Programming Knowledge
with Frames and Logic

Part 2: Programming

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

3. Getting Around FLORA-2

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Color Codes

Black — what the user types
Red — FLORA-2 prompt

* Green — FLORA-2 responses
* Blue — comments

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Getting Started

* After installing:
/runflora in Unix/Cygwin
Arunflora in Windows

...some chatter...
flora2 ? -

* In Unix recommend putting this in .bashrc:

alias flora='~/FLORA/flora2/runflora‘
assuming that FLORA-2 was installed in ~/FLORA

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Compiling Programs

* Program files are expected to have the extension .flr

— .fIr doesn’t need to be specified when compiling programs.

* The following will load and, if necessary, compile:
— Load a file in the current directory
flora2 ?- [test].
Or
flora2 ?- \load (test).
— Load a file in /foo/bar/
flora2 ?- ['/foo/bar/test’]. Windows: [’\\foo\\bar\\test’]

Or
flora2 ?- \load (' /foo/bar/test”).
... chatter ...
flora2 ? - Now ready to accept commands and queries

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Temporary Programs

* Usetul for quick tests

* (Can write a program in-line and compile it

flora2 ?2- | |. // one underscore is treated specially
[FLORA: Type in FLORA program statements; Ctl-D when done]
alb ->c].

Ctl-D in Unix

Ctl-Z <Return> in Windows/Cygwin

... Chatter ...

flora2 ? - Now ready to accept commands and queries

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Asking Queries

* Once a program is loaded, you can start asking
queries:

flora2 ?- mary[works -> ?Where].
?Where = home

flora2 ? -

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Important Commands at the FLORA-2 Shell

flora2 ?- \end. (or Ctl-D/Ctl-Z) Drop into Prolog
flora2 ?- \halt. Quit FLORA-2 & Prolog

* By default, FLORA-2 returns all solutions. Changing that:
flora2 ?- \one.

will start returning answers on-demand: typing “;” requests the next
answer.

flora2 ?- \all.

revert back to the all-answers mode.
* \help - request help with the shell commands
* \demo(demoName). - compile and run a demo program
(Example: flOneAll.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Executing Queries at Startup

* At the Unix/Windows shell, one can request to
evaluate an expression right after the FLORA-2
startup

J/runflora -e "expression.”

— Useful when need to repeat previous command repeatedly,
especially for loading and compiling the same file over
again:

Jrunflora -e " \load(test)."”

(don’t put spaces inside ”..."” (e.g., ” \load (test).” — some shell
command interpreters have difficulty with them.)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

How It Works

myProgram.flr

Standard header definitions

myProgram.P

Standard trailing definitions

I
I
|
I Compiled code
I
I
I

20184 = H29H FLORA-2 Tutorial

Runtime FLORA-2

libraries

— —

..........

2004-2007 © Michael Kifer

10

Variables

Variables:

* Symbols that begin with ?, followed by a letter, and then followed by zero or
more letters and/or digits and/or underscores (e.g., ?X, ?name, ?v_5_)

e ?_or? - Anonymous variable, a unique variable name is created.
Different occurrences of ?_ and ? denote different variables
* ?_Alphanumeric - Silent variable.

Occurrences of the same variable within one rule
denote the same variable.
Bindings for silent variables are not returned as answers.
- FLORA-2 does various checks and issues warnings for:
* Singleton variables
* Variables that appear in the rule head, but not in the rule body

unless the variable is the ? or ?_ or a silent variable.

(Example: variableWarnings.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 11

Symbolic Constants and Strings

* Symbolic constants

— If starts with a letter followed by zero or more letters
and/or digits and/or underscores, then just write as is:

a, John, v_10)
— If has other characters then use single quotes: "?AB #$ ¢’
* Strings
— Lists of characters. Have special syntax:

"abc 12345 y”
Same as [97,98,99,32,49,50,51,52,53,32,121]

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 12

* Numbers

Numbers, Comments

— Integers: 123, 7895

— Floats:

123.45, 56.567, 123E3, 345e-4

* Comments — like in Java/C++
— // to the end of line
— /* ...milti-line comment... */

20184 = H29H

FLORA-2 Tutorial 2004-2007 © Michael Kifer

13

Methods and Cardinality

Constraints
* FLORA-2 does not distinguish between functional

and set-valued methods. All methods are set-valued

by default.
albl ->c].
a[b2 -> {c, d}].

* Cardinality constraints can be imposed on methods
signatures to state how many values the method can

have:
A[M {2..4}=>D]. // M can have 2 to 4 values of type D

— Functional (or scalar) method: cardinality constraint {0..1}

C[m {0..1}=>Db].

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 14

Logical Expressions

* Literals in rule bodies can be combined using , and ;
(alternatively: and and or)

head : - a, (b or c).
* Connectives , (and) and ; (or) can be used inside
molecules:
al[b ->candd ->e;f ->h].
“,” binds stronger than “;”. The above is the same as
a[b ->c,d ->e] ; a[f ->h].
* Negation is naf. Can be also used inside molecules:
?- a[notb ->c,d ->e;f->h].

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

15

Arithmetic Expressions

* FLORA-2 doesn’t reorder goals. The following will
cause a runtime error:
2- ?2X > 1, ?X\is 1 * (3+5).

Make sure that variables are not used uninstantiated in
expressions that don’t allow this. Correct use:

2- ?X\is 1 * (3+5), ?X > 1.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

16

Modules

* Three types of modules:

- FLORA-2 user modules (user programs)
* Referred to with the @module idiom

- FLORA-2 system modules (provided by the system)

* Referred to with the @\module idiom (system module names start with a \)

— Prolog (XSB) modules (Prolog programs: user-written or provided by
XSB)

* Referred to using the @\prolog or @\prolog(xsbmodule) idioms
— (@\prolog (abbr. @\plg) refers to the default XSB module or standard Prolog
predicates
» E.g., ..., writeln(‘Hello world’)@\plg.

— @\prolog(xsbmodule) (or @\plg(xsbmodule)) refers to XSB predicates defined
in named XSB modules (hence need to know which XSB module each predicate

belongs to)
» E.g., ..., format(‘My name is ~w~n’, [?Name])@\plg(format).

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 17

Modules: Dynamic Loading

* Program files are not associated with modules rigidly
— Programs are loaded into modules at run time
— Module is an abstraction for a piece of knowledge base

* ?- [myProgram >> foobar]. Or
? - \load(myProgram >> foobar).
myProgram.flr is loaded into module foobar.
? - [anotherProgram >> foobar].

anotherProgram replaces myProgram in the module foobar.
Can be done within the same session.

* [+anotherProgram>>foobar], \add anotherProgram>>foobar —
add anotherProgram without erasing myProgram.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 18

Default Module

* Default module is main:
?- [myProgram].

Gets loaded into module main. Replaces whatever code or
data was previously in that module.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

19

Making Calls to Other Modules

* Suppose foobar is a module where a predicate p(?,?)
and a method abc(?) -> ... are defined.

* (Calling these from within another module:

head : - ..., p(?X,f(a))@foobar, ..., ?O[abc(123) -> ?Result]@foobar.
* Module can be decided at runtime:
head : - ...,”M=foobar, p(?X,f(a))@?M, ...,?0Olabc(123)->?Result]@"?
M.

* Modules can be queried: Which module has a
definition for p(?,f(a))?
?- p(?X,f(a))@?M.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 20

Some Rules about Modules

Module call cannot appear in a rule head. (Why?)

Module references can be grouped:
?- (a(?X), ?0[b ->?W])@1oo.
Module references can be nested
— Inner overrides outer:
?- (a(?X)@bar, ?0[b ->?W])@foo.
* \@ - special token that refers to the current module.
If the following program is loaded into foobar, then
alb ->\@].
?- alb ->?X].
binds ?X to foobar.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 21

Useful Prolog Modules

* @\prolog(basics) — list manipulation, e.g., member/2,
append/3, reverse/2, length/2, subset/2.

* @\prolog(format) — a (C-language) printf —like print
statements.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 22

FLORA-2 System Modules

Provided by the system. Most useful are

— (@\sys — a bunch of system functions
* abort(?Message)@\sys — abort execution (others later)

— (@\io — a bunch of I/O primitives
write(?Obj), writeln(?Obj), nl,
* read(?Result)
* see(?Filename), seen
* tell(?Filename), told
* File[exists(?F)]
* File[remove{?F)]
* Etc.
— @\typecheck — defines constraints for type checking

* ?- Cardinality[check(Mary[spouse=>7?])]@\typecheck.
* ?- Type[check(foo[?=>7], ?Violations)]@\typecheck.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 23

Module Encapsulation

* Modules can be encapsulated to block unintended references

* By default, modules are not encapsulated

* If a module has an export directive then it becomes
encapsulated

Only exported predicates or methods can be referenced by other
modules

Predicates/methods can be exported to specific modules or to all
modules

Predicates and methods can be exported as updatable; default is non-
updatable

Predicates/methods can be made encapsulated at run time (!) and
additional items can be exported at run time

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 24

Export Statement

Simple export:
: - export{p(?,?), ?[foo ->?]}.
This exports to all modules.
Note: use ?, not constants or other variables.

Export to specific modules (abc and cde):

: - export{(p(?,?) >> (abc, cde)), ?[foo -> ?]}.

p/2 is exported only to abc and cde.

foo -> is exported to all.
Updatable export:

: - export{p(?,?), updatable ?[foo -> ?]}.

p/2 can be queried only; other modules can insert data for the method foo
Exporting ISA/class membership:

: - export {?:?, updatable ?::? >> abc}.

(Example: moduleExample.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 25

Dynamic Export

* All the previous statements can also be executed
dynamically

— If a module was not encapsulated it becomes encapsulated
— Additional items can be exported at run time

* Examples of executable export statements:
?- export{p(?,?), ?[foo -> ?]}.
?- export{p(?,?), updatable ?[foo -> ?]}.
?- export{?:?, updatable ?::? >> abc}.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 26

Multifile Modules

* Can split modules into multiple files and use the
#include directive:

#include "foo.flr” relative path
#include "/foo/bar/abc.flr” full path Unix
#include " \\foo\\bar\\abc.flr ” full path Windows

* Note:

— Must provide a complete relative or absolute name (with
file extensions).

— Must escape \ with another \ in Windows.

— Can use Unix-style paths in Windows also.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

27

Debugging

* Most common errors
1. Mistyped variable

2. Calling an undefined or unexported method/predicate
(possibly due to mistyping)

3. Suspicious program logic
4. Wrong program logic

* 1-3 are handled by the compiler or the runtime
environment

* 4 is handled by the trace debugger or other
techniques (e.g., the venerable print statement)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

28

Mistyped Variables

* Compiler warns about
— Singleton variables
— Variables in the rule head that don’t occur in rule body

* If such variables are intended, use anonymous or
silent variables, e.g., ? or ?_abc. The compiler won’t
flag those

(Example: variableWarnings.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 29

Mistyped or Undefined
Methods/Predicates

* If a predicate/method was mistyped, it will likely be unique
and thus undefined; the runtime catches those

* Undefinedness checks are turned off by default (for
performance — about 50% slower)

* Enabling undefinedness checks:

— Execute
? - Method[mustDefine(on)]@\sys.
to turn on the checks in all modules.

— Execute
? - Method[mustDefine(on,foobar)]@\sys.
to turn on the checks in module foobar only

— Can also turn off these checks wholesale or selectively

(Example: checkUndefined.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

30

Suspicious Program Logic

* Atabled predicate or method depends on a statement that produces a side
effect:
p(?X) : - ..., write(?X)@\io,
* Possibly uninteded behavior:
— 1st time:
?- p(hello).
hello
Yes
— 2nd time:
? - p(hello).
Yes
* Compiler will issue a warning. To block the warnings:

: - ignore_depchk{%?@\io}. Don't check dependencies on module flora(io)
Other forms:

: - ignore_depchk{%foo(?)@?M}. Don’t check dependency on %foo(?) in any module

: - ignore_depchk{?[%abc(?,?) -> ?]}. Don check for %abc(?,?) -> in the current
module

(Example: tableVSnot.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 31

Debugger

* One can trace the execution of the program:

? - \trace. Turn on interactive tracing
?- \trace(file). = Noninteractive tracing. Put the trace into file
? - \notrace. Turn off tracing

* How tracing works:
— Shows which predicates are evaluated in which order

— Which calls succeed and which fail

— In interactive tracing:
* <Return> - next step
* S - trace non-interactively to the end; display everything
* X - stop tracing the current call

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 32

Example of a Trace

?- 1] (7) Call: ?_h1281[b -> c]
a[‘fb'> C%] (7) Fail: ?_h1281[b ->]
aa|b ->1J.
.0 _

X[m -> 2Y] : - 2Y[b -> ?X]. (8) Ca.ll. ?_h1281[b ->]
Ctl-D (8) Fail: ?_h1281[b ->]
?- \trace. (5) Exit: a[b ->]
?- c[m->7?Y]. (5) Redo: a[b -> c]

(2) Call: C[m -> r‘)_h1281] ?°S (5) Fail: ?_h1281[b > C]

(3) Call: (Checking against base facts) c[m ->?_h1281]

(3) Fail: (Checking against base facts) c[m -> ?_h1281] (9) Call: ¢[m ->7?_h1281]

(4) Call: c[m ->?_h1281] (9) Fail: ¢[m ->7?_h1281]
(4) Fail: c[m ->7?_h1281] (2) Exit: c[m -> a]
(5) Call: ?_h1281[b ->] (2) Redo: c[m ->a]? S

(6) Call: (Checking against base facts) ?_h1281[b -> c]
(6) Exit: (Checking against base facts) a[b -> c]

(6) Redo: (Checking against base facts) a[b -> c]

(6) Fail: (Checking against base facts) ?_h1281[b -> c] ’Y=a

(2) Fail: ¢[m ->7?_h1281]

(Example: trace.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © mMichael Kifer 33

20184 = H29H

4. Low-level Detalls

FLORA-2 Tutorial 2004-2007 © Michael Kifer

34

HiLog vs. Prolog Representation

* Problem: FLORA-2's terms are HiLog; Prolog (XSB) uses
Prolog terms — different internal representation
— What if we want to talk to a Prolog program and pass arguments to it?
Example: ?- ?X=f(a), writeln(?X)@\prolog.
flapply(f,a) <--- not what we expected
?X =1(a)
— Solution: use a special primitive, p2h{?Prolog,”HiL.og}
Example: ?- ?X=f(a), p2h{?P,?X}, writeln(?P)@\prolog.
f(a) <--- exactly what the doctor ordered
?X =1{(a)
(Example: prologV Shilog.flr)
* ?- ?X=f(a), writeln(?X)@\plgall(). <---- also works

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 35

To Table or Not to Table?

Methods and predicates that start with a % are assumed to
produce side effects

Others are pure queries
— Pure queries: p(?X,a), alm -> ?X], ?X[p(a,b)]
— Side-effectful: %p(?X,a), ?X[%p(a,b)]
Only predicates and Boolean methods can have the % -prefix:
— Legal: ?X[%p(a,b)]
— Not legal: a[%m -> ?X]
Pure queries are cached (implemented using XSB’s tabled
predicates); side-effectful predicates/methods are not cached.

(Example: tableV Snot.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 36

Why Table?

* Queries should use tabled methods/predicates
— Recall that tabling implements the true logical semantics
— Avoids infinite loops in query evaluation where possible

* When not to table:

— Actions that have side effects (printing, changing the
database state) should not be tabled.

* This is a declarative way of thinking about the %-predicates and
methods

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

37

5. Advanced Features

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

38

Type Checking

* Type correctness can be checked with an F-logic
query:
type_error(?0,?M,?V) : -
// value has wrong type
(?0[2M ->?V], 20[2M =>?D))@?Mod,

-

-~

i‘// value exists, but type hasn’t been specified
\(?0[?’M -> ?V], \naf ?0O[?M => ?D])@?Mod.

e e i b D S

? - type_error(?0,?M,?V). " Take out for semi- |
structured data !

-~ -

* If an answer exists then there is a type error. (Why?)

* There are also standard methods to check types (see manual:
class Type in system module \typecheck)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 39

Cardinality Checking

* The type system module defines constraints for checking
cardinality
— 7?- Cardinality[check(?Obj[?Method=>7?)]@\typecheck

* If there are violations of cardinality constraints then ?Obj will get bound to the
objects for which the violation was detected. For instance,

cl[foo {2..3}=> int].

c::cl.

ol:c. o02:c. o3:c.

ol[foo ->{1,2,3,4}]. c[foo->2].

o3[foo ->{3,4}]. cl[foo -> {3,4,5}].
Then the query

?- Cardinality[check(?O[foo=>7])]@\typecheck.
binds ?O to ol and o2

* The system module \typecheck has further elaborate methods for
cardinality checking (see the manual)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 40

Path Expressions

* A useful and natural shorthand
* ?X.?Y stands for the ?Z in ?X[?Y -> ?7Z]

For instance:
alb ->c].
?- alb ->a.bl].
Yes
* Note: ?X.?Y denotes an object—it is not a formula
But ?X.?Y[]is:
?X.?Y][] is true iff ?X[?Y -> 7] is true

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

41

Path Expressions (cont’'d)

* ?XI?Y stands for a ?Z in ?X [|?Y -> ?Z|]
PX1?Y[] = ?X [)PY ->?|]

* What does ?X.?Y!?7Z stand for?

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

42

Path Expressions (cont’'d)

* Path expressions can be combined with molecular
syntax:
?X[m ->?Z].?Y.?Z [abc -> ?Q]
1S:
?X[m ->?Z], ?X[?Y ->?V], ?V[?Z ->?W], ?W[abc -> ?Q]
Or, in one molecule:
?X[m ->7?7,?Y ->?V[?Z ->?Wl[abc -> ?Q]]]

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

43

Nested Molecules

Nested molecules are broken apart (as we have seen)

But what is the ordering? - important since evaluation is left-
to-right

Molecules nested inside molecules:
alb ->c[d ->e]]
breaks down as a[b -> c], c[d ->e].
But a[b[c ->d] -> €]
as b[c ->d], a[b ->e]

Molecules nested inside predicates:
p(a[b ->c]) breaks down as p(a), a[b ->c]
p(a.b) breaks down as a.b=?X, p(?X) (Why?)
p(a.b[]) breaks down as p(?X), a[b ->?X]
(Example: molBreak.flr)

What does the following mean?
alb ->c][d -> e]

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 44

Nested Reified Molecules

* Don’t confuse
p(alb ->c]) and alb ->c[d ->e]]

with reified nested molecules:

p(${a[b ->c]}) and a[b -> ${c[d -> e]}]
* What are the latter broken down to?

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

45

Aggregate Expressions

* Like in SQL, but better:

— Can evaluate subquery and apply sum/count/avg/... to the
result

— Can group by certain variables and then apply sum/count/
... to each group

— Can create sets or bags, not just sums, counts, etc.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

46

Aggregate Expressions:
Syntax & Semantics

General syntax:
?Result = aggFunction{ AggVar[Grouping Vars] | Query}
aggFunction:
— min, max, count, sum, avg — the usual stuff

— setof— collects list of values, duplicates removed
— bagof— same but duplicates remain

aggVar — single variable, but not a limitation

— Can do something like avg{?X | query(?Y), ?X \is exp(?Y+1,2)} or
setof{?X | ..., ?X =1(?Y,?Z2)}

Grouping Vars — comma-separated list of vars on which to group
(like SQL’s GROUP BY)

Returns aggFunction applied to the list(s) of AggVar (grouped
by GroupingVars) such that Query is satisfied

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 47

Aggregate Syntax & Semantics (cont’d)

* Aggregates can occur where a number or a list can —
hence can occur in expressions

? - ?Z=count{?Year| john.salary(?Year) < max{?S| john[salary(?Y2) ->?S], ?Y2< ?Year} }.

N -
—

What if Query in the aggregate returns nothing?
— sum, avg, min, max, count: will fail (are false)

— setof, bagof: return empty list

(Example: aggregate.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 48

Aggregates and Set-valued
Methods

* Convenient shortcuts for collecting results of a method

into a list

?0[?M ->->7?L] — ?Listhelist of elt’s such that ?0[?M -> elt] is true
Same as ?setof{?X]| ?0[?M -> ?X]}

?0O[|?’M ->->7?L|] - ?Listhelist of elt’s such that ?O[|?M -> elt|] is true
Same as ?L=setof{?X]| ?0[|?M -> ?X|]}

* Set containment
?0[?M +>>?S] —trueif ?Sisalist & Vs e ?S, ?0[?M ->s]is true
?0[|?M +>>?§|] —trueif ?Sisalist & Vs e ?S, ?0O[?M ->s]is true

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 49

Anonymous OIDs (S5kolem
Constants)

* Like blank nodes in RDF (but with sane semantics)

* Useful when one doesn’t want to invent object IDs and relies on
the system (e.g., individual parts in a warehouse database could
use this feature)

* (Can be numbered or unnumbered
— Unnumbered: \# - different occurrences mean different IDs:
\#[name ->"John’, spouse -> \#[name ->'Mary’]]

— Numbered: \#1, \#2, \#3, ... - different occurrences of, e.g., \#2 in the
same clause means the same ID:

\#1 Lpame > "Jay']. \#1 [name -> "Jay'].

v
///

Different IDs

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 50

Anonymous OIDs (cont’d)

* \#, \#1, \#2, etc., are plain symbols. Can use them to
construct terms. For instance: \#(\#1,\#,\#2,\#1)

\#1:student| name -> Joe/
advisor -> {\#(\#1)[name -> ' Phil’]

—_——T~a

S

— Why is this useful?

* \#, \#1, ... can appear only in the facts and rule heads.

?- alm -> \#].

— Why does such a query make no sense?

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 51

Equality

* Sometimes need to be able to say that two things are the same
(e.g., same Web resource with 2 URISs)

* FLORA-2 has the : =: predicate for this. For instance:

a.=:b.
p(a).
?- p(b).
Yes

* Well, not so fast...

— FEquality maintenance is computationally expensive, so it is off by
default

— Can be turned on/off on a per module basis
— Different types of equality: none, basic

— Has some limitations

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 52

Types of Equality

* none — no equality maintenance
: = is like =.

* basic — the usual kind of equality

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

53

Enabling Equality

* At compile time:

: - setsemantics{equality(basic)}.
* At run time:
? - setsemantics{equality(none)}

— Can be set and reset at run time

* Can find out at run time what kind of equality is in

use:
? - semantics{equality(?Type)}.

?Type=none

(Example: equality.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

54

Limitations of Equality Maintenance
in FLORA-2

* Congruence axiom for equality:
—a=b /A p[la] implies @[b]
— This is very expensive

* FLORA-2 uses shallow congruence:

— Does substitution only at levels 0 and 1:
* p:=:q, p(a) implies q(a) level O
* a.=:b, p(a) implies p(b) level 1
*a.=:b, alm ->v] implies b[m -> v].
*v:=:w, alm ->v]| implies alm -> w].
* But: a:=:b, p(f(a)) does not imply p(f(b)) Ievel 2

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

Avoiding Equality

* In many cases, equality is too heavy for what the user
might actually need.

* Try to use the preprocessor instead:

#define w3 "http://www.w3.org/”
?- w3lfetch -> ?Page].

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 56

Data Types

URI data type: "...”"iri (IRl stands for International
Resource ldentifier, a W3C standard)

e.g., “http://www.w3.org”\iri

— Compact IRIs
* Can define prefixes and then use them to abbreviate long URIs

-

s(?X) : - ?X[a -> W3#abc]. // W2#abc expands to “http://w3.org/abc”M\iri

Standard methods exist to extract the scheme, user, host,
port, path, query, and fragment parts of IRIs

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 57

Data Types (contd.)

Date and Time type

— 72007-01-21T11:22:44+05:44” M\dateTime (or A\dt)
+05:44 is time zone

”2007-02-11T09:55:33” \\dateTime or
”2007-03-12"” M\dateTime

— Methods for extracting parts:

* \year, \month, \day, \hour, \minute, \second, \zoneSign, \zoneHour,
\zoneMinute

Time type
?11:29:55”M\time (or M\t)
— Methods: \hour, \minute, \second

Comparison and arithmetic operations for date and time are
supported (can add/subtract duration types)

Other data types also exist

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 58

Control Constructs

\if (cond) \then (then-part) \else (else-part)
\if (cond) \then (then-part)

— Important difference with Prolog: if cond is false, if-then is
still true, but the then-part is not executed

\unless (cond) \do (unless-part)
— Execute the unless-part if cond is false

— If cond is true, do nothing (but the whole unless-do
statement is true)

* Has also while/until loops

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 59

Metaprogramming

* FLORA-2 allows variables everywhere, so much of
the meta-information can be queried

* The reification operator allows one to construct
arbitrary facts/queries, even rules:

?- p(?X), q(?Y), ?Z=${?X[abc ->?Y]}.
?- ?X[abc ->?Y].
?-?X=%{a:-b}, ...

* What is missing?

— The ability to retrieve an arbitrary term and find out what
kind of thing it is

— Whether it is a term or a formula
— What module it belongs to?

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

60

Meta-unification

* This capability is provided by the meta-unification operator,
* Not to be confused with the regular unification operator, =

* Examples:
?- a[lb ->?Y]@foo ~ ?X@?M.
?X = ${a[b -> ?Y]|@foo}
?M = foo

?-alb ->?Y]~?X[?B ->c]@?M.
"B=Db

?M = main

?’X=a

?Y =c

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

61

Meta-unification (cont’d)

* When both the module and the type of formula is

known, then “=" will do:
?- ${?X[a -> b]@foo} = ${0o[?A -> ?B]@foo}.

But this will fail:
?- ${?X[a ->b]@?M} = ${o[?A ->?B]@foo}.
No

()

=" will work in many cases, but use ~ when in doubt:
?- ${?X[a ->b]J@?M} ~ ${o[?A -> ?B]@foo}.

’X=0

?M = foo

?PA=a

"B=D

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

62

Recognizing Unknown Meta-terms

?X ~ (?A, ?B) A conjunction (= also ok)

?X ~ (?A; ?B) A disjunction (= ok)

X ~?Y@?M A molecule or a HiLog formula
X~ ->7] A functional molecule

20184 = H29H FLORA-2 Tutorial 2004-2007 © mMichael Kifer 63

6. Updating the Knowledge
Base

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

64

What Kinds of Updates?

* In FLORA-2, the knowledge base can be changed in
the following ways:
— Insert/delete facts in a module
— Insert/delete rules in a module

— Create a completely new module on-the-fly (at run time)
and put data and rules into it

* E.g., create a new agent dynamically

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

65

Adding and Deleting Facts

* Support provided for

— Non-logical updates, which only have operational
semantics (like in Prolog, but more powerful) — non-
backtrackable and thus non-transactional updates

— Logical updates as in Transaction Logic - transactional
updates
* Non-transactional: insert, delete, insertall, deleteall,
erase, eraseall

* Transactional: t _insert, t_delete, t _insertall,
t_deleteall, t_erase, t_eraseall (shorter synonyms:
tinsert, tdelete, etc.)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 66

Syntax of Update Operators

* updateOp1 Literals }

* updateOp{ Literals | Query }
* Literals: stuff to delete

* Query: condition on Literals

* The exact meaning of Literals and Query depends
on the particular updateOp

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 67

Insert Operators (non-logical)

* Unconditional :
?- p(?X), q(?Y), insert{ ?X[has -> ?Y] }.
inserts ?X[has -> ?Y] for the binding of ?X and ?Y
?- p(?X), q(?Y), insertall{ ?X[has ->?Y] }.
no difference in this context

* Conditional:
?- \one. To prevent backtracking
?- p(?X), insert{ ?X[has ->?Y]| q(?Y) }.
insert for some ?Y such that q(?Y) is true
? - p(?X), insertall{ ?X[has ->?Y]| q(?Y) }.
insert for all ?Y such that q(?Y) is true

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 68

Delete Operators (non-logical)

* Unconditional
?- \one.
?- q(?X), delete{p(?X,?Y), a[b ->?Y]}. Delete for some ?Y
?- q(?X), deleteall{p(?X,?Y), a[b ->?Y]}. Delete for all ?Y

* Conditional

?- \one.

?- q(?X), delete{p(?X,?Y) | a[b ->?Y]}. Delete for some ?Y

?- q(?X), deleteall{p(?X,?Y) | a[b ->?Y]}. Delete for all ?Y

(Example: delete.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

69

Delete Operators (cont’d)

* erase{factl, fact2,...}

— Works like delete, but also deletes all objects reachable
from the specified object

* eraseall{facts|query}

— Works like deleteall, but for each deleted object also
deletes the objects that are reachable from it

(Example: erase.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

70

Transactional (Logical) Updates

* The basic difference is that a postcondition can affect
what was inserted or deleted

— Non-logical:
?- insert{p(a)}, deleteall{q(?X)}, a[b ->c].
p(a) will be inserted / q(?X) deleted regardless of
whether a[b ->c] was true or false

— Logical:
?- tinsert{pp(a)}, tdeleteall{qq(?X)}, a[b ->c].

updates will be done only if a[b ->c] remains true
after

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 71

Abolishing Tables

* **mostly obsolete** Tables are now updated automatically.
* Tables[abolishj@\system: clears out all tables

— Previous queries would have to be recomputed — performance penalty
— Cannot be called during a computation of a tabled predicate or
molecule — XSB will coredump!

* refresh{factl, fact2,...}: selectively removes the tabled data
that unifies with the specified facts (facts can have variables in
them

— Lesser performance penalty

— Can be used in more cases: refresh{...} will crash XSB only if you call
it while computing the facts being refreshed

(Example: refresh.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 74

Tabled Literals that Depend on Updates

* If a tabled literal depends on an update, then
executing it twice will execute the update only once —
probably an error in the program logic

* FLORA-2 will issue a warning
* To block the warning (if the logic is correct), use

: - ignore_depchk{skeleton, skeleton, ...}.

The skeletons specify the predicates that tabled predicates
can depend on without triggering the warning

* Warnings are triggered for insert/delete ops, any predicate or
method that starts with a %.

(Example: depchk.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 75

Updates and Meta-Programming

* Update operators can take variables that range over
formulas — metaupdates

* Module foo:
%update(?X,?Y) : -
X ~?0[?M ->7],?Y ~?0[°M -> 7],
|

*)

delete{?X}, insert{?Y}.
%update(?_X,?_Y) : - abort([?Y, " not updating ’, ?X])@\sys.

* Module main:
?- %update(${a[b -> ?]}, ${a[b -> d]})@foo.

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

76

Inserting/Deleting Rules

* Useful when knowledge changes dynamically

* Especially for creation of new agents and stuffing
them with rules

FLORA-2 rules can be static or dynamic

Static rules:

— Those that you put in your program; they can’t be deleted
or changed

* Dynamic rules:

— Those that were inserted using insertrule_a{...} or
insertrule_z{...} primitives; they can be deleted using
deleterule{...}

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 77

Rule Insertion Operators

* insertrule_a{ (rulel), (rule2),...}
— Inserts the rule(s) before all other rules (static or dynamic)
? - insertrule_a{p(?X) : - ?X[a -> b]}.
?- insertrule_a{(a : - b),(c : - d)}
* insertrule_z { (rulel), (rule2),...}
— Inserts the rules after all other rules (static or dynamic)
? - insertrule_z{p(?X) : - ?X[a -> b]}.

* Note: static rules are always stuck in the middle of
the program

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 78

Insertion of Rules into Another Module

* If foobar is another module:
? - insertrule_z{(a : - b)@foobar, (c : - d)@foobar}

* Module may already exist or be created on-the-fly:
? - newmodule{foobar}.

If foobar does not exist, it will be created “empty”

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 79

Rule Deletion Operator

* Only previously inserted rules (i.e., dynamic rules)
can be deleted

* Operator: deleterule{ (rulel), (rule2), ...}

— Delete every dynamic rule that matches rulel, rule2, ...

* insertrule a, insertrule z, deleterule are non-
transactional (so not backtrackable).

— But this is unlikely to matter: Who would stick a post-
condition after insertrule/deleterule? (Someone too
sophisticated.)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 80

Flexible Deletion

* The rules in deleterule can be more flexible than what
is allowed in insertrule and in static rules:

— Can have variables in the rule head & body

* Examples:

? - deleterule{?H : - ?X[abc -> ?Y]}.
* Delete every dynamic rule with the body that looks like ?X[abc -> ?Y]

? - deleterule{?X][abc ->?Y] : - ?B}.
* Delete every dynamic rule with the head that looks like ?X[abc ->?Y]

?- deleterule{(?H : - ?"B@?M)@?N}.

* Delete every dynamic rule in every module!

(Example: dynrules.flr)

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer 81

20184 = H29H

/. Future Plans

FLORA-2 Tutorial 2004-2007 © Michael Kifer

82

Research Issues

* Speed up query evaluation

* Approximate reasoning

* Better implementation of transactional updates

* Implementation of Concurrent Transaction Logic

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

83

Problems that Need XSB Work

* Cuts over tabled predicates

20184 = H29H FLORA-2 Tutorial 2004-2007 © Michael Kifer

84

20184 = H29H

Questions?

FLORA-2 Tutorial

2004-2007 © Michael Kifer

85

	Programming Knowledge with Frames and Logic
	3. Getting Around FLORA-2
	Color Codes
	Getting Started
	Compiling Programs
	Temporary Programs
	Asking Queries
	Important Commands at the FLORA-2 Shell
	Executing Queries at Startup
	How It Works
	Variables
	Symbolic Constants and Strings
	Numbers, Comments
	Methods and Cardinality Constraints
	Logical Expressions
	Arithmetic Expressions
	Modules
	Modules: Dynamic Loading
	Default Module
	Making Calls to Other Modules
	Some Rules about Modules
	Useful Prolog Modules
	FLORA-2 System Modules
	Module Encapsulation
	Export Statement
	Dynamic Export
	Multifile Modules
	Debugging
	Mistyped Variables
	Mistyped or Undefined Methods/Predicates
	Suspicious Program Logic
	Debugger
	Example of a Trace
	4. Low-level Details
	HiLog vs. Prolog Representation
	To Table or Not to Table?
	Why Table?
	5. Advanced Features
	Type Checking
	Cardinality Checking
	Path Expressions
	Path Expressions (cont’d)
	Slide 43
	Nested Molecules
	Nested Reified Molecules
	Aggregate Expressions
	Aggregate Expressions: Syntax & Semantics
	Aggregate Syntax & Semantics (cont’d)
	Aggregates and Set-valued Methods
	Anonymous OIDs (Skolem Constants)
	Anonymous OIDs (cont’d)
	Equality
	Types of Equality
	Enabling Equality
	Limitations of Equality Maintenance in FLORA-2
	Avoiding Equality
	Data Types
	Data Types (contd.)
	Control Constructs
	Metaprogramming
	Meta-unification
	Meta-unification (cont’d)
	Recognizing Unknown Meta-terms
	6. Updating the Knowledge Base
	What Kinds of Updates?
	Adding and Deleting Facts
	Syntax of Update Operators
	Insert Operators (non-logical)
	Delete Operators (non-logical)
	Delete Operators (cont’d)
	Transactional (Logical) Updates
	Abolishing Tables
	Tabled Literals that Depend on Updates
	Updates and Meta-Programming
	Inserting/Deleting Rules
	Rule Insertion Operators
	Insertion of Rules into Another Module
	Rule Deletion Operator
	Flexible Deletion
	7. Future Plans
	Research Issues
	Problems that Need XSB Work
	Questions?

