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What’s in This Tutorial?

Part 1: Foundations

1. Introduction

2. Background
–  F-logic (Frame Logic)

–  HiLog
–  Transaction Logic
–  Top-down execution and tabling
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What’s in This Tutorial?

Part 2: Programming

3. Getting Around FLORA-2
–  Getting started

–  Modules

–  Multifile modules

–  Debugging

4. Some Low-level Details
–  HiLog  vs. Prolog representation of terms

–  To table or not to table?



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 5

What’s in This Tutorial?

5. Advanced Features
– Path expressions

– Aggregates

– Anonymous OIDs

– Equality

– Control constructs

– Metaprogramming

6. Updating the Knowledge Base
–  Non-logical updates

–  Logical updates

–  Limitations

–  Inserting and deleting rules

7. Future plans
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1. Introduction
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What’s Wrong
 with Knowledge Representation

 Based on Classical Logic?

• Essentially flat data structures:
person(John, ‘123 Main St.’,  34)

• Awkward meta-programming:
Which predicates mention John? 

• Ill-suited for modeling side effects:
 State changes, I/O
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A Solution

• Flat data structures: 

 Frames  (F-logic)

• Awkward meta-programming:

 Higher-order syntax  (HiLog + F-logic) 

• Modeling side effects: 

Logic of updates  (Transaction Logic)



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 9

What is  FLORA-2 ?

• FF-LLogic tRARAnslator 
• Realizes the vision of logic-based KR with frames, 

meta, and side-efects.  Founded on
– F-logic
– HiLog
– Transaction Logic

• Practical & usable KR and programming environment
– Declarative 

– Object-oriented
– Logic-programming style
– Overcomes most of the usability problems with Prolog
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What is  FLORA-2 ?

• Builds on earlier experience with implementations of F-
logic:  
– FLORID, FLIP, FLORA-1 (which don’t support HiLog  & 

Transaction Logic)

• Differs in spirit from other F-logic based systems
– FLORID, Ontobroker are query languages; cannot live 

without a procedural language (C++, Java)
– FLORA-2 is a complete programming language; can be used 

in the query language capacity as well.

• http://flora.sourceforge.net
• A recent overview: [Yang, Kifer, Zhao, ODBASE-2003]
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Applications of FLORA-2

• Ontology management

• Knowledge-based networking

• Information integration

• Software engineering

• Agents

• Anything that requires manipulation of complex 
structured (especially semi-structured) data
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Other F-logic Based Systems

• ?????  (U. Melbourne – M. Lawley) – early 90’s; first Prolog-
based implementation

• FLORID (U. Freiburg – Lausen et al.) – late 90’s; the only C++ 
based implementation

• FLIP (U. Freiburg – Ludaescher) – late 90’s; first XSB based 
implementation. Inspired the FLORA effort

• TFL (Tech. U. Valencia – Carsi) – late 90’s; first attempt at F-
logic + Transaction Logic

• SILRI (Karlsruhe – Decker et al.) – late 90’s; Java based

• TRIPLE (Stanford – Decker et al.) – early 2000’s; Java

• OntoBroker (Ontoprise.de, now Semafora) – 2000; commercial
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2. Background
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Desirable Background Knowledge

• Predicate calculus
– Good understanding of its model theory

• Logic programming/Deductive databases
– Bottom-up execution (TP operator)

– Top-down execution (SLD resolution)

– Negation as failure / Well-founded negation

• Prolog language
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2.1. Background: F-Logic
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Basic Ideas Behind F-logic

• Take complex data types as in object-oriented 
databases

• Combine them with logic

• Use the result as a programming language
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What F-Logic Provides

• Objects with complex internal structure

• Class hierarchies and inheritance

• Typing

• Encapsulation

• Background:
– Basic theory: [Kifer & Lausen SIGMOD-89], [Kifer,Lausen,Wu  JACM-95]

– Path expression syntax: [Frohn, Lausen, Uphoff  VLDB-84] 

– Semantics for non-monotonic inheritance: [Yang & Kifer, ODBASE  2002]

– Meta-programming + other extensions: [Yang & Kifer, ODBASE  2002]
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Relationship to Standard Logic

 O-O programming            Relational programming

                                    =
          F-logic                          Predicate calculus
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Relationship to Standard Logic (cont’d)

P
re

d
ic

at
e

lo
g

ic

F-logic

Logic
programming

F-logic programming

First-order flavor vs. logic programming flavor.
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Relationship to Description Logic

Predicate
logic

Descrip
tio

n F-L
ogic F-logic

Descrip
tio

n Logic

A description logic subset can be developed in F-logic
[Balaban 1995, The F-logic Approach for Description Languages]
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F-logic: Simple Examples

Object description:

      John[name ‘John Doe’,   phones  -> {6313214567, 6313214566},
              children -> {Bob, Mary}]

     Mary[name ’Mary Doe’,  phones -> {2121234567, 2121237645},
               children -> {Anne, Alice}]

Structure can be nested:

      Sally[spouse -> John[address -> ‘123 Main St.’] ]

Attribute

Attribute

Object Id
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Examples (cont’d)

• Historic notes:
– The original F-logic distinguished between functional (->) 

and set-valued (->>) attributