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1 Introduction 

Problems worthy of attack prove 
 their worth by fighting back. 

(Pál Erd s) 
 
Information retrieval (IR) is concerned with finding and returning information 
stored in computers that is relevant to a user’s needs (materialized in a re-
quest or query). With the advent of the Internet and World Wide Web 
(Web for short), IR has acquired tremendous practical impact as well as 
theoretical importance. 
 The number of IR books that have appeared in the last ten years is 70% 
of the total number (approximately 30) published on the subject in all thus 
far. This is a clear sign that interest in learning, teaching, researching, and 
applying IR methods and theory has grown and is increasing rapidly (most 
probably owing to the Internet and the World Wide Web, which are “in-
vading” practically every aspect of human activity and life).  
 Most of the books published thus far are concerned with describing IR 
methods and theories, and they range from classical texts (Hays 1966, 
Salton 1971, van Rijsbergen 1979, Salton and McGill 1983, Korfhage 
1997, Kowalski 1997, Baeza-Yates and Ribeiro-Neto 1999) to ones that 
are based on linear algebra (Berry and Browne 1999, Langville and Meyer 
2006), concept lattice (Koester 2006b), geometry (e.g., van Rijsbergen 
2004, Widdows 2004), user modeling and context (Belew 2000, Spink and 
Cole 2005, Ingwersen and Järvelin 2005), natural language processing 
(Tait 2005), algorithms (Grossman and Frieder 2004), logic (Crestani et al. 
1998), language modeling (Croft and Lafferty 2003), and the mathematical 
axiomatic method (Dominich 2001). 

The present volume differs from all of the books that have appeared thus 
far in both approach and style. Retrieval methods (major proven models 
and ranking techniques) and information retrieval in general are treated in 
a unified manner within the one formal framework of modern algebra, 
namely abstract algebraic structures (primarily lattices, but also linear 
space, clans, and algebras), while keeping traditional algebraic tools (equa-
tion solving, matrix). This approach has some clear advantages: 
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• It sheds new light on the very mechanism of retrieval methods (at a con-
ceptual-mathematical level). 

• New properties are revealed. 
• New and efficient retrieval methods can be developed. 
• It allows for a very elegant treatment of IR. 
• Connections with modern algebra are created for further research. 

The book should be helpful for a wide range of readers from newcomers 
through students and educators to researchers and system developers com-
ing from a variety of fields such as computer science, mathematics, infor-
mation science, engineering, logics, linguistics, and physics. A precise de-
scription of every method is given in detail. For every method, a complete 
example is provided to enhance understanding. Every chapter, apart from 
Chapters 1 and 7, ends with exercises and problems designed to convey a 
deeper understanding of concepts, methods, and applications. Hints for 
solving the exercises are given at the end of the book. 

1.1 Information Retrieval 

1.1.1 Brief History of Information Retrieval 

In this section, an attempt is made to give a concise summary of the history 
(Wellish 1991, Lesk 2007) of IR, which may help one to understand ex-
actly what is meant by IR (and perhaps also to clear up some misunder-
standings and confusion according to which IR is a synonym for data min-
ing, or data retrieval, or library science, albeit that it stems from them and 
shares some aspects with them even today). 
 Very briefly, and yet very broadly, but very exactly, information re-
trieval means finding relevant information in a store of information. In 
other words, in principle, IR does not mean finding any information that 
we happen to come across or information we are fortunate enough to dis-
cover by chance without having anything particular in mind. IR means that 
we already have a need for information that we are able to formulate, and 
then find relevant items in a store (collection) of items. 

1.1.1.1 Table of Contents 

Try to imagine that our scientific books, journals, or teletexts lack tables of 
contents. Then imagine how you find out when a particular TV program 
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begins or on which page a specific article in, say, Scientific American, 
begins. It would be possible, but is it not easier to use a table of contents? 
And yet, there were times when there was no such thing as a table of con-
tents: e.g., there were none for the clay boards produced in ancient Baby-
lon that contained arithmetical calculations.  
 In ancient Greece and the Roman Empire papyrus scrolls were used to 
record data in a written format, and scholars found it useful to devise a 
means of organizing the material to make locating certain sections of text 
easier. For example, Pliny the Elder (around 70 CE) produced a table of 
subjects (similar to what we call today a table of contents) to his work The 
Natural History in 37 Books. The method of tables of contents was first 
used by Valerius Soranus in the second century BCE. Thus, we may as-
sume it had been employed earlier by the Greeks. 
 The method of tables of contents to retrieve information is an ancestor of 
what we call today inverted file structure, a most important data structure 
that is used extensively today in computer science as well as IR. 

1.1.1.2 Alphabet 

We all take it for granted that, e.g., people’s names can be put in alpha-
betical order. But try to imagine that you are looking for someone’s tele-
phone number in a London telephone directory in which the names are not 
ordered. How would you go about searching? How long would it take you 
to find the phone number? 
 However, alphabetization did not always exist. This special type of or-
dering strings of characters was probably invented, or rather devised, by 
Greek scholars in the third century BCE at the Library of Alexandria 
(Egypt) in order to better organize the large body of Greek literary work. 
Today alphabetization serves as the basis for, and is an ancestor of, one of 
the most important and widely used algorithms in computer science (as 
well as in IR), namely sorting. 

1.1.1.3 Hierarchy 

Try to imagine that you are looking for soup recipes in a cookbook that 
contains all kinds of recipes for French and Hungarian food in general, but 
is not divided into sections nor organized into headings or groups of foods. 
How would you find the recipes you are looking for? How long would it 
take? 
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 Organizing written material into a hierarchy of groups (chapters, sec-
tions, headings, paragraphs) is a useful means by which it is possible to 
consult the material more easily. In the first and second century CE, Ro-
man scholars (e.g., Valerius Maximus, Marcus Julius Frontinus, and Aulus 
Gellius) used to group and organize their written work into books and di-
vide the books into chapters with headings. 
 The hierarchical organization of written material to ease the retrieval of 
information is an ancestor of one of the most important data structures in 
computer science in general and in information retrieval in particular, and 
one of the most important concepts in graph theory, namely tree. 

1.1.1.4 Index  

Nowadays, if someone is looking for a particular author (and his works) in 
many libraries around the world, then he/she naturally uses a computer 
network. However, there may be readers who remember the days when 
this was not the case—a time when there were no computers. In the pre-
computer era (and still in many of today’s libraries), one way was to sim-
ply ask the librarian. But there was another way as well: the use of in-
dexes. This meant going to the big index board, pulling out index shelves, 
and browsing through paper cards containing authors’ names in alphabeti-
cal order.  
 The use of indexes goes back to ancient Rome, when indexes meant slips 
attached to papyrus scrolls that contained the title of the work. Thus, each 
scroll on the shelf could be identified without having to pull it out. With 
time, indexes could also include an abstract of the work. 
 Papyrus scrolls did not have page numbers, leaf numbers, or line num-
bers. (Note: The modern successor of papyrus scrolls is/was the micro-
film.) On the other hand, even if some works were produced in several 
copies (sometimes on the order of hundreds), no two copies were exactly 
the same.  
 The invention of printing (in the fifteenth century) made it possible to 
have page numbers and any number of exact copies. This, in turn, enabled 
the compilation of reliable indexes (e.g., in books on herbals). The first in-
dexes were not fully alphabetized (the words were ordered only on their 
first letter). Full alphabetization only became the rule in the eighteenth 
century.  
 Indexing is a method by which the exact location (chapter, page, line, 
record, sector, etc.) of an identifier (word, term, name, subject, code, 
etc.) in a unit (book, file, database, etc.) can be given, and it served as a 
basis of and is an ancestor of one of the most important data structures, 
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used, e.g., in computer science, database systems, Web search engines, 
and IR, namely inverted file structure. 

1.1.1.5 Inception of Information Retrieval 

In the late 1940s, the United States military carried out an indexing of war-
time scientific research documents captured from Germany. In the 1950s, 
the Soviet Union sent up the first artificial Earth satellite. This exploit was 
interpreted a sign of the “science gap” between the United States and the 
Soviet Union and led to the realization that little was known in the United 
States about Russian science and technology, and it served to  motivate 
American funding of research in mechanized literature search.  
 During this period, among other results:  

• The citation indexing method was invented (E. Garfield), which is at the 
basis of link analysis methods used in today’s Web search engines. 

• The terms “information retrieval” and “descriptor” were coined  
(C. Mooers).  

• Term occurrences were introduced to represent a piece of text as a se-
quence of pairs (ti, fi), i = 1,...,n, where ti denotes a term occurring in 
text, and fi is the number of times ti occurs in the text (H. P. Luhn, 
KWIC index). 

1.1.1.6 Models 

The 1960s and 1970s witnessed a boom in IR experimentation, which 
yielded the most important measures as well as measurement principles 
(known as Cranfield paradigm) used to evaluate the relevance effective-
ness of a retrieval method (i.e., how well a retrieval method or system per-
forms) under laboratory conditions: precision and recall (C. Cleverdon). 
They have been in use ever since.  
 The recognition that computing methodology (methods, algorithms, 
software, programming) and technology (hardware) made it possible to 
identify terms and to perform Boolean operations on sets of data automati-
cally yielded systems that allowed full text searches. As a result, computer-
ized commercial retrieval systems (e.g., Dialog and BRS) were developed, 
which implemented what we call today the Boolean model of IR (based on 
mathematical logic and set theory). 
 Later, more sophisticated theoretical frameworks, or models, were elabo-
rated. They served and serve as bases for the development of retrieval 
methods and have motivated an enormous body of research: 
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• Probabilistic model (based on probability theory: M. E. Maron, J. L. 
Kuhns, S. Robertson, C. J. van Rijsberegen, C. Spärck-Jones). 

• Vector space model (based on linear algebra: G. Salton, M. Lesk, J. 
Sammon), 

Later, in the 1980s and 1990s, further models were proposed: 

• Information logic (based on logical imaging: C. J. van Rijsbergen). 
• Fuzzy model (based on fuzzy set theory: D. H. Kraft, B. E. Boyce, D. A. 

Buell). 
• Language model (based on linguistics and probability theory: W. B. 

Croft, J. Ponte). 
• Inference network model (H. Turtle, W. B. Croft). 
• Associative interaction model (based on the Copenhagen interpretation 

in quantum mechanics: S. Dominich). 

1.1.1.7 World Wide Web 

At the end of 1980s, the World Wide Web (Web or WWW for short) was 
proposed (T. Berners-Lee). The Web is a worldwide network of electronic 
documents stored in computers belonging to the Internet (which is a 
worldwide computer network). 
 By the 1990s, many IR models, methods, and algorithms were already 
known, a huge amount of research had gone into IR, many experimental 
retrieval systems had been used and tested in IR laboratories, and a large 
body of experimental results had accumulated. However, their application 
in practice, in large and real retrieval systems meant to be used by groups 
of real people at large was yet to come. 
 And the Web offered just that opportunity. 
 In the late 1990s, retrieval systems, called Web search engines, ap-
peared. They implement many features and results obtained in IR and en-
able many people around the world to search for information in an ever-
growing collection of electronic documents.  
 The Internet and the Web have made it possible to more easily design 
and use intranet systems, i.e., dedicated retrieval systems for a specific 
company, university, or organization. 
 At the same time, the Internet, the Web, and search engines have defi-
nitely changed the way we (should) think about IR. IR is, like most nascent 
fields, interdisciplinary. The Web has taught us that if we want to search 
for information in data stored in computer memories successfully, then we 
should considerably enlarge our understanding of IR so as to encompass: 
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• Fields other than those that traditionally belong to IR (information sci-
ence, library science, linguistics, etc.).  

• Fields that would not have been previously considered to be in the 
mainstream of IR, such as mathematics, algorithms, computational 
complexity, physics, neural networks, etc.  

• Completely new technologies developed, run, and maintained by impor-
tant information companies (search engine companies).  

1.1.2 “Definition” of Information Retrieval 

Let us start this section by giving a widely accepted formulation for the 
meaning of the term information retrieval. This may seem superfluous, or 
unnecessarily meticulous (first of all for specialists). However, it will 
prove useful to review different definitions given over a time span of more 
than 40 years. Thus, the meaning of the term IR can be made as precise as 
possible inline with our present understanding of the field. 

• Salton (1966) defines IR as follows: “The SMART retrieval system takes 
both documents and search requests in unrestricted English, performs a 
complete content analysis automatically, and retrieves those documents 
which most nearly match the given request.” 

• Van Rijsbergen (1979) gives the following definition: “In principle, in-
formation storage and retrieval is simple. Suppose there is a store of 
documents and a person (user of the store) formulates a question (re-
quest or query) to which the answer is a set of documents satisfying the 
information need expressed by this question.”  

• Some years later, Salton (1986) phrased it as follows: “An automatic 
text retrieval system is designed to search a file of natural language 
documents and retrieve certain stored items in response to queries sub-
mitted by the user.”  

• Meadow et al. (1999) defined IR as follows: “IR involves finding some 
desired information in a store of information or database. Implicit in 
this view is the concept of selectivity; to exercise selectivity usually re-
quires that a price be paid in effort, time, money, or all three. Informa-
tion recovery is not the same as IR…Copying a complete disk file is not 
retrieval in our sense. Watching news on CNN…is not retrieval ei-
ther…Is information retrieval a computer activity? It is not necessary 
that it be, but as a practical matter that is what we usually imply by the 
term.”  

• Berry and Browne (1999) formulated it as follows: “We expect a lot 
from our search engines. We ask them vague questions … and in turn 
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anticipate a concise, organised response. … Basically we are asking the 
computer to supply the information we want, instead of the information 
we asked for. … In the computerised world of searchable databases this 
same strategy (i.e., that of an experienced reference librarian) is being 
developed, but it has a long way to go before being perfected.”  

• Baeza-Yates and Ribeiro-Neto (1999) wrote: ”In fact, the primary goal 
of an IR system is to retrieve all the documents which are relevant to a 
user query while retrieving as few non-relevant documents as possible.”  

• Belew (2000), within his cognitive FOA (finding out about) framework, 
formulated retrieval in a pragmatic way: “We will assume that the 
search engine has available to it a set of preexisting, ‘canned’ passages 
of text and that its response is limited to identifying one or more of these 
passages and presenting them to the users.  

• A few years later, Baeza-Yates (2003) formulated a definition similar to 
his earlier view: “IR aims at modelling, designing, and implementing 
systems able to provide fast and effective content-based access to large 
amounts of information. The aim of an IR system is to estimate the rele-
vance of information items to a user’s information expressed in a 
query.” 
What can be seen form the above definitions? The answer is that, in es-

sence, the meaning of the term IR has remained the same over the last 40 
years (practically from its inception). Thus, we may say that IR is con-
cerned with (typically using computer systems) the organization, storage, 
retrieval, and evaluation of information relevant to a user’s information 

need.  
The user (researcher, tourist, etc.) has an 

information need (e.g., articles published on 
a certain subject, travel agencies with last-
minute offers, etc.). The information need is 
expressed in the form of a query, i.e., in a 
form that is required by a computer program 
(e.g., according to the syntax of some query 
language). The program then retrieves in-
formation (journal articles, Web pages, etc.) 
in response to the query. 

Thus, the meaning of the term IR may be 
formulated formally as the following mapping:  

IR : (U, IN, Q, O ) → R, 
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where 

• U = user 
• IN = information need 
• Q = query 
• O = collection of objects to be searched 
• R = collection of retrieved objects in response to Q 

The information need IN is, obviously, more than its expression in a 
query Q. IN comprises the query Q plus additional information about the 
user U. The additional information is specific to the user (e.g., spoken lan-
guages, fields of interest, preferred journals, etc.). The importance of addi-
tional information is found in that it is one factor in relevance judgment, 
i.e., when the user is judging whether a retrieved object is relevant or not 
to his/her specific IN. The additional information is obvious for the user 
(he/she implicitly assumes it) but not for the computerized retrieval sys-
tem. Thus, we may say that the additional information is an implicit (i.e., 
not expressed in Q) information I specific to the user U, and we may write 
IN = (Q, I). 

With this, a stricter reformulation of the meaning of IR is the following: 
IR is concerned with finding a relevance relationship ℜ between object O 
and information need IN; formally:  
 

IR = ℜ(O, IN) = ℜ(O, (Q, I)). 
 
 In order for an IR system to find such a 
relationship ℜ it should be possible to also 
take into account the implicit information I, 
and ideally the information that can be in-
ferred from I to obtain as complete a picture 
of user U as possible. Finding an appropri-
ate relationship ℜ would mean obtaining 
(deriving, inferring) those objects O that 
match the query Q and satisfy the implicit 
information I. With these, the notion of IR is 
formally rewritten as follows: 

IR = ℜ(O, (Q, ¢I, |²)), 

where ¢I, |² means I together with information inferred (e.g., in some 
formal language or logic) from I. Relationship ℜ is established with some 
(un)certainty m, and thus we may write that (Dominich 2001): 
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IR = m[ℜ(O, (Q, ¢I, |²))]. 

Thus, in essence, information retrieval is a kind of measurement in that it 
is concerned with measuring the relevance of an item stored in computer 
memory to a user’s information request (and then returning the items 
sorted in descending order based on their measure of relevance). All IR 
frameworks, methods, and algorithms aim at as good a measurement as 
possible. 

Note: A few words on the meaning of the term “information” are in order.1  
The notion of energy was separated from the notion of matter when man 
was able to construct and use equipment that converted one type of energy 
into another type (e.g., the steam engine). Likewise, with the advent of 
computer systems, the notion of information is being used, more and more, 
as a distinct idea, separated from the notions of energy and matter. One 
may distinguish different forms of information: genetic information (car-
ried by DNA), human information (generated in our brains), computer in-
formation, information in crystals, etc. There is no absolute consensus on 
the meaning of the term “information.” In everyday life, information is 
usually used as a synonym for data, knowledge, news, experience, or facts. 
Indeed, human information may be conceived as that which humans per-
ceive, create, or convey, without checking its validity or reliability. In one 
word, information is that which is susceptible to be known. In contrast, 
human knowledge is information that possesses order. Meaning should be 
distinguished from information. It may be viewed as being information 
that is interpreted in a given context. For example, a book contains infor-
mation, regardless of whether someone is reading it or not, or whether we 
understand its language or not. But it gains meaning only when we are able 
to read it and place it into some context. In IR, whether it is data, meaning, 
knowledge, or information that is being retrieved constitutes a subject for 
debate. Generally and pragmatically speaking, however, IR deals with hu-
man information, and is concerned with measuring the degree of similarity 
between information need and items in a collection of information (practi-
cally regardless of whether the information need and the items are, at a 
philosophical level, more information, or rather meaning, or perhaps 
knowledge.).  

                                                      
1
Stonier, T. (1990). Information and the Internal Structure of the Universe. Springer  

Verlag, London. 
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1.2 Retrieval Methods 

Many retrieval methods have been elaborated since the inception, about 
half a century ago, of the field of IR. These can be categorized in several 
ways. For example: 

• Classical methods (Boolean, vector space, probabilistic). 
• Nonclassical methods (information logic, situation theory, associative). 
• Alternative (or hybrid) methods (e.g., cluster, fuzzy, latent semantic, ar-

tificial neural network, genetic algorithm, natural language processing, 
knowledge base). 

• Web methods (link analysis, browsing, visualization, etc.). 

 Albeit that these methods differ from one another, they nonetheless have 
properties in common. Thus, in general:  

• They are typically based on text in the sense that terms are identified 
(associated with) in the documents (objects) to be searched, and the 
number of occurrences of terms is used to represent numerically (using 
so-called weights) the content of documents (objects). 

• The query is conceived as being a piece of text. (Hence, it too is repre-
sented by weights of terms.) 

• Apart from their content, the importance of Web pages stems from an-
other source as well: from the fact that they can be linked to each other 
(and thus form a network). 

• The relevance degree (or similarity) between a query and a document 
(or a Web page) is established by a numeric computation based on 
weights and/or link importance. 

 The ways in which the document weights, the importance of Web pages, 
and the similarity values are computed depend on the mathematical 
framework in which the retrieval method used is being based. Typically, 
different mathematical frameworks are used in different methods.  
 For an example: The Boolean retrieval method is based on set theory 
and mathematical logic in that:  

• Documents are represented as sets of terms.  
• The query is conceived as a Boolean expression of terms.  
• The retrieved document set is obtained by performing the set operations 

corresponding to the logical operators occurring in the query. 
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As another example, in the vector space retrieval method,  

• Both the documents and the query are represented as vectors in the lin-
ear space of terms.  

• The similarity values are based on the scalar product between the query 
vector and document vectors. 

 In this book, after reviewing (in Chapter 2) the fundamental mathemati-
cal notions (mathematical logic, set theory, relations theory) used in IR, 
the well-known major retrieval methods are described, namely: 

• Boolean method 
• Vector space method 
• Generalized vector space method  
• Probabilistic method 
• Language model method 
• Inference model method 
• Impact factor method 
• Connectivity method 
• Mutual citation method 
• PageRank method 
• HITS method 
• SALSA method 
• Associative interaction method 
• Bayesian methods 

 The major retrieval methods are particularly important in that many 
other retrieval methods are based on them. The methods are described in 
such a way that they can be understood and applicable themselves as well. 
Thus, they are helpful for a wide range of readers from newcomers through 
students and educators to researchers and system developers coming from 
a variety of fields such as information science, computer science, mathe-
matics, engineering, linguistics, etc. The exact description of every method 
is given in detail. For every method, a complete example is also given to 
help enhance understanding.  
 However important the knowledge of the major retrieval methods, a 
clear understanding of their usefulness and application possibilities is 
equally important. For this reason, in Chapter 4, the basics of IR technol-
ogy are presented: 

• Identification of terms. 
• Power law. 
• Stoplisting. 
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• Stemming. 
• Weighting schemes. 
• Term-document matrix. 
• Inverted file structure. 
• Typical architecture of a retrieval system. 
• Web characteristics. 
• General architecture of a Web search engine. 
• Architecture of a Web metasearch engine. 
• Measures of retrieval effectiveness. 
• Laboratory measurement of retrieval effectiveness (precision-recall 

graph). 
• Measurement of relevance effectiveness of Web search engines. 

 The basics of IR technology are useful for practitioners as well for more 
theoretically minded readers, and they also enable a better understanding 
of the experimental results reported throughout the book. 

1.3 Modern Algebra 

In order to acquire a better and a more complete understanding of the ap-
proach as well as of the results described in this book, it is useful to know 
exactly what is meant by the term “modern algebra.” 
 First, in just a few words, it all started many thousands of years ago with 
solving equations and has ended up nowadays with structures and mapping 
between them. But this may be just a new beginning. In order to delineate 
the meaning of the term modern algebra, we note very succinctly a few of 
the milestones in its long history.  

1.3.1 Equations 

Everyday life (agriculture, land surveying, financial operations, commerce, 
etc.) has always generated equations—even in ancient times in Babylon, 
Egypt, and Greece. For instance, in ancient Babylon, about 4000 years 
ago, agriculture and land surveying gave rise to problems such as: The 
length and width of a piece of land is equal to 30, while its area is equal to 
221. What are the length and the width of the piece of land? In today’s no-
tation, this problem is rewritten as the following (system of) equations: 

xy = 221,  x + y = 30,  
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where x denotes length and y denotes width. Finding solutions to equations 
was, in general, a difficult task. Today, we would solve this problem as 
follows: 

• Obtain x from the second equation: x = 30 − y. 
• Substitute this into the first equation: (30 − y)y = 30y − y2 = 221. 
• Solve the equation 30y − y2 − 221 = 0 to obtain the roots y1 and y2. 
• Use the relationship x = 30 − y to obtain the value x1 corresponding to y1 

(and x2 corresponding to y2). 

However, it is very instructive to see how this problem was solved in an-
cient Babylon. In today’s notation, the solution was obtained as follows 
(symbols to denote unknowns and operations were not used; computation 
procedures were expressed as a sequence of sentences): 

1. Let x = 30/2 + u, y = 30/2 − u. (Note that, with this notation, x + y = 30). 
2. Then, xy = 302/4 − u2 = 900/4 − u2 = 225 − u2 = 221. 
3. From this, u = √4 = 2. [The computation of the square root of a num-

ber was known in ancient Babylon and has been used ever since. In 
today’s notation, in order to compute √a, guess a value x0 such that 1 
< x0 < √a. Then, calculate x1 = 0.5(x0 + a/x0) to obtain a better ap-
proximation of √a. An even better approximation is x2 = 0.5(x1 + 
a/x1), and so on.] 

4. Hence, x = 30/2 + u = 15 + 2 = 17, and y = 30/2 − u = 15 − 2 = 13. 
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1.3.2 Solving by Radicals 

Having a formula to calculate the roots of an equation has some clear theo-
retical and practical advantages: 

We can see that this is a very ingenious technique.  

However, there were equations for which a formula was known and was 

used to compute the roots. For example (again, in today’s notation), the 

second-degree equation 13x
2
 +60x = 13,500 was solved using the formula 

that we know and use today:  

Unfortunately, we do not know how this formula was arrived at. 
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• The formula is an expression containing the coefficients of the equation, 
and no other variable. 

• The formula uses some or all of the well-known operations on numbers: 
addition, subtraction, multiplication, division, and radicals. No other op-
eration occurs. This is referred to as solving by radicals. 

• There is no need to look for tricks to solve the equation. 
• Thus, root computation becomes a mechanical process. 

Legend tells us that in ancient Greece, during a plague epidemic, the 
gods asked that the size of the altar stone to be doubled in order to stop the 
epidemic. The architects were faced with the problem of carving a new 
stone altar having its height (and length and width) equal to the root of the 
equation x3 = 2. They did not succeed. This problem, known today as 
“doubling the cube,” has since become very famous. (More probably, 
however, the problem originates in the geometrical interpretation of the 
root of the equation x3 = 2 coming from ancient Babylon. It has since been 
shown that this equation does not have rational roots; hence, doubling the 
cube cannot be solved.) Even in ancient Greece, many tried to find a solu-
tion. One solution involved solving the third-degree equation 2 = (d − 2)3.  

The computation of the roots of an equation of third degree was done in 
different ways. For example, in the Middle Ages:  

• In China, a method based on polynomial division was used. 
• In Arabian mathematics, it meant finding the intersection points of a pa-

rabola with a hyperbola. 

The formula that allowed one to solve a third-degree equation by radi-
cals is the result of the efforts of Italian mathematicians (Scipione del 
Ferro, Ludovico Tartaglia, Girolamo Cardano) in the sixteenth century. 
Cardano showed that (in today’s notation) any third-degree equation ax3 + 
bx2 + cx + d = 0 can be transformed into a simpler form y3 + py + q = 0 
with the substitution x = y − b/(3a), where p = c/a − b2/(3a2), q = 2b3/(27a3) 
− (bc)/(3a2) + d/a. Tartaglia gave the following formula, using radicals for 
the equation y3 + py + q = 0: 

y1 = u + v, y2,3 = 3
22
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 Around 1540, the Italian mathematician Ludovico Ferrari offered  a solu-
tion by radicals (which looked even more complicated than the one above) 
to the fourth-degree equation x4 + ax3 + bx2 + cx + d = 0. 

Also in the sixteenth century, owing to the work by the English mathe-
matician Thomas Harriot, the Dutch mathematician Albert Girard, and the 
French mathematician François Viète, the relationships (known today as 
Viète’s relationships) between the roots and the coefficients of an n-degree 
equation a1x

n + a2x
n−1 + … + anx + an+1 = 0 were established. For example, 

when n = 2, x1 + x2 = −a2/a1, x1x2 = a3/a1.  
At the end of the eighteenth century, the German mathematician Carl F. 

Gauss proved that the n-degree equation a1x
n + a2x

n−1 + … + anx + an+1 = 0 

has exactly n roots in the set  of complex numbers (a result known as the 
fundamental theorem of algebra today). 

By the eighteenth century, as a result of the work by Viète, the French 
mathematician René Descartes, the English mathematician Isaac Newton, 
the Swiss mathematician Leonhard Euler, and Gauss, algebra became an 
established branch of mathematics concerned with solving equations. 

Many methods for computing roots were known, and many properties 
were discovered. And yet, the big question remained unanswered:  

Can a fifth-degree or higher-degree equation be solved by radicals? 

1.3.3 Birth of Modern Algebra 

Euler studied the rational functions (i.e., radical expressions that contain 
only addition, subtraction, multiplication, division, radicals) of the roots of 
the n-degree equation. He noted that if a rational function of the roots is 
invariant with respect to all the permutations of the roots, then this func-
tion is a rational function of the coefficients of the equation. Joseph L. La-
grange, a French mathematician, believed that the answer to this question 
would be found by studying the group of the permutations of roots. 
Around 1771 he conjectured that the answer to the “big” question was 
negative. Following in the footsteps of Euler and Lagrange, the Italian 
mathematician Paolo Ruffini gave a proof of this conjecture at the end of 
the eighteenth century. Unfortunately, the proof was incomplete. The 
Norwegian mathematician Niels H. Abel gave another (alas, also incom-
plete) proof in 1826. 
 It was and is clear that many n-degree equations can be solved by radi-
cals. The problem of solvability by radicals is a general one; more specifi-
cally: When can an n-degree equation be solved by radicals? Is there a for-
mula that allows one to compute the roots of any n-degree equation? 
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 Complete and correct answers to these questions were given by the 
French mathematician Évariste Galois around 1830. It is worth sketching 
the line he followed, which helps us to understand how modern algebra 
started and the essence of the idea behind it. 

For simplicity, let us consider a third-degree equation. By the funda-
mental theorem of algebra, it has exactly three roots: x1, x2, and x3. A per-
mutation of roots is represented as a table with two rows and as many col-
umns as the number of roots. For example, 
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means that 1 stands for x1, 2 stands for x2, 3 stands for x3, and any element 
in the first row is replaced by the element below it in the second row (e.g., 
instead of 3 we write 1). The number of all permutations of n elements is 
equal to n! = 1 × 2 × 3 ×…× n. Thus, the number of permutations of all the 
roots of a third-degree equation is 3! = 6. The set P of all permutations can 
be arranged as a matrix: 
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Let the consecutive application of two permutations be denoted by ⊗, e.g., 
p12 ⊗ p22 = p23 (i.e., 1 transforms into 2 in p12, 2 transforms into 2 in p22, 
and so 1 is transformed into 2 as in p23, and so on). It can be shown that the 
operation ⊗ has the following properties: 

• It is an internal operation, i.e., for any two permutations, it yields an-
other existing permutation. 

• The permutation p11 leaves every permutation in place, i.e., p11 ⊗ pij = 
pij, for every permutation. (It behaves like the number 1 with respect to 
the multiplication of numbers.) p11 is the neutral element of ⊗. 

• For every permutation pij, there is a permutation puv such that pij ⊗ puv = 
p11. In other words, for every permutation there is an inverse permuta-
tion (just like, e.g., 1/a for the number a with respect to multiplication). 

• It can be shown that ⊗ is associative. 
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Galois called the set P of permutations together with the operation ⊗, i.e., 
the structure (P, ⊗), a group, and  this concept has been in use ever since.  

The coefficients a1, a2,…,an+1 of the n-degree equation belong to a set C 
of rational, real, or complex numbers. In this set, addition (+) and multipli-
cation (×) are defined and satisfy well-known properties. In other words, 
the triple (C, +, ×) forms a well-defined structure (namely, field) given by 
the properties of + and ×. 

Galois showed that there is a connection between the following two 
structures: 

• The group (P, ⊗) of permutations of the roots of the n-degree equation. 
• The field (C, +, ×) to which the coefficients of the equation belong.  

He also delineated the conditions under which the n-degree equation can 
be solved by radicals. 
 Galois’s work is very important from two points of view: 

• Practical point of view: He solved the problem of solvability of equa-
tions by radicals.  

• Theoretical point of view: He laid down the foundations of a new type 
of reasoning and approach in science, namely by considering structures 
(i.e., sets endowed with operations satisfying certain properties) and 
mappings between them. 

1.3.4 Modern Algebra 

In the nineteenth century, approaches based on structures multiplied. In 
1854, the English mathematician George Boole showed that Aristotle’s 
laws of human thought can be expressed using mathematical symbols and 
operations that form a structure. This is known today as Boolean algebra, 
and is usually represented as the sets of all subsets of a set together with 
the set union, intersection, and complementation. 

In 1888, the Italian mathematician Giuseppe Peano defined an axiomatic 
foundation of natural numbers as a structure of elements generated by cer-
tain operations. The German mathematician David Hilbert did the same for 
geometry in 1899. (Of course, we should not forget Euclid, who, as far as 
we know, was the first to provide an axiomatic foundation for geometry 
more than 2000 years ago in ancient Greece.) 

Around 1890, the German mathematician Richard J. W. Dedekind ob-
served that the greatest common divisor and the least common multiple are 
in number theory what logical conjunction and logical disjunction are in 
logic (i.e., they form Boolean algebras). This led him to create what is 
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called today “lattice theory”: the theory of a very general and abstract 
structure (see the next section). He showed that a Boolean algebra is a spe-
cial type of lattice. 

that since the nineteenth century, when algebra meant the study of solving 
equations, the meaning of the term “algebra” has been changed (more ex-
actly, has been expanded). Today it means the study of abstract structures 
and the mappings between them, i.e., the study of collections of objects in 
general, endowed with operations or relations satisfying certain properties. 
As the properties can be studied without regard to the particular elements 
of the sets involved, the terms “abstract algebra” or “modern algebra” are 
now current. In order to emphasize the importance of modern algebra, it is 
sufficient to note that entire fields of science, e.g., the various geometries, 
different areas in physics, functional analysis, and tensor calculus all deal 
with algebraic structures (at an abstract level). 

We end this section by noting that one of the goals of this book is to 
show that there is a strong connection between IR and modern algebra, 
provided primarily through one of the basic notions in the latter—the  lat-
tice—in the sense that it will be shown that the major retrieval methods 
can all be based upon this concept.  

1.4 Lattice 

“Never in the history of mathematics has a mathematical theory been the 
object of such vociferous vituperation as lattice theory.” So begins one of 
the papers2 Gian-Carlo Rota, one of the prominent figures in lattice theory.  

The hostility toward lattices began when Dedekind published the papers 
that first gave birth to the theory. Kronecker, one of his contemporaries, 
wrote in a letter: Dedekind lost “his mind in abstraction.”  

So, what is a lattice? A lattice is a “well-behaved” set (i.e., a certain col-

• There is an order among its objects (to be exact, the order is partial, but 
this is irrelevant at this point). 

• For any two objects, there is one that is ‘greater’ than (or ‘equal’ to) 
both of them.  

• For any two objects, there is one that is ‘smaller’ than (or ‘equal’ to) 
both of them. 

                                                      
2 The Many Lives of Lattice Theory. Notices of the AMS, vol. 44, no. 11, pp: 1440–1445. 

lection of objects). It is well behaved for three reasons: 

We will not say more regarding the development of structure-based appro-

aches, as what we have noted is, we think, enough for the reader to see 
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The drawing below is a (typical) visual representation of a network of 
points that form a lattice. In the middle row of three points, any two points 
‘converge’ (follow the links) into one point (one upward and one down-
ward): 

 
As opposed to the drawing above, the one below shows a network of 

points that do not form a lattice. In the two middle rows of the two pairs of 
points, any two points ‘converge’ to both points in the other row, which is 

 
In order to make the concept of lattice clearer, let us consider, as an ex-

ample, possible prices for bread (prices are given in Hungarian forints, 
though this is now actually irrelevant): 

17, 32, 110, 164, 210, 255, 280, 320. 

The prices are in an ascending order (from left to right) to better visualize 
the order that characterizes the collection of prices. It can be seen that 
whichever two prices we take, there is a price that is higher and one that is 
lower. Mathematically, bread prices, when gathered into one ordered col-
lection (i.e., in a set), may be viewed as forming a lattice.  

This may sound trivial. Yet it is very important from a practical point of 
view, because it makes it possible: 

• To answer questions like “Which type of bread is cheaper?,” or “Which 
is the most expensive bread?” 

• To introduce prices into the database of an accounting system and to an-
swer a question like “Give me the names of bread types whose prices 
are between 100 and 400.” 

not permissible in a lattice: 
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1.5 Importance of Lattices 

What we said about lattices in the preceding section is common to every 
lattice.  
 In theoretical as well as practical applications, lattices having certain 
additional properties are of real interest and use. Let us consider an exam-
ple. It is known that the position and velocity of a car (or ship, etc.) can be 
measured simultaneously and with any desired precision. However, in 
quantum mechanics, e.g., the position and velocity of an electron cannot be 
measured simultaneously with any degree of accuracy. Thus, it turns out 
that there are quantities in nature that cannot always be measured simulta-
neously with any precision.  
 What is to be done? 
 First, both situations should be accepted as being aspects of reality.  
Second, if that is the case, then we may not think about (or describe) all the 
parts of reality using the same “scheme” (reasoning structure). It seems 
that different structures (ways of reasoning) are needed for different parts 
of reality (situations).  
 It was shown that what is common in the two situations above (car and 
electron) is that in both cases the structure of our thinking (the way in 
which we may logically combine propositions expressing measurements) 
can be formally expressed as a lattice. 
 What is different in the two situations, however, is that the lattices used 
are not exactly the same: they differ in certain properties (to be somewhat 
more exact, in the distributive law). The two drawings below are visual 
representations of the two kinds of lattices that show the structure of the 
thinking (reasoning) that we have to follow in these two situations. The lat-
tice on the left represents the structure of our thinking (i.e., the structure of 
the corresponding logic) in situations of the first type (e.g., in everyday 
life), while that lattice on the right corresponds to the structure of our 
thinking (i.e., the structure of the corresponding logic) in situations of the 
second type (e.g., the subatomic world). 
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 Once we have the formal models (lattice), we can enjoy some advan-
tages, e.g.: 

• A better understanding of phenomena. 
• The ability to make predictions (e.g., for future measurements, we can 

be sure that the position and velocity of a car (or ship, etc.) can always 
be measured, whereas we cannot even hopeat our current level of un-
derstanding of naturethat we will ever be able to measure the position 
and velocity of subatomic particles simultaneously with any precision). 

 In Chapter 3, the concept of lattice as well as certain properties (that 
prove useful in IR) are presented in detail (and in such a way that they can 
be understood even by beginners). Every notion and property is illustrated 
by clarifying examples. 

1.6 Lattices in Information Retrieval 

1.6.1 Retrieval Systems 

Retrieval systems that apply lattices are described in Chapter 5, namely: 

• Moors 
• FaIR 
• BR-Explorer 
• FooCA 
• Rajapakse-Denham 

A method to transform a term-document matrix into a concept lattice is 
also described.  
 Further, a detailed mathematical treatment of the properties of the lat-
tices applied in these retrieval systems is presented. Perhaps the primary 
advantage of this treatment, in a mathematical formulation is that these lat-
tices are not modular, i.e., they are similar to the drawing below. 
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This result sheds light upon the structure of the logic that underlies these 
systems. Moreover, it is far from intuitive.  Reasoning with documents and 
queries (i.e., the structure of the logic applied) may be different than the 
structure of reasoning with propositions in mathematical logic. In the lat-
ter, whatever operation we perform on propositions always and necessarily 
leads to another proposition. Furthermore, any two propositions are com-
patible with one another. The study of the lattices applied in retrieval sys-
tems reveals that documents, queries, or terms are not always and neces-
sarily compatible with one another: subjecting them to logical operations 
may yield an entity having a different quality or nature. 

1.6.2 Boolean Retrieval 

The Boolean retrieval method is a very important one in that it is widely 
used in database systems (e.g., Oracle, SQL) and World Wide Web search 
engines. In principle, it is a simple method, but all the more important for 
that. 
 The Boolean retrieval method (both formally and using an example) 
and the application of lattices in Boolean retrieval are described in Chapter 
6. An efficient way to answer Boolean queries is presented as well.  

1.6.3 Vector Space Retrieval 

After the description of the required mathematical concepts and results 
(Chapter 7), the application of lattices in vector space retrieval is presented 
and discussed (Chapter 8): 

• Calculation of meaning. 
• Queries with disjunction. 
• Compatibility of relevance assessments. 
• Vector space method as lattice-lattice mapping. 

It is shown that, unlike the nonmodular character of the lattices applied in 
retrieval systems (Chapter 5), the lattices used in vector space retrieval are 
modular but are not generally distributive; i.e., they look like (or are 
equivalent to) the following drawing: 
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Further, we show that the very character of the underlying mechanism 

of vector space retrieval is nonsubmodularity. As is shown in a parallel to 
the lattices applied in quantum mechanics, whose underlying mechanism 
(i.e., way of reasoning) is characterized by orthomodularity, the applica-
tion of lattices in vector space retrieval is characterized by nondistributiv-
ity and nonsubmodularity.  

Quantum mechanics and vector space retrieval have a common “weak-
est link”: distributivity does not always hold (i.e., their entities are not al-
ways compatible with one another). In other words, their assertions do not 
always commute. However, as compared to quantum mechanics, the un-
derlying mechanism of vector space retrieval has an additional ingredient: 
a nonsubmodular lattice-lattice mapping, which means that the logic of re-
trieval has a more sophisticated structure than the logic of quantum me-
chanics. Retrieval is a very special correspondence between two different 
types of lattices (i.e., between two different types of logic), one for the ob-
jects to be searched (which is well-behaved and nicely organized) and an-
other for queries (which is not so well-behaved, this being perhaps an ex-
pression of free will). 

1.6.4 Fuzzy-Algebra-Based Retrieval Methods 

In Chapter 9, after introducing the necessary mathematical concepts and 

trieval methods are described: fuzzy cardinality, fuzzy entropy, and fuzzy 
probability. Experimental results are reported to show that they yield in-
creased retrieval effectiveness [when compared to traditional vector space 
and latent semantic indexing (LSI) methods]. 

It has long been known that the linear space is not generally an adequate 
mathematical framework for IR. In Chapter 9, the principle of invariance 
(PI) is described. According to PI, documents may or may not preserve 
their identities when looked at from different points of view. It is shown 
that PI together with the notion of fuzzy cardinality form a correct mathe-
matical framework for the traditional vector space retrieval method, from 
which the latter can be formally (and hence correctly) obtained. 

properties (from tensor algebra, fuzzy set theory, fuzzy algebra), three re-
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1.6.5 Probabilistic Retrieval 

Probabilistic retrieval methods are based on the concept of conditional 
probability. The nonbinary model, language model, and inference model 
retrieval methods are described in detail, together with examples for each.  
 It has long been known that whether the documents, queries, relevance, 
and irrelevance form a σ-algebra or not (for the conditional probabilities to 
have sense from a mathematical point of view) is questionable. Thus, 
probabilistic retrieval methods need another mathematical framework to 
support them. In Chapter 10, we show that the notion of lattice offers such 
a framework and how the lattice of logical implications from mathematical 
logic offers a correct mathematical background for probabilistic retrieval.  

1.6.6 Web Retrieval and Ranking 

After introducing the notion of a Web graph and discussing degree distri-
bution, the basic methods using link structure analysis are presented: 

• Impact factor  
• Connectivity  
• Mutual citation  
• PageRank  
• HITS  
• SALSA  
• Associative 
• Belief network 
• Inference network 

Clarifying examples are provided for each one and  a connection between 
HITS and LSI is described. 
 Then, using the results obtained for lattices in Chapter 9, we present an 
aggregated method for Web retrieval based on lattices. This method allows 
one to determine the importance of pages taking into account both their 
link importance (using link analysis) and their intrinsic importance (stem-
ming from page content). Experimental evidence for the relevance effec-
tiveness of this method is also given in terms of comparisons with com-
mercial search engines (Google, Altavista, Yahoo!). 

After introducing the notion of Web lattice and chain, we define Web 
ranking as a lattice-lattice function between a Web lattice and a chain. We 
show that ranking is not submodular. Then, global ranking is defined as a 
lattice-lattice function (i.e., a mapping from the direct product of Web lat-
tices to the chain [0; 1]). It is shown that global ranking is not submodular. 
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Based on the notion of global ranking, a global ranking method is given 
that enables one to compute the global importance of a Web page at Web 
level taking into account the importance of the site that the page belongs 
to, but without the need to consider the entire Web graph of all pages. 

After proving that any tree as well as any document can be transformed 
into a lattice, we show that the DocBall model and Galois (concept) lattice 
representations of a document are equivalent to one another.  

Based on these results as well as on the fact that the structure of any site 
is a lattice, we present a method to compute site importance. 

1.7 Exercises and Problems  

Exercises and problems are found at the end of every chapter (apart from 
Chapters 1 and 7). These are, of course, IR-oriented, and they are designed 
to help the reader better understand and deepen his/her knowledge of the 
concepts and methods discussed as well as their applications in practice. 
There are hints for solving them at the end of the book. 



2 Mathematics Basics 

You cannot conceive the many without the one. 
(Confucius) 

 
 
This chapter presents the concepts, operations, and properties of mathe-
matical logic (proposition, negation, conjunction, disjunction, implication, 
equivalence), set theory (sets, set operations), and relations theory (binary 

 Every notion and property is illustrated by several examples, which are 
designed to enhance understanding. Some are purely mathematical, but the 
rest are taken from everyday life or have an IR flavor. 
 Apart from examples, a number of exercises and problems are also 
proposed at the end of the chapter. They are IR-oriented, and are included 
to improve understanding and show how logic, sets, and relations are/can 
be applied in IR. Solutions are given at the end of the book (in Chapter 
12). 
 At the end of the chapter, the literature referred to, as well as recom-
mended, is listed.  

relations, functions, equivalence relations, posets) that are being applied 
in modern computerized (IR) and which are used in the modern algebra 
of IR.  
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2.1 Elements of Mathematical Logic 

The main goal of logic has always been the study of reasoning, proof, and 
truth.  
 In the eighteenth century, the German mathematician Gottfried W. 
Leibniz utilized an algebraic language to express logical ideas. At the end 
of the nineteenth century, thanks to logicians such as, e.g., Gottlob Frege 
and George Boole, a formal language, consisting of just a few symbols, 
was developed that allowed for the writing of mathematical assertions.  
 The ultimate principles of human reasoning (syllogism, excluded mid-
dle, etc.) as well as its basic concepts (the notion of number, the axioms of 
geometry, etc.) have remainedand probably will remainthe same over 
time. Hardly anyone will doubt them.  
 Mathematical logic is concerned with the study (using formal means) of 
the structural properties of the correct deduction of conclusions. Here we 
present the fundamentals of mathematical logic. They are important in that 
they constitute the formal mathematical basis of, and are used intensively 
in, modern computerized IR.  
 To a reader acquainted with the cold facts of reality, or exclusively 
technically minded, this part of the book may seem, in places, less 
friendly, or too abstract, or perhaps bizarre. However, those readers should 
understand that the symbols and operations of mathematical logic have 
well-defined meanings and that their power is in their ability to capture 
and express many different aspects of reasoning in both science and every-
day life in a unified formal way. 

2.1.1 Proposition 

A proposition is a statement (formulation, assertion) that can be assigned 
either a value T or a value F (there is no third alternative), where T and F 
are two different values, i.e., T ≠ F. For example, T = true, F = false (these 
values are used throughout this book), or T = yes, F = no, or T = white, F = 
black, or T = 1, F = 0. The values T and F are referred to as truth values. A 
proposition cannot be true and false at the same time (principle of noncon-
tradiction). 

 The reader already familiar with mathematical logic can skip this  
chapter. 
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Example 2.1  

• “I am reading this text.” is a  true  proposition.  
• The sentence “The sun is shining.” is also a proposition because either 

the value T or F can be assigned to it. 
• The sentence “The cooks wearing red hats are playing football at the 

North Pole” becomes a proposition if a truth value can be assigned to it.  

In general, it is not a necessary quality of an assertion or proposition that it 
be true. For example, the proposition “It is raining” may be true or false. 
However, there are propositions that are “absolutely” true (e.g., “The year 
2001 is the first year of the twenty-first century.”)  

2.1.2 Negation 

The negation of a proposition P is a proposition denoted by ¬P and pro-
nounced “not P.” If P is true, then ¬P is false, and if P is false, then ¬P is 
true (Table 2.1). Hence, ¬(¬P) is always P (law of double negation). 

Table 2.1. Truth Table of Logical Negation 

P ¬P 

T F 
F T 

Example 2.2  

“I am not reading this text” is afalseproposition, and is the negation of 
the proposition “I am reading this text.”  

2.1.3 Conjunction  

Given two propositions: P, Q, the proposition denoted by P  Q (ex-
pressed as “P and Q”) is called a conjunction. The conjunction is true if 
and only if both P and Q are true, and false otherwise (Table 2.2). Thus, P 

 (¬P) is always false (law of contradiction). 
 

Table 2.2. Truth Table of Logical Conjunction 

P Q P  Q 

T T T 
T F F 
F T F 
F F F 



30      2 Mathematics Basics 

Example 2.3  

• “I am reading this text  It is raining” is a proposition, and its truth 
value can be assigned by the reader.  

• “I am thinking to myself  A bicycle has two wheels” is a proposition 
(the reader can assign a truth value to it), albeit that one would rarely 
link its two constituent propositions into one sentence in everyday 
speech.  

2.1.4 Disjunction  

Given two propositions P, Q, the proposition denoted by P V Q (expressed 
as “P or Q”) is called a disjunction. The disjunction is false if and only if 
both P and Q are false, and true otherwise (Table 2.3). Thus, P V (¬P) is 
always true (law of the excluded third). 

Table 2.3. Truth Table of Logical Disjunction 

P Q P V Q 

T T T 
T F T 
F T T 
F F F 

Example 2.4  

“I am reading this text V It is raining” is a true proposition (regardless of 
whether it is actually raining or not).  

2.1.5 Implication 

Given two propositions P, Q, the proposition denoted by P � Q (ex-
pressed as “P implies Q”) is called an implication (alternate notation: P → 
Q). The implication is false if and only if P is true and Q is false, and true 
otherwise (Table 2.4). The values of the implication P � Q coincide with 
the values of the disjunction ¬P V Q, which can be easily checked using 
Tables 2.3 and 2.4. 

Table 2.4. Truth Table of Logical Implication 

P Q P � Q 

T T T 
T F F 
F T T 
F F T 
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Example 2.5  

• “I am reading this text � It is raining” is a proposition (its truth value 
depends on whether it is actually raining or not).  

• “I am reading this text � I am not here” is a false proposition.  
• “I am not reading this text � The circle is a square” is a true proposi-

tion (albeit that one would rarely formulate such a sentence in everyday 
speech).  

• “I am not reading this text � The Sun does not exist in 2007” is a true 
proposition.  

 In Section 10.6, we have more to say about implication (also called a 
material conditional). 

2.1.6 Equivalence 

Given two propositions P, Q, the proposition denoted by P ⇔ Q (ex-
pressed as “P is equivalent to Q”) is called equivalence (alternate notation: 
P ↔ Q). The equivalence is true if and only if both P and Q have the same 
truth values, and false otherwise (Table 2.5).  
 The truth values of the equivalence P ⇔ Q coincide with the truth val-
ues of the conjunction (P � Q)  (Q � P), which can be easily checked 
using the respective truth tables. 

Table 2.5. Truth Table of Logical Equivalence 

P Q P ⇔ Q 

T T T 
T F F 
F T F 
F F T 

 The following equivalences are very important and useful. (Their proofs 
can be easily given using the corresponding truth tables.): 

• Law of contraposition: (P � Q) ⇔ (¬Q � ¬P) 
• (P � Q) ⇔ (¬P V Q) 
• De Morgan’s laws:  ¬(P  Q) ⇔ (¬P) V (¬Q)  
     ¬(P V Q) ⇔ (¬P)  (¬Q) 

Example 2.6  

“I am not here now ⇔ The circle is a square” is a true proposition.  
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Note: As can be seen, negation, disjunction, and conjunction are enough to 
express any logical expression (because both implication and equivalence 
can be written using negation and disjunction). 

2.2 Elements of Set Theory 

Set theory not only allows one to group and thus talk about entities un-
der consideration and express operations among them in a compact form, 
but it also represents a formal way of dealing with logical aspects of struc-
tures (structures of objects in general). In this respect, it is enough to say 
that, e.g., the subsets of a set have the same formal structure as the logical 
propositions. In a word—they are equivalent. Thus, set theory is a very 
useful formal tool for engineers and information scientists alike. This part 
of the chapter presents the concepts and operations in set theory that are 
the most useful in IR. 

2.2.1 Set 

The notion of set is a fundamental one, but it does not have a mathematical 
definition. A set is a collection of distinct objects. The objects in a set are 
called elements. If an object x is an element of a set S (equivalent formula-
tion: x belongs to S), this is denoted as x ∈ S. The term x ∉ S means that x 
does not belong to S.  
 It is very important to note that: 

• An element can occur at most once in a set.  
• The order of the elements in a set is unimportant.  

 A set can be given by enumerating its elements between brackets, e.g., A 
= {a1, a2,...,an}, or by giving a property P(x) [e.g., using a predicate P(x); 
see Section 2.3.3 for the notion of predicate] that all elements must share: 
A = {x | P(x)}. A set having a fixed number of elements is finite, and infi-
nite otherwise. An empty set contains no elements and is denoted by ∅.  

Example 2.7  

•  = {1, 2,…,n,…} denotes the set of natural numbers.  

•  ={..., −2, −1, 0, 1, 2, ...} denotes the set of integer numbers. 

It is widely believed that every mathematician should learn set theory. This 
is true, but it is also widely believed that only they should learn set theory, 
but this latter notion is a delusion (see below).  
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•  denotes the set of rational numbers. 

•  denotes the set of real numbers. 

•  denotes the set of complex numbers. 
• {thought, ape, quantum, Rembrandt} is a set.  
• {mammal | water content of mammal’s milk is less than 20%} is a set.  

There are two important quantifiers that are used extensively in set theory 
(as well as in mathematics, logic, and formal disciplines in general):  

1. Universal quantifier, which is denoted by ∀ and means for every, for 
any.  

2. Existential quantifier, which is denoted by ∃ and means there exists 
(at least one), there is (at least one).  

Example 2.8  

• ∃ x ∈ {1, 2, 3} such that x is an even number.  
• ∀ set A ∃ set B such that A = B.  

2.2.2 Subset 

If all the elements of a set B belong to a set A, then B is called a subset of A 
(Fig. 2.1); this is denoted by B ⊆ A, i.e.,  

B ⊆ A ⇔ (∀x ∈ B � x ∈ A). (2.1) 

 

 
Fig. 2.1. Visualization of the notion of subset, B ⊂ A. 

B ⊂ A denotes the fact that B is a proper subset of A, i.e., all the elements 
of B belong to A, but A also has other elements:  

B ⊂ A ⇔ ((∀x ∈ B � x ∈ A)  (∃y ∈ A � y ∉ B)). (2.2) 

Note that the empty set ∅ is a subset of any set A, i.e., ∅ ⊆ A. 

A 
 B
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2.2.3 Equality of Sets 

The equality of sets A and B is denoted by the symbol = and defined as  

A = B ⇔ ( (A ⊂ B)  (B ⊂ A) ), (2.3) 

i.e., A and B have exactly the same elements. 

Example 2.9  

{thought, ape, quantum, Rembrandt} = {thought, Rembrandt, quantum, 
ape}. Note that the order of elements in a set does not matter.  

2.2.4 Set Union 

The union of sets A and B is denoted by the symbol ∪ and defined as  
(Fig. 2.2)  

A ∪ B = {x | (x ∈ A) V (x ∈ B)}. (2.4) 

Example 2.10  

{thought, ape, quantum, Rembrandt} ∪ {1, 2} = {thought, ape, quantum, 
Rembrandt, 1, 2}. Note that the operation of union is a purely formal one 
(just like the other set operations); it does not require that the elements of 

 
 

Fig. 2.2. Visualization of set union A ∪ B. 
 

Set union satisfies the following properties (as can be easily checked using 
the definitions of sets equality and union): 

• Commutativity: A ∪ B = B ∪ A, for any two sets A, B. 
• Associativity: A ∪ (B ∪ C)= (A ∪ B) ∪ C, for any three sets A, B, C. 
• Idempotency: A ∪ A = A, for any set A. 

A ∪ B

A B

the sets be compatible with each other or have the same nature in any 
way.  



2.2 Elements of Set Theory      35 

2.2.5 Set Intersection 

The intersection of sets A and B is denoted by the symbol ∩ and defined as 
(Fig. 2.3)  

A ∩ B = {x | (x ∈ A)  (x ∈ B)}. (2.5) 

 

Fig. 2.3. Visualization of set intersection A ∩ B. 

