
03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 1

Programming Knowledge
 with Frames and Logic

Michael Kifer

Stony Brook University

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 2

Part1: Foundations

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 3

What’s in This Tutorial?

Part 1: Foundations

1. Introduction

2. Background
– F-logic (Frame Logic)

– HiLog
– Transaction Logic
– Top-down execution and tabling

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 4

What’s in This Tutorial?

Part 2: Programming

3. Getting Around FLORA-2
– Getting started

– Modules

– Multifile modules

– Debugging

4. Some Low-level Details
– HiLog vs. Prolog representation of terms

– To table or not to table?

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 5

What’s in This Tutorial?

5. Advanced Features
– Path expressions

– Aggregates

– Anonymous OIDs

– Equality

– Control constructs

– Metaprogramming

6. Updating the Knowledge Base
– Non-logical updates

– Logical updates

– Limitations

– Inserting and deleting rules

7. Future plans

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 6

1. Introduction

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 7

What’s Wrong
 with Knowledge Representation

 Based on Classical Logic?

• Essentially flat data structures:
person(John, ‘123 Main St.’, 34)

• Awkward meta-programming:
Which predicates mention John?

• Ill-suited for modeling side effects:
 State changes, I/O

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 8

A Solution

• Flat data structures:

 Frames (F-logic)

• Awkward meta-programming:

 Higher-order syntax (HiLog + F-logic)

• Modeling side effects:

Logic of updates (Transaction Logic)

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 9

What is FLORA-2 ?

• FF-LLogic tRARAnslator
• Realizes the vision of logic-based KR with frames,

meta, and side-efects. Founded on
– F-logic
– HiLog
– Transaction Logic

• Practical & usable KR and programming environment
– Declarative

– Object-oriented
– Logic-programming style
– Overcomes most of the usability problems with Prolog

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 10

What is FLORA-2 ?

• Builds on earlier experience with implementations of F-
logic:
– FLORID, FLIP, FLORA-1 (which don’t support HiLog &

Transaction Logic)

• Differs in spirit from other F-logic based systems
– FLORID, Ontobroker are query languages; cannot live

without a procedural language (C++, Java)
– FLORA-2 is a complete programming language; can be used

in the query language capacity as well.

• http://flora.sourceforge.net
• A recent overview: [Yang, Kifer, Zhao, ODBASE-2003]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 11

Applications of FLORA-2

• Ontology management

• Knowledge-based networking

• Information integration

• Software engineering

• Agents

• Anything that requires manipulation of complex
structured (especially semi-structured) data

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 12

Other F-logic Based Systems

• ????? (U. Melbourne – M. Lawley) – early 90’s; first Prolog-
based implementation

• FLORID (U. Freiburg – Lausen et al.) – late 90’s; the only C++
based implementation

• FLIP (U. Freiburg – Ludaescher) – late 90’s; first XSB based
implementation. Inspired the FLORA effort

• TFL (Tech. U. Valencia – Carsi) – late 90’s; first attempt at F-
logic + Transaction Logic

• SILRI (Karlsruhe – Decker et al.) – late 90’s; Java based

• TRIPLE (Stanford – Decker et al.) – early 2000’s; Java

• OntoBroker (Ontoprise.de, now Semafora) – 2000; commercial

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 13

2. Background

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 14

Desirable Background Knowledge

• Predicate calculus
– Good understanding of its model theory

• Logic programming/Deductive databases
– Bottom-up execution (TP operator)

– Top-down execution (SLD resolution)

– Negation as failure / Well-founded negation

• Prolog language

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 15

2.1. Background: F-Logic

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 16

Basic Ideas Behind F-logic

• Take complex data types as in object-oriented
databases

• Combine them with logic

• Use the result as a programming language

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 17

What F-Logic Provides

• Objects with complex internal structure

• Class hierarchies and inheritance

• Typing

• Encapsulation

• Background:
– Basic theory: [Kifer & Lausen SIGMOD-89], [Kifer,Lausen,Wu JACM-95]

– Path expression syntax: [Frohn, Lausen, Uphoff VLDB-84]

– Semantics for non-monotonic inheritance: [Yang & Kifer, ODBASE 2002]

– Meta-programming + other extensions: [Yang & Kifer, ODBASE 2002]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 18

Relationship to Standard Logic

 O-O programming Relational programming

 =
 F-logic Predicate calculus

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 19

Relationship to Standard Logic (cont’d)

P
re

d
ic

at
e

lo
g

ic

F-logic

Logic
programming

F-logic programming

First-order flavor vs. logic programming flavor.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 20

Relationship to Description Logic

Predicate
logic

Descrip
tio

n F-L
ogic F-logic

Descrip
tio

n Logic

A description logic subset can be developed in F-logic
[Balaban 1995, The F-logic Approach for Description Languages]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 21

F-logic: Simple Examples

Object description:

 John[name ‘John Doe’, phones -> {6313214567, 6313214566},
 children -> {Bob, Mary}]

 Mary[name ’Mary Doe’, phones -> {2121234567, 2121237645},
 children -> {Anne, Alice}]

Structure can be nested:

 Sally[spouse -> John[address -> ‘123 Main St.’]]

Attribute

Attribute

Object Id

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 22

Examples (cont’d)

• Historic notes:
– The original F-logic distinguished between functional (->)

and set-valued (->>) attributes
• In FLORA-2 this has been simplified and generalized:

– Only set-valued methods and only -> are used

– Can specify cardinality constraints. The constraint {0:1} corresponds
to functional attributes

– In F-logic, variables were denoted by capitalized symbols
• In FLORA-2 variables are preceded with a ?.

• Constants can start with lowercase or uppercase – does not matter:
– John, betty.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 23

Examples (contd.)

ISA hierarchy:

 John : Person - class membership
 Mary : Person
 alice : Student

 Student :: Person - subclass relationship

 Student : EntityType

 Person : EntityType

Class & instance
at the same time

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 24

Examples (Contd.)

Methods: like attributes, but take arguments

 ?P[ageAsOf(?Year) ?Age] :-
 ?P:Person, ?P[born B], ?Age \is ?Year–?B.

• Attributes can be viewed as methods with no arguments

Query:
 John’s children who were born when he was 30+ years old:

 ?– John[born -> ?Y, children -> ?C],
 ?C[born -> ?B], ?B > ?Y+30.
 or
 ?– John[ageAsOf(?Y) 30, children ?C],
 ?C[born B], ?B>?Y.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 25

Examples (Contd.)

• Type signatures: Define the types for method
 arguments and for their results

Person[born => \integer,
 ageAsOf(integer) => \integer,
 name => \string,

 address => \string,
 children => person].

• Signatures can be queried:
?- Person[name ?Type].

 Answer: ?Type = \string
 ?- Person[?Attr => \string].
 Answer: ?Attr = name
 ?Attr = address

Note: builtin types, like \integer, start with a backslash.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 26

Syntax
• Object ids:

• Terms like in Prolog, but constants, functions can be capitalized – John, abc,
f(john,34), Car(red,20000)

• Below, O, C, M, T, ... denote usual first order terms

• IsA hierarchy (isa-atomsisa-atoms):
• O:C -- object O is a member of class C
• C::S -- C is a subclass of S

• Structure (object-atomsobject-atoms):
• O [Method Value] -- invocation of method

• Type (signature-atomssignature-atoms):
• Class [Method => Class] – a method signature

• Combinations of the above:
• and, or, negation, quantifiers

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 27

More Examples
 Browsing IsA hierarchy:
 ?- John : ?X.
 ?- Student ::?Y

Virtual (view) class:
 ?X : Redcar :- ?X:Car ,, ?X[color -> red].

Meta-query about schema:
 ?O[attributesOf(?Class) -> ?A] :-

 ?O[?A ->?V], ?V:?Class.

Parameterized family of classes:
 []:list(?T).
 [?X|?L]:list(?T) :- ?X:?T, ?L:list(?T).

 E.g., list(integer), list(student)

Rule defines method, which
returns attributes whose

range is class Class
is implication, or

¬

and

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 28

Model Theory for Object Definitions

Simplified (so-called Herbrand) semantics:
 Universe: HB – set of all variable-free terms (“ground” terms)
 Interpretation: I = (HB,I->,,<)

where < : partial order on HB
 : binary relationship on HB

 I-> : HB (HB powerset(HB))
 Satisfaction of formulas in I:
 I o[m->v] if v I->(m)(o)
 I o:c if o c
 I c::s if c < s

partialpartial

methods

objects

values

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 29

Model Theory for Types

Interpretation: I = (HB,I->, ,<, I)

where I=> : HB (HB powerset(HB))

Satisfaction of method signatures:
 I c[m=>t] if some element in I=>(m)(c) is t

• Basically, we want c[m=>t] and t::t’ to imply c[m=>t’]
(if the result is of type t then it also conforms to any supertype of t)

partialpartial

set of methods
types for resultsset of classes

The function assigns
types to methods

Added

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 30

Semantics (cont’d)

 The well-typing condition:
 o[m v] is well-typed in I
 iff whenever o c then v (I=>(m)(c))

I is well-typed if every true object atom is well-typed.

Here we want c[m =>t], o[m ->v], o:c to imply v:t.
I.e., typing is a constraint

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 31

Semantics (cont’d)

• I P /\ Q iff I P and I Q

• I P \/ Q iff I P or I Q

• I ¬P iff not I P

• I ?X P iff for all c HB, I P’
P’ is P with all free occurrences of ?X replaced with c

• I ?X P iff for some c HB, I P’
P’ is P with some free occurrence of ?X replaced with c

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 32

Shorthands

• /\-Composition: O[m1 v1, m2 v2] is

 O[m1 v1] /\ O[m2 v2]

• \/-Composition: O[m1 v; m2 v2] is

 O[m1 v1] \/ O[m2 v2]

• Nesting: O[m1 v1[m2 v2]] is

 O[m1 v1] /\ v1[m2 v2]

• IsA-Composition: O:C[m v] (or O[m ->v]:C) is

 O:C /\ O[m v]

• Same for the other arrows

These are
called

molecules
or frames

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 33

Boolean Methods

• Another shorthand: Obj[Meth]
– E.g. ?X[p(a,?X)], f(?X)[p], john[married(1999)]

• Think of these as a shorthand for
Obj[Meth -> void]

 (this is only conceptually: Obj[Meth] is an independent
construct and is not equivalent to Obj[Meth -> void])

• Boolean signatures: Obj[=>MethType]
– E.g., Person[=>married(Year)]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 34

Proof Theory

• Resolution-based
– Will see later a special case

• Sound & complete w.r.t. the semantics
– Soundness of proofs:

 If can prove Q from a set of formulas P then P Q
– Completeness of proofs:

 If P Q then can prove Q from P

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 35

A Note on the Semantics of FLORA-
2

• F-logic semantics & proof theory is completely general, like
that of classical logic

• But FLORA-2 is a programming language, hence it uses non-
classical semantics
 … :-…, \naf P, …

 means: true if cannot prove P – so called “negation as failure.”

