Programming Knowledge
with Frames and Logic

Part 2: Programming
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3. Getting Around FLORA-2
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Color Codes

Black — what the user types
Red — FLORA-2 prompt

* Green — FLORA-2 responses
* Blue — comments
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Getting Started

* After installing:
/runflora in Unix/Cygwin
Arunflora in Windows

...some chatter...
flora2 ? -

* In Unix recommend putting this in .bashrc:

alias flora='~/FLORA/flora2/runflora‘
assuming that FLORA-2 was installed in ~/FLORA
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Compiling Programs

* Program files are expected to have the extension .flr

— .fIr doesn’t need to be specified when compiling programs.

* The following will load and, if necessary, compile:
— Load a file in the current directory
flora2 ?- [test].
Or
flora2 ?- \load (test).
— Load a file in /foo/bar/
flora2 ?- ['/foo/bar/test’ ]. Windows: [’\\foo\\bar\\test’ ]

Or
flora2 ?- \load (' /foo/bar/test” ).
... chatter ...
flora2 ? - Now ready to accept commands and queries
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Temporary Programs

* Usetul for quick tests

* (Can write a program in-line and compile it

flora2 ?2- | |. // one underscore is treated specially
[FLORA: Type in FLORA program statements; Ctl-D when done]
alb ->c].

Ctl-D in Unix

Ctl-Z <Return> in Windows/Cygwin

... Chatter ...

flora2 ? - Now ready to accept commands and queries
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Asking Queries

* Once a program is loaded, you can start asking
queries:

flora2 ?- mary[works -> ?Where].
?Where = home

flora2 ? -
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Important Commands at the FLORA-2 Shell

flora2 ?- \end. (or Ctl-D/Ctl-Z) Drop into Prolog
flora2 ?- \halt. Quit FLORA-2 & Prolog

* By default, FLORA-2 returns all solutions. Changing that:
flora2 ?- \one.

will start returning answers on-demand: typing “;” requests the next
answer.

flora2 ?- \all.

revert back to the all-answers mode.
* \help - request help with the shell commands
* \demo(demoName). - compile and run a demo program
(Example: flOneAll.flr)
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Executing Queries at Startup

* At the Unix/Windows shell, one can request to
evaluate an expression right after the FLORA-2
startup

J/runflora -e "expression.”

— Useful when need to repeat previous command repeatedly,
especially for loading and compiling the same file over
again:

Jrunflora -e " \load(test)."”

(don’t put spaces inside ”..."” (e.g., ” \load (test).” — some shell
command interpreters have difficulty with them.)
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How It Works

myProgram.flr

Standard header definitions

myProgram.P

Standard trailing definitions

I
I
|
I Compiled code
I
I
I
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Variables

Variables:

* Symbols that begin with ?, followed by a letter, and then followed by zero or
more letters and/or digits and/or underscores (e.g., ?X, ?name, ?v_5_)

e ?_or? - Anonymous variable, a unique variable name is created.
Different occurrences of ?_ and ? denote different variables
* ?_Alphanumeric - Silent variable.

Occurrences of the same variable within one rule
denote the same variable.
Bindings for silent variables are not returned as answers.
- FLORA-2 does various checks and issues warnings for:
* Singleton variables
* Variables that appear in the rule head, but not in the rule body

unless the variable is the ? or ?_ or a silent variable.

(Example: variableWarnings.flr)
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Symbolic Constants and Strings

* Symbolic constants

— If starts with a letter followed by zero or more letters
and/or digits and/or underscores, then just write as is:

a, John, v_10)
— If has other characters then use single quotes: "?AB #$ ¢’
* Strings
— Lists of characters. Have special syntax:

"abc 12345 y”
Same as [97,98,99,32,49,50,51,52,53,32,121]
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* Numbers

Numbers, Comments

— Integers: 123, 7895

— Floats:

123.45, 56.567, 123E3, 345e-4

* Comments — like in Java/C++
— // to the end of line
— /* ...milti-line comment... */
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Methods and Cardinality

Constraints
* FLORA-2 does not distinguish between functional

and set-valued methods. All methods are set-valued

by default.
albl ->c].
a[b2 -> {c, d}].

* Cardinality constraints can be imposed on methods
signatures to state how many values the method can

have:
A[M {2..4}=>D]. // M can have 2 to 4 values of type D

— Functional (or scalar) method: cardinality constraint {0..1}

C[m {0..1}=>Db].
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Logical Expressions

* Literals in rule bodies can be combined using , and ;
(alternatively: and and or)

head : - a, (b or c).
* Connectives , (and) and ; (or) can be used inside
molecules:
al[b ->candd ->e;f ->h].
“,” binds stronger than “;”. The above is the same as
a[b ->c,d ->e] ; a[f ->h].
* Negation is naf. Can be also used inside molecules:
?- a[notb ->c,d ->e;f->h].
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Arithmetic Expressions

* FLORA-2 doesn’t reorder goals. The following will
cause a runtime error:
2- ?2X > 1, ?X\is 1 * (3+5).

Make sure that variables are not used uninstantiated in
expressions that don’t allow this. Correct use:

2- ?X\is 1 * (3+5), ?X > 1.
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Modules

* Three types of modules:

- FLORA-2 user modules (user programs)
* Referred to with the @module idiom

- FLORA-2 system modules (provided by the system)

* Referred to with the @\module idiom (system module names start with a \)

— Prolog (XSB) modules (Prolog programs: user-written or provided by
XSB)

* Referred to using the @\prolog or @\prolog(xsbmodule) idioms
— (@\prolog (abbr. @\plg) refers to the default XSB module or standard Prolog
predicates
» E.g., ..., writeln(‘Hello world’)@\plg.

— @\prolog(xsbmodule) (or @\plg(xsbmodule)) refers to XSB predicates defined
in named XSB modules (hence need to know which XSB module each predicate

belongs to)
» E.g., ..., format(‘My name is ~w~n’, [?Name])@\plg(format).
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Modules: Dynamic Loading

* Program files are not associated with modules rigidly
— Programs are loaded into modules at run time
— Module is an abstraction for a piece of knowledge base

* ?- [myProgram >> foobar]. Or
? - \load(myProgram >> foobar).
myProgram.flr is loaded into module foobar.
? - [anotherProgram >> foobar].

anotherProgram replaces myProgram in the module foobar.
Can be done within the same session.

* [+anotherProgram>>foobar], \add anotherProgram>>foobar —
add anotherProgram without erasing myProgram.
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Default Module

* Default module is main:
?- [myProgram].

Gets loaded into module main. Replaces whatever code or
data was previously in that module.
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Making Calls to Other Modules

* Suppose foobar is a module where a predicate p(?,?)
and a method abc(?) -> ... are defined.

* (Calling these from within another module:

head : - ..., p(?X,f(a))@foobar, ..., ?O[abc(123) -> ?Result]@foobar.
* Module can be decided at runtime:
head : - ...,”M=foobar, p(?X,f(a))@?M, ...,?0Olabc(123)->?Result]@"?
M.

* Modules can be queried: Which module has a
definition for p(?,f(a))?
?- p(?X,f(a))@?M.
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Some Rules about Modules

Module call cannot appear in a rule head. (Why?)

Module references can be grouped:
?- (a(?X), ?0[b ->?W])@1oo.
Module references can be nested
— Inner overrides outer:
?- (a(?X)@bar, ?0[b ->?W])@foo.
* \@ - special token that refers to the current module.
If the following program is loaded into foobar, then
alb ->\@].
?- alb ->?X].
binds ?X to foobar.
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Useful Prolog Modules

* @\prolog(basics) — list manipulation, e.g., member/2,
append/3, reverse/2, length/2, subset/2.

* @\prolog(format) — a (C-language) printf —like print
statements.
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FLORA-2 System Modules

Provided by the system. Most useful are

— (@\sys — a bunch of system functions
* abort(?Message)@\sys — abort execution (others later)

— (@\io — a bunch of I/O primitives
write(?Obj), writeln(?Obj), nl,
* read(?Result)
* see(?Filename), seen
* tell(?Filename), told
* File[exists(?F)]
* File[remove{?F)]
* Etc.
— @\typecheck — defines constraints for type checking

* ?- Cardinality[check(Mary[spouse=>7?])]@\typecheck.
* ?- Type[check(foo[?=>7], ?Violations)]@\typecheck.
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Module Encapsulation

* Modules can be encapsulated to block unintended references

* By default, modules are not encapsulated

* If a module has an export directive then it becomes
encapsulated

Only exported predicates or methods can be referenced by other
modules

Predicates/methods can be exported to specific modules or to all
modules

Predicates and methods can be exported as updatable; default is non-
updatable

Predicates/methods can be made encapsulated at run time (!) and
additional items can be exported at run time
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Export Statement

Simple export:
: - export{p(?,?), ?[foo ->?]}.
This exports to all modules.
Note: use ?, not constants or other variables.

Export to specific modules (abc and cde):

: - export{(p(?,?) >> (abc, cde)), ?[foo -> ?]}.

p/2 is exported only to abc and cde.

foo -> is exported to all.
Updatable export:

: - export{p(?,?), updatable ?[foo -> ?]}.

p/2 can be queried only; other modules can insert data for the method foo
Exporting ISA/class membership:

: - export {?:?, updatable ?::? >> abc}.

(Example: moduleExample.flr)
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Dynamic Export

* All the previous statements can also be executed
dynamically

— If a module was not encapsulated it becomes encapsulated
— Additional items can be exported at run time

* Examples of executable export statements:
?- export{p(?,?), ?[foo -> ?]}.
?- export{p(?,?), updatable ?[foo -> ?]}.
?- export{?:?, updatable ?::? >> abc}.
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Multifile Modules

* Can split modules into multiple files and use the
#include directive:

#include "foo.flr” relative path
#include "/foo/bar/abc.flr” full path Unix
#include " \\foo\\bar\\abc.flr ”  full path Windows

* Note:

— Must provide a complete relative or absolute name (with
file extensions).

— Must escape \ with another \ in Windows.

— Can use Unix-style paths in Windows also.
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Debugging

* Most common errors
1. Mistyped variable

2. Calling an undefined or unexported method/predicate
(possibly due to mistyping)

3. Suspicious program logic
4. Wrong program logic

* 1-3 are handled by the compiler or the runtime
environment

* 4 is handled by the trace debugger or other
techniques (e.g., the venerable print statement)
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Mistyped Variables

* Compiler warns about
— Singleton variables
— Variables in the rule head that don’t occur in rule body

* If such variables are intended, use anonymous or
silent variables, e.g., ? or ?_abc. The compiler won’t
flag those

(Example: variableWarnings.flr)
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Mistyped or Undefined
Methods/Predicates

* If a predicate/method was mistyped, it will likely be unique
and thus undefined; the runtime catches those

* Undefinedness checks are turned off by default (for
performance — about 50% slower)

* Enabling undefinedness checks:

— Execute
? - Method[mustDefine(on)]@\sys.
to turn on the checks in all modules.

— Execute
? - Method[mustDefine(on,foobar)]@\sys.
to turn on the checks in module foobar only

— Can also turn off these checks wholesale or selectively

(Example: checkUndefined.flr)
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Suspicious Program Logic

* Atabled predicate or method depends on a statement that produces a side
effect:
p(?X) : - ..., write(?X)@\io, ... .
* Possibly uninteded behavior:
— 1st time:
?- p(hello).
hello
Yes
— 2nd time:
? - p(hello).
Yes
* Compiler will issue a warning. To block the warnings:

: - ignore_depchk{%?@\io}. Don't check dependencies on module flora(io)
Other forms:

: - ignore_depchk{%foo(?)@?M}. Don’t check dependency on %foo(?) in any module

: - ignore_depchk{?[%abc(?,?) -> ?]}. Don check for %abc(?,?) -> in the current
module

(Example: tableVSnot.flr)
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Debugger

* One can trace the execution of the program:

? - \trace. Turn on interactive tracing
?- \trace(file). = Noninteractive tracing. Put the trace into file
? - \notrace. Turn off tracing

* How tracing works:
— Shows which predicates are evaluated in which order

— Which calls succeed and which fail

— In interactive tracing:
* <Return> - next step
* S - trace non-interactively to the end; display everything
* X - stop tracing the current call
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Example of a Trace

?- 1] (7) Call: ?_h1281[b -> c]
a[‘fb'> C%] (7) Fail: ?_h1281[b -> ]
aa|b ->1J.
.0 _

X[m -> 2Y] : - 2Y[b -> ?X]. (8) Ca.ll. ?_h1281[b -> ]
Ctl-D (8) Fail: ?_h1281[b -> ]
?-  \trace. (5) Exit: a[b -> ]
?-  c[m->7?Y]. (5) Redo: a[b -> c]

(2) Call: C[m -> r‘)_h1281] ?°S (5) Fail: ?_h1281[b > C]

(3) Call: (Checking against base facts) c[m ->?_h1281]

(3) Fail: (Checking against base facts) c[m -> ?_h1281] (9) Call: ¢[m ->7?_h1281]

(4) Call: c[m ->?_h1281] (9) Fail: ¢[m ->7?_h1281]
(4) Fail: c[m ->7?_h1281] (2) Exit: c[m -> a]
(5) Call: ?_h1281[b -> ] (2) Redo: c[m ->a]? S

(6) Call: (Checking against base facts) ?_h1281[b -> c]
(6) Exit: (Checking against base facts) a[b -> c]

(6) Redo: (Checking against base facts) a[b -> c]

(6) Fail: (Checking against base facts) ?_h1281[b -> c] ’Y=a

(2) Fail: ¢[m ->7?_h1281]

(Example: trace.flr)
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HiLog vs. Prolog Representation

* Problem: FLORA-2's terms are HiLog; Prolog (XSB) uses
Prolog terms — different internal representation
— What if we want to talk to a Prolog program and pass arguments to it?
Example: ?- ?X=f(a), writeln(?X)@\prolog.
flapply(f,a) <--- not what we expected
?X =1(a)
— Solution: use a special primitive, p2h{?Prolog,”HiL.og}
Example: ?- ?X=f(a), p2h{?P,?X}, writeln(?P)@\prolog.
f(a) <--- exactly what the doctor ordered
?X =1{(a)
(Example: prologV Shilog.flr)
* ?- ?X=f(a), writeln(?X)@\plgall(). <---- also works
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To Table or Not to Table?

Methods and predicates that start with a % are assumed to
produce side effects

Others are pure queries
— Pure queries: p(?X,a), alm -> ?X], ?X[p(a,b)]
— Side-effectful: %p(?X,a), ?X[%p(a,b)]
Only predicates and Boolean methods can have the % -prefix:
— Legal: ?X[%p(a,b)]
— Not legal:  a[%m -> ?X]
Pure queries are cached (implemented using XSB’s tabled
predicates); side-effectful predicates/methods are not cached.

(Example: tableV Snot.flr)
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Why Table?

* Queries should use tabled methods/predicates
— Recall that tabling implements the true logical semantics
— Avoids infinite loops in query evaluation where possible

* When not to table:

— Actions that have side effects (printing, changing the
database state) should not be tabled.

* This is a declarative way of thinking about the %-predicates and
methods
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5. Advanced Features
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Type Checking

* Type correctness can be checked with an F-logic
query:
type_error(?0,?M,?V) : -
// value has wrong type
(?0[2M ->?V], 20[2M =>?D))@?Mod,

-

-~

i‘// value exists, but type hasn’t been specified
\(?0[?’M -> ?V], \naf ?0O[?M => ?D])@?Mod.

e e i b D S

? - type_error(?0,?M,?V). " Take out for semi- |
structured data !

-~ -

* If an answer exists then there is a type error. (Why?)

* There are also standard methods to check types (see manual:
class Type in system module \typecheck)
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Cardinality Checking

* The type system module defines constraints for checking
cardinality
— 7?- Cardinality[check(?Obj[?Method=>7?)]@\typecheck

* If there are violations of cardinality constraints then ?Obj will get bound to the
objects for which the violation was detected. For instance,

cl[foo {2..3}=> int].

c::cl.

ol:c. o02:c. o3:c.

ol[foo ->{1,2,3,4}]. c[foo->2].

o3[foo ->{3,4}]. cl[foo -> {3,4,5}].
Then the query

?- Cardinality[check(?O[foo=>7])]@\typecheck.
binds ?O to ol and o2

* The system module \typecheck has further elaborate methods for
cardinality checking (see the manual)
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Path Expressions

* A useful and natural shorthand
* ?X.?Y stands for the ?Z in ?X[?Y -> ?7Z]

For instance:
alb ->c].
?- alb ->a.bl].
Yes
* Note: ?X.?Y denotes an object—it is not a formula
But ?X.?Y[]is:
?X.?Y][] is true iff ?X[?Y -> 7] is true
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Path Expressions (cont’'d)

* ?XI?Y stands for a ?Z in ?X [|?Y -> ?Z|]
PX1?Y[] = ?X [)PY ->?|]

* What does ?X.?Y!?7Z stand for?
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Path Expressions (cont’'d)

* Path expressions can be combined with molecular
syntax:
?X[m ->?Z].?Y.?Z [abc -> ?Q]
1S:
?X[m ->?Z], ?X[?Y ->?V], ?V[?Z ->?W], ?W[abc -> ?Q]
Or, in one molecule:
?X[m ->7?7,?Y ->?V[?Z ->?Wl[abc -> ?Q]]]
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Nested Molecules

Nested molecules are broken apart (as we have seen)

But what is the ordering? - important since evaluation is left-
to-right

Molecules nested inside molecules:
alb ->c[d ->e]]
breaks down as a[b -> c], c[d ->e].
But a[b[c ->d] -> €]
as b[c ->d], a[b ->e]

Molecules nested inside predicates:
p(a[b ->c]) breaks down as p(a), a[b ->c]
p(a.b) breaks down as a.b=?X, p(?X) (Why?)
p(a.b[]) breaks down as p(?X), a[b ->?X]
(Example: molBreak.flr)

What does the following mean?
alb ->c][d -> e]
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Nested Reified Molecules

* Don’t confuse
p(alb ->c]) and alb ->c[d ->e]]

with reified nested molecules:

p(${a[b ->c]}) and a[b -> ${c[d -> e]}]
* What are the latter broken down to?
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Aggregate Expressions

* Like in SQL, but better:

— Can evaluate subquery and apply sum/count/avg/... to the
result

— Can group by certain variables and then apply sum/count/
... to each group

— Can create sets or bags, not just sums, counts, etc.
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Aggregate Expressions:
Syntax & Semantics

General syntax:
?Result = aggFunction{ AggVar[Grouping Vars] | Query}
aggFunction:
— min, max, count, sum, avg — the usual stuff

— setof— collects list of values, duplicates removed
— bagof— same but duplicates remain

aggVar — single variable, but not a limitation

— Can do something like avg{?X | query(?Y), ?X \is exp(?Y+1,2)} or
setof{?X | ..., ?X =1(?Y,?Z2)}

Grouping Vars — comma-separated list of vars on which to group
(like SQL’s GROUP BY)

Returns aggFunction applied to the list(s) of AggVar (grouped
by GroupingVars) such that Query is satisfied
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Aggregate Syntax & Semantics (cont’d)

* Aggregates can occur where a number or a list can —
hence can occur in expressions

? - ?Z=count{?Year| john.salary(?Year) < max{?S| john[salary(?Y2) ->?S], ?Y2< ?Year} }.

N -
—

What if Query in the aggregate returns nothing?
— sum, avg, min, max, count: will fail (are false)

— setof, bagof: return empty list

(Example: aggregate.flr)
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Aggregates and Set-valued
Methods

* Convenient shortcuts for collecting results of a method

into a list

?0[?M ->->7?L] — ?Listhelist of elt’s such that ?0[?M -> elt] is true
Same as ?setof{?X]| ?0[?M -> ?X]}

?0O[|?’M ->->7?L|] - ?Listhelist of elt’s such that ?O[|?M -> elt|] is true
Same as ?L=setof{?X]| ?0[|?M -> ?X|]}

* Set containment
?0[?M +>>?S] —trueif ?Sisalist & Vs e ?S, ?0[?M ->s]is true
?0[|?M +>>?§|] —trueif ?Sisalist & Vs e ?S, ?0O[?M ->s]is true
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Anonymous OIDs (S5kolem
Constants)

* Like blank nodes in RDF (but with sane semantics)

* Useful when one doesn’t want to invent object IDs and relies on
the system (e.g., individual parts in a warehouse database could
use this feature)

* (Can be numbered or unnumbered
— Unnumbered: \# - different occurrences mean different IDs:
\#[name ->"John’, spouse -> \#[name ->'Mary’]]

— Numbered: \#1, \#2, \#3, ... - different occurrences of, e.g., \#2 in the
same clause means the same ID:

\#1 Lpame > "Jay']. \#1 [name -> "Jay'].

v
///

Different IDs
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Anonymous OIDs (cont’d)

* \#, \#1, \#2, etc., are plain symbols. Can use them to
construct terms. For instance: \#(\#1,\#,\#2,\#1)

\#1:student| name -> Joe/
advisor -> {\#(\#1)[name -> ' Phil’ ]

—_——T~a

S

— Why is this useful?

* \#, \#1, ... can appear only in the facts and rule heads.

?- alm -> \#].

— Why does such a query make no sense?
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Equality

* Sometimes need to be able to say that two things are the same
(e.g., same Web resource with 2 URISs)

* FLORA-2 has the : =: predicate for this. For instance:

a.=:b.
p(a).
?- p(b).
Yes

* Well, not so fast...

— FEquality maintenance is computationally expensive, so it is off by
default

— Can be turned on/off on a per module basis
— Different types of equality: none, basic

— Has some limitations
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Types of Equality

* none — no equality maintenance
: = is like =.

* basic — the usual kind of equality
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Enabling Equality

* At compile time:

: - setsemantics{equality(basic)}.
* At run time:
? - setsemantics{equality(none)}

— Can be set and reset at run time

* Can find out at run time what kind of equality is in

use:
? - semantics{equality(?Type)}.

?Type=none

(Example: equality.flr)
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Limitations of Equality Maintenance
in FLORA-2

* Congruence axiom for equality:
—a=b /A p[la] implies @[b]
— This is very expensive

* FLORA-2 uses shallow congruence:

— Does substitution only at levels 0 and 1:
* p:=:q, p(a) implies q(a) level O
* a.=:b, p(a) implies p(b) level 1
*a.=:b, alm ->v] implies b[m -> v].
*v:=:w, alm ->v]| implies alm -> w].
* But: a:=:b, p(f(a)) does not imply p(f(b)) Ievel 2
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Avoiding Equality

* In many cases, equality is too heavy for what the user
might actually need.

* Try to use the preprocessor instead:

#define w3 "http://www.w3.org/”
?- w3lfetch -> ?Page].
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Data Types

URI data type: "...”"iri (IRl stands for International
Resource ldentifier, a W3C standard)

e.g., “http://www.w3.org”\iri

— Compact IRIs
* Can define prefixes and then use them to abbreviate long URIs

-

s(?X) : - ?X[a -> W3#abc]. // W2#abc expands to “http://w3.org/abc”M\iri

Standard methods exist to extract the scheme, user, host,
port, path, query, and fragment parts of IRIs
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Data Types (contd.)

Date and Time type

— 72007-01-21T11:22:44+05:44” M\dateTime (or A\dt)
+05:44 is time zone

”2007-02-11T09:55:33” \\dateTime or
”2007-03-12"” M\dateTime

— Methods for extracting parts:

* \year, \month, \day, \hour, \minute, \second, \zoneSign, \zoneHour,
\zoneMinute

Time type
?11:29:55”M\time (or M\t)
— Methods: \hour, \minute, \second

Comparison and arithmetic operations for date and time are
supported (can add/subtract duration types)

Other data types also exist
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Control Constructs

\if (cond) \then (then-part) \else (else-part)
\if (cond) \then (then-part)

— Important difference with Prolog: if cond is false, if-then is
still true, but the then-part is not executed

\unless (cond) \do (unless-part)
— Execute the unless-part if cond is false

— If cond is true, do nothing (but the whole unless-do
statement is true)

* Has also while/until loops
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Metaprogramming

* FLORA-2 allows variables everywhere, so much of
the meta-information can be queried

* The reification operator allows one to construct
arbitrary facts/queries, even rules:

?- p(?X), q(?Y), ?Z=${?X[abc ->?Y]}.
?- ?X[abc ->?Y].
?-?X=%{a:-b}, ...

* What is missing?

— The ability to retrieve an arbitrary term and find out what
kind of thing it is

— Whether it is a term or a formula
— What module it belongs to?
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Meta-unification

* This capability is provided by the meta-unification operator,
* Not to be confused with the regular unification operator, =

* Examples:
?- a[lb ->?Y]@foo ~ ?X@?M.
?X = ${a[b -> ?Y]|@foo}
?M = foo

?-alb ->?Y]~?X[?B ->c]@?M.
"B=Db

?M = main

?’X=a

?Y =c
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Meta-unification (cont’d)

* When both the module and the type of formula is

known, then “=" will do:
?- ${?X[a -> b]@foo} = ${0o[?A -> ?B]@foo}.

But this will fail:
?- ${?X[a ->b]@?M} = ${o[?A ->?B]@foo}.
No

()

=" will work in many cases, but use ~ when in doubt:
?- ${?X[a ->b]J@?M} ~ ${o[?A -> ?B]@foo}.

’X=0

?M = foo

?PA=a

"B=D
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Recognizing Unknown Meta-terms

?X ~ (?A, ?B) A conjunction (= also ok)

?X ~ (?A; ?B) A disjunction (= ok)

X ~?Y@?M A molecule or a HiLog formula
X~ ->7] A functional molecule
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6. Updating the Knowledge
Base
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What Kinds of Updates?

* In FLORA-2, the knowledge base can be changed in
the following ways:
— Insert/delete facts in a module
— Insert/delete rules in a module

— Create a completely new module on-the-fly (at run time)
and put data and rules into it

* E.g., create a new agent dynamically
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Adding and Deleting Facts

* Support provided for

— Non-logical updates, which only have operational
semantics (like in Prolog, but more powerful) — non-
backtrackable and thus non-transactional updates

— Logical updates as in Transaction Logic - transactional
updates
* Non-transactional: insert, delete, insertall, deleteall,
erase, eraseall

* Transactional: t _insert, t_delete, t _insertall,
t_deleteall, t_erase, t_eraseall (shorter synonyms:
tinsert, tdelete, etc.)
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Syntax of Update Operators

* updateOp1 Literals }

* updateOp{ Literals | Query }
* Literals: stuff to delete

* Query: condition on Literals

* The exact meaning of Literals and Query depends
on the particular updateOp
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Insert Operators (non-logical)

* Unconditional :
?- p(?X), q(?Y), insert{ ?X[has -> ?Y] }.
inserts ?X[has -> ?Y] for the binding of ?X and ?Y
?- p(?X), q(?Y), insertall{ ?X[has ->?Y] }.
no difference in this context

* Conditional:
?- \one. To prevent backtracking
?- p(?X), insert{ ?X[has ->?Y]| q(?Y) }.
insert for some ?Y such that q(?Y) is true
? - p(?X), insertall{ ?X[has ->?Y]| q(?Y) }.
insert for all ?Y such that q(?Y) is true
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Delete Operators (non-logical)

* Unconditional
?- \one.
?- q(?X), delete{p(?X,?Y), a[b ->?Y]}. Delete for some ?Y
?- q(?X), deleteall{p(?X,?Y), a[b ->?Y]}. Delete for all ?Y

* Conditional

?- \one.

?- q(?X), delete{p(?X,?Y) | a[b ->?Y]}. Delete for some ?Y

?- q(?X), deleteall{p(?X,?Y) | a[b ->?Y]}. Delete for all ?Y

(Example: delete.flr)
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Delete Operators (cont’d)

* erase{factl, fact2,...}

— Works like delete, but also deletes all objects reachable
from the specified object

* eraseall{facts|query}

— Works like deleteall, but for each deleted object also
deletes the objects that are reachable from it

(Example: erase.flr)
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Transactional (Logical) Updates

* The basic difference is that a postcondition can affect
what was inserted or deleted

— Non-logical:
?- insert{p(a)}, deleteall{q(?X)}, a[b ->c].
p(a) will be inserted / q(?X) deleted regardless of
whether a[b ->c] was true or false

— Logical:
?- tinsert{pp(a)}, tdeleteall{qq(?X)}, a[b ->c].

updates will be done only if a[b ->c] remains true
after
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Abolishing Tables

* **mostly obsolete** Tables are now updated automatically.
* Tables[abolishj@\system: clears out all tables

— Previous queries would have to be recomputed — performance penalty
— Cannot be called during a computation of a tabled predicate or
molecule — XSB will coredump!

* refresh{factl, fact2,...}: selectively removes the tabled data
that unifies with the specified facts (facts can have variables in
them

— Lesser performance penalty

— Can be used in more cases: refresh{...} will crash XSB only if you call
it while computing the facts being refreshed

(Example: refresh.flr)
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Tabled Literals that Depend on Updates

* If a tabled literal depends on an update, then
executing it twice will execute the update only once —
probably an error in the program logic

* FLORA-2 will issue a warning
* To block the warning (if the logic is correct), use

: - ignore_depchk{skeleton, skeleton, ...}.

The skeletons specify the predicates that tabled predicates
can depend on without triggering the warning

* Warnings are triggered for insert/delete ops, any predicate or
method that starts with a %.

(Example: depchk.flr)
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Updates and Meta-Programming

* Update operators can take variables that range over
formulas — metaupdates

* Module foo:
%update(?X,?Y) : -
X ~?0[?M ->7],?Y ~?0[°M -> 7],
|

*)

delete{?X}, insert{?Y}.
%update(?_X,?_Y) : - abort([?Y, " not updating ’, ?X])@\sys.

* Module main:
?- %update(${a[b -> ?]}, ${a[b -> d]})@foo.
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Inserting/Deleting Rules

* Useful when knowledge changes dynamically

* Especially for creation of new agents and stuffing
them with rules

FLORA-2 rules can be static or dynamic

Static rules:

— Those that you put in your program; they can’t be deleted
or changed

* Dynamic rules:

— Those that were inserted using insertrule_a{...} or
insertrule_z{...} primitives; they can be deleted using
deleterule{...}
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Rule Insertion Operators

* insertrule_a{ (rulel), (rule2),...}
— Inserts the rule(s) before all other rules (static or dynamic)
? - insertrule_a{p(?X) : - ?X[a -> b]}.
?- insertrule_a{(a : - b),(c : - d)}
* insertrule_z { (rulel), (rule2),...}
— Inserts the rules after all other rules (static or dynamic)
? - insertrule_z{p(?X) : - ?X[a -> b]}.

* Note: static rules are always stuck in the middle of
the program
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Insertion of Rules into Another Module

* If foobar is another module:
? - insertrule_z{(a : - b)@foobar, (c : - d)@foobar}

* Module may already exist or be created on-the-fly:
? - newmodule{foobar}.

If foobar does not exist, it will be created “empty”
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Rule Deletion Operator

* Only previously inserted rules (i.e., dynamic rules)
can be deleted

* Operator: deleterule{ (rulel), (rule2), ...}

— Delete every dynamic rule that matches rulel, rule2, ...

* insertrule a, insertrule z, deleterule are non-
transactional (so not backtrackable).

— But this is unlikely to matter: Who would stick a post-
condition after insertrule/deleterule? (Someone too
sophisticated.)
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Flexible Deletion

* The rules in deleterule can be more flexible than what
is allowed in insertrule and in static rules:

— Can have variables in the rule head & body

* Examples:

? - deleterule{?H : - ?X[abc -> ?Y]}.
* Delete every dynamic rule with the body that looks like ?X[abc -> ?Y]

? - deleterule{?X][abc ->?Y] : - ?B}.
* Delete every dynamic rule with the head that looks like ?X[abc ->?Y]

?- deleterule{(?H : - ?"B@?M)@?N}.

* Delete every dynamic rule in every module!

(Example: dynrules.flr)
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Research Issues

* Speed up query evaluation

* Approximate reasoning

* Better implementation of transactional updates

* Implementation of Concurrent Transaction Logic
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Problems that Need XSB Work

* Cuts over tabled predicates
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