 If A ∩ B = ∅, A and B are said to be disjoint sets (Fig. 2.4). 
 

 
Fig. 2.4. Visualization of the disjoint sets A and B. 

Example 2.11  

{thought, ape, quantum, Rembrandt} ∩ {thought, Rembrandt, 1, 2} = 
{thought, Rembrandt}. Note that the result of the intersection consists of 
the elements that are exactly the same.  

 Set intersection satisfies the following properties (as can be easily 
checked using the definitions of set equality and intersection): 

• Commutativity: A ∩ B = B ∩ A, for any two sets A, B. 
• Associativity: A ∩ (B ∩ C)= (A ∩ B) ∩ C, for any three sets A, B, C. 
• Idempotency: A ∩ A = A, for any set A.  

2.2.6 Set Difference 

The difference of sets A and B (in this order) is denoted by the symbol \, 
and is defined as (Fig. 2.5)  

A \ B = {x | (x ∈ A)  (x ∉ B)}. (2.6) 

A B

A 

B

A ∩ B 
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Example 2.12  

{thought, ape, quantum, Rembrandt} \ {thought, Rembrandt, 1, 2} = {ape, 
quantum}.  

 
Fig. 2.5. Visualization of set difference A \ B. 

 We note that, in general, A \ B ≠ B \ A (i.e., set difference does not 
commute, just like, e.g., the subtraction of numbers). 

2.2.7 Cartesian Product 

The Cartesian product of sets A and B (in this order) is denoted by the 
symbol × and defined as (Fig. 2.6)  

A × B = {(a, b) | (a ∈ A)  (b ∈ B)}. (2.7) 

We note that A × B ≠ B × A if A ≠ B. 

Example 2.13  

{thought} × {1, 2} = {(thought, 1), ((thought, 2)}. Note that the pairs of a 
Cartesian product are “ordered” pairs, i.e., the pair (thought, 1) is not the 
same as the pair (1, thought), and thus the latter pair is not an element of 
this Cartesian product.  
 

 

Fig. 2.6. Visualization (using points) of the Cartesian product A × B = 
{a, b, c} × {d, e} = {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}. 

A \ B

A 

B 

 
e 
 
d 

         a                       b                                  c 
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2.2.8 Set Complement 

Let A ⊆ B. The complement CBA of set A relative to set B is defined as 
(Fig. 2.7)  

CBA = {x | (x ∈ B)  (x ∉ A)} = B \ A. (2.8) 

 

 
Fig. 2.7. Visualization of set complement CBA. 

 

Example 2.14  
C{thought, ape, quantum}{thought} = {ape, quantum}.  

2.2.9 Powerset 

The powerset ℘(A) of a set A is defined as ℘(A) = {X | X ⊆ A}, i.e., the 
set of all subsets of A. The empty set ∅ is a member of the powerset of any 
set A, i.e., ∅ ∈ ℘(A). 

Example 2.15  

℘({thought, ape, quantum}) = {∅, {thought}, {ape}, {quantum}, 
{thought, ape}, {thought, quantum}, {ape, quantum}, {thought, ape, quan-
tum}}.  

2.2.10 Cardinality of Set 

The cardinality of a set A is denoted by |A| and defined (from a practical 
point of view) as the number of elements it contains. The cardinality of a 
finite set A having n elements is denoted as |A| = n, whereas that of an infi-
nite set B is equal to infinity, i.e., |B| = +∞.  
 The cardinality of powerset ℘(A) is equal to |℘(A)| = 2n, where |A| = n. 
Indeed, the elements of ℘(A) are: 

CBA 
 A B 
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• The empty set ∅. 
• The subsets of A containing the elements of A one by one, two by two, 

and so on. 
• The set A itself. 

That is, if A = {a1, a2,…,an}, then  

℘(A) = {∅, {a1}, {a2},…,{an}, {a1, a2},…,{a1, an},…,{a1, a2, a3},…, A}. 

Thus,  

|℘(A)| = ¦
=

=
n

k

nk
nC

0

2 , (2.9) 

where k
nC  denotes the combinations of n taken by k. 

Example 2.16  

2.2.11 Properties of Set Operations 

Apart from the properties given thus far, the following properties (holding 
for any set A, B, C) are also important and applied in IR: 

• Distributivity:  A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),  
     A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), 

• Absorption:   A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A, 
• De Morgan’s laws (see Section 2.1.6 for an analogy in mathematical 

logic):  

     CA(B ∩ C) = CA(B) ∪ CA(C).  
     CA(B ∪ C) = CA(B) ∩ CA(C).  

2.3 Elements of Relations Theory 

The aim of this section is to present the major concepts of relations theory, 
with an emphasis on ordering and equivalence relations (as applied in IR).  
 However trivial the word “order” might sound, it is all important in 
theoretical sciences as well in practical applications. In order to illustrate 

From Example 2.15: |{∅, {thought}, {ape}, {quantum}, {thought, ape}, 
{thought, quantum}, {ape, quantum}, {thought, ape, quantum}}| = 23 = 8.  
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this, let us consider the following situation. We assume that we are given 
the following objects:  

O1 = ball, O2 = photograph, O3 = building, 

O4 = spaceship, O5 = blouse. 

  

At first glance, we may have the impression that considering (or even men-
tioning) these objects together (i.e., in one set) is strange and that it hardly 
makes any sense. However, order can be introduced among them. For ex-
ample, it is possible to calculate a price Pi for every object Oi:  

O1 has price P1, O2 has price P2, O3 has price P3, 

O4 has price P4, O5 has price P5. 

 

Prices are real numbers, so they can be ordered, e.g., as follows: 

P2 ≤ P5 ≤ P1 ≤ P3 ≤ P4.  

Using the ordering of prices, we can define an order among the objects 
themselves : 

photograph ≤ blouse ≤ ball ≤ building ≤ spaceship. 
 

In this way, a structure (namely, an order) has been introduced among our 
objects. This structure makes it possible to deal with and talk about them 
from a different perspective. For example:  

• It has now become possible to answer the question “Which is the cheap-
est object?” 

• It has also become possible to incorporate these objects into an account-
ing system. 

2.3.1 Binary Relations 

Given two sets A, B, a binary relation R is a subset of the Cartesian prod-
uct A × B, i.e., R ⊆ A × B. A is called the domain and B is called the codo-
main of R. The fact that (x, y) ∈ R can also be denoted by xRy (which 
should be read as “x is in relation R with y”). 

Example 2.17  

• {(thought, 1)} is a relation of the Cartesian product {thought} × {1, 2} = 
{(thought, 1), ((thought, 2)}.  

• Let A denote the set of words of language L1 (e.g., Hungarian) and B the 
set of words of language L2 (e.g., English). Then, the structure of a 
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bilingual dictionary D (Hungarian-English) can be modeled as a binary 
relation D ⊆ A × B, i.e., as pairs of corresponding words.  

2.3.2 Function 

Let A and B denote two sets. A function f defined over set A with values in 
set B is a binary relation f ⊆ A × B for which ∀a ∈ A ∃b ∈ B such that afb. 
The function is usually denoted as f: A → B, f(x) = y, where x ∈ A, y ∈ B. 
The way in which the relation f (i.e., the mapping of x onto y) is per-
formed, or constructed, falls outside our scope (this generally depends on 
the application or problem being considered). 

Example 2.18  

• f:  → 
+
, f(x) = x2 is a function (its graphic representation is a  

parabola).  

• g: {1, 2, 3} → {4, 9, 11}, g(2) = 4, g(3) = 9 is not a function because it 
does not assign any value to 1. 

• f = {(1, 4), (2, 4), (3, 9)} ⊆ A × B = {1, 2, 3} × {4, 9, 11} is a function. 
In the usual notation, one writes the following:  

f: {1, 2, 3} → {4, 9, 11}, f(1) = 4, f(2) = 4, f(3) = 9. 

 
 
 A function f: A → B is  

• Surjective if ∀b ∈ B ∃a ∈ A such that f(a) = b.  

• Injective if ∀a1, a2 ∈ A, a1 ≠ a2, it follows that f(a1) ≠ f(a2). 

• Bijective if it is surjective and injective. 

1 
 
2 
 
3 

4 
 
9 
 
11 

f :  A         B  
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2.3.3 Predicate 

Let A denote an arbitrary set. A predicate is a function Pred: A → {T, F} 
such that Pred(a) is a proposition for every a from A, i.e., Pred(a) is as-
signed exactly one of the values T or F.  

Example 2.19  

Let A be the set of the names of all members of a family. For example, A = 
{William, Anne, Edward, John, Eve, Deirdre}. Then, the function assign-
ing a marital status to everybody in the family is a predicate Pred: A → 
{married, not married}. For example:  

• Pred(William) = married (i.e., in words: William is married.), 
• Pred(Deirdre) = not married (i.e., in words: Deirdre is not married.).  

2.3.4 Equivalence Relation 

A binary relation R ⊆ A × A is an equivalence relation if it satisfies the fol-
lowing conditions: 

• Reflexivity:  xRx, ∀x ∈ A. 
• Symmetry: xRy � yRx, ∀x, y ∈ A. 
• Transitivity: ((xRy)  (yRz)) � xRz, ∀x, y, z ∈ A. 

 

Example 2.20  

• Let x denote a positive rational number: x ∈ +. Let us define the fol-
lowing rounding rule: if number x has a nonzero fractional part, then the 
number is rounded to the integer number immediately greater than x. 
For example, 6.17 = 7. The rounding rule is an equivalence relation in 
the set +. The elements of the set {x | n < x ≤ n + 1, n ∈ } are equiva-
lent to each other.  

• The relation “brother/sister of” may be viewed as an equivalence rela-
tion between people (if we are allowed to say, for the sake of reflexivity, 
that anyone is a brother/sister of him/herself).  
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2.3.5 Ordering Relation 

A binary relation R ⊆ A × A is an ordering relation if it satisfies the fol-
lowing conditions: 

• Reflexivity:   xRx, ∀x ∈ A. 
• Transitivity:   ((xRy)  (yRz)) � xRz, ∀x, y, z ∈ A. 
• Antisymmetry: ((xRy)  (yRx)) � x = y, ∀x, y ∈ A. 

Example 2.21  

• The relation ≤ (meaning: “less than or equal to”) is an ordering relation 
in the set  of real numbers.  

• In the set  of natural numbers, the relation “divides” (e.g., 3 divides 
12), denoted by |, is an ordering relation.   

2.3.6 Partially Ordered Set 

A set A with an ordering relation R defined on it is called a partially or-
dered set (or poset, for short). Notation: (A, R). 

Example 2.22  

From Example 2.21, the following structures are posets:  

• ( , ≤)  

• ( , | ) 

Let A denote a set. Then, the structure (℘(A), ⊆) is a poset. Indeed, one 
can easily check, using the corresponding definitions, that ⊆ is reflexive 
(i.e., A ⊆ A), transitive (i.e., if A ⊆ B and B ⊆ C, then A ⊆ C), and anti-
symmetric (i.e., if A ⊆ B and B ⊆ A, then A = B).  

2.3.7 Partition 

The partition of a set A is given by mutually disjoint subsets X1, X2,...,Xn 
(of A): 
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A = X1 ∪ X2 ∪...∪ Xn 

Xi ∩ Xj = ∅, i = 1, 2,...,n, j = 1, 2,...,n, i ≠ j. 

(2.10) 

 
Any equivalence relation R on a set A provides a partitioning of A into mu-
tually disjoint equivalence classes (all the elements belonging to the same 
class are equivalent to each other). 

Example 2.23 

• The sets {x | n < x ≤ n + 1, n ∈ } in Example 2.20 are equivalence 
classes, and they provide a partition of the set + of positive rational 
numbers.  

• A relation R is referred to as a preordering relation if it is reflexive and 
transitive. For example, transportation priorities in a logistics system 
form a preordering relation. Such a system can become very compli-
cated in practice, but its complexity can be reduced by decomposing it 
into equivalence classes.  

2.4 Exercises and Problems 

1. Is the sentence “The sun will shine over the Niagara waterfall on the 
April 10, 6045” a proposition? 

2. What is the negation of the proposition “The Sun is shining”? Is it 
“The Sun is not shining? Is it “It is not the Sun that is shining”? 

3. When is the sentence “If John is a liar, then Peter is a truth teller” 
true? 

4. Let P denote the following proposition P = “I wear a necktie,” and Q 
denote the following proposition Q = “I am elegant.” Write the sen-
tence “I am elegant because I wear a necktie” using the formalism of 
mathematical logic. 

5. Let us assume that you go to library (or you search the World Wide 
Web) in order to read newspaper articles on the art of dancing. For 
example, waltz, rock and roll, tango, salsa, but you are not interested 
in salsa as a Web ranking method. Express the information you using
the formalism of mathematical logic. 
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6. Let us assume that J1,...,Jn denote Web pages (or journal papers). Let 
the URL (title) of the page (paper) Ji be Ti, and its posting date (pub-
lication date) be Di (i = 1,...,n). Turn the set of pages (papers) into a 
poset on their posting date, and then on the length (length is equal to 
number of words) of their URLs. What do you observe? 

7. Let us assume that you are given the task to design an ordered struc-
ture for toys in a kindergarten. How would you order the toys? Is 
there just one way to order them? Can you find more than one way to 
create order among the toys, i.e., to define posets of toys? 

8. Let us assume that B = {B1,...,Bn} denotes a set of Web pages (or 
books). Let T1,...,Tm denote the terms appearing in them. Create a par-
tition P of set B if all the pages (books) in which the term Ti has the 
same number of occurrences are equivalent to each other. Do this for 
every i = 1, 2,...,m. What do you observe? 

9.  Let B1,...,Bn denote all the Web pages of the World Wide Web, or all 
the books held in a library. Do they form a set?  
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3 Elements of Lattice Theory 

Lattice theory will play a leading role in  
the mathematics of the twenty-first century. 

(Gian-Carlo Rota) 
 
In this chapter, we discuss concepts and properties that pertain to lattice 
theory (lattice, poset, duality, Hasse diagrams, atomicity, modularity, 
distributivity, complementation, orthocomplementation, orthomodularity, 
Boolean algebra, important lattices) that are applied in the theory of 
information retrieval (IR), in the development of IR systems, and in the 
major retrieval methods. Further concepts and properties of lattices are 
introduced in subsequent chapters, as they become relevant. 
 By important lattices we mean those lattices that are widely applied in 
IR, namely: the Boolean algebra of the powerset, of the logical proposi-
tions, and of the logical predicates, and further the distributive lattice of 
logical implications.  
 Every property is discussed and proved in detail. Many examples and 
figures are given in order to help the reader grasp the concepts and proper-
ties presented.  
 Apart from examples, there are exercises and problems that are IR-
oriented and are designed to improve understanding and show how basic 
properties of lattices are/can be applied in IR. Solutions are given at the 
end of the book. 
 A bibliography on the theory of lattices is included at the end of the 
chapter. 
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3.1 Lattice 

The notion of lattice represents one of the basic structures in the modern 
theory of algebraic structures (next to, e.g., groupoid, group, factor, ring, 
field, linear space, poset, sequence, clan, incline, etc.). The concept of lat-
tice has important applications in several mathematical disciplines (e.g., 
topology, functional analysis). It is, at the same time, an interesting notion 
in that it is the only concept that denotes both a relational and an algebraic 
(i.e., operations-based) structure. 
 The German mathematician Richard Dedekind wrote a book based on 
the notes he took of Dirichlet’s lectures, which was first published in 1863. 
In the later 1893 edition, there is a section about lattices (axioms, modular 
law, duality, distributive law, free lattices). Apparently, Dedekind used lat-
tice terminology in an 1877 paper well before he published the second edi-
tion of his book. Dedekind noted that lattices were discussed by Ernst 
Schröder in an 1880 volume, and that that led him to consider nonmodular 
lattices. However, the founder of modern lattice theory was Garrett Birk-
hoff, who proposed it in a book first published 1940, which went through 
several editions.  

∧: L × L → L, 

∨: L × L → L. 

(3.1) 

The structure (L, ∧, ∨) is called a lattice if the following properties hold: 

• Commutativity:  A ∧ B = B ∧ A, A ∨ B = B ∨ A, ∀A, B ∈ L. 
• Associativity:  A ∧ (B ∧ C) = (A ∧ B) ∧ C, ∀A, B, C ∈ L. 
      A ∨ (B ∨ C) = (A ∨ B) ∨ C, ∀A, B, C ∈ L. 
• Absorption:   A ∧ (A ∨ B) = A, A ∨ (A ∧ B) = A, ∀A, B ∈ L. 

It is worth noting that: 

1. First, absorption is the only property that connects the meet and the 
join.  

2. Second, any lattice L is at the same time a commutative semigroup 
with respect to the meet and the join (a semigroup is a structure (G, *) 
in which the operation * is associative). 

3. Third, a property called idempotency holds in any lattice: A ∧ A = 
A, ∀A ∈ L. Indeed, taking B = A ∧ X, the absorption property A ∧ 
(A ∨ B) = A becomes A ∧ (A ∨ (A ∧ X)) = A ∧ A = A. Idempotency 

 Given a set L, two operations (i.e., functions), denoted by , called 
meet, and , called join, are expressed as  
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also holds for the join: A ∨ A = A, ∀A ∈ L (which can be shown in 
a similar manner). 

3.2 Lattice and Poset 

In any lattice (L, ∧, ∨), an ordering relation ≤ can be defined as  

(A ≤ B) ⇔ (A ∧ B = A). (3.2) 

The structure (L, ≤) is a poset. The relation ≤ is  

• Reflexive because the meet ∧ is idempotent. 
• Transitive because from A ∧ B = A and B ∧ C = B it follows that A ∧ B = 

A ∧ (B ∧ C) = (A ∧ B) ∧ C = A ∧ C = A. 
• Antisymmetric because A ∧ B = A = B ∧ A = B. 

 In a poset P, an element A ∈ P is an upper bound of subset H ⊂ P if and 
only if X ≤ A, ∀X ∈ H. An upper bound A of H is the least upper bound 
(also called the supremum) of H if and only if for any upper bound U we 
have A ≤ U. The notions of lower bound and greatest lower bound (also 
called the infimum) are similarly defined.  
 In a lattice L, any two elements A and B have a supremum sup{A, B} 
and an infimum inf{A, B}: 

• A supremum: sup{A, B} = A ∨ B.  
• An infimum: inf{A, B} = A ∧ B.  

Example 3.1 

• The powerset ℘(A) of a set A ordered by set inclusion is a lattice. For 
every X and Y element of ℘(A) we have (see also Sections 2.2.4, 2.2.5, 
2.2.11) 

sup{X, Y} = X ∨ Y = X ∪ Y, 

inf{X, Y}= X ∧ Y = X ∩ Y. 

• The set  of natural numbers ordered by the relation “divides” is a lat-
tice, and sup{a, b} = l.c.m.(a, b), inf{a, b}= g.c.d.(a, b), where l.c.m. = 
least common multiple and g.c.d. = greatest common divisor. 

• Let  denote all the equivalence relations R on a set X. The structure  

( , ≤) is a lattice, where R1 ≤ R2 ⇔ (x R1 y � x R2 y).  
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3.3 Duality 

If we examine the properties of the meet and join operations defining a lat-
tice, we can observe that they are in pairs in the sense that the meet and 
join are swapped. It follows that any other property valid in a lattice (and 
being a consequence of the axioms) will also be valid if the meet and the 
join are interchanged. This phenomenon is referred to as the principle of 
duality. Duality is a useful tool for obtaining new results from given ones 
simply. The dual of a given property is obtained as follows: 

• The relation ≤ is replaced by the relation ≥. 
• The meet is replaced by the join, and vice-versa. 

The dual of a valid property is also valid. For example, A ∧ B is a lower 
bound of A and B, i.e., A ∧ B ≤ A and A ∧ B ≤ B. Taking the dual, we ob-
tain the following valid properties: A ∨ B ≥ A and A ∨ B ≥ B. 

3.4 Hasse Diagram 

The fact that any lattice can be turned into a poset allows us to visualize 
(i.e., create a drawing of) the lattice. Lattices are represented graphically 
using a Hasse diagram: 

• Any element of the lattice is usually represented by a point or circle 
(depending on which yields a better visualization of the problem or ap-
plication being considered), or by a square (or rectangle) in which data 
can be written (if so required by the application). 

• Two elements A and B are connected by a nonhorizontal (usually 
straight) line if A ≤ B and there does not exist any element C (≠ A, B) 
such that A ≤ C ≤ B (in the diagram, A is situated below B).  

 For example, the Hasse diagram of the lattice A ≤ B ≤ C is shown in  
Fig. 3.1. 

 

 

Fig. 3.1. Hasse diagram representation of the lattice A ≤ B ≤ C. 

B

C

A
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 The Hasse diagrams of the lattices that can be formed using n = 1, 2, 3, 
4, 5 elements are shown below.  
 Any 1-element set is a lattice; its Hasse diagram is a single point: •.  
Using n = 2 elements, one can form just one lattice. The Hasse diagram of 
the one 2-element lattice is seen in Fig. 3.2. 
 

 
Fig. 3.2. The one 2-element lattice. 

 With n = 3 elements, one can also form just one lattice. The Hasse dia-
gram of the one 3-element lattice is shown above in Fig. 3.1.  
 Using n = 4 elements, one can form two lattices. The Hasse diagrams 
of the two 4-element lattices are pictured in Fig. 3.3. 
 

 
Fig. 3.3. The two 4-element lattices. 

 The Hasse diagrams of the five 5-element lattices are illustrated in 
Fig. 3.4. 

 

Fig. 3.4. The five 5-element lattices. 
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 We note that while every lattice is a poset, not every poset is a lattice. 
A poset is a lattice if and only if any two of its elements have a supremum 
and an infimum. For example, the poset {A, B, C} with A ≤ B and C ≤ B is 
not a lattice because A and C do not have an infimum (Fig. 3.5). 
 

 
 
Fig. 3.5. A 3-element poset that is not a lattice (the bottom elements do not have 

an infimum). 
 

Figure 3.6 shows a 6-element poset that is not a lattice because there are 
multiple infima (maxima). 

 

 
Fig. 3.6. A poset that is not a lattice. 

3.5 Complete, Atomic Lattice 

A lattice L is called complete if every nonempty subset of L has a supre-
mum and an infimum. Any complete lattice L has a smallest element, de-
noted by 0, and a largest element, denoted by 1.  
 It can be immediately seen that every finite lattice is complete.  

Example 3.2  

• The lattice (L, ≤) on the set L = {0, x, y, z, 1} defined by the ordering re-
lation {(0, x), (0, z), (x, y), (y, 1), (z, 1)} is represented by the Hasse 
diagram in Fig. 3.7. This lattice, called the pentagon lattice, is usually 
denoted by N5.  

• The powerset ℘(A) of a set A ordered by set inclusion is a complete  
lattice.  
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• The set  of natural numbers ordered by the relation ≤ is not complete 
because there is no greatest natural number.  

• The set  of integer numbers ordered by the relation ≤ is not complete 
because there is no greatest or least integer number.  

 
Fig. 3.7. The pentagon lattice (N5). 

 
An atom of a lattice L is an element A of L such that  

(0 ≤ B ≤ A) � (B = 0 or B = A). (3.3) 

A lattice with 0 is atomistic if every one of its elements is a join of atoms, 
and it is referred to as atomic if 

∀ x ∈ L, x ≠ 0 � ∃ atom a ≠ 0 such that a ≤ x. (3.4) 

3.6 Modular Lattice 

In any lattice L, the following property, referred to as weak distributivity, 
holds: 

A ∨ (B ∧ C) ≤ (A ∨ B) ∧ (A ∨ C), ∀ A, B, C ∈ L. (3.5) 

Indeed, in any lattice, we have A ∧ X ≤ X and A ∧ X ≤ A. If A ≤ B, then A ∧ 
X ≤ B ∧ X. Also, we have B ≤ B ∨ C. Then, taking X = A, we obtain  

B ∧ A ≤ (B ∨ C) ∧ A, (3.6) 

and so  

A ∧ B ≤ A ∧ (B ∨ C). (3.7) 

0 

x 

y 

1 

z 
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Similarly,  

A ∧ C ≤ A ∧ (B ∨ C). (3.8) 

In other words, A ∧ (B ∨ C) is an upper bound for both A ∧ B and A ∧ C, 
and thus A ∧ (B ∨ C) is an upper bound for their supremum, i.e.,  

(A ∧ B) ∨ (A ∧ C) ≤ A ∧ (B ∨ C), (3.9) 

whose dual is Eq. (3.5). 
 If A ≤ C, then A ∨ C = C [this being the dual of Eq. (3.2)], so A ∨ (B ∧ 
C) ≤ (A ∨ B) ∧ C [using Eq. (3.5)]. Thus, the following definition can be 
introduced:  

Definition 3.1. A lattice L is modular if  
 

(∀A, B, C ∈ L for which A ≤ C) � 

A ∨ (B ∧ C) = (A ∨ B) ∧ C.  

(3.10) 

 There are lattices that are not modular, e.g., the pentagon lattice N5  
(Fig. 3.7). It is clear that x ≤ y. However,  

x ∨ (z ∧ y) = x ∨ 0 = x, (3.11) 

which is different from  

(x ∨ z) ∧ y = 1 ∧ y = y. (3.12) 

Modularity is thus not a consequence of the axioms that define the notion 
of lattice. 

Example 3.3 

The set  of natural numbers ordered by the relation “divides” is a modu-
lar lattice. It is known from arithmetic that l.c.m. [a, g.c.d.(b, c)] = g.c.d. 
[l.c.m.(a, b), c].  

 In a modular lattice, the following property holds: 

Theorem 3.1. Let L denote a modular lattice, and let A ≤ B, A, B ∈ L. 
Then,  

A ∧ C = B ∧ C and A ∨ C = B ∨ C 

imply A = B.  
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 Proof. Indeed, we have:  

   A = A ∨ (C ∧ A) =   (absorption) 
   A ∨ (A ∧ C) =    (commutativity) 
   A ∨ (B ∧ C) =    (by assumption) 
   A ∨ (C ∧ B) =    (commutativity) 
   (A ∨ C) ∧ B =    (modularity) 
   (B ∨ C) ∧ B =    (by assumption) 
   = B     (absorption).  

3.7 Sublattice 

Let L denote a lattice. A subset S of L is a sublattice of L if for any two 
elements A and B of S we have sup{A, B} ∈ S and inf{A, B} ∈ S.  
 It can be shown that any sublattice S of a modular lattice L is modular. 
Let X and Y be two arbitrary elements of S. Then, we have  

infS{X, Y} = infL{X, Y} = X ∧ Y, 

supS{X, Y} = supL{X, Y} = X ∨ Y. 

 
(3.13) 

Let X, Y, and Z be three arbitrary elements of S and let X ≤ Z. Since L is 
modular, using Eq. (3.13), we find that it follows that S is modular as well. 

3.8 Distributive Lattice 

We have seen that the weak distributivity property [Eq. (3.5)] as well as its 
dual hold in any lattice. We may have a lattice with the relation < (instead 
of ≤). In such a lattice, if the property (3.5) holds for = (i.e., for equality), 
then nothing can be said about its dual (because modularity is not a conse-
quence of the axioms defining a lattice). However, it can be shown that, in 
any lattice, the following equivalence holds: 

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) ⇔ 

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C). 

(3.14) 

Let us show the � part of this equivalence. We have  

  (A ∧ B) ∨ (A ∧ C) =  
  ((A ∧ B) ∨ A) ∧ ((A ∧ B) ∨ C) =  [left part of Eq. (3.14)] 
  A ∧ ((A ∧ B) ∨ C) =   (absorption) 
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  A ∧ (C ∨ (A ∧ B)) =   (commutativity) 
  A ∧ ((C ∨ A) ∧ (C ∨ B)) =  [left part of Eq. (3.14)] 
  (A ∧ (C ∨ A)) ∧ (C ∨ B) =  (associativity) 
  A ∧ (C ∨ B) =    (absorption)) 
  A ∧ (B ∨ C).    (commutativity) 

The ⇐ can be shown in a similar fashion. Thus, we introduce the follow-
ing notion of distributivity:  

 

Definition 3.2. A lattice L is distributive if 

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C),  ∀ A, B, C ∈ L.  (3.15) 

The dual of Eq. (3.15) also holds. It can be immediately seen that every 
distributive lattice is modular. If A ≤ C, i.e., A ∨ C = C, then we have A ∨ 
(B ∧ C) = (A ∨ B) ∧ C. 
 However, not every modular lattice is distributive. Hence, any non-
modular lattice is nondistributive (according to the law of contraposition), 
and thus the pentagon lattice (Fig. 3.7) is not distributive.  
 The lattice shown in Fig. 3.8 is modular but not distributive: 

x ∨ (y ∧ z) = x ∨ 0 = x, (3.16) 

which is different from 

(x ∨ y) ∧ (x ∨ z) = 1 ∧ 1 = 1. (3.17) 

 

 
Fig. 3.8. Modular lattice (it is not distributive). 

0 

x 

1 

z y 
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Example 3.4 

• The set  of integer numbers ordered by the relation ≤ is a distributive 
lattice.  

• The powerset ℘(A) of any set A is a distributive lattice (ordered by ⊆).  

• The set  of natural numbers ordered by the relation “divides” is a dis-
tributive lattice.  

Figure 3.9 shows the Hasse diagram of a distributive lattice (which can be 
easily checked). 
 

 
Fig. 3.9. Distributive lattice. 

 Any sublattice S of a distributive lattice L is distributive. Let A, B, and C 
be three arbitrary elements of S. Then, because they are also elements of L, 
we have A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C). However, because S is a sublat-
tice, the distributivity condition is also valid in S. 
 It can be shown that the following property holds: 

Theorem 3.2. In any distributive lattice, we have  

(A ∧ C = B ∧ C and A ∨ C = B ∨ C) � A = B. (3.18) 

 Proof. Indeed, we can write that 

    A = A ∨ (C ∧ A) =   (absorption) 
    A ∨ (A ∧ C) =    (commutativity) 
    A ∨ (B ∧ C) =    (by assumption) 
    (A ∨ B) ∧ (A ∨ C).   (distributivity) 

In a similar way, it can be shown that 

    B = B ∨ (C ∧ B) = (A ∨ B) ∧ (A ∨ C). 

Hence, A = B.  
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3.9 Complemented, Orthomodular Lattice 

We first introduce the notion of complementation: 

Definition 3.3. A lattice L with 0 and 1 is complemented if there is a map-
ping from L to L such that 

A |→ AC, ∀ A ∈ L, (3.19) 

so that 

A ∧ AC = 0, A ∨ AC = 1, (3.20) 

for every A in L. AC ∈ L is called the complement of A.  

 The complement may not be unique; i.e., it may happen that an element 
has more than one complement. If not every element has a complement, 
the lattice is not complemented (albeit that some elements may have com-
plements).  
 An important property of distributive lattices is the following: 

Theorem 3.3. In any distributive lattice, any element can have at most one 
complement.  

 Proof. If 
A ∧ C = B ∧ C = 0 and A ∨ C = B ∨ C = 1, 

then A and B are complements of C. Because A = B (Theorem 3.2), it fol-
lows that the complement is unique (if it exists).  

Example 3.5 

The powerset ℘(A) of any set A ordered by set inclusion is a comple-
mented lattice with 0 = ∅ and 1 = A.  

 Figure 3.10 shows a (not uniquely) complemented lattice. The pentagon 
lattice is also a complemented lattice. In any complemented lattice, we 
have A ∧ AC = 0, ∀A ∈ L. If we take A = BC, then BC ∧ BCC is the same as 
B ∧ BC = BC ∧ B = 0. A special case would be to require that B = BCC, ∀B 
∈ L. Further, we have  

(A ≤ BC) ⇔ (A ∧ BC = A), (3.21) 

and  

(B ≤ AC) ⇔ (B ∧ AC = B), (3.22) 
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(A ≤ B) ⇔ (A ∧ BC ≤ B ∧ AC). (3.23) 

A special case of equivalence [Eq. (3.23)] would be to require that  

(A ≤ B) ⇔ (BC ≤ AC). (3.24) 

 

ACC = A, 

A ≤ B ⇔ BC ≤ AC.  

(3.25) 

 

 Figure 3.11 shows the Hasse diagram of an orthocomplemented lattice.  
 

 
Fig. 3.11. Orthocomplemented lattice. 

 
 The analogues of de Morgan’s laws (known from set theory, Section 
2.2.11) hold in lattices as follows: 

A, B L. Then we have

Fig. 3.10. Complemented lattice.  

Thus, the following definition may be introduced:

Definition 3.4. A complemented lattice L is orthocomplemented if  
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Theorem 3.4. In any orthocomplemented lattice the following relations 
(known as De Morgan’s laws) hold: 

(A ∨ B)C = AC ∧ BC, 

(A ∧ B)C = AC ∨ BC. 

 
(3.26) 

(A ∧ B)C = (A ∧ B)C ∨ (A ∧ B)C ≥ AC ∨ BC. 

From this, we get that 

(A ∧ B)CC ≤ (AC ∨ BC)C, 

i.e., 
A ∧ B ≤ (AC ∨ BC)C. 

The dual of this also holds: 

A ∨ B ≥ (AC ∧ BC)C. 

Taking A → AC and B → BC, we obtain 

AC ∧ BC ≤ (A ∨ B)C, 

from which we get  

A ∨ B ≤ (AC ∧ BC)C. 

Therefore, 

A ∨ B = (AC ∧ BC)C, 

and thus 

(A ∨ B)C = (AC ∧ BC)CC = (AC ∧ BC). 

The other De Morgan law is the dual of this.  

 A special case of the modular law (3.10) is the following concept: 

Definition 3.5. An orthocomplemented lattice L is called orthomodular if 
the modularity condition (3.10) holds for B = AC: 

A ≤ C � A ∨ (AC ∧ C) = C.  (3.27) 

 It can be shown that the following property holds: 

Proof. Let X = A B. We have that  A B A. Thus by Definition 3.4, 
AC  (A B)C. As A B B, we have BC  (A B)C. Using the idempo-
tency property, we obtain 
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Theorem 3.5. In any orthomodular lattice, we have (absorption of the 
complement) 

(AC ∧ BC) ∨ ((A ∨ B) ∧ AC) = AC, ∀A, B ∈ L. 

 Proof. As A ≤ A ∨ B, we have from Definition 3.4 that (A ∨ B)C ≤ AC. 
By Theorem 3.4, AC ∧ BC ≤ AC. Using Definition 3.5, we find that  

(AC ∧ BC) ∨ ((AC ∧ BC)C ∧ AC) = AC. 

By Theorem 3.4, this can be rewritten as  

(AC ∧ BC) ∨ (A ∨ B) ∧ AC) = AC.  

3.10 Boolean Algebra 

A complemented and distributive lattice (L, ∨, ∧) is called a Boolean alge-
bra. Any element of a Boolean algebra has a unique complement. Figure 
3.12 shows the Hasse diagram (in two different versions) of one and the 
same Boolean algebra. 

 
Fig. 3.12. Boolean algebra (two different drawings of the same 

Boolean algebra). 

3.11 Important Lattices 

The following lattices are of basic importance in IR theory as well as prac-
tical applications and retrieval systems.  
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3.11.1 Powerset Lattice 

The structure (℘(X), ∩, ∪, \), i.e., the set of all subsets of set X, where  

• 0 = ∅  
• 1 = X  
• ∩ = set intersection  
• ∪ = set union  
• \ = set complement 

is a Boolean algebra (see Example 3.1 for a proof). 

3.11.2 Lattice of Logical Propositions 

The structure ({T, F}, , V, ¬) of propositions in mathematical logic, where  

• 0 = False  
• 1 = True  
•  = conjunction  
• V = disjunction  
• ¬ = negation 

is a Boolean algebra (a proof can be easily constructed using the truth ta-
bles given in Section 2.1). De Morgan’s laws (Theorem 3.4) are especially 
important in mathematical logic because they make it possible to define 
disjunction using conjunction and negation: 

¬(P V Q) = ¬P  ¬Q, P V Q = ¬(¬P  ¬Q), (3.28) 

which should be read as “it is not true that neither P nor Q,” or “at least 
one of P and Q.” In other words, according to mathematical logic, if one 
asserts anything about the world around us, then the assertion or its nega-
tion should/must be true. It cannot be neither true nor false. 

3.11.3 Lattice of Logical Predicates 

The structure (Pred(X), , V, ¬) of predicates in mathematical logic is a Boo-
lean algebra. Pred(X) denotes the set of all predicates over X; furthermore 

Pred1(x)  Pred2(x) = (Pred1  Pred2)(x), 

Pred1(x) V Pred2(x) = (Pred1 V Pred2)(x). 

The proof is similar to that in Section 3.11.2. 
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3.11.4 Lattice of Logical Implications 

Let P = {P1, P2,…,Pj,…,Pm} denote a set of propositions. The logical 
equivalence ⇔ partitions set P into equivalence classes:  

P = {C1, C2,…,Ci,…,Cn}, 

Ci = {Pi1,…,Pik}, Pi1 ⇔…⇔ Pik. 

(3.29) 

The structure (P, �) is a distributive lattice. The logical implication � is 
to be understood between class representatives (say ci ∈ Ci representing 
class Ci, i.e., at the class level). One can define the following ordering rela-
tion ≤ in the lattice P:  

(ci ≤ cj) ⇔ (ci � cj). (3.30) 

• The null element 0 = the equivalence class of propositions that are al-
ways false (e.g., “This object is a table and is not a table.”), 

• The unity element 1 = the equivalence class of tautologies (e.g., “This 
object is a table or is not a table”). 

3.11.5 Lattice Types 

A diagram of lattice types is shown in Fig. 3.13. 

 
Fig. 3.13. The diagram of the basic types of lattices used in IR. 

Lattice L

Modular L 1-element L 0-element L 

Complemented L Distributive L

Orthocomplemented L 

Orthomodular L 

Boolean algebra 

P becomes a complemented lattice, and thus a Boolean algebra, if we  
introduce  
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3.12 Exercises and Problems 

1. Prove that the set  of natural numbers ordered by the relation of di-
visibility is a distributive lattice. 

2. Let T = {t1, t2, t3} denote a set of properties. Give the lattices corre-
sponding to the following cases: (i) no property is comparable to any 
other property, (ii) two properties are comparable, (iii) three proper-
ties are comparable but two are not, and (iv) all three properties are 
comparable with each other two by two. 

3. Prove that a sufficient and necessary condition for a lattice to be dis-
tributive is that (Z ∧ X = Z ∧ Y, Z ∨ X = Z ∨ Y) � X = Y. 

4. Let A and B denote two convex figures in a plane (e.g., circle, rectan-
gle). Let A⋅B denote the largest convex figure that is contained in both 
A and B, and let A + B denote the smallest convex figure that contains 
both A and B. Prove that the set of such figures is a nondistributive 
lattice. 

5. Prove that the collection of all distinct publications in a library can be 
viewed as a Boolean algebra. 

6. Let T denote the terms of a thesaurus ordered by the relation “broader 
than.” In general, does T form a lattice? Can you specify cases when 
T is a lattice and when T is not a lattice? 

7. Let T denote the terms of a thesaurus with the following relations be-
tween terms: “broader than,” “narrower than,” “similar to,” “synony-
mous with,” “related to.” Does T form a lattice? 

8. Let D denote a monolingual dictionary. Does a reference given in an 
entry A to another entry B define an ordering relation A ≤ B? If yes, 
does D form a lattice with this relation? 

9. Let P denote a set of people ordered by their heights. Is P a lattice? If 
yes, study its properties. 

10. Let W = {w1,...,wi,...,wj,...,wN} denote a set of Web pages. Do the hy-
perlinks wi → wj form a relation on W? Is W a lattice? 

11. Prove that the lattice in the figure is: 
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(a) Nonmodular: 
 

(b) Distributive: 
 

 
 
(c) Modular and nondistributive: 
 

 
 
(d) Noncomplemented: 
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4 Basics of Information  

Retrieval Technology 

I hear and I forget. I see and I remember. I do and I understand. 
(Confucius) 

 
 
This chapter introduces the basics of information retrieval technology 
(document, stoplist, term, power law, stemming, inverted file structure, 
weighting schemes, term-document matrix, architecture of retrieval sys-
tem, architecture of a search engine, relevance effectiveness, measures and 
measurement, precision-recall graph method, search engine effectiveness 
measurement). These are presented, first, with an eye toward practitioners, 
and the material will be useful for those interested in developing practical 
retrieval systems. However, the material herein may also be helpful for 
theoretically minded readers as well as it will enable a better understanding 
of the chapters that follow.  
 The ways in which a query (expressing a user’s information need) can 
be matched against entities (documents) stored in computers is not dealt 
with at this point. Matching and ranking constitute the topics that will be 
discussed further on. 
 The chapter ends with exercises and problems designed to promote a 
deeper understanding of the basics of information retrieval. 



66      4 Basics of Information Retrieval Technology 

4.1 Documents 

Let E1,…,Ej,…,Em denote entities in general. They can be:  

• Texts (books, journal articles, newspaper articles, papers, lecture notes, 
abstracts, titles, etc.), 

• Images (photographs, pictures, drawings, etc.), 
• Sounds (pieces of music, songs, speeches, etc.), 
• Multimedia (a collection of texts, images, and sounds),  
• A collection of Web pages,  
• And so on. 

For retrieval purposes, it is assumed that each entity Ej is described by (is 
assigned, is characterized, is identified by) a piece of text Dj. Obviously, Dj 
may coincide with Ej itself (e.g., when Ej is itself a piece of text). Dj is tra-
ditionally called a document.  
 This assumption is not as restrictive as it may seem at a first look. It is 
based on a quite natural hypothesis, according to which we are/should be 
able to describe in words (of some language) any entity that we want to 
store in a computer for retrieval purposes. If we accept that describing enti-
ties using words is an act of thought, then the hypothesis is all the more 
acceptable, in that, according to Wittgenstein, “language is a vehicle of 
thought” (Blair 2006).  
 This hypothesis seems, indeed, to be very helpful at the present stage of 
computing and retrieval technology. However, new technologies may 
eventually offer other possibilities that will grow out of result of research 
being carried out at present (e.g., retrieval of drawings by comparing them 
with a sample drawing, without using words). 

4.2 Power Law 

From a computational point of view (and from the viewpoint of a com-
puter programmer), and thus formally, documents consist of words as 
automatically identifiable lexical units. Thus, 
 

lexical unit = word = 

string of characters preceded and followed by “space” (or some  

special character, e.g., ! , . ?). 
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Thus, words can be recognized automatically (using a computer program). 
Moreover, word occurrence has a remarkable statistical property that is  

• Not at all intuitive. 
• Has practical impact.  

 It has been shown that the number f of occurrences of words in an Eng-
lish text (corpus) obeys a power law (Yule 1924, Dewey 1929, Thorndike 
1937, Zipf 1949, Smith and Devine 1985), i.e., 
 

f (r) = Cr− , (4.1) 

where C is a corpus-dependent constant, and r is the rank of words;  is re-
ferred to as the exponent of the power law. The power law f(r) = Cr−1 is 
known as Zipf’s law (  = 1).  

For visualization purposes, the power law is represented in a log-log 
plot, i.e., as a straight line obtained by taking the logarithm of Eq. (4.1): 

log f (r) = log C − α × log r, (4.2) 

where 

• log r is represented on the horizontal axis. 
• log f (r) is represented on the vertical axis. 
• −α is the slope of the line.  
• log C is the intercept of the line.  

 In practice, the following regression line method can be applied to fit a 
power law to data:  

 
Power Law Fitting Using the Regression Line Method 

1. We have a sequence of values X = (x1,...,xi,...,xn) on the horizontal 
axis and another sequence of corresponding values Y = (y1,...,yi,...,yn) 
on the vertical axis (yi corresponds to xi, i = 1,…,n).  

2. If the correlation coefficient  

r(X, Y) = 
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suggests a fairly strong correlationi.e., it is close to +1 or −1be-
tween X and Y on a log scale, then a regression line can be drawn to 
exhibit a relationship between the data X and Y.  
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3. Using the  
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and the  
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of the regression line, we can write the corresponding power law .  
 
 It should be noted, however, that even a strong correlation of the two 
quantities X and Y does not mean a necessary cause-effect relationship be-
tween them. The power law can be used as an approximation of some be-
havior (possible connection) between X and Y, especially when no other 
relationship is known. 
 The parameters α and C of the power law can be computed (approxi-
mated) using the method of least squares, as follows:  
 

Power Law Fitting by Least Squares  

1. We have a sequence of values X = (x1,...,xi,...,xn) on the horizontal 
axis and another sequence of corresponding values Y = (y1,...,yi,...,yn) 
on the vertical axis (yi corresponds to xi, i = 1,…,n). 

2. The parameters α and C should be so computed as to minimize the 
squared error  
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   i.e., the partial derivatives with respect to C and α should vanish.  

 

The least squares method is, in general, a nonlinear optimization problem. 
As such, no generally valid method is known that solves it exactly. How-
ever, different approximation methods (e.g., Newton’s method, gradient 
descent method, Levenberg-Marquardt method) can be used to find an ap-
proximate solution. 
 In practical applications, the number of data (i.e., n) is very large, so the 
use of an appropriate mathematical software or other computer program is 
highly recommended in order to apply the regression line or the least 
squares method (e.g., MathCAD, Matlab, etc.). In general, we recommend 
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using both methods. The values for the parameters that should be accepted 
are those for which the approximation error is smaller or which best fit the 
problem being considered. 
 

Example 4.1 

Let us assume that the data we want to approximate by a power law is X 
and Y, n = 150. Fragments of X and Y are shown below. The correlation 
coefficient is equal to r(X, Y) = −0.95, which suggests a fairly strong corre-
lation between X and Y. Using the regression line method, we obtain the 
following power law : f (x) = 108.38x−3, whereas using the least squares 
method, we get: f(x) = 5677733x−2.32. The approximation error is 2.8 × 108 
in the regression line method, and 3.6 × 106 in the least squares method. 
Thus, we should accept the power law obtained by least squares. 
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 Recent experiments have shown that the distribution of n-grams in Eng-
lish, Chinese, and Greek texts obey a power law with α ≠ 1, i.e., different 
from Zipf’s law (Egghe 2000). (Note: An n-gram is a subsequence 

nii
xx ,...,

1
of n items from a given sequence x1,…,xi,…,xm of items, m ≥ n. If 

the sequence consists of words, then an n-gram is a subsequence of n con-
secutive words. For a sequence of characters, an n-gram is a subsequence 
of n consecutive characters.)  Similarly, Le Quan Ha et al. (2003) showed 
that using very large English corpora (1987–1989 Wall Street Journal arti-
cles, 41 million words) as well as very large Chinese text corpora (20 mil-
lion words TREC database and 250 million syllables in the Mandarin 
Daily News article database), the power law holds with  = 0.6.  
  Dominich and Kiezer (2005) showed that the Hungarian language also 
obeys a power law, also different from Zipf’s law. The following five 
Hungarian text corporahaving very different style and content and span-
ning a period of nearly five centurieswere used (Table 4.1):  

• ARANY: all the writings by János Arany (Hungarian author).  
• JÓKAI: all the writings by Mór Jókai (Hungarian author).  
• BIBLE (Hungarian translation of the Holy Bible, the “Károly-féle  

Biblia”).  
• PALLAS: Great Lexikon Pallas (all 16 volumes).  
• WEB: Hungarian Web corpus. 

Table 4.1. Statistics of the Hungarian Corpora Used in Experiments 

 
Corpus Number of 

word forms 
Number of 
word stems 

ARANY (19th c.) 57,376 31,909

JÓKAI (19th c.) 443,367 200,022

BIBLE (1590) 62,474 29,360

PALLAS (1897) 871,635 605,358

WEB (2003) 11,547,753 7,516,221
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Table 4.3. The Values of the Power Law 
Exponent α for the Corpora Used in Experiments 

The value of the exponent α forCorpus 
word forms word stems 

ARANY 0.88 1.1 
JÓKAI 1.11 1.36 
BIBLE 1.03 1.29 
PALLAS 1.09 1.15 
WEB 1.59 0.99 
Average deviation 
from α = 1 

+42.5% +47.3% 

 In order to explain the empirical observation of power law in language, 
Zipf (1949) used the “principle of least effort.” According to this principle, 
the writer uses as few words as possible to accomplish a job of communica-
tion, whereas the reader prefers unique words (and hence different words for 
different situations) to minimize ambiguity (the effort of interpretation). The 
power law is the result of a balance between these two opposing and com-
peting tendencies. There are also other explanations; see, e.g., Belew (2000). 

4.3 Stoplist 

The experimental result according to which word occurrences in a text 
obey a power law can be exploited in IR.  

 Table 4.2 shows fragments of the lists of terms and their frequency. 

Table 4.2. The First Ten Most Frequent Words in the Hungarian Corpora 
Used in Experiments (r = rank of word, f = frequency of word) 

 

r 

BIBLE 
word    f 

ARANY 
word   f 

JÓKAI 
word    f 

PALLAS 
word    f 

WEB 
word     f 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 a 48796 
 és 40658 
 az 35248 
  12191 
 van 9396 
 úr 8171 
 hogy 7791 
 ki 7650 
 én 7074 
 te 6470 

 a 17475 
 az  7146 
 van  4974 
 nem  4772 
 s   3814 
 is   3200 
 hogy 3102 
 egy  2865 
 és  2530 
 de  2276 

 a    539612 
 az   290432 
 van   162547 
 hogy 110183 
 s    99039 
 nem  95309 
 egy   75891 
 ez    62873 
 is    58486 
 és  56907 

 a    900498 
 és    313237 
 az    311770 
 van   147165 
 is     90004 
 mely  83363 
 ez     61737 
 hogy  55998 
 nagy   49286 
 nem    47076 

 a    113416230 
 az    47124033 
 és    27129451 
 van    26089040 
 hogy   16594469 
 nem   16022747 
 is    15872013 
 egy    12018565 
 ez    12007607 
 the    7534824 

 Table 4.3 shows the values of the power law exponent obtained in  
experiments. 
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 Typically, there are words in a document that occur many times, and 
there are words that occur once or just a few times. One may disregard fre-
quently occurring words (i.e., frequency f exceeds some threshold value) 
on the grounds that they are almost always insignificant, as well as infre-
quent words (i.e., frequency f is below some threshold value) on the 
grounds that they are not much on the writer’s mind (or else they would 
occur more often). The list of frequent and infrequent words thus obtained 
in an entire corpus is called a stoplist. For the English language, a widely 
accepted and used stoplist is the so-called TIME stoplist1  (a fragment is 
shown below): 

 A 
 ABOUT 
 ABOVE 
 ACROSS 
 … 
 BACK 
 BAD 
 BE 

 … 

 When we take Table 4.2 into account, a fragment for a Hungarian stop-
list is as follows: 

  a 
  és 
  az 
  van 
  is 
  mely 
  ez 
  hogy 
   …  

 The construction of a stoplist can be automated (using computer pro-
grams). Other stoplists can also be used depending on, e.g., the topic of the 
documents being considered. One usually  starts with a general stoplist, 
and enlarges/modifies it depending on the topic or on experimental results. 

                                                 
1  http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words 

Note: Of course, a stoplist is, in practice, dependent of the application 
context. For example, the word “a” may be in a stoplist in, say, a me-
chanical engineering context, but it is the name of an important vitamin 
in medicine. 
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4.4 Stemming 

After excluding stopwords, it is advisable that the remaining words be 
transformed to their lexical roots. This operation is referred to as stem-
ming. The justification for stemming can be shown through an example. 
Let us assume that the document D reads as follows: 

From an organizational point of view, the structure of the in-
stitution is consistent with the principle of hierarchical or-
ganization. Albeit that hierarchically structured organizations 
can be very effective in many cases, it is advisable to consider 
moving toward a network type of organizational model, at the 
same time maintaining consistency. 

After removing stopwords, among the remaining words there will be, e.g., 
the words “consistent,” “consistency.” When the above piece of document 
D is to be retrieved, some users may use the query “consistent,” whereas 
others will probably use the query “consistency,” or some other form of 
this word. In order to obtain a common (unified) form for user queries and 
the different word forms in the document, all word forms are/should be 
transformed to one common form, namely to their lexical root (or stem); in 
this case to “consist.” 
 The operation of stemming introduces a partition of the words of a lan-
guage intonot necessarily disjointequivalence classes. Every equiva-
lent class consists of the words that have the same lexical root. We should 
note, however, that there are languages (e.g., Hungarian) in which some 
word forms can be stemmed to multiple lexical roots.  
 For the English language, a widely used stemming algorithm is the Por-
ter algorithm,2 which is based on successively truncating the characters of 
a word, according to grammatical rules for suffixes, etc., until the lexical 
root of the word is obtained. In practice, a dictionary containing the lexical 
roots of as many words as possible can also be used. Thus, the process of 
stemming may reduce to dictionary look up. However, especially in agglu-
tinative languages (e.g., Hungarian) the number of word forms may be in 
the billions. Because a stemmer is a software module that may/should be 
used in real time (e.g., in stemming query words), the process of stemming 
may not exceed a certain time limit. This is an important programming 
problem. Stemming algorithms have been developed for several other lan-
guages as well.3 (Stemmers and stoplists exist for English, French, Spanish, 

                                                 
2 http://www.tartarus.org/~martin/PorterStemmer 
3
 http://snowball.tartarus.org 
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Portuguese, Italian, Romanian, German, Dutch, Swedish, Danish, Norwe-
gian, Russian, Hungarian, and Turkish.)  

4.5 Inverted File Structure 

Let E = {E1,…,Ej,…,Em} denote a set of entities to be searched in a future 
retrieval system, and let  

D = {D1,…,Dj,…,Dm} (4.3)

denote the documents corresponding to E. After word identification, stop-
listing, and stemming, the following set of terms is identified:  

T = {t1,…,ti,…,tn}. (4.4)

The set T can be used to construct an inverted file structure as follows: 

1. Sort the terms t1,…,ti,…,tn alphabetically. For this purpose, some ap-
propriate (fast) sorting algorithm should be used (e.g., quick sorting or 
some other sorting algorithm depending on the number n of terms, on 
the available (internal or external) memory for sorting. (see, e.g., 
(Weiss 1995). 

2. Create an index table I in which every row ri contains exactly one 
term ti together with the codes (identifiers) of documents Dj in which 
that term ti occurs (Table 4.4). 

 
Table 4.4. Index Table I 

Terms in alphabetical 
order 

Codes of documents in 
which the term occurs 

t1 D11,…,D1k 
…  
ti Di1,…,Dis 

…  
tn Dn1,…,Dnp 

 
 As every document Dj uniquely identifies its corresponding entity Ej, a 
structure IF (inverted file) consisting of the index table I and of the entities 
(master file) of set E can be constructed (usually on a disk; Fig. 4.1).  
 The codes in the index table I can also contain the disk addresses (point-
ers) of the corresponding entities in the master file. 

Construction of Index Table 
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 The inverted file structure IF is used in the following way: 

1. Let t denote a query term. A binary search (or other appropriate 
search algorithm) locates t in table I, i.e., the result of the search is the 
row: 

[t | Dt1,…,Dtu]. (4.5) 

2. Using the codes Dt1,…,Dtu, we can read the corresponding entities 
Et1,…,Etu from the master file for further processing. 

 
 

Index table I 
Terms Codes 

t1 D11,…, D1k 
…  
ti Di1,…, Dis 

…  
tn Dn1,…, Dnp 

 
Master file 

Entity 
E1 
… 
Ej 
… 
Em 

 
Fig. 4.1. Inverted file structure (IF). 

  
Other data can also be stored in an inverted file structure, such as: 

• The number of occurrences of term ti in document Dj. 
• The total number of occurrences of term ti in all documents. 
• And so on. 

 The inverted file structure is a logical one. Its physical implementa-
tion depends on the properties of the particular computer hardware, op-
erating system, programming language, database management system, 
etc., available.  
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4.6 Term-Document Matrix 

Just as before, let E = {E1,…,Ej,…,Em} denote a set of entities to be 
searched in a future computerized retrieval system, and let  

D = {D1,…,Dj,…,Dm} (4.6)

denote the documents corresponding to E. After word identification, stop-
listing, and stemming, the following set of terms is constructed  

T = {t1,…,ti,…,tn}. (4.7)

The set T can be used for the construction of term-document matrix TD as 
follows: 
 

 There are several methods for computing the weights. Perhaps the most 
obvious are: 

 1. Binary weighting method: 

¯
®


=
otherwise

Dinoccurstif
w ji

ij 0

1
, 

(4.8)

 2. Frequency weighting method: 

wij = fij. (4.9)

 There are also more advanced methods that offer a more balanced and 
realistic measurement of content (Belew, 2000), and these can be ex-
pressed in a unified manner as follows: 

 
 

Construction of Term-Document Matrix TD 

(i = 1,…,n, j = 1,…,m) 
 

1. Establish fij: the number of times term ti occurs in document Dj, ∀i, j. 

2. Construct the term-document matrix TD = (wij)n×m, where the entry wij 
is referred to as the weight of term ti in document Dj. The weight is a 
numerical measure of the extent to which the term reflects the con-
tent of the document. 
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Theorem 4.1. (Dominich 2002) The entries wij of a term-document matrix 
TD = (wij)n×m can be computed using the following generalized weighting 
method:  
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and Fi denotes the number of documents in which term ti occurs; further 
λ1, λ2, λ3, γ1, γ2, γ3 ν1, ν2, ν3 ∈ {0, 1, 2, 3, 4, ∞}. 