 The exact semantics for negation used in FLORA-2 is Van
Gelder’s Well-Founded Semantics [Van Gelder et al., JACM
1991, http://citeseer.nj.nec.com/gelder91wellfounded.html]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 36

A Note on the Semantics (cont’d)

• The Well-Founded semantics is 3-valued:
 p :- \naf q.

 r :- \naf r.

p is true, q false, but r is undefined

• And non-monotonic:
 P |= Q doesn’t imply PP’ |= Q

p :- \naf q implies p true.

But
 q and p :- \naf q implies p false.

• Classical logic is both 2-valued and monotonic

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 37

Inheritance in Flora-2

• Inheritance of structure vs. inheritance of behavior
– Structural inheritance = inheritance of the signature of a

method
– Behavioral inheritance = inheritance of the definition of a

method

• Attributes/methods can be class-levelclass-level and object-levelobject-level
– Object-level statements about an object, c, which may be a

class-object, apply only to c and nothing else
– Class-level statements are inheritedinherited from c. That is, they apply

to all members of the class c and to all subclasses of c.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 38

Structural Inheritance

• Class-level signatures appear inside class-level statements
([|…|]). Object-level signatures appear inside object-level
statements ([…]).

• For object-level statements:
• class[method => type] and subclass::class

 does not imply subclass[method => type]

• For class-level statements:
• class[|method => type|] and subclass::class

 does imply subclass[|method => type|]

• class[|method => type|] and obj:class

 does imply obj[method => type]

• Structural inheritance is monotonic: adding more
signatures doesn’t invalidate old inferences

Don’t confuse “antimonotone” here with
“monotone” in “monotonic structural inheritance!”

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 39

Structural Inheritance -
Semantics

Interpretation: I = (HB,I->,,<, I ,I [|=>|])
 where

 I[|=>|]: HB (HB powerset(HB))

Added

partial partial andand antimonotone

person

student

<

I[|=>|](worksFor) … … …
organization

… … …
organization
university

I[|=>|](worksFor)

Why antimonotonicity?

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 40

Behavioral Inheritance
• Class-level statements use …[|…->…|]

– Object-level statements use …[…->…]

• Behavioral inheritance is non-monotonic

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 41

Relationship Between Inheritable and Non-
inheritable Methods

Inheritable methods are inherited as
– inheritable to subclasses

– non-inheritable to members

class[| m -> v|]

subclass[| m -> v |]

obj[m -> v]

class[| m => v|]

subclass[| m => v |]

obj[m => v]

Subclass

Member of

Specie

Bird

Tweety

[|populationSize => integer|]

[populationSize => integer]

[populationSize => integer]
Object-

level

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 42

Behavioral Inheritance:
 Non-monotonicity

elephant[|color ->grey|]

fred

royalElephant[|color -> white|]

clyde

Inherited:Inherited:
 fred[color -> grey]

 clyde[color -> grey]

Overriding

white

?

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 43

Behavioral Inheritance:
 Problem with Rules

• Inheritance is hard to even define properly in the
presence of rules.

a

b

 [| m v |]

c[|m w|] :- b[m v]c

[m v]

inherited

defeated??

[| m w |]

derived

Other non-obvious cases
also exist

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 44

Behavioural Inheritance:
Solutions

• Hard to define semantics for multiple inheritance +
overriding + rules

• Several semantics might look “reasonable”
• Should have no unnecessary restrictions

• The original semantics in [Kifer,Lausen,Wu: JACM-95]
was one of the problematic “reasonable” semantics
– A number of other problematic semantics of various degrees of

“reasonableness” exist

• Problem solved in [Yang&Kifer: Journal on Data
Semantics 2006]

• Based on semantic postulates
• An extension of Van Gelder’s Well-Founded Semantics for negation

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 45

2.2. Background: HiLog

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 46

HiLog

• Allows certain forms of logically clean meta-
programming

• Syntactically appears to be higher-order, but
semantically is first-order and tractable

• Has sound and complete proof theory

• [Chen,Kifer,Warren, HiLog: A Foundation for Higher-
Order Logic Programming, J. of Logic Programming,
1993]
– The recent work on SKIF and Common Logic (Hayes et. al.)

is a rediscovery of HiLog with very minor differences – 12
years later!

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 47

Examples of HiLog

Variables over predicates and function symbols:
 p(?X,?Y) :- ?X(a,?Z), ?Y(?Z(b)).

Variables over atomic formulas (reification):
 call(?X) :- ?X.

A use of HiLog in FLORA-2 (e.g., querying of schema):
 ?O[unaryMethods(?Class) -> ?M] :-
 ?O[?M(?) ->?V], ?V:?Class.

Meta-variable: ranges
over method names

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 48

Syntax and Semantics of HiLog

• In predicate logic, predicates and functions are disjoint,
but predicate expressions (atomic formulas) and
functional expressions (function terms) have the same
syntax: e.g., p(?X, f(a,b)) vs. g(?X,f(a,b))

• HiLog makes no distinction between predicates and
function symbols and atomic formulas are
indistinguishable from function terms

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 49

Syntax of HiLog

• Everything is built out of constant symbols and
variables

• HiLog term:
• ?X and f (if ?X is a variable, f – a constant)
• F(A1,…,An) if F, A1,…,An are HiLog terms

– Note: these are HiLog terms
• Any Prolog term is, of course, a HiLog term
• X(a,f(?Y)), f(f(f,g),?Y(?Y,?Y)), h, ?Y
• ?X(a,f(Y))(f(f(f,g),Y(Y,Y)), h,Y)
• ?X(a,f(?Y))(X(a,f(?Y)))(f(f(f,g),?Y(?Y,?Y)), h,?Y)

• HiLog formula:
• Any HiLog term
• A\/B, A/\B, A, X A, etc., if A, B are Hilog formulas

The “weird”
ones

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 50

Syntax of HiLog:
 What are the “Weird” terms for?

• Generic transitive closure:
transClosure(?P)(?X,?Y) :- ?P(?X,?Y).

transClosure(?P)(?X,?Y) :- ?P(?X,?Z), transClosure(?P)(?Z,?Y).

• For instance:
• transClosure(parent) is the ancestor relation

• transClosure(edge) pairs of all reachable

 nodes in the graph defined by edge

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 51

Semantics of HiLog

• Interpretation (Herbrand, for simplicity):
– I = any set of variable-free HiLog terms

– I |= a (atomic variable-free), if a I

– I |= /\, if I |= and I |=

– etc. (as usual)

– I |= X , if for all constant symbols c, I |= [X\c], where
[X\c] is with free occurrences of X replaced with c

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 52

Relationship to Predicate Logic

• |=classical implies |=hilog

• |=hilog does not imply |=classical :
– (q(a) <-> r(a)) <- XY(X=Y)

 is valid in HiLog but not in predicate logic

• But:
– |=hilog implies |=classical , except for formulas that are true

in every interpretation with at least γ elements in the
domain (for some γ >0), but are false in some interpretation
that has less than γ elements [Chen,Kifer,Warren JLP-93].

– Examples: Horn clauses without “=” in the head;

 Any set of “=”-free formulas

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 53

Reification:
An Application of HiLog to F-logic

• Reification: makes an object out of a statement:
 john[believes -> ${mary[likes -> bob]}]

• Introduced in [Yang & Kifer, ODBASE 2002]

Object made out of
the statement

mary[likes -> bob]• Main idea:
 - Extend the syntax of F-logic to allow terms of the form

 ${mary[likes -> bob]}, ${bob[name -> ‘Bob Doe’]}
 and even more general ones, like

 ${mary[likes -> bob, name -> ‘Bob Doe’]}

 - Eliminate the distinction between atomic formulas and terms both
 in the syntax and semantics (like in HiLog)

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 54

The Role of HiLog

• HiLog and its applications to F-logic (reification,
schema browsing) allows high degree of meta-
programming purely in logic

• Variables can be bound to predicate and function
symbols and thus queried (e.g., which relation
mentions constant ‘john’)

• Formulas can be represented as terms, decomposed,
composed, and manipulated with in flexible ways

• One can mix frame syntax (F-logic) and predicate
syntax (HiLog) in the same query/program:
a[b -> c, g(?X,e) -> d], p(f(?X),a).

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 55

2.3. Background: Transaction
Logic

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 56

Transaction Logic
• A logic of change
• Unlike temporal/dynamic/process logics, it is also a logic for

programming (but can be used for reasoning as well)
• In the object-oriented context:

– A logic-based language for programming the behavior of objects, i.e.,
specifying methods that change the object state

[Bonner&Kifer, An Overview of Transaction Logic, in
Theoretical Computer Science, 1995],

[Bonner&Kifer, A Logic for Programming Database
Transactions, in Logics for Databases and Information
Systems, Chomicki+Saake (eds), Kluwer, 1998].

[Bonner&Kifer, Results on Reasoning about Action in
Transaction Logic, in Transactions and Change in Logic
Databases, LNCS 1472, 1998].

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 57

What’s Wrong with Other Logics for
Specifying Change?

• Designed for reasoning, not programming
• E.g., situation calculus, temporal, dynamic, process logics

• Typically lack such basic facility as subroutines

• None became the basis for a reasonably useful
programming language

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 58

Problems with Specifying
Change in Logic Programming

(Prolog)?
• assert/retract have no logical semantics

• Non-backtrackable, e.g.,

?- assert(p), q.

 If q is false, p stays.

• Prolog programs with updates are the hardest to
write, debug, and understand

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 59

Example: Stacking a Pyramid

Program:
 stack(0,X).
 stack(N,X) :- N>0, move(Y,X), stack(N-1,Y).

 move(X,Y) :- pickup(X), putdown(X,Y).
 pickup(X) :- clear(X), on(X,Y), retract(on(X,Y)), assert(clear(Y)).
 putdown(X,Y) :- wider(Y,X), clear(Y), assert(on(X,Y)), retract(clear(Y)).

Action:
 ?– stack(18,block32). // stack 18-block pyramid on top of block 32

Note:
 Prolog won’t execute this intuitively correct program properly!

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 60

Syntax

• Serial conjunction, (often denoted using “,”)
• a b – do a then do b

• The usual /\, \/, ¬, , (but with a different semantics)
• Example: a \/ (b c) /\ (d \/ ¬e)

• a :- b a \/ ¬b
• Means: to execute a one must execute b (i.e., a is a subroutine)

• Transaction logic also has hypothetical operators ◊
and □, but won’t discuss (not implemented in
FLORA-2)

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 61

Semantics
• Model-theoretic, like F-logic and HiLog
• The basic ideas

– Execution path sequence of database states
• Assume that the states are just sets of facts

– Truth values over paths, not over states
– Truth over a path execution over that path
– Elementary state transitions propositions that cause a priori defined

state transitions
• For most purposes, can use the following elementary state transitions:

t_insert{t_insert{factfact} and t_delete{t_delete{factfact} (for transactional insert and delete)
t_insert{t_insert{factfact}: D D + fact - add fact to state D
t_delete{t_delete{factfact}: D D – fact - delete fact from state D

• FLORA-2 allows more powerful state transitions (bulk updates):
t_insert{t_insert{fact(?X)|condition(?X)fact(?X)|condition(?X)}} and t_delete{t_delete{fact(?X)|condition(?fact(?X)|condition(?

X)X)}}
 Insert/delete things of the form fact(X) fact(X) that satisfy condition(X)condition(X).

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 62

Path Structures

• Semantics is defined using the notion of path structures
(which play the same role as semantic structures in
classical logic)

• A path structure maps execution paths to the ordinary
semantic structures used in classical predicate logic:
I() = M , where - path, M – classical semantic structure,

which says which transactions can execute along the path

 In addition:
• If = <D> is a path that consists of only one database state then I()

must make every fact in D true.

• If = <D, D+fact> then I() should make t_insert{fact} true

• If = <D, D-fact> then I() should make t_delete{fact} true

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 63

Satisfaction

I(<D0,…,D4>) |= a

 I(<D0,…,D7>) |= a b

Intuition:
 a b: First execute a then b - represents sequencing of actions

D0 D1 D2 D3 D4 D5 D6 D7

I(<D4,…,D7>) |= bIf:

Then:

Definition:
 I(<D0,…,Dn>) |= a b iff Dk such that I(<D0,…,Dk>) |= a and I(<Dk,…,Dn>) |= b

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 64

Satisfaction (cont’d)
Intuition:
 a /\ b: Execute a along a path that is also an execution of b - represents
constraints

D0
D1

D2 D3 D4 D5 D6 D7

Then: I(<D0,…,D7>) |= a /\ b

 I(<D0,…,D7>) |= a

 I(<D0,…,D7>) |= b

If:

Definition:
 I(<D0,…,Dn>) |= a /\ b iff I(<D0,…,Dn>) |= a and I(<D0,…,Dn>) |= b

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 65

Satisfaction (cont’d)
Intuition:
 a \/ b: Execute a along a path or execute b - represents choice

D0
D1

D2 D3 D4 D5 D6 D7

Then: I(<D0,…,D7>) |= a \/ b

 I(<D0,…,D7>) |= a

 I(<D0,…,D7>) |= b

If:

Definition:
 I(<D0,…,Dn>) |= a \/ b iff I(<D0,…,Dn>) |= a or I(<D0,…,Dn>) |= b

or:

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 66

Satisfaction (cont’d)
Intuition:
 a: Execute in any way provided that it is not an execution of a

D0
D1

D2 D3 D4 D5 D6 D7

Then: I(<D0,…,D7>) |= a

 I(<D0,…,D7>) |≠ aIf:

Definition:
 I(<D0,…,Dn>) |= a iff I(<D0,…,Dn>) |≠ a

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 67

Satisfaction (cont’d)

Then: I(<D0,…,D7>) |= head

head <- body (defined as a \/ b)

 Formally: Every execution of body is also an execution of the head:

D0 D1 D2 D3 D4 D5 D6 D7

Informally: One way to execute head is to execute body
 => head is the name of a procedure
 and body is part of its definition

 If: I(<D0,…,D7>) |= body

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 68

Properties of the Semantics

The semantics has the “all or nothing” flavor which
makes updates logical:

actionaction
Post-conditionPost-conditiontrue

false

If actionaction is true, but postconditionpostcondition false, then
 actionaction postcondition postcondition is false on π.

In practical terms: updates are undone on backtracking.

path π

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 69

Transaction Programs

• A transaction program P is a set of rules of the form
head :- body like

 move(?X,?Y) :- pickup(?X), putdown(?X,?Y)

 which define complex transactions using simple
actions (like t_insert/t_delete)

• A transaction (or action) is a query of the form
?- body.

(e.g., ?- stack(18,block32))

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 70

Proof Theory

• Executional entailmentExecutional entailment: P is a set of rules, is a transaction

(query), D1,…,Dn – a sequence of states. Then

P, D1,…,Dn |=

 iff path structures I where I |= P (ie., path π, I(π) |= P),

 it follows that I(<D1,…,Dn>) |=

• To prove from a set of rules (transaction definitions) P, the
proof theory tries to find a path, D1,…,Dn, on which is
executionally entailed by P.
– Thus, the proof theory executes as it proves it (and changes the

underlying database state from the initial state D1 to the final state Dn)

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 71

Pyramid Building (again)

stack(0,?X).

stack(?N,?X) :- ?N>0 move(?Y,?X) stack(?N-1,?Y).

move(?X,?Y) :- pickup(?X) putdown(?X,?Y).

pickup(?X) :- clear(?X) on(?X,?Y) t_delete{on(?X,?Y)} t_insert{clear(?Y)}.

putdown(?X,?Y) :- wider(?Y,?X) clear(?Y) t_insert{on(?X,?Y)} t_delete{clear(?Y)}.

?– stack(18,block32). // stack 18-block pyramid on top of block 32

• Under the Transaction Logic semantics the above
 program does the right thing

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 72

Constraints
• Can express not only execution, but all kinds of sophisticated

constraints:

 ?– stack(10, block43)

 /\ ?X,?Y (move(?X,?Y) color(?X,red)) => (?Z color(?Z,blue) move(?Z,?X))

 Whenever a red block is stacked, the next block to be stacked must be blue

• Extensions (concurrent, game-theoretic) have been shown
useful for process modeling
 [Davulcu, Kifer, Ramakrishnan, & Ramakrishnan, Logic Based Modeling

and Analysis of Workflows, in Proceedings of PODS, 1997]
[Davulcu, Kifer, Ramakrishnan, CTR-S: A Logic for Specifying Contracts

in Semantic Web Services, Proceedings of WWW2004]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 73

Reasoning

• Can be used to reason about the effects of actions
such as:
– If was true before the execution of transaction then

must be true after

– If was true after the execution of transaction then must
have been true before

[Bonner&Kifer, Results on Reasoning about Action in
Transaction Logic, in Transactions and Change in Logic
Databases, LNCS 1472, 1998]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 74

Planning

• Transaction Logic is ideal for specifying planning
strategies.

• The planning problem:
– Given:

• A set of primitive actions – aa11, ..., a, ..., ann

 each aaii can have preconditions
• A goal – GG

 a condition on the final state of the DB,
 which we want to achieve

• An initial state DD00

– Find:
• A sequence of these actions that starting at DD00 leads to a

state DD that satisfies GG.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 75

Naïve Planning is Easy in Transaction
Logic

Specification:

 plan :- action plan.

plan :- action.

action :- aa11.

… … …

action :- aann.

To find a plan, just pose the query

?- plan goal.

Example:

 ?- plan (on(b,c)/\on(c,d)/\clear(b)).

Problem:

Proof theory might search through all sequences.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 76

Planning with Heuristics

• Planning strategies employ heuristics to avoid
exhaustive search

• Transaction Logic is ideal for specifying (and
executing!) such heuristics

• Will illustrate using STRIPS (a classic planning
system) as an example

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 77

STRIPS

• Uses actions of the form:
 NameName: unstack(?X,?Y)
 CommentComment: Pick up block X from block Y
 PreconditionPrecondition: handempty, clear(?X), on(?X,?Y)
 DeleteDelete: handempty, clear(?X), on(?X,?Y)
 InsertInsert: clear(?Y), holding(?X)

• Uses an ad hoc algorithm to construct plans
• Most AI planning systems use ad hoc algorithms
• We can write planning strategies at the high level in

Transaction Logic without worrying about the
low-level details

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 78

Specifying STRIPS in Transaction Logic

• First, write a rule for each action – straightforward

unstack(?X,?Y) :- handempty clear(?X) on(?X,?Y)

 t_delete{clear(?X), on(?X,?Y), handempty}

 t_insert{holding(?X), clear(?Y)}

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 79

STRIPS in Transaction Logic
(cont’d)

• Next, show how to achieve each goal of interest
achieve_clear(?Y) :- achieve_unstack(?X,?Y).

achieve_holding(?X) :- achieve_unstack(?X,?Y).

achieve_unstack(?X,?Y) :-

 (achieve_clear(?X) * achieve_on(?X,?Y) * achieve_handempty)

 unstack(?X,?Y).

(We use a*b as a shorthand for (a b) \/ (b a).)

• The above says:

– To achieve a goal, achieve the precondition of an action that inserts that
goal

– To achieve a precondition, achieve each of the subgoals in that
precondition

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 80

STRIPS in Transaction Logic
(cont’d)

• Base case: if a goal is already true, then it has been
achieved
achieve_on(?X,?Y) :- on(?X,?Y).

achieve_clear(?X) :- clear(?X).

achieve_holding(?X) :- holding(?X).

achieve_handempty :- handempty.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 81

STRIPS in Transaction Logic
(cont’d)

• A STRIPS planning query in Transaction Logic
– Stack c on d and b on c

?- (achieve_on(b,c) * achieve_on(c,d)) on(b,c) on(c,d).

• The above is “ultimate” STRIPS: it finds a solution
when one exists

• STRIPS was not based on a logic, so they kept
refining their ad hoc execution mechanism
– The original STRIPS was not complete. Was made

complete after a series of papers

• The right logic makes the whole problem almost
trivial!

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 82

Concurrent Transaction Logic

• Extends Transaction Logic with two connectives:
– a | b – parallel conjunction, denotes parallel execution
 a – isolation, denotes isolated execution (in the sense of transaction

processing)
– Extends the model theory and the proof theory of Transaction Logic

 [Bonner&Kifer, Concurrency and Communication in
Transaction Logic, in Joint Int'l Conference and Symposium
on Logic Programming, MIT Press, 1996]

• Suitable for process modeling and programming concurrent
systems
 [Davulcu, Kifer, Ramakrishnan, & Ramakrishnan, Logic Based

Modeling and Analysis of Workflows, in Proceedings of PODS, 1997]

• Harder to implement (not implemented in FLORA-2)
– An interpreter available at http://www.cs.toronto.edu/~bonner/ctr/

http://www.cs.toronto.edu/~bonner/ctr/

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 83

Concurrent Transaction Logic
 for Services

• Extends Concurrent Transaction Logic with one
additional connective:

 a ∏ b – the opponent’s conjunction

• Enables specification of the behavioral aspects of service
contracts
– When different parties to the contract can make different choices (e.g.,

ship insured or uninsured, pay in full or in installments)

• [Davulcu, Kifer, & Ramakrishnan, CTR-S: A Logic for
Specifying Contracts in Semantic Web Services, WWW 2004,
May 2004]

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 84

2.4. Background:
 Top-down Execution and Tabling

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 85

SLD-Resolution

• Strategy at the core of any top-down execution engine
• Sound inference strategy
• Complete only for pure Horn clauses, i.e.,

– Set of rules: head :- body where head is atomic (of the form p(…))
and body is b1, …, bn (conjunction of atomic formulas). No negation in
the head or the rule body.

• Can be viewed as head \/ b1 \/ … \/ bn

– Set of facts: atomic formulas.
• Same syntax as head.
• Can be viewed as a rule with empty body.

– Goal: same syntax as the rule body.
• The purpose of SLD resolution is to prove that ?X goal (?X represents all

the vars in goal) follows from the set of facts plus the set of rules
• Find all x such that goal[?X\x] (goal in which all occurrences of ?X are

replaced with x) is implied by rules + facts.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 86

SLD (cont’d)

• Goal: g1,…,gk

Rule: h :- b1,…,bn

Rename vars in the rule to be disjoint from the vars in goal

 θ: most general substitution s.t. hθ = g1θ

• Derive new goal: (b1,…,bn, g2,…,gk)θ

Note: g1 replaced with b1,…,bn

• Example:
– Goal: p(?X,f(?Y)), q(?X,?Y,?Z)

– Rule: p(g(?V),?W) :- r(?V,f(?W)), h(?W,?U).

– θ: ?X -> g(?V), ?W -> f(?Y)

– Derived goal: r(?V,f(f(?Y))), h(f(?Y),?U), q(g(?V),?Y,?Z)

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 87

SLG (SLD with negation)

• When rules have negation in the body, the logically
sound approach is to use the 3-valued Well-Founded
Semantics (mentioned earlier)

• The adaptation of SLD to this case is called SLG
Resolution. [Swift and Warren, Intl. Logic
Programming Symposium, 1994]
– RoughlyRoughly works as SLD, but when it sees \naf p in the rule

body, tries to prove p, possibly delaying until the literals to
the right of \naf p have been proved. Three outcomes:

• Proved p: \naf p is falsefalse

• Proved that p cannot be proved: \naf p is truetrue

• All ways of deriving p rely on assuming \naf p: p is undefinedundefined

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 88

Prolog Execution Strategy

• What if several rules have heads that unify with g1 in
g1,…,gk?
– SLD doesn’t assume any order in which these rules are

tried. If all orders are tried, then SLD is complete for Horn
rules

– Prolog does assume an order: rules are tried in the order in
which they occur in the program. This causes Prolog to
miss solutions even if they exist:

Goal: ?- p(?X)

Rules: p(?X) :- p(?X).

 p(?X) :- r(?X).

 r(a).

• Prolog will get stuck in an infinite loop due to the first rule

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 89

Solution: Tabling

• When an attempt to solve a literal in the rule body is
made (a call to the literal is made), save it in a table

• If the same call is made again, don’t use SLD – look
up the table instead; feed the answers from the first
call to the second. Meanwhile, explore the other
possibilities

• Example:
Goal: ?- p(?X)

Rules: p(?X) :- p(?X).

 p(?X) :- r(?X).

 r(a).

Call to p(?X). Save it in the table.
First derivation branch:
 Use SLD with rule #1;
 - create another call to p(?X).
 - Look up the table—don’t execute!
 - Postpone this derivation branch.
Second derivation branch: Use SLD with rule #2
 Call to r(?X). Save in the table.
 Resolve with the fact r(a), get a result: ?X=a
 No answers in the 1st derivation branch

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 90

Tabling (cont’d)

• See [Warren, CACM 1992]

• SLG resolution incorporates tabling

• SLG (unlike Prolog) is complete for Horn clauses; it
is complete for the Well-Founded semantics for
queries with negation in the rule body

• XSB is the only complete implementation of SLG

• YAP (http://yap.sourceforge.net) has an
implementation of tabling; aims at having a complete
implementation in the future

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 91

SLD and SLG in F-logic

• Similar to Prolog. Difference: goals and rule heads
can have F-logic molecules in them:

Goal: ?- a[b -> c, d -> e].

Rules: ?Z[b -> ?Y, f -> ?Z] :- body.

 ?X[d -> ?Y, h -> ?Z] :- anotherBody.

Can these rules resolve with the goal?

• Answer: The notion of SLD resolution needs a
slight modification.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 92

SLD in F-logic (cont’d)
• Goals are transformed to eliminate disjunction (remember:

disjunction is allowed in rule bodies and goals, but not in
rule heads):

?- ?X[disj1 ; disj2], rest.

becomes a pair of goals:

 ?- ?X[disj1], rest.

?- ?X[disj2], rest.

Must solve each goal and union the solutions.

• Note: a similar transformation is done in regular logic
programming:

?- (p ; q), rest.

becomes
?- p, rest.

?- q, rest.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 93

SLD in F-logic (cont’d)

• Goals are further transformed to simplify molecules:
?- ?X[part1 , part2], rest.

becomes
 ?- ?X[part1], ?X[part2], rest.

and
 ?- ?X[foo -> {bar1, bar2}], rest.

becomes

 ?- ?X[foo -> bar1], ?X[foo -> bar2}], rest.

Break molecules down into atomic (indivisible) ones.

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 94

SLD in F-logic (cont’d)

• SLD rule:
Goal: ?- subgoal-atomic-molecule, rest.

Rule: head-molecule :- body.

 Rename vars in the rule to be disjoint from the vars in the
goal

θ: most general unifier of subgoal-atomic-molecule into head-
molecule, i.e, θ(subgoal-atomic-molecule) θ(head-
molecule)

 (means both have the same object-term and the single
component of subgoal-atomic-molecule inside the […] is
one of the components of head-molecule)

New goal: ?- θ(body), θ(rest).

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 95

SLD in F-logic (cont’d)

• Example:
• ?- f(?X,a)[m1 -> ?X, m2(?Y) -> b], p(?Y).

• ?V[?W -> c, m2(?V) -> b, m1 -> ?W] :- a[?V ->?W].

– Transform:
• ?- f(?X,a)[m1 -> ?X], f(?X,a)[m2(?Y) -> b], p(?Y).

– One unifier and new goal:
θ: ?V -> f(?X,a), ?W -> m1, ?X -> c

?- a[f(?X,a) -> m1], f(?X,a)[m2(?Y) -> b], p(f(?X,a)).

– Another possibility:
θ: ?V -> f(?X,a), ?W -> ?X

?- a[f(?X,a) -> ?X], f(?X,a)[m2(?Y) -> b], p(f(?X,a)).

03/28/18 FLORA-2 Tutorial 2004 - 2007 © Michael Kifer 96

SLG in F-logic

• FLORA-2 uses Prolog-like execution strategy
– To be complete, it uses tabling

– For negation in the rule body, it uses the Well-Founded
Semantics and thus the SLG resolution

• To support inheritance, it uses an extended Well-
Founded semantics, as mentioned earlier.
– This is implemented by a translation into a Prolog program,

which utilizes SLG resolution

	Programming Knowledge with Frames and Logic
	Part1: Foundations
	What’s in This Tutorial?
	Slide 4
	Slide 5
	1. Introduction
	What’s Wrong with Knowledge Representation Based on Classical Logic?
	A Solution
	What is FLORA-2 ?
	Slide 10
	Applications of FLORA-2
	Other F-logic Based Systems
	2. Background
	Desirable Background Knowledge
	2.1. Background: F-Logic
	Basic Ideas Behind F-logic
	What F-Logic Provides
	Relationship to Standard Logic
	Relationship to Standard Logic (cont’d)
	Relationship to Description Logic
	F-logic: Simple Examples
	Examples (cont’d)
	Examples (contd.)
	Examples (Contd.)
	Slide 25
	Syntax
	More Examples
	Model Theory for Object Definitions
	Model Theory for Types
	Semantics (cont’d)
	Slide 31
	Shorthands
	Boolean Methods
	Proof Theory
	A Note on the Semantics of FLORA-2
	A Note on the Semantics (cont’d)
	Inheritance in Flora-2
	Structural Inheritance
	Structural Inheritance - Semantics
	Behavioral Inheritance
	Relationship Between Inheritable and Non-inheritable Methods
	Behavioral Inheritance: Non-monotonicity
	Behavioral Inheritance: Problem with Rules
	Behavioural Inheritance: Solutions
	2.2. Background: HiLog
	HiLog
	Examples of HiLog
	Syntax and Semantics of HiLog
	Syntax of HiLog
	Syntax of HiLog: What are the “Weird” terms for?
	Semantics of HiLog
	Relationship to Predicate Logic
	Reification: An Application of HiLog to F-logic
	The Role of HiLog
	2.3. Background: Transaction Logic
	Transaction Logic
	What’s Wrong with Other Logics for Specifying Change?
	Problems with Specifying Change in Logic Programming (Prolog)?
	Example: Stacking a Pyramid
	Slide 60
	Semantics
	Path Structures
	Satisfaction
	Satisfaction (cont’d)
	Slide 65
	Slide 66
	Slide 67
	Properties of the Semantics
	Transaction Programs
	Slide 70
	Pyramid Building (again)
	Constraints
	Reasoning
	Planning
	Naïve Planning is Easy in Transaction Logic
	Planning with Heuristics
	STRIPS
	Specifying STRIPS in Transaction Logic
	STRIPS in Transaction Logic (cont’d)
	Slide 80
	Slide 81
	Concurrent Transaction Logic
	Concurrent Transaction Logic for Services
	2.4. Background: Top-down Execution and Tabling
	SLD-Resolution
	SLD (cont’d)
	SLG (SLD with negation)
	Prolog Execution Strategy
	Solution: Tabling
	Tabling (cont’d)
	SLD and SLG in F-logic
	SLD in F-logic (cont’d)
	Slide 93
	Slide 94
	Slide 95
	SLG in F-logic

