code sets in such situations. The requirements of this framework a

1. Backward compatibility. In previous CORBA specifications, IDL type char was
limited to ISO 8859-1. The conversion framework should be compatible with
existing clients and servers that use ISO 8859-1 as the code set for char .

2. Automatic code set conversion. To facilitate development of CORBA clients an
servers, the ORB should perform any necessary code set conversions automa
and efficiently. The IDL type octet can be used if necessary to prevent conversio

3. Locale support. An internationalized application determines the code set in us
examining the LOCALE string (usually found in the LANG environment variable
which may be changed dynamically at run time by the user. Example LOCALE
strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code
and ja_JP.ujis (Japanese, used in Japan with the EUC code set and X11R5
conventions for LOCALE). The conversion framework should allow applications
use the LOCALE mechanism to indicate supported code sets, and thus select
correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough
allow conversion to be performed either on the client or server side. For examp
a client is running in a memory-constrained environment, then it is desirable fo
code set converters to reside in the server and for a Server Makes It Right (SM
conversion method to be used. On the other hand, if many servers are execut
one server machine, then converters should be placed in each client to reduce
load on the server machine. In this case, the conversion method used is Clien
Makes It Right (CMIR).

13.7.2.2 Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a loc
The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale . The client and server use their native code set to communic
with their ORB. (Note that these native code sets are in general different from pro
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 13-7. The server-side ORB stor
server’s code set information in a component of the IOR multiple-component prof
structure (see Section 13.6.2, “Interoperable Object References: IORs,” on
page 13-14)2. The code sets actually used for transmission are carried in the servi
context field of an IOP (Inter-ORB Protocol) request header (see Section 13.6.8,
13-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

d

ion is

e
ets are

is

on
s for

s
le to
urse,
-
ated,

to
“Object Service Context,” on page 13-26 and Section 13.7.2.5, “GIOP Code Set
Service Context,” on page 13-37). Recall that there are two code sets (TCS-C an
TCS-W) negotiated for each session.

Figure 13-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no convers
performed. If the native code sets are different and the client-side ORB has an
appropriate converter, then the CMIR conversion method is used. In this case, th
server’s native code set is used as the transmission code set. If the native code s
different and the client-side ORB does not have an appropriate converter but the
server-side ORB does have one, then the SMIR conversion method is used. In th
case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set
and a native wchar code set, which determine the local encodings of IDL types char
and wchar , respectively. The conversion process outlined above is executed
independently for the char code set and the wchar code set. In other words, the
algorithm that is used to select a transmission code set is run twice, once for char data
and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is
typically inferred from the locale of a process) is to allow efficient data transmissi
without any conversions when the client and server have identical representation
char and/or wchar data. For example, when a Windows NT client talks to a Window
NT server and they both use Unicode for wide character data, it becomes possib
transmit wide character data from one to the other without any conversions. Of co
this becomes possible only for those wide character representations that are well
defined, not for any proprietary ones. If a single transmission code set was mand
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission code set would force conversion of all byte-oriented character data
Unicode.)

2. Version 1.1 of the IIOP profile body can also be used to specify the server’s code set infor-
mation, as this version introduces an extra field that is a sequence of tagged components.

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information
CORBA, v2.4.2 Code Set Conversion February 2001 13-35

13

e set
xactly

de set
cally
d a
etup

ly

 or

 which
) can
t is

al

erter

ode
13.7.2.3 ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native cod
for a locale and to convert between code sets as necessary. While the details of e
how these tasks are accomplished are implementation-dependent, the following
databases and code set converters might be used:

• Locale database. This database defines a native code set for a process. This co
could be byte-oriented or non-byte-oriented and could be changed programmati
while the process is running. However, for a given session between a client an
server, it is fixed once the code set information is negotiated at the session’s s
time.

• Environment variables or configuration files. Since the locale database can on
indicate one code set while the ORB needs to know two code sets, one for char
data and one for wchar data, an implementation can use environment variables
configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to
it can be converted. From this database, a set of “conversion code sets” (CCS
be determined for a client and server. For example, if a server’s native code se
eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilater
converters, then the server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the conv
database.

13.7.2.4 CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s native char code set and conversion code sets, and

• server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The c
set component is identified by the following tag:

const IOP::ComponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See “Standard IOR Components” on
page 13-17.). The following IDL structure defines the representation of code set
information within the component:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetComponent {

CodeSetId native_code_set;
sequence<CodeSetId> conversion_code_sets;

};
struct CodeSetComponentInfo {
13-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

Set

 type
s,

ode

en
 is
data
e

tion:

Set
CodeSetComponent ForCharData;
CodeSetComponent ForWcharData;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code
Registry (See “Character and Code Set Registry” on page 13-43 for further
information). Data within the code set component is represented as a structure of
CodeSetComponentInfo , and is encoded as a CDR encapsulation. In other word
the char code set information comes first, then the wchar information, represented as
structures of type CodeSetComponent .

A null value should be used in the native_code_set field if the server desires to
indicate no native code set (possibly with the identification of suitable conversion c
sets).

If the code set component is not present in a multi-component profile structure, th
the default char code set is ISO 8859-1 for backward compatibility. However, there
no default wchar code set. If a server supports interfaces that use wide character
but does not specify the wchar code sets that it supports, client-side ORBs will rais
exception INV_OBJREF.

13.7.2.5 GIOP Code Set Service Context

The code set GIOP service context contains:

• char transmission code set, and

• wchar transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

The following IDL structure defines the representation of code set service informa

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code
Registry (See “Character and Code Set Registry” on page 13-43 for further
information).
CORBA, v2.4.2 Code Set Conversion February 2001 13-37

13

 the

 the
s a
nt

rom

ient
oded

 the

ata,
arlier,
 via

erver
Note – A server’s char and wchar Code set components are usually different, but
under some special circumstances they can be the same. That is, one could use
same code set for both char data and wchar data. Likewise the CodesetId s in the
service context don’t have to be different.

13.7.2.6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from
code set component in an IOR multi-component profile structure, and it determine
client’s native and conversion code sets from the locale setting (and/or environme
variables/configuration files) and the converters that are available on the client. F
this information, the client-side ORB chooses char and wchar transmission code sets
(TCS-C and TCS-W). For both requests and replies, the char TCS-C determines the
encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a cl
initially connects to a server. All text data communicated on a connection are enc
as defined by the TCSs selected when the connection is established.

Figure 13-8 illustrates, there are two channels for character data flowing between
client and the server. The first, TCS-C, is used for char data and the second, TCS-W,
is used for wchar data. Also note that two native code sets, one for each type of d
could be used by the client and server to talk to their respective ORBs (as noted e
the selection of the particular native code set used at any particular point is done
setlocale or some other implementation-dependent method).

Figure 13-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and s
is as shown in the table below. (Note that this example concerns only char code sets
and is applicable only for data described as char s in the IDL.)

Client Server

Native code set: SJIS eucJP

Conversion code
sets:

eucJP, JIS SJIS, JIS

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C)

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wchar

for wchar (TCS-W)
Transmission code set

Client
Side Side

Server
13-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

 they

 is
t,
 is

 first

and
:

same.
s
 are

or
The client-side ORB first compares the native code sets of the client and server. If
are identical, then the transmission and native code sets are the same and no
conversion is required. In this example, they are different, so code set conversion
necessary. Next, the client-side ORB checks to see if the server’s native code se
eucJP, is one of the conversion code sets supported by the client. It is, so eucJP
selected as the transmission code set, with the client (i.e., its ORB) performing
conversion to and from its native code set, SJIS, to eucJP. Note that the client may
have to convert all its data described as char s (and possibly wchar_t s) from process
codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set
where conversions are performed. First, we introduce the following abbreviations

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set;

• SCCS - Server Conversion Code Sets; and

• TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS));
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server
// from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE exception;
}

The algorithm first checks to see if the client and server native code sets are the
If they are, then the native code set is used for transmission and no conversion i
required. If the native code sets are not the same, then the conversion code sets
examined to see if

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set,
CORBA, v2.4.2 Code Set Conversion February 2001 13-39

13

n one

he
 sets
an
t

ion
e

ould

. For
pt is
e a

16
;
ck

le,

e,
ver
ive

ext,

eption
3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intermediate
conversion code set (i.e., the intersection of CCCS and SCCS contains more tha
code set), then the one most preferable to the server is selected.3

If none of these conversions is possible, then the fallback code set (UTF-8 for char
data and UTF-16 for wchar data— see below) is used. However, before selecting t
fallback code set, a compatibility test is performed. This test looks at the character
encoded by the client and server native code sets. If they are different (e.g., Kore
and French), then meaningful communication between the client and server is no
possible and a CODESET_INCOMPATIBLE exception is raised. This test is similar
to the DCE compatibility test and is intended to catch those cases where convers
from the client native code set to the fallback, and the fallback to the server nativ
code set would result in massive data loss. (See Section 13.9, “Relevant OSFM
Registry Interfaces,” on page 13-43 for the relevant OSF registry interfaces that c
be used for determining compatibility.)

A DATA_CONVERSION exception is raised when a client or server attempts to
transmit a character that does not map into the negotiated transmission code set
example, not all characters in Taiwan Chinese map into Unicode. When an attem
made to transmit one of these characters via Unicode, an ORB is required to rais
DATA_CONVERSION exception.

In summary, the fallback code set is UTF-8 for char data (identified in the Registry as
0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-
for wchar data (identified in the Registry as 0x00010109, "ISO/IEC 10646-1:1993
UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallba
code set is meaningful only when the client and server character sets are compatib
and the fallback code set is distinguished from a default code set used for backward
compatibility.

If a server’s native char code set is not specified in the IOR multi-component profil
then it is considered to be ISO 8859-1 for backward compatibility. However, a ser
that supports interfaces that use wide character data is required to specify its nat
wchar code set; if one is not specified, then the client-side ORB raises exception
INV_OBJREF.

Similarly, if no char transmission code set is specified in the code set service cont
then the char transmission code set is considered to be ISO 8859-1 for backward
compatibility. If a client transmits wide character data and does not specify its wchar
transmission code set in the service context, then the server-side ORB raises exc
BAD_PARAM.

3.Recall that server conversion code sets are listed in order of preference.
13-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

de
. The
e can

x

each
tions

e

ents

 use
 and
de
et of
 A in
ic

ing
act
strings
te
e
ide
alls
t it

NSI

 in a

To guarantee “out-of-the-box” interoperability, clients and servers must be able to
convert between their native char code set and UTF-8 and their native wchar code set
(if specified) and Unicode. Note that this does not require that all server native co
sets be mappable to Unicode, but only those that are exported as native in the IOR
server may have other native code sets that aren’t mappable to Unicode and thos
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-bo
interoperability and to reduce the number of code set converters that a CORBA-
compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for
regional market. For example, in the Japanese marketplace, all ORB implementa
should support Japanese EUC, JIS and Shift JIS to be compatible with existing
business practices.

13.7.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wid
characters. In such environments both char and wchar are mapped to the same
“generic” character representation of the language. String and wstring are likewise
mapped to generic strings in such environments. Examples of language environm
that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented
characters (e.g., C and C++), it is possible to mimic some generic behavior by the
of suitable macros and support libraries. For example, developers of Windows NT
Windows 95 applications can write portable code between NT (which uses Unico
strings) and Windows 95 (which uses byte-oriented character strings) by using a s
macros for declaring and manipulating characters and character strings. Appendix
this chapter shows how to map wide and byte-oriented characters to these gener
macros.

Another way to achieve generic manipulation of characters and strings is by treat
them as abstract data types (ADTs). For example, if strings were treated as abstr
data types and the programmers are required to create, destroy, and manipulate
only through the operations in the ADT interface, then it becomes possible to wri
code that is representation-independent. This approach has an advantage over th
macro-based approach in that it provides portability between byte-oriented and w
character environments even without recompilation (at runtime the string function c
are bound to the appropriate byte-oriented/wide library). Another way of looking a
is that the macro-based genericity gives compile-time flexibility, while ADT-based
genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the A
C++ Strings library defined as a template that can be parameterized by char ,
wchar_t , or other integer types.

Given that there can be several ways of treating characters and character strings
generic way, this standard cannot, and therefore does not, specify the mapping of char ,
wchar , string , and wstring to all of them. It only specifies the following normative
requirements which are applicable to generic character environments:
CORBA, v2.4.2 Code Set Conversion February 2001 13-41

13

ts
 code
cter

 exist
eric
t

ith a

in a
 the

e

the

e an
e

++’s

ny
the
 not
• wchar must be mapped to the generic character type in a generic character
environment.

• wstring must be mapped to a string of such generic characters in a generic
character environment.

• The language binding files (i.e., stubs) generated for these generic environmen
must ensure that the generic type representation is converted to the appropriate
sets (i.e., CNCS on the client side and SNCS on the server side) before chara
data is given to the ORB runtime for transmission.

13.7.3.1 Describing Generic Interfaces

To describe generic interfaces in IDL we recommend using wchar and wstring .
These can be mapped to generic character types in environments where they do
and to wide characters where they do not. Either way interoperation between gen
and non-generic character type environments is achieved because of the code se
conversion framework.

13.7.3.2 Interoperation

Let us consider an example to see how a generic environment can interoperate w
non-generic environment. Let us say there is an IDL interface with both char and
wchar parameters on the operations, and let us say the client of the interface is
generic environment while the server is in a non-generic environment (for example
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is eucJP and th
client’s native char code set (CNCS) is SJIS. Further assume that the code set
negotiation led to the decision to use eucJP as the char TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment,
client’s Smalltalk stubs are responsible for converting all char data (however they are
represented inside Smalltalk) to SJIS and all wchar data to the client’s wchar code set
before passing the data to the client-side ORB. Note that this conversion could b
identity mapping if the internal representation of narrow and wide characters is th
same as that of the native code set(s). The client-side ORB now converts all char data
from SJIS to eucJP and all wchar data from the client’s wchar code set to Unicode,
and then transmits to the server side.

The server side ORB and stubs convert the eucJP data and Unicode data into C
internal representation for char s and wchar s as dictated by the IDL operation
signatures. Notice that when the data arrives at the server side it does not look a
different from data arriving from a non-generic environment (e.g., that is just like
server itself). In other words, the mappings to generic character environments do
affect the code set conversion framework.
13-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

ne

” on

 the

 case

JIS,

de
 to do

ry

ained

cter
y this
13.8 Example of Generic Environment Mapping

This Appendix shows how char , wchar , string , and wchar can be mapped to the
generic C/C++ macros of the Windows environment. This is merely to illustrate o
possibility. This section is not normative and is applicable only in generic
environments. See Section 13.7.3, “Mapping to Generic Character Environments,
page 13-41.

13.8.1 Generic Mappings

Char and string are mapped to C/C++ char and char* as per the standard C/C++
mappings. wchar is mapped to the TCHAR macro which expands to either char or
wchar_t depending on whether _UNICODE is defined. wstring is mapped to
pointers to TCHAR as well as to the string class CORBA::Wstring_var . Literal
strings in IDL are mapped to the _TEXT macro as in _TEXT(<literal>) .

13.8.2 Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping.
Consider an IDL interface operation with a wstring parameter, a client for the
operation which is compiled and run on a Windows 95 machine, and a server for
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCS for wchar representation) on the
Windows 95 client indicates the client’s native code set to be SJIS, and that the
corresponding server’s native code set is Unicode. The code set negotiation in this
will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL
type wstring will be represented as a string of wchar_t on the client. However, since
the client’s locale or environment indicates that the CNCS for wide characters is S
the client side ORB will get the wstring parameter encoded as a SJIS multi-byte
string (since that is the client’s native code set), which it will then convert to Unico
before transmitting to the server. On the server side the ORB has no conversions
since the TCS-W matches the server’s native code set for wide characters.

We therefore notice that the code set conversion framework handles the necessa
translations between byte-oriented and wide forms.

13.9 Relevant OSFM Registry Interfaces

13.9.1 Character and Code Set Registry

The OSF character and code set registry is defined in OSF Character and Code Set
Registry (see References in the Preface) and current registry contents may be obt
directly from the Open Software Foundation (obtain via anonymous ftp to
ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: chara
sets and code sets. For each listed code set, the set of character sets encoded b
code set is shown.
CORBA, v2.4.2 Example of Generic Environment Mapping February 200113-43

13

d a

d to

 if the

ries
e set.

(fuzzy-

s
ffer
me.

r set
ange

ugh

hese
lp in
and

-

lue
Each 32-bit code set value consists of a high-order 16-bit organization number an
16-bit identification of the code set within that organization. As the numbering of
organizations starts with 0x0001, a code set null value (0x00000000) may be use
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality,” meaning that a code set is shown as encoding a particular character set
code set can encode “most” of the characters.

“Compatibility” is determined with respect to two code sets by examining their ent
in the registry, paying special attention to the character sets encoded by each cod
For each of the two code sets, an attempt is made to see if there is at least one
defined) character set in common, and if such a character set is found, then the
assumption is made that these code sets are “compatible.” Obviously, application
which exploit parts of a character set not properly encoded in this scheme will su
information loss when communicating with another application in this “fuzzy” sche

The ORB is responsible for accessing the OSF registry and determining
“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the characte
and code set registries by email to cs-registry@opengroup.org; in particular, one r
of the code set registry (0xf5000000 through 0xffffffff) is reserved for
organizations to use in identifying sets which are not registered with the OSF (altho
such use would not facilitate interoperability without registration).

13.9.2 Access Routines

The following routines are for accessing the OSF character and code set registry. T
routines map a code set string name to code set id and vice versa. They also he
determining character set compatibility. These routine interfaces, their semantics
their actual implementation are not normative (i.e., ORB vendors do not have to
bundle the OSF registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For I18N Characters
Functional Specification (see References in the Preface).

13.9.2.1 dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set va
specified in the code set registry.

Synopsis
void dce_cs_loc_to_rgy(

idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);
13-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

le
 data

et

ing

ther

fo.

ic
ely
value

nd the
ULL

ant
ese
from
array
Parameters

Input

local_code_set_name - A string that specifies the name that the local host's loca
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31
bytes plus a terminating NULL character.

Output

rgy_code_set_value 0 - The registered integer value that uniquely identifies the
code set specified by local_code_set_name.

rgy_char_sets_number - The number of character sets that the specified code s
encodes. Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specify
NULL prevents this routine from returning this parameter. The routine dynamically
allocates this value.

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in

• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set name specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the name specified.

Description

The dce_cs_loc_to_rgy() routine maps operating system-specific names for
character/code set encodings to their unique identifiers in the code set registry.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specif
“local name” of a code set and returns the corresponding integer value that uniqu
identifies that code set, as registered in the host's code set registry. If the integer
does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes a
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a code set value from the code set registry can specify NULL for th
parameters in order to improve the routine's performance. If the value is returned
the routine, application developers should free the array after it is used, since the
is dynamically allocated.
CORBA, v2.4.2 Relevant OSFM Registry Interfaces February 2001 13-45

13

tem-

he

le
 data

et
his

ing

ther

fo.

e set

e set
13.9.2.2 dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local sys
specific name for a code set.

Synopsis
void dce_cs_rgy_to_loc(

 unsigned32 *rgy_code_set_value,
 idl_char **local_code_set_name,
 unsigned16 *rgy_char_sets_number,
 unsigned16 **rgy_char_sets_value,
 error_status_t *status);

Parameters

Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies t
code set.

Output

local_code_set_name - A string that specifies the name that the local host's loca
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31
bytes and a terminating NULL character.

rgy_char_sets_number - The number of character sets that the specified code s
encodes. Specifying NULL in this parameter prevents the routine from returning t
value.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specify
NULL in this parameter prevents the routine from returning this value. The routine
dynamically allocates this value.

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in

• dce_cs_c_unknown – The requested code set value was not found in the cod
registry.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the specific code set registry ID value. This implies that the cod
is not supported in the local system environment.
13-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

e set
 the

e set
 code

s

nd the
ULL

ant
 for
rned
y

ther

d
.

Description

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the cod
registry to the operating system-specific string name for the code set, if it exists in
code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a cod
and returns a string that holds the operating system-specific, or local name, of the
set.

If the code set identifier does not exist in the registry, the routine returns the statu
dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes a
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a local code set name from the code set registry can specify NULL
these parameters in order to improve the routine's performance. If the value is retu
from the routine, application developers should free the rgy_char_sets_value arra
after it is used.

13.9.2.3 rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

Synopsis
void rpc_cs_char_set_compat_check(

 unsigned32 client_rgy_code_set_value,
 unsigned32 server_rgy_code_set_value,
 error_status_t *status);

Parameters

Input

client_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the client is using as its local code set.

server_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the server is using as its local code set.

Output

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Successful status.

• rpc_s_ss_no_compat_charsets – No compatible code set found. The client an
server do not have a common encoding that both could recognize and convert
CORBA, v2.4.2 Relevant OSFM Registry Interfaces February 2001 13-47

13

set is
ot

the

upport.
t and

ether
iders

r from

he

s

ther

fo.
• The routine can also return status codes from the dce_cs_rgy_to_loc() routine.

Description

The rpc_cs_char_set_compat_check() routine provides a method for determining
character set compatibility between a client and a server; if the server's character
incompatible with that of the client, then connecting to that server is most likely n
acceptable, since massive data loss would result from such a connection.

The routine takes the registered integer values that represent the code sets that
client and server are currently using and calls the code set registry to obtain the
registered values that represent the character set(s) that the specified code sets s
If both client and server support just one character set, the routine compares clien
server registered character set values to determine whether or not the sets are
compatible. If they are not, the routine returns the status message
rpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines wh
at least two of the sets are compatible. If two or more sets match, the routine cons
the character sets compatible, and returns a success status code to the caller.

13.9.2.4 rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one characte
the code set registry on a host

Synopsis
void rpc_rgy_get_max_bytes(

unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

Parameters

Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies t
code set.

Output

rgy_max_bytes - The registered decimal value that indicates the number of byte
this code set uses to encode one character.

status - Returns the status code from this routine. This status code indicates whe
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set in
13-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

13

t. It
, and
es to

ne
d
• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set value specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the value specified.

Description

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local hos
takes the specified registered code set value, uses it as an index into the registry
returns the decimal value that indicates the number of bytes that the code set us
encode one character.

This information can be used for buffer sizing as part of the procedure to determi
whether additional storage needs to be allocated for conversion between local an
network code sets.
CORBA, v2.4.2 Relevant OSFM Registry Interfaces February 2001 13-49

13
13-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 Building Inter-ORB Bridges 14
e

Contents

This chapter contains the following sections.

14.1 Introduction

This chapter provides an implementation-oriented conceptual framework for the
construction of bridges to provide interoperability between ORBs. It focuses on th
layered request level bridges that the CORBA Core specifications facilitate, although
ORBs may always be internally modified to support bridges.

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another.

• Provides support for managing tables keyed by object references.

Section Title Page

“Introduction” 14-1

“In-Line and Request-Level Bridging” 14-2

“Proxy Creation and Management” 14-5

“Interface-specific Bridges and Generic Bridges” 14-6

“Building Generic Request-Level Bridges” 14-6

“Bridging Non-Referencing Domains” 14-7

“Bootstrapping Bridges” 14-7
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 14-1

14

t to

r the
re the

 is

s;

,
en
 as

red
ata

rt
BA

est-
 In

ess to

n

als.
)
The OMG IDL specification for interoperable object references, which are importan
inter-ORB bridging, is shown in Section 13.6.2, “Interoperable Object References:
IORs,” on page 13-14.

14.2 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in
another domain can be mediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whethe
bridging uses a standardized mechanism. There are two possible options for whe
bridge components are located:

1. Code inside the ORB may perform the necessary translation or mappings; this
termed in-line bridging.

2. Application style code outside the ORB can perform the translation or mapping
this is termed request-level bridging.

Request-level bridges that mediate through a common protocol (using networking
shared memory, or some other IPC provided by the host operating system) betwe
distinct execution environments will involve components, one in each ORB, known
“half bridges.”

When that mediation is purely internal to one execution environment, using a sha
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined d
types, this is known as a “full bridge”1. From outside the execution environment this
will appear identical to some kinds of in-line bridging, since only that environment
knows the construction techniques used. However, full bridges more easily suppo
portable policy mediation components, because of their use of only standard COR
programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between requ
level half bridges. The General Inter-ORB Protocol can be used in either manner.
addition, this specification provides for Environment Specific Inter-ORB Protocols
(ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request-level half-bridges can be built by anyone who has acc
an ORB, without needing information about the internal construction of that ORB.
Immediate-mode request-level half-bridges (i.e., ones using nonstandard mediatio
mechanisms) can be built similarly without needing information about ORB intern
Only in-line bridges (using either standard or nonstandard mediation mechanisms
need potentially proprietary information about ORB internals.

1.Special initialization supporting object referencing domains (e.g., two protocols) to be
exposed to application programmers to support construction of this style bridge.
14-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

14

t is

ting
new
 such

tion
14.2.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. I
structurally similar to the engineering commonly used to bridge between systems
within a single ORB (e.g., mediating using some common inter-process
communications scheme, such as a network protocol). This means that implemen
in-line bridges involves as fundamental a set of changes to an ORB as adding a
inter-process communications scheme. (Some ORBs may be designed to facilitate
modifications, though.)

In this approach, the required bridging functionality can be provided by a combina
of software components at various levels:

• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

Figure 14-1 In-Line bridges are built using ORB internal APIs.

14.2.2 Request-level Bridging

The general principle of request-level bridging is as follows:

1. The original request is passed to a proxy object in the client ORB.

2. The proxy object translates the request contents (including the target object
reference) to a form that will be understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
CORBA, v2.4.2 In-Line and Request-Level Bridging February 2001 14-3

14

t
plicit
volve

f the

the
he
izes

ven
oth
Figure 14-2 Request-Level bridges are built using public ORB APIs.

The request translation involves performing object reference mapping for all objec
references involved in the request (the target, explicit parameters, and perhaps im
ones such as transaction context). As elaborated later, this translation may also in
mappings for other domains: the security domain of CORBA::Principal parameters,
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all
dynamic typing APIs (e.g., Any, NamedValue) support such manipulation of
parameters even when the bridge was not created with compile-time knowledge o
data types involved.

14.2.3 Collocated ORBs

In the case of immediate bridging (i.e., not via a standardized, external protocol)
means of communication between the client-side bridge component and that on t
server-side is an entirely private matter. One possible engineering technique optim
this communication by coalescing the two components into the same system or e
the same address space. In the latter case, accommodations must be made by b
ORBs to allow them to share the same execution environment.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
14-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

14

d
ting

k

aging
 each
hat
op,”

and

apter

pters

 do
A
ORB
se,

r

ill
Similar observations apply to request-level bridges, which in the case of collocate
ORBs use a common binary interface to all OMG IDL-defined data as their media
data format.

Figure 14-3 When the two ORBs are collocated in a bridge execution environment, networ
communications will be purely intra-ORB. If the ORBs are not collocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external mess
can be arranged to be intra-ORB, using whatever message-passing mechanisms
ORB uses to achieve distribution within a single ORB, multiple machine system. T
is, for bridges between networked ORBs such a bridge would add only a single “h
a cost analogous to normal routing.

14.3 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. The key schemes for creating
managing proxies are reference translation and reference encapsulation, as discussed
in Section 13.5.2, “Handling of Referencing Between Domains,” on page 13-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the Basic Object Ad
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for
knowledge of more than one ORB. Some ORBs could provide other object ada
that support such encapsulation.

Note that from the perspective of clients, they only deal with local objects; clients
not need to distinguish between proxies and other objects. Accordingly, all CORB
operations supported by the local ORB are also supported through a bridge. The
used by the client might, however, be able to recognize that encapsulation is in u
depending on how the ORB is implemented.

Also, note that the CORBA::InterfaceDef used when creating proxies (e.g., the one
passed to CORBA::BOA::create) could be either a proxy to one in the target ORB, o
could be an equivalent local one. When the domains being bridged include a type
domain, then the InterfaceDef objects cannot be proxies since type descriptions w
not have the same information. When bridging CORBA-compliant ORBs, type
domains by definition do not need to be bridged.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
CORBA, v2.4.2 Proxy Creation and Management February 2001 14-5

14

es,
SI).

ould
ut the
an

are

s

d
lues,

t
nces,

d

same
 ID

ch as

 by
14.4 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built
using IDL-compiler generated stub and skeleton interfaces.

• Generic: capable of bridging requests to server objects of arbitrary IDL interfac
using the interface repository and other dynamic invocation support (DII and D

Interface-specific bridges may be more efficient in some cases (a generic bridge c
conceivably create the same stubs and skeletons using the interface repository), b
requirement for prior compilation means that this approach offers less flexibility th
using generic bridges.

14.5 Building Generic Request-Level Bridges

The CORBA Core specifications define the following interfaces. These interfaces
of particular significance when building a generic request-level bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on
object references whose types may not have been known when the bridge wa
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy
object references that it implements, even when their types may not have been
known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information use
to drive DII and DSI, such as the type codes for operation parameters, return va
and exceptions.

• Object Adapters (such as the Basic Object Adapter) are used to create proxy objec
references both when bootstrapping the bridge and when mapping object refere
which are dynamically passed from one ORB to the other.

• CORBA Object References support operations to fully describe their interfaces an
to create tables mapping object references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the
information, though of course the information associated with any given repository
(e.g., an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism su
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used
some mediating protocol such as IIOP (see the General Inter-ORB Protocol
chapter).

• Translate requests made using such a mediating protocol into DII requests on
objects in the ORB.
14-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

14

pping
sed

ed
lar

t, an
-

ing

ned
e
tical
 will

eous
ot
eed
s

ay
ext

uch
re

wo
s as
ibed

ing
ess
As noted in Section 14.2, “In-Line and Request-Level Bridging,” on page 14-2,
translating requests and responses (including exceptional responses) involves ma
object references (and other explicit and implicit parameter data) from the form u
by the ORB to the form used by the mediating protocol, and vice versa. Explicit
parameters, which are defined by an operation’s OMG-IDL definition, are present
through DII or DSI and are listed in the Interface Repository entry for any particu
operation.

Operations on object references such as hash() and is_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exis
object adapter is used to create ORB-specific proxy object references, and bridge
internal interfaces are used to create the analogous data structure for the mediat
protocol.

14.6 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defi
data, and bridges only object reference domains. In this case, a proxy object in th
client ORB acts as a representative of the target object and is, in almost any prac
sense, indistinguishable from the target server object - indeed, even the client ORB
not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultan
bridging. The transformation and encapsulation schemes described above may n
apply in the same way to Principal or type identifiers. Request-level bridges may n
to translate such identifiers, in addition to object references, as they are passed a
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs m
need to convey with any particular request, such as transaction and security cont
information. Such parameters are not defined as part of an operation’s OMG-IDL
signature, hence are “implicit” in the invocation context. Bridging the domains of s
implicit parameters could involve additional kinds of work, needing to mediate mo
policies than bridging the object reference, Principal, and type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and
dynamic invocations) to expose such implicit context information.

14.7 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for t
Naming Service naming contexts (one in each ORB) and then install those proxie
naming contexts in the other ORB’s naming service. (The Naming Service is descr
in the Naming Service specification.) This will allow clients in either ORB to
transparently perform naming context lookup operations on the other ORB, retriev
(proxy) object references for other objects in that ORB. In this way, users can acc
CORBA, v2.4.2 Bridging Non-Referencing Domains February 2001 14-7

14

g

g
ults
fined
facilities that have been selectively exported from another ORB, through a namin
context, with no administrative action beyond exporting those initial contexts. (See
Section 4.7, “Current Object,” on page 4-31 for additional information).

This same approach may be taken with other discovery services, such as a tradin
service or any kind of object that could provide object references as operation res
(and in “out” parameters). While bridges can be established that only pass a prede
set of object references, this kind of minimal connectivity policy is not always
desirable.
14-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

General Inter-ORB Protocol 15
lity,
 a
IOP,
ol

e
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperabi
which can be mapped onto any connection-oriented transport protocol that meets
minimal set of assumptions. This chapter also defines a specific mapping of the G
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protoc
(IIOP). The IIOP must be supported by conforming networked ORB products
regardless of other aspects of their implementation. Such support does not requir
using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains the following sections.

Section Title Page

“Goals of the General Inter-ORB Protocol” 15-2

“GIOP Overview” 15-2

“CDR Transfer Syntax” 15-4

“GIOP Message Formats” 15-30

“GIOP Message Transport” 15-45

“Object Location” 15-48

“Internet Inter-ORB Protocol (IIOP)” 15-50

“Bi-Directional GIOP” 15-55

“Bi-directional GIOP policy” 15-58

“OMG IDL” 15-59
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 15-1

15

ost

d

ther

ld

ts

ats

ocol,
alf-
ed of
be

n-

itate

o
ay be
15.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-c
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), an
defines the minimum additional protocol layers necessary to transfer CORBA
requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting o
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design shou
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message forma
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions
about the architecture of agents that will support it. The GIOP specification tre
ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal prot
it could choose to externalize IIOP as much as possible by implementing it in a h
bridge, or it could choose a strategy between these two extremes. All that is requir
a conforming ORB is that some entity or entities in, or associated with, the ORB
able to send and receive IIOP messages.

15.2 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “o
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facil
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used t
transfer GIOP messages. The specification also describes how connections m
managed, and constraints on GIOP message ordering.
15-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

n

IOP
cific
pings

d

nt
e
IOP

e byte

l

 are

ating

l
ect
tion
ases,

y
ct

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents ope
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the G
to a specific transport (TCP/IP). The GIOP specification (without the transport-spe
IIOP element) may be considered as a separate conformance point for future map
to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in
Section 15.10, “OMG IDL,” on page 15-59. Fragments of the specification are use
throughout this chapter as necessary.

15.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering - Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have differe
byte order, the message originator determines the message byte order, and th
receiver is responsible for swapping bytes to match its native ordering. Each G
message (and CDR encapsulation) contains a flag that indicates the appropriat
order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natura
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations
undefined or implementation-dependent in the CORBA Core specifications.

15.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-oper
ORBs. GIOP message formats have the following features:

• Few, simple messages. With only seven message formats, the GIOP supports ful
CORBA functionality between ORBs, with extended capabilities supporting obj
location services, dynamic migration, and efficient management of communica
resources. GIOP semantics require no format or binding negotiations. In most c
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and ma
allow objects to migrate dynamically. GIOP messages provide support for obje
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.
CORBA, v2.4.2 GIOP Overview February 2001 15-3

15

rs
and

text

 with

port
P

s in

t
e
1.0
of a
 to
een
on,

ely
r a

al.
ate
vide
y

 idle

he

 that
rk
 (but
ets
• Full CORBA support - GIOP messages directly support all functions and behavio
required by CORBA, including exception reporting, passing operation context,
remote object reference operations (such as CORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction con
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specifications). This mechanism is designed
to support any service that requires service related context to be implicitly passed
requests.

15.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented trans
protocol that meets a minimal set of assumptions (described in Section 15.5, “GIO
Message Transport,” on page 15-45). GIOP uses underlying transport connection
the following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respec
to connections, client, and server. The client side of a connection originates th
connection, and sends object requests over the connection. In GIOP versions
and 1.1, the server side receives requests and sends replies. The server side
connection may not send object requests. This restriction, which was included
make GIOP 1.0 and 1.1 much simpler and avoid certain race conditions, has b
relaxed for GIOP version 1.2, as specified in the BiDirectional GIOP specificati
see Section 15.8, “Bi-Directional GIOP,” on page 15-55.

• Request multiplexing - If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniqu
identifies its target object. Multiple independent requests for different objects, o
single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minim
GIOP is designed to allow overlapping asynchronous requests; it does not dict
the relative ordering of requests or replies. Unique request/reply identifiers pro
proper correlation of related messages. Implementations are free to impose an
internal message ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse
connection resources.

15.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which t
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer
is to be sent to another process or machine over some IPC mechanism or netwo
transport. For the purposes of this discussion, an octet stream is an arbitrarily long
finite) sequence of eight-bit values (octets) with a well-defined beginning. The oct
in the stream are numbered from 0 to n-1, where n is the size of the stream. The
15-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

il in

a
L

h as
 be

n

The
clude
lations

 any
t is
if

e
ry of

tum.
ize
for
numeric position of an octet in the stream is called its index. Octet indices are used to
calculate alignment boundaries, as described in Section 15.3.1.1, “Alignment,” on
page 15-5.

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in deta
Section 15.4, “GIOP Message Formats,” on page 15-30.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a dat
structure has been encapsulated, the octet stream can be represented as the OMG ID
opaque data type sequence<octet> , which can be marshaled subsequently into a
message or another encapsulation. Encapsulations allow complex constants (suc
TypeCodes) to be pre-marshaled; they also allow certain message components to
handled without requiring full unmarshaling. Whenever encapsulations are used i
CDR or the GIOP, they are clearly noted.

15.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings.
message formats (see Section 15.4, “GIOP Message Formats,” on page 15-30) in
tags in message headers that indicate the byte ordering in the message. Encapsu
include an initial flag that indicates the byte ordering within the encapsulation,
described in Section 15.3.3, “Encapsulation,” on page 15-14. The byte ordering of
encapsulation may be different from the message or encapsulation within which i
nested. It is the responsibility of the message recipient to translate byte ordering
necessary. Primitive data types are encoded in multiples of octets. An octet is an 8-bit
value.

15.3.1.1 Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitiv
data types must be aligned on their natural boundaries (i.e., the alignment bounda
a primitive datum is equal to the size of the datum in octets). Any primitive of size n
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1,
2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive da
The value of octets in alignment gaps is undefined. A gap must be the minimum s
necessary to align the following primitive. Table 15-1 gives alignment boundaries
CDR/OMG-IDL primitive types.

Table 15-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET
ALIGNMENT

char 1
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-5

15

The
ng at

 an
 (See

Alignment is defined above as being relative to the beginning of an octet stream.
first octet of the stream is octet index zero (0); any data type may be stored starti
this index. Such octet streams begin at the start of a GIOP message header (see
Section 15.4.1, “GIOP Message Header,” on page 15-31) and at the beginning of
encapsulation, even if the encapsulation itself is nested in another encapsulation.
Section 15.3.3, “Encapsulation,” on page 15-14).

15.3.1.2 Integer Data Types

Figure 15-1 on page 15-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

• short

• unsigned short
• long

• unsigned long
• long long
• unsigned long long

wchar 1, 2, or 4, depending on
code set

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4

Table 15-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET
ALIGNMENT
15-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

 types

 three
 and
ing
The figure illustrates bit ordering and size. Signed types (short , long , and long
long) are represented as two’s complement numbers; unsigned versions of these
are represented as unsigned binary numbers.

Figure 15-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

15.3.1.3 Floating Point Data Types

Figure 15-2 on page 15-9 illustrates the representation of floating point numbers.
These exactly follow the IEEE standard formats for floating point numbers1, selected
parts of which are abstracted here for explanatory purposes. The diagram shows
different components for floating points numbers, the sign bit (s), the exponent (e)
the fractional part (f) of the mantissa. The sign bit has values of 0 or 1, represent
positive and negative numbers, respectively.

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-7

15

2 in
d as
, f1
ber

 the
s
 <
ized

g e1
l
For single-precision float values the exponent is 8 bits long, comprising e1 and e
the figure, where the 7 bits in e1 are most significant. The exponent is represente
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.0
being most significant and f3 being least significant. The value of a normalized num
is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in
figure, where the 7 bits in e1 are most significant. The exponent is represented a
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m
2.0, f1 being most significant and f7 being least significant. The value of a normal
number is described by:

For double-extended floating-point values the exponent is 15 bits long, comprisin
and e2 in the figure, where the 7 bits in e1 are the most significant. The fractiona
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The
value of a long double is determined by:

1
sign

2
exponent 127–()× 1 fraction+()×–

1
sign

2
exponent 1023–()× 1 fraction+()×–

1
sign

2
exponent 16383–()× 1 fraction+()×–
15-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

DL
Figure 15-2 Sizes and bit ordering in big-endian and little-endian representations of OMG I
single, double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-9

15

rgo

lues.

ion of
ined

. In

 of

d or

ctets,

 as

 the
CS-

e

d

 the
15.3.1.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to unde
any conversion during transmission. For the purposes of describing possible octet
values in this specification, octets may be considered as unsigned 8-bit integer va

15.3.1.5 Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE
as 0.

15.3.1.6 Character Types

An IDL character is represented as a single octet; the code set used for transmiss
character data (e.g., TCS-C) between a particular client and server ORBs is determ
via the process described in Section 13.7, “Code Set Conversion,” on page 13-30
the case of multi-byte encodings of characters, a single instance of the char type may
only hold one octet of any multi-byte character encoding.

Note – Full representation of multi-byte characters will require the use of an array
IDL char variables.

For GIOP version 1.1, the transfer syntax for an IDL wide character depends on
whether the transmission code set (TCS-W, which is determined via the process
described in Section 13.7, “Code Set Conversion,” on page 13-30) is byte-oriente
non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Character and Code Set Registry may be examined using the interfaces in
Section 13.9, “Relevant OSFM Registry Interfaces,” on page 13-43 to determine
maximum length (max_bytes) of any character codepoint. For example, if the T
W is ISO 10646 UCS-2 (Universal Character Set containing 2 bytes), then wid
characters are represented as unsigned shorts . For ISO 10646 UCS-4, they are
represented as unsigned longs .

For GIOP version 1.2, wchar is encoded as an unsigned binary octet value, followe
by the elements of the octet sequence representing the encoded value of the wchar .
The initial octet contains a count of the number of elements in the sequence, and
elements of the sequence of octets represent the wchar , using the negotiated wide
character encoding.
15-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

o-

 1.2

an or
the
ian.

e
sent

the

e of
ithin
truct
 the
tion

Note – The GIOP 1.2 encoding of wchar is similar to the encoding of an octet
sequence, except for its use of a single octet to encode the value of the length.

For GIOP versions prior to 1.2, interoperability for wchar is limited to the use of tw
octet fixed-length encoding.

Wchar values in encapsulations are assumed to be encoded using GIOP version
CDR.

If UTF-16 is selected as the TCS-W the CDR encoding purposes can be big endi
little endian, but defaults to big endian. By placing a BOM (byte order marker) at
front of the wstring or wchar encoding, it can be sent either big-endian or little-end
In particular, the CDR rules for endian-ness of UTF-16 encoded wstring or wchar
values are as follows:

• If the first two bytes (after the length indication) are FE FF, it's big-endian.
• If the first two bytes (after the length indication) are FF FE, it's little-endian.
• If the first two bytes (after the length indication) are neither, it's big-endian.

If an ORB decides to use BOM to indicate endianness, it shall add the BOM to th
beginning of wchar or wstring values when encoding the value, since it is not pre
in wchar or wstring values passed by the user.

If a BOM is present at the beginning of a wchar or wstring received in a GIOP
message, the ORB shall remove the BOM before passing the value to the user.

15.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by
OMG IDL language.

15.3.2.1 Alignment

Constructed types have no alignment restrictions beyond those of their primitive
components. The alignment of those primitive types is not intended to support us
marshaling buffers as equivalent to the implementation of constructed data types w
any particular language environment. GIOP assumes that agents will usually cons
structured data types by copying primitive data between the marshaled buffer and
appropriate in-memory data structure layout for the language mapping implementa
involved.

15.3.2.2 Struct

The components of a structure are encoded in the order of their declaration in the
structure. Each component is encoded as defined for its data type.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-11

15

 type

d, no
e
st
ickly.

the
ence.

 enum

num
.

,
e of

s the
oding

x for
nts

l
 is
15.3.2.3 Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as its
indicates.

15.3.2.4 Array

Arrays are encoded as the array elements in sequence. As the array length is fixe
length values are encoded. Each element is encoded as defined for the type of th
array. In multidimensional arrays, the elements are ordered so the index of the fir
dimension varies most slowly, and the index of the last dimension varies most qu

15.3.2.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of
sequence. The initial unsigned long contains the number of elements in the sequ
The elements of the sequence are encoded as specified for their type.

15.3.2.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive e
identifiers take ascending numeric values, in order of declaration from left to right

15.3.2.7 Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets
followed by the string value in single- or multi-byte form represented as a sequenc
octets. Both the string length and contents include a terminating null.

For GIOP version 1.1 and 1.2, when encoding a string, always encode the length a
total number of bytes used by the encoding string, regardless of whether the enc
is byte-oriented or not.

For GIOP version 1.1, a wide string is encoded as an unsigned long indicating the
length of the string in octets or unsigned integers (determined by the transfer synta
wchar) followed by the individual wide characters. Both the string length and conte
include a terminating null. The terminating null character for a wstring is also a wide
character.

For GIOP version 1.2, when encoding a wstring , always encode the length as the tota
number of octets used by the encoded value, regardless of whether the encoding
byte-oriented or not. For GIOP version 1.2 a wstring is not terminated by a NUL
character. In particular, in GIOP version 1.2 a length of 0 is legal for wstring .
15-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

e

n 1.2

able

most
he
the
itive
Note – For GIOP versions prior to 1.2, interoperability for wstring is limited to the us
of two-octet fixed-length encoding.

Wstring values in encapsulations are assumed to be encoded using GIOP versio
CDR.

15.3.2.8 Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in T
15-4 on page 15-14. Each octet contains (up to) two decimal digits. If the fixed type
has an odd number of decimal digits, then the representation begins with the first (
significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero, and t
first digit is in the second half-octet — d1 in the figure. The sign configuration, in
last half-octet of the representation, is 0xD for negative numbers and 0xC for pos
and zero values.

Decimal digits are encoded as hexadecimal values in each half-octet as follows:

Figure 15-3 Decimal Digit Encoding for Fixed Type

0

1

2
...

9

0x0

0x1

0x2

...

0x9

Decimal Digit Half-Octet Value
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-13

15

pe

OR

,

 the

IOP
 This
lding

 the

 does
Figure 15-4 IDL Fixed Type Representation

15.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL ty
sequence<octet> , which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see
Section 15.3.5.1, “TypeCode,” on page 15-23), the IIOP protocol profile inside an I
(see Section 15.3.6, “Object References,” on page 15-30), and in service-specific
context (see Section 13.6.8, “Object Service Context,” on page 13-26). In addition
some ORBs may choose to use an encapsulation to hold the object_key (see
Section 15.7.2, “IIOP IOR Profiles,” on page 15-51), or in other places that a
sequence<octet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE
(1), the data is encoded in little-endian order, exactly like the byte order flag in G
message headers (see Section 15.4.1, “GIOP Message Header,” on page 15-31).
value is not part of the data being encapsulated, but is part of the octet stream ho
the encapsulation. Following the byte order flag, the data to be encapsulated is
marshaled into the buffer as defined by CDR encoding rules. Marshaled data are
aligned relative to the beginning of the octet stream (the first octet of which is
occupied by the byte order flag).

When the encapsulation is encoded as type sequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to
octet stream, as prescribed for sequences (see Section 15.3.2.5, “Sequence,” on
page 15-12). The length value is not part of the encapsulation’s octet stream, and
not affect alignment of data within the encapsulation.

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

15-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

ata

tion
TCS-

 wide

nd

roach

OP
t.

ding
stom

raph
lue
nce

ded.

e

r

s
a-

Note that this guarantees a four-octet alignment of the start of all encapsulated d
within GIOP messages and nested encapsulations.2

Whenever the use of an encapsulation is specified, the GIOP version to use for
encoding the encapsulation, if different than GIOP version 1.0, shall be explicitly
defined (i.e., the default is GIOP 1.0).

If a parameter with IDL char or string type is defined to be carried in an encapsula
using GIOP version greater than 1.0, the transmission Code Set for characters (
C), to be used when encoding the encapsulation, shall also be explicitly defined.

If a parameter with IDL wchar or wstring type is defined to be carried in an
encapsulation using GIOP version greater than 1.0, the transmission Code Set for
characters (TCS-W), to be used when encoding the encapsulation shall also be
explicitly defined.

15.3.4 Value Types

Value types are built from OMG IDL’s value type definitions. Their representation a
encoding is defined in this section.

Value types may be used to transmit and encode complex state. The general app
is to support the transmission of the data (state) and type information encoded as
RepositoryID s.

The loading (and possible transmission) of code is outside of the scope of the GI
definition, but enough information is carried to support it, via the CodeBase objec

The format makes a provision for the support of custom marshaling (i.e., the enco
and transmission of state using application-defined code). Consistency between cu
encoders and decoders is not ensured by the protocol

The encoding supports all of the features of value types as well as supporting the
“chunking” of value types. It does so in a compact way.

At a high level the format can be described as the linearization of a graph. The g
is the depth-first exploration of the transitive closure that starts at the top-level va
object and follows its “reference to value objects” fields (an ordinary remote refere
is just written as an IOR). It is a recursive encoding similar to the one used for
TypeCodes. An indirection is used to point to a value that has already been enco

The data members are written beginning with the highest possible base type to th
most derived type in the order of their declaration.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greate
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. For example, an appropriate way to deal with long long discriminator
type in an encapsulation for a union TypeCode is to encode the body of the encapsulation a
if it was aligned at the 8 byte boundary, and then copy the encoded value into the encapsul
tion. This may result in long long data values inside the encapsulation being aligned on only
a 4 byte boundary when viewed from outside the encapsulation.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-15

15

the
on is

s:

s.

e

r the

e

ted in
need

hich

t

P
g
15.3.4.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in
receiving context. However the encoding has been designed so that this informati
only required when “advanced features” such as truncation are used.

The presence (or absence) of type information and codebase URL information is
indicated by flags within the <value_tag>, which is a long in the range between
0x7fffff00 and 0x7fffffff inclusive. The last octet of this tag is interpreted as follow

• The least significant bit (<value_tag> & 0x00000001) is the value 1 if a
<codebase_URL> is present. If this bit is 0, no <codebase_URL> follows in the
encoding. The <codebase_URL> is a blank-separated list of one or more URL

• The second and third least significant bits (<value_tag> & 0x00000006) are:

• the value 0 if no type information is present in the encoding. This indicates th
actual parameter is the same type as the formal argument.

• the value 2 if only a single repository id is present in the encoding, which
indicates the most derived type of the actual parameter (which may be eithe
same type as the formal argument or one of its derived types).

• the value 6 if the partial type information list of repository ids is present in the
encoding as a list of repository ids.

When a list of RepositoryIDs is present, the encoding is a long specifying the
number of RepositoryIDs , followed by the RepositoryIDs . The first RepositoryID
is the id for the most derived type of the value. If this type has any base types, th
sending context is responsible for listing the RepositoryIDs for all the base types to
which it is safe to truncate the value passed. These truncatable base types are lis
order, going up the derivation hierarchy. The sending context may choose to (but
not) terminate the list at any point after it has sent a RepositoryID for a type well-
known to the receiving context. A well-known type is any of the following:

• a type that is a formal parameter, result of the method call, or exception, for w
this GIOP message is being marshaled

• a base type of a well-known type

• a member type of a well-known type

• an element type of a well known type

For value types that have an RMI: RepositoryId , ORBs must include at least the mos
derived RepositoryId , in the value type encoding.

For value types marshaled as abstract interfaces (see Section 15.3.7, “Abstract
Interfaces,” on page 15-30), RepositoryId information must be included in the value
type encoding.

If the receiving context needs more typing information than is contained in a GIO
message that contains a codebase URL information, it can go back to the sendin
context and perform a lookup based on that RepositoryID to retrieve more typing
information (e.g., the type graph).
15-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

this
tible
ly

e the

st of

ows
CORBA RepositoryIDs may contain standard version identification (major and
minor version numbers or a hash code information). The ORB run time may use
information to check whether the version of the value being transmitted is compa
with the version expected. In the event of a version mismatch, the ORB may app
product-specific truncation/conversion rules (with the help of a local interface
repository or the SendingContext::RunTime service). For example, the Java
serialization model of truncation/conversion across versions can be supported. Se
JDK 1.1 documentation for a detailed specification of this model.

15.3.4.2 Example

The following examples demonstrate legal combinations of truncatability, actual
parameter types and GIOP encodings. This is not intended to be an exhaustive li
legal possibilities.

The following example uses valuetypes animal and horse , where horse is derived
from animal . The actual parameters passed to the specified operations are an_animal
of runtime type animal and a_horse of runtime type horse .

The following combinations of truncatability, actual parameter types and GIOP
encodings are legal.

1. If there is a single operation:

 op1(in animal a);

a) If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that if the type horse is not available to the receiver, then the receiver thr
a demarshaling exception.

b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below

Actual Invocation Legal Encoding

op1(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

 op1(a_horse) 6 2 horse animal
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-17

15

s to

l
Note that if the type horse is not available to the receiver, then the receiver trie
truncate to animal.

c) Regardless of the truncation relationships, when the exact type of the forma
argument is sent, then the encoding is as shown below:

2. Given the additional operation:

 op2(in horse h);

(i.e., the sender knows that both types horse and animal and their derivation
relationship are known to the receiver)

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that the demarshaling exception of case 1 will not occur, since horse is
available to the receiver.

 b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below:

Note that truncation will not occur, since horse is available to the receiver.

Actual Invocation Legal Encoding

 op1(an_animal) 0

2 animal

6 1 animal

Actual Invocation Legal Encoding

 op2(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal
15-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

o
e

an
 or

 the
aled

hat
on

ly
ons

a
n

 by

er

en

eing
 an
15.3.4.3 Scope of the Indirections

The special value 0xffffffff introduces an indirection (i.e., it directs the decoder to g
somewhere else in the marshaling buffer to find what it is looking for). This can b
codebase URL information that has already been encoded, a RepositoryID that has
already been encoded, a list of repository IDs that has already been encoded, or
another value object that is shared in a graph. 0xffffffff is always followed by a long
indicating where to go in the buffer. A repositoryID or URL, which is the target of
indirection used for encoding a valuetype must have been introduced as the type
codebase information for a valuetype.

It is not permissible for a repositoryID marshalled for some purpose other than as
type information of a valuetype to use indirection to reference a previously marsh
value. The encoding used to indicate an indirection is the same as that used for
recursive TypeCodes (i.e., a 0xffffffff indirection marker followed by a long offset (in
units of octets) from the beginning of the long offset). As an example, this means t
an offset of negative four (-4) is illegal, because it is self-indirecting to its indirecti
marker. Indirections may refer to any preceding location in the GIOP message,
including previous fragments if fragmentation is used. This includes any previous
marshaled parameters. Non-negative offsets are reserved for future use. Indirecti
may not cross encapsulation boundaries.

Fragmentation support in GIOP versions 1.1 and 1.2 introduces the possibility of
header for a FragmentMessage being marshaled between the target of an indirectio
and the start of the encapsulation containing the indirection. The octets occupied
any such headers are not included in the calculation of the offset value.

15.3.4.4 Null Values

All value types have a distinguished “null.” All null values are encoded by the
<null_tag> (0x0). The CDR encoding of null values includes no type information.

15.3.4.5 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The head
contains a tag and codebase URL information if appropriate, followed by the
RepositoryID and an octet flag of bits. Because the same RepositoryID (and
codebase URL information) could be repeated many times in a single request wh
sending a complex graph, they are encoded as a regular string the first time they
appear, and use an indirection for later occurrences.

15.3.4.6 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is b
transmitted. Hence the encoding supports the breaking up of the serialization into
arbitrary number of chunks in order to facilitate incremental processing.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-19

15

eds to
 length
m
 and
 and

 we
 type

end
IOP

ostly
oded
at
 for

ve
 end
rting

 It is
de.

>.

 for

n the

rt of
f
hout
)
 used

anges

e

sting
 that
th
Values with truncatable base types need a length indication in case the receiver ne
truncate them to a base type. Value types that are custom marshaled also need a
indication so that the ORB run time can know exactly where they end in the strea
without relying on user-defined code. This allows the ORB to maintain consistency
ensure the integrity of the GIOP stream when the user-written custom marshaling
demarshaling does not marshal the entire value state. For simplicity of encoding,
use a length indication for all values whether or not they have a truncatable base
or use custom marshaling.

If limited space is available for marshaling, it may be necessary for the ORB to s
the contents of a marshaling buffer containing a partially marshaled value as a G
fragment. At that point in the marshaling, the length of the entire value being
marshaled may not be known. Calculating this length may require processing as c
as marshaling the entire value. It is therefore desirable to allow the value to be enc
as multiple chunks, each with its own length. This allows the portion of a value th
occupies a marshaling buffer to be sent as a chunk of known length with no need
additional length calculation processing.

The data may be split into multiple chunks at arbitrary points except within primiti
CDR types, arrays of primitive types, strings, and wstrings. It is never necessary to
a chunk within one of these types as the length of these types is known before sta
to marshal them so they can be added to the length of the currently open chunk.
the responsibility of the CDR stream to hide the chunking from the marshaling co

The presence (or absence) of chunking is indicated by flags within the <value_tag
The fourth least significant bit (<value_tag> & 0x00000008) is the value 1 if a
chunked encoding is used for the value’s state. The chunked encoding is required
custom marshaling and truncation. If this bit is 0, the state is encoded as <octets >.

Each chunk is preceded by a positive long, which specifies the number of octets i
chunk.

A chunked value is terminated by an end tag that is a non-positive long so the sta
the next value can be differentiated from the start of another chunk. In the case o
values that contain other values (e.g., a linked list) the “nested” value is started wit
there being an end tag. The absolute value of an end tag (when it finally appears
indicates the nesting level of the value being terminated. A single end tag can be
to terminate multiple nested values. The detailed rules are as follows:

• End tags, chunk size tags, and value tags are encoded using non-overlapping r
so that the unmarshaling code can tell after reading each chunk whether:

• another chunk follows (positive tag).

• one or multiple value types are ending at a given point in the stream (negativ
tag).

• a nested value follows (special large positive tag).

• The end tag is a negative long whose value is the negation of the absolute ne
depth of the value type ending at this point in the CDR stream. Any value types
have not already been ended and whose nesting depth is greater than the dep
indicated by the end tag are also implicitly ended. The end tag value 0 is reserved
15-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

th.

type

 an

e

,

e type
 the
 so
for

d as

ter
he
end
the

ays
 its

sed
k to

alue
for future use (e.g., supporting a nesting depth of more than 2^31). The outermost
value type will always be terminated by an end tag with a value of -1. Enclosing
non-chunked valuetypes are not considered when determining the nesting dep

The following example describes how end tags may be used. Consider a value
declaration that contains two member values:

// IDL
valuetype simpleNode{ ... };
valuetype node truncatable simpleNode {
public node node1;
public node node2;

};

When an instance of type ‘node ’ is passed as a parameter of type ‘simpleNode ’ a
chunked encoding is used. In all cases, the outermost value is terminated with
end tag with a value of -1. The nested value ‘node1 ’ is terminated with an end tag
with a value of -2 since only the second-level value ‘node1 ’ ends at that point.
Since the nested value ‘node2 ’ coterminates with the outermost value, either of th
following end tag layouts is legal:

• A single end tag with a value of -1 marks the termination of the outermost value
implying the termination of the nested value, ‘node2 ’as well. This is the most
compact marshaling.

• An end tag with a value of -2 marks the termination of the nested value, ‘node2 .’
This is then followed by an end tag with a value of -1 to mark the termination of
the outermost value.

Because data members are encoded in their declaration order, declaring a valu
data member of a value type last is likely to result in more compact encoding on
wire because it maximizes the number of values ending at the same place and
allows a single end tag to be used for multiple values. The canonical example
that is a linked list.

• For the purposes of chunking, values encoded as indirections or null are treate
non-value data.

• Chunks are never nested. When a value is nested within another value, the ou
value’s chunk ends at the place in the stream where the inner value starts. If t
outer value has non-value data to be marshaled following the inner value, the
tag for the inner value is followed by a continuation chunk for the remainder of
outer value.

• Regardless of the above rules, any value nested within a chunked value is alw
chunked. Furthermore, any such nested value that is truncatable must encode
type information as a list of RepositoryIDs (see Section 15.3.4.1, “Partial Type
Information and Versioning,” on page 15-16).

Truncating a value type in the receiving context may require keeping track of unu
nested values (only during unmarshaling) in case further indirection tags point bac
them. These values can be held in their “raw” GIOP form, as fully unmarshaled v
objects, or in any other product-specific form.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-21

15

 ORB
ed

 the

me

e is

Value types that are custom marshaled are encoded as chunks in order to let the
run-time know exactly where they end in the stream without relying on user-defin
code.

15.3.4.7 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to
ones used to define IDL syntax. The terminals of the grammar are to be interpreted
differently. We are describing a protocol format. Although the terminals have the sa
names as IDL tokens they represent either:

• constant tags, or

• the GIOP CDR encoding of the corresponding IDL construct.

For example, long is a shorthand for the GIOP encoding of the IDL long data type -
with all the GIOP alignment rules. Similarly struct is a shorthand for the GIOP CDR
encoding of a struct .

A (type) constant means that an instance of the given type having the given valu
encoded according to the rules for that type. So that (long) 0 means that a CDR
encoding for a long having the value 0 appears at that location.

15.3.4.8 The Format

(1) <value> ::= <value_tag> [<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref> ::= <indirection_tag> <indirection> | <null_tag>
(3) <value_tag> ::= long// 0x7fffff00 <= value_tag <= 0x7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <state> ::= <octets> |<value_data>* [<end_tag>]
(6) <value_data> ::= <value_chunk> | <value>
(7) <rep_ids> ::= long <repository_id>+

| <indirection_tag> <indirection>
(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size_tag> <octets>
(10) <null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long) 0xffffffff
(12) <codebase_URL> ::= string | <indirection_tag> <indirection>
(13) <chunk_size_tag> ::= long

// 0 < chunk_size_tag < 2^31-256 (0x7fffff00)
(14) <end_tag> ::= long // -2^31 < end_tag < 0
(15) <indirection> ::= long // -2^31 < indirection < 0
(16) <octets> ::= octet | octet <octets>

The concatenated octets of consecutive value chunks within a value encode state
members for the value according to the following grammar:
15-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

f this

ings
erve

(1) <state members> ::= <state_member>
| <state_member> <state members>

(2) <state_member> ::= <value_ref>
// All legal IDL types should be here

| octet
| boolean
| char
| short
| unsigned short
| long
| unsigned long
| float
| wchar
| wstring
| string
| struct
| union
| sequence
| array
| Object
| any

15.3.5 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

15.3.5.1 TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by
values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 15-2 on page 15-25. The integer value
column of this table gives the TCKind enum value corresponding to the given
TypeCode, and lists the parameters associated with such a TypeCode. The rest o
section presents the details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum
values, using four octets), followed by zero or more parameter values. The encod
of the parameter lists fall into three general categories, and differ in order to cons
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding
TCKind enum value.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-23

15

ple”
 that

lumn

e

ation

-25.
0.7,

n in

in
r

e
• Typecodes with simple parameter lists are encoded as the TCKind enum value
followed by the parameter value(s), encoded as indicated in Table 15-2. A “sim
parameter list has a fixed number of fixed length entries, or a single parameter
has its length encoded first.

• All other typecodes have complex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
Section 15.3.3, “Encapsulation,” on page 15-14) containing the encapsulated,
marshaled parameters. The order of these parameters is shown in the fourth co
of Table 15-2.

The third column of Table 15-2 shows whether each parameter list is empty, simple, or
complex. Also, note that an internal indirection facility is needed to represent som
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 15-28. This indirection does not need to be exposed to applic
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 15-2 on page 15
The ordering and meaning of parameters is a superset of those given in Section 1
“TypeCodes,” on page 10-51; more information is needed by CDR’s representatio
order to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union,
tk_enum , and tk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where
count is the number of tuples in the encoded form, and the parameters enclosed in
braces are available in each tuple instance. First the count, which is an unsigned
long , and then each parameter in each tuple (using the noted type), is encoded
the CDR representation of the typecode. Each tuple is encoded, first paramete
followed by second, before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct , union, exception , and enum members must
be in the order defined in the OMG IDL definition text. Also, that the types of
discriminant values in encoded tk_union TypeCodes are established by the second
encoded parameter (discriminant type), and cannot be specified except with referenc
to a specific OMG IDL definition.3

3. This means that, for example, two OMG IDL unions that are textually equivalent, except
that one uses a “char” discriminant, and the other uses a “long” one, would have different
size encoded TypeCodes.
15-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15
Table 15-2TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID),
string(name)

tk_struct 15 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_union 16 complex string (repository ID),
string(name),
TypeCode (discriminant type),
long (default used),
ulong (count)
{ discriminant type1 (label
value),
string (member name),
TypeCode (member type)}
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-25

15
tk_enum 17 complex string (repository ID),
string (name),
ulong (count)
{string (member name)}

tk_string 18 simple ulong (max length2)

tk_sequence 19 complex TypeCode (element type),
ulong (max length3)

tk_array 20 complex TypeCode (element type),
ulong (length)

tk_alias 21 complex string (repository ID),
string (name),
TypeCode

tk_except 22 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_longlong 23 empty – none –

tk_ulonglong 24 empty – none –

tk_longdouble 25 empty – none –

tk_wchar 26 empty – none –

tk_wstring 27 simple ulong(max length or zero if
unbounded)

tk_fixed 28 simple ushort(digits), short(scale)

tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),

TypeCode(of concrete base)4,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

tk_value_box 30 complex string (repository ID),
string(name),
TypeCode

Table 15-2TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
15-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

the

me

d in
Encoded Identifiers and Names

The Repository ID parameters in tk_objref , tk_struct , tk_union , tk_enum ,
tk_alias , tk_except , tk_native , tk_value , tk_value_box and
tk_abstract_interface TypeCodes are Interface Repository RepositoryId values,
whose format is described in the specification of the Interface Repository.

For GIOP 1.2 onwards, repositoryID values are required to be sent, if known by
ORB4. For GIOP 1.2, an empty repositoryID string is only allowed if a repositoryID
value is not available to the ORB sending the type code.

For GIOP 1.0 and 1.1, RepositoryId values are required for tk_objref and
tk_except TypeCodes; for tk_struct , tk_union , tk_enum , and tk_alias TypeCodes
RepositoryIds are optional and encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
tk_value, tk_value_box, tk_abstract_interface, tk_native and tk_except
TypeCodes and the member name parameters in tk_struct, tk_union, tk_enum ,
tk_value and tk_except TypeCodes are not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these na
values; only the structural information (including RepositoryId values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplie
the OMG IDL definition text. If omitted, they are encoded as empty strings.

tk_native 31 complex string (repository ID),
string(name)

tk_abstract_interface 32 complex string(RepositoryId),
string(name)

– none – 0xffffffff simple long (indirection5)

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. Should be tk_null if there is no concrete base.

5. See “Indirection: Recursive and Repeated TypeCodes” on page 15-28.

4. A type code passed via a GIOP 1.2 connection shall contain non-empty repositoryID
strings, unless a repositoryID value is not available to the sending ORB for a specific type
code. This situation can arise, for example, if an ORB receives a type code containing
empty repository IDs via a GIOP 1.0 or 1.1 connection and passes that type code on via a
GIOP 1.2 connection).

Table 15-2TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-27

15

he

in
en the
ex of

e,
or

 for

 for

ome

y use
sing

etely

de

l

set
When a reference to a base Object is encoded, there are two allowed encodings for t
Repository ID: either "IDL:omg.org/CORBA/Object:1.0 " or "" may be used.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple
the sequence describes the union’s default case. If this value is less than zero, th
union contains no default case. Otherwise, the value contains the zero-based ind
the default case in the sequence of tuples describing union members.

The discriminant value used in the actual typecode parameter associated with the
default member position in the list, may be any valid value of the discriminant typ
and has no semantic significance (i.e., it should be ignored and is only included f
syntactic completeness of union type code marshaling).

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes
multi-dimensional arrays are constructed by nesting tk_array TypeCodes within other
tk_array TypeCodes, one per array dimension. The outermost (or top-level) tk_array
TypeCode describes the leftmost array index of the array as defined in IDL; the
innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g., struct foo {sequence <foo> bar;}) must also contain
an indirection. Such an indirection is also useful to reduce the size of encodings;
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top-level”
TypeCode. Indirected TypeCodes are not “freestanding,” but only exist inside s
other encoded TypeCode.

• Only the second (and subsequent) references to a TypeCode in that scope ma
the indirection facility. The first reference to that TypeCode must be encoded u
the normal rules. In the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be compl
encoded.

The indirection is a numeric octet offset within the scope of the “top-level” TypeCo
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may wel
cross encapsulation boundaries, but this is not problematic because of the first
constraint identified above. Because of the second constraint, the value of the off
will always be negative.
15-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

a
n

 by

by the

r

tring

tring
y
t.

 user
ll be
 or
Fragmentation support in GIOP versions 1.1 and 1.2 introduces the possibility of
header for a FragmentMessage being marshaled between the target of an indirectio
and the start of the encapsulation containing the indirection. The octets occupied
any such headers are not included in the calculation of the offset value.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has
the special value 232-1 (0xffffffff , all ones). Such typecodes have a single (simple)
parameter, which is the long offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4) is illegal because it will be self-
indirecting.)

15.3.5.2 Any

Any values are encoded as a TypeCode (encoded as described above) followed
encoded value. For Any values containing a tk_null or tk_void TypeCode , the
encoded value shall have zero length (i.e., shall be absent).

15.3.5.3 Principal

Principal pseudo objects are encoded as sequence<octet> . In the absence of a
Security service specification, Principal values have no standard format or
interpretation, beyond serving to identify callers (and potential callers). This
specification does not prescribe any usage of Principal values.

By representing Principal values as sequence<octet> , GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate o
interpret these identifiers as needed when forwarding requests between different
security domains.

15.3.5.4 Context

Context pseudo objects are encoded as sequence<string> . The strings occur in
pairs. The first string in each pair is the context property name, and the second s
in each pair is the associated value.

15.3.5.5 Exception

Exceptions are encoded as a string followed by exception members, if any. The s
contains the RepositoryId for the exception, as defined in the Interface Repositor
chapter. Exception members (if any) are encoded in the same manner as a struc

If an ORB receives a non-standard system exception that it does not support, or a
exception that is not defined as part of the operation's definition, the exception sha
mapped to UNKNOWN, with standard minor code set to 2 for a system exception,
set to 1 for a user exception.
CORBA, v2.4.2 CDR Transfer Syntax February 2001 15-29

15

t

les
1).

ver

t.

the

s

e, it

ving
at
t,” on
erver

IOP is
cified

e
 used
15.3.6 Object References

Object references are encoded in OMG IDL (as described in Section 13.5, “Objec
Addressing,” on page 13-11). IOR profiles contain transport-specific addressing
information, so there is no general-purpose IOR profile format defined for GIOP.
Instead, this specification describes the general information model for GIOP profi
and provides a specific format for the IIOP (see “IIOP IOR Profiles” on page 15-5

In general, GIOP profiles include at least these three elements:

1. The version number of the transport-specific protocol specification that the ser
supports.

2. The address of an endpoint for the transport protocol being used.

3. An opaque datum (an object_key , in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the objec

15.3.7 Abstract Interfaces

Abstract interfaces are encoded as a union with a boolean discriminator. The union
has an object reference (see Section 15.3.6, “Object References,” on page 15-30) if
discriminator is TRUE, and a value type (see Section 15.3.4, “Value Types,” on
page 15-15) if the discriminator is FALSE . The encoding of value types marshaled a
abstract interfaces always includes RepositoryId information. If there is no indication
whether a nil abstract interface represents a nil object reference or a null valuetyp
shall be encoded as a null valuetype.

15.4 GIOP Message Formats

GIOP has restriction on client and server roles with respect to initiating and recei
messages. For the purpose of GIOP versions 1.0 and 1.1, a client is the agent th
opens a connection (see more details in Section 15.5.1, “Connection Managemen
page 15-46) and originates requests. Likewise, for GIOP versions 1.0 and 1.1, a s
is an agent that accepts connections and receives requests.When Bidirectional G
in use for GIOP protocol version 1.2, either side may originate messages, as spe
in Section 15.8, “Bi-Directional GIOP,” on page 15-55.

GIOP message types are summarized in Table 15-3, which lists the message typ
names, whether the message is originated by client, server, or both, and the value
to identify the message type in GIOP message headers.

Table 15-3 GIOP Message Types and Originators

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1, 1.2

Reply Server 1 1.0, 1.1, 1.2

CancelRequest Client 2 1.0, 1.1, 1.2
15-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15
15.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1 and 1.2
struct Version {

octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // GIOP_1_1

// GIOP 1.0
struct MessageHeader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;

 boolean byte_order;
octet message_type;

 unsigned long message_size;
};

// GIOP 1.1

LocateRequest Client 3 1.0, 1.1, 1.2

LocateReply Server 4 1.0, 1.1, 1.2

CloseConnection Server 5 1.0, 1.1, 1.2

MessageError Both 6 1.0, 1.1, 1.2

Fragment Both 7 1.1, 1.2

Table 15-3 GIOP Message Types and Originators

Message Type Originator Value GIOP Versions
CORBA, v2.4.2 GIOP Message Formats February 2001 15-31

15

he
e.

the
f this
is is
ject
P
 one

> 0
ol
ng a

nd

er
R.

the

A
struct MessageHeader_1_1 {
 char magic [4];

Version GIOP_version;
octet flags; // GIOP 1.1 change

 octet message_type;
 unsigned long message_size;

};

// GIOP 1.2
typedef MessageHeader_1_1 MessageHeader_1_2;

};

The message header clearly identifies GIOP messages and their byte-ordering. T
header is independent of byte ordering except for the field encoding message siz

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in
message. The version number applies to the transport-independent elements o
specification (i.e., the CDR and message formats) that constitute the GIOP. Th
not equivalent to the IIOP version number (as described in Section 15.3.6, “Ob
References,” on page 15-30) though it has the same structure. The major GIO
version number of this specification is one (1); the minor versions are zero (0),
(1), and two (2).

A server implementation supporting a minor GIOP protocol version 1.n (with n
and n < 3), must also be able to process GIOP messages having minor protoc
version 1.m, with m less than n. A GIOP server, which receives a request havi
greater minor version number than it supports, should respond with an error
message having the highest minor version number that that server supports, a
then close the connection.

A client should not send a GIOP message having a higher minor version numb
than that published by the server in the tag Internet IIOP Profile body of an IO

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0)
indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.

• flags (in GIOP 1.1 and 1.2) is an 8-bit octet. The least significant bit indicates
byte ordering used in subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and
TRUE (1) indicates little-endian byte ordering. The byte order for fragment
messages must match the byte order of the initial message that the fragment
extends.

The second least significant bit indicates whether or not more framents follow.
value of FALSE (0) indicates this message is the last fragment, and TRUE (1)
indicates more fragments follow this message.
15-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

IOP

se

the
t
der.
a

ing

or
The most significant 6 bits are reserved. These 6 bits must have value 0 for G
version 1.1 and 1.2.

• message_type indicates the type of the message, according to Table 15-3; the
correspond to enum values of type MsgType .

• message_size contains the number of octets in the message following the
message header, encoded using the byte order specified in the byte order bit (
least significant bit) in the flags field (or using the byte_order field in GIOP 1.0). I
refers to the size of the message body, not including the 12-byte message hea
This count includes any alignment gaps. The use of a message size of 0 with
Request , LocateRequest , Reply , or LocateReply message is reserved for
future use.

For GIOP version 1.2, if the second least significant bit of Flags is 1, the sum of
the message_size value and 12 must be evenly divisible by 8.

Messages with different GIOP minor versions may be mixed on the same underly
transport connection.

15.4.2 Request Message

Request messages encode CORBA object invocations, including attribute access
operations, and CORBA::Object operations get_interface and
get_implementation . Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body

15.4.2.1 Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1 and 1.2

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.1
CORBA, v2.4.2 GIOP Message Formats February 2001 15-33

15

ding
g

t

 of
struct RequestHeader_1_1 {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;

 octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
// requesting_principal not in GIOP 1.2

};
};

The members have the following definitions:

• request_id is used to associate reply messages with request messages (inclu
LocateRequest messages). The client (requester) is responsible for generatin
values so that ambiguity is eliminated; specifically, a client must not re-use
request_id values during a connection if: (a) the previous request containing tha
ID is still pending, or (b) if the previous request containing that ID was canceled
and no reply was received. (See the semantics of the Section 15.4.4,
“CancelRequest Message,” on page 15-40).

• response_flags is set to 0x0 for a SyncScope of NONE and
WITH_TRANSPORT. The flag is set to 0x1 for a SyncScope of
WITH_SERVER. A non exception reply to a request message containing a
response_flags value of 0x1 should contain an empty body, i.e. the equivalent
15-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

y

re

,
 is

e

,
e is

R

te

cified

d to

s of

P

e
a void operation with no out/inout parameters. The flag is set to 0x3 for a
SyncScope of WITH_TARGET. These values ensure interworking compatibilit
between this and previous versions of GIOP.

For GIOP 1.0 and 1.1 a response_expected value of TRUE is treated like a
response_flags value of \x03, and a response_expected value of FALSE is
treated like a response_flags value of \x00.

• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for futu
use.

• For GIOP 1.0 and 1.1, object_key identifies the object that is the target of the
invocation. It is the object_key field from the transport-specific GIOP profile (e.g.
from the encapsulated IIOP profile of the IOR for the target object). This value
only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, target identifies the object that is the target of the invocation. Th
possible values of the union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g.
from the encapsulated IIOP profile of the IOR for the target object). This valu
only meaningful to the server and is not interpreted or modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IO
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB.

• operation is the IDL identifier naming, within the context of the interface (not a
fully qualified scoped name), the operation being invoked. In the case of attribu
accessors, the names are _get_<attribute> and _set_<attribute> . The case of
the operation or attribute name must match the case of the operation name spe
in the OMG IDL source for the interface being used.

In the case of CORBA::Object operations that are defined in the CORBA Core
(Section 4.3, “Object Reference Operations,” on page 4-11) and that correspon
GIOP request messages, the operation names are _interface , _is_a ,
_non_existent , and _get_domain_managers .

For GIOP 1.2 and later versions, only the operation name _non_existent shall be
used.

The correct operation name to use for GIOP 1.0 and 1.1 is _non_existent . Due to
a typographical error in CORBA 2.0, 2.1, and 2.2, some legacy implementation
GIOP 1.0 and 1.1 respond to the operation name _not_existent . For maximum
interoperability with such legacy implementations, new implementations of GIO
1.0 and 1.1 may wish to respond to both operation names, _non_existent and
_not_existent .

• service_context contains ORB service data being passed from the client to th
server, encoded as described in Section 13.6.8, “Object Service Context,” on
page 13-26.
CORBA, v2.4.2 GIOP Message Formats February 2001 15-35

15

ld

ssage

er. In
 fact

 that
r are
his

L
s

e
,
 may

ly
• requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::get_principal operation. The usage of the
requesting_principal field is deprecated for GIOP versions 1.0 and 1.1. The fie
is not present in the request header for GIOP version 1.2.

There is no padding after the request header when an unfragmented request me
body is empty.

15.4.2.2 Request Body

In GIOP versions 1.0 and 1.1, request bodies are marshaled into the CDR
encapsulation of the containing Message immediately following the Request Head
GIOP version 1.2, the Request Body is always aligned on an 8-octet boundary. The
that GIOP specifies the maximum alignment for any primitive type is 8 guarantees
the Request Body will not require remarshaling if the Message or Request heade
modified. The data for the request body includes the following items encoded in t
order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in Section 15.3.5.4,
“Context,” on page 15-29. This item is only included if the operation’s OMG ID
definition includes a context expression, and only includes context members a
defined in that expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout long p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
long p; // ... to the rightmost

};

15.4.3 Reply Message

Reply messages are sent in response to Request messages if and only if the respons
expected flag in the request is set to TRUE. Replies include inout and out parameters
operation results, and may include exception values. In addition, Reply messages
provide object location information. In GIOP versions 1.0 and 1.1, replies flow on
from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body
15-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15
15.4.3.1 Reply Header

The reply header is defined as follows:

module GIOP { // IDL extended for 1.2

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 { // Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 { // Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,// new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP:ServiceContextList service_context;

};
#endif // GIOP_1_2
};

The members have the following definitions:

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.
CORBA, v2.4.2 GIOP Message Formats February 2001 15-37

15

so

r

he

on of
1.2,
ifies
will
ta for

d

L

des

stem
• reply_status indicates the completion status of the associated request, and al
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value is NO_EXCEPTION and the body
contains return values. Otherwise the body

• contains an exception, or

• directs the client to reissue the request to an object at some other location, o

• directs the client to supply more addressing information.

• service_context contains ORB service data being passed from the server to t
client, encoded as described in Section 15.2.3, “GIOP Message Transfer,” on
page 15-4.

15.4.3.2 Reply Body

In GIOP version 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulati
the containing Message immediately following the Reply Header. In GIOP version
the Reply Body is always aligned on an 8-octet boundary. The fact that GIOP spec
the maximum alignment for any primitive type is 8 guarantees that the ReplyBody
not require remarshaling if the Message or the Reply Header are modified. The da
the reply body is determined by the value of reply_status . There are the following
types of reply body:

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were
a structure holding first any operation return value, then any inout and out
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or
SYSTEM_EXCEPTION, then the body contains the exception that was raise
by the operation, encoded as described in Section 15.3.5.5, “Exception,” on
page 15-29. (Only the user-defined exceptions listed in the operation’s OMG ID
definition may be raised.)

When a GIOP Reply message contains a `reply_status ' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the
following structure:

module GIOP { // IDL
struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;
unsigned long completion_status;
};

};

The high-order 20 bits of minor_code_value contain a 20-bit “Vendor Minor
Codeset ID” (VMCID); the low-order 12 bits contain a minor code. A vendor (or
group of vendors) wishing to define a specific set of system exception minor co
should obtain a unique VMCID from the OMG, and then use those 4096 minor
codes as they see fit; for example, defining up to 4096 minor codes for each sy
15-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

r

 is

lient

 for

-
ing is

P

nt

e

.

exception. Any vendor may use the special VMCID of zero (0) without previous
reservation, but minor code assignments in this codeset may conflict with othe
vendor's assignments, and use of the zero VMCID is officially deprecated.

Note – OMG standard minor codes are identified with the 20 bit VMCID \x4f4d0 .
This appears as the characters ‘O’ followed by the character ‘M’ on the wire, which
defined as a 32-bit constant called OMGVMCID \x4f4d0000 (see Section 4.11.4,
“Standard Minor Exception Codes,” on page 4-59) so that allocated minor code
numbers can be or-ed with it to obtain the minor_code_value .

• If the reply_status value is LOCATION_FORWARD , then the body contains an
object reference (IOR) encoded as described in Section 15.3.6, “Object
References,” on page 15-30. The client ORB is responsible for re-sending the
original request to that (different) object. This resending is transparent to the c
program making the request.

• The usage of the reply_status value LOCATION_FORWARD_PERM behaves
like the usage of LOCATION_FORWARD , but when used by a server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred
future use.

• If the reply_status value is NEEDS_ADDRESSING_MODE then the body
contains a GIOP::AddressingDisposition . The client ORB is responsible for re
sending the original request using the requested addressing mode. The resend
transparent to the client program making the request.

Note – Usage of LOCATATION_FORWARD_PERM is now deprecated, due to
problems it causes with the semantics of the Object::hash() operation.
LOCATATION_FORWARD_PERM features could be removed from some future GIO
versions if solutions to these problems are not provided.

For example, the reply body for a successful response (the value of reply_status is
NO_EXCEPTION) to the Request example shown on page 15-36 would be equivale
to the following structure:

struct example_reply {
double return_value; // return value
string str;
long p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, the object_key
field embedded in the new object reference’s GIOP profile may not have the sam
value as the object_key in the GIOP profile of the original object reference. For
details on location forwarding, see Section 15.6, “Object Location,” on page 15-48
CORBA, v2.4.2 GIOP Message Formats February 2001 15-39

15

 only.
 send
eply

ct

ges
15.4.4 CancelRequest Message

CancelRequest messages may be sent, in GIOP versions 1.0 and 1.1, only from
clients to servers. CancelRequest messages notify a server that the client is no
longer expecting a reply for a specified pending Request or LocateRequest
message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

15.4.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

unsigned long request_id;
};

};

The request_id member identifies the Request or LocateRequest message to
which the cancel applies. This value is the same as the request_id value specified in
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity
The server is not required to acknowledge the cancellation, and may subsequently
the corresponding reply. The client should have no expectation about whether a r
(including an exceptional one) arrives.

15.4.5 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference:

• whether the current server is capable of directly receiving requests for the obje
reference, and if not,

• to what address requests for the object reference should be sent.

Note that this information is also provided through the Request message, but that
some clients might prefer not to support retransmission of potentially large messa
that might be implied by a LOCATION_FORWARD status in a Reply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader
15-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

5.4.2,

P
ate

 this

,
e is

R

15.4.5.1 LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL extended for version 1.2

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest
ones. The client (requester) is responsible for generating values; see Section 1
“Request Message,” on page 15-33 for the applicable rules.

• For GIOP 1.0 and 1.1, object_key identifies the object being located. In an IIOP
context, this value is obtained from the object_key field from the encapsulated
IIOP::ProfileBody in the IIOP profile of the IOR for the target object. When GIO
is mapped to other transports, their IOR profiles must also contain an appropri
corresponding value. This value is only meaningful to the server and is not
interpreted or modified by the client.

• For GIOP 1.2, target identifies the object being located. The possible values of
union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g.
from the encapsulated IIOP profile of the IOR for the target object). This valu
only meaningful to the server and is not interpreted or modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IO
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB.

See Section 15.6, “Object Location,” on page 15-48 for details on the use of
LocateRequest .
CORBA, v2.4.2 GIOP Message Formats February 2001 15-41

15
15.4.6 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages. In GIOP versions 1.0 and 1.1 the LocateReply message
is only sent from the server to the client.

A LocateReply message has three elements, encoded in this order:

1. A GIOP message header

2. A LocateReplyHeader

3. The locate reply body

15.4.6.1 Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL extended for GIOP 1.2
#ifndef GIOP_1_2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader

unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;
15-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

 the

t

it

. In
 fact
 that
fied.
};
#endif // GIOP_1_2
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains
same request_id value as the corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJECT_HERE - this server (the originator of the LocateReply message) can
directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD and OBJECT_FORWARD_PERM - a LocateReply
body exists.

• LOC_SYSTEM_EXCEPTION - a LocateReply body exists.

• LOC_NEEDS_ADDRESSING_MODE - a LocateReply body exists.

15.4.6.2 LocateReply Body

The body is empty, except for the following cases:

• If the LocateStatus value is OBJECT_FORWARD or
OBJECT_FORWARD_PERM , the body contains an object reference (IOR) tha
may be used as the target for requests to the object specified in the
LocateRequest message. The usage of OBJECT_FORWARD_PERM behaves
like the usage of OBJECT_FORWARD , but when used by the server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. When using OBJECT_FORWARD_PERM , both the old IOR and the new
IOR are valid, but the new IOR is preferred for future use.

• If the LocateStatus value is LOC_SYSTEM_EXCEPTION, the body contains a
marshaled GIOP::SystemExceptionReplyBody .

• If the LocateStatus value is LOC_NEEDS_ADDRESSING_MODE , then the
body contains a GIOP::AddressingDisposition . The client ORB is responsible
for re-sending the LocateRequest using the requested addressing mode.

Note – Usage of OBJECT_FORWARD_PERM is now deprecated, due to problems
causes with the semantics of the Object::hash operation.
OBJECT_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.

In GIOP version 1.0 and 1.1, Locate reply bodies are marshaled into the CDR
encapsulation of the containing Message immediately following the Reply Header
GIOP version 1.2, the Reply Body is always aligned on an 8-octet boundary. The
that GIOP specifies the maximum alignment for any primitive type is 8 guarantees
the ReplyBody will not require remarshaling if the Locate Reply Header are modi
CORBA, v2.4.2 GIOP Message Formats February 2001 15-43

15

1.0
ust

uests
sued
end

rsion
hose

ng

 that

ader
n
OP
 the
ge
f the

In
15.4.6.3 Handling ForwardRequest Exception from ServantLocator

If the ServantLocator in a POA raises a ForwardRequest exception the ORB shall
send a LocateReply message to the client with locate_status set to
OBJECT_FORWARD , and with the body containing the object reference from the
ForwardRequest exception's forward_reference field.

15.4.7 CloseConnection Message

CloseConnection messages are sent only by servers in GIOP protocol versions
and 1.1. They inform clients that the server intends to close the connection and m
not be expected to provide further responses. Moreover, clients know that any req
for which they are awaiting replies will never be processed, and may safely be reis
(on another connection). In GIOP version 1.2 both sides of the connection may s
the CloseConnection message.

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage of CloseConnection messages, see Section 15.5.1,
“Connection Management,” on page 15-46.

15.4.8 MessageError Message

The MessageError message is sent in response to any GIOP message whose ve
number or message type is unknown to the recipient or any message received w
header is not properly formed (e.g., has the wrong magic value). Error handling is
context-specific.

The MessageError message consists only of the GIOP message header, identifyi
the message type.

15.4.9 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message
has the more fragments bit set to TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this he
is the message_size field, a 32-bit unsigned number giving the number of bytes i
the message following the header. Unfortunately, when actually constructing a GI
Request or Reply message, it is sometimes impractical or undesirable to ascertain
total size of the message at the stage of message construction where the messa
header has to be written. GIOP 1.1 provides an alternative indication of the size o
message, for use in those cases.

In GIOP 1.1, a Request or Reply message can be broken into multiple fragments.
GIOP 1.2, a Request , Reply , LocateRequest , or LocateReply message can be
broken into multiple fragment. The first fragment is a regular message (e.g., Request
15-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

s. The

 the
will

ent
le of

thout

 after

iated

t of

. The

pe

tions,
or Reply) with the more fragments bit in the flags field set to TRUE. This initial
fragment can be followed by one or more messages using the fragment message
last fragment shall have the more fragment bit in the flag field set to FALSE .

A CancelRequest message may be sent by the client before the final fragment of
message being sent. In this case, the server should assume no more fragments
follow.

Note – A GIOP client that fragments the header of a Request message before sending
the request ID may not send a CancelRequest message pertaining to that request ID
and may not send another Request message until after the request ID is sent.

A primitive data type of 8 bytes or smaller should never be broken across two
fragments.

For GIOP version 1.2, the total length (including the message header) of a fragm
other than the final fragment of a fragmented message are required to be a multip
8 bytes in length, allowing bridges to defragment and/or refragment messages wi
having to remarshal the encoded data to insert or remove padding.

For GIOP version 1.2, a fragment header is included in the message, immediately
the GIOP message header and before the fragment data. The request ID, in the
fragment header, has the same value as that used in the original message assoc
with the fragment.

The byte order and GIOP protocol version of a fragment shall be the same as tha
the message it continues.

module GIOP {//IDL extension for GIOP 1.2
// GIOP 1.2
struct FragmentHeader_1_2 {

unsigned long request_id;
};

};

15.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the sco
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limita
fragmentation, or alignments are enforced.
CORBA, v2.4.2 GIOP Message Transport February 2001 15-45

15

s. If
 a

al
er)
n

sts to
he

).
,
ion

ew.

ows:

d in

y

nts

P

hest

ons
IOP
tion,
n

e and
 the
n
• The transport provides some reasonable notification of disorderly connection los
the peer process aborts, the peer host crashes, or network connectivity is lost,
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the gener
connection model of TCP/IP. Specifically, an agent (described herein as a serv
publishes a known network address in an IOR, which is used by the client whe
initiating a connection.

The server does not actively initiate connections, but is prepared to accept reque
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows t
address (called a client) can attempt to initiate connections by sending connect requests
to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources
Once a connection is open, either side may close the connection. (See Section 15.5.1
“Connection Management,” on page 15-46 for semantic issues related to connect
closure.) A candidate transport might not directly support this specific connection
model; it is only necessary that the transport’s model can be mapped onto this vi

15.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as foll

• A client initiates the connection, presumably using addressing information foun
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have an
implications for ORB or application architectures.

In GIOP protocol versions 1.0 and 1.1, connections are not symmetrical. Only clie
can send Request , LocateRequest , and CancelRequest messages over a
connection, in GIOP 1.0 and 1.1. In all GIOP versions, a server can send Reply ,
LocateReply , and CloseConnection messages over a connection; however, in GIO
1.2 the client can send them as well. Either client or server can send MessageError
messages, in GIOP 1.0 and 1.1.

If multiple GIOP versions are used on an underlying transport connection, the hig
GIOP version used on the connection can be used for handling the close. A
CloseConnection message sent using any GIOP version applies to all GIOP versi
used on the connection (i.e., the underlying transport connection is closed for all G
versions). In particular, if GIOP version 1.2 or higher has been used on the connec
the client can send the CloseConnection message by using the highest GIOP versio
in use.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scop
lifetime of a connection. Request IDs may be re-used if there is no possibility that
previous request using the ID may still have a pending reply. Note that cancellatio
15-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

rate

t.

 other

e

ction

it
ived

ge
does not guarantee no reply will be sent. It is the responsibility of the client to gene
and assign request IDs. Request IDs must be unique among both Request and
LocateRequest messages.

15.5.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnec

For GIOP versions 1.0, and 1.1:

• Orderly shutdown is initiated by servers sending a CloseConnection message, or
by clients just closing down a connection.

• Orderly shutdown may be initiated by the client at any time.

• A server may not initiate shutdown if it has begun processing any requests for
which it has not either received a CancelRequest or sent a corresponding reply.

• If a client detects connection closure without receiving a CloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

For GIOP Version 1.2:

• Orderly shutdown is initiated by either the originating client ORB (connection
initiator) or by the server ORB (connection responder) sending a
CloseConnection message

• If the ORB sending the CloseConnection is a server, or bidirectional GIOP is in
use, the sending ORB must not currently be processing any Requests from the
side.

• The ORB that sends the CloseConnection must not send any messages after th
CloseConnection .

• If either ORB detects connection closure without receiving a CloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

• If bidirectional GIOP is in use, the conditions of Section 15.8, “Bi-Directional
GIOP,” on page 15-55 apply.

For all uses of CloseConnection (for GIOP versions 1.0, 1.1, and 1.2):

• If there are any pending non-oneway requests, which were initiated on a conne
by the ORB shutting down that connection, the connection-peer ORB should
consider them as canceled.

• If an ORB receives a CloseConnection message from its connection-peer ORB,
should assume that any outstanding messages (i.e., without replies) were rece
after the connection-peer ORB sent the CloseConnection message, were not
processed, and may be safely re-sent on a new connection.

• After issuing a CloseConnection message, the issuing ORB may close the
connection. Some transport protocols (not including TCP) do not provide an
“orderly disconnect” capability, guaranteeing reliable delivery of the last messa
CORBA, v2.4.2 GIOP Message Transport February 2001 15-47

15

 to be

sage
 for
ded.

m a

tures

ing

turn
y be
ocess
nt
sent. When GIOP is used with such protocols, an additional handshake needs
provided as part of the mapping to that protocol's connection mechanisms, to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

15.5.1.2 Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource u
by reusing connections, if it wishes. If not, the client may open a new connection
each active object supported by the server, although this behavior should be avoi

15.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply fro
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required
to be in the same order as the corresponding Requests .

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issue CloseConnection
messages when Reply messages have been sent in response to all received Request
messages that require replies.

15.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol fea
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the follow
roles with respect to a particular object reference:

• The agent may be able to accept object requests directly for the object and re
replies. The agent may or may not own the actual object implementation; it ma
an Inter-ORB bridge that transforms the request and passes it on to another pr
or ORB. From GIOP’s perspective, it is only important that requests can be se
directly to the agent.
15-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

stead

vide

 in
e

can
 an

on

d
d

t to

 to

he
• The agent may not be able to accept direct requests for any objects, but acts in
as a location service. Any Request messages sent to the agent would result in
either exceptions or replies with LOCATION_FORWARD status, providing new
addresses to which requests may be sent. Such agents would also respond to
LocateRequest messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and pro
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point
time, and provide a forwarding location at a later time (perhaps during the sam
connection).

Agents are not required to implement location forwarding mechanisms. An agent
be implemented with the policy that a connection either supports direct access to
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT
status, and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a locati
service. Whether a client chooses to send LocateRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always send LocateRequest messages to objects for which it has no recorde
forwarding address. If a client sends LocateRequest messages, it should be prepare
to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned by LOCATION_FORWARD (OBJECT_FORWARD) mechanisms. Once a
connection based on location-forwarding information is closed, a client can attemp
reuse the forwarding information it has, but, if that fails, it shall restart the location
process using the original address specified in the initial object reference.

For GIOP version 1.2, the usage of LOCATION_FORWARD_PERM
(OBJECT_FORWARD_PERM) behaves like the usage of LOCATION_FORWARD
(OBJECT_FORWARD), but when used by the server it also provides an indication
the client that it may replace the old IOR with the new IOR. When using
LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM), both the old IOR
and the new IOR are valid, but the new IOR is preferred for future use.

Note – Usage of LOCATION_FORWARD_PERM and
OBJECT_FORWARD_PERM is now deprecated, due to problems it causes with t
semantics of the Object::hash operation. LOCATION_FORWARD_PERM and
OBJECT_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.
CORBA, v2.4.2 Object Location February 2001 15-49

15

tion
ion

fer to

t
ssing

 1.2
 An
sions.

,

ns

jects
“IIOP

n for
Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returns UNKNOWN_OBJECT , the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discre
of ORBs, available to be used for optimization and to support flexible object locat
and migration behaviors.

15.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP5. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message trans
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must suppor
GIOP 1.1, and may also support GIOP 1.0. An IIOP 1.1 server must support proce
both GIOP 1.0 and GIOP 1.1 messages.

IIOP 1.2 can be based on any of the GIOP minor versions 1.0, 1.1, or 1.2. An IIOP
client must support GIOP 1.2, and may also support lesser GIOP minor versions.
IIOP 1.2 server must also support processing messages with all lesser GIOP ver

Conformance to IIOP versions 1.1 and 1.2 requires support of Limited-Profile IOR
conformance (see 13.6.2), specifically for the IIOP IOR Profile. As of CORBA 2.4
this limited IOR conformance is deprecated, and ORBs implementing IIOP are
strongly recommended to support Full IOR conformance. Some future IIOP versio
could require support of Full IOR conformance.

15.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for ob
(i.e., servers) publish TCP/IP addresses in IORs, as described in Section 15.7.2,
IOR Profiles,” on page 15-51. A TCP/IP address consists of an IP host address,
typically represented by a host name, and a TCP port number. Servers must liste
connection requests.

A client needing an object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

5. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981
15-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

ld
d
sage).

on.

so

bility

, and
 also

s
ata on
not
ume.
ding

are
vior.

RB
The listening server may accept or reject the connection. In general, servers shou
accept connection requests if possible, but ORBs are free to establish any desire
policy for connection acceptance (e.g., to enforce fairness or optimize resource u

Once a connection is accepted, the client may send Request, LocateRequest , or
CancelRequest messages by writing to the TCP/IP socket it owns for the connecti
The server may send Reply, LocateReply , and CloseConnection messages by
writing to its TCP/IP connection. In GIOP 1.2, the client may send the
CloseConnection message, and if BiDirectional GIOP is in use, the client may al
send Reply and LocateReply messages.

After receiving a CloseConnection message, an ORB must close the TCP/IP
connection. After sending a CloseConnection , an ORB may close the TCP/IP
connection immediately, or may delay closing the connection until it receives an
indication that the other side has closed the connection. For maximum interopera
with ORBs using TCP implementations that do not properly implement orderly
shutdown, an ORB may wish to only shutdown the sending side of the connection
then read any incoming data until it receives an indication that the other side has
shutdown, at which point the TCP connection can be closed completely.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situation
between clients and servers if both sides of a connection send large amounts of d
a connection (or two different connections between the same processes) and do
read incoming data. Both processes may block on write operations, and never res
It is the responsibility of both clients and servers to avoid creating deadlock by rea
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs
free to adopt any desired implementation strategy, but should provide robust beha

15.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-O
Protocol, have the following form:

module IIOP { // IDL extended for version 1.1 and 1.2
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2
Version iiop_version;
string host;
CORBA, v2.4.2 Internet Inter-ORB Protocol (IIOP) February 2001 15-51

15

.

r
n

tream.

hest
the

then
fined

nly

f

 one

ess
cular
n or

on
d 2.

ile

ibed
unsigned short port;
sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2
 sequence <IOP::TaggedComponent> components;
};

};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible

• Clients with lower minor version can attempt to invoke objects with higher mino
version number by using only the information defined in the lower minor versio
protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while
those supporting IIOP version 1.1 or 1.2 use the ProfileBody_1_1 structure. An
instance of one of these structure types is marshaled into an encapsulation octet s
This encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag
has the value TAG_INTERNET_IOP (as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the hig
GIOP minor version number that the server supports at the time of publication of
IOR.

If the major revision number is 1, and the minor revision number is greater than 0,
the length of the encapsulated profile may exceed the total size of components de
in this specification for profiles with minor revision number 0. ORBs that support o
revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the
object_key . If the revision of the profile is 1.0, there shall be no extra data in the
profile (i.e., the length of the encapsulated profile must agree with the total size o
components defined for version 1.0).

For Version 1.2 of IIOP, no order of use is prescribed in the case where more than
TAG Internet IOP Profile is present in an IOR.

The members of IIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as
follows:

• iiop_version describes the version of IIOP that the agent at the specified addr
is prepared to receive. When an agent generates IIOP profiles specifying a parti
version, it must be able to accept messages complying with the specified versio
any previous minor version (i.e., any smaller version number). The major versi
number of this specification is 1; the minor versions defined to date are 0, 1, an
Compliant ORBs must generate version 1.1 profiles, and must accept any prof
with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by the ProfileBody_1_0
structure. If the minor version number is 1 or 2, the encapsulation is fully descr
by the ProfileBody_1_1 structure. If the minor version number is greater than 2,
15-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

nents
s
y

ect
ect
er

ds,

gent

st is

 value

 this

nts
s
ls. If
ured

nce
and
les,

r C

then the length of the encapsulated profile may exceed the total size of compo
defined in this specification for profiles with minor version number 1 or 2. ORB
that support only version 1.1 or 1.2 IIOP profiles must ignore, but preserve, an
data in the profile that occurs after the components member, for IIOP profiles
with minor version greater than 1.2.

Note – As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor
version in the TAG_INTERNET_IOP profile signals the highest minor revision of
GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified obj
may be sent. In order to promote a very large (Internet-wide) scope for the obj
reference, this will typically be the fully qualified domain name of the host, rath
than an unqualified (or partially qualified) name. However, per Internet standar
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target a
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the reque
directed. An agent that generates an object key value must be able to map the
unambiguously onto the corresponding object when routing requests internally.

• components is a sequence of TaggedComponent , which contains additional
information that may be used in making invocations on the object described by
profile. TaggedComponent s that apply to IIOP 1.2 are described below in
Section 15.7.3, “IIOP IOR Profile Components,” on page 15-54. Other compone
may be included to support enhanced versions of IIOP, to support ORB service
such as security, and to support other GIOPs, ESIOPs, and proprietary protoco
an implementation puts a non-standard component in an IOR, it cannot be ass
that any or all non-standard components will remain in the IOR.

The relationship between the IIOP protocol version and component support
conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conforma
rules for that version. These rules specify which components are mandatory
which are optional. A conformant implementation has to conform to these ru
and is not required to conform to more than these rules.

• New components can be added, but they do not become part of the versions
conformance rules.

• When there is a need to specify conformance rules that include the new
components, there will be a need to create a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, o
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.
CORBA, v2.4.2 Internet Inter-ORB Protocol (IIOP) February 2001 15-53

15

-
eir

 are
A “well-known” port, 683, has been allocated for IIOP. Agents may use this well
known port, or individual agents may assign previously unused ports as part of th
installation procedures. IIOP supports such multiple agents per host.

15.7.3 IIOP IOR Profile Components

The following components are part of IIOP 1.1 and 1.2 conformance. All these
components are optional.

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_SPKM_1_SEC_MECH

• TAG_SPKM_2_SEC_MECH

• TAG_KerberosV5_SEC_MECH

• TAG_CSI_ECMA_Secret_SEC_MECH

• TAG_CSI_ECMA_Hybrid_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_CSI_ECMA_Public_SEC_MECH

• TAG_FIREWALL_TRANS

• TAG_JAVA_CODEBASE

• TAG_TRANSACTION_POLICY

• TAG_MESSAGE_ROUTERS

• TAG_INET_SEC_TRANS

The following components are part of IIOP 1.2 conformance. All these components
optional.

• TAG_ALTERNATE_IIOP_ADDRESS

• TAG_POLICIES

• TAG_DCE_STRING_BINDING

• TAG_DCE_BINDING_NAME

• TAG_DCE_NO_PIPES

• TAG_DCE_MECH

• TAG_COMPLETE_OBJECT_KEY
15-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

nd

s can

ng
ept
FTP
uire
s,
ll

ted
, as

t's
om

.2
t and

ould

r
t to
ible,
 use

may
i-
P

 bi-
• TAG_ENDPOINT_ID_POSITION

• TAG_LOCATION_POLICY

15.8 Bi-Directional GIOP

The specification of GIOP connection management, in GIOP minor versions 1.0 a
1.1, states that connections are not symmetrical. For example, only clients that
initialize connections can send requests, and only servers that accept connection
receive them.

This GIOP 1.0 and 1.1 restriction gives rise to significant difficulties when operati
across firewalls. It is common for firewalls not to allow incoming connections, exc
to certain well-known and carefully configured hosts, such as dedicated HTTP or
servers. For most CORBA-over-the-internet applications it is not practicable to req
that all potential client firewalls install GIOP proxies to allow incoming connection
or that any entities receiving callbacks will require prior configuration of the firewa
proxy.

An applet, for example, downloaded to a host inside such a firewall will be restric
in that it cannot receive requests from outside the firewall on any object it creates
no host outside the firewall will be able to connect to the applet through the clien
firewall, even though the applet in question would typically only expect callbacks fr
the server it initially registered with.

In order to circumvent this unnecessary restriction, GIOP minor protocol version 1
specifies that the asymmetry stipulation above be relaxed in cases where the clien
the server agree on it. In these cases, the client (the applet in the above case) w
still initiate the connection to the server, but any requests from the server on any
objects.

The client creates an object for exporting to a server, and arranges that the serve
receive an IOR for the object. The most common use case would be for the clien
pass the IOR as a parameter in a GIOP request, but other mechanisms are poss
such as the use of a Name Service. If the client ORB policy permits bi-directional
of a connection, a Request message should contain an IOP::ServiceContext
structure in its Request header, which indicates that this GIOP connection is bi-
directional. The service context may provide additional information that the server
need to invoke the callback object. To determine whether an ORB may support b
directional GIOP new policies has been defined (Section 15.9, “Bi-directional GIO
policy,” on page 15-58).

Each mapping of GIOP to a particular transport should define a transport-specific
directional service context, and have an IOP::ServiceId allocated by the OMG. It is
recommended that names for this service context follows the pattern
BiDir<protocolname>, where <protocol name> identifies a mapping of GIOP to a
transport protocol (e.g., for IIOP the name is BiDirIIOP). The service context for bi-
directional IIOP is defined in Section 15.8.1, “Bi-Directional IIOP,” on page 15-57.
CORBA, v2.4.2 Bi-Directional GIOP February 2001 15-55

15

at
und

o
a
e a
w

int

age

ly

a

d
cope
ts
 for

quest

IOP

n the
n
nt

ted.
same

The server receives the Request, which contains a bi-directional
IOP::ServiceContext . If the server supports bi-directional connections for that
protocol, it may now send invocations along the same connection to any object th
supports the particular protocol and matches the particular location information fo
in the bi-directional service context. If the server does not support bi-directional
connections for that protocol, the service context can be ignored.

The data encapsulated in the BiDirIIOPServiceContext structure (see below), which
is identified by the ServiceId BI_DIR_IIOP as defined in Section 13.6.8, “Object
Service Context,” on page 13-26, allows the ORB to determine whether it needs t
open a new connection in order to invoke on an object. If a host and port pair in
listen_point list matches a host and port of an object to which it does not yet hav
connection (a callback object newly received, for instance), rather than open a ne
connection, the server may re-use any of the connections on which the listen_po
data was received.

A server talking to a client on a bi-directional GIOP connection can use any mess
type traditionally used by clients only, so it can use Request , LocateRequest ,
CancelRequest , MessageError , and Fragment (for a Request or
LocateRequest). Similarly the client can use message types traditionally used on
by servers: Reply , LocateReply , MessageError , CloseConnection , and
Fragment (for a Reply or LocateReply).

CloseConnection messages are a special case however. Either ORB may send
CloseConnection message, but the conditions in Section 15.5.1, “Connection
Management,” on page 15-46 apply.

Bi-directional GIOP connections modify the behavior of Request IDs. In the GIOP
specification, Section 15.5.1, “Connection Management,” on page 15-46, it is note
that “Request IDs must unambiguously associate replies with requests within the s
and lifetime of a connection.” This property of unambiguous association of reques
and replies must be preserved while permitting each end to generate Request Ids
new requests independently. To ensure this, on a connection that is used bi-
directionally in GIOP 1.2, the connection originator shall assign only even valued
Request IDs and the other side of the connection shall assign only odd valued Re
IDs. This requirement applies to the full lifetime of the connection, even before a
BiDirIIOPServiceContext is transmitted. A connection on which this regime of
Request ID assignment is not used, shall never be used to transmit bi-directional G
1.2 messages.

It should be noted that a single-threaded ORB needs to perform event checking o
connection, in case a Request from the other endpoint arrives in the window betwee
it sending its own Request and receiving the corresponding reply; otherwise a clie
and server could send Request s simultaneously, resulting in deadlock. If the client
cannot support event checking, it must not indicate that bi-directionality is suppor
If the server cannot support event checking, it must not make callbacks along the
connection even if the connection indicates it is supported.

A server making a callback to a client cannot specify its own bi-directional service
context – only the client can announce the connection's bi-directionality.
15-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

 In

r it
 host.
 and

hat

,”
 to

oint

e in

ction
R,

An important security issue should be observed in the use of bi-directional GIOP.
the absence of other security mechanisms, a malicious client may claim that its
connection is Bi-Directional for use with any host and port it chooses. In particula
may specify the host and port of security sensitive objects not even resident on its
All the client has to do is pass the host and port in the listen data service context
the server may then invoke a masquerading object instead. In general, and in the
absence of other security mechanisms, a server that has accepted an incoming
connection has no way to discover the identity or verify the integrity of the client t
initiated the connection. If the server has doubts in the integrity of the client, it is
recommended that bi-directional GIOP is not used.

15.8.1 Bi-Directional IIOP

The IOP::ServiceContext used to support bi-directional IIOP contains a
BiDirIIOPServiceContext structure as defined below:

// IDL
module IIOP {

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {
ListenPointList listen_points;

};
};

The data encapsulated in the BiDirIIOPServiceContext structure, which is identified
by the ServiceId BI_DIR_IIOP as defined in Section 13.6.8, “Object Service Context
on page 13-26, allows the ORB, which intends to open a new connection in order
invoke on an object, to look up its list of active client-initiated connections and
examine the structures associated with them, if any. If a host and port pair in a
listen_points list matches a host and port, which the ORB intends to open a
connection to, rather than open a new connection to that listen_point , the server may
re-use any of the connections that were initiated by the client on which the listen p
data was received.

The host element of the structure should contain whatever values the client may us
the IORs it creates. The rules for host and port are identical to the rules for the IIOP
IOR ProfileBody_1_1 host and port elements; see Section 15.7.2, “IIOP IOR
Profiles,” on page 15-51. Note that if the server wishes to make a callback conne
to the client in the standard way, it must use the values from the client object's IO
not the values from this BiDirIIOPServiceContext structure; these values are only to
be used for bi-directional GIOP support.
CORBA, v2.4.2 Bi-Directional GIOP February 2001 15-57

15

, and

e a

ss.

nt
d the
le to

ents
ble to
t bi-
 is
The BI_DIR_IIOP service context may be sent by a client at any point in a
connection's lifetime. The listen_points specified therein must supplement any
listen_points already sent on the connection, rather than replacing the existing
points.

If a client supports a secure connection mechanism, such as SECIOP or IIOP/SSL
sends a BI_DIR_IIOP service context over an insecure connection, the host and port
endpoints listed in the BI_DIR_IIOP should not contain the details of the secure
connection mechanism if insecure callbacks to the client's secure objects would b
violation of the client's security policy.

It is the ORB's responsibility to ensure that an IOR contains an appropriate addre

15.8.1.1 IIOP/SSL considerations

Bi-directional IIOP can operate over IIOP/SSL (see CORBAservices Chapter 15)
without defining any additions to the IIOP/SSL or the bi-directional GIOP
mechanisms. However, if the client wants to authenticate the server when the clie
receives a callback this cannot be done unless the client has already authenticate
server. This has to be performed during the initial SSL handshake. It is not possib
do this at any point after the initial handshake without establishing a new SSL
connection (which defeats the purpose of the bi-directional connections).

15.9 Bi-directional GIOP policy

In GIOP protocol versions 1.0 and 1.1, there are strict rules on which side of a
connection can issue what type of messages (for example version 1.0 and 1.1 cli
can not issue GIOP reply messages). However, as documented above, it is sensi
relax this restriction if the ORB supports this functionality and policies dictate tha
directional connection are allowed. To indicate a bi-directional policy, the following
defined.

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};
15-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15

f
t
ue
value
A BidirectionalPolicyValue of NORMAL states that the usual GIOP restrictions o
who can send what GIOP messages apply (i.e., bi-directional connections are no
allowed). A value of BOTH indicates that there is a relaxation in what party can iss
what GIOP messages (i.e., bi-directional connections are supported). The default
of a BidirectionalPolicy is NORMAL .

In the absence of a BidirectionalPolicy being passed in the
PortableServer::POA::create_POA operation, a POA will assume a policy value of
NORMAL .

A client and a server ORB must each have a BidirectionalPolicy with a value of
BOTH for bi-directional communication to take place.

To create a BidirectionalPolicy , the ORB::create_policy operation is used.

15.10 OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

15.10.1 GIOP Module

module GIOP { // IDL extended for version 1.1 and 1.2

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,

CloseConnection, MessageError
};

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageHeader_1_0 {// Renamed from MessageHeader

char magic [4];
Version GIOP_version;
CORBA, v2.4.2 OMG IDL February 2001 15-59

15
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2
typedef MessageHeader_1_1 MessageHeader_1_2;

// GIOP 1.0
struct RequestHeader _1_0 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;

 octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
15-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
// requesting_principal not in GIOP 1.2
IOP::ServiceContextList service_context; // 1.2 change

};

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM, // new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP:ServiceContextList service_context; // 1.2 change

};
CORBA, v2.4.2 OMG IDL February 2001 15-61

15
#endif // GIOP_1_2
 struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;

unsigned long completion_status;
};

struct CancelRequestHeader {
 unsigned long request_id;
};

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1

enum LocateStatusType_1_0 {// Renamed from LocateStatusType
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {

// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;

// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2

enum LocateStatusType_1_2 {
UNKNOWN_OBJECT,
15-62 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

15
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
#endif // GIOP_1_2

// GIOP 1.2
struct FragmentHeader_1_2 {

unsigned long request_id;
};

};

15.10.2 IIOP Module

module IIOP { // IDL extended for version 1.1 and 1.2
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2
sequence <IOP::TaggedComponent> components;

};

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;
CORBA, v2.4.2 OMG IDL February 2001 15-63

15
struct BiDirIIOPServiceContext {// BI_DIR_IIOP Service Context
ListenPointList listen_points;

};
};

15.10.3 BiDirPolicy Module

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};
15-64 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 The DCE ESIOP 16
e

.

This chapter specifies an Environment-Specific Inter-ORB Protocol (ESIOP) for th
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

Contents

This chapter contains the following sections.

16.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Section Title Page

“Goals of the DCE Common Inter-ORB Protocol” 16-1

“DCE Common Inter-ORB Protocol Overview” 16-2

“DCE-CIOP Message Transport” 16-5

“DCE-CIOP Message Formats” 16-11

“DCE-CIOP Object References” 16-16

“DCE-CIOP Object Location” 16-21

“OMG IDL for the DCE CIOP Module” 16-25

“References for this Chapter” 16-26
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 16-1

16

rt,

ats
e. It
how
t and

G
his

ted

me

RBs

 two
ace:
DCE CIOP achieves these goals by using DCE-RPC to provide message transpo
while leaving the ORB responsible for message formatting, data marshaling, and
operation dispatch.

16.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet form
defined by DCE-RPC to enable independently implemented ORBs to communicat
defines the message formats that are exchanged using DCE-RPC, and specifies
information in object references is used to establish communication between clien
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 16.7, “OM
IDL for the DCE CIOP Module,” on page 16-25. Fragments are used throughout t
chapter as necessary.

16.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC, which is interoperable with the DCE connection-orien
and/or connectionless protocols as specified in the X/Open CAE Specification C309
and the OSF AES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the sa
connection.

• Supports fragmentation of messages. This provides for buffer management by O
of CORBA requests, which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of
well-known DCE-RPC interfaces. Two DCE operations are provided in each interf

• invoke - for invoking CORBA operation requests, and

• locate - for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1. DCE maybe operation semantics cannot be used for CORBA oneway operations because
they are idempotent as opposed to at-most-once.

2. The deferred synchronous DII API can be implemented on top of synchronous RPCs by
using threads.
16-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

f the

arrays
-
PC

x,

pes.
 client

.

-1.
Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of
uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message
transmission.

• Encoding of messages and marshaling of data is completely under the control o
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

Using the other DCE-RPC interface, the messages are transmitted as conformant
of uninterpreted bytes. This interface does not offer all the advantages of the pipe
based interface, but is provided to enable interoperability with ORBs using DCE-R
implementations that do not adequately support pipes.

16.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer synta
which is defined in Section 15.2.1, “Common Data Representation (CDR),” on
page 15-3. DCE-CIOP message headers and bodies are specified as OMG IDL ty
These are encoded using CDR, and the resulting messages are passed between
and server processes via DCE-RPC pipes or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDL primitive types identically to the NDR representation of
corresponding DCE IDL primitive types.

The corresponding OMG IDL and DCE IDL primitive types are shown in Table 16

Table 16-1 Relationship between CDR and NDR primitive data types

OMG IDL type DCE IDL type with NDR representation equivalent
to CDR representation of OMG IDL type

char byte

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

octet byte

short short

unsigned short unsigned short

long long

unsigned long unsigned long
CORBA, v2.4.2 DCE Common Inter-ORB Protocol Overview February 2001 16-3

16

does

1.1
tets

CDR

ts and

 be
The CDR representation of OMG IDL constructed types and pseudo-object types
not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conformant array of octets in DCE
NDR. This consists of an unsigned long of four octets, specifying the number of oc
in the array, followed by that number of octets, with no null terminator.

The NDR representation of OMG IDL fixed-point type, fixed , will be proposed as an
addition to the set of DCE IDL types.

As new data types are added to OMG IDL, NDR can be used as a model for their
representations.

16.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clien
servers via the invoke and locate RPCs:

• Invoke Request identifies the target object and the operation and contains the
principal, the operation context, a ServiceContext, and the in and inout
parameter values.

• Invoke Response indicates whether the operation succeeded, failed, or needs to
reinvoked at another location, and returns a ServiceContext . If the operation
succeeded, the result and the out and inout parameter values are returned. If it
failed, an exception is returned. If the object is at another location, new RPC
binding information is returned.

long long hyper

unsigned long long unsigned hyper

float float1

double double2

long double long double3

boolean byte4

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Restricted to IEEE format.

4. Values restricted to 0 and 1.

Table 16-1 Relationship between CDR and NDR primitive data types

OMG IDL type DCE IDL type with NDR representation equivalent
to CDR representation of OMG IDL type
16-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

DR

e.

ssary
n
OP
ther

 or
 or it

nt

voke

en
hile

e

and
• Locate Request identifies the target object and the operation.

• Locate Response indicates whether the location is in the current process, is
elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the C
encoding of the remainder of the message. The CDR byte order of a message is
required to match the NDR byte order used by DCE-RPC to transmit the messag

16.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information nece
to reference an object via DCE-CIOP must be included in an IOR. This informatio
can coexist with the information needed for other protocols such as IIOP. DCE-CI
information is stored in an IOR as a set of components in a profile identified by ei
TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS . Components are
defined for the following purposes:

• To identify a server process via a DCE string binding, which can be either fully
partially bound. This process may be a server process implementing the object,
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an age
capable of locating it.

• In the TAG_MULTIPLE_COMPONENTS profile, to identify the target object
when request messages are sent to the server. In the TAG_INTENET_IOP profile,
the object_key profile member is used instead.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an in
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to
reference the CORBA object.

16.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages betwe
client ORBs and server ORBs3. One interface uses pipes to convey the messages, w
the other uses conformant arrays.

The pipe-based interface is the preferred interface, since it allows messages to b
transmitted without precomputing the message length. But not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client
server ORBs implementing DCE-CIOP must support the array-based interface4.
CORBA, v2.4.2 DCE-CIOP Message Transport February 2001 16-5

16

 it is
 to

n.
ing
ize

h to

f
While server ORBs may provide both interfaces or just the array-based interface,
up to the client ORB to decide which to use for an invocation. If a client ORB tries
use the pipe-based interface and receives a rpc_s_unknown_if error, it should fall
back to the array-based interface.

16.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */
uuid(d7d99f66-97ee-11cf-b1a0-0800090b5d3e),/* 2nd revision
*/
version(1.0)
]
interface dce_ciop_pipe
{
typedef pipe byte message_type;

void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

ORBs can implement the dce_ciop_pipe interface by using DCE stubs generated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

The dce_ciop_pipe interface is identified by the UUID and version number show
To provide maximal performance, all server ORBs and location agents implement
DCE-CIOP should listen for and handle requests made to this interface. To maxim
the chances of interoperating with any DCE-CIOP client, servers should listen for
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE
RPCs on the dce_ciop_pipe interface. The dce_ciop_pipe interface is made up
of two DCE-RPC operations, invoke and locate . The first parameter of each of
these RPCs is a DCE binding handle, which identifies the server process on whic

3. Previous DCE-CIOP revisions used different DCE RPC interface UUIDs and had
incompatible message formats. These previous revisions are deprecated, but
implementations can continue to support them in conjunction with the current interface
UUIDs and message formats.

4. A future DCE-CIOP revision may eliminate the array-based interface and require support o
the pipe-based interface.
16-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

CE-
n”

.

the
ge

ocol

n is
This

hunk
 that
perform the RPC. See “DCE-CIOP String Binding Component” on page 16-17, “D
CIOP Binding Name Component” on page 16-18, and “DCE-CIOP Object Locatio
on page 16-21 for discussion of how these binding handles are obtained. The
remaining parameters of the dce_ciop_pipe RPCs are pipes of uninterpreted bytes
These pipes are used to convey messages encoded using CDR. The
request_message input parameters send a request message from the client to
server, while the response_message output parameters return a response messa
from the server to the client.

Figure 16-1 illustrates the layering of DCE-CIOP messages on the DCE-RPC prot
as NDR pipes:

Figure 16-1 Pipe-based Interface Protocol Layering

The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authenticatio
performed, are concatenated by the DCE-RPC run-time to form an NDR stream.
stream is then interpreted as the NDR representation of a DCE IDL pipe.

A pipe is made up of chunks, where each chunk consists of a chunk length and c
data. The chunk length is an unsigned long indicating the number of pipe elements
make up the chunk data. The pipe elements are DCE IDL bytes, which are
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe
chunks are concatenated to form a DCE-CIOP message.

PDU

Chunk Chunk Data Chunk ChunkChunk Data

PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body
CORBA, v2.4.2 DCE-CIOP Message Transport February 2001 16-7

16

at.
lso

P
at.

ess
s
16.3.1.1 Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message pipe transmits a DCE-CIOP invoke request
message, encoded using CDR, from the client to the server. See Section 16.4.1,
“DCE_CIOP Invoke Request Message,” on page 16-11 for a description of its form
The response_message pipe transmits a DCE-CIOP invoke response message, a
encoded using CDR, from the server to the client. See Section 16.4.2, “DCE-CIO
Invoke Response Message,” on page 16-12 for a description of the response form

16.3.1.2 Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC . See
Section 16.4.3, “DCE-CIOP Locate Request Message,” on page 16-14 and
Section 16.4.4, “DCE-CIOP Locate Response Message,” on page 16-15 for
descriptions of their formats. Use of the locate RPC is described in detail in
Section 16.6, “DCE-CIOP Object Location,” on page 16-21.

16.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */
uuid(09f9ffb8-97ef-11cf-9c96-0800090b5d3e),/* 2nd revision
*/
version(1.0)
]
interface dce_ciop_array
{
 typedef struct {
 unsigned long length;

[size_is(length),ptr] byte *data;
 } message_type;

 void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

 void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

16-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

, or

 on
DR-
ge

ORBs can implement the dce_ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDL specification
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and
handle requests made to the dce_ciop_array interface, and to maximize
interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing
locate and invoke RPCs on the dce_ciop_array interface.

As with the dce_ciop_pipe interface, the first parameter of each
dce_ciop_array RPC is a DCE binding handle that identifies the server process
which to perform the RPC. The remaining parameters are structures containing C
encoded messages. The request_message input parameters send a request messa
from the client to the server, while the response_message output parameters return
a response message from the server to the client.

The message_type structure used to convey messages is made up of a length
member and a data member:

• length - This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array
containing the message.
CORBA, v2.4.2 DCE-CIOP Message Transport February 2001 16-9

16

d in

NDR

 is
 by
ich is

ber
The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrate
Figure 16-2:

Figure 16-2 Array-based Interface Protocol Layering

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the
representation of the DCE IDL message_type structure. The length member is
encoded first, followed by the data member. The data member is a full pointer,
which is represented in NDR as a referent ID. In this case, this non-NULL pointer
the first (and only) pointer to the referent, so the referent ID is 1 and it is followed
the representation of the referent. The referent is a conformant array of bytes, wh
represented in NDR as an unsigned long indicating the length, followed by that num
of bytes. The bytes form the DCE-CIOP message.

16.3.2.1 Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message input parameter contains a DCE-CIOP invoke
request message. The response_message output parameter returns a DCE-CIOP
invoke response message from the server to the client.

PDU PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body

length ref ID length bytes
16-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

ess
s

rmats
E-

eader
IDL

der
E

e
16.3.2.2 Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC.

16.4 DCE-CIOP Message Formats

This section defines the message formats used by DCE-CIOP. These message fo
are specified in OMG IDL, are encoded using CDR, and are transmitted over DC
RPC as either pipes or arrays of bytes as described in Section 16.3, “DCE-CIOP
Message Transport,” on page 16-5.

16.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations and CORBA::Object operations such as
get_interface and get_implementation . Invoke requests are passed from
client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The h
has a fixed format, while the format of the body is determined by the operation’s
definition.

16.4.1.1 Invoke request header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from th
client to the server.
CORBA, v2.4.2 DCE-CIOP Message Formats February 2001 16-11

16

f the

 of
e

the

s

• object_key contains opaque data used to identify the object that is the target o
operation5. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLETE_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. The case
the operation name must match the case of the operation name specified in th
OMG IDL source for the interface being used.

Attribute accessors have names as follows:

• Attribute selector: operation name is “_get_<attribute>”

• Attribute mutator: operation name is “_set_<attribute>”

CORBA::Object pseudo-operations have operation names as follows:
• get_interface - operation name is “_interface”
• get_implementation - operation name is “_implementation”
• is_a - operation name is “_is_a”
• non_existent - operation name is “_non_existent”

• Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value. It is provided to support
BOA::get_principal operation.

16.4.1.2 Invoke request body

The invoke request body contains the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in Section 15.3.5.4,
“Context,” on page 15-296. This item is only included if the operation’s OMG IDL
definition includes a context expression, and only includes context members a
defined in that expression.

16.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the
response_message parameter of an invoke RPC.

5. Previous revisions of DCE-CIOP included an endpoint_id member, obtained from an
optional TAG_ENDPOINT_ID component, as part of the object identity. The endpoint ID,
if used, is now contained within the object key, and its position is specified by the optional
TAG_ENDPOINT_ID_POSITION component.

6. Previous revisions of DCE-CIOP encoded the Context in the InvokeRequestHeader. It has
been moved to the body for consistency with GIOP.
16-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

der and
the

der
E

e
Like invoke request messages, an invoke response message is made up of a hea
a body. The header has a fixed format, while the format of the body depends on
operation’s OMG IDL definition and the outcome of the invocation.

16.4.2.1 Invoke response header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum InvokeResponseStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from th
client to the server.

• status indicates the completion status of the associated request, and also
determines the contents of the body.

16.4.2.2 Invoke Response Body

The contents of the invoke response body depends on the value of the status
member of the invoke response header, as well as the OMG IDL definition of the
operation being invoked. Its format is one of the following:
CORBA, v2.4.2 DCE-CIOP Message Formats February 2001 16-13

16

rder

d

 is
.
. See

ect

ould
• If the status value is INVOKE_NO_EXCEPTION, then the body contains the
operation result value (if any), followed by all inout and out parameters, in the o
in which they appear in the operation signature, from left to right.

• If the status value is INVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encode
as in GIOP.

• If the status value is INVOKE_LOCATION_FORWARD , then the body contains
a new IOR containing a TAG_INTERNET_IOP or
TAG_MULTIPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the invoke request message7. This profile
must provide at least one new DCE-CIOP binding component. The client ORB
responsible for resending the request to the server identified by the new profile
This operation should be transparent to the client program making the request
“DCE-CIOP Object Location” on page 16-21 for more details.

• If the status value is INVOKE_TRY_AGAIN , then the body is empty and the
client should reissue the invoke RPC, possibly after a short delay8.

16.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the
request_message parameter of a locate RPC, to determine the following
regarding a specified object reference:

• Whether the object reference is valid.

• Whether the current server is capable of directly receiving requests for the obj
reference.

• If not capable, to solicit an address to which requests for the object reference sh
be sent.

For details on the usage of the locate RPC, see Section 16.6, “DCE-CIOP Object
Location,” on page 16-21.

Locate request messages contain a fixed-format header, but no body.

16.4.3.1 Locate Request Header

DCE-CIOP locate request headers have the following format:

module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;

7. Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR
is now returned to allow either a TAG_INTERNET_IOP or a
TAG_MULTIPLE_COMPONENTS profile to be used.

8. An exponential back-off algorithm is recommended, but not required.
16-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

der
E

f the

ded

der
E
sequence <octet> object_key;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target o
operation. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLETE_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. It is enco
as in the invoke request header.

16.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the
response_message parameter of a locate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

16.4.4.1 Locate Response Header

DCE-CIOP locate response headers have the following format:

module DCE_CIOP { // IDL
enum LocateResponseStatus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};
struct LocateResponseHeader {

boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRU
indicates little-endian byte ordering.
CORBA, v2.4.2 DCE-CIOP Message Formats February 2001 16-15

16

ver.

d
ate

r

file

and

r

file.
ated

mple,
 the
e of
ther
• status indicates whether the object is valid and whether it is located in this ser
It determines the contents of the body.

16.4.4.2 Locate Response Body

The contents of the locate response body depends on the value of the status member
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specifie
in the corresponding locate request message is unknown to the server. The loc
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originato
of the locate response message) can directly receive requests for the specified
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate
response body contains a new IOR containing a TAG_INTERNET_IOP or
TAG_MULTIPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the locate request message. This pro
must provide at least one new DCE-CIOP binding component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty
the client should reissue the locate RPC, possibly after a short delay9.

16.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified either by TAG_INTERNET_IOP or by
TAG_MULTIPLE_COMPONENTS . The profile_data for the
TAG_INTERNET_IOP profile is a CDR encapsulation of the
IIOP::ProfileBody_1_1 type, described in Section 15.7.2, “IIOP IOR Profiles,” on
page 15-51. The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a
CDR encapsulation of the MultipleComponentProfile type, which is a sequence of
TaggedComponent structures, described in Section 13.6, “An Information Model fo
Object References,” on page 13-14.

DCE-CIOP defines a number of IOR components that can be included in either pro
Each is identified by a unique tag, and the encoding and semantics of the associ
component_data are specified.

Either IOR profile can contain components for other protocols in addition to DCE-
CIOP, and can contain components used by other kinds of ORB services. For exa
an ORB vendor can define its own private components within this profile to support
vendor’s native protocol. Several of the components defined for DCE-CIOP may b
use to other protocols as well. The following component descriptions will note whe

9. An exponential back-off algorithm is recommended, but not required.
16-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

ls,
than

served
ified

itself,

o

ding
IOP.

 for
ing

g

 the
the component is intended solely for DCE-CIOP or can be used by other protoco
whether the component is required or optional for DCE-CIOP, and whether more
one instance of the component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and
recognize the components defined here. Unrecognized components should be pre
but ignored. Implementations should also be prepared to encounter profiles ident
by TAG_INTERNET_IOP or by TAG_MULTIPLE_COMPONENTS that do not
support DCE-CIOP.

16.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING , contains a fully or partially bound string binding. A
string binding provides the information necessary for DCE-RPC to establish
communication with a server process that can either service the client’s requests
or provide the location of another process that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert a string binding t
the DCE binding handle required to communicate with a server as described in
Section 16.3, “DCE-CIOP Message Transport,” on page 16-5.

This component is intended to be used only by DCE-CIOP. At least one string bin
or binding name component must be present for an IOR profile to support DCE-C

Multiple string binding components can be included in a profile to define endpoints
different DCE protocols, or to identify multiple servers or agents capable of servic
the request.

The string binding component is defined as follows:

module DCE_CIOP { \\ IDL
const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComponent structure is built for the string binding component by settin
the tag member to TAG_DCE_STRING_BINDING and setting the component_data
member to the value of a DCE string binding. The string is represented directly in
sequence of octets, including the terminating NUL, without further encoding.

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed
Computing RPC Volume. The DCE API function
rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as the first parameter to the invoke and
locate RPCs.

A string binding contains:

• A protocol sequence

• A network address

• An optional endpoint
CORBA, v2.4.2 DCE-CIOP Object References February 2001 16-17

16

C
B
ntain

nicate

dling
nt for

g

ry

• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RP
run-time uses an endpoint mapper to complete a partial binding, and multiple OR
servers might be located on the same host, partially bound string bindings must co
object UUIDs to distinguish different endpoints at the same network address.

16.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME . It contains a name that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle needed to commu
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name
components can be included to identify multiple servers or agents capable of han
a request. At least one binding name or string binding component must be prese
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:

module DCE_CIOP { // IDL
const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComponent structure is built for the binding name component by settin
the tag member to TAG_DCE_BINDING_NAME and setting the component_data
member to a CDR encapsulation of a BindingNameComponent structure.

16.5.2.1 BindingNameComponent

The BindingNameComponent structure contains the information necessary to que
a DCE nameservice such as CDS. A client ORB can use the entry_name_syntax,
entry_name, and object_uuid members of the BindingName structure with the
rpc_ns_binding_import_ * or rpc_ns_binding_lookup_ * families of DCE
API routines to obtain binding handles to communicate with a server. If the
object_uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.
16-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

e
 as the

erver
16.5.3 DCE-CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PIPES indicates to an ORB
client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is
only a hint, and can be safely ignored. As described in Section 16.3, “DCE-CIOP
Message Transport,” on page 16-5, the client must fall back to the array-based
interface if the pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::ComponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComponent structure with a tag member of TAG_DCE_NO_PIPES
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.

16.5.4 Complete Object Key Component

An IOR profile supporting DCE-CIOP must include an object key that identifies th
object the IOR represents. The object key is an opaque sequence of octets used
object_key member in invoke and locate request message headers. In a
TAG_INTERNET_IOP profile, the object_key member of the
IIOP::ProfileBody_1_1 structure is used. In a TAG_MULTIPLE_COMPONENTS
profile supporting DCE-CIOP10, a single TAG_COMPLETE_OBJECT_KEY
component must be included to identify the object.

The TAG_COMPLETE_OBJECT_KEY component is available for use by all
protocols that use the TAG_MULTIPLE_COMPONENTS profile. By sharing this
component, protocols can avoid duplicating object identity information. This
component should never be included in a TAG_INTERNET_IOP profile.

module IOP { // IDL
const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;

};

The sequence of octets comprising the component_data of this component is not
interpreted by the client process. Its format only needs to be understood by the s
process and any location agent that it uses.

10.Previous DCE-CIOP revisions used a different component.
CORBA, v2.4.2 DCE-CIOP Object References February 2001 16-19

16

ble
ges.
point

h

int
ex

t

r

le
can
n
 on
16.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in IOR profiles to ena
client ORBs to minimize resource utilization and to avoid redundant locate messa
It can be used by other protocols as well as by DCE-CIOP. No more than one end
ID position component can be included in a profile.

module IOP { // IDL
const ComponentId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionComponent {
unsigned short begin;
unsigned short end;

};
};

An endpoint ID position component, identified by TAG_ENDPOINT_ID_POSITION,
indicates the portion of the profile’s object key that identifies the endpoint at whic
operations on an object can be invoked. The component_data is a CDR
encapsulation of an EndpointIdPositionComponent structure. The begin member
of this structure specifies the index in the object key of the first octet of the endpo
ID. The end member specifies the index of the last octet of the endpoint ID. An ind
value of zero specifies the first octet of the object key. The value of end must be
greater than the value of begin , but less than the total number of octets in the objec
key. The endpoint ID is made up of the octets located between these two indices
inclusively.

The endpoint ID should be unique within the domain of interoperability. A binary o
stringified UUID is recommended.

If multiple objects have the same endpoint ID, they can be messaged to at a sing
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients
use a single binding handle to invoke requests on all of the objects with a commo
endpoint ID. See Section 16.6.4, “Use of the Location Policy and the Endpoint ID,”
page 16-24.

16.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIOP client ORB should perform a locate RPC before attempting to
perform an invoke RPC. No more than one location policy component should be
included in a profile, and it can be used by other protocols that have location
algorithms similar to DCE-CIOP.

module IOP { // IDL
const ComponentId TAG_LOCATION_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER = 0
#define LOCATE_OBJECT = 1
16-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

 a

n

int is

e

 A
For

an
#define LOCATE_OPERATION = 2
#define LOCATE_ALWAYS = 3

};

A TaggedComponent structure for a location policy component is built by setting
the tag member to TAG_LOCATION_POLICY and setting the component_data
member to a sequence containing a single octet, whose value is LOCATE_NEVER ,
LOCATE_OBJECT, LOCATE_OPERATION , or LOCATE_ALWAYS .

If a location policy component is not present in a profile, the client should assume
location policy of LOCATE_OBJECT .

A client should interpret the location policy as follows:

• LOCATE_NEVER - Perform only the invoke RPC. No locate RPC is
necessary.

• LOCATE_OBJECT - Perform a locate RPC once per object. The operation
member of the locate request message will be ignored.

• LOCATE_OPERATION - Perform a separate locate RPC for each distinct
operation on the object. This policy can be used when different methods of a
object are located in different processes.

• LOCATE_ALWAYS - Perform a separate locate RPC for each invocation on
the object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs
and to avoid invoke RPCs that return INVOKE_LOCATION_FORWARD status. It
is not needed to provide correct semantics, and can be ignored. Even when this h
utilized, an invoke RPC might result in an INVOKE_LOCATION_FORWARD
response. See Section 16.6, “DCE-CIOP Object Location,” on page 16-21 for mor
details.

A client does not need to implement all location policies to make use of this hint.
location policy with a higher value can be substituted for one with a lower value.
instance, a client might treat LOCATE_OPERATION as LOCATE_ALWAYS to avoid
having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perform a locate RPC for the
first object with a particular endpoint ID, and then just perform an invoke RPC for
other objects with the same endpoint ID. When a location policy of LOCATE_NEVER
is combined with an endpoint ID component, only invoke RPCs need be performed.
The LOCATE_ALWAYS and LOCATE_OPERATION policies should not be
combined with an endpoint ID component in a profile.

16.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that c
perform operations on an object via the invoke RPC.
CORBA, v2.4.2 DCE-CIOP Object Location February 2001 16-21

16

tures

B
ess,
may

ect

eturn
ay

s or

s
t

ssages

vide

nt in

n
ss to

send

e
5.6,
y a
16.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol fea
are based on the following observations:

• A given transport address does not necessarily correspond to any specific OR
architectural component (such as an object adapter, server process, ORB proc
locator, etc.). It merely implies the existence of some agent to which requests
be sent.

• The “agent” (receiver of an RPC) may have one of the following roles with resp
to a particular object reference:

• The agent may be able to accept object requests directly for the object and r
replies. The agent may or may not own the actual object implementation; it m
be a gateway that transforms the request and passes it on to another proces
ORB. From DCE-CIOP’s perspective, it is only important that invoke request
messages can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but act
instead as a location service. Any invoke request messages sent to the agen
would result in either exceptions or replies with
INVOKE_LOCATION_FORWARD status, providing new addresses to which
requests may be sent. Such agents would also respond to locate request me
with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and pro
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one poi
time, and provide a forwarding location at a later time.

• Server ORBs are not required to implement location forwarding mechanisms. A
ORB can be implemented with the policy that servers either support direct acce
an object, or return exceptions. Such a server ORB would always return locate
response messages with either LOCATE_OBJECT_HERE or
LOCATE_UNKNOWN_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages with INVOKE_LOCATION_FORWARD status.

• Client ORBs must, however, be able to accept and process invoke response
messages with INVOKE_LOCATION_FORWARD status, since any server ORB
may choose to implement a location service. Whether a client ORB chooses to
locate request messages is at the discretion of the client.

• Client ORBs that send locate request messages can use the location policy
component found in DCE-CIOP IOR profiles to decide whether to send a locat
request message before sending an invoke request message. See Section 16.
“Location Policy Component,” on page 16-20. This hint can be safely ignored b
client ORB.
16-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16

rned

s to
ed in

s,

 an
er be
r.

ver
le of

s do

ing

h
• A client should not make any assumptions about the longevity of addresses retu
by location forwarding mechanisms. If a binding handle based on location
forwarding information is used successfully, but then fails, subsequent attempt
send requests to the same object should start with the original address specifi
the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORB
available to be used for optimization and to support flexible object location and
migration behaviors.

16.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless
IOR refers to a transient object, the agent addressed by the IOR profile should eith
permanently active, or should be activated on demand by DCE’s endpoint mappe

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB ser
environments using rpcd, the agent addressed by an IOR must not only be capab
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatic activation, but client ORB implementation
not need to be aware of this distinction.

16.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handl
the invoke RPC for a particular operation:

1. Pick a profile with TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS
from the IOR. Make this the original profile and the current profile. If no profiles
with either tag are available, operations cannot be invoked using DCE-CIOP wit
this IOR.

2. Get a binding handle to try from the current profile. See Section 16.5.1, “DCE-
CIOP String Binding Component,” on page 16-17 and Section 16.5.2,
“DCE-CIOP Binding Name Component,” on page 16-18 . If no binding
handles can be obtained, the server cannot be located using the current profile, so
go to step 1.

3. Perform either a locate or invoke RPC using the object key from the current
profile.

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returns INVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN , try the
same RPC again, possibly after a delay.

• If the RPC returns either INVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD , make the new IOR profile returned in the
response message body the current profile and go to step 2.

• If the RPC returns LOCATE_UNKNOWN_OBJECT , and the original profile
was used, the object no longer exists.

• Otherwise, the server has been successfully located.
CORBA, v2.4.2 DCE-CIOP Object Location February 2001 16-23

16

ORB

 if

ID
 to

r

s on
per

ke
bject.

y

with
Any invoke RPC might return INVOKE_LOCATION_FORWARD , in which case
the client ORB should make the returned profile the current profile, and re-enter the
location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client
should start over at step 1.

16.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB,
possible, so that operations can be invoked using DCE-CIOP. But unnecessary
locate RPCs may be performed, and invoke RPCs may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint
position components can be used by the client ORB, if present in the IOR profile,
optimize this algorithm.

16.6.4.1 Current location policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in
step 3 based on the location policy of the current IOR profile. If the current profile has
a TAG_LOCATION_POLICY component with a value of LOCATE_NEVER , the
client should perform an invoke RPC. Otherwise, it should perform a locate RPC.

16.6.4.2 Original location policy

The client ORB can use the location policy of the original IOR profile as follows to
determine whether it is necessary to perform the location algorithm for a particula
invocation:

• LOCATE_OBJECT or LOCATE_NEVER - A binding handle previously used
successfully to invoke an operation on an object can be reused for all operation
the same object. The client only needs to perform the location algorithm once
object.

• LOCATE_OPERATION - A binding handle previously used successfully to invo
an operation on an object can be reused for that same operation on the same o
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS - Binding handles should not be reused. The client needs to
perform the location algorithm once per invocation.

16.6.4.3 Original Endpoint ID

If a component with TAG_ENDPOINT_ID_POSITION is present in the original IOR
profile, the client ORB can reuse a binding handle that was successfully used to
perform an operation on another object with the same endpoint ID. The client onl
needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile
a location policy of LOCATE_OPERATION or LOCATE_ALWAYS .
16-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

16
16.7 OMG IDL for the DCE CIOP Module

This section shows the DCE_CIOP module and DCE_CIOP additions to the IOP
module.

module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
sequence <octet> object_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

enum InvokeResponseStatus {
INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};
struct InvokeResponseHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseStatus status;

// if status = INVOKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INVOKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INVOKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
struct LocateRequestHeader {

boolean byte_order;
sequence <octet> object_key;
string operation;

// no body follows
};

enum LocateResponseStatus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJECT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN
CORBA, v2.4.2 OMG IDL for the DCE CIOP Module February 2001 16-25

16

};
struct LocateResponseHeader {

boolean byte_order;
LocateResponseStatus status;

// if status = LOCATE_LOCATION_FORWARD, an
// IOP::IOR follows

};

const IOP::ComponentId TAG_DCE_STRING_BINDING = 100;

const IOP::ComponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};

const IOP::ComponentId TAG_DCE_NO_PIPES = 102;
};

module IOP {
const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;

const ComponentId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionComponent {
unsigned short begin;
unsigned short end;

};

const ComponentId TAG_LOCATION_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER 0
#define LOCATE_OBJECT 1
#define LOCATE_OPERATION 2
#define LOCATE_ALWAYS 3

};

16.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company
Limited, Reading, UK
16-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 Interworking Architecture 17
o

em
t this
The Interworking chapters describe a specification for communication between tw
similar but very distinct object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA. An optimal specification would allow objects from
either system to make their key functionality visible to clients using the other syst
as transparently as possible. The architecture for Interworking is designed to mee
goal.

Contents

This chapter contains the following sections.

Section Title Page

“Purpose of the Interworking Architecture” 17-2

“Interworking Object Model” 17-3

“Interworking Mapping Issues” 17-8

“Interface Mapping” 17-8

“Interface Composition Mappings” 17-11

“Object Identity, Binding, and Life Cycle” 17-18

“Interworking Interfaces” 17-23

“Distribution” 17-32

“Interworking Targets” 17-34

“Compliance to COM/CORBA Interworking” 17-34
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 17-1

17

ts
bject

ered

s of
ally
a

ard

d
lly
rgely
vide

n,

inly
l

ite
p,
, cut-

y
 the

ow
 (and

d

he
17.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way
communication between CORBA objects and COM objects. The goal is that objec
from one object model should be able to be viewed as if they existed in the other o
model. For example, a client working in a CORBA model should be able to view a
COM object as if it were a CORBA object. Likewise, a client working in a COM
object model should be able to view a CORBA object as if it were a COM object.

There are many similarities between the two systems. In particular, both are cent
around the idea that an object is a discrete unit of functionality that presents its
behavior through a set of fully-described interfaces. Each system hides the detail
implementation from its clients. To a large extent COM and CORBA are semantic
isomorphic. Much of the COM/CORBA Interworking specification simply involves
mapping of the syntax, structure and facilities of each to the other — a straightforw
task.

There are, however, differences in the CORBA and COM object models. COM an
CORBA each have a different way of describing what an object is, how it is typica
used, and how the components of the object model are organized. Even among la
isomorphic elements, these differences raise a number of issues as to how to pro
the most transparent mapping.

17.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an applicatio
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certa
not exclusively) tied to some visual presentation metaphor. Historically, the typica
domain of a COM object is a single-user, multitasking visual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to exped
collaboration- and information-sharing among applications using the same deskto
largely through user manipulation of visual elements (for example, drag-and-drop
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparently to an
CORBA client regardless of the location (or implementation) of either the object or
client. Most CORBA objects focus on distributed control in a heterogeneous
environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable distributed network. In its current form, the main goal of CORBA is to all
these independent components to be shared among a wide variety of applications
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both models are growing and evolving, an
will probably overlap in functionally in the future. Therefore, a good interworking
model must map the functionality of two systems to each other while preserving t
flavor of each system as it is typically presented to a developer.
17-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

ed

on

lity
wn,

 on a
 by

t
aces
s are
library.

on
e

age

ces
The most obvious similarity between these two systems is that they are both bas
architecturally on objects. The Interworking Object Model describes the overlap
between the features of the CORBA and COM object models, and how the comm
features map between the two models.

Figure 17-1 Interworking Object Model

17.2 Interworking Object Model

17.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functiona
that presents itself through a published interface described in terms of a well-kno
fully described set of interface semantics. An interface (and its underlying
functionality) is accessed through at least one well-known, fully described form of
request. Each request in turn targets a specific object—an object instance—based
reference to its identity. That target object is then expected to service the request
invoking the expected behavior in its own particular implementation. Request
parameters are object references or nonobject data values described in the objec
model’s data type system. Interfaces may be composed by combining other interf
according to some well-defined composition rules. In each object system, interface
described in a specialized language or can be represented in some repository or

In CORBA, the Interworking Object Model is mapped to an architectural abstracti
known as the Object Request Broker (ORB). Functionally, an ORB provides for th
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Langu
(OMG IDL).

• Instance identities, from which the ORB can then construct appropriate referen
to each object for interested clients.

Object

Interface

Request

Parameters

Identity

Implementation
CORBA, v2.4.2 Interworking Object Model February 2001 17-3

17

 its
quest

d

ing

ws

t of a
own
cific
.

n-
ally

cial

ties
ay be
ported
s

ted

hly
A CORBA object may thereafter receive requests from interested clients that hold
object reference and have the necessary information to make a properly formed re
on the object’s interface. This request can be statically defined at compile time or
dynamically created at run-time based upon type information available through an
interface type repository.

While CORBA specifies the existence of an implementation type description calle
ImplementationDef (and an Implementation Repository, which contains these type
descriptions), CORBA does not specify the interface or characteristics of the
Implementation Repository or the ImplementationDef. As such, implementation typ
and descriptions vary from ORB to ORB and are not part of this specification.

17.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstraction known as the Component Object Model (COM). Functionally, COM allo
an object to expose its interfaces in a well-defined binary form (that is, a virtual
function table) so that clients with static compile-time knowledge of the interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).

COM supports an implementation typing mechanism centered around the concep
COM class. A COM class has a well-defined identity and there is a repository (kn
as the system registry) that maps implementations (identified by class IDs) to spe
executable code units that embody the corresponding implementation realizations

COM also provides an extension called Automation. Interfaces that are Automatio
compatible can be described in Object Definition Language (ODL) and can option
be registered in a binary Type Library. Automation interfaces can be invoked
dynamically by a client having no compile-time interface knowledge through a spe
COM interface (IDispatch). Run-time type checking on invocations can be
implemented when a Type Library is supplied. Automation interfaces have proper
and methods, whereas COM interfaces have only methods. The data types that m
used for properties and as method parameters comprise a subset of the types sup
in COM. Automation, for example, does not support user-defined constructed type
such as structs or unions.

Thus, use of and interoperating with objects exposing Automation interfaces is
considerably different from other COM objects. Although Automation is implemen
through COM, for the purposes of this document, Automation and COM are
considered to be distinct object models. Interworking between CORBA and
Automation will be described separately from interworking with the basic COM
model.

17.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite
similar. Roughly speaking, COM interfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are very roug
17-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

wo

e
OM

bject
e

ject
ed to

the
from

d B,
een
equivalent to CORBA object references. Assuming that lower-level design details
(calling conventions, data types, and so forth) are more or less semantically
isomorphic, a reasonable level of interworking is probably possible between the t
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking
Model, shown in Figure 17-2. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will b
called a B/A mapping. For example, mapping a CORBA object to be visible to a C
client is a CORBA/COM mapping.

Figure 17-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target o
in system B, on the right. We refer to the entire conceptual entity that provides th
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an ob
in system A that presents the identity and interface of the target in system B mapp
the vernacular of system A, and is described as an A View of a B target.

The View exposes an interface, called the View Interface, which is isomorphic to
target’s interface in system B. The methods of the View Interface convert requests
system A clients into requests on the target’s interface in system B. The View is a
component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A an
and may be implemented using any mechanism that permits communication betw
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

Object System A Object System B

Object reference in A

View in A of target in B
(object in system A)

Bridge

Object reference in B

Target object
implementation in B
CORBA, v2.4.2 Interworking Object Model February 2001 17-5

17

the
 the
 that
tance

M,
et.
 A

t

ters.
The client treats the View as though it is the real object in system A, and makes
request in the vernacular request form of system A. The request is translated into
vernacular of object system B, and delivered to the target object. The net effect is
a request made on an interface in A is transparently delivered to the intended ins
in B.

The Interworking Model works in either direction. For example, if system A is CO
and system B is CORBA, then the View is called the COM View of the CORBA targ
The COM View presents the target’s interface to the COM client. Similarly if system
is CORBA and system B is COM, then the View is called the CORBA View of the
COM target. The CORBA View presents the target’s interface to the CORBA clien.

Figure 17-3 shows the interworking mappings discussed in the Interworking chap
They represent the following:

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
17-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

 does
iew
e

dge
may
Figure 17-3 Interworking Mapping

Note that the division of the mapping process into these architectural components
not infer any particular design or implementation strategy. For example, a COM V
and its encapsulated CORBA reference could be implemented in COM as a singl
component or as a system of communicating components on different hosts.

Likewise, Figure 17-3 does not define any particular location of the bridge. The bri
is conceptually between the two object models. The implementation of the bridge
be located on the client or the server or on an intermediate machine.

CORBA client COM server

���������
���������

CORBA object reference�����������������������
�����������������������
�����������������������
�����������������������

CORBA View
(a real CORBA object)

��������
��������

���������������������������
���������������������������
���������������������������
���������������������������

Bridge

COM interface pointer

Target COM object

CORBA server COM client

�������

CORBA object reference

��������������������������
��������������������������
��������������������������

COM View
(a real COM object)

��������
��������

��������������������������
��������������������������
��������������������������

Bridge COM interface pointerTarget CORBA object

CORBA client Automation server

���������
���������

CORBA object reference�����������������������
�����������������������
�����������������������
�����������������������

CORBA View
(a real CORBA object)

Bridge

Automation interface pointer

Target Automation object

CORBA server Automation client

CORBA object reference Automation View
(a real Automation object)

��������
��������

��������������������������
��������������������������
��������������������������
��������������������������

Bridge
Automation interface pointerTarget CORBA object

(IDispatch pointer)

(IDispatch pointer)

a)

b)

c)

d)
CORBA, v2.4.2 Interworking Object Model February 2001 17-7

17

t

c
ows
get
t, but
ic

ated

ms.

oal.

ct

o
ed

ll

ests
ace
e
The architecture allows for a range of implementation strategies, including, but no
limited to generic and interface-specific mapping.

• Generic Mapping assumes that all interfaces can be mapped through a dynami
mechanism supplied at run-time by a single set of bridge components. This all
automatic access to new interfaces as soon as they are registered with the tar
system. This approach generally simplifies installation and change managemen
may incur the run-time performance penalties normally associated with dynam
mapping.

• Interface-Specific Mapping assumes that separate bridge components are gener
for each interface or for a limited set of related interfaces (for example, by a
compiler). This approach generally improves performance by “precompiling”
request mappings, but may create installation and change management proble

17.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite many similarities, there are some
significant differences between CORBA and COM that complicate achieving this g
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distin
forms of interfaces, Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped t
COM single inheritance/aggregation. COM interface aggregation must be mapp
to the CORBA multiple inheritance model.

• Identity Mapping. The explicit notion of an instance identity in CORBA must be
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility. It may be desirable for the object model mappings to be
invertible, but the Interworking specification does not guarantee invertibility in a
situations.

17.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the requ
that an object supports. OLE provides two distinct and somewhat disjointed interf
models: COM and Automation. Each has its own respective request form, interfac
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
17-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

the

s.

BA
ly
es.

re
e
ibly

.

ted
e).

e

ll

er
ould
,

 for
We must also consider the bidirectional impact of a third, hybrid form of interface,
Dual Interface, which supports both an Automation and a COM-like interface. The
succeeding sections summarize the main issues facing each of these mappings.

17.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interface

This mapping is perhaps the most natural way to represent the interfaces of COR
objects in the COM environment. In practice, however, many COM clients can on
bind to Automation Interfaces and cannot bind to the more general COM Interfac
Therefore, providing only a mapping of CORBA to the COM Interfaces would not
satisfy many COM/OLE clients.

17.4.2 CORBA/Automation

There is a limited fit between Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, the
are primitives in both systems (for example, the OLE CURRENCY type and th
CORBA unsigned integral types) that must be mapped as special cases (poss
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation constructs
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially construc
interfaces (for example, viewing a struct as an OLE object with its own interfac

• CORBA Interface Repositories can be mapped dynamically to Automation Typ
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to Automation interfaces. A
methods of the multiply-inherited interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering ov
the methods if [dual] interfaces are to be supported. An alternative approach w
be to map multiple inheritance to multiple Automation interfaces. This mapping
however, would require that an interface navigation mechanism be exposed to
Automation controllers. Currently Automation does not provide a canonical way
clients (such as Visual Basic) to navigate between multiple interfaces.
CORBA, v2.4.2 Interface Mapping February 2001 17-9

17

ent
urred
-to-

ng,
tly

.

es:

ch

stom-

ting.
stom

BA

ted
• CORBA attributes may be mapped to get and put properties in Automation
interfaces.

This form of interface mapping will place some restrictions on the types of argum
passing that can be mapped, and/or the cost (in terms of run-time translations) inc
in those mappings. Nevertheless, it is likely to be the most popular form of CORBA
COM interworking, since it will provide dynamic access to CORBA objects from
Visual Basic and other Automation client development environments.

17.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long lo
and wide char) and constructed types (for example, wide string) are not curren
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

• Some unions, pointer types and the SAFEARRAY type require special handling

The COM/CORBA mapping is somewhat further complicated, by the following issu

• Though it is less common, COM objects may be built directly in C and C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interface can be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to su
a form before any formal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformation, and so forth) must be cu
built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not
supported on certain Windows platforms; for example, MIDL is not available on
Win16 platforms.

17.4.4 Automation/CORBA

The Automation interface model and type system are designed for dynamic scrip
The type system is a reduced set of the COM type system designed such that cu
marshaling and demarshaling code is not necessary for invoking operations on
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to COR
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain
Automation types (for example, CURRENCY) do not have corresponding
predefined CORBA types, but can easily be mapped onto isomorphic construc
types.

• Automation properties map to CORBA attributes.
17-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

ct

ble

d
es

t is,
 that
 an

d”

 OLE

face
ace
nce
y
t’s

ear
tion

gle
 the
’s
ps to
 the
17.5 Interface Composition Mappings

CORBA provides a multiple inheritance model for aggregating and extending obje
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possi
by deriving new interfaces from existing ones. Any given CORBA object reference
refers to a CORBA object that exposes, at any point in time, a single most-derive
interface in which all ancestral interfaces are joined. The CORBA object model do
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (tha
the QueryInterface method). In addition, COM anticipates that the set of interfaces
an object supports will vary at run-time. The only way to know if an object supports
interface at a particular instant is to ask the object.

Automation objects typically provide all Automation operations in a single “flattene
IDispatch interface. While an analogous mechanism to QueryInterface could be
supported in Automation as a standard method, it is not the current use model for
Automation services.2

17.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicates two common uses of inter
inheritance, extending and mixing in. Inheritance may be used to extend an interf
linearly, creating a specialization or new version of the inherited interface. Inherita
(particularly multiple inheritance) is also commonly used to mix in a new capabilit
(such as the ability to be stored or displayed) that may be orthogonal to the objec
basic application function.

Ideally, extension maps well into a single inheritance model, producing a single lin
connection of interface elements. This usage of CORBA inheritance for specializa
maps directly to COM; a unique CORBA interface inheritance path maps to a sin
COM interface vtable that includes all of the elements of the CORBA interfaces in
inheritance path.3 The use of inheritance to mix in an interface maps well into COM
aggregation mechanism; each mixed-in inherited interface (or interface graph) ma
a separate COM interface, which can be acquired by invoking QueryInterface with
interface’s specific UUID.

1. This is established in the CORBA specification, Chapter 1, Interfaces Section, and in the
Object Management Architecture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-
class. The “Dim A as new Z” statement in Visual Basic 4.0 can be used to invoke a Query-
Interface for the Z interface. Many Automation controllers, however, do not use the dual
interface mechanism.
CORBA, v2.4.2 Interface Composition Mappings February 2001 17-11

17

d in
ake
ns

ings
 to

 the
to

A

by

it.

rface

OM
se are

reter
 apply

Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determine whether a particular inherited interface is being extended or being mixe
(or used with some other possible design intent). Therefore it is not possible to m
ideal mappings mechanically from CORBA multiply-inherited interfaces to collectio
of COM interfaces without some additional annotation that describes the intended
design. Since extending OMG IDL (and the CORBA object model) to support
distinctions between different uses of inheritance is undesirable, alternative mapp
require arbitrary decisions about which nodes in a CORBA inheritance graph map
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The
mapping described in Section 17.5.2, “Detailed Mapping Rules,” on page 17-13 for
CORBA->MIDL Transformation, describes a compromise that balances the need
preserve linear interface extensions with the need to keep the number of resulting
COM interfaces manageably small. It satisfies the primary requirement for
interworking in that it describes a uniform, deterministic mapping from any CORB
inheritance graph to a composite set of COM interfaces.

17.5.1.1 COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA
providing a set of CORBA interfaces that can be used to manage a collection of
multiple CORBA objects with different disjoint interfaces as a single composite un
The mechanism described in OMG IDL in Section 17.4, “Interface Mapping,” on
page 17-8, is sufficiently isomorphic to allow composite COM interfaces to be
uniformly mapped into composite OMG IDL interfaces with no loss of capability.

17.5.1.2 CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on
ordering in a virtual function table. The target object implements the IDispatch
interface as a mini interpreter and exposes what amounts to a flattened single inte
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are C
interfaces whose operations are restricted to the Automation data types. Since the
COM interfaces, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interp
is being bypassed, the same ordering problems discussed in the previous section
for OLE Automation dual interfaces.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic
mapping from the OMG IDL interface to a COM vtable. The current ordering is to sort the
operations based on the byte-by-byte comparison of the ISO-Latin-1 encoding values of
their respective names (e.g., operation ‘A’ comes before operation ‘B’).
17-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

 IDL-

 to

 to

or

n the
te-by-
e.g.,

sed
ly,
e>

face

 to

 to
the
hen
ames

tin-1
face

tes.

on the
17.5.1.3 Automation/CORBA

Automation interfaces are simple collections of operations, with no inheritance or
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG
described interface.

17.5.2 Detailed Mapping Rules

17.5.2.1 Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping f
attributes.

• The resulting mapping of operations within an interface are ordered based upo
operation name. The current ordering is to sort the operations based on the by
byte comparison of the ISO-Latin-1 encoding values of their respective names (
operation ‘A’ comes before operation ‘B.’

• Similarly, the resulting mapping of attributes within an interface are ordered ba
upon the ISO-Latin-1 encoding of attribute name. If the attribute is not read-on
the get <attribute name> method immediately precedes the set <attribute nam
method.

17.5.2.2 Ordering Rules for the CORBA->Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL inter
deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an ODL interface, which derives using single inheritance from the mapping for
first parent interface. The first parent interface is defined as the first interface w
the immediate parent interfaces are sorted based upon interface idname. The n
are put in ascending order based upon the byte-by-byte comparison of ISO-La
encoding values of the interface names (e.g., interface ‘AZ’ comes before inter
‘BA’).

• Within an interface, the mapping for operations precede the mapping for attribu

• An OMG IDL interface’s operations are ordered in the resulting mapping based
upon the operation name. The operations are put in ascending order based up
ISO-Latin-1 encoding values of the operation names.
CORBA, v2.4.2 Interface Composition Mappings February 2001 17-13

17

hod

s or
e

 that
s for

e
• Similarly, the mapping of an OMG IDL interface’s attributes are ordered in the
resulting mapping based upon the byte-by-byte comparison of the ISO-Latin-1
encoding of the attribute name. For non-read-only attributes, the [propget] met
immediately precedes the [propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the new
interface is mapped as deriving from the mapping of its first parent.

• Then for each subsequent parent interface, the new interface will repeat the
mapping of all operations and attributes of that parent excluding any operation
attributes that have already been mapped (i.e., these operations/attributes ar
grouped per interface and each group is internally ordered using the rules
described above.

• After all the parent interfaces are mapped, the new operations and attributes
were introduced in the new interface are then mapped using the ordering rule
operations and attributes.

17.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 17-4.

Following the rules in Section 17.5.2, “Detailed Mapping Rules,” on page 17-13 th
interface description would map to the Microsoft MIDL definition shown in
Figure 17-5 and would map to the ODL definition shown in Figure 17-6.

interface A { // OMG IDL
void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 17-4 OMG IDL Description with Multiple Inheritance

A

B C

D
E

F

17-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17
[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{// Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 17-5 MIDL Description

A

B C

D E FA

IU IU IU IU IU
CORBA, v2.4.2 Interface Composition Mappings February 2001 17-15

17

rate
an
me
ar
s a
17.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interope
across client/server boundaries (for example, a COM View created by product A c
invoke a CORBA server created with product B, given that they both share the sa
IDL interface). To interoperate in this way, all COM Views mapped from a particul
CORBA interface must share the same COM Interface IDs. This section describe
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29),
oleautomation, dual]
interface DA : IDispatch { // Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571),
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 17-6 Example: ODL Mapping for Multiple Inheritance

IDispatch

A

B C

D

F

IDispatch

E

17-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

28-
 is

re
e

d in

 a

his
).

tion
tical

Bs.
17.5.4.1 Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 1
bit hash identifier. The least significant byte is byte 0 and the most significant byte
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)
10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01 generated COM IID
10 generated Automation IID
11 generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They a
used only to avoid collisions in the name spaces when generating IIDs for multipl
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (store
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of
CORBA interface except when the repository ID is a DCE UUID and the IID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (t
is done to allow CORBA server developers to implement existing COM interfaces

This mechanism requires no change to IDL. However, there is an implicit assump
that repository IDs should be unique across ORBs for different interfaces and iden
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across OR

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security,
Inc., April 1992.
CORBA, v2.4.2 Interface Composition Mappings February 2001 17-17

17

r,
were

n
This

ately

ject)

t.

17.5.4.2 Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor-specific. Howeve
the mapping should be the same as if the CORBA mapping of the COM interface
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DCE:f4f2f07c-3a95-11cf-affb-08000970dac7”
...
};

17.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 17-2 on page 17-5 and Figure 17-3 o
page 17-7 maps a View in one object system to a reference in the other system.
relationship raises questions:

• How do the concepts of object identity and object life cycle in different object
models correspond, and to the extent that they differ, how can they be appropri
mapped?

• How is a View in one system bound to an object reference (and its referent ob
in the other system?

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in
the hash value and its popularity for creating unique keys for input text. The algorithm is
designed such that on average, half of the output bits change for each bit change in the inpu
The original algorithm provides a key with uniform distribution in 128 bits. The modifica-
tion used in this specification selects 118 bits. With a uniform distribution, the probability of

drawing k distinct keys (using k distinct inputs) is n!/((n-k)!* nk), where n is the number of

distinct key values (i.e., n=2118). If a million (i.e., k=106) distinct interface repository IDs
are passed through the algorithm, the probability of a collision in any of the keys is less than

1 in 1023.
17-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

t of
ting
g
ther.

licitly
bject
bject.
s a
 fail
tuitive

at

to

bject’s
 on a

r is

ithin

ther
UE

arly
tive
ce
ose
17.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impac
the differences between the two object models affects the transparency of presen
CORBA objects as COM objects or COM objects as CORBA objects. The followin
sections discuss the issues involved in mapping identities from one system to ano
They also describe the architectural mechanics of identity mapping and binding.

17.6.1.1 CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that exp
embodies an abstraction characterized by the behavior of relevant requests. An o
reference is defined as a name that reliably and consistently denotes a particular o
A useful description of a particular object in CORBA terms is an entity that exhibit
consistency of interface, behavior, and state over its lifetime. This description may
in many boundary cases, but seems to be a reasonable statement of a common in
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted o
state or location; if an object is passively stored when a client makes a request
reference to the object, the ORB is responsible for transparently locating and
activating the object.

• There is no notion of “connectedness” between object reference and object, no
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere w
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine whe
both references identify the same object instance), although only a result of TR
for the test is guaranteed to be reliable.

17.6.1.2 COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less cle
defined than under CORBA. In practice, this notion typically corresponds to an ac
instance of an implementation, but not a particular persistent state. A COM instan
can be most precisely defined as “the entity whose interface (or rather, one of wh
interfaces) is returned by an invocation of IClassFactory::CreateInstance .”
CORBA, v2.4.2 Object Identity, Binding, and Life Cycle February 2001 17-19

17

ent

r to

s is

 and
tent,
of a
s
OM

tion,

els.
d by
 this
nts in

o an
ptible

old
 client

 to
 the
ed

d its
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (e.g., a docum
or drawing with no contents), or they are initialized to arbitrary states;
IClassFactory::CreateInstance has no parameters for describing initial
state.

• The only inherently available identity or reference for a COM instance is its
Unknown pointer. COM specifies an invariant that two interface references refe
the same object if QueryInterface (IID IUnknown) returns the same pointer when
applied to both interfaces.6 Individual COM class types may establish a strong
notion of persistent identity (for example, through the use of Monikers), but thi
not the responsibility of the COM model itself.

• The identity and management of state are generally independent of the identity
life cycle of COM class instances. Files that contain document state are persis
and are identified within the file system’s name space. A single COM instance
document type may load, manipulate, and store several different document file
during its lifetime; a single document file may be loaded and used by multiple C
class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of a particular class’s implementa
or the user’s imagination.

17.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in
defining binding and life cycle management mechanisms in the Interworking mod
Binding refers to the way in which an existing object in one system can be locate
clients in the other system and associated with an appropriate View. Life cycle, in
context, refers to the way objects in one system are created and destroyed by clie
the other system.

17.6.2.1 Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the
lifetimes of its clients. That is, in COM, when there are no more clients attached t
object, it is destroyed. COM objects are reference-counted and as such are susce
to certain problems: most notably, circular reference counts (where two objects h
references to each other and thus neither can die) and dangling servers (where a
has crashed without releasing its references).

Detecting circular reference counts is not handled by COM and is currently left up
the application code. To help detect dangling servers, COM has added support in
infrastructure for client machines to ping server machines. If the ping is not receiv
by the server within a negotiated time period, the client will be assumed dead an
references released.

6. This invariant appears to be true in DCOM as well as COM. A combination of IPID and
OXID is used to create a unique identity for remote IUnknown pointers.
17-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

e
BA
the
es
s

(but
ging
on to
ld

ing

n

d.
ting

ive

n.

nd
n be

that
 in
The CORBA Life Cycle model decouples the lifetime of the clients from the lifetim
of the active (in-memory) representation of the persistent server object. The COR
model allows clients to maintain references to CORBA server objects even when
clients are no longer running. Server objects can deactivate and remove themselv
from memory whenever they become idle. This behavior allows resources (such a
memory and networking addresses) to be released from active use for long-lived
generally idle) services. The advantage of this model is that it does not require pin
or maintaining reference counts. The disadvantage is that it requires the applicati
explicitly decide when an object has been made obsolete and its references shou
become invalid. Activation and deactivation in COM can, to some degree, be
accomplished using Monikers (persistent interface references). However, unlike
CORBA, the client must be programmed to explicitly use this alternate form of bind
to allow the server the opportunity to pacify its state.

In both the COM and CORBA lifecycle models, it is possible for a client to have a
invalid reference to a server object. This can occur in COM because a server has
crashed, or in CORBA because the target of the reference was explicitly destroye
Thus, in both models, applications should be written to check for error codes indica
invalid references.

17.6.2.2 Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing act
objects. A single instance of a COM class can be registered in the active object
registry. COM or Automation clients can obtain an IUnknown pointer for an active
object with the COM GetActiveObject function or the Automation GetObject functio
The most natural way for COM or Automation clients to access existing CORBA
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object a
place them in the active object registry, so that the View (and thus, the object) ca
accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking
solutions will not be able to map objects efficiently through the registry. This
specification defines an interface, ICORBAFactory, which allows interworking
solutions to provide alternate location and registration mechanisms7 through which
CORBA objects can be made available to COM and Automation clients in a way
is similar to OLE’s native mechanism (GetObject). This interface is described fully
Section 17.7.3, “ICORBAFactory Interface,” on page 17-24.

7. For example, using ICORBAFactory, an interworking solution can provide an active object
registry that is distributed, federated, and fault-tolerant.
CORBA, v2.4.2 Object Identity, Binding, and Life Cycle February 2001 17-21

17

ss

a
e

ory
g
 the
s not

ory

cle
s.
are
er,

led

ects

ch as
 state
ovide
es.
M

a
jects,

ker

BA

 in
17.6.2.3 Binding COM Objects to CORBA Views

As described in Section 17.6.1, “Object Identity Issues,” on page 17-19, COM cla
instances are inherently transient. Clients typically manage COM and Automation
objects by creating new class instances and subsequently associating them with
desired stored state. Thus, COM objects are made available through factories. Th
SimpleFactory OMG IDL interface (described in Section 17.7.1, “SimpleFactory
Interface,” on page 17-23) is designed to map onto COM class factories, allowing
CORBA clients to create (and bind to) COM objects. A single CORBA SimpleFact
maps to a single COM class factory. The manner in which a particular interworkin
solution maps SimpleFactories to COM class factories is not specified. Moreover,
manner in which mapped SimpleFactory objects are presented to CORBA clients i
specified.

17.6.2.4 COM View of CORBA Life Cycle

The SimpleFactory interface (Section 17.7.1, “SimpleFactory Interface,” on
page 17-23) provides a create operation without parameters. CORBA SimpleFact
objects can be wrapped with COM IClassFactory interfaces and registered in the
Windows registry. The process of building, defining, and registering the factory is
implementation-specific.

To allow COM and Automation developers to benefit from the robust CORBA lifecy
model, the following rules apply to COM and Automation Views of CORBA object
When a COM or Automation View of a CORBA object is dereferenced and there
no longer any clients for the View, the View may delete itself. It should not, howev
delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the interface is supported) on the
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is control
by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM obj
(equivalent to CORBA externalization). However, unlike CORBA, COM currently
provides no general-purpose mechanism for clients to deal with server objects, su
databases, which are inherently persistent (i.e., they store their own state -- their
is not stored through an outside interface such as IPersistStorage). COM does pr
monikers, which are conceptually equivalent to CORBA persistent object referenc
However, monikers are currently only used for OLE graphical linking. To enable CO
developers to use CORBA objects to their fullest extent, the specification defines
mechanism that allows monikers to be used as persistent references to CORBA ob
and a new COM interface, IMonikerProvider, that allows clients to obtain an IMoni
interface pointer from COM and Automation Views. The resulting moniker
encapsulates, stores, and loads the externalized string representation of the COR
reference managed by the View from which the moniker was obtained. The
IMonkierProvider interface and details of object reference monikers are described
Section 17.7.2, “IMonikerProvider Interface and Moniker Use,” on page 17-23.
17-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

s.

the
or

in

 so

the

OM,
y all

o
e
17.6.2.5 CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interface
These SimpleFactory Views of COM IClassFactories can then be installed in the
naming service or used via factory finders. The mechanisms used to register or
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObject interface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the View unless
COM or Automation objects supports the IMonikerProvider interface. If the COM
Automation object supports the IMonikerProvider interface, then the CORBA View
can safely be deactivated and reactivated provided it stores the object’s moniker
persistent storage between activations. Interworking solutions are not required to
support deactivation and activation of CORBA View objects, but are enabled to do
by the IMonikerProvider interface.

17.7 Interworking Interfaces

17.7.1 SimpleFactory Interface

Although a general instance factory interface can be defined in either COM or
CORBA, it is the common practice in COM to have factories, which support only
IClassFactory of ICoassfactory2 interfaces. These interfaces only support
parameterless object constructors (i.e., the CreateInstance() operation takes no
parameters). To allow CORBA objects to be created under this factory model in C
the SimpleFactory interface is defined. The SimpleFactory interface is supported b
CORBA Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with n
initial state. CORBA objects that can be created with no initial state should provid
factories that implement the SimpleFactory interface.

17.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider
interface. COM clients may use QueryInterface for this interface.
CORBA, v2.4.2 Interworking Interfaces February 2001 17-23

17

hout
ust

ject
d

r 0

t

the

BA

nd

uent
[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use wit
needing to keep the View in memory. The moniker returned by IMonikerProvider m
support at least the IMoniker and IPersistStorage interfaces. To allow CORBA ob
reference monikers to be created with one COM/CORBA interworking solution an
later restored using another, IPersist::GetClassID must return the following
CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be fou
(null) bytes followed by the length in bytes of the stringified IOR (stored as a little
endian 4-byte unsigned integer value) followed by the stringified IOR itself (withou
null terminator).

17.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose
ICORBAFactory interface. This interface is designed to support general, simple
mechanisms for creating new CORBA object instances and binding to existing COR
object references by name.

interface ICORBAFactory: IUnknown
{

HRESULT CreateObject([in] LPWSTR factoryName,
[out, retval] IUknown ** val);

HRESULT GetObject([in] LPWSTR objectName,
[out, retval] IUknown ** val);

}

The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBAFactory must be registered in the Windows
System Registry on the client machine using the following class id, class id tag, a
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory,
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53,
0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object (i.e., subseq
calls to create the object may return the same interface pointer).
17-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

A

ion

lling

model

he

e,
hod
a null
must

nd
In
ed by

ion
ame

e-
ory

the
We define a similar interface, DICORBAFactory, that supports creating new CORB
object instances and binding to existing CORBA objects for Automation clients.
DICORBAFactory is an Automation Dual Interface. (For an explanation of Automat
Dual interfaces, see the Mapping: Automation and CORBA chapter.)

interface DICORBAFactory: IDispatch
{

HRESULT CreateObject([in] BSTR factoryName,
[out,retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for the DICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by ca
on the client machine using the Program Id “CORBA.Factory.”

The CreateObject and GetObject methods are intended to approximate the usage
and behavior of the Visual Basic CreateObject and GetObject functions.

The first method, CreateObject, causes the following actions:

• A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (and likely) implementation is that t
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryNam
identifies the type of CORBA object to be created. Since the CreateObject met
does not accept any parameters, the CORBA object must either be created by
factory (a factory whose creation method requires no parameters), or the View
supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created, a
thus implicitly identifies (directly or indirectly) the interface supported by the View.
general, the factoryName string takes the form of a sequence of identifiers separat
period characters (“.”), such as “personnel.record.person.” The intent of this name
form is to provide a mechanism that is familiar and natural for COM and Automat
programmers by duplicating the form of OLE ProgIDs. The specific semantics of n
resolution are determined by the implementation of the interworking solution. The
following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameServic
based factory finder. The CORBA object would be created by invoking the fact
create method. Internally, the interworking solution would map the factoryName
onto the appropriate COM class ID for the View, create the View, and bind it to
CORBA object.
CORBA, v2.4.2 Interworking Interfaces February 2001 17-25

17

 the
he
A

BA
s is

(.), in
 for
ming
put
e

ng

he
to an

 to

els
n this
ws
void
e for

 so,

ject
ject
• The creation could be delegated directly to a COM class factory by interpreting
factoryName as a COM ProgID. The ProgID would map to a class factory for t
COM View, and the View’s implementation would invoke the appropriate CORB
factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a COR
object reference. The specific mechanism for associating names with reference
not specified. In order to appear familiar to COM and Automation users, this
parameter shall take the form of a sequence of identifiers separated by periods
the same manner as the parameter to CreateObject. An implementation could,
example, choose to map the objectName parameter to a name in the OMG Na
Service implementation. Alternatively, an interworking solution could choose to
precreated COM Views bound to specific CORBA object references in the activ
object registry, and simply delegate GetObject calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and
returned to the caller.

Another name form that is specialized to CORBA is a single name with a precedi
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in t
ORB Initialization interface. Specifically, the name shall be used as the parameter
invocation of the CORBA::ORB::ResolveInitialReferences method on the
ORB pseudo-object associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned
the caller.

17.7.4 IForeignObject Interface

As object references are passed back and forth between two different object mod
through a bridge, and the references are mapped through Views (as is the case i
specification), the potential exists for the creation of indefinitely long chains of Vie
that delegate to other Views, which in turn delegate to other Views, and so on. To a
this, the Views of at least one object system must be able to expose the referenc
the “foreign” object managed by the View. This exposure allows other Views to
determine whether an incoming object reference parameter is itself a View and, if
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridge can avoid creating View chains.

This problem potentially exists for any View representing an object in a foreign ob
system. The IForeignObject interface is specified to provide bridges access to ob
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

long *pValue;
} objSystemIDs;
17-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

cific
MG
ss.

ing
f the
n the
rray
rted

of

rent
 of

ny

to

es,
n

interface IForeignObject : IUnknown {
HRESULT GetForeignReference([in[objSystemIDs systemIDs,

[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetUniqueId([out] LPSTR *id

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to spe
object systems. These values must be positive, unique, and publicly known. The O
will manage the allocation of identifier values in this space to guarantee uniquene
The value for the CORBA object system is the long value 1. The systemIDs array
contains a list of IDs for object systems for which the caller is interested in obtain
a reference. The order of IDs in the list indicates the caller’s order of preference. I
View can produce a reference for at least one of the specified object systems, the
second parameter (systemID) is the ID of the first object system in the incoming a
that it can satisfy. The objRef out parameter will contain the object reference conve
to a string form. Each object system is responsible for providing a mechanism to
convert its references to strings, and back into references. For the CORBA object
system, the string contains the IOR string form returned by
CORBA::ORB::object_to_string , as defined in the CORBA specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed Automation parameter type.

• The object reference being returned from GetForeignObject may be from a diffe
ORB than the caller. IORs in string form are the only externalized standard form
object reference supported by CORBA.

The purpose of the GetRepositoryID method is to support the ability of DICORBAA
(see Section 19.8.4, “Mapping for anys,” on page 19-24) when it wraps an object
reference, to produce a type code for the object when asked to do so via
DICORBAAny’s readonly typeCode property.

It is not possible to provide a similar inverse interface exposing COM references
CORBA clients through CORBA Views because of limitations imposed by COM’s
View of object identity and use of interface pointer as references.

17.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views,
allowing COM clients to have access to operations on the CORBA object referenc
defined on the CORBA::Object pseudo-interface. The ICORBAObject interface ca
be obtained by COM clients through QueryInterface. ICORBAObject is defined as
follows:
CORBA, v2.4.2 Interworking Interfaces February 2001 17-27

17

he
interface ICORBAObject: IUnknown
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID,

[out] boolean *val);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,

[out] boolean * val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}

Automation controllers gain access to operations on the CORBA object reference
interface through the Dual Interface DIORBObject::GetCORBAObject method
described next.

interface DICORBAObject: IDispatch
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval]

VARIANT BOOL *val);
HRESULT IsNil([out, retval] VARIANT BOOL *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

VARIANT BOOL * val);
HRESULT NonExistent([out,retval] VARIANT BOOL *val);
HRESULT Hash([out, retval] long *val);

};

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

The UUID for DCORBAObject is:

{7271ff40-21f6-11d1-9d47-00a024a73e4f}

17.7.6 ICORBAObject2

ICORBAObject 2 is the direct mapping following the COM mapping rules for the
CORBA::Object interface.

17.7.7 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to t
operations on the ORB pseudo-object.
17-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

:

ct
d to
The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj,
[out] LPSTR *val);

HRESULT StringToObject[in] LPTSTR ref,
[out] IUnknown *val);

HRESULT GetInitialReferences(
[out], CORBA_ORBObjectIdList *val);

HRESULT ResolveInitialReference([in] LPTSTR name,
[out] IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling
ICORBAFactory::GetObject(”CORBA.ORB.2”).

The methods of DIORBObject delegate their function to the similarly-named
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj,

[out,retval] BSTR *val);
HRESULT StringToObject([in] BSTR ref,[out,retval]
IDispatch * val);
HRESULT GetInitialReferences([out, retval] VARIANT *val);
HRESULT ResolveInitialReference ([in] BSTR name,

[out retval] IDispatch * val);
HRESULT GetCORBAObject ([in] IDispatch* obj,

[out, retval] DICORBAObject ** val);
}

A reference to this interface is obtained by calling
DICORBAFactory::GetObject(“CORBA.ORB.2”).

This interface is very similar to IORBObject, except for the additional method
GetCORBAObject. This method returns an IDispatch pointer to the DICORBAObje
interface associated with the parameter Object. This operation is primarily provide
allow Automation controllers (i.e., Automation clients) that cannot invoke
QueryInterface on the View object to obtain the ICORBAObject interface.
CORBA, v2.4.2 Interworking Interfaces February 2001 17-29

17

fault

t.

not
The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

The UUID for DORBObject is:

{adff0da0-21f6-11d1-9d47-00a024a73e4f}

17.7.8 Naming Conventions for View Components

17.7.8.1 Naming the COM View Interface

The default name for the COM View’s Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the de
name should be:

I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_MyInterface

17.7.8.2 Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client
programs written in Automation controller environments such as Visual Basic are
expected to explicitly use the UUID value.

17.7.8.3 Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:
17-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

fault

t.

fault

t.

gram

t. In
DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the de
name should be:

D<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

17.7.8.4 Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

DI<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the de
name should be:

DI<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the righ
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name will be:

DIOuterModule_MyModule_MyInterface

17.7.8.5 Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Pro
Id for that class will be:

<module name> “.” <module name> “.” ...<module name> “.”
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default Program Id will be:
CORBA, v2.4.2 Interworking Interfaces February 2001 17-31

17

 the

t. In

 its

P)
d

iant
ject

an
“OuterModule.MyModule.MyInterface”

17.7.8.6 Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then
default tag for the COM Class Id (CLSID) for that class should be:

CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

17.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in
currently released form) does not include any mechanism for distribution. CORBA
specifications define a distribution architecture, including a standard protocol (IIO
for request messaging. Consequently, the CORBA architecture, specifications, an
protocols shall be used for distribution.

17.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking
mechanism delivered on a COM client node to interoperate correctly with any
CORBA-compliant components that use the same interface specifications. Compl
interworking solutions must appear, for all intents and purposes, to be CORBA ob
implementations and/or clients to other CORBA clients, objects, and services on
attached network.
17-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

g

e on
 be

t

d

jects

 any

t the
Figure 17-7 Bridge Locality

Figure 17-7 illustrates the required locality for interworking components. All of the
transformations between CORBA interfaces and COM interfaces described in this
specification will take place on the node executing the COM environment. Mappin
agents (COM views, CORBA views, and bridging elements) will reside and execut
the COM client node. This requirement allows compliant interworking solutions to
localized to a COM client node, and to interoperate with any CORBA-compliant
networking ORB that shares the same view of interfaces with the interworking
solution.

17.8.2 Distribution Architecture

External communications between COM client machines, and between COM clien
machines and machines executing CORBA environments and services, will follow
specifications contained in CORBA. Figure 17-7 on page 17-33 illustrates the require
distribution architecture. The following statements articulate the responsibilities of
compliant solutions.

• All externalized CORBA object references will follow CORBA specifications for
Interoperable Object References (IORs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

• The mechanisms for negotiating protocols and binding references to remote ob
will follow the architectural model described in CORBA.

• A product component acting as a CORBA client may bind to an object by using
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

• Any components that implement CORBA interfaces for remote use must suppor
IIOP.

COM Node

COM Object

COM View

CORBA Nodes

Any compliant
interworking
bridge

CORBA
object

CORBA
client
object
reference

ORB X

ORB Y

IIOP
communications

CORBA
View
CORBA, v2.4.2 Distribution February 2001 17-33

17

nd

l for
l

n

 that

 are

rm
e

17.9 Interworking Targets

This specification is targeted specifically at interworking between the following
systems and versions:

• CORBA as described in CORBA: Common Object Request Broker Architecture a
Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries.

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage mode
Automation Views follows the Automation controller behavior established by Visua
Basic 4.0.

17.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general informatio
about compliance to CORBA specifications, refer to the Preface, Section 0.5,
Definition of CORBA Compliance.

17.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide
range of products. This specification is not intended to cover all possible products
facilitate or use COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

17.10.1.1 Interworking solutions

Products that facilitate the development of software that will bidirectionally transfo
COM and/or Automation invocations into isomorphic CORBA invocations (and vic
versa) in a generic way are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into
Automation interfaces and which also parses Automation ODL and automatically
generates code for libraries that map the OLE Automation interfaces into CORBA
17-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

on

rm
e

that
e

pped

a

s
s
ess
tion

pped
interfaces. Another example would be a generic bridging component that, based
run-time interface descriptions, interpretively maps both COM and CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specification, and if the mapped
interfaces support all of the features and interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA
Interworking Solution.

17.10.1.2 Mapping solutions

Products that facilitate the development of software that will unidirectionally transfo
COM and/or Automation invocations into isomorphic CORBA invocations (and vic
versa) in a generic way are described as Mapping Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into
Automation interfaces. Another example would be a generic bridging component
interpretively maps Automation invocations onto CORBA objects based on run-tim
interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the resulting
mapped interfaces are transformed as described in this specification, and if the ma
interfaces support all of the features and interface components required in this
specification.

A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution,
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

17.10.1.3 Mapped components

Applications, components or libraries that expose a specific, fixed set of interface
mapped from CORBA to COM or Automation (and/or vice versa) are described a
Mapped Components. An example of this kind of product would be a set of busin
objects defined and implemented in CORBA that also expose isomorphic Automa
interfaces.

This type of product will be considered a compliant Mapped Component if the
interfaces it exposes are mapped as described in this specification, and if the ma
interfaces support all of the features and interface components required in this
specification.
CORBA, v2.4.2 Compliance to COM/CORBA Interworking February 200117-35

17

t fit

ilar

es

uct
ts

the

 to

n it

ject

 any

do
,”

ce
ow

nal
17.10.2 Compliance Points

The intent of this specification is to allow the construction of implementations tha
in the design space described in Section 17.2, “Interworking Object Model,” on
page 17-3, and yet guarantee interface uniformity among implementations with sim
or overlapping design centers. This goal is achieved by the following compliance
statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM
and/or Automation interfaces, the mapping of COM and/or Automation interfac
onto isomorphic CORBA interfaces, or when a product offers the ability to
automatically generate components that perform such mappings, then the prod
must use the interface mappings defined in this specification. Note that produc
may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or Automation objects. These interfaces are not in
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject,
defined in Section 17.7.5, “ICORBAObject Interface,” on page 17-27 and
Section 17.7.7, “IORBObject Interface,” on page 17-28, respectively.

• Interworking solutions that expose Automation Views of CORBA objects are
required to expose the CORBA-specific Automation Dual interfaces
DICORBAObject and DIORBObject, defined in Section 17.7.5, “ICORBAObject
Interface,” on page 17-27 and Section 17.7.7, “IORBObject Interface,” on
page 17-28, respectively.

• OMG IDL interfaces exposed as COM or Automation Views are not required to
provide type library and registration information in the COM client environment
where the interface is to be used. If such information is provided; however, the
must be provided in the prescribed manner.

• Each COM and Automation View must map onto one and only one CORBA ob
reference, and must also expose the IForeignObject interface, described in
Section 17.7.4, “IForeignObject Interface,” on page 17-26. This constraint
guarantees the ability to obtain an unambiguous CORBA object reference from
COM or Automation View via the IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall
so as specified in Section 17.7.2, “IMonikerProvider Interface and Moniker Use
on page 17-23.

• All COM interfaces specified in this specification have associated COM Interfa
IDs. Compliant interworking solutions must use the IIDs specified herein, to all
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the
CORBA Internet Inter-ORB Protocol (IIOP), and use the interoperability
architecture described in CORBA in the manner prescribed in Section 17.8,
“Distribution,” on page 17-32. Interworking solutions are free to use any additio
proprietary or public protocols desired.
17-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

17

 to
ry

ts

ife
• Interworking solutions that expose COM Views of CORBA objects are required
provide the ICORBAFactory object as defined in Section 17.7.3, “ICORBAFacto
Interface,” on page 17-24.

• Interworking solutions that expose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in Section 17.7.3,
“ICORBAFactory Interface,” on page 17-24.

• Interworking solutions that expose CORBA Views of COM or Automation objec
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, as described under Section 17.6.2, “Binding and L
Cycle,” on page 17-20.
CORBA, v2.4.2 Compliance to COM/CORBA Interworking February 200117-37

17
17-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

 Mapping: COM and CORBA 18
M
 tools
 to be

(a
-

om-

nce
This chapter describes the data type and interface mapping between COM and
CORBA. The mappings are described in the context of both Win16 and Win32 CO
due to the differences between the versions of COM and between the automated
available to COM developers under these environments. The mapping is designed
fully implemented by automated interworking tools.

Contents

This chapter contains the following sections.

18.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL
derivative of DCE IDL). COM interfaces using “custom marshaling” must be hand
coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and cust
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL si
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

Section Title Page

“Data Type Mapping” 18-1

“CORBA to COM Data Type Mapping” 18-2

“COM to CORBA Data Type Mapping” 18-33
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 18-1

18

e for
d to

pes.
.

L

Note that although the MIDL and ODL data type models are used as the referenc
the data model mapping, there is no requirement that either MIDL or ODL be use
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data ty
However, in cases without exact mappings, run-time conversion errors may occur
Conversion errors will be discussed in Mapping for Exception Types under
Section 18.2.10, “Interface Mapping,” on page 18-11.

18.2 CORBA to COM Data Type Mapping

18.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 18-1.

Note – midl and mktyplib disagree about the size of boolean when used in an OD
specification. To avoid this ambiguity, we make the mapping explicit and use the
VARIANT BOOL type instead of the built-in boolean type.

18.2.2 Mapping for Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost
exactly the same. The following are the OMG IDL definitions for constants:

Table 18-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1
character set

wchar WCHAR WCHAR wide character

boolean boolean boolean 8-bit quantity that is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not
undergo any conversion during transfer between
systems.
18-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

and
 that

of the

BA

ing
union.
// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

that map to the following Microsoft IDL and ODL definitions for constants:

// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

18.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL
ODL support enumerators that are explicitly tagged with values. The constraint is
any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering
enumerators as specified in the OMG IDL.

// OMG IDL
interface MyInft {

enum A_or_B_or_C {A, B, C};
};

CORBA enumerators are mapped to COM enumerations directly according to COR
C language binding. The Microsoft IDL keyword v1_enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this
keyword be used on 32-bit platforms, since it increases the efficiency of marshall
and unmarshalling data when such an enumerator is embedded in a structure or

// Microsoft IDL and ODL
uuid(...),
interface IMyIntf {

typedef [v1_enum]
enum tagA or B or C {MyIntf A = O,

MyInft B,
MyIntf C }
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-3

18

d on

pe

a
d
MyIntf A or B or C;
};

A maximum of 232 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 216 identifiers, and
therefore, truncation may result.

18.2.4 Mapping for String Types

CORBA currently defines the data type string to represent strings that consist of
8-bit quantities, which are NULL-terminated.

Microsoft IDL and ODL define a number of different data types, which are used to
represent both 8-bit character strings and strings containing wide characters base
Unicode.

Table 18-2 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

OMG IDL supports two different types of strings: bounded and unbounded. Bounded
strings are defined as strings that have a maximum length specified; whereas,
unbounded strings do not have a maximum length specified.

18.2.4.1 Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UNBOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the ty
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to
one-dimensional null-terminated character array whose extent and number of vali
elements can vary at run-time.

Table 18-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG IDL Microsoft IDL Microsoft ODL Description

string LPSTR
[string,unique]
char *

LPSTR Null-terminated 8-bit character string

wstring LPWSTR
[string,unique]
wchar t *

LPWSTR Null-terminated Unicode string
18-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

ft

mber

 set
ed in
r
18.2.4.2 Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL and ODL. The following OMG IDL definition for a bounded string:

// OMG IDL
const long N = ...;
typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”

// Microsoft IDL and ODL
 const long N = ... ;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compile time, and the nu
of valid characters can vary at run-time.

18.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordered
of name-value pairs representing the member types and names. A structure defin
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each membe
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE
{

T0 m0;
T1 ml;
T2 m2;

...
Tn mN;

 };

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as
follows.

// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-5

18

tor

ar
h or
...
typedef ... Tn;
typedef struct

{
T0 m0;

 Tl ml;
T2 m2;

 ...
 TN mN;

} STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
sequence<A> v1;

};

is mapped as

typedef struct A {
struct { // MIDL

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;

} v1;
} A;

18.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discrimina
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The
discriminator tag must be a previously defined long , short , unsigned long ,
unsigned short , char , boolean , or enum constant. The default case can appe
at most once in the definition of a discriminated union, and case labels must matc
be automatically castable to the defined type of the discriminator.
18-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18
The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR

 {
dChar=0,
dShort,
dLong,
dFloat,
dDouble

};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{

case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[;8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum [v1 enum]

{
dchar=0,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITH
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-7

18

gth

ce is

e

oft
ere
t
ds

 T
18.2.7 Mapping for Sequence Types

OMG IDL defines the keyword sequence to be a one-dimensional array with two
characteristics: an optional maximum size that is fixed at compile time, and a len
that is determined at run-time. Like the definition of strings, OMG IDL allows
sequences to be defined in one of two ways: bounded and unbounded. A sequen
bounded if a maximum size is specified, else it is considered unbounded.

18.2.7.1 Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of typT

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct

 {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Micros
IDL or ODL struct containing a unique pointer to a conformant array of type U, wh
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsof
IDL/ODL mapping is necessary to provide a scope in which extent and data boun
can be defined.

18.2.7.2 Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type
that can grow to be N size:

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:

// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
18-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

 of

L

 U
L

y
own

e

G
e
typedef struct
{
unsigned long reserved;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

Note – The maximum size of the bounded sequence is declared in the declaration
the array and therefore a [size is ()] attribute is not needed.

18.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and
ODL also support fixed length multidimensional arrays. Arrays defined in OMG ID
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG ID
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of an
integral type, and const means (as in OMG IDL) that the value of N is fixed and kn
at IDL compilation time. The generalization to multidimensional arrays follows the
obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to
be byte in Microsoft IDL or ODL. That is why the types of the array elements hav
different names in the two texts.

18.2.9 Mapping for the any Type

The CORBA any type permits the specification of values that can express any OM
IDL data type. There is no direct or simple mapping of this type into COM, thus w
map it to the following interface definition:

// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-9

18

NT,
anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

In most cases, a COM client can use the _get_value() or _put_value()
method to set and get the value of a CORBA any . However, the data types supported
by a VARIANT are too restrictive to support all values representable in an any , such as
structs and unions. In cases where the data types can be represented in a VARIA
they will be; in other cases, they will optionally be returned as an IStream pointer in
18-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

es.
r

ces

m
 on

ion.

ned
 or a
e

t of

ed
be
 code,
on

ata
tion
rrors
 in
 be
e is
the VARIANT. An implementation may choose not to represent these types as an
IStream , in which case an SCODE value of E_DATA_CONVERSION is returned
when the VARIANT is requested.

18.2.10 Interface Mapping

18.2.10.1 Mapping for interface identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfac
These allow the client code to retrieve information about, or to inquire about, othe
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)
known as an IID. As with CORBA, COM specifies that the textual names of interfa
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorith
for creating the mapping is detailed in Section 17.5.4, “Mapping Interface Identity,”
page 17-16.

18.2.10.2 Mapping for exception types

The CORBA object model uses the concept of exceptions to report error informat
Additional, exception-specification information may accompany the exception. The
exception-specific information is a specialized form of a record. Because it is defi
as a record, the additional information may consist of any of the basic data types
complex data type constructed from one or more basic data types. Exceptions ar
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return resul
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specifi
as being the same as the HRESULT on Win32 platforms). The SCODE can then
examined to determine whether the call succeeded or failed. The error or success
also contained within the SCODE, is composed of a “facility” major code (13 bits
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception d
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of e
a COM interface might return based on the definition of the interface as specified
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can
returned from a COM operation must be fixed when the operation is defined, ther
currently no machine-readable way to discover the set of valid codes.
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-11

18

nor

hen

A
ers
n,

rating
g

w
ions
 16
ity

tus
lete,
Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility,
does it require any changes to COM. To return the User Exception data to a COM
client, an optional parameter is added to the end of a COM operation signature w
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORB
specification and are used by the Object Request Broker (ORB) and object adapt
(OA). Standard exceptions may be returned as a result of any operation invocatio
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is gene
an appropriate HRESULT for the operation to return. The other aspect is conveyin
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM Vie
when a CORBA System Exception is raised. Each of the CORBA System Except
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower
bits) of the HRESULT. Because these errors are interface-specific, the COM facil
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion sta
of the CORBA request. The bit value 00 indicates that the operation did not comp
a bit value of 01 indicates that the operation did complete, and a bit value of 02
indicates that the operation may have completed. Table 18-3 lists the HRESULT
constants and their values.

Table 18-3Standard Exception to SCODE Mapping

HRESULT Constant HRESULT Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202

ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203
18-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18
ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

Table 18-3Standard Exception to SCODE Mapping (Continued)
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-13

18
ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

Table 18-3Standard Exception to SCODE Mapping (Continued)
18-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

the
ting
r

n
ror
It is not possible to map a System Exception’s minor code and RepositoryId into
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Wri
the exception information to an OLE Error Object is optional. However, if the Erro
Object is used for this purpose, it must be done according to the following
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo
such that the View can respond affirmatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo
pointer parameter when the mapped CORBA operation is completed without a
exception being raised. Calling SetErrorInfo in this fashion assures that the Er
Object on that thread is thoroughly destroyed.

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

ITF_E_OBJ_NOT_EXIST_NO 0X40219

ITF_E_OBJ_NOT_EXIST_MAYBE 0X41219

ITF_E_OBJ_NOT_EXIST_YES 0X42219

ITF_E_TRANSACTION_REQUIRED_NO 0x40220

ITF_E_TRANSACTION_REQUIRED_MAYBE 0x41220

ITF_E_TRANSACTION_REQUIRED_YES 0x42220

ITF_E_TRANSACTION_ROLLEDBACK_NO 0x40221

ITF_E_TRANSACTION_ROLLEDBACK_MAYBE 0x41221

ITF_E_TRANSACTION_ROLLEDBACK_YES 0x42221

ITF_E_INVALID_TRANSACTION_NO 0x40222

ITF_E_INVALID_TRANSACTION_MAYBE 0x41222

ITF_E_INVALID_TRANSACTION_YES 0x42222

Table 18-3Standard Exception to SCODE Mapping (Continued)
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-15

18

ing

.

The properties of the OLE Error Object must be set according to Table 18-4.

A COM View supporting error objects would have code, which approximates the
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error
object
try
{

// Call the CORBA operation
}
catch(...)
{

...

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

 ->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

...

}

A client to a COM View would access the OLE Error Object with code approximat
the following.

Table 18-4Error Object Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status>
is “YES,” “NO,” or “MAYBE” based upon the value of the
system exception’s CORBA completion status. Spaces and
square brackets are literals and must be included in the string

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface
18-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

n
n is

cribe
 The

e

r
// After obtaining a pointer to an interface on
// the COM View, the
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
 &pISupportErrorInfo);

hr = pISupportErrorInfo

->InterfaceSupportsError-
Info(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hrOperation

(above)
// has the completion status encoded into it.
pIErrorInfo->GetDescription(...);

}
}

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in a
object server to report operation-specific errors. The definition of a User Exceptio
identified in an OMG IDL file with the keyword exception. The body of a User
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to des
various information about the exception — hereafter called an Exception structure.
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interfac
pointers to User Exceptions. If an interface raises a user exception, a structure is
constructed whose name is the interface name [fully scoped] followed by
“Exceptions.” For example, if an operation in MyModule::MyInterface raises a use
exception, then there will be a structure created named
MyModule_MyInterfaceExceptions.

A template illustrating this naming convention is as follows.
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-17

18

e last
 a

cture
s

f the

ced.

e is
ry

 the

nds
// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}

ExceptionType;

typedef struct
{

ExceptionType type;
LPTSTR repositoryId;
I<ModuleName_InterfaceName>UserException

*....piUserException;

} <ModuleName_InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as th
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises
User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions stru
as an output parameter by indirect reference allows the parameter to be treated a
optional by the callee1. The following example illustrates this point.

// Microsoft IDL
interface IBANKAccount

{
 HRESULT Withdraw([in] float fAmount,

[out] float pfNewBalance,
[out] BANk_AccountExceptions

** pException);
 };

The caller can indicate that no exception information should be returned, if an
exception occurs, by specifying NULL as the value for the Exceptions parameter o
operation. If the caller expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to be pla
COM’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the calle
to return exception information, the callee is responsible for allocating any memo
used to hold the exception information being returned. If no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of
HRESULT to the callee, indicating the operation succeeded. The value of the
HRESULT returned to the callee when a CORBA exception has been raised depe
upon the type of exception being raised and whether an Exception structure was
specified by the caller.

1. Vendors that map the MIDL definition directly to C++ should map the exception struct
parameter as defaulting to a NULL pointer.
18-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18
The following OMG IDL statements show the definition of the format used to
represent User Exceptions.

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };
...
interface Account

 {
exception NotAuthorized { };
float Deposit(in float Amount)

raises(InvalidAmount);
float Withdraw(in float Amount)

raises(InvalidAmount, NotAuthorized);
};

};

and map to the following statements in Microsoft IDL and ODL.

// Microsoft IDL and ODL
struct Bank_InsufFunds

{
float balance;
};

struct Bank_InvalidAmount
{
float amount;
};

struct BANK_Account_NotAuthorized
{
};

interface IBANK_AccountUserExceptions : IUnknown
{

HRESULT _get_InsufFunds([out] BANK_InsufFunds
* exceptionBody);

HRESULT _get_InvalidAmount([out] BANK_InvalidAmount
* exceptionBody);

HRESULT _get_NotAuthorized([out]
BANK_Account_NotAuthorized

 * exceptionBody);
};

typedef struct
{

CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-19

18

 body
for
name
rom

n to
ng

rface
n is

y of
 is a

 the

e

he

meter

.
ExceptionType type;
LPTSTR repositoryId;
IBANK_AccountUserExceptions * piUserException;

} BANK_AccountExceptions;

User exceptions are mapped to a COM interface and a structure that describes the
of information to be returned for the User Exception. A COM interface is defined
each CORBA interface containing an operation that raises a User Exception. The
of the interface defined for accessing User Exception information is constructed f
the fully scoped name of the CORBA interface on which the exception is raised. A
structure is defined for each User Exception, which contains the body of informatio
be returned as part of that exception. The name of the structure follows the nami
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA inte
is mapped into an operation on the Exception interface. The name of the operatio
constructed by prefixing the name of the exception with the string “_get_”. Each
accessor operation defined takes one output parameter in which to return the bod
information defined for the User Exception. The data type of the output parameter
structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, th
callee must allocate the memory to hold the exception information and fill in the
Exceptions structure as in Table 18-5.

When data conversion errors occur while mapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with t
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to
the client.

Mapping User Exceptions: A Special Case

If a CORBA operation raises only one (COM_ERROR or COM_ERROREX) user
exception (defined under Section 18.3.10.2, “Mapping for COM Errors,” on
page 18-44), then the mapped COM operation should not have the additional para

Table 18-5User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that is being raised
Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the exception
definition.

piUserException Points to an interface with which to obtain information
about the User Exception raised.
18-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

OM
l

tion

r

me
 be
for exceptions. This proviso enables a CORBA implementation of a preexisting C
interface to be mapped back to COM without altering the COM operation’s origina
signature.

COM_ERROR (and COM_ERROREX) is defined as part of the CORBA to
COM mapping. However, this special rule in effect means that a COM_ERROR
raises clause can be added to an operation specifically to indicate that the opera
was originally defined as a COM operation.

18.2.10.3 Mapping for Nested Types

OMG IDL and Microsoft MIDL/ODL do not agree on the scoping level of types
declared within interfaces. Microsoft, for example, considers all types in a MIDL o
ODL file to be declared at global scope. OMG IDL considers a type to be scoped
within its enclosing module or interface. This means that to prevent accidental na
collisions, types declared within OMG IDL modules and OMG IDL interfaces must
fully qualified in Microsoft IDL or ODL.

The OMG IDL construct:

Module BANK{
interface ATM {

enum type {CHECKS, CASH};
Struct DepositRecord {

string account;
float amount;
type kind;

};
void deposit (in DepositRecord val);

};

Must be mapped in Microsoft MIDL as:

[uuid(...), object]
interface IBANK ATM : IUnknown {

typedef [v1 enum] enum
{BANK ATM CHECKS,
BANK ATM CASH} BANK ATM type;

typedef struct {
LPSTR account;
BANK ATM type kind;

} BANK ATM DepositRecord;
HRESULT deposit (in BANK ATM DepositRecord *val);

};

and to Microsoft ODL as:

[uuid(...)]
library BANK {
...
[uuid(...), object]
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-21

18

urn
at

oth of

G

the

e

ue.

ing
interface IBANK ATM : IUnknown {
typedef enum { BANK ATM CHECKS,

 {BANK ATM CASH} BANK ATM type;
typedef struct {

LPSTR struct;
float amount;
BANK ATM type kind;

} BANK ATM DepositRecord;
HRESULT deposit (in BANK ATM DepositRecord *val);

};

18.2.10.4 Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The definition of an operation constitutes the operations signature. An
operation signature consists of the operation’s name, parameters (if any), and ret
value. Optionally, OMG IDL allows the operation definition to indicate exceptions th
can be raised, and the context to be passed to the object as implicit arguments, b
which are considered part of the operation.

OMG IDL parameter directional attributes in , out , inout map directly to Microsoft
IDL and ODL parameter direction attributes [in] , [out] , [in,out] . Operation
request parameters are represented as the values of in or inout parameters in OMG
IDL, and operation response parameters are represented as the values of inout or out
parameters. An operation return result can be any type that can be defined in OM
IDL, or void if a result is not returned.

The OMG IDL sample (shown below) illustrates the definition of two operations on
Bank interface. The names of the operations are bolded to make them stand out.
Operations can return various types of data as results, including nothing at all. Th
operation Bank::Transfer is an example of an operation that does not return a val
The operation Bank::Open Account returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank”IDL:BANK/Bank:1,2”

interface Bank
{
Account OpenAccount(in float StartingBalance,

in AccountTypes Account(Type);
void Transfer(in Account Account1,

in Account Account2,
in float Account)
raises(InSufFunds);

};

The operations defined in the preceding OMG IDL code are mapped to the follow
lines of Microsoft IDL code:

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
18-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

n
e

osoft

e
 for

n, if
interface IBANK Teller: IUnknown
 {
 HRESULT OpenAccount(

[in] float StartingBalance,
[in] BANK_AccountTypes AccountType,
[out] IBANK_Account ** ppiNewAccount);

 HRESULT Transfer(
[in] IBANK_Account * Account1,

 [in] IBANK_Account * Account2,
 [in] float Amount,

 [out] BANK_TellerExceptions
** ppException);

 };

and to the following statements in Microsoft ODL

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000) odl]
interface IBANK_Teller: IUnknown
 {
 HRESULT OpenAccount(

[in] float StartingBalance,
[in] BANK_AccountTypes AccountType,
[out, retval] IBANK_Account

** ppiNewAccount);
 HRESULT Transfer(

[in] IBANK_Account * Account1,
 [in] IBANK_Account * Account2,
 [in] float Amount,

[out]BANK_TellerExceptions
** ppException);

 };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is
identical to the order in which parameters are specified in the text of the operatio
definition in OMG IDL. The COM mapping of all CORBA operations must obey th
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Micr
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result valu
becomes an HRESULT. Without an HRESULT return value, there would be no way
COM to signal errors to clients when the client and server are not collocated. The
value of the HRESULT is determined based on a mapping of the CORBA exceptio
any, that was raised.
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-23

18

e

th
ther

ugh

 does

ay
e no

h
 RPC
t.
y

.

lly
e

ute
e of
ute
-

d
n is
ed
It is also important to note that if any user’s exception information is defined for th
operation, an additional parameter is added as the last argument of the operation
signature. The user exception parameter follows the return value parameter, if bo
exist. See Section 18.2.10.2, “Mapping for exception types,” on page 18-11 for fur
details.

18.2.10.5 Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the
communication service must provide for an operation. This indication is done thro
the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which
not guarantee delivery of the request. Best-effort implies that the operation will be
invoked, at most, once. Along with the invocation semantics, the use of the onew
operation attribute restricts an operation from having output parameters, must hav
result value returned, and cannot raise any user-defined exceptions.

It may seem that the Microsoft IDL maybe operation attribute provides a closer matc
since the caller of an operation does not expect any response. However, Microsoft
maybe does not guarantee at most once semantics, and therefore is not sufficien
Because of this, the mapping of an operation defined in OMG IDL with the onewa
operation attribute maps the same as an operation that has no output arguments

18.2.10.6 Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentia
a short-hand for a pair of accessor functions to an object’s data; one to retrieve th
value and possibly one to set the value of the attribute. The definition of an attrib
must be contained within an interface definition and can indicate whether the valu
the attribute can be modified or just read. In the example OMG IDL next, the attrib
Profile is defined for the Customer interface and the read-only attribute is Balance
defined for the Account interface. The keyword attribute is used by OMG IDL to
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-define
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to only raising system exceptions. The value of the HRESULT is determin
based on a mapping of the CORBA exception, if any, that was raised.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};
18-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

e
n

ut_ in

e to
donly
#pragma ID::BANK::Account "IDL:BANK/Account:3.1"

interface Account
{
readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount);
float Withdrawal(in float amount) raises(InsufFunds, InvalidAmount);
float Close();
};

#pragma ID::BANK::Customer "IDL:BANK/Customer:1.2"

interface Customer
 {
 attribute CustomerData Profile;
 };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the nam
of the get accessor is the same as the name of the attribute prefixed with _get_ i
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL. The
name of the put accessor is the same as the name of the attribute prefixed with _p
Microsoft IDL and contains the operation attribute [propput] in Microsoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: on
retrieve the value and one to set the value of the attribute, unless the keyword rea
precedes the attribute keyword. In the preceding example, the attribute Profile is
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IUnknown
 {
 HRESULT _get_Profile([out] CustomerData * Profile);
 HRESULT _put_Profile([in] CustomerData * Profile);
 };

Profile is mapped to these statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBANK_Customer : IUnknown
 {
 [propget] HRESULT Profile(

[out] BANK_CustomerData * val);
 [propput] HRESULT Profile(

[in] BANK_CustomerData * val);
 };
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-25

18

oft

e

 the

e

[in]

and

ce for

val).

e
Note – The attribute is actually mapped as two different operations in both Micros
IDL and ODL. The IBANK_Customer::get_profile operation (in Microsoft
IDL) and the [propget] Profile operation (in Microsoft ODL) are used to retrieve th
value of the attribute. The IBANK_Customer::put_profile operation is used to
set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keyword readonly is interpreted as only
supporting a single accessor function used to retrieve the value of the attribute. In
previous example, the mapping of the attribute Balance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 HRESULT _get_Balance([out] float Balance);
 };

and the following statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 [propget] HRESULT Balance([out] float *val);
 };

Note that only a single operation was defined since the attribute was defined to b
read-only.

18.2.10.7 Indirection Levels for Operation Parameters

• For integral types (such as long, enum, char,...) these are passed by value as
parameters and by reference as out parameters.

• string/wstring parameters are passed as LPSTR/LPWSTR as an in parameter
LPSTR*/LPWSTR* as an out parameter.

• composite types (such as unions, structures, exceptions) are passed by referen
both [in] and [out] parameters.

• optional parameters are passed using double indirection (e.g., IntfException **

18.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, th
models for inheritance and multiple interfaces are different.
18-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

pport

n
A

A
ding

BA,
thout
ery

by an

et of
n is
hip

 C++

f
n.

ugh

ely.

 to

 to

or

g
In CORBA, an interface can singly or multiply inherit from other interfaces. In
language bindings supporting typed object references, widening and narrowing su
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without a
inheritance relationship. The run-time interfaces of an object, as defined in CORB
(for example, CORBA::Object::is_a , CORBA::Object::get_interface)
use a description of the object’s principle type, which is defined in OMG IDL. CORB
allows many ways in which implementations of interfaces can be structured, inclu
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can qu
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported
entity.)

An observation about COM is that some COM objects have a required minimum s
interfaces, which they must support. This type of statically defined interface relatio
conceptually equivalent to multiple inheritance; however, discovering this relations
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces might be multiply-inherited and
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance o
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknow
Note that the Object interface is not surfaced in COM. For single inheritance, altho
the most derived interface can be queried using IUnknown::QueryInterface ,
each individual interface in the inheritance hierarchy can also be queried separat

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping f
attributes.

• Operations are sorted in ascending order based upon the ISO Latin-1 encodin
values of the respective operation names.
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-27

18

 the
n the
 not
ibute
• The resulting mapping of attributes within an interface are ordered based upon
attribute name. The attributes are similarly sorted in ascending order based upo
ISO-Latin-1 encoding values of the respective attribute names. If the attribute is
readonly, the get_<attribute name> method immediately precedes the set_<attr
name> method.

Figure 18-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();

CORBA Interface Inheritance COM Interface Inheritance

A

B

D E

F

C IU

B C

A

IU

D

A IU

E

IU

F

IU
18-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

ing
I to

ed

ffer

 used
 can

lly

The
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};

Note that the co-class statement in Microsoft ODL allows the definition of an
object class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its correspond
statements in Microsoft IDL, the name of the interface is proceeded by the letter
indicate that the name represents the name of an interface. This also makes the
mapping more natural to the COM programmer, since the naming conventions us
follow those suggested by Microsoft.

18.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects di
from other objects in that they cannot be invoked with the Dynamic Invocation
Interface (DII) and do not have object references. Most pseudo-objects cannot be
as general arguments. Currently, only the TypeCode and Principal pseudo-objects
be used as general arguments to a request in CORBA.

The CORBA NamedValue and NVList are not mapped into COM as arguments to
COM operation signatures.

18.2.12.1 Mapping for TypeCode pseudo-object

CORBA TypeCodes represent the types of arguments or attributes and are typica
retrieved from the interface repository. The mapping of the CORBA TypeCode
interface follows the same rules as mapping any other CORBA interface to COM.
result of this mapping is as follows.
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-29

18
// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;

[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,

pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT _get_Bounds([out] TypeCodeBounds *pExceptionBody);
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody);

};

typedef struct
{
 ExceptionType type;
 LPTSTR repositoryId;
 long minorCode;
 CompletionStatus completionStatus;
 ICORBA_SystemException * pSystemException;
 ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR RepositoryId;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} CORBA_TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
 HRESULT equal(

[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBA_TypeCodeExceptions** ppUserExceptions);

HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT id(
[out] RepositoryId * pszRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT name(
[out] Identifier * pszRetVal,
18-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

the

are
 for

ntil
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);
HRESULT member_count(

[out] unsigned long * pulRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_name(
[in] unsigned long ulIndex,
[out] Identifier * pszRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_type(
[in] unsigned long ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT member_label(
[in] unsigned long ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT discriminator_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT default_index(
[out] long * plRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT length(
[out] unsigned long * pulRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT content_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT param_count(
[out] long * plRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions);

HRESULT parameter(
[in] long lIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBA_TypeCodeExceptions ** ppUserExceptions

);
}

Note – Use of the methods param_count() and parameter() is deprecated.

18.2.12.2 Mapping for context pseudo-object

This specification provides no mapping for CORBA’s Context pseudo-object into
COM. Implementations that choose to provide support for Context could do so in
following way. Context pseudo-objects should be accessed through the ICORBA
Context interface. This would allow clients (if they are aware that the object they
dealing with is a CORBA object) to set a single Context pseudo-object to be used
all subsequent invocations on the CORBA object from the client process space u
such time as the ICORBA_Context interface is released.

// Microsoft IDL and ODL
typedef struct
CORBA, v2.4.2 CORBA to COM Data Type Mapping February 2001 18-31

18

n

ct

ld be
.

s

d

OM
one
le.
 {
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
 } ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IUnknown
 {

HRESULT GetProperty([in]LPTSTR Name,
[out] ContextPropertyValue

** pValues);
HRESULT SetProperty([in] LPTSTR,

[in] ContextPropertyValue
* pValues);

 };

If a COM client application knows it is using a CORBA object, the client applicatio
can use QueryInterface to obtain an interface pointer to the ICORBA_Context
interface. Obtaining the interface pointer results in a CORBA context pseudo-obje
being created in the View, which is used with any CORBA request operation that
requires a reference to a CORBA context object. The context pseudo-object shou
destroyed when the reference count on the ICORBA_Context interface reaches zero

This interface should only be generated for CORBA interfaces that have operation
defined with the context clause.

18.2.12.3 Mapping for principal pseudo-object

The CORBA Principal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking will need to be define
between the two object models.

18.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to C
type libraries. However, the CORBA interface repository looks, to the client, to be
unified service. Type libraries, on the other hand, are each stored in a separate fi
Clients do not have a unified, hierarchical interface to type libraries.

Table 18-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.
18-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

ect

g
Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for a CORBA obj
interface using the IProvideClassInfo COM interface.

18.3 COM to CORBA Data Type Mapping

18.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the correspondin
data types available in OMG IDL as shown in Table 18-7.

Table 18-6CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef

Table 18-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft
IDL

Microsoft
ODL

OMG IDL Description

short short short Signed integer with a range of -215...215 -1

long long long Signed integer with a range of -231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 -1

float float float IEEE single -precision floating point number

double double double IEEE double-precision floating point number
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-33

18

tly

M
A in

r

rgo
18.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exac
the same. The following Microsoft IDL definitions for constants:

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

18.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When CO
enumerations are mapped into CORBA, the enumerators are presented in CORB
increasing order according to their tagged values.

The Microsoft IDL or ODL specification:

char char char 8-bit quantity limited to the ISO Latin-1 characte
set

boolean boolean boolean 8-bit quantity, which is limited to 1 and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to not unde
any conversion during transfer between systems

Table 18-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings (Continued)
18-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

 that

ct

s.
ereas

or

a
// Microsoft IDL or ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_or_C {B, C, A};

In this manner, the precedence relationship is maintained in the OMG system such
B is less than C is less than A.

OMG IDL does not support enumerators defined with explicit tagged values. The
CORBA view of a COM object, therefore, is responsible for maintaining the corre
tagged value of the mapped enumerators as they cross the view.

18.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded string
Bounded strings are defined as strings that have a maximum length specified, wh
unbounded strings do not have a maximum length specified. COM also supports
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions f
bounded and unbounded strings differs from that specified in OMG IDL.

Table 18-8 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client,
E_DATA_CONVERSION exception will be raised.

18.3.4.1 Mapping for unbounded string types

The definition of an unbounded string in Microsoft IDL and ODL denotes the
unbounded string as a stringified unique pointer to a character. The following
Microsoft IDL statement

Table 18-8Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft IDL Microsoft ODL OMG IDL Description

LPSTR
[string,unique]
char *

LPSTR, string Null-terminated 8-bit character string

BSTR BSTR wstring Null-terminated 16-bit character string

LPWSTR
[string,unique]
char *

LPWSTR wstring Null-terminated Unicode string
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-35

18

d

ft
ant

hose

L
// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of vali
elements can vary at run-time.

18.3.4.2 Mapping for bounded string types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconform
array.” The following Microsoft IDL and ODL definition for a bounded string:

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a
null-terminated array of characters whose extent is known at compile time, and w
number of valid characters can vary at run-time.

18.3.4.3 Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and OD
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPWSTR

UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.
18-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

L

.
pe.
18.3.4.4 Mapping for unicode bound string types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and OD
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] wchar t(*

BOUNDED_UNICODE_STRING) [N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

18.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL
Each structure member is mapped according to the mapping rules for that data ty
The structure definition in Microsoft IDL or ODL is as follows.

// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows:
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-37

18

e

 be

s
// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct STRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

18.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any
interfaces that use them. For this reason, this specification does not provide any
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. Th
discriminator for a nonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to
constant expressions.

18.3.6.1 Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated union
having constant discriminators are mapped to OMG IDL unions as shown next.

// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.
18-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

th
// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

18.3.6.2 Mapping for nonencapsulated unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions wi
nonconstant discriminators are mapped to an any in OMG IDL. The type of the any is
determined at run-time during conversion of the Microsoft IDL union.

// Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
 {
 [case(0)] char c;
 [case(1)] short s;
 [case(2)] long l;
 [case(3)] float f;
 [case(4)] double d;
 [default] byte v[8];
 } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef any UNION_OF_CHAR_AND_ARITHMETIC;
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-39

18

G
ray

rray

the

ying
can be
ed

ined

 is
18.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OM
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the ar
elements is mapped according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying a
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that
value of N is fixed and known at compilation time. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

18.3.7.1 Mapping for nonfixed arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports var
arrays, and conformant varying arrays. These are arrays whose bounds and size
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapp
to sequence in OMG IDL, as shown in the following statements.

// Microsoft IDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.

// OMG IDL
typedef sequence<short> BTYPE;
typedef sequence<char> CTYPE;

18.3.7.2 Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are determ
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL
mapped to a CORBA sequence, as shown in the following statements.
18-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

e
f the

 to

 is

 is

e
// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence< element-type > SequenceName;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSION exception will be raised.

18.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBA any.
However, its allowable set of data types are currently limited to the data types
supported by Automation. VARTYPE is an enumeration type used in the VARIANT
structure. The structure member vt is defined using the data type VARTYPE. Its valu
acts as the discriminator for the embedded union and governs the interpretation o
union. The list of valid values for the data type VARTYPE are listed in Table 18-9,
along with a description of how to use them to represent the OMG IDL any data type.

Table 18-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you should not
return VT_EMPTY for the argument. Instead, you should return the
VT_ERROR value: DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored in bVal.

VT_UI1 |
VT_BYREF

A reference to an unsigned 1-byte character was passed; a pointer
the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.

VT_I2 | VT_BYREF A reference to a 2-byte integer was passed; a pointer to the value
in piVal.

VT_I4 A 4-byte integer value is stored in lVal.

VT_I4 | VT_BYREF A reference to a 4-byte integer was passed; a pointer to the value
in plVal.

VT_R4 An IEEE 4-byte real value is stored in fltVal.

VT_R4 |
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer to the
value is in pfltVal.

VT_R8 An 8-byte IEEE real value is stored in dblVal.

VT_R8 |
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer to its valu
is in pdblVal.
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-41

18

n
-

 is

l
.

n

y
ed

0
VT_CY A currency value was specified. A currency number is stored as a
8-byte, two’s complement integer, scaled by 10,000 to give a fixed
point number with 15 digits to the left of the decimal point and 4
digits to the right. The value is in cyVal.

VT_CY |
VT_BYREF

A reference to a currency value was passed; a pointer to the value
in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal. This pointer must be
obtained and freed via the BSTR functions.

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*, which points to a
BSTR, is in pbstrVal. The referenced pointer must be obtained or
freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not be
confused with the NULL pointer. The NULL value is used for tri-
state logic as with SQL.

VT_NULL |
VT_BYREF

Illegal.

VT_ERROR An SCODE was specified. The type of error is specified in code.
Generally, operations on error values should raise an exception or
propagate the error to the return value, as appropriate.

VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A pointer to the value is in
pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of 0xFFFF (al
bits one) indicates True; a value of 0 (all bits zero) indicates False
No other values are legal.

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean value is i
pbool.

VT_DATE A value denoting a date and time was specified. Dates are
represented as double-precision numbers, where midnight, Januar
1, 1900 is 2.0, January 2, 1900 is 3.0, and so on. The value is pass
in date.

This is the same numbering system used by most spreadsheet
programs, although some incorrectly believe that February 29, 190
existed, and thus set January 1, 1900 to 1.0. The date can be
converted to and from an MS-DOS representation using
VariantTimeToDosDateTime.

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to the value is in pdate.

Table 18-9 Valid OLE VARIANT Data Types (Continued)
18-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

sent

 for

e

he

y
A COM VARIANT is mapped to the CORBA any without loss. If at run-time a
CORBA client passes an inconvertible any to a COM server, a
DATA_CONVERSION exception is raised.

18.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot repre
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used
data structures, which form cycles or have aliases.

VT_DISPATCH A pointer to an object was specified. The pointer is in pdispVal. This
object is only known to implement IDispatch; the object can be
queried as to whether it supports any other desired interface by
calling QueryInterface on the object. Objects that do not implement
IDispatch should be passed using VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was specified. The pointer to th
object is stored in the location referred to by ppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed in pvarVal. This
referenced VARIANTARG will never have the VT_BYREF bit set in
vt, so only one level of indirection can ever be present. This value
can be used to support languages that allow functions to change t
types of variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown interface is
passed in punkVal.

VT_UNKNOWN |
VT_BYREF

A pointer to a pointer to the IUnknown interface is passed in
ppunkVal. The pointer to the interface is stored in the location
referred to by ppunkVal.

VT_ARRAY |
<anything>

An array of data type <anything> was passed. (VT_EMPTY and
VT_NULL are illegal types to combine with VT_ARRAY.) The
pointer in pByrefVal points to an array descriptor, which describes
the dimensions, size, and in-memory location of the array. The arra
descriptor is never accessed directly, but instead is read and
modified using functions.

Table 18-9 Valid OLE VARIANT Data Types (Continued)
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-43

18

ique
ence

ed
ses

ough
g

es.
r

cal
he
ique.

ult
, if
eing
rmine

ithin
n

s, or
s

ate a

turn
, are
A reference pointer is mapped to a CORBA sequence containing one element. Un
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequ
containing zero or one elements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is return
to the COM client. If a COM server attempts to return a full pointer containing alia
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

18.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Alth
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the followin
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces.

18.3.10.1 Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfac
These allow the client code to retrieve information about, or to inquire about othe
interfaces of an object.

COM identifies interfaces using a structure similar to the DCE UUID (in fact, identi
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that t
textual names of interfaces are only for convenience and need not be globally un

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the
CORBA RepositoryId.

18.3.10.2 Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return res
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as b
the same as the HRESULT on Win32). The SCODE can then be examined to dete
whether the call succeeded or failed. The error or success code, also contained w
the SCODE, is composed of a “facility” major code (13 bits on Win32 and 4 bits o
Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE value
use the facility FACILITY_ITF and an interface-specific minor code. SCODE value
can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indic
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the re
value. This is because COM operations, which are defined to return an HRESULT
mapped to CORBA as returning an HRESULT.
18-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

ata
tion
rrors
rned
ntly

odes

C

ped
Unlike CORBA, COM provides no standard way to return user-defined exception d
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of e
a COM interface might return. Although the set of success codes that can be retu
from a COM operation must be fixed when the operation is defined, there is curre
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. COM user-defined error c
are mapped to CORBA user exceptions.

COM system error codes are defined with the FACILITY_NULL and FACILITY_RP
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to
CORBA standard exceptions. Table 18-10 lists the mapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 18-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA
standard exceptions. All FACILITY_RPC exceptions not listed in this table are map
to the new CORBA standard exception COM.

Table 18-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM

Table 18-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-45

18

 a
r
COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of the raises clause in OMG IDL. Since the OMG
IDL mapping from the Microsoft IDL and ODL is likely to be generated, this is not
burden to the average programmer. The following OMG IDL illustrates such a use
exception.

// OMG IDL
exception COM_ERROREX
{

long hresult;
Any info;

};

RPC_E_CONNECTION_TERMINATED NV_OBJREF

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 18-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions (Continued)
18-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

ed

or

e
ross
y

f

.
s

 before

any),
The COM_ERROREX extension is designed to allow exposure of exceptions pass
using the per-thread ErrorObject. The Any contained in the COM_ERROREX is
defined to hold a CORBA object reference that supports the OMG IDL mapping f
the IErrorInfo interface.

18.3.10.3 Mapping of Nested Data Types

Microsoft MIDL (and ODL) consider all definitions to be at global (or library) scop
regardless of position in the file. This can lead to name collisions in datatypes ac
interfaces. Operations or types later in the file can refer to a datatype without full
qualifying the name even if the type is nested within another interface.

For purposes of mapping MIDL/ODL to OMG IDL, we treat nested datatypes as i
they had been prepended with the name of the scoping level. Thus:

interface IA : IUnknown
{

typedef enum {ONE, TWO, THREE} Count;
HRESULT f([in] Count val);

}

is mapped as if it were defined as:

typedef enum {A_ONE, A_TWO, A_THREE} A_Count;
interface IA : IUnknown
{

HRESULT f([in] A_Count val);
}

18.3.10.4 Mapping of Names

Microsoft MIDL and ODL support prefixing types/names with leading underscores
When mapping from Microsoft MIDL or ODL to OMG IDL, the leading underscore
are removed.

Note – This simple rule is not sufficient to avoid all name collisions (such as MIDL
types that clash with OMG IDL reserved names or situations where two operation
names differ only in the leading underscore). However, this rule will cover many
common cases and leads to a more natural mapping than prepending a character
the underscore.

18.3.10.5 Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within
interface definitions. The definition of an operation constitutes the operations
signature. An operation signature consists of the operation’s name, parameters (if
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the
operation definition to indicate the error information that can be returned.
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-47

18

 as

 or
n an

ng
ord
t
 IDL

g
 be
MG
 is a
e
Microsoft IDL and ODL parameter directional attributes ([in], [out] , [in , out]) map
directly to OMG IDL (in , out , inout). Operation request parameters are represented
the values of [in] or [inout] parameters in Microsoft IDL, and operation response
parameters are represented as the values of [inout] or [out] parameters. An
operation return result can be any type that can be defined in Microsoft IDL/ODL,
void if a result is not returned. By convention, most operations are defined to retur
HRESULT. This provides a consistent way to return operation status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the followi
transformations. First, if the last parameter is tagged with the Microsoft ODL keyw
retval , that argument will be used as the return type of the operation. If the las
parameter is not tagged with retval, then the signature is mapped directly to OMG
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown in the following
code.

// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify([in] VARIANT value,

[out, retval] LPSTR * pszValue);

HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};

In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Composite, CosLifeCycle::LifeCycleObject

{
string stringify(in any value) raises (COM_ERROR),

COM_ERROREX);
HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)
};

18.3.10.6 Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describin
properties. Microsoft IDL does not support this capability. Any operations that can
determined to be either a put/set or get accessor are mapped to an attribute in O
IDL. Because Microsoft IDL does not provide a means to indicate that something
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to th
attribute statement in OMG IDL.
18-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

M.
or
ace.

d
n is
 a

o the

n the
MG
When mapping between Microsoft ODL or OLE Type Libraries, properties in COM
are mapped in a similar fashion to that used to map attributes in OMG IDL to CO
For example, the following Microsoft ODL statements define the attribute Profile f
the ICustomer interface and the read-only attribute Balance for the IAccount interf
The keywords [propput] and [propget] are used by Microsoft ODL to indicate that
the statement is defining a property of an interface.

// Microsoft ODL
interface IAccount
 {
 [propget] HRESULT Balance([out, retval] float

* pfBalance);
 ...
 };

interface ICustomer
 {
 [propget] HRESULT Profile([out] CustomerData * Profile);
 [propput] HRESULT Profile([in] CustomerData * Profile);
 };

The definition of attributes in OMG IDL are restricted from raising any user-define
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to raising system exceptions. The value of the HRESULT is determined by
mapping of the CORBA exception, if any, that was raised.

18.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as
only supporting an accessor function, which is used to retrieve the value of the
attribute. In the example above, the mapping of the attribute Balance is mapped t
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attribute float Balance;
...
};

18.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as
only supporting an accessor function that is used to set the value of the attribute. I
previous example, the attribute Profile is mapped to the following statements in O
IDL.

// OMG IDL
struct CustomerData
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-49

18

st

e

pport

n

f
s

BA,
thout
ery

by an

et of
is
hip

 C++

h
IDL
{
CustomerId Id;
string Name;
string SurName;
};

interface Customer
{
attribute CustomerData Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping mu
assume that a property that has the keyword [propput] is mapped to a single read-
write attribute, even if there is no associated [propget] method defined.

18.3.12.1 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, th
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in
language bindings supporting typed object references, widening and narrowing su
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without a
inheritance relationship. The run-time interfaces of an object (for example,
CORBA::Object::is_a , CORBA::Object::get_interface) use a
description of the object’s principle type, which is defined in OMG IDL. In terms o
implementation, CORBA allows many ways in which implementations of interface
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can qu
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported
entity.)

An observation about COM is that some COM objects have a required minimum s
interfaces that they must support. This type of statically-defined interface relation
conceptually equivalent to multiple inheritance; however, discovering this relations
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

When COM interfaces are mapped into CORBA, their inheritance hierarchy (whic
can only consist of single inheritance) is directly mapped into the equivalent OMG
inheritance hierarchy.2
18-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

18

 not
ot

,
 be

faces
h in
ntage

ly-
Note that although it is possible, using Microsoft ODL to map multiple COM
interfaces in a class to OMG IDL multiple inheritance, the necessary information is
available for interfaces defined in Microsoft IDL. As such, this specification does n
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL
at which time the mapping can be extended to allow for multiple COM interfaces to
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, even though those inter
are not related by inheritance. Any existing ORB can support this interface, althoug
some cases a specialized implementation framework may be desired to take adva
of this interface.

module CORBA // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

};
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multip
inherited from CORBA::Composable and
CosLifeCycle::LifeCycleObject . Note that the IUnknown interface is not
surfaced in OMG IDL. Any COM method parameters that require IUnknown
interfaces as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object .

// Microsoft IDL or ODL
interface IFoo: IUnknown
{
HRESULT inquire([in] IUnknown *obj);
};

In OMG IDL, this becomes:

interface IFoo: CORBA::Composable, CosLifeCycle::LifeCycleObject
{
void inquire(in Object obj);
};

2. This mapping fails in some cases, for example, if operation names are the same.
CORBA, v2.4.2 COM to CORBA Data Type Mapping February 2001 18-51

18

t, to
arate

.

18.3.12.2 Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA
interface repositories. However, the CORBA interface repository looks, to the clien
be one unified service. Type libraries, on the other hand, are each stored in a sep
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the field is left blank

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef . When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for CORBA object
interface using the IProvideClassInfo COM interface.

Table 18-12CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
18-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Mapping: Automation and CORBA 19

ject
d by

rate
ects

f
e
This chapter describes the bidirectional data type and interface mapping between
Automation and CORBA.

Microsoft’s Object Description Language (ODL) is used to describe Automation ob
model constructs. However, many constructs supported by ODL are not supporte
Automation. Therefore, this specification is confined to the Automation-compatible
ODL constructs.

As described in the Interworking Architecture chapter, many implementation choices
are open to the vendor in building these mappings. One valid approach is to gene
and compile mapping code, an essentially static approach. Another is to map obj
dynamically.

Although some features of the CORBA-Automation mappings address the issue o
inverting a mapping back to its original platform, this specification does not assum
the requirement for a totally invertible mapping between Automation and CORBA.

Contents

This chapter contains the following sections.

Section Title Page

“Mapping CORBA Objects to Automation” 19-2

“Mapping for Interfaces” 19-3

“Mapping for Basic Data Types” 19-9

“IDL to ODL Mapping” 19-12

“Mapping for Object References” 19-15

“Mapping for Enumerated Types” 19-17
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 19-1

19

iew

ns
is not
19.1 Mapping CORBA Objects to Automation

19.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote
CORBA object: the OLE Automation Controller; the COM Communication
Infrastructure; the OLE system registry; the client-side Automation View; the
operation’s type information; the Object Request Broker; and the CORBA object’s
implementation. These are illustrated in Figure 19-1 (the call to the Automation V
could be a call in the same process).

Figure 19-1 CORBA Object Architectural Overview

The Automation View is an Automation server with a dispatch interface that is
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an
Automation View Interface. The Automation server encapsulates a CORBA object
reference and maps incoming OLE Automation invocations into CORBA invocatio
on the encapsulated reference. The creation and storage of the type information
specified.

“Mapping for Arrays and Sequences” 19-18

“Mapping for CORBA Complex Types” 19-19

“Mapping Automation Objects as CORBA Objects” 19-38

“Older Automation Controllers” 19-49

“Example Mappings” 19-51

Section Title Page

OLE Automation
Controller

System

Automation

ORB

Object
Implementation

TypeInfo

COM

Registry

Communication

View
19-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

iew
s
 OLE

s

ere
L

pped

nd
There is a one-to-one correspondence between the methods of the Automation V
Interface and operations in the CORBA interface. The Automation View Interface’
methods translate parameters bidirectionally between a CORBA reference and an
reference.

Figure 19-2 Methods of the Automation View Interface Delegate to the CORBA Stub

19.1.2 Main Features of the Mapping

• OMG IDL attributes and operations map to Automation properties and method
respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation wh
possible. Since Automation supports a limited set of data types, some OMG ID
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation
interfaces with appropriate attributes and operations. User exceptions are ma
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, a
overflow conditions are identified.

• OMG IDL sequences and arrays map to VARIANTS containing an Automation
Safearray.

19.2 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View
Interface. For example, the following CORBA interface

Client Space Object Space

CORBA Stub
MyInterface methods CORBA Skeleton

MyInterface methods

Automation View

- Interface DIMyInterface

Client App

Real CORBA Object
Interface MyInterface

pDIMyInterface->Invoke(A_METHOD...

Network
CORBA, v2.4.2 Mapping for Interfaces February 2001 19-3

19

 that

t

L

rface
module MyModule // OMG IDL
{

interface MyInterface
{

// Attributes and operations;
...

};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{

// Properties and methods;
...

};

The interface DIMyModule_account is an Automation Dual Interface. A Dual
Interface is a COM vtable-based interface, which derives from IDispatch, meaning
its methods can be late-bound via IDispatch::Invoke or early-bound through the
vtable portion of the interface. Thus, DIMyModule_account contains the methods of
IDispatch as well as separate vtable-entries for its operations and property get/se
methods.

19.2.1 Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG ID
attribute maps to an ODL property, which has one method to get and one to set the
value of the property. An OMG IDL readonly attribute maps to an OLE property,
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation inte
follows the rules described in “Ordering Rules for the CORBA->OLE Automation
Transformation” part of Section 17.5.2, “Detailed Mapping Rules,” on page 17-13.

For example, given the following CORBA interface,

interface account // OMG IDL
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};

the corresponding Automation View Interface is:

[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL
19-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

9-9,

 the

ages
RBA
ation

e
ing

st
es

 value
 the

 of
HRESULT makeLodgement([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

}

OMG IDL in , out , and inout parameters map to ODL [in] , [out] , and [in,out]
parameters, respectively. Section 19.3, “Mapping for Basic Data Types,” on page 1
explains the mapping for basic data types. The mapping for CORBA oneway
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument in
operation’s signature may be tagged [retval,out] . An argument tagged in this fashion
is considered syntactically to be a return value. Automation controller macro langu
map this special argument to a return value in their language syntax. Thus, a CO
operation’s return value is mapped to the last argument in the corresponding oper
of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optional out parameter of
type VARIANT. The optional parameter returns explicit exception information in th
context of each property set/get or method invocation. See Section 19.8.9, “Mapp
CORBA Exceptions to Automation Exceptions,” on page 19-30 for a detailed
discussion of how this mechanism works.

If the CORBA operation has no return value, then the optional parameter is the la
parameter in the corresponding Automation operation. If the CORBA operation do
have a return value, then the optional parameter appears directly before the return
in the corresponding Automation operation, since the return value must always be
last parameter.

19.2.2 Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy
Automation View Interfaces.

For example, given the interface account and its derived interface checkingAccount
defined as follows,

module MyModule { // OMG IDL
interface account {

attribute float balance;
readonly attributestring owner;
CORBA, v2.4.2 Mapping for Interfaces February 2001 19-5

19

a
ing

d on

 call
void makeLodgement (in float amount, out float
balance);

void makeWithdrawal (in float amount, out float
theBalance);

};
interface checkingAccount: account {

readonly attribute float overdraftLimit;
boolean orderChequeBook ();

};
};

the corresponding Automation View Interfaces are as follows

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ,
[retval,out] short * val);
[propget] HRESULT overdraftLimit (
[retval,out] short * val);

};

19.2.3 Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance; therefore, a direct mapping of
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapp
splits such a hierarchy, at the points of multiple inheritance, into multiple singly-
inherited strands.

The mechanism for determining which interfaces appear on which strands is base
a left branch traversal of the inheritance tree. At points of multiple inheritance, the
interface that is first in an ordering of the parent interfaces is included in what we
19-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

he
ider

the
-C.

te
d of

ers,

the

 they
d,

 of
the main strand, and other interfaces are assigned to other, secondary strands. (T
ordering of parent interfaces is explained later in this section.) For example, cons
the CORBA interface hierarchy, shown in Figure 19-3.

Figure 19-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows:

• B and C derive from A

• D derives from B and C

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance
hierarchies, shown in Figure 19-4.

Figure 19-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following
left strand B at this point, our main strand is A-B-D and our secondary strand is A
However, to access all of the object’s methods, a controller would have to naviga
among these disjoint strands via QueryInterface. While such navigation is expecte
COM clients and might be an acceptable requirement of C++ automation controll
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate
operations of the secondary strands into the interface of the main strand. In our
example, we add the operations of C to D (A’s operations are not added because
already exist in the main strand). Thus, D has all the methods of the hierarchy an
more important, an Automation controller holding a reference to D can access all
the methods of the hierarchy without calling QueryInterface .

A

B C

D

E

A

B C

D

E

(+ methods of C)

A

CORBA, v2.4.2 Mapping for Interfaces February 2001 19-7

19

e

s, a

ng is

e

ple
he

ne

he

In order to have a reliable, deterministic, portable way to determine the inheritanc
chain at points of multiple inheritance, an explicit ordering model must be used.
Furthermore, to achieve interoperability of virtual function tables for dual interface
precise model for ordering operations and attributes within an interface must be
specified.

Within an interface, attributes should appear after operations and both should be
ordered in ascending order based upon the operation/attribute names. The orderi
based on a byte-by-byte comparison of the ISO-Latin-1 encoding values of the
operation names going from first character to last. For non-readonly attributes, th
[propget] method immediately precedes the [propput] method. This ordering
determines the position of the vtable portion of a Dual Interface. At points of multi
inheritance, the base interfaces should be ordered from left to right in all cases, t
ordering is based on ISO Latin-1. Thus, the leftmost branch at a point of multiple
inheritance is the one ordered first among the base classes, not necessarily the o
listed first in the inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy
conforming to Figure 19-3 on page 19-7.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

interface B: A{
void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that t
ordering of the base interfaces for D has been changed based on our ISO Latin-1
alphabetic ordering model and that operations from C are added to interface D.

// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);}
19-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

 D’s
 C

fewer
an be

[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);}

[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed before
operations. The ordering of these operations obeys the rules for operations within
and is independent of the ordering within D.

19.3 Mapping for Basic Data Types

19.3.1 Basic Automation Types

Table 19-1 lists the basic data types supported by Automation. The table contains
data types than those allowed by ODL because not all types recognized by ODL c
handled by the marshaling of IDispatch interfaces and by the implementation of
ITypeInfo::Invoke . Arguments and return values of operations and properties are
restricted to these basic types.

Table 19-1Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as a return type for a function, or in a function
parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.
CORBA, v2.4.2 Mapping for Basic Data Types February 2001 19-9

19

.

n

 the

ould

,
The formal mapping of CORBA types to Automation types is shown in Table 19-2

19.3.2 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translatio
of the Automation and CORBA parameters and return types. It must map from
Automation to CORBA for in parameters and from CORBA to Automation for out
parameters. The translation logic must handle the special conditions described in
following sections.

19.3.2.1 Converting Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation sh
return the HRESULT DISP_E_OVERFLOW.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since December
30, 1899.

SCODE Built-in error type. In Win16, does not include additional data
contained in an HRESULT. In Win32, identical to HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the mapping
an IDispatch pointer parameter is an object reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be
represented by its IUnknown interface.)

Table 19-2 OMG CORBA to Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean VARIANT_BOOL

char UI1

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long

Type Description
19-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

e of

True
ero

only
19.3.2.2 Demoting CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an
Automation long, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

19.3.2.3 Demoting Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum valu
a CORBA::UShort , then the View operation should return the HRESULT
DISP_E_OVERFLOW.

19.3.2.4 Converting Automation boolean to CORBA boolean and CORBA
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0).
and false values for Automation boolean are, respectively, negative one (-1) and z
(0). Therefore, true values need to be adjusted accordingly.

19.3.3 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLE BSTR. For example,
given the OMG IDL definitions,

// OMG IDL
string sortCode<20>;
string name;

the corresponding ODL code is

// ODL
BSTR sortCode;
BSTR name;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the
support for internationalization of strings defined at this time.

When mapping a fixed length string, the Automation view is required to raise the
exception DISP_E_OVERFLOW if a BSTR is longer than the maximum size.
CORBA, v2.4.2 Mapping for Basic Data Types February 2001 19-11

19

 as

nd

es
19.4 IDL to ODL Mapping

19.4.1 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA
interface actually exists. Other equivalent expressions of CORBA interfaces, such
the contents of an Interface Repository, may be used. Moreover, there is no
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface a
ODL is the appropriate medium for describing an Automation View Interface.
Therefore, the following OMG IDL code describes a CORBA interface that exercis
all of the CORBA base data types in the roles of attribute, operation in parameter,
operation out parameter, operation inout parameter, and return value. The OMG
IDL code is followed by ODL code describing the Automation View Interface that
would result from a conformant mapping.

module MyModule // OMG IDL
{

interface TypesTest
{

attribute boolean boolTest;
attribute char charTest;
attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned short ushortTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (

in boolean boolTest,
in char charTest,
in double doubleTest,
in float floatTest,
in long longTest,
in octet octetTest,
in short shortTest,
in string stringTest,
in string<10> stringnTest,
in unsigned long ulongTest,
in unsigned short ushortTest);
19-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19
// Gets all the attributes
boolean getAll (

out boolean boolTest,
out char charTest,
out double doubleTest,
out float floatTest,
out long longTest,
out octet octetTest,
out short shortTest,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongTest,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolTest,
inout char charTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout octet octetTest,
inout short shortTest,
inout string stringTest,
inout string<10> stringnTest,
inout unsigned long ulongTest,
inout unsigned short ushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string stringReturn();
string<10> stringnReturn();
unsigned long ulongReturn ();
unsigned short ushortReturn();

}; // End of Interface TypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.

[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ,
CORBA, v2.4.2 IDL to ODL Mapping February 2001 19-13

19
[retval,out] double *val);
HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] float *val);
HRESULT getAll ([out] short *boolTest,

[out] short *charTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *octetTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] BSTR *stringnTest,
[out] long *ulongTest,
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * val);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *val);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT setAll ([in] short boolTest,
[in] short charTest,
[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short octetTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] BSTR stringnTest,
[in] long ulongTest,
[in] long ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * val);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *octetTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest,
[in,out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *val);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] BSTR *val);

HRESULT stringnReturn ([optional,out] VARIANT * exep_OBJ,
[retval,out] BSTR *val);

HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *val);

HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ,
19-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

 an

bes
[retval,out] long *val);
[propget] HRESULT boolTest([retval,out] short *val);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *val);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double *val);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float *val);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *val);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short *val);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short *val);
[propget] HRESULT shortTest([retval,out] short *val);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR *val);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR *val);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *val);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long *val);
[propput] HRESULT ushortTest([in] long ushortTest);

}

19.5 Mapping for Object References

19.5.1 Type Mapping

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The OMG IDL code defines
interface Simple and another interface that references Simple as an in parameter, as an
out parameter, as an inout parameter, and as a return value. The ODL code descri
the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{

// A simple object we can use for testing object references
interface Simple

{
attribute short shortTest;

};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

 out Simple outTest,
 inout Simple inoutTest);

};
CORBA, v2.4.2 Mapping for Object References February 2001 19-15

19

s
}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.

[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *val);
[propput] HRESULT shortTest([in] short shortTest);

}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** val);

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple **val);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*simpleTest);

}

19.5.2 Object Reference Parameters and IForeignObject

As described in the Interworking Architecture chapter, Automation and COM View
must expose the IForeignObject interface in addition to the interface that is
isomorphic to the mapped CORBA interface. IForeignObject provides a mechanism
to extract a valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as an in parameter to an
operation M in View A. Operation M must somehow convert View B to a valid
CORBA object reference.

In Figure 19-5, Automation Views expose IForeignObject , as required of all Views.

Figure 19-5 Partial Picture of the Automation View

Automation View
Object

IDispatch

IForeignObject

IUnknown

...
19-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

w
as a

urn

the

he
The sequence of events involving IForeignObject::GetForeignReference is as
follows:

• The client calls Automation-View-A::M , passing an IDispatch-derived pointer to
Automation-View-B.

• Automation-View-A::M calls IDispatch::QueryInterface for IForeignObject.

• Automation-View-A::M calls IForeignObject::GetForeignReference to get the
reference to the CORBA object of type B.

• Automation-View-A::M calls CORBA-Stub-A::M with the reference, narrowed to
interface type B, as the object reference in parameter.

19.6 Mapping for Enumerated Types

CORBA enums map to Automation enums. Consider the following example

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {
void op1(in color col);

};
};

which maps to the following ODL:

// ODL
typedef enum {MyModule_red, MyModule_green, MyModule_blue}
MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out]
VARIANT * excep_OBJ);

}

Internally, Automation maps enum parameters to the platform’s integer type. (For
Win32, the integer type is equivalent to a long.) If the number of elements in the
CORBA enum exceeds the maximum value of an integer, the condition should be
trapped at some point during static or dynamic construction of the Automation Vie
Interface corresponding to the CORBA interface in which the enum type appears
parameter. If the overflow is detected at run-time, the Automation View operation
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View
Interface exceeds the maximum value of the enum, the View operation should ret
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into
controller scripting language context, vendors may wish to generate a header file
containing an appropriate enum declaration or a set of constant declarations for t
CORBA, v2.4.2 Mapping for Enumerated Types February 2001 19-17

19

ot
r than
s
d type

n the

se

ding
DL
I for
y.

ded
ces
pts

he

he
n the
client language. Since the method for doing so is an implementation detail, it is n
specified here. However, it should be noted that some languages type enums othe
as longs, introducing the possibility of conversion errors or faults. If such problem
arise, it is best to use a series of constant declarations rather than an enumerate
declaration in the client header file.

For example, the following enum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for
interfaces. That is, the name should be fully scoped with the names of enclosing
modules or interfaces. (See Section 17.7.8, “Naming Conventions for View
Components,” on page 17-30.)

If the enum is declared at global OMG IDL scope, as in the previous example, the
name of the enum should also be included in the constant name.

19.7 Mapping for Arrays and Sequences

OMG IDL Arrays and Sequences are mapped as a VARIANT containing an
Automation SAFEARRAY. SAFEARRAYs are one- or multi-dimensional arrays who
elements are of any of the basic Automation types. The following ODL syntax
describes an array parameter:

SAFEARRAY (elementtype) arrayname

Safearrays have a header that describes certain characteristics of the array inclu
bounding information, and are thus relatively safe for marshaling. Note that the O
declaration of Safearrays does not include bound specifiers. OLE provides an AP
allocating and manipulating Safearrays, includes a procedure for resizing the arra

For bounded Sequence, Safearray will grow dynamically up to the specified boun
size and maintain information on its current length. Unbounded OMG IDL sequen
are mapped to VARIANTS containing a Safearray with some default bound. Attem
to access past the boundary result in a resizing of the Safearray.

Since ODL Safearray declarations contain no boundary specifiers, the bounding
knowledge is contained in the Automation View. A method of the Automation View
Interface, which has the VARIANT containing the Safearray as a parameter, has t
intelligence to handle the parameter properly. When the VARIANT is submitted asin
parameters, the View method uses the Safearray API to dynamically repackage t
Safearray as a CORBA array, bounded sequence, or unbounded sequence. Whe
19-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

array.

e size
 a
 to
View

e, in

 to
VARIANT containing the Safearray is an out parameter, the View method uses the
Safearray API to dynamically repackage the CORBA array or sequence as a Safe
When an unbounded sequence grows beyond the current boundary of the
corresponding Safearray, the View’s method uses the Safearray API to increase th
of the array by one allocation unit. The size of an allocation unit is unspecified. If
Safearray is mapped from a bounded sequence and a client of the View attempts
write to the Safearray past the maximum element of the bounded sequence, the
operation considers this a run-time error and returns the HRESULT
DISP_E_OVERFLOW.

Multidimensional OMG IDL arrays map to VARIANTs containing multidimensional
Safearrays. The order of dimensions in the OMG IDL array from left to right
corresponds to ascending order of dimensions in the Safearray. If the number of
dimensions of an input SAFEARRAY does not match the CORBA type, the
Automation view will generate the HRESULT DISP_E_TYPEMISMATCH.

19.8 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions, and Exceptions—cannot be mapped
directly to ODL constructed types, as Automation does not support them as valid
parameter types. Instead, constructed types are mapped to Pseudo-Automation
Interfaces. The objects that implement Pseudo-Automation Interfaces are called
pseudo-objects. Pseudo-objects do not expose the IForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from
IDispatch as do Automation View Interfaces. Instead, they derive from
DIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch
{

[propget] HRESULT ([retval,out]
BSTR *val);

HRESULT ([in] IDispatch *pDispatch,
[out, retval] IDispatch **val);

}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as a generic (nondual) Automation Interfac
which case it is named DForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}

The direct use of the INSTANCE repositoryID () is deprecated. The approved way
retrieve the repositoryId is through the DIObjectInfo::unique id () method.
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-19

19

y to

n
ames
RBA

e, in

e
A in

e
The direct use of the INSTANCE clone () method is deprecated. The approved wa
clone the data referred to by a reference is to use the DIObjectInfo::clone () method.

19.8.1 Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is a Pseudo-Automatio
Interface containing properties corresponding to the members of the struct. The n
of a Pseudo-Struct’s properties are identical to the names of the corresponding CO
struct members.

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from
DIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodless DICORBAStruct interface is to mark the interface as
having its origin in the mapping of a CORBA struct. This information, which can b
stored in a type library, is essential for the task of mapping the type back to CORB
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interfac
derives from DICORBAStruct .
19-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

nion.
 with

he
the

e, in

l
// IDL
interface S
{

attribute long l;
attribute double d;
attribute float f;

};

19.8.2 Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-U
A Pseudo-Union contains properties that correspond to the members of the union,
the addition of a discriminator property. The discriminator property’s name is
UNION_d, and its type is the Automation type that corresponds to the OMG IDL
union discriminant.

If a union element is accessed from the Pseudo-Union, and the current value of t
discriminant does not match the property being requested, then the operation of
Pseudo-Union returns DISP_E_TYPEMISMATCH. Whenever an element is set, the
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interface DICORBAUnion which, in
turn, derives from DIForeignComplexType :

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{

[hidden] HRESULT repositoryID ([out) BSTR * val);
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBAUnion and its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}

To support OMG IDL described unions that support multiple case labels per union
branch, the DICORBAUnion2 interface is defined in a way to provide two additiona
accessors.

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion2 : DICORBAUnion
{

HRESULT SetValue([in] long disc, [in] VARIANT val);
[propget, id(-4)]
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-21

19

sly.

e
nd a
HRESULT CurrentValue([out, retval] VARIANT * val);
};

The SetValue method can be used to set the discriminant and value simultaneou
The CurrentValue method will use the current discriminant value to initialize the
VARIANT with the union element. All mapped unions should support the
DICORBAUnion2 interface.

The uuid for the DICORBAUnion2 interface is:
{1a2face0-2199-11d1-9d47-00a024a73e4f}

The uuid for the DCORBAUnion2 interface is:
{5d4b8bc0-2199-11d1-9d47-00a024a73e4f}

An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long)
{

case 1: long l;
case 2: float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped
Automation Dual Interface derives from DICORBAUnion2.

interface A; // IDL

interface U
{

// Switch discriminant
readonly attribute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

Note – The mapping for the OMG IDL default label will be ignored if the cases ar
exhaustive over the permissible cases (for example, if the switch type is boolean a
case TRUE and case FALSE are both defined).

19.8.3 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to the DICORBATypeCode interface. The
DICORBATypeCode interface is defined as follows.
19-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

e, in
// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * val);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *val);
[propget] HRESULT name([retval,out] BSTR * val);

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT

member_count([retval,out]
long * val);

HRESULT member_name([in] long index,[retval,out]
BSTR * val);

HRESULT member_type([in] long index,
[retval,out] DICORBATypeCode ** val),

// tk_union
HRESULT member_label([in] long index,[retval,out]

VARIANT * val);
[propget] HRESULT discriminator_type([retval,out]

IDispatch ** val);
[propget] HRESULT default_index([retval,out]

long * val);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * val);

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out]

IDispatch ** val);
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBATypeCode and its UUID is:
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-23

19

A

e, in

A

r
{E977F903-3B75-11cf-BBFC-444553540000}

When generating Visual Basic constants corresponding to the values of the
CORBA_TCKind enumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

Since DICORBATypeCode derives from DIForeignComplexType , objects that
implement it are, in effect, pseudo-objects. See Section 19.8, “Mapping for CORB
Complex Types,” on page 19-19 for a description of the DIForeignComplexType
interface.

19.8.4 Mapping for anys

The OMG IDL any data type maps to the DICORBAAny interface, which is declared
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType
{

[propget] HRESULT value([retval,out]
VARIANT * val);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out]

DICORBATypeCode ** val);
}

The UUID for DICORBAAny is:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBAAny and its UUID is:

{E977F904-3B75-11cf-BBFC-444553540000}

Since DICORBAAny derives from DIForeignComplexType , objects that
implement it are, in effect, pseudo-objects. See Section 19.8, “Mapping for CORB
Complex Types,” on page 19-19 for a description of the DIForeignComplexType
interface.

Note that the VARIANT value property of DICORBAAny can represent a Safearray o
can represent a pointer to a DICORBAStruct or DICORBAUnion interface.
Therefore, the mapping for any is valid for an any that represents a CORBA array,
sequence, structure, or union.
19-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

aces,

e
e, the
19.8.5 Mapping for Typedefs

The mapping of OMG IDL typedef definitions to OLE depends on the OMG IDL
type for which the typedef is defined. No mapping is provided for typedef
definitions for the basic types: float , double , long, short , unsigned long ,
unsigned short , char , boolean , and octet . Hence, a Visual Basic programmer
cannot make use of these typedef definitions.

// OMG IDL
module MyModule {
module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interf
the mapping creates an alias for the Automation View object. A conforming
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

19.8.6 Mapping for Constants

The notion of a constant does not exist in Automation; therefore, no mapping is
prescribed for a CORBA constant.

As with the mapping for enums, some vendors may wish to generate a header fil
containing an appropriate constant declaration for the client language. For exampl
following OMG IDL declaration

// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-25

19

ical

, the

les

ming

he
19.8.7 Getting Initial CORBA Object References

The DICORBAFactory interface, described in Section 17.7.3, “ICORBAFactory
Interface,” on page 17-24, provides a mechanism that is more suitable for the typ
programmer in an Automation controller environment such as Visual Basic.

The implementation of the DICORBAFactory interface is not prescribed, but possible
options include delegating to the OMG Naming Service and using the Windows
System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library
code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the ru
for arguments to DICORBAFactory::GetObject described in Section 17.7.3,
“ICORBAFactory Interface,” on page 17-24.

A special name space for names with a period in the first position can be used to
resolve an initial reference to the OMG Object Services (for example, the Naming
Service, the Life Cycle Service, and so forth). For example, a reference for the Na
Service can be found using:

Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally the GetObject method will be used to retrieve object references from t
Registry/Naming Service. The CreateObject method is really just a shorthand
notation for GetObject (“someName”).create. It is intended to be used for object
references to objects supporting a CORBAServices Factory interface.

1. It is always permissible to directly register a CORBA Automation bridging object directly
with the Windows Registry. The administration and assignment of ProgIds for direct regis-
tration should follow the naming rules described in the Interworking Architecture chapter.
19-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

ng an
the
ject

tion

e, in

m a

The

,
19.8.8 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces,
creating an instance of a mapped CORBA complex type is not the same as creati
instance of a mapped CORBA interface. The main difference lies in the fact that
name space for CORBA complex types differs fundamentally from the CORBA ob
and factory name spaces.

To support creation of instances of Automation objects exposing Pseudo-Automa
Interfaces, we define a new interface, derived from DICORBAFactory (see
Section 17.7.3, “ICORBAFactory Interface,” on page 17-24 for a description of
DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName,

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The CreateType method creates an Automation object that has been mapped fro
CORBA complex type. The parameters are used to determine the specific type of
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface.
most derived interface type of the CORBA object bound to the View identifies the
scope within which the second parameter, typeName, is interpreted. For example
assume the following CORBA interface exists:

// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}

CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-27

19

ins
ace

ce,

e,
es.

ted.

ed.

ce,

turns
void op(in S s);
//

}
}

}

The following Visual Basic example illustrates the primary use of CreateType:

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject(“...”)

‘ creates Automation View of the CORBA object
supporting interface ‘ A::B::C

Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType:

• The typeName parameter can contain a fully-scoped name (i.e., the name beg
with a double colon “::”). If so, then the first parameter defines the type name sp
within which the fully scoped name will be resolved.

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space
associated with the scopingObject parameter, then CreateObject returns the
HRESULT TYPE_E_UNDEFINEDTYPE.

The CreateTypeByID method accomplishes the same general goal of CreateTyp
the creation of Automation objects that are mapped from CORBA-constructed typ
The second parameter, repositoryID, is a string containing the CORBA Interface
Repository ID of the CORBA type whose mapped Automation Object is to be crea
The Interface Repository associated with the CORBA object identified by the
scopingObject parameter defines the repository within which the ID will be resolv

The following rules apply to CreateTypeById :

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the repositoryID parameter does not identify a valid type in the Interface
Repository associated with the scopingObject parameter, then CreateObject re
the HRESULT TYPE_E_UNDEFINEDTYPE.
19-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

ion

held

e, in
19.8.8.1 ITypeFactory Interface

The DICORBAFactoryEx interface delegates its CreateType and CreateTypeByID
methods to an ITypeFactory interface on the scoping object. ITypeFactory is
defined as a COM interface because it is not intended to be exposed to Automat
controllers. Every Automation View object must support the ITypeFactory
interface:

//MIDL
interface ITypeFactory: IUnknown
{

HRESULT CreateType([in] LPWSTR typeName, [out] VARIANT
*val);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *val);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods on ITypeFactory provide the behaviors previously described for the
corresponding DICORBAFactoryEx methods.

19.8.8.2 DIObjectInfo Interface

The DIObjectInfo interface provides helper functions for retrieving information
about a composite data type (such as a union, structure, exception, …), which is
as an IDispatch pointer.

// ODL
[odl, dual, uuid(...)]
interface DIObjectInfo: DICORBAFactoryEx
{

HRESULT type_name([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *typeName);

HRESULT scoped_name([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *repositoryId);

HRESULT unique_id([in] IDispatch *target,
[out, optional] VARIANT *except_obj,
[out, retval] BSTR *repositoryId);

}

The UUID for DIObjectInfo is:
{6dd1b940-21a0-11d1-9d47-00a024a73e4f}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DObjectInfo and its UUID is:
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-29

19

h

 was
ses
the

ield

se to
a
y

a

fired
 is
the
g

{8fbbf980-21a0-11d1-9d47-00a024a73e4f}

The Automation object having the ProgId “CORBA.Factory ” exposes
DIObjectInfo .

19.8.9 Mapping CORBA Exceptions to Automation Exceptions

19.8.9.1 Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as
defined in C++ and CORBA. Automation methods are invoked with a call to
IDispatch::Invoke or to a vtable method on a Dual Interface. These methods
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, whic
have the severity bit (bit 31 being the high bit) set, indicate that an error occurred
during the call, and thus are considered to be error codes. (In Win16, an SCODE
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purpo
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility f
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choo
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If
non-NULL pointer is passed, the callee can choose to handle an error condition b
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO
structure.

OLE also provides Error Objects, which are task local objects containing similar
information to that contained in the EXCEPINFO structure. Error objects provide
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically
when an invocation returns an HRESULT with the severity bit set. If the HRESULT
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in
EXCEPINFO structure or in the Error Object can be extracted in the error handlin
routine.

19.8.9.2 CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error
handling model. Therefore, all methods of Automation View Interfaces have an
additional, optional out parameter of type VARIANT, which is filled in by the View
when a CORBA exception is detected.

Both CORBA System exceptions and User exceptions map to Pseudo-Automation
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from
IForeignException , which in turn derives from IForeignComplexType :
19-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

,
le on

e, in

as

e

e
, and
//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long *val);
[propget] HRESULT EX_repositoryID([retval,out] BSTR *val);

};

The EX_Id() method will return the name of the exception. For CORBA exceptions
this will be the unscoped name of the exception. Additional accessors are availab
the DIObjectInfo interface for returning the scoped name and repository id for
CORBA exceptions.

Note – Renaming EX_RepositoryId to EX_Id does break backwards compatibility,
but should simplify the use of exceptions from VB.

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attribute EX_majorCode defines the broad category of exceptions raised, and h
one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2

These values may be specified as an enum in the typelibrary information:

typedef enum {NO_EXCEPTION,
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attribute EX_repositoryID is a unique string that identifies the exception. It is th
exception type’s repository ID from the CORBA Interface Repository.

19.8.9.3 CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whos
properties correspond one-to-one with the attributes of the CORBA user exception
which derives from the methodless interface DICORBAUserException :
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-31

19

e, in

h it

o-
ULT
e

he

l
t
//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as thoug
were defined as an interface. The declaration

// OMG IDL
exception reject
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

19.8.9.4 Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseud
Automation Interface, and the operation on the Pseudo-Interface returns the HRES
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from th
operation prevents an active Visual Basic Error Trap from being fired, allowing the
caller to retrieve the exception parameter in the context of the invoked method. T
View fills in the VARIANT by setting its vt field to VT_DISPATCH and setting the
pdispval field to point to the pseudo-exception. If no exception occurs, the optiona
parameter is filled with an IForeignException pointer on a pseudo-exception objec
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked via IDispatch::Invoke , then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.
19-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

E

e
• If the method was called via the vtable portion of a Dual Interface, then the OL
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement th
standard OLE interface ISupportErrorInfo.

19.8.9.5 CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception
DICORBASystemException , which derives from DIForeignException :

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

Table 19-3EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION

Table 19-4ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-33

19

e, in

er

and

ption
tions
n

T,
9-35.

 to
[propget] HRESULT EX_minorCode([retval,out] long *val);
[propget] HRESULT EX_completionStatus([retval,out] long

*val);
}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attribute EX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE =

These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES,
COMPLETION_NO,
COMPLETION_MAYBE }
CORBA_CompletionStatus;

19.8.9.6 Operations that raise system exceptions

As is the case for UserExceptions, system exceptions can be returned to the call
using the optional last parameter, which is present on all mapped methods.

If the optional parameter is supplied and a system exception occurs, the optional
parameter is filled in with an IForeignException pointer to the pseudo-exception,
the automation return value is S_FALSE. If no exception occurs, the optional
parameter is filled with an IForeignException pointer whose EX_majorCode
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the exce
is looked up in Table 19-5. This table maps a subset of the CORBA system excep
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exceptio
is on the table, the equivalent HRESULT is returned. If the exception is not on the
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESUL
then the exception is mapped to an HRESULT according to Table 19-5 on page 1
This new HRESULT is used as follows.

• If the operation was invoked via IDispatch::Invoke :

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set
the new HRESULT value.
19-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT

Table 19-5CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW

Table 19-6EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those
of the CORBA interface, which this Automation
View is representing.

bstrDescription CORBA System Exception: [<exception repository
id>] minor code [<minor code>][<completion
status>]
where the <exception repository id> and <minor
code> are those of the CORBA system exception.
<completion status> is “YES,” “NO,” or
“MAYBE” based upon the value of the system
exceptions’s CORBA completion status. Spaces and
square brackets are literals and must be included in
the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 18-3 on
page 18-12.
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-35

19

eudo-

7.8,
me
A

 used

d to

l

.
19.8.10 Conventions for Naming Components of the Automation View

The conventions for naming components of the Automation View are detailed in
Section 17.7.8, “Naming Conventions for View Components,” on page 17-30.

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Ps
Exceptions

The formulas used to name components of the Automation View (see Section 17.
“Naming Conventions for View Components,” on page 17-30) are also used to na
components Pseudo-Structs, Pseudo-Unions, and Pseudo-Exceptions. The CORB
type name is used as input to the formulas, just as the CORBA interface name is
as input to the formulas when mapping interfaces.

These formulas apply to the name and IID of the Pseudo-Automation Interface, an
the Program Id and Class Id of an object implementing the Pseudo-Automation
Interface if it is registered in the Windows System Registry.

19.8.12 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an Automation Dua
Interface, it is also acceptable to map it as a generic Dispatch Interface.

Table 19-7ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code>
are those of the CORBA system exception. <completion
status> is “YES,” “NO,” or “MAYBE” based upon the
value of the system exceptions’s CORBA completion status
Spaces and square brackets are literals and must be
included in the string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
19-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

r

quired

nces
 the

s
.
for
Note – All views that expose the dual interface must respond to QueryInterface fo
both the dual interface IID as well as for the non-dual interface IID.

In this case, the normal methods and attribute accessor/assign methods are not re
to have HRESULT return values. Instead, an additional “dispinterface” is defined,
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type1> arg1, [out] <type2> arg2,
[retval, out] <return type> *val)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type1> arg1, [out] <type2> arg2)

Using the example from Section 19.2, “Mapping for Interfaces,” on page 19-3:

interface account
{// OMG IDL

attribute float balance;
readonly attribute string owner;
void makeLodgement (in float amount, out float
balance);
void makeWithdrawal (in float amount, out float
balance);

};

the corresponding Iaccount interfaces are defined as follows.

[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f), oleautomation]
dispinterface Daccount: IUnknown {// ODL

properties:
[id(0)] float balance;
[id(i), readonly] BSTR owner;

methods:
[id(2)] void makeLodgement([in] float amount,

[out] float *balance,
[out, optional]VARIANT OBJ);

[id(3)] void makeWithdrawal ([in] float amount,
[out] float *balance,
[out,optional]VARIANT *excep OBJ);

};

The dispatch interface is Daccount. In the example used for mapping object refere
in Section 19.5, “Mapping for Object References,” on page 19-15, the reference to
Simple interface in the OMG IDL would map to a reference to DMyModule_Simple
rather than DIMyModule_Simple . The naming conventions for Dispatch Interface
(and for their IIDs) exposed by the View are slightly different from Dual Interfaces
See Section 17.7.8, “Naming Conventions for View Components,” on page 17-30
details.
CORBA, v2.4.2 Mapping for CORBA Complex Types February 2001 19-37

19

nt,

ject

ts,
rfaces

t

ally.
-

t is
BA

ts
ctory

 the
egal
hine

ly

e. A
The Automation View Interface must correctly respond to a QueryInterface for the
specific Dispatch Interface Id (DIID) for that View. By conforming to this requireme
the Automation View can be strongly type-checked. For example,
ITypeInfo::Invoke , when handling a parameter that is typed as a pointer to a
specific DIID, calls QueryInterface on the object for that DIID to make sure the ob
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as struc
unions, exceptions and the other noninterface constructs mapped to dispatch inte
can also be exposed as nondual dispatch interfaces.

19.8.13 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View objects
must either be capable of being aggregated in the standard COM fashion or mus
follow COM rules to indicate their inability or unwillingness to be aggregated.

The same rule applies to pseudo-objects.

19.8.14 DII and DSI

Automation interfaces are inherently self-describing and may be invoked dynamic
There is no utility in providing a mapping of the DII interfaces and related pseudo
objects into OLE Automation interfaces.

19.9 Mapping Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. I
best to solve this problem in a manner similar to the approach for exposing COR
objects as Automation objects.

19.9.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implemen
one or more dispatch interfaces and whose server application exposes a class fa
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of
operations of each of those interfaces. The CORBA View object is in every way a l
CORBA object. It is not an Automation object. The skeleton is placed on the mac
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View, which as previous
explained, is used to represent a CORBA object as an Automation object. The
Automation View has to reside on the client side because COM is not distributabl
copy of the Automation View needs to be available on every client machine.
19-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

e

 of the

tion

s,
The CORBA View, however, can live in the real CORBA object’s space and can b
represented on the client side by the CORBA system’s stub because CORBA is
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the term CORBA View is distinct from CORBA stubs
and skeletons, COM proxies and stubs, and Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA
operations translate parameter types and delegate to the corresponding methods
real Automation object. When a CORBA client wishes to instantiate the real
Automation object, it instantiates the CORBA View.

Thus, from the point of view of the client, it is interacting with a CORBA object,
which may be a remote object. CORBA handles all of the interprocess communica
and marshaling. No COM proxies or stubs are created.

Figure 19-6 The CORBA View: a CORBA Object, which is a Client of a COM Object

19.9.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operation
respectively.

Client Space Object Space

CORBA Stub

MyInterface methods
CORBA Skeleton

MyInterface methods

CORBA Client App

Real Automation Object

IUnknown

((MyInterface *)pObject)->Method(...

Network

CORBA View

MyInterface methods
pUnknown->QueryInterface(DIID_MyInterface,&
pIntface->Method(...

Dual Interface DIMyInterface

ORB
CORBA, v2.4.2 Mapping Automation Objects as CORBA Objects February 200119-39

19

ew
mote

nd

A
• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where
possible.

• Automation errors are mapped similarly to COM errors.

19.9.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA Vi
Interfaces. These interfaces may be registered as normal CORBA objects on the re
machine.

19.9.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward.
Each interface maps to an OMG IDL interface. In general, we map all methods a
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interface IMyModule_account ,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account
{

readonly attribute float balance;
};

If the ODL interface does not have a parameter with the [retval,out] attributes,
its return type is mapped to long. This allows COM SCODE values to be passed
through to the CORBA client.

19.9.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORB
View Interfaces.

For example, given the interface “account” and its derived interface
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance)[in] float balance);
19-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

MG
L
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out]
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};

the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attribute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in float amount, out float

theBalance);
};
interface MyModule_checkingAccount: MyModule_account {

readonly attributeshort overdraftLimit;
short orderChequeBook ();

};

19.9.6 Mapping for ODL Properties and Methods

An ODL property has either a get/set pair or just a set method is mapped to an O
IDL attribute. An ODL property with just a get accessor is mapped to an OMG ID
readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance,
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,

[optional, out] VARIANT * excep_OBJ);
}

CORBA, v2.4.2 Mapping Automation Objects as CORBA Objects February 200119-41

19

19-9

.

ed
the corresponding OMG IDL interface is:

// OMG IDL
interface account {
attribute float balance;

readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float balance);

};

ODL [in] , [out] , and [in,out] parameters map to OMG IDL in , out , and inout
parameters, respectively. Section 19.3, “Mapping for Basic Data Types,” on page
explains the mapping for basic types.

19.9.7 Mapping for Automation Basic Data Types

19.9.7.1 Basic automation types

The basic data types allowed by Automation as parameters and return values are
detailed in Section 19.3, “Mapping for Basic Data Types,” on page 19-9.

The formal mapping of CORBA types to Automation types is shown in Table 19-8

Note – The mapping of BSTR to WString breaks backwards compatibility where
BSTR was mapped to string.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fix
point number with 15 digits left of the decimal point and 4 digits to the right. The
COM::Currency type is thus defined as follows:

Table 19-8Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
19-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

 the
d to

he

he
to

n

e

tion

nd

module COM
{

struct Currency
{
unsigned long lower;
long upper;
}

}

This mapping of the CURRENCY type is transitional and should be revised when
extended data types revisions to OMG IDL are adopted. These revisions are slate
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing t
number of days since December 30, 1899.

19.9.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of t
Automation and CORBA parameters and return types. It must map from CORBA
Automation for in parameters and from Automation to CORBA for out parameters.

When the CORBA View encounters an error condition while translating between
CORBA and Automation data types, it raises the CORBA system exception
DATA_CONVERSION.

19.9.9 Special Cases of Data Type Conversion

19.9.9.1 Translating COM::Currency to Automation CURRENCY

If the supplied COM::Currency value does not translate to a meaningful Automatio
CURRENCY value, then the CORBA View should raise the CORBA System
Exception DATA_CONVERSION.

19.9.9.2 Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then th
CORBA View should raise the CORBA System Exception DATA_CONVERSION.

19.9.9.3 Translating CORBA boolean to Automation boolean and Automa
boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True a
false values for Automation boolean are, respectively, negative one (-1) and zero.
Therefore, true values need to be adjusted accordingly.
CORBA, v2.4.2 Mapping Automation Objects as CORBA Objects February 200119-43

19

pped

 is no

and

e,
thod

e,
19.9.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the ma
Automation interface actually exist. Other equivalent expressions of Automation
interfaces, such as the contents of a Type Library, may be used. Moreover, there
requirement that OMG IDL code corresponding to the CORBA View Interface be
generated.

However, ODL is the appropriate medium for describing an Automation interface,
OMG IDL is the appropriate medium for describing a CORBA View Interface.
Therefore, we provide the following ODL code to describe an Automation interfac
that exercises all of the Automation base data types in the roles of properties, me
[in] parameter, method [out] parameter, method [inout] parameter, and return value.
The ODL code is followed by OMG IDL code describing the CORBA View Interfac
which would result from a conformant mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] VARIANT BOOL boolTest);
[propget] HRESULT boolTest([retval,out] short *val);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double *val);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT floatTest([retval,out] float *val);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *val);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short *val);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR *val);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *val);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY *val);
[propget] HRESULT readonlyShortTest([retval,out] short

*val);
HRESULT setAll([in] VARIANT BOOL boolTest,

[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] DATE dateTest,
[in] CURRENCY currencyTest,
[retval,out] short * val);

HRESULT getAll([out] VARIANT BOOL *boolTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
19-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19
[retval,out] short * val);
HRESULT setAndIncrement([in,out] VARIANT BOOL *boolTest,

[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] DATE * dateTest,
[in,out] CURRENCY * currencyTest,
[retval,out] short *val);

HRESULT boolReturn([retval,out] VARIANT BOOL *val);
HRESULT doubleReturn([retval,out] double *val);
HRESULT floatReturn([retval,out] float *val);
HRESULT longReturn([retval,out] long *val);
HRESULT shortReturn([retval,out] short *val);
HRESULT stringReturn([retval,out] BSTR *val);
HRESULT octetReturn([retval,out] DATE *val);
HRESULT currencyReturn([retval,out] CURRENCY *val);

}

The corresponding OMG IDL is as follows.

// OMG IDL
interface MyModule_TypesTest

{
attribute boolean boolTest;

attribute double doubleTest;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateTest;
attribute COM::Currency currencyTest;

readonly attribute short readonlyShortTest;

// Sets all the attributes
boolean setAll (in boolean boolTest,

in double doubleTest,
in float floatTest,
in long longTest,
in short shortTest,
in string stringTest,
in double dateTest,
in COM::Currency currencyTest);

// Gets all the attributes
boolean getAll (out boolean boolTest,

out double doubleTest,
out float floatTest,
out long longTest,
CORBA, v2.4.2 Mapping Automation Objects as CORBA Objects February 200119-45

19
out short shortTest,
out string stringTest,
out double dateTest,
out COM::Currency currencyTest);

boolean setAndIncrement (
inout boolean boolTest,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortTest,
inout string stringTest,
inout double dateTest,
inout COM::Currency currencyTest);

boolean boolReturn ();
double doubleReturn();
float floatReturn();
long longReturn ();
short shortReturn ();
string stringReturn();
double dateReturn ();
COM::CurrencycurrencyReturn();

}; // End of Interface TypesTest

19.9.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The ODL code defines an
interface “Simple” and another interface that references Simple as an in parameter, an
out parameter, an inout parameter, and as a return value. The OMG IDL code
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out]
short * val);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** val);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);
19-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

the

 the
s of
HRESULT simpleOp([in] DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **val);

}

The OMG IDL code for the CORBA View Dispatch Interface is as follows.

// OMG IDL
// A simple object we can use for testing object references
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest,

out MyModule_Simple outTest,
inout MyModule_Simple inoutTest);

};

19.9.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
enum MyModule_color {red, green, blue};
interface foo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

Note – An ODL enumeration is mapped to OMG IDL such that the enumerators in
enumeration are ordered according to the ascending order of the value of the
enumerators. Because OMG IDL does not support explicitly tagged enumerators,
CORBA view of an automation/dual object must maintain the mapping of the value
the enumeration.
CORBA, v2.4.2 Mapping Automation Objects as CORBA Objects February 200119-47

19

ill

he

lable
e.

o an

ws:

ns.

 d0,

s us
][1]

e
g is
.

19.9.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, w
have the knowledge to handle the parameter properly.

When SafeArrays are in parameters, the View method uses the Safearray API to
dynamically repackage the SafeArray as a CORBA sequence. When arrays are out
parameters, the View method uses the Safearray API to dynamically repackage t
CORBA sequence as a SafeArray.

19.9.13.1 Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding
information for each dimension, and indeed the number of dimensions, is not avai
in the static typelibrary information or ODL definition. It is only available at run-tim

For this reason, SafeArrays, which have more than one dimension, are mapped t
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follo

• The number of elements in the linear sequence is the product of the dimensio

• The position of each element is deterministic; for a SafeArray with dimensions
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of 5 * 8 * 9 = 360. This give
valid offsets 0-359. In this example, the real offset to the element at location [4][5
is 4*8*9 + 5*9 + 1 = 334.

19.9.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is th
case of an ODL enum, which is required to be a typedef. In this case the mappin
done according to Section 19.6, “Mapping for Enumerated Types,” on page 19-17

19.9.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA any. If the VARIANT contains a DATE or
CURRENCY element, these are mapped as per Section 19.9.7, “Mapping for
Automation Basic Data Types,” on page 19-42.
19-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

n
ture

 on

 the

O.

as a

here
lem
 was
r

 and
 to
E.

as
LT
alue

sting
ly

licit
ods
19.9.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by a
Automation client such as the CORBA View. These ways differ based on the signa
of the method and the behavior of the server. For example, for vtable invocations
dual interfaces, the HRESULT is the return value of the method. For
IDispatch::Invoke invocations, the significant HRESULT may be the return
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of
HRESULT is exactly the same as for COM to CORBA (see Section 18.3.10.2,
“Mapping for COM Errors,” on page 18-44). The View raises either a standard
CORBA system exception or the COM_HRESULT user exception.

CORBA Views must supply an EXCEPINFO parameter when making
IDispatch::Invoke invocations to take advantage of servers using EXCEPINF
Servers do not use the EXCEPINFO parameter if it is passed to Invoke as NULL.

An Automation method with an HRESULT return value and an argument marked
[retval] maps to an IDL method whose return value is mapped from the
[retval] argument. This situation is common in dual interfaces and means that t
is no HRESULT available to the CORBA client. It would seem that there is a prob
mapping S_FALSE scodes in this case because the fact that no system exception
generated means that the HRESULT on the vtable method could have been eithe
S_OK or S_FALSE. However, this should not be a problem. A method in a dual
interface should never attach semantic meaning to the distinction between S_OK
S_FALSE because a Visual Basic program acting as a client would never be able
determine whether the return value from the actual method was S_OK or S_FALS

An Automation method with an HRESULT return value and no argument marked
[retval] maps to a CORBA interface with a long return value. The long HRESU
returned by the original Automation operation is passed back as the long return v
from the CORBA operation.

19.10 Older Automation Controllers

This section provides some solutions that vendors might implement to support exi
and older Automation controllers. These solutions are suggestions; they are strict
optional.

19.10.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some Automation controllers do not support the use of SAFEARRAYs. For this
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no exp
ICollection type interface, OLE does specify guidelines on the properties and meth
a collection interface should export.
CORBA, v2.4.2 Older Automation Controllers February 2001 19-49

19

e, in

age

ode

od
// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index,

[retval,out] VARIANT * val);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,

[in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(
[retval, out] IEnumVARIANT * newEnum);

}

The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interfac
which case it is named DCollection and its UUID is:

{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH langu
construct can automatically iterate over a collection object such as that previously
described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access c
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then the
signatures for operations accepting SAFEARRAYs should be modified to accept a
VARIANT instead. In addition, the implementation code for the View wrapper meth
should detect the kind of object being passed.
19-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

ming

in

:

n

ype
of
19.11 Example Mappings

19.11.1 Mapping the OMG Naming Service to Automation

This section provides an example of how a standard OMG Object Service, the Na
Service, would be mapped according to the Interworking specification.

The Naming Service provides a standard service for CORBA applications to obta
object references. The reference for the Naming Service is found by using the
resolve_initial_references method provided on the ORB pseudo-interface

CORBA::ORB_ptr theORB = CORBA::ORB_init(argc, argv,
CORBA::ORBid, ev)
CORBA::Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =
CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA::Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent Automatio
interface using the mapping rules contained in the rest of this section. A direct
mapping would result in code from VisualBasic that appears as follows.

Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“NamingService”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

19.11.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is
mapped according to the rules provided in Section 18.3, “COM to CORBA Data T
Mapping,” on page 18-33. The example chosen is the COM ConnectionPoint set
CORBA, v2.4.2 Example Mappings February 2001 19-51

19

n of

.

interfaces. The ConnectionPoint service is commonly used for supporting event
notification in OLE custom controls (OCXs). The service is a more general versio
the IDataObject/IAdviseSink interfaces.

The ConnectionPoint service is defined by four interfaces, described in Table 19-9

For purposes of this example, we describe these interfaces in Microsoft IDL. The
IConnectionPointContainer interface is shown next.

// Microsoft IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
typedef struct {

 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];

} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown
{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out]

IConnectionPoint **cp);
};

MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG IDL
interface shown next.

// OMG IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;

Table 19-9Interfaces of the ConnectionPoint Service

IConnectionPointContainer Used by a client to acquire a reference to one or
more of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification
connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint
references

IEnumConnections Used to iterate over the connections currently
associated with a ConnectionPoint
19-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

 to
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composite,
CosLifeCycle::LifeCycleObject
{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) raises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out

IConnectionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B196B284-BAB4-
101A-B69C-00AA00241D07”;

};

Similarly, the forward-declared ConnectionPoint interface shown next is remapped
the OMG IDL definition shown in the second following example.

// Microsoft IDL
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPoint: IUnknown
{
HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out]

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections

**ppEnum);
};

// OMG IDL
interface IEnumConnections;
interface IConnectionPoint:: CORBA::Composite,

CosLifeCycle::LifeCycleObject
{

HRESULT GetConnectionInterface(out IID pIID)
raises (COM_HRESULT);

HRESULT GetConnectionPointContainer
(out IConnectionPointContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);
CORBA, v2.4.2 Example Mappings February 2001 19-53

19
HRESULT EnumConnections(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B196B286-BAB4-101A-B69C-
00AA00241D07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum
Connections interfaces are shown next.

typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
[out] IConnectionPoint **rcpcn,
[out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
[out] IConnectionData **rcpcn,
[out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition for EnumConnectionPoints and
EnumConnections is shown next:

struct CONNECTDATA {
IUnknown * pUnk;DWORD dwCookie;

};
interface IEnumConnectionPoints: CORBA::Composite,
CosLifeCycle::LifeCycleObject
{

HRESULT Next(in unsigned long cConnections,
out IConnectionPoint rcpcn,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);
19-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

vice

h are

ins.

n

h

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D07”;

};

interface IEnumConnections: CORBA::Composite,
CosLifeCycle::LifeCycleObject

{
HRESULT Next(in unsigned long cConnections,

out IConnectData rgcd,
out unsigned long lpcFetched) raises (COM_HRESULT);

HRESULT Skip(in unsigned long cConnections) raises
(COM_HRESULT);

HRESULT Reset() raises (COM_HRESULT);
HRESULT Clone(out IEnumConnectionPoints pEnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections =

“DCE:B196B287-BAB4-101A-B69C-00AA00241D07”;
};

19.11.3 Mapping an OMG Object Service to Automation

This section provides an example of mapping an OMG-defined interface to an
equivalent Automation interface. This example is based on the OMG Naming Ser
and follows the mapping rules from the Mapping: Automation and CORBA chapter.
The Naming Service is defined by two interfaces and some associated types, whic
scoped in the OMG IDL CosNaming module.

Microsoft ODL does not explicitly support the notions of modules or scoping doma
To avoid name conflicts, all types defined in the scoping space of CosNaming are
expanded to global names.

The data type portion (interfaces excluded) of the CosNaming interface is shown
next.

Table 19-10 Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space i
which new associations between names and
object references can be created, and to retrieve
an object reference that has been associated wit
a given name.

CosNaming::BindingIterator Used by a client to establish a list of registered
names that exist within a naming context.
CORBA, v2.4.2 Example Mappings February 2001 19-55

19

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...

}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is
shown next.

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID
association
 library CosNaming
 {

importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-

string(“struct NameComponent”),
oleautomation, dual]

interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring

**val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring
** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);

};
define Name SAFEARRAY(CosNaming_NameComponent *)

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;

#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)
[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),

helpstring(“struct Binding”),
oleautomation, dual]

interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]
19-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

e
CosNaming_IString ** val);
[propput] HRESULT binding_name([in]

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in]

CosNaming_BindingType val);
};

define CosNaming_BindingList SAFEAR-
RAY(CosNaming_Binding)

interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...

};

The types scoped in an OMG IDL interface are also expanded using the notation
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within th
CosNaming::NamingContext interface (shown next) are expanded in Microsoft
ODL as shown in the second following example.

module CosNaming{
// ...
interface NamingContext

{
enum NotFoundReason { missing_node, not_context,
not_object };
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
CORBA, v2.4.2 Example Mappings February 2001 19-57

19
NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName
);

void destroy()
raises(NotEmpty);

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};
// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)]
library CosNaming
 { // ...

interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]

interface DICosNaming_NamingContext_NotFound:
ICORBAException {
[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval] CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);

};
[uuid(d2fc8748-3650-cedd-1df6-026237b92940),

helpstring(“exception CannotProceed”),
oleautomation, dual]

interface DICosNaming_NamingContext_CannotProceed:
DICORBAException{

[propget] HRESULT cxt([out, retval] DICosNaming_NamingContext ** _val);
[propput] HRESULT cxt([in] DICosNaming_NamingContext * _val);
[propget] HRESULT rest_of_name([out, retval] CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name * _val);
};
[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69),

helpstring(“exception InvalidName”),
oleautomation, dual]

interface DICosNaming_NamingContext_InvalidName:
DICORBAException {};

[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),
helpstring(“exception AlreadyBound”),
oleautomation, dual]

interface DICosNaming_NamingContext_AlreadyBound:
DICORBAException {};

[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),
helpstring(“exception NotEmpty”),
oleautomation, dual]

interface CosNaming_NamingContext_NotEmpty:
DICORBAException {};
19-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

19

t
typedef enum {[helpstring(“missing_node”)]
NamingContext_missing_node,

[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a),

helpstring(“NamingContext”),
oleautomation,dual]

interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT rebind([in] CosNaming_Name * n, in] IDispatch * obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,

[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)

HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);

HRESULT new_context([out, retval] DICosNaming_NamingContext ** pResult);
HRESULT bind_new_context([in] CosNaming_Name * n,

[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);

HRESULT destroy([out, optional] VARIANT* _user_exception);
HRESULT list([in] unsigned long how_many, [out]

CosNaming_BindingList ** bl,
[out] DICosNaming_BindingIterator ** bi);

};
};

The BindingIterator interface is mapped in a similar manner, as shown in the nex
two examples.

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)]
library CosNaming
 { // ...
CORBA, v2.4.2 Example Mappings February 2001 19-59

19
[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),
helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}

19-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Interoperability with non-CORBA
Systems 20
rs

M
 be
ent
 the
Contents

This chapter contains the following sections.

20.1 Introduction

The primary goal of this specification is to allow effective access to CORBA serve
through DCOM and the reverse. To reduce the total cost of ownership of CORBA
applications that are built with COM or Automation clients for CORBA servers, CO
or Automation clients on machines with no ORB or interworking mechanism should
able to act as clients to CORBA servers through DCOM. In addition, a CORBA cli
could, through a CORBA view, access a DCOM server that is not co-located with

Section Title Page

“Introduction” 20-1

“Conformance Issues” 20-2

“Locality of the Bridge” 20-4

“Extent Definition” 20-5

“Request/Reply Extent Semantics” 20-8

“Consistency” 20-9

“DCOM Value Objects” 20-11

“Chain Avoidance” 20-16

“Chain Bypass” 20-19

“Thread Identification” 20-21
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 20-1

20

se
f

ns
nts

r

r,
ter)
ure
OM

e to

A

using
ers

ant,

s as
view with no additional interworking support on the DCOM server’s machine. The
scenarios help to reduce installation and maintenance costs through the lifetime o
applications, which span multiple object systems.

Note – This specification refers to COM/CORBA Part A and COM/CORBA Part B.
The Interworking Architecture, Mapping: COM and CORBA, and Mapping
Automation and CORBA chapters comprise the COM/CORBA Part A and this
specification comprises the COM/CORBA Part B.

Converting a COM or Automation client to contact a server through DCOM is
relatively easy and requires no application changes to the server. Thus, applicatio
that use existing Part A compliant solutions could, today, have remote DCOM clie
access the COM or Automation views of the CORBA servers and CORBA clients
could access (through a view) DCOM or DCOM Automation servers. However,
allowing CORBA access to CORBA views that are not co-located with the COM o
Automation servers or allowing DCOM access to remote views of CORBA servers
introduces a number of issues in terms of performance and scalability that will be
discussed below.

20.1.1 COM/CORBA Part A

The COM/CORBA Part A specifications (see the Interworking Architecture chapte
Mapping: COM and CORBA chapter, and Mapping Automation and CORBA chap
address most of the requirements of this Part B specification. The basic architect
and approach is sound. And, in general DCOM requires few changes to existing C
programs. With appropriate changes in the COM Registry, legacy COM client and
server applications can operate unchanged in a DCOM environment. However, du
limitations of DCOM and DCOM Automation, a number of performance and
scalability issues arise when interworking with CORBA using only the COM/CORB
Part A specification. The primary purpose of this specification is to address these
issues; in particular this specification focuses on addressing the issues related to
native DCOM and DCOM Automation clients with CORBA servers. Note that read
are expected to be familiar with the terminology used in the other COM/CORBA
specifications.

20.2 Conformance Issues

This specification, as a whole, is optional and is not required for COM/CORBA
interworking compliance.

Solutions that choose to implement this specification must, in order to be conform
implement the DCOM extent and all defined interfaces. There are no optional
compliance points. Solutions that conform to this specification may label themselve
supporting Advanced DCOM Interworking.
20-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

o

M or
jects
are
mote
quire
f a
This,

ce is
s
to a

t
ll an

ssues
 not
since
 do
20.2.1 Performance Issues

When accessing DCOM views of CORBA servers through DCOM (i.e., the DCOM
client and DCOM view are not co-located), major performance issues arise for tw
primary reasons:

1. Pseudo objects are specific to CORBA and are thus not available in DCOM.

2. Automation does not support complex types such as structs and unions.

The COM/CORBA Part A specification maps CORBA pseudo objects into regular
COM and Automation objects since there is no equivalent to pseudo objects in CO
Automation. In the Automation mapping, structs and unions are also mapped to ob
since there is no Automation equivalent construct (essentially structs and unions
also handled as pseudo objects). When these pseudo objects are passed to a re
DCOM client that uses standard DCOM marshaling, all access to all members re
a remote call. For example, a DCOM Automation client accessing the members o
structure would make one remote call for each get or set of a structure member.
of course, introduces a significant performance bottleneck.

20.2.2 Scalability Issues

A scalability issue known as proxy explosion arises when passing object references
among clients and servers across object systems. For example, an object referen
received from a CORBA server and is encapsulated in a DCOM view. This view i
passed to a different DCOM server. This server then attempts to pass the object
CORBA server. Without prior knowledge that the object was originally a CORBA
object, a CORBA view would be built for what appeared to be a DCOM object (bu
which was really a view). This means that when the CORBA server attempts to ca
operation on this object, it passes through a chain of views until the request is
delivered to the real implementation instead of the call being direct CORBA to
CORBA. In order to resolve the proxy explosion view chain problem, an efficient
mechanism must be provided for interworking solutions to determine whether any
object is a view or a native object and, if the object is a view, what is the original
object behind the view. The problem or proxy explosion is not specific to
COM/CORBA interworking. Instead, it can occur between CORBA and any other
system where bidirectional interworking is supported.

The COM/CORBA Part A specification defines a mechanism to help avoid proxy
chains using IForeignObject::GetForeignReference . However, calling this
operation remotely on each object reference to avoid proxy chains would have
introduced a significant performance problem.

20.2.3 CORBA Clients for DCOM Servers

In cases where CORBA clients need to access DCOM servers, the performance i
that occur in the other direction are not applicable since native DCOM servers do
have pseudo objects (since there is no such concept in COM or Automation) and
native Automation servers do not use structures or unions (since these constructs
not exist). However, the scalability issue remains.
CORBA, v2.4.2 Conformance Issues February 2001 20-3

20

cal
nly
e

s
g

20.3 Locality of the Bridge

The COM/CORBA Part A specification states that the interworking be performed lo
to the COM or Automation client or server since, at the time, COM objects could o
communicate within the same machine. Thus, the possibility for the location of th
view was limited to those in Figure 20-1.

Figure 20-1 COM/CORBA Part A Configurations

The addition of support for DCOM removes the requirement that the interworking
occur in the COM environment. The use of DCOM adds four possibilities for the
location of the view (see Figure 20-2 on page 20-5). Note that the communication
between the view and the CORBA server or client is still performed as per existin
OMG specifications.

The performance issues described above relate, in particular, to the first and third
configuration shown in Figure 20-2. The scalability issues can affect any of these
configurations provided that objects are being passed through multiple different
bridges or through an intermediate object system.

CORBA ServerViewCOM Client

COM ServerViewCORBA Client
20-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

s
n
t be
 B is
ill

and

bjects
t
or
The
n

ue

OM
e
M
n the
.

Figure 20-2 COM/CORBA Part B Additional Configurations

20.4 Extent Definition

The ideal solution to the performance issues would be to have DCOM able to pas
CORBA pseudo objects with similar semantics to CORBA, and to have Automatio
support structs and unions natively. However, this is not likely to occur and canno
implemented adequately using DCOM standard marshaling. In addition, since Part
not required to be implemented, COM/CORBA Part A compliant solutions must st
interoperate with solutions that also support the COM/CORBA Part B extensions.
Thus, another mechanism needs to be defined in order to avoid the performance
scalability problems while still maintaining compatibility.

To handle all of these cases using a standard mechanism, a category of DCOM o
called DCOM value objects was defined. DCOM value objects are DCOM objects tha
have little or no behavior other than accessors for their underlying data. Proxies f
DCOM value objects act as local caches for the information in the original object.
Automation and COM views of CORBA pseudo objects, as well as the Automatio
views of CORBA structs and unions, are all DCOM value objects.

Note – CORBA objects-by-value will be able to be viewed in DCOM as DCOM val
objects.

When DCOM value objects are passed across DCOM systems the data of the DC
value object, called the value data, is also passed. Systems that support DCOM valu
objects can use the passed data to improve performance. However, when a DCO
value object is passed to a system that does not support it as a value object, the

DCOM ServerViewCORBA Client

CORBA ServerViewDCOM Client

DCOM ServerViewCORBA Client

CORBA ServerViewDCOM Client

DCOM

DCOM

DCOM

DCOM
CORBA, v2.4.2 Extent Definition February 2001 20-5

20

e.

d
ct
OM
cess

 pass
r the
ey

xtent
xtend
t.
 of

a
r all
 data

 and
ded
ts
 end.

ble to

 data.
der

 the

g
cover
 will
DCOM value object is accessed remotely just as any other DCOM object would b
There are two types of DCOM value objects to support these semantics: 1) a primary
DCOM value object, which is the real (i.e., original) instance of the value object, an
2) local DCOM value objects, which are the local proxies for the primary value obje
and caches for the values data of the primary value object. Note that the local DC
value objects are essentially DCOM proxies with some methods (the ones that ac
the value data) implemented locally.

To implement DCOM value objects while still providing compatibility with systems
that do not support DCOM value objects, the value data needs to be passed as,
essentially “out-of-band” data. DCOM allows out-of-band data to be passed with
requests in DCOM extents. DCOM extents are a standard DCOM feature used to
additional data with a request. On the receiving end, if a handler is not available fo
extent, it is ignored. Extents are similar to CORBA service contexts except that th
are not propagated through a chain of calls.

DCOM value objects are passed in a DCOM extent. Receivers that recognize the e
can take advantage of the data it provides. Receivers that do not recognize the e
safely ignore it. This occurs with no changes at all to the standard marshaling packe
This allows DCOM developers to use standard DCOM tools and services instead
entirely custom special purpose solutions.

20.4.1 Marshaling Constraints

The layout of the marshaling packet is significant in matching marshaled data to
proxy on the receiving side. If the receiving side supports DCOM value objects fo
passed value data, then the unmarshal process is simple: the first subset of value
goes to the first proxy (local DCOM value object) created by standard marshaling
so on. DCOM, however, allows for proxies in any given client process to be provi
by different vendors. Thus, no assurance can be made that all DCOM value objec
marshaled into the extent can have their value data unmarshaled on the receiving
Thus, the value data in the extent is organized in a tree structure in order to be a
skip information that cannot be decoded.

20.4.2 Marshaling Key

The interface ID corresponds to the interface used to encapsulate the unmarshaled
It must provide accessors for all the members that are being marshaled, in the or
that they are marshaled. This interface ID may be different than the interface ID
actually marshaled in the call, since it reflects the content of an object rather than
interface through which it is used at the time of the call. For instance, a class
encapsulating a structure may be marshaled as an IUnknown , which will be the class
ID in the standard marshaling packet, but this is of no help in unmarshaling the
structure. Thus, this identifier is used to describe the marshaled members.

If the object is standard marshaled, the unmarshal class ID field should be
CLSID_NULL. However, if an interface pointer is custom marshaled, its marshalin
data does not contain a standard OBJREF, which could be used by the proxy to re
the marshaled data (since nothing can be presumed about the way that the proxy
20-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

han
ed if

ained

M

t

be communicating with its server). In that case, the object's proxy will be different t
the regular proxy for this interface, so the correct custom marshaler must be load
correct unmarshaling is to be achieved.

20.4.3 Extent Format

The marshaling format of the extent is best described using the following C++
structures. Note that the size of the extent is encoded in the extent header maint
by DCOM, so it does not have to be repeated here.

struct DVO_EXTENT // DCOM value object extent
{

HRESULT statusCode; // Status of marshaling
DVO_IFACE interfaces[]; // Marshaled interfaces

};

struct DVO_IFACE // value data container
// for 1 interface

{
unsigned long dataLen; // Total length of packet data
IID remotedIID; // Remoted interface
CLSID unmarshalCLSID;// Unmarshal class
unsigned short cImpl; // Count of Implementations
DVO_IMPLDATA implData[]; // Marshaled implementations

};

struct DVO_IMPLDATA // Marshaled implementation
{

unsigned long dataLen; // Length of data
IID iid; // Implementation interface
DVO_BLOB data; // Value data
DVO_IFACE interfaces[]; // Recursive DVO interface

};

struct DVO_BLOB // Opaque type containing
// marshaled members

{
unsigned long dataLen; // Length of value data
byte data[]; // Value data

};

20.4.3.1 DVO_EXTENT

This structure contains the entire DCOM value object information for a given DCO
call. The size and ID of the extent are specified in the ORPC_EXTENT (DCOM
defined) structure. The statusCode is used to pass error information, which canno
be returned normally between the client and server extent. The interfaces array,
interfaces , contains the value data for each DCOM value object for the DCOM
call.
CORBA, v2.4.2 Extent Definition February 2001 20-7

20

 any

are
end

s an

n

COM

t
 just

ring
es).

 reply.
The

g of
The DCOM value object extent will be identified with the following GUID:

{106454c0-14b2-11d1-8a22-006097cc044d}

20.4.3.2 DVO_IFACE

This structure contains value data for a single DCOM value object. The dataLen
member makes it easy to skip this structure; in doing so, one automatically skips
recursively marshaled interfaces. The remotedIID member identifies the most
derived interface of the DCOM value object itself. The member unmarshalCLSID
indicates the unmarshal class used in custom marshaling, if any.

The cImpl member indicates how many interface DCOM value object interfaces
marshaled. Normally, this member has a value of 1, but it may be necessary to s
value data for more than one interface.

The implData array contains the blocks of marshaled value data.

20.4.3.3 DVO_IMPLDATA

This structure contains the value data of a DCOM value object. The value data
corresponds to the DCOM value object identified by the iid member of the
DVO_IMPLDATA structure. The value data is written to the data blob. If any
marshaled data is itself a DCOM value object, its marshaling data will be added a
entry in the interfaces array.

20.4.3.4 DVO_BLOB

This contains the actual value data for the DCOM value object. The data has bee
marshaled using standard DCOM (NDR) marshaling.

20.5 Request/Reply Extent Semantics

Clients, which support the extent, add the extent to outgoing requests that have D
value objects, which should have their value data transmitted. The statusCode
member of the extent should be NO_ERROR. Even when the outgoing request does no
contain any DCOM value objects, the client must still add the extent (consisting of
the statusCode member in this case) if it supports the extent at all.

Servers, which support the extent, can retrieve the information from the extent du
unmarshaling to get the value data for the local DCOM value objects (DCOM proxi
If the unmarshaling of the data within the extent fails with an error, this error is
returned in a corresponding reply extent containing the error that occurred. If the
unmarshaling is successful, the request is processed and an extent is added to the
Any out parameter or return DCOM value objects are included in the reply extent.
statusCode member should be NO_ERROR. Even when the outgoing request does
not contain any DCOM value objects, the callee must still add the extent (consistin
just the statusCode member in this case).
20-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

r

ct.

ce,
t, and

made
ver,
t all

te
or
hich

must
upport

n
able

needs

 must
upport
nal
If the receiver of a DCOM value object passes a reference to the object to anothe
client/server, the object reference of the primary DCOM value object should be
marshaled in the request, not the object reference for the local DCOM value obje

20.6 Consistency

If the client supports the DCOM value object semantics for a given object referen
then an in-process copy of the value data is created using the data from the exten
all read accesses are performed with no network calls.

When all clients and servers support the DCOM value object semantics, changes
to a local copy of the object can then be passed to other clients or servers. Howe
since the implementation of this specification is optional, it cannot be assumed tha
clients and servers support this feature.

If the client of a DCOM value object does not support the extent, or the appropria
support for a given DCOM value object to be unmarshaled locally, then all reads
writes to members of the object are transmitted over the network to the server, w
originally provided the object reference.

In cases where the receiver modifies the local copy of the object, these changes
be propagated back to the server to maintain consistency between systems that s
the DCOM value object and those that do not.

The interfaces used to manage consistency were designed so that applications o
homogenous networks (where every interworking solution supports Part B) can dis
the synchronization used to maintain consistency. Applications running on
heterogeneous networks can control the synchronization behavior to best suit the
of the application.

In cases where the receiver modifies the local DCOM value object, these changes
be propagated back to the server to maintain consistency between systems that s
DCOM value objects and those that do not. To maintain consistency, three additio
DCOM interfaces are defined:

[
object,
pointer_default(unique),
uuid(c9362b80-14bd-11d1-8a22-006097cc044d)

]
interface IValueObject : IUnknown
{

HRESULT GetValue([out] unsigned long *length,
[out, size_is(,*length)] byte**data);

HRESULT PutValue([in] unsigned long length,
[in, size_is(length)] byte *data);

};

typedef enum tagSyncronizeMode
{

CORBA, v2.4.2 Consistency February 2001 20-9

20

this
ined

ired

ar
kNeverSync,
kSyncOnSend,
kSyncOnChange

} SyncronizeMode;

[
object,
pointer_default(unique),
uuid(c82fb800-14bd-11d1-8a22-006097cc044d)

]
interface ISynchronize : IUnknown
{

HRESULT get_Mode([out, retval] SyncronizeMode *mode);
HRESULT put_Mode([in] SyncronizeMode mode);
HRESULT SyncNow();
HRESULT ReCopy();

};

[
odl,
dual,
oleautomation,
uuid(c8c84e80-14bd-11d1-8a22-006097cc044d)

]
interface DISynchronize : IDispatch
{

[propget] HRESULT Mode([out, retval] SyncronizeMode
*mode);

[propput] HRESULT Mode([in] SyncronizeMode mode);
HRESULT SyncNow();
HRESULT ReCopy();

};

20.6.1 IValueObject

This interface is implemented on the primary DCOM value object. The purpose of
interface is to allow batch updates of the value data of the object. The data conta
within the data array for the GetValue and PutValue methods is a DVO_IFACE
marshaled according to “Extent Definition” on page 20-5.

Local DCOM value objects that are not primary DCOM value objects are not requ
to support this interface.

20.6.2 ISynchronize and DISynchronize

These interfaces are implemented on local DCOM value objects (ISynchronize is
found on COM proxies, DISynchronize is found on Automation proxies). If the
interface is available, it means that this is a local DCOM value object, not a regul
object or a primary DCOM value object.
20-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

the
al
to
nize

the
ll.

he
can

e of

lasses
.

OM
ribed

ts

he
ns
20.6.2.1 Mode Property

The property Mode is used to control when synchronization is done. A value of
kNeverSync means that the local and the primary value objects are never
synchronized.

A value of kSyncOnSend means that, if the local value object has been changed,
primary value object will be synchronized with the local value object when the loc
value object is sent to another client/server, which cannot be reliably determined
support the required DCOM value object. Implementations can choose to synchro
using either batch synchronization through a call to IValueObject , or through calls
for each changed member through the regular remote interface.

A value of kSyncOnChange means that, as a member is changed, the update of
member should be propagated to the primary value object as a regular remote ca

20.6.2.2 SyncNow Method

The SyncNow method can be called by application code to force the changes to t
local value object to be propagated to the primary value object. Implementations
choose to synchronize using either batch synchronization through a call to
IValueObject , or through calls for each changed member through the regular
remote interface.

20.6.2.3 ReCopy Method

The ReCopy method can be called by application code to retrieve the current valu
the primary value object and update the local value object.

20.7 DCOM Value Objects

20.7.1 Passing Automation Compound Types as DCOM Value Objects

Compound types such as structures and unions are encapsulated in Automation c
so they may be used by Automation applications. These are DCOM value objects
When a DCOM value object representing a compound type is passed to a remote
client, its interface pointer is marshaled using standard marshaling (as with any DC
value object), and its value data is forwarded simultaneously using the extent desc
in“Extent Definition” on page 20-5.

20.7.2 Passing CORBA-Defined Pseudo-Objects as DCOM Value Objec

To handle the DCOM views of CORBA pseudo objects as DCOM value objects, t
memory representation of these data types must be defined. The following sectio
detail the value data that will be passed in the extent.
CORBA, v2.4.2 DCOM Value Objects February 2001 20-11

20

y
20.7.3 IForeignObject

Supporting IForeignObject ’s as a DCOM value object is required to avoid prox
explosion. The marshaled data for value objects of type IForeignObject is
described in Section 20.8.2, “COM Chain Avoidance,” on page 20-17.

20.7.4 DIForeignComplexType

The value data for DCOM value objects of type DIForeignComplexType can be
represented by the following structure (note that this also includes the state for
DIObjectInfo):

struct FOREIGN_COMPLEX
{

LPSTR name; // Name of type
LPSTR scopedName; // Scoped name (if available)
LPSTR repositoryId; // Repository ID of type

};

20.7.5 DIForeignException

The value data for DCOM value objects of type DIForeignException can be
represented by the following structure:

struct FOREIGN_EXCEPTION
{

FOREIGN_COMPLEX base;
long majorCode;

};

20.7.6 DISystemException

The value data for DCOM value objects of type DISystemException can be
represented by the following structure:

struct CORBA_SYSTEM_EXCEPTION
{

FOREIGN_EXCEPTION base;
long minorCode;
long completionStatus;

};
20-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

he

alue

a of

y.

wing
20.7.7 DICORBAUserException

The value data for DICORBAUserException is identical to that of
DIForeignException . Value objects deriving from DICORBAUserException
are passed as DCOM value objects according to the previously defined format. T
value data of exception members must be preceded by the value data of
DIForeignException .

20.7.8 DICORBAStruct

The value data for DICORBAStruct is identical to that of
DIForeignComplexType . Value objects deriving from DICORBAStruct are
passed as DCOM value objects according to the previously defined format. The v
data of struct members must be preceded by the value data of
DIForeignComplexType .

20.7.9 DICORBAUnion

The value data for DICORBAUnion is identical to that of
DIForeignComplexType . Value objects deriving from DICORBAUnion are passed
as DCOM value objects according to the previously defined format. The value dat
a union must be preceded by the value data of DIForeignComplexType . The value
data for the union itself is the discriminant followed by the selected member, if an

20.7.10 DICORBATypeCode and ICORBATypeCode

The value data for type code DCOM value objects can be represented by the follo
struct:

struct CORBA_TYPECODE
{

FOREIGN_COMPLEX base;
TCKind kind; // TypeCode kind

union TypeSpecific switch(kind)
{

case tk_objref:
LPSTR id;
LPSTR name;

case tk_struct:
case tk_except:

LPSTR id;
LPSTR name;
long member_count;
[size_is(member_count,)] LPSTR *member_names;
[size_is(member_count,)] IUnknown**member_types;

case tk_union:
CORBA, v2.4.2 DCOM Value Objects February 2001 20-13

20

LPSTR id;
LPSTR name;
long member_count;
LPSTR member_names[];
[size_is(member_count,)] IUnknown**member_types;
[size_is(member_count)] VARIANT *member_labels;
IUnknown *discriminator_type;
long default_index;

case tk_enum:
long member_count;
[size_is(member_count,)] LPSTR *member_names;
[size_is(member_count,)] IUnknown**member_types;

case tk_string:
long length;

case tk_array:
case tk_sequence:

long length;
IUnknown *content_type;

case tk_alias:
LPSTR id;
LPSTR name;
long length;
IUnknown *content_type;

}
};

Note that members of type IUnknown will actually be ICORBATypeCode instances
for COM and DICORBATypeCode instances for Automation.

20.7.11 DICORBAAny

The value data for DCOM value objects of type DICORBAAny can be represented by
the following structure:

struct CORBA_ANY_AUTO
{

FOREIGN_COMPLEXbase;
VARIANT value;
DICORBATypeCode*typeCode;

};

20.7.12 ICORBAAny

The value data for DCOM value objects of type ICORBAAny can be represented by a
CORBAAnyDataUnion as defined in COM/CORBA Part A.
20-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

ther
of
of the
e

wing
20.7.13 User Exceptions In COM

In COM, all CORBA user exceptions used in an interface are represented by ano
interface, which contains one method per user exception. The value data for one
these exception interfaces is an encapsulated DCOM union where each member
union is one of the exception definition structures. The discriminant values are th
indices of the corresponding structure retrieval method from the user exception
interface.

module Bank
{

...
exception InsufFunds { float balance; };
exception InvalidAmount { float amount; };

interface Account
{

exception NotAuthorized {};

float Deposit(in float amount)
raises(InvalidAmount);

float Withdraw(in float amount)
raises(InvalidAmount, NotAuthorized);

};
};

Per the COM/CORBA Part A specification, the above IDL results in the following
interface used for user exceptions:

struct Bank_InsufFunds { float balance; };
struct Bank_InvalidAmount { float amount; };
struct Bank_Account_NotAuthorized {};

interface IBank_AccountUserExceptions : IUnknown
{

HRESULT get_InsufFunds([out] Bank_InsufFunds *);
HRESULT get_InvalidAmount([out] Bank_InvalidAmount *);
HRESULT get_NotAuthorized([out] Bank_Account_NotAuthorized *);

};

When this DCOM value object is passed, the value data is marshaled as the follo
data structure:

union Bank_AccountUserExceptionsData switch(unsigned short)
{

case 0: Bank_InsufFunds m0;
case 1: Bank_InvalidAmount m1;
case 2: Bank_Account_NotAuthorized m2;

};
CORBA, v2.4.2 DCOM Value Objects February 2001 20-15

20

m to
n
er

ect

ct

e
.

20.8 Chain Avoidance

To avoid view chaining (and thus proxy explosion), we define a general mechanis
carry chain information along with object references. This mechanism is defined i
both COM and in CORBA to allow for bidirectional chain avoidance. Views in eith
system carry this information along with their object references. For example, the
information carried in the object reference to a CORBA view of an Automation obj
would describe the object referred to by the view (i.e., information about the
Automation object).

20.8.1 CORBA Chain Avoidance

In CORBA, the chain avoidance information is carried as an IOP profile in an obje
reference that is part of a chain.

module CosBridging
{

typedef sequence<octet> OpaqueRef;
typedef sequence<octet> OpaqueData;
typedef unsigned long ObjectSystemID;

interface Resolver
{

OpaqueRef Resolve(in ObjectSystemID objSysID,
in unsigned long chainDataFormat,
in octet chainDataVersion,
in OpaqueData chainData);

};

struct ResolvableRef
{

Resolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
octet chainDataVersion;
OpaqueData chainData;

};

typedef sequence<ResolvableRef> ResolvableChain;

struct BridgingProfile
{

ResolvableChainchain;
};

};

The content of the profile is defined as a single BridgingProfile structure. The ID
for this profile will be allocated by the OMG. The profile structure contains a sequenc
of ResolvableRef structures, potentially one for each object system in the chain
20-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

it

r
for

in
tand

ly
d

ecific

M;
he

ed
The ResolvableRef structure contains a resolver CORBA object reference that
can be called at runtime through its Resolve method to return an opaque (because
is not CORBA) object reference for the specified link in the chain. The link in the
chain is identified by the object system ID, objSysID .

Currently defined object system IDs are: 1 for CORBA, 2 for Automation, and 3 fo
COM. IDs in the range from 0 through 100000 are reserved for use by the OMG
future standardization.

The ResolvableRef structure also contains information that can be used by the
resolver as context to find the appropriate information to return. While this cha
data is opaque, it is also tagged with a format identifier so that bridges that unders
the format can directly interpret the contents of chainData instead of making a
remote call to Resolve . The only currently defined format tag is 0, which is current
defined as private; that is, chainData tagged as private cannot be directly interprete
and must be passed to the resolver for interpretation. All other format tags are sp
to each object system. Format tags in the range of 1 to 100000 are reserved for
allocation by the OMG.

The result of calling the Resolve method on a COM or Automation
ResolvableRef is an NDR marshaled DCOM object reference with at least one
strong reference.

20.8.2 COM Chain Avoidance

A similar approach is adopted to resolve the same chain avoidance issues in CO
however, since DCOM does not support profiles, the implementation is different. T
information for chain avoidance (also used by IForeignObject and
IForeignObject2) is provided as DCOM value data associated with each pass
view object. This information is represented by a ResolvableRefChain .

struct OpaqueRef
{

unsigned long len;
unsigned long maxlen;
BYTE [size_is(len)] *data;

};

struct OpaqueData
{

unsigned long len;
unsigned long maxlen;
BYTE [size_is(len)] *data;

};

typedef unsigned long ObjectSystemID;

struct ResolvableRef
{

IResolver resolver;
CORBA, v2.4.2 Chain Avoidance February 2001 20-17

20

lue
ObjectSystemID objSysID;
unsigned long chainDataFormat;
BYTE chainDataVersion;
OpaqueData chainData;

};

struct ResolvableRefChain
{

unsigned long len;
unsigned long maxlen;
ResolvableRef [size_is(len,)]**data;

};

[
object,
pointer_default(unique),
uuid(5473e440-20ac-11d1-8a22-006097cc044d)

]
interface IResolver : IUnknown
{

OpaqueRef Resolve([in] ObjectSystemID objSysID,
[in] unsigned long chainDataFormat,
[in] BYTE chainDataVersion,
[in] OpaqueData chainData);

};

[
object,
pointer_default(unique),
uuid(60674760-20ac-11d1-8a22-006097cc044d)

]
interface IForeignObject2 : IForeignObject
{

ResolvedRefChain ChainInfo();
};

The use semantics of the resolver is identical to the use semantics described in
Section 20.8.1, “CORBA Chain Avoidance,” on page 20-16. One format tag with va
1 is defined for a ResolvableRef with objSysID 1 (CORBA). If the format tag is
1, the chainDataVersion must be 0 and the chainData contains a (CDR
marshaled) byte defining the byte ordering for the rest of the chainData (the byte
value is identical to that used to encode GIOP messages) followed by a CDR
marshaled object reference. If Resolve were called for this ResolvableRef , the
same value as contained in the chainData would be returned by Resolve (i.e., a
CDR-marshaled object reference).

In addition to this mechanism, the interface IForeignObject2 is defined on COM
or Automation views to return the ResolvableRefChain in cases where this
information has been lost.
20-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

f
e
nce,
s

tion
 then
r to

d by
e the
kes

stub.
20.9 Chain Bypass

Using the chain avoidance technique defined in this specification, the formation o
view chains can be avoided. However, there are cases where the chain avoidanc
information carried with the object references may have been discarded (for insta
as the object reference is passed through a firewall). In this case, chaining of view
cannot be avoided without an explicit performance hit, which was deemed
unacceptable. However, at the point when the first invocation is performed, informa
about the current chain can be returned as out-of-band data. This information can
be used on subsequent invocations to bypass as many views as possible in orde
avoid the performance hit of multiple view translations.

Figure 20-3 Invocation With and Without Chain Bypass

Figure 20-3 shows an example of a call that does not perform chain bypass followe
one that does. Note that chain bypass cannot eliminate all unnecessary calls sinc
client already has a reference to the view (not to the original object) and thus invo
an operation on the view. It is the responsibility of the view to perform the chain
bypass if it so chooses -- in this case the view essentially becomes a rebindable

20.9.1 CORBA Chain Bypass

For views to discover the chain information, two service contexts are defined as
follows:

ChainBypassCheck = 2
ChainBypassInfo = 3

module CosBridging
{

struct ResolvedRef
{

Resolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
octet chainDataVersion;
OpaqueData chainData;
OpaqueRef reference;
};

CORBA ServerCORBA Client
CORBA

View
COM
View

CORBA ServerCORBA Client
CORBA

View
COM
View
CORBA, v2.4.2 Chain Bypass February 2001 20-19

20

uent
tion
the

n
typedef sequence<ResolvedRef> ResolvedRefChain;

struct ChainBypassCheck // Outgoing service context
{

Object objectToCheck;
};

struct ChainBypassInfo // Reply service context
{

ResolvedRefChain chain;
};

};

The ChainBypassCheck service context is sent out with the first outgoing (non-
oneway) request. Since the service context is propagated automatically to subseq
calls, an object is provided in the service context to avoid returning chain informa
for an incorrect object. For a reply service context to be generated, the object in
service context must match the object (a view) being invoked.

If a reply service context, ChainBypassInfo , is received with the reply message,
then a view has been detected. The information in the ResolvedRefChain can be
used to bypass intermediate views. Each ResolvedRef is identical to a
ResolvableRef except that it also contains the result of the resolution -- the
reference member contains the data that would be returned if Resolve were
called on the included resolver. If the reference field of ResolvedRef is an empty
sequence, then the marshaled object reference is assumed to be identical to the
chainData .

20.9.2 COM Chain Bypass

The technique used for COM chain bypass is very similar to the technique used i
CORBA. The only difference is the result of the fact that DCOM extents are not
propagated into subsequent calls unlike CORBA service contexts.

struct ResolvedRef
{

IResolver resolver;
ObjectSystemID objSysID;
unsigned long chainDataFormat;
BYTE chainDataVersion;
OpaqueData chainData;
OpaqueRef reference;

};

struct ResolvableRefChain
{

unsigned long len;
unsigned long maxlen;
ResolvableRef [size_is(len,)]**data;

};
20-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

20

ly
en

a
her
d of
. To
, we
read
struct ChainBypassCheck // Outgoing extent body
{
};

struct ChainBypassInfo // Reply extent body
{

ResolvableRefChain chain;
};

The ChainBypassCheck extent is sent out with the first outgoing request. If a rep
extent, ChainBypassInfo , is received with the reply message, then a view has be
detected. The information in the ResolvedRefChain can be used to bypass
intermediate views. Each ResolvedRef is identical to a ResolvableRef except
that it also contains the result of the resolution -- the reference member contains
the data that would be returned if Resolve were called on the included resolver. If the
reference field of ResolvedRef is an empty sequence, then the marshaled object
reference is assumed to be identical to the chainData .

The UUID for the request and reply extents are both:

1eba96a0-20b1-11d1-8a22-006097cc044d

20.10 Thread Identification

To correlate incoming requests with previous outgoing requests, DCOM requires
causality ID. The identifier is essentially a logical thread ID used to determine whet
an incoming request is from an existing logical thread or is a different logical threa
execution. CORBA, on the other hand, does not strictly require a logical thread ID
maintain the logical thread ID as requests pass through both DCOM and CORBA
define a general purpose service context, which can be used to maintain logical th
identifiers for any system a thread of execution passes through.

module CosBridging
{

struct OneThreadID
{

ObjectSystemID objSysID;
OpaqueData threadID;

};

typedef sequence<OneThreadID> ThreadIDs;

struct LogicalThreadID // Service context
{

ThreadIDs IDs;
};

};
CORBA, v2.4.2 Thread Identification February 2001 20-21

20

g a

D:
The logical thread ID information is propagated through a CORBA call chain usin
service context (IDs to be assigned by the OMG) containing the LogicalThreadID
structure.

For future use, a DCOM extent is defined to allow the same logical thread
identification information to be passed through a DCOM call chain. If the OMG
chooses to standardize a logical thread ID format for CORBA, this can be passed
through a DCOM call chain using this extent.

struct OneThreadID
{

ObjectSystemID objSysID;
OpaqueData threadID;

};

struct ThreadIDs
{

unsigned long len;
unsigned long maxlen;
OneThreadID [size_is(len)] *data;

};

struct LogicalThreadID // DCOM extent
{

ThreadIDs IDs;
};

This extent, used for passing logical thread IDs, is identified by the following UUI

f81f4e20-2234-11d1-8a22-006097cc044d
20-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Interceptors 21
erted

o be
RB
Contents

This chapter contains the following sections.

21.1 Introduction

This chapter defines ORB operations that allow services such as security to be ins
in the invocation path. Interceptors are not security-specific; they could be used to
invoke any ORB service. These interceptors permit services internal to the ORB t
cleanly separated so that, for example, security functions can coexist with other O
services such as transactions and replication.

Interceptors are an optional extension to the ORB to allow implementation of the
Replaceable Security option defined in the Security Service specification.

Section Title Page

“Introduction” 21-1

“Interceptors” 21-2

“Client-Target Binding” 21-4

“Using Interceptors” 21-6

“Interceptor Interfaces” 21-7

“IDL for Interceptors” 21-9
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 21-1

21

t
ORB
ic
evel

ge (a
ich

ally,
lient
s may

 the
 of

d by

bject.

t.
21.1.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB tha
provides the basic representation of objects and the communication of requests.”
Services, such as the Security Services, are built on this core and extend the bas
functions with additional qualities or transparencies, thereby presenting a higher-l
ORB environment to the application.

The function of an ORB service is specified as a transformation of a given messa
request, reply, or derivation thereof). A client may generate an object request, wh
necessitates some transformation of that request by ORB services (for example,
Security Services may protect the message in transit by encrypting it).

21.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services. Logic
an interceptor is interposed in the invocation (and response) path(s) between a c
and a target object. When several ORB services are required, several interceptor
be used.

Two types of interceptors are defined in this specification:

• Request-level interceptors, which execute the given request.

• Message-level interceptors, which send and receive messages (unstructured
buffers) derived from the requests and replies.

Interceptors provide a highly flexible means of adding portable ORB Services to a
CORBA-compliant object system. The flexibility derives from the capacity of a
binding between client and target object to be extended and specialized to reflect
mutual requirements of client and target. The portability derives from the definition
the interceptor interface in OMG IDL.

The kinds of interceptors available are known to the ORB. Interceptors are create
the ORB as necessary during binding, as described next.

21.2.1 Generic ORB Services and Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between a client and target o
There are two types of interceptors:

• Request-level interceptor, which perform transformations on a structured reques

• Message-level interceptors, which perform transformations on an unstructured
buffer.
21-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

21

 of
on
rol

or

re

 reply
h
ge and
Figure 21-1 shows interceptors being called during the path of an invocation.

Figure 21-1 Interceptors Called During Invocation Path

21.2.2 Request-Level Interceptors

Request-level interceptors are used to implement services that may be required
regardless of whether the client and target are collocated or remote. They resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently re-invoke it using the Dynamic Invocation Interface (DII). An example
a request-level interceptor is the Access Control interceptor, which uses informati
about the requesting principal and the operation in order to make an access cont
decision.

The ORB core invokes each request-level interceptor via the client_invoke
operation (at the client) or the target_invoke operation (at the target) defined in
this section. The interceptor may then perform actions, including invoking other
objects, before re-invoking the (transformed) request using
CORBA::Request::invoke . When the latter invocation completes, the intercept
has the opportunity to perform other actions, including recovering from errors and
retrying the invocation or auditing the result if necessary, before returning.

21.2.3 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message, which can be sent over the network. As functions such as encryption a
performed on messages, a second kind on interceptor interface is required.

The ORB code invokes each message-level interceptor via the send_message
operation (when sending a message, for example, the request at the client and the
at the target) or the receive_message operation (when receiving a message). Bot
have a message as an argument. The interceptor generally transforms the messa

Client

request request

Target
Object

Message
level

interceptors

Message
level

interceptors

Request
level

interceptors

Request
level

interceptors

reply reply
CORBA, v2.4.2 Interceptors February 2001 21-3

21

e

led,
n

al
 of a

ptor

ween

 a

nd
rol,

olve
nded.

 two
on
e

ntext.
ome

nt on
 will
ll

also

uch
y
 fact.
then invokes send . Send operations return control to the caller without waiting for th
operation to finish. Having completed the send_message operation, the interceptor
can continue with its function or return.

21.2.4 Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be cal
and in what order they need to be called. An ORB that supports interceptors, whe
serving as a client, uses information in the target object reference, as well as loc
policy, to decide which interceptors must actually be called during the processing
particular request sent to a particular target object.

When an interceptor is first invoked, a bind time function is used to set up interce
binding information for future use.

21.3 Client-Target Binding

The selection of ORB Services is part of the process of establishing a binding bet
a client and a target object.

A binding provides the context for a client communicating with a target object via
particular object reference. The binding determines the mechanisms that will be
involved in interactions such that compatible mechanisms are chosen and client a
target policies are enforced. Some requirements, such as auditing or access cont
may be satisfied by mechanisms in one environment, while others, such as
authentication, require cooperation between client and target. Binding may also inv
reserving resources in order to guarantee the particular qualities of service dema

Although resolution of mechanisms and policies involves negotiation between the
parties, this need not always involve interactions between the parties as informati
about the target can be encoded in the object reference, allowing resolution of th
client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service co
Where there is an issue of trust, however, the target must still check that this outc
is valid.

The binding between client and target at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreeme
transport protocol is an agreement between two communications endpoints, which
generally not have a one-to-one correspondence to application objects. The overa
binding therefore includes a set of related sub-bindings that may be shared, and
potentially distributed among different entities at different locations.

21.3.1 Binding Model

No object representing the binding is made explicitly visible since the lifetime of s
an object is not under the control of the application, an existing binding potentiall
being discarded, and a new one made without the application being aware of the
21-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

21

ed
e
t may
e

he
blish
r
he

ot

lled.
re
l ones

f the

it,
ation
Instead, operations that will affect how a client will interact with a target are provid
on the Object interface and allow a client to determine how it will interact with th
target denoted by that object reference. On the target side, the binding to the clien
be accessed through the Current interface. This indirect arrangement permits a wid
range of implementations that trade the communication and retention of binding
information in different ways.

Figure 21-2 Binding Model

The action of establishing a binding is generally implicit, occurring no later than t
first invocation between client and target. It may be necessary for a client to esta
more than one binding to the same target object, each with different attributes (fo
example, different security features). In this case, the client can make a copy of t
object reference using Object::duplicate and subsequently specify different
attributes for that reference.

The scope of attributes associated with an object reference is that of the object
reference instance (i.e., the attributes are not copied if the object reference is used as
an argument to another operation or copied using Object::duplicate) . If an
object reference is an inout argument, the attributes will still be associated with the
object reference after the call if the reference still denotes the same object, but n
otherwise.

21.3.2 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when these are ca
Note that at the client, when handling the request, the request-level interceptors a
always called before the message level ones, while at the target the message-leve
are called first.

When the ORB needs to bind an object reference, it refers to the characteristics o
target object and relates this to the types of interceptor it supports. From this it
determines the appropriate type of interceptor to handle the request and creates
passing the object reference in the call. (No separate interceptor initialization oper

Client

ORB Core

Target
Object

Interceptors Interceptors

binding binding

target obj ref

Current
CORBA, v2.4.2 Client-Target Binding February 2001 21-5

21

d

olve

g up
ic
ue

tion

to
n.

(for

eed
at the
rity

d
t), as

ation

 on

ment,
ay.

ions
r

unt
is used. The client_invoke/target_invoke or
send_message/receive_message calls are used both for the first invocation an
for subsequent ones.)

When an interceptor is created, it performs its bind time functions. These may inv
getting the policies that apply to the client and to the target. This could involve
communicating with the target, for example, a secure invocation interceptor settin
a security association. Note that the ORB Core itself is unaware of service-specif
policies. In addition to performing its specific functions, the interceptor must contin
the request by invoking object(s) derived from the given object reference.

The interceptors themselves maintain per-binding information relevant to the func
they perform. This information will be derived from:

• The policies that apply to the client and target object because of the domains
which they belong, for example the access policies, default quality of protectio

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular execution context or invocation
example, whether a request must be protected for confidentiality).

If the relevant client or target environment changes, part or all of a binding may n
to be reestablished. For example, the secure invocation interceptor may detect th
invocation credentials have changed and therefore needs to establish a new secu
association using the new credentials. If the binding cannot be reestablished, an
exception is raised to the application, indicating the cause of the problem.

Similarly, at the target, the ORB will create an instance of each interceptor neede
there. A single interceptor handles both requests and replies at the client (or targe
these share context information.

21.4 Using Interceptors

When a client performs an object request, the ORB Core uses the binding inform
to decide which interceptors provide the required ORB Services for this client and
target as described in Section 21.3.2, “Establishing the Binding and Interceptors,”
page 21-5.

21.4.1 Request-Level Interceptors

Request-level interceptors could be used for services such as transaction manage
access control, or replication. Services at this level process the request in some w
For example, they may transform the request into one or more lower-level invocat
or make checks that the request is permitted. The request-level interceptors, afte
performing whatever action is needed at the client (or target), reinvoke the
(transformed) request using the Dynamic Invocation Interface (DII)
CORBA::Request::invoke . The interceptor is then stacked until the invocation
completes, when it has an opportunity to perform further actions, taking into acco
the response before returning.
21-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

21

r to
the

trol

esult

n
ts (for
age

e, but

nt to

tor
may
r

der
Interceptors can find details of the request using the operations on the request as
defined in the Dynamic Skeleton interface in CORBA 2. This allows the intercepto
find the target object1, operation name, context, parameters, and (when complete)
result.

If the interceptor decides not to forward the request, for example, the access con
interceptor determines that access is not permitted, it indicates the appropriate
exception and returns.

When the interceptor resumes after an inner request is complete, it can find the r
of the operation using the result operation on the Request object, and check for
exceptions using the exception operation before returning.

21.4.2 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message that can be sent over the network. Message-level interceptors operate o
messages in general without understanding how these messages relate to reques
example, the message could be just a fragment of a request). Note that the mess
interceptors may achieve their purpose not by just transforming the given messag
by communicating using their own message (for example, to establish a secure
association). Fragmentation and message protection are possible message-level
interceptors.

Send_message is always used when sending a message, so it is used by the clie
send a request (or part of a request), and by the target to send a reply.

When a client message-level interceptor is activated to perform a send_message
operation, it transforms the message as required, and calls a send operation to pass the
message on to the ORB and hence to its target. Unlike invoke operations, send
operations may return to the caller without completing the operation. The intercep
can then perform other operations if required before exiting. The client interceptor
next be called either using send_message to process another outgoing message, o
using receive_message to process an incoming message.

A target message-level interceptor also supports send_message and
receive_message operations, though these are obviously called in a different or
from the client side.

21.5 Interceptor Interfaces

Two interceptor interfaces are specified, both used only by the ORB:

1.It is assumed that the target object reference is available, as this is described in the C++
mapping for DSI, though not yet in the OMG IDL.
CORBA, v2.4.2 Interceptor Interfaces February 2001 21-7

21

ns

get

d in

ve

tions
• RequestInterceptor for operations on request-level interceptors. Two operations
are supported:

• client_invoke for invoking a request-level interceptor at the client.

• target_invoke for invoking a request-level interceptor at the target.

• MessageInterceptor for operations on message-level interceptors. Two operatio
are supported:

• send_message for sending a message from the client to the target or the tar
to the client.

• receive_message for receiving a message.

Request-level interceptors operate on a representation of the request itself as use
the CORBA Dynamic Invocation and Skeleton interfaces.

21.5.1 Client and Target Invoke

These invoke a request-level interceptor at the client or target. Both operations ha
identical parameters and return values.

module CORBA {
interface RequestInterceptor: Interceptor {// PIDL

void client_invoke (
inout CORBA::Request request

);
void target_invoke (

inout CORBA::Request request
);

};
};

Parameters

request - The request being invoked. This is defined in the Dynamic Invocation
Interface. After invocation, output parameters and the associated result and excep
may have been updated.

21.5.2 Send and Receive Message

These invoke a message-level interceptor to send and receive messages. Both
operations have identical parameters and return values.

module CORBA {
native Message;
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (
21-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

21

ple, a
rlying
in Object target,
in Message msg

);
};

};

Parameters

target - The target object reference.

Note – The target here may not be the same as seen by the application. For exam
replication request-level interceptor may send the request to more than one unde
object.

msg - The message to be handled by this interceptor.

21.6 IDL for Interceptors

module CORBA {
interface Interceptor {}; // PIDL
interface RequestInterceptor: Interceptor {// PIDL

void client_invoke (
inout Request request

);
void target_invoke (

inout Request request
);

};
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};
CORBA, v2.4.2 IDL for Interceptors February 2001 21-9

21
21-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

CORBA Messaging 22
e
sts
This specification covers three general topics: Quality of Service, Asynchronous
Method Invocations (including Time-Independent or “Persistent” Requests), and th
specification of interoperable Routing interfaces to support the transport of reque
asynchronously from the handling of their replies.

Contents

This chapter contains the following topics.

Topic Page

Section I - Quality of Service 22-2

“Section I - Introduction” 22-2

“Messaging Quality of Service” 22-2

“Propagation of Messaging QoS” 22-12

Section II - Messaging Programming Model 22-13

“Section II - Introduction” 22-13

“Running Example” 22-15

“Async Operation Mapping” 22-15

“Exception Delivery in the Callback Model” 22-20

“Type-Specific ReplyHandler Mapping” 22-22

“Generic Poller Value” 22-25

“Type-Specific Poller Mapping” 22-26

“Example Programmer Usage” 22-30
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 22-1

22

sing
 and

h
is

lities

tly
Section I - Quality of Service
Messaging requires clients and servers to have the ability to set the required and
supported qualities of service with respect to requests. This specification provides
generalized APIs through which such qualities are set in clients and servers. In
addition, the set of Messaging-related qualities and the rules for reconciling and u
these qualities are defined. Finally, the Messaging-specific IOR Profile Component
Service Context are defined for propagation of QoS information.

22.1 Section I - Introduction

This section describes a standard Quality of Service (QoS) framework within whic
CORBA Services specifications should define their service-specific qualities. In th
framework, all QoS settings are interfaces derived from CORBA::Policy .

The details of the Policy Management Framework are to be found in the ORB Interface
chapter.

22.2 Messaging Quality of Service

The Messaging module contains the IDL that the programmer uses to define Qua
of Service specific to CORBA messaging.

Note – Except where defaults are noted, this specification does not state required
default values for the following Qualities of Service. Application code must explici
set its ORB-level Quality of Service to ensure portability across ORB products.

module Messaging {

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;

Section III - Message Routing Interoperability 22-45

“Section III - Introduction” 22-45

“Routing Object References” 22-46

“Message Routing” 22-46

“Router Administration” 22-59

Appendix A - “CORBA Messaging IDL” 22-66

Appendix B - “Overall Design Rationale” 22-72

Appendix C - “Conformance and Compatibility Issues” 22-84

Topic Page
22-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD =2;

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
local interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;

local interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;

};

// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};
local interface RequestPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};
const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType REQUEST_START_TIME_POLICY_TYPE = 27;
local interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
local interface RequestEndTimePolicy : CORBA::Policy {
CORBA, v2.4.2 Messaging Quality of Service February 2001 22-3

22

an

ny
readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
local interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
local interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
local interface RelativeRequestTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
local interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
local interface MaxHopsPolicy : CORBA::Policy {

readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
local interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

};

22.2.1 Rebind Support

22.2.1.1 typedef short RebindMode

Describes the level of transparent rebinding that may occur during the course of
invocation on an Object. Values of type RebindMode are used in conjunction with a
RebindPolicy , as described in Section 22.2.1.2, “interface RebindPolicy,” on
page 22-5. All non-negative values are reserved for use in OMG specifications. A
negative value of RebindMode is considered a vendor extension.
22-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ns
 that
s in

r

te

us.

r the

cies

new
tly

 a
des

• TRANSPARENT - allows the ORB to silently handle object-forwarding and
necessary reconnection during the course of making a remote request. This is
equivalent to the only defined CORBA ORB behavior.

• NO_REBIND - allows the ORB to silently handle reopening of closed connectio
while making a remote request, but prevents any transparent object-forwarding
would cause a change in client-visible effective QoS policies. When this policy i
effect, only explicit rebinding (through CORBA::Object::validate_connection)
is allowed.

• NO_RECONNECT - prevents the ORB from silently handling object-forwards o
the reopening of closed connections. When this policy is in effect, only explicit
rebinding and reconnection (through CORBA::Object::validate_connection) is
allowed.

22.2.1.2 interface RebindPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate
whether the ORB may transparently rebind once successfully bound to a target. For
GIOP-based protocols an object reference is considered bound once it is in a sta
where a LocateRequest message would result in a LocateReply message with
status OBJECT_HERE. If the effective Policy of this type has a rebind_mode value
of TRANSPARENT (always the default and the only valid value in CORBA), the ORB
will silently handle any subsequent LocateReply messages with
OBJECT_FORWARD status or Reply messages with LOCATION_FORWARD stat
The effective policies of other types for this object reference may change from
invocation to invocation. If the effective Policy of this type has a rebind_mode value
of NO_REBIND, the ORB will raise a REBIND system exception if any rebind
handling would cause a client-visible change in policies. This could happen unde
following circumstances:

• The client receives a LocateReply message with an OBJECT_FORWARD status
and a new IOR that has policy requirements incompatible with the effective poli
currently in use.

• The client receives a Reply message with LOCATION_FORWARD status and a
IOR that has policy requirements incompatible with the effective policies curren
in use.

If the effective Policy of this type has a rebind_mode value of NO_RECONNECT,
the ORB will raise a REBIND system exception if any rebind handling would cause
client-visible change in policies, or if a new connection must be opened. This inclu
the reopening of previously closed connections as well as the opening of new
connections if the target address changes (for example, due to a
LOCATION_FORWARD reply). For connectionless protocols, the meaning of this
effective policy must be specified, or it must be defined that NO_RECONNECT is an
equivalent to NO_REBIND. Regardless of the effective RebindPolicy , rebind or
reconnect can always be explicitly requested through an invocation of
CORBA::Object::validate_connection . When instances of RebindPolicy are
created, a value of type RebindMode is passed to CORBA::ORB::create_policy .
This policy is only applicable as a client-side override. When an instance of
CORBA, v2.4.2 Messaging Quality of Service February 2001 22-5

22

es of

r of

d
client
ion-

hat the
ics

,

e

ide

r.
r
fore

t has

tics
has
ees
ith
ny
RebindPolicy is propagated within a PolicyValue in an INVOCATION_POLICIES
Service Context, the ptype has value REBIND_POLICY_TYPE and the pvalue is a
CDR encapsulation containing a RebindMode .

22.2.2 Synchronization Scope

22.2.2.1 typedef short SyncScope

Describes the level of synchronization for a request with respect to the target. Valu
type SyncScope are used in conjunction with a SyncScopePolicy , as described in
Section 22.2.2.2, “interface SyncScopePolicy,” on page 22-7, to control the behavio
oneway operations. All non-negative values are reserved for use in OMG
specifications. Any negative value of SyncScope is considered a vendor extension.

• SYNC_NONE - equivalent to one allowable interpretation of CORBA oneway
operations. The ORB returns control to the client (e.g., returns from the metho
invocation) before passing the request message to the transport protocol. The
is guaranteed not to block. Since no reply is returned from the server, no locat
forwarding can be done with this level of synchronization.

• SYNC_WITH_TRANSPORT - equivalent to one allowable interpretation of
CORBA oneway operations. The ORB returns control to the client only after the
transport has accepted the request message. This in itself gives no guarantee t
request will be delivered, but in conjunction with knowledge of the characterist
of the transport may provide the client with a useful degree of assurance. For
example, for a direct message over TCP, SYNC_WITH_TRANSPORT is not a
stronger guarantee than SYNC_NONE. However, for a store-and-forward transport
this QoS provides a high level of reliability. Since no reply is returned from the
server, no location-forwarding can be done with this level of synchronization.

• SYNC_WITH_SERVER - the server-side ORB sends a reply before invoking th
target implementation. If a reply of NO_EXCEPTION is sent, any necessary
location-forwarding has already occurred. Upon receipt of this reply, the client-s
ORB returns control to the client application. This form of guarantee is useful
where the reliability of the network is substantially lower than that of the serve
The client blocks until all location-forwarding has been completed. For a serve
using a POA, the reply would be sent after invoking any ServantManager, but be
delivering the request to the target Servant.

• SYNC_WITH_TARGET - equivalent to a synchronous, non-oneway operation in
CORBA. The server-side ORB shall only send the reply message after the targe
completed the invoked operation. Note that any LOCATION_FORWARD reply
will already have been sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime (depending on the seman
of the exception). Even though it was declared oneway, the operation actually
the behavior of a synchronous operation. This form of synchronization guarant
that the client knows that the target has seen and acted upon a request. As w
CORBA, only with this highest level of synchronization can the OTS be used. A
operations invoked with lesser synchronization precludes the target from
participating in the client’s current transaction.
22-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

olicy

ot

alue

es

y

nd

n
22.2.2.2 interface SyncScopePolicy

This interface is a local object derived from CORBA::Policy . It is applied to oneway
operations to indicate the synchronization scope with respect to the target of that
operation request. It is ignored when any non-oneway operation is invoked. This p
is also applied when the DII is used with a flag of INV_NO_RESPONSE since the
implementation of the DII is not required to consult an interface definition to
determine if an operation is declared oneway. The default value of this Policy is n
defined. Applications must explicitly set an ORB-level SyncScopePolicy to ensure
portability across ORB implementations. When instances of SyncScopePolicy are
created, a value of type Messaging::SyncScope is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. The client’s SyncScopePolicy is propagated within a request in the
RequestHeader’s response_flags as described in GIOP Request Header.

22.2.3 Request and Reply Priority

22.2.3.1 struct PriorityRange

This structure describes a range of priorities. A PriorityRange with minimum
Priority greater than maximum Priority is invalid.

22.2.3.2 interface RequestPriorityPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
valid range of priorities, which may be associated with an operation request. This v
is used by Routers when the effective QueueOrderPolicy has the value
ORDER_PRIORITY. Higher Priority values indicate a higher priority. When instanc
of RequestPriorityPolicy are created, a value of type Messaging::PriorityRange
is passed to CORBA::ORB::create_policy . An instance of
RequestPriorityPolicy may be specified when creating a POA (and therefore ma
be represented in Object references). In addition, an Object reference’s
RequestPriorityPolicy may be overridden by the client. If set on both the client a
server, reconciliation is performed by intersecting the server-specified
RequestPriorityPolicy range with the range of the client’s effective override. Whe
an instance of RequestPriorityPolicy is propagated within a PolicyValue in a
TAG_POLICIES Profile Component or INVOCATION_POLICIES Service Context,
the ptype has value REQUEST_PRIORITY_POLICY_TYPE and the pvalue is a
CDR encapsulation containing a Messaging::PriorityRange .

22.2.3.3 interface ReplyPriorityPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
valid range of priorities, which may be associated with the reply to an operation
request. This value is used by Routers when the effective QueueOrderPolicy has the
value ORDER_PRIORITY. Higher Priority values indicate a higher priority. When
instances of ReplyPriorityPolicy are created, a value of type
CORBA, v2.4.2 Messaging Quality of Service February 2001 22-7

22

nce’s

an

as a
:00,

 to
Messaging::PriorityRange is passed to CORBA::ORB::create_policy . An
instance of ReplyPriorityPolicy may be specified when creating a POA (and
therefore may be represented in Object references). In addition, an Object refere
ReplyPriorityPolicy may be overridden by the client. If set on both the client and
server, reconciliation is performed by intersecting the server-specified
ReplyPriorityPolicy range with the range of the client’s effective override. When
instance of ReplyPriorityPolicy is propagated within a PolicyValue in a
TAG_POLICIES Profile Component or INVOCATION_POLICIES Service Context,
the ptype has value REPLY_PRIORITY_POLICY_TYPE and the pvalue is a CDR
encapsulation containing a Messaging::PriorityRange .

22.2.4 Request and Reply Timeout

This specification describes the lifetime of requests and replies in terms of the
structured type from the CORBA Time Service Specification. This describes time
64-bit value, which is the number of 100 nano-seconds from 15 October 1582 00
along with inaccuracy and time zone information.

22.2.4.1 interface RequestStartTimePolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
valid start time after which a request may be delivered to its target, and is applied
both synchronous and asynchronous invocations. When instances of
RequestStartTimePolicy are created, a value of type TimeBase::UtcT is passed
to CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance of RequestStartTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REQUEST_START_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing a TimeBase::UtcT .

22.2.4.2 interface RequestEndTimePolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
time after which a request may no longer be delivered to its target. This policy is
applied to both synchronous and asynchronous invocations. When instances of
RequestEndTimePolicy are created, a value of type TimeBase::UtcT is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance of RequestEndTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing a TimeBase::UtcT .

22.2.4.3 interface ReplyStartTimePolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
valid start time after which a reply may be delivered to the client. This policy is
applied to both synchronous and asynchronous invocations. When instances of
ReplyStartTimePolicy are created, a value of type TimeBase::UtcT is passed to
22-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ces

of

its
quest

t yet
dy

th
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance of ReplyStartTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REPLY_START_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing a TimeBase::UtcT .

22.2.4.4 interface ReplyEndTimePolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
time after which a reply may no longer be obtained or returned to the client. This
policy is applied to both synchronous and asynchronous invocations. When instan
of ReplyEndTimePolicy are created, a value of type TimeBase::UtcT is passed to
CORBA::ORB::create_policy . This policy is only applicable as a client-side
override. When an instance of ReplyEndTimePolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REPLY_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing a TimeBase::UtcT .

22.2.4.5 interface RelativeRequestTimeoutPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
relative amount of time for which a Request may be delivered. After this amount
time the Request is cancelled. This policy is applied to both synchronous and
asynchronous invocations. If asynchronous invocation is used, this policy only lim
the amount of time during which the request may be processed. Assuming the re
completes within the specified timeout, the reply will never be discarded due to
timeout. When instances of RelativeRequestTimeoutPolicy are created, a value of
type TimeBase::TimeT is passed to CORBA::ORB::create_policy . This policy is
only applicable as a client-side override. When an instance of
RelativeRequestTimeoutPolicy is propagated within a PolicyValue in an
INVOCATION_POLICIES Service Context, the ptype has value
REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing the relative_expiry converted into a TimeBase::UtcT end time (as in
the case of RequestEndTimePolicy).

22.2.4.6 interface RelativeRoundtripTimeoutPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
relative amount of time for which a Request or its corresponding Reply may be
delivered. After this amount of time, the Request is cancelled (if a response has no
been received from the target) or the Reply is discarded (if the Request had alrea
been delivered and a Reply returned from the target). This policy is applied to bo
synchronous and asynchronous invocations.

When instances of RelativeTimeoutPolicy are created, a value of type
TimeBase::TimeT is passed to CORBA::ORB::create_policy . This policy is only
applicable as a client-side override. When an instance of
RelativeReplyTimeoutPolicy is propagated within a PolicyValue in an
CORBA, v2.4.2 Messaging Quality of Service February 2001 22-9

22

f

t

eing.

ay

ting
INVOCATION_POLICIES Service Context, the ptype has value
REPLY_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation
containing the relative_expiry converted into a TimeBase::UtcT end time (as in
the case of ReplyEndTimePolicy).

22.2.5 Routing

22.2.5.1 typedef short RoutingType

Describes the type of Routing to be used for invocations on an Object reference.
Values of type RoutingType are used in conjunction with a RoutingPolicy as
described in Section 22.2.5.3, “interface RoutingPolicy,” on page 22-10. All non-
negative values are reserved for use in OMG specifications. Any negative value o
RoutingType is considered a vendor extension.

• ROUTE_NONE - Synchronous or Deferred Synchronous delivery is used. No
Routers will be used to aid in the delivery of the request.

• ROUTE_FORWARD - Asynchronous delivery is used. The request is made
through the use of a Router and not delivered directly to the target by the clien
ORB.

• ROUTE_STORE_AND_FORWARD - Asynchronous TII is used. The request is
made through the use of a Router that persistently stores the request before
attempting delivery.

22.2.5.2 struct RoutingTypeRange

This structure describes a range of routing types. A RoutingTypeRange with
minimum RoutingType greater than maximum RoutingType is invalid.

22.2.5.3 interface RoutingPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate
whether or not the ORB must ensure delivery of a request through the use of queu
If the effective Policy of this type has a RoutingTypeRange with min value of
ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD , the interoperable
Routing protocol described in Section 22.12, “Section III - Introduction,” on
page 22-45 is used. If, for example, the min is ROUTE_NONE and the max is
ROUTE_FORWARD, the Routing protocol will normally be used but a direct
connection may be used if available. When instances of RoutingPolicy are created, a
value of type RoutingTypeRange is passed to CORBA::ORB::create_policy . An
instance of RoutingPolicy may be specified when creating a POA (and therefore m
be represented in Object references). In addition, a POA’s RoutingPolicy is visible to
clients through the Object references it creates, and reconciled with the client’s
override. If set on both the client and server, reconciliation is performed by intersec
the server-specified RoutingPolicy range with the range of the client’s effective
override. When an instance of RoutingPolicy is propagated within a PolicyValue in
22-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

 of

sed

r

.

sed

rity

e

lues
a TAG_POLICIES Profile Component or INVOCATION_POLICIES Service Context,
the ptype has value ROUTING_POLICY_TYPE and the pvalue is a CDR
encapsulation containing a Messaging::RoutingTypeRange .

22.2.5.4 interface MaxHopsPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
maximum number of routing hops that can occur when routing a request from the
client to the target. When instances of MaxHopsPolicy are created, a value of type
unsigned short is passed to CORBA::ORB::create_policy . This policy is only
applicable as a client-side override. When an instance of MaxHopsPolicy is
propagated within a PolicyValue in an INVOCATION_POLICIES Service Context,
the ptype has value MAX_HOPS_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an unsigned short .

22.2.6 Queue Ordering

22.2.6.1 typedef short Ordering

Describes the ordering policy for the consideration of routers that prioritize delivery
requests. Values of type Ordering are used in conjunction with a QueueOrderPolicy
as described in “interface QueueOrderPolicy” on page 22-11. This policy is only u
if the effective RoutingType is at least ROUTE_FORWARD (which implies the use
of a Router). Support for multiple ordering policies is indicated by “or”-ing togethe
individual values in a combined Ordering.

• ORDER_ANY - the client doesn't care in what order its requests are processed

• ORDER_TEMPORAL - the client wants to be sure that its requests are proces
in the order in which they were issued. ORDER_TEMPORAL is the default.

• ORDER_PRIORITY - the client wants its requests processed based on the prio
assigned in the QoS structure described below.

• ORDER_DEADLINE - the client wants its requests ordered so that those whos
time_to_live is about to expire are moved to the front of the queue.

22.2.6.2 interface QueueOrderPolicy

This interface is a local object derived from CORBA::Policy . It is used to indicate the
basis upon which a Router orders delivery of requests. When instances of
QueueOrderPolicy are created, a value of type Messaging::Ordering is passed to
CORBA::ORB::create_policy . This specified Ordering value can be the result of
“or”-ing together individual orderings. An instance of QueueOrderPolicy may be
specified when creating a POA (and therefore may be represented in Object
references). In addition, an Object reference’s QueueOrderPolicy may be overridden
by the client. If set on both the client and server, reconciliation is performed by
intersecting the server-specified list of supported Ordering values with the list of va
in the client’s effective override. When an instance of QueueOrderPolicy is
CORBA, v2.4.2 Messaging Quality of Service February 2001 22-11

22

lation

ed in
ed
e
le, if

ult

tive
is
propagated within a PolicyValue in a TAG_POLICIES Profile Component or
INVOCATION_POLICIES Service Context, the ptype has value
QUEUE_ORDER_POLICY_TYPE and the pvalue is a CDR encapsulation
containing a Messaging::Ordering .

22.3 Propagation of Messaging QoS

This section defines the profile Component through which QoS requirements are
expressed in an object reference, and the Service Context through which QoS
requirements are expressed as part of a GIOP request.

module Messaging {
struct PolicyValue {

CORBA::PolicyType ptype;
sequence<octet> pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

const IOP::ComponentId TAG_POLICIES = 2;
const IOP::ServiceId INVOCATION_POLICIES = 7;

};

22.3.1 Structures

PolicyValue

This structure contains the value corresponding to a Policy of the PolicyType
indicated by its ptype . This representation allows the compact transmission of QoS
policies within IORs and Service Contexts. The format of pvalue for each type is
given in the specification of that Policy.

22.3.2 Messaging QoS Profile Component

A new IOP::TaggedComponent is defined for transmission of QoS policies within
interoperable Object References. The body of this Component is a CDR encapsu
containing a Messaging::PolicyValueSeq . When creating Object references,
Portable Object Adapters may encode the relevant policies with which it was creat
this TaggedComponent . POA Policies that are exported in this way are clearly not
as client-exposed in their definitions. These policies are reconciled with the effectiv
client-side override when clients invokes operations on that reference. For examp
a POA is created with a RequestPriorityPolicy with minimum value 0 and
maximum value 10, all Object references created by that POA will have that defa
RequestPriorityPolicy encoded in their IOR. Furthermore, if a client sets an
overriding RequestPriorityPolicy with both minimum and maximum of 5 (the client
requires its requests to have a priority of value 5), the ORB will reconcile the effec
Policy for any invocations on this Object reference to have a priority of 5 (since th
22-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

 the
ise

 a

 a
ases,

heir
ers,
ted to

the
. In

tion
nes

s of

any

 a
 not

I

are
he

ack
value is within the range of priorities allowed by the target). On the other hand, if
client set an override with minimum value of 11, any invocation attempts would ra
the system exception INV_POLICY.

22.3.3 Messaging QoS Service Context

A new IOP::ServiceContext is defined for transmission of QoS policies within GIOP
requests and replies. The body of this Context is a CDR encapsulation containing
Messaging::PolicyValueSeq .

Section II - Messaging Programming Model

22.4 Section II - Introduction

Asynchronous Method Invocations allow clients to make non-blocking requests on
target. The AMI is treated as a client-side language mapping issue only. In most c
server-side implementations are not required to change as from the server-side
programmer’s point of view all invocations can be treated identically regardless of t
synchronicity characteristics. In certain situations, such as with transactional serv
the asynchrony of a client does matter and requires server-side changes if expec
handle transactional asynchronous requests. This specific issue is addressed in
Appendix C, Section C.2.1, “Transaction Service,” on page 22-84.

Clients may, at any time, make either asynchronous or synchronous requests on
target. Two models of asynchronous requests are supported: callback and polling
the callback model, the client passes a reference to a reply handler (a client-side
CORBA object implementation that handles the reply for a client request), in addi
to the normal parameters needed by the request. The reply handler interface defi
operations to receive the results of that request (including inout and out values and
possible exceptions). The ReplyHandler is a normal CORBA object that is
implemented by the programmer as with any object implementation. In the polling
model, the client makes the request passing in all the parameters needed for the
invocation, and is returned a Poller object that can be queried to obtain the result
the invocation. This Poller is an instance of a value type.

AMI may be used in single- and multi-threaded applications. AMI calls may have
legal return type, parameters, and contexts. AMI operations do not raise user
exceptions. Rather, user exceptions are passed to the implemented type-specific
ReplyHandler or returned from the type-specific Poller. If an AMI operation raises
system exception with a completion status of COMPLETED_NO, the request has
been made. This clearly distinguishes exceptions raised by the server (which are
returned via the ReplyHandler or Poller) from local exceptions that caused the AM
to fail.

This section focuses entirely on the static (typed) asynchronous invocations that
based on the interface that is the target of the operation. This section describes t
mapping for the generated asynchronous method signatures. It also describes the
generated reply handlers that are passed to those async methods when the callb
CORBA, v2.4.2 Section II - Introduction February 2001 22-13

22

c

to
ew
ce
istent

t
e
e

the

ng is

t.

2.

at

.2,

0,

e
f

.

-side

se
e of
model is used, and the generated poller values that are returned from those asyn
methods when the polling model is used. The AMI mapping contains an IDL to
“implied-IDL” mapping, which defines the new operations and interfaces required
perform asynchronous invocations and obtain the replies to these requests. The n
interfaces and values defined in this implied-IDL are considered to be real IDL sin
they can correspond to entries in the Interface Repository and have behavior cons
with all other definitions in IDL. In several cases, this implied-IDL adds new
operations to existing interfaces. These new asynchronous stub interfaces are no
considered to be real IDL in that they do not correspond to entries in the Interfac
Repository. The distinction between these types of implied-IDL is made clear in th
rest of this section. In general, the implied-IDL is used to avoid explicitly mapping
AMI API to each of the currently supported languages.

When a messaging-enabled IDL code generator is run on an interface, the followi
performed in addition to the processing specified in CORBA:

• A Servant mapping is generated for a type-specific ReplyHandler from which the
client application derives its ReplyHandler implementation. No type-specific
ReplyHandler stubs need be generated, but their absence is not a requiremen
The Servant base is generated as if from an IDL interface with a definition as
specified in Section 22.8, “Type-Specific ReplyHandler Mapping,” on page 22-2

• A type-specific ExceptionHolder value is generated for delivery of exception
replies to applications that use the Callback model. This generated
ExceptionHolder has operations that raise the system and user exceptions th
were returned from the target. The implementation of this ExceptionHolder is
provided by the messaging-aware ORB. The language-specific generated code
corresponds to a value as if it were defined in IDL as specified in Section 22.7
“Type-Specific ExceptionHolder Mapping,” on page 22-20.

• A type-specific Poller value is generated. The implementation of this Poller is
provided by the messaging-aware ORB. The language-specific generated code
corresponds to a value as if it were defined in IDL as specified in Section 22.1
“Type-Specific Poller Mapping,” on page 22-26.

• Asynchronous request operations are generated with signatures exactly as if th
operations were declared on the original interface. The implied-IDL signature o
these operations is specified in Section 22.6, “Async Operation Mapping,” on
page 22-15. The implied-IDL is used entirely so that each individual supported
language mapping need not be given for the asynchronous request operations

Note – These implied-IDL operations are not intended to be seen by the Object
implementation and are not implemented by the Servant. They are purely a client
construct for describing the operation signatures for generated code.

• Furthermore, these operations are not part of the interfaces CORBA::InterfaceDef
and do not correspond to synchronous operations. The generated code for the
operations interacts with a messaging-aware ORB in ways outside of the scop
this section. The mechanism of this interaction is specified for interoperability
purposes in Section 22.14, “Message Routing,” on page 22-46. An application
programmer need not be aware of this mechanism.
22-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

new
ing
nding

cause

ous
which
 these
sage
n the

ses,
22.5 Running Example

A running example is used throughout this section to clarify the generation of the
typed asynchronous invocation stubs, the new reply handling interfaces for receiv
callback responses, and the new poller values for querying the status of an outsta
request. The example features a simple stock portfolio manager interface. Most
importantly, the interface includes operations that cover all cases of operation
signature:

• attributes

• in arguments

• inout arguments

• out arguments

• return values

• user exceptions

Operations declared oneway are not mapped to asynchronous invocation stubs be
they are already asynchronous in nature.

// Original IDL
exception InvalidStock { string sym; };

interface StockManager {
attribute string stock_exchange_name;

boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);

boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

};

22.6 Async Operation Mapping

For each operation in an interface, corresponding callback and polling asynchron
method signatures are generated. These signatures are described in implied-IDL,
is used to generate language-specific operation signatures. The implementation of
methods must generate a method invocation as described in Section 22.14, “Mes
Routing,” on page 22-46. Note that these generated operations are not included i
interface’s definition (CORBA::InterfaceDef). These operations do not raise user
exceptions. Just as with the currently specified CORBA::Request::send operation ,
they can (but are not required to) raise system exceptions. For explanatory purpo
CORBA, v2.4.2 Running Example February 2001 22-15

22

s:

g the

e

s
ay

ting

pe

from

ns

y

 the
the sections below show the Callback and Polling implied-IDL in separate pieces.
Logically, the IDL compiler deals with async as if the IDL included all three piece
the original IDL and the implied IDL for both async models.

22.6.1 Callback Model Signatures (sendc)

When the callback model is used, the client supplies a reply handler when makin
asynchronous invocation. The interface’s operations and attributes are mapped to
implied-IDL operations with names prefixed by “sendc_”. If this implied-IDL
operation name conflicts with existing operations on the interface or any of the
interface’s base interfaces, “ami_” strings are inserted between “sendc_” and the
original operation name until the implied-IDL operation name is unique.

22.6.1.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• void return type, followed by;

• sendc_<opName> where opName is the name of the operation.

The async callback version takes the following arguments in order:

• An object reference to a type-specific ReplyHandler as described in Section 22.8,
“Type-Specific ReplyHandler Mapping,” on page 22-22, with the parameter nam
ami_handler . If a nil ReplyHandler reference is specified when this operation i
invoked, no response will be returned for this invocation. A system exception m
be raised by the ORB during evaluation of the request, but once sendc returns, no
further results of the operation will be made available. This is equivalent to set
the CORBA::INV_NO_RESPONSE flag when making a DII deferred request.

• Each of the in and inout arguments in the order that they appeared in the
operation's declaration in IDL, all with a parameter attribute of in and with the ty
specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one
the original operation (if any is present).

22.6.1.2 Implied-IDL for Attributes

The signature of the implied-IDL for the callback model getter and setter operatio
corresponding to an interface’s attribute is as follows.

• Setter operations are only generated for attributes that are not defined readonl

• void return type, followed by the operation name, which to distinguish between
getter and setter operations for the attribute is given by either:

• sendc_get_<attributeName> for reading the attribute value, where
attributeName is the name of the attribute, or
22-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

e

• sendc_set_<attributeName> for setting the attribute value, where
attributeName is the name of the attribute that is not defined readonly.

The callback implied-IDL operations take the following arguments in order:

• An object reference of a type-specific ReplyHandler as described in Section 22.8,
“Type-Specific ReplyHandler Mapping,” on page 22-22, with the parameter nam
ami_handler .

• The additional arguments for asynchronous implied-IDL operations for attributes
are as follows:

• For the attribute’s generated get operation, there are no additional arguments.

• For the attribute’s generated set operation, there is one additional argument, in
<attrType> attr_<attributeName> , where attrType is the type of the attribute,
and attributeName is the name of that attribute. The set operation is only
generated for attributes that are not defined readonly .

22.6.1.3 Example

The following implied-IDL is generated from the interface definitions used in the
running example:

// AMI implied-IDL including callback operations
// for original example IDL defined in Section 22.5

exception InvalidStock { string sym; };

interface AMI_StockManagerHandler;

interface StockManager {

// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

// Async Callback operation Declarations
void sendc_get_stock_exchange_name(

in AMI_StockManagerHandler ami_handler);
void sendc_set_stock_exchange_name(

in AMI_StockManagerHandler ami_handler,
in string attr_stock_exchange_name);

void sendc_add_stock(
in AMI_StockManagerHandler ami_handler, in string symbol,
in double quote);
CORBA, v2.4.2 Async Operation Mapping February 2001 22-17

22

king
d to

from

s

y:
void sendc_edit_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol, in double new_quote);

void sendc_remove_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_find_closest_symbol(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_get_quote(
in AMI_StockManagerHandler ami_handler,
in string symbol);

};

22.6.2 Polling Model Signatures (sendp)

When the polling model is used, the client is returned a queriable poller when ma
the asynchronous invocation. The interface’s operations and attributes are mappe
implied-IDL operations with names prefixed by sendp_ . If this implied-IDL
operation name conflicts with existing operations on the interface or any of the
interface’s base interfaces, ami_ strings are inserted between sendp_ and the original
operation name until the implied-IDL operation name is unique.

22.6.2.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• A type-specific Poller return type as described in Section 22.10, “Type-Specific
Poller Mapping,” on page 22-26, followed by sendp_<opName> where opName
is the name of the operation.

The async polling version takes the following parameters in order:

• Each of the in and inout arguments in the order that they appeared in the
operation’s declaration in IDL, all with a parameter attribute of in and with the type
specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one
the original operation (if any is present).

22.6.2.2 Implied-IDL for Attributes

The signature of the implied-IDL for the polling model getter and setter operation
corresponding to an interface’s attribute is as follows:

• Setter operations are only generated for attributes that are not defined readonl
22-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

y

:

• A type-specific Poller return type as described in Section 22.10, “Type-Specific
Poller Mapping,” on page 22-26, followed by the operation name, which to
distinguish between the getter and setter operations for the attribute is given b
either:

• sendp_get_<attributeName> for reading the attribute value, where
attributeName is the name of the attribute, or

• sendp_set_<attributeName> for setting the attribute value, where
attributeName is the name of the attribute that is not defined readonly.

• Asynchronous implied-IDL operations for attributes have argument lists as follows

• For the attribute’s generated get operation, there are no arguments.

• For the attribute’s generated set operation, there is one argument, in <attrType>
attr_<attributeName> , where attrType is the type of the attribute, and
attributeName is the name of that attribute. The set operation is only generated
for attributes that are not defined readonly.

22.6.2.3 Example

The following implied-IDL is generated from the interface definitions used in the
running example:

// AMI implied-IDL including polling operations
// for original example IDL defined in Section 22.5
exception InvalidStock { string sym; };

value AMI_StockManagerPoller;

interface StockManager {
// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

// Async Polling operation Declarations
AMI_StockManagerPoller sendp_get_stock_exchange_name();
AMI_StockManagerPoller sendp_set_stock_exchange_name(

in string attr_stock_exchange_name);

AMI_StockManagerPoller sendp_add_stock(
in string symbol,
in double quote);

AMI_StockManagerPoller sendp_edit_stock(
in string symbol, in double new_quote);

AMI_StockManagerPoller sendp_remove_stock(
CORBA, v2.4.2 Async Operation Mapping February 2001 22-19

22

that

ated

for

low.

d
urned
in string symbol);
AMI_StockManagerPoller sendp_find_closest_symbol(

in string symbol);
AMI_StockManagerPoller sendp_get_quote(

in string symbol);
};

22.7 Exception Delivery in the Callback Model

The ReplyHandler interface is expressed in IDL and thus cannot have operations
take exceptions as arguments. Furthermore, the most natural way for a ReplyHandler
to deal with exceptions is by invoking some operation that raises exceptions, not
through inspecting operation parameters. Therefore, exception replies are propag
to the ReplyHandler in the form of a type-specific ExceptionHolder value instance
that contains the marshaled exception as its state and has generated operations
raising the encapsulated exception in the manner dictated by the programming
language’s mapping from IDL.

22.7.1 Generic ExceptionHolder Value

The generic ExceptionHolder value encapsulates the exception data and enough
information to turn that data back into a raised exception.

Note – The state of the base ExceptionHolder is not used directly by application
code. The members of this value are used internally by the Message Routing
Interoperability layer and the implementation of type-specific holders described be

//IDL
module Messaging {

// ... all the other stuff

value ExceptionHolder {
boolean is_system_exception;
boolean byte_order;
sequence<octet> marshaled_exception;

};
};

22.7.2 Type-Specific ExceptionHolder Mapping

For each interface, a type-specific ExceptionHolder value is generated by the IDL
compiler. This ExceptionHolder is implemented by the messaging-aware ORB an
passed to an application using the callback model when exception replies are ret
from the target. The name of the generated value type is
AMI_<ifaceName>ExceptionHolder , where ifaceName is the name of the
original interface. If the interface ifaceName derives from some other IDL interface
baseName , then the ExceptionHolder for ifaceName is derived from
22-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ng

e

 the
AMI_<baseName> , but if it does not, then it is derived from the generic
Messaging::ExceptionHolder . If the identifier
AMI_<ifaceName>ExceptionHolder conflicts with an existing identifier name,
uniqueness is obtained by inserting additional “AMI_” prefixes before the ifaceName
until the generated identifier is unique.

For each operation declared in the original interface, an operation with the followi
signature is defined on the generated ExceptionHolder :

• return type void , followed by raise_<operName>() where operName is the
name of the operation. The new operation takes no arguments.

• If the original operation has a raises clause for user exceptions, the generated
operation’s empty argument list is followed by raises
(<originalExceptionList>) where originalExceptionList is the list of user
exceptions from the original operation’s raises clause.

For each attribute declared on the original interface, operations are defined on th
generated ExceptionHolder with the following signatures:

• For all attributes, a raise_ operation is generated for the getter: void
raise_get_<attrName>() ;

• If the attribute is not defined readonly , a raise_ operation is generated for the
setter: void raise_set_<attrName>() ;

When invoked, these operations raise the appropriate CORBA::Exception . If the
incorrect raise_ operation is invoked by an application’s ReplyHandler , the
ExceptionHolder may not be able to unmarshal the exception reply. In this case,
system exception CORBA::UNKNOWN is raised.

22.7.3 Example

The example IDL causes the generation of the following additional IDL when
asynchronous Callback operations are to be used. This IDL is “real” in that the
definition described here is a normal CORBA value type.

// AMI implied-IDL of ExceptionHolder
// for original example IDL defined in Section 22.5
value AMI_StockManagerExceptionHolder : Messaging::ExceptionHolder {

void raise_get_stock_exchange_name();
void raise_set_stock_exchange_name();
void raise_ add_stock();
void raise_edit_stock()

raises(InvalidStock);
void raise_remove_stock()

raises(InvalidStock);
void raise_find_closest_symbol();
void raise_get_quote()

raises(InvalidStock);
};
CORBA, v2.4.2 Exception Delivery in the Callback Model February 2001 22-21

22

 The
us

or its
s an

ient

 of

ny
 and

his

fact
with
r

tion
g

t

e
,
22.8 Type-Specific ReplyHandler Mapping

For each interface, a type-specific reply handler is generated by the IDL compiler.
client application implements and registers a reply handler with each asynchrono
request and receives a callback when the reply is returned for that request. The
interface name of the type-specific handler is AMI_<ifaceName>Handler , where
ifaceName is the original interface name. If the interface ifaceName derives from
some other IDL interface baseName , then the handler for ifaceName is derived
from AMI_<baseName> , but if it does not, then it is derived from the generic
Messaging::ReplyHandler . If the interface name AMI_<ifaceName>Handler
conflicts with an existing identifier, uniqueness is obtained by inserting additional
“AMI_” prefixes before the ifaceName until the generated identifier is unique.

When invoking an async operation, the client first generates an object reference f
ReplyHandler and then associates it with the request by passing the reference a
argument to the operation. The reply will be targeted to that ReplyHandler . So that a
single ReplyHandler servant instance can be supplied to multiple requests, the cl
can assign unique ObjectId s for each request if the application code needs to
distinguish between each of these requests at a later time. Most commonly, the
application needs to access information from the calling scope while in the scope
the callback. That information can be associated with the ReplyHandler ’s ObjectId
by the client application at the time of invocation. Obtaining the ReplyHandler ’s
ObjectId within the callback implementation allows that implementation to obtain a
information previously associated with the original request. Since the assignment
accessing of these ObjectId s is fully supported within the Portable Object Adapter
defined in CORBA, there is no need to specify the notion of unique request ids in t
document.

The ReplyHandler object reference will be serviced by a servant running under a
POA with a particular set of POA policies. These policies are not affected by the
that it is a ReplyHandler , so these Policy values have the same considerations as
any server. The POA LifeSpanPolicy will probably be affected depending on whethe
or not TII is used:

• If TII is not used, the LifeSpanPolicy can be either PERSISTENT or
TRANSIENT, depending on the implementation. LifeSpanPolicy would likely be
PERSISTENT if the same ReplyHandler implementation is used for replies from
multiple clients. It could be TRANSIENT if the programmer creates the
ReplyHandler object reference in the same process as that of the async invoca
and wants the ReplyHandler object reference to become invalid when the creatin
POA terminates. In this case, replies are discarded by the ORB once the clien
terminates.

• If TII is used, LifeSpanPolicy of PERSISTENT is almost required since TII
means that the ReplyHandler can validly be located in a process that can be
different than the process of the original client. It is possible for LifeSpanPolicy
to be TRANSIENT, but this would be a rare usage in which the original client
obtains the ReplyHandler reference from a process other than itself. This usag
would allow a ReplyHandler to be in effect only for the life of that other process
supporting a rather limited form of TII.
22-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ture

n

 client
ld be
ack.
sion

ated

d
k

n
ciated
ant

d
.
e
22.8.1 ReplyHandler Operations for NO_EXCEPTION Replies

For each operation declared in the interface, an operation with the following signa
is defined on the generated reply handler:

• return type void, followed by

• the name of the operation, followed by

• arguments in order (all “in” parameters).

• If the original operation has a return value, the type returned by the operatio
declared in IDL with parameter named ami_return_val .

• Each inout/out type name and argument name as they were declared in IDL.

These operations do not raise any exceptions because they are never invoked by a
and have no client to respond to such an exception. Only a system exception cou
raised by such operations, and only with the effect of causing a transaction to roll b
See Appendix C, “Changes to Current OTS Behavior” on page 22-85 for a discus
of the Unshared Transaction model in which a ReplyHandler may be invoked as part
of a transaction.

For an attribute with the name “attributeName,” the following operations are gener
on the reply handler: return type void, followed by get_<attributeName> for the
getter (or set_<attributeName> for the setter operation if the attribute is not define
to be readonly). For the “get” operation, there is one argument (the setter callbac
operation takes no arguments): in <attrType> ami_return_val where the attribute of
name ami_return_val is of type attrType .

There are two cases where the above mapping results in an operation with no
parameters. The first is for an operation with no return value and either with no
parameters or with only in parameters. The second is the mapping of a setter on a
attribute. In these cases, it is worth noting that the only meaning that can be asso
with the operation is that the AMI operation completed successfully. This is signific
information, essentially an acknowledgment of completion.

22.8.2 ReplyHandler Operations for Exceptional Replies

If the AMI didn’t succeed at the target, the exception is delivered via the generate
_excep ReplyHandler operation corresponding to the operation originally invoked
This section describes the implied-IDL rules for generating these operations on th
ReplyHandler .

For each operation, operName , on the original interface named ifaceName , an
operation with the following signature is generated on the type-specific
ReplyHandler :

void <operName >_excep(
in AMI_ <ifaceName >ExceptionHolder excep_holder);

For each attribute, attrName , on the original interface named ifaceName , an
operation with the following signature is generated on the type-specific
ReplyHandler :
CORBA, v2.4.2 Type-Specific ReplyHandler Mapping February 2001 22-23

22

this
reply
void get_ <attrName >_excep(
in AMI_ <ifaceName >ExceptionHolder excep_holder);

For each non-readonly attribute, attrName , on the original interface named
ifaceName , an operation with the following signature is generated on the type-
specific ReplyHandler :

void set_ <attrName >_excep(
in AMI_ <ifaceName >ExceptionHolder excep_holder);

22.8.3 Example

The example IDL causes the generation of the following additional IDL when
asynchronous operations are to be used. This IDL is “real” in that the interfaces
described here are CORBA objects. However, the generation of stubs for these
interfaces is not required, as no client ever invokes these operations remotely in
model. The operations are invoked directly by the messaging-aware ORB when a
becomes available.

// AMI implied-IDL of ReplyHandler
// for original example IDL defined in Section 22.5
interface AMI_StockManagerHandler : Messaging::ReplyHandler {

void get_stock_exchange_name(
in string ami_return_val);

void get_stock_exchange_name_excep(
in AMI_StockManagerExceptionHolder excep_holder);

void set_stock_exchange_name();
void set_stock_exchange_name_excep(

in AMI_StockManagerExceptionHolder excep_holder);

void add_stock(
in boolean ami_return_val);

void add_stock_excep(
in AMI_StockManagerExceptionHolder excep_holder);

void edit_stock();
void edit_stock_excep(

in AMI_StockManagerExceptionHolder excep_holder);

void remove_stock(
in double quote);

void remove_stock_excep(
in AMI_StockManagerExceptionHolder excep_holder);

void find_closest_symbol(
in boolean ami_return_val,
in string symbol);

void find_closest_symbol_excep(
22-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ing
e

ny
ce’s

ly
in AMI_StockManagerExceptionHolder excep_holder);

void get_quote(
in double ami_return_val);

void get_quote_excep(
in AMI_StockManagerExceptionHolder excep_holder);

};

22.9 Generic Poller Value

The generic base Poller value can be queried to obtain the status of a potentially
outstanding request. So that it can be registered in a CORBA::PollableSet , it derives
from the abstract valuetype CORBA::Pollable . The inherited Pollable is_ready
returns the value TRUE if and only if a reply is currently available for the outstand
request. If it returns the value FALSE, the reply has not yet been returned from th
target. This operation raises the system exception OBJECT_NOT_EXIST if the
reply has already been obtained by some client at the time of the query.

The Poller has the following definition:

module Messaging {
valuetype Poller : CORBA::Pollable {

readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
readonly attribute boolean is_from_poller;

Object target;
string op_name;

};
};

22.9.1 operation_target

The target of the asynchronous invocation is accessible from any Poller.

22.9.2 operation_name

The name of the operation that was invoked asynchronously is accessible from a
Poller. The returned string is identical to the operation name from the target interfa
InterfaceDef .

22.9.3 associated_handler

If the associated_handler is set to nil, the polling model is used to obtain the rep
to the request. If it is non-nil, the associated ReplyHandler is invoked when a reply
becomes available.
CORBA, v2.4.2 Generic Poller Value February 2001 22-25

22

ion.
.

ribute

an

the
on.

ller
 the

s not

e is

. This

er is
l

ed.
Switching between the callback and polling models is supported by this specificat
The request must be made using the polling model, and thus a Poller is obtained
Through the attribute associated_handler , a ReplyHandler may be registered.
When the reply is available, the associated ReplyHandler will be invoked just as if
the callback model had been used to make the original request. By setting the att
to nil, the ReplyHandler can be disassociated at any time to allow the client
application to resume use of the Polling model. The Poller implementation is
responsible for ensuring that in multi-threaded applications, access to the
associated_handler is multi-thread safe.

22.9.4 is_from_poller

As described below, the type-specific pollers are queried to obtain the reply from
asynchronously invoked operation. If the reply is a system exception, it may be
important for the client application to distinguish between an exception raised by
poll itself and an exception that is actually the reply for the asynchronous invocati
The is_from_poller attribute returns the value TRUE if and only if the poller itself
has raised a system exception during the invocation of one of the type specific po
operations. If the exception raised from one of the type specific poller operations is
reply for the asynchronous operation, the value FALSE is returned. If the Poller ha
yet returned a response to the client, the BAD_INV_ORDER system exception is
raised.

22.10 Type-Specific Poller Mapping

The polling model requires usage of generated type-specific Poller values. A valu
used because all operations are locally implemented. The basic generated Poller
encapsulates the operations for obtaining replies to an outstanding asynchronous
request. A derived PersistentPoller value also adds private state that allows the
response to be obtained from a client other than the client that made the request
private state is used by the PersistentPoller implementation in conjunction with the
messaging-aware ORB.

22.10.1 Basic Type-Specific Poller

For each interface, the IDL compiler generates a type-specific Poller value. A Poll
created by the ORB for each asynchronous invocation that uses the polling mode
operations. The name of the basic type-specific Poller is AMI_<ifaceName>Poller ,
where ifaceName is the name of the interface for which the Poller is being generat
If the interface ifaceName derives from some other IDL interface baseName , then
the Poller for ifaceName is derived from AMI_<baseName>Poller , but if it does
not, then it is derived from Messaging::Poller . If this name conflicts with definitions
in the original IDL, additional AMI_ prefixes are prepended before <ifaceName>
until a unique value name is generated (such as “AMI_AMI_FooPoller ” for interface
Foo).
22-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ption

edes

ises

s

n

ill

 will

reply
22.10.1.1 Poller operations for Interface operations

For each operation declared in the interface, a polling operation with the following
signature is declared:

1. Return type void followed by

2. The name of the operation, followed by

3. A first parameter that is in unsigned long timeout indicating for how many
milliseconds this call should wait until the response becomes available. If this
timeout expires before a reply is available, the operation raises the system exce
CORBA:TIMEOUT. Any delegated invocations used by the implementation of
this polling operation are subject to the single timeout parameter, which supers
any ORB or thread-level timeout quality of service. Two specific values are of
interest:

• 0 - the call is a non-blocking poll, which raises the exception
CORBA::NO_RESPONSE if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be
used. The poll will not return until the reply is available.

The remaining arguments, if any, are in order (all “out” parameters):

1. If the original operation has a return value, the type returned by the operation
declared in IDL with parameter named ami_return_val .

2. Each inout/out type name and argument name as they were declared in IDL ra
(<exceptionList >, CORBA::WrongTransaction where exceptionList contains
the original operation raises exceptions, each exception from the original raise
clause.

3. In addition, if the deferred synchronous model is being used:

• the poll raises the CORBA::WrongTransaction user exception (if the request
has an associated transaction context), and

• the polling thread either has a null transaction context or a non-null transactio
context that differs from that of the request.

When a polling call is made, the operation returns in one of the following ways:

1. With the out arguments set - the reply has been returned and future queries w
raise the standard exception OBJECT_NOT_EXIST.

2. By raising the reply’s exception - the reply has been returned and future queries
raise the standard exception OBJECT_NOT_EXIST. The base Poller’s
is_from_poller has a value of FALSE.

3. By raising a system exception or CORBA::WrongTransaction due to a failure in
the polling operation. The base Poller’s is_from_poller has a value of TRUE.
Two specific exceptions are worth noting:

• CORBA::TIMEOUT - If a non-zero timeout value is specified, this system
exception is raised to indicate that the specified timeout has expired and the
has not yet been returned.
CORBA, v2.4.2 Type-Specific Poller Mapping February 2001 22-27

22

at are

ibute

s

is
ny

:

g

ill

 will
• CORBA::NO_RESPONSE - If a timeout with value 0 is specified, this
system exception is raised to indicate that the reply is not available.

22.10.1.2 Poller operations for Interface attributes

For each attribute declared in the interface, a polling operation with the following
signature is declared. Setter polling operations are only generated for attributes th
not declared readonly: return type void followed by the name of the generated
operation, which to distinguish between the getter and setter operations for an attr
is given by (respectively):

• get_<attributeName> , where attributeName is the name of the interface’s
attribute, or

• set_<attributeName> , where attributeName is the name of the interface’s
attribute that was not declared readonly.

A first parameter that is in unsigned long timeout indicating how many millisecond
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the system exception
CORBA::TIMEOUT. Any delegated invocations used by the implementation of th
polling operation are subject to the single timeout parameter, which supersedes a
ORB or thread-level timeout quality of service. Two specific values are of interest

• 0 - the call is a non-blocking poll, which raises the exception
CORBA::NO_RESPONSE if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be
used. The poll will not return until the reply is available.

For the getter operation only

An additional argument out <attrType> ami_return_val where attrType is the
type of the attribute.

The set operation takes no additional arguments.

Raises (CORBA::WrongTransaction) - If the deferred synchronous model is bein
used, the poll raises the CORBA::WrongTransaction user exception if the request
has an associated transaction context, and the polling thread either has a null
transaction context or a non-null transaction context that differs from that of the
request.

When a polling call is made, the operation returns in one of the following ways:

• With the out arguments set - the reply has been returned and future queries w
raise the standard exception OBJECT_NOT_EXIST.

• By raising the reply’s exception - the reply has been returned and future queries
raise the standard exception OBJECT_NOT_EXIST. The base Poller’s
is_from_poller has a value of FALSE.
22-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

reply

ent

ade

to

es
• By raising a system exception or CORBA::WrongTransaction due to a failure in
the polling operation. The base Poller’s is_from_poller has a value of TRUE.
Two specific exceptions are worth noting:

• CORBA::TIMEOUT - If a non-zero timeout value is specified, this system
exception is raised to indicate that the specified timeout has expired and the
has not yet been returned.

• CORBA::NO_RESPONSE - If a timeout with value 0 is specified, this
system exception is raised to indicate that the reply is not available.

22.10.2 Persistent Type-Specific Poller

When Time-Independent Invocations are made, the reply may be obtained by a
different client than the one that made the original request. An instance of persist
poller is returned from such invocations. The PersistentPoller contains the state
necessary to allow polling to be performed in a client distinct from the one that m
the request. This state is used privately by the messaging-aware ORB and is not
directly accessible to the application.

The generated PersistentPoller value is derived from the basic one. It adds no
methods, only one piece of private state. For an interface named ifaceName the
following PersistentPoller is generated:

value AMI_ <ifaceName >PersistentPoller : AMI_ <ifaceName >Poller {
MessageRouting::PersistentRequest outstanding_request;

};

Just as with any CORBA value this PersistentPoller can be passed as an argument
IDL operations and a copy of the Poller will be instantiated local to the callee.

22.10.3 Example

The example IDL causes the generation of the following additional IDL when
asynchronous polling operations are to be used. This IDL is “real” in that the valu
described here are normal CORBA value types.

// AMI implied-IDL of type-specific Poller
// for original example IDL defined in Section 22.5
value AMI_StockManagerPoller : Messaging::Poller {

void get_stock_exchange_name(
in unsigned long timeout,
out string ami_return_val)

raises (CORBA::WrongTransaction);
void set_stock_exchange_name(

in unsigned long timeout)
raises (CORBA::WrongTransaction);

void add_stock(
in unsigned long timeout,
out boolean ami_return_val)

raises (CORBA::WrongTransaction);
CORBA, v2.4.2 Type-Specific Poller Mapping February 2001 22-29

22

on

le
n use
ping

es

ious

s are
 are
c
e
void edit_stock(
in unsigned long timeout)

raises (InvalidStock, CORBA::WrongTransaction);
void remove_stock(

in unsigned long timeout,
out double quote)

raises (InvalidStock, CORBA::WrongTransaction);
void find_closest_symbol(

in unsigned long timeout,
 out boolean ami_return_val,

out string symbol)
raises (CORBA::WrongTransaction);

void get_quote(
in unsigned long timeout,
out double ami_return_val)

raises (InvalidStock, CORBA::WrongTransaction);

attribute AMI_StockManagerHandler associated_handler;
};

value AMI_StockManagerPersistentPoller : AMI_StockManagerPoller
{

MessageRouting::PersistentRequest request;
};

22.11 Example Programmer Usage

22.11.1 Example Programmer Usage (Examples Mapped to C++)

The following is an illustrative example of how the ideas from Section 22.4, “Secti
II - Introduction,” on page 22-13 and other sections come together from the
programmer’s point of view. It contains no new definitions; Section 22.11, “Examp
Programmer Usage,” on page 22-30 is solely meant to demonstrate an applicatio
of Messaging. Since the example is implemented in C++, the expected C++ map
of Section 22.4, “Section II - Introduction,” on page 22-13 implied-IDL is shown in
Section 22.11, “Example Programmer Usage,” on page 22-30.

22.11.2 Client-Side C++ Example for the Asynchronous Method Signatur

This section shows sample C++ that is generated from the implied-IDL of the prev
subsections of Section 22.4, “Section II - Introduction,” on page 22-13. The C++
mapping specifies a generated interface class (stub) on which method invocation
translated into operation requests. It is this class on which the function signatures
generated from their operation declarations in IDL. It is in this class that the asyn
functions signatures are also declared (and implemented). Using the IDL from th
example in the previous section the stub class StockManager is generated following
the C++ mapping. The following notes apply to this sample generated C++ code:
22-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

wn.
• Only the generated synchronous and asynchronous method signatures are sho
Vendor-specific constructors, methods and members are omitted.

• Although optional according to the IDL to C++ language mapping, method
signatures are generated as virtual.

• Since optional according to the IDL to C++ language mapping, exception
specifications are not included in generated methods.

// Generated file: stockmgr_c.hh (Filename is non-normative)

// C++ - StockManager declaration
class StockManager : public virtual CORBA::Object
{
public:
// … all the other stuff.
// StockManager SYNCHRONOUS CALLS
virtual void stock_exchange_name(const char * attr);
virtual char * stock_exchange_name();
virtual CORBA::Boolean add_stock(const char* symbol,CORBA::Double q);
virtual void edit_stock(const char* symbol, CORBA::Double q);
virtual void remove_stock(const char* symbol, CORBA::Double_out q);
virtual CORBA::Boolean find_closest_symbol(CORBA::String_out symbol);
virtual CORBA::Double get_quote(const char * symbol);

// ASYNCHRONOUS CALLBACK-MODEL CALLS
virtual void sendc_get_stock_exchange_name(

AMI_StockManagerHandler_ptr ami_handler);
virtual void sendc_set_stock_exchange_name(

AMI_StockManagerHandler_ptr ami_handler,
const char* attr_stock_exchange_name);

virtual void sendc_addStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_editStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_removeStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol);

virtual void sendc_find_closest_symbol(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

virtual void sendc_get_quote(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

// ASYNCHRONOUS POLLING-MODEL CALLS
virtual AMI_StockManagerPoller* sendp_get_stock_exchange_name();
virtual AMI_StockManagerPoller* sendp_set_stock_exchange_name(

const char* attr_stock_exchange_name);
virtual AMI_StockManagerPoller* sendp_addStock(

const char* symbol, CORBA::Double q);
virtual AMI_StockManagerPoller* sendp_editStock(

const char* symbol, CORBA::Double q);
CORBA, v2.4.2 Example Programmer Usage February 2001 22-31

22

-

virtual AMI_StockManagerPoller* sendp_removeStock(
const char* symbol);

virtual AMI_StockManagerPoller* sendp_find_closest_symbol(
const char * symbol);

virtual AMI_StockManagerPoller* sendp_get_quote(
const char * symbol);

};

22.11.3 Client-Side C++ Example of the Callback Model

22.11.3.1 C++ Example of Generated ExceptionHolder

The ExceptionHolder value class implementation is provided by the messaging
aware ORB. The StockManager’s ExceptionHolder has the following declaration
in C++:

// Generated file: stockmgr_s.hh (Filename is non-normative)
// C++ - AMI_StockManagerExceptionHolder implementation
AMI_StockManagerExceptionHolder :

public Messaging::ExceptionHolder
{
public:
virtual void raise_get_stock_exchange_name();
virtual void raise_set_stock_exchange_name();

virtual void raise_add_stock();
virtual void raise_edit_stock();
virtual void raise_remove_stock();
virtual void raise_find_closest_symbol();
virtual void raise_get_quote();
};

22.11.3.2 C++ Example of Generated ReplyHandler

The ReplyHandler Servant class generated for the StockManager interface is:

// Generated file: stockmgr_s.hh (Filename is non-normative)
// C++ - AMI_StockManagerHandler declaration
class POA_AMI_StockManagerHandler

: public POA_Messaging::ReplyHandler
{
public:
// Programmer must implement the following pure virtuals:

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val) = 0;
virtual void get_stock_exchange_name_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

virtual void set_stock_exchange_name() = 0;
virtual void set_stock_exchange_name_excep(
22-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

 pure
ese

as

 the
l
AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val) = 0;
virtual void add_stock_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

virtual void edit_stock() = 0;virtual void edit_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

virtual void remove_stock(
CORBA::Double quote) = 0;

virtual void remove_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol) = 0;

virtual void find_closest_symbol_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

virtual void get_quote(
CORBA::Double d) = 0;

virtual void get_quote_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder) = 0;

};

The programmer must now derive from the generated handler and implement the
virtual methods. The following points should be considered when implementing th
handler-derived reply handlers:

• System and User exceptions are “raised” through invocations of the generated
“_excep” operations. If a regular type-specific operation is invoked, the reply w
not an exception.

• Any exception raised from a ReplyHandler method can only be visible to the
messaging-aware ORB that is invoking that ReplyHandler . In most cases, this
means that exceptions should never be raised. In the case of an Unshared
Transaction, the ReplyHandler method may invoke
CosTransactions::Current::rollback_only or
CosTransactions::coordinator::rollback_only and then raise the
CORBA::TRANSACTION_ROLLEDBACK system exception to roll back this
attempted delivery of the reply.

• All heap-allocated storage associated with any of the arguments to the
ReplyHandler methods may be owned by the ORB. If so, any data passed into
handler must be copied if the data is to be kept. This corresponds to the usua
memory management rules for in arguments.
CORBA, v2.4.2 Example Programmer Usage February 2001 22-33

22

ted

ich
22.11.3.3 C++ Example of User -Implemented ReplyHandler

The following code is an example implementation of a user derived and implemen
reply handler based on the generated reply handler from Section 22.11.3.2, “C++
Example of Generated ReplyHandler,” on page 22-32. The inherited methods, wh
were previously declared as pure virtual are declared here as virtual and are
implemented as part of this class:

// File: AsyncStockHandler.h
// C++ - Declaration in my own header
#include "stockmgr_s.hh"// Include filename non-normative

class AsyncStockHandler : public POA_AMI_StockManagerHandler
{
public:
AsyncStockHandler() { }
virtual ~AsyncStockHandler() {}

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val);
virtual void get_stock_exchange_name_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder);

virtual void set_stock_exchange_name();
virtual void set_stock_exchange_name_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder);

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val);
virtual void add_stock_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder);

virtual void edit_stock();
virtual void edit_stock_excep(

AMI_StockManagerExceptionHolder_ptr excep_holder);

virtual void remove_stock(
CORBA::Double quote);

virtual void remove_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder);

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol);

virtual void find_closest_symbol_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder);

virtual void get_quote(
CORBA::Double d);

virtual void get_quote_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder);

};
22-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

se
is is
Each of these callback operations have implementations as in the following. Plea
note that for the sake of brevity, each pointer is not checked before it is used. Th
intentional.

// AsyncStockHandler.cpp
#include <AsyncStockHandler.h>

void
AsyncStockHandler::get_stock_exchange_name(
const char * ami_return_val)
{
cout << "Exchange Name = " << ami_return_val << endl;
}
void
AsyncStockHandler::get_stock_exchange_name_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_get_stock_exchange_name();
}
catch (const CORBA::SystemException& e) {

cout << "Get stock_exchange_name exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::set_stock_exchange_name()
{
// No data returned since this was the "set" of the attribute.
cout << "Set stock_exchange_name succeeded!" << endl;
}
void
AsyncStockHandler::set_stock_exchange_name_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_set_stock_exchange_name();
}
catch (const CORBA::SystemException& e) {

cout << "Set stock_exchange_name exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::add_stock()
{
// No data returned but no exception either which is good news.
cout << "Stock was added!" << endl;
}
void
AsyncStockHandler::add_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_add_stock();
CORBA, v2.4.2 Example Programmer Usage February 2001 22-35

22
}
catch (const CORBA::SystemException& e) {

cout << "add_stock exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::edit_stock()
{
// No return data but no exception either which is good.
cout << "Stock was edited!" << endl;
}
void
AsyncStockHandler::edit_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_get_quote();
}
catch (const CORBA::SystemException& e) {

cout << "edit_stock System Exception exception [" << e << "]" <<
endl;

}
catch (const InvalidStock& e) {

cout << "edit_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::remove_stock(
CORBA::Double quote)
{
cout << "Stock Removed and quote = " << quote << endl;
}
void
AsyncStockHandler::remove_stock_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_get_quote();
}
catch (const CORBA::SystemException& e) {

cout << "remove_stock System Exception exception [" << e << "]" <<
 endl;

}
catch (const InvalidStock& e) {

cout << "remove_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::find_closest_symbol(
CORBA::Boolean ami_return_val,
const char* symbol)
{

22-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

s (the

ty,
en
if (ami_return_val)
cout << "Closest stock = " << symbol << endl;

else
cout << "No closest stock could be found!" << endl;

}
void
AsyncStockHandler::find_closest_symbol_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_find_closest_symbol();
}
catch (const CORBA::SystemException& e) {

cout << "find_closest_symbol exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::get_quote(CORBA::Double quote)
{
cout << "Quote = " << quote << endl;
}
void
AsyncStockHandler::get_quote_excep(
AMI_StockManagerExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_get_quote();
}
catch (const CORBA::SystemException& e) {

cout << "get_quote System Exception exception [" << e << "]" <<
 endl;

}
catch (const InvalidStock& e) {

cout << "get_quote invalid symbol [" << e.sym << "]" << endl;
}
}

22.11.3.4 C++ Example of Callback Client Program

The following code shows how to set QoS at the ORB and object reference scope
two most common levels) and make asynchronous invocations using the user-
implemented reply handler from the previous section. Again, for the sake of brevi
checking for valid pointers and placing all of the CORBA calls in try blocks has be
omitted.

// callback_client_main.cpp
#include <AsyncStockHandler.h>
int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Initializing objRef for StockManager -- assumes IOR is passed
CORBA, v2.4.2 Example Programmer Usage February 2001 22-37

22
// on command-line
CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);

// Obtain the ORB’s PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =
CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);
stockMgr = stockMgr->set_policy_overrides(obj_pols);

// At this point QoS has been set and a protocol selected.

// Create an async handler for each async function.
// Note that the same handler instance could be used across the board
// if we wanted to only create a new Object Reference for each
// invocation and then correlate the timing data with each ObjectId
// ourselves.
//
// The following code assumes implicit activation of Servants with the
// RootPOA
AsyncStockHandler* handlerImpls[6];
for (int i = 0; i < 6; i++)

handlerImpls[i] = new AsyncStockHandler();

AMI_StockManagerHandler_var handlerRefs[6];
for (int i=0; i < 6; i++)

handlerRefs[i] = handlerImpls[i]._this();

// Async Attributes
stockMgr->sendc_set_stock_exchange_name(handlerRefs[0], "NSDQ");
22-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

RB.
stockMgr->sendc_get_stock_exchange_name(handlerRefs[1]);
// Async Operations
stockMgr->sendc_add_stock(handlerRefs[2], "ACME", 100.5);
stockMgr->sendc_edit_stock(handlerRefs[3], "ACME", 150.4);

// Notice no out param is passed.
stockMgr->sendc_remove_stock(handlerRefs[4], "ABC");

stockMgr->sendc_find_closest_symbol(handlerRefs[5], "ACMA");

// callbacks get invoked during other distributed requests and during
// eventloop processing.
// Assume that done is set by handler implementation when all replies
// have been received or request have timed out.while(!done)

orb->perform_work();
return 0;
}

22.11.4 Client-Side C++ Example of the Polling Model

22.11.4.1 C++ Example of Generated Poller

The typed Poller value class implementation is provided by the messaging-aware O
The generated C++ class has the following declaration:

// Generated file: stockmgr_c.hh (Filename is non-normative)
class AMI_StockManagerPoller : public Messaging::Poller
{
public:
virtual void get_stock_exchange_name(

CORBA::ULong timeout,
CORBA::String_out ami_return_val);

virtual void set_stock_exchange_name(
CORBA::ULong timeout);

virtual void add_stock(
CORBA::ULong timeout,
CORBA::Boolean_out ami_return_val);

virtual void edit_stock(CORBA::ULong timeout);

virtual void remove_stock(
CORBA::ULong timeout,
CORBA::Double_out quote);

virtual void find_closest_symbol(
CORBA::ULong timeout,
CORBA::Boolean_out ami_return_val,
CORBA::String_out symbol);

virtual void get_quote(
CORBA::ULong timeout,
CORBA, v2.4.2 Example Programmer Usage February 2001 22-39

22

 The

ch
then

catch
CORBA::Double_out ami_return_val);

virtual AMI_StockManagerHandler_ptr associated_handler();
virtual void associated_handler(AMI_StockManagerHandler_ptr _val);
};

22.11.4.2 C++ Example of Polling Client Program

The following example client program demonstrates the use of the Polling model.
bulk of the program is exactly the same as the program demonstrated in
Section 22.11.3.4, “C++ Example of Callback Client Program,” on page 22-37. Ea
invocation uses the polling “sendp_” in this program and the returned Pollers are
sequentially called to obtain the results. The following notes apply to this sample
program:

• All polling calls are fully blocking (no timeouts are used).

• Since transactions are not used in this example, the polling program does not
CORBA::WrongTransaction exceptions.

// polling_client_main.cpp
#include <stockmgr_c.hh> // include filename is non-normative
int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Initializing objRef for StockManager -- assumes IOR is passed
// on command-line
CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);

// Obtain the ORB’s PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =

CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
22-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);

stockMgr = stockMgr->set_policy_overrides(obj_pols);

// At this point QoS has been set and a protocol selected.

// Make each invocation and store the returned Pollers
AMI_StockManagerPoller* pollers[6];

// Async Attributes
pollers[0] = stockMgr->sendp_set_stock_exchange_name("NSDQ");
pollers[1] = stockMgr->sendp_get_stock_exchange_name();

// Async Operations
pollers[2] = stockMgr->sendp_add_stock("ACME", 100.5);
pollers[3] = stockMgr->sendp_edit_stock("ACME", 150.4);

// Notice no out param is passed.
pollers[4] = stockMgr->sendp_remove_stock("ABC");
pollers[5] = stockMgr->sendp_find_closest_symbol("ACMA");

// Now obtain each result
CORBA::ULong max_timeout = (CORBA::ULong) -1;
pollers[0]->set_stock_exchange_name(max_timeout);
cout << "Setting stock exchange name succeeded" << endl;

CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(

max_timeout,
exchange_name.out());

cout << "Obtained stock exchange name [" << exchange_name << "]"
<< endl;

CORBA::Boolean stock_added;
pollers[2]->add_stock(

max_timeout,
stock_added);

if (stock_added)
cout << "Stock added successfully" << endl;

else
cout << "Stock not added" << endl;

try {
pollers[3]->edit_stock(max_timeout);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

cout << "Edit stock failure [" << e << "]" << endl;
}

CORBA, v2.4.2 Example Programmer Usage February 2001 22-41

22

at of

nner

if
try {
CORBA::Double quote;
pollers[4]->remove_stock(

max_timeout,
quote);

cout << "Removed stock successfully with quote [" << quote << "]"
<< endl;

}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]" << endl;
}

CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(

max_timeout,
closest_found, symbol.out());

if (closest_found)
cout << "Found closest symbol [" << symbol << "]" << endl;

cout << "Exiting Polling Client" << endl;
return 0;
}

22.11.4.3 C++ Example of Using PollableSet in a Client Program

The following example client program demonstrates the use of the PollableSet and
wait for multiple requests to finish. The program would be exactly the same as th
the previous section, as far as the comment “// Now obtain each result ”.

In this example, after the PollableSet::poll indicates that a particular Poller has
finished, the code makes the call on the type-specific poller in a non-blocking ma
and doesn’t bother checking for completion in the return value. Checking isn’t
necessary when only a single client is using the Poller, but it is the safe practice
multiple clients are waiting.

// Obtain results in any order. First set up
// the PollableSet.

CORBA::PollableSet_var poll_set =
pollers[0]->create_pollable_set();

CORBA::Pollable_var pollables[6];
for (int i=0; i<6, i++) {

pollables[i] = pollers[i]._this();
poll_set->add_pollable(pollables[i]);

}

// repeat until all completions have been received
CORBA::ULong max_timeout = (CORBA::ULong) -1;
while (poll_set->number_left() > 0) {

// wait for a completion
CORBA::Pollable_ptr pollable = poll_set->poll(max_timeout);

// the returned Pollable is ready to return its reply
for (int j=0; j < 6; j++) {
22-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
if (pollables[j]->is_equivalent(pollable)) break;
}

switch(j) {
case 0:

pollers[0]->set_stock_exchange_name(0UL);
cout << "Setting stock exchange name succeeded"

<< endl;
break;

case 1:
CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(0UL, exchange_name.out());
cout << "Obtained stock exchange name ["

<< exchange_name << "]" << endl;
break;

case 2:
CORBA::Boolean stock_added;
pollers[2]->add_stock(0UL, stock_added);
if (stock_added)

cout << "Stock added successfully" << endl;
else

cout << "Stock not added" << endl;
break;

case 3:
try {

pollers[3]->edit_stock(0UL);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

cout << "Edit stock failure [" << e << "]"
<< endl;

}
break;

case 4:
try {

CORBA::Double quote;
pollers[4]->remove_stock(0UL, quote);
cout << "Removed stock successfully with quote ["

<< quote << "]" << endl;
}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]"
<< endl;

}
break;

case 5:
CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(0UL, closest_found,

symbol.out());
CORBA, v2.4.2 Example Programmer Usage February 2001 22-43

22
if (closest_found)
cout << "Found closest symbol [" << symbol

<< "]" << endl;
break;

}
}

cout << "All replies received. Exiting Polling Client"
<< endl;

return 0;
}

22.11.5 Server Side

The following example of the server-side main() assumes a C++
implementation of the StockManager interface called StockManager_impl .

#include <StockManagerImpl.h> // Implementation header

int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// Obtain the POA
PortableServer::POA_var poa =

orb->resolve_initial_references("RootPOA");

// Create a POA that supports Unshared transactions and processes
// queued requests in priority order
CORBA::Any policy_val;
CORBA::PolicyList pols(2);
pols.length(2);
policy_val <<= (Messaging::PRIORITY | Messaging::DEADLINE);
pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::QUEUE_ORDER_POLICY_TYPE,
policy_val);

policy_val <<= CosTransactions::Allows_either;
pols[(CORBA::ULong) 1] =

orb->create_policy(CosTransactions::TRANSACTION_POLICY_TYPE,
 policy_val);

poa = poa->create_POA(
"MessagingPOA",
PortableServer::POAManager::_nil(),
pols);

// Instantiate the servant.
StockManager_impl* stockMgr = new StockManager_impl("NYSE");
// register the servant for use.
PortableServer::ObjectId_var servantId =

poa->activate_object(stockMgr);
orb->run();
return 0;
}

22-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

g of
reply
ents, or
ts of
t and
 is
ctually
et

ered
s.

l the
sider
Section III - Message Routing Interoperability

22.12 Section III - Introduction

Asynchronous method invocation and time-independent delivery of requests and
responses cannot be handled in a first-class manner within the synchronous dialo
the GIOP 1.1. The basic requirement for Messaging is that individual request and
messages (and their components) can be discussed by routing agents. These ag
Routers, explicitly pass messages between them and interact with clients and targe
asynchronous operations. This section describes the interactions between a clien
the first Router to handle its request, between successive Routers as the request
passed along the path to the target, and between the target and the Router that a
makes the request on behalf of the original client. This Router closest to the Targ
then turns the reply into a Request on a ReplyHandler , allowing the Reply to be
routed using the same mechanism as the original request. The reply is finally deliv
to an application’s ReplyHandler or through an application’s use of the Polling API

Note – This Introduction specifies Routing interoperability for CORBA Messaging
products. The information presented in this section is not required for building
applications that make Asynchronous operation invocations.

Throughout this Introduction a configuration is assumed in which the Client is
separated from the Target by the Internet. Using this “most complex” scenario, al
details of the Routing procedure are exposed. To help understand this design, con
Figure 22-1.

Figure 22-1 Routing Interoperability Overview

Client

INTERNET

Target

TargetRouter1

TargetRouter0

ClientRouter1

ClientRouter0

TargetRouter2ClientRouter2

ReplyHandler

1

2

3

4

5

6
7

8

9b

9a

Polling Client
CORBA, v2.4.2 Section III - Introduction February 2001 22-45

22

o
ts.
ly
 a
in a

hly
he

n III

tions

s to

g
22.13 Routing Object References

This specification is designed to support scenarios in which a target may be
disconnected for a long period of time. It would be inefficient for a client’s router t
need to monitor the availability of all targets for which it holds outstanding reques
To make this scenario scalable, it is possible for the target to specify a more high
available temporary destination for its asynchronous requests. This destination is
Router, and the natural place for the target to specify this Router’s location is with
component of the Target’s IOR. For extensibility, this specification defines a
TaggedComponent that contains a sequence of Router IORs.

module MessageRouting {
const IOP::ComponentId TAG_MESSAGE_ROUTERS = 3;

interface Router;
typedef sequence<Router> RouterList;

};

A TaggedComponent containing Target routing hints is built by setting the tag
member to MessageRouting::TAG_MESSAGE_ROUTERS and the
component_data to a CDR encapsulation of a MessageRouting::RouterList .
This component can appear in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles.

Routers are listed in this sequence in order from most highly available to least hig
available. It is expected that the least highly available Router will be “closest” to t
Target, whereas the most highly available Target Router will be “closest” to the
Internet. For example, the target in the reference example of Section 22.12, “Sectio
- Introduction,” on page 22-45 would have an IOR containing a
TAG_MESSAGE_ROUTERS Component containing a sequence of two Router
IORs. The first element in this sequence would be the reference of TargetRouter1
and the second element would be the reference of TargetRouter .

22.14 Message Routing

The messaging Routers serve two main purposes:

• forward a message to another Router, and

• synchronously deliver a message to its intended target.

This section explains the interfaces and mechanisms that support these two func
of Routers. The interfaces described here are not exposed to the application
programmer in any way. They are intended entirely for use by Messaging vendor
support interoperability between messaging implementations.

The following IDL is used to route asynchronous requests and their correspondin
replies:

// IDL
module Messaging {
22-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
interface ReplyHandler { };
};

module MessageRouting {

struct MessageBody {
sequence<octet> body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
octet reserved[3];
sequence<octet> object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;
sequence<string> typed_excep_holder_repids;

};

interface Router;
typedef sequence<Router> RouterList;
struct RequestInfo {

RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Messaging::PolicyValueSeq selected_qos;
RequestMessage payload;

};
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
CORBA, v2.4.2 Message Routing February 2001 22-47

22

d that

P 1.2
ary to

est.
void reply(
in string operation_name,
in GIOP::ReplyStatusType reply_type,
in MessageBody reply_body);

};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};
};

22.14.1 Structures

22.14.1.1 MessageBody

This structure is used to wrap the marshaled GIOP message data (either request
arguments or reply data) to support repackaging as the request components aroun
data (such as service contexts or object key) change due to Routing. Since GIO
Request and Reply Bodies are always aligned to an 8-octet boundary, it is necess
keep track of the

• data and the length of that data as a sequence of octet, and

• the byte order with which that data was originally marshaled.

22.14.1.2 RequestMessage

This structure explicitly contains all the components of a GIOP request. When the
target is actually invoked, its members are used to compose an actual GIOP requ

The RequestMessage has the following members:
22-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

.

 of

the

t no

ue.
• giop_version - the version of the GIOP that was used when the message was
marshaled.

• service_contexts - the sequence of service contexts selected for this request
Routers must propagate all Service Contexts with unknown tags.

• response_flags - As explained further in the General Inter-ORB Protocol
chapter, Section 15.4.1, “GIOP Message Header,” on page 15-31, the meaning
the two least significant bits is defined as:

• the least significant bit (bit-0) indicates whether or not a response may be
returned. If this bit is “1”, then the server-side ORB shall always send a
ReplyMessage . If the bit-0 is “0”, no ReplyMessage will be sent. This
replicates the function of the response_expected boolean in CORBA.

• Bit-1 is considered if and only if bit-0 is “1.” If bit-1 is “0” the server sends a
ReplyMessage before invoking the target. If bit-1 is “1” the ReplyMessage is
sent after the target has completed the invocation.

• reserved

• object_key - the opaque object key of the target. This may change if a GIOP
object forwarding occurs for this request.

• operation - the operation name of the request being made.

• body - the CDR stream message payload and marshaling byte order for
repackaging within a new GIOP request once the routed message can be
synchronously invoked on the target.

22.14.1.3 ReplyDestination

This structure contains enough information for the response to be returned once
actual invocation has been made on the target.

• handler_type - Either UNTYPED or TYPED indicating which type of
ReplyHandler is to receive the response. This flag is necessary to ensure tha
is_a must be performed when the Target Router is ready to return the reply as
described in Section 22.14.3.5, “Target Router,” on page 22-55.

• handler - an Object reference to the ReplyHandler that is the destination of the
response.

• typed_excep_holder_repids - a sequence of string repository identifiers
corresponding to the partial type information of the ExceptionHolder , which will
be used if the reply destination is TYPED and the reply is an exception. This list is
discussed in the GIOP/IIOP Extensions section of the “Objects by Value”
specification. In short, the first repository id in the list is the real type of the val
The rest of the list contains the base type repository ids to which it is safe to
truncate the value. If the handler_type is UNTYPED, this member is an empty
sequence.
CORBA, v2.4.2 Message Routing February 2001 22-49

22

a
rget.

eady.
est to
twork

 sent
sent

is
ey

 If

ge.
22.14.1.4 RequestInfo

This structure contains the information required for an intermediate Router to get
request closer to its target and for a target Router to invoke that request on its ta

• visited - the sequence of Routers through which the message has been sent alr
Each router may add its reference to this sequence before forwarding the requ
another Router. This sequence can be used by a Router to detect cycles in a ne
of Routers, but this is not a requirement step in the Routing protocol.

• to_visit - the suggested sequence of Routers to which the message should be
if the target is not available. This sequence may be modified as the request is
from Router to Router.

• profile_index - the index of the profile in the target IOR that is being used for th
request. This is necessary so the target router can choose the correct object k
when composing the final GIOP request.

• target - the full IOR of this message’s target.

• reply_destination - a reference to the ReplyHandler for this request along with
the disposition of that ReplyHandler . If the handler_type is UNTYPED, the
destination is an untyped ReplyHandler (meaning that it was created when
create_persistent_request was called and is implemented by the
ClientRouter). If the handler_type is TYPED, the reply destination is a type-
specific ReplyHandler implemented by an application using the callback model.
the reply destination is nil , no reply will be sent and the handler_type can be
ignored.

• selected_qos - the list of QoS that was selected for the Routing of this messa

• message - the payload (arguments, return value, raised exception) for this
message, including the byte order with which the message was originally
marshaled.

22.14.2 Interfaces

22.14.2.1 ReplyHandler

The ReplyHandler interface is a base interface for all specific ReplyHandler s
(either type-specific or Generic ones). It is used as the generic reply_destination
argument when a request is sent to a Router:

22.14.2.2 Router

The Router interface is used to pass messages when a request cannot be
synchronously invoked on its final target.
22-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ard
ts

 to

data

t

22.14.2.3 send_request

The Router is passed all the information necessary to either route the request tow
the target by calling send_request on another Router, or to invoke the request on i
final target.

22.14.2.4 send_multiple_requests

The Router is passed a sequence of RequestInfo structures, where each
RequestInfo is a completely self-contained set of information allowing the Router
either route the request toward the target by calling send_request on another Router,
or to invoke the request on its final target.

22.14.2.5 UntypedReplyHandler

This interface is the target of replies when the polling model is used.

22.14.2.6 reply

The reply operation is invoked when the reply to a PersistentRequest becomes
available. The operation is invoked with the following arguments:

• operation_name - The string name of the original request operation. This is
necessary if the untyped reply must be turned into a callback on a typed
ReplyHandler (as is the case if the polling client has switched models after
making the request and associated a ReplyHandler with its Poller).

• reply_type - The status of the Reply (either NO__EXCEPTION,
USER_EXCEPTION, or SYSTEM_EXCEPTION). LOCATION_FORWARD
replies are not invoked on the ReplyHandler .

• reply_body - The marshaled data of the reply along with the byte order with
which it was marshaled.

22.14.2.7 PersistentRequest

Instances of this interface are created by the Client Router for polling model
invocations, and is queried to obtain the status of a request, including the reply’s
if available.

22.14.2.8 readonly attribute reply_available

Returns the value TRUE if and only if the reply is currently available and has not ye
been returned to some caller of get_reply . Returns the value FALSE if and only if
the reply has not yet been returned to the ClientRouter. This attribute cannot be
checked if the response has already been delivered to some caller of get_reply , as the
PersistentRequest instance will have been deactivated at that time and the ORB
will return the system exception OBJECT_NOT_EXIST on any subsequent
invocations on that PersistentRequest .
CORBA, v2.4.2 Message Routing February 2001 22-51

22

ned

the
nt

t can

 the

is
ey

 sent
sent
22.14.2.9 get_reply

The get_reply operation is invoked to poll or block for a reply to a
PersistentRequest . The operation returns the status of the reply (either
NO_EXCEPTION, USER_EXCEPTION, or SYSTEM_EXCEPTION) or raises the
ReplyNotAvailable exception if no reply is obtained before the specified timeout
occurs. If the response is returned to the caller, the PersistentRequest is deactivated
so that future invocations of get_reply raise the system exception
OBJECT_NOT_EXIST. The operation takes the following arguments:

• blocking - if set, the operation does not return until either a reply can be retur
or the PersistentRequest becomes invalid (due to an expired time-to-live).

• timeout - ignored if blocking is TRUE. Otherwise, the request blocks for the
specified number of seconds or until a reply is available. If no reply becomes
available after the specified timeout has expired, the ReplyNotAvailable
exception is raised.

• reply_body - the data of the reply as originally marshaled by the target.

22.14.2.10 attribute associated_handler

The possibly nil ReplyHandler reference of the type-specific ReplyHandler
registered to receive a callback reply for this request. This attribute is initially nil if
PersistentRequest was created for a polling client, and becomes non-nil if the clie
decides to switch from the polling model to the callback model.

22.14.2.11 PersistentRequestRouter

This interface is used by the messaging-aware client ORB to create a request tha
be queried to obtain its status and reply data (e.g., using the polling model).

22.14.2.12 create_persistent_request

When a PersistentRequest is created for a message, no reply destination is
supplied. Instead, the PersistentRequestRouter establishes itself as the reply
destination and returns to the caller a reference that has operations for obtaining
status and reply for the request. The operation that returns this new
PersistentRequest takes the following arguments:

• profile_index - the index of the profile in the target IOR that is being used for th
request. This is necessary so the target router can choose the correct object k
when composing the final GIOP request.

• to_visit - the suggested sequence of Routers to which the message should be
if the target is not available. This sequence may be modified as the request is
from Router to Router.

• target - the full IOR of this message’s target.

• selected_qos - the list of QoS that was selected for this message.
22-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

re
outer
erve

ses.

 the
his
t has

d an

 the

to

ases)
e

e
• message - the payload (arguments, return value, raised exception) for this
message.

22.14.3 Routing Protocol

Processing of a time-independent invocation involves a series of roles played by
various components of the distributed system. These roles include:

• the invoking client

• an initial request router

• intermediate request routers

• a target router

• the target object

• intermediate reply routers

• a final reply router

• the response-receiving client.

Not all of these distinct roles are necessarily involved in every invocation, and mo
than one role can be played by the same component of the distributed system. A r
implementation is likely to be able to serve any of the router roles, and may even s
multiple roles for the same invocation, such as when the initial request router also
serves as the target router with no intermediate request routers involved.

Routers can be collocated with client or server ORBs, or can be separate proces
Either way, routers must maintain persistent state with transactional semantics.

22.14.3.1 Invoking Client

The client application makes an asynchronous invocation either by specifying a
ReplyHandler object or by using the polling API.

Depending on QoS requirements, the client ORB may try to synchronously invoke
operation on the target object, using IIOP or some other synchronous protocol. T
attempt will not be made if the client is part of an active transaction and the targe
a TransactionPolicy of Requires_unshared .

If the target is unreachable via a synchronous protocol, the client ORB tries to fin
initial router to use. If the target IOR has a TAG_MESSAGE_ROUTERS component,
its list of routers may be tried, starting from the one closest to the target, which is
last in the list. If none of these are reachable, or there is no
TAG_MESSAGE_ROUTERS component, then the client ORB’s default router
closest to the target may be chosen. The order in which the client ORB attempts
contact an initial router is not mandated by this specification. The client ORB may
choose to send the request to any Router (such as its own closest Router in all c
according to implementation-specific configuration. If the client application used th
polling interface and a quality of service requiring the request to be persistent, th
client ORB attempts to narrow the initial request router to a
CORBA, v2.4.2 Message Routing February 2001 22-53

22

o

t by

ly

refore

t of

RB
ing

s
ntext,
low.

te

 the
iation

ing
 all
 the
t
PersistentRequestRouter , and if this fails, a different router must be selected. If n
router can be found meeting the required quality of service, the system exception
CORBA::INV_POLICY is raised.

Once an initial request router is identified, the client ORB delivers the request to i
invoking send_request if a ReplyHandler was specified, or
create_persistent_request if the polling API and persistent QoS was used. The
client application’s active transaction context, if any, is used for this invocation. On
service context information that is meaningful to the target in a time-independent
invocation, such as CodeSet s (but not TransactionContext), is included in the
RequestMessage argument to send_request . Future ORB service specifications
must state whether their service contexts are to be considered end-to-end (and the
included within the RequestMessage) or are only for a single hop (and therefore
used by the ORB when invoking the initial router but not included with the
RequestMessage).

An empty sequence is passed by the client ORB as the visited parameter. The lis
routers from the target IOR’s TAG_MESSAGE_ROUTERS component is used as the
to_visit parameter. This list may have additional routers added to it by the client O
depending on administration of the network of routers. If the callback model is be
used, the type-specific ReplyHandler is passed as the reply_destination . If the
request was originated using create_persistent_request , the untyped
ReplyHandler is passed as the reply_destination . For the reply to be able to be
delivered asynchronously, these ReplyHandler IORs must contain enough routing
information (e.g., TAG_MESSAGE_ROUTERS component).

22.14.3.2 Initial Request Router

The initial request router’s role depends on whether the ReplyHandler or polling API
was used by the client.

If the client ORB passed the request message, along with a ReplyHandler reference,
to the initial router using the send_request operation, the initial request router save
the request message to stable storage within the client application’s transaction co
and then processes the request using the request routing algorithm described be

If create_persistent_request was called, the initial request router must instantia
a PersistentRequest object and return its reference to the client ORB, which will
return it to the client application. Until the response for the request is delivered to
client, or the request times out, such an initial request router must keep an assoc
between the identity of this PersistentRequest object and the state of the request.
When routing the request (as described below), this first router passes a
reply_destination , which is an UntypedReplyHandler implemented by the first
router itself. This UntypedReplyHandler may be created either before or after the
PersistentRequest and request state is committed to stable storage. After return
the PersistentRequest object and committing the request state to stable storage,
within the transaction context of the client application, the initial router processes
request using the routing algorithm described below. The routing process does no
continue until the client’s initial transaction has been committed.
22-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

e
ject,

t, it
o
d of
outer

t of

ng
ected
n. If
tion is

and

quest

m

y take

livers
k to

 the
r
e
22.14.3.3 Request Routing Algorithm

Any router that has received a request message and committed it to stable storag
processes it in the same way. If it can invoke the operation directly on the target ob
the router serves as the target router for the invocation, as described below. If no
tries to deliver the request to another router closer to the target object. If it can’t d
either of these, it queues the request and tries again later, either after some perio
time has elapsed, or in response to an announcement of availability from another r
closer to the target as described in Section 22.15, “Router Administration,” on
page 22-59.

A router typically picks another router closer to the target by selecting from the lis
routers passed to it as the to_visit parameter to either send_request or
create_persistent_request . Routers later in the list are given preference as bei
closer to synchronous connection with the target. The next router can also be sel
from some set of known Routers based on an implementation-specific configuratio
QoS attributes of the request message require persistence of requests, a transac
first initiated. Then send_request is called on the selected router. The to_visit
parameter is formed by removing the callee from the to_visit list received with the
original request. Any routers further from the target than the callee (earlier in the
to_visit list) are also removed. The target , reply_destination , selected_qos , and
message parameters are copied from the received request. After invoking
send_request , the router removes the request message from its stable storage,
commits the transaction if it initiated one.

A router must ensure that exactly-once semantics are preserved. If delivering a re
message results in an exception with a CompletionStatus of COMPLETED_NO, or
in a transaction being aborted, it can retry. Since any invocation can raise a syste
exception, all exception replies with a completion status other than
COMPLETED_NO must be reported back to the client via the reply message.

22.14.3.4 Intermediate Request Router

An intermediate router is simply a router that accepts a request message via
send_request from one router and then, eventually, delivers it to another router,
again using send_request . The send_multiple_requests operation may also be
used to allow batching of requests between Routers. The intermediate routers ma
a request’s QueueOrderPolicy (if present) into account when prioritizing the
delivery of requests to destination routers, but is not required to do so.

22.14.3.5 Target Router

The target router for an invocation is a router that accepts a request message, de
it to the target object, and, if a response is expected, routes the target’s reply bac
the client. The target router may have to queue the request message before the
invocation and/or may have to queue the response message after the invocation.

The target router may be collocated with the target, or may deliver the request to
target via a synchronous GIOP-based protocol. The target router is responsible fo
processing any LOCATION_FORWARD replies that may be generated in making th
CORBA, v2.4.2 Message Routing February 2001 22-55

22

his

essage
rage

ise no

t
y a
 the
t back
 was
ble
en the
the
ply

reply
 the

the
rated
rts a
e

tion

k, the
licy
invocation on the target, so only NO_EXCEPTION, USER_EXCEPTION, or
SYSTEM_EXCEPTION replies are routed back to the client. When making the
synchronous GIOP request on the target, the TargetRouter must marshal its request
with the same byte order with which the original message body was marshaled. T
byte order is recorded in the MessageBody structure. No Router is expected to
remarshal the request body with a new byte order.

If persistence of requests is required, the target router ensures that the request m
is removed from stable storage and the reply message is committed to stable sto
within the scope of a single transaction. If the target object’s IOR indicates that it
supports time-independent transactions (through a TransactionPolicy of
Allows_unshared , Allows_either , Requires_unshared , or Requires_either),
then that same transaction context is propagated to the server application. Otherw
transaction context is propagated to the target when the request is invoked.

When guaranteed delivery is required, there may be one, two, or three distinct
transactions involved in the target router’s processing of the invocation. The targe
router receives the request message within the context of a transaction initiated b
previous router or possibly the client ORB. If the target is accessible at that time,
operation can be invoked on the target and the reply message either stored or sen
toward the reply destination using the transaction context within which the request
received. If the target is not accessible, the request message is committed to sta
storage and queued for later delivery to the target under a second transaction. Wh
target operation is invoked and its reply is received, the target router may deliver
reply to another router, or possibly to the client ORB. The router may deliver the re
in the same transaction as it invoked the operation, or the router may commit the
to stable storage and later deliver it in yet another transaction. The completion of
transaction in which the TargetRouter actually delivers the request to the target is
governed by the following cases:

• A NO_EXCEPTION reply is returned and the transaction commits. This
committed reply is the one that will be returned to the client. Since the reply
committed, the request is no longer waiting in some queue pending delivery.

• A NO_EXCEPTION reply is returned but the transaction raises
TRANSACTION_ROLLEDBACK upon commit. In this case the router must
ensure that the request not be considered pending delivery anymore (logically
request must be removed from some queue), and that a suitable reply be gene
so that the client knows that the target’s transaction rolled back. The router sta
new transaction in which it removes the request from its “to be delivered” queu
and generates a reply with the system exception
TRANSACTION_ROLLEDBACK. This reply is then committed as the reply
for the request.

• A user or system exception is returned. The Router should rollback the transac
so no work has been done in the target server. There are two subcases here:

• the target was unreachable. In this case, since the transaction has rolled bac
request is still waiting in the Router’s queue of pending requests. The retry po
is used to determine when next to attempt delivery.
22-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

his

g

nd
 are
ts to

te the

t

rder
 not

e as

• the target was reachable but an exception was raised. As in the
TRANSACTION_ROLLEDBACK case above, the Router starts a new
transaction to remove the request from the queue of pending requests, and
commits the exception reply that it received from the target as the reply for t
operation.

If the request has a QueueOrderPolicy associated with it, the target router is
responsible for making invocations in the proper order. Depending on the Orderin
requested (e.g., PRIORITY, TEMPORAL), the appropriate request is selected for
delivery. Note that end-to-end ordering guarantees cannot be made when client a
target are decoupled, so this ordering is really only a guideline. If multiple threads
used in the router for request delivery, it is certainly possible for delivery of reques
be out of order. The specification of QueueOrderPolicy does not require a router or
server ORB to limit its use of threads in delivering requests.

Regardless of how many transactions, if any, are used, the target router must rou
reply back to the reply destination if and only if the response_expected flag was
set to a non-zero value in the RequestMessage . The reply can take one of two forms
depending on whether the reply_destination is a type-specific ReplyHandler (the
client uses the Callback model) or if the reply_destination is an
UntypedReplyHandler (a PersistentRequest was created such as when the clien
used the Polling model).

Note – The type-specific reply handlers and the UntypedReplyHandler are both
derived from the common base ReplyHandler interface, but there is no other
inheritance relationship between the UntypedReplyHandler and the type-specific
reply handlers.

Regardless of destination, the new reply must be marshaled with the same byte o
used by the target when the reply was originally marshaled. The Target Router is
expected to remarshal the reply body.

22.14.3.6 Replying to a Type-specific ReplyHandler

If the client originally supplied a type-specific ReplyHandler , the reply must be
converted into a typed request invocation on the ReplyHandler . The Target Router
determines this by verifying that the handler_type disposition of the
reply_destination argument has the value TYPED. The format of the generated
request depends on the reply_status :

• NO_EXCEPTION - the generated reply operation has the same operation nam
the request. Its RequestBody is exactly the same as the marshaled ReplyBody
from the target’s GIOP reply.

• SYSTEM_EXCEPTION or USER_EXCEPTION - the generated reply operation
has the same name as the request operation, with the string _excep appended. The
single argument to this request is the generated ExceptionHolder value . The type
information of this ExceptionHolder is specified in the ReplyDestination’s
typed_excep_holder_repids member. The state of the exception holder is
exactly that of the base Messaging::ExceptionHolder .
CORBA, v2.4.2 Message Routing February 2001 22-57

22

y the

uest

n the

r.

 the

mple,

the
A reply with status LOCATION_FORWARD is handled as described below.

22.14.3.7 Replying to an UntypedReplyHandler

If the client originally created a PersistentRequest (such as by using the Polling
model), the reply must be converted into the generic request operation supported b
UntypedReplyHandler interface. The Target Router determines this by verifying
that the handler_type disposition of the reply_destination argument has the value
UNTYPED. The generated reply operation has the name “reply” and takes as
arguments the original operation name, the reply_status (NO_EXCEPTION,
SYSTEM_EXCEPTION or USER_EXCEPTION) and a sequence of octet
containing the reply data. The length is set to the size of the marshaled ReplyBody
and the data is the marshaled body itself.

22.14.3.8 Handling of Service Contexts

When a TargetRouter receives a Reply, it generates a request on some ReplyTarget
as described previously in this section. If the Reply contains service contexts, the
TargetRouter must decide whether or not these contexts are to be used in its req
on the ReplyTarget . End-to-end service contexts, such as the CodeSets context, are
propagated to the ReplyTarget . Single-hop service contexts, such as the
TransactionService context, are consumed by the TargetRouter . Unknown service
contexts are propagated from the reply to the generated request on the ReplyTarget .

22.14.3.9 Handling LOCATION_FORWARD Replies

When a TargetRouter receives a Reply with status LOCATION_FORWARD , it must
either use the returned reference as the new target for the request, or must retur
new reference to the ReplyTarget . The Messaging protocol requires that the
TargetRouter continue processing the request by either directly invoking the new
target or routing the request toward the new target as has been described thus fa

22.14.3.10 Routing of Replies

As described above, the GIOP reply is turned into a request message targeted to
original reply_destination . Since this reply is now a request, it may be sent to its
destination using the message routing protocol described in this section. For exa
if the ReplyHandler ’s reference contains Routing information, the TargetRouter
may invoke the new request using some Router’s send_request operation. In this
case, the specified routing protocol should be followed for this new request, with
response_expected flags all set to 0 and the reply_destination set to nil.
22-58 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

rts a

y

made
as

 a

hip

ter,”
ork is

ation

rio

ed
et
22.14.3.11 UntypedReplyHandler

When an UntypedReplyHandler’s reply operation is invoked, several things may
happen. The specific correlation of a Router’s UntypedReplyHandler with the
PersistentRequests it supports is not visible to this interoperability layer, but at a
high level one of the following occurs:

• A type-specific ReplyHandler has been associated with the corresponding
PersistentRequest . If a callback has been registered for this reply (the
associated_handler is non-nil), the type-specific callback operation may be
invoked directly as described in Section 22.14.3.6, “Replying to a Type-specific
ReplyHandler,” on page 22-57. For persistent delivery of replies, the Router sta
transaction in which the reply is delivered. Once the client returns, the Router
commits and the reply is deleted. As with any transactional request, the
application’s ReplyHandler implementation may choose to invoke
CosTransactions::Current::rollback_only or
CosTransactions::coordinator::rollback_only and then raise the
CORBA::TRANSACTION_ROLLEDBACK system exception if it wishes to
rollback the Router’s transaction.

• A PersistentRequest::get_reply is pending for this request. The reply data ma
be immediately returned to the waiting client. The reply is returned within the
client’s transaction context and when that transaction is committed the reply is
deleted.

• The reply data may be saved to stable storage (for guaranteed delivery this is
durable when the sending Router commits the transaction in which the reply h
been delivered) or recorded in-process (if the reply is not guaranteed). The
UntypedReplyHandler::reply then returns. The reply is obtained by a client at
later time.

22.15 Router Administration

One basic function of a Router is to forward a request to another Router, which is
“closer” to the eventual target of a client’s original request. In terms of the relations
between these two routers, the first Router can be thought of as the “source Rou
and the second can be called the “destination Router.” In the case where the netw
partitioned or the destination Router has temporarily or permanently become
unavailable, the source Router will be unable to forward its message. When this
occurs, the Router must determine when and how to retry the request to the destin
Router.

To enable scalable networks of routers, a RouterAdmin interface has been specified.
The interface is defined mainly for the purpose of avoiding the non-scaling scena
where a source Router has no choice but to consume network resources by
continuously “pinging” its destination Router.

This problem is analogous to the one faced by the target router when attempting
delivery of the request to the message’s target. Therefore, the mechanism specifi
here generically supports registrations of destination routers as well as actual targ
object references.
CORBA, v2.4.2 Router Administration February 2001 22-59

22
module MessageRouting {

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

value RetryPolicy supports CORBA::Policy { };

const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 36;
value ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 37;
value UnlimitedPing : RetryPolicy {

public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;

};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 38;
value LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 39;
value DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 40;
value ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
22-60 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

rectly
e
r needs

e the
 the

n

ages,
o

ork.

e

.

its

ced
cted

.

in Object dest)
raises (InvalidState);

void unregister_destination(
in Object dest)

raises (InvalidState);
};

interface Router {
readonly attribute RouterAdmin admin;

};
};

When a request arrives at a Router (source router) that must either be delivered di
to a target, or be forwarded on via another Router (destination router), that sourc
router attempts to send the message. If the message send fails, the source route
to decide when to retry the send.

The following use of the RouterAdmin is intended for router-to-router
administration:

1. A source router gets a request that should be sent to a destination router. Sinc
source router has no registration for that destination router, it attempts to send
message.

2. Upon receipt of the message, the destination router realizes that it has never
registered back with the source router and calls back to the source router's
RouterAdmin (independent of the processing of the message - this is purely a
optional administrative request to avoid poor routing behavior in the future). By
calling back to the RouterAdmin , the destination router registers itself with its
desired retry policy and decay policy for future messages. On subsequent mess
the destination router knows that it has already registered and need perform n
administrative processing at this step.

3. At some time, the destination router knows it is being separated from the netw
This case is termed “graceful disconnection.”

• The destination router notifies the source router that the registration should b
suspended.

• Upon subsequent requests, the source router consults its list of registrations
Since the destination router is currently SUSPENDED, no send is attempted
(depending on the ResumePolicy at the time of suspension).

• At some later time, the destination router becomes reconnected. It resumes
registration and can now receive stored (and later) messages.

4. At some time, the destination router becomes disconnected without any advan
warning (it may not know that it is disconnected). This case is termed “unexpe
disconnection.”

• Upon subsequent requests, the source router consults its list of registrations
Since the destination router is currently ACTIVE, a send is attempted. When the
send fails, the source router follows its RetryPolicy and keeps pinging until the
CORBA, v2.4.2 Router Administration February 2001 22-61

22

he

ter
the
l
 can
e

he
his
ace
ve.

y to

lso

uter
at

se is

.

Since

ion

 (it

Since
n

he

the
l
ately
.

RetryPolicy indicates the registration should be suspended (immediately if t
RetryPolicy is ImmediateSuspend or never if the RetryPolicy is
UnlimitedPing).

• At some time, the destination router becomes reconnected. If the source rou
discovers this due to pinging, the pending requests can now be delivered. If
source router has SUSPENDED the registration or is in the midst of the interva
between pings when the destination router re-registers itself, the registration
immediately be set to an ACTIVE state and pending requests can be sent to th
destination router.

The “target router” is the one that synchronously delivers requests to the target. T
RouterAdmin is also used for the administration of policies that determine when t
target router will actually attempt to deliver its request. A target’s use of this interf
is very similar to the way it is used for router-to-router administration described abo
The analogous scenarios are re-described here for clarity:

1. An object instance is activated with support for TII. Since the target is now read
receive requests, it is registered with some router’s RouterAdmin with the target’s
desired retry policy and decay policy. Typically, a reference to this router will a
be contained in a MessageRouting::TAG_MESSAGE_ROUTERS component
of the target’s object reference.

2. A router gets a request that it can deliver directly to the target (therefore this ro
is considered a “target router”). Since the target router has a registration for th
object, it attempts to invoke the request.

3. At some time, the target knows it is being separated from the network. This ca
termed “graceful disconnection.”

• The target notifies the target router that the registration should be suspended

• Upon subsequent requests, the target router consults its list of registrations.
the target is currently SUSPENDED, no invocation is attempted (depending on
the ResumePolicy at the time of suspension).

• At some later time, the target becomes reconnected. It resumes its registrat
and can now receive stored (and later) requests.

4. At some time, the target becomes disconnected without any advanced warning
may not know that it is disconnected). This case is termed “unexpected
disconnection.”

• Upon subsequent requests, the target router consults its list of registrations.
the target is currently ACTIVE, an invocation is attempted. When this invocatio
fails, the target router follows its RetryPolicy and keeps pinging until the
RetryPolicy indicates the registration should be suspended (immediately if t
RetryPolicy is ImmediateSuspend or never if the RetryPolicy is
UnlimitedPing).

• At some time, the target once again becomes available. If the target router
discovers this due to pinging, the pending requests can now be delivered. If
target router has SUSPENDED the registration or is in the midst of the interva
between pings when the target re-registers itself, the registration can immedi
be set to an ACTIVE state and pending requests can be invoked on the target
22-62 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

r

ith a
tains

e.

d
22.15.1 Constants

22.15.1.1 typedef short RegistrationState

The RegistrationState indicates the current status of a registration for a particula
destination (a router or a target). The possible values are:

• NOT_REGISTERED - The given destination is not registered with this
RouterAdmin .

• ACTIVE - The given destination is currently registered with this RouterAdmin
and is not in the suspended state.

• SUSPENDED - The given destination is currently registered with this
RouterAdmin and has been set to the Suspended state.

22.15.2 Exceptions

22.15.2.1 exception InvalidState

The attempted operation attempts to affect a registration, which is not in a state w
valid transition to the new state dictated by the operation. The State member con
the current status of the router or target for which the operation was attempted:

• Suspend was attempted on a router/target either not registered or already
suspended.

• Resume was attempted on a router/target either not registered or already activ

• Unregister was attempted on a router/target not registered.

22.15.3 Values

22.15.3.1 RetryPolicy

This value is the abstract base from which all retry policies are derived.

22.15.3.2 ImmediateSuspend

The registered router is placed in the SUSPENDED state as soon as a message sen
fails.

22.15.3.3 UnlimitedPing

This value is used to parameterize a pinging behavior:
CORBA, v2.4.2 Router Administration February 2001 22-63

22

 to
, a
pt.

t

 same

r a

.

th an
e

l be

s and
• backoff_factor - If max_backoffs is non-zero, the backoff_factor is the
number by which the current interval between failed send attempts is multiplied
determine the interval before the next send should be attempted. For example
backoff_factor of 2 will cause the interval to double between each failed attem

• base_interval_seconds - The base number of seconds between retries.

• max_backoffs - If zero, the same interval is used between each retry (constan
interval pinging). If non-zero, the interval between retries is multiplied by the
backoff_factor after each failed send attempt until max_backoffs failed
attempts have been made. Once max_backoffs have been performed, retry
attempts are made at the constant rate of the last interval used. Otherwise, the
interval is used between each retry (linear pinging).

22.15.3.4 LimitedPing

This value is used to parameterize a pinging behavior that should be stopped afte
specified number of attempts. It derives from UnlimitedPing and adds the following
state:

• interval_limit - The number of attempts before the pinging should be stopped

22.15.3.5 DecayPolicy

This value indicates how long a given registration is valid. If the decay_seconds are
set to the value zero, the registered destination router will only be unregistered wi
invocation of unregister_router . Otherwise, the registered destination router will b
unregistered after the specified timeout has elapsed.

22.15.3.6 ResumePolicy

This value indicates when a suspended registration should be resumed. If the
resume_seconds are set to the value zero, the registered destination will only
become active once explicitly resumed. Otherwise, the suspended destination wil
resumed after the specified timeout has passed.

22.15.4 Interfaces

22.15.4.1 RouterAdmin

The RouterAdmin interface provides the operations for supporting scalable
connection and disconnection between source routers and their destination router
targets.
22-64 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

made

he

22.15.4.2 register_destination

A registration is added for the specified target with the given policies. If the
registration is marked as is_router , the destination will receive messages via the
Router interface as described in “Intermediate Request Router” on page 22-55.
Otherwise, the registration is assumed to be for a target, in which case delivery is
as described in “Target Router” on page 22-55.

22.15.4.3 suspend_destination

The specified registration is suspended. If that target is not in an ACTIVE state, an
InvalidState exception is raised. The suspended destination will be returned to t
ACTIVE state if an explicit resume_destination or register_destination
operation is performed for that destination. If the resume_policy allows for
TimedResume , this transition will occur in, at most, the specified amount of time
(e.g., if an explicit resumption doesn’t happen first).

22.15.4.4 resume_destination

Resume the suspended destination. An InvalidState exception is raised if the
destination is not in the SUSPENDED state.

22.15.4.5 unregister_destination

Unregister the specified destination. An InvalidState exception is raised if the target
is not registered.
CORBA, v2.4.2 Router Administration February 2001 22-65

22
Appendix A CORBA Messaging IDL

A.1 Messaging Module

The following module has been added by CORBA Messaging:

#pragma prefix "omg.org"

module Messaging {

//
// Messaging Quality of Service
//

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD = 2;

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;

//
// Locally-Constrained Policy Objects
//

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
interface SyncScopePolicy : CORBA::Policy {

readonly attribute SyncScope synchronization;
};
22-66 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};
interface RequestPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};
const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType REQUEST_START_TIME_POLICY_TYPE = 27;
interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
interface RelativeRequestTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
interface MaxHopsPolicy : CORBA::Policy {
CORBA v2.4 Messaging Module October 2000 22-67

22
readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

//
// Propagation of QoS Policies
//

struct PolicyValue {
CORBA::PolicyType ptype;
sequence<octet> pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

const IOP::ComponentId TAG_POLICIES = 2;
const IOP::ServiceId INVOCATION_POLICIES = 7;

//
// Exception Delivery in the Callback Model
//

value ExceptionHolder {
boolean is_system_exception;
boolean byte_order;
sequence<octet> marshaled_exception;

};

//
// Base interface for the Callback model
//

interface ReplyHandler { };

//
// Base value for the Polling model
//

valuetype Poller : CORBA::Pollable {
readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
readonly attribute boolean is_from_poller;

Object target;
string op_name;

};

};
22-68 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
A.2 MessageRouting Module

The following module has been added for the CORBA Messaging Interoperable
Routing Protocol. These definitions are only required for interoperable support of
Time-Independent Invocations:

#pragma prefix "omg.org"

module MessageRouting {

//
// Basic Routing Interoperability
//

const IOP::ComponentId TAG_MESSAGE_ROUTERS = 30;

interface Router;
typedef sequence<Router> RouterList;

struct MessageBody {
sequence<octet> body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
octet reserved[3];
sequence<octet> object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;
sequence<string> typed_excep_holder_repids;

};

interface Router;
interface RouterAdmin;

struct RequestInfo {
RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Messaging::PolicyValueSeq selected_qos;
RequestMessage payload;

};
typedef sequence<RequestInfo> RequestInfoSeq;
CORBA v2.4 MessageRouting Module October 2000 22-69

22
interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

readonly attribute RouterAdmin admin;
};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
void reply(

in string operation_name,
in GIOP::ReplyStatusType reply_type,
in MessageBody reply_body);

};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_ available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};

//
// Router Administration
//

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

value RetryPolicy supports CORBA::Policy { };
22-70 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22
const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 36;
value ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 37;
value UnlimitedPing : RetryPolicy {

public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;

};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 38;
value LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 39;
value DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 40;
value ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
in Object dest)

raises (InvalidState);

void unregister_destination(
in Object dest)

raises (InvalidState);
};

};
CORBA v2.4 MessageRouting Module October 2000 22-71

22

in

to be
he

d

nces

ies

Appendix B Overall Design Rationale

B.1 QoS Abstract Model Design

This Appendix describes each of the components in the Quality of Service (QoS)
abstract model and their relationships. The specification defines a framework with
which current QoS levels are queried and overridden. This framework is intended
of use for CORBAServices specifiers, as well as for future revisions of CORBA. T
Messaging-specific QoS are defined in terms of this framework.

Note – The QoS definitions specified in this specification are applied to both
synchronous as well as asynchronous invocations.

B.1.1 Model Components

The QoS framework abstract model consists of the following components:

• Policy - The base interface from which all QoS objects derive.

• PolicyList - A sequence of Policy objects.

• PolicyManager - An interface with operations for querying and overriding QoS
Policy settings.

• Mechanisms for obtaining Policy override management operations at each
relevant application scope:

• The ORB’s PolicyManager is obtained through invoking
ORB::resolve_initial_references with the ObjectId “ORBPolicyManager”.

• A CORBA::PolicyCurrent derived from CORBA::Current is used for
managing the thread’s QoS Policies. A reference to this interface is obtaine
through an invocation of ORB::resolve_initial_references with the ObjectId
“PolicyCurrent”.

• Accessor operations on CORBA::Object allow querying and overriding of QoS
at the object reference scope.

• The application of QoS on a Portable Object Adapter is done through the
currently existing mechanism of passing a PolicyList to the POA::create_POA
operation.

• Mechanisms for transporting Policy values as part of interoperable object refere
and within requests:

• TAG_POLICIES - A Profile Component containing the sequence of QoS polic
exported with the object reference by an object adapter.

• INVOCATION_POLICIES - A Service Context containing a sequence of QoS
policies in effect for the invocation.

The Messaging QoS abstract model consists of a number of CORBA::Policy -derived
interfaces:

• Client-side Policies are applied to control the behavior of requests and replies.
These include Priority, RequestEndTime, and Queueing QoS.
22-72 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

n a

d by
e.

s

ence
. The

ion

aced

rrent

s
t
n in

• Server-side Policies are applied to control the default behavior of invocations o
target. These include QueueOrder and Transactionality QoS.

B.1.2 Component Relationships

Programmers set QoS at various levels of scope by creating a Policy-derived
Messaging QoS Policy and selecting the interface for the particular scope. It is
anticipated that the following is the standard use-case scenario:

• A POA is created with a certain set of QoS. When object references are create
that POA, the required and supported QoS are encoded in that object referenc
Such an object reference is then exported for use by a client.

• Within a client, the ORB’s PolicyManager interface is obtained to set QoS for the
entire ORB (for the entire process when only one ORB is present) either
programmatically, or administratively. The Policies set here are valid for all
invocations in the process. A programmer-constructed PolicyList is used with this
interface to actually set the QoS.

• Within that same client, the CORBA::PolicyCurrent is obtained to set QoS for all
invocations in the current thread. This interface is derived from the
PolicyManager interface, which can be used to change the QoS for each
invocation. A programmer-constructed PolicyList is used with this interface to
actually set the QoS.

• Within that same client, the object reference is obtained and an invocation of it
get_client_policy operation queries the most specific QoS overrides. A
programmer-constructed PolicyList may be passed to the Object’s
set_policy_overrides operation to obtain a new Object reference with revised
QoS. Setting the QoS here applies to all invocations using the new Object refer
and supersedes (if possible) those set at the ORB and thread (Current) scopes
current set of overrides can be validated by calling the Object’s pseudo-operat
validate_connection , which will attempt to locate a target for the object
reference if no target has yet been located. At this time, any Policy overrides pl
at the Object, Thread or ORB scope will be reconciled with the QoS Policies
established for that object reference when it was created by the POA. The cu
effective Policy can then be queried by invoking get_policy , which returns the
Policy value that is in effect.

• Unseen by the application, the ORB (including the protocol engine) modifies it
internal behavior in order to realize the quality of service indicated by the clien
through the first three steps. See the description of the protocol abstract desig
Section B.3, “Message Routing Abstract Model Design,” on page 22-81.

B.1.3 Component Design

Design decisions were made with respect to the following components of the QoS
framework:
CORBA v2.4 QoS Abstract Model Design October 2000 22-73

22

s can

re the

n

yped
in
e

he

al

, the

 fit
e for
e,

as a
w
tice
f

vice

ely
n’s
• Each QoS is an interface derived from CORBA::Policy . The design trade-offs
focused on ease of application interface for setting specific QoS values,
extensibility for new QoS types and values, and compactness so the QoS value
be represented efficiently in Service Contexts and IOR Profile Components.
Several alternatives were considered as the basic type for each QoS entity befo
decision was made to use the Policy interface:

• CORBA::NamedValue - A pair of string and any were considered mainly due
to the flexibility afforded by using an any to represent QoS values. This desig
was discounted due to the untyped nature of the any and the application
development and execution costs of inserting typed data into and extracting t
data from values of type any. Furthermore, the presence of a full typecode with
an any makes the size of such pairs too large for inclusion in compact Servic
Contexts and Profile Components.

• Stateful CORBA value - Although the value does present a typed interface to t
application program, including values in Service Contexts and IOR Profile
Components is too expensive due to the presence of full repository identifier
information when the value is marshaled. Furthermore, there are issues
associated with potential truncation of such QoS values when passed as form
arguments of their base type.

• Interfaces derived from CORBA::Policy and compact representation. In the
model chosen by this specification, the QoS values are accessible through
locality-constrained interfaces. Derivation from CORBA::Policy allows reuse of
existing interfaces and operations for policy management. When certain QoS
values must be marshaled in a Service Context or an IOR Profile Component
most compact format was chosen. The type of QoS Policy represented is
indicated by a structure containing the integral PolicyType and a sequence of
octet holding the values for that policy.

• A generic factory for creating QoS Policies. In the POA specification within
CORBA, each POA Policy is created through an operation on the POA itself.
Although this presents a convenient typed interface for the creation of Policy
objects, it causes serious problems when new POA Policies are introduced. To
with the current model, operations would have to be added to the POA interfac
every new type of POA Policy . To address this potential administrative nightmar
this specification introduces a new ORB operation create_policy . Rather than
introducing typed operations for creating all of the Messaging QoS Policies
discussed in this specification, the generic factory operation is used.

• A RebindPolicy client-side QoS Policy to ensure deterministic effective QoS. In
CORBA, transparent rebinding of an object reference may take place during any
invocation. Rebinding is defined here to mean changing the client-visible QoS
result of replacing the IOR Profile used by a client’s object reference with a ne
IOR Profile. Transparent rebinding is defined as when this happens without no
to the client application. Typically, this happens within GIOP through the use o
location forwarding. The default RebindPolicy (and the only CORBA behavior)
supports this transparent rebind. For an application with rigorous quality of ser
requirements, such transparent rebinding can cause problems. For instance,
unexpected errors may occur if the application sets its QoS Policies appropriat
for an object reference, and then the ORB transparently changes the applicatio
assumptions about that reference by obtaining a new IOR. The RebindPolicy has
22-74 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

e
ore

ation
een

el

 are

tions,
d.

ide

ty
g.

e-

ns

ding
been added so that applications can prevent the ORB from silently changing th
IOR Profile (and therefore the server-side QoS) that have been assumed. A m
rigorous value of this Policy even precludes the ORB from silently closing and
opening connections (when IIOP is being used, for example). The specific
requirements demanded by an application dictate which level of RebindPolicy is
necessary.

B.2 AMI/TII Abstract Model Design

This section describes each of the components in the Asynchronous Method Invoc
/Time-Independent Invocation (AMI/TII) abstract model and the relationships betw
them.

The model supported by Messaging is a specialization of the general object mod
described in the OMA guide. All of the elements of the CORBA object model are
present in the model described here. Some of the names of existing components
defined more precisely than they are in the CORBA object model. In addition, this
specification adds some new components to support Messaging.

Some of the components described here have been borrowed from other specifica
which in some cases have yet to be ratified. Where this occurs, it is clearly note

B.2.1 Asynchronous Method Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following client-s
components:

• ReplyHandler - A ReplyHandler is an Object that encapsulates the functionali
for handling an asynchronous reply. It is used for callback model reply handlin

• Poller - A Poller is a value (as defined by CORBA’s Objects by Value) used by
clients to obtain replies to asynchronous invocations. The Poller provides a typ
specific wrapping through which a Reply is obtained.

• Asynchronous Method Invocation (AMI) - A remote method invocation that retur
immediately and whose reply is handled by a ReplyHandler -derived class
implemented by the programmer, or whose reply is obtained through a Poller
value .

B.2.2 Time-Independent Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following
components to support interoperability of Time-Independent Invocations:

• PersistentRequest - A PersistentRequest is an Object that encapsulates an
outstanding request. It supports operations for asynchronous operations (inclu
polling or blocking until the reply comes). The PersistentRequest is not a
locality constrained object (as opposed to the CORBA::Request).
CORBA v2.4 AMI/TII Abstract Model Design October 2000 22-75

22

 the

the

 of
e
w
o

is not

g on
rver

 ISP
• Persistent ReplyHandler - A ReplyHandler whose Object reference is created
by a POA with a PERSISTENT LifeSpan Policy. The Persistent ReplyHandler
may be implemented by a process other than the one that issued the request.

• PersistentPoller - A Poller with state including a PersistentRequest reference.
The PersistentPoller may be used by a process other than the one that issued
request.

• Time-Independent Invocation (TII) - A time-independent invocation is an AMI
request whose reply may outlive the client process. This is addressed via the
persistent ReplyHandler and Poller mechanisms.

• Router - A software routing agent that is used when the target objects (either
target of the request or the target of the reply) are not available.

• Interoperable Routing Protocol -- An interoperable routing protocol built in terms
GIOP that provides a higher level of Quality of Service with respect to messag
routing and delivery than is currently supported by IIOP. These extensions allo
out-of-the-box interoperability and define interfaces for MOM product plug-ins t
support CORBA Messaging with value-added QoS services that the particular
MOM vendor brings to the market.

B.2.3 Component Relationships

Figure 22-2 denotes an abstract view of the general Messaging architecture and
meant to imply any particular implementation.

Figure 22-2 TII: No direct connection possible

Figure 22-2 depicts the most general scenario in which a client application residin
a laptop wishes to make an asynchronous method invocation on an object in a se
residing on another laptop. Each laptop typically connects to its own corporate or

Internet

Client Laptop

ObjA_ref

Reply
Handlers

LocalRouter

Server Laptop

ObjA

LocalRouter

Corporate
or ISP

 Routers

Corporate
or ISP

 Routers

Corporate
or ISP

 Network

Corporate
or ISP

 Network

Request Tried

Request Made

Internet
Connection
22-76 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

d that
ward

g the
ays

est to
outer

oke

very
ly

nt

on to

he

ay
network. Each of these networks has some set of Request/Reply Routers installe
are meant to be highly available and reliable. These Routers provide store-and-for
capabilities.

In Figure 22-2 neither client nor server laptops are currently connected to their
respective networks. In this scenario, the client application makes its requests usin
Time-Independent Invocation model. The dashed arrows indicate that the client alw
tries to make the invocation on the target object or the Request/Reply Router clos
the target. Since the client is not connected, it makes the invocation on the local r
(indicated by the solid arrow).

Figure 22-3 depicts an asynchronous invocation in that the replies to the client inv
an operation on a callback object called a ReplyHandler . In general, the client may
passivate himself, or may die while the request is outstanding. If a persistent deli
quality of service had been specified (with a long enough time-out period) the rep
may be delivered when the ReplyHandler instance becomes available again. All
object adapter features including process activation, Adapter activation and serva
activation can be used in ensuring delivery of the reply to a persistent ReplyHandler .

Again, Figure 22-3 is meant to depict the most general case.

Figure 22-3 TII: Target not available synchronously

Figure 22-4 illustrates the case where the client laptop gains an Internet connecti
its corporate network. In this scenario, the Routers that are accessible exchange
requests and replies always first trying to contact the target and then sending to t
accessible Router closest to the target. In Figure 22-3, the server laptop is not
accessible so the routers exchange information. Notice that Corporate Routers m
have replies to invoke on the client’s set of ReplyHandlers now that the client is

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

 Local Router

ObjA

Request Tried

Request/Reply Made Internet Connection

Local Router

ObjA_ref

Reply
Handlers
CORBA v2.4 AMI/TII Abstract Model Design October 2000 22-77

22

ay be
nt

ly
 their
nt’s

e sent

he

e

 still

ion:
reachable. Also, recognize that since the client laptop is now connected, there m
requests and replies for other targets, which are not currently running on the Clie
Laptop and so are cached in the Client Laptop’s Local Router .

Figure 22-4 Full connectivity available

Finally, Figure 22-4 represents full connectivity. Notice that all of the Request/Rep
Routers exchange information to get previously-queued requests/replies closer to
target objects. Since there is full connectivity between the two applications, the clie
async invocations can be made on the target object directly and the replies can b
directly back to make the appropriate invocation on the ReplyHandler object.

If the client application has requested queued delivery, a Router is used even in t
case depicted in Figure 22-4. Despite the availability of the target, the client ORB
sends the request to a Router, which can queue the request prior to attempting th
synchronous invocation on the target. As an optimization that limits the request to
needing only a single network hop, this Router may be local to the target, but it is
a Router with all the usual responsibilities.

Notice also that since the Server Laptop is connected its Request/Reply Router
exchanges information for applications that may or may not be running.

B.2.4 Callback Model Detailed Design

Several characteristics of the Callback programming model are worth extra attent

• The ReplyHandler is a CORBA object that receives the reply to an AMI. The
programmer writes the implementation for a type-specific ReplyHandler . A client
obtains an object reference for this ReplyHandler and passes it as part of the

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

 Local Router

ObjA

Request Tried

Request/Reply Made Internet Connection

Local Router

ObjA_ref

Reply
Handlers
22-78 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ply is

ons

olve
d

xt.

nd of
back

th

a

se,
asynchronous method invocation. When the server completes the request, its re
delivered as an invocation on the ReplyHandler object. This invocation is made on
the ReplyHandler using the normal POA techniques of servant and object
activation. As a result, the callback operation may be handled in a different
programming context than that in which the original request was made.

• Exception replies require special handling in the Callback model. Since the
ReplyHandler implements an IDL interface, all arguments passed to its operati
must be defined in IDL as well. However, exceptions cannot be passed as
arguments to operations; exceptions can only be raised as part of a reply. To s
this problem, an ExceptionHolder value is created to encapsulate the identity an
contents of the exception that was raised. An instance of this ExceptionHolder is
passed as the argument to the ReplyHandler operation that indicates an exception
was raised by the target. In addition to its exception state, the ExceptionHolder
also has operations that raise the returned exception, so the ReplyHandler
implementation can have the returned exception re-raised within its own conte

B.2.5 Poller/PersistentRequest Detailed Design

In the Polling model, the routing relationships are a superset of those seen in the
Callback model. The differences in this model appear at both the beginning and e
the request/reply cycle. For Polling, the client application does not establish a Call
ReplyHandler . The events that occur when Polling are pictured in Figure 22-5 on
page 22-80. The steps are as follows:

1. The client invokes the “sendp” variation of the target object’s operation.

2. The ORB creates a PersistentRequest object and associates a reference to it wi
an invisible ReplyHandler that is wrapped in a type-specific Poller value.

3. The ORB returns this Poller to the client.

4. The ORB then proceeds as if the invocation were done with the invisible
ReplyHandler and sends its request into the network.

5. At the very end, the invisible ReplyHandler receives the response and waits for
poll.

6. When the computing context holding the type-specific Poller asks for a respon
the Poller obtains the response from the invisible ReplyHandler and delivers that
response to the caller.
CORBA v2.4 AMI/TII Abstract Model Design October 2000 22-79

22

l.
rrived
er to

g

reply
s
e

that
e of

 the

e to
e

use

ny of
Figure 22-5 Sequence of Steps in Polling

A client uses the Poller in a similar fashion as in the DII deferred synchronous mode
The programmer can at any time choose to check whether or not the reply has a
and deal with it in the current programming context. The user may also ask a Poll
block until the reply has arrived. The PersistentRequest reference is not visible to
the client application, but is specified to enable interoperability between Messagin
products.

When a Time-Independent Invocation has been made, it is possible to poll for the
in a client different from the one that made the initial request. An application take
advantage of this by passing the Poller from the client that made the request to th
client that intends to poll for the reply (presumably by way of an Object instance
is collocated with the latter client). Since this Poller is implemented through the us
a PersistentRequest object implemented by the Messaging layer, that
PersistentRequest must be accessible to whichever client uses that Poller. When
TII is used, it is possible for the polling client to obtain the reply after the original
invoking client no longer exists. Since the PersistentRequest must be implemented
in a server that is accessible to the Polling client, that PersistentRequest must be
external to the original invoking client. A common design might be to have the
PersistentRequest in this case be implemented by a corporate Router accessibl
the invoking client as well as to the client that intends to poll for the response. Th
creation of PersistentRequest objects is discussed in detail in the Section 22.12,
“Section III - Introduction,” on page 22-45.

In addition to being able to query the status of an individual Poller, the client can
the PollableSet interface to ask about the status of several pollers, as well as the
status of any deferred synchronous requests. The client can query to find out if a
a particular set has completed or it can block until one of the set completes.

ObjA_ref

Invisible ReplyHandler

ORB

2
3

4 ObjA_ref, to network

reply, from network
5

6

PersistentRequest

Client laptop

1

Type-Specific Poller
22-80 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

ved
t and

. To
cy

e new

l.

t
vide a
ed
this
 the

ages

out
rget
he

model

ose of
Note on CORBA AMI Support

Asynchrony is addressed in several places in CORBA. These items are taken into
consideration by this specification and are modified in the following ways:

• oneway operations - Operations can be defined in IDL to be oneway. Such
operations are by their very nature asynchronous, in that no reply is ever recei
from a oneway operation and no synchrony can be assumed between the clien
the target. However, the definition of oneway in the CORBA specification does not
guarantee a deterministic, portable behavior between compliant ORB products
address this issue, the CORBA Messaging specification introduces a QoS Poli
that makes the behavior of oneway operations deterministic. Note that this new
Policy addresses the behavior of oneway operations regardless of the use of th
Polling and Callback stubs introduced by this specification.

• DII Deferred Synchronous - Deferred synchronous invocations are supported in
CORBA only when the DII is used. The CORBA::Request pseudo-interface is
enhanced by this specification with the additions of TII and the Callback mode

Note on Asynchrony and Narrowing of Object References

Many programming languages map IDL interfaces to programming constructs tha
support inheritance. In those language mappings (such as C++ and Java) that pro
mechanism for narrowing an Object reference of a base interface to a more deriv
interface, the act of narrowing may require the full type hierarchy of the target. In
case, the implementation of narrow must either contact an interface repository or
target itself to determine whether or not it is safe to narrow the client’s object
reference. This requirement is not acceptable when a client is expecting only
asynchronous communication with the target. Therefore, for the appropriate langu
this specification adds an unchecked narrow operation to the IDL mappings for
interface. This unchecked narrow always returns a stub of the requested type with
checking that the target really implements that interface. If a client narrows the ta
to an unsupported interface type, invoking the unsupported operations will raise t
system exception CORBA::BAD_OPERATION.

B.3 Message Routing Abstract Model Design

This section describes each of the components of the Message Routing abstract
and their relationships.

B.3.1 Model Components

By and large the components of the message routing protocol are the same as th
GIOP. The differences come with respect to two issues:
CORBA v2.4 Message Routing Abstract Model Design October 2000 22-81

22

 into

 in
ocol

e
essing

ing:

d/or
d.

eds

ing
eiving
 to
s of:

lient).

s and
me.

ient.
 of a

 two
• TII is essentially a store-and-forwarding mechanism. This implies the use of
Request routing agents. The protocol followed by these Routers is defined in
Section 22.14, “Message Routing,” on page 22-46, and is intended for insertion
Common Object Request Broker: Architecture and Specification as a chapter on
Messaging Interoperability.

• Dynamic Protocol Selection based on QoS is reconciled locally via information
the IOR and the local ORB. This implies several newly defined items at the prot
level:

• Newly defined IOP::ServiceContext that contains QoS parameters.

• Newly defined IOP::ComponentId tag for Messaging and a Component
consisting of a representation of default QoS parameters.

• Newly defined IOP::ComponentId tag and Component representing the
transaction policy.

• A newly defined IOP::ComponentId tag and Component containing a sequenc
of Request Routers. This sequence of Routers represents the preferred addr
strategy when TIIs are made on an Object.

B.3.2 Component Relationships

The relationship between the above described components is based on the follow

• QoS resolution should be performed by the client ORB if possible. Routers an
Messaging-aware Adapters must ensure that only valid QoS have been selecte

• For efficient use of the Request/Reply Routers, their addressing information ne
to be in the IOR.

• Request/Reply Routers re-route request and reply messages by explicitly send
messages between them, and then generating a regular GIOP request (and rec
a regular GIOP reply) when interfacing with the real target. To allow this routing
occur, the Router interface requires an encapsulation of a GIOP request in term

• Routing information including the message header and pertinent QoS
information.

• Message payload (the marshaled arguments and service contexts from the c

The routers use the encapsulated QoS & re-routing information to re-route request
replies and to decide whether to store request/reply information for a specified lifeti
The GIOP must be flexible enough to allow the Router closest to the request’s
destination to generate a request that looks like it was marshalled at the original cl
This closest Router must be able to handle the full GIOP including the processing
LOCATION_FORWARD reply without necessitating a return to the original client.

B.3.3 Router Administration Design

Several features of the Router administration design are worth note. These fall into
main areas:
22-82 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

he

uests
rred
ted.

.
amic
such

ll

mally
ages
• Static vs. Dynamic Routing - Routing information for an Object is available to t
client ORB through a Profile Component in the object’s IOR. This Component
contains a sequence of Router references through which Time-Independent req
may pass on the way to the target. Therefore, portably exporting a target’s prefe
Routers must be done statically, at the time when the target’s reference is crea
This specification introduces no interfaces that support dynamic routing. It is
expected that future work in CORBA Messaging will introduce portable
administrative interfaces through which domains of Routers may be connected
Note that since the Router is an Object, the usual CORBA mechanisms for dyn
server relocation can certainly be used to allow migration of Routers and other
dynamic Routing activities.

• Minimize administrative traffic - Administrative interfaces are introduced that wi
allow a minimal amount of network bandwidth to be consumed when network
disconnections occur. Furthermore, these administrative interfaces have been
designed so that additional overhead is not consumed when Routers would nor
be in an idle state. Administrative communication is only necessary when mess
would otherwise have to be sent between Routers.
CORBA v2.4 Message Routing Abstract Model Design October 2000 22-83

22

n of

res

o

e
faces

le
22-2.

his

t on
Appendix C Conformance and Compatibility Issues

This Appendix specifies the points that must be met for a compliant implementatio
CORBA Messaging and compatibility issues associated with this specification.

C.1 Conformance Issues

This specification can be separated into several logical components.

In order to be conformant with this specification, the following mappings and featu
must be supported and implemented using the specified semantics:

• Changes to CORBA and Services. These changes include the modifications t
GIOP, OTS, and the SyncScopePolicy refinements to oneway operations. This
component includes the Policy management framework for Quality of Service as
described in Section 22.1, “Section I - Introduction,” on page 22-2.

• Asynchronous Method Invocation (AMI) interfaces. This component includes th
generation of asynchronous stubs (sendc/sendp operations) along with all inter
and values upon which these stubs rely. All modifications to the DII are also
included in this component.

• Quality of Service Policies for Messaging. These new Policies and their possib
values are described in Section 22.2, “Messaging Quality of Service,” on page

Implementation of the following component is not required to be conformant with t
specification:

• Time-Independent Invocations (TII). This component includes the QoS Policy that
supports TII (QueuedDeliveryPolicy), the typed PersistentPollers described in
Section 22.10.2, “Persistent Type-Specific Poller,” on page 22-29, and all
interoperable Routing interfaces described in Section 22.12, “Section III -
Introduction,” on page 22-45.

C.2 Compatibility Issues

C.2.1 Transaction Service

Transaction service compatibility is affected by two factors:

• Changes to existing transaction service behavior introduced as part of this
specification.

• New transaction service functions introduced by this specification and the affec
existing implementations.

These are considered separately in each of the following sections.
22-84 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

22

on

d.

ance

nce

as
k

e

action

ior
 it is
C.2.2 Changes to Current OTS Behavior

This specification deprecates the TransactionalObject interface defined in the
Transaction Service specification located in the CORBAServices specification. The
TransactionalObject interface was defined to control propagation of the transacti
context between the client and the server. An interface that inherits from
TransactionalObject will automatically have the client’s transaction context
established by the server ORB before any operations on that interface are invoke

A new mechanism for transaction propagation is independent of the use of inherit
from TransactionalObject . This mechanism has been defined so that existing
applications will continue to operate correctly without change so they do not have to
remove TransactionalObject inheritance from their existing IDL. At most, they will
need to ensure that a definition of CosTransactions::TransactionalObject
continues to be available to the IDL compiler.

The use of TransactionalObject inheritance had two other side effects in the
Transaction Service specification.

• It affected the CORBA type of the interface being defined and thus the
RepositoryID in the Interface Repository. This means that once interface inherita
is actually removed, transactional and non-transactional implementations of the
same interface will have the same CORBA type.

• It provided for documentation within IDL of interfaces whose implementation w
intended to be transactional. This enabled application developers to easily trac
their use of transactions.

Once TransactionalObject is actually removed, these side effects will no longer b
present.

Effects of New OTS Functions on Existing OTS Implementations

This specification introduces new functions and behaviors to the Transaction Service to
support the global transaction model used by messaging and to encode the trans
model in the object reference using a newly defined TransactionPolicy . The default
for this new policy has been chosen to be compatible with existing CORBA behav
(i.e., a global transaction is associated with the target object if present) otherwise
not. Existing applications, which will not create TransactionPolicy objects, will get
the existing CORBA behavior.

Existing Clients with New Servers

New server applications can create object references with new TransactionPolicy
selections that can be exported to existing clients. Depending on the
TransactionPolicy selected, invoking methods on these objects may succeed
transparently to the client or produce failures (in the form of system exceptions)
existing clients will not have previously seen.
CORBA v2.4 Compatibility Issues October 2000 22-85

22

t use
ing

MI

odel
ption.

e
nces.

I

ject

essed
ts of
New AMI Clients with Existing Servers

Existing servers may require analysis of their existing semantics to determine the
extent to which they may be able to operate with new clients, especially clients tha
the new AMI request invocation model. In general the following are true and exist
objects may as a result be usable without change by AMI clients:

• If transactions are not used, existing server objects will interoperate with new A
clients.

• If transactions are used, AMI invocations will use the new queued transaction m
causing invocations on the target object to be rejected with a new system exce

• Depending on application design, it is possible that some (but not all) of these
existing applications can operate successfully with AMI clients. This will requir
that these server objects be changed to produce new compatible object refere

It is normally true that a server application design, which depends on updating
recoverable resources managed by objects at multiple sites cannot support an AM
invocation without producing different behavior. For the cases where this is not a
problem the application can take advantage of new AMI clients by changing the ob
reference at creation time.

C.2.3 Security Service

The issues surrounding Security and Time-Independent Invocations must be addr
in a subsequent RFP. Current CORBA Security does fully support all other aspec
this specification, including typed deferred synchronous invocations.
22-86 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Minimum CORBA 23
Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 23-2

“IDL” 23-2

“CORBA Omitted Features” 23-2

“ORB Interface Omissions” 23-3

“Dynamic Invocation Interface” 23-5

“Dynamic Skeleton Interface” 23-5

“Dynamic Any” 23-5

“Interface Repository” 23-5

“Portable Object Adapter” 23-6

“Interoperability” 23-9

“COM/CORBA Interworking” 23-10

“Interceptors” 23-10

“Language Mappings” 23-10

“minimumCORBA OMG IDL” 23-11
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 23-1

23

s
g
f

rity

rces,
ed.
ose
B

A
ls

ully
d
23.1 Introduction

This chapter describes minimumCORBA, a subset of CORBA designed for system
with limited resources. For some applications CORBA is too large to meet exactin
size and performance requirements. Such scenarios require a cut-down version o
CORBA. This cut-down version is called “minimumCORBA.” MinimumCORBA
defines a profile (or subset) of CORBA, whereas CORBAservices or CORBAsecu
define optional extensions to the CORBA specification.

23.2 IDL

The minimumCORBA specification supports all of OMG IDL, as defined in the IDL
Syntax and Semantics chapter. This allows maximum compatibility between
minimumCORBA and full CORBA applications.

23.3 CORBA Omitted Features

The features of CORBA omitted by this profile clearly have value in mainstream
CORBA applications. However, they are provided at some cost, in terms of resou
and there is a significant class of applications for which that cost cannot be justifi
Features omitted from CORBA could still be implemented by the application in th
cases where they are needed. Figure 23-1 illustrates the relationship between OR
application and omitted features.

Figure 23-1 Omitting features from CORBA

The omission of a feature of CORBA represents a trade-off between usability and
conserving resources. CORBA has a greater degree of user-friendliness whereas
minimumCORBA is better for conserving limited resources.

This specification defines a single profile that preserves the key benefits of CORB
(portability of applications and interoperability between ORBs). The following goa
are recognized when choosing this profile:

• Which features are retained in minimumCORBA and which are omitted is caref
chosen to yield a profile that still has broad applicability within the world of limite
resource systems.

ORB

Application

ORB

Application

“CORBA” “minimumCORBA”
23-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23

y

ems
.,

e has
oad

o use

itted
ng
ects

le

.

BA

e

asic
• minimumCORBA should be fully interoperable with CORBA as applications
running on minimumCORBA ORBs may be part of systems that includes
components running on CORBA ORBs.

• minimumCORBA should support full IDL so that, given sufficient resources, an
CORBA application can be executed on either full CORBA or on
minimumCORBA, or partitioned between the two.

• Features that support the dynamic aspects of CORBA are omitted, as the syst
for which minimumCORBA is targeted will make design-time commitments (e.g
with regard to interface type checking).

It will always be possible to envisage more constrained environments and so ther
to be criteria to determine when the subset is small enough, without sacrificing br
applicability. The line is drawn by referring back to the “portability,”
“interoperability,” and “full IDL” goals.

Included within the minimumCORBA profile are several features that incur cost, in
terms of static ORB size and stub code size, even when the application makes n
of them.

• TypeCode Features: Savings could be made by not supporting type safety with
respect to “any,” to TypeCodes, and to narrowing of Object References.

• Exception Features: Support for both user and system exceptions could be om
when user exceptions are not used in the application. The reduced programmi
model would still be useful (e.g., in cooperating finite state machines where obj
would “fail safe” and recovery would be handled by the application).

• Inheritance Features: The tables needed to implement the provision of multiple
inheritance could be omitted if the application undertakes not to use any multip
IDL inheritance.

Conformant implementations of minimumCORBA may choose to include these
optimizations where it can be ascertained that the application does not use them
However, the definition of compiler/linker options is beyond the scope of CORBA
specifications. Therefore, these optimizations are not included in the minimumCOR
profile.

23.4 ORB Interface Omissions

A number of omissions are made from the ORB interface, as defined in the ORB
Interface chapter.

23.4.1 ORB

The create_list and create_operation_list operations are omitted, as their purpos
is to support the DII.

The work_pending, perform_work , and shutdown operations are omitted as they
are only needed for certain styles of CORBA application, and are not required for b
ORB operation.
CORBA, v2.4.2 ORB Interface Omissions February 2001 23-3

23

l to

ort
m

s the

ue
o
t but
e to
he

m

ing
er
ing

ng

 is
Note that the run operation is retained as it is important in a single threaded mode
provide the server initialization code with a portable entry point to the ORB. In a
multi-threaded model, run can be implemented as a wrapper for the appropriate
threading primitive.

The Context object is omitted as it is defined as part of the DII and only adds supp
for an alternate programming style. Using identifiers in a context clause differs fro
using additional in string arguments only in that the former are passed implicitly;
whereas, the latter have to be provided as actual parameters in the function call. A
Context object is omitted, the get_default_context operation is omitted.

Note that the context keyword is still present in minimumCORBA IDL. However, d
to the omission of the Context Object, there is no standard interface for a client t
associate values with context identifiers. Where an IDL signature defines a contex
no values are available at the time of invocation, IIOP requires an empty sequenc
be passed. On the server side, a minimumCORBA application could not retrieve t
values associated with context identifiers by a client CORBA application.
Interoperability is maintained at a syntactic level only.

The get_current operation is omitted from minimumCORBA, as it is deprecated fro
CORBA 2.2.

23.4.2 Object

The get_interface operation is omitted from minimumCORBA, as the Interface
Repository is omitted.

The get_implementation operation is omitted, as it is deprecated in CORBA 2.2.

The is_a operation is omitted so as not to introduce a requirement either for hold
detailed type information in the object reference or for getting type information ov
the wire. Instead, minimumCORBA relies on design time resolution of type check
issues.

The non_existent operation is omitted, because of the design philosophy of maki
more decisions statically at design time.

The create_request operation is omitted, as the Dynamic Invocation Interface is
omitted.

23.4.3 ConstructionPolicy

The ConstructionPolicy interface and its supporting constant SecConstruction are
omitted. It is not necessary for minimumCORBA applications to organize their
constituent objects into different policy management domains. Consequently all
minimumCORBA objects will belong to the default domain for the ORB and if there
no default belong to no domain.
23-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23

ings,
y be
me

 the

rt
tion
23.5 Dynamic Invocation Interface

The entire Dynamic Invocation Interface, as defined in the Dynamic Invocation
Interface chapter is omitted from minimumCORBA. Note that this means that the
NamedValue type and NVList are omitted too.

23.6 Dynamic Skeleton Interface

The entire Dynamic Skeleton Interface, as defined in the Dynamic Skeleton Interface
chapter, is omitted from minimumCORBA.

23.7 Dynamic Any

Dynamic Anys, as defined in the Dynamic Management of Any Values chapter, are
omitted from minimumCORBA.

23.8 Interface Repository

The majority of the Interface Repository, as defined in the Interface Repository
chapter, is omitted from minimumCORBA, as it is part of the dynamically typed
programming model. There are two exceptions:

1. the RepositoryId s, for which formats and pragmas are defined in the Repository
Ids section of the Interface Repository chapter, and

2. the TypeCode interface, as defined in the TypeCodes section of the Interface
Repository chapter, for which a minimumCORBA version is retained.

The pragmas enable type id information to be changed, which can, among other th
be used to implement a more compact type naming convention. The pragmas ma
acted upon or ignored by an implementation of minimumCORBA, as this is the sa
semantics as the CORBA specification.

The TypeCode interface is included because of its role in the semantics of the any
type. When using the CORBA any type, an application in a minimumCORBA domain
will only send and receive IDL types that were known at build time. Hence, part of
TypeCode interface is omitted.

23.8.1 TypeCode

The id , kind , and name operations are retained. They are sufficient to allow
applications to distinguish types known at build time. Other operations that suppo
arbitrary constructed and template types are omitted as a minimumCORBA applica
is not expected to handle these arbitrary types. The operations omitted are:
member_count , member_name , member_type , member_label ,
discriminator_type , default_index , length , content_type , fixed_digits ,
fixed_scale , param_count , and parameter . The Bounds exception is also omitted
as it is only used by omitted operations.
CORBA, v2.4.2 Dynamic Invocation Interface February 2001 23-5

23

 are

ort
ty
een

cts.
All the TypeCode create operations are omitted from the ORB interface as they
support the creation of any values that have types created dynamically. In a
minimumCORBA application, TypeCode s are created as constants by the
programmer or by tools (e.g., an IDL compiler). The operations omitted are:
create_struct_tc , create_union_tc , create_enum_tc , create_alias_tc ,
create_exception_tc , create_interface_tc , create_string_tc ,
create_wstring_tc , create_sequence_tc , create_recursive_sequence_tc , and
create_array_tc .

23.9 Portable Object Adapter

MinimumCORBA supports a subset of the interfaces and policies defined in the
Portable Object Adapter chapter. The interfaces and policies that are not supported
omitted from the minimumCORBA copy of module PortableServer .

23.9.1 Interfaces

23.9.1.1 POA

The POA object is profiled in minimumCORBA with items omitted where they supp
a dynamic mode of POA operation. What remains is sufficient to achieve portabili
and interoperability between different minimumCORBA implementations and betw
minimumCORBA and full CORBA.

The following policy object factory operations are omitted: create_thread_policy ,
create_implicit_activation_policy , create_servant_retention_policy , and
create_request_processing_policy . Only the default values for the associated
policies are supported and so there is no requirement to create these policy obje

Note that the_activator attribute is omitted as minimumCORBA does not support
dynamic (on demand) activation of POAs.

The get_servant_manager and set_servant_manager operations are omitted as
minimumCORBA omits ServantManagers .

The get_servant and set_servant operations are omitted as minimumCORBA
doesn’t support the USE_DEFAULT_SERVANT option for the
RequestProcessingPolicy .

23.9.1.2 Current

The PortableServer::Current object is fully supported, again for reasons of
portability and interoperability.
23-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23

only
the
nd
lity.

 a

n.

in
n
A.
23.9.1.3 Policy interfaces

The Policy objects and their associated policy value enums are omitted where the
supported value is the default value as in these cases there is no requirement to
policy objects. Where more than one policy value is supported the policy object a
associated enum remains. This is sufficient to support portability and interoperabi
The policy objects omitted are: ThreadPolicy , ImplicitActivationPolicy ,
ServantRetentionPolicy , and RequestProcessingPolicy . See Section 23.9.2,
“Policies,” on page 23-7.

23.9.1.4 POAManager

The POAManager object remains in minimumCORBA as the type is used in the
create_POA operation. The only declarations not omitted are the activate operation
and the AdapterInactive exception. The other declarations in the POAManager
interface are omitted from minimumCORBA, as they add extra functionality not
required for basic ORB operation. The activate operation is retained as it provides
portability of minimumCORBA applications to CORBA environments.

23.9.1.5 AdapterActivator

The AdapterActivator object is omitted from minimumCORBA because it supports
dynamic mode of POA operation that is not required for basic ORB operation.

23.9.1.6 ServantManagers

The ServantManagers object is omitted from minimumCORBA. This is because it
supports a dynamic mode of operation that is not required for basic ORB operatio
Consequently, both the derived interfaces ServantActivator and ServantLocator
are omitted. The PortableServer::ForwardRequest exception is also omitted as it
can only be raised by operations of the omitted, derived interfaces.

23.9.2 Policies

The policies supported include all of the default policy values from CORBA. The
minimumCORBA RootPOA is a subset of the CORBA RootPOA. The only policy
which it differs is more restrictive than its CORBA RootPOA counterpart. Hence a
application built on the minimumCORBA RootPOA will run on the CORBA RootPO

23.9.2.1 ThreadPolicy

The only minimumCORBA ThreadPolicy is ORB_CTRL_MODEL . The
SINGLE_THREAD_MODEL policy is omitted because it is not required for basic
ORB operation.
CORBA, v2.4.2 Portable Object Adapter February 2001 23-7

23

f
e
urce
s for

 used
on to

e
s to

ed

it
23.9.2.2 LifespanPolicy

MinimumCORBA supports both values of LifespanPolicy - TRANSIENT and
PERSISTENT. The PERSISTENT policy is retained because it allows the creation o
‘well known’ object references, which allow a service to still be contacted using th
same reference after it has been reinitialized. This is useful in a constrained reso
environment, as it allows applications to dispense with code to reobtain reference
servers.

Note that minimumCORBA takes the PERSISTENT policy to imply nothing more
than the converse of the TRANSIENT policy. That is, using the PERSISTENT policy,
object references generated using one instantiation of a POA may be successfully
after the POA is deactivated and reinstantiated in another process. No further acti
restore the state of the POA or the objects managed by it is assumed.

As minimumCORBA does not support Adapter Activators or Servant Managers,
minimumCORBA applications implementing a POA with the PERSISTENT policy
are responsible for recreating the POA and reactivating the relevant objects befor
these objects can be successfully invoked upon from clients still holding reference
them from previous instantiations of the POA.

23.9.2.3 ObjectIdUniquenessPolicy

MinimumCORBA supports both values of ObjectIdUniquenessPolicy -
1) UNIQUE_ID, and 2) MULTIPLE_ID . The cost of the latter is negligible and it offers
the ability to save resources by multiplexing multiple objects onto one servant.

23.9.2.4 IdAssignmentPolicy

MinimumCORBA supports both values of IdAssignmentPolicy - 1) SYSTEM_ID,
and 2) USER_ID. The cost of having both is negligible and is useful in a constrain
resource environment, as it allows the reuse in ObjectId s of values that have a
meaning in another context within an application.

23.9.2.5 ServantRetentionPolicy

MinimumCORBA only supports the RETAIN ServantRetentionPolicy . The
NON_RETAIN policy is omitted in accordance with the design policy of removing
dynamic behaviors that are unnecessary to basic operation. The dynamic model
supports has non-negligible cost and implications for system predictability.

23.9.2.6 RequestProcessingPolicy

MinimumCORBA only supports the USE_ACTIVE_OBJECT_MAP_ONLY
RequestProcessingPolicy . The USE_DEFAULT_SERVANT and
USE_SERVANT_MANAGER policies are omitted for the same reasons as the
NON_RETAIN option.
23-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23

d

.

is

the

nts.

 the
23.9.2.7 ImplicitActivationPolicy

MinimumCORBA supports only the NO_IMPLICIT_ACTIVATION policy.
IMPLICIT_ACTIVATION is omitted as it is not required for basic ORB operation, an
the dynamic programming model it supports has non-negligible cost.

For this policy, minimumCORBA is aligned with the default policy value in CORBA
The CORBA RootPOA has an ImplicitActivationPolicy of
IMPLICIT_ACTIVATION . However, the minimumCORBA RootPOA is still a subset
of the CORBA RootPOA because the IMPLICIT_ACTIVATION setting does not
prohibit explicit activation and the NO_IMPLICIT_ACTIVATION setting permits only
explicit activation. That is, the one permitted activation mode in minimumCORBA
one of the two permitted activation modes of CORBA.

23.10 Interoperability

The minimumCORBA specification has the same conformance criteria regarding
interoperability as CORBA (described in the Interoperability Overview, ORB
Interoperability Architecture, Building Inter-ORB Bridges, and General Inter-ORB
Protocol chapters). The positioning of interoperability conformance with respect to
CORBA APIs is illustrated in Figure 23-2.

Figure 23-2 Reference Points for CORBA Conformance

In Figure 23-2, note that the interworking reference point (where CORBA
interoperability is defined) is different in nature to the programmatic reference poi
The former is a protocol while the latter are the client and server side APIs. The
CORBA specification makes only a limited coupling between the two. For example,
is_a API need not result in an _is_a request message.

23.10.1 DCE Interoperability

The DCE ESIOP, as defined in the DCE ESIOP chapter of the CORBA specification, is
omitted from minimumCORBA.

ORB

Application

ORB

Applicationprogrammatic
reference points

interworking reference point
CORBA, v2.4.2 Interoperability February 2001 23-9

23

s

t for
pings,

hat

A
d
 IDL
e

that

 the

.
to
23.11 COM/CORBA Interworking

Interworking between COM and CORBA, as defined in the Interworking Architecture,
Mapping: COM and CORBA, and Mapping: OLE Automation and CORBA chapters, is
omitted from minimumCORBA.

23.12 Interceptors

Interceptors, as defined in the Interceptors chapter of the CORBA specification, are
omitted from minimumCORBA, as they depend on the DII and DSI.

23.13 Language Mappings

MinimumCORBA implementations must support at least one language mapping a
defined by the OMG. However, no specific language binding is mandated.

For each supported language binding, the full mapping must be supported excep
those core objects that have been omitted. In the case of the C++ and Java map
there are further omissions described below.

23.13.1 C++ Mapping Specific Issues

All of the C++ mapping is retained in minimumCORBA except for those elements t
result from omitted features of module CORBA and module PortableServer .

A further omission concerns the semantics of the _this() member function. It is not
possible for _this() to cause implicit activation of the servant in a minimumCORBA
application.

As noted in Section 23.1, “Introduction,” on page 23-2, conformant minimumCORB
ORB implementations may offer optimizations that optionally remove code require
for the support of features such as type-safe narrowing and multiple inheritance of
interfaces, that incur code size cost even when they are not used. However, thes
optimizations are vendor-specific enhancements, and are not included in the
minimumCORBA profile.

23.13.2 Java Mapping Specific Issues

All of the Java mapping is retained in minimumCORBA except for those elements
result from omitted features of module CORBA and module PortableServer .

One further omission concerns the Java ORB Portability Interfaces, as defined in
Java ORB Portability Interfaces section of the OMG IDL to JAVA Language Mapping
Specification, which are also omitted from minimum CORBA. This is because they
depend on the DII and DSI, which are omitted from minimumCORBA.

A subsequent version of CORBA is expected to provide static portable Java stubs
Once they are specified it will be possible to update the minimumCORBA profile
include them.
23-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23

ck

he
) or

e
lly

ate to
ode
s
23.14 minimumCORBA OMG IDL

The following sections detail the minimumCORBA subset of CORBA IDL. Each
section corresponds to a chapter of the CORBA specification, and indicates what part,
if any, of the IDL in that chapter is included in minimumCORBA IDL.

Where all or part of the IDL in a chapter of the CORBA specification is included in
minimumCORBA, the full IDL from CORBA is shown, with those parts that are
omitted from minimumCORBA struck through.

Where all of the IDL in a chapter of the CORBA specification is omitted from
minimumCORBA, this is just stated, rather than listing the IDL with every line stru
through.

The minimumCORBA module CORBA and its counterpart in CORBA are
distinguished by their contents and not by an IDL identifier or version indicator. T
need to distinguish two modules cannot be met by varying the name (i.e., CORBA
by varying #pragma prefix (i.e., omg.org) or #pragma version (i.e., 2.2), even if th
CORBA 2.2 modules contained #pragmas, because this would lead to different fu
scoped names and repository ids. That in turn would compromise portability and
interoperability. Note the same is true for module PortableServer .

Instead it is left to vendors to address the usability concerns in a manner appropri
their product. For example, toolsets could include a switch for minimumCORBA m
or IDL compilers could include files from different paths. As toolsets and compiler
are beyond the scope of CORBA specifications, neither of these possibilities are
prescribed.

23.14.1 ORB Interface

module CORBA {
typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

interface ORB {
string object_to_string (in Object obj);
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-11

23
Object string_to_object (in string str);

Status create_list
in long count,
out NVList new_list

);

Status create_operation_list (
in OperationDef oper,
out NVList new_list

);
Status get_default_context (out Context ctx);

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

// get_current deprecated operation - should not be used by new code
// new code should use resolve_initial_reference operation instead
Current get_current();

//Obtaining Initial Object References

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId identifier)
raises (InvalidName);

boolean work_pending();
void perform_work();
void shutdown(in boolean wait_for_completion);
void run();

};

interface Object { // PIDL
ImplementationDef get_implementation ();
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
23-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValueresult,
out Request request,
in Flags req_flags

);

Policy get_policy (
in PolicyType policy_type

);

DomainManagersList get_domain_managers ();

};

//ORB Initialization
typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

//Current Object
interface Current {
};

//Policy Object
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;

//Domain management operations
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy {
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-13

23

s
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy

);

};

typedef sequence <DomainManager> DomainManagerList;

};

23.14.2 Dynamic Invocation Interface

As the DII is omitted from minimumCORBA, all of the CORBA IDL for the DII, as
defined in the Dynamic Invocation Interface chapter, is omitted from minimumCORBA
IDL.

23.14.3 Dynamic Skeleton Interface

As the DSI is omitted from minimumCORBA, all of the CORBA IDL for the DSI, a
defined in the Dynamic Skeleton Interface chapter, is omitted from minimumCORBA
IDL.

23.14.4 Dynamic Management of Any Values

As Dynamic Anys are omitted from minimumCORBA, all of the CORBA IDL for
Dynamic Anys, as defined in the Dynamic Management of Any Values chapter, is
omitted from minimumCORBA IDL.

23.14.5 Interface Repository

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed

};

interface IRObject {
23-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();
};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {
...
// Interface contents not shown for brevity
...
};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;

struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;
};

typedef sequence <StructMember> StructMemberSeq;

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;
};

typedef sequence <UnionMember> UnionMemberSeq;
typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {
...
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-15

23
// Interface contents not shown for brevity
...
};

interface IDLType : IRObject {
readonly attribute TypeCode type;
};

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring

};

interface Repository : Container {
...
// Interface contents not shown for brevity
...
};

interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
};

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;
};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;
23-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
};

interface TypedefDef : Contained, IDLType {
};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
};

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;
};

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;
};

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;
};

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;
};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;
};

interface StringDef : IDLType {
attribute unsigned long bound;
};

interface WstringDef : IDLType {
attribute unsigned long bound;
};

interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;
};
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-17

23
interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
};

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
};

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;
};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
};
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;
};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
};

enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {
Identifier name;
TypeCode type;
23-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
IDLType type_def;
ParameterMode mode;
};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
...
// Interface contents not shown for brevity
...
};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;
};

typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
...
// Interface contents not shown for brevity
...
};

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed

};
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-19

23
interface TypeCode { // PIDL
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind,

Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind,

Bounds);

 // for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_scale() raises (BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);
};

interface ORB {
// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members
23-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-21

23
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
};

};

23.14.6 Portable Object Adapter

module PortableServer{
// forward reference
interface POA;

native Servant;

typedef sequence<octet> ObjectId;

exception ForwardRequest
{
Object forward_reference;

};

// **
//
// Policy interfaces
//
// **
enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL
};
interface ThreadPolicy : CORBA::Policy
{

readonly attribute ThreadPolicyValue value;
};
enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT
};
interface LifespanPolicy : CORBA::Policy
{

readonly attribute LifespanPolicyValue value;
};

enum IdUniquenessPolicyValue {
23-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
UNIQUE_ID,
MULTIPLE_ID
};
interface IdUniquenessPolicy : CORBA::Policy
{

readonly attribute IdUniquenessPolicyValue value;
};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID
};

interface IdAssignmentPolicy : CORBA::Policy
{

readonly attribute IdAssignmentPolicyValue value;
};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION
};

interface ImplicitActivationPolicy : CORBA::Policy
{

readonly attribute ImplicitActivationPolicyValue value;
};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN
};

interface ServantRetentionPolicy : CORBA::Policy
{

readonly attribute ServantRetentionPolicyValue value;
};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER
};

interface RequestProcessingPolicy : CORBA::Policy
{

readonly attribute RequestProcessingPolicyValue value;
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-23

23
};

// **
//
// POAManager interface
//
// **

interface POAManager
{
exception AdapterInactive{ };

void activate()
raises(AdapterInactive);

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion)

raises(AdapterInactive);
};

// **
//
// AdapterActivator interface
//
// **

interface AdapterActivator
{
boolean unknown_adapter(in POA parent, in string name);
};

// **
//
// ServantManager interface
//
// **

interface ServantManager
{ };

interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (
in ObjectId oid,
23-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

interface ServantLocator : ServantManager {
native Cookie;

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

};

// **
//
// POA interface
//
// **

interface POA
{

exception AdapterAlreadyExists {};
exception AdapterInactive { };
exception AdapterNonExistent { };
exception InvalidPolicy { unsigned short index; };
exception NoServant { };
exception ObjectAlreadyActive { };
exception ObjectNotActive { };
exception ServantAlreadyActive { };
exception ServantNotActive { };
exception WrongAdapter { };
exception WrongPolicy { };

//--
//
// POA creation and destruction
//
//--

POA create_POA(in string adapter_name,
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-25

23
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

 // **
//
// Factories for Policy objects
//
// **

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);

LifespanPolicy
create_lifespan_policy(in LifespanPolicyValue value);

IdUniquenessPolicy
create_id_uniqueness_policy

(in IdUniquenessPolicyValue value);

IdAssignmentPolicy
create_id_assignment_policy

(in IdAssignmentPolicyValue value);

ImplicitActivationPolicy
create_implicit_activation_policy

(in ImplicitActivationPolicyValue value);

ServantRetentionPolicy
create_servant_retention_policy

(in ServantRetentionPolicyValue value);

RequestProcessingPolicy
create_request_processing_policy

(in RequestProcessingPolicyValue value);

//--
//
// POA attributes
//
//--

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;
23-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
attribute AdapterActivator the_activator;

//--
 //

// Servant Manager registration:
//
//--

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPolicy);

 //--
//
// operations for the USE_DEFAULT_SERVANT policy
//
//--

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

// **
//
// object activation and deactivation
//
// **

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive,
WrongPolicy);

void deactivate_object(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

// **
//
// reference creation operations
//
// **

Object create_reference (
in CORBA::RepositoryId intf)
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-27

23
raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf)

raises (WrongPolicy);

//--
//
// Identity mapping operations:
//
//--

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id(in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};

// **
//
// Current interface
//
// **

interface Current : CORBA::Current
{

exception NoContext { };

POA get_POA() raises (NoContext);
ObjectId get_object_id() raises (NoContext);

};
};
23-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

23
23.14.7 Interceptors

As Interceptors are omitted from minimumCORBA, all of the CORBA IDL for
Interceptors, as defined in the Interceptors chapter of the CORBA specification, is
omitted from minimumCORBA IDL.
CORBA, v2.4.2 minimumCORBA OMG IDL February 2001 23-29

23
23-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Real-Time CORBA 24
Contents

This chapter contains the following topics.

Topic Page

Section I - Introduction 24-2

“Overview” 24-2

“Approach to Real-Time CORBA” 24-4

“Compatibility” 24-6

“Compliance” 24-8

Section II - Real-Time CORBA Architecture 24-8

“Real-Time Architecture” 24-8

Section III - Real-time CORBA Extensions 24-13

“Real-Time ORB” 24-13

“Real-Time POA” 24-15

“Native Thread Priorities” 24-16

“CORBA Priority” 24-17

“CORBA Priority Mappings” 24-17

“Real-Time Current” 24-21

“Real-Time CORBA Priority Models” 24-22

“Priority Transforms” 24-26

“Mutex Interface” 24-30
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 24-1

24

Bs
ed in

s

tory

ce
t

n to
ing
e
Section I - Introduction

24.1 Overview

Real-Time CORBA is an optional set of extensions to CORBA tailored to equip OR
to be used as a component of a Real-Time system. Conformance can only be claim
conjunction with conformance to CORBA. Note that Real-Time CORBA Extension i
not necessary for conformance to CORBA.

An ORB implementation compliant with Real-Time CORBA must implement all of
Real-Time CORBA, as defined in this specification. Hence there is a single manda
compliance point.

The Real-Time CORBA Scheduling Service, as defined in “Section IV - Real-Time
CORBA Scheduling Service” on page 24-50, is a separate and optional complian
point. An ORB implementation compliant with Real-Time CORBA may or may no
choose to offer an implementation of the Real-Time CORBA Scheduling Service.

24.2 Goals of the Specification

In any architecture, there is a tension between a general purpose solution and
supporting specialist applications. Real-Time developers have to pay strict attentio
the allocation of resources and to the predictability of system execution. By provid
the developer with handles on managing resources and on predictability, Real-Tim
CORBA sacrifices some of the general purpose nature of CORBA to support the
development of Real-Time systems.

“Threadpools” 24-31

“Implicit and Explicit Binding” 24-35

“Priority Banded Connections” 24-35

“PrivateConnectionPolicy” 24-39

“Invocation Timeout” 24-39

“Protocol Configuration” 24-40

“Consolidated OMG IDL” 24-44

Section IV - Real-Time CORBA Scheduling Service 24-50

“Introduction” 24-50

“OMG IDL” 24-51

“Semantics” 24-52

“Example” 24-52

Topic Page
24-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

al-

se
 the

se
ings

and

f

SIX
e

al-

ng
sion

the
 2.3
ing
tions
Real-Time development has further specialist areas: “hard” real-time and “soft” re
time; different resource contention protocols, and scheduling algorithms. This
specification provides a Real-Time CORBA that is sufficiently general to span the
variations in the form of a single compliance point. The one restriction imposed by
specification is to fixed priority scheduling. Real-Time CORBA does not currently
address dynamic scheduling.

The prescriptions made by this specification are not essential for general purpose
CORBA development. Furthermore, for some use-cases of CORBA (e.g., EDC -
Enterprise Distributed Computing) the features of Real-Time CORBA would be
irrelevant. EDC tends to focus on usability and developer productivity. Placing the
goals above predictability means that EDC CORBA developers would never do th
like configure thread pools.

The goals of the specification are to support developers in meeting Real-Time
requirements by facilitating the end-to-end predictability of activities in the system
by providing support for the management of resources.

Real-Time CORBA brings to Real-Time system development the same benefits o
implementation flexibility, portability, and interoperability that CORBA brought to
client-server development.

There is one important non-goal for this specification. It is not a goal to provide a
portability layer for the Real-Time Operating System itself. The POSIX Real-time
extensions already address this need. Real-time CORBA is compatible with the PO
Real-time Extensions but by not wrapping the RTOS the specification facilitates th
use of Real-time CORBA on operating systems that fall outside of the POSIX Re
time Extensions.

24.3 Extending CORBA

To provide specialist capabilities for specialist applications without over constraini
non Real-Time development, Real-time CORBA is positioned as a separate Exten
to CORBA. The set of capabilities provided by Real-time CORBA constitute an
optional, additional compliance point.

Real-time CORBA is defined as extensions to CORBA 2.3 (formal/98-12-01) and
Messaging Specification (orbos/98-05-05). It is necessary to look beyond CORBA
because the policy framework used in Real-Time CORBA is that from the Messag
Specification. Secondly, deferred synchronous, asynchronous, and oneway invoca
are important tools in developing Real-Time systems.
CORBA, v2.4.2 Extending CORBA February 2001 24-3

24

r,
ity of
r

-

e

ities

 is
uld at

event
ith
% of
 of
ents

ll the
y.

able
es by
e
 to

s to
24.4 Approach to Real-Time CORBA

24.4.1 The Nature of Real-Time

Developers of CORBA-compliant distributed, object oriented systems rely on the
CORBA Specification to support the functional aspects of those systems. Howeve
there is a class of problems where some of the requirements relate the functional
the system to Real-World time, be it measured in minutes or in microseconds. Fo
these systems, timeliness is as important as functionality.

A parcel delivery service that commits to next day delivery across the country is
relating the functional requirement of transporting a parcel from “A” to “B” to Real
world time (i.e., “one day”). For the organization to meet this non-functional
requirement, it must analyze the system, identify the activities, and bound the tim
taken to perform them. It must also decide what resources (people, planes) are
allocated to the problem. The use of those resources in performing particular activ
must be coordinated so that one activity doesn’t prejudice the Real-World time
requirement of another activity. If the arrival rate of parcels and the isolation of
resources from the outside world are known, then the organization can (ignoring
component failures) guarantee “next day” delivery. If the arrival pattern of parcels
variable and the peak rate would suggest a large amount of resources (which wo
other times be largely idle), then the organization could fall back to statistical
predictability: offering “next day delivery or your money back.”

Relating functional requirements to real-world time may take several forms. A
response time requirement might say that the occurrence of event “A” causes an
“B” within 24 hours. A throughput requirement might say that the system copes w
1000 occurrences of an event per hour. A statistical requirement might say that 95
the occurrences of event “A” causes an event “B” within 24 hours. All these forms
requirement are Real-time requirements. A system that meets Real-time requirem
is a Real-time system.

24.4.2 Meeting Real-Time Requirements

Deterministic behavior of the components of a Real-time system promotes the
predictability of the overall system. In order to decide a priori if a Real-Time
requirement is met, the system must behave predictably. This can only happen if a
parts of the system behave deterministically and also if they “combine” predictabl

The interfaces and mechanisms provided by Real-Time CORBA facilitate a predict
combination of the ORB and the application. The application manages the resourc
using the Real-Time CORBA interfaces and the ORB’s mechanisms coordinate th
activities that comprise the application. The Real-Time ORB relies upon the RTOS
schedule threads that represent activities being processed and to provide mutexe
handle resource contention.
24-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

an
tems

ernal
ch

than
ng the
s part
that

ow
.
a

se of

to the
.

te
hread
tic,”
ree
 by

n to

g.
24.4.3 Activities

This specification uses the word “activity” with a small “a.” It treats an “activity” as
analysis/design concept rather than as an implementation concept. Real-Time sys
developers are interested in the particular relationship between the system under
development and the system’s environment. This relationship describes those ext
stimuli from the environment that impinge upon the system, the patterns with whi
these stimuli occur, and the extent of activity in the system resulting from each
stimulus.

Most systems will not be purely CORBA systems. That is there may be I/O other
request and reply messages and there may be threads in addition to those handli
ORB and CORBA applications. Developers need to be able to treat such threads a
of their activities. They also need to be able to treat non-CORBA Inputs as stimuli
trigger activities. It is a matter of application architecture whether or not a CORBA
request message is treated as a stimulus that triggers an activity.

Real-Time CORBA does not define IDL for an activity. Instead of worrying about h
to delimit an individual activity, it deals with invocations of IDL defined operations
These are well-formed concepts in the OMA. An operation invocation consists of
Request and a Reply. It is initiated by some client computational context (e.g., a
thread) and passes through a client-role ORB, a transport protocol (TCP in the ca
GIOP), a server-role ORB (possibly involving queuing) to a server application.
Thereafter the operation passes through the same entities in reverse order, back
client. An activity may encompass several, possibly nested, operation invocations

This specification acknowledges that an abstract activity is represented by concre
entities: a message within a transport protocol, a request held in memory, and a t
scheduled to run on a processor. These three phases are termed “in-transit,” “sta
and “active” respectively. Real-Time CORBA provides the ability to effect these th
phases of an activity. It leaves the developer to delimit their concept of an activity
the way they coordinate these concrete entities using the interfaces specified.

This specification provides a Real-Time CORBA Scheduling Service as an additio
the set of CORBA Core extensions. The Scheduling Service provides sufficient
abstraction for the developer to work in terms of activities.

24.4.4 End-to-End Predictability

One goal of this specification is to provide a standard for CORBA ORB
implementations that support end-to-end predictability. For the purposes of this
specification, “end-to-end predictability” of timeliness in a fixed priority CORBA
system is defined to mean:

• Respecting thread priorities between client and server for resolving resource
contention during the processing of CORBA invocations.

• Bounding the duration of thread priority inversions during end-to-end processin

• Bounding the latencies of operation invocations.
CORBA, v2.4.2 Approach to Real-Time CORBA February 2001 24-5

24

ch
end
le:

tics
 to

ns
 for

ted

es
ese

n be
ents

rces.
in

ling a

 are

er of
ime

on
A Real-Time CORBA system will include the following four major components, ea
of which must be designed and implemented in such a way as to support end-to-
predictability, if end-to-end predictability is to be achieved in the system as a who

1. the scheduling mechanisms in the OS

2. the Real-Time ORB

3. the communication transport

4. the application(s)

Real-Time ORBs conformant to this specification are still reliant on the characteris
of the underlying operating system and on the application if the overall system is
exhibit end-to-end predictability.

Note – An OS that implements the IEEE POSIX 1003.1-1996 Real-Time Extensio
has the necessary features to facilitate end-to-end predictability. It is still possible
an OS that doesn’t implement some or all of the POSIX Real-Time Extensions
specification to support end-to-end predictability. Real-Time CORBA is not restric
to such OSs.

24.4.5 Management of Resources

Providing end-to-end predictability will entail explicit choices in how much resourc
are deployed in a system. Certain requirements will lead to static partitioning of th
resources amongst activities.

For Real-Time requirements of the statistical kind and for some throughput
requirements, the level of resources needed to make the system “schedulable” ca
prohibitive. Real-Time CORBA systems can still provide assurances that requirem
are met due to the explicit control provided over resources.

Resources come in three categories: process, storage, and communication resou
Real-Time CORBA offers control over threadpools, which objects the threads with
them are used for, and what priorities they might run at. Real-Time CORBA also
appends some storage resources to threadpools for the specific capability of hand
number of concurrent requests above the number of threads provided. Real-Time
CORBA provides control over transport connections: which are shared and which
allocated for what priority of activity.

24.5 Compatibility

24.5.1 Interoperability

Real-Time CORBA does not prescribe an RT-IOP as an ESIOP. There are a numb
pragmatic reasons for this. There are many specialized scenarios in which Real-T
CORBA can be deployed. These different scenarios do not exhibit enough comm
24-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ch

R
ide

ntrol

ors
een

f

RBA

B

 to

BA
is is

 is

e
l-
re
characteristics to allow a common interaction protocol to be defined. Secondly, ea
scenario will impose a different transport protocol. Without agreeing on a common
transport, interoperability isn’t possible.

Instead of specifying an RT-IOP, this specification uses the “standard extension”
mechanisms provided by IIOP. These mechanisms are GIOP ServiceContexts, IO
Profiles, and IOR Tagged Components. Using these it is possible for IIOP to prov
protocol support for the mechanisms prescribed in Real-Time CORBA.

The benefit is that two Real-Time CORBA implementations will interoperate.
Interoperability may not be as important for a Real-time CORBA system as for a
CORBA system because Real-Time dictates a measure of system-wide design co
to deliver predictability and therefore some control over which ORB to deploy.

The second benefit is that the specified extensions define what features of a vend
own Real-Time IOP can be mapped onto IIOP. This allows vendors to bridge betw
different Real-time CORBA implementations.

24.5.2 Portability

Providing real-time applications with portability across real-time ORBs is a goal o
this specification; however, providing a portability layer for real-time operating
systems is not a goal. Basing such an RTOS wrapper on say, POSIX Real-Time
Extension would constrain the range of operating systems to which Real-Time CO
can add value.

Any Real-Time system will be carefully configured to meet its Real-Time
requirements. This includes taking account of the behavior and timings of the OR
itself. Porting an application to a different Real-Time ORB will necessitate that the
application be reconfigured. Portability cannot be “write once run everywhere” for
Real-Time CORBA. What it does do is reduce the risk to a development of having
port.

24.5.3 CORBA - Real-Time CORBA Interworking

In many systems Real-Time CORBA components will have to interwork with COR
components. The interfaces (in particular IIOP extensions) are specified so that th
functionally possible. Clearly, in any given system, there will be timing and
predictability implications that need to be considered if the Real-Time component
not to be compromised.

CORBA applications can be ported to Real-Time ORBs. They simply will not mak
use of the extra functions provided. Porting a Real-Time application to a non-Rea
Time ORB will sacrifice the predictability of that application, but the two platforms a
functionally equivalent.
CORBA, v2.4.2 Compatibility February 2001 24-7

24

 of
an

B
 an

ures
24.6 Compliance

This section specifies the points that must be met for a compliant implementation
Real-Time CORBA. Real-Time CORBA is an extension of CORBA. Conformance c
only be claimed in conjunction with conformance to CORBA. Note that Real-Time
CORBA Extension is not necessary for conformance to CORBA.

An ORB implementation compliant with Real-Time CORBA must implement all of
Real-Time CORBA, as defined in “Section III - Real-Time CORBA Extensions”.
Hence there is a single mandatory compliance point.

The Real-Time CORBA Scheduling Service, as defined in “Section IV - Real-Time
CORBA Scheduling Service” is a separate and optional compliance point. An OR
implementation compliant with Real-Time CORBA may or may not choose to offer
implementation of the Real-Time CORBA Scheduling Service.

Section II - Real-Time CORBA Architecture

24.7 Real-Time Architecture

Real-time CORBA defines a set of extensions to CORBA. The extensions to the
CORBA Core are specified in “Section III - Real-Time CORBA Extensions” on
page 24-13.

Figure 24-1 shows the key Real-Time CORBA entities that are specified. The feat
that these relate to are described in the sections that follow.
24-8 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ich

 and
L

sents
.

Figure 24-1 Real-Time CORBA Extensions

24.7.1 Real-Time CORBA Modules

All CORBA IDL specified by Real-Time CORBA is contained in new modules
RTCORBA and RTPortableServer (with the exception of new service contexts, wh
are additions to the IOP module).

24.7.2 Real-Time ORB

Real-Time CORBA defines an extension of the ORB interface, RTCORBA::RTORB ,
which handles operations concerned with the configuration of the Real-Time ORB
manages the creation and destruction of instances of other Real-Time CORBA ID
interfaces.

24.7.3 Thread Scheduling

Real-Time CORBA uses threads as a schedulable entity. Generally, a thread repre
a sequence of control flow within a single node.

IIOP

CORBA::
Current

RTCORBA::

Scheduling

RTCORBA::

Servant

POA RT POA

RTCORBA::

serverclient

ORB RTORB

RTCORBA::ESIOP (others)

Threadpool

Priority

Service

Current

PriorityMapping(GIOP/TCP)

Real-Time CORBA entity existing CORBA entity
CORBA, v2.4.2 Real-Time Architecture February 2001 24-9

24

ds.
ad
 and

ed
nt

en

ity
native

that

be
plied
e

 a

e

s to
24.7.3.1 Threads for part of an activity

Activities are “scheduled” by coordinating the scheduling of their constituent threa
Real-Time CORBA specifies interfaces through which the characteristics of a thre
that are of interest can be manipulated. These interfaces are Threadpool creation
the Real-Time CORBA Current interface.

Note – The Real-Time CORBA view of a thread is compatible with the POSIX
definition of a thread.

24.7.4 Real-Time CORBA Priority

Real-Time CORBA defines a universal, platform independent priority scheme call
Real-Time CORBA Priority. It is introduced to overcome the heterogeneity of differe
Operating Systems provided priority schemes, and allows Real-Time CORBA
applications to make prioritized CORBA invocations in a consistent fashion betwe
nodes with different priority schemes.

For consistency, Real-Time CORBA applications always should use CORBA Prior
to express the priorities in the system, even if all nodes in a system use the same
thread priority scheme, or when using the server declared priority model.

24.7.5 Native Priority and PriorityMappings

Real-Time CORBA defines a NativePriority type to represent the priority scheme
is ‘native’ to a particular Operating System.

Priority values specified in terms of the Real-Time CORBA Priority scheme must
mapped into the native priority scheme of a given scheduler before they can be ap
to the underlying schedulable entities. On occasion, it is necessary for the revers
mapping to be performed, to obtain a Real-Time CORBA Priority to represent the
present native priority of a thread. The latter can occur, for example, when priority
inheritance is in use, or when wishing to introduce an already running thread into
Real-Time CORBA system at its present (native) priority.

To allow the Real-Time ORB and applications to do both of these things, Real-Tim
CORBA defines a PriorityMapping interface.

24.7.6 Real-Time CORBA Current

Real-Time CORBA defines a Real-Time CORBA Current interface to provide acces
the CORBA priority of a thread.
24-10 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

n of
er
ols

tting
ce,

e a
ed

ting

m

B.

 of
e,
l.
e the
es.
ole

on on

tisfy a
se
24.7.7 Priority Models

One goal of Real-Time CORBA is to bound and to minimize priority inversion in
CORBA invocations. One mechanism that is employed to achieve this is propagatio
the activity priority from the client to the server, with the requirement that the serv
side ORB make the up-call at this priority (subject to any priority inheritance protoc
that are in use).

However, in some scenarios, it is sufficient to design the application system by se
the priority of servers, and having them handle all invocations at that priority. Hen
Real-Time CORBA supports two models for the priority at which a server handles
requests from clients:

• Client Propagated Priority Model: in which the server honors the priority of the
invocation, set by the client. The invocation’s Real-Time CORBA Priority is
propagated to the server ORB, and the server-side ORB maps this Real-Time
CORBA Priority into its own native priority scheme using its PriorityMapping.

Requests from non-Real-Time CORBA ORBs (i.e., ORB’s that do not propagat
Real-Time CORBA Priority with the invocation) are handled at a priority specifi
by the server.

• Server Declared Priority Model: in which the server handles requests at a Real-
Time CORBA Priority assigned on the server side. This model is useful for set
a boundary where new activities are begun with a CORBA invocation.

24.7.8 Real-Time CORBA Mutexes and Priority Inheritance

The Mutex interface provides the mechanism for coordinating contention for syste
resources. Real-Time CORBA specifies an RTCORBA::Mutex locality constrained
interface, so that applications can use the same mutex implementation as the OR

A conforming Real-Time CORBA implementation must provide an implementation
Mutex that implements some form of priority inheritance protocol. This may includ
but is not limited to, simple priority inheritance or a form of priority ceiling protoco
The mutexes that Real-Time CORBA makes available to the application must hav
same priority inheritance properties as those used by the ORB to protect resourc
This allows a consistent priority inheritance scheme to be delivered across the wh
system.

24.7.9 Threadpools

Real-Time CORBA uses the Threadpool abstraction to manage threads of executi
the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:

• preallocation of threads - This helps reduce priority inversion by allowing the
application programmer to ensure that there are enough thread resources to sa
certain number of concurrent invocations, and helps reduce latency and increa
predictability by avoiding the destruction and recreation of threads between
invocations.
CORBA, v2.4.2 Real-Time Architecture February 2001 24-11

24

ther,
o

the

col,
le
nt

 as

ver,

und
 to

 of
• partitioning of threads - Having multiple thread pools associated with different
POAs allows one part of the system to be isolated from the thread usage of ano
possibly lower priority, part of the application system. This can again be used t
reduce priority inversion.

• bounding of thread usage - A threadpool can be used to set a maximum limit on
the number of threads that a POA or set of POAs may use. In systems where
total number of threads that may be used is constrained, this can be used in
conjunction with threadpool partitioning to avoid priority inversion by thread
starvation.

• buffering of additional requests - Beyond the number that can be dispatched
concurrently by the assigned number of threads.

24.7.10 Priority Banded Connections

To reduce priority inversion due to use of a non-priority respecting transport proto
RT CORBA provides the facility for a client to communicate with a server via multip
connections, with each connection handling invocations that are made at a differe
CORBA priority or range of CORBA priorities. The selection of the appropriate
connection is transparent to the application, which uses a single object reference
normal.

24.7.11 Non-Multiplexed Connections

Real-Time CORBA allows a client to obtain a private transport connection to a ser
which will not be multiplexed (shared) with other client-server object connections.

24.7.12 Invocation Timeouts

Real-Time CORBA applications may set a timeout on an invocation in order to bo
the time that the client application is blocked waiting for a reply. This can be used
improve the predictability of the system.

24.7.13 Client and Server Protocol Configuration

Real-Time CORBA provides interfaces that enable the selection and configuration
protocols on the server and client side of the ORB.

24.7.14 Real-Time CORBA Configuration

New Policy types are defined to configure the following server-side RT CORBA
features:

• server-side thread configuration (through Threadpools)

• priority model (propagated by client versus declared by server)

• protocol selection
24-12 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

y

side

s.

on

Real-

ow
 the

 the

ces
ding

 of a
• protocol configuration

Which of the CORBA policy application points (ORB, POA, Current) a given polic
may be applied at is given along with the description of each policy.

Real-Time CORBA defines a number of policies that may be applied on the client-
of CORBA applications. These policies allow:

• The creation of priority-banded sets of connections between clients and server

• The creation of a non-multiplexed connection to a server.

• Client-side protocol selection and configuration.

In addition, Real-Time CORBA uses an existing CORBA policy, to provide invocati
timeouts.

24.7.15 Scheduling Service

The Scheduling Service provides an abstraction layer to hide the coordination of
Time CORBA scheduling parameters (e.g., CORBA Priorities and Real-Time POA
Policies). The Scheduling Service uses “names” for activities and objects.

The developer uses the run-time Scheduling Service by acting on these named
activities and object. The design-time part of the Scheduling Service determines h
each of these named entities can be coordinated, using the interfaces defined for
Real-Time ORB, so that they meet their Real-Time requirements.

Section III - Real-Time CORBA Extensions
The following sections describe the Real-Time CORBA Extensions by introducing
module structure and major interfaces for the Real-Time CORBA specification,
defining the basic priority concepts, describing the priority models and the interfa
with which to realize them, describing the management of thread resources (inclu
buffering) and communication resources, consolidating the changes required of
CORBA, and finally listing the complete IDL.

24.8 Real-Time ORB

Real-Time CORBA defines an extension to the CORBA::ORB interface,
RTCORBA::RTORB . This interface is not derived from CORBA::ORB as the latter
is expressed in pseudo IDL, for which inheritance is not defined. Nevertheless,
RTORB is conceptually the extension of the ORB interface.

The RTORB interface provides operations to create and destroy other constituents
Real-Time ORB.

There is a single instance of RTCORBA::RTORB per instance of CORBA::ORB .
The object reference for the RTORB is obtained by calling
ORB::resolve_initial_references with the ObjectId “RTORB.”
CORBA, v2.4.2 Real-Time ORB February 2001 24-13

24

ified.

ative

ly,

han,

han
ces
RTCORBA::RTORB is a locality constrained interface. The reference to the RTORB
object may not be passed as a parameter of an IDL operation nor may it be string
Any attempt to do so results in a MARSHAL system exception (with a Standard
Minor Exception Code of 2).

// IDL
module RTCORBA {

// locality constrained interface
interface RTORB {

...

};

};

24.8.1 Real-Time ORB Initialization

Real-Time ORB initialization occurs within the CORBA::ORB_init operation. That is
a Real-Time ORB’s implementation of CORBA::ORB_init performs any actions
necessary to initialize the Real-Time capability of the ORB.

To give the developer some control over a Real-Time ORB’s use of priorities the
ORB_init operation is capable of handling an argv element of the form:

–ORBRTpriorityrange<optional-white-space><short>,<short>

Where <short> is a string encoding of an integer between 0 and 32767. The first
integer should be smaller than the second. If the argv element string does not conform
to these constraints, then a BAD_PARAM system exception is raised.

The two integers represent a range of CORBA Priorities available for use by ORB
internal threads. Note that priority of Real-Time CORBA application threads is
controlled by other mechanisms. If the ORB cannot map these integers onto the n
priority scheme, then it raises a DATA_CONVERSION system exception.

If the ORB deems the range of priorities to be too narrow for it to function proper
then it raises an INITIALIZE system exception (with a Standard Minor Exception
Code of 1). For example, an implementation may not be able to function with less t
say, three distinct priorities without risking deadlock.

24.8.2 Real-Time CORBA System Exceptions

Real-Time CORBA provides a more constraining environment for an application t
the environment provided by CORBA. This is reflected in the additional circumstan
in which system exceptions can be generated. These circumstances need to be
differentiated from the use of the same exception in CORBA.
24-14 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

e of a
BA,

pe
e

s).
Real-Time CORBA uses many of the Standard System Exceptions with the same
meaning as applies in CORBA. These uses need no differentiation. Where the us
CORBA Standard System Exception has a meaning particular to Real-Time COR
Standard Minor Exception Codes are assigned.

24.9 Real-Time POA

Real-Time CORBA defines an extension to the POA, in the form of the interface
RTPortableServer::POA .

// IDL
module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

...

};

};

Conformance to the Real-Time CORBA Extensions, also necessarily implies
conformance to CORBA. In particular, a Real-Time ORB will handle interfaces of ty
PortableServer::POA in accordance with the CORBA specification. For a Real-Tim
ORB all such instances shall be of the subtype RTPortableServer::POA . That is it
shall always be possible to treat an instance of PortableServer::POA as an instance
of RTPortableServer::POA (e.g., successfully narrow in some language mapping

A call to ORB::resolve_initial_references (“RootPOA”) returns an interface of
type RTPortableServer::POA . A Real-Time POA will differ from a POA in two
ways:

1. It provides additional operations to support object level priority settings (see
Section 24.14.5, “Setting Server Priority on a Per-object Reference Basis,” on
page 24-25).

Table 24-1Standard Minor Exception Codes used for Real-Time CORBA

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

MARSHAL 2 attempt to marshal locality
constrained object

DATA_CONVERSION 1 failure of PriorityMapping object

INITIALIZE 1 Priority range too restricted for ORB

BAD_INV_ORDER 1 attempt to reassign priority

NO_RESOURCES 1 no connection for request’s priority
CORBA, v2.4.2 Real-Time POA February 2001 24-15

24

. As
the

ime

tion
e

he
 is
.

g
ORB
the

h
ase
t.

m

nt it

rity
. A

ation

o be
he
its

rs.
ion
2. Its implementation understands the Real-Time Policies defined in this Extension
the Real-Time POA interface is derived from the POA interface, it supports all
semantics prescribed for the POA.

24.10 Native Thread Priorities

A Real-Time operating system (RTOS) sufficient to use for implementing a Real-T
ORB compliant with this specification, will have some discrete representation of a
thread priority. This representation typically specifies a range of values and a direc
for which values, higher or lower, represent the higher priority. The particular rang
and direction in this priority representation varies from RTOS to RTOS. This
specification refers to the RTOS specific thread priority representation as a native
thread priority scheme. The priority values of this scheme are referred to as native
thread priorities.

Native thread priorities are used to designate the execution eligibility of threads. T
ordering of native thread priorities is such that a thread with higher native priority
executed at the exclusion of any threads in the system with lower native priorities

A native thread priority is an integer value that is the basis for resolving competin
demands of threads for resources. Whenever threads compete for processors or
implementation-defined resources, the resources are allocated to the thread with
highest native thread priority value.

The base native thread priority of a thread is defined as the native priority with whic
it was created, or to which it was later set explicitly. The initial value of a thread’s b
native priority is dependent on the semantics of the specific operating environmen
Hence it is implementation specific.

At all times, a thread also has an active native thread priority, which is the result of
considering its base native thread priority together with any priorities it inherits fro
other sources (e.g., threads or mutexes). An active native thread priority is set
implicitly as a result of some other action. Its value is only temporary, at some poi
will return to the base native thread priority.

Priority inheritance is the term used for the process by which the native thread prio
of other threads is used in the evaluation of a thread’s active native thread priority
priority inheritance protocol must be used by a conforming Real-Time CORBA ORB
to implement the execution semantics of threads and mutexes. It is an implement
issue as to whether the Real-Time ORB implements simple priority inheritance,
immediate ceiling locking protocol, original ceiling locking protocol, or some other
priority inheritance protocol.

Whichever priority inheritance protocol is used, the native thread priority ceases t
inherited as soon as the condition calling for the inheritance no longer exists. At t
point when a thread stops inheriting a native thread priority from another source,
active native thread priority is re-evaluated.

The thread’s active native priority is used when the thread competes for processo
Similarly, the thread’s active native priority is used to determine the thread’s posit
in any queue (i.e., dequeuing occurs in native thread priority order).
24-16 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

e

767.

e
tion.

t
has

ly

ity
s

t the
en
e
Native priorities have an IDL representation in Real-Time CORBA, which is of typ
short:

// IDL
module RTCORBA {

typedef short NativePriority;

};

This means that native priorities must be integer values in the range -32768 to +32
However, for a particular RTOS, the valid range will be a sub-range of this range.

Real-Time CORBA does not support the direct use of native priorities: instead, th
application programmer uses CORBA Priorities, which are defined in the next sec
However, applications will still use native priorities where they make direct use of
RTOS features.

24.11 CORBA Priority

To overcome the heterogeneity of RTOSs, that is different RTOSs having differen
native thread priority schemes, Real-Time CORBA defines a CORBA Priority that
a uniform representation system-wide. CORBA Priority is represented by the
RTCORBA::Priority type:

//IDL
module RTCORBA {

 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;

};

A signed short is used to accommodate the Java language mapping. However, on
values in the range 0 (minPriority) to 32767 (maxPriority) are valid. Numerically
higher RTCORBA::Priority values are defined to be of higher priority.

For each RTOS in a system, CORBA priority is mapped to the native thread prior
scheme. CORBA priority thus provides a common representation of priority acros
different RTOSs.

24.12 CORBA Priority Mappings

Real-Time CORBA defines the concept of a PriorityMapping between CORBA
priorities and native priorities. The concept is defined as an IDL native type so tha
mechanism by which priorities are mapped is exposed to the user. Native is chos
rather than interface (even if locality constrained) because the full capability of th
CORBA, v2.4.2 CORBA Priority February 2001 24-17

24

e.
ject

r in

the
rs to

ect
that

ORB (e.g., POA policies and CORBA exceptions) are too heavyweight for this us
Furthermore, a CORBA interface would entail the creation and registration of an ob
reference.

// IDL
module RTCORBA {

native PriorityMapping;

};

Language mapping for this IDL native are defined for C, C++, Ada, and Java late
this section.

A Real-Time ORB provides a default mapping for each platform (i.e., RTOS) that
ORB supports. Furthermore, a Real-Time ORB provides a mechanism to allow use
override the default priority mapping with a priority mapping of their own.

The PriorityMapping is a programming language object rather than a CORBA Obj
and therefore the normal mechanism for coupling an implementation to the code
uses it (an object reference) doesn’t apply. This specification does not prescribe a
particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

24.12.1 C Language Binding for PriorityMapping

/* C */
CORBA_boolean RTCORBA_PriorityMapping_to_native (

RTCORBA_Priority corba_priority,
RTCORBA_NativePriority* native_priority);

CORBA_boolean RTCORBA_PriorityMapping_to_CORBA (
RTCORBA_NativePriority native_priority,
RTCORBA_Priority* corba_priority);
24-18 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24
24.12.2 C++ Language Binding for PriorityMapping

// C++
namespace RTCORBA {

class PriorityMapping {
public:

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority);

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority);

};
};

24.12.3 Ada Language Binding for PriorityMapping

-- Ada
package RTCORBA.PriorityMapping is

type Object is tagged private;

procedure To_Native (
Self : in Object ;
CORBA_Priority : in RTCORBA.Priority ;
Native_Priority: out RTCORBA.NativePriority ;
Returns : out CORBA.Boolean) ;

procedure To_CORBA (
Self : in Object ;
Native_Priority: in RTCORBA.NativePriority ;
CORBA_Priority : out RTCORBA.Priority ;
Returns : out CORBA.Boolean) ;

end RTCORBA.PriorityMapping ;
CORBA, v2.4.2 CORBA Priority Mappings February 2001 24-19

24

the

ack

 out

ormal
le.

s,

ed to

 the
t

rity

 be
24.12.4 Java Language Binding for PriorityMapping

// Java
package org.omg.RTCORBA;

public class PriorityMapping {

boolean to_native (
short corba_priority,
org.omg.CORBA.ShortHolder native_priority

);
boolean to_CORBA (

short native_priority,
org.omg.CORBA.ShortHolder corba_priority

);
}

24.12.5 Semantics

The priority mappings between native priority and CORBA priority are defined by
implementations of the to_native and to_CORBA operations of a PriorityMapping
object (note, not a CORBA Object). The to_native operation accepts a CORBA
Priority value as an in parameter and maps it to a native priority, which is given b
as an out parameter. Conversely, to_CORBA accepts a NativePriority value as an in
parameter and maps it to a CORBA Priority value, which is again given back as an
parameter.

As the mappings are used by the ORB, and may be used more than once in the n
execution of an invocation, their implementations should be as efficient as possib
For this reason, the mapping operations may not raise any CORBA exceptions,
including system exceptions. The ORB is not restricted from making calls to the
to_native and/or to_CORBA operations from multiple threads simultaneously. Thu
the implementations should be re-entrant.

Rather than raising a CORBA exception upon failure, a boolean return value is us
indicate mapping failure or success. If the priority passed in can be mapped to a
priority in the target priority scheme, TRUE is returned and the value is returned as
out parameter. If it cannot be mapped, FALSE is returned and the value of the ou
parameter is undefined.

The to_native and to_CORBA operations must both return FALSE when passed a
priority that is outside of the valid priority range of the input priority scheme. For
to_native this means when it is passed a short value outside of the CORBA Prio
range, 0-32767 (i.e., a negative value). For to_CORBA this means when it is passed a
short value outside of the native priority range used on that RTOS, this range will
platform specific.
24-20 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

he
f the

alled

te
curs
.

s will

es).
ell

ent

 the

rity

thread

l

of
Neither to_native nor to_CORBA is obliged to map all valid values of the input
priority scheme (the CORBA Priority scheme or the native priority scheme,
respectively). This allows mappings to be produced that do not use all values of t
native priority scheme of a particular scheduler and/or that do not use all values o
CORBA Priority scheme.

When the ORB receives a FALSE return value from a mapping operation that is c
as part of the processing of a CORBA invocation, processing of the invocation
proceeds no further. A DATA_CONVERSION system exception (with a Standard
Minor Exception Code of 1) is raised to the application making the invocation. No
that it may not be possible to raise an exception to the application if the failure oc
on a call to a mapping operation made on the server side of a oneway invocation

A Real-Time ORB cannot assume that the priority mapping is idempotent. Users
should be aware that a mapping that produces different results for the same input
make the goal of a schedulable system harder to obtain. Users may choose to
implement a priority mapping that changes (through other, user specified interfac
Users should however note that post-initialization changes to the mapping may w
compromise the ORB’s ability to deliver a consistently schedulable system.

24.13 Real-Time Current

The RTCORBA::Current interface, derived from CORBA::Current , provides access
to the CORBA Priority (and hence indirectly to the native priority also) of the curr
thread. The application can obtain an instance of Current by invoking the
CORBA::ORB::resolve_initial_references(“RTCurrent”) operation.

A Real-Time CORBA Priority may be associated with the current thread, by setting
priority attribute of the RTCORBA::Current object:

//IDL
module RTCORBA {

interface Current : CORBA::Current {
attribute Priority the_priority;

};

};

A BAD_PARAM system exception is thrown if an attempt is made to set the prio
to a value outside the range 0 to 32767.

As a consequence of setting this attribute, a Real-Time ORB sets the base native
priority to the value determined by calling PrioirtyMapping::to_native before
returning from the set attribute call.

If the to_native call returns FALSE or if the returned native thread priority is illega
for the particular underlying RTOS, then a Real-Time ORB raises a
DATA_CONVERSION system exception (with a Standard Minor Exception Code
1). In this case the priority attribute retains its value prior to the set attribute call.
CORBA, v2.4.2 Real-Time Current February 2001 24-21

24

 it

 does

asis,
Once a thread has a CORBA Priority value associated with it, the behavior when
makes an invocation upon a CORBA Object depends on the value of the
PriorityModelPolicy of that target object.

24.14 Real-Time CORBA Priority Models

Real-Time CORBA supports two models for the coordination of priorities across a
system. These two models provide two, alternate answers to the question: where
the priority at which the servant code executes come from? They are:

• Client Propagated Priority Model

• Server Declared Priority Model

These two models are described in Section 24.14.3, “Client Propagated Priority
Model,” on page 24-24 and Section 24.14.4, “Server Declared Priority Model,” on
page 24-24, respectively. The model to be used is selected by the
PriorityModelPolicy described first.

24.14.1 PriorityModelPolicy

The Priority Model is selected and configured by use of the PriorityModelPolicy .

//IDL
module RTCORBA {

// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED

};

interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

};

When the Server Declared Model is selected for a given POA, the server_priority
attribute indicates the priority that will be assigned by default to CORBA Objects
managed by that POA. This priority can be overridden on a per-Object Reference b
as described in a sub-section below.
24-22 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ere

n.
ing

d in

y
eal-

rver
it to
gged
When the Client Propagated Model is selected, the server_priority attribute indicates
the priority to be used for invocations from non-Real-Time CORBA ORBs (i.e., wh
there is no RTCorbaPriority ServiceContext on the request).

24.14.2 Scope of PriorityModelPolicy

The PriorityModelPolicy is applied to a Real-Time POA at the time of POA creatio
This is either through an ORB level default having previously been set or by includ
it in the policies parameter to create_POA . An instance of the PriorityModelPolicy
is created with the create_priority_model_policy operation. The attributes of the
policy are initialized with the parameters of the same name.

//IDL
module RTCORBA {

interface RTORB {
...
PriorityModelPolicy create_priority_model_policy (

in PriorityModel priority_model,
in Priority server_priority

);
};

};

The PriorityModelPolicy is a client-exposed policy, that is propagated from the
server to the client in IORs. It is propagated in a PolicyValue in a TAG_POLICIES
Profile Component, as specified by the CORBA QoS Policy Framework.

When an instance of PriorityModelPolicy is propagated, the PolicyValue ’s ptype
has the value PRIORITY_MODEL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::PriorityModel and an RTCORBA::Priority .

Note – Client-exposed policies and the mechanism for their propagation are define
section 5.4 of the CORBA Messaging specification.

The PriorityModelPolicy is propagated so that the client ORB knows which Priorit
Model the target object is using. This allows it to determine whether to send the R
Time CORBA priority with invocations on that object, and, in the case that the Se
Declared model is used in combination with Priority Banded Connections, allows
select the band connection to invoke over based on the declared priority in the ta
component.

The client may not override the PriorityModelPolicy .
CORBA, v2.4.2 Real-Time CORBA Priority Models February 2001 24-23

24

d
n run

hat

BA
ages.

ing

e

 this

 the
e
ple,

 of
for

 a
BA
24.14.3 Client Propagated Priority Model

If the target object supports the CLIENT_PROPAGATED value of the
PriorityModelPolicy , the CORBA Priority is carried with the CORBA invocation an
is used to ensure that all threads subsequently executing on behalf of the invocatio
at the appropriate priority. The propagated CORBA Priority becomes the CORBA
Priority of any such threads. These threads run at a native priority mapped from t
CORBA Priority. The CORBA Priority is also passed back from server to client, so
that it can be used to control the processing of the reply by the client ORB.

The CORBA Priority is propagated from client to server, and back again, in a COR
Priority service context, which is passed in the invocation request and reply mess

module IOP {

 const ServiceId RTCorbaPriority = 10;

};

The context_data contains the RTCORBA::Priority value as a CDR encapsulation
of an IDL short type.

Note – The RTCorbaPriority const should be added to a future version of GIOP.

The thread that runs the servant code initially has the CORBA Priority of the invok
thread. Therefore if, as part of the processing of this request it makes CORBA
invocations to other objects, these onward invocations will be made with the sam
CORBA Priority. If the CORBA Priority of the thread running the servant code is
changed by the application, any subsequent onward invocations will be made with
new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS)
while the servant code is executing due to priority inheritance.

24.14.4 Server Declared Priority Model

An object using the Server Declared Priority Model will have published its CORBA
Priority in its object reference. When such an object is the target of an invocation
CORBA Priority at which the (remote) servant code will execute is available to th
client-side ORB. The client-side ORB may use this knowledge internally. For exam
in conjunction with priority banded connections.

Note – Client-side ORB execution to support an invocation should run at the priority
the client making the invocation. The extent to which this is achieved is a matter
implementation.

The client’s Real-Time CORBA Priority value is not passed with the invocation, in
service context, as it is in the Client Priority Propagation Model. A Real-Time COR
Priority is not passed in a reply message either.
24-24 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ped

of its
l, the
ity

 at

n at
ese
Server-side threads running on behalf of the invocation run at a native priority map
from the Real-Time CORBA Priority associated with that CORBA Object, which is
given in the server_priority attribute of the PriorityModelPolicy used at its
creation.

Where an object, S1, using the Server Declared Priority Model makes invocations
own upon another target object, S2, that uses the Client Propagated Priority Mode
priority propagated will be that of S1 and not that of S1’s client. If the CORBA Prior
of the thread executing S1’s code is changed by the application, any subsequent
onward invocations will be made with this new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS)
while the servant code is executing due to priority inheritance.

24.14.5 Setting Server Priority on a Per-object Reference Basis

The server priority assigned under the Server Declared Priority Model, by the
server_priority attribute of the PriorityModelPolicy , can be overridden on a per-
Object Reference basis. This is achieved by assigning the alternate server priority
the time of Object Reference creation or servant activation, using one of four
additional operations, which are provided by the Real-Time CORBA POA,
RTPortableServer::POA . Thereafter, the ORB ensures that the servant code is ru
a native thread priority corresponding to the CORBA priority supplied as input to th
operations.

// IDL
module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);
CORBA, v2.4.2 Real-Time CORBA Priority Models February 2001 24-25

24

rity
hen

ns

 the

 the
rs to
the

ver
rity
void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

};

};

If the priority parameter of any of the above operations is not a valid CORBA prio
or if it fails to match the priority configuration for resources assigned to the POA, t
the ORB raises a BAD_PARAM system exception.

For each of the above operations, if the POA does not support the
SERVER_DECLARED option for the PriorityModelPolicy , then the ORB raises a
WrongPolicy user exception.

For each of the above operations, if the POA supports the IMPLICIT_ACTIVATION
option for the ImplicitActivationPolicy , then the ORB raises a WrongPolicy user
exception. This relieves an ORB implementation of the need to retrieve the target
object’s priority from “somewhere” when a request arrives for an inactive object.

If the activate_object_with_id_and_priority operation is invoked with a different
priority to an earlier invocation of one of the create reference with priority operatio
for the same object, then the ORB raises a BAD_INV_ORDER system exception
(with a Standard Minor Exception Code of 1). If the priority value is the same, then
ORB returns SUCCESS.

In all other respects the semantics of the corresponding (i.e., without the name
extensions “_with_priority” and “_and_priority”) PortableServer::POA operations
are observed.

24.15 Priority Transforms

Real-Time CORBA supports the installation of user-defined Priority Transforms, to
modify the CORBA Priority associated with an invocation during the processing of
invocation by a server. Use of these Priority Transforms allows application designe
implement Real-Time CORBA systems using priority models different from either
Client Propagated or Server Declared priority models described above.

There are two points at which a Priority Transform may affect the CORBA Priority
associated with an invocation:

1. During the invocation up call (after the invocation has been received at the ser
but before the servant code is invoked). This is referred to as an ‘inbound’ Prio
Transform, and will occur before the first time the server-side ORB uses the
RTCORBA::Priority value to obtain a native priority value, via a to_native
operation on the Priority Mapping.
24-26 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

the
e

iety

f the

in

h a

e
2. At the time of making an ‘onward’ CORBA invocation, from servant application
code. This is referred to as an ‘outbound’ Priority Transform.

Priority Transforms are user-provided functions that map one RTCORBA::Priority
value to another RTCORBA::Priority value. In addition to the input priority value,
the ObjectId of the target object is made available to the inbound transform while
ObjectId of the invoking object is made available to the outbound transform. If th
outbound transform is called outside the context of an invocation, then there is no
ObjectId and the ORB does not invoke the transform function.

A pair of priority transforms, one at each of these two points, may be required to
implement a particular priority protocol. For example, to implement a particular var
of distributed priority ceiling protocol, the inbound transform could add a constant
offset to the CORBA Priority, and the outbound transform could subtract the same
offset from the CORBA Priority, so that the onward invocation is made with the
original CORBA Priority.

Priority Transforms are presented to the Real-Time ORB as the implementation o
transform_priority operation for an instance of the locality constrained CORBA
interface type RTCORBA::PriorityTransform :

// IDL
module RTCORBA {

native PriorityTransform;

};

Language mapping for this IDL native is defined for C, C++, Ada, and Java later
this section.

A Real-Time ORB provides a default transform. Furthermore, a Real-Time ORB
provides a mechanism to allow users to override the default priority transform wit
priority transform of their own.

The PriorityTransform is a programming language object rather than a CORBA
Object and therefore the normal mechanism for coupling an implementation to th
code that uses it (an object reference) doesn’t apply. This specification does not
prescribe a particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

24.15.1 C Language Binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.
CORBA, v2.4.2 Priority Transforms February 2001 24-27

24
/* C */
CORBA_boolean RTCORBA_PriorityTransform_inbound (

RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid);

CORBA_boolean RTCORBA_PriorityTransform_outbound (
RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid);

24.15.2 C++ Language Binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// C++
namespace RTCORBA {

class PriorityTransform {
public:

virtual CORBA::Boolean inbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid);

virtual CORBA::Boolean outbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid);

};
};

24.15.3 Ada Language Binding for PriorityTransform

-- Ada
package RTCORBA.PriorityTransform is

type Object is tagged private;

procedure Inbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean) ;

procedure Outbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean) ;

end RTCORBA.PriorityTransform ;
24-28 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ed to
,

rity

es.
rity

tion
tion
.

ure

s
uts
o
es).

well
24.15.4 Java Language Binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// Java
package org.omg.RTCORBA;

public class PriorityTransform {

boolean inbound (
org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);

boolean outbound (
org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
}

24.15.5 Semantics

Rather than raising a CORBA exception upon failure, a boolean return value is us
indicate Transform failure or success. If the priority passed in can be transformed
TRUE is returned and the value is returned as the out parameter. If it cannot be
transformed, FALSE is returned and the value of the out parameter is undefined.

Both the inbound and outbound functions must return FALSE when passed a prio
that is outside of the valid priority range for a CORBA Priority, 0-32767 (i.e., a
negative value). If the transform doesn’t recognize the ObjectId , then it should return
FALSE.

Neither inbound nor outbound is obliged to transform all valid CORBA priority valu
However, users should note that failure to do so will result in invocation at that prio
failing.

When the ORB receives a FALSE return value from a Transform operation that is
called as part of the processing of a CORBA invocation, processing of the invoca
proceeds no further. An ORB that receives a FALSE return from a transform func
will, if possible, raise an UNKNOWN system exception on the application invocation
Note that it may not be possible to raise an exception to the application if the fail
occurs on a call to a Transform operation made on the server side of a oneway
invocation.

A Real-Time ORB cannot assume that the priority Transform is idempotent. User
should be aware that a Transform that produces different results for the same inp
will make the goal of a schedulable system harder to obtain. Users may choose t
implement a priority Transform that changes (through other, user specified interfac
Users should however note that post-initialization changes to the Transform may
compromise the ORB’s ability to deliver a consistently schedulable system.
CORBA, v2.4.2 Priority Transforms February 2001 24-29

24

e
t

orm

ll

e

t
Note that Priority Transforms may be used with either the Client Propagated or th
Server Declared Priority Models. If the Client Propagated model is used, the inpu
priority to the inbound transform is the RTCORBA::Priority propagated from the
client. If the Server Declared model is used, the input priority to the inbound transf
will be the RTCORBA::Priority assigned to the target object. For the outbound
transform, the input priority is the derived CORBA Priority .

24.16 Mutex Interface

Real-Time CORBA defines the following Mutex interface:

//IDL
module RTCORBA {

// locality constrained interface
interface Mutex {

void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

interface RTORB {

...
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);
...

};
};

A new RTCORBA::Mutex object is obtained using the create_mutex() operation of
RTCORBA::RTORB .

A Mutex object has two states: locked and unlocked. Mutex objects are created in the
unlocked state. When the Mutex object is in the unlocked state the first thread to ca
the lock() operation will cause the Mutex object to change to the locked state.
Subsequent threads that call the lock() operation while the Mutex object is still in the
locked state will block until the owner thread unlocks it by calling the unlock()
operation.

Note – If a Real-Time ORB is to run on a shared memory multi-processor, then th
Mutex implementation must ensure that the lock operations are atomic.

The try_lock() operation works like the lock() operation except that if it does not ge
the lock within max_wait time, it returns FALSE. If the try_lock() operation does get
the lock within the max_wait time period, it returns TRUE.
24-30 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

l
 an

pted
iling

ty
 of
s.
The mutex returned by create_mutex must have the same priority inheritance
properties as those used by the ORB to protect resources. If a Real-Time CORBA
implementation offers a choice of priority inheritance protocols, or offers a protoco
that requires configuration, the selection or configuration will be controlled through
implementation-specific interface.

While a thread executes in a region protected by a mutex object, it can be pre-em
only by threads whose active native thread priorities are higher than either the ce
or inherited priority of the mutex object.

Note – The protocol implemented by the Mutex (which priority inheritance or priori
ceiling protocol) is not prescribed. Real-Time CORBA is intended for a wide range
RTOSs and the choice of protocol will often be predicated on what the RTOS doe

24.17 Threadpools

Real-Time CORBA Threadpools are managed using the following IDL types and
operations of the Real-Time CORBA RTORB interface:

//IDL
module RTCORBA {

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;

};

interface RTORB {
...
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);

exception InvalidThreadpool {};
CORBA, v2.4.2 Threadpools February 2001 24-31

24

ing

e
ust

7.3,

do not

ng a
ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};
};

The create_threadpool and create_threadpool_with_lanes operations allow two
different styles of threadpool to be created: with or without ‘lanes,’ or division into
subsets of threads at assigned different RTCORBA::Priority values. The two styles
require some different parameters to be configured, as described in the two follow
subsections.

The configuration of stacksize and request buffering is common to both styles. Th
stacksize parameter is used to specify the stack size, in bytes, that each thread m
have allocated. The configuration of request buffering is described in Section 24.1
“Request Buffering,” on page 24-34.

When a threadpool is successfully created, using either operation, a ThreadpoolId
identifier is returned. This can later be passed to destroy_threadpool to destroy the
threadpool. If a threadpool cannot be created because the parameters passed in
specify a valid threadpool configuration, a BAD_PARAM system exception is raised.
If a threadpool cannot be created because there are insufficient operating system
resources, a NO_RESOURCES system exception is raised.

An instance of the ThreadpoolPolicy is created with the
create_threadpool_policy operation. The attribute of the policy is initialized with
the parameter of the same name.

The same threadpool may be associated with a number of different POAs, by usi
ThreadpoolPolicy containing the same ThreadpoolId in each POA_create .
24-32 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

:

ted
use
cally
ntil

,
mber
ill be
ing

of the

n

the
f so

rity

 lane

um

r
24.17.1 Creation of Threadpool without Lanes

To create a threadpool without lanes the following parameters must be configured

• static_threads - specifies the number of threads that will be pre-created and
assigned to that threadpool at the time of its creation. A NO_RESOURCES
exception is raised if this number of threads cannot be created, in which case
neither threads nor threadpool are created.

• dynamic_threads - specifies the number of additional threads that may be crea
dynamically (individually and upon demand) when the static threads are all in
and an additional thread is required to service an invocation. Whether a dynami
created thread is destroyed as soon as it is not in use, is retained forever, or u
some condition is met is an implementation issue.

If dynamic_threads is zero, no additional threads may be dynamically created
and only the static threads are available. In either case, once the maximum nu
of threads (static plus any dynamic) has been reached, no additional threads w
added to the threadpool. Any additional invocations will wait for one of the exist
threads to become available.

• default_priority - specifies the CORBA priority that the static threads will be
created with. (Dynamic threads may be created directly at the priority they are
required to run at to handle the invocation they were created for.)

24.17.2 Creation of Threadpool with Lanes

To create a threadpool with lanes, a lanes parameter must be configured, instead
static_threads , dynamic_threads , and default_priority parameters. The lanes
specify a number of ThreadpoolLanes , each of which must have the following
parameters specified:

• lane_priority - specifies the CORBA Priority that all threads in this lane (both
static and dynamically allocated ones) will run at.

• static_threads - specifies the number of threads that will be pre-created, but i
this case allocated to this specific lane, rather than the pool as a whole.

• dynamic_threads - specifies the number of dynamic threads that may be
allocated to this lane. The relationship between static and dynamic threads is
same as in the case of threadpools without lanes: it determines whether, and i
how many, additional threads may be dynamically created. But in this case the
dynamic threads are specific to this lane and are created with the CORBA Prio
specified by lane_priority .

Additionally, to create a threadpool with lanes, the allow_borrowing boolean
parameter must be configured to indicate whether the borrowing of threads by one
from a lower priority lane is permitted or not.

If thread borrowing is permitted, when a lane of a given priority exhausts its maxim
number of threads (both static and dynamic) and requires an additional thread to
service an additional invocation, it may “borrow” a thread from a lane with a lowe
CORBA, v2.4.2 Threadpools February 2001 24-33

24

t
in to

one

ad
ore

le
ity to
d.

e

,

uests

s
uffer

e the
ion

ly
priority. The borrowed thread has its CORBA Priority raised to that of the lane tha
requires it. When the thread is no longer required, its priority is lowered once aga
its previous value, and it is returned to the lower priority lane. The thread will be
borrowed from the highest priority lane with threads available. If no lower priority
lanes have threads available, the lane wishing to borrow a thread must wait until
becomes free (which may be one of its own).

More generally, for both threadpools with and without lanes, if the priority of a thre
is changed while dispatching an invocation, it is restored to its original priority bef
returning it to the threadpool.

24.17.3 Request Buffering

A Threadpool can be configured to buffer requests. That is when all of the availab
thread concurrency (static plus dynamic threads) is in use, and when any capabil
borrow threads has been exhausted, then additional requests received are buffere

If request buffering by the Threadpool is not required, the boolean parameter
allow_request_buffering is set to FALSE, and the values of the
max_buffered_requests and max_request_buffer_size parameters are
disregarded.

If request buffering is required, allow_request_buffering is set to TRUE, and the
max_buffered_requests and max_request_buffer_size parameters are used as
follows:

• max_buffered_requests indicates the maximum number of requests that will b
buffered by this Threadpool.

• max_request_buffer_size indicates the maximum amount of memory, in bytes
that the buffered requests may use.

• Both properties of a Threadpool are evaluated to determine the number of req
that will be buffered.

• An incoming request is not buffered by the Threadpool if either the number of
buffered requests reaches max_buffered_requests or buffering the request would
take the total amount of buffer memory used past max_request_buffer_size .

Either parameter may be set to zero to indicate that that property is to be taken a
unbounded. Hence, just the number of requests or just the maximum amount of b
memory can be used to limit the buffering.

If, at the time of Threadpool creation, the ORB can determine that it does not hav
resources to support the requested configuration, the Threadpool creation operat
will fail with a NO_RESOURCES system exception.

24.17.4 Scope of ThreadpoolPolicy

The ThreadpoolPolicy may be applied at the POA and ORB level. A POA may on
be associated with one threadpool, hence only one ThreadpoolPolicy should be
included in the PolicyList specified at POA creation.
24-34 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ted
until

ect

n

ng

nd,
e
nd

ed
e
e
of
ng

y be
s a

the

 in

er
A ThreadpoolPolicy may be applied at the ORB level, where it assigns the indica
threadpool as the default threadpool to use in the subsequent creation of POAs,
the default is again changed. The default is used if a ThreadpoolPolicy is not
specified in the polices used at the time of POA creation.

24.18 Implicit and Explicit Binding

Real-Time CORBA makes use of the CORBA::Object::validate_connection
operation to allow client applications to control when a binding is made on an obj
reference.

Note – validate_connection and the definition of binding that it uses are defined i
the CORBA Messaging specification (orbos/98-05-05).

Using validate_connection on a currently unbound object reference causes bindi
to occur. Real-Time CORBA refers to the use of validate_connection to force a
binding to be made as ‘explicit binding.’ If an object reference is not explicitly bou
binding will occur at an ORB specific time, which may be as late as the time of th
first invocation upon that object reference. This is referred to as ‘implicit binding’ a
is the default CORBA behavior unless an explicit bind is performed.

Real-Time applications may wish to use explicit binding to force any binding relat
overhead (including the passing of messages between the client and server) to b
incurred ahead of the first invocation on an object reference. This can improve th
performance and predictability of the first invocation, and hence the predictability
the application as a whole. The explicit bind may, for example, be performed duri
system initialization.

Once an explicit binding has been set up, via validate_connection , it is possible that
the underlying transport connection (or other associated resources) may fail or ma
reclaimed by the ORB. Rather than mandate that this shall not happen, it is left a
Quality of Implementation issue as to what guarantees of enduring availability an
explicit binding provides.

The client-side applicable Real-Time CORBA policies are applied to a binding in
same way as any other client-side applicable CORBA policies: using the
set_policy_overrides operations at the ORB, Current, or Object scope (as defined
the CORBA QoS Policy Framework.)

The client-side applicable Real-Time CORBA policies have the same effect wheth
they are applied to an implicit or explicit bind.

24.19 Priority Banded Connections

Priority banded connections are administered through the use of the Real-Time
CORBA PriorityBandedConnectionsPolicy Policy type:
CORBA, v2.4.2 Implicit and Explicit Binding February 2001 24-35

24

f
ies
e to
l be

ith a
es

of

ct.
e
// IDL
module RTCORBA {

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

interface PriorityBandedConnectionPolicy : CORBA::Policy {

readonly attribute PriorityBands priority_bands;

};

interface RTORB {
...
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
};

};

An instance of the PriorityBandedConnectionPolicy is created with the
create_priority_banded_connection_policy operation. The attribute of the policy
is initialized with the parameter of the same name.

The PriorityBands attribute of the policy may be assigned any number of
PriorityBands . PriorityBands that cover a single priority (by having the same
priority for their low and high values) may be mixed with those covering ranges o
priorities. No priority may be covered more than once. The complete set of priorit
covered by the bands do not have to form one contiguous range, nor do they hav
cover all CORBA Priorities. If no bands are provided, then a single connection wil
established.

Once the binding has been successfully made, an attempt to make an invocation w
Real-Time CORBA Priority not covered by one of the bands will fail. The ORB rais
a NO_RESOURCES system exception (with a Standard Minor Exception Code
1). Hence, a policy specifying only one band can be used to restrict a client’s
invocations to a range of priorities.

Note that the origin of the Real-Time CORBA Priority value that is used to select
which banded connection to use depends on the Priority Model of the target obje
When invoking on an Object that is using the Client Propagated Priority Model, th
24-36 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

ing
s

 case

h

n

-

ion is

client-set Real-Time CORBA Priority is used to choose the band. Whereas, invok
on an Object that is using the Server Declared Priority Model, the server priority i
used, as published in the IOR.

24.19.1 Scope of PriorityBandedConnectionPolicy

The PriorityBandedConnectionPolicy is applied on the client-side only, at the time
of binding to a CORBA Object. However, the policy may be set from the client or
server side. On the server, it may be applied at the time of POA creation, in which
the policy is client-exposed and is propagated from the server to the client in
interoperable Object References. It is propagated in a PolicyValue in a
TAG_POLICIES Profile Component, as specified by the CORBA QoS Policy
Framework.

When an instance of PriorityBandedConnectionPolicy is propagated, the
PolicyValue ’s ptype has the value
PRIORITY_BANDED_CONNECTION_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::PriorityBands type, which is a sequence of
instances of RTCORBA::PriorityBand . Each RTCORBA::PriorityBand is in turn
represented by a pair of RTCORBA::Priority values, which represent the low and hig
values for that band.

If the PriorityBandedConnectionPolicy is set on both the server and client-side, a
attempt to bind will fail with an INV_POLICY system exception. The client
application may use validate_connection to establish that this was the cause of
binding failure and may set the value of its copy of the policy to an empty
PriorityBands and attempt to re-bind using just the configuration from the server
provided copy of the policy.

24.19.2 Binding of Priority Banded Connection

Whether bands are configured from the client or server-side, the banded connect
always initiated from the client-side.

To allow the server-side ORB to identify the priority band that each connection is
associated with, information on that connection’s band range is passed with first
request on each banded connection. This is done by means of an
RTCorbaPriorityRange service context:

// IDL
module IOP {

const ServiceId RTCorbaPriorityRange =11;

};

The context_data contains the CDR encapsulation of two RTCORBA::Priority
values (two short types.) The first indicates the lowest priority and the second the
highest priority in the priority band handled by the connection.
CORBA, v2.4.2 Priority Banded Connections February 2001 24-37

24

ured
t,

n-
 not

ere

t
licit

iority

r or

-

e

nd

 and

Once a priority band has been associated with a connection it cannot be reconfig
during the life-time of the connection. If an ORB receives a second, or subsequen
RTCorbaPriorityRange service context containing a different priority band
definition, then it raises a BAD_INV_ORDER system exception (with a Standard
Minor Exception Code of 1). If the priority band is the same as the connection’s
configuration, then processing proceeds.

In case of an explicit bind (via validate_connection), this service context is passed
on a request message for a ‘_bind_priority_band ’ implicit operation. This implicit
operation is defined for Real-Time CORBA only at this time. It is possible that no
Real-Time ORB might receive such a request message. If so it is anticipated (but
prescribed) that it will reply with a BAD_OPERATION system exception. A future
version of IIOP should formalize Real-Time CORBA’s use of the
‘_bind_priority_band ’ operation name in a GIOP Request message. Note that th
is no API exposed for this implicit operation (unlike, for example, ‘_is_a’).

When sending a ‘_bind_priority_band ’ request, a Real-Time ORB marshals no
parameters and the object key of the object being bound to is used as the reques
‘target.’ The request is handled by the ORB, no servant implementation of this imp
operation will be invoked.

When a Real-Time-ORB receives a _bind_priority_band Request it should allocate
resources to the connection and configure those resources appropriately to the pr
band indicated in the ServiceContext . Having done this the ORB sends a
"SUCCESS" Reply message.

Exceptions
• If the priority band passed is not well-formed (i.e., it contains a negative numbe

the first value is higher than the second), then the ORB raises a BAD_PARAM
system exception.

• If either of the priorities cannot be mapped onto native thread priorities (i.e., to
native returns FALSE), then the ORB raises a DATA_CONVERSION system
exception (with a Standard Minor Exception Code of 1).

• If the priority band is inconsistent with the ORB’s priority configuration, then th
ORB raises an INV_POLICY system exception.

• If the server-side ORB cannot configure resources to support a well-formed ba
specification, then a NO_RESOURCES exception is returned.

A _bind_priority_band request message is sent on the connection for each band
must complete successfully (i.e., yield a SUCCESS Reply message) for all
connections, before validate_connection returns success. If any one
_bind_priority_band fails, then the entire banded connection binding fails. In this
way, validate_connection sets up all the banded connections at time of binding.

If the service context is omitted on a _bind_priority_band request message, then the
ORB raises a BAD_PARAM system exception.
24-38 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

 at
rity

d on

d
an
n

ding.
ion

r

ates
B

ut in
A bind_priority_band is not performed in the case of an implicit bind, as it occurs
a time when a request is about to be sent on the connection representing the prio
band that covers the current invocation priority. There is no point delaying the
application request. Instead, the ‘RTCorbaPriorityRange’ service context is passe
this first invocation request.

Thus, the implicit binding of a banded connection has the behavior that each ban
connection is only set up the first time an invocation is made from the client with
invocation priority in that band. This behavior offers consistency: the first invocatio
made on each band incurs any latency and predictability cost associated with bin
If no invocations are ever made in the priority range of a given bands, its connect
will never be established.

24.20 PrivateConnectionPolicy

This policy allows a client to obtain a private transport connection that will not be
multiplexed (shared) with other client-server object connections.

// IDL
module RTCORBA {

// Private Connection Policy

const CORBA::PolicyType
PRIVATE_CONNECTION_POLICY_TYPE = 44;

interface PrivateConnectionPolicy : CORBA::Policy {};

interface RTORB {
...
PrivateConnectionPolicy create_private_connection_policy (
);

};

};

An instance of the PrivateConnectionPolicy is created with the
create_private_connection_policy operation. The policy has no attributes.

Note that it is not possible to explicitly request a multiplexed connection. Whethe
multiplexing is appropriate or not is a protocol specific issue, and hence an ORB
implementation issue. By not requesting a private connection the application indic
to the ORB that a multiplexed connection would be acceptable. It is up to the OR
implementation to make use of this indication.

24.21 Invocation Timeout

Real-Time CORBA uses the existing CORBA timeout policy,
Messaging::RelativeRoundtripTimeoutPolicy , to allow a timeout to be set for the
receipt of a reply to an invocation. The policy is used where it is set, to set a timeo
CORBA, v2.4.2 PrivateConnectionPolicy February 2001 24-39

24

A

tion
d
the client ORB. If a timeout expires, the server is not informed. Real-Time CORB
does not require the policy to be propagated with the invocation, which the
RelativeRoundtripTimeoutPolicy specification allows in support of message
routers.

Note – The RelativeRoundtripTimeoutPolicy is specified in the Messaging
specification.

24.22 Protocol Configuration

Real-Time CORBA uses two Policy types, based on a common protocol configura
framework, to enable the selection and configuration of protocols on the server an
client side of the ORB.

24.22.1 ServerProtocolPolicy

The ServerProtocolPolicy policy type is used to select and configure
communication protocols on the server-side of Real-Time CORBA ORBs.

// IDL
module RTCORBA {

// Locality Constrained interface
interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;

};
24-40 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

lList

uld
 the

ific
P.)
tely.

RB

ble
t
interface RTORB {
...
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ServerProtocolPolicy is created with the
create_server_protocol_policy operation. The attribute of the policy is initialized
with the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified and,
optionally, configured at the same time. The order of the Protocols in the Protoco
indicates the order of preference for the use of the different protocols. Information
regarding the protocols must be placed into IORs in that order, and the client sho
take that order as the default order of preference for choice of protocol to bind to
object via.

The type of protocol is indicated by an IOP::ProfileId (from the specification of the
IOR), which is an unsigned long. This means that a protocol is defined as a spec
pairing of an ORB protocol (such as GIOP) and a transport protocol (such as TC
Hence IIOP would be selected, rather than GIOP plus TCP being selected separa
IIOP in particular is represented by the value TAG_INTERNET_IIOP (or the value 0,
that it is defined as).

A Protocol type contains a ProfileId plus two ProtocolProperties, one each for the O
protocol and the transport protocol.

The properties are provided to allow the configuration of protocol specific configura
parameters. Specific protocols have their own protocol configuration interface tha
inherits from the RTCORBA::ProtocolProperties interface. A nil reference for
either ProtocolProperties indicates that the default configuration for that protocol
should be used. (Each protocol will have an implementation specific default
configuration, that may be overridden by applying the ServerProtocolPolicy at ORB
scope.

//IDL
module RTCORBA {

interface TCPProtocolProperties : ProtocolProperties {
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};
CORBA, v2.4.2 Protocol Configuration February 2001 24-41

24

n

 be

il

e

d all

interface GIOPProtocolProperties : ProtocolProperties {
};

};

TCP is the only protocol for which RT CORBA specifies a ProtocolProperties
interface. An empty interface is specified for GIOP, as GIOP currently has no
configurable properties.

ProtocolProperties should be defined for any other protocols usable with an RT
CORBA implementation, but unless they are standardized in an OMG specificatio
their name and contents will be implementation specific. ProtocolProperties for
other protocols may be standardized in the future, and a ProtocolProperties
interface should be specified in the standardization of any other protocol, if it is to
usable in a portable way with RT CORBA.

24.22.2 Scope of ServerProtocolPolicy

Applying a ServerProtocolPolicy to the creation of a POA controls the protocols
that references created by that POA will support (and their configuration if non- n
ProtocolProperties are given). If no ServerProtocolPolicy is given at POA
creation, the POA will support the default protocols associated with the ORB that
created it. (Note that supplying a ServerProtocolPolicy overrides, rather than
supplementing or sub-setting, the default selection of protocols associated with th
ORB.)

The ORB’s default protocols, and their order of preference, are implementation
specific. The default may be overridden by applying a ServerProtocolPolicy at the
ORB level. As a consequence, portable applications must override this Policy (an
other defaults) to ensure the same behavior between ORB implementations.

Only one ServerProtocolPolicy should be included in a given PolicyList , and
including more than one will result in an INV_POLICY system exception being
raised.

24.22.3 ClientProtocolPolicy

The ClientProtocolPolicy policy type is used to configure the selection and
configuration of communication protocols on the client-side of Real-Time CORBA
ORBs. It is defined in terms of the same RTCORBA::ProtocolProperties type as
the ServerProtocolPolicy :

// IDL
module RTCORBA {

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

 // Locality Constrained interface
24-42 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

 of
 is

.

ngle
them

 the

n
ide.
the
able
 interface ClientProtocolPolicy : CORBA::Policy {

 readonly attribute ProtocolList protocols;

 };

interface RTORB {
...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ClientProtocolPolicy is created with the
create_client_protocol_policy operation. The attribute of the policy is initialized
with the parameter of the same name.

When applied to a bind (implicit or explicit), the ClientProtocolPolicy indicates the
protocols that may be used to make a connection to the specified object, in order
preference. If the ORB fails to make a connection because none of the protocols
available on the client ORB, an INV_POLICY system exception is raised. If one or
more of the protocols is available, but the ORB still fails to make a connection, a
COMM_FAILURE system exception is raised. In both cases no binding is made

If it is necessary to know which protocol a binding was successfully made via, a si
protocol should be passed into each of a succession of explicit binds until one of
is successful.

If no ClientProtocolPolicy is provided, then the protocol selection is made by the
ORB based on the target object’s available protocols, as described in its IOR, and
protocols supported by the client ORB.

24.22.4 Scope of ClientProtocolPolicy

The ClientProtocolPolicy is applied on the client-side, at the time of binding to a
Object Reference. However, the policy may be set on either the client or server-s
On the server-side, it may be applied at the time of POA creation, in which case
policy is client-exposed and is propagated from the server to the client in interoper
Object References. It is propagated in a PolicyValue in a TAG_POLICIES Profile
Component, as specified by the CORBA QoS Policy Framework.

When an instance of ClientProtocolPolicy is propagated, the PolicyValue ’s ptype
has the value CLIENT_PROTOCOL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing an RTCORBA::ProtocolList , which is a sequence of
instances of RTCORBA::Protocol . Each RTCORBA::Protocol is in turn represented
by an IOP::ProfileId and two RTCORBA::ProtocolProperties representing the
ORB and transport ProtocolProperties .
CORBA, v2.4.2 Protocol Configuration February 2001 24-43

24

e
ay

e

ine

lar
nce

 via
d

ope
an

r the
n

cope
ion of

 for
in the
The on the wire representation of each ProtocolProperties type is protocol specific.
The representation of the TCPProtocolProperties type is the CDR encoding of two
longs followed by three booleans, to represent the send_buffer_size ,
recv_buffer_size , keep_alive , dont_route , and no_delay attributes respectively.

If the ClientProtocolPolicy is set on both the server and client-side, an attempt to
bind will fail with an INV_POLICY system exception. The client application may us
validate_connection to establish that this was the cause of binding failure and m
set the value of its copy of the policy to an empty ProtocolList and attempt to rebind
using just the configuration from the server-provided copy of the policy.

24.22.5 Protocol Configuration Semantics

Note that the above API only allows policies to be set at POA creation time on th
server-side, and object bind time on the client-side. No API is defined to allow
(re)configuration of any policy after these times.

The protocol configuration selected at the time of POA creation is used to determ
the server-side configuration that is to be used by the protocol in question for all
connections from clients to objects that have references created by that POA.

However, as the configuration semantics of a protocol (such as whether a particu
property can be configured on a per-connection basis or only globally for that insta
of the protocol) are protocol specific, the exact semantics of protocol configuration
ProtocolProperties are not specified by Real-Time CORBA, and must be specifie
on a per-protocol basis.

If a protocol offers a configurable property that can only be configured at some sc
wider than that of the individual POA (say at the scope of the ORB instance), it c
choose either to:

• change that property at the wider scope when a different value is requested fo
creation of a new POA. This will ensure that the new POA gets the configuratio
requested, but will also affect the configuration of new and possibly existing
connections made to other CORBA Objects via the same protocol. The exact s
and semantics of the property change must be given as part of the documentat
the ProtocolProperties interface for that protocol.

• not change the property, but instead raise an INV_POLICY exception and fail to
create the new POA. In this way, the original value of the property is preserved
the existing references that use it. Once again, this behavior must be covered
documentation of the ProtocolProperties interface for that protocol.

Which of the two strategies a protocol uses is an implementation issue.

24.23 Consolidated OMG IDL

// IDL
module IOP {

const ServiceId RTCorbaPriority = 10;
24-44 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24
const ServiceId RTCorbaPriorityRange = 11;

};

//File: RTCORBA.idl
#ifndef _RT_CORBA_IDL_
#define _RT_CORBA_IDL_
#include <orb.idl>
#include <iop.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"
// IDL
module RTCORBA {

typedef short NativePriority;

typedef short Priority;

const Priority minPriority = 0;
const Priority maxPriority = 32767;

native PriorityMapping;

native PriorityTransform;

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;
// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;
CORBA, v2.4.2 Consolidated OMG IDL February 2001 24-45

24
enum PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED

};

interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;

};

// Locality Constrained interface
interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

// locality constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};
24-46 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24
// Private Connection Policy
const CORBA::PolicyType

PRIVATE_CONNECTION_POLICY_TYPE = 44;

// locality constrained interface
interface PrivateConnectionPolicy : CORBA::Policy {};

interface TCPProtocolProperties : ProtocolProperties {
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};

interface GIOPProtocolProperties : ProtocolProperties {
};

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority_bands;

};

interface Current : CORBA::Current {
attribute Priority the_priority;

};

// locality constrained interface
interface Mutex {

void lock();
void unlock();
boolean try_lock (in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately

};
CORBA, v2.4.2 Consolidated OMG IDL February 2001 24-47

24
// locality constrained interface
interface RTORB {

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy (
in PriorityModel priority_model,
in Priority server_priority

);
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);
PrivateConnectionPolicy create_private_connection_policy (
);

}; // End interface RTORB
24-48 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24
}; // End module RTCORBA
#endif // _RT_CORBA_IDL_

//File: RTPortableServer.idl
#ifndef _RT_PORTABLE_SERVER_IDL_
#define _RT_PORTABLE_SERVER_IDL_
#include <orb.idl>
#include <PortableServer.idl>
#include <RTCORBA.idl>
#pragma prefix "omg.org"
// IDL
module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)

raises (WrongPolicy);

ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy);

};

};
#endif // _RT_PORTABLE_SERVER_IDL_
CORBA, v2.4.2 Consolidated OMG IDL February 2001 24-49

24

g
ed-
ay

cts.
 non-

-time
his

s or

ent
ed.

f the

it is
 and

ses
rm
 away

of

g

nt
ling

s) to

ctivity

ce for

The

d that
Section IV - Real-Time CORBA Scheduling Service

24.24 Introduction

This section describes the Real-Time CORBA Scheduling Service. The Schedulin
Service uses the primitives of the Real-Time ORB to facilitate enforcing various fix
priority Real-Time scheduling policies across the Real-Time CORBA system in a w
that abstracts away from the application some of the low-level Real-Time constru
The Scheduling Service does not impose any new requirements on Real-Time or
Real-Time ORBs beyond what appears in the RT CORBA specification or CORBA
specification respectively.

The Scheduling Service makes use of the detailed information available at design
regarding the associations between activities, objects, resources, and priorities. T
information may be placed in the run-time Scheduling Service either by build tool
through proprietary, initialization-time interfaces.

The primitives added in Real-Time CORBA to create a Real-Time ORB are suffici
to achieve Real-Time scheduling, but effective Real-Time scheduling is complicat
For applications to ensure that their execution is scheduled according to a uniform
policy, such as global Rate Monotonic Scheduling, requires that the RT ORB
primitives be used properly and that their parameters be set properly in all parts o
CORBA system.

Not only is determining the proper use and correct parameters difficult, but once
done, the application code becomes substantially more complex - making analysis
modification very difficult. The Scheduling Service specified in this section addres
these problems because an instance of the Scheduling Service embodies a unifo
scheduling policy, and because the simple Scheduling Service interface abstracts
much of the complexity from application code.

An application that uses an implementation of the Scheduling Service is assured
having a uniform Real-Time scheduling policy, such as global rate-monotonic
scheduling with priority ceiling, enforced in the entire system. That is, a Schedulin
Service implementation will choose CORBA priorities, POA policies, and priority
mappings in such a way to realize a uniform Real-Time scheduling policy. Differe
implementations of the Scheduling Service can provide different Real-Time schedu
policies.

The Scheduling Service abstraction of scheduling parameters (such as CORBA
Priorities) is through the use of “names.” The application code uses names (string
specify CORBA Activities and CORBA objects. The Scheduling Service internally
associates those names with scheduling parameters and policies for the named A
or the named CORBA object. This abstraction improves portability with regard to
Real-Time features, eases uses of the Real-Time features, and reduces the chan
errors.

Each name used by the Scheduling Service method invocations must be unique.
Scheduling Service is designed to work in a “closed” CORBA system where fixed
priorities are needed for a static set of clients and servers. Therefore, it is assume
24-50 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

as
uely
ling

ed
rvice
me
the system designer has identified a static set of CORBA Activities, the CORBA
objects that the Activities use, and has determined scheduling parameters, such
CORBA priorities, for those Activities and objects. In that process, names are uniq
assigned to those Activities and Objects and the names are associated to schedu
parameters. This association of names to scheduling parameters is then used to
configure the Scheduling Service.

The capabilities provided by the Scheduling Service are not orthogonal to the
primitives provided by the Real-Time ORB. In fact, most of the capabilities provid
by the Scheduling Service are expected to be implemented by the Scheduling Se
invoking the Real-Time CORBA primitives in a way that ensures a uniform Real-Ti
scheduling policy is enforced.

24.25 OMG IDL

//File: RTCosScheduling.idl
#ifndef _RT_COS_SCHEDULING_IDL_
#define _RT_COS_SCHEDULING_IDL_
#include <orb.idl>
#include <PortableServer.idl>
#pragma prefix "omg.org"
// IDL
module RTCosScheduling {

exception UnknownName {};

// locality constrained interface
interface ClientScheduler {

void schedule_activity(in string name)
raises(UnknownName);

};

// locality constrained interface
interface ServerScheduler {

PortableServer::POA create_POA (
in PortableServer::POA parent,
in string adapter_name,
in PortableServer::POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (PortableServer::POA::AdapterAlreadyExists,
PortableServer::POA::InvalidPolicy);

void schedule_object(in Object obj, in string name)
raises(UnknownName);

};
};
#endif // _RT_COS_SCHEDULING_IDL_
CORBA, v2.4.2 OMG IDL February 2001 24-51

24

e
RB

A
ll

with
he
s it

vel

ity

A
s to
 on

tarted

ity

rent
24.26 Semantics

A CORBA client obtains a local reference to a ClientScheduler object. Whenever the
client begins a region of code with a new deadline or priority (indicating a new
CORBA Activity), it invokes schedule_activity with the name of the new activity.
The Scheduling Service associates a CORBA priority with this name (assuming th
name is valid; otherwise, an exception is thrown), and it invokes appropriate RT O
and RTOS primitives to schedule this activity.

The create_POA method accepts parameters allowing it to create a POA. This PO
will enforce all of the non-Real-Time policies in the Policy List input parameter. A
Real-Time policies for the returned POA will be set internally by this scheduling
service method. This ensures a selection of Real-Time policies that is consistent
the scheduling policy being enforced by the Scheduling Service implementation. T
Scheduling Service implementation should clearly document what POA RT policie
will use under various conditions.

Schedule_object is provided to allow the Scheduling Service to achieve object-le
control over scheduling of the object. RT POA policies in the RT ORB allow some
control over the scheduling of object invocations, but must do so for all objects
managed by each POA. Some Real-Time scheduling, such as priority ceiling
concurrency control, requires object-level scheduling. The schedule_object call will
install object-level scheduling with scheduling parameters. For example, the prior
ceiling for the object. These scheduling parameters are derived internally by the
Scheduling Service using the name passed into the call.

24.27 Example

The following usage example of the Scheduling Service, in C++, uses two CORB
objects each supporting two operations: “method1” and “method2.” A client wishe
call method1 on both objects under one deadline and subsequently call method2
both objects under a different deadline.

For both client and server it is assumed that the relevant Scheduling Service is s
and that Scheduling Service instance is available and that an appropriate
PriorityMapping has overridden the ORB vendor’s default.

The use of names instead of actual CORBA priorities in application code has two
major advantages.

First, the use of names instead of priority numbers allows changing of scheduling
policy (e.g., from Deadline Monotonic to Rate Monotonic) without changing or
recompiling application code. If the chosen Scheduling Service was enforcing
Deadline Monotonic Scheduling it might, for instance, internally use CORBA prior
10 for “activity1” and CORBA priority 12 for “activity2.” If a different implementation
of the Scheduling Service were being used, it might internally use completely diffe
CORBA priorities for these two CORBA activities to realize a different scheduling
policy (e.g., Rate Monotonic Scheduling).
24-52 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

BA
Second, the use of names instead of priority numbers allows changing *any* COR
priority without having to find and possibly reorder CORBA priority numbers in
application code. The Scheduling Service is the central place to change CORBA
priorities. Again, changes in priority can be made without recompiling application
code.

24.27.1 Server C++ Example Code

// SERVER C++
// Initialize ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Get Root POA

CORBA::Object_var rpoa = orb ->
resolve_initial_references("RootPOA");

PortableServer::POA_var rootPOA =
PortableServer::POA::_narrow(rpoa);

// create some policies

CORBA::PolicyList policies(2);
policies[0] = rootPOA -> create_thread_policy(

PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA -> create_lifespan_policy(

PortableServer::LifespanPolicy::TRANSIENT);

// create my RT scheduling POA.

ServerScheduler_var server_sched ;

PortableServer::POA_var RTPOA =
server_sched -> create_POA(

rootPOA,
"my_RT_POA",
PortableServer::POAManager::_nil(),
policies) ;

// create object references and then schedule the objects

CORBA::Object_var obj1 = RTPOA -> create_reference (
"IDL:Object1:1.0") ;

CORBA::Object_var obj2 = RTPOA -> create_reference (
"IDL:Object2:1.0") ;

...

server_sched -> schedule_object (obj1, "Object1") ;
CORBA, v2.4.2 Example February 2001 24-53

24

n
for
server_sched -> schedule_object (obj2, "Object2") ;

...

24.27.2 Client C++ Example Code

// CLIENT C++
// Initialize ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// create the instance of the client scheduler.

ClientScheduler_var client_sched ;

// get and bind Objects

object1_var obj1 = /* something */
object1_var obj1 = /* something */

// invoke methods

client_sched -> schedule_activity ("activity1") ;

obj1 -> method1 () ;

obj2 -> method1 () ;

...

client_sched -> schedule_activity ("activity2") ;

obj1 -> method2 () ;

obj2 -> method2 () ;

...

24.27.3 Explanation of Example

The PriorityMapping is consistent with the policy being enforced by the
implementation of the Scheduling Service. For instance, a priority mapping for a
analyzable Deadline Monotonic policy might be different than the priority mapping
an analyzable Rate Monotonic policy. Thus the Scheduling Service will have
determined the appropriate PriorityMapping prior to run-time.
24-54 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

24

 own

erver
l
e

he

erver
lso
ly

bject,
 with
ciates
s to

” in
s

 call

ed.
Note that there are no calls to the Real-Time CORBA APIs (RTORB,
RTCORBA::Current , RTPortableServer::POA) in the example. The Scheduling
Service is capable of making all the necessary calls from the implementation of its
operations.

Note that there are no CORBA priorities specified only names for the two CORBA
Activities in the client. This facilitates plugging in different fixed priority scheduling
policies by choosing a implementation of the Scheduling Service. Recall that the s
in the example has two Scheduling Service calls. The first call accepts the norma
parameters to create a POA. The Scheduling Service is capable of creating all th
necessary Real-Time policies; therefore, only non-Real-Time policies need to be
provided by the developer. The Scheduling Service creates the POA itself within t
provided wrapper. It coordinates the POA with other aspects of the system. For
example, it can select Real-Time policies (thread pools, protocols, concurrency, s
priority) that make sense under the uniform scheduling policy being enforced. It a
relieves the application programmer from having to determine all of those (relative
complicated) policies themselves.

The Scheduling Service calls to schedule_object allow the Scheduling Service to
associate a name with the object. Any Real-Time scheduling parameters for this o
such as the priority ceiling for the object, are assumed to be internally associated
the object's name by the Scheduling Service implementation. Thus, the call asso
the scheduling parameters (e.g., priority ceiling) with the object reference, perhap
enforce priority ceiling concurrency control on that object.

Scheduling Service implementation associates the names “activity1” and “activity2
the schedule_activity calls in the client with CORBA priorities. This association wa
made prior to run-time. The sched_activity calls allow the users code to be
configured correctly for performing activity1 (or activity2). When the client invokes
the server, either the client priority is propagated (implicitly) or there is declared
priority at the server for the target object. The server-side ORB will always make a
to the inbound PriorityTransform and with the ObjectId the available transform is
capable of retrieving the name “object1” and, primed by the SchedulingService ,
returning a priority for the upcall appropriate to the scheduling policy being enforc
CORBA, v2.4.2 Example February 2001 24-55

24
24-56 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

OMG IDL Tags A
 to
This appendix lists the standardized profile, service, component, and policy tags
described in the CORBA documentation. Implementor-defined tags can also be
registered in this manual. Requests to register tags with the OMG should be sent
tag_request@omg.org.

A.1 Profile Tags

Tag Name Tag Value Described in
ProfileId TAG_INTERNET_IOP = 0 Section 13.6.2, “Interoperable Object

References: IORs,” on page 13-15

ProfileId TAG_MULTIPLE_COMPONENTS = 1 Section 13.6, “An Information Model for
Object References,” on page 13-15

ProfileId TAG_SCCP_IOP = 2 CORBA/IN Interworking specification
(dtc/00-02-02)
Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001 A-1

A

A.2 Service Tags

A.3 Component Tags

Tag Name Tag Value Described in
ServiceId TransactionService = 0 Transaction Service specification

(formal/00-06-28)

ServiceId CodeSets = 1 Section 13.9.2, “Code Set Conversion
Framework,” on page 13-37

ServiceId ChainBypassCheck = 2 Section 20.9, “Chain Bypass,” on page 20-19

ServiceId ChainBypassInfo = 3 Section 20.9, “Chain Bypass,” on page 20-19

ServiceId LogicalThreadId = 4 Section 20.10, “Thread Identification,” on
page 20-21

ServiceId BI_DIR_IIOP = 5 Section 15.8, “Bi-Directional GIOP,” on
page 15-54

ServiceId SendingContextRunTime = 6 Section 5.6, “Access to the Sending Context
Run Time,” on page 5-15

ServiceId INVOCATION_POLICIES = 7 Asynchronous Messaging (chp. 22)

ServiceId FORWARDED_IDENTITY = 8 Firewall specification (orbos/98-05-04)

ServiceId UnknownExceptionInfo = 9 Java to IDL Language Mapping: Section 1.4.8,
“Mapping CORBA System Exceptions to RMI
Exceptions,” on page 1-31

ServiceId RTCorbaPriority = 10 Real-Time CORBA (chp. 24)

ServiceId RTCorbaPriorityRange = 11 Real-Time CORBA (chp. 24)

ServiceId ExceptionDetailMessage = 14 Section 13.7.1, “Standard Service Contexts,”
on page 13-30

Tag Name Tag Value Described in
ComponentId TAG_ORB_TYPE = 0 Section 13.6.6.1, “TAG_ORB_TYPE

Component,” on page 13-21

ComponentId TAG_CODE_SETS = 1 Section 13.9.2, “Code Set Conversion
Framework,” on page 13-37

ComponentId TAG_POLICIES = 2 Asynchronous Messaging (chp. 22)

ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3 Section 15.7.3, “IIOP IOR Profile
Components,” on page 15-53

ComponentId TAG_COMPLETE_OBJECT_KEY = 5 Section 16.5.4, “Complete Object Key
Component,” on page 16-19

ComponentId TAG_ENDPOINT_ID_POSITION = 6 Section 16.5.5, “Endpoint ID Position
Component,” on page 16-20

ComponentId TAG_LOCATION_POLICY = 12 Section 16.5.6, “Location Policy Component,”
on page 16-20
A-2 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

A

ComponentId TAG_ASSOCIATION_OPTIONS =13 Security Service specification
(formal/00-06-25)

ComponentId TAG_SEC_NAME = 14 Security Service specification
(formal/00-06-25)

ComponentId TAG_SPKM_1_SEC_MECH = 15 Security Service specification
(formal/00-06-25)

ComponentId TAG_SPKM_2_SEC_MECH = 16 Security Service specification
(formal/00-06-25)

ComponentId TAG_KerberosV5_SEC_MECH = 17 Security Service specification
(formal/00-06-25)

ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18 Security Service specification
(formal/00-06-25)

ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19 Security Service specification
(formal/00-06-25)

ComponentId TAG_SSL_SEC_TRANS = 20 Security Service specification
(formal/00-06-25)

ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21 Security Service specification
(formal/00-06-25)

ComponentId TAG_GENERIC_SEC_MECH = 22 Security Service specification
(formal/00-06-25)

ComponentId TAG_FIREWALL_TRANS = 23 Firewall specification (orbos/98-05-04)

ComponentId TAG_SCCP_CONTACT_INFO = 24 CORBA/IN Interworking specification
(telecom/98-10-03)

ComponentId TAG_JAVA_CODEBASE = 25 Java to IDL Language Mapping -
Section 1.4.9.3, “Codebase Transmission,” on
page 1-33

ComponentId TAG_TRANSACTION_POLICY = 26 Object Transaction Service specification
(formal/00-06-28).

ComponentId TAG_MESSAGE_ROUTERS = 30 Section 22.13, “Routing Object References,”
on page 22-46

ComponentId TAG_OTS_POLICY = 31 Object Transaction Service specification
(formal/00-06-28) and OTS RTF work.

ComponentId TAG_INV_POLICY = 32 Object Transaction Service specification
(formal/00-06-28) and OTS RTF work.

ComponentId TAG_DCE_STRING_BINDING = 100 Section 16.5.1, “DCE-CIOP String Binding
Component,” on page 16-17

ComponentId TAG_DCE_BINDING_NAME = 101 Section 16.5.2, “DCE-CIOP Binding Name
Component,” on page 16-18

ComponentId TAG_DCE_NO_PIPES = 102 Section 16.5.3, “DCE-CIOP No Pipes
Component,” on page 16-19

Tag Name Tag Value Described in
CORBA, v2.4.2 February 2001 A-3

A

A.4 Policy Type Tags

ComponentId TAG_DCE_SEC_MECH = 103 Security Service specification
(formal/00-06-25)

ComponentId TAG_INET_SEC_TRANS = 123 Security Service specification
(formal/00-06-25)

Tag Name Tag Value Described in
PolicyId SecClientInvocationAccess = 1 Security Service specification

(formal/00-06-25)

PolicyId SecTargetInvocationAccess = 2 Security Service specification
(formal/00-06-25)

PolicyId SecApplicationAccess = 3 Security Service specification
(formal/00-06-25)

PolicyId SecClientInvocationAudit = 4 Security Service specification
(formal/00-06-25)

PolicyId SecTargetInvocationAudit = 5 Security Service specification
(formal/00-06-25)

PolicyId SecApplicationAudit = 6 Security Service specification
(formal/00-06-25)

PolicyId SecDelegation = 7 Security Service specification
(formal/00-06-25)

PolicyId SecClientSecureInvocation = 8 Security Service specification
(formal/00-06-25)

PolicyId SecTargetSecureInvocation = 9 Security Service specification
(formal/00-06-25)

PolicyId SecNonRepudiation = 10 Security Service specification
(formal/00-06-25)

PolicyId SecConstruction = 11 Section 4.10.2.2, “Construction Policy,”
on page 4-49

PolicyId SecMechanismPolicy = 12 Security Service specification
(formal/00-06-25)

PolicyId SecInvocationCredentialsPolicy = 13 Security Service specification
(formal/00-06-25)

PolicyId SecFeaturesPolicy = 14 Security Service specification
(formal/00-06-25)

PolicyId SecQOPPolicy = 15 Security Service specification
(formal/00-06-25)

PolicyId THREAD_POLICY_ID = 16 Section 11.3.7.1, “Thread Policy,” on
page 11-28

Tag Name Tag Value Described in
A-4 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

A

PolicyId LIFESPAN_POLICY_ID = 17 Section 11.3.7.2, “Lifespan Policy,” on
page 11-28

PolicyId ID_UNIQUENESS_POLICY_ID = 18 Section 11.3.7.3, “Object Id Uniqueness
Policy,” on page 11-29

PolicyId ID_ASSIGNMENT_POLICY_ID = 19 Section 11.3.7.4, “Id Assignment
Policy,” on page 11-29

PolicyId IMPLICIT_ACTIVATION_POLICY_ID = 20 Section 11.3.7.7, “Implicit Activation
Policy,” on page 11-32

PolicyId SERVANT_RETENTION_POLICY_ID = 21 Section 11.3.7.5, “Servant Retention
Policy,” on page 11-30

PolicyId REQUEST_PROCESSING_POLICY_ID = 22 Section 11.3.7.6, “Request Processing
Policy,” on page 11-30

PolicyId REBIND_POLICY_TYPE = 23 Asynchronous Messaging (chp. 22)

PolicyId SYNC_SCOPE_POLICY_TYPE = 24 Asynchronous Messaging (chp. 22)

PolicyId REQUEST_PRIORITY_POLICY_TYPE = 25 Asynchronous Messaging (chp. 22)

PolicyId REPLY_PRIORITY_POLICY_TYPE = 26 Asynchronous Messaging (chp. 22)

PolicyId REQUEST_START_TIME_POLICY_TYPE = 27 Asynchronous Messaging (chp. 22)

PolicyId REQUEST_END_TIME_POLICY_TYPE = 28 Asynchronous Messaging (chp. 22)

PolicyId REPLY_START_TIME_POLICY_TYPE = 29 Asynchronous Messaging (chp. 22)

PolicyId REPLY_END_TIME_POLICY_TYPE = 30 Asynchronous Messaging (chp. 22)

PolicyId RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31 Asynchronous Messaging (chp. 22)

PolicyId RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32 Asynchronous Messaging (chp. 22)

PolicyId ROUTING_POLICY_TYPE = 33 Asynchronous Messaging (chp. 22)

PolicyId MAX_HOPS_POLICY_TYPE = 34 Asynchronous Messaging (chp. 22)

PolicyId QUEUE_ORDER_POLICY_TYPE = 35 Asynchronous Messaging (chp. 22)

PolicyId FIREWALL_POLICY_TYPE = 36 Firewall specification (orbos/98-05-04)

PolicyId BIDIRECTIONAL_POLICY_TYPE = 37 Section 15.9, “Bi-directional GIOP
policy,” on page 15-57

PolicyId SecDelegationDirectivePolicy = 38 Security Service specification
(formal/00-06-25)

PolicyId SecEstablishTrustPolicy = 39 Security Service specification
(formal/00-06-25)

PolicyId PRIORITY_MODEL_POLICY_TYPE = 40 Section 4.8.6, “Standard Policies,” on
page 4-38

PolicyId THREADPOOL_POLICY_TYPE = 41 Section 4.8.6, “Standard Policies,” on
page 4-38

PolicyId SERVER_PROTOCOL_POLICY_TYPE = 42 Section 4.8.6, “Standard Policies,” on
page 4-38

PolicyId CLIENT_PROTOCOL_POLICY_TYPE = 43 Section 4.8.6, “Standard Policies,” on
page 4-38

Tag Name Tag Value Described in
CORBA, v2.4.2 February 2001 A-5

A

PolicyId PRIVATE_CONNECTION_POLICY_TYPE = 44 Section 4.8.6, “Standard Policies,” on
page 4-38

PolicyId PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45 Section 4.8.6, “Standard Policies,” on
page 4-38

PolicyId TRANSACTION_POLICY_TYPE = 46 Transaction Service specification
(formal/00-06-28)

PolicyId IMMEDIATE_SUSPEND_POLICY_TYPE = 50 Asynchronous Messaging (chp. 22)

PolicyId UNLIMITED_PING_POLICY_TYPE = 51 Asynchronous Messaging (chp. 22)

PolicyId LIMITED_PING_POLICY_TYPE = 52 Asynchronous Messaging (chp. 22)

PolicyId DECAY_POLICY_TYPE = 53 Asynchronous Messaging (chp. 22)

PolicyId RESUME_POLICY_TYPE = 54 Asynchronous Messaging (chp. 22)

PolicyId INVOCATION_POLICY_TYPE = 55 Object Transaction Service
(formal/00-06-28)

PolicyId OTS_POLICY_TYPE = 56 Object Transaction Service
(formal/00-06-28)

PolicyId NON_TX_TARGET_POLICY_TYPE = 57 Object Transaction Service
(formal/00-06-28)

Tag Name Tag Value Described in
A-6 Common Object Request Broker Architecture (CORBA), v2.4.2 February 2001

Glossary
stent
execu-

ding
on,

nce

vior
n of

oes
y
activation Preparing an object to execute an operation. For example, copying the persi
form of methods and stored data into an executable address space to allow
tion of the methods on the stored data.

adapter Same as object adapter.

attribute An identifiable association between an object and a value. An attribute A is made
visible to clients as a pair of operations: get_A and set_A . Readonly attributes
only generate a get operation.

behavior The observable effects of an object performing the requested operation inclu
its results binding. See language binding, dynamic invocation, static invocati
or method resolution for alternatives.

class See interface and implementation for alternatives.

client The code or process that invokes an operation on an object.

context object A collection of name-value pairs that provides environmental or user-prefere
information.

CORBA Common Object Request Broker Architecture.

data type A categorization of values operation arguments, typically covering both beha
and representation (i.e., the traditional non-OO programming language notio
type).

deactivation The opposite of activation.

deferred synchronous request A request where the client does not wait for completion of the request, but d
intend to accept results later. Contrast with synchronous request and one-wa
request.
CORBA, v2.4.2 February 2001 Glossary-1

-
a dis-

ntil

ts

e in

w
-
sent
s that

-
ndor-

ple-

ts

s.

es
le-

 the
ini-

he

es.

inter-
domain A concept important to interoperability, it is a distinct scope, within which com
mon characteristics are exhibited, common rules observed, and over which
tribution transparency is preserved.

dynamic invocation Constructing and issuing a request whose signature is possibly not known u
run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle reques
whose signatures are possibly not known until run-time.

externalized object reference An object reference expressed as an ORB-specific string. Suitable for storag
files or other external media.

implementation A definition that provides the information needed to create an object and allo
the object to participate in providing an appropriate set of services. An imple
mentation typically includes a description of the data structure used to repre
the core state associated with an object, as well as definitions of the method
access that data structure. It will also typically include information about the
intended interface of the object.

implementation definition language A notation for describing implementations. The implementation definition lan
guage is currently beyond the scope of the ORB standard. It may contain ve
specific and adapter-specific notations.

implementation inheritance The construction of an implementation by incremental modification of other
implementations. The ORB does not provide implementation inheritance. Im
mentation inheritance may be provided by higher level tools.

implementation object An object that serves as an implementation definition. Implementation objec
reside in an implementation repository.

implementation repository A storage place for object implementation information.

inheritance The construction of a definition by incremental modification of other definition
See interface and implementation inheritance.

instance An object is an instance of an interface if it provides the operations, signatur
and semantics specified by that interface. An object is an instance of an imp
mentation if its behavior is provided by that implementation.

interface A listing of the operations and attributes that an object provides. This includes
signatures of the operations, and the types of the attributes. An interface def
tion ideally includes the semantics as well. An object satisfies an interface if it
can be specified as the target object in each potential request described by t
interface.

interface inheritance The construction of an interface by incremental modification of other interfac
The IDL language provides interface inheritance.

interface object An object that serves to describe an interface. Interface objects reside in an
face repository.

interface repository A storage place for interface information.
Glossary-2 CORBA, v2.4.2 February 2001

er

-

 one

trac-
ce of
d it
tions
r-

rs

r

r

es it
nchro-

which

ive
interface type A type satisfied by any object that satisfies a particular interface.

interoperability The ability for two or more ORBs to cooperate to deliver requests to the prop
object. Interoperating ORBs appear to a client to be a single ORB.

language binding or mapping The means and conventions by which a programmer writing in a specific pro
gramming language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perform a
requested service. Methods associated with an object may be structured into
or more programs.

method resolution The selection of the method to perform a requested operation.

multiple inheritance The construction of a definition by incremental modification of more than one
other definition.

object A combination of state and a set of methods that explicitly embodies an abs
tion characterized by the behavior of relevant requests. An object is an instan
an implementation and an interface. An object models a real-world entity, an
is implemented as a computational entity that encapsulates state and opera
(internally implemented as data and methods) and responds to request or se
vices.

object adapter The ORB component which provides object reference, activation, and state
related services to an object implementation. There may be different adapte
provided for different kinds of implementations.

object creation An event that causes the existence of an object that is distinct from any othe
object.

object destruction An event that causes an object to cease to exist.

object implementation Same as implementation.

object reference A value that unambiguously identifies an object. Object references are neve
reused to identify another object.

objref An abbreviation for object reference.

one-way request A request where the client does not wait for completion of the request, nor do
intend to accept results. Contrast with deferred synchronous request and sy
nous request.

operation A service that can be requested. An operation has an associated signature,
may restrict which actual parameters are valid.

operation name A name used in a request to identify an operation.

ORB Object Request Broker. Provides the means by which clients make and rece
requests and responses.
CORBA, v2.4.2 February 2001 Glossary-3

bject

iated

ists of

atus
o

be a

ta
mal

er in

-

tion

trast

that
ORB core The ORB component which moves a request from a client to the appropriate
adapter for the target object.

parameter passing mode Describes the direction of information flow for an operation parameter. The
parameter passing modes are IN, OUT, and INOUT.

persistent object An object that can survive the process or thread that created it. A persistent o
exists until it is explicitly deleted.

portable object adapter The object adapter described in Chapter 9.

referential integrity The property ensuring that an object reference that exists in the state assoc
with an object reliably identifies a single object.

repository See interface repository and implementation repository.

request A client issues a request to cause a service to be performed. A request cons
an operation and zero or more actual parameters.

results The information returned to the client, which may include values as well as st
information indicating that exceptional conditions were raised in attempting t
perform the requested service.

server A process implementing one or more operations on one or more objects.

server object An object providing response to a request for a service. A given object may
client for some requests and a server for other requests.

signature Defines the parameters of a given operation including their number order, da
types, and passing mode; the results if any; and the possible outcomes (nor
vs. exceptional) that might occur.

single inheritance The construction of a definition by incremental modification of one definition.
Contrast with multiple inheritance.

skeleton The object-interface-specific ORB component which assists an object adapt
passing requests to particular methods.

state The time-varying properties of an object that affect that object’s behavior.

static invocation Constructing a request at compile time. Calling an operation via a stub proce
dure.

stub A local procedure corresponding to a single operation that invokes that opera
when called.

synchronous request A request where the client pauses to wait for completion of the request. Con
with deferred synchronous request and one-way request.

transient object An object whose existence is limited by the lifetime of the process or thread
created it.

type See data type and interface.
Glossary-4 CORBA, v2.4.2 February 2001

serve
value Any entity that may be a possible actual parameter in a request. Values that
to identify objects are called object references.
CORBA, v2.4.2 February 2001 Glossary-5

Glossary-6 CORBA, v2.4.2 February 2001

s the
CORBA 2.4.2 Chapter Map

NOTE: CORBA 2.4.2 is a minor editorial revision to CORBA 2.4. Chapters that have changed are in bold
face type.

The following chapters represent the structure of the CORBA 2.4.2 specification. The table also list
approved technology documents that were used to create this version of CORBA. You will find specific
changes marked with change bars and colored text in the change bar version of CORBA 2.4.2.

CORBA 2.4.2 chapters: Changes based on these OMG documents:

 1. The Object Model Core RTF

 2. CORBA Overview unchanged

 3. OMG IDL Syntax and Semantics Core RTF, Interoperable Name Service, Asynchronous
Messaging, Components

 4. ORB Interface Updated due to the Interoperable Naming specifica-
tion. See sections 4.5.3.2 and 4.5.3.3. Changed

1. corbaloc:// to corbaloc::
2. corbaname:// to corbaname::
3. ,// to ,:

Core RTF, Interoperable Name Service, Asynchronous
Messaging, Components, Notification Service, OTS RTF

 5. Value Type Semantics Updated cross references. Core RTF, Interop/RTF

 6. Abstract Interface Semantics unchanged

 7. Dynamic Invocation Interface Core RTF, Asynchronous Messaging

 8. Dynamic Skeleton Interface Core RTF

 9. Dynamic Management of Any Values Core RTF

10. Interface Repository Changed LocalInterfaceDefSeq base_interfaces to
InterfaceDefSeq base_interfaces on page 10-17 and 10-
65. Core RTF, Components

11. Portable Object Adapter Updated due to typographical corrections. Core RTF

12. Interoperability Overview unchanged

13. ORB Interoperability Architecture Updated due to the Interoperable Naming specifica-
tion. Changed corbaloc:iiop:: to corbaloc:iiop: - see
“Future corbaloc URL Protocols” section.

Core/Interop RTFs, Interoperable Name Service, INS/
RTF, Asynchronous Messaging, OTS RTF, and editorial
changes made to 13.6.6.2.

14. Building Inter-ORB Bridges unchanged

15. General Inter-ORB Protocol Updated due to typographical corrections. Core/Interop
RTF, Asynchronous Messaging, Firewall

16. The DCE ESIOP unchanged

17. Interworking Architecture unchanged

18. Mapping: COM and CORBA Core RTF

19. Mapping: OLE Automation and CORBA Core RTF
CORBA 2.4.2 Chapter Map February 5, 2001 1

A 2.4
Approved OMG Documents

The following is an alphabetical list of the approved technology documents that comprise the CORB
release:

• Asynchronous Messaging: orbos/1998-05-05

• Core RTF Reports: ptc/1999-12-06, ptc/1999-12-07, ptc/1999-12-08

• Firewall: orbos/1998-05-04

• Interoperable Name Service: orbos/1998-08-10

• Interop 2K RTF Report: interop/2000-01-01

• Naming FTF report: ptc/1999-12-02, ptc/1999-12-03, ptc/1999-12-04

• Notification Service: formal/2000-06-20

• Minimum CORBA: orbos/1998-08-04

• Real-Time CORBA: orbos/1999-02-12

20. Interoperability with non-CORBA Systems unchanged

21. Interceptors unchanged

22. CORBA Messaging new chapter

23. Minimum CORBA Updated due to typographical corrections.

24. Real-Time CORBA new chapter

Appendix A - OMG IDL Tags updated to reflect new tags

Glossary, Index updated
2 February 6, 2001 CORBA 2.4.2 Chapter Map

Index
A
Abstract Interfaces 1-7

Semantics of 6-1
Abstract Model Description

Dynamic Skeleton Interface 11-12
Implicit Activation 11-10
Location Transparency 11-13
Model Architecture 11-4
Model Components 11-2
Multi-threading 11-11
Object Activation States 11-8
POA Creation 11-6
Reference Creation 11-7
Request Processing 11-9

abstract object model 1-1
AbstractInterfaceDef 10-34
activation 1-10
ACTIVE 22-63
Ada Language Binding for PriorityMapping 24-19
AdapterActivator 11-7
add_pollable 7-14
Aggregation of Automation Views 19-38
AliasDef 10-25

OMG IDL for 10-25
alignment 15-11
AMI/TII Abstract Model Design 22-75
AMI/TII abstract model design 22-75
any type 3-36, 7-2, 7-3, 15-29, 18-9, 18-39
Any values

dynamic management overview 9-2
application object iii
array

sample mapping to OLE collection 19-49
syntax of 3-42

ArrayDef 10-28
OMG IDL for 10-28

associated_handler 22-25
async operation mapping 22-15
Asynchronous Method Invocation (AMI) Components 22-75
Asynchronous Method Signatures 22-30
asynchrony

and narrowing of object references 22-81
AsyncOperation Mapping

Callback Model Signatures (sendc) 22-16
Polling Model Signatures (sendp) 22-18

attribute
defined 1-9
mapped to OLE 19-4
mapping to COM 18-24
mapping to OLE Automation 17-10

attribute associated_handler 22-52
Attribute Declaration 3-49
AttributeDef 10-29
Automation View Dual interface, default name 17-31
Automation View interface 19-3, 19-15

non-dual 19-36
Automation View Interface as a Dispatch Interface

(Nondual) 19-36
Automation View interface class id 17-32
Automation View interface, default name 17-30

B
backoff_factor 22-64
base interface 3-19
base_interval_seconds 22-64
basic object adapter 19-38
Basic types 1-4
Basic Type-Specific Poller 22-26
Basics

Interface Repository Objects 10-6
Names and Identifiers 10-6
Structure and Navigation of the Interface Repository 10-7
Types and TypeCodes 10-6

Bi-Directional GIOP 15-55
Bi-directional GIOP policy 15-58
Bi-Directional IIOP 15-57
big-endian 15-7
binding 17-20
Binding and Life Cycle 17-20
BindingIterator interface 19-59
blocking 22-52
body 22-49
boolean 19-59
boolean is_a operation

OMG PIDL for 4-14
boolean types 3-36, 15-10
Bootstrapping Bridges 14-7
bridge

architecture of inter-ORB 13-2
in networks 13-11
inter-domain 13-9
inter-ORB 12-2, 12-5, 13-6
locality 17-33

Bridging 14-2
bridging techniques 13-8

C
C Language Binding for PriorityMapping 24-18
C++

sample COM mapping 18-16
C++ Language

Usage in 9-24
C++ Language Binding for PriorityMapping 24-19
C++ Mapping Specific Issues 23-10
Callback Model

exception delivery in 22-20
signatures 22-16

Callback Model Detailed Design 22-78
CDR 15-4

features of 15-3
CDR Transfer Syntax 15-4

Alignment 15-5
Boolean 15-10
Character Types 15-10
Encapsulation 15-14
Floating Point Data Types 15-7
Integer Data Types 15-6
Object References 15-30
Octet 15-10
OMG IDL Constructed Types 15-11
Primitive Types 15-5
Pseudo-Object Types 15-23
CORBA, v2.4.2 February 2001 Index-1

Index
Value Types 15-15
Chain Avoidance

COM Chain Avoidance 20-17
CORBA Chain Avoidance 20-16

Chain Bypass
COM Chain Bypass 20-20
CORBA Chain Bypass 20-19
Thread Identification 20-21

char type 3-35
Client

Structure 2-12
client 2-7
Client and Server Protocol Configuration 24-12
Client C++ Example Code 24-54
Client Stubs 2-9
CLIENT_PROPAGATED 24-24
ClientProtocolPolicy 24-42
Clients 2-7
client-side components

Asynchronous Method Invocation (AMI) 22-75
Poller 22-75
ReplyHandler 22-75

client-side policies 22-72
Client-Target Binding

Binding Model 21-4
Establishing the Binding and Interceptors 21-5

CLSID 17-32, 18-44
Collocated ORBs 14-4
COM 18-2

described 17-4
COM to CORBA Data Type Mapping

Inheritance Mapping 18-50
Interface Mapping 18-44
Mapping for Array Types 18-40
Mapping for Basic Data Types 18-33
Mapping for bounded string types 18-36
Mapping for COM Errors 18-44
Mapping for Constants 18-34
Mapping for Encapsulated Unions 18-38
Mapping for Enumerators 18-34
Mapping for Interface Identifiers 18-44
Mapping for nonencapsulated unions 18-39
Mapping for nonfixed arrays 18-40
Mapping for Operations 18-47
Mapping for Pointers 18-43
Mapping for Properties 18-48
Mapping for Read-Only Attributes 18-49
Mapping for Read-Write Attributes 18-49
Mapping for SAFEARRAY 18-40
Mapping for String Types 18-35
Mapping for Structure Types 18-37
Mapping for unbounded string types 18-35
Mapping for unicode bound string types 18-37
Mapping for Unicode Unbounded String Types 18-36
Mapping for Union Types 18-38
Mapping for VARIANT 18-41
Mapping of Names 18-47
Mapping of Nested Data Types 18-47
Type Library Mapping 18-52

COM View interface,default tag 17-30
COM/CORBA Interworking 23-10

Compliance to 17-34
COM/CORBA Part A 20-2
Common Data Representation (CDR) 15-3
Common Data Structures 7-2
Common Facilities iii
Compatibility 24-6

CORBA - Real-Time CORBA Interworking 24-7
Interoperability 24-6
Portability 24-7

Complex Declarator
Arrays 3-42
Deprecated Anonymous Types 3-44

Compliance 24-8
compliance iv
component

tags for A-1
Component Design 22-73
Component Object Model

see COM 17-4
Component Relationships 22-73, 22-76
concrete object model 1-1
Conformance Issues 22-84

CORBA Clients for DCOM Servers 20-3
Performance Issues 20-3
Scalability Issues 20-3

ConnectionPoint Service 19-52
Consistency 20-9
Consolidated OMG IDL 24-44
Constant Declaration

Semantics 3-30
Syntax 3-29

constant declaration
syntax of 3-29

ConstantDef 10-22
constructed data types 15-11
Constructed Recursive Types 3-39
Constructed types 1-5
ConstructionPolicy 23-4
Contained interface

OMG IDL for 10-11
Container interface 10-9

OMG IDL for 10-14
containment 13-6
context clause 23-4
context object 4-27
Conventions for Naming Components of the

Automation View 19-36
Conversion Errors 19-43
CORBA

Any values
dynamic creation of 9-24
dynamic interpretation 9-25

contributors vi
core iv
documentation set iii
interoperability v
object references and request level bridging 14-6

CORBA Exceptions 19-30
CORBA Module 3-50
CORBA module

NVList interface 7-16
Index-2 CORBA, v2.4.2 February 2001

Index
types defined by 7-1
CORBA Omitted Features 23-2
CORBA Priority 24-17
CORBA Priority Mappings 24-17
CORBA Required Object Adapter

Portable Object Adapter 2-17
CORBA System Exceptions 19-33
CORBA User Exceptions 19-31
CORBA_free 7-4
CORBAComposite interface 18-51
CORBAtoCOM Data Type Mapping 18-2
core, compliance iv
CosNaming interface 19-55
create_dii_pollable 7-14
create_list operation 7-2
create_persistent_request 22-52
create_pollable_set 7-14
create_request operation 4-12
CreateType method 19-28
Current 11-42

D
data type

basic OMG IDL 3-34–3-36
constructed OMG IDL 3-36–3-39
constructs for OMG IDL 3-33
native 3-35
OMG IDL template 3-40–3-42

Data Type Mapping 18-1
DCE 12-1, 18-1
DCE CIOP

pipe interface, DCE IDL for 16-6
DCE CIOP module

OMG IDL for 16-25
DCE Common Inter-ORB Protocol

Goals 16-1
DCE Common Inter-ORB Protocol Overview 16-2
DCE ESIOP 13-26

see also DCE CIOP
DCE UUID 17-17
DCE-CIOP

storage in IOR 16-5
DCE-CIOP Data Representation 16-3
DCE-CIOP Message Formats 16-11

DCE_CIOP Invoke Request Message 16-11
DCE-CIOP Invoke Response Message 16-12
DCE-CIOP Locate Request Message 16-14
DCE-CIOP Locate Response Message 16-15

DCE-CIOP Message Transport 16-5
Array-based Interface 16-8
Pipe-based Interface 16-6

DCE-CIOP Messages 16-4
DCE-CIOP Object Location 16-21

Activation 16-23
Basic Location Algorithm 16-23
Location Mechanism Overview 16-22
Use of the Location Policy and the Endpoint ID 16-24

DCE-CIOP Object References 16-16
Complete Object Key Component 16-19
DCE-CIOP Binding Name Component 16-18
DCE-CIOP No Pipes Component 16-19

DCE-CIOP String Binding Component 16-17
Endpoint ID Position Component 16-20
Location Policy Component 16-20

DCE-CIOP RPC 16-2
DCOM Value Objects

DICORBAAny 20-14
DICORBAStruct 20-13
DICORBATypeCode and ICORBATypeCode 20-13
DICORBAUnion 20-13
DICORBAUserException 20-13
DIForeignComplexType 20-12
DIForeignException 20-12
DISystemException 20-12
ICORBAAny 20-14
IForeignObject 20-12
Passing Automation Compound Types as DCOM Value

Objects 20-11
Passing CORBA-Defined Pseudo-Objects as DCOM Value

Objects 20-11
User Exceptions in COM 20-15

DCORBATypeCode interface 19-23
DCORBAUnion interface 19-21
DCORBAUserException interface 19-32
deactivation 1-10
DecayPolicy 22-64
derived interface 3-19
DICORBAAny interface 17-27, 19-24
DICORBAFactory interface 17-25, 19-26, 19-27
DICORBAStruct interface 19-20
DICORBASystemException interface 19-34
DICORBAUnion interface 19-21, 19-22
DICORBAUserException interface 19-32
DIForeignComplexType interface 19-19
DII and DSI 19-38
DII Deferred Synchronous 22-81
DIIPollable interface 7-14
Distribution

Bridge Locality 17-32
Distribution Architecture 17-33
Interworking Targets 17-34

domain 13-2
architecture 13-5
containment 13-6
federation 13-6
naming objects for multiple 13-12
object references 13-12
object referencing for 13-12–13-14
security 14-4

DSI
Language Mapping 8-4

Dual interface 17-12, 19-4
Dynamic Any 23-5
Dynamic creation of CORBA

Any values 9-24
Dynamic interpretation of CORBA

Any values 9-25
Dynamic Invocation Interface 2-9, 7-1, 23-5
Dynamic Invocation interface 18-29, 19-38

overview of 2-4, 2-9
parameters 7-2
request level bridging 14-6
CORBA, v2.4.2 February 2001 Index-3

Index

30
request routines 7-4
dynamic protocol selection 22-82
dynamic routing 22-83
Dynamic Skeleton Interface 2-10, 8-1, 23-5
Dynamic Skeleton interface 14-5, 19-38

overview of 2-5, 2-10, 8-1
DynAny 9-2

management overview 9-2
DynAny API 9-3
DynAny Api

Creating a DynAny object 9-8
Locality and usage constraints 9-8
The DynAny interface 9-10
The DynArray interface 9-21
The DynEnum interface 9-15
The DynFixed Interface 9-15
The DynSequence interface 9-20
The DynStruct interface 9-16
The DynUnion interface 9-17
The DynValue interface 9-22
The DynValueBox interface 9-23

DynAny interface 9-10
DynAny object

basic data type values 9-12
copying 9-12
creating 9-8
destroying 9-12
generating an any value from 9-11
initializing from an any value 9-11
initializing from another DynAny object 9-11
interface 9-10
TypeCode associated with 9-10

DynAny objects
locality and usage constraints 9-8

DynArray interface 9-21
DynArray objects

interface 9-21
DynEnum interface 9-15
DynEnum objects

interface 9-15
DynFixed interface 9-15
DynFixed objects

interface 9-15
DynSequence interface 9-20
DynSequence objects

interface 9-20
DynStruct interface 9-16
DynStruct objects

interface 9-16
DynUnion interface 9-17
DynUnion objects

interface 9-17
DynValue interface 9-22
DynValueBox interface 9-23

E
encapsulation 15-14

defined 15-5
enum 15-12
EnumDef 10-25
enumerated types 3-38

environment specific inter-ORB protocol for OSF’s
DCE environment

see DCE ESIOP
environment-specific inter_ORB protocol

see ESIOP
Environment-Specific Inter-ORB Protocols (ESIOPs) 12-4
ESIOP 12-1, 12-4
Example Programmer Usage

C++ Example of Callback Client Program 22-37
C++ Example of Generated ExceptionHolder 22-32
C++ Example of Generated ReplyHandler 22-32
C++ Example of Polling Client Program 22-40
C++ Example of User-Implemented ReplyHandler 22-34
C++ Example of Using PollableSet in a Client Program 22-42
Client-Side C++ Example for the Asynchronous Method

Signatures 22-30
Client-Side C++ Example of the Callback Model 22-32
Client-Side C++ Example of the Polling Model 22-39
Example Programmer Usage (Examples Mapped to C++) 22-

Example Programmer Usge
Server Side 22-44

exception 1-8
Exception Declaration 3-46
Exception replies 22-79
ExceptionDef 10-29
ExceptionDef interface

OMG IDL for 10-29
exceptions

COM and CORBA compared 18-12
COM exception structure example 18-17
InvalidState 22-63
mapped to COM error codes 18-45, 19-35
mapped to COM interfaces 18-20
REBIND 4-58
TIMEOUT 4-58
TRANSACTION_UNAVAILABLE 4-58

Explicit Binding 24-35
ExplicitRequest State

ServerRequestPseudo-Object 8-3
expression

context 3-49
raises 3-48

Extensions
Real-time 24-13

Extent Definition
DVO_BLOB 20-8
DVO_EXTENT 20-7
DVO_IFACE 20-8
DVO_IMPLDATA 20-8
Extent Format 20-7
Marshaling Constraints 20-6
Marshaling Key 20-6

F
federation 13-6
FixedDef 10-27
floating point data type 15-7
floating point type 3-35
foreign object system

integration of 2-18
Foreign Object Systems
Index-4 CORBA, v2.4.2 February 2001

Index
Integration of 2-17
Forward Declarations 3-39
full bridge 14-2

G
General Inter-ORB Protocol (GIOP) 12-3

Goals 15-2
Generic Bridges 14-6
Generic ExceptionHolder Value 22-20
Generic Poller Value

associated_handler 22-25
is_from_poller 22-26
operation_name 22-25
operation_target 22-25

Generic Poller value 22-25
get_client_policy 4-17
get_interface operation 4-13

OMG PIDL for 4-13
get_interface() operation 10-8
get_policy_overrides 4-17, 4-43
get_reply 22-52
GIOP 12-3, 13-26

alignment for primitive data types 15-6
and language mapping 15-11
and primitive data types 15-3, 15-5, 15-10
any type 15-29
array type 15-12
cancel request header, OMG IDL for 15-40
close connection message 15-44
constructed data types 15-11
context pseudo object 15-29
exception 15-29
floating point data type 15-7
goals of 15-2
implementation on various transport protocols 15-45
integer data types 15-6
locate reply header, OMG IDL for 15-43
locate request header, OMG IDL for 15-41
mapping to TCP/IP transport protocol 15-50
message header, OMG IDL for 15-32
message type 15-31
primitive data types 15-5
principal pseudo object 15-29
relationship to IIOP 12-3
reply message, OMG IDL for 15-37
request header, OMG IDL for 15-34
TCKind 15-23
typecode 15-23

GIOP Message Formats 15-30
CancelRequest Message 15-40
CloseConnection Message 15-44
Fragment Message 15-44
GIOP Message Header 15-31
LocateReply Message 15-42
LocateRequest Message 15-40
MessageError Message 15-44
Reply Message 15-36
Request Message 15-33

GIOP Message Overview 15-3
GIOP Message Transfer 15-4
GIOP Message Transport 15-45

Connection Management 15-46
Message Ordering 15-48

GIOP module 15-33, 15-41
OMG IDL for 15-59

GIOP Overview 15-2
giop_version 22-49
global name 3-52

and inheritance 3-52
and Interface Repository ScopedName 10-10

H
handler 22-49
handler_type 22-49
hash operation 4-15
hexadecimal string 13-21
HRESULT 18-11, 19-5, 19-10, 19-37

constants and their values 18-12

I
IConnectionPointContainer interface 19-52
ICORBAFactory interface 17-24, 17-37
ICORBAObject interface 17-27
ICustomer

Get_Profile interface 18-26
IdAssignmentPolicy 11-30, 23-8
identifier 3-17
IDispatch interface 17-4, 17-11, 19-10
IDL 23-2
IDL for Interceptors 21-9
IDL for PortableServer Module 11-43
IDL to ODL Mapping 19-12
IDLType interface 10-9
IdUniquenessPolicy 11-29
IEnumConnectionPoints interface 19-54
IEnumConnections interface 19-54
IForeignException interface 19-30
IForeignObject interface 17-26, 17-36, 19-16
IID 17-17, 17-30, 18-44
IIOP 13-15, 13-26, 15-2, 15-50, 17-17, 17-32, 17-33

defined 15-50
host 15-53
object key 15-53
port 15-53
relationship to GIOP 12-3
version 15-52

IIOP module 13-17, 15-51, 15-63
IIOP profile

OMG IDL for 15-51
ImmediateSuspend 22-63
IMonikerProvider interface 17-23, 17-36
implementation

defined 1-10, 2
model for 1-9

Implementation Dependencies 10-4
Managing Interface Repositories 10-4

Implementation Repository 2-11
overview of 2-11

Implementation Skeleton 2-9
Implicit Binding 24-35
implicit context 13-10, 14-7
ImplicitActivationPolicy 11-32, 23-9
CORBA, v2.4.2 February 2001 Index-5

Index
in string arguments 23-4
incarnate operation 11-22
Indirection Levels for Operation Parameters 18-26
infix operator 3-30
Inheritance 23-3
inheritance

COM mapping for 18-26
OLE Automation mapping for 19-5

Inheritance Mapping 18-26
inheritance, multiple 17-11
inheritance, single 19-5
Initial Request Router 22-54
Initialization interfaces 19-40
In-line Bridging 14-3
in-line bridging 14-2
integer data type 15-6
integer tdata type 3-35
Interceptor Interfaces

Client and Target Invoke 21-8
Send and Receive Message 21-8

Interceptors 23-10
Generic ORB Services and Interceptors 21-2
Message-Level Interceptors 21-3
Request-Level Interceptors 21-3
Selecting Interceptors 21-4

interface 1-6
Interface Composition Mapping

CORBA/COM 17-11
Detailed Mapping Rules 17-13
Example of Applying Ordering Rules 17-14
Mapping Interface Identity 17-16

Interface Composition Mappings 17-11
Interface Declaration

Forward Declaration 3-18
Interface Body 3-18
Interface Header 3-17
Interface Inheritance 3-19
Interface Inheritance Specification 3-17

interface identifier
see IID 17-17

Interface Mapping 18-11
Automation/CORBA 17-10
COM/CORBA 17-10
CORBA/Automation 17-9
CORBA/COM 17-9

interface object 10-7
Interface Repository 2-5, 2-11, 10-1, 23-5, 23-14

AliasDef, OMG IDL 10-25
and COM EX repository id 19-31
and COM mapping 17-11
and identifiers 10-10
and request level bridging 14-6
ArrayDef, OMG IDL 10-28
AttributeDef, OMG IDL 10-29
Contained interface, OMG IDL 10-11
Container 10-9
Container interface, OMG IDL 10-14
ExceptionDef interface 10-29
IDLType 10-9
inserting information 10-4
InterfaceDef, OMG IDL 10-32, 10-38

IRObject interface 10-9
IRObject interface, OMG IDL 10-11
location of interfaces in 10-8
mapped to OLE type library 18-52
ModuleDef interface, OMG IDL 10-22
OMG IDL for 10-60
OperationDef, OMG IDL 10-30
overview of 2-11, 10-1
PrimitiveDef, OMG IDL 10-26
Repository interface, OMG IDL 10-20
SequenceDef, OMG IDL 10-27
StringDef, OMG IDL 10-26
StructDef, OMG IDL 10-23
TypeCode 10-56, 23-5
TypeCode interface, OMG IDL 10-51

Interface Repository Interfaces
AbstractInterfaceDef 10-34
AliasDef 10-25
ArrayDef 10-28
ConstantDef 10-22
Contained 10-11
Container 10-14
EnumDef 10-25
ExceptionDef 10-29
FixedDef 10-27
IDLType 10-19
InterfaceDef 10-32
IRObject 10-11
LocalInterfaceDef 10-35
ModuleDef 10-22
NativeDef 10-41
OperationDef 10-30
PrimitiveDef 10-26
Repository 10-20
SequenceDef 10-27
StringDef 10-26
StructDef 10-23
Supporting Type Definitions 10-10
TypedefDef 10-23
UnionDef 10-24
ValueBoxDef 10-41
ValueDef 10-38
ValueMemberDef 10-37
WstringDef 10-27

Interface Repository Mapping 18-32
interface repository objects 10-6
interface type 1-6
InterfaceDef 10-8, 10-32

OMG IDL for 10-32, 10-38
InterfaceDef interface 18-52
Interfaces 11-14

AdapterActivator Interface 11-20
attribute associated_handler 22-52
create_persistent_request 22-52
Current Operations 11-42
get_reply 22-52
Handling LOCATION_FORWARD Replies 22-58
Handling of Service Contexts 22-58
Initial Request Router 22-54
Intermediate Request Router 22-55
Invoking Client 22-53
Index-6 CORBA, v2.4.2 February 2001

Index
PersistentRequest 22-51
PersistentRequestRouter 22-52
POA Interface 11-32
POA Policy Objects 11-28
POAManager Interface 11-15
readonly attribute reply_available 22-51
reply 22-51
ReplyHandler 22-50
Replying to a Type-specific ReplyHandler 22-57
Replying to an UntypedReplyHandler 22-58
Request Routing Algorithm 22-55
Router 22-50
Routing of Replies 22-58
Routing Protocol 22-53
send_multiple_requests 22-51
send_request 22-51
ServantActivator Interface 11-23
ServantLocator Interface 11-25
ServantManager Interface 11-22
Target Router 22-55
The Servant IDL Type 11-14
UntypedReplyHandler 22-51, 22-59

interfaces
interface MaxHopsPolicy 22-11
interface PolicyCurrent 4-44
interface PolicyManager 4-43
interface Pollable 7-13
interface PollableSet 7-14
interface QueueOrderPolicy 22-11
interface RelativeRequestTimeoutPolicy 22-9
interface RelativeRoundtripTimeoutPolicy 22-9
interface ReplyEndTimePolicy 22-9
interface ReplyPriorityPolicy 22-7
interface ReplyStartTimePolicy 22-8
interface RequestEndTimePolicy 22-8
interface RequestPriorityPolicy 22-7
interface RequestStartTimePolicy 22-8
interface RoutingPolicy 22-10
interfaceRebindPolicy 22-5
PersistentRequest 22-51
PersistentRequestRouter 22-52
ReplyHandler 22-50
Router 22-50
RouterAdmin 22-64
SyncScopePolicy 22-7
UntypedReplyHandler 22-51

Interface-specific Bridges 14-6
Intermediate Request Router 22-55
Internet Inter-ORB Protocol (IIOP) 12-3, 15-50

IIOP IOR Profile Components] 15-54
IIOP IOR Profiles 15-51
TCP/IP Connection Usage 15-50

Interoperabiity Design Goals 12-9
Interoperability 23-9

architecture of 13-1
compliance 12-5
DCE Interoperability 23-9
domain 13-5
Elements of 12-1
examples of 12-5
object service-specific information, passing 13-26, 15-4

overview of 12-2
primitive data types 15-5
RFP for 13-1

Interoperability Design Goals 12-9
Interoperability Solutions

Examples of 12-5
interoperability, compliance iv
Interoperable Object Reference (IOR) 16-5
Interoperable Routing Protocol 22-76
Inter-ORB Bridge Support 12-2
interval_limit 22-64
interworking 17-13

any type 18-39
array to collection mapping 19-49
Automation View Dual interface 17-31
Automation View interface 17-30, 17-32
BindingIterator interface, mapped to ODL 19-59
bridges 17-33
COM aggregation mechanism 19-38
COM data types mapped to CORBA types 18-2
COM Service 19-51
COM View interface 17-30
compliance iv
ConnectionPoint Service 19-52
CORBAComposite interface 18-51
CosNaming interface

mapped to ODL 19-55
DCORBATypeCode interface 19-23
DCORBAUnion interface 19-21
DCORBAUserException interface 19-32
DICORBAAny interface 17-27, 19-24
DICORBAFactory interface 17-25, 19-26, 19-27
DICORBAStruct interface 19-20
DICORBASystemException interface 19-34
DICORBAUnion interface 19-21, 19-22
DICORBAUserException interface 19-32
DIForeignComplexType interface 19-19
Dual interface 17-12, 19-4
HRESULT 18-11, 19-5, 19-10, 19-37
IConnectionPointContainer interface 19-52
ICORBAFactory interface 17-24, 17-37
ICORBAObject interface 17-27
ICustomer

Get_Profile interface 18-26
IDispatch interface 17-4, 19-10
IEnumConnectionPoints interface 19-54
IEnumConnections interface 19-54
IForeignException interface 19-30
IForeignObject interface 17-26, 17-36, 19-16
IMonikerProvider interface 17-23, 17-36
inheritance,mapping for 18-50
IORBObject interface 17-28
IProvideClassInfo interface 18-33, 18-52
ISO Latin1alphabetic ordering model 19-8
ISupportErrorInfo interface 18-15
ITypeFactory interface 19-29
ITypeInfo interface 18-33, 18-52
IUnknown interface 19-10
mapping between OMG IDL and OLE, overview 19-3
MIDL and ODL data types mapped to CORBA types 18-33
MIDL data types 18-2
CORBA, v2.4.2 February 2001 Index-7

Index
MIDL pointers 18-44
multiple inheritance 19-6
OLE data types 19-9
OLE data types mapped to CORBA types 19-42
pseudo object mapping 18-29
QueryInterface 17-11, 19-7
sequence to collection mapping 19-49
SetErrorInfo interface 18-15
single inheritance 19-5
target 17-6
types of mappings 17-8
VARIANT 18-41, 19-5, 19-48
view 17-5
View interface program id 17-31

Interworking Architecture
Purpose of 17-2

Interworking Interfaces
ICORBAFactory Interface 17-24
ICORBAObject Interface 17-27
ICORBAObject2 17-28
IForeignObject Interface 17-26
IMonikerProvider Interface and Moniker Use 17-23
IORBObject Interface 17-28
Naming Conversions for View Components 17-30
SimpleFactory Interface 17-23

Interworking Mapping Issues 17-8
Interworking Object Model

Basic Description of the Interworking Model 17-4
Relationship to CORBA Object Model 17-3
Relationship to the OLE/COM Model 17-4

interworking object model 17-3
InvalidState 22-63
Invocation Timeout 24-39
Invocation Timeouts 24-12
INVOCATION_POLICIES 22-72
invocations

DII Deferred Synchronous 22-81
Invoking Client 22-53
IOP module

and DCE ESIOP 13-26
and GIOP 13-26
and IIOP 13-26

IOR 13-15, 13-20, 16-5
converting to object reference 13-21
externalized 13-21

IORBObject interface 17-28
IProvideClassInfo interface 18-33, 18-52
IRObject 10-11
IRObject interface 10-9

OMG IDL for 10-11
is_equivalent operation 4-16
is_from_poller 22-26
is_ready 7-13
ISupportErrorInfo interface 18-15
ISynchronize and DISynchronize 20-10
ITypeFactory interface 19-29
ITypeInfo interface 18-33, 18-52
IUknown interface 19-10
IValueObject 20-10

J
Java Language Binding for PriorityMapping 24-20
Java Mapping Specific Issues 23-10

L
language mapping 23-10

overview 2-8
Language Mappings 23-10

C++ Mapping Specific Issues 23-10
Java Mapping Specific Issues 23-10

Lexical Conventions 3-3
Comments 3-6
Escaped Identifiers 3-6
Identifiers 3-6
Keywords 3-7
Tokens 3-5

LifespanPolicy 11-29, 23-8
LimitedPing 22-64
Liskov substitution principle 1-6
List Operations 7-16

add_item 7-17
create_list 7-16
create_operation_list 7-18
free 7-17
free_memory 7-17
get_count 7-17

List operations 7-16
Literals

Character Literals 3-9
Fixed-Point Literals 3-11
Floating-point Literals 3-10
Integer Literals 3-8
String Literals 3-10

little endian 15-7
Local Interface 3-22
LocalInterfaceDef 10-35
Locality of the Bridge 20-4
LocalObject 3-23
LOCATION_FORWARD Replies 22-58
logical_type_id string 4-14

M
magic 15-31, 15-32, 15-59, 15-60
Mapping

Array Types 18-9, 18-40
Attributes 18-24
Basic Data Types 18-2, 18-33
Bounded Sequence Types 18-8
Bounded String Types 18-5, 18-36
COM Errors 18-44
COM to CORBA data type 18-33
Constants 18-2, 18-34
context pseudo-object 18-31
Encapsulated Unions 18-38
Enumerators 18-3, 18-34
exception types 18-11
Interface Identifiers 18-11, 18-44
Interface Repository 18-32
Names 18-47
Nested Data Types 18-47
nonencapsulated unions 18-39
Index-8 CORBA, v2.4.2 February 2001

Index
Oneway Operations 18-24
Operations 18-22, 18-47
Pointers 18-43
principal pseudo-object 18-32
Properties 18-48
Pseudo-Objects 18-29
Read-Only Attributes 18-49
Read-Write Attributes 18-49
SAFEARRAY 18-40
String Types 18-4, 18-35
Struct Types 18-5
Structure Types 18-37
the any Type 18-9
TypeCode pseudo-object 18-29
Unbounded Sequence Types 18-8
Unbounded String Types 18-4, 18-35
unicode bound string types 18-37
Unicode Unbounded String Types 18-36
Union Types 18-6, 18-38
VARIANT 18-41

Mapping a COM Service to OMG IDL 19-51
Mapping an OMG Object Service to Automation 19-55
Mapping Automation Exceptions to CORBA 19-49
Mapping Automation Objects as CORBA Objects 19-38
Mapping CORBA Exceptions to Automation Exceptions 19-30
Mapping CORBA Objects to Automation 19-2
Mapping for Array Types 18-9
Mapping for Arrays and Sequences 19-18
Mapping for Attributes 18-24
Mapping for Attributes and Operations 19-4
Mapping for Automation Basic Data Types

Basic automation types 19-42
Mapping for Basic Data Types 18-2, 19-9

Basic Automation Types 19-9
Converting Automation boolean to CORBA boolean and

CORBA boolean to Automation boolean 19-11
Converting Automation long to CORBA unsigned long 19-10
Demoting Automation long to CORBA unsigned short 19-11
Demoting CORBAunsigned long to Automation long 19-11
Mapping for Strings 19-11

Mapping for Bounded Sequence Types 18-8
Mapping for Bounded String Types 18-5
Mapping for Constants 18-2, 19-25
Mapping for context pseudo-object 18-31
Mapping for CORBA Complex Types 19-19

Creating Initial in Parameters for Complex Types 19-27
DIObjectInfo Interface 19-29
Getting Initial CORBA Object References 19-26
ITypeFactory Interface 19-29
Mapping for anys 19-24
Mapping for Constants 19-25
Mapping for Structure Types 19-20
Mapping for TypeCodes 19-22
Mapping for Typedefs 19-25
Mapping for Union Types 19-21

Mapping for Enumerated Types 19-17, 19-47
Mapping for Enumerators 18-3
Mapping for exception types 18-11
Mapping for Inheritance 19-40
Mapping for Interface identifiers 18-11
Mapping for Interfaces 19-3, 19-40

Mapping for Nested Types 18-21
Mapping for Object References 19-46

Object Reference Parameters and IForeignObject 19-16
Type Mapping 19-15

Mapping for ODL Properties and Methods 19-41
Mapping for OMG IDL Arrays and Sequences to

Collections 19-49
Mapping for OMG IDL Single Inheritance 19-5
Mapping for Oneway Operations 18-24
Mapping for Operations 18-22
Mapping for principal pseudo-object 18-32
Mapping for Pseudo-Objects 18-29
Mapping for SafeArrays 19-48
Mapping for Sequence Types 18-8
Mapping for String Types 18-4
Mapping for Strings 19-11
Mapping for Struct Types 18-5
Mapping for the any Type 18-9
Mapping for TypeCode pseudo-object 18-29
Mapping for Typedefs 19-25, 19-48
Mapping for Unbounded Sequence Types 18-8
Mapping for Unbounded String Types 18-4
Mapping for Union Types 18-6
Mapping for VARIANTs 19-48
Mapping of OMG IDL Multiple Inheritance 19-6
Mapping of OMG IDL to Programming Languages 2-8
Mapping the OMG Naming Service to Automation 19-51
max_backoffs 22-64
MaxHopsPolicy interfaces 22-11
mediated bridging 13-8
Memory Usage 7-4
message 22-50, 22-53
message payload 22-82
Message Routing 22-46
Message Routing Abstract Model Design 22-81
Message Routing Interoperability 22-45
MessageBody 22-48
Messaging

module 22-66
Messaging module 22-2, 22-12
Messaging Programming Model 22-13
Messaging QoS 22-12

propagation of 22-12
Messaging QoS Profile Component 22-12
Messaging QoS Service Context 22-13
Messaging Quality of Service 22-2
method 1-9
Microsoft Interface Definition Language

see MIDL 17-4
MIDL 17-4

transformation rules 17-13
minimumCORBA 23-2
minimumCORBA Exception 23-3
minimumCORBA features 23-2
minimumCORBA Inheritance Features 23-3
minimumCORBA OMG IDL 23-11

Dynamic Invocation Interface 23-14
Dynamic Management of Any Values 23-14
Interceptors 23-29
Interface Repository 23-14
ORB Interface 23-11
CORBA, v2.4.2 February 2001 Index-9

Index
Portable Object Adapter 23-22
minimumCORBA subset of CORBA IDL 23-11
minimumCORBA TypeCode 23-3
mode 1-8
Mode Property 20-11
Model Components 22-72
module

Messaging 22-12
module CORBA 23-11
Module Declaration 3-16
ModuleDef 10-22
ModuleDef interface

OMG IDL for 10-22
modules

Messaging 22-2, 22-66
Multidimensional SafeArrays 19-48
multiple inheritance 3-19, 17-11, 19-6
MultipleComponentProfile 13-16
Mutex Interface 24-30

N
NamedValue type 7-2
Names and Scoping

Qualified Names 3-51
Scoping Rules and Name Resolution 3-53
Special Scoping Rules for Type Names 3-56

Naming Conventions for Pseudo-Structs, Pseudo-Unions, and
Pseudo-Exceptions 19-36

NamingContext 14-7
Native Priority 24-10
Native Thread Priorities 24-16
NativeDef 10-41
NO_EXCEPTION 22-57
NO_REBIND 22-5
NO_RECONNECT 22-5
Non-Goals 12-10
Non-Multiplexed Connections 24-12
NOT_REGISTERED 22-63
number_left 7-16
NVList 18-29
NVList interface

add_item operation 7-17
create_list operation 7-16
create_operation_list 7-18
get_count operation 7-17

NVList operation
free_memory operation 7-17

NVList type 7-2

O
Object 1-2, 23-4

context 4-27
CORBA and COM compared 17-9
implementation 1-10, 2-7
invocation 2-9, 2-10
reference 2-8
reference canonicalization 13-13
reference embedding 13-12
reference encapsulation 13-13
references, stringified 13-20
request 13-3

Object Adapter 2-6, 2-9, 2-14
and request level bridging 14-6
functions of 2-15
overview of 2-5, 2-10
structure 2-15

Object Creation and Destruction
Abstract Interfaces 1-7
Attributes 1-9
Basic types 1-4
Constructed types 1-5
Interfaces 1-6
Operations 1-7
Types 1-4
Value Types 1-6

Object Definition Language 17-4
object duplicate operation

OMG PIDL for 4-13
object identifiers

and hash operation 4-15
Object Identity Issues 17-19
Object Identity, Binding, and Life Cycle 17-18
Object Implementation

Structure 2-13
The Construction Model 1-10
The Execution Model 1-9

Object Implementations 2-7
Object interface

create_request operation 4-12
OMG PIDL for 4-11

object key 15-30
Object Location 15-48
Object Management Group i

address of iii
Object model 1-2
object reference 1-3

and COM interface pointers 17-4
obtaining for View interface 19-40
testing for equivalence 4-16

Object References 2-8
obtaining for automation controller environments 19-26

Object Request Broker ii, 2-6
explained 2-1
how implemented 2-6
interfaces to 2-2
sample implementations 2-11, 2-13
Structure 2-1

Object Semantics
Objects 1-2
Requests 1-3

Object Services ii
and GIOP module 15-35
and interoperability 14-7
and IOP module 13-26
Life Cycle 17-21, 17-23, 18-51, 19-26
Naming 14-7, 17-25, 19-26, 19-40
Naming, sample mapping to OLE 19-51, 19-55
Relationship 12-5
tags for A-1
Transaction 13-10

object system 1-2
object_key 22-49
Index-10 CORBA, v2.4.2 February 2001

Index
object_to_string operation 4-8
OMG PIDL for 4-8

ObjectIdUniquenessPolicy 23-8
object-level policies 4-41
Objects 1-2
octet type 3-36, 15-4, 15-10
ODL 18-4, 19-1
Older Automation Controllers 19-49
OLE Automation 17-4

basic data types 19-9
basic data types mapped to CORBA types 19-42
relationship to OMG IDL 19-3
transformation rules 17-13

OLE automation controller 19-2
OMG IDL 24-51

BiDirPolicy Module 15-64
GIOP Module 15-59
IIOP Module 15-63
overview of 2-8
relationship to OLE 19-3
syntax of 3-16

OMG IDL for Interface Repository 10-60
OMG IDL for the DCE CIOP Module 16-25
OMG IDL global name 3-52
OMG IDL Grammar 3-11
OMG IDL Specification 3-16
OMG IDL tags

requests to allocate 13-20, A-1
OMG IDL to ODL Mapping for the Basic Data Types 19-44
OMG IDL, explained 2-3, 2-8
OMG IDL-to-programming language mapping

overview 2-8
OMG Interface Definition Language 2-8
oneway 18-24, 3
opaque data type 15-5
operation 1-7, 22-49

attribute,syntax of 3-47
declaration,syntax of 3-47
defined 1-7
signature of 1-7

Operation Declaration
Context Expressions 3-49
Operation Attribute 3-47
Parameter Declarations 3-48
Raises Expressions 3-48

operation_name 22-25, 22-51
operation_target 22-25
OperationDef 10-30

OMG IDL for 10-30
Operations 19-34

oneway 22-81
Operations that raise system exceptions 19-34
Operations that Raise User Exceptions 19-32
ORB 23-3

backbone 13-11
connecting 10-4
core 13-3
kernel 13-3

ORB Boundaries 12-8
ORB Core 21-2
ORB Implementation Diversity 12-8

ORB Interface 2-10, 23-3, 23-11
and create_list operation 7-16
and create_operation_list operation 7-18
and NVList objects 7-16

ORB Interface Omissions
ConstructionPolicy 23-4
Object 23-4
ORB 23-3

ORB interoperability 12-1
ORB Interoperability Architecture 12-2
ORB Operations

get_next_response and poll_next_response 7-11
send_multiple_requests 7-10

ORB Services 13-3, 13-7, 21-2
how selected 13-4
vs. Object Services 13-3

ORB-level policies 4-41
ORBs

Client- and Implementation-resident ORB 2-11
Library-based ORB 2-12
Server-based ORB 2-12
System-based ORB 2-12

ORBs Vary in Scope, Distance, and Lifetime 12-9
ORDER_ANY 22-11
ORDER_DEADLINE 22-11
ORDER_PRIORITY 22-11
ORDER_TEMPORAL 22-11
Ordering 22-11
OTS Behavior 22-85

P
parameter

defined 1-8
parameter declaration

syntax of 3-48
PERSISTENT policy 23-8
Persistent ReplyHandler 22-76
PersistentPoller 22-76
PersistentRequest 22-75
PersistentRequest interface 22-51
PersistentRequestRouter interface 22-52
POA

location transparency 11-13
POA Interface 11-32

locality contraints 11-32
POA Threading Models 11-11
POAManager Interface 11-15
POA-related interfaces 11-14
Policies 23-7
policies

object-level 4-41
thread-level 4-41

Policy 22-72
PolicyCurrent interface 4-44
PolicyList 22-72
PolicyManager 22-72
PolicyManager interface 4-43
PolicyValue 22-12
Pollable interface 7-13
PollableSet interface 7-14
Poller 22-26, 22-75
CORBA, v2.4.2 February 2001 Index-11

Index
Poller operations
for Interface attributes 22-28
for Interface operations 22-27

Poller Value
generic 22-25

Poller/PersistentRequest Detailed Design 22-79
Poller/PersistentRequest detailed design 22-79
Polling 7-12

Abstract Valuetype DIIPollable 7-14
Abstract Valuetype Pollable 7-13
interface PollableSet 7-14

Polling Model
signatures 22-18

Portable Object Adapter 11-1, 23-6, 23-22
abstract model description 11-2
AdapterActivator interface 11-20
creating 11-32, 11-51
creating object references 11-7
creation 11-6
destroying 11-34
dynamic skeleton interface 11-12
finding 11-33
implicit activation 11-10
Implicit Activation policy 11-32
interface 11-32
Interfaces 23-6
model architecture 11-4
model components 11-2
multi-threading 11-11
overview 11-1
Policies 23-7
request processing 11-9
root POA 11-50
ServantActivator interface 11-23
ServantLocator Interface 11-25
ServantManager interface 11-22
SYSTEM_ID policy 11-51
usage scenarios 11-50

Portable Oject Adaptor
policy objects 11-28

PortableServer
UML description of 11-49

Pragma 10-48
pragma directive

and Interface Repository 10-45
id 10-45

Prefix Pragma 10-45
preinvoke operation 11-22
prepare 7-10
Preprocessing 3-11
PrimitiveDef 10-26

OMG IDL for 10-26
principal 15-14
principal pseudo object 18-29, 18-32
Priority Banded Connections 24-12, 24-35

Binding of Priority Banded Connection 24-37
Scope of PriorityBandedConnectionPolicy 24-37

Priority banded connections 24-35
Priority Inheritance 24-11
Priority Models 24-11
Priority Transforms 24-26

Ada Language Binding for PriorityTransform 24-28
C Language Binding for PriorityTransform 24-27
C++ Language Binding for PriorityTransform 24-28
Java Language Binding for PriorityTransform 24-29
Semantics 24-29

PriorityMappings 24-10
PriorityRange 22-7
PrivateConnectionPolicy 24-39
profile

tags for A-1
profile_index 22-50, 22-52
property name 4-27
Protocol Configuration 24-40

ClientProtocolPolicy 24-42
Protocol Configuration Semantics 24-44
Scope of ClientProtocolPolicy 24-43
Scope of ServerProtocolPolicy 24-42
ServerProtocolPolicy 24-40

proxy 14-5
Proxy Creation and Management 14-5

Q
QoS Abstract Model Design 22-72
qualified name 3-51
Quality of Service 22-2

framework 22-2
Quality of Service (QoS) 22-2
QueryInterface 17-11, 19-7
QueueOrderPolicy 22-11
QueueOrderPolicy interface 22-11

R
Real-Time 24-4
Real-Time CORBA 24-4

Activities 24-5
End-to-End Predictability 24-5
Management of Resources 24-6
Meeting Real-Time Requirements 24-4
The Nature of Real-Time 24-4

Real-Time CORBA Architecture 24-8
Architectural Overview 24-8

Real-Time CORBA Configuration 24-12
Real-Time CORBA Current 24-10
Real-Time CORBA Extensions 24-13
Real-Time CORBA Modules 24-9
Real-Time CORBA Mutexes 24-11
Real-Time CORBA Priority 24-10
Real-Time CORBA Priority Models 24-22

Client Propagated Priority Model 24-24
PriorityModelPolicy 24-22
Scope of PriorityModelPolicy 24-23
Server Declared Priority Model 24-24
Setting Server Priority on a Per-object Reference Basis 24-25

Real-Time CORBA Scheduling Service 24-50
Real-Time Current 24-21
Real-Time ORB 24-9, 24-13

Real-Time CORBA System Exceptions 24-14
Real-Time ORB Initialization 24-14

Real-Time POA 24-15
REBIND 4-58
Rebind Support 22-4
Index-12 CORBA, v2.4.2 February 2001

Index
Interface RebindPolicy 22-5
Request and Reply Priority 22-7
Request and Reply Timeout 22-8
Routing 22-10
Synchronization Scope 22-6
typedefshortRebindMode 22-4

RebindMode 22-4
RebindPolicy interface 22-5
ReCopy Method 20-11
reference encapsulation 14-5
reference model ii
reference translation 14-5
register_destination 22-65
Registering Dynamic Implementation Routines 8-5
RegistrationState 22-63
Relationship Service 12-5
RelativeRequestTimeoutPolicy 22-9
RelativeRequestTimeoutPolicy interface 22-9
RelativeRoundtripTimeoutPolicy interface 22-9
release operation 4-13
remove 7-15
reply 22-51
reply_body 22-51, 22-52
reply_destination 22-50
reply_type 22-51
ReplyDestination 22-49
ReplyEndTimePolicy 22-9
ReplyHandler 22-22, 22-75, 22-78
ReplyHandler interface 22-50
ReplyHandler Operations

for exceptional replies 22-23
for NO_EXCEPTION replies 22-23

ReplyPriorityPolicy 22-8
ReplyPriorityPolicy interfaces 22-7
ReplyStartTimePolicy 22-8
Repository interface

OMG IDL for 10-20
RepositoryId

and COM interface identifiers 18-44
and COM mapping 18-11
and pragma directive 10-45
format of 10-42

RepositoryIds 10-42
DCE UUID Format 10-44
For More Information 10-50
LOCAL Format 10-45
OMG IDL Format 10-42
Pragma Directives for RepositoryId 10-45
RepositoryIDs for OMG-Specified Types 10-50
RMI Hashed Format 10-43

request context 1-8
request form 1-3
Request interface

get_response operation 7-9
send operation 7-8

request level bridging 14-2
types of 14-6

Request Operations
add_arg 7-7
create_request 7-5
delete 7-8

get_response 7-9
invoke 7-8
poll_response 7-9
prepare 7-10
send 7-8
sendc 7-10
sendp 7-9

Request Routing Algorithm 22-55
Request/Reply Extent Semantics 20-8
Request/Reply Routers 22-82
RequestEndTimePolicy 22-8
RequestInfo 22-50
Request-level Bridging 14-3
RequestMessage 22-48
RequestPriorityPolicy 22-7
RequestProcessingPolicy 11-30, 23-8
Requests 1-3
reserved 22-49
response_flags 15-34, 22-49
result

defined 1-8
resume_destination 22-65
ResumePolicy 22-64
RetryPolicy 22-63
Return Status and Exceptions 7-4
ROUTE_FORWARD 22-10
ROUTE_NONE 22-10
ROUTE_STORE_AND_FORWARD 22-10
Router 22-76
Router Administration 22-59

Constants 22-63
Exceptions 22-63
Interfaces 22-64
Values 22-63

Router interface 22-50
RouterAdmin 22-59
RouterAdmin interface 22-64
Routing Object References 22-46
RoutingPolicy interface 22-10
RoutingType 22-10
RoutingTypeRange 22-10
RPC 16-20, 16-24
run operation 23-4

S
SAFEARRAY 17-10, 18-40
Scheduling Service 24-13
scoped name identifier 3-51
scoped_name 3-20
Security Considerations 6-4
Security Service 22-86
selected_qos 22-50, 22-52
Semantics 24-20
send_multiple_requests 22-51
send_request 22-51
sendc 7-10, 22-16
sendp 7-9, 22-18
sequence octet 15-14, 15-29
sequence type 3-39, 3-41, 15-12
SequenceDef 10-27

OMG IDL for 10-27
CORBA, v2.4.2 February 2001 Index-13

Index

-

ServantManagers 23-7
ServantRetentionPolicy 11-30, 23-8
Server C++ Example Code 24-53
ServerProtocolPolicy 24-40
ServerRequest’s Handling of Operation Parameters 8-4
ServerRequestPseudo-Object 8-3
server-side

policy management 4-42
server-side policies 22-73
Service Contexts 22-58
service_contexts 22-49
ServiceContext 13-27
ServiceID 13-28
set_policy_overrides 4-43
SetErrorInfo interface 18-15
signature 1-7, 4
Special Cases of Data Type Conversion 19-43
static routing 22-83
string type 3-41, 15-12
string_to_object operation 4-8

OMG PIDL for 4-8
StringDef 10-26

OMG IDL for 10-26
struct type 15-11
StructDef 10-23

OMG IDL for 10-23
Structures

MessageBody 22-48
ReplyDestination 22-49
RequestInfo 22-50
RequestMessage 22-48

stub interface 2-8, 2-9
subject 3-50
suspend_destination 22-65
SUSPENDED 22-63
SYNC_NONE 22-6
SYNC_WITH_SERVER 22-6
SYNC_WITH_TARGET 22-6
SYNC_WITH_TRANSPORT 22-6
SyncNow Method 20-11
SyncScope 22-6
SyncScopePolicy 22-7
SYSTEM_EXCEPTION 22-57

T
tag

component 13-20
protocol 13-20
requests to allocate A-1

TAG_MULTIPLE_COMPONENTS tag 13-16, 13-20
TAG_POLICIES 22-72
target 17-6, 17-34, 22-50, 22-52
Target Router 22-55
TCKind 15-23
TCP/IP 15-46, 15-50
Thread Priorities 24-16
Thread Scheduling 24-9
thread-level policies 4-41
ThreadPolicy 11-28, 23-7
Threadpools 24-11, 24-31

Creation of Threadpool with Lanes 24-33

Creation of Threadpool without Lanes 24-33
Request Buffering 24-34
Scope of ThreadpoolPolicy 24-34

TII 22-82
Time-Independent Invocation 22-76
Time-Independent Invocation Components 22-75
TIMEOUT 4-58
timeout 22-52
to_visit 22-50, 22-52
Transaction Service 13-10
Transaction service compatibility 22-84
TRANSACTION_MODE exception 4-58
TRANSACTION_UNAVAILABLE Exception 4-58
transfer syntax

between ORBs and inter-ORB bridges 15-3
TRANSIENT policy 23-8
Translating COM

Currency to Automation CURRENCY 19-43
Translating CORBA boolean to Automation boolean and Automa

tion boolean to CORBA boolean 19-43
Translating CORBA double to Automation DATE 19-43
transparency 13-4
transparency of location 13-2
TRANSPARENT 22-5
type 1-4
Type Declaration

Any Type 3-36
Basic Types 3-34
Boolean Type 3-36
Char Type 3-35
Constructed Types 3-36
Floating-Point Types 3-35
Integer Types 3-35
Native Types 3-43
Octet Type 3-36
Template Types 3-40
Wide Char Type 3-36

Type Library Mapping 18-52
type specifier

syntax of 3-33
TypeCode 7-3, 18-29, 23-5

OMG IDL for 10-56
TypeCode constants 10-55
TypeCode interface

OMG IDL for 10-51
TypeCodes

Creating TypeCodes 10-56
The TypeCode Interface 10-51
TypeCode Constants 10-55

typed_excep_holder_repids 22-49
TypedefDef 10-23
types

any 1-5
basic 1-4
constructed 1-5
defined 1-4

Type-Specific ExceptionHolder Mapping 22-20
Type-Specific Poller Mapping 22-26

Basic Type-Specific Poller 22-26
Persistent Type-Specific Poller 22-29
Poller operations for Interface attributes 22-28
Index-14 CORBA, v2.4.2 February 2001

Index
Poller operations for Interface operations 22-27
Type-specific ReplyHandler

Replying to a 22-57
Type-Specific ReplyHandler Mapping 22-22

U
UML Description of PortableServer 11-49
Unicode 17-10, 18-37, 19-11
union type 3-37, 15-12
UnionDef 10-24
UnlimitedPing 22-63
unregister_destination 22-65
UntypedReplyHandler 22-59

Replying to an 22-58
UntypedReplyHandler interface 22-51
Usage Guidelines 6-3
Usage Scenarios

Creating a POA 11-51
Creating References before Activation 11-53
Explicit Activation with POA-assigned Object Ids 11-51
Explicit Activation with User-assigned Object Ids 11-52
Getting the Root POA 11-50
Multiple Object Ids Mapping to a Single Servant 11-57
Object Activation on Demand 11-55
One Servant for All Objects 11-57
Persistent Objects with POA-assigned Ids 11-57
Servant Manager Definition and Creation 11-53
Single Servant, Many Objects and Types, Using DSI 11-60

USER_EXCEPTION 22-57
Using Interceptors

Message-Level Interceptors 21-7
Request-Level Interceptors 21-6

V
validate_connection 4-18
value 1-3
Value Declaration

Abstract Value Type 3-27
Boxed Value Type 3-26
Regular Value Type 3-24
Value Forward Declaration 3-27
Valuetype Inheritance 3-28

value type 1-6
Value types 5-2
ValueBoxDef 10-41
ValueDef 10-38
ValueMemberDef 10-37
Values

DecayPolicy 22-64
ImmediatePing 22-63
ImmediateSuspend 22-63
LimitedPing 22-64
ResumePolicy 22-64

VARIANT 18-41, 19-5, 19-30, 19-48
OLE data types 18-41

Version Pragma 10-48
view 17-5, 17-22
View interface 17-31
visited 22-50
Visual Basic 17-9

W
Windows System Registry 17-25, 19-2, 19-25
WstringDef 10-27

X
X/Open ii
CORBA, v2.4.2 February 2001 Index-15

Index
Index-16 CORBA, v2.4.2 February 2001

	Preface
	1. The Object Model
	1.1 Overview
	1.2 Object Semantics
	1.2.1 Objects
	1.2.2 Requests
	1.2.3 Object Creation and Destruction
	1.2.4 Types
	1.2.5 Interfaces
	1.2.6 Value Types
	1.2.7 Abstract Interfaces
	1.2.8 Operations
	1.2.9 Attributes

	1.3 Object Implementation
	1.3.1 The Execution Model: Performing Services
	1.3.2 The Construction Model

	2. CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object Implementations
	2.1.4 Object References
	2.1.5 OMG Interface Definition Language
	2.1.6 Mapping of OMG IDL to Programming Languages
	2.1.7 Client Stubs
	2.1.8 Dynamic Invocation Interface
	2.1.9 Implementation Skeleton
	2.1.10 Dynamic Skeleton Interface
	2.1.11 Object Adapters
	2.1.12 ORB Interface
	2.1.13 Interface Repository
	2.1.14 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 CORBA Required Object Adapter
	2.6.1 Portable Object Adapter

	2.7 The Integration of Foreign Object Systems

	3. OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.6 Module Declaration
	3.7 Interface Declaration
	3.7.1 Interface Header
	3.7.2 Interface Inheritance Specification
	3.7.3 Interface Body
	3.7.4 Forward Declaration
	3.7.5 Interface Inheritance

	3.8 Value Declaration
	3.8.1 Regular Value Type
	3.8.2 Boxed Value Type
	3.8.3 Abstract Value Type
	3.8.4 Value Forward Declaration
	3.8.5 Valuetype Inheritance

	3.9 Constant Declaration
	3.9.1 Syntax
	3.9.2 Semantics

	3.10 Type Declaration
	3.10.1 Basic Types
	3.10.2 Constructed Types
	3.10.4 Template Types
	3.10.5 Complex Declarator
	3.10.6 Native Types

	3.11 Exception Declaration
	3.12 Operation Declaration
	3.12.1 Operation Attribute
	3.12.2 Parameter Declarations
	3.12.3 Raises Expressions
	3.12.4 Context Expressions

	3.13 Attribute Declaration
	3.14 CORBA Module
	3.15 Names and Scoping
	3.15.1 Qualified Names
	3.15.2 Scoping Rules and Name Resolution
	3.15.3 Special Scoping Rules for Type Names

	4. ORB Interface
	4.1 Overview
	4.2 The ORB Operations
	4.2.1 Converting Object References to Strings
	4.2.2 Getting Service Information
	4.2.3 Thread-Related Operations

	4.3 Object Reference Operations
	4.3.1 Determining the Object Interface
	4.3.2 Duplicating and Releasing Copies of Object References
	4.3.3 Nil Object References
	4.3.4 Equivalence Checking Operation
	4.3.5 Probing for Object Non-Existence
	4.3.6 Object Reference Identity
	4.3.7 Getting Policy Associated with the Object
	4.3.8 Overriding Associated Policies on an Object Reference
	4.3.9 Validating Connection
	4.3.10 Getting the Domain Managers Associated with the Object

	4.4 ValueBase Operations
	4.5 ORB and OA Initialization and Initial References
	4.5.1 ORB Initialization
	4.5.2 Obtaining Initial Object References
	4.5.3 Configuring Initial Service References

	4.6 Context Object
	4.6.1 Introduction
	4.6.2 Context Object Operations

	4.7 Current Object
	4.8 Policy Object
	4.8.1 Definition of Policy Object
	4.8.2 Creation of Policy Objects
	4.8.3 Usages of Policy Objects
	4.8.4 Policy Associated with the Execution Environment
	4.8.5 Specification of New Policy Objects
	4.8.6 Standard Policies

	4.9 Management of Policies
	4.9.1 Client Side Policy Management
	4.9.2 Server Side Policy Management
	4.9.3 Policy Management Interfaces

	4.10 Management of Policy Domains
	4.10.1 Basic Concepts
	4.10.2 Domain Management Operations

	4.11 Exceptions
	4.11.1 Definition of Terms
	4.11.2 System Exceptions
	4.11.3 Standard System Exception Definitions
	4.11.4 Standard Minor Exception Codes

	5. Value Type Semantics
	5.1 Overview
	5.2 Architecture
	5.2.1 Abstract Values
	5.2.2 Operations
	5.2.3 Value Type vs. Interfaces
	5.2.4 Parameter Passing
	5.2.5 Substitutability Issues
	5.2.6 Widening/Narrowing
	5.2.7 Value Base Type
	5.2.8 Life Cycle issues
	5.2.9 Security Considerations

	5.3 Standard Value Box Definitions
	5.4 Language Mappings
	5.4.1 General Requirements
	5.4.2 Language Specific Marshaling
	5.4.3 Language Specific Value Factory Requirements
	5.4.4 Value Method Implementation

	5.5 Custom Marshaling
	5.5.1 Implementation of Custom Marshaling
	5.5.2 Marshaling Streams

	5.6 Access to the Sending Context Run Time

	6. Abstract Interface Semantics
	6.1 Overview
	6.2 Semantics of Abstract Interfaces
	6.3 Usage Guidelines
	6.4 Example
	6.5 Security Considerations
	6.5.1 Passing Values to Trusted Domains

	7. Dynamic Invocation Interface
	7.1 Overview
	7.1.1 Common Data Structures
	7.1.2 Memory Usage
	7.1.3 Return Status and Exceptions

	7.2 Request Operations
	7.2.1 create_request
	7.2.2 add_arg
	7.2.3 invoke
	7.2.4 delete
	7.2.5 send
	7.2.6 poll_response
	7.2.7 get_response
	7.2.8 sendp
	7.2.9 prepare
	7.2.10 sendc

	7.3 ORB Operations
	7.3.1 send_multiple_requests
	7.3.2 get_next_response and poll_next_response

	7.4 Polling
	7.4.1 Abstract Valuetype Pollable
	7.4.2 Abstract Valuetype DIIPollable
	7.4.3 interface PollableSet

	7.5 List Operations
	7.5.1 create_list
	7.5.2 add_item
	7.5.3 free
	7.5.4 free_memory
	7.5.5 get_count
	7.5.6 create_operation_list

	8. Dynamic Skeleton Interface
	8.1 Introduction
	8.2 Overview
	8.3 ServerRequestPseudo-Object
	8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

	8.4 DSI: Language Mapping
	8.4.1 ServerRequest’s Handling of Operation Parameters
	8.4.2 Registering Dynamic Implementation Routines

	9. Dynamic Management of Any Values
	9.1 Overview
	9.2 DynAny API
	9.2.1 Locality and usage constraints
	9.2.2 Creating a DynAny object
	9.2.3 The DynAny interface
	9.2.4 The DynFixed Interface
	9.2.5 The DynEnum interface
	9.2.6 The DynStruct interface
	9.2.7 The DynUnion interface
	9.2.8 The DynSequence interface
	9.2.9 The DynArray interface
	9.2.10 The DynValue interface
	9.2.11 The DynValue interface
	9.2.12 The DynValueBox interface

	9.3 Usage in C++ Language
	9.3.1 Dynamic creation of CORBA::Any values
	9.3.2 Dynamic interpretation of CORBA::Any values

	10.The Interface Repository
	10.1 Overview
	10.2 Scope of an Interface Repository
	10.3 Implementation Dependencies
	10.3.1 Managing Interface Repositories

	10.4 Basics
	10.4.1 Names and Identifiers
	10.4.2 Types and TypeCodes
	10.4.3 Interface Repository Objects
	10.4.4 Structure and Navigation of the Interface Repository

	10.5 Interface Repository Interfaces
	10.5.1 Supporting Type Definitions
	10.5.2 IRObject
	10.5.3 Contained
	10.5.4 Container
	10.5.5 IDLType
	10.5.6 Repository
	10.5.7 ModuleDef
	10.5.8 ConstantDef
	10.5.9 TypedefDef
	10.5.10 StructDef
	10.5.11 UnionDef
	10.5.12 EnumDef
	10.5.13 AliasDef
	10.5.14 PrimitiveDef
	10.5.15 StringDef
	10.5.16 WstringDef
	10.5.17 FixedDef
	10.5.18 SequenceDef
	10.5.19 ArrayDef
	10.5.20 ExceptionDef
	10.5.21 AttributeDef
	10.5.22 OperationDef
	10.5.23 InterfaceDef
	10.5.24 AbstractInterfaceDef
	10.5.25 LocalInterfaceDef
	10.5.26 ValueMemberDef
	10.5.27 ValueDef
	10.5.28 ValueBoxDef
	10.5.29 NativeDef

	10.6 RepositoryIds
	10.6.1 OMG IDL Format
	10.6.2 RMI Hashed Format
	10.6.3 DCE UUID Format
	10.6.4 LOCAL Format
	10.6.5 Pragma Directives for RepositoryId
	10.6.6 For More Information
	10.6.7 RepositoryIDs for OMG-Specified Types

	10.7 TypeCodes
	10.7.1 The TypeCode Interface
	10.7.2 TypeCode Constants
	10.7.3 Creating TypeCodes

	10.8 OMG IDL for Interface Repository

	11.The Portable Object Adapter
	11.1 Overview
	11.2 Abstract Model Description
	11.2.1 Model Components
	11.2.2 Model Architecture
	11.2.3 POA Creation
	11.2.4 Reference Creation
	11.2.5 Object Activation States
	11.2.6 Request Processing
	11.2.7 Implicit Activation
	11.2.8 Multi-threading
	11.2.9 Dynamic Skeleton Interface
	11.2.10 Location Transparency

	11.3 Interfaces
	11.3.1 The Servant IDL Type
	11.3.2 POAManager Interface
	11.3.3 AdapterActivator Interface
	11.3.4 ServantManager Interface
	11.3.5 ServantActivator Interface
	11.3.6 ServantLocator Interface
	11.3.7 POA Policy Objects
	11.3.8 POA Interface
	11.3.9 Current Operations

	11.4 IDL for PortableServer Module
	11.5 UML Description of PortableServer
	11.6 Usage Scenarios
	11.6.1 Getting the Root POA
	11.6.2 Creating a POA
	11.6.3 Explicit Activation with POA-assigned Object Ids
	11.6.4 Explicit Activation with User-assigned Object Ids
	11.6.5 Creating References before Activation
	11.6.6 Servant Manager Definition and Creation
	11.6.7 Object Activation on Demand
	11.6.8 Persistent Objects with POA-assigned Ids
	11.6.9 Multiple Object Ids Mapping to a Single Servant
	11.6.10 One Servant for All Objects
	11.6.11 Single Servant, Many Objects and Types, Using DSI

	12.Interoperability Overview
	12.1 Elements of Interoperability
	12.1.1 ORB Interoperability Architecture
	12.1.2 Inter-ORB Bridge Support
	12.1.3 General Inter-ORB Protocol (GIOP)
	12.1.4 Internet Inter-ORB Protocol (IIOP)
	12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	12.2 Relationship to Previous Versions of CORBA
	12.3 Examples of Interoperability Solutions
	12.3.1 Example 1
	12.3.2 Example 2
	12.3.3 Example 3
	12.3.4 Interoperability Compliance

	12.4 Motivating Factors
	12.4.1 ORB Implementation Diversity
	12.4.2 ORB Boundaries
	12.4.3 ORBs Vary in Scope, Distance, and Lifetime

	12.5 Interoperability Design Goals
	12.5.1 Non-Goals

	13.ORB Interoperability Architecture
	13.1 Overview
	13.1.1 Domains
	13.1.2 Bridging Domains

	13.2 ORBs and ORB Services
	13.2.1 The Nature of ORB Services
	13.2.2 ORB Services and Object Requests
	13.2.3 Selection of ORB Services

	13.3 Domains
	13.3.1 Definition of a Domain
	13.3.2 Mapping Between Domains: Bridging

	13.4 Interoperability Between ORBs
	13.4.1 ORB Services and Domains
	13.4.2 ORBs and Domains
	13.4.3 Interoperability Approaches
	13.4.4 Policy-Mediated Bridging
	13.4.5 Configurations of Bridges in Networks

	13.5 Object Addressing
	13.5.1 Domain-relative Object Referencing
	13.5.2 Handling of Referencing Between Domains

	13.6 An Information Model for Object References
	13.6.1 What Information Do Bridges Need?
	13.6.2 Interoperable Object References: IORs
	13.6.3 Standard IOR Components
	13.6.4 Profile and Component Composition in IORs
	13.6.5 IOR Creation and Scope
	13.6.6 Stringified Object References
	13.6.7 Object URLs
	13.6.8 Object Service Context

	13.7 Code Set Conversion
	13.7.1 Character Processing Terminology
	13.7.2 Code Set Conversion Framework
	13.7.3 Mapping to Generic Character Environments

	13.8 Example of Generic Environment Mapping
	13.8.1 Generic Mappings
	13.8.2 Interoperation and Generic Mappings

	13.9 Relevant OSFM Registry Interfaces
	13.9.1 Character and Code Set Registry
	13.9.2 Access Routines

	14.Building Inter-ORB Bridges
	14.1 Introduction
	14.2 In-Line and Request-Level Bridging
	14.2.1 In-line Bridging
	14.2.2 Request-level Bridging
	14.2.3 Collocated ORBs

	14.3 Proxy Creation and Management
	14.4 Interface-specific Bridges and Generic Bridges
	14.5 Building Generic Request-Level Bridges
	14.6 Bridging Non-Referencing Domains
	14.7 Bootstrapping Bridges

	15.General Inter-ORB Protocol
	15.1 Goals of the General Inter-ORB Protocol
	15.2 GIOP Overview
	15.2.1 Common Data Representation (CDR)
	15.2.2 GIOP Message Overview
	15.2.3 GIOP Message Transfer

	15.3 CDR Transfer Syntax
	15.3.1 Primitive Types
	15.3.2 OMG IDL Constructed Types
	15.3.3 Encapsulation
	15.3.4 Value Types
	15.3.5 Pseudo-Object Types
	15.3.6 Object References
	15.3.7 Abstract Interfaces

	15.4 GIOP Message Formats
	15.4.1 GIOP Message Header
	15.4.2 Request Message
	15.4.3 Reply Message
	15.4.4 CancelRequest Message
	15.4.5 LocateRequest Message
	15.4.6 LocateReply Message
	15.4.7 CloseConnection Message
	15.4.8 MessageError Message
	15.4.9 Fragment Message

	15.5 GIOP Message Transport
	15.5.1 Connection Management
	15.5.2 Message Ordering

	15.6 Object Location
	15.7 Internet Inter-ORB Protocol (IIOP)
	15.7.1 TCP/IP Connection Usage
	15.7.2 IIOP IOR Profiles
	15.7.3 IIOP IOR Profile Components

	15.8 Bi-Directional GIOP
	15.8.1 Bi-Directional IIOP

	15.9 Bi-directional GIOP policy
	15.10 OMG IDL
	15.10.1 GIOP Module
	15.10.2 IIOP Module
	15.10.3 BiDirPolicy Module

	16.The DCE ESIOP
	16.1 Goals of the DCE Common Inter-ORB Protocol
	16.2 DCE Common Inter-ORB Protocol Overview
	16.2.1 DCE-CIOP RPC
	16.2.2 DCE-CIOP Data Representation
	16.2.3 DCE-CIOP Messages
	16.2.4 Interoperable Object Reference (IOR)

	16.3 DCE-CIOP Message Transport
	16.3.1 Pipe-based Interface
	16.3.2 Array-based Interface

	16.4 DCE-CIOP Message Formats
	16.4.1 DCE_CIOP Invoke Request Message
	16.4.2 DCE-CIOP Invoke Response Message
	16.4.3 DCE-CIOP Locate Request Message
	16.4.4 DCE-CIOP Locate Response Message

	16.5 DCE-CIOP Object References
	16.5.1 DCE-CIOP String Binding Component
	16.5.2 DCE-CIOP Binding Name Component
	16.5.3 DCE-CIOP No Pipes Component
	16.5.4 Complete Object Key Component
	16.5.5 Endpoint ID Position Component
	16.5.6 Location Policy Component

	16.6 DCE-CIOP Object Location
	16.6.1 Location Mechanism Overview
	16.6.2 Activation
	16.6.3 Basic Location Algorithm
	16.6.4 Use of the Location Policy and the Endpoint ID

	16.7 OMG IDL for the DCE CIOP Module
	16.8 References for this Chapter

	17.Interworking Architecture
	17.1 Purpose of the Interworking Architecture
	17.1.1 Comparing COM Objects to CORBA Objects

	17.2 Interworking Object Model
	17.2.1 Relationship to CORBA Object Model
	17.2.2 Relationship to the OLE/COM Model
	17.2.3 Basic Description of the Interworking Model

	17.3 Interworking Mapping Issues
	17.4 Interface Mapping
	17.4.1 CORBA/COM
	17.4.2 CORBA/Automation
	17.4.3 COM/CORBA
	17.4.4 Automation/CORBA

	17.5 Interface Composition Mappings
	17.5.1 CORBA/COM
	17.5.2 Detailed Mapping Rules
	17.5.3 Example of Applying Ordering Rules
	17.5.4 Mapping Interface Identity

	17.6 Object Identity, Binding, and Life Cycle
	17.6.1 Object Identity Issues
	17.6.2 Binding and Life Cycle

	17.7 Interworking Interfaces
	17.7.1 SimpleFactory Interface
	17.7.2 IMonikerProvider Interface and Moniker Use
	17.7.3 ICORBAFactory Interface
	17.7.4 IForeignObject Interface
	17.7.5 ICORBAObject Interface
	17.7.6 ICORBAObject2
	17.7.7 IORBObject Interface
	17.7.8 Naming Conventions for View Components

	17.8 Distribution
	17.8.1 Bridge Locality
	17.8.2 Distribution Architecture

	17.9 Interworking Targets
	17.10 Compliance to COM/CORBA Interworking
	17.10.1 Products Subject to Compliance
	17.10.2 Compliance Points

	18.Mapping: COM and CORBA
	18.1 Data Type Mapping
	18.2 CORBA to COM Data Type Mapping
	18.2.1 Mapping for Basic Data Types
	18.2.2 Mapping for Constants
	18.2.3 Mapping for Enumerators
	18.2.4 Mapping for String Types
	18.2.5 Mapping for Struct Types
	18.2.6 Mapping for Union Types
	18.2.7 Mapping for Sequence Types
	18.2.8 Mapping for Array Types
	18.2.9 Mapping for the any Type
	18.2.10 Interface Mapping
	18.2.11 Inheritance Mapping
	18.2.12 Mapping for Pseudo-Objects
	18.2.13 Interface Repository Mapping

	18.3 COM to CORBA Data Type Mapping
	18.3.1 Mapping for Basic Data Types
	18.3.2 Mapping for Constants
	18.3.3 Mapping for Enumerators
	18.3.4 Mapping for String Types
	18.3.5 Mapping for Structure Types
	18.3.6 Mapping for Union Types
	18.3.7 Mapping for Array Types
	18.3.8 Mapping for VARIANT
	18.3.9 Mapping for Pointers
	18.3.10 Interface Mapping
	18.3.11 Mapping for Read-Only Attributes
	18.3.12 Mapping for Read-Write Attributes

	19.Mapping: Automation and CORBA
	19.1 Mapping CORBA Objects to Automation
	19.1.1 Architectural Overview
	19.1.2 Main Features of the Mapping

	19.2 Mapping for Interfaces
	19.2.1 Mapping for Attributes and Operations
	19.2.2 Mapping for OMG IDL Single Inheritance
	19.2.3 Mapping of OMG IDL Multiple Inheritance

	19.3 Mapping for Basic Data Types
	19.3.1 Basic Automation Types
	19.3.2 Special Cases of Basic Data Type Mapping
	19.3.3 Mapping for Strings

	19.4 IDL to ODL Mapping
	19.4.1 A Complete IDL to ODL Mapping for the Basic Data Types

	19.5 Mapping for Object References
	19.5.1 Type Mapping
	19.5.2 Object Reference Parameters and IForeignObject

	19.6 Mapping for Enumerated Types
	19.7 Mapping for Arrays and Sequences
	19.8 Mapping for CORBA Complex Types
	19.8.1 Mapping for Structure Types
	19.8.2 Mapping for Union Types
	19.8.3 Mapping for TypeCodes
	19.8.4 Mapping for anys
	19.8.5 Mapping for Typedefs
	19.8.6 Mapping for Constants
	19.8.7 Getting Initial CORBA Object References
	19.8.8 Creating Initial in Parameters for Complex Types
	19.8.9 Mapping CORBA Exceptions to Automation Exceptions
	19.8.10 Conventions for Naming Components of the Automation View
	19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo- Exceptions
	19.8.12 Automation View Interface as a Dispatch Interface (Nondual)
	19.8.13 Aggregation of Automation Views
	19.8.14 DII and DSI

	19.9 Mapping Automation Objects as CORBA Objects
	19.9.1 Architectural Overview
	19.9.2 Main Features of the Mapping
	19.9.3 Getting Initial Object References
	19.9.4 Mapping for Interfaces
	19.9.5 Mapping for Inheritance
	19.9.6 Mapping for ODL Properties and Methods
	19.9.7 Mapping for Automation Basic Data Types
	19.9.8 Conversion Errors
	19.9.9 Special Cases of Data Type Conversion
	19.9.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types
	19.9.11 Mapping for Object References
	19.9.12 Mapping for Enumerated Types
	19.9.13 Mapping for SafeArrays
	19.9.14 Mapping for Typedefs
	19.9.15 Mapping for VARIANTs
	19.9.16 Mapping Automation Exceptions to CORBA

	19.10 Older Automation Controllers
	19.10.1 Mapping for OMG IDL Arrays and Sequences to Collections

	19.11 Example Mappings
	19.11.1 Mapping the OMG Naming Service to Automation
	19.11.2 Mapping a COM Service to OMG IDL
	19.11.3 Mapping an OMG Object Service to Automation

	20.Interoperability with non-CORBA Systems
	20.1 Introduction
	20.1.1 COM/CORBA Part A

	20.2 Conformance Issues
	20.2.1 Performance Issues
	20.2.2 Scalability Issues
	20.2.3 CORBA Clients for DCOM Servers

	20.3 Locality of the Bridge
	20.4 Extent Definition
	20.4.1 Marshaling Constraints
	20.4.2 Marshaling Key
	20.4.3 Extent Format

	20.5 Request/Reply Extent Semantics
	20.6 Consistency
	20.6.1 IValueObject
	20.6.2 ISynchronize and DISynchronize

	20.7 DCOM Value Objects
	20.7.1 Passing Automation Compound Types as DCOM Value Objects
	20.7.2 Passing CORBA-Defined Pseudo-Objects as DCOM Value Objects
	20.7.3 IForeignObject
	20.7.4 DIForeignComplexType
	20.7.5 DIForeignException
	20.7.6 DISystemException
	20.7.7 DICORBAUserException
	20.7.8 DICORBAStruct
	20.7.9 DICORBAUnion
	20.7.10 DICORBATypeCode and ICORBATypeCode
	20.7.11 DICORBAAny
	20.7.12 ICORBAAny
	20.7.13 User Exceptions In COM

	20.8 Chain Avoidance
	20.8.1 CORBA Chain Avoidance
	20.8.2 COM Chain Avoidance

	20.9 Chain Bypass
	20.9.1 CORBA Chain Bypass
	20.9.2 COM Chain Bypass

	20.10 Thread Identification

	21.Interceptors
	21.1 Introduction
	21.1.1 ORB Core and ORB Services

	21.2 Interceptors
	21.2.1 Generic ORB Services and Interceptors
	21.2.2 Request-Level Interceptors
	21.2.3 Message-Level Interceptors
	21.2.4 Selecting Interceptors

	21.3 Client-Target Binding
	21.3.1 Binding Model
	21.3.2 Establishing the Binding and Interceptors

	21.4 Using Interceptors
	21.4.1 Request-Level Interceptors
	21.4.2 Message-Level Interceptors

	21.5 Interceptor Interfaces
	21.5.1 Client and Target Invoke
	21.5.2 Send and Receive Message

	21.6 IDL for Interceptors

	22.CORBA Messaging
	22.1 Section I - Introduction
	22.2 Messaging Quality of Service
	22.2.1 Rebind Support
	22.2.2 Synchronization Scope
	22.2.3 Request and Reply Priority
	22.2.4 Request and Reply Timeout
	22.2.5 Routing
	22.2.6 Queue Ordering

	22.3 Propagation of Messaging QoS
	22.3.1 Structures
	22.3.2 Messaging QoS Profile Component
	22.3.3 Messaging QoS Service Context

	22.4 Section II - Introduction
	22.5 Running Example
	22.6 Async Operation Mapping
	22.6.1 Callback Model Signatures (sendc)
	22.6.2 Polling Model Signatures (sendp)

	22.7 Exception Delivery in the Callback Model
	22.7.1 Generic ExceptionHolder Value
	22.7.2 Type-Specific ExceptionHolder Mapping
	22.7.3 Example

	22.8 Type-Specific ReplyHandler Mapping
	22.8.1 ReplyHandler Operations for NO_EXCEPTION Replies
	22.8.2 ReplyHandler Operations for Exceptional Replies
	22.8.3 Example

	22.9 Generic Poller Value
	22.9.1 operation_target
	22.9.2 operation_name
	22.9.3 associated_handler
	22.9.4 is_from_poller

	22.10 Type-Specific Poller Mapping
	22.10.1 Basic Type-Specific Poller
	22.10.2 Persistent Type-Specific Poller
	22.10.3 Example

	22.11 Example Programmer Usage
	22.11.1 Example Programmer Usage (Examples Mapped to C++)
	22.11.2 Client-Side C++ Example for the Asynchronous Method Signatures
	22.11.3 Client-Side C++ Example of the Callback Model
	22.11.4 Client-Side C++ Example of the Polling Model
	22.11.5 Server Side

	22.12 Section III - Introduction
	22.13 Routing Object References
	22.14 Message Routing
	22.14.1 Structures
	22.14.2 Interfaces
	22.14.3 Routing Protocol

	22.15 Router Administration
	22.15.1 Constants
	22.15.2 Exceptions
	22.15.3 Values
	22.15.4 Interfaces

	23.Minimum CORBA
	23.1 Introduction
	23.2 IDL
	23.3 CORBA Omitted Features
	23.4 ORB Interface Omissions
	23.4.1 ORB
	23.4.2 Object
	23.4.3 ConstructionPolicy

	23.5 Dynamic Invocation Interface
	23.6 Dynamic Skeleton Interface
	23.7 Dynamic Any
	23.8 Interface Repository
	23.8.1 TypeCode

	23.9 Portable Object Adapter
	23.9.1 Interfaces
	23.9.2 Policies

	23.10 Interoperability
	23.10.1 DCE Interoperability

	23.11 COM/CORBA Interworking
	23.12 Interceptors
	23.13 Language Mappings
	23.13.1 C++ Mapping Specific Issues
	23.13.2 Java Mapping Specific Issues

	23.14 minimumCORBA OMG IDL
	23.14.1 ORB Interface
	23.14.2 Dynamic Invocation Interface
	23.14.3 Dynamic Skeleton Interface
	23.14.4 Dynamic Management of Any Values
	23.14.5 Interface Repository
	23.14.6 Portable Object Adapter
	23.14.7 Interceptors

	24.Real-Time CORBA
	24.1 Overview
	24.2 Goals of the Specification
	24.3 Extending CORBA
	24.4 Approach to Real-Time CORBA
	24.4.1 The Nature of Real-Time
	24.4.2 Meeting Real-Time Requirements
	24.4.3 Activities
	24.4.4 End-to-End Predictability
	24.4.5 Management of Resources

	24.5 Compatibility
	24.5.1 Interoperability
	24.5.2 Portability
	24.5.3 CORBA - Real-Time CORBA Interworking

	24.6 Compliance
	24.7 Real-Time Architecture
	24.7.1 Real-Time CORBA Modules
	24.7.2 Real-Time ORB
	24.7.3 Thread Scheduling
	24.7.4 Real-Time CORBA Priority
	24.7.5 Native Priority and PriorityMappings
	24.7.6 Real-Time CORBA Current
	24.7.7 Priority Models
	24.7.8 Real-Time CORBA Mutexes and Priority Inheritance
	24.7.9 Threadpools
	24.7.10 Priority Banded Connections
	24.7.11 Non-Multiplexed Connections
	24.7.12 Invocation Timeouts
	24.7.13 Client and Server Protocol Configuration
	24.7.14 Real-Time CORBA Configuration
	24.7.15 Scheduling Service

	24.8 Real-Time ORB
	24.8.1 Real-Time ORB Initialization
	24.8.2 Real-Time CORBA System Exceptions

	24.9 Real-Time POA
	24.10 Native Thread Priorities
	24.11 CORBA Priority
	24.12 CORBA Priority Mappings
	24.12.1 C Language Binding for PriorityMapping
	24.12.2 C++ Language Binding for PriorityMapping
	24.12.3 Ada Language Binding for PriorityMapping
	24.12.4 Java Language Binding for PriorityMapping
	24.12.5 Semantics

	24.13 Real-Time Current
	24.14 Real-Time CORBA Priority Models
	24.14.1 PriorityModelPolicy
	24.14.2 Scope of PriorityModelPolicy
	24.14.3 Client Propagated Priority Model
	24.14.4 Server Declared Priority Model
	24.14.5 Setting Server Priority on a Per-object Reference Basis

	24.15 Priority Transforms
	24.15.1 C Language Binding for PriorityTransform
	24.15.2 C++ Language Binding for PriorityTransform
	24.15.3 Ada Language Binding for PriorityTransform
	24.15.4 Java Language Binding for PriorityTransform
	24.15.5 Semantics

	24.16 Mutex Interface
	24.17 Threadpools
	24.17.1 Creation of Threadpool without Lanes
	24.17.2 Creation of Threadpool with Lanes
	24.17.3 Request Buffering
	24.17.4 Scope of ThreadpoolPolicy

	24.18 Implicit and Explicit Binding
	24.19 Priority Banded Connections
	24.19.1 Scope of PriorityBandedConnectionPolicy
	24.19.2 Binding of Priority Banded Connection

	24.20 PrivateConnectionPolicy
	24.21 Invocation Timeout
	24.22 Protocol Configuration
	24.22.1 ServerProtocolPolicy
	24.22.2 Scope of ServerProtocolPolicy
	24.22.3 ClientProtocolPolicy
	24.22.4 Scope of ClientProtocolPolicy
	24.22.5 Protocol Configuration Semantics

	24.23 Consolidated OMG IDL
	24.24 Introduction
	24.25 OMG IDL
	24.26 Semantics
	24.27 Example
	24.27.1 Server C++ Example Code
	24.27.2 Client C++ Example Code
	24.27.3 Explanation of Example

	Appendix A - OMG IDL Tags
	Glossary
	Chapter Map
	Index