 Proof. It is shown that the usual special cases of each factor (normaliza-
tion, local weighting, and global weighting) are obtained for certain values 
of the parameters. 

Normalization factor [n]:  

 SUM:  ν1 = 0, ν2 = 1, ν3 = 1;   [n] = ( )¦ =

n

k k jw
1

'  

 COSINE:  ν1 = 0, ν2 = 2, ν3 = 2;  [n] = ( )¦ =

n

k k jw
1

2'  

 4th:    ν1 = 0, ν2 = 4, ν3 = 1;  [n] = ( )¦ =

n

k kjw
1

4'  

 MAX:  1 = 1, ν2 = 0, ν3 = ∞;  [n] = '

1
max k j

nk
w

≤≤
 

 NONE: ν1 = 0, ν2 = 0, ν3 = ∞;  [n] = 1 

Local weighting factor [l]: 

 FREQ: λ1 = 1, λ2 = 0, λ3 = 0;  [l] = fij 

 LOG:  λ1 = 0, λ2 = 0, λ3 = 1;  [l] = ln(fij) + 1 
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 The explicit forms of the weighting schemes widely used in practice are 
as follows: 

(a) max-tf; max-normalized method:  
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(4.10)

(b) norm-tf, length-normalized method: 
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(4.11) 

(c) tf-idf, term frequency inverse document frequency method: 
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where Fi denotes the number of documents in which term ti occurs. 

 MAXNORM:  λ1 = 0, λ2 = 1, λ3 = 0; [l]= kj
nk

ij

f

f

≤≤1
max  

Global weighting factor [g]: 

 NONE:  γ1 = 0, γ2 = 0, γ3 = 0; [g] = 1 

 INVERSE:  γ1 = 0, γ2 = 1, γ3 = 0; [g] = 
iF

m
log  

 SQUARED:  γ1 = 0, γ2 = 2, γ3 = 0; [g] = 
iF

m2log  

 PROBABILISTIC:  γ1 = 0, γ2 = 1, γ3 = 1; [g] = 
i

i

F

Fm −
log  

 FREQUENCY: γ1 = 1, γ2 = 0, γ3 ≠ ∞; [g] = 
iF

1
.  
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(d) norm-tf-idf, length normalized term frequency inverse document fre-
quency method: 
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(4.13)

 A more recent weighting scheme that has given good results on large 
databases is the Okapi-BM25 formula (Cummins and O’Riordan 2006): 
 

5.0

5.0
log

1
+
+−

×

¸̧
¹

·
¨̈
©

§
+−+

=
i

i

avg

j

ij

ij

ij F

Fm

l

l
bbkf

f
w , 

 
(4.14) 

where k and b are tuning parameters, lj denotes the length (in arbitrary 
units) of document dj, and lavg denotes average document length. 

4.7 General Architecture of a Retrieval System 

Figure 4.2 shows the general architecture of an IR system.  
 

REPOSITORY 
 
 
    QUERY MODULE      INDEXING MODULE 
 
USER 
 
         INDEXES 
        (inverted file structure) 

   RANKING MODULE 

Fig. 4.2. General architecture of an IR system. 
 

• REPOSITORY. The entities (documents) to be searched are stored in a 
central REPOSITORY (on computer disks). They are collected and en-
tered into the REPOSITORY manually or using specialized computer 
programs.  
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• INDEXING MODULE. Using the documents stored in the 

REPOSITORY, the INDEXING MODULE creates the INDEXES in the 
form of inverted file structures. These structures are used by the 
QUERY MODULE to find documents that match the user’s query. 

 
• QUERY MODULE. This module reads in the user’s query. The 

QUERY MODULE, using INDEXES, finds the documents that match 
the query (typically, the documents that contain the query terms). It then 
passes the located documents to the RANKING MODULE. 

 
• RANKING MODULE. This module computes similarity scores (using 

INDEXES) for the documents located by the QUERY MODULE. Then, 
the documents are ranked (sorted descendingly) on their similarity 
score, and are presented to the user in this order. (This list is called a hit 
list.) For the computation of similarity scores, several methods can be 
used, and these are dealt with in subsequent chapters. 

4.8 Elements of Web Retrieval Technology 

4.8.1 World Wide Web 

The World Wide Web (Web, for short) is a network of electronic docu-
ments stored on dedicated computers (servers) around the world. Docu-
ments can contain different types of data, such as text, image, or sound. 
They are stored in units referred to as Web pages. Each page has a unique 
code, called a URL (universal resource locator), which identifies its loca-
tion on a server. For example, the URL 

http://www.dcs.vein.hu/CIR/i2rmeta/i2rmeta.cgi 

identifies the Web page shown in Fig. 4.3. Pages are typically written in a 
computer language called HTML (hypertext markup language).  The num-
ber of Web pages is referred to as the size of the Web, which  is estimated 
at more than 12 billion pages to date. 

4.8.2 Major Characteristics of the Web 

In what follows, the major characteristics of the Web that are relevant for 
IR are reviewed briefly. 
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 Most Web documents are in HTML format and contain many tags. Tags 
can provide important information about the page. For example, the tag 
<b>, which is a bold typeface markup, usually increases the importance of 
the term to which it refers. In Fig 4.3, the tag <title> defines a title text for 
the page. 
 In traditional IR, documents are typically well structured. For example, 
every scientific journal defines its own characteristic structure for authors 
of research papers to follow. Similarly, books and newspaper articles have 
their typical formats and structures. Such documents are carefully written 
and are checked for grammar and style. On the other hand, Web pages can 
be less structured (there is no generally recommended or prescribed format 
that should be followed when writing a Web page). They are also more di-
verse:  

• They can be written in many languages; moreover, several languages 
may be used within the same page. 

• The grammar of the text in a page may not always be checked very care-
fully.  

• The styles used vary to a great extent. 
• The length of pages is virtually unlimited (if at all, then the limits are 

posed by, e.g., disk capacity, memory). 

Web pages can contain a variety of data types, including:  

• Text  
• Image  
• Sound  
• Video  
• Executable code  

Many different formats are used, such as:  

• HTML  
• XML  
• PDF,  
• MSWord  
• mp3  
• avi  
• mpeg  
• etc. 
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 While most documents in classical information retrieval are considered 
to be static, Web pages are dynamic, i.e., they can be:  

• Updated frequently.  
• Deleted or added.  
• Dynamically generated.  

 Web pages can be hyperlinked, which generates a linked network of 
Web pages. Various factors can provide additional information about the 
importance of the target page, such as: 

• A URL from one Web page to another page.  
• Anchor text.  
• The underlined, clickable text. 

 The size of the Web, i.e., the number of Web pages and links between 
them, is orders of magnitudes larger than the size of corpuses and data-
bases used in classical IR. For example, the size of classical test databases 
(such as ADI, TIME, CISI, CACM, TREC databases, etc.) can be meas-
ured in the range from kilobytes to terabytes. The quantity of data stored 
on the Web is practically incomparable to these sizes: it is very much lar-
ger and very hard to estimate (owing to the fact that the number of Web 
pages can only be estimated very roughly and the size of a page can vary 
to a very great extent). 
 The number of users of, e.g., a university library system can be in the 
range of, say, tens of thousands, whereas the number of users of a banking 
intranet system may be in the range of, say, thousands. However, the num-
ber of Web users is in the range of billions, and it is increasing rapidly. 
Moreover, the users of the Web are more diverse than the users of, say, a 
university library system in terms of: 

• Interest.  
• Search experience.  
• Languages spoken.  
• And so on.  
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  <html xmlns="http://www.w3.org/1999/xhtml" lang="en-US"  
    xml:lang="en-US"> 

<head type="text/css"> 
<title>I2R Meta Search</title> 

. . . 
</head> 

<body> 
<ahref="../cikkek/IRFest_2005_Glasgow_Dominich.pdf"> CIR 
white paper</a> 

. . . 
</table> 

</body> 
   </html> 

Fig. 4.3. Example of a Web page (above: screen image, below: fragment of its 
HTML format). 

 
 All of the aforementioned characteristics (and others not touched upon 
here) represent challenges to Web retrieval. Web retrieval methods and 
systems should be able to:  

• Address these characteristics (e.g., take into account the languages spo-
ken by a user or his/her fields of interest).  

• Cope with the dynamic nature of the Web (i.e., for instance, to observe 
when a new page has been added or a page deleted, or to realize that a 
link between two pages has disappeared, etc.).  

• Scale up with size (i.e., for instance, the computational complexity, and 
thus physical running time, of the retrieval methods and algorithms used 
should be kept within polynomial limits such that running time does not 
exceed certain acceptable limits). 
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4.8.3 General Architecture of a Web Search Engine 

The general architecture of a Web retrieval system (usually called search 
engine) is shown in Fig. 4.4.  
 The architecture contains all the major elements of a traditional retrieval 
system. There are also, in addition to these elements, two more compo-
nents (Langville and Meyer 2006). One is, obviously, the World Wide 
Web itself. The other is the CRAWLER, which is a module that crawls the 
Web: it ‘walks’ from page to page, and reads the pages (collects informa-
tion). The functions of the modules are as follows: 

• CRAWLER MODULE. In a traditional retrieval system, the documents 
are stored in a centralized repository, i.e., on computer disks, specifically 
in a particular institution (university library, computing department in a 
bank, etc.). On the other hand, Web pages are stored in a decentralized 
way in computers around the whole world. While this has advantages 
(e.g., there are no geographic boundaries between documents), it also 
means that search engines have to collect documents from around the 
world. This task is performed by specialized computer programs that to-
gether make up the CRAWLER MODULE, which have to run all the 
time, day and night. Virtual robots, named spiders, ‘walk’ on the Web, 
from page to page, download them, and send them to the REPOSITORY. 

• REPOSITORY. The Web pages downloaded by spiders are stored in 
the REPOSITORY (which physically means computer disks mounted 
on computers belonging to the company that runs the search engine). 
Pages are sent from the REPOSITORY to the INDEXING MODULE 
for further processing. Important or popular pages can be stored for a 
longer (even a very long) period of time. 

• INDEXING MODULE. The Web pages from the REPOSITORY are 
processed by the programs of the INDEXING MODULE (HTML tags 
are filtered, terms are extracted, etc.). In other words, a compressed rep-
resentation is obtained for pages by recognizing and extracting impor-
tant information. 

• INDEXES. This component of the search engine is logically organized 
as an inverted file structure. It is typically divided into several substruc-
tures. The content structure is an inverted structure that stores, e.g., 
terms, anchor text, etc., for pages. The link structure stores connection 
information between pages (i.e., which page has a link to which page). 
The spider may access the link structure to find addresses of uncrawled 
pages. The inverted structures are physically implemented in com-
pressed ways in order to save memory. 
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• QUERY MODULE. The QUERY MODULE reads in what the user 
has typed into the query line and analyzes and transforms it into an ap-
propriate format (e.g., a numeric code). The QUERY MODULE con-
sults the INDEXES in order to find pages that match the user’s query 
(e.g., pages containing the query terms). It then sends the matching 
pages to the RANKING MODULE. 

• RANKING MODULE. The pages sent by the QUERY MODULE are 
ranked (sorted in descending order) according to a similarity score. The 
list obtained is called a hit list, and it is presented to the user on the com-
puter screen in the form of a list of URLs together with a snippet (excerpt 
from the corresponding page). The user can access the entire page by 
clicking on its URL. The similarity score is computed based on several 
criteria and uses several methods. (The most important methods will be 
dealt with in Chapter 11.) The similarity scores are calculated based on a 
combination of methods from traditional information retrieval and Web-
specific factors. Typical factors are: page content factors (e.g., term fre-
quency in the page), on-page factors (e.g., the position of the term in the 
page, the size of characters in the term), link information (which pages 
link to the page of interest, and which pages it links to), and so on. 

 
WORLD WIDE WEB 

 
 

CRAWLER MODULE 

 
 
 

REPOSITORY 
 

 
 
          QUERY MODULE         INDEXING MODULE 
 
USER 
 
                INDEXES 
        (inverted file structure) 
 
          RANKING NODULE 

 
Fig. 4.4. General architecture of a Web search engine. 
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4.8.4 General Architecture of a Web Metasearch Engine 

Web search engines are the most important retrieval systems used to find 
information on the Web.  
 Each search engine has its own ranking method, which is usually differ-
ent from one used by another search engine. On the other hand, the hit list 
presented by a search engine can be very long in many cases (even in the 
millions), albeit that users typically consult at most 10–20 hits.  
 With the aim of returning fewer but more relevant pages (by taking 
advantage of different ranking methods simultaneously), metasearch 
engines can be developed. Typically, a metasearch engine reads in the user’s 
request, sends it to several search engines, downloads some of the pages 
they return in response to the query, and then produces its own hit list using 
those pages. Figure 4.5 shows the general architecture of the I2RMeta 
metasearch engine4 (whose interface screen is shown in Fig. 4.2) as an 
example of such an architecture (Dominich 2003). 

• INTERFACE MODULE. It is written in PERL and works online. The 
communication with the Web server is performed by CGI. The query is en-
tered as a set of terms (separated by commas); the terms are Porter-
stemmed and then sent to four commercial spider-based Web search en-
gines (Altavista, Google, Northernlight, WebCrawler as of 2003) as HTTP 
requests. The first 50 elements from the hit list of each Web search engine 
are considered, and the corresponding Web pages are downloaded in paral-
lel (parallel user agent) for speed. Each Web page undergoes the following 
processing: tags are removed and terms are identified, stoplisted, and Por-
ter-stemmed. The result is a repository of these pages on the server disk. 
This repository is processed by the RANKING MODULE. 

Altavista 
      Query   

Google 
        Interface Module   

Northernlight 

 
      answer 

WebCrawler 

Repository 
          Ranking Module 

 
Fig. 4.5. General architecture of the Web metasearch engine I2Rmeta. 

                                                 
4  www.dcs.vein.hu/CIR 
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• REPOSITORY MODULE. It stores the data sent by the INTERFACE 
MODULE on the server disk, i.e., the transformed Web pages 
downloaded by the INTERFACE MODULE. This file is created “on the 
fly” during the process of answering the query. 

• RANKING MODULE. This module is written in C and works online. 
Using the query and the Web pages in the repository, it creates a network 
based on page links as well as terms occurring in both pages and query. 
The hit list will contain the most important pages, i.e., the pages that are 
most strongly linked to each other, starting from the query. The hit list is 
sent to the INTERFACE MODULE, which screens it out (answer). 

4.9 Measurement of Relevance Effectiveness 

4.9.1 Relevance  

In general, the meaning of the word relevance is: “A state or quality of being 
to the purpose; a state or quality of being related to the subject or matter at 
hand” [The Cambridge English Dictionary, Grandreams Limited, London, 
English Edition, 1990]. Relevance is a complex and widely studied concept 
in several fields, including philosophy, psychology, communication theory, 
artificial intelligence, library science, and so on. Yet, it is not completely un-
derstood, nor is it mathematically defined in an acceptable way.  

Relevance also plays a major role in information science. Moreover, in-
formation science emerged on its own and not as a part of some other disci-
pline because scientific communication has to deal not with any kind of in-
formation but with relevant information. The creators of the mathematical 
information theory, Shannon and Weaver (1949), begin their landmark book 
by pointing out that relevance is a central problem in communication: Is an 
American news program relevant to a Russian who does not speak English? 

4.9.2 Measures 

The effectiveness of an IR system (or method) means how well (or badly) 
it performs. Effectiveness is expressed numerically by effectiveness meas-
ures, which are elaborated based on different categories such as (Meadow 
et al. 1999): 

• Relevance 
• Efficiency 
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• Utility 
• User satisfaction 

Within each category, there are different specific effectiveness measures: 

• Relevance: precision, recall, fallout, etc. 
• Efficiency: cost of search, amount of search time, etc. 
• Utility: worth of search results in some currency, etc. 
• User satisfaction: user’s satisfaction with precision or intermediary’s 

understanding of request, etc. 

Relevance effectiveness is the ability of a retrieval method or system to 
return relevant answers. The traditional (and widely used) measures are: 

• Precision: the proportion of relevant documents out of those returned. 
• Recall: the proportion of returned documents out of the relevant ones.  
• Fallout: the proportion of returned documents out of the ones that are 

nonrelevant. 

Obviously, these measures are neither unmistakable nor absolute. To quote 
Heine (1999):  “The concept of relevance does not have a prior existence, 
but is rather created ‘on the fly’, at least in some cases.” For instance, the 
estimation of recall requires the a priori (i.e., before retrieval) knowledge 
of the total number of relevant documents in the entire collection (for a 
given query). However paradoxical this may sound, experimental results 
have shown that users are more concerned with high recall than precision 
(Su 1994).  

Attempts to balance these measures have been made and various other 
complementary or alternative measures have been elaborated. Cooper 
(1968) suggests expected search length, i.e., the number of nonrelevant 
documents before finding the relevant ones. Van Rijsbergen (1979) pro-
poses a weighted combination of recall and precision:  

α × Precision × Recall 
                              1−  . 

β × Precision + Recall 

 
(4.15) 

 Bollmann-Sdorra and Raghavan (1993) suggest another measure called Rnorm:  

Rnorm = 0.5 × (1 + R + − I −), (4.16) 

where R+ denotes the number of times a relevant document occurs before a 
nonrelevant one in the retrieval order and I− is the number of times a non-
relevant document occurs after a nonrelevant one. 
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In what follows, the following three widely accepted and used measures 
are defined: 

• Precision  
• Recall  
• Fallout  

The precision-recall measurement method  of relevance effectiveness that 
is being used in laboratories is also delineated.  

Let D denote a collection of documents and q a query. Further, 

• ∆ ≠ 0 denotes the total number of relevant documents to query q.  
• κ ≠ 0 denotes the number of retrieved documents in response to query q.  
• α denotes the number of retrieved and relevant documents.  

From the point of view of practice, it is reasonable to assume that the total 
number of documents to be searched, M, is greater than the number of 
those retrieved, i.e., |D| = M > ∆. The usual relevance effectiveness meas-
ures are defined formally as: 

1. Recall ρ is defined as ρ = 
∆
α

. 

2. Precision π is defined as π = 
κ
α

. 

3. Fallout ϕ is defined as ϕ = 
∆−

−
M

ακ
. 

 

Figure 4.6 helps one to better understand the meaning of these measures. 
From the above definitions 1., 2., 3., it follows that:  

• 0  ρ  1. 

• 0  π  1. 

• ρ = 0 ⇔ π = 0. 

• π = 1 ⇔ ϕ = 0. 

• α = κ = ∆ ⇔ (ρ = π = 1 ∧ ϕ = 0). 
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Fig. 4.6. Visual representation of quantities that define 

precision, recall, and fallout. 
 
 Other measures are as follows (van Rijsbergen 1979, Meadow et al 
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From Salton and Lesk (1968): 
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where Rnorm is normalized recall (for a given query), M is the number of 
documents, and ρi is the recall at the ith hit in the ranked hit list. 

4.9.3 Precision-Recall Graph Method 

The precision-recall graph method is used for the measurement of re-
trieval effectiveness under laboratory conditions, i.e., in a controlled and 
repeatable manner (Baeza-Yates and Ribeiro-Neto, 1999).  
 This measurement method employs test databases (test collections).5 

• The documents d are given. 
• The queries q are given. 
• The relevance list is given, i.e., it is known exactly which document is 

relevant to which query. 
 
 For every query, retrieval should be performed (using the retrieval 
method whose relevance effectiveness is to be measured). The hit list is 
compared with the relevance list (corresponding to the query of interest). 
The following recall levels are considered standard:  

0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1. 

(These levels can also be given as percents, e.g., 0.1 = 10%). For every 
query, pairs of recall and precision are computed. If the computed recall 
value is not standard, it is approximated. The precision values correspond-
ing to equal recall values are averaged.  
 Let Rq denote the relevant documents to query q. Let us assume, for in-
stance, that  

Rq = {d2, d4, d6, d5, d9, d1}, ∆ = 6, 

 

                                                 
5
 For example, ADI, CRAN, TREC, etc. 

Each test collection is manufactured by specialists, and has a fixed 
structure: 
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and that the retrieval method under measurement returns the following 
ranked hit list (for q): 

1. d1  
2. d8 
3. d6  
4. d7 
5. d9  

where the “” sign marks a relevant document (as a result of comparison 
with Rq).  
 Document d1 is relevant, which means that one-sixth of the documents 
of Rq have been retrieved, and so precision is 100% at the recall level one-
sixth. The third element, d6, is also relevant. Thus, precision is two-thirds 
at recall level two-sixths. The fifth element of the hit list is d9, which is 
also relevant. Hence, precision is three-fifths at the recall level three-
sixths.  
 When the computed recall value r is not equal to a standard level, the 
following interpolation method can be used to calculate the precision value 
p(rj) corresponding to the standard recall value rj: 

p(rj) = max p(r), j = 1,…,10. 
    rj-1<r≤rj 

(4.26) 

It is known from practice that the values p(rj) are monotonically decreas-
ing. Thus, the value p(r0) is usually determined to have p(r0) ≥ p(r1). For 
all queries qi, the precision values pi(rj) are averaged at all standard recall 
levels: 
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)( , j = 0,...,10, 

 

(4.27) 

 
where n denotes the number of queries used. Figure 4.7 illustrates a typi-
cal precision-recall graph (for the test collection ADI). 

 The average of the values P(rj) is called MAP (mean average preci-
sion). MAP can also be computed just at the recall values 0.3, 0.6, and 0.9.  
 Apart from MAP, the following measures can also be used: 

•  P@n (precision at n): only the first n elements of every hit list are con-
sidered; typical values for n are 10, 20, 30, 100. 

• R-prec (R precision): for each query q, only the first ∆q elements of the 
hit list are considered (i.e., ∆q = Rq). 
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Fig. 4.7. Typical precision-recall graph (for the test collection ADI). 

4.9.4 Uncertainty of Measurement 

A test collection consists of three parts: documents, queries, and relevance 
assessments. All three parts are fixed andusuallyare provided as plain 
text files. Relevance assessments are produced by human experts and are 
provided as a table or list indicating which document is relevant to which 
query. Documents and queries typically are texts, shorter or longer, homo-
geneous or heterogeneous in content (e.g., taken from journals or newspa-
pers). Table 4.5 lists the names, the number of documents, and queries in 
the most commonly used classical test collections. 

Table 4.5. Parameters of Classical Test Collections 

Name Number of documents Number of queries 
ADI 82 35 
MED 1033 30 
TIME 423 83 
CRANFIELD 1400 225 
NPL 11429 93 
CACM 3204 64 
CISI 1460 111 
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 In Dominich (2001), it is shown that the following relationship holds 
for every query q: 

RM

R

−
=

− )1( πρ
ϕπ

. 
 

(4.28) 

The left-hand side of Eq. (4.28) defines a surface in three-dimensional 
Euclidean space called the effectiveness surface (Fig. 4.8). The effective-
ness surface has the property that it has query-independent shape but a 
query-dependent actual position in space.  
 

 
Fig. 4.8. A typical effectiveness surface. It has query-independent shape, 

whereas its specific position in the space depends on the query and the number of 
documents in the collection. C = recall (0 to 10 scale), F = fallout, P = precision  

(0 to 10 scale). 
 
 Let us denote the right-hand side of Eq. (4.28) by f (R). From R1 ≤ R2 it 
follows that M − R1  ≥ M  −  R2, and thus f (R1) ≤ f (R2). In other words, f (R) is 
monotonic with respect to R, i.e., R1 ≤ R2 ⇔ f (R1) ≤ f (R2). If we take R1 to 
correspond to the query that has the lowest number of relevant documents, 
R1 = Rmin (Rmin is the minimum number of relevant documents) and R2 to 
correspond to the query that has the highest number of relevant documents, 
R2 = Rmax (Rmax is the maximum number of relevant documents), we find 
that the left-hand side of Eq. (4.28) is bounded for every query as follows: 
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f (Rmin) ≤ 
)1( πρ

ϕπ
−

 ≤ f(Rmax) 
 

(4.29) 

Table 4.6 shows the lower- and upper-bound values, f(Rmin) and f(Rmax) for 
widely used test collections.  

 

 Owing to these limitations, even if a retrieval method can perform better, 
a test collection may not be ‘able’ to ‘observe’ it (or to ‘show’ it to us). Test 
collections only allow us to ‘see’ those values of effectiveness measures that 
are situated in the space region bounded by the lower and upper effective-
ness surfaces (regardless of the retrieval method being tested). These space 
regions are specific for each test collection, as shown in Fig. 4.9: 

 

Table 4.6. Lower- and Upper-Bound Values in Test Collections for the Effec-
tiveness Surface 

Name Number of  
documents 

 

 

M 

Minimum 
number of 
relevant 
documents

Rmin 

Maximum 
number of 
relevant 
documents

Rmax 

Lower-bound 
value 

 
 

f(Rmin) 

Upper-
bound 
value 

 

f(Rmax) 
ADI 82 2 33 0.025 0.673 

MED 1033 9 39 0.009 0.039 

TIME 423 1 18 0.002 0.044 

CRANFIELD 1400 2 40 0.001 0.029 

NPL 11429 1 84 0.0001 0.074 

CACM 3204 1 51 0.0003 0.016 

CISI 1460 1 155 0.0007 0.118 

Genomics 2005 4591008 2 709 0.000000435 0.000154 

Disk12 TREC 741856 14 1141 0.00001887 0.00154 

Disk45 TREC 528155 3 448 0.00000568 0.000848 

Wt2g 247491 6 148 0.0000242 0.000598 

Wt10g 1692096 1 519 0.00000059 0.000306 

Terabyte 25205179 4 617 0.000000158 0.0000244 
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Lower and upper effectiveness surfaces (ADI) Lower and upper effectiveness surfaces (MED)  

Lower and upper effectiveness surfaces (TIME) Lower and upper effectiveness surfaces (CRANFIELD)  

Lower and upper effectiveness surfaces (NPL) Lower and upper effectiveness surfaces (CACM)
 

Fig. 4.9. Lower and upper effectiveness surfaces for classical test collections.  
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Lower and upper effectiveness surfaces (CISI)
 

Fig. 4.9. (Continued) 
 
 Using Table 4.6, we can perform calculations to obtain the following 
results.  
 ADI allows for ‘seeing’ both precision and recall in the range 0.4 to 0.8, 
but with fairly high fallout values and within a large range of approxi-
mately 0.97. MED and CRANFIELD allow for ‘seeing’ both precision and 
recall in the whole range 0 to 1 with fairly low fallout values within a 
range of approximately 0.378 and 0.252, respectively, dropping quickly for 
precision values from 0 to 0.2, and then decreasing slowly. NPL allows for 
‘seeing’ both precision and recall in the whole range 0 to 1 with fallout 
values dropping quickly from the fairly high value of 0.666 to almost 0 at 
very low precision values, and then remaining near 0. CACM allows for 
showing both precision and recall in the whole range 0 to 1 with fairly low 
fallout values throughout, dropping quickly from 0.141 to almost 0 at very 
low precision values, and then remaining near 0. CISI allows for showing 
both precision and recall in the whole range 0 to 1 with fairly high fallout 
values at low to mid-precision values, dropping from 1 to almost 0, and 
then remaining near 0. These results may help in selecting which test col-
lection to use for which purpose. Thus, if one wishes to measure precision 
and recall in an entire spectrum at low fallout values, then CACM, MED, 
or CRANFIELD is recommended. If, however, one wishes, for some rea-
son, to monitor the sensitivity to fallout of a retrieval method being tested, 
then ADI or NPL would be recommended. 
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4.10 Measurement of Search Engine Effectiveness  

Owing to the characteristics of the Web, the measurement of relevance ef-
fectiveness of a Web search engine is, typically, user centered (Borlund 
2003). It is an experimentally established fact that most users generally ex-
amine the first two pages of a hit list. Thus, the search engine should rank 
the most relevant pages in the first few pages. The traditional measures 
cannot always be computed (e.g., recall and fallout). This means that the 
measurement of relevance effectiveness of search engines requires meas-
ures other than the traditional ones. When elaborating such new measures, 
one tries to use traditional measures (e.g., precision that can also be calcu-
lated for a hit list of a search engine), but also takes into account various 
characteristics of the Web. Several methods for the measurement of rele-
vance effectiveness of a search engine have been elaborated thus far, and 
they can be grouped as follows: 

 User-Based Methods. These methods measure user satisfaction. In 
Nielson (1993), a method is given to measure utility and satisfaction. Su et 
al. (1998) involved real users to measure the effectiveness of the following 
search engines: Altavista, Infoseek, Lycos, OpenText. Tang and Sun 
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as well as search length as equal to the number of irrelevant hits seen be-
fore getting i=2 relevant ones. 

 Measurement of Precision. Chu and Rosenthal (1996) used ten que-
ries to measure the precision of the search engines Altavista, Excite, and 
Lycos. A hit was relevant, irrelevant, or partially relevant (i.e., a page that 
was irrelevant but pointed to a relevant one).  
 In Gwizdka and Chignell (1999), a four-degree relevance scale (most 
relevant, partially relevant, hardly relevant, irrelevant) was used to propose 
different types of precisions:  

• Best precision = the proportion of the most relevant hits.  
• Useful precision = the proportion of the most relevant hits and of those 

which point to them.  
• Objective precision = the proportion of hits containing the query. 

They measured the effectiveness of Altavista, HotBot, and Infoseek, and 
found that Altavista’s best precision was the highest.  

(2003) co-opted Ph. D. students to measure the 20 full precision for 
Google, Altavista, Excite, and Metacrawler using the following formula: 
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 Measurement of Recall. Clark and Willett (1997) proposed a method 
for the measurement of relative recall using the merged hit lists of several 
search engines. Shafi and Rather (2005) measured the recall and precision 
of Altavista, Google, HotBot, Scirus, and Bioweb with regard to finding 
scientific papers. Twenty queries were used from biotechnology, and the 
first ten hits from every hit list were examined. The following four-degree 
relevance scale was used: 3 = full paper, 2 = abstract, 1 = book, 0 = other. 
A relative recall was defined as follows: the relative recall of a given 
search engine was the proportion of the relevant hits returned by that 
search engine out of the total number of relevant hits returned by all search 
engines. They found that Scirus had the highest relative recall, whereas 
Bioweb had the lowest. 

 Measurement of Other Characteristics. Chu and Rosenthal (1996) 
studied several characteristics of Altavista, Excite, and Lycos: coverage 
(size of the index, update frequency of the index), search options (Boolean 
search, truncation, proximity search). 

4.10.1 M-L-S Method 

Leighton and Srivastava (1999) proposed a general method for the meas-
urement of the extent to which a search engine is able to rank relevant hits 
within the first n hits of the hit list (first n-precision). The principles of the 
method are: 

• Definition of relevance categories. 
• Definition of groups. 
• Weighting of hits.  

 Each hit on a hit list returned in response to a query was assigned to 
only one category. The hit list was divided into si groups having ci weights 
(i = 1,...,m). The value of first n-precision was defined as the sum of the 
weights of relevant hits divided by the maximum sum. The method was 
applied to give a first 20-precision algorithm with which AltaVista, Excite, 
HotBot, Infoseek, and Lycos were measured (in 1997). It was found that 
AltaVista was the best.  
 Based on the above principles and taking into account that most users 
(85%) only assess at most the first two pages of a hit list (Silverstein et al. 
1998), Dominich (2003) proposed the following measurement method, 
known as the modified Leighton-Srivastava method (M-L-S method) The 
M-L-S method measures the ability of a search engine to rank relevant hits 
within the first five or ten hits of the hit list.  
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M-L-S Method (First 5/10-Precision) 

 
1. Select search engine to be measured. 
2. Define relevance categories. 
3. Define groups. 
4. Define weights. 
5. Give queries qi (i = 1,...,s). 
6. Compute P5i and/or P10i for qi (i=1,...,s). 
7. The first 5/10-precision of the search engine is:  
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, where k = 5 or k = 10. 

 
 The relevance categories are: 

• 0—category (irrelevant hit). 
• 1—category (relevant hit). 

When measuring first 5-precision, the first five hits are assigned to one of 
two groups:  

1. Group: the first two hits (on the grounds that they are usually on the 
first screen).  

2. Group: the following three hits.  

When measuring first 10-precision, the first ten hits are assigned to one of 
the following three groups:  

1. Group: the first two hits. 
2. Group: the next three hits. 
3. Group: the rest of five hits. 

Groups 1 and 2 are based on the assumption that, in practice, the most im-
portant hits are the first five (usually on the first screen). 
 Hits within the same group receive equal weights. The weights reflect 
the fact that the user is more satisfied if the relevant hits appear on the first 
screen. For first 5-precision, the weights are: 

1. For group 1: 10.  
2. For group 2: 5. 

 
 Obviously, instead of 10 and 5, other but proportional values may be 
used. For the first 10-precision, the weights are: 

1. For group 1: 20.  
2. For group 2: 17. 
3. For group 3: 10.  
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 Just as before, obviously, instead of 20, 17, and 10, other but propor-
tional values may be used.  
 The definition of queries is a very important step. However, it is almost 
impossible to give a generally valid method for it. It is advisable to define 
a topic first, and the queries after that. The topic should be broad enough to 
be able to see how well the search engine performs at a general level. In 
order to avoid bias, define both general and specialized queries. As most 
users prefer unstructured queries, such queries should be defined. It is very 
important that the weights be defined prior to obtaining any hits, or else 
our assessments would be more subjective or biased (because, in this case, 
we already know how the search engine ‘behaves’ for certain queries). 
 The P5 measure is defined as  

P5 = 
5_35

5_10_
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(4.31) 

where  
• r_hit denotes the number of relevant hits in the respective group. 
• The numerator is the weighted sum of the relevant hits within the first 

five hits.  
• miss_hit denotes the number of missing hits, 
• In the denominator, 35 is the weighted sum in the best case (i.e., when 

the first five hits are all relevant): (2 × 10) + (3 × 5) = 35. For every 
missing hit out of five, 5 is subtracted.  

The measure P5 is given for the case in which multiple hits are not penal-
ized. If we want to penalize multiple hits, then a multiple hit is considered 
as many different hits as its multiplicity.  

Example 4.2  

Let us assume that in response to query “WWW” three hits are returned 
and that all are relevant. Thus, the numerator is (2 × 10) + (1 × 5) = 25. 
The first two hits belong to the first group, so their weight is 10. The third 
hit belongs to group 2; thus its weight is 5. The denominator is 35 − (2 × 5) 
= 25. So, P5 = 25:25 = 1.  
 Let the query be “VLSI.” Five hits are returned, out of which three are 
relevant: the second, the third, and the fourth. Thus, the numerator is (1 × 
10) + (2 × 5) = 20, so P5 = 20:35 = 0.571. If the first three hits were rele-
vant, then P5 = [(2 × 10) + (1 × 5)] : 35 = 0.714. The two values obtained 
for P5 are different, which reflects the ranking difference of relevant hits.  
 Let us assume that for the query “Network” five hits are returned, and 
these are relevant, but the third and the fifth are the same (i.e., we have a 
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double hit). In this case, we have P5 = [(2 × 10) + (2 × 5)] : (35 − 1 × 5) = 1 
(without penalty); and P5 = [(2 × 10) + (2 × 5)] : 35 = 0.857 (with penalty). 
It can be seen that taking penalty into account yields lower effectiveness.  

 The P10 measure is defined in a similar manner:  

P10 = 
10_141

10_17_20_
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The penalized version is similar to that for P5.  

4.10.2 RP Method 

We know that precision is defined as (Section 4.9.2):   

k

r
p = , 

 
(4.33) 

where p denotes precision, k the number of returned items, and r the rele-
vant items out of the k returned.  
 A Web metasearch engine uses the hit lists of search engines to produce 
its own hit list. Thus, also taking into account the definition of precision, a 
method to compute a relative precision (called as the RP method) can be 
given (Dominich 2003). The idea of the RP method is that if the hits of a 
metasearch engine are compared to the hits of the search engines used, 
then a relative precision can be defined for the metasearch engine. We note 
that earlier Clark and Willett (1997) defined a relative recall measure in a 
similar manner. 
 Let q be a query. Let V be the number of hits returned by the meta-
search engine being considered and T those hits out of these V that were 
ranked by at least one of the search engines used within the first m of its 
hits. Then, the relative precision RPq,m of the metasearch engine is calcu-
lated as follows: 

V

T
RP mq =, . 

 

(4.34) 

The value of m can be, e.g.,  m = 10 or m = 5, or some other value depend-
ing on several factors (the range of the measurement, etc.). The value of 
relative precision should be computed for several queries, and an average 
should be taken. 



4.11 Exercises and Problems      103 

Example 4.3 

Let us assume that a metasearch engine uses four search engines. Let the 
query q be “Download ICQ Message Archive,” and let us assume further 
that the metasearch engine returns five hits, i.e., V = 5.  
 By analyzing the hit lists of all the search engines, we see that the first 
hit of the metasearch engine is the third on the hit list of the first search 
engine, the second hit was the first in the second search engine, the third 
was the fourth in the third search engine, the fourth was the second in the 
fourth search engine, and the last one was the third in the second search 
engine.  
 Thus, T = 5, and for m = 10 the relative precision is RPq,10 = 5:5 = 1.  
  

RP Method 

(Relative Precision of a Web Metasearch Engine) 
 

1. Select the metasearch engine to be measured. 

2. Define queries qi, i = 1,...,n. 

3. Define the value of m; typically m = 5 or m = 10. 

4. Perform searches for every qi using the metasearch engine  

as well as the search engines used by the metasearch engine, i = 
1,...,n. 

5. Compute relative precision for qi as follows:
i

i
mq V

T
RP

i
=, , i = 1,...,n. 

6. Compute average:¦
=

n

i
mqi

RP
1

, . 

 
The RP method relies heavily on the hypothesis that the hit lists of search 
engines contain relevant hits. In other words, the RP measure is only as 
good as the hit lists.  

4.11 Exercises and Problems 

The exercises below are best solved, and can only be really helpful, if there 
is a computing infrastructure (computer, software, test databases) at your 
disposal. Of course, some calculations (e.g., the computation of a weight) 
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can be done by hand, but the actual usefulness of the retrieval technologies 
can only be grasped and felt in a real computer setting. 
 

1. Take a collection of texts of your choice (e.g., papers, stories, etc.). 
Verify the validity of the power law using different methods: least 
squares, linear regression. (Note: The collection should be fairly large 
to obtain meaningful results. Thus, you should not work manually. 
Write adequate computer programs.)  

2. Create term-document matrices using the weighting schemes given in 
Theorem 4.1. Observe, analyze, and compare the running times nec-
essary to create the matrices. Discuss memory usage to store the ma-
trices on disk and in the main memory. (Try to use matrix storage 
methods that allow economical storage.) Observe and discuss the re-
lation between economical storage and the ease of using the matrices 
in computations. 

3. Analyze in more depth the characteristics of the World Wide Web. 
Identify and discuss characteristics other than those presented in Sec-
tion 4.8.1. 

4. Using a standard test collection or a data collection of your choice, 
measure relevance effectiveness of a retrieval method of your choice 
using the precision-recall graph method. Experiment with other inter-
polation (averaging) formulas [other than Eqs. (4.25) and (4.26); e.g., 
instead of maximum use average in Eq.(4.25)]. 



5 Lattice-Based Retrieval Systems 

Have in mind the physical methods and mechanisms used  
to instrument models. 

(Calvin N. Mooers) 
 
This chapter describes the application of lattices in retrieval systems 
(Mooers, FaIR, BR-Explorer, Rajapakse-Denham, FooCA). The use of lat-
tices for visualization or navigation is not considered, nor are programming 
and implementation issues dealt with, as these fall outside our scope.  
 The goal of describing these systems is to present the way in which lat-
tices have been used to represent document structures, term relationships, 
and term-document matrices in actual retrieval systems developed thus far. 
 Mathematical properties (with proofs) of the lattices applied are estab-
lished. The principal finding is that they are not modular. 
 Further, a method is given to transform a term-document matrix into a 
Galois (concept) lattice.  
 The chapter ends with exercises and problems that are designed to en-
hance understanding of the properties of the lattices applied. 
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5.1 Mooers’ Model 

terms (i.e., to formally express the fact that words are not necessarily inde-
pendent of each other, which is a widely accepted hypothesis in many re-
trieval methods today). The model focuses on what Mooers calls symbols 
(known today as terms) that together form a query and on the relationship 
between the query and a subset of documents that can be selected from a 
collection of documents. 

5.1.1 Lattice of Documents 

The document subsets can be formed from, e.g., a library collection 
(books, articles, etc.). If one denotes a document subset by A and the entire 
library collection by L = {D1,…,Dn}, then the document subsets A ⊆ D 
form a Boolean algebra (℘(L), ∩, ∪, \) with respect to set intersection ∩, 
set union ∪, and set complement \, where ℘(L) denotes the powerset of L, 
i.e., the set of all subsets of L. In other words, the structure (℘(L), ∩, ∪, \) 
is a complemented and distributive lattice.  

5.1.2 Lattice of Unstructured Queries 

A query Q is conceived as consisting of one or several terms (in the latter 
case constructed from one-term queries). For example, the one-term query 
Q = A is modeled as the following lattice: {0, A} (Fig. 5.1): 
 

 
 

Fig. 5.1. One-term query Q = A represented as a lattice {0, A}, 0 ≤ A. 

 A new lattice P can be obtained by taking the product × of one-term lat-
tices (Fig. 5.2): 

 A 

 0 

Mooers (1959) seems to have been the first individual to offer a detailed 
and comprehensive treatment of the application of the lattice concept in 
IR. His model has the merit of being able to capture relationships between 
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1. Let Ai denote (or correspond to) the one-element lattice {0, Ai}, i = 

1,…,n. 

2.  The product lattice P = 
n

i 1=
× {0, Ai} is given by the lattice P=(℘(T), ⊆), 

where T = {A1,…,An}.  

 

 
Fig. 5.2. Product P of two one-term lattices: {0, A} and {0, B}. 

 

 The lattice P contains all the possible queries that can be formed using 
the given terms. It can be seen that the lattice P is a Boolean algebra and 
thus a complemented and distributive lattice. 
 Retrieval is formally viewed as follows. Given a query Q, i.e., an ele-
ment of lattice P, there may be other elements in P preceded by Q, or ele-
ments that precede Q. Retrieval is some procedure that locates those ele-
ments of ℘(T) that precede and are preceded by Q. However, the retrieval 
procedure is not described.  

5.1.3 Lattice of Term Hierarchies 

Mooers treats, very briefly, the case of term hierarchies. For example, the 
term “clothing” is broader in sense than the term “shoe.” Thus, the follow-
ing lattice (reflecting a hierarchy) can be constructed:  

  A 

  0 

  B 

  0  0 

 A   B 

 AB 
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 Taking into account hierarchical relations between terms should have an 
impact upon retrieval. In such lattices, some elements may be preceded by 
more than one element; this is referred to as a “system with weak hierar-
chy” (e.g., the U.S. Patent Office classification). After appropriate reduc-
tions, another lattice can be obtained from this one that does not allow for 
any element to be preceded by more than one element. Such a reduced lat-
tice is referred to as a “system with strong hierarchy” (e.g., the Dewey 
Decimal classification).  

5.1.4 Lattice of Boolean Queries and Documents 

Mooers also outlines the case of Boolean (i.e., structured) queries (which 
he calls “characters with logic”). He starts by emphasizing that, “symbolic 
logic is a stylized view of things, and the symbolism or method which is 
found useful in that discipline need not necessarily be the most appropriate 
symbolism for information retrieval.”  
 Given the terms A1,…,An, a Boolean query is conceived as being an 
element of a lattice (L, ⊆) obtained as follows: 

1.  The atoms are A1,…,An. 
2.  The elements greater than the atoms, and immediately above them, 

are given by the Cartesian product {A1, ¬A1} × {A2, ¬A2}× …× {An, 
¬An}, where ¬ denotes negation. 

3. The elements of point (2) are “topped” by the maximal element of the 
lattice. 

If the query is a conjunction of terms (e.g., A1  A2), all terms are equally 
relevant to the subject matter of the document. When the query is a 

1

clothing 

shoe

0
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disjunction of terms (e.g., A1 V A2), thenbased on the interpretation of V 
in mathematical logiceither one, or either two, and so on either all terms 
may be relevant to the subject matter of the document. “This is ridiculous,” 
Mooers says. He continues by asking: “For example, how good is a 
retrieval system that treats the query  

red V square 

as a logical expression?” Thus, he notes:  

• Disjunction should not be a permissible operation in queries for re-
trieval; the only permissible operations should be conjunction and nega-
tion. 

• On the other hand, a document should be represented as a lattice using 
only negation and disjunction of terms.  

 
 For example, if two terms are used, say A and B, then all possible 
documents (i.e., the ‘space’ whose element a document may be) are given 
by the lattice shown in Fig. 5.3.  
 The document lattice can be obtained as a product of two-element lat-
tices. Figure 5.4 shows the two 2-element lattices whose product lattice is 
shown in Fig. 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.3. Document lattice for Boolean queries using two terms A and B. 

 
 
 
  

1 

0 

A B ¬A ¬B 

AVB AV¬B ¬AVB ¬AV¬B 
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Fig. 5.4. The two 2-element lattices whose product is the lattice in Fig. 5.3. 

 
The query lattice is similarly generated, but instead of disjunction we have 
conjunction. Mooers does not treat retrieval for such representations. At 
the same time, he makes a number of general and interesting observations: 

• If a term A has not been used as an index term for a document, then the 
query “¬A” should not retrieve that document merely because it does 
not contain A. In other words, in retrieval, absence is not necessarily 
synonymous with negation. 

• It may be important to know the frequency with which terms are used. 
Thus, one can attach frequencies as “scalars” to lattice elements. 

• In Boolean logic, the operations commute, e.g., A V B is the same as B 
V A. If the information in a document is structured as a lattice, the ideas 
are commutative. But this is not always the case. The words that make 
up a term may form a sequence, but they do not always commute. For 
example, “street lamp” as a term may be modeled formally as the con-
junction “street  lamp” but it is not equal, in general, to the commuted 
conjunction “lamp  street,” as it should if taken as a Boolean expres-
sion of mathematical logic. In the term “street lamp,” the words “street” 
and “lamp” do not form a hierarchy (and thus not a lattice); they form 
some other structure (e.g., a grammatical structure called a compound 
word). 

5.2 The FaIR System 

For a long time after Mooers’s paper was published, the application of lat-
tices in information retrieval was seen more as a theoretical possibility or 
curiosity. There were no further developments until Priss (2000) proposed 
a practical retrieval system, called FaIR, based on lattices, and thus 
showed that such a retrieval system could be built effectively.  

1 

0 

A ¬A 

1 

0 

B ¬B 
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 The FaIR system uses domain knowledge (in the form of a thesaurus) to 
generate term lattices. The thesaurus consists of a set T of terms that is par-
titioned into classes (called facets). The facets are lattices. Every node in 
such a lattice represents a term (word or phrase), and the lattice expresses 
thesaurus relationships such as “broader than,” “narrower than,” etc. Every 
such lattice, i.e., facet, is conceptually complete (their terms express one 
concept).  
 Documents are represented by (or assigned to) as many terms as needed, 
but at most one term from one facet. Documents that contain only one of 
the terms of the facet are mapped to that concept. Documents that contain 
several terms of the facet are mapped to the join of the concepts. Figure 5.5 
illustrates an example of a facet lattice. 
 

 
Fig. 5.5. Facet lattice “programming language.” A document containing both CGI 

and Java is assigned to the node “WWW programming language,” which is the 
join of these terms. 

 
The elements of the facet lattice may be formally conceived as containing 
(i.e., being equal to the union of) the elements that are below it (equiva-
lently, down to atoms). Every document is mapped to a single concept 
over all facets.  
 A query Q is a Boolean expression of terms. For example, the query Q = 
”Java” retrieves the documents containing exactly and only the term 
“Java” (in the exclusive search) and the documents that also contain the 
more general term “WWW programming language” (in the inclusive 
search).  

WWW programming language 

Java 

Programming language 

Manual 

CGI X-KL Javascript 

0 
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5.3 Galois (Concept) Lattice-Based Models 

5.3.1 Galois (Concept) Lattice 

Concepts are basic units of language and thought. The extension G of a 
concept consists of all objects that belong to it. The intension M of a con-
cept consists of all attributes (properties) that apply to the elements of its 
extension. A formal context K is defined as a binary relation, i.e., as the set 
of relationships between objects and attributes to denote which object has a 

K = (G, M, I), I ⊆ G × M. (5.1)

 

X → X I = {m ∈ M | g I m, ∀g ∈ X}, 
(5.2)

i.e., the set of attributes common to all objects from X, and 

Y → Y I = {g ∈ G | g I m, ∀m ∈ Y}, (5.3)

i.e., the set of objects described by at least one attribute from Y. A formal 
concept (A, B) is defined as  

(A, B) is a formal concept ⇔ 

(A ⊆ G, B ⊆ M, A = B I, B = AI). 
(5.4)

The set A is the extent and the set B is the intent of the formal concept. The 
set of formal concepts becomes a poset [notation: ℜ(K)] with the ordering 
relation 

(A1, B1) ≤ (A2, B2)  ⇔ 

A1 ⊆ A2 (⇔ B2 ⊆ B1). 
(5.5)

The poset ℜ(K) can be turned into a complete lattice, denoted by ℜ(K), 
with the following definitions of infimum and supremum: 

 

infimum: j (Aj, Bj) = ( )( )II

j jj j BA ,  

supremum: Vj (Aj, Bj) = ( )( )
j j

II

j j BA , . 

 
(5.6)

The following derivation operations are defined for arbitrary X ⊆ G and  
Y ⊆ M: 

given property (Wolff 1993, Kim and Compton 2004, Wille 2005):  
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Concept lattices are useful for the representation of conceptual structure of 
data. There are efficient procedures for constructing formal concepts and 
the concept lattice from a given formal context (Kim and Compton 2004, 
Wille 2005).  

5.3.2 Term-Document Matrix and Concept Lattice 

Cheung and Vogel (2005) view the term-document matrix TDn,m (in its 
Boolean form, i.e., adjacency matrix, Table 5.1) as a formal context that is 
transformed into a concept lattice (Fig. 5.6).  
 

Table 5.1. Term-Document Matrix 

 D1 D2 D3 D4 
T1 1 1 0 0 
T2 1 0 1 0 
T3 0 1 0 1 
T4 0 0 1 1 

 
Thus, term T1 occurs in documents D1 and D2, term T4 occurs in documents 
D3 and D4, and so on. The term-document matrix can be transformed into a 
concept lattice using the following method: 
 

Generation of a Concept Lattice  
from the Term-Document Matrix 

1. The least element, 0 (as well as the greatest element, 1) of the  
concept lattice is introduced artificially. 

2. The lattice is built in a bottom-up fashion (i.e., from 0 to 1). 

3. Every term Ti corresponds to an atom. 

 j (j = 1,...,m), if TDi,j = TDk,j = 1, then document Dj is 
the meet (superconcept) of terms Ti and Tk.  

 

This method can be applied even when the TD matrix is not Boolean, i.e., 
when it contains (nonbinary) weights. In this case, the condition in point 4 
is rewritten as TDi,j, TDk,j ≠ 0. (The superconcepts, as given by the TD 
matrix, may not be unique. However, in the concept lattice only one is 
allowed.) 

 

4. For every column 
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Fig. 5.6. Concept lattice obtained from the term-document matrix of Table 5.1. 
 

A method to obtain a lattice from a term-document matrix is 
given in (Godin et al. 1989).  
 
Each element of the lattice is a couple (d, t) such that  

• d is the set of documents described by at least the terms in t. 
• t is the set of terms common to all the documents in d. 
 
Thus, t is the set of terms appearing in a conjunctive query retrieving  
exactly the documents in d. The set of all such couples is a lattice with the 
following partial order defined from the corresponding order on the term 
sets: 

c1 = (d1, tl) < c2 = (d2, t2) ⇔ t1 ⊂ t2. (5.7)

Equivalently, 

t1 ⊂ t2 ⇔ d2 ⊂ d1. (5.8)

The partial order is used to generate the Hasse diagram of the lattice. 
There is an edge (cl, c2) if cl < c2, and there is no other element c3 such 
that cl < c3 < c2 . 

1

0

T1 T2 T3 T4 

D1 D2 D3 D4 



5.3 Galois (Concept) Lattice-Based Models      115 

5.3.3 BR-Explorer System 

Messai et al. (2006) propose a retrieval system called BR-Explorer based 
on concept lattices. The term-document Boolean matrix (conceived as a 
formal context) is first transformed into a concept lattice L. A query Q is 
conceived as being a set of terms (attributes). In order to answer query Q, 
this is inserted into the concept lattice L first (e.g., by building L from 
scratch, or using some more efficient method as suggested by Messai  
et al.).  
 Relevance is defined as follows. The document d is relevant to query Q 
if they share at least one attribute. Messai et al. give a retrieval method 
(i.e., traversal of the concept lattice) that retrieves documents already 
ranked by their relevance degree.  

5.3.4 Rajapakse-Denham System 

Rajapakse and Denham (2006) proposed another application of lattices to 
IR. Documents and queries are represented as individual lattices. Concepts 
extracted from documents are used to construct a lattice. A document or 
query is conceived as a structure of objects, attributes, and their relation-
ships from which a lattice is generated. The atoms are the elements con-
sisting of objects that have identical attributes. On the next level, the ele-
ments are the objects that share most of their attributes, and so on. The 
smallest element of the lattice, at the bottom, is an artificial empty element, 
whereas the largest element, on the top, is the union of all the objects.  
 Retrieval is defined as follows. The relevance of a document to a query 
is determined on the basis of their common concepts. This is achieved by 
comparing nodes of the query lattice with the nodes of the document lat-
tice. A partial match between the query lattice and the document lattice is 
defined as being the meet between their corresponding objects and attrib-
utes. When any of these two meets are empty, a keyword match is applied.  
 Rajapakse and Denham showed that their model worked by building an 
experimental system whose relevance effectiveness was measured on the 
Cranfield test collection. Moreover, the system was enhanced with a (per-
sonalized) learning strategy. In a relevance feedback process, all the terms 
of the query that are not present in a relevant document are added to that 
document. Weighting strategies were also used to refine the model. 
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5.3.5 The FooCA System 

The FooCA system applies formal concepts to enhance Web retrieval 
(Koester 2006a,b, 2005). The system runs under Linux and is written in 
PERL. FooCA lets the user enter a query, which it sends to Google (other 
Web search engines can also be used).  
 The hit list returned by the search engine is used to construct a formal 
context and formal concepts as follows. The snippets (i.e., the short ex-
cerpts returned by the search engine) are used to extract terms. If there is 
no snippet, then the page address is used instead. The URLs of pages are 
viewed as objects, whereas its terms are viewed as attributes.  
 The hit list returned by the search engine is presented to the user as a ta-
ble in which the rows correspond to objects (in the ranked order given by 
the search engine) and the columns to attributes. The table can be navi-
gated using the mouse, and the corresponding row is highlighted. When 
the user clicks on a row, he/she is taken to the corresponding page.  
 The table can also be used for query refinement. If the user clicks on an 
attribute, then he/she can launch another search using the clicked attribute 
as the query or he/she can include or exclude that term into/from the origi-
nal query.  
 FooCA can be used to visualize the hierarchy of formal concepts, which 
helps the user to assess the hits better and thus to know which hit to view 
first. 

5.3.6 Query Refinement, Thesaurus Representation 

Carpineto and Romano (2005) offer an excellent overview of other uses of 
concept lattices in retrieval. One such application of concept lattices is 
query refinement. Given a Boolean query (i.e., a Boolean expression of 
terms), the matching documents are found first. Then, the set of common 
terms in the retrieved documents is determined and used to build a concept 
lattice. The query can be refined by choosing the most general term (con-
cept) that contains all the query terms.  
 Another use of lattices in retrieval is the representation of a thesaurus as 
a concept lattice by taking into account the ordering suggested by the the-
saurus. The concept lattice of a document collection may be used as an un-
derlying clustering structure. The query is merged into this lattice. Each 
document is ranked according to the shortest path between the query and 
the document concept.  
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 Concept lattices can also be used to bound the search space or for navi-
gational purposes. A possible application relates to Web searching. A set 
of pages returned by a search engine is parsed, and a concept lattice is built 
using the pages as objects and the terms as attributes. The user is presented 
with this lattice to initiate the next search interaction. 

5.4 Properties of the Lattices Applied 

As seen in the retrieval systems that have been described, lattices are used 
as mathematical models of the entities involved: objects and their relation-
ships (document sets, structure of a document, within document-term rela-
tionships, queries, term relationships in general, and concepts). These lat-
tices have different meanings (or roles) such as query, document, or 
concept. According to their role, they are subjected to appropriate process-
ing. Retrieval is defined as a matching between a document and a query 
lattice, or between lattices (a query lattice and a document lattice). Differ-
ent specific matching algorithms were proposed.  
 The lattices used are complex (albeit that there are attempts to find 
methods to reduce their complexity), and their construction is not an easy 
task.  
 Godin et al. (1998) showed that the number H of nodes in a concept lat-
tice has linear complexity with the number n of documents: 

H = O(n⋅2k), (5.9)

where O denotes “big-Oh” (upper bound) from computational complexity, 
and k denotes the maximum number of terms/document. Experimental re-
sults showed that the ratio H/n was fairly constant and much lower than 2k.  
 Cheung and Vogel (2005) applied SVD (singular value decomposition) 
to reduce the size of the term-document matrix, whereby the corresponding 
lattice became considerably smaller than the one corresponding to the 
original matrix.  
 From a purely formal point of view, the application of lattices in re-
trieval systems can be characterized as follows. Let 

T = {t1, t2,…,tn} (5.10)

denote a set of elements (e.g., terms, documents, etc.). Several types of lat-
tices  are defined over T, such as:  

• Atomic, complete. 
• Boolean algebra. 
• Complete, atomic, complemented, nonmodular (hence not distributive). 



118      5 Lattice-Based Retrieval Systems 

• Complete, atomic, nonmodular (hence not distributive), not comple-
mented. 

We show now that, in Mooers’s model, the following property holds: 

Theorem 5.1. The lattices of Boolean documents and queries are  
1. Atomic and complete. 
2. Complemented.  
3. Not modular. 

 Proof (using Fig. 5.3 as a model). Point (1) is straightforward. To prove 
point (2), note that the complement AC of any atom A is equal to any ex-
pression of which A is not a member. The complement AC of any nonatom 
A is equal to its negated counterpart. For point (3), we give a counterex-
ample. By definition, a lattice L is modular if  

(∀A, B, C ∈ L for which A ≤ C) � 
A ∨ (B ∧ C) = (A ∨ B) ∧ C. 

 

For example, A ⊆ C = {A, B}, i.e., A ≤ (A ∨ B) (recall that ∨ = ∪ and  
∧ = ∩). By taking B = {¬A, ¬B}, we now have 

A ∪ ({¬A, ¬B} ∩ {A, B}) = A ∪ 0 = A,  

which is not equal to 

(A ∪ {¬A, ¬B}) ∩ {A, B} = 1 ∩ {A, B} = {A, B}.  

Further, we can prove that the facet lattices used in the FaIR system have 
the following property: 

Theorem 5.2. The facet lattice is 
1. Atomic and complete.  
2.  Not modular. 

 Proof. Point (1) is straightforward. For point (2), we give a counterex-
ample (using Fig. 5.5). For A = ‘X-KL’, B = ‘CGI’ and C = ‘Manual’, we 
have A ≤ C, and 

A ∪ (B ∩ C) = A ∪ 0 = “X-KL”,  

which is not equal to  

(A ∪ B) ∩ C = “Programming language” ∩ C = “Manual.”  

 Before proceeding with the analysis of the properties of lattices used in 
retrieval systems, we introduce further concepts related to lattices. 
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Definition 5.1. Two lattices (L1, ∧1, ∨1) and (L2, ∧2, ∨2) are isomorphic if 
there exists a bijective function f: L1 → L2 such that  

f(a ∧1 b) = f(a) ∧2 f(b), 

f(a ∨1 b) = f(a) ∨2 f(b), ∀ a, b ∈ L1.  
(5.11)

 

Definition 5.2. The structure (L1, ∧, ∨), where L1 ⊆ L and L1 ≠ ∅, is a 
sublattice of the lattice (L, ∧, ∨) if  

a ∧ b ∈ L1,  a ∨ b ∈ L1, ∀a, b ∈ L1.  
(5.12)

Definition 5.3. A lattice L1 can be embedded into a lattice L2 if there exists 
a sublattice of L2 isomorphic to L1.  

 There is an important relationship between the pentagon lattice and 
nonmodularity, namely: 

Theorem 5.3. (Burris and Sankappanavar, 2000) A lattice L is not modular 
if and only if the pentagon lattice can be embedded into L. 

 Proof. It is clear that if the pentagon lattice can be embedded into a lat-
tice L, then L is not modular (because the pentagon lattice itself is not 
modular; see Section 3.6). In order to prove the reverse, let us assume that 
L is not modular. This means that for A, B, C ∈ L such that A ≤ C we have 
A ∨ (B ∧ C) < (A ∨ B) ∧ C. Let D = A ∨ (B ∧ C), then  

B ∨ D = B ∨ ( A ∨ (B ∧ C) ) = 
B ∨ ( (B ∧ C) ∨ A ) = 
( B ∨ (B ∧ C) ) ∨ A = 

B ∨ A. 

 
 
 

Now let E = (A ∨ B) ∧ C; then 

B ∧ E = 
B ∧ ( (A ∨ B) ∧ C ) = 
( B ∧ (A ∨ B) ) ∧ C = 

B ∧ C. 

 
 
 

D < E by assumption. Also B ∧ C < A ∨ (B ∧ C) = D. Thus B ∧ C < D < E, 
and so  

B ∧ C < 
B ∧ D < 

B ∧ E = B ∧ C. 
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Hence, B ∧ D = B ∧ E = B ∧ C. Likewise, B ∨ E = B ∨ D = B ∨ A. Figure 
5.7 shows the copy of the pentagon lattice in L. 

 
Fig. 5.7. Copy of the pentagon lattice as an embedded lattice. 

 

 Wille (2005) gives many examples of concept lattices, which model a 
wide range of different real situations:  

• Geography (bodies of water).  
• Sociology (economic concepts of young persons).  
• Geometry (types of triangles, inversion of a circle).  
• Medicine (examination of anorectic patient, functional rooms in a hospi-

tal, Ph-level of children with diabetes).  
• Tourism (leisure activities).  
• Information science (information and knowledge processing).  
• Urbanism (town and traffic).  
• Music (musical attributes).  
• Biology (animals).  

 The concept lattice of the Ph-level of children with diabetes is shown in 
Fig 5.8. (This concept lattice was generated using the data from 111 chil-
dren and 22 attributes in collaboration with medical experts.) It can be seen 
that this concept lattice is nothing other than the pentagon lattice, and 
hence it is not modular.  
 

C ∧ B 

D 

E 

B ∨ A 

B 
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Fig. 5.8. Concept lattice of Ph-level of children with diabetes. 
 
 If one examines the other lattices given by Wille, it turns out that other 
concept lattices (e.g. those of economic concepts of young persons, of 
types of triangles, and of animals) also have sublattices isomorphic with 
the pentagon lattice, which means that they are not modular. Indeed, we 
can show that in general: 

Theorem 5.4. Galois (concept) lattices are not modular. 

 Proof. A lattice L is, by definition, modular if  

(∀A, B, C ∈ L for which A ≤ C) � 

A ∨ (B ∧ C) = (A ∨ B) ∧ C. 

 

For Galois lattices, the definition of modularity becomes 

(∀(X1, X2), (Y1, Y2), (Z1, Z2) ∈ L such that (X1, X2) ≤ (Z1, Z2)) � 

(X1, X2) ∨ ( (Y1, Y2) ∧ (Z1, Z2) ) = 

( (X1, X2) ∨ (Y1, Y2) ) ∧ (Z1, Z2). 

 
 

Using the definitions of join ∨ and meet ∧ in concept lattices, and the hy-
pothesis (X1, X2) ≤ (Z1, Z2), we rewrite the modularity condition as follows: 

( (X1 ∪ (Y1 ∩ Z1 ))
II, X2 ∩ Y2

II ) = 

( (X1 ∪ Y1)
II ∩ Z1, ((X2 ∩ Y2) ∪ Z2)

II ), 

 

0 

ph dangerous 

ph pathological 

1 

ph normal 
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which is equivalent to 

( ((X1 ∪ Y1) ∩ Z1 )
II, X2 ∩ Y2 ) = 

( (X1 ∪ Y1)
II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)

II ). 

 

Let us take now (X1, X2) ≤ (Y1, Y2), i.e., X1 ⊆ Y1, Y2 ⊆ X2. Then, the previous 
condition is rewritten as  

( (Y1 ∩ Z1 )
II, Y2 ) = 

( Y1
II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)

II ). 

 

(Y1 ∩ Z1 )
II = Y1

 ∩ Z1; 
 

and when 

Y2 = (Z2 ∩ (Y2 ∪ Z2)
II = Z2 ∩ (Y2 ∪ Z2). 

 

But if Y2 ⊂ Z2, then Z2 ∩ (Y2 ∪ Z2) = Z2 ∩ Z2 = Z2, which is different from 
Y2.  
 
 However, in nonmodular lattices certain pairs of elements may satisfy 
the modularity condition.  

Definition 5.4. An ordered pair (A, B) of elementsi.e., in this order A is 
the first element of the pair and B is the second element of the pairof a 
lattice L is referred to as a modular pair (notation: AMB) if 

(∀ C ∈ L such that C ≤ B)  � 
C ∨ (A ∧ B) = (C ∨ A) ∧ B.  

(5.13)

 If A and B are not modular pairs, then this is denoted by AMB. Albeit 
that Galois (concept) lattices are not, in general, modular, in the concept 
lattices in Wille (2005), which all have a sublattice isomorphic to the pen-
tagon lattice, there are modular pairs that correspond to the following 
modular pair in the pentagon lattice: 

0 ≤ x  � 
0 ∨ (x ∧ y) = 0 ∨ x = x = 

(0 ∨ x) ∧ y = x ∧ y 
= x. 

 
 

(5.14)
 
 

This means that y and x are a modular pair: yMx. A Galois lattice has a 
sublattice isomorphic with the pentagon lattice. Hence, it also has a modular 

The equality holds when (Y1 ∩ Z1 )II = Y1
II ∩ Z1, which is true because  

Y1
II
 = Y1, and so we have: 
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pair of elements. We should note, however, that xMy. We have x ≤ y, but x 
∨ (z ∧ y) = x, which is not equal to (x ∨ z) ∧ y = y. This means that x and y 
are not a modular pair: xMy. 

 It is known that the logical propositions of mathematical logic form a 

complemented and distributive lattice ({T, F}, V, , ¬). As concept lat-
tices are not modular (Theorem 5.4), they are not distributive either. 
Hence, the main difference between concept lattices and the lattice of 
propositions relates to the presence/absence of distributivity. In logic, dis-
tributivity is a property that connects conjunction and disjunction and is 
the expression of compatibility between any two propositions P and Q in 
the sense that  

(P  Q) V (P  ¬Q) = P V (Q  ¬Q) = P. (5.15)

The fact that concept lattices are not distributive means that, in general, 
there are objects and/or properties that are not compatible, i.e., about 
which we cannot always reason in the sense of mathematical logic. For ex-
ample, in the concept lattice of Fig. 5.6, we have  

(D1  D2) V (D1  ¬D2
C) = T1, (5.16)

which means that reasoning with documents D1 and D2 does not result in 
some other document, but rather in a term (which is a different type of en-
tity). In other words, in concept lattices, reasoning may lead to an object 
having a different nature or quality than the nature of objects on which rea-
soning has operated (a situation unimaginable in mathematical logic). 

5.5 Exercises and Problems 

1. Using a document collection of your choice, construct the corre-
sponding concept lattice (using the term-document matrix). 

2. Show that facet lattices are not distributive. 

3. Are concept lattices uniquely complemented? 

4. Is the Boolean algebra of documents uniquely complemented? 

5. Are concept lattices orthomodular? 





6 Boolean Retrieval 

To give expression to the fundamental laws of those operations of the mind 
by which reasoning is performed in the symbolic language of 

Calculus…but did not try to treat the mysterious depths of actual thought. 
(George Boole) 

 
The Boolean retrieval method is a very important one as it is widely used 
in database systems (e.g., Oracle, SQL) and World Wide Web search 
engines. In principle, it is a simple method, but all the more important for 
that. 
 This chapter describes the Boolean retrieval method (both formally and 
using an example) and the application of lattices in Boolean retrieval. An 
effective method is presented to answer Boolean queries in relational 
databases. 
 The chapter ends with exercises and problems that are designed to 
promote a deeper understanding of the theory and applications of Boolean 
retrieval. 
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6.1 Boolean Retrieval Method 

The Boolean retrieval method, which is used by virtually all commercial 
database and retrieval systems today, is based on mathematical logic and 
set theory. Both the documents to be searched and the user’s query are 
conceived as sets of terms. Retrieval is based on whether or not the docu-
ments contain the query terms. There is a finite set  

T = {t1, t2,...,tj,...,tm} (6.1)

of elements called terms (e.g., words or expressions—which may be 
stemmed—describing or characterizing documents such as, e.g., keywords 
given for a journal article), and a finite set  

D = {D1,...,Di,...,Dn}, Di ∈℘(T) (6.2)

of elements called documents.  
Traditionally, a “real” document can be a journal article (or its abstract 

or title), or a newspaper article, etc. These documents are formally 
conceived, for retrieval purposes, as being represented by sets of terms. 
Practically, the original document and its representation are two different 
entities. In principle, however, from a formal mathematical point of view, 
it is not a restriction to refer to document representations as documents, for 
two reasons: 

• There is a correspondence between the original document and its 
representation. 

• For retrieval purposes, the document representation is used rather than 
the original document.  

 Given a Boolean expression—in a normal form—Q called query is 
express as 

Q = )(
jjk

θ∨∧ ,  θj ∈ {tj, ¬tj}. (6.3)

Equivalently, Q can also be given in a disjunctive normal form. As any 
Boolean expression can be transformed into an equivalent normal form 
[i.e., the original Boolean expression and its normal form have the same 
logical value for the same truth values of the variables (Kneale and Kneale 
1962)], any query Q, which may be any arbitrary Boolean expression of 
terms, can be transformed into an equivalent normal form as shown by Eq. 
(6.3). Viewing Q as a normal form allows for a compact formal description 
of the Boolean retrieval method:  
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1. Sets Sj of documents are obtained that match Q, i.e., Sj = {Di|θj ∈ Di}, 
where ¬tj ∈ Di means tj ∉ Di. 

2. The documents that are retrieved in response to Q are those that are 
the result of set operations corresponding to the logical operators in Q 
(i.e., set union corresponds to disjunction, and set intersection corre-
sponds to conjunction): )(

jjk
S∪∩ . 

Example 6.1 

Let the set of original documents be O = {O1, O2, O3}, where 

O1 = Bayes’s principle: The principle according to which, when estimating 
a parameter, one should initially assume that each possible value has 
equal probability (uniform prior distribution). 

O2 = Bayesian decision theory: A mathematical theory of decision-making 
that presumes utility and probability functions, and according to which 
the act to be chosen is the Bayes act, i.e., the one with highest subjective 
expected utility.  

O3 = Bayesian epistemology: A philosophical theory that holds that the 
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to 
revise this probability is given by Bayesian conditionalization or similar 
procedures. A Bayesian epistemologist would use probability to define 
concepts such as epistemic status, support, or explanatory power and 
explore the relationships among them. 

 Let the set T of terms be:  

T = {t1 = Bayes’s principle, t2 = probability, t3 = decision-making}. 

Then, the set D of documents is as follows: D = {D1, D2, D3}, where 

 D1 = {Bayes’s principle, probability}, 
D2 = {probability, decision-making}, 

         D3 = {probability}. 

Let the query Q be:  

Q = probability  decision-making. 

Step 1: The following sets S1 and S2 of documents Di are obtained: 

   S1 = {Di| probability ∈ Di} = {D1, D2, D3}, 
S2 = {Di| decision-making ∈ Di} = {D2}. 

Step 2: The following documents Di are retrieved in response to Q: 

{Di|Di ∈ S1 ∩ S2} = {D1, D2, D3} ∩ {D2} = {D2}. 
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This means that the original document O2 (corresponding to D2) is the 
answer to Q.  

Obviously, if there is more than one document with the same representa-
tion, every such document is retrieved. Such documents are, in Boolean re-
trieval, indistinguishable (or, in other words, equivalent). 

Example 6.2 

Let us consider the following document: O4 = Bayes’s principle is used to 
construct an equation that is of basic importance in probability theory. 
With the set T of index terms of Example 6.1, O4 has the same representa-
tion, D4, as O1, i.e., D4 = D1 = {Bayes’s principle, probability}, and thus O1 
and O4 are indistinguishable.  

6.2 Technology of Boolean Retrieval 

From a formal mathematical point of view, the Boolean retrieval method is 
fairly simple. However, it is all the more important because every Web 
search engine offers Boolean search capability, as does any database man-
agement system. The basic technology for Boolean retrieval is described in 
Chapter 4 (inverted file structure). Step 1 usually means a binary search in 
the inverted file structure, which results in the sets Sj. Another possibility 
(e.g., when computer memory is large enough) is the use of a binary term-
document matrix: 

 
 

Boolean Retrieval Using Binary Term-Document Matrix 
 

1. Construct a term-document matrix TD = (wji)m×n, where wji = 1 if term tj 
occurs in document Di, and wji = 0 otherwise.  

2. Formulate a Boolean query Q = )( j
jk
t∨∧ . 

3. The sets Sj of documents that match Q are: Sj = {Di|tj ∈ Di} = {Di|wji = 
1, i = 1,…,n}, i.e., as given by the jth row of matrix TD: rowTD(j). 

4. The documents retrieved in response to Q are the result of logical 

operations on the rows selected in Step 3, i.e., ))(( jrowTD
jk
∨∧ . 
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6.3 Lattice-Based Boolean Retrieval 

In principle, the lattice characterization of Boolean retrieval is simple. As 
we have already seen, documents are represented as sets of terms. Thus, 
they are elements of the document lattice LD = ℘(T) encountered in Moo-
ers’s model (Section 5.1).  
 In database operations, retrieving data from a database is an important 
topic in both theory (data model) and practice (running time). In relational 
databases, which are based on entity-relationship models (Ullman 1980), 
data are grouped into entity sets. Retrieval of data (in response to a query) 
is performed by accessing instances (i.e., entity sets) of the entities in-
volved.  

The notion of Boolean algebra (i.e., complemented and distributive lat-
tices) can be applied to design a retrieval method that is more efficient (in 
terms of the number of accesses to the database and thus in terms of run-
ning time) than traditional methods (Yang and Chen 1996). 

In what follows, the method is described together with an example. 

Step 1. Let ENT denote an entity type as well the corresponding entity 
set (which may seem strange, but in our context it will not lead to any con-
fusion). In other words, ENT denotes a table in which  

• The columns correspond to attributes  

A1,...,Ai,...,An  

 (i.e., properties, terms), 

• The rows correspond to entity instances (i.e., documents) that contain 
specific values of the attributes (e.g., weights).  

 

Table 6.1 shows an example for the entity set ENT. The attributes of ENT 
are as follows: A1 = Name, A2 = Age, A3 = Job, A4 = Salary. 
 

Table 6.1. Entity set ENT 

Entity  
instance 

Name Age Job Salary 

e1 B 68 Secretary 21000 
e2 C 46 Professor 52000 
e3 L 24 Professor 38000 
e4 M 52 Secretary 35000 
e5 W 43 Professor 42000 
e6 D 25 Professor 36000 
e7 O 21 Secretary 18000 
e8 P 25 Secretary 30000 
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 Step 2. The attributes of ENT are partitioned. Pi = {Ai1,...,Aik} denotes a 
partition of attribute Ai. For example, let the partition of attribute A3 = Job 
be P3 = {Secretary, Professor}. (Note: The attribute “Professor” can be fur-
ther partitioned into Professor = {Assistant, Associate, Full}. Depending 
on the needs of the application of interest, any attribute may be broken 
down into further partitions.)  
 The partition of Ai can be represented as a graph Gi in which Ai corre-
sponds to the root of the graph, while the other vertices and the edges re-
flect the dependence relations in the partition. This graph is a lattice and is 
called descendance graph or d-graph. Figure 6.1 shows the d-graph of P3.  
 

 
 

Fig. 6.1. The d-graph (partitioning lattice) of attribute “Job.” 

 

 Let Di = {vi1,...,vij,...,vik} denote the vertices of d-graph Gi. It can be 
seen that the d-graph is the Hasse diagram of the lattice (Di, ≤i), where vij 
≤i vis if vij is a descendant of vis, ∀j,s. This lattice is referred to as the parti-
tioning lattice Li of Ai (Fig. 6.1). 
 The attribute “Age” can be partitioned as follows. If Age ≤ 40, then 
he/she is Young, and Notyoung otherwise. The attributes “Name” and 
“Salary” form their own partitions. Figure 6.2 shows the four partition lat-
tices L1, L2, L3, L4 thus obtained. 
 
 

0

Secretary Professor 

Job 
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Fig. 6.2. The partition lattices for the entity ENT. 
 

 Step 3. Build the product lattice L = Xi Li. In our example,  

  L = L1 × L2 × L3 × L4  
   = {a1, a2, a3, a4, a5, a6, a7, a8, a9} 
   = { (Name, Age, Job, Salary), 
    (Name, Age, Secretary, Salary), 
    (Name, Age, Professor, Salary), 
    (Name, Notyoung, Job, Salary), 
    (Name, Notyoung, Secretary, Salary), 
    (Name, Notyoung, Professor, Salary), 
    (Name, Young, Job, Salary), 
    (Name, Young, Secretary, Salary), 
    (Name, Young, Professor, Salary) }. 
 
Figure 6.3 shows the Hasse diagram of the product lattice L for entity 
ENT. 
 
 Step 4. The entity set is divided into as many groups n1,...,nk as the 
number of atoms in the product lattice L, based on the meaning of the at-
oms. For the entity set ENT, the number of atoms is k = 4, and the atoms 
are a5, a6, a8, and a9. For the entity ENT, the groups are:  

n1 = e1, e4 (i.e., the two entity instances in which Secretary is Notyoung),  
n2 = e7, e8, 
n3 = e2, e5, 
n4 = e3, e6. 

Let S = {n1,...,nk} denote the set of groups. Then, (℘(S), ⊆) is a Boolean 
algebra.  

Name 

0 

Secretar Professo

Job 

0

Notyoung Young

Age

Salary 
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Fig. 6.3. Product lattice L for the entity ENT. 

 

 Step 5. The Boolean lattice (℘(S), ⊆) can be used to answer queries 
as follows. In practice, we do not have to construct the entire lattice. By 
using the operations in a Boolean algebra, we only have to know what 
the atoms are, and then we can use the usual set operations ∪, ∩, and \ to 
retrieve data. This retrieval method is shown for the following query (as 
an example): 

 What are the names of the employees who are secretaries or who  
 are young? 

Using the notations: 

A = {Name, Secretary}, B = {Young, Job}, 

the query as well as the result is: 

A ∪ B = {n1, n2} ∪ {n2, n4} = {n1, n2, n4} = 
{ e1, e4, e7, e8, e3, e6}. 

6.4 Exercises and Problems 

1. Given the following information need: “I am interested in a route 
planner to plan a European journey by car.” Formulate Boolean que-
ries expressing this information need and experiment by supplying 
them to several Web search engines. 

        a5                        a8                               a6                            a9 

       a2                         a4                                a3                        a7 

a1 

0
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2. Given the following information need: “I am interested in the opening 
hours of chair museums in the United Kingdom, but I do not want 

3. Draw and discuss a parallel between the Boolean retrieval method 
and the functioning of the selection operator σE(R) encountered in re-
lation algebra (database theory), where E denotes a Boolean expres-
sion (i.e., the selection criteria), and R denotes a relation (i.e., a table 
from which the rows satisfying E are selected). 

4. Use an appropriate software tool (e.g., database management system, 
programming language) to implement a small retrieval system using 
the Boolean retrieval method for a small text collection of your 
choice. 

5. Let D denote a set of car parts (e.g., pedal, speedometer, seat, weight 
sensor, etc.) and T denote a set of symbols (or names) of electronic 
components (e.g., LED, chip of some kind, etc.) used in car parts. T 
indexes D. Develop a retrieval system using the Boolean retrieval 
method to find components for car parts. 

6. Let D denote a set of medical images, namely CT (computer 
tomography) images of the human brain as follows: D = 
{d1,…,di,…,dn}, where di denotes a package of image slices, i = 
1,…,n. Each di is associated with a medical report (which is a piece of 
text) written by a neurologist when he/she examines the CT images of 
a patient. Develop a retrieval system for the use of physicians using 
the Boolean retrieval method to find the images of a specific patient 
having a specific diagnosis. 

any hits on cars having type Seat or on chairs of organizations.” 

Formulate Boolean queries expressing this information need and 

perform searching by supplying them to several Web search engines. 





7 Lattices of Subspaces and Projectors 

Nature does not demand a numeric description of us. 
(Imre Fényes) 

 
This chapter presents the notions and results (metric space, complete 
space, linear space, subspace, linear operator, Banach space, Hilbert space, 
Euclidean space, projection theorem, projector, lattice of subspaces) that 
are applied in Chapters 8 and 9 (on vector space retrieval and algebra-
based retrieval methods). 
 Every notion is illustrated with detailed intuitive or mathematical exam-
ples to promote better understanding of their meaning. 

The Gram-Schmidt procedure for defining an orthonormal basis of a 
subspace of a linear space is described, the lattice of closed subspaces of a 
Hilbert space is defined, and the way in which this lattice expresses the 
underlying geometry of the space is shown. 

The chapter ends with exercises and problems in IR. 
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7.1 Metric Space 

Let X denote a set. A function  

δ : X × X → +, (7.1) 

where + denotes the set of positive real numbers, and X × X denotes the 
Cartesian product of set X with itself, is called a pseudometric if the fol-
lowing properties hold: 

1. x = y �  δ(x, y) = 0. 
2. δ (x, y) = δ (y, x), ∀x, y ∈ X.   (symmetry) 
3. δ (x, z) ≤ δ(x, y) + δ (y, z), ∀x, y, z ∈ X  (triangle inequality). 

If, in addition to properties (1)–(3), the function δ obeys also the property: 

 4. δ (x, y) = 0  �  x = y, 

then δ is called a metric. Set X with a (pseudo-)metric δ is called a 
(pseudo-)metric space, expressed as (X, δ ). 
 The notion of metric space is a very important one (used in several sci-
entific disciplines), and it may not always be an easy or trivial one. The 
concept of metric space embodies two major characteristics: 

• A “distance” (“closeness”) can be measured between any two elements 
of the space. 

• The “distance” obeys (1)–(4) above, which are special rules (e.g., sym-
metry means that the same “distance” is measured from an element x to 
an element y as from y to x). 

Example 7.1  

 (a) From an intuitive point of view, the concept of metric can be well il-
lustrated by the notion of the usual physical distance in the three-
dimensional physical space in which we live our everyday lives. When, 
e.g., the plan of the base of a future house is drawn on the ground, the 
ground is conceived as a two-dimensional space (i.e., a plane) in which we 
use the well-known Euclidean distance as a metric to measure physical dis-
tances and to make the drawing (plan) of the future base. In this case, the 
ground and the “meter” together constitute a metric space (Fig. 7.1). Using 
the meter, we can measure the physical distance between any two points 
on the ground. Indeed, in a metric space, the distance between any of its 
elements is defined (and, hence, can be measured).  
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Fig. 7.1. Plane and meter: an example of metric space. 

 
 

 (b) To better illustrate another important characteristic of the notion of 
metric space as a structure, let us consider the following set:  

X = {Grandparents, Mother, Father, Children, Hobbies, Friends, Memo-
ries, Love, Preferences, House, Garden, Professions, Car, Money}. 

Can X be organized as a metric space? This example is very relevant to IR. 
The elements of X may be conceived as being documents. A metric should 
be a measure of how “close” (or “distant”) they are to each other. Function 
δ defined as δ (a, b) = 1 if a ≠ b and δ (a, b) = 0 if a = b is a metric. Thus, 
the structure (X, δ) is, from a mathematical point of view, a metric space. 
However, the space thus obtained would hardly be appropriate for retrieval 
purposes: more suitable measures have to be defined (as they indeed have 
been defined over time).  

7.2 Complete Metric Space 

Let (X, δ) denote a metric space. A sequence x1,…,xn,…∈ X is said to be 
convergent if it has a limit, denoted by, say, L; i.e.,  

∀ε ∈  ∃nε ∈  such that δ(xn, L) < ε, ∀n > nε, (7.2)

where  denotes the set of natural numbers and  the set of real numbers. 
In words, condition (7.2) means that after some index nε all the remaining 
terms of the sequence “rush” to the value L (i.e., the limit), which they 
“approach” as closely as desired. 

SPACE: plane (ground) 

Plan of house

METRIC: meter
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 A metric space (X, δ) is said to be complete (relative to metric δ) if the 
Cauchy principle of convergence holds in space (X, δ), i.e., sequence x1,…, 
xn,…∈ X is convergent if and only if  

∀ε ∈  ∃nε ∈  such that δ(xm, xn) < ε, ∀m, n > nε. (7.3)

 The completeness of a metric space is not a trivial or intuitive property. 
It means that convergent sequences are exactly those that satisfy [apart 
from condition (7.2)] an additional property [namely the Cauchy principle 
(7.3)]. Example 7.2 should help to clarify the property of completeness of 
a metric space. 

Example 7.2  

Let us consider the real line with the usual Euclidean distance as a metric 
on it as a metric space. Then, the convergence of any sequence of numbers 
is equivalent to the Cauchy principle. For example, let us imagine that we 
walk, with decreasing steps, straight toward a cricket hole starting from, 
say, 2 meters away. We make each step at half the distance remaining to 
the hole. Then, for a stick of any length (i.e., ε), after some number of 
steps (i.e., nε), the distance between any two further successive steps (i.e., 
m and n) will be shorter than the stick (Fig. 7.2).  

cricket hole             ← walk 
 
 

Fig. 7.2. Illustration of the Cauchy principle of convergence. 

 
 The condition formulated in the Cauchy principle of convergence is far 
from being intuitive. As an example, try to imagine a similar walk, but not 
in a plane, as in the previous walk to a cricket hole, but rather on a 
“creased” surface (Fig. 7.3). 

 
Fig. 7.3. “Creased” surface.  
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does satisfy the Cauchy principle, but it is not convergent in ( , δ); its 
limit is an irrational number, namely e (and e ∉ ).  

7.3 Linear Space 

A linear space (or vector space) over a field F (for our purposes it is suffi-
cient to assume that F is equal to the set  of real numbers or to the set  
of complex numbers, both endowed with the usual operations of addition 
(i.e., +) and multiplication (i.e., ×) of real or complex numbers, respec-
tively) is the structure (L, ⊕, ⊗, F), where ⊕ and ⊗ denote two binary op-
erations: 

⊕: L × L → L and ⊗: F × L → L, (7.4) 

if the following properties hold:  

• a ⊕ b = b ⊕ a, ∀a, b ∈ L (commutativity). 
• ∃e ∈ L such that a ⊕ e = a, ∀a ∈ L (e is referred to as the null vector). 
• ∀a ∈ L ∃a’∈ L such that a ⊕ a’ = e (a′ is called the inverse of a); 
• a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c,  ∀a, b, c ∈ L (associativity). 

Further, for ∀r, p ∈ F, ∀a, b ∈ L we have: 

• (r + p) ⊗ a = (r ⊗ a) ⊕ (p ⊗ a). 
• r ⊗ (a ⊕ b) = (r ⊗ a) ⊕ (r ⊗ b). 
• (r × p) ⊗ a = r ⊗ (p ⊗ a). 
• 1 ⊗ a = a. 

 A linear space is denoted in short by L. The elements of a linear space L 
are traditionally called vectors and are usually denoted by bold letters, e.g., 
v, while the elements of F are called scalars.  

 The notion of a complete metric space is not trivial either. A convergent 
sequence always satisfies the Cauchy principle of convergence, but the 
reverse is not always true: not every sequence that satisfies the Cauchy 
principle is convergent (i.e., has a limit ) in the space. For example, in 
the metric space ( , δ), where  denotes the set of rational numbers and 
δ = |a − b|, ∀a, b ∈ , the sequence 
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Example 7.3  

 (a) Let us assume that we are standing on side A of a river and that we 
are pulling a boat from side B toward us (Fig. 7.4). Pulling the boat means 
that a force P is acting on the boat. The water is also acting on the boat by 
some force R. Then, actually, a resultant force P + R is acting on the boat. 
The sum P + R is also a vector, i.e., a quantity of the same type as P and 
R. Forces and operations with them form a linear space. 

 

 
 

Fig. 7.4. Space of forces. 
 

 (b) As another example, let us consider a room and the objects within it. 
The position of any object in the room can be given relative to where we 
stand by specifying its distance (say, in meters) to our left or right, above 
or below us, in front of or behind us (Fig. 7.5). The position of objects in 
the room is a quantity with magnitude and direction, i.e., a vector. 
 
                                                                                          up 
                                                                                                                 behind 
 
 
 
                                                 right                                                                                left  
 
 
                                
                           
                                                                front            
                                                                                          down 

 
Fig. 7.5. Space of position vectors. 

boat

River Side B

River Side A 

P

R

Water flows 

P+R 
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 The expression (r1 ⊗ v1) ⊕…⊕ (rm ⊗ vm) is called a linear combination 
of vectors v1,…,vm (r1,…,rm ∈ F). When the linear combination is equal to 
e if and only if r1 =…= rm = 0, then vectors v1,…,vm are said to be linearly 
independent, and linearly dependent otherwise. A set of linearly independ-
ent vectors forms an algebraic basis (basis for short) of L if any vector of 
the space can be written as a linear combination of them. Every linear 
space has at least one basis. Each basis contains the same number of vec-
tors, and this number is referred to as the dimension of the space.  
 If b1,…,bn ∈ Ln denote basis vectors of an n-dimensional linear space Ln, 
then every vector v ∈ Ln can be written as a linear combination of basis 
vectors:  

v = (p1⊗b1) ⊕…⊕ (pn⊗bn), (7.5)

where the scalars p1,…,pn ∈ F are called the coordinates of vector v; ex-
pressed as v = (p1,…,pn) = [p1,…,pn]

T, where T denotes the transpose, i.e.,  

[p1,…,pn]
T = 

»
»
»

¼

º

«
«
«

¬

ª

n
p

p

...
1

. 

7.4 Subspace of Linear Space 

A subset A ⊆ L, A ≠ ∅, of space L is a subspace of L if A is itself a linear 
space. Equivalently: 

• a ⊕ b ∈ A, ∀a, b ∈ A. 
• r ⊗ a ∈ A, ∀r ∈ F, ∀a ∈ A. 

Example 7.4 

The ground (see Example 7.1) may be viewed as a linear space L of posi-
tion vectors. The line A in the plane is a subspace of L.  
 

 
 

Fig. 7.6. Line A is a subspace of the plane as a linear space L of position vectors. 

Plane: linear space L

Line: subspace A 
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 A subset A of L is closed if and only if the limit of any convergent se-
quence x1, x2,…∈ A belongs to A. A subset A of the linear space (L, ) is 
convex if  

a, b ∈ A  �  r ⊗ a ⊕ (1 − r) ⊗ b ∈ A, ∀r ∈ [0; 1]. 

It is easy to see that every subspace of a linear space is convex.  
 The direct sum + of two subspaces A1 and A2 of linear space L is defined 
as (Fig. 7.7): 

A1 + A2 = {x ⊕ y | x ∈ A1, y ∈ A2}. 

 

 
Fig. 7.7. Direct sum of lines A1 and A2 as subspaces of the plane. 

7.5 Linear Operator 

Let (L1, ⊕1, ⊗1, F) and (L2, ⊕2, ⊗2, F) denote two linear spaces. A function 
U: L1 → L2 with the properties 

U(v ⊕1 w) = U(v) ⊕2 U(w), 

U(a ⊗1 v) = a ⊗2 U(v), 

(7.6)

is called a linear operator. Let b1,…,bn denote basis vectors of space (L1, 
⊕1, ⊗1, F), and let v = (p1 ⊗1 b1) ⊕1 … ⊕1 (pn ⊗1 bn) denote an arbitrary 
vector of L1. Then, the linear operator U: L1 → L2 is uniquely determined 
by U(v) = (p1 ⊗2 U(b1)) ⊕2…⊕2 ((pn ⊗2 U(bn)). 
 Let Λ(L1, L2) denote the set of all linear operators U from space (L1, ⊕1, 
⊗1, F) into space (L2, ⊕2, ⊗2, F). Then, the structure (Λ, +, ×, F) is the lin-
ear space of linear operators, where 
 

A2 

A1 + A2: plane as space L 

A1
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(U1 + U2)(v) = U1(v) ⊕2 U2(v), 

(a × U)(v) = a ⊗2 U(v). 
(7.7)

 The name linear operator may be misleading, as it may suggest that 
some trivial operation (e.g., the drawing of a straight line) has been gener-
alized to a needlessly complicated abstract formulation. That this is by far 
not the case is illustrated in Example 7.5. 

Example 7.5  

Let us consider the well-known Euclidean plane. Let P denote a point in 
this plane, and let its position vector be r = (b, a). Let us consider now an 
operation U that “mirrors” every vector by the horizontal axis (Fig. 7.8). 
This means that U is defined as follows:  

U(b, a) = (b, −a). (7.8) 

Operator U is given by the following matrix: 
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Operator U thus defined is a linear operator on the plane. It mirrors any 
point P by the horizontal axis into the point P′.  
 
 
 
          
                   a           P 
                                                                         r     
                                                                                 b 
                                 
 
                                                                -a             P’ 
 

Fig. 7.8. Mirroring of vectors in a plane by the  
horizontal axis: linear operator. 

7.6 Banach Space 

Let L be a linear space. A function ν : L → + is called a pseudonorm if 
the following properties hold: 

• If v denotes the null vector of L, then ν(v) = 0. 

• ν(r⊗v) = |r| × ν(v), ∀r ∈ F, ∀v ∈ L. 
• ν(v⊕w) ≤ ν (v) + ν (w), ∀v, w ∈ L. 
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If, in addition, function ν obeys also the following property: 

• If ν(v) = 0, then v is the null vector of L, 

then function ν is called a norm. Usually, ν(v) is denoted by ||v||. A linear 
space L with a norm is called a normed (linear) space.  
 The notion of norm is not trivial. It endows the space with a special 
character. Example 7.6 illustrates this. 

Example 7.6  

• The absolute value |r| of any real number r ∈  is a norm in the set of 

real numbers .  
• It may happen that the same space can be endowed with more than one 

norm. For example, the space C[a, b] of real and continuous functions 
defined on [a, b] can be organized as a normed space with the norm 
ν ( f (x)) = 

[ ]
|)(|max

,
xf

bax ∈
, and as another normed space with the norm 

 

ν (f(x)) = ³
b

a

dxxf 2|)(| .  

 A normed linear space (L, ||.||) defines a metric space (L, ) with the 
metric δ (v, w) = ||v ⊕ (−1) ⊗ w||. The expression ||v ⊕ (−1) ⊗ w|| is usu-
ally written as ||v − w||, and the metric thus defined is called a metric in-
duced by the norm. If a normed linear space (L, ||.||) is complete relative to 
the metric induced by the norm ||.||, space L is called a Banach space.  
 As can be seen, the notion of Banach space encompasses two highly 
nontrivial properties:  

• That of being normed. 
• That of being complete.  

In a Banach space, one can measure distances as defined by the norm, and 
all convergent sequences are exactly those that satisfy the Cauchy princi-
ple of convergence. The fact that not every normed space is a Banach 
space, i.e., that this is not trivial, is illustrated in Example 7.7. 

Example 7.7  

• The set  of real numbers is a Banach space relative to the metric in-
duced by the norm given by the absolute value.  
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• The space C[a, b] of real and continuous functions defined on [a, b] is a 
Banach space with the norm ν(f(x)) = 

[ ]
|)(|max

,
xf

bax∈
. 

• The space C[a, b] of real and continuous functions defined on [a, b] is 
not a Banach space with the norm  

ν(f(x)) = ³
b

a

dxxf 2|)(| .  

7.7 Hilbert Space 

Let (L, ⊕, ⊗, F) be a linear space. A mapping π: L × L → F satisfying the 
properties is called a scalar (or inner or dot) product:  

• π(v ⊕ w, u) = π(v, u) + π(w, u), ∀v, w, u ∈ L. 

• π(r ⊗ v, w) = r × π(v, w), ∀r ∈ F, ∀v, w ∈ L. 

• π(v, w) = (π(w, v))*, ∀v, w ∈ L, where (π(w, v))* denotes conjugate if  

 L = . 

• π(v, v) ≥ 0, ∀v ∈ L. 
• π(v, v) = 0 if and only if v = 0 (0 is the null vector of space L).  

Instead of π(x,y) the following shorter notations may also be used: (x, y),  
x ⋅ y, <x | y>, <x, y>, xy. We use the notation: <x, y>. 

 A Banach space (L, ⊕, ⊗, ) in which the norm is defined using the 
scalar product ||v|| = <v, v>1/2 is called an abstract Hilbert space (or Hil-
bert space for short). As can be seen, the notion of Hilbert space is special 
in that the norm is defined using a very special function: the scalar prod-
uct. Every Hilbert space is a Banach space, but the reverse is not necessar-
ily true (the scalar product is not an ‘ingredient’ of a Banach space). 
 Let U ∈ Λ(L, L) be a linear operator. Then, U is self-adjoint if  

<U(v), w> = <v, U(w)>, ∀v, w ∈ L. 

Example 7.8  

• Let r = (r1, r2) and p = (p1, p2) denote two position vectors in a plane. 
Then, π (r, p) = r1 p1 + r2 p2 is a scalar product.  
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• Originally, the Hilbert space was the set of sequences x1,…,xi,…∈  for 

which the series ¦
∞

=1

2

i
ix was convergent, endowed with the metric  

¦
∞

=

−=
1

2)(),(
i

ii yxyxδ .  

7.8 Euclidean Space 

The Euclidean space, which we denote by En (Figure 7.9 shows the three-
dimensional space E3), is a special Hilbert space (L, ⊕, ⊗, F) defined as: 

• The set L is equal to the set of n-tuples (v1,…,vn) ∈ n of real numbers, 

i.e., L = n.  

• F = .  

• The operation ⊕ is defined as follows: ⊕ = +; v = (v1,…,vn), w = 
(w1,…,wn), v + w = (v1 + w1,…,vn + wn). 

• The operation ⊗ is defined as ⊗ = ×; r × v = (r × v1,…, r × vn). 
• The norm is defined as the Euclidean length of a vector, i.e.,  

||v||= ¦ =

n

i iv
1

2 . 

• The scalar product is defined as <v, w> = v1 × w1 +…+ vn × wn = ||v|| ⋅ 
||w|| ⋅ cosϕ (where ϕ is a measure of the angle between vectors v and w). 

 
 It follows that the Euclidean distance between two vectors v = 
[v1,…,vn]

T and w = [w1,…, wn]
T is defined as  

||v + (−1)×w||= ¦ =
−n

i ii wv
1

2)( , (7.10) 

and a measure of the angle ϕ between vectors v, w ≠ 0 ∈ n is a real num-
ber ϕ such that  

cosϕ = 
|||||||| wv

wv,

×
. (7.11)
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Two vectors v and w are orthogonal to each other if cosϕ = 0. Any n-
dimensional Euclidean space En has an orthonormal (i.e., orthogonal and 
unit lengths) basis (there may also be other bases that need not be orthogo-
nal or have unit lengths). A common orthonormal basis is  

e1 = [1,0,0,…,0]T, e2 = [0,1,0,…,0]T, …, en = [0,0,0,…,1]T, 

where <ei, ej> = δij (δij is the Kronecker delta symbol, i.e., δij = 1 if i = j, 
and δij = 0 if i ≠ j).  
 
 

 
Fig. 7.9. Visualization of the three-dimensional  

orthonormal Euclidean space E3. (This space is used 
to model, e.g., the usual physical space we live in) 

7.9 Projection Theorem 

Two elements u and v of the Hilbert space L (u, v ∈ L) are said to be or-
thogonal if <u, v> = 0, expressed as u ⊥ v. Two subsets A and B of L are 
said to be orthogonal, written as A ⊥ B, if  

A ⊥ B ⇔ (u ⊥ v, ∀u ∈ A, ∀v ∈ B). (7.12)

 When subset A consists of one element, A = {u}, then the notations A ⊥ 
B and u ⊥ B are considered to be equivalent to each other. For a subset A ⊂ 
L of the Hilbert space L, the set A⊥ = {u ∈ L  u ⊥ A} is referred to as the 
orthogonal complement of A.  
 The following result, known as the projection theorem, is a well-known 
and very important result in functional analysis and quantum mechanics, 
and is no less important in IR (as will be seen in Chapter 8): 

e2 

e3 

e1 
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Theorem 7.1. Let L be a Hilbert space, and A a closed subspace of L, A ⊂ 
L. Then, any element u ∈ L can be represented as  

u = v ⊕ w 

in a unique way, v ∈ A, w ∈ A⊥.  

 Proof. As the case when L = En (i.e., the n-dimensional Euclidean space) 
is important in IR, it is the one for which we give the proof. 
 Let w1,…,wk be a basis of subspace A. Let M denote the matrix formed 
by these basis vectors, i.e., 

M = [w1 … wk]. 

The basis vectors w1,…,wk span the subspace A. It is known from the the-
ory of matrices that:  

• Subspace A is equal to the column space col(M) of matrix M, i.e., A = 
col(M). 

• The orthogonal complement A⊥ of subspace A is A⊥ = col(M)⊥ = 
null(MT), where MT denotes the transpose of matrix M, while null(MT) 
denotes its null space, i.e., the space of vectors a ∈ En for which MTa = 
0. 

Let u ∈ En be a vector of the n-dimensional Euclidean space. Then, the si-
multaneous system of linear equations 

(MTM)x = MTu 

has a unique solution becauseby assumptionthe rank of the k × k ma-
trix MTM is equal to k, i.e., rank(MTM) = k. From (MTM)x = MTu we obtain 

MT(u − Mx) = 0, 

which means that vector w = u − Mx belongs to the orthogonal comple-
ment of A, i.e., w = u − Mx ∈ A⊥. Vector Mx belongs to subspace A, i.e., 
Mx ∈ A, and can be denoted by v: Mx = v. Thus, we have that 

w = u − Mx = u − v,  u = v + w.  

Example 7.9 

For example, any vector u ∈ E3 in the three-dimensional space can be 
uniquely written as  

u = v + w, where v ∈ E2 and w ∈ E2
⊥. 
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 If u ∈ E2, then u = v + w = u + 0. If u ∈ E2

⊥, then u = v + w = 0 + u.     
If u ∉ E2 and u ∉ E2

⊥, then vector u makes an angle α with the plane E2. 
Let O denote the starting point of vector u. Further, let Q denote the inter-
section point between the plane and the perpendicular from the endpoint P 

of vector u onto the plane. Then, the directed line segments OQ and 

QP are just the vectors v and w:  

v = OQ , w = QP . 
 

 
 

7.10 Projector 

Vector v in Theorem 7.1 is called the projection of vector u onto subspace 
A; notation: v = [A]u. An operation P defined as PA(x) = [A]x, i.e., giving 
the projection of vector x of a Hilbert space onto subspace A, is called a 
projector (Example 7.10). Projectors are self-adjoint linear operators with 
the property P2 = P. 

Example 7.10 

The following operator P projects any vector (a, b) of the plane onto the 
horizontal axis, the result being the vector (a, 0): 

E2
⊥

 

E2

u 
P 

Q 

O 

E2
⊥

 

E2

u 

v 

w
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From the proof of Theorem 7.1, we can see that projector PA(x) is given 
by: 

PA(x) = M(MTM)−1MTx, (7.13) 

where the matrix  

M(MTM)−1MT (7.14) 

is the matrix of projector PA(x).  

Example 7.11 

Plane S is defined by the equation x − 4y + 2z = 0 in E3. The matrix of pro-
jector PS(x), x ∈ E3, onto plane S can be obtained as follows. First, a basis 
for S should be given. Let y = 1 and z = 0; then x = 4, and for y = 0 and z = 
1, we obtain x = −2. Thus, matrix M is 

»
»
»

¼

º

«
«
«

¬

ª −
=

1

0

2

0

1

4

M . 

Matrix M of projector PS(x) is  

M = M(MTM)−1MT = 

»
»
»

¼

º

«
«
«

¬

ª

−

−

81.0381.0095.0

381.0238.019.0

095.019.0952.0

.  

For example, the projection of vector x = (1 3 7) onto plane S is the vector 
Mx = (0.857 3.571 6.714).  

 Apart from its use in IR and quantum mechanics, the projection theo-
rem 7.1 has many applications in other areas as well. As a simple example, 
let us consider the simultaneous system of linear equations Ax = b (in ma-
trix form). If we can solve it, then an exact solution is obtained. But when 
we cannot solve it exactly, then we seek a vector x that minimizes ||b − 
Ax||. Since col(A) = {w | ∃y w = Ay}, the minimizing vector x will be its 
projection onto col(A).  
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7.11 Basis of Subspace 

We have seen that in order to find a projector, a basis of the subspace in 
question should be given. The problem of finding such a basis can be 
solved as follows. Let S = {v1,…,vs} ⊂ En be (not necessarily linearly in-
dependent) vectors in the n-dimensional Euclidean space. The set Sp(S) = 
{w | α1v1 +…+ αnvs } of all linear combinations of the vectors from S is a 
subspace of En and is referred to as the subspace spanned by S.  

An orthonormal basis for the subspace Sp(S) can be obtained using the 
Gram-Schmidt procedure. 

 
Gram-Schmidt Procedure 

 
Let A denote the matrix of the vectors of S, A = [v1 … vs], i.e., 

»
»
»

¼

º

«
«
«

¬

ª
=

ns

s

n
a

a

a

a

A .

...

...

...

.
1

1

11

. 

 The first basis vector, e1, is given by  

e1 = 
||||

1

1

v

v
. 

 The second basis vector, e2, is given by 

e2 = 
||||

2

2

z

z
, 

where z2 = v2 − λ21e1, with λ21 such that <z2, e1> = 0, λ21 = <v2, e1>.  
If the basis vectors e1,…,em have already been obtained, the next basis  
vector, em+1, is given by  

em+1 = 
||||

1

1

+

+

m

m

z

z
, 

 where  

¦−=
=

+++

m

k
kkmmm

1
,111
evz λ , 

with the coefficients λm+1,k (k = 1,…,m) so chosen as to have <zm+1, ej> = 
0, j = 1,…,m, i.e., λm+1,k = <vm+1, ek>. 
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7.12 Lattice of Subspaces 

The structure (ℜ(L), ∧, ∨, C) is an atomic, complete, orthomodular lattice 
when: 

• ℜ(L) is the set of all closed subspaces of the Hilbert space L. 
• A ∧ B = A ∩ B for every subspace A, B of L. The intersection is also a 

subspace of L; it is the largest subspace contained in both A and B. 
• A ∨ B = A + B; A ∨ B is the smallest subspace containing both A and B. 
• C = ⊥ (orthogonal complement). 

 (A proof can be given using the axioms defining a lattice, the definitions 
of A ∩ B and A + B, and the orthomodular law.) Lattice ℜ(L) is modular if 
and only if Hilbert space L is finite-dimensional (e.g., L = En). The order-
ing relation ≤ is defined by the concept of subspace.  
 As there is a one-to-one correspondence between subspaces and projec-
tors (Theorem 7.1), one may say that projectors form a poset, just as sub-
spaces do. We say that P1 ≤ P2 if for the corresponding subspaces we have 
M1 ⊆ M2. Further, it can be easily seen that P1 ≤ P2 if P1P2 = P1. 
 The main difference between lattice ℜ(L) and a Boolean algebrae.g., 
the powerset (L, ⊆) a as Boolean algebra or the Boolean algebra of logical 
propositions ({T, F}, , V, ¬)is related to the distributive law. This is an 
important difference between the two lattices in that it reflects a primary 
difference in their structures (and thus induced properties). The difference 
can be well illustrated using the following example. Let L denote the Hil-
bert space E2, and let M and N be two one-dimensional subspaces of L 
(Fig. 7.10). 
 

 
Fig. 7.10. Three one-dimensional subspaces of the two-dimensional 

Hilbert space E2 that do not satisfy the distributive law. 
 

M 

N

M
⊥ 
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We have: 

N  (M  N⊥) = N  L = N, (7.15) 

but 

N  M = N  N⊥ = {0}. (7.16) 

 In any powerset lattice (℘(X), ⊆), which is a Boolean algebra, the dis-
tributive law makes it possible to write the following relationship for any 
sets A and B of X: 

A= A ∩ X = A ∩ (B ∪ CXB) = (A ∩ B) ∪ (A ∩ CXB). (7.17) 

In a subspace lattice ℜ(L), the operation corresponding to set complement 
C is orthocomplementation ⊥. Based on Eq. (7.17), we may say that two 
subspaces are compatible if 

(M  N)  (M  N⊥) = M. (7.18) 

 The orthomodularity condition can be interpreted as an underlying 
property of the geometry of space, namely: 

N, M ∈ ℜ(L),  M ≤ N  � 

N = M ∨ (NC ∧ M) =  

M + (N⊥ ∩ M) =  

M + (N − M), 

(7.19)

i.e., N is the direct sum of M and N − M.  
 As a consequence of Theorem 7.1, every subspace Ai of a Hilbert space 
L can be uniquely assigned a projector Pi. Thus, one may say that projec-
tors also form a lattice.  

7.13 Exercises and Problems 

1. Show that 
iii

yx −
≤≤ 21

max  is a metric over E2 (i.e., in the usual plane). 

2. Let X = D denote a set of documents and T a set of terms. Can you 
define a metric between the elements of D? 
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3. Let X = D denote a set of documents and T a set of terms. Every 
document d is a set of terms, i.e., d ∈℘(T). Is the function  

δ: D × D → , δ(di, dj) = |di ∩ dj| 

a metric? (Note: |di ∩ dj| denotes the number of terms di and dj have 
in common.) 

4. Let X = D denote a set of documents and T a set of terms. Every 
document d is a set of terms, i.e., d ∈℘(T). Further, let wij denote the 
weight of term ti in document dj (i = 1,…,n, j = 1,…,m). Do the 
documents of D [represented as dj = (w1j,...,wnj)] form a linear space 

(D, +, ×, )? 

5. Is cosϕ a metric on the space En? 

6. Define projectors in E3. 

7. Show that lattice ℜ(En) of subspaces of En is modular. 

8. Let D = {d1,...,dm} denote a collection of documents and T = {t1,...,tn} 
a set of terms. Let W = (wij)n×m be a term-document weights matrix (n 
> m).  

o Write down the subspace Sp(W). 
o Determine a basis for subspace Sp(W). 
o Calculate the matrix of projector PSp(W)(x). 
o Given a query vector q, compute the projection of the 

query onto the subspace of documents, i.e., PSp(W)(q). 
 
 9. Let D = {d1,...,dm} denote a collection of documents and T = {t1,...,tn}  

 a set of terms. Let W = (wij)n×m be a term-document weights matrix, 
and q a query vector. Matrix W may be conceived as the matrix of an 
operator O between the linear space En of documents and a linear 
space Em of similarities (i.e., s = (s1 ... sj ... sm), where sj is the degree 
of similarity between query q and document dj): O: En → Em. Show 
that the operator O is a linear operator. Is it a projector? Why? 
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8 Vector Space Retrieval 

It is not the vectors which matter, but the lattice of subspaces. 
(John von Neumann) 

 
This chapter begins with the original as well as a more formal description 
of vector space retrieval (VSR). An example is also given to the reader 
help exactly understand what the method means and how it operates.  

Then, the widely used similarity measures are presented in both a com-
pact and parameterized form (having in mind a computer programmer who 
prefers writing a compact code for all cases) and in their usual forms.  

This is followed by a description of the use of the notion of a projector 
in Hilbert space for the calculation of meaning and for the expression of 
compatibility of relevance assessments. 

The second part of the chapter is concerned with the application of lat-
tices in VSR. It is shown that retrieving documents means projection. After 
introducing the concept of equivalent queries, we prove that nonequivalent 
queries form a nondistributive lattice (called a query lattice). We also show 
that VSR may be viewed as a nonsubmodular lattice-lattice mapping from 
the query lattice to the Boolean algebra of documents.  

A parallel is drawn between the lattice-based view of quantum mechan-
ics and the lattice-based view of IR introduced in this chapter, and that is 
discussed.  

Thus, this chapter may help provide a deeper insight into the very 
mechanism or logic of VSR 

The chapter ends with exercises and problems that are designed to en-
hance understanding of the application of the vector space method in 
practice. 
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8.1 Introduction 

Given an entity described by a piece of text (traditionally called a docu-
ment), if the words are ranked in decreasing order with respect to their 
number of occurrences (also called frequencies), then the product of the 
rank of any word and its number of occurrences is approximately constant 
(Zipf 1949). If it is assumed, naturally enough, that the most obvious place 
where appropriate content identifiers might be found is the document it-
self, then the number of occurrences of a term can give a meaningful indi-
cation of its content (Luhn 1966). Given m documents and n terms, each 
document can be assigned a sequence (of length n) of weights that repre-
sent the degrees to which terms pertain to (characterize) that document. If 
all of these sequences are put together, an n × m matrix, called a term-
document matrix, of weights is obtained, where the columns correspond to 
documents and the rows to terms (see also Chapter 4).  
 Let us consider atextualquery expressing an information need to 
which an answer is to be found by searching the documents. Salton (1966) 
proposed that both documents and queries should use the same conceptual 
space, and some years afterward Salton et al. (1975a) combined this idea 
with the term-document matrix. More than a decade later, Salton and 
Buckley (1988) reused this framework and gave a mathematical descrip-
tion that has since become known as the vector space model (VSM) or 
VSR:  

• Both document and query weights are conceived as being vectors in the 
linear space (of terms).  

• The degree of similarity between documents and queries is based on the 
scalar product of the space. 

• If the scalar product is zero, then no documents are retrieved. 
• Only those documents are retrieved for which the scalar product is dif-

ferent from zero. 

 Vector space retrieval has proved useful in many practical applications 
over time. Its retrieval effectiveness was tested under laboratory conditions 
almost at its inception by Salton et al. (1975a) using three test collections 
(CRAN, MED, TIME). They found that the mean average precision was 
0.48 for CRAN, 0.57 for MED, and 0.66 for TIME. The experimental re-
sults have been confirmed time and again ever since. For example, Wong 
et al. (1985) found that the mean average precision was 0.25 for ADI and 
0.35 for CRAN. We repeated the measurements and found the mean aver-
age precision to be: 0.33 for ADI, 0.44 for MED, 0.52 for TIME, and 0.18 
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for CRAN. (Note: Newer retrieval methods developed in the meantime 
gave better results on these test collections.) 
 There seem to be just two works in which the notion of lattice is applied 
in the VSR method, and both relate to the lattice of subspaces of a Hilbert 
space.  
 Widdows and Peters (2003) apply quantum logic operations to retrieval. 
The operations (conjunction, disjunction, negation) defining the lattice of 
subspaces of a Hilbert space are used to define nonclassical logical opera-
tions NOT, OR, and AND on word vectors. These are then used to find 
senses of words and to resolve the word sense disambiguation problem.  
 Van Rijsbergen (2004), applying von Neumann’s ideas in quantum 
logic, shows how one can treat important retrieval methods (coordination 
level matching, relevance feedback, dynamic clustering, ostensive re-
trieval) within the framework of Hilbert spaces by interpreting the inner 
product as probability. He uses the lattice of subspaces of a Hilbert space 
to give an algebraic form to logical conditionals utilized in retrieval, argu-
ing that disjunction does not commute (“observing relevance followed by 
topicality is not the same as observing topicality followed by relevance”), 
and so is not classical. 
 In this chapter, we deal with VSR and present a lattice theoretical ap-
proach that differs from the above-mentioned applications of lattices to 
VSR. Namely, we show that VSR may be conceived as a nonsubmodular 
lattice-lattice mapping between a nondistributive lattice and a Boolean al-
gebra. This view of the subject should help the reader to gain a deeper in-
sight into its formal mechanism and its underlying abstract structures. 

8.2 Lattices in Vector Space Retrieval 

8.2.1 Vector Space Retrieval 

Salton and Buckley (1988) gave the following mathematical description, 
which is now known as the vector space model (VSM) of information re-
trieval: 

In the late 1950’s, Luhn first suggested that automatic text 
retrieval systems could be designed based on a comparison of 
content identifiers attached both to the stored texts and to the 
users’ queries. The documents would be represented by term 
vectors of the form D = (ti, tj,…,tp), where each tk identifies a 
content term assigned to some sample document D. 
Analogously, a typical query vector might be formulated as  
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Q = (qa, qb,…,qr). A more formal representation of the term 
vectors is obtained by including in each term vector all 
possible content terms allowed in the system and adding term 
weight assignments to provide distinctions among terms. 
Thus, if wdk (or wqk) represents the weight of term tk in 
document D (or query Q), and t terms in all are available for 
content representation, the term vectors for document and 
query can be written as D = (t0,wd0; t1,wd1;…; tt,wdt) and Q = 
(q0,wq0; q1,wq1;…; qt,wqt). Given the vector representations, a 
query-document similarity value may be obtained by 
comparing the corresponding vectors, using for example the 
conventional vector product formula similarity (Q, D) = 
Σwqkwdk. When the term weights are restricted to 0 and 1 as 
previously suggested, the vector product measures the number 
of terms that are jointly assigned to query Q and document D. 
In practice it has proven useful to provide a greater degree 
of discrimination among terms assigned for content 
representation than is possible with weights of 0 and 1 alone. 
The weights could be allowed to vary continuously between 0 
and 1, the higher weight assignment near 1 being used for the 
most important terms, whereas lower weights near 0 would 
characterize the less important terms. A typical term weight 
using a vector length normalization factor is wdk/(Σvector(wdi)

2)1/2 

for documents. When a length normalized term-weighting 
system is used with the vector similarity function, one obtains 
the well-known cosine similarity formula. 

 More formally, a “definition” for VSM can be given as follows:  

1. Both document D = (t0,wd0; t1,wd1;…; tt,wdt) and query Q = (q0,wq0; 
q1,wq1;…; qt,wqt) are elements of the Euclidean space En, n = t + 1. In 
other words, we may say that the formal framework of VSM is En.  

2. Each term ti corresponds to a basis vector ei of space En.  

3. The degree of relevance r of a document D represented by vector w 
relative to query Q represented by vector q is based on the dot prod-
uct  <w, q>.  

4. If <w, q> = 0, then the document is not relevant, and hence it is not 
retrieved. If <w, q> ≠ 0, then the document is considered to be rele-
vant and is retrieved. 
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5. Let <wi, q> ≠ 0, i = 1,…,m, correspond to documents Di. Then, the 
documents D1,…,Dm are used to construct the hit list: D1,…,Dm are 
sorted descendingly on their relevance degrees and are displayed to 
the user in this order. 

Figure 8.1 shows a visual example, in E3, for the mathematical formula-
tion of VSM. 

 

 
Fig. 8.1. A visual example, in E3, of the mathematical formulation of VSM. The 
set T of terms is T = {sun, rain, sky}. A document D = (sun, rain, rain, sky) and a 
query Q = (sun, sun, sky, sky, sky) are represented as vectors. The corresponding 
vectors of weights (using a frequency weighting scheme) are: w = (1, 2, 1), q = (2, 
0, 3). The scalar product (equivalently the cosine of the angle) between these two 

vectors is a measure of similarity between document and query. 
 

 One should note that from a mathematical point of view, the formal 
framework (i.e., linear space) adopted for VSR is, as can be seen, a pre-
cisely defined, sophisticated, and delicate mathematical structure (see 
Chapter 7). 

Example 8.1  

Let the set of original documents (to be searched) be D = {D1, D2, D3}, 
where 
D1 = Bayes’s principle: The principle that, in estimating a parameter, one 

should initially assume that each possible value has equal probability 
(uniform prior distribution). 
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D2 = Bayesian decision theory: A mathematical theory of decision-making 
that presumes utility and probability functions, and according to which 
the act to be chosen is the Bayes act, i.e., the one with highest subjective 
expected utility. If one had unlimited time and calculating power with 
which to make every decision, this procedure would be the best way to 
make any decision. 

D3 = Bayesian epistemology: A philosophical theory that holds that the 
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability, and that the proper way to 
revise this probability is given by Bayesian conditionalization or a simi-
lar procedure. A Bayesian epistemologist would use probability to de-
fine concepts such as epistemic status, support or explanatory power and 
to explore the relationships among them. 

Let the set T of terms be: 

 
T = {t1 = Bayes’s principle, t2 = probability, t3 = decision making, 

t4 = Bayesian epistemology, t5 = Bayes}. 

Conceiving the documents as sets of terms (together with their frequen-
cies), we can represent them as: 

D1 = {(Bayes’s principle, 1); (probability, 1); (decision-making, 0);  
          (Bayesian epistemology, 0); (Bayes, 1)}. 
D2 = {(Bayes’s principle, 0); (probability, 1); (decision-making, 1);  
          (Bayesian epistemology, 0); (Bayes, 2)}. 

D3 = {(Bayes’s principle, 0); (probability, 3); (decision-making, 0);  
          (Bayesian epistemology, 2); (Bayes, 3)}. 

Here (Bayes’s principle, 1) means that term t1 = “Bayes’s principle” occurs 
once in document D1, etc. As there are five terms, documents are repre-
sented in the form of weight vectors w1, w2, and w3 in the five-dimensional 
Euclidean space E5:  

w1 = (1, 1, 0, 0, 1), w2 = (0, 1, 1, 0, 2), w3 = (0, 3, 0, 2, 3). 

Let the query Q be  

Q = {(probability, 1); (decision-making, 1); (Bayes, 1)}. 

Thus, the query vector is q = (0, 1, 1, 0, 1). The similarity between query 
and documents may be given by the values of the inner product: <w1, q> = 2, 
<w2, q> = 4, <w3, q> = 6.  
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8.2.2 Technology of Vector Space Retrieval 

In what follows, an automatic method is presented that consists of the fol-
lowing steps (see Chapter 4 for details on technological aspects): 
 
 

1. Given a set D of documents. 

2. Identify terms. 

3. Exclude stopwords. 

4. Apply stemming to remaining words. 

5. Compute for each document Dj and term ti a weight wij. 

6. A query Qk coming from a user is also conceived as being a docu-
ment; a weight vector vk can be computed for it as well, in a similar 
way.  

7. Retrieval is defined as follows: 
Document Dj is retrieved in response to query Qk if the docu-
ment and the query are "similar enough," i.e., a similarity 
measure sjk between the document (identified by vj) and the 
query (identified by vk) is over some threshold K.  

 

 

There are a number of similarity measures used in VSR (Meadow et al. 
1999), which can be expressed in a unified form as follows: 

Theorem 8.1. (Dominich 2002) The similarity measures used in VSR can 
be expressed in a compact form as  

<wj,wQ> 
ρ = , 

     (||wj||⋅||wQ||)a⋅ (2c−b(|wj| + |wQ|) − c⋅<wj,wQ>)b⋅(min(|wj|,|wQ|))d 

 

 where 

• wj denotes the document vector of document Dj. 
• wQ denotes the query vector of query Q. 
• |.| denotes the sum of coordinates, i.e., |w| = |w1j … wnj| = w1j +… +wnj. 
• ||.|| denotes the Euclidean norm. 
• a, b, c, d ∈ {0, 1}. 
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 Proof. It is shown that the usual similarity measures are obtained for 
certain values of the parameters, as follows: 

Dot product measure. If a = 0, b = 0, c = c, d = 0, then  

ρ = <wj,wQ>. 

Cosine measure. If a = 1, b = 0, c = c, d = 0, then 

ρ =  
                                                 ||wj||⋅||wQ|| 

 

Dice coefficient measure. For a = 0, b = 1, c = 0, d = 0, we have 

                                                  2<wj,wQ> 
ρ =  

                                                 |wj| + |wQ| 

 

Jaccard coefficient measure. For a = 0, b = 1, c = 1, d = 0, we have 

                                                <wj,wQ> 
ρ =  

                                        |wj| + |wQ| − <wj,wQ> 

 

 

Overlap coefficient measure. If a = 0, b = 0, c = 0, d = 1, then 

  
                                                 <wj,wQ> 

ρ =  
                                                min(|wj|, |wQ|)  
 
 Table 8.1 summarizes the similarity measures depending on the values 
of the parameters a, b, c, and d. 

Table 8.1. The Similarity Measures Used in VSR 
Depending on the Values of the Parameters a, b, c and d 

 
a 

 
b 

 
c 

 
d 

Similarity measure 

0 0 c 0 Dot product 
1 0 c  0 Cosine 
0 1 0 0 Dice coefficient 
0 1 1 0 Jaccard coefficient 
0 0 0 1 Overlap coefficient 

 wj wQ < >,



8.3 Calculation of Meaning Using the Hilbert Lattice      165 

 Theorem 8.1 is useful, first of all, for software developers in that the 
general form can be programmed as a subroutine and can then be called by 
appropriately particularizing the values of the parameters. 

8.3 Calculation of Meaning Using the Hilbert Lattice 

The operations of the Hilbert lattice ℜ(L) can be used to define (or inter-
pret) numerically meaning of words or documents in general (Widdows 
and Peters 2003, Widdows 2003, 2004). 

8.3.1 Queries with Negation 

We have seen that the numerical expression of irrelevance in VSR is the 
fact that the scalar product is equal to zero: a query Q is irrelevant to 
document D if the query vector q is orthogonal to the document vector d, 
i.e., <q, d> = 0. Now let q be the vector q = a ¬b (e.g., the query vector q 
corresponds to the query Q = “information NOT retrieval”). In vector nota-
tion,  

<q, a> ≠ 0 and <q, b> = 0, (8.1)

where a is the vector corresponding to “information” and b is the vector 
corresponding to “retrieval.” In other words, the query vector is the projec-
tion of vector a onto subspace {b}⊥.  
 A simple calculation shows that 
 
                                               <a, b> 

< a −  b, b > = 
                                                   ||b||  
                     
                                                  
                                                 <a, b> ||b|| 

  <a, b> −  =  0, 
                                                      ||b|| 
 

(8.2)

 which means that q ⊥ b. This means that query q is a single vector: 
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q = a ¬b = 
 
                                                 <a, b> 

  a −  b. 
                                                     ||b||                      

(8.3)

 
 Widdows and Peters conducted experiments to test the above negation 
method. They used New York Times data consisting of 173 million words 
from news articles written between July 1994 and December 1996. News 
articles typically prefer some meanings of ambiguous words over others. 
For example, the word “suit” was used mainly in a legal rather than a 
clothing context. They tested the effectiveness of the above negation 
method to find less common meanings by removing words belonging to 
the predominant meanings. The results showed that the method was effec-
tive in removing the “legal” meaning from the word “suit” and the “sport-
ing” meaning from the word “play,” leaving “clothing” and “perform-
ance,” respectively. Moreover, removing a particular word also removes 
concepts related to the negated word. Using the single-word query “suit” 
returned the following list:  

suit, lawsuit, suits, plaintiff, sued, damages, appeal. 

Using the negated query “suit NOT lawsuit” returned:  

pants, shirt, jacket, silk, dress, trousers,  
sweater, wearing, satin, plaid, lace. 

8.3.2 Queries with Disjunction 

From a theoretical point of view, answering a disjunctive query may pro-
ceed along the following lines. 
 Let q = a ∨ b be a Boolean query. Traditionally, q triggers the retrieval 
of all documents containing either or both terms whose vectors are a and 
b, respectively. In the Hilbert lattice ℜ(L), the ∨ operation is the join, 
which means the direct sum of the vectors involved. Thus, the query q = a 
∨ b may be taken to represent the spanned subspace Q = {pa + rb}, p, r ∈ 

. The similarity s(d, Q) between a document vector d and subspace Q 
may be defined as  

s(d, Q) = <d, PQ(d)>, (8.4)
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which is the scalar product of the document vector d and its projection 
onto subspace Q (i.e., the component of d that lies in Q). In order to com-
pute the projection PQ(d), an orthonormal basis {bi} for Q should first be 
constructed (e.g., using the Gram-Schmidt procedure, Section 7.11). Thus, 
we have  

s(d, Q) = <d, PQ(d)> = 

< d, ¦
i

 <d, bi>bi > = 

¦
i

 <d, bi>. 

 

(8.5)

8.4 Compatibility of Relevance Assessments 

Van Rijsbergen (2004) elaborates the basics for a formal expression of 
relevance assessments in information retrieval.  
 Let Q denote a single-term query, and let us assume the use of Boolean 
retrieval to answer Q. Then, a document D is retrieved if it contains Q (i.e., 
D ‘is about’ Q), and it is not retrieved if it does not contain Q (i.e., D is not 
about Q). Once D has been retrieved, the user can decide whether it is 
relevant or not. The traditional working assumption is that relevance as-
sessments are independent of one another and are binary (i.e., a document 
is either relevant or not). This can be expressed formally as follows: 

(D ∧ R) ∨ (D ∧ ¬R), (8.6)

i.e., document D is either relevant (R) or nonrelevant (¬R). This can be 
rewritten as  

(D ∧ R) ∨ (D ∧ ¬R) = D ∧ (R ∨ ¬R), (8.7)

which is the well-known distributive law in the Boolean lattice ({True, 
False}, ∨, ∧, ¬) of mathematical logic, and is an expression of compatibil-
ity between D and R. 
 However, experiments confirmed the opposite: assessing the relevance 
of retrieved documents D in response to Q in between two retrievals for P 
is characterized by certain cognitive activity that affects the assessment of 
relevance. (Thus D, which was found relevant in the first retrieval, may be 
found irrelevant when assessed again after retrieval for some other 
query P.) Hence, relevance assessments do not seem to be totally inde-
pendent of each other. In order to model this situation, which is justified by 
practice, van Rijsbergen proposed using the Hilbert lattice. 
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 As any projector in a Hilbert space has two eigenvalues (0 and 1, mean-
ing, e.g., irrelevance and relevance), it may be interpreted as (or assigned) 
a logical proposition. Using the Hilbert lattice ℜ(L) of projectors, we can 
express the compatibility condition as  

(D ∧ R) ∨ (D ∧ R⊥),  D, R ∈ ℜ(L). (8.8)

As the Hilbert lattice is not distributive, we have 

(D ∧ R) ∨ (D ∧ R⊥) ≠ D ∧ (R ∨ R⊥), (8.9)

which means that compatibility does not hold (which is in accordance with 
experimental results). 

8.5 Vector Space Retrieval: Lattice-Lattice Mapping 

We first show the following: 

 Proof. Let us show first that A⊥ is a subspace of En. Let a, b ∈ A⊥ denote 
two arbitrary vectors of A⊥. We have to show that a + b ∈ A⊥ and ra ∈ A⊥, 

∀ r ∈ . For a = (a1,…,an) and b = (b1,…,bn) in A⊥, it follows that  a ⊥ x, 
b ⊥ x, ∀x = (x1,…,xn) ∈ A, i.e.,  

a1x1 + … + anxn = 0,  b1x1 + … + bnxn = 0.  

From this, we obtain: 

a1x1 + … + anxn + b1x1 + … + bnxn = 

(a1+ b1)x1 + … + (an+ bn)xn = 0, 

 

which means that a + b ⊥ x and thus a + b ∈ A⊥. In a similar manner, we 
have 

a1x1 + … + anxn = 0  � 

ra1x1 + … + ranxn = 0  � 

ra ∈ A⊥. 

 

We now show that A⊥ is closed, i.e., the limit of every convergent 
sequence belongs to A⊥. Let y1,…,yn,…∈ A⊥, yn ≠ 0, denote a nontrivial 
convergent sequence: lim yn = y. This means that ||yn − y|| → 0. We 

Theorem 8.2. The orthogonal complement A⊥ of any subset A ⊂ En of 

space En is a closed subspace of En.  
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demonstrate that  y ∈ A⊥. Let us assume the opposite, i.e., y ∉ A⊥. Then, y 
∈ A and so yn ⊥ y for every n, and hence <yn, y> = 0. Thus, 

||yn − y|| → 0  ⇔ 

¦ ¦¦¦¦¦ →+=+−=−
i i

i
i

ni
i

i
i

ini
i

niini yyyyyyyy 02)( 22222 ,

where yn = (yn1,…,yni,…), yn = (y1,…,yi,…), which is only possible when yn 
= y = 0. As this contradicts the assumption yn ≠ 0, we have y ∈ A⊥.  

 Since the Euclidean space En is a Hilbert space, by using Theorem 7.1 
and Lemma 8.2, we get the following: 

Theorem 8.3. (Dominich and Kiezer 2007) Given a Euclidean space En 
whose vectors (of weights) d ∈ En identify documents, the set ℜQ of docu-
ments retrieved in response to a query Q (represented as a vector q ∈ En) 
is  

ℜQ = {D | d = PA(d) + q, A = {q}⊥}. 

 Proof. The retrieval of documents D represented as vectors w in re-
sponse to query Q represented as a vector q means constructing the set  

ℜQ = {D | <q, w> ≠ 0}. 
 

The orthogonal complement A = {q}⊥ (i.e., the set of documents that do 
not share common terms with the query) corresponding to query Q is given 
by the documents D whose vectors w are perpendicular to q, i.e.,  

A = {q}⊥ =  

{w | w ⊥ {q}} =  

{w | <w, q> = 0}. 

 

Set A is a closed linear subspace of space En (Lemma 8.2). It follows that 
any element d ∈ En of space En can be uniquely written (Theorem 7.1) as  

d = w + q,  

where w ∈ A and q ∈ A⊥ = {q}. 

 

 The projector PA for the elements d ∈ En of space En onto the set A is 
defined as PA(d) = w, w ∈ A. Thus,  

ℜQ =  

{D | d = PA(d) + q,  A = {q}⊥}.  
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 Theorem 8.3 makes it possible to say that obtaining the set of retrieved 
documents means projection. Figure 8.2 shows a visual example for 
Theorem 8.3. 

 From the point of view of practice, queries may be equal to or different 
from each other. The following properties hold: 

• The complement A = {q}⊥ of any query vector q is a closed subspace of 
space En. 

• Hence, A is a member of the subspace lattice, i.e., A ∈ ℜ(En). 

• But not every subspace of En [in other words, not every element of lat-
tice ℜ(En)] is the complement of a query vector (e.g., the subspace {a, 
b}⊥, a, b ∈ En, is not the complement of any query because a query is 
represented by a single vector and not by two vectors). 

 
 Thus, one may ask whether the queries (equivalently, their complements 
or the corresponding sublattice) form some structure or not. An answer is 
given by the following: 

Theorem 8.4. The set of different and nonperpendicular queries is an at-
omistic, complemented, modular, nondistributive lattice. 

 Proof. Let q and q′ denote two different and nonperpendicular query 
vectors. Let v ∈ A = {q}⊥, v ≠ 0; hence <v, q> = 0. We show that vector v 

q 

d=PA(d)+q 

PA(d)

A={q}⊥ 

Fig. 8.2. Visual example for Theorem 8.3 in plane. The  
dashed-line vectors form the orthogonal complement  

(i.e., perpendicular) vectors A = {q}⊥ of query vector q. Any 
document vector d (triple-line vector) can be written as the sum 

of query vector q and its projection PA(d) onto subspace A. 
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cannot belong to A′ = {q′}⊥ at the same time (i.e., v cannot be perpendicu-
lar to both q and q′ at the same time). By Theorem 8.3, we have  

q’ = PA(q’) + q. 

Then,  

<v, q’> = <v, PA(q’) + q> = 

<v, PA(q’)> + <v, q> = 

= <v, PA(q’)> + 0 = <v, PA(q’)> ≠ 0. 

 

Hence, v cannot be perpendicular to q′. This means that the intersection  
A ∩ A′ is empty: A ∩ A′ = ∅.  
 Thus, the following lattice can be constructed:  

• 0 = ∅.  
• 1 = En.  
• The other elements of this lattice are the sets A as atoms (Fig. 8.3).  

 As this lattice is a sublattice of themodularlattice ℜ(En) of sub-
spaces, it is modular as well, which means that it is orthomodular at the 
same time. However, it is not distributive: 

A ∨ (A’ ∧ A’’) = A ∨ ∅ = A ≠ 

(A ∨ A’) ∧ (A ∨ A’’) = En ∧ En = En.  

 

 

 
 

Fig. 8.3. Visualization of the query lattice. 
 

 Theorem 8.4 entitles us to define a query lattice as follows: 

Definition 8.1. The lattice of Theorem 8.4 is called a query lattice and is 
denoted by L(Q).  

En 

A A’ 

∅
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 Theorem 8.4 also tells us that query lattice L(Q) is not a Boolean alge-
bra. We have seen (Theorem 8.3) that obtaining the set ℜ(Q) = 
{D1,…,Di,…,Dm} of retrieved documents in response to a query Q means 
performing projection. Since the set {D1,…,Di,…,Dm} is a subset of the set 
D of all documents, i.e., ℜ(Q)∈℘(D), and the structure   (℘(D), ∩, ∪, ⊆) 
is a lattice, one may view retrieval as a lattice-lattice mapping. Thus, we 
introduce the following definition (which represents a lattice theoretical 
formulation of the VSR method): 

Definition 8.2. The VSR method is a mapping ρ from the lattice (non-
Boolean algebra) of queries, L(Q), to the lattice (Boolean algebra) of 
documents, ℘(D), based on projector P of the associated Hilbert space: 

ρ: L(Q) → ℘(D), 

°
¯

°
®
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  Submodular set functions are an important class of functions (Recski 
1989). They arise in many optimization applications (e.g., supply chain 
management), and they have a role similar to that played by con-
vex/concave functions in continuous optimization. As an analogue of the 
submodular set function, we introduce a submodular law for lattice-lattice 
functions as follows: 

Definition 8.3. A lattice-lattice function f: (L1, ∧1, ∨1) → (L2, ∧2, ∨2) is 
submodular if 

f(A ∨1 B) ∨2 f( A ∧1 B) ≤ f(A) ∨2 f(B), 

∀A and B ∈ L1, where ≤ denotes the order relation in lattice L2.  

 We now show that the retrieval has just this property, namely: 

Theorem 8.5. The retrieval function ρ is not submodular. 

 Proof. If we take Q, Q’ ∈ L(Q), both different from ∅ and En, we have  

f(A ∨1 B) ∨2 f(A ∧1 B) = 

ρ(Q ∨ Q’) ∪ ρ(Q ∧ Q’) = 

ρ(En) ∪ ρ(∅) = D, 
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but 

f(A) ∨2 f(B) = 

ρ(Q) ∪ ρ(Q’) ⊆ D.  

 
 

In words, Theorem 8.5 is telling us that retrieval in response to the or-
thogonal complements of two distinct queries may not yield the entire set of 
documents, albeit that these complements span the whole space (i.e., they 
generate any conceivable query). This result is a lattice theoretical formula-
tion of a situation that can be easily imagined if one takes, e.g., binary 
weights. For any two binary queries, q and q′, their orthogonal complements 
(i.e., vectors with which their scalar product is zero; in other words, all com-
binations of nonquery terms) may not necessarily retrieve every document.  

8.6 Discussion 

8.6.1 Query Lattice and Free Will 

Theorem 8.4 may also be interesting from a philosophical point of view as 
it shows that queries, in general, form a structure having a certain order, 
probably independently of users. This is not at all intuitive, as one would 
think that queries do not form any structure, for they originate randomly 
from users. Users do indeed have the freedom to formulate any query they 
want to. However, queries ‘organize’ themselves (through their comple-
ments) into a very particular structure, namely into a special kind of lattice. 
This is only seemingly a paradox: it originates from the fact that in the 
VSR model queries are members, by definition (or by assumption), of a 
very special space having a very sophisticated structure, i.e., linear space. 
Users do have the freedom to formulate their information needs, but these 
can only materialize in the form of queries within the properties and possi-
bilities of the linear space. 

8.6.2 Vector Space Retrieval? 

As we saw in Theorem 8.3, the vector-based retrieval mechanism may be 
interpreted as a self-adjoint linear operator (projection) in linear space. We 
should draw attention to one special aspect of this view that is concerned 
with the space itself. It is assumed that the space is a linear space. In other 
words, it is assumed that documents and queries, which belong to this 
space, are vectors. It is well known that a vector constitutes a very special 
type of quantity in that:  
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• It is a “compound” quantity; usually this is expressed by saying that it 
has a direction and a magnitude (as opposed to, e.g., a real number ex-
pressing the temperature of a body), 

• Vectors allow for operations to be performed on them (e.g., they can be 
added and the result is another vector of the same space); thus they form 
a particular and well-defined structure (called linear space), 

• Vectors do not depend on the basis of the space they belong to (the co-
ordinates of a vector are, in general, different in different bases; how-
ever, its magnitude and direction are unchanged), and so the scalar 
product is invariant with respect to the change of the basis of the space. 

 The question of whether the linear space is an adequate formal frame-
work for retrieval is not a trivial one. The linear space may only be an ade-
quate framework IF the documents and queries ARE vectors.  
 But are they vectors?  
 Wong and Raghavan (1984) showed that this case is not realistic; hence 
it is not realistic to assume, in general, that documents and queries ARE 
vectors. This may, of course, be assumed, but the linear space should per-
haps be interpreted rather as a metaphor than as a realistic formal frame-
work. This issue will be dealt with in detail in Chapter 9. 

8.6.3 Vector Space Retrieval and Quantum Mechanics 

As the Hilbert space and the Hilbert lattice formalism are also considered 
to be of basic importance in ‘orthodox’ quantum mechanics, we may not 
end this chapter without touching upon the connection between VSR and 
quantum mechanics, a connection brought about by this common formal-
ism. Van Rijsbergen (2004) wrote extensively on this topic, mainly from 
the point of view of what this connection might bring into IR. Here, we 
wish to comment on this connection from a different angle based on Birk-
hoff and von Neumann (1936), Jauch (1968), Piziak (1978), Rédei (1996), 
and Grinbaum (2005).  
 The propositional calculus of quantum mechanics is usually (but maybe 
misleadingly) referred to as quantum logic. This calculus is expressed in 
terms of “yes-no” experiments, also called propositions. These are empiri-
cally verifiable propositions carrying one bit of information (i.e., they al-
low only two outcomes: either “yes” or “no”). Quantum logic is concerned 
with the study of the formal structure of such propositions.  
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 It is commonly agreed that the empirically testable propositions of New-
tonian physics form a Boolean algebra (i.e., they have the same structure 
as the propositions of mathematical logic or the subsets of a set in set the-
ory). In other words, in Newtonian physics, the meet and join of two 
propositions is a proposition, and independent observers can always read 
off the measurements involved by the propositions and combine the results 
logically. 
 In quantum mechanics, however, not all propositions can be simultane-
ously measured to any accuracy (e.g., the momentum and the position of 
an electron), which means that not all measurements are always compati-
ble. Thus, distributivity does not always hold (this is “the weakest link”). 
Birkhoff and von Neumann suggested that distributivity be replaced by a 
weaker property, namely modularity. Thus, they proposed that the model 
to study the structure of propositions in quantum mechanics be an ortho-
complemented modular lattice (which they identified in the set of closed 
subspaces of the Hilbert space). 
 Subsequent research, however, has shown that the modular law is not 
tenable either, and the law that has since been accepted is orthomodularity. 
Thus, it is currently commonly accepted that the orthomodular lattice is an 
appropriate framework for the structure of “yes-no” experiments in quan-
tum mechanics. The projectors of an infinite-dimensional Hilbert space 
form just such a lattice. 
 As can be seen, the quest for an adequate formal structure of proposi-
tions in quantum mechanics has always involved modeling concerns. At 
this point, it is instructive to quote the creator of this formalism, John von 
Neumann, as we think that the modeling concerns encountered in quantum 
mechanics and vector space retrieval are very similar: 

I do not believe absolutely in Hilbert space anymore. After all 
… Hilbert space was obtained by generalising Euclidean 
space … Now we begin to believe that it is not the vectors 
which matter, but the lattice of all linear (closed) subspaces. 
Because: (1) The vectors ought to represent the physical 
states, … (2) and besides, the states are merely a derived no-
tion, the primitive (phenomenologically given) notion being 
the qualities which correspond to the linear closed subspaces. 
(Rédei 1996) 

 Definition 8.2 is in harmony with the above quotation, and may thus 
throw a new light onto the formal mechanism (“phenomenologically 
given” quality) of VSR in that it says that retrieval is, in essence, a map-
ping process between two specially ordered sets (as special formal frame-
works), namely between two lattices. While the Boolean algebra character 
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(relative to set union, intersection, and inclusion) of the document lattice 
℘(D) may be intuitive, the non-Boolean algebra character of the other lat-
tice, the query lattice L(Q), is not at all intuitive or obvious. This latter 
characteristic may be due to the fact that L(Q) is not being ‘organized’ by 
set inclusion, intersection, or union. In other words, the two lattices L(Q) 
and ℘(D), between which VSR acts as a very special (nonsubmodular) 
mapping, have different internal organizations, or orderings; they possess 
different underlying characters. 
 This situation may suggest that, symbolically speaking, answers in gen-
eral are “out there,” already given in a nicely organized and well-behaved 
formal structure, while information needs, as products of imagination and 
free will, materialize in the form of queries that organize themselves into 
an ordered formal structure that is not well behaved or symmetric in its 
underlying operations (nondistributive). 
 Further, comparing the Boolean algebra structure of logical propositions 
and the non-Boolean algebra of quantum mechanical propositions, von 
Neumann wrote: 

The main difference seems to be that whereas logicians have 
usually assumed that … negation was the one least able to 
withstand a critical analysis, the study of mechanics points to 
the distributive identity as the weakest link in the algebra of 
logic. … Our conclusion agrees perhaps more with those cri-
tiques of logic which find most objectionable the assumption 
that (a⊥ ∨ b = 1) � (a � b), or dually, (a ∧ b⊥ = 0) � (b ⇐ a); 
the assumption that to deduce an absurdity from the conjunc-
tion of a and ¬b justifies one in inferring that a implies b.” 
(Birkhoff and von Neumann 1936) 

 We note that (a⊥ ∨ b = 1) � (a � b) is equivalent to the distributive 
law. Based on these results as well as on Theorem 8.5, we may say that:  

• The underlying algebraic structure of mathematical logic and Newtonian 
mechanics is a Boolean algebra. 

• That of quantum mechanics is a non-Boolean (nonmodular) lattice. 
• That of VSR is a nonsubmodular mapping to a Boolean lattice from a 

non-Boolean lattice. 

 Perhaps the main difference between VSR and quantum mechanics lies 
not so much in their being characterized by modular and nonmodular 
lattices, respectively (although that is an important difference), as in the 
fact that retrieval has an added ingredient: a nonsubmodular mapping 
(between two different kind of lattices). The algebraic framework of 



8.7 Exercises      177 

retrieval is not one lattice, as in mechanics, but two lattices (having 
different types!) together with a special mapping between them. Thus, 
retrieval seems to have a much more sophisticated algebra than quantum 
mechanics. 

8.7 Exercises 

1. Implement a small VSR system using a collection of real documents 
of your choice. Using the similarity measures from Theorem 8.1 (but 
keeping the weighting scheme constant), compare the hit lists ob-
tained for real queries Qj (j = 1,…,p). 

2. Using a set D of real documents of your choice, experiment with an-
swering a real query q having the form q = a ¬b using Eqs. (8.1)–(8.3). 
Compare and comment the results. 

3. Implement a small VSR system using a collection of real documents 
of your choice. Let Qj (j = 1,…,p) be equivalent queries. Fixing a 
weighting scheme and a similarity measure, compare and discuss the 
hit lists for length-normalized as well as not normalized versions of 
the queries. 

4. Study the queries of the test collections ADI, CACM, CISI, 
MEDLINE, TREC, etc., from the point of view of their being equiva-
lent or not equivalent to one another. 

5. Let D denote a set of real documents (of your choice), and Qj  
(j = 1,…,p) denote pairwise different (real) queries of your choice. 
Construct the corresponding question lattice. 

 

 

 

 

 

 

 

 

 





9 Fuzzy Algebra-Based Retrieval 

Ask them what they think not about the  
truth of theorems but about their importance. 

(Évariste Galois) 
 
This chapter explains how fuzzy algebras can be used to provide new or 
novel retrieval methods. 
 After presenting the necessary elements of tensor algebra, we show that 
when the formal framework of information retrieval is a linear space of 
terms, the scalar product of the space is not necessarily a similarity meas-
urecontrary to the widely held belief.  

Then, we present the required notions and results from fuzzy set theory 
and  show that the set of all fuzzy sets in [0; 1] is a fuzzy algebra. Docu-
ments and queries are elements of this algebra. By introducing the princi-
ple of invariance, latent semantic indexing, vector space retrieval, and gen-
eralized vector space retrieval acquire a correct formal framework with 
which they are consistent (as opposed to the linear space as a framework).  

Based on the notion of fuzzy algebra, the fuzzy entropy method and the 
fuzzy probability method are discussed, together with experimental results 
as to their relevance effectiveness. 

The chapter ends with exercises and problems that are designed to en-
hance understanding of the mechanism and application possibilities of the 
concepts and methods presented. 
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9.1 Elements of Tensor Algebra 

Any vector v of n-dimensional Euclidean space En can be represented as a 
linear combination of basis vectors bi, i = 1,…,n: 

v = p1b1 + …+ pnbn = ¦
=

n

i
iip

1

b ,  p1,…,pn ∈ . (9.1)

As seen in Chapter 7, basis vectors bi need not be orthogonal or normal, 
i.e., they may form a general Cartesian basis of the space. Let v = [v1 … 
vn]

T denote a vector in the orthonormal basis e1,…,en. Further, let gi denote 
the matrix obtained from general basis vectors bi: 
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(9.2) 

Matrix gi is called a basis tensor (Simmonds 1982). As vectors b1,…,bn are 

basis vectors, rank(gi) = n. Hence, gi has an inverse, denoted by 1−
ig , that is 

called its reciprocal basis tensor and is denoted by gi, i.e., gi = gi
−1. Vector 

v (in an orthonormal basis) can also be written in the general basis gi. Let 
the coordinates of vector v in basis gi be p1,…,pn. Thus, recalling that the 
vector is invariant with respect to the change of basis, we have gi × [p1… 
pn]T = v, from which, by multiplying by gi

−1 on the left, we obtain  

gi
−1 × gi × [p1… pn]T = gi

−1 × v, [p1… pn]T = gi
−1 × v, (9.3) 

since gi
−1 × gi = I. This means that the reciprocal basis tensor can be used to 

compute the coordinates of any vector v in general basis gi: 

pi = giv = gi
−1v, (9.4) 

where pi = [p1… pn]T.  

 Given now two vectors u = [u1 u2 … un] T and v = [v1 v2 … vn]T in a gen-
eral basis gi, we compute the scalar product of vectors u and v:  
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(9.5) 

 The matrix of the scalar products of the basis vectors in Eq. (9.5) is 
called the metric tensor and is denoted by gij, and gij = gi

Tgj. Thus, a com-
pact expression for the scalar product is 

<u, v> = (ui)Tgijv
j. (9.6)

As vector magnitude and direction are invariant with respect to the choice 
of basis, the scalar product of two vectors is also invariant, i.e., the scalar 
product is the same regardless of the basis of the space. 

Example 9.1  

Consider the three-dimensional Euclidean space E3 with the orthonormal 
basis  

e1 = [1 0 0]T, e2 = [0 1 0]T, e3 = [0 0 1]T. 

Let u = [12 −6  9]T and v = [3 3 6]T be two vectors in this basis, and let  

gi = 

»
»
»
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º
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«

¬

ª
−−
−

112

211

101

 

be a new (general) basis. The coordinates ui and vj of vectors u and v, re-
spectively, in the new basis gi are  

ui =giu = [8.5 −4.5 −3.5]T, 

vj = gjv = [2 3 −1]T. 

Their scalar product (in an orthonormal basis) is  

<u, v> = [12 −6 9] × [3 3 6]T = 72. 
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The metric tensor of space E3 is  

gij = gi
Tgj = 

»
»
»

¼

º

«
«
«

¬

ª

−
−
613

121

316

. 

The scalar product of vectors u and v in the new basis gi is  

<u, v> = (ui)Tgijv
j = 72, 

i.e., it is the same (as expected).  

9.2 Similarity Measure and Scalar Product 

Let us now consider, in detail, the following example in the orthonormal 
Euclidean space of dimension two, E2. Its unit length and perpendicular 
basis vectors are e1 = (1, 0) and e2 = (0, 1). Let us assume that we have the 
following two terms: t1 = “computer” and t2 = “hardware,” which corre-
spond to the two basis vectors (or, equivalently, to coordinate axes) e1 and 
e2, respectively (Fig. 9.1). Consider a document D being indexed by the 
term “computer,” and having the weights vector D = (3, 0). Let a query Q 
be indexed by the term “hardware” and have the weights vector Q = (0, 2). 
The dot product <D, Q> is <D, Q> = 3 × 0 + 0 × 2 = 0, which means that 
document D is not retrieved in response to query Q. 

 In a thought-provoking theory paper, Wong and Raghavan (1984) argue 
that:  

The notion of vector in the vector space retrieval model 
merely refers to data structure… the scalar product is simply 
an operation defined on the data structure…The main point 
here is that the concept of a vector was not intended to be a 
logical or formal tool.  

They then show why the model conflicts with the mathematical notion of 
vector space. 
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Fig. 9.1. Document and query weight vectors. The document vector D(3,0) and 
query vector Q(0,2) are represented in the orthonormal basis (e1,e2). These basis 

vectors are perpendicular to each other and have unit lengths. The dot product 
<D,Q> is <D,Q> = 3 × 0 + 0 × 2 = 0 (which means that document D is not 

Q). 
 

  In order to present and illustrate the validity of the concerns with the 
mathematical modeling as well as of the mathematical subtleties involved, 
let us enlarge the example of Fig. 9.1 (Dominich and Kiezer 2007). From 
the user’s point of view, because hardware is part of a computer, he/she 
might be interested in seeing whether a document D also contains informa-
tion on hardware. In other words, he/she would not mind if document D 
would be returned in response to query Q. It is well known that the term 
independence assumption is not realistic. Terms may depend on each 
other, and they often do in practice, as in our example. It is also known 
that the independence assumption can be counterbalanced to a certain de-
gree in practice by, e.g., using thesauri. But can term dependence be cap-
tured and expressed in vector space? One possible answer is as follows. In-
stead of considering an orthonormal basis, let us consider a general basis 
(Fig. 9.2). 

t2=hardware 

t1=computer 

e2=(0,1) 

e1=(1,0) 

D=(3,0)

Q=(0,2) 

retrieved in response to query 
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 The basis vectors of a general basis need not be perpendicular to each 
other and need not have unit lengths. In our example (Fig. 9.2) the term 
“hardware” is narrower in meaning than the term “computer.” If orthogo-
nal basis vectors are used to express the fact that two terms are independ-
ent, then a narrower relationship can be expressed by taking an angle 
smaller than 90° (the exact value of this angle can be the subject of ex-
perimentation, but it is not important for the purpose of this example). 
Thus, let us consider the following two oblique basis vectors: let the basis 
vector g1 corresponding to term t1 be b1 = (2, 0.5) and the basis vector b2 
representing term t2 be b2 = (0.2, 1). The coordinates Di of the document 
vector D in the new (i.e., the general) basis are computed as follows: 

t2=hardware 

t1=computer 

e2=(0,1) 

e1=(1,0)
D=(3,0)

Q=(0,2) 

b1=(2,0.5) 

b2=(0.2,1) 
1.579 

-.789 

2.105 

-.211 

Fig. 9.2. Document and query weight vectors. The document vector D(3,0) and 
query vector Q(0;2) are represented in the orthonormal basis (e1,e2). They are 

also represented in the general basis (g1,g2); these basis vectors are not  
perpendicular to each other, and do not have unit lengths. The coordinates of the 
document vector in the general basis will be D(1.579,–0.789), whereas those of 
the query vector will be Q(–0.211,2.105). The value of the expression <D,Q> 
viewed as an inner product between document D and query Q is always zero,  

regardless of the basis. But the value of the expression <D,Q> viewed literally as 
an algebraic expression is not zero. 
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Di = gi
−1× D = [b1 b2]

−1 × D = 
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(9.7)

whereas the coordinates Qi (in general basis) of query vector Q are 

Qi = gi
−1× Q = [b1 b2]

−1× Q = 

1
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= [−0.211 2.105]. 

 

(9.8)

Now, if dot product is interpretedas is usual in VSRas being the ex-
pression of similarity between document and query, then the dot product 
<D, Q> of document vector D and query vector Q is to be computed rela-
tive to the new, general basis gi, i.e.,  

<D, Q> = (Di)T × gij × Qj = 

[1.579 −0.789] × »
¼

º
«
¬

ª
04.19.0

9.025.4
 × [−0.211 2.105]T = 0. 

 
 

(9.9)

It can be seen that the dot product of document vector D and query vector Q 
is also equal to zero in the new basis (i.e., the document is not retrieved in 
the general basis either). This should not be a surprise because, as is well 
known, the scalar product is invariant with respect to the change of basis. 
Thus, under the inner product interpretation of similarity (i.e., if the similar-
ity measure is interpreted as being the dot product between two vectors), the 
no-hit case remains valid when using the general basis as well!  
 The change of basis represents a point of view from which the properties 
of documents and queries are judged. If the document is conceived as being 
a vector, i.e., it is the same in any basis (equivalently, its meaning, informa-
tion content, or properties remain the same in any basis), then the inner 
product is also invariant, and hence so is the similarity measure.  
 But then, what is the point of taking a general basis? The orthonormal 
basis is as good any other basis. 
 Let us now assume or accept that the meaning or information content of 
a document and query do depend on the point of view, i.e., on the basis of 
the space. Then, the properties of documents and queries may be found to 
be different in different bases. This is equivalent to not interpreting the 
similarity measure as expressing an inner product, but rather considering it 
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a numerical measure of how much the document and query share. Thus, 
the similarity measure, which formally looked like the algebraic expres-
sion of an inner product, is literally interpreted as a mere algebraic expres-
sion (or computational construct) for a measure of how much the docu-
ment and query share and not as the expression of an inner product.  
 In this new interpretation, in our example in Fig. 9.2, we obtain the fol-
lowing value for the similarity between document and query: 1.579 × 
(−0.211) + (−0.789) × (2.105) = −1.994, which is different from zero. 
(Subjectively, a numerical measure of similarity should be a positive num-
ber, although this is irrelevant from a formal mathematical, e.g., ranking, 
point of view). Thus, document D is being returned in response to Q, as in-
tended by: 

• Using a general basis to express term dependence.  
• Not interpreting similarity as being an inner product.  

 The Euclidean space as a mathematical/formal framework for VSR is 
very illustrative and intuitive. But as we have seen, there is no actual and 
necessary connection between the mathematical concepts used (vector, 
vector space, scalar product) and the concepts of IR (document, query, 
similarity). In other words, there is a discrepancy (or inconsistency) 
between the theoretical (mathematical) model and the effective retrieval 
algorithm applied in practice. They are not consistent with on another: the 
algorithm does not follow from the model, and, conversely, the model is 
not a formal framework for the algorithm.  
 Sections 9.3 and 9.4 present and discuss the latent semantic indexing 
(LSI) and general vector space retrieval (GVSR) methods,  which exhibit 
the same inconsistency described above. 

9.3 Latent Semantic Indexing Retrieval 

9.3.1 Eigenvalue, Eigenvector 

Let An,n be a regular matrix (i.e., det(A) ≠ 0). The solutions (roots) of the 
following n-degree polynomial equation (called a characteristic equation; 
Kurtz 1991), 

|A − λI| = 0 (9.10)

are called eigenvalues (characteristic or latent roots) of A (I denotes the 
unity matrix). 
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Example 9.2 

Let  
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be a regular matrix, det(A) = |A| = −6 ≠ 0. The characteristic equation is 
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 i.e., (1 − λ)(4 − λ) − 5⋅2 = 0, which becomes λ2 − 5λ − 6 = 0. The eigen-
values of A are λ1 = 6 and λ2 = −1.  

 Let λi, i = 1,...,n, be the eigenvalues of matrix An,n. The vectors (column 
matrices) Xi satisfying the simultaneous system of linear equations 

(A − λiI)Xi = 0 (9.11)

are called eigenvectors (characteristic or latent vectors) of matrix A. The 
eigenvectors X1,…,Xn corresponding to distinct eigenvalues λ1,…,λn are 
linearly independent of each other, and matrix S = [X1…Xn] has the prop-
erty S−1AS = D = diag(λ1,…,λn), where diag(λ1,…,λn) denotes a diagonal 
matrix (called the canonical form) of eigenvalues.  

Note: Eigenvalues are useful in many computations, e.g., in computing the 
powers of matrix A. From the relation S−1AS = D we obtain that A = SDS−1 
(after multiplying on the left by S and on the right by S−1): 

SS−1ASS−1 = SDS−1, and SS−1= SS−1 = I. 

The square of A, i.e., A2, can now be written as  

A2 = AA = (SDS−1)(SDS−1) = SD(S−1S)DS−1 = SDDS−1 = SD2S−1. 

In general, 

An = SDnS−1. 

Thus, we get a “cost effective” way to compute An: S and S−1 have to be 
computed once, and Dn can be calculated in just a few steps using  
recursion. 
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9.3.2 Singular Value Decomposition 

Given a matrix Am,n, m ≥ n (albeit that this condition is not necessary; see 
the second paragraph of Section, 9.3.3, for a justification in IR), and let 
rank(A) = r. The singular value decomposition (SVD) of Am,n is  

A = USVT, (9.12)

where UTU = VTV = In,n (i.e., matrices U and V are orthogonal), and D is 
the diagonal matrix S = diag(s1,...,sn), such that si > 0, i =1,...,r, and sj = 0, j 
> r. The columns of U are called the left singular vectors, and those of V 
the right singular vectors of A. The diagonal elements of S are the non-
negative square roots of the n eigenvalues of AAT, and are referred to as the 
singular values of A. (In order to obtain the SVD of a matrix, mathematical 
software or numerical algorithms can be used.) 

9.3.3 Latent Semantic Indexing 

In principle, LSI derives “artificial concepts” (Deerwester et al. 1990, 
Berry and Browne 1999) to represent common-meaning components of 
documents; these are represented by weight vectors indicating a level of 
association between the documents and these concepts. It is claimed that 
this representation is computationally economical because the dimension 
of document vectors can be reduced to a number that is less than the num-
ber of terms (the number of terms being equal to the dimension of the term 
space in which documents are originally represented), and further that LSI 
better captures common meaning in documents. 
 Let D = {D1,...,Dj,...,Dm} be a set of elements called documents and T = 
{t1,...,ti,...,tn} a set of elements called terms. In general, in practical applica-
tions there are more documents than terms, i.e., m ≥ n (if n ≥ m, matrices U 
and V, see below, will be interchanged). Let W = (wji)m×n be a weights ma-
trix, where wji denotes the weight of term ti in document Dj. (See Chapter 4 
for details on technological aspects on obtaining W.) Let the rank of W be 
r, i.e., rank(W) = r, and the SVD of W be  

W = USVT. (9.13)

The SVD (9.13) of W may be viewed as a breakdown of the original rela-
tionships, represented by W, between documents and terms. In other 
words, a set of artificial concepts is obtained that corresponds to a factor 
value k = 2, 3,...,r (k is the number of selected columns, from left to right, 
from U, and of selected rows, from top to bottom, from S). Thus,  

Wk = UkSkV
T (9.14)
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is an approximation of the original matrix W with the weights of artificial 
concepts (which form a term space of lower dimension). Of course, if k = 
r, then Wk = W. Matrix Wk is used for retrieval purposes in that a query q is 
matched against Wk. Retrieval is performed by computing the value of 
similarity (e.g., cosine, dot product) between vectors qk and Wk, e.g., Wk q. 

Example 9.3 

Consider the following documents: 

D1 = Bayes’s principle: The principle that, in estimating a parameter, one 
should initially assume that each possible value has equal probability (a 
uniform prior distribution). 

D2 = Bayesian conditionalization: This is a mathematical procedure with 
which we revise a probability function after receiving new evidence. Let 
us say that we have probability function P(.) and that through observa-
tion I come to learn that E. If we obey this rule, our new probability 
function, Q(.) should be such that for all X, Q(X) = P(X|E) we are then 
said to have “conditionalized on E.” 

D3 = Bayesian decision theory: A mathematical theory of decision-making 
that presumes utility and probability functions, and according to which 
the act to be chosen is the Bayes act, i.e. the one with highest subjective 
expected utility. If one had unlimited time and calculating power with 
which to make every decision, this procedure would be the best way to 
make any decision. 

D4 = Bayesian epistemology: A philosophical theory that holds that the 
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to 
revise this probability is given by Bayesian conditionalization or similar 
procedures. A Bayesian epistemologist would use probability to define 
concepts such as epistemic status, support, or explanatory power and 
explore the relationships among them. 

Let the terms be  

t1 = Bayes’s principle, t2 = probability, 
t3 = Bayesian conditionalization, t4 = decision-making. 

Let the frequency term-document matrix W be  
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The rank of W is equal to 3, and the singular value decomposition of W is 
W = USVT, where 
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Taking the factor value k = 2, we find the approximation of Wk [Eq. 
(9.14)]) to be 
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Now consider query q consisting of two terms: q = probability, decision-
making. The corresponding query matrix is 

[0 1 1 0], 

which is to be compared—in terms of a similarity measure—with Wk. For 
example, Wk⋅q = [1 4 1 4]T, where q = [0 1 1 0]T.  
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 Retrieval in LSI uses a vector-space-based approach (or framework), 
just like the traditional VSR method. Originally, documents are repre-
sented, using matrix W, as vectors in the term space whose dimension is n. 
Using the SVD of W, we say that documents are represented in a vector 
space of artificial concepts, whose dimension is k (k ≤ r ≤ n). The expres-
sion Wq for similarity is interpreted as having the meaning of a scalar 
product. If this is the case, Wq = Wkq (because documents and queries re-
main the same vectors even if they are viewed as vectors of a subspace of 
the original space). Equality occurs when W = Wk, i.e., when k =  
r = rank(W). Otherwise, the expression Wkq may not be viewed as having 
the meaning of scalar product. 

9.4 Generalized Vector Space Retrieval 

Wong and Raghavan (1984) showed why the vector space model of IR 
conflicts with the mathematical notion of a vector space. Further on, they 
rightly observed that the usual similarity functions (dot product, Dice coef-
ficient, and Jaccard coefficient) can also be written in a general basis (not 
just in the orthonormal basis). They interpret the metric tensor G, which 
they refer to as the correlation matrix, of the space as expressing correla-
tions between terms ti, i = 1,…,n, viewed as basis vectors. G can be used as 
a model of term dependences: G = (<ti, tj>)n×n, where ti denotes the basis 
vector corresponding to term ti. 
 Subsequently, Wong et al. (1985) proposed an automatic (and very 
computationally demanding) method to build correlation matrix G. The 
value of similarity S between a document and a query was computed as the 
matrix product between: 

• Query vector q expressed in general basis.  
• Metric tensor, i.e., G.  
• Document vector d in orthonormal basis.  

Thus, S = qT⋅G⋅d. The method was referred to as the generalized vector 
space model (GVSM). If d had been expressed in a general basis, then S 

would have been the scalar product of q and d in that basis (and would 

have been the same as that in an orthonormal basis). Thus, the expression 

for S seems to be a mere computational construct rather than the expres-

sion of a scalar product in a general basis. 



192      9 Fuzzy Algebra-Based Retrieval 

9.5 Principle of Invariance 

In this section, a principle is proposed that is designed to deal with the in-
consistencies and anomalies discussed in Sections 9.2–9.4, which stem 
from taking linear space as a formal framework for retrieval and conceiv-
ing similarity as a scalar product. 
 The concepts of position, translation, rotation, velocity, acceleration, 
force, etc. are primarily physical concepts—not just abstract or mathemati-
cal notions (Feynman et al. 1964). They reflect certain aspects of reality 
and thus possess underlying properties such that the physical laws are the 
same in any coordinate system regardless of the basis of the space. For ex-
ample, the position of a physical object in space does not depend on the 
angle from which we look at it or on the choice of the coordinate axes (i.e., 
on the choice of the basis of the space). The position of a physical object is 
invariant with respect to the basis of the space; the same holds true for ve-
locity, force, etc. Such entities are referred to as vectors, for short. In other 
words, vectors are entities that have an “identity” (namely magnitude and 
direction), and this identity is preserved in any system or basis; i.e., it is 
invariant with respect to the change of the basis of the space. An immedi-
atebut very important!consequence of this is that the quantity called 
the scalar product of two vectors is also preserved; i.e., it is invariant with 
respect to the choice of the basis of the space. In other words, apart from 
vectors, the scalar product is another quantity that is basis-invariant. The 
mathematical apparatus developed to deal correctly with the physical op-
erations involved (e.g., the addition of velocities) is referred to as vector 
algebra or tensor calculus; see, e.g., Lánczos (1970) and Simmonds (1982). 
 As it is well known, one of the basic concepts of IR is that of a docu-
ment, i.e., that of objects or entities to be searched. (Their physical appear-
ance, such as the language in which they are written or strings of bits on a 
computer disk, etc., is now irrelevant.) The notion of document is not 
merely a mathematical or abstract concept. Just as in physics, it is used to 
reflect certain aspects of reality. But unlike in physics, a document need 
not have an identity (meaning, content, property) that is basis-invariant, 
and a user basically operates with the identity. This may depend on the 
point of view or on the judgment of the user (mathematically, on the basis 
of the space). As a consequence, and as we have already seen, even if the 
space is assumed to be, or is related to, a linear space, the similarity meas-
ure need not necessarily be viewed as being the expression of an inner 
product. This is rather an option or hypothesis that we may or may not ac-
cept, or accept to a certain extent. Thus, it is reasonable to introduce the 
following principle: 
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Principle of Invariance (PI). In information retrieval, the identities 
of entities are preserved with probability π.  

The case when π = 1 means that the identity of entities (documents, que-
ries) remains the same, regardless of any point of view or interpretation. If, 
however, π < 1, the identity of entities does depend on a point of view or 
interpretation. 

 Based on PI, we may state the following: 

• In the classical VSR method, π = 1, the notion of linear space is used as 
framework, documents and queries are vectors, and the similarity is the 
scalar product of the vector space. 

• In the LSI IR method, π < 1, the notion of linear space is used as 
framework, documents and queries are vectors belonging to different 
spaces having different dimensions (depending on the k factor), and the 
similarity is the scalar product of the vector space. 

• In the GVSR method, π = 1, the notion of linear space is used as a 
framework and documents and queries are vectors, but the similarity is 
not the scalar product of the vector space. 

 In what follows, new or novel retrieval methods are proposed for the 
case when π < 1 that do not use linear spaces as frameworks. 

9.6 Elements of Fuzzy Set Theory 

9.6.1 Fuzzy Set 

Let X be a finite set. A fuzzy set Ã in X is a set of ordered pairs (Zimmer-
man 1996), 

Ã = {(x, µÃ(x)) | x ∈ X}, (9.15)

where µ: X → [0; a] ⊂ , a > 0, is called a membership function (or degree 
of compatibility or truth function), meaning the degree to which x belongs 
to Ã. Elements with a zero degree membership are normally not listed. 
 The fuzzy set Ã in X for which µÃ(x) = 0, ∀x ∈ X is denoted by o. The 
fuzzy set Ã in X for which µÃ(x) = a, ∀x ∈ X is denoted by l.  

Example 9.4 

Let X = {1, 10, 15, 18, 24, 40, 66, 80, 100} be a set denoting possible ages 
for humans. Then, the fuzzy set Ã = “ages considered as young” could be 
the set {(10, 1), (15, 1), (18, 1), (24, 1), (40, 0.7)}.  



194      9 Fuzzy Algebra-Based Retrieval 

 The fuzzy set Ã = “real numbers much larger than 10” could be the 
fuzzy set Ã = {(x, µÃ(x)) | x ∈ X}, where 

µÃ(x) = 
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A graphical representation of the fuzzy set Ã = “real numbers much larger 
than 10” is illustrated in Fig. 9.3. 
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Fig. 9.3. Graphical representation of the fuzzy set Ã = “real numbers  
much larger than 10.” 

 If the membership function can only take on two values, 0 and a, the 
fuzzy set becomes a (classical or crisp) set: an element either belongs to 
the set (the membership function is equal to a) or not (the membership 
function is equal to 0). If the membership function takes on values in the 
interval [0; 1], i.e., a = 1, the fuzzy set is called a normalized fuzzy set. In 
the rest of this chapter, we consider term weights as values of some mem-
bership function. Any membership function can be normalized (e.g., by 
division by a). While it is true that not all weighting schemes result in 
weights between 0 and 1 (e.g., the inverse document frequency weighting 
scheme may yield weights greater than 1), within document weights can 
always be normalized (e.g., by division by the largest weight) so as to be 
between 0 and 1 (while keeping the relative importance of terms within the 
document). Thus, in what follows we are considering normalized fuzzy 
sets.  
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9.6.2 Fuzzy Intersection 

Given two fuzzy sets Ã1 and Ã2 in X with membership functions µ1 and µ2, 

respectively, the membership function µ of fuzzy intersection Ã = Ã1  Ã2 
can be defined in several ways. The usual definitions are 

Standard: µ(x) = min (µ1(x), µ2(x)), ∀x ∈ X, 

Algebraic product: µ(x) = µ1(x)µ2(x), ∀x ∈ X. 

 
(9.16)

9.6.3 Fuzzy Union 

Given two fuzzy sets Ã1 and Ã2 in X with membership functions µ1 and µ2, 

respectively, the membership function µ of the fuzzy union Ã = Ã1  Ã2 
can be defined in several ways. The usual definitions are 

Standard: µ(x) = max (µ1(x), µ2(x)), ∀x ∈ X, 

Algebraic product: µ(x) = µ1(x) + µ2(x) − µ1(x)µ2(x), ∀x ∈ X. 

 
(9.17)

Example 9.5 

Let Ã1 = {(10, 0.5), (15, 1), (18, 1), (24, 1), (40, 0.4)} and Ã2 = {(24, 0.1), 

(40, 0.3), (70, 0.9)} be two fuzzy sets. Their standard fuzzy union is Ã1  
Ã2 = {(10, 0.5), (15, 1), (18, 1), (24, 1), (40, 0.4), (70, 0.9)}, and their stan-

dard fuzzy intersection is Ã1  Ã2 = {(24, 0.1), (40, 0.3)}.  

9.6.4 Fuzzy Complement 

The membership function µ¢Ã(x) of fuzzy complement ¢Ã of fuzzy set Ã in 
X is defined as  

µ¢Ã(x) = 1 − µÃ(x) , ∀x ∈ X. (9.18)

9.6.5 Fuzzy Subset 

Given two fuzzy sets Ã1 and Ã2 in X with membership functions µ1 and µ2, 
respectively, fuzzy sets Ã1 and Ã2 are equal to each other, i.e., Ã1 = Ã2, if 
µ1(x) = µ2(x), ∀x ∈ X. If µ1(x) ≤ µ2(x) ∀x ∈ X, we say that fuzzy set Ã1 is a 

fuzzy subset of fuzzy set Ã2, i.e., Ã1  Ã2. 
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9.7 Retrieval Using Linear Space 

Consider a set  

T = {t1, t2,…,ti,…,tn} (9.19) 

of terms, and let  

D = {D1, D2, …,Dj,…,Dm} (9.20)

denote a set of documents indexed by T. As is usual in IR, let wij denote the 
weight of term ti in document Dj. Let Q denote a query and qi the weight of 
term ti in Q, i = 1,…,n. We do not make any assumption as to whether 
documents and queries are elements of a linear space or not. They simply 
form a collection. Each document is represented by a sequence of numeric 
weights: Dj is represented by the sequence of weights w1j,…,wij,…,wnj. 
Likewise Q is represented by the sequence q1,…,qi,…,qn. In the traditional 
VSR model, the expression ¦ = ni iji

wq..1 is conceived as the scalar product of 

the space of terms whose vectors represent the documents. As we have al-
ready seen, this view leads to inconsistencies, so let us drop it and accept 
that π < 1. Thus, documents and queries may have multiple identities (they 
are not vectors), and the expression ¦ = ni iji

wq..1 is interpreted simply as a 

numerical measure of similarity between document Dj and query Q. We 
may assume, without restricting generality, that 0 ≤ wij ≤ 1. Under these 
conditions, any document Dj (and any query Q) may be identified with 
(described by) a fuzzy set Ãj: 

Ãj = {(ti, µj(ti)) | ti ∈ T, i ∈ {1,…,n}, µj(ti) = wij}. (9.21)

Let T = [0; 1]T denote the set of all possible fuzzy sets in T. Then, in gen-
eral, any conceivable document or query is an element of T. Similarity is 
defined in the following way: 
 

Definition 9.1. Function σ: T × T →  defined as 

σ(Ãj, Ãk) = ¦
=

n

i
ikij tt

1

)()( µµ  

is called a similarity measure.  

 We now use a linear space, but not as a framework, but rather as a tool 
or operator to design and propose a retrieval method that is based on T as a 
formal framework.  
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 It is possible to relate any document Ãj = {(ti, µj(ti))} to an n-
dimensional real linear space L (having basis b1,…,bn): 

• The values µj(t1),…,µj(tn) of the membership function can be used to 
form a vector vj of space L as the linear combination vj = µj(t1)⋅b1 +…+ 
µj(tn)⋅bn. 

• Thus, every document Ãj may be viewed as corresponding (not being 
identical) to vector vj ∈ L with coordinates µj(ti), i.e., vj = (µj(t1), 
…,µj(tn)). 

 (Documents are related to vectors, but this does not mean that they be-
come vectors.) The following retrieval method can be formulated in a 
natural way: 
 

1. Let T = {t1,...,ti,...,tn} denote a set of terms. 

2. Let Ãj = {(ti, µj(ti) | ti ∈ T, i = 1,…,n } denote documents as 
elements of T = [0; 1]T, j = 1,...,m. 

3. Let L be a real linear space. 

4. Let any document Ãj correspond to vector vj of space L such 
that µj(ti), i = 1,…,n, corresponds to the ith coordinate of vec-
tor vj, i.e., vj = [µj(t1), …,µj(tn)]. 

5. Let Q = {(ti, µQ(ti) | ti ∈ T, i = 1,…,n } denote a query, Q ∈ T, 
and let q = (µQ(t1), …,µQ(tn)) ∈ L denote the corresponding 
query vector. 

6. The documents retrieved in response to query Q are obtained 
using Definition 9.1. 

 
 
Steps 2–5 can be expanded in the following way. 
 

(a) Let TDn×m = (fij)n×m denote the frequency term-document matrix, i.e., 
fij denotes the number of times term ti occurs in document Dj.  

(b) Let Q = (f1,…, fi,…, fn) denote a query, where fi is the number of 
times term ti occurs in query Q.  

(c) Compute, using some weighting scheme, a term-document weight 
matrix Wn×m = (dj)m = (wij)n×m for documents wij = µj(ti), and one for query 
q = (q1, …,qi, …,qn).  

(d) Let us consider a general basis gi of Euclidean space En: 
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gi = (b1…bn) = 
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A general basis gi can be obtained as follows (Silva et al. 2004): 
Correlations are determined among terms, and the corresponding 
axes are rotated in space. Thus, “proximity” between basis vectors 
is related to the degree of correlation (dependence) between the 
respective terms. The closer the vectors are, the greater the de-
pendence. A confidence index cij is computed between any two 
terms ti and tj: : 
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   (e) The coordinates bik, k = 1,…,n, of basis vector bi are given by 
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   where θij = 90⋅ (1 − cij). 
  f) Compute the coordinates D’j = (w’1j,…,w’ij,…, w’nj) of every  
    document Dj in a general basis as follows:  

D’j = gi
−1⋅dj. 

 

  g) Similarly, the coordinates q’ = (q’1,…,q’i,…,q’n) of the query in a 
     general basis are 

q’ = gi
−1⋅q.  

  h) The similarity σj between document Dj and query Q is  
     computed using Definition 9.1: 

σj = ¦
=

⋅
n

i
iji wq

1

'' . 
 

 
 The retrieval method was tested by Silva et al. (2004) on the test collec-
tions CACM, CISI, and TREC-3. Relevance effectiveness was higher than 
that of the traditional VSR method by 7, 14, and 16%, respectively. 
 We note that the correlation cij between terms may be computed in other 
ways as well, e.g., with the EMIM (expected mutual information measure) 
method (van Rijsbergen 1979, Savoy and Desbois 1991): 
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Term Correlation Using the EMIM Method 
 

1. Let t1,…,ti,…,tj,…,tn be terms. For every pair of terms ti and tj perform 
the following steps: 

2. Determine Sij: the number of documents indexed by both ti and tj. 

3. Determine Sj: the number of documents indexed by tj but not by ti. 

4. Determine Si: the number of documents indexed by ti but not by tj. 

5. Determine S: the number of documents not indexed by either  ti or tj. 

6. Compute the EMIM Iij (= cij) for ti and tj as follows: 
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 The EMIM values can be used to construct a tree of term dependencies 
known as the maximum spanning tree of the graph whose nodes are the 
terms and weighted edges that correspond to the respective EMIM values 
(i.e., Iij is the weight of the edge between the nodes corresponding to terms 
ti and tj). The tree can be constructed using the following method: 
 

1. Sort descendingly the EMIM values to obtain a sequence I1,…,IN. 

2. Initialize the tree with the nodes as well as the edge connecting them 
corresponding to I1. 

 3. Take the next value Ij from the sequence, and ‘grow’ the tree with the 
nodes and edge corresponding to Ij if this does not yield a cycle. If this 
does yield a cycle, repeat step 3. 

 

9.8 Fuzzy Algebra-Based Retrieval Methods 

In this section, we propose new retrieval methods based on the notions of 
algebra and measure, which stem from the following observations. The 

similarity measure σ(Ãi, Ãj) = ¦ ∈Tt ji tt )()( µµ  of Definition 9.1 may be 

viewed as the fuzzy cardinality of the fuzzy intersection of Ãi and Ãj based 

on an algebraic product, i.e., Ãi  Ãj = {(t, µ(t)) | µ(t) = µi(t)µj(t)}. (The 



200      9 Fuzzy Algebra-Based Retrieval 

cardinality of a fuzzy set is equal to the sum of the values of its 
membership function.) Further, if the fuzzy sets Ãi and Ãj are disjoint, the 
cardinality of their fuzzy union (based on the algebraic product) is equal to 
the sum of their cardinalities. This propertycalled additivityis 
characteristic of the mathematical notion of measure. These observations 
suggest looking for or analyzing other mathematical measures (other than 
fuzzy cardinality) that may then be used as similarity functions.  
 In the rest of this chapter, the above ideas are presented and discussed in 
detail. Two retrieval methods are proposed using new measures as simi-
larities. Experiments on the relevance effectiveness offered by these meas-
ures are also reported. 

9.8.1 Fuzzy Jordan Measure 

The notion of mathematical measure is an abstraction of length, area, vol-
ume, etc. The mathematical theory of measure, known as measure theory, 

 First, we introduce the notion of algebra as an abstract space (Kiyosi 
2000): 

Definition 9.2. Let X denote a set. A collection C of sets from ℘(X), C ⊆ 
℘(X), is called an algebra (equivalently clan, field, or finitely additive 
class) if the following conditions hold: 

a) X ∈ C. 
b) ∀ A, B ∈ C  �  A ∪ B ∈ C. 
c) ∀ A ∈ C    �  CXA ∈ C .  

From Definition 9.2 it follows that:  

• ∅ ∈ C because CXX = ∅. 
• The union of a finite number of sets Ai (i=1,...,m) from C belongs to C , 

i.e., A1 ∪...∪ Am ∈ C. 

The notion of measure is defined over an algebra as a set function that 
‘measures’ a set (Kiyosi 2000): 

Definition 9.3. A function  : C →  is called a Jordan measure over an 
algebra C if the following conditions hold: 

offers a theoretical and formal basis for integration theory and probability 
theory. In words, a measure is a nonnegative function of subsets of a set 
such that the measure of the union of a sequence of mutually disjoint sets 
is equal to the sum of the measures of the sets. Formally, a concept of 
measure can be defined in the following way.  
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1.  (A) ≥ 0, ∀A ∈ C (nonnegativity). 

2.  (∅) = 0. 
3. ∀A, B ∈C, A ∩ B ∈ ∅ �  (A ∪ B) =  (A) +  (B) (additivity).  

As an analogue of the notion of algebra (Definition 9.2), we introduce its 
fuzzy counterpart, i.e., a generalization to arbitrary values of the interval 
[0; 1]: 

Definition 9.4. Let X denote a set. A collection C of fuzzy sets in [0; 1]X is 
called a fuzzy algebra (equivalently fuzzy clan, fuzzy field, or fuzzy finitely 
additive class) if the following conditions hold: 

• I ∈ C. 

• ∀ Ã1, Ã2 ∈ C  �  Ã1  Ã2 ∈ C. 
• ∀ Ã ∈ C     �  ¢Ã ∈ C .  

 From Definition 9.4 it follows that o ∈ C because o = ¢I. We now de-
fine our fuzzy algebra as a formal theoretical framework for retrieval: Let 
T denote a set of terms: T = {t1,…,ti,…,tn} and T = [0; 1]T denote the set of 
all fuzzy sets in T. Then, T may be taken as a general framework: 

Theorem 9.1. T is a fuzzy algebra with respect to an algebraic product. 

 Proof. We have to show that the conditions of Definition 9.4 hold. Ob-
viously, we have I ∈ T. Let us now consider two arbitrary fuzzy sets Ãi, Ãj 

∈ T. Their algebraic product union is Ãi  Ãj = {(t, µ(t)) | µ(t) = µi(t) + µj(t) 

− µi(t)µj(t)}. Because µi(t) + µj(t) − µi(t)µj(t) ∈ [0; 1], the fuzzy union Ãi  
Ãj belongs to T. Further, for any fuzzy set Ã ∈ T the fuzzy complement ¢Ã 
= {(t, 1 − µ(t))} belongs to T because 1 − µ(x) ∈ [0; 1].  

 As an analogue of the Jordan measure (Definition 9.3), we introduce the 
notion of a fuzzy Jordan measure on a fuzzy algebra:  

Definition 9.5. A fuzzy Jordan measure on a fuzzy algebra C is a function 

m : C →  such that:  
• m (Ã) ≥ 0, ∀Ã ∈ C (nonnegativity). 
• m (o) = 0. 

• Ãi,Ãj∈C, Ãi  Ãj = o � m (Ãi  Ãj) = m (Ãi) + m (Ãj) (additivity).  

 Let us now define a concept for ‘how many elements’ there are in a 
fuzzy set (Zimmerman 1996). 
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Definition 9.6. The fuzzy cardinality κ of a fuzzy set Ãi in T is the sum of 
the values of its membership function:  

κ (Ãi) =¦
=

n

j
ji t

1

)(µ .  

We now prove that fuzzy cardinality is a fuzzy Jordan measure on the 
fuzzy algebra T. 

Theorem 9.2. Fuzzy cardinality is a fuzzy Jordan measure on the fuzzy al-
gebra T. 

 Proof. We obviously have that κ (Ãi) ≥ 0 for every Ãi from T, and that 
κ(o) = 0. Further, we have to show that the cardinality of two disjoint 
fuzzy sets is equal to the sum of their cardinalities. Let 
 

Ãi  Ãj = {(t, µ(t)) | µ(t) = µi(t)µj(t)} = ∅ ⇔ 

⇔ µi(t)µj(t) = 0. 

Hence,  

κ (Ãi  Ãj) = 

= κ [{(t, µ(t)) | µ(t) = µi(t) + µj(t) − µi(t)µj(t)}] = 

= κ [{(t, µ(t)) | µ(t) = µi(t) + µj(t)}] = 

= =+=+ ¦¦¦
∈∈∈ Tt

j
Tt

i
Tt

ji tttt )()())()(( µµµµ  

= κ (Ãi) + κ (Ãj).  

 Thus, the following method for designing new or novel similarity meas-
ures for retrieval may be given:  

• Look for/design new fuzzy Jordan measures. 
• Perform experiments to measure the relevance effectiveness of a re-

trieval system whose similarity is based on the thus defined fuzzy Jor-
dan measure. 

• Depending on the results obtained, reject, accept, or fine-tune the simi-
larity function. 

 In the next three sections, the following retrieval methods will be pro-
posed and tested (Dominich and Kiezer 2007): 
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• Fuzzy entropy retrieval method. 
• Fuzzy probability retrieval method. 

9.8.2 Fuzzy Entropy Retrieval Method 

Let us first introduce the concept of fuzzy entropy (Zimmerman 1996): 

Definition 9.7. The fuzzy entropy of a fuzzy set Ã = {(x, µ(x)) | ∀x ∈ X} in 

a finite set X is given by: H(Ã) = ¦
∈

⋅−
Xx

xx )(log)( µµ .  

 We now show that fuzzy entropy is a measure in our framework of 
documents and queries. 

Theorem 9.3. Fuzzy entropy H is a fuzzy Jordan measure on the fuzzy al-
gebra T. 
 Proof. We know from mathematical analysis that )log(lim

0
yy

y→
 = 0. 

From this, we have that H(o) = 0. Obviously, H(o) ≥ 0. Further, we have 
to show that the entropy of two disjoint fuzzy sets is equal to the sum of 

their fuzzy entropies. Let Ãi and Ãj denote two disjoint fuzzy sets, i.e., Ãi  
Ãj = {(t, µ(t)) | µ(t) = µi(t)µj(t), ∀t ∈ T} = ∅ ⇔ µi(t)µj(t) = 0 (in other 
words it cannot happen that both µi(t) and µj(t) are different from zero; i.e., 
either both are zero or one of them is zero and the other is not zero). We 
can write that 

H(Ãi  Ãj) = 

= H[{(t, µ(t)) | µ(t) = µi(t) + µi(t) − µi(t)µj(t)}] = 

¦
∈

−+×−+−
Tt

jijijiji tttttttt ))()()()(log())()()()(( µµµµµµµµ  

= ¦
∈

+×+−
Tt

jiji tttt ))()(log())()(( µµµµ = 

= ¦ ¦
∈ ∈

=+−+−
Tt Tt

jijjii tttttt ))()(log()())()(log()( µµµµµµ  

= H(Ãi) + H(Ãj).  

 The following retrieval method, based on fuzzy entropy as similarity, 
can now be formulated:  
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Fuzzy Entropy Retrieval Method 
 

1. Given terms T = {t1,…,tn}, and documents Dj, j = 1,…,m.  

2. Let Wn×m = (wij)n×m denote a term-document matrix, where wij is the 
weight of term ti in document Dj (see Chapter 4 for technological 
aspects). 

3. Given a query Q. The query weights are q1,…,qi,…,qn, where qi 
denotes the weight of term ti in Q.  

4. The similarity σj between document Dj (conceived as a fuzzy set) 
and query Q (conceived as a fuzzy set) is computed as the fuzzy 
entropy of their intersection, i.e., H (Dj  Q): 

¦
=

⋅⋅⋅−=
n

i
ijiijij wqwq

1

)log(σ . 

 

9.8.3 Fuzzy Probability Retrieval Method 

Let p(ti) denote a frequency-based probability of term ti ∈ T, i = 1, …,n. 
The fuzzy probability P(Ãj) of a fuzzy set Ãj = {(ti, µj(ti)) | ti ∈ T, i = 
1,…,n} in T is defined as (Zimmerman 1996)  

P(Ãj) =¦
=

⋅
n

i
iij tpt

1

)()(µ . 
 

(9.22) 

We now show that fuzzy probability is a measure in our framework of 
documents and queries. 

Theorem 9.4. Fuzzy probability P is a fuzzy Jordan measure on the fuzzy 
algebra T. 

 Proof. Obviously, P(Ãj) is nonnegative for any fuzzy set. The fuzzy 
probability of the empty fuzzy set is equal to zero. This is immediately 

P({(ti, 0) | ∀ti ∈ T}) ¦
=

⋅=
n

i
itp

1

)(0 = 0. 

Further, the fuzzy probability of two disjoint fuzzy sets is equal to the sum 
of their fuzzy probabilities. We have 

Ãi  Ãj = {(t, µ(t)) |t ∈ T, µ(t) = µi(t)µj(t)} = o ⇔ µi(t)µj(t) = 0. 

Hence, 

P(Ãi  Ãj) = 
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= P[{(t, µ(t)) | t ∈ T, µ(t) = µi(t) + µj(t) − µi(t)µj(t)}] = 

= P[{(t, µ(t)) | t ∈ T, µ(t) = µi(t) + µj(t)}] = 

= ¦
=

+
n

i
iijii tptt

1

)())()(( µµ =¦ ¦
= =

=+
n

i

n

i
iijiii tpttpt

1 1

)()()()( µµ   

P(Ãi) + P(Ãj).  

 In the language model (Ponte and Croft 1998), the conditional probabil-
ity P(Q|D) of a document D generating a query Q is considered and used 
as a similarity measure σ: 

σ = 
)(

)(
)|(

DP

DQP
DQP

∩
= . 

 
(9.23) 

 There are several ways to fuzzify (or relax) Eq. (9.23)as a starting 
pointdepending on how set intersection is defined and on what measures 
are used in the numerator and denominator. We consider a form in which 
the numerator is the fuzzy cardinality of the fuzzy intersection (based on 
an algebraic product) between query Q and document D (both viewed as 
fuzzy sets), whereas the denominator is the fuzzy probability of a docu-
ment as a fuzzy set:  

¦

¦

=

=

⋅

⋅
= n

i
iij

n

i
iji

tpw

wq

1

1

)(
σ . 

 
 

(9.24) 

 
 The following retrieval method may now be formulated: 

 

Fuzzy-Probability-Based Retrieval Method 

1. Given terms T = {t1,…,tn} and documents Dj, j = 1,…,m.  

2. Let TDn×m = (fij)n×m denote the term-document frequency matrix, 
where fij is the number of occurrences of term ti in document Dj. 

3. The frequency-based probability p(ti) of any term ti may be calcu-
lated as follows: 

¦ ¦
¦
= =

== n

i

m

j ij

n

i ij
i

f

f
tp

1 1

1)( . 
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4. Let Wn×m = (wij)n×m denote a term-document weight matrix, where 
wij is the weight of term ti in document Dj. 

5. Given a query Q. The query weights are q1,…,qi,…,qn, where qi 
denotes the weight of term ti in Q.  

6. The similarity σj between a document Dj and query Q is as follows: 

¦

¦

=

=

⋅

⋅
= n

i
iij

n

i
iji

tpw

wq

1

1

)(
σ .  

9.8.4 Experimental Results 

Experiments were performed to estimate the relevance effectiveness of the 
following retrieval methods: 

• Fuzzy entropy method. 
• Fuzzy probability method. 

 The  standard test collections ADI, MED, TIME, and CRAN were used. 
These collections were subjected to the usual Porter stemming and stoplist-
ing (using computer programs written in the C++ language). Table 9.1 
lists the statistics for these test collections.  
 

Table 9.1. Statistics of the Test Collections Used in Experiments 

 For each test collection, the normalized term frequency weighting 
scheme was used. The classical VSR method (i.e., in an orthonormal basis) 
was also implemented and used as a baseline. All three retrieval methods 
as well as the evaluation of retrieval effectiveness were performed using 
computer programs written in MathCAD. The standard 11-point precision-
recall values were computed for all the test collections and for all docu-
ments and queries. Table 9.2 shows the mean average precision values.  

 

Test 
collection. 

Number of.  
documents 
(d) 

Number 
of. 
queries 
(q) 

Number 
of. 
terms 
(t) 

Avg. 
number 
(t/d) 

Std. 
dev 
(t/d) 

Avg. 
number. 
(t/q) 

Std. 
dev 
(t/q) 

ADI 82 35 791 21 7 6 2 
MED 1033 30 7744 45 20 9 5 
TIME 423 83 13479 193 140 8 3 
CRAN 1402 225 4009 49 21 8 3 
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Table 9.2. Mean Average Precision Obtained on Standard Test Collections  
(E: entropy method; H: probability method;  

VSM: traditional vector space method, used as baseline) 

Test 
Collection 

 
VSM

 

 
E 

E 
over 
VSM 

 
H 

H 
over 
VSM 

ADI 0.33 0.33 0 % 0.35 +6 %
MED 0.44 0.48 +9 % 0.50 +14 %
TIME 0.52 0.56 +8 % 0.58 +12 %
CRAN 0.18 0.20 +11 % 0.20 +11 %
   Avg. = 

+7% 
 Avg. = 

+11% 

 Table 9.3 compares the results obtained in experiments with those ob-
tained by Deerwester et al. (1990) using LSI with normalized term fre-
quency. 

Table 9.3. Comparison of Retrieval Effectiveness  
Obtained with the Methods E, H, and LSI (Baseline) 

Test 
collection

 
LSI 

 

E 
over 
LSI 

H 
over LSI 

ADI 0.30 +10 % +17 %
MED 0.48 0 % +4 %
TIME 0.32 +75 % +81 %
CRAN 0.25 −25 % −25 %
  Avg =+15 % Avg = +19 % 

9.9 Discussion  

9.9.1 More on Measures 

 A measure  is monotonic, i.e., if A ⊆ B, and A, B and B \ A belong to 
the algebra, then A ∩ (B \ A) = ∅, and so  (A ∪ (B \ A) =  (B) =  (A) + 

Some authors (Doob 1994) define the notion of fuzzy measure as an ana-
logue of the notion of measure over a σ-algebra (Borel field), which is 
completely additive, i.e., closed under countable unions [condition (b) of 
Definition 9.2 holds for countableeven infinitely countablemany sets). 
In this sense, T is completely additive with respect to standard union, but it 
is not, in general, completely additive with respect to algebraic product un-

ion (because the series ¦∞

=1
)(

j j tµ does not necessarily converge).  



208      9 Fuzzy Algebra-Based Retrieval 

 (B \ A), from which it follows that  (A) ≤  (B). Hence, the 
monotonicity property of a measure follows from the additivity property. 
Typically, a fuzzy measure is defined as a monotonic function with respect 

to fuzzy inclusion [i.e., from Ãi  Ãj it follows that m (Ãi) ≤ m (Ãj)], with-
out requiring that it also be additive (monotonicity does not necessarily 
imply additivity). The reason for requiring monotonicity rather than addi-
tivity can be illustrated by a simple example: the degree to which a house 
is/looks white is not the mere sum of the color of its entrance, windows, 
walls, and roof. We note that there are several types of measures used in 
the theory of fuzzy sets, e.g., the Sugeno measure, the Klement measure, 
the belief measure, the possibility measure, and the necessity measure 
(Zimmerman 1996, Wang and Klir 1991).  
 In this book, the notion of the Jordan measure (which is finitely addi-
tive) and its fuzzy counterpart are being used, rather than the notions of 
measure that are infinitely additive and fuzzy measure that is monotonic. 
The monotonicity of a Jordan fuzzy measure is debatable. If, e.g., the dif-
ference Ã2 \ Ã1, where Ã1  Ã2, is defined as µ2(x) − µ1(x), then the intersec-
tion Ã1  (Ã2 \ Ã1) ≠ o (as one would normally expect). Thus, just as a Jordan 
measure is not a measure (in the modern and widely accepted mathemati-
cal sense today), the Jordan fuzzy measure is not a fuzzy measure (in the 
usual and widely accepted sense). Despite these concerns and mathemati-
cally arguable aspects, the validity of the use of such a concept of measure 
in this book is supported by the very good experimental results obtained 
with retrieval methods that are based on it. 

9.9.2 More on Algebra, Entropy, and Probability 

 T is a fuzzy algebra also with respect to standard fuzzy union. In this 
book, we are using algebraic union instead of standard union, owing to the 
fact that similarity functions are based on the sum of products rather than 
maxima or minima. 
 Relative to Theorem 9.3, one may object that condition H(o) = 0 only 
holds in the limit rather than exactly (the logarithm is not defined at point 
0). This is obviously true. However, two reasons for accepting the theo-
rem, at least in principle, can be formulated. One is that the falsity of the 
condition H(o) = 0 only means that H is not a continuous function at point 
0, but this does not invalidate the behavior or tendency toward zero of H, 
which may be accepted from a practical point of view in retrieval (the 
closer the value of the membership function to zero, the closer the entropy 
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to zero). The other reason is that good experimental results (relevance ef-
fectiveness) were obtained using fuzzy entropy as similarity.  
 Fuzzy probability can, of course, be used as a similarity function on its 
own, but the experimental results as to its relevance effectiveness are 
weak. This is the reason that it is not used directly as similarity; rather it is 
used to build a better similarity function on it. The case in which the nu-
merator in Eq. (9.24) is also a fuzzy probability was also tested, but rele-
vance effectiveness was low. Further, the basic equation for the similarity 
function used in the probability retrieval model, i.e., P(D|Q) = P(D∩Q) / 
P(Q), was also fuzzified and tested. The results were also weak. Equation 
(9.24) gave the best results, which is why we propose only this version 
here. 

9.9.3 Information Retrieval and Integration Theory 

This section is based on Dominich and Kiezer (2007) and is basically in-
tended as a preparation Section 9.9.4. The notion of a definite integral can 
be defined in a general way using the concepts of σ-algebra, measure µ on 
it, and a simple function s. A simple function s on a set X is defined as  

s: X → {a1,…,an} ⊂ [0; ). (9.25) 

Function s can also be written as  

s(x) =¦ =

n

i Ai i
a

1
χ , (9.26) 

where Ai = {x ∈ X| s(x) = ai} and 
iAχ = 1 if x ∈ Ai, while 

iAχ = 0 if x ∉ Ai. 

Now let E be an element of a σ-algebra. Then, the integral of function s 
over E is defined as  

³ ¦ =
∩=

E

n

i ii EAasd
1

)(µµ . (9.27) 

 
 In a retrieval system, the retrieved documents Di in response to a query 
Q are presented to the user rank ordered, i.e., sorted descendingly on their 
relevance score based on the values of a similarity function (as some 
measure): µ(oi ∩ q). In other words, there is a ranking function (method, 
procedure) r that rank orders documents D1,…,Di,…,Dn. Each document 
receives its own rank, which is different from any other rank. The ranking 
function r means computing relevance scores and then sorting documents 
in descending order according to their relevance scores. In procedural 
terms, the ranking function r can be expressed in pseudocode as follows: 
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  r() 

FOR i = 1 TO n compute similarity µ(oi∩q) 
SORT descendingly (D1,…,Dn) 
FOR i = 1 TO n PRINT(i, Di). 

 
 Formally, ranking function r maps each document to the set of positive 
integers {1, 2,…,n}, i.e., r: O → {1, 2,…,n}. Thus, function r may be con-
ceived as being a simple function. It is then possible to construct the sum  

R = ¦ =
∩n

i ii QDDr
1

)()( µ . (9.28) 

Sum R may be referred to as the integral of the ranking function r over 
query Q, i.e., 

R = ¦ =
∩n

i ii QDDr
1

)()( µ  = ³Q rdµ . 
 

(9.29) 

In terms of integration theory, a retrieval system is computing the integral 
of its own ranking function r over query Q.  
 Dominich and Kiezer (2007) give an example from the ADI test collec-
tion for the first query: Q1 (using normalized frequency weights, dot prod-
uct similarity measure). The first five elements of the ranked hit list are the 
documents with numbers 69, 47, 17, 46, 71 (the corresponding similarity 
values are 0.186, 0.16, 0.158, 0.155, 0.126). Thus, R = 1.726.   
 As any automatic retrieval system is completely defined by giving the 
documents, the query, and the retrieval algorithm (including ranking), the 
retrieval system is completely defined by giving its integral: 

³Q rdµ . (9.30) 

Different retrieval methods are obtained (e.g., vector space, fuzzy entropy, 
fuzzy probability) depending on how measure µ is defined (κ, H, P, re-
spectively).  

9.9.4 Principle of Invariance and String Theory 

This section is designed, above all, to be thought provoking. 
String theory1 is a formal construct in theoretical physics designed to 

unifying quantum theory and general relativity. It is based on replacing the 

                                                      
1  B. Schellekens: Introduction to String Theory. http://www.nikhef.nl/~t58/lectures.html (4 Nov 2007). 
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basic principle of pointlike particles, which underlies our intuition for 
quantum theory and general relativity, with the assumption that the ele-
mentary building blocks of the universe are not particles but strings, which 
are conceived as tiny line segments (“strings,” “pieces of rope”) of energy. 
There is no elementary constituent smaller than strings. Strings can be at 
most 10−15 meters in length; otherwise they could be seen in particle accel-
erators. But just because they are so small, they look like points.  

When strings move in (Minkowski) space-time they sweep out surfaces 
(ribbons or cylinders). Such a surface S can be described by choosing a 
time coordinate (parameter) on it. The evolution in time (motion, excita-
tion) of a string from its initial to its final state is given mathematically by 
a surface integral with the general form  

³³
S

LdS , (9.31) 

where L denotes the Lagrangian (expressing kinetic and potential energy, 
which is usually taken to be L = −T; T denotes string tension). Strings may 
have many excitation modes that look like particles and are perceived as 
particles. On the other hand, the principle of invariance (Section 9.5) pro-
poses that entities can change their identities: they may actually be con-
ceived as being different from different points of view. This suggests the 
following parallel between information retrieval and string theory: 

 
String theory Information retrieval 

String Document 
Excitation modes  

(perceived as particles) 
Identities (perceived as meanings, information, 

representations) 
Mathematical description of evolution (in time): 

³³
S

LdS  

Mathematical description of evolution (in rele-
vance): 

 ³Q rdµ  

 

 If the parallel given above is indeed possible or acceptable, then we may 
ask whether there is any basic principle or concept according to which 
identities are what we normally call the meaning or information content or 
representation of documents. It may be that what we normally call a 
document is/should be a counterpart of a string, as an abstract notion. A 
further option for a counterpart of the notion of a string would perhaps be 
the abstract concept of “infon” as a basic building block of information as 
a further physical notion next to energy or mass. 
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9.10 Exercises and Problems 

1. Write down the details of the proof that the scalar product <u, v> of 
the vectors u and v in the general basis gi is equal to (ui)Tgijv

j. 

2. Given the following term-document matrix (whose columns represent 
the coordinates of documents in the orthonormal basis of space E4):  

W = 

»
»
»
»

¼

º

«
«
«
«

¬

ª

1110

0102

0711

5032

, 

write the term-document matrix in the following orthogonal basis: 

 

.

2

0

0

0

,

0

3

0

0

,

0

0

1

0

,

0

0

0

2

»
»
»
»

¼

º

«
«
«
«

¬

ª

−»
»
»
»

¼

º

«
«
«
«

¬

ª

»
»
»
»

¼

º

«
«
«
«

¬

ª

»
»
»
»

¼

º

«
«
«
«

¬

ª

 

 

3. Compute the scalar product between the documents of Exercise 2 in 
both the orthonormal basis and the orthogonal basis. 

4. Given the fuzzy sets Ã1 = “real numbers close to 10” = {(x, µ1(x)) |  x 
∈ X}, where  

µ1(x) = 
2)10(1

1

−+ x
, 

and Ã2 = “real numbers much larger than 10” = {(x, µ2(x)) | x ∈ X}, 
where  

µ2(x) = 

2)10(
1

1

1

−
+

x

, 

calculate the standard and algebraic product fuzzy union and fuzzy 
intersection of Ã1 and Ã2. 
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5. Implement the VSR algorithm on a standard test collection and meas-
ure its relevance effectiveness. 

6. Implement the fuzzy entropy retrieval method on a collection of your 
choice and measure its relevance effectiveness. 

7. Implement the fuzzy probability retrieval method on a collection of 
your choice, and measure its relevance effectiveness. 

8.  Given the matrix 

A

1

0

1

1

0

4

1

1

3

2

0

0

5

2

1

0

§̈
¨
¨

©̈

·̧
¸
¸

¹̧

:=

’ 

use the canonical form to compute A3. 

9.  Give other ways to compute the probability p(ti) in the fuzzy prob-
ability retrieval method. Measure the relevance effectiveness of your 
method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





10 Probabilistic Retrieval 

The logic of the world is comprised in computing probabilities. 
(James Clerk Maxwell) 

 
After reviewing the necessary notions and results from probability theory 
(probability measure, event space, relative frequency, independent events, 
conditional probability, Bayes’s theorem), probabilistic retrieval methods 
are presented (probability ranking principle, Bayes’s decision rule, nonbi-
nary method, language model) together with examples. 

After discussing various formal frameworks for probabilistic retrieval, 
we propose a framework using lattices (distributive lattice of logical impli-
cations). 

The notion of a Bayesian network is defined as a special kind of dis-
tributive lattice, and the inference retrieval method is described as an ap-
plication of Bayesian networks. 

Exercises and problems are provided to enhance understanding of the 
concepts as well as the application possibilities of the different methods. 
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10.1 Elements of Probability Theory 

The notion of probability is usually related to the intuition of chance or de-
gree of uncertainty, which develops at a relatively early age. However, a 
precise and formal definition of probability, universally accepted, seems to 
be a delusion. 
 A widely accepted mathematical definition of the notion of probability 
is the following. Let ℑ = ℘(Ω) denote a Boolean algebra (i.e., a comple-
mented and distributive lattice), and let its elements be called events. A 
probability measure (in short, probability) P is defined as (Kolmogorov 
1956):  

• P: ℑ → [0, 1] ⊂ . 
• P(Ω) = 1. 
• A ∩ B = ∅ � P(A ∪ B) = P(A) + P(B) A, B ∈ ℑ. 

 The triple (Ω, ℑ, P) is referred to as an event space (Kurtz 1991). In 
practice, the probability of an event is computed based on frequencies 
(number of occurrences). Let us assume that a trial has n possible equally 
likely outcomes. If any one of r outcomes produces an event E, the relative 
frequency frel(E) of E is calculated as frel(E) = r/n.  
 In probability theory, it is demonstrated that the following relationship 
between the probability P(E) of an event E and its relative frequency frel(E) 
holds: 

+∞→n
lim frel (E) = P(E). (10.1) 

In other words, relationship (10.1) makes it possible to interpret probabil-
ity as being the relative frequency in the long run. A consequence of Eq. 
(10.1) is that, in practice, the probability of an event can be established 
empirically by performing a large number of trials and equating relative 
frequency with probability. 

Example 10.1 

What is the probability that when tossing a die, the outcome is odd and 
greater than 2? If the die is fair (i.e., all sides are equiprobable), this event 
is satisfied by two (r = 2) of the six possible outcomes (n = 6), namely 3 
and 5. Therefore, the probability that this event will occur is equal to 
2/6 = 1/3.  
 We note that there are other ways to compute the probability of an event 
(equivalently, the degree of uncertainty we associate with it). Thus, in the 
so-called frequentist view, the probability of an event is the proportion of 
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times we would expect the event to occur if the experiment were repeated 
many times. In the subjectivist view, the probability of an event is one’s 
degree of belief in the occurrence of that event. 
 Two events A and B are said to be independent if  

P(A ∩ B) = P(A) × P(B). (10.2) 

In words, two trials are said to be independent if the outcome of one trial 
does not influence the outcome of the other.  

Example 10.2 

Tossing a die twice means two independent trials. The outcomes of two 
flips of a fair coin are independent events.  

 Two events that have no outcomes in common are called mutually ex-
clusive (i.e., it is impossible for both to occur in the same experiment). For 
example, in die tossing, the events “I toss a 2” and “I toss a 1” are mutu-
ally exclusive.  
 The union of two events means that, in a trial, at least one of them oc-
curs. It is an interesting result that for any two events, say, A and B, we 
have P(A ∪ B) = P(A) + P(B) − P(A ∩ B). Then, if A and B are mutually 
exclusive, P(A ∪ B) = P(A) + P(B).  
 Let P(A) > 0. Then, the quantity denoted by P(B|A) and defined as 

P(B|A) = 
)(

)(

AP

ABP
 

 
(10.3) 

is called the conditional probability of event B relative to event A. Alterna-
tively, assume that there are two trials, the second dependent on the first. The 
probability P(AB) = P(A ∩ B) that the first trial will yield an event A and the 
second trial will yield an event B (which thus is dependent on A) is the product 
of their respective probabilities, where the probability P(B|A) of B is calculated 
on the premise that A has occurred [the probability of A is P(A)]: 

P(AB) = P(A) × P(B|A) (10.4) 

 We note briefly that, fairly counterintuitively, the notion of dependence 
(independence) is not transitive. Transitivity of events would mean that if 
event A depends on event B, and event B depends on event C, then event A 
depends on event C.  
 Let A1, A2,..., An be a mutually disjoint and complete system of events, 
i.e., 

A1 ∪ A2 ∪ ... ∪ An = ℑ,  Ai ∩ Aj = ∅,  i, j = 1, 2,...,n, i ≠ j, (10.5) 
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and B an arbitrary event. If event B occurs under any Ai with probability 
P(B|Ai), then the probability P(B) of event B is given by the total probabil-
ity equation: 

P(B) = P(B|A1)P(A1) + … + P(B|An)P(An). (10.6) 

The conditional (posterior) probability P(Ai|B), given that event B has 
happened is calculated using Bayes’s theorem (or Bayes’s equation): 

P(Ai|B) = 

¦
=

n

i
ii

ii

APABP

APABP

1

)()|(

)()|(
, 

 

(10.7) 

where P(Ai) is called the prior probability. 

10.2 Principles of Probabilistic Retrieval 

Probabilistic retrieval is based on whether a probability of relevance (rela-
tive to a query) of a document is higher than that of irrelevance (and ex-
ceeds a threshold value). 
 Maron and Kuhns (1960) argued that since a retrieval system cannot 
predict with certainty which document is relevant, we should deal with 
probabilities. The relevance of a term to a document was defined as the 
probability of user satisfaction if that term would be used as a query. Rele-
vance was taken as a dichotomous variable, i.e., the user either is satisfied 
or is not satisfied with a retrieved document. Then, it seems obvious that 
documents that are most likely to satisfy the information need should be 
presented first. This has become known as the probability ranking princi-
ple (Cooper 1971, Robertson 1977): 

If the retrieved documents (in response to a query) are ranked de-
creasingly on their probability of relevance, then the effectiveness of 
the retrieval system will be the best that is obtainable. 

Note: However, counterexamples can be given (Robertson 1977).  

 Indeed, the probability ranking principle yields an optimal solution un-
der certain conditions. Let A and B denote two events. By Bayes’s theorem 
(10.7), we have P(A|B)P(B) = P(B|A)P(A), and P(¬A|B)P(B) = 
P(B|¬A)P(¬A). Thus, where ¬A is the negated event A, we obtain  

)()|(

)()|(

)|(

)|(

APABP

APABP

BAP

BAP

¬¬
=

¬
. (10.8) 
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Using the logit logistic (log-odds) transformation, defined as (Robertson 
1977): 

logit P(X) = 
)(

)(

)(1

)(
log

XP

XP

XP

XP

¬
=

−
, 

 
(10.9) 

yields 

logit P(A|B) = 
)|(

)|(
log

ABP

ABP

¬
 + logit P(A). (10.10)

Let us define the following probabilities:  

P(document retrieved | document relevant), 
P(document retrieved | document irrelevant), 
P(document relevant | document retrieved). 

Let A = “document relevant,” and B = “document retrieved.” As seen in 
Chapter 4, recall is a measure of relevance effectiveness. It is defined as 
the proportion of retrieved documents out of those relevant. Thus, we may 
view recall as an estimate of P(B|A). Using Eq. (10.10), we obtain 

P(B|A) = P(B|¬A) × exp( logit P(A|B) − logit P(A) ), (10.11)

from which it follows that recall is monotonic with respect to P(A|B), 
which is the probability of relevance of a retrieved document.  
 Now let:  

• D be a set of documents.  
• Q be a query.  

• α ∈  a cut-off value.  
• P(R|(Q, d)) and P(I|(Q, d)) the probabilities that document d ∈ D is 

relevant (R) and irrelevant (I), respectively, to query Q.  

The retrieved documents in response to query Q belong to the set ℜ(Q) de-
fined as (van Rijsbergen 1979):  

ℜ(Q) = {d | P(R|(Q, d)) ≥ P(I|(Q, d)), P(R|(Q, d)) > α}. (10.12)

The elements of set ℜ(Q) are shown to the user ranked in descending order 
on their P(R|(Q, d)) values (on the basis of the probability ranking princi-
ple). The inequality 

P(R|(Q, d)) ≥ P(I|(Q, d)) (10.13)

is referred to as Bayes’s decision rule.  
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 The rest of this chapter includes a description of probabilistic retrieval 
methods and a proposal for a lattice theoretical framework for probabilistic 
retrieval. 

10.3 Probabilistic Retrieval Method 

In what follows, we describe a probabilistic retrieval method (Yu et al. 
1989).  
 Given a set D of elements called documents: 

D = {D1,...,Di,...,Dn}, (10.14)

a set T of elements called terms: 

T = {t1,...,tk,...,tm}, (10.15)

and a set Fi of nonnegative integers: 

Fi = {fi1,..., fik,..., fim}, (10.16)

where fik represents the number of occurrences of term tk in document Di, a 
weights vector 

wi = (wi1,...,wik,....,wim), (10.17)

where wik is the weight (significance) of term tk in document Di, is calcu-
lated as follows: 
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where P(fik | R) and P(fik | I) denote the probability that a relevant or irrele-
vant, respectively, document Di has fik occurrences of term tk. 

P(R|Di) = 
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Q is to be understood next to D, or simultaneous with D. However, it may 
be omitted as it is a constant (during its own retrieval).  

 It is assumed that (optimal retrieval hypothesis) an optimal way to re-
trieve documents is in descending order of relevance, i.e., for any two 
documents Di and Dj we have P(R|Di) ≥ P(R|Dj), where P( | ) denotes con-
ditional probability (i.e., that a document is relevant). By Bayes’s theorem 
[Eq. (10.7)], we have 
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 Thus, Bayes’s decision rule [Eq. (10.13)] becomes (P(Di) ≠ 0):  

  P(R|Di) ≥ P(I|Di)    ⇔ 

  P(Di|R)P(R) ≥ P(Di|I)P(I)  ⇔ 
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P(R) and P(I) denote the probability that a randomly chosen document is 
relevant and irrelevant, respectively. They may be viewed as being con-
stant for a given collection D of documents. By making use of the term in-
dependence assumption (i.e., any term in a document occurs independently 
of every other term), event Di|R means the simultaneous occurrence of the 
independent events fik|R for every term in Di. Thus, we may write that 
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In a similar way, we have 
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Thus, Bayes’s decision rule becomes: 
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If we take the logarithm of both sides and use Eq. (10.18), we get 
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Hence, the optimal retrieval hypothesis can be rewritten as 

P(R|Di) ≥ P(R|Dj)  ⇔  ¦≥¦
==

m

k
jk

m

k
ik

ww
11

. (10.23)

 Let Q = (q1,…,qk,…,qm) denote a query (qk are binary weights), i.e., qk = 
1 if tk occurs in Q, and qk = 0 otherwise. Using the dot product similarity 
measure, we find that the similarity σi between query Q and document Di 
is equal to 

σi = ¦=¦
==
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ik
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11

, (10.24)

which means that the optimal retrieval hypothesis is rewritten as  

P(R|Di) ≥ P(R|Dj)  ⇔  ¦≥¦
==

m

k
jk

m

k
ik

ww
11

 ⇔  σi ≥ σj. (10.25)

 The following method can be used to apply this model in practice:  

Probabilistic Retrieval Method 
 

1. Let q denote a query. 
2. Let query q be the one-element set T [given in (10.15)], |T| = m.  
3. In order for a document Di to be retrieved in response to q, the fol-

lowing condition can be used: 

¦
=

m

k
ikf

1

≥ K, 

  where K is a threshold. 
4. The retrieved documents are then presented to the user, who 

judges which are relevant and which are not. (This action is called 
relevance feedback).  

5. From the retrieved and relevant documents, the following table is 
constructed first for each term tk in T: 

Tk = 0 1 . . . j . . 
. 

 b0 b1 . . . bj . . 
. 

where Tk is a variable associated with term tk and takes on the val-
ues 0, 1,..., j,... (which can be interpreted as the number of occur-
rences), and bj is the number of relevant and retrieved documents 
having j occurrences of term tk. The probabilities P(fik|R) are calcu-
lated as: 
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P(fik|R) = 
...10 ++ bb

b j
, 

for fik = j. The same method is used for the irrelevant documents. 
6. Calculate weight vectors wi for documents, assign weight 1 to 

each query term, and use the optimal retrieval hypothesis to re-
trieve and rank order documents.  

 
Note: This method gives better results if probabilities are (re-)computed 
using accumulated statistics for many queries.  

Example 10.3 

Let the set of documents be D = {D1, D2, D3}, where: 

D1 = Bayes’s principle: The principle that in estimating a parameter, one 
should initially assume that each possible value has equal probability (a 
uniform prior distribution). 

D2 = Bayesian decision theory: A mathematical theory of decision-making 
that presumes utility and probability functions, and according to which 
the act to be chosen is the Bayes’s act, i.e., the one with highest subjec-
tive expected utility. If one had unlimited time and calculating power 
with which to make every decision, this procedure would be the best 
way to make any decision. 

D3 = Bayesian epistemology: A philosophical theory that holds that the 
epistemic status of a proposition (i.e., how well proven or well estab-
lished it is) is best measured by a probability and that the proper way to 
revise this probability is given by Bayesian conditionalization or simi-
lar procedures. A Bayesian epistemologist would use probability to de-
fine concepts such as epistemic status, support, or explanatory power 
and explore the relationships among them. 

Let query q be q = probability. T = {t1 = probability}, k = 1. In order to 
retrieve an initial set of documents, fi1, i = 1, 2, 3, are calculated first:  

f11 = 1, f21 = 1, f31 = 3. 

Taking K = 1, we retrieve documents D1, D2, and D3:  

Σk f1k = 1, Σk f2k = 1, Σk f3k = 3 (≥ K). 

In a relevance feedback, D3 is judged as relevant, whereas D1 and D2 are 
irrelevant. The probabilities of relevance are  

P(fi1=1 | R) = 0,  P(fi1=3 | R) = 1, 

and those of irrelevance are  
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P(fi1=1 | I) = 1,  P(fi1=3 | I) = 0. 

The weight vectors for documents are  

w1 = −∞,  w2 = −∞,  w3 = ∞. 

The query vector is wq = (1). In the new retrieved rank order, D3 precedes 
D2 and D1.   

10.4 Language Model Retrieval Method 

Instead of computing (estimating) the conditional probability P(R|(D, Q)) 
of relevance R of a given document D with respect to query Q, Croft and 
Ponte (1998) and Song and Croft (1999) suggested a method for estimating 
the conditional probability P(Q|D) of a query Q given document D, known 
as the language model of information retrieval. 
 Let Q denote a query consisting of (or represented as) a sequence of 
terms: t1,…,ti,…,tm. The occurrence of each term ti is conceived as being 
an independent event, i.e., each term is independent of any other term 
(term-independence assumption). Let P(ti|D) denote the probability of term 
ti in document D. Then,  
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Probability P(ti|D) can be estimated as 
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where fiD denotes the number of occurrences of term ti in document D and 
ND the total number of term occurrences in D. 
 It is known from practice that, in general, many terms may be missing in a 
document, which means that their probabilities would be zero. If such a term 
were used in Q, then probability P(ti|D) would vanish, which is not desirable 
if another query term is present in D. A solution to such a situation would be 
to assign some probability to missing terms as well. The method used to per-
form this assignment is referred to as smoothing. The number fiD of occur-
rences of term ti in document D is adjusted to a value f’

iD according to the 
following equation (known as the Good-Turing estimate): 

f ’iD = 
)(

)(
)1( 1

iDf

iDf

iD NE

NE
f ++ , 

 
(10.28)
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where Nx is the number of terms with frequency x in D, and E(.) denotes 
expected value. Then, probability P(ti|D) is defined as 
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Thus, the probability of a missing term will be set to E(N1) / [E(N0)ND]. 
Since the length and content of a document is fixed (in practice), the ex-
pected value E(Nx) is almost impossible to obtain. However, one way to 
get around this problem is to estimate (or approximate) E(Nx) with Nx, al-
beit that this may create problems. For example, a term t with highest fre-
quency h will have probability zero because Nh+1 is zero. One solution is to 
use curve fitting to smooth the observed frequencies to a fitted (smoothing) 
function S. It is known (Chapter 4) that term occurrences follow a power 

    f  Nf  

    0  2134 
    1  34 
    . . .  

With a smoothing function S, probability P(ti|D) becomes 

D
iDi NfS

fS
fDtP

iD

iD

)(

)1(
)1()|(

+
+= . 

 
(10.30) 

Song and Croft (1999) report that, according to experimental results, an 
appropriate smoothing function was a particular geometric distribution. 
The relevance effectiveness of the retrieval method thus obtained was 
measured on two test databases: The Wall Street Journal and TREC4. The 
MAPs (mean average precisions) obtained were 0.2198 and 0.1905, re-
spectively. 
 Another smoothing method used to estimate P(ti|D) is the Jelinek-
Mercer smoothing (Metzler and Croft 2004). With this method, P(ti|D) is 
approximated as  
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(10.31) 

law. The number of occurrences f is represented on the x-axis, while the 
number Nf of terms having frequencies f  is on the y-axis; e.g.: 
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where:  

• |D| is the number of terms in D.  
• Ni is the number of times term ti occurs in the entire collection of docu-

ments.  
• |C| is the number of terms in the entire collection of documents. 
• λ is a smoothing parameter that can be set manually (experimentally or 

automatically), 0 ≤ λ ≤ 1; recommended value: λ = 0.6. 

10.5 Lattice Theoretical Framework 
for Probabilistic Retrieval 

We have seen that probabilistic retrieval methods are based on the notion 
of probability quantified by P(R|(Q, d)) and P(I|(Q, d)). These quantities 
are referred to as the conditional probabilities that document d is relevant 
(R) and irrelevant (I), respectively, to query Q.  
 Then, we can ask the following question: What is the event space over 
which the probabilities are defined? Several answers have been given. 
 Robertson et al. (1982) propose that the event space be generated by the 
Cartesian product between a document set D and a query set Q, Q × D, i.e., 
the event space is the Boolean lattice (Q × D, ℘(Q × D), P). Relevance is 
defined as a binary relation R ⊆ Q × D. Then, obviously, P(R) = 1 (since 
R, as the event, is given). But how realistic is this (relevance may also be a 
posteriori)?  
 Fuhr (1992) takes a slightly different approach. He proposes the same 
event space, i.e., (Q × D, ℘(Q × D), P). However, in his view, relevance is 
not an element of this event space, but rather a real number attached a 
query-document pair (q, d) as follows. The probability P(R|(q, d)) is calcu-
lated as the proportion of pairs (q, d) that are judged as relevant out of the 
total number of documents and queries having the same representation d 
and q, respectively. In Fuhr’s view, the set Q × D may even be infinite. In 
such a case, it may happen that all representations are also infinitely many 
(when they are all different from each other). How is probability calculated 
in this case? On the other hand, if P(R|(q, d)) is either 0 or 1, the probabil-
ity ranking principle may become superfluous: ranking becomes meaning-
less (the relevance degree of all retrieved documents is equal to 1).  
 Van Rijsbergen (1992), recognizing these difficulties, examines the no-
tion of probability in probabilistic retrieval. There are two ways to view 
probability. One is to see it as a measure of chance (of an event) and the 
other is as a measure of the degree of belief (in a proposition). In probabilistic 
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retrieval, the most thoroughly researched notion was conditional probabil-
ity P(R|(q, d)) within the Bayesian framework. As this probability may 
leave room for confusion, the question of whether P(R|(q, d)) designates a 
conditional probability or a degree of implication (of the type q implies d) 
may be raised. In order to get around such problems, van Rijsbergen pro-
poses the application of Jeffrey’s rule of conditioning. Let X be an event, 
and let E denote a proposition that signifies the “passage of experience.” 
Then, P(X) is the probability (measure of the degree of belief) of X before 
observation (i.e., before the “passage of experience”). The passage of ex-
perience (represented by E) leads P to a revised P*. In Bayesian notation: 
P*(X) = P(X|E). To give an example: one believes that a piece of cloth is 
green to the degree of P(X) = 0.3; but, after examining it by candlelight, 
one modifies one’s belief as follows: the piece of cloth is blue to the de-
gree P*(X) = 0.7. Van Rijsbergen developed a mathematical formalism 
that implements Jeffrey’s rule of conditioning in IR. With the notation X = 
relevance, and E is the observation of a query term in a document, the fol-
lowing formula for relevance is proposed: 

P*(relevance) =  

P(relevance | term occurs)P*(term occurs) +  

P(relevance | term does not occur)P*(term does not occur). 

 Robertson (2002) discusses at length the problems that may arise when 
the event space is (Q × D, ℘(Q×D)). Apart from those already mentioned 
thus far, another major problem that can be raised in the context of IR: In 
this event space, every event is distinct and every query is paired with 
every document. How adequate is this in retrieval? Robertson proposes the 
following solution. For the probabilistic model, the event space is based on 
a single query, the actual one, paired with documents (i.e., the event space 
is regenerated with every query).  
 We now propose a formal framework for probabilistic retrieval based on 
the distributive lattice of logical propositions ordered by logical implica-
tion. 
 Let {d1,...,dj,...,dm} denote a set of documents to be searched in response 
to a query Q. Let us introduce the function 

f: {d1,...,dj,...,dm, Q, R, I} → ({T, F}, ∧, ∨, ¬), (10.32)

where ({T, F}, ∧, ∨, ¬) is the Boolean algebra of logical propositions, and 

           dj  |→ “Document dj is observed,” j = 1,…,m. 
   Q |→ “Query Q is given.” 
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   R |→ “Document is relevant.” 
    I  |→ “Document is irrelevant.” 

 The degree of ordering in a lattice can be measured as follows: 

Definition 10.1 (Knuth 2005). In a Boolean lattice, the degree of ordering 
is measured by the function 
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 We use the following result (whose proof is only sketched here, as for 
us it is the result itself that is important rather than its proof): 

Theorem 10.1 (Knuth 2005). In a distributive lattice L, the measure z of 
the degree of ordering satisfies the relation 
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 Proof. Since lattice L is distributive, we have 

z(x ∧ y, t) = z(x, t) ⋅ z(y, x ∧ t). 

Owing to commutativity, we may rewrite the above as  

z(y ∧ x, t) = z(y, t) ⋅ z(x, y ∧ t). 

The left-hand sides are equal, so the right-hand sides are equal to each 
other as well: 

z(x, t) ⋅ z(y, x ∧ t) = z(y, t) ⋅ z(x, y ∧ t), 

which yields  
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 Obviously, Theorem 10.1 also holds for Boolean algebras (because any 
Boolean algebra is a distributive lattice).  
 The relationship in Theorem 10.1 reminds us of Bayes’s theorem from 
probability theory. It can be similarly shown (Knuth 2005) that the sum 
and product rules of probability also hold for function z. (Moreover, these 
rules are the only ones that are consistent with lattice L.  
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 As we saw earlier, the lattice of propositions can be ordered using logical 
implication and thus transformed into a distributive lattice (moreover, even 
into a Boolean algebra). Logical implication in mathematical logic is usually 
referred to as material conditional. Recall that this type of conditional may 
create paradoxes or strange situations. For example, a contradiction (which 
is always false) may imply anything (i.e., falsity as well as truth). Or, if the 
consequent is true, then the value of the material conditional is also true re-
gardless of the truth-value of the antecedent. (In p � q, p is the antecedent 
and q is the consequent; p � q is also denoted by p → q.)  
 Another strange situation is that the material conditional allows us to 
link any propositions that might not even be used together in normal 
speech (see examples in Chapter 2). Conditionals that allow only proposi-
tions that bear on the same subject are called entailments. 
 There are other types of conditionals as well. Thus, the counterfactual 
(or subjective) conditional has the form “if p were to happen, then q 
would.” The counterfactual conditional is typically used in science, e.g., 
“if ice were to be heated, it would melt,’ or “if the equipment were to fail, 
then the lamp would flash.” It can be seen that, in general, counterfactual 
conditionals cannot be represented by material conditionals. (Since the ma-
terial conditional p → q is true whenever p is false, the value of the coun-
terfactual would be indistinguishable.) 
 Another type of conditional is the indicative conditional. An example of 
an indicative conditional is, “if the accused did not kill the victim, then 
someone else did,” which is true. But the falsity or truth of its counterfac-
tual version, “if the accused had not killed the victim, someone else would 
have,” is questionable. 
 Reasoning or inference (i.e., the process of deriving conclusions from 
premises known or assumed to be true) is based, among others things, on 
the use of conditionals.  
 In deductive reasoning, if the premises are true, then the conclusion 
must be true. Examples for deductive reasoning are:  

• The law of noncontradiction (if p is true, then p cannot be false). 

• Modus ponens (if p → q and p, then q). 

False or inconclusive premises may lead to false or inconclusive conclu-
sions.  
 In another type of reasoning—inductive reasoning—true premises are 
believed to support the conclusion, albeit that they do not necessarily en-
sure it. Inductive reasoning is typically used to formulate laws or rules 
based on limited or uncertain observations or experiments. For example, 
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from “this fire is hot,” one infers that “all fires are hot” (which is not nec-
essarily true, since there is also cold fire).  
 We can thus see that inductive reasoning has a probabilistic (uncertain, 
belief-based, plausibility) flavor. Inductive reasoning may thus be inter-
preted as being a material conditional that has a degree of being true at-
tached to it. As Stalnaker (1968) conjectured, and recent experimental re-
search has supported, (Over et al. 2007), the probability of the conditional 
p → q is proportional to the conditional probability P(q|p) of the conse-
quent on the antecedent. Implication induces an order in the lattice of 
propositions. Thus, the following definition may be introduced: 

Definition 10.2. (Knuth 2005) The conditional probability of y given x is 
denoted by P(y | x) and defined as  

z(x, y) = P(x | y).  

 We are now formally entitled to write, in probabilistic retrieval, the 
probability P(R | (Q, d)), which is now equal to P(R | Q ∧ d), and is thus 
consistent with its formal background. The usual expression (10.19) can 
now be written as (Theorem 10.1): 

P(R | (d, Q)) = P(R | d ∧ Q) = 
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which is the same as Eq. (10.19); Q is constant, so it may be omitted. 

Note: At a first look, the derivations in this section may seem strange. We 
wish to remind the reader that the notion of probability, as defined by 
Kolmogoroff, is a formal concept: it is a measure on a lattice structure (to 
be exact, on a σ-algebra). As such, it is consistent with the operations on 
this lattice, namely the sum, product, and Bayes’s rules are satisfied. We 
have seen that these rules are satisfied by the degree function z defined on 
a distributive lattice L. Thus, formally, the two concepts, probability and 
degree function z, are equivalent. Moreover, it is just this equivalence that 
may elucidate why some measures in science act like probabilities when 
they are hardly what one would consciously and explicitly call probability 
(as chance). Yet, this seems to be exactly the case with the quantities P in 
probabilistic retrieval methods.  
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10.6 Bayesian Network Retrieval 

Let us consider the lattice (P, �) of logical implications. Based on Defini-
tions 10.1 and 10.2, a conditional probability P(x|y) may be assigned to the 
elements of P. 
 The notion of a Bayesian network (or inference network) can be defined 
as a lattice of implications in which the degree function z is given in a very 
specific way: 

Definition 10.3. A Bayesian network is a lattice (P, �) in which the con-
ditional probabilities P(x|y) are given as the probability of event x on its 
supremal events y.  

 Usually, a Bayesian network (BN) is defined as follows (Savoy and 
Desbois 1991, Metzler and Croft 2004): The BN is a directed and acyclic 
graph (tree if one disregards direction) whose nodes represent events and 
edges dependence between events. Each nonroot node is assigned condi-
tional probabilities that give the probability of an outcome depending on 
the outcome of its parent (antecedent) events.  

We note that the 0 and 1 of the lattice (P, �) are, in many cases, formal 
elements that do not have a practical role in applications. However, this 
does not invalidate Definition 10.3 from a formal point of view. 

Given any observed event, referred to as evidence, in a BN, it is possible 
to compute the probability, referred to as belief, of an outcome at any node 
by propagating beliefs through the BN. Since our scope is not a treatment 
of BNs per se, but rather to show how BNs can be applied in IR, the inter-
ested reader is directed to the specialized literature (e.g., Pearl 1988, Coo-
per 1990). However, a brief example is given below to help clarify the 
meaning and use of a BN, in general. 

Example 10.4  

Let the lattice (P, �), i.e., Bayesian network, be defined as follows. The 
degree functions, i.e., probabilities, are (recall that T = true, F = false): 

• P(Sunny = T) = 0.5, P(Sunny = F) = 0.5. 
• P(Warm = F | Sunny = F) = 0.8, P(Warm = F | Sunny = T) = 0.2. 
• P(Warm = T | Sunny = F) = 0.2, P(Warm = T | Sunny = T) = 0.8. 
• P(Heating = F | Sunny = F) = 0.5, P(Heating = F | Sunny = T) = 0.8. 
• P(Heating = T | Sunny = F) = 0.5, P(Heating = T | Sunny = T) = 0.1. 
• P(I am warm = F | Heating = F ∧ Warm = F) = 1. 
• P(I am warm = T | Heating = F ∧ Warm = F) = 0. 
• P(I am warm = F | Heating = T ∧ Warm = F) = 0.1. 
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• P(I am warm = T | Heating = T ∧ Warm = F) = 0.9. 
• P(I am warm = F | Heating = F ∧ Warm = T) = 0.1. 
• P(I am warm = T | Heating = F ∧ Warm = T) = 0.9. 
• P(I am warm = F | Heating = T ∧ Warm = T) = 0.01. 
• P(I am warm = T | Heating = T ∧ Warm = T) = 0.99. 
 
 

 
 
 
 We can use the BN to perform inference: 

• For example, if we observe (this is the evidence) that the whether is 
sunny (i.e., the event “Sunny” is true), then we hardly switch the heating 
on (i.e., the probability of event “Heating” being true is very low, 
namely 0.1).  

• We can use the BN to infer the probability of causes of an observed 
event. For example, if the evidence is that “I am warm” (i.e., “I am 
warm” is true), then the possible causes as well as their probabilities can 
be obtained.  

 In IR, BNs are applied to represent documents and queries as well as to 
propose similarity (ranking) measures (Turtle and Croft 1991, Savoy and 
Desbois 1991, Metzler and Croft 2004). Figure 10.1 shows the basic BN 
(as a building block) used for retrieval. 
 Node Dj corresponds to document Dj. Nodes t1,…,tk,…,tm correspond to 
representations of documents (typically to terms). Node Q corresponds to a 
query. (We note that the BN of Fig. 10.1 can be enlarged to encompass all 
the documents of a whole collection, as well as several queries. In such a 
case, the lowest node will be one called I, which represents the user’s in-
formation need.) 

 

Sunny 

Heating Warm 

I am warm 
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               . . .                       . . .  
 
 
 
 
 

Fig. 10.1. Basic Bayesian network for retrieval. 

 The document node is binary, i.e., it either happens (i.e., it is being ob-
served) or not.  

 There are several options to set the belief bel(tk) of representation nodes 
tk. For example, it can be set to  

• bel(tk) = wkj (as defined in Theorem 4.1., Section 4.6), 

• bel(tk) = P(ti|Dj) [as defined in Eq. (10.27)],  

• Okapi inverse document frequency belief score:  
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where:   

—b is the default belief parameter, 0 ≤ b ≤ 1, typically b = 0.6.  

—fkj is the number of time term tk occurs in document Dj. 

— Dj| is thelength of document Dj (typically: the number of its terms).  

—N is the total number of documents in the entire collection.  

—|D| is the average document length (e.g., |)|
1

1
¦
=

N

j
jD

N
.  

—dk is the number of documents in which tk appears. 
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The choice of bel(tk) has an influence on the relevance effectiveness of re-
trieval. Metzler and Croft (2004) provide experimental evidence that the 
choice bel(tk) = P(ti|Dj) as defined in Eq. (10.27) yields good results. 
 The query node allows us to combine beliefs about representations. 
Given an evidence, i.e., the observation of a document Dj, belief is being 
propagated from Dj to Q, which yields a scoring function (used to rank 
documents).  
 Given a query Q = (w1, q1; …; wi, qi; …; wn, qn), where qi is a query 
term and wi is the importance that we attach to it, several scoring functions 
bel(Q) have been proposed and tested experimentally  (see e.g., Metzler 
and Croft 2004): 

• Weighted sum:  
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 Metzler and Croft (2004) reported experimental results as to the rele-
vance effectiveness of BN retrieval. The test databases used were TREC 4, 
6, 7, and 8.1 Each query was Porter stemmed and stoplisted. The scoring 
function used was the weighted sum. The average precision obtained with 
the BN method was 9% higher than that obtained with the language model 
on TREC 4.  

                                                      
1 www.nist.gov (TREC). 
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10.7 Exercises 

1. Given a blog on the World Wide Web (or a presentation on radio on 
or television) that contains a section called “Frequently Asked Ques-
tions” (FAQ), note that FAQ contains the following questions (in 
chronological order): q1,…,qi,…,qn. The number of times question qi 
was asked is fi, i = 1,…,n. What is the probability of selecting qi?  

2. Let A and B be two independent events. Prove that  

logit (A ∪ B)= log(1 / (1 − P(A) − P(B)) −1). 

3. Implement the probabilistic retrieval method on a document collec-
tion of your choice. In Eq. (10.18), use frequency fik first, then a 
weight wik of your choice (using Theorem 4.1). Observe and discuss 
the differences in the two rankings. 

4. Implement the language model method on a document collection of 
your choice. Define and experiment with several smoothing func-
tions. Observe and discuss the rankings. 

5. Implement the inference network retrieval method on a document col-
lection of your choice. Observe and discuss the influence of different 
belief functions on ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 





11 Web Retrieval and Ranking 

The significant problems we face cannot be solved at the same level of 
thinking we were at when we created them.  

(Albert Einstein)  
 
After introducing the notion of a Web graph and discussing degree distri-
bution, we present the basic methods using link structure analysis (impact 
factor, connectivity, mutual citation, PageRank, HITS, SALSA, associa-
tive-interaction) together with clarifying examples for each. A connection 
between HITS and LSI is also shown. 
 Then, an aggregated method for Web retrieval based on lattices is pre-
sented that allows one to calculate the importance of pages, taking into ac-
count both their link importance (using link analysis) and their intrinsic 
importance (stemming from page content). Experimental evidence for the 
relevance effectiveness of this method is also given in terms of comparison 
with commercial search engines (with Google, Altavista, Yahoo!). 

After introducing the notion of Web lattice and chain, we define Web 
ranking as a lattice-lattice function between a Web lattice and a chain. We 
show that ranking is not submodular. Then, global ranking is defined as a 
lattice-lattice function (i.e., a mapping from the direct product of Web lat-
tices to the chain [0; 1]). It is shown that global ranking is not submodular. 
Based on the concept of global ranking, we present a method that allows 
us to compute the global importance of a Web page at Web level, taking 
into account the importance of the site the page belongs to, but without the 
need to consider the entire Web graph of all pages. 

After proving that any tree as well as any document can be transformed 
into a lattice, we show that the DocBall model and Galois (concept) lattice 
representations of a document are equivalent to one another.  

Based on these results as well as on the fact that the structure of any site 
is a lattice, we describe a method for computing site importance. 

The chapter ends with exercises and problems designed to promote a 
deeper understanding of the notions introduced and the application possi-
bilities of the results obtained. 
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11.1 Web Graph 

Let W1,…,Wi,…,WN denote a set of Web pages. A directed link from page 
Wi to page Wj is defined by the fact that the URL of page Wj occurs on 
page Wi, which is expressed as Wi → Wj (see Section 4.8). 
 A graph G = (V, E) is referred to as a Web graph if vertex vi ∈ V corre-
sponds to page Wi (i = 1,…,N), and a directed edge (vi, vj) ∈ E exists if 
there is a link from page Wi to page Wj. Graph G can be represented, e.g., 
by an adjacency matrix M = (mij)N×N defined as (Fig 11.1 ) 

mij = 
¯
®
 →

otherwise

WW ji

0

1
 (11.1)

 

 

 
 

M 
0 0 1 0 
1 0 1 1 
0 1 0 0 

1 0 1 0 

Fig. 11.1. A small Web graph G with four pages: 1, 2, 3, and 4. The horizontal 
bars within each page symbolize URLs indicating links to other pages as shown 

by the arrows. The corresponding adjacency matrix M is shown on the right. 
 
 We note that matrix M is not symmetrical (were the graph undirected, M 
would be symmetrical). Moreover, it is typically a sparse matrix. This 
property is important when representing matrix M on computer storage 
media (e.g., using adjacency lists) and when implementing matrix opera-
tions using programming languages.  
 The number of outgoing links from page Wi is called the outdegree of 
page Wi, and the number of incoming links is called the indegree of page 
Wi. For example, in Fig 11.1, the outdegree of page 2 is equal to 3, while 
its indegree is equal to 1. 
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Degree Distribution. The experimental discovery by Faloutsos et al. 
(1999) that the degree distribution for Web pages (and also Internet nodes) 
follows a power law with a fairly robust degree exponent was a basic 
milestone toward revealing the properties of the Web graph.  

Kahng et al (2002) investigated the question of why the degree expo-
nent, and especially that for indegree, exhibits a fairly robust behavior, just 
above the value 2. Using a directed network model in which the number of 
vertices grows geometrically with time and the number of edges evolves 
according to a multiplicative process, they established the distribution of 
in- and outdegrees in such networks. They arrived at the result that if the 
degree of a vertex grows more rapidly than the number of edges, then the 
indegree distribution is independent of the ‘details’ of the network. 

We recall briefly the notion and technique of a power law (from a 
slightly different point of view than that used in Chapter 4). Given a dis-
crete random variable V = V1, V2,…,Vn, if the probability P that the random 
variable V assumes values equal to or greater than some value v is given by 

P(V ≥ v) = 
k

v

m
¸
¹
·

¨
©
§ , 

 
(11.2) 

where m > 0, k > 0, and m and k areproblem-dependentconstants, v ≥ 
m, then we say that V follows Pareto’s law. For example, indivduals’ in-
comes obey Pareto’s law (Guilmi et al. 2003); m represents a minimal in-
come. It follows from Eq. (11.2) that 

P(V < v) = 1 − 
k

v

m
¸
¹
·

¨
©
§ , 

 
(11.3) 

which is the distribution function F(v) of V. A function P as defined in Eq. 
(11.3) for real values of v is differentiable with respect to v, and the deriva-
tive is continuous. Thus, it is absolutely continuous, and hence the random 
variable V has density function f(v) given by the derivative F′, i.e., f(v) = 
F′(v) = mk⋅v−(k+1). The function f(v) is referred to as a power law and is usu-
ally written in the following general form: 

f(v) = C⋅v−α, (11.4) 

where C is aproblem-dependentconstant, and α is referred to as the 
exponent of the power law, or degree exponent. The power law can be 
used to describe phenomena with frequent small events and rare large 
ones (Adamic 2003). For visualization purposes, the power law is repre-
sented in a log-log plot, i.e., as a straight line obtained by taking the 
logarithm of Eq. (11.4): 
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log f(v) = log C − α × log v; (11.5) 

log v is represented on the abscissa and log f(x) on the ordinate; −α is the 
slope of the straight line and log C is its intercept.  

Given a sequence of values X = (x1,...,xi,...,xn) on the abscissa and an-
other sequence of values Y = (y1,...,yi,...,yn) on the ordinate, if the correla-
tion coefficient r(X, Y) suggests a fairly strong correlation between X and Y 
at a log scale, then a regression line can be drawn to exhibit a relationship 
between X and Y. Using the slope and the intercept of the regression line, 
we can write the corresponding power law.  

Thus far, the following values for the degree exponent were obtained 
experimentally: 

1. Faloutsos et al. (1999), using data provided by the National Labora-
tory for Applied Networks Research between the end of 1997 and end 
of 1998, arrived at the result that the tail of the frequency distribution 
of outdegreei.e., the number of Internet nodes and Web pages with 
a given outdegreeis proportional to a power law. Their observation 
was that the values of the exponent seemed to be almost constant: 
2.15, 2.16, 2.2, 2.48.  

2. Barabási et al. (2000)using 325,729 HTML pages involving 
1,469,680 links from the nd.edu domainconfirmed the earlier re-
sults obtained for the values of the degree exponent. They obtained 
the values 2.45 for outdegree and 2.1 for indegree. 

3. Broder et al. (2000) and Strogatz (2001) describe two experiments us-
ing two Web crawls, one in May and another one in October 1999, 
provided by Altavista, involving 200 million pages and 1.5 billion 
links. The results they arrived at were the same in both experiments: 
the values of the degree exponent were estimated to be 2.1, 2.54, 
2.09, 2.67, 2.72 for outlink distribution. 

4. The values obtained earlier for the degree exponent were also con-
firmed by Pennock et al. (2002), who foundusing 100,000 Web 
pages selected at random from 1 billion URLs of Inktomi Corporation 
Webmapthat the exponent for outdegree was 2.72 and 2.1 for inde-
gree. Similar exponent values were obtained for the indegree distribu-
tion for category-specific homepages: 2.05 for companies and newspa-
pers, 2.63 for universities, 2.66 for scientists, and 2.05 for newspapers. 

5. Shiode and Batty (2000) assessed the power law for Web country 
domain names in- and outlink distribution as of 1999. Their results 
for the power law exponent were 2.91, 1.6, 2.98, 1.46, 2.18, 2. 
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6. Adamic and Huberman (2000) report on an experiment involving 
260,000 sites, each representing a separate domain name. The degree 
exponent was estimated to be 1.94. 

7. Kumar et al. (1998)  report that a copy of the 1997 Web from Alexa 
(a company that archives the state of the Web) was used to estimate 
the degree exponent of the power law. The data consisted of about 1 
terabyte of data representing the content of over 200 million Web 
pages. It was found that the degree exponent was 2.38. 

8. Albert (2000) reports that the value of 2.3 was found for the degree 
exponent. 

9. Experiment 1. Using the Barabási data,1 the power law for outdegree 
distribution was assessed (Dominich et al. 2005). The data were pro-
vided as a zipped file. After unzipping it, the result was a text file that 
contained two numbers in each line: the leftmost number was the se-
quence number of Web pages (0; 1; 2;…; 325,729), and the other 
number was the sequence number of the Web page pointed to by the 
page represented by the leftmost number. A noteworthy observation 
is that the exponent of the Web power law increases slowly  from 1 
with the number of pages (from a few hundred up to several tens of 
thousands of pages) and starts to stabilize around the value α = 2.5 if 
the number of Web pages involved is fairly high—above 100,000. 
Thus, e.g., for 30,000 pages, the correlationat a log scaler be-
tween outdegree and frequency was only r = −0.892, and the fitting of 
a power law curve C⋅x-α using MathCAD’s built-in curve fitting 
command genfit resulted in α = 0.867, with an approximation error of 
the sum of the absolute values of differences of 3.7 × 106 at 10−4 con-
vergence error, whereas using linear regression yielded α = 1.47, with 
an approximation error of 1,589,104 at 10−4 convergence error.  

Figure 11.2 shows the results for 256,062 Web pagesinvolving 
1,139,426 linksselected at random from the 325,729 pages that 
were provided. After processing this file, the X data consisted of the 
outdegrees of Web pages and the Y data consisted of the correspond-
ing frequencies. For example, there were 2206 pages having outde-
gree 13, and outdegree 14 had a frequency equal to 1311. The empiri-
cal correlation coefficienttaking log scale datar between 
outdegree and frequency was r = −0.94. The linear regression method 
yielded the following values: α = 2.5 for the exponent and C = 106.1043 

                                                      
1

 Provided at http://www.nd.edu/~networks/database/index.html; downloaded January 2, 2004. 
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for the constant. The computation was performed using MathCAD’s 
built-in line command. The numeric computation used in this com-
mand, as well as the fact that we used 69,667 fewer pages may ac-
count for the difference of 0.05 in the exponent value compared to the 
value reported in Barabási et al. (2000). Owing to the strong correla-
tion (see above) as well as to inherently present numeric approxima-
tion errors, we believe that the 0.05difference is not important, that 
the values obtained in our experiment do confirm the earlier results, 
and further that the power law characterizes the behavior of the Web 
at very large scale. Hence, our experiment confirmed the earlier re-
sults. 

10. Experiment 2. The power law for Web country domain names inlink 
distribution was assessed as of 2004 (Dominich et al 2005). The 
inlink frequency distribution for country domain names2 was gener-
ated as of January 2004 (Fig. 11.3). The domain names .gov, .org, 
.net, .edu, .us, .com, .mil, .um, .vi were all considered as representing 
the United States, whereas the domain names .ac, .uk, .gb represented 
the United Kingdom, and .fr, .fx France. This yielded 238 country 
domain names (88 domain names more than 5 years earlier). The 
number of inlinks for every country domain name was identified us-
ing Altavista search engine’s Webmasters option during January 
19–22, 2004. For example, the United Kingdom had a total of 
30,701,157 inlinks, and the United States had 271,019,148 inlinks in 
all. The inlinks were binned into 1000 equally spaced intervals. In 
this case, the correlation between the number of inlinks and the corre-
sponding number of country domain names was found to be −0.99 (at 
a log scale). The value for the power law exponent was found to be 
equal to α = 1.18 using MathCAD’s linfit linear regression command 
(the approximation error was equal to 14,509). 

11. Experiment 3. The inlinks frequency distribution for the 43 state 
university domain names in Hungary was generated as of January 
2004 (Dominich et al 2005). The number of inlinks for every domain 
name was identified using Altavista’s Webmasters option during 
January 2004. The inlinks were binned into 140 equally spaced inter-
vals. In this case, the correlation between the number of inlinks and 
the corresponding number of domain names was found to be −0.92 
(at a log scale). The value for the power law exponent was found to 
be equal to α = 1.15 using MathCAD’s genfit curve fitting command 

                                                      
2

 Taken from http://www.webopedia.com/quick_ref/topleveldomains. 
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to fit the power law curve with an approximation error equal to 14.4 
at a convergence error of 10−4. 

 

0 0.5 1 1.5 2 2.5

1

2

3

4

5

6

outdegree

nu
m

be
r 

of
 w

eb
 p

ag
es

 

Fig. 11.2. World Wide Web power law. The frequency (i.e., number of Web 
pages) of the outdegrees of Web pages plotted on a log-log scale. The points  

represent actual values; the straight line represents the regression line fitted to the 
real values. The correlation coefficient is equal to r = −0.94, the power law  

exponent is equal to α = 2.5. 
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Fig. 11.3. Log-log plot of the power law for the inlinks of country domain names 

as of January 2004. The correlation between the number of inlinks and the  
corresponding number of country domain names was found to be −0.99, whereas 

the value of the power law exponent was 1.18. 
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The estimated values obtained experimentally for the exponent of the 
power law for degree distribution in the Web are summarized in Table 11.1.  

 
Table 11.1. Estimated Values Obtained Experimentally for the Exponent of 

the Power Law for Degree Distribution in the World Wide Web 

Source (experiment) Degree exponent value 

Faloutsos et al. (1999) 2.15; 2.16; 2.2; 2.48 

Barabási et al. (2000) 2.1; 2.45 

Broder et al. (2001) 2.1; 2.72; 2.09; 2.67; 2.54 

Pennock et al. (2002) 2.1; 2.72, 2.05; 2.05; 2.63; 2.66 

Kumar et al. (1998) 2.38 

Adamic and Huberman 
(2000) 

1.94 

Shiode and Batty (2000) 2.91; 1.6; 2.98; 1.46; 2.18; 2 

Albert (2000) 2.3 

Experiment 1 2.5 

Experiment 2 1.18 

Experiment 3 1.15 

 
Let us consider the different degree exponent values obtained experi-

mentally as being a sample drawn from a population consisting of degree 
exponent values. The population may consist, e.g., of the degree exponent 
values obtained using the data of all Web crawlers (search engines); all 
domain names, as well as their subsets containing more than 100,000 
pages; or a population defined in some other way. Our sample has size N = 
29. The following test of the hypothesis for the mean can be performed. 
The mean M of the sample is  

M = ¦
=

N

i
iN 1

1 α = 2.222, 

 
(11.6) 

and the standard deviation s of the sample is  

s = ¦
=

−
N

i
i M

N 1

2)(
1 α = 0.451. 

 
(11.7) 

Using the χ2-test (with ν = N − 1 = 28 degrees of freedom), we estimate 
the population standard deviation σ  to lie in the interval 
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025.0975.0 χ
σ

χ
NsNs

<< ,  i.e., 0.363 < σ < 0.621, 

 
(11.8) 

with 95% confidence. Furthermore, we can check that deviation σ is esti-
mated to lie in the interval 0.35 < σ < 0.66 with 99% confidence. As all of 
the degree exponent values αi lie in the open interval (1; 3), i.e., 1 < αi < 3, 
i = 1,…,N, the mean, whether sample or population (‘true’) mean, should 
also lie in this same interval. We may ask ourselves whether there exist 
positive integer numbers p such that the null hypothesis H0, “µ = √p,” is 
supported. Possible values for p are the numbers 4, 5, 6, 7, and 8. Using 
the z-score (µ) 

z-score(µ) = 

N

s
M µ−

, 

 

(11.9) 

we obtain the following z-score(µ) values:  

• z-score(√4) = 2.657.  
• z-score(√5) = 0.163.  
• z-score(√6) = 2.712.  
• z-score(√7) = 5.056.  
• z-score(√8) = 7.238.  

As only one of these z-score(µ) values does not exceed 1.96, namely z-
score(√5), we reject the hypothesis H0 for p = 4, 6, 7, and 8, and accept H0 
for p = 5 with 95% confidence. Similarly, only z-score(√5) is less than 
2.58, which means that we may accept H0 for p = 5 with 99% confidence. 
Thus, we may say that there is statistical support to assume that the sample 
comes from a population with mean µ = √5. Thus, the power law for the 
degree distribution in the World Wide Web may be written in the follow-
ing form: 

f(x) ≈ C⋅x−√5, (11.10) 

where f(x) denotes (approximate values of) the frequencies of the nodes 
with degree x. This demonstrates the “robustness,” observed earlier in ex-
periments concerned with the exponent of the power law for the Web. 

Note: An interesting property, related to number theory is the connection 
between Web power law (11.10) and the golden section. As it is known, the 



246      11 Web Retrieval and Ranking  

golden section (also known as the golden ratio, golden mean, divine pro-
portion) is usually denoted by ϕ and  is defined as the smallest root of the 
equation x2 − x − 1 = 0, ϕ = (√5 − 1)/2 ≈ 0.61803398875 (the other root is 
Φ = (√5 + 1)/2 ≈ 1.61803398875). It is easy to see that the following rela-
tionships hold: √5 = 2ϕ + 1, and ϕΦ = 1. A direct numerical connection 
between the degree exponent as defined in Eq. (11.10) and the golden sec-
tion is 2ϕ + 1= √5. Moreover, the connection with Fibonacci numbers can 
be established. Fibonacci numbers are defined recursively: F0 = 0, F1 = 1, 
Fn = Fn−1 + Fn−2, n ≥ 2. Thus, their sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 
34, 55, 89,... . A noteworthy property of these numbers is that, in general, 
the ratio of the consecutive numbers has a limit equal to the golden sec-
tion, namely 5/8 = 0.625, 8/13 = 0.615, 13/21 = 0.619, …,: 

ϕ=
+

∞→
1

lim
n

n

n F

F
. 

The golden section and the Fibonacci numbers are related by Binet’s equa-
tion: 

Fn = ( )nn )(
5

1 ϕ−−Φ , 
 

 

from which we can express√5.  

11.2 Link Structure Analysis 

Link structure analysis (link analysis, for short) refers to methods used to 
quantify the importance of networked entities of interest based on the 
number of links (connections) among them. Entities may be:  

• Social objects (e.g., groups of people).  
• Written units (e.g., scientific papers).  
• Web pages.  
• Molecules. 
• And so on.  

 The starting point of link analysis was citation analysis, whose principle 
is as follows: the number of citations a paper gets from other papers is a 
measure of its importance (Garfield 1955, 1972).  
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 This principle was applied to compute an impact factor for journals. For 
example, the impact factor IF for journal J in 2007 can be calculated as 
follows: 

 

Impact Factor Method 

IF = 
P

C
, 

 
 

where C is the number of times J’s articles published in 2005 and 2006 
were cited in other journals during 2007, and P is the number of articles 
published in J during 2005 and 2006. 

 

 

The impact factor is based merely on a pure count of links; no other factor 
(e.g., quality, importance) is taken into account.  
 The principle of citation analysis was applied for the first time by Car-
rière and Kazman (1997) for Web retrieval in the following form: 
 
 
 

Connectivity Method 
 

1. Using the Boolean retrieval method, we first obtain a list of Web 
pages (hit list).  

2. The Web graph for the hit list is constructed.  

3. For each node in the graph, its connectivity (i.e., the sum of its inde-
gree and outdegree) is computed.  

4. Finally, the hit list is sorted on node connectivity and presented in de-
creasing order. 

 
 
  
 Pinski and Narin enhanced the connectivity method by noting that not 
all citations have equal importance. They argued that a journal is important 
if it gets citations from other important journals (Geller 1978). The mutual 
citation method proposed is as follows: 
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Mutual Citation Method 

Let J1,…,Ji,…,Jn denote entities. A matrix M = (mij)n×n is constructed:  

mij = 
i

j
i

c

c
,  

 
 

where ci denotes the total number of citations in journal Ji, while j
ic de-

notes the number of citations journal Jj gets (out of ci) from journal Ji. The 
importance vector w = (w1 … wn) of journals is the solution of  

w = MT
w. 

In other words, the importance vector w is the eigenvector corresponding 
to eigenvalue 1 of matrix MT. 

 
 

Example 11.1 

Let us consider the following small Web graph: 
 

 

Matrix M is  
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The importance w1 of page J1 is equal to  

w1 = 0⋅w1 + 0.5⋅w2 + 0⋅w3, 

where (0 0.5 0) is the first column of matrix M. Thus, the importance 
vector w = [w1 w2 w3]

T is given by the equation w = MTw and is equal to 
w = [0.371; 0.743; 0.557]T.  

J2 

J1 J3 
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 The ideas behind these methods were precursors of other techniques for 
computing the importance of Web pages. The basic methods are presented 
in the next sections. 

11.3 The PageRank Method 

In the PageRank method, a Web page’s importance is determined by the 
importance of Web pages linking to it. Brin and Page (1998) define the 
PageRank value Ri of a Web page Wi using the equation 

¦
Β∈

=
ijW j

j
i L

R
R , 

 
(11.11) 

where Lj denotes the number of outgoing links (i.e., URLs) from page Wj 
and Bi denotes the set of pages Wj pointing to page Wi.  

Equation (11.11) is a homogeneous and simultaneous system of linear 
equations in the unknown Ri, i = 1,…,N, which always has trivial solutions 
(the null vector, i.e., Ri = 0, i = 1,…,N).  

Equation (11.11) also has nontrivial solutions if and only if its determi-
nant is equal to zero. Let G = (V, A) denote (correspond to) a Web graph, 
where the set V = {W1,…,Wj,…,WN} of vertices denotes the set of Web 
pages. The set A of arcs consists of the directed links (given by URLs) be-
tween pages.  

Let  M = (mij)N×N denote a square matrix (modified adjacency matrix) at-
tached to graph G such that (Fig. 11.4) 

 

°̄

°
®
 →

=
otherwise

WW
Lm ij

jij

0

1
. 

 

(11.12) 

 As the elements of matrix M are the coefficients of the right-hand side 
of Eq. (11.11), this can be rewritten in matrix form: 

M × R = R, (11.13)

where R denotes the vector (i.e., column matrix) of PageRank values, i.e.,  
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R = 

»
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»
»
»

¼

º

«
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«
«
«
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¬

ª

N

i

R

R

R

.

.
1

= [R1,…, Ri,…, RN]T. (11.14)

 
 
 

 

 
 

M 
0 1/3 0 1/2 
0 0 1 0 
1 1/3 0 1/2 

0 1/3 0 0 

Fig. 11.4. A small Web graph G with four pages: 1, 2, 3, and 4. The elements of 
matrix M are also shown; they were computed using Eq. (11.12). 

 

If graph G is strongly connected (i.e., every node can be reached from 
every other node following directed links), the sums of the columns in ma-
trix M are equal to 1. Thus, because matrix M has only zeroes in the main 
diagonal, in matrix M − I (I denotes the unity matrix), i.e.,  
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1

1

N

N

m

m

IM , 

 

(11.15) 

the sums of columns is equal to zero. Let D denote its determinant:  

D = M − I. (11.16) 

If every element of, e.g., the first line of D is doubled, we obtain a new de-
terminant D′, and we have D′ = 2 × D. We now add every line to the first 
line in D′. As the sums of the columns in D are null, it follows that (after 
these additions) the first row of determinant D′ will be equal to the first 
row of determinant D. Thus, we have  
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D′ = 2D = D, (11.17) 

from which it follows that D = 0. Since matrix M − I is exactly the matrix 
of Eq. (11.11), it follows that it also has nontrivial solutions.  

The determinant M − I being equal to 0 means that the number 1 is an 
eigenvalue of matrix M. Moreover, the number 1 is a dominant eigenvalue 
of matrix M, i.e., it is the largest eigenvalue in terms of absolute value 
(Farahat et al 2006). Figure 11.5 shows an example for the Web graph of 
Fig. 11.4. 
 

 

        
 
         M             R 
0 1/3 0 1/2  0.325 
0 0 1 0  0.651 
1 1/3 0 1/2  0.651 
0 1/3 0 0  0.217 

Fig. 11.5. A small Web graph G with four pages: 1, 2, 3, and 4. The elements of 
matrix M are also shown; they were computed by mij=1/Lj. The PageRank values, 

i.e., the eigenvector corresponding to eigenvalue 1, were computed using the 
MathCAD command “eigenvec(M,1).” 

 
 Owing to the fact that N is large, PageRank values are computed in 
practice  using some numeric approximation procedure by calculating the 
eigenvector R corresponding to eigenvalue 1. The following approximation 
method can be used: 

M × Rk = Rk+1, k = 0, 1,…,K, 

R0 = »¼
º

«¬
ª

NN

1
...

1
, 

 

(11.18) 

where K is equal to a few tens (typically to 50), or the recursive computa-
tion is performed until 

max| Rk+1 − Rk | < ε, (11.19) 

where ε ∈ + is some preset error threshold. The approximation obtained 
is an eigenvector whose elements sum to unity. 
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Example 11.2 

For the Web graph of Fig. 11.5, the numerical approximation procedure 
yields the following PageRank values for ε = 0.1 and after k = 9 steps: 
[0.177; 0.353; 0.35; 0.12;]T.  

 Equations (11.18) are derived from the well-known power method used 
to compute the dominant eigenvector x of a matrix M, in general. The steps 
of the power method are as follows: 
 
 

POWER METHOD 
 

1. Choose an initial vector x0.  

2. Set i = 1. 

3. Calculate the next approximation xi+1 as xi+1 = Mxi. 

4. Divide xi+1 by its Euclidean norm, i.e., x’i+1 = 
||

1

1i
x||

x

+

+i . Note: One may 

divide by any nonzero element of xi+1. 

5. Repeat steps 3 and 4 until error(x’i, x’i+1) <  ε, where error(x’i, x’i+1) = 
||x’i − x’i+1||, or error(x’i, x’i+1) = max|x’i − x’i+1|, or some other expres-
sion (as more appropriate for the application being considered). 

6. The dominant eigenvector can be approximated by the Rayleigh quo-

tient: 
xx

xx
T

TM
. 

 

 For a real portion of the Web, graph G is not always strongly connected. 
For example, it may happen that a page Wj does not have any outgoing 
links (i.e., its outdegree is null). Such a page is referred to as a dangling 
page. In such a case, the jth columncorresponding to page Wjof matrix 
M contains only zeroes. The elements of matrix M may be interpreted in 
the following way: the entry mij is the probability with which page Wi fol-
lows page Wj during a walk on the Web (i.e., the probability with which, 
during a navigation on the Web, a surfer jumps from page Wj to page Wi). 
Based on this interpretation, a new matrix, denoted by M′, can be con-
structed:  
 
 1. First, the columns corresponding to dangling nodes in matrix M are 
replaced by columns containing all 1/N, i.e.,  
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m’ij = 
N

1
,  i = 1,…,N, page Wj is a dangling page. 

 
(11.20) 

 
 2. Second, using matrix M′, we have a new matrix M″: 

(11.21) 

A typical value for α is α = 0.85. Thus, the PageRank equation becomes 

M″ × R = R. (11.22) 

Matrix M″ is nonnegative (i.e., its elements are nonnegative numbers); 
hence it has a nonnegative dominant eigenvalue (Farahat et al 2006). The 
corresponding eigenvector is the PageRank vector: it is unique, its entries 
are nonnegative, and it can be calculated using the approximation (or 
power) method given by Eq. (11.18). 

Example 11.3 

Let us assume that in Fig. 11.5, page W3 is a dangling page. Then,  
 

 

M″ = αM′ + (1 − α)/N,  0 < α < 1. 

M′ = 

¸̧
¸
¸
¸

¹

·

¨̈
¨
¨
¨

©

§

025.0333.00

5.025.0333.01

025.000

5.025.0333.00

.

Application of the PageRank Method in Web Retrieval. The PageRank 
method is being used by the Web search engine Google. Figure 11.6 
shows the query interface and a portion of the hit list for the query “lattice 
information retrieval” (as of the May 2, 2007). 
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Fig. 11.6. Interface and hit list screens of the Web search engine Google,3  which 
is using the PageRank method. 

                                                      
3 http://www.google.com. 
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11.4 The HITS Method 

A method called HITS for computing hubs and authorities was proposed 
by Kleinberg (1999). Two types of Web pages are defined: hubs and au-
thorities. They obey a mutually reinforcing relationship, i.e., a Web page is 
referred to as  

• An authority if it is pointed to by many hub pages.  
• A hub if it points to many authoritative pages (Fig. 11.7a).  

 Given a page p, an authority weight x<p> and a hub weight y<p> is as-
signed to it. If p points to pages with large x-values, then it receives large 
y-values, and if p is pointed to by pages with large y-values, then it should 
receive a large x-value.  
 

 

  ¦
∈

←
Epqq

qp yx
),(:

         ¦
∈

←
Eqpq

qp xy
),(:

 

(a) 
 

 
(b) 
 

Fig. 11.7(a) Illustration of operations for computing hubs and authorities.  
(b) Mini-Web (example). 

 

1 

2 3 
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The following iterative operations are defined: 

¦

¦

∈

∈

←

←

Eqpq

qp

Epqq

qp

xy

yx

),(:

),(:

, (11.23) 

where E denotes the set of arcs of the Web graph. Let M denote the adja-
cency matrix of the Web graph of interest. Equations (11.23) can then be 
written in matrix form: 

x¢k² = MTM x¢k−1², 

y¢k² = MMTy¢k−1². 

 
(11.24) 

Matrix MTM is referred to as the hub matrix, while matrix MMT is the au-
thority matrix. Thus, the HITS method is equivalent to solving the follow-
ing eigenvector problems: 

MTMx = λx, 

MMTy = λy, 

 
(11.25) 

where λ denotes the dominant eigenvalue of MTM (MMT). An entry mij in 
matrix MMT is equal to the number of pages to which both pages i and j 
point. An entry mij in matrix MTM is equal to the number of pages that 
point to both pages i and j. A diagonal entry (i, i) in matrix MMT represents 
the outdegree of page i. In order to compute the authority and hub vectors 
in practice, the following steps are taken: 

 
HITS Method 

1. Define a root set S of Web pages (e.g., submit a query on some topic 
to a commercial search engine and keep the top L hits). 

2. Expand the root set S with the pages given by the inlinks and outlinks 
of pages in S to obtain a base set T. 

3. Eliminate pages having the same domain name. 
4. Define the Web graph for the base set T. 
5. Repeat a sufficient number of iterations starting with the initial values 

x0 = [1,…,1]T and y0 = [1,…,1]T for both x and y:  

xi+1 = MTyi,  yi+1 = Mxi+1; 

(After each iteration, vectors x and y are normalized such that the 
squares of their entries sum to 1; this operation is called length nor-
malization.)  
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It can be shown that x is the dominant eigenvector of MTM, and y is the 
dominant eigenvector of MMT (Farahat et al. 2006). 

Example 11.4  

Let  

M = 
¸
¸
¸

¹
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¨
¨

©

§

010

101

110
 

denote the adjacency matrix of the mini-Web graph of Fig. 11.7b. We then 
have:  
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and  
 

MTM = 
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¸
¸

¹
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©

§

211
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101
, 

 

with the following eigenvalues: 1.5, 0.2, 3.2. Perform the operations xi+1 = 
MTyi and yi+1 = Mxi+1 until vectors x and y do not change significantly (con-
vergence). In this example, after three steps, the following values are ob-
tained: x = [0.309; 0.619; 0.722]T and y = [0.744; 0.573; 0.344]T.  

11.4.1 Application of the HITS Method in Web Retrieval 

The HITS method is being used in the Web search engine Teoma (Ask).4  
Figure 11.8 shows the interface and hit list screens for the query “lattice 
information retrieval” (as of May 2, 2007). 

 

                                                      
4
 http://www.ask.com. 
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Fig. 11.8. Interface screen and a hit list of the Web search engine Ask (Teoma), 

which uses the HITS method. 
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11.4.2 Latent Semantic Indexing and HITS 

We recall that the singular value decomposition (SVD) of a matrix Am,n 
(rank(A) = r) is defined as  

A = UDVT, (11.26) 

where UTU = VTV = In,n, D is a diagonal matrix D = diag(d1,...,dn),   di > 0, i 
= 1,...,r, and dj = 0, j > r. Matrices U and V are orthogonal, and their first r 
columns define the orthonormal eigenvectors associated with the r nonzero 
eigenvalues of AAT and ATA, respectively. The columns of U are called the 
left singular vectors, and those of V the right singular vectors. The diago-
nal elements of D are the nonnegative square roots of the n eigenvalues of 
AAT, and are referred to as the singular values of A.  
 SVD and HITS are connected in the following way (Ng et al. 2001). Let 
D = {d1,…,dj,…,dm} be a set of documents and T = {t1,…,ti,…,tn} be a set 
of terms. A graph G = (V, E) is constructed: 

• The set V = {v1,…,vi,…,vn, vn+1,…,vn+j,…,vn+m} of vertices is such that 
to every term ti and every document dj there is a corresponding vertex vi 
and vn+j, respectively, in graph G.  

• The set E = {e1,…,eij,…,ep} of directed edges is constructed so that 
there is a directed edge from a term vertex vi to a document vertex vn+j if 
document dj contains term ti. 

Let M be the adjacency matrix of the graph G thus constructed. The hub 
weight vector y given by HITS has nonzero elements only for term vertices, 
whereas the authority weight vector x has nonzero elements only for docu-
ment vertices (since no document vertex links to any vertex; only term verti-
ces link to document vertices). The hub weight vector y is equal to the first 
left singular vector (i.e., the first column from left to right) of matrix U. 

Example 11.5  

Let D = {d1, d2} be two documents and T = {t1, t2, t3} be three terms such 
that t1, t2 ∈ d1 and t1, t2, t3 ∈ d2. The adjacency matrix is  
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The hub weight vector is  

y = [−0.657 −0.657 −0.369 0 0]T, 

while the authority weight vector is  

x = [0 0 0 −0.615 −0.788]T. 

The SVD of matrix M is M = UDVT, where 
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11.5 The SALSA Method 

The SALSA method (Lempel and Moran 2001) offers another computation 
of authorities and hubs. Let M = (wij)N×N denote the adjacency matrix of the 
Web graph of interest. Let Mr = (rij) and Mc = (cij) be the following matri-
ces (Langville and Meyer 2005): 
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(11.27) 

Two matrices, H (hub matrix) and A (authority matrix), are then intro-
duced: 

H = Mr × Mc
T,  

A = Mc
T × Mr. 

 
(11.28) 

The hub weights and authority weights are the elements of the dominant 
eigenvectors of H and A, respectively.  

Example 11.6 

Using Fig. 11.7, we have:  

M = 
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Then,  

H = 
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, and A = 
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. 

The dominant eigenvalue of H is 1 and the hub vector is the corresponding 
eigenvector: [0.577 0.577 0.577]T. The dominant eigenvalue of A is 1 and 
the authority vector is the corresponding eigenvector: [0.577 0.577 
0.577]T.  
 

• Vh = {s | s ∈ V, outdegree(s) > 0}, hub side. 
• Va = {s | s ∈ V, indegree(s) > 0}, authority side. 
• E′ = {(s, r) | (s, r) ∈ E}. 

 Originally, the computation method of H and A was as follows (Lempel 
and Moran 2001). The Web graph G = (V, E) was used to construct a 
bipartite graph G = (Vh, Va, E ) where (Fig. 11.9):  
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Fig. 11.9. Graph G, bipartite graph G′ in the SALSA method. 

 
 It was assumed that graph G was connected. (If it is not connected, then 
the graph G′ is constructed for every connected subgraph of G). Matrix A = 
(aij) was defined as  
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and matrix H = (hij) as  
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11.6 The Associative Interaction Method 

Before we describe the method, we discuss the relevant concepts and re-
sults from the theory of artificial neural networks (ANNs). 

11.6.1 Artificial Neural Networks 

The fundamental principle of artificial neural networks (ANNs), states that 
the amount of activity of any neuron depends on (James, 1988): 

• Its weighted input. 
• The activity levels of artificial neurons connecting to it.  

An artificial neuron is a formal processing unit abstracted from real, bio-
logical neurons (Fig. 11.10a) (Feldman and Ballard 1982, Grossberg 1976, 
Hopfield, 1984).  
  An artificial neuron ν has inputs I1,…,In, which can be weighted by the 
weights w1,…,wn. The total input I depends on inputs and their weights. 
The typical form of I is a linear combination of its inputs: 

¦
=

=
n

i
iiwII

1

. (11.31)

As a result of total input I, the neuron can take on a state (also called an 
activation level) z. State z is a function g of I, z = g(I). For example: 

• Threshold function: z = 1 if I > k, and z = 0 if I ≤ k, where k is a thresh-
old value.  

• Identity function: z = I.  

The artificial neuron produces an output O via its transfer function f de-
pending on its state z, i.e., O = f(z), e.g.:  

• Identity function: O = f(z) = z. 

• Sigmoid function: O = f(z) = 
ze−+1

1
. 

Artificial neurons can be connected to form an ANN (Fig. 11.10b). Given 
two interconnected neurons νi and νj in an ANN, the output fj(zj) of νj can 
be transferred to νi via the connection between them, which can alter fj(zj) 
by a weight wij. The quantity wij × fj(zj) reaches artificial neuron νi, for 
which it is an input.  
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(a) Artificial Neuron   

 
(b) Artificial Neural Network 

 
Fig. 11.10(a) An artificial neuron:.a linear combination of the weighted (wi) in-

puts (Ii) activates neuron v, which takes on a state z and produces an output O via 
its transfer function f. (b) ANN: interconnected artificial neurons (νj, νi); I is an 
input to neuron νj and fj(zj) is its output, which is an input to neuron νi weighted 

by the quantity wij, i.e., wij ⋅ fj(zj). 

 
The state zi of neuron νi can be described by the following generic dif-

ferential equation (DeWilde, 1996): 

dt

tdzi )(
 = −zi(t) + ¦

=

+
n

j
iijijj tItztzwf

1

)())(),(,( , 
 
(11.32) 

where: 

• t denotes time. 
• zi(t) denotes the activity level of neuron νi.  
• wij denotes the weight of a link from neuron νj to neuron νi.  
• Ii(t) denotes external input to neuron νi.  
• fj(zj(t),wij,zi(t)) denotes the influence of neuron νj on neuron νi.  
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Equation (11.32) is a generic equation and can have different forms de-
pending on the choice of Ii, fj, wij corresponding to the particular case or 
application where the ANN is being used. For example, when applied to 
real (i.e., biological) neurons, then: 

• zi denotes membrane voltage.  
• Ii means an external input.  
• wij is interpreted as a weight associated to the synapse.  
• fj takes the form of a product between weight and zj.  

For analogue electric circuits:  

• zi denotes the potential of a capacitor.  
• The left-hand side of the equation is interpreted as a current charging a 

capacitor to potential zi.  
• The summed terms mean potentials weighted by conductance.  

As Eq. (11.32) can be written for every i = 1, 2,...,n, we have a system of 
differential equations. The study of an ANN is carried out by assuming 
that initial states z0 are known at some initial point t0. It can be shown that 
in a small enough vicinity |z−z0| of z0 and |t−t0| of t0, system (11.32) has a 
unique solution. From a practical point of view, the question as to the exis-
tence of solutions of Eq. (11.32) can be answered positively owing to the 
Cauchy-Lipschitz theorem (Martin and Reissner 1961). It is stated here 
without proof (as it is well-known in the theory of differential equations, 
and because it is the result of the theorem rather than the proof that is im-
portant for us now in IR):  

Theorem 11.1. Given the following system of differential equations: 

)))(,),(()()((
1

),( ¦+−=
j

iijjjii
i

tzwtzftztIztF
µ

, 
 

 

where µi is a coefficient, consider the initial condition z(t0) = t0. If function 

F(t, z) is continuous in a region Ω ⊂ 2 ( 2 denotes the real plane), and 
function F(t, z) is a local Lipschitz contraction, i.e.,  

∀P ∈ Ω ∃Κ ⊂ Ω and ∃LK > 0 constant such that 

F(t,z1)−F(t,z2)≤ LKz1−z2, ∀(t,z1), (t,z2) ∈ Κ, 

then there exists a vicinity V0 ⊂ Ω of point (t0, z0) in which the equation has 
a unique solution satisfying the initial condition z(t0) = t0, which can be ob-
tained by successive numeric approximations.  
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Equation (11.32) gives the state of every neuron at time t. By al-
lowing time t to evolve, a sequence zi(t), i = 1,…,n, of states is obtained. 
This is referred to as the operation of ANN. Normally, an ANN evolves in 
time toward a state that does not change any further. This is called an equi-
librium and is given by  

dt

dz
i  = 0,  i = 1, 2,...,n. (11.33)

An important mode of operation of an ANN is known as the winner-take-
all (WTA) strategy, which reads as follows: only the neuron with the high-
est state will have output above zero; all the others are “suppressed.” In 
other words, WTA means selecting the neuron that has maximum state and 
deactivating all the others. Formally, the WTA can be expressed as  

(zi = 1 if zi = maxj zj) ∧ (zk = 0 if zk ≠ maxj zj). 

11.6.2 Associative Interaction Method 

Let (Fig. 11.11): 

• ∆ = {O1, O2,…,Oi,…,ON} denotes a set of Web pages of interest. Each 
page Oi is assigned an artificial neuron ℵi, i = 1,…,N. Thus, we may 
write ∆ = {ℵ1, ℵ2,…,ℵi,…,ℵN}. 

• Φi = {ℵkk = 1,…,ni} denotes the set of artificial neurons that are being 
influenced (i.e., synapsed, pointed to by) by ℵi, Φi ⊆ ∆. 

• Βi = {ℵjj = 1,…,mi} denotes the set of artificial neurons that influence 
(i.e., synapse to, point to) ℵi, Βi ⊆ ∆. 

 
 

Βi:       Φi: 
 ℵj    ℵi        ℵk  

 
Fig. 11.11. ℵ1, ℵ2,…,ℵi,…,ℵN form an artificial neural network. 

Φi={ℵkk=1,…,ni} denotes the set of artificial neurons that are being influenced 
by ℵi. Βi={ℵjj=1,…,mi} denotes the set of artificial neurons that influenceℵi 

 
 

The associative interaction method is derived from the generic equation 
(11.32) (Dominich et al 2006). As the objects to be searched are Web 
pages, no external input (i.e., from outside the Web) can be assumed, so 



11.6 The Associative Interaction Method      267 

we take Ii(t) = 0. One way to define fj is to consider the influence of a page 
j on another page i as being determined by the strengths of the connections 
that convey this influence, i.e., weights wij of the links between them. 
Equation (11.31) thus reduces to  

¦
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+−=
ij

iji
i wtz
dt

tdz
)(

)(  
 

(11.34) 

In order to simplify the expression, we introduce the notation: ¦
Β∈ℵ ij

ijw =Σ(i). 

It is known from the theory of differential equations (Theorem 11.1) that 
the solution of Eq. (11.34) has the general form  

zi(t) = Ce−t + Σ(i), (11.35) 

where C is a constant that depends on the initial condition.  
When the network operates for retrieval, activation spreading is taking 

place according to a WTA strategy. At any time step tu, u = 0, 1,…, exactly 
one neuron k ∈ {1,…,N}, i.e., the winner, is active; all the other neurons s 
∈ {1,…,k−1, k+1,…,N}, s ≠ k, are deactivated, i.e., zs(tu) = 0. Taking this 
initial condition into account, we express the activity level of any nonwin-
ner neuron s as  

zs(t) = (1 − ttue − )Σ(s). (11.36) 

If time t is allowed to increase, activity level zs(t) tends to stabilize on the 
total input value Σ(s) of that neuron s:  

)()(lim s
s

t
tz Σ=

→∞
. (11.37) 

At the next time step tu+1 of these neurons s, the winner will be the neuron 
p whose activity level zp exceeds the activity level zs of any other neuron s, 
i.e., zp ≥ zs, expressed as  

(1 − ttue − )Σ(p)  ≥ (1 − ttue − )Σ(s). (11.38) 

As t > tu, we have ttue − < 1, and so (1− ttue − ) is strictly positive. Hence, the 
winner condition zp ≥ zs becomes equivalent to Σ(p) ≥ Σ(s). In other words, 
the neuron with the highest total input will be the winner.  

Thus, from a practical point of view, the associative interaction method 
can be applied in the following way. 

Each Web page Wi is viewed as an artificial neuron and is associated 
with an ni-tuple of weights corresponding to its terms (obtained after 
stemming and stoplisting) tik, k = 1,…,ni. Given another page Wj, if term tjp, 
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p = 1,…,nj, occurs fijp times in Wi, then there is a link from Wi to Wj, and 
this may have the weight (normalized frequency weighting scheme) 

¦
=

k ik

ijp
ijp f

f
w . 

 
(11.39) 

 

If identifier tik occurs fikj times in Wj and dfik denotes the number of pages 
in which tik occurs, then there is another link from Wi to Wj, and this may 
have the weight (inverse document frequency weighting scheme) 

ik
ikjikj df

N
fw

2
log⋅= . 

 
(11.40) 

 

The total input to Wj is then 
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The other two connections—in the opposite direction—have the same 
meaning as above: 

• wjik corresponds to wijp.  
• wjpi corresponds to wikj.  

A query Q is considered a page; i.e., it is interlinked with pages (re-
ferred to as interaction between query and pages). The process of retrieval 
is as follows (Fig. 11.12):  

• A spreading of activation takes place according to a WTA strategy.  
• The activation is initiated at the query Q = oj, and spreads along the 

strongest total connection, thus passing onto another page, and so on.  
• After a finite number of steps, the spreading of activation reaches a page 

that was a winner earlier, giving rise to a loop (known as a reverberative 
circle) This is analogous to a “local memory” recalled by the query. 
(This process may be conceived as a process of association: some pages 
are associated to the given query). The pages that are retrieved are those 
that belong to the same reverberative circle.  

Figure 11.13 shows sampleand typicalplots of activity levels zs(t) 
for four neurons. It can be seen how activity levels asymptotically reach 
their limit, which is equal to the corresponding total input value: 1, 5, 3, 6. 
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Fig. 11.12. Associative interaction retrieval method (example). All links having 

the same direction between Q and o1 and Q and o3 are shown as a single arrow to 
simplify the drawing. The activation starts at Q and spreads over to o1 (total 

weight = 0 .33 + 0.33 + 0.47 + 0.3 = 1.43), then to o2, and then back to o1. o1 and 
o2 form a reverberative circle; hence o1 and o2 will be retrieved in response to Q. 
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Fig. 11.13. Sample plots of activity levels for four neurons in the associative  

interaction method during the operation for retrieval. It can be seen how activity 
levels asymptotically reach their limit, which is equal to the corresponding total 

input. The highest will be the winner. 
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11.6.3 Application of the Associative Interaction 

The associative interaction method is used by the Web metasearch engine 
I2Rmeta.5 Figure 11.14 shows the interface screen. 
 

 
Fig. 11.14. Interface screen of the Web metasearch engine I2Rmeta. 

11.7 Combined Methods 

Combined methods aim at computing the importance (used for ranking) of 
Web pages as a combination of the following:  

• Their importance stemming from their belonging to a network of pages 
(link importance or link-based evidence),  

• Their importance given by their content (referred to as intrinsic impor-
tance or content-based evidence). 

 In Tsikrika and Lalmas (2004), an overview of combined methods is 
given. It is also reported that, according to experimental results, considering 

                                                      
5
 www.dcs.vein.hu/CIR (Meta Search). 

Method in Web Retrieval 
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link importance is beneficial for finding a homepage but not for searching 
for a topic. The impact factor, connectivity, mutual citation, PageRank, 
HITS, SALSA, and associative-interaction (or other) methods can be used 
to compute a link importance for a Web page. 
 In what follows, we describe major combined importance methods  that 
are based on lattices. 

11.7.1 Similarity Merge 

It is worth recalling first an early method that combines link-based and 
content-based evidence as the sum of normalized deviations from mini-
mum (Fox and Shaw 1994). 
 
 
 
The combined importance Ψj for a Web page Wj of interest is computed 
using the equation 

Ψj = ¦
−
−

=

m

i

i

ss

ss
1

minmax

min , 

 

 

where 

• si is the importance of page Wj given by method i. 
• m > 1 is the number of methods used to calculate importance. 
• smin = min si, smax = max si 
       i.   

i 

The combined importance Ψj can be weighted (i.e., multiplied) by a factor 
M denoting the number of methods for which si ≠ 0.  
 
 
 In experimental results using the similarity merge method with vector 
space retrieval and HITS on the TREC WT10 test collection, the similarity 
merge method did not outperformed the vector space method. This might 
have been due to the characteristics of the WT10 collection, or to other 
causes (which were not analyzed). 
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11.7.2 Belief Network 

The probabilistic retrieval method based on Bayesian networks can be 
used to elaborate a combined method using content importance based on 
terms and authority/hub importance (Calado et al. 2003).  
 The basic Bayesian network is constructed in three versions: one for 
content-based evidence and two for two link-based evidence (one for hub 
and another for authority evidence) of a page Wj of interest (Fig. 11.15). 
 
 
 The combined importance Ψj for a Web page Wj of interest is computed 
as follows: 

Ψj = η⋅(1 − (1 − Cj)⋅(1 − Hj)⋅(1 − Aj)),  

where: 

• η is a normalizing parameter. 
• Cj is a content-based importance (given by the cosine similarity meas-

ure) of page Wj given a query Q. 
• Hj is a hub-based importance of page Wj. 
• Aj is an authority-based importance of page Wj.  

 

 Experimental results were reported as to the relevance effectiveness of 
the above method. A total of 5,939,061 pages from the Brazilian Web 
(domain.br) were automatically collected and indexed to obtain inverted 
file structures (number of terms: 2,669,965; average number of terms per 
page: 413). Fifty queries were selected from the most frequently asked 
100,000 queries6 (average number of terms per query: 1.8). Of these 28 
queries were general (e.g., movies), 14 queries were specialized (e.g., 
transgenic food), and 8 queries concerned music band names. The rele-
vance lists were compiled manually by human experts. A precise descrip-
tion of which page was relevant to which query was given to the assessors 
(e.g., for the query “employment” only pages with employment ads were 
considered to be relevant). When applied separately, the cosine measure 
outperformed both link-based methods. When content-based evidence was 
combined with authority-based evidence, the content-based only and the 
authority-based only methods were both outperformed. When content-
based evidence was combined with hub-based evidence, the content-based 
only and the hub-based only methods were both outperformed. The com-
bination of all three methods outperformed each method used separately. 
                                                      
6
www.todobr.com.br. 
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Bayesian network for content-based evidence of page Wj 

 

  
 
 
 
               . . .                       . . .  
 
 
 
 
 

Bayesian network for hub-based evidence Hj of page Wj 

 
  
 
 
 
               . . .                       . . .  
 
 
 
 
 

Bayesian network for authority-based evidence Aj of page Wj 

Fig. 11.15. Bayesian network types used in a belief network. 
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11.7.3 Inference Network 

The probabilistic retrieval method based on inference networks can be 
used to combine the link and intrinsic importance of a Web page (Tsikrika 
and Lalmas 2004).  
 
 
The retrieval method based on Bayesian (inference) networks is enhanced 
in the following way:  

• Dj corresponds to Web page Wj.  

• Probability is propagated using the weighted sum method. 

• An anchor window (i.e., the text inside a window of W bytes around the 
anchor text, typically N = 50, N = 100) is used as text describing the 
page to which it refers. 

• tk (k = 1,...,m) may denote 
- word 
- term 
- inlink 
- outlink 
 

 

 Extensive experimentation was carried out (on the WT2g TREC test da-
tabase) with the following results: 

• When tk are terms only, precision was highest. 
• When tk are inlinks only, precision was second highest. 
• When tk are outlinks only, precision was third highest. 
• Precision increases with the size W of the anchor window. 

As a particularly noteworthy experimental result, they emphasized the 
combination for tk that was better than the others (but the results were 
not consistent). 

11.7.4 Aggregated Method 

Using the notions of fuzzy algebra and fuzzy probability (Chapter 9), we 
present an aggregated method for Web retrieval (mainly for retrieval on a 
given site). 
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11.7.4.1 Content-Based Importance 

A Web page Wj may be interpreted as being a fuzzy set in a set T = 
{t1,…,tn} of terms, i.e., Wj = {(ti, ϕj(ti)) | ti ∈ T, i = 1,…,n}. Then, its fuzzy 
probability Pj is 
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i
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(11.42)

where p(ti) denotes a frequency-based probability of term ti. One way to 
compute it is as follows (“favorable cases over all cases”): 
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where: 

• n = number of terms.  
• N = number of Web pages.  
• ϕj(ti) = membership function (e.g., weight of term ti for page Wj). 
• fij = number of occurrences of term ti in Wj. 

Pj may be interpreted as being proportional to (or an indication of) the 
chance that the page is being selected or occurs (e.g., in a hit list) based on 
its content. The fuzzy probability of a page is equal to zero if the page does 
not have any content (is without meaning, the weights of its terms all being 
zero). The fuzzy probabilities Π = [P1,…,Pj,…,PN]T of all pages are given 
by the following matrix multiplication: Π = Φ × P, where Φ = (ϕji)N×n, P = 
[p(t1),…,p(ti),…,p(tn)]

T. 

11.7.4.2 Combined Importance Function 

A combined importance functionΨ of a Web page W is defined as being a 
function F of its link importance L (stemming from the link structure of the 
Web graph) and its intrinsic importance given by the fuzzy probability P:  

Ψ = Ψ (P, L). (11.44)

From a practical point of view, an analytic form for the combined impor-
tance function Ψ should be given. In this regard, the following assump-
tions (or axioms) seem reasonable:  

 Assumption 1. It seems straightforward to require that the combined 
importance of an isolated page without content be null: 
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Ψ (0, 0) = 0. (11.45)
 

Assumption 2. If a Web page does not carry any meaning (practically it 
does not have any content), i.e., P = 0, then its combined importance 
should vanish, even if it is highly linked Formally: 

Ψ (L, 0) = 0,  L ≠ 0. (11.46)
 
Note: This assumption may need further investigation, because, e.g., a hub 
page may be very useful even if it contains only links. 
 
 Assumption 3. Further, from zero link importance (L = 0) need not 
necessarily follow a vanishing combined importance Ψ if the fuzzy prob-
ability does not vanish (e.g., this may be the case of a “young” Web page 
that is an isolated node of the Web graph, but which may carry important 
meaning). Formally, 

Ψ (0, P) ≠ 0, P ≠ 0. (11.47)
 

Assumption 4. It seems natural to require that the combined importance 
of a page increase with its probability P for the same link importance L; 
the same should also hold for L. Formally, 

P1 < P2 � F(L, P1) < F(L, P2), 

L1 < L2 � F(L1, P) < F(L2, P). 

 

(11.48)

 One possible and simple analytical form for Ψ that satisfies Assumptions 
1–4 is  

)(),( aLaLL +=+=Ψ PPPP , (11.49)

where parameter a > 0 is introduced to “maintain” a balance between the 
probability-based importance P and link-based importance L when P hap-
pens to be much larger than L. It can be easily seen that Ψ satisfies all of 
the Assumptions 1–4. Figure 11.15 shows the plot (surface) of the com-
bined importance function Ψ defined by Eq. (11.49). 
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Fig. 11.16. Graphical representation of the combined importance function  

Ψ = PSI = PL + aP for a = 1 (The values on the L and P axes are grid points for 
scaling purposes; the L and P values are obtained by division by 10). 

11.7.4.3 Aggregated Method 

The following combined method may be proposed for computing the im-
portance of Web pages: 
 
 

Combined Method 
 

1. Construct the Web graph G for Web pages of interest, Wj,  
j = 1,…,N. 

2. Compute link importance Lj for every such Web page , Wj,  
j = 1,…,N. In principle, any method (connectivity, PageRank, HITS, 
SALSA, associative, or other) may be used. For example, using the 
PageRank method, we have 
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3. Construct a set of terms T = {t1,…,ti,…,tn}. 
4. Construct the term-page frequency matrix M: 

M = (fij)N×n. 

5. Compute probabilities p(ti) as follows: 
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6. Define membership functions ϕj(ti), j = 1,…,N; i = 1,…,n. For example,   
ϕj(ti) = wij, where the weight wij is calculated using a weighting scheme. 

7. Calculate the fuzzy probability Pj of every Web page Wj, j = 1,…,N:  
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8. Compute the combined importance Ψj for every Web page Wj  
(j = 1,…,N): 

Ψj = Lj Pj + aPj. 
 
 
The combined method can be used to for Web retrieval as follows: 

 
Aggregated Retrieval Method 

 
1. Given a query Q. 
2. Compute similarities between Q and Web pages Wj (j=1,…,N): 
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3. Construct the set of pages that matches the query: 

{Wj | ρj ≠ 0, j = 1,…, J}. 

4. Compute an aggregated importance Sj for Web pages Wj  (j=1,…,J):  
 

Sj = αΨj + βρj,  α,β parameters. 

5. Rank pages W1,…,WJ descendingly on their aggregated similarity  
S1,…,SJ to obtain a hit list H. 

6. Show the entire hit list H or part of it (use cut-off or threshold) to the  
user. 

 
 

In order to test the aggregated retrieval method, an experimental Web 
search engine was developed (in C++, Java, and MathCAD). It consisted 
of the following modules:  
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• Crawler  
• Indexer  
• Matrix generator 
• Retrieval and ranking module  

All the .html pages on the www.vein.hu domain (which is the site of the 
University of Pannonia, Veszprém, Hungary) were crawled, and 6551 
HTML Web pages were downloaded (as of  January 29, 2007). Terms 
were extracted automatically (anything between two consecutive blank 
spaces was considered to be a word), and the top 100 words were excluded 
(stopwords). The majority of the pages were written in Hungarian, while 
the rest were in English, German, and French. Thus, some 133,405 terms 
remained (in Hungarian, English, German, and French). The link impor-
tance of pages, L, was computed using the PageRank method with α = 0, β 
= 1, d = 1, and γ = 0. Membership function ϕ was taken to be the well-
known length-normalized term frequency weighting scheme. For the com-
putation of global importance Ψ, parameter a was set to a = 0.25, and for 
the aggregated importance S the parameter values used were α = 100,000 
and β = 0.5. These values for the parameters were established after several 
trials so as to obtain nonzero values for combined and aggregated impor-
tance (PageRank values were extremely small, and thus the combined im-
portance values would almost vanish, i.e., would be practically zero, oth-
erwise).  
 Other assumptions as well as combining and aggregating functions may 
be proposed and experiments done with them. The fine-tuning of the pa-
rameters may also be carried out in other ways, e.g., based on user feed-
back and/or some learning procedure. 

It is well known that the in vivo measurement of relevance effectiveness 
of a Web search engine poses several problems. For example, recall cannot 
be measured. Neither can precision, in many cases owing to the overly 
many hits returned, which are practically impossible to assess. Thus, such 
an evaluation should necessarily follow some reasonable compromise rela-
tive to some baseline or benchmark search engine. For example, in Thel-
wall and Vaughan (2004), users’ rankings were compared to those given 
by Google. In the present measurement, the retrieval and ranking produced 
by the experimental search engine was compared to those of Google, Alta-
vista, and Yahoo! All the searches were carried out on January 30, 2007. 
The queries and the results are given below. As our purpose is the com-
parison of hit lists with one another, it will be sufficient to give only the 
URLs of the hits returned. The hits (the first five that could be seen on the 
screen) were assessed for relevance manually. We note that while it was 
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possible to restrict the search to .html format in Altavista and Yahoo!, this 
was not possible in Google. 

Experiment 1. The query was: “nitrálás.” The hit lists were are as follows: 
Aggregated Method: 

www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VETKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2004-05-2/VEMKTC2214c.html 

Google: 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2004-05-2/VEMKTC2214c.html 

Altavista: 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VEMKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html 

Yahoo!: 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VETKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2003-04-2/VEMKTC2214c.html 
www.vein.hu/public_stuff/oik/tematikak/tematikak/2002-03-2/VEMKTC2214c.html 

Google returned only one result that was relevant. The same result was 
also returned by the aggregated method in the fourth position. Altavista and 
Yahoo! returned the same hits, all of which were relevant. The same three 
hits were all returned by the aggregated method, but ranked differently. In 
conclusion, the aggregated method returned the highest number of hits, all 
were relevant, and some of them were also returned by Google, Altavista, 
and Yahoo!. According to the results of Experiment 1, the following ranking 
in terms of relevance effectiveness of the four search engines were: 

1. Aggregated method 
2. Altavista, Yahoo! 
3. Google  

Experiment 2. The query was “supercomputer.” The hit lists returned 
were as follows: 

Aggregated Method 
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html 

Google (15 hits): 
 … 

www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html 
 … 

Altavista: 
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/Publikaciokkal_ka

pcsolatos_utmutato.doc 
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html 
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Yahoo!: 
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/Publikaciokkal_ka

pcsolatos_utmutato.doc 
www.vein.hu/oktatok/egyetemi_szervezetek/szemelyzetio/szem_oszt/szemelyzeti.html 

Google returned 15 hits of which all may be viewed as relevant. Out of 
these 15, the first six hits had .pdf format. The hit returned by the aggre-
gated method had rank seven in the Google list. Altavista and Yahoo! re-
turned the same hit list; all were relevant, and the first hit was in .doc for-
mat. Thus, one may conclude that all four search engines performed 
practically equally well: 

1. Altavista, Yahoo!, Google, Aggregated Method 

Experiment 3. The query was: “bizottság” (in English: “committee”). The 
hit lists returned were as follows: 

 
Aggregated Method 

www.vein.hu/belso/2004_2005_tanevi_ertesito/menus/etanacsmenu.html 
www.vein.hu/belso/2003_2004_tanevi_ertesito/menus/etanacsmenu.html 
http://www.vein.hu/www/intezetek/fdsz/generate.php?file_name=kepvisel.txt 
http://www.vein.hu/www/intezetek/fdsz/szak_szerv/menu.php 
www.vein.hu/oktatok/egyetemi_szervezetek/fotitkarsag/korlevelek/nre/valasztas.html 

Google (1030 hits): 
 …/index.php 

kulugy.vehok.vein.hu 
 www.vein.hu/library/iksz/serv/dos/szmsz.htm 

http://www.vein.hu/www/intezetek/fdsz/szak_szerv/nevsor.html 
www.vein.hu/oktatok/szabalyzatok/kozmuv.html 
 … 

Altavista (985 hits): 
 …/index.php 
 …/index.php 
 …/index.php 
 .../index.php 
 ….  

Yahoo! (889 hits): 
 …/index.php 
 …/index.php 
 …/index.php 
 .../index.php 
 ….  

All the hits returned by the aggregated method were relevant. The first 
three hits returned by Google were not relevant, whereas the fourth and 
fifth were relevant. The hits returned by Altavista and Yahoo! were not 
relevant. According to the results of Experiment 3, the following ranking 
in terms of relevance effectiveness of the four search engines were: 
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1. Aggregated method 
2. Google 
3. Altavista, Yahoo! 

In conclusion, these experimental results show that a retrieval and 
ranking based on the aggregated method can outperform commercial 
search engines such Google, Altavista, and Yahoo! (at least for single-term 
queries). 

11.8 Lattice-Based View of Web Ranking 

11.8.1 Web Lattice 

Let LWeb denote a set W = {W1,…,Wi,…,WN} of Web pages or a set S = 
{S1,…,Si,…,SN} of Web sites of interest. Then, set LWeb can be turned into a 
lattice as follows: 
 

1. 0 = ∅. 
2. 1 = W (or S ). 
3. The meet ∧ and join ∨ operations are shown in Fig. 11.17. 
 
If the Web lattice is a site lattice LS, then, in the site graph, there is an 

edge from site si to site sj if site si has a page pointing to a page situated on 
site sj.  
 Matrices M used in link analysis methods are defined for the Web lattice 
LWeb. It can be easily seen that lattice LWeb is modular and not distributive. 
 

 
 

(a) 

1 

0 

W1 
Wi WN . . . . . . 

Fig. 11.17. Lattices LWeb of (a) Web pages and (b) of Web sites. 
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 (b) 
 

Fig. 11.17. (Continued) 

11.8.2 Chain 

Let (A, ≤) be a poset. Then, poset (A, ≤) is said to be completely ordered if 
any two of its elements can be compared with one another, i.e, a, b ∈ A 
we have either a ≤ b or a ≥ b or a = b.  

Example 11.7 

The set  of real numbers is a completely ordered set with respect to the 
relation ≤.  

 Let  be a subset of a poset A,  ⊆ A. If  is completely ordered, then it 
is called a chain. It can be shown that: 

Theorem 11.2. Any chain is a lattice. 

 Proof. We know that the lattice is a poset in which any two elements 

have an infimum and a supremum. Let  be a chain. Then, any two of its 
elements, a and b, are comparable. Without restricting generality, let a ≤ b. 
Then, sup {a, b} = b, inf {a, b} = a.  

 From Theorem 11.2, it follows that any subset R of the set  of real 

numbers, R ⊂ , is a chain (with respect to ≤), and also a lattice. 
 The methods described in Sections 11.2–11.7 allow for computing page 
importance, which makes the ranking of a set W = {W1,…,Wi,…,WN} of 
Web pages possible. Formally, let Ii denote the importance of page Wi 
computed by some method (i = 1,…,N). Because Ii is a real number, i.e., Ii 

1 

0 

S1 
Si SN . . . . . . 

 ∀



284      11 Web Retrieval and Ranking 

∈ , i = 1,…,N, it follows that (Theorem 11.2) set {I1,…,IN} ⊂  is a 
chain and hence a lattice.  

11.8.3 Ranking 

Ranking in Web retrieval can be formally defined as follows: 

Definition 11.1. Given a lattice LWeb. Ranking is a lattice-lattice function ρ 

from a Web lattice LWeb to a chain R ⊂ :  

ρ : LWeb → R, ρ(A) = r, ∀A ∈ LWeb, 

where the lattice-lattice function ρ gives the importance of A.  
 
 We may assume, without restricting generality, that R = [0; 1]. It can be 
shown that ranking has the following property: 

Theorem 11.3. Ranking is not submodular. 

 Proof. The submodularity condition is as follows: 

ρ(x ∨1 y) ∨2 ρ(x ∧1 y) ≤ ρ(x) ∨2 ρ( y), 

where ∨1 and ∧1 are the join and meet defined in lattice LWeb, and ∨2 is the 
join defined in the chain lattice [0; 1]. Let ρ(W1) = r1 and ρ(W2) = r2. We 
can assume that ρ(1) = 1 (i.e., the whole Web is ranked highest) and ρ(0) 
= 0 (i.e., the empty set is ranked lowest). If we take x = W1 and y = W2, we 
obtain  

ρ(W1 ∨1 W2) ∨2 ρ(W1 ∧1 yW2) = ρ(1) ∨2 ρ(0) = 1, 

which is not less than or equal to 

ρ(W1) ∨2 ρ(W2) = max (r1, r2).   

The proof is similar for lattice LS.  

11.8.4 Global Ranking 

By taking the direct product of lattices LWeb and L’Web, a new lattice is ob-
tained. We have the following possibilities:  

(a) LWeb = LW and L’Web = LW’. 
(b) LWeb = LW and L’Web = LS. 
(c) LWeb = LS and L’Web = LS’. 
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Figure 11.18 shows an example for the direct product LW × LS between a 
page lattice LW and a site lattice LS. 

 

 
 

 
Fig. 11.18. Direct product of a page lattice and a site lattice (example). 

 

Figure 11.19 shows an example for the direct product LW × LW’ between 
two page lattices. 
 

 
 

Fig. 11.19. Direct product of two page lattices (example). 
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 Taking into account the meet and join operations in the direct product 
lattice, we can define a global ranking for the direct product of two Web 
lattices in a general way as follows: 

Definition 11.2. Let ρ : LWeb → [0; 1] and ρ′ : L′Web → [0; 1] be two rank-
ings. A global ranking is the lattice-lattice function 

γ : LWeb × L’Web → [0; 1],  
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°
®
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It can be shown that global ranking has the following property: 

Theorem 11.4. Global ranking is not submodular. 

 Proof. The submodularity condition is 

γ (x ∨1 y) ∨2 γ (x ∧1 y) ≤ γ (x) ∨2 γ ( y). 

Let ρ(AB) = r1 and ρ(BC) = r2. If we take x = AB and y = CD, we obtain  

γ (AB ∨1 BC) ∨2 γ (AB ∧1 BC) = γ (1) ∨2 γ (B) = 

ρ(1) ∨2 ρ’(B) = max (ρ(1), ρ’(B)) = max (1, ρ’(B)) = 1, 

which is not less than or equal to 

γ (AB) ∨2 γ (BC) = max (γ (AB), γ (BC)).  

 Let W ∈ LW, S ∈ LS, and W be on site S. As global ranking is not sub-
modular, we should have 

γ (W ∨1 S) ∨2 γ (W ∧1 S) > γ (W) ∨2 γ (S) 

γ (WS) > max (ρ(W), ρ’(S)). 
(11.50)

Element “WS” is interpreted as viewing page W at a global level (of the en-
tire Web), not just at the level of site S to which it belongs. Hence, γ (WS) 
may represent a means of computing an importance at Web level for a 
page W also taking into account the importance of the site the page belongs 
to and without having to manipulate the graph of the entire Web. 
 We can suggest the following global ranking method: 
 
 







11.8 Lattice-Based View of Web Ranking      287 

 
Global Ranking Method 

 
1. Let LW and LS be two Web lattices (W∈LW , ∃S ∈ LS: W ∈ S). 

2. Use a method to produce rankings ρW and ρ’S. 

3. Compute the global importance γ(W) for every page W using the 
global ranking function γ for the direct product lattice LW × LS :  

γ (X) = f(X, a, b), 

where a and b are real parameters. 
 
 
From a practical point of view, the really useful case is when X is equal 

to a page and a site, i.e., X = AB, where A is a page and B is a site. In such 
a case, we can use the following form for γ (X): 

γ (X) = γ (AB) = aρ(A) + bρ’(B), 

A ∈ LW, B ∈ LS. 
(11.51)

i.e., we can utilize a linear (weighted) combination of importances (or 
some other form that can be defined and fine-tuned experimentally). 
 Aberer and Wu (2003) reported experimental results for a version of the 
global ranking method (the exact values of parameters a and b were not 
reported; these were adjusted and tuned experimentally). The ranked hit 
lists they obtained were compared with each other using the Spearman 
footrule equation: 

,|)()(|
0

10¦ −
=

n

i
iRiR  (11.52)

where R0(i) and R1(i) denote the rank of page (site) i. The results obtained 
showed that using global ranking yielded rankings that were at least as 
good as those using a link analysis method globally. The rankings were 
also at least as good as those obtained by the Google search engine. 

The global ranking method has the following advantages over tradi-
tional methods: 

1. Global ranking can be obtained from local rankings (e.g., some link 
analysis method is applied to rank the pages on a site and to rank 
sites, and then a ranking for pages can be obtained without manipulat-
ing larger graphs). 

2. Owing to point 1, both running time and disk space (memory) is saved. 
This is very important because computation costs are prohibitively 
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high (the size of the Web is increasing very rapidly, approximately 
exponentially). For example, one does not have to apply a traditional 
link analysis method for the entire Web.  

3. The Global ranking method allows for computing rankings in a dis-
tributed fashion, and thus better scalability can be achieved. 

4. The ranking function for the site lattice LS need not be computed very 
frequently because intersite links change at a slower rate than inter-
page links. 

5. If interpage links change, then only the affected page lattice LW has to 
be recomputed. 

6. Algebraic equivalences and other mathematical properties can be ex-
ploited in order to find alternative rankings. 

7. Relevance feedback from users can be more easily included and taken 
into account because recomputation refers only to the affected Web 
lattice (not to the whole Web), or it can used to fine-tune the global 
ranking function γ. 

8. The information provided by hub sites can be used to enhance the 
global ranking function γ. 

11.8.5 Structure-Based Ranking 

The ranked hit list returned by a Web search engine is typically very long. 
This may frustrate the user if he/she wants to assess all the corresponding 
pages. Further, the hit list fails to indicate how a relevant page is related to 
the site to which it belongs. Similarly, at the page level, the structure of the 
page could help the user better assess its content or relevance.  
 A solution to these problems is described in what follows. We first prove 
that: 

Theorem 11.5. Any tree can be transformed into a lattice. 

Proof. Let T = (V, E) denote a tree (i.e., a connected and acyclic graph). 
Let V = {root, v1, v2,...,vn} denote the vertices of tree T.  

A lattice (L , ∧, ∨) can be constructed in the following way: 
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• The elements of the lattice are L = V ∪ {0}, where 0 denotes the null 
element. 

• root = 1. 

• The meet vi ∧ vj = 0, if vi and vj are leaves (i ≠ j). 

• The meet vi ∧ vj is obtained by following paths downward to the first ver-
tex where the two paths intersect [if vi and vj are not both leaves (i ≠ j)]. 

• The join ∨ of any two elements is given by following the paths upward 
to the first vertex where they intersect.  

  Next, we prove that: 

Theorem 11.6. Any document can be transformed into a lattice. 

 Proof. Any document has a well-defined structure consisting of sec-
tions organized into a hierarchy. For example: document, part(s), chap-
ter(s), part(s), paragraph(s), sentence(s).  
 

root = 1

0
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Formally, the hierarchy of sections is a tree. Thus (Theorem 11.5), the 
structure of any document can be transformed into a lattice.  

A graphical representation of the document tree, called DocBall, is pro-
posed in Vegas et al. (2007) (Fig. 11.20): 

• DocBall consists of concentric rings. 
• The innermost (central) ring corresponds to the root, i.e., to the docu-

ment (as a whole) being considered. 
• The outermost ring is divided into sections corresponding to the leaves 

of the document (i.e., to the basic structural elements). 
• The remaining rings are divided into sections s according to the remain-

ing tree vertices. Every section is defined as a triple s = (l, a, b), where l 
denotes the level of the section, a is the angular degree where the sec-
tion begins (the origin of DocBall is at 12 o’clock), and b is the angular 
degree where the section ends.  

 

Part 1

Chapter 1 Chapter 2

Part 1 Part 2 Part 1

Document

Part 2 
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Fig. 11.20. DocBall representation of a document. 

 
 A section sj = (lj, aj, bj) is said to be the ancestor of section si = (li, ai, bi), 
which is expressed as sj ≤ si, if ai ≤ aj and bj ≤ bi. 
 It can be shown that there is a connection between DocBall and concept 
lattices: 

Theorem 11.7. The notions of ancestor (in DocBall) and subconcept (in 
concept lattice) are equivalent to each other. 

 Proof. Let s = (l, a, b) denote a section in a DocBall, and C = (A, B) a 
concept in a concept lattice. With the correspondences 

• s ↔ C 
• b ↔ A 
• a ↔ B 
• ≤ ↔ ⊆ 

the definition of the notion of ancestor, i.e., 

DOCUMENT: D 
Chapter 1: C1 

Par 1: P1 
Par 2: P2 

Chapter 2: C2 
Par 1: P1 

D C1C2

P1

P2

P1 
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sj ≤ si  ⇔  (ai ≤ aj and bj ≤ bi), 

and the definition of the notion of subconcept, 

Cj ⊆ Ci  ⇔  (Bi ⊆ Bj and Aj ⊆ Ai), 

are equivalent.  

 It can be shown that a Web site S (e.g., any URL ending with the sym-
bol ‘/’) can be transformed into a lattice. 

Theorem 11.8. Let S denote a Web site, and let W1,…,Wn be the pages on 
it. Then, the structure of S can be transformed into a lattice. 

 Proof. Let GS denote the Web graph of site S. Using BFS (breadth-first-
search) or DFS (depth-first-search) yields a spanning tree of graph GS. Ac-
cording to Theorem 11.5, GS can be transformed into a lattice.  

 Vegas et al. (2007) noted that based on experimental results, BFS yields 
a tree that is a more adequate and realistic representation of the structure of 
the site. Theorem 11.8 can be used to design methods for the computation 
of the importance of a single site (and, thus, using the aggregated method, 
for Web pages as well) taking into account the meet and join operations in 
the site lattice to propagate page importance through the lattice up to the 
site. A very simple, but practical, method is to compute the importance ρS 
of the site as the average of importances ρi of its pages Wi as follows:  

ρS = ¦
=

n

i
in 1

1 ρ . (11.53)

11.9 P2P Retrieval 

11.9.1 P2P Network 

A peer-to-peer (briefly P2P) network is a computer network in which each 
computer (workstation) has equal “rights” (capabilities) and “duties” (re-
sponsibilities), as opposed to the client/server network (in which some 
computers, the servers, are dedicated to serve other computers, the clients). 
In other words, one may say that in a P2P network every computer is both 
a server and a client at the same time. 
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On the Internet, a P2P network allows a group of computers (and thus 
their users as well) running the same network software to connect with one 
another and access one another’s information. One widely used P2P net-
work software is Gnutellanet.7 The network program stores the IP ad-
dresses of the participating computers, and thus all users who are online 
connect to one another. (Another P2P network software is Napster.) 

One of the advantages of a P2P network is that, e.g., the employees of 
an organization (company) can share data (e.g., files) without the need to 
have a central server. One of the disadvantages of a P2P network is that 
major producers of content (e.g., record companies) are concerned about 
illegal sharing of copyrighted material (e.g., music) over a P2P network. 

11.9.2 Information Retrieval 

Each peer has a repository of information (texts, audio, video, etc.). When 
a query is initiated at one of the peers, it is sent to the other peers. These 
peers generate hit lists from their own repositories in response to the query 
they receive, and then send them to the peer that initiated the query.  
 Information retrieval in a P2P network has a number of characteristics: 

• There is no central repository (as, e.g., in a traditional IR system), 
• A large quantity of data can be added to and deleted from the network in 

an ad hoc manner, 
• Computers enter and leave the network in an ad hoc way. 

 The way in which peers generate hit lists varies, e.g., using keyword 
match (Boolean retrieval with AND-ed query) or some other method.  
 What is really specific to P2P retrieval is the way in which the query is 
sent over the network (i.e., from the querying computer to peer com-
puters). Several of the methods that are utilized (Kalogeraki et al. 2002) 
are described briefly below. 

11.9.2.1 BFS Method 

In the BFS method the querying node (computer) sends the query to all its 
neighbor peers. When a neighbor receives the query, it sends it to other 
peers, generates its own hit list from its repository, and sends it to the que-
rying peer. The BFS method is simple. However, it is very resource de-
manding: the query is sent along all paths, so a low bandwidth node can 

                                                      
7
 http://www.gnutella.com. 
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considerably reduce retrieval time. (Flooding can be avoided or prevented 
by assigning a TTL, time-to-live, parameter to the query.) 

11.9.2.2 RBFS Method 

In the RBFS (random breadth first search) method, the querying peer does 
not send the query to all its neighbors, only to randomly selected ones, 
e.g., to half of them selected at random. This, of course, has the advantage 
of being faster than the BFS method, but important nodes may never be 
reached (disadvantage). 

11.9.2.3 ISM Method 

In the ISM (intelligent search mechanism) method, each peer keeps a pro-
file of its neighboring peers. The profile contains the queries (typically, the 
last N queries) and the corresponding hit lists that the neighboring peers 
have answered. At the same time, every peer produces a ranking of its 
neighboring peers in order to decide to which ones a new query should be 
forwarded. Ranking is produced using a similarity measure Si between it-
self and peer i (the peer of interest). The similarity measure is computed as 
follows. Given a new query q originated at a peer, the cosine measure (or 
other measure) cij is calculated between q and all queries j in the profile of 
peer i. Every cij is multiplied by the corresponding number nj of hits to 
query j, and then the products are added up, i.e., Si = ¦ j iij

ncα , where α is a 

parameter that allows increasing the weight of most similar queries (and 
should be tuned manually). The querying peer ranks its neighbors i on their 
scores Si, and sends the query to those highly ranked. The ISM method 
works well when peers store specialized information. As search may get 
locked in a cycle, it is recommended that a few randomly chosen peers 
(apart from those chosen based on Si) also receive the query. 

11.9.2.4 >RES Method 

In the >RES (the most results in past) method, the querying peer sends the 
query to the peers that returned the highest number of hits for the last M 
queries. 

11.9.2.5 HDS Method 

The HDS (high degree seeking) method exploits the power law property of 
the peer graph. First an arbitrary node is chosen, and then a node with a 
degree higher than the current node. Once the highest-degree node has 
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been found, a node having second highest degree will be chosen, and so 
on. The query is iteratively sent to all the nodes in a neighborhood of the 
current node until a match is found. This broadcasting is costly in terms of 
bandwidth. If every node keeps adequate information (e.g., file names) 
about its first and second neighbors, then HDS proves useful. As storage is 
likely to remain less expensive than bandwidth, and since network satura-
tion is a weakness of P2P, HDS can be an efficient alternative to exhaus-
tive searching. Adamic et al. (2003) showed that the expected degree E(α, 
n) of the richest neighbor of a node having degree n is given by 

E(α, n) = ¦ +−+
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(11.54) 

where N denotes the number of peers and α is the power law exponent. 
Figure 11.21 shows simulation results for the ratio E(α, n)/n for different 
values of α. 
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Fig. 11.21. Simulation of the ratio of the expected degree of the richest neighbor 
of a node with degree n for different values of the power law exponent alpha. The 

total number of nodes is equal to 100,000,000. 
 

It can be seen that for a power law exponent between 2 and 2.3, the 
chance of finding a richer neighbor is higher than the degree of the node it-
self within a relatively large interval of degree values, which means that 
HDS can be applied nontrivially. (As the exponent is fairly robust, 



296      11 Web Retrieval and Ranking 

11.9.3 Lattice-Based Indexing 

In order for a peer to produce a hit list in response to a query q, a similarity 
measure between q and documents stored in its repository should be com-
puted. Toward this end, the technology presented in Chapter 4 can be used 
to compute term weights. Extracting terms from documents in the reposi-
tory can yield a number of terms that may be too large for a P2P network 
(superfluous terms, strict bound on the size of posting lists, high bandwidth 
consumption).  
 In order to ameliorate problems caused by too many terms, one can use a 
document-based indexing method based on lattices (Skobeltsyn et al. 
2007). 

11.9.3.1 Document-Based Indexing 

Initially, the peers build an index together that contains very discriminative 
terms. Such terms can be determined in several ways. One possibility is to 
use the term discrimination model (TDM) introduced in Salton et al. 
(1974, 1975a). TDM is based on the underlying assumption that a “good” 
term causes the greatest possible separation of documents in space, 
whereas a “poor” term makes it difficult to distinguish one document from 
another. Each term of interest is assigned a term discrimination value 
(TDV) defined as the difference between space “densities” before and after 
removing that term. The space density ∆ is defined as an average pairwise 
similarity ρ between documents D1,...,Dm: 
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Alternatively, space density ∆ can be computedfasteras the average 
similarity between documents and a centroid document (defined as one in 
which terms have frequencies equal to their average frequencies across the 
collection of documents). Let ∆bk and ∆ak denote the space densities before 
and after removing term tk, respectively. Then, the TDVk of term tk is de-
fined as TDVk = ∆bk − ∆ak. The best discriminators generally have positive 
TDVs, whereas the worst discriminators usually have negative TDVs. 

HDS-based crawling may have a theoretical justification in the golden sec-
tion (see Section 11.1).  
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Terms having TDVs around zero do not modify space density significantly 
when used as index terms. TDV can be used to decide which terms should 
be used as index terms. Based on experimental reults, terms with average 
document frequencies (between approximately m/100 and m/10) usually 
have positive TDVs, and can be used directly for indexing purposes. 
Terms whose document frequency is too high generally have negative 
TDVs, and are the worst discriminators. Too rare or specific terms have 
TDVs near zero and should not be used directly as index terms. 
 Another method to compute term discrimination values is based on the 
notion of entropy and given in Dominich et al. (2004):  
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where m is the number of documents and ρk is the similarity between a 
term of interest and document k. The higher the entropy H of a term, the 
better its discrimination power. 

11.9.3.2 Query Lattice-Based Indexing 

The index will be gradually enriched by query terms at retrieval time using 
the following method (Fig. 11.22).  

1. When a query q = {t1,…,tn} (where t1,…,tn are the query terms) origi-
nates at a peer, the peer generates the Boolean algebra of query terms 
t1,…,tn, i.e., (℘({t1,…,tn}), ⊆). 

2. Then, the peer starts exploring the query lattice from the supremum 1 
= {t1,…,tn} in decreasing subset size order to single terms.  

3. For every node in the lattice, the querying peer requests hit lists from 
other peers.  

4. If the node is indexed in a peer, then the nodes whose join that node 
is will be skipped.  

5. If two nodes are not indexed in any peer, then their meet will still be 
sent out to peers for retrieval.  

6. After exploring the entire query lattice, the querying peer makes the 
union of all the hit lists received, and reranks the documents against 
the query (using some ranking method).  
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7. When a peer recognizes that a query term (or lattice node) is a new 
term (i.e., it is not in the index), then it sends an indexing request to 
other peers that can include it in their indexes. Thus, that term (or lat-
tice node) can be used in retrieval for a new query in future. This on-
demand indexing mechanism can also, or only, be performed for 
popular terms (i.e., for terms that are considered to be popular in 
some sense, e.g., they have been used frequently). 

 

Fig. 11.22. Query lattice used in P2P indexing. 

11.10 Exercises and Problems 

1. Let M denote a Web graph. Represent it as an array, an adjacency list, or 
using some other method. Observe which representation method requires 
the least amount of memory. 

2. Let W denote a portion of the Web and M the Web graph of W. Modify 
W so as to contain weighted links. 

3. According to experimental results accumulated so far, the Web power 
law (for page degree distribution) is characterized by a robust exponent 
value around 2.5. Check the validity of this result by performing your own 
experiment. 

4. Show that the connectivity method (Section 11.2) yields equal rank val-
ues when the Web graph W is a bipartite graph (hubs and authorities) with 
vertices having equal degrees. 

5. Modify the connectivity method so as to obtain useful ranking for a 
Web graph W as in Exercise 4. 

t1,...tn 

t1,...tn-1 t2,...tn 

t1 t2 . . . tn 

. . . 

.   .   .    .     .     .     .     .    .     .     .     .     .     .    .     .     .    . 
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6. Given a Web graph W. Calculate the importance of pages using: (i) the 
mutual citation method, and (ii) the PageRank method. Analyze the differ-
ences in the importance values obtained.  

7. You are given a Web portion containing only pages with zero outdegree. 
Compute link importance for these pages. 

8. Let W denote: (i) a citation graph of authors; (ii) a partnership graph 
(vertex: partner, and there is an arc from partner pi to partner pj if pi is us-
ing a product made by pj); (iii) a “who knows who” graph. Compute the 
importance of authors, partners, and persons using several link analysis 
methods. Discuss the results obtained. 

9. Prove that in the associative interaction method there will always be at 
least one reverberative circle. 

10. Given a Web graph W. Apply the similarity merge method to compute 
the combined importance Ψ, also using a weighted version. Discuss the re-
sults obtained and experiment with several weightings. 

11. Show that in the belief network method importance Ψ reduces to the 
normalizing parameter if the cosine measure is equal to 1. 

12. Show that function Ψ = PeL is also a combined importance function 
that can be used in the aggregated method. Experiment with this combined 
importance function using a Web portion of your choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2 

2.4.1. It is a proposition if either the value true (T) or false (F) can be as-
signed to it for certain. But is this sure? Discussion. 

 
2.4.2. It depends on what is being asserted, i.e., on what the emphasis is 
on: is it on sun or on shining? 
 
2.4.3. Identify the logical structure of the sentence. Let P = “John is liar,” 
and Q = “Peter is a truth teller.” Take into account the definition of impli-
cation P � Q. 
 
2.4.4. Identify the logical structure of the sentence (P � Q). Use formal 
implication to write the sentence and then also use conjunction. 
 
2.4.5. Formulate a logical expression using the terms given. Pay attention 
to negating what you are not interested in (namely Web ranking method). 
For example, waltz AND rock-and-roll AND NOT(Web ranking method). 
 
2.4.6. You obtain two posets (one on the date and the other on the title 
length). What you should observe as an interesting and practically impor-
tant fact is that the two posets are different (in general). 
 
2.4.7. For example, you can order the toys by color, by shape, by function, 
by dimension (according to childrens’ needs, pedagogical considerations, 
storing requirements). 
 
2.4.8. Denote the number of occurrences of term Ti in the entire set B of 
Web pages (or books) by 1, 2,...,ni. There are ni classes (why?). If this par-
titioning is performed for every term (i.e., i = 1, 2,...,m), there will be cor-
responding partitions. In general, different partitions are obtained. 
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2.4.9. Because any element in a set occurs at most once, the collection 
B1,…,Bn forms a set only if every page (book) occurs only once. As this is 
usually not true (there are books or Web pages that are held in several cop-
ies), they do not generally form a set. 

Chapter 3 

3.12.1. Verify the validity of conditions (3.15) in Definition 3.2. 
 
3.12.2. We introduce the smallest element, 0, and the largest element, 1. 
Thus, the set {0, t1, t2, t3, 1} is obtained. Case (i):  
 

 
In a similar manner, cases (ii)–(iv). 

 
3.12.3. Sufficiency: X ∨ (Y ∧ Z) = X ∨ (Z ∧ X) = X,  (X ∨ Y) ∧ (X ∨ Z) = (X 
∨ X) ∧ (Z ∨ Y) = X ∧ (Z ∨ X) = X. Necessity can be proved in a similar 
manner. 
 
3.12.4. Show that the distributive law Eq. (3.15) does not hold. 
 
3.12.5. Let P denote the set of all distinct publications (e.g., their ISBN 
numbers). Use the notion of powerset ordered by set inclusion. 
 
3.12.6. The thesaurus may be viewed as being a poset. A poset is a lattice 
if any two of its elements have a supremum and an infimum. Analyze and 
discuss when these properties hold. 
 
3.12.7. See problem 3.12.6. 

t1              t2
               t3 

0 

1 
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3.12.8. In general, no. For example, antisymmetry need not be satisfied. 
Check when the axioms of lattice are satisfied. 
 
3.12.9. Yes. It is finite, so it is complete, etc. 
 
3.12.10. Yes (subset of the Cartesian product W × W). Let wi → wj ⇔ wi ≤ 
wj. Does any pair of pages have a supremum and infimum? 
 
3.12.11. Check the validity of the corresponding definitions. 

Chapter 4 

4.11.1. Identify the terms first and then count the occurrence of each. Ap-
proximate C and α. Discussion. 
 
4.11.2. Measure running time using built-in functions of the programming 
language you use. Store the term-document matrix using different formats, 
e.g., adjacency list, binary coding (for Boolean matrix, etc.). Observe 
whether economical storage and matrix operations are directly or indirectly 
proportional to each other. Discussion. 
 
4.11.3. First do a literature search and follow that by your own experience. 
Discuss the Web characteristics learned or discovered. 
 
4.11.4. The problem is straightforward. However, if, e.g., the precision-
recall graph you obtain is not decreasing, then (very probably) something 
must have gone wrong. 

Chapter 5 

5.5.1. Use the method given in Section 5.3.2. 
 
5.4.2. Verify the distributive law, or use Theorem 5.4. 
 
5.5.3. Analyze several concept lattices. 
 
5.5.4. See Section 5.1.1. 
 
5.5.5. Verify the distributive law, or use Theorem 5.4 or Exercise 5.5.2. 
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Chapter 6 

6.4.1. Identify terms, e.g., route planner, Europe, car. Build a Boolean ex-
pression using the terms. 
 
6.4.2. Identify terms, e.g., opening hours, chair, museum, United Kingdom, 
car seat, chair of organization. Build a Boolean expression using the terms. 
 
6.4.3. Both the Boolean method and the selection operator are based on 
Boolean expressions. Observe the data on which they operate. 
 
6.4.4. Use the technology described in Chapter 4 to select index terms T, 
and then build the lattice ℘(T). Experiment with different queries. 
 
6.4.5. See problem 6.4.4. 
 
6.4.6. See problems 6.4.4 and 6.4.5. Pay attention to identifying terms 
(they are special medical terms, so use domain knowledge, e.g., medical 
dictionary being assisted by a neuroradiologist). 

Chapter 7 

7.13.1. Check the validity of axioms defining a metric. 
 
7.13.2. Let D = {d1,…,di,…,dn}, di ∈℘(T). Take | |di| − |dj| |, where |di| and 
|dj| denote lengths (number of terms, cardinality) of documents. 
 
7.13.3. Verify the validity of the axioms of a metric. 
 
7.13.4. Verify the validity of the axioms of a linear space. (The answer is 
no.) 
 
7.13.5. Verify the validity of the axioms of a metric. 
 
7.13.7. En is a Euclidean space; hence it is also a Hilbert space. The closed 
subspaces of any Hilbert space form a lattice, and because En is finite, this 
lattice is modular. 
 
7.13.8. For example, col(W). Use the Gram-Schmidt procedure starting 
from the columns of W. Use Example 7.11.  
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7.13.9. Verify the definition of a linear operator (Section 7.5). Verify 
whether it is self-adjoint (Section 7.10). 

Chapter 8 

8.7.1. You should note different rankings depending on the weighting 
scheme and similarity measure used. 
 
8.7.2. Comment on the hit lists obtained as to their relevance to your re-
quest. 
 
8.7.3. Observe whether length normalization has an effect on ranking. 
 
8.7.4. Use Definition 8.1. Note that this also depends on the choice of 
terms you use. 
 
8.7.5. Use Theorem 8.4 and Definition 8.2. 

Chapter 9 

9.9.1. Write it, e.g., for the three- or two-dimensional case first. Then, gen-
eralize. 
 
9.9.2. Use Eq. (9.4) for each column of W. 
 
9.9.3. Use Eq. (9.6). 
 
9.9.4. Use the corresponding definitions. 
 
9.9.5. Apply technologies described in Chapter 4 and use the precision-
recall graph method. 
 
9.9.6. Same as problem 9.9.5. 
 
9.9.7. Same as problem 9.9.6. 
 
9.9.8. For example, use a distribution function for term occurrences across 
documents. 

Solutions to Exercises and Problems       305 



Chapter 10 

10.7.1. fi / Σi fi.  
 
10.7.2. Use the definition of probability measure (Section 10.1) and Eq. 
(10.9). 

Chapter 11 

11.9.2. See Section 11.1 (in M, the entry is equal to a weight instead of 1).
 
11.9.3. See Section 11.1.1, and Chapter 4, for fitting the power law curve. 
 
11.9.4. See the connectivity method (Section 11.2). 
 
11.9.5. When retrieving, using the Boolean method, matching pages, de-
termine the frequency (number of occurrences) of query terms, and use 
these in ranking. 
 
11.9.7. Importance can be calculated in several ways. For example, if 
pages have nonzero indegree, this can be used to rank them. Another way 
is to apply the PageRank method with dangling pages.  
 
11.9.8. Define matrix M for the method chosen, and then apply the 
method. 
 
11.9.9. See Section 11.6.2. 
 
11.9.10. The weighted version is  

¦ −
−

=Ψ
i

i
i ss

ss
a

minmax

min , 

where ai is a weight reflecting the importance of method i. 
 
11.9.11. Use the equation for the belief network method. 
 
11.9.12. Show that Assumptions 1–4 are satisfied.  
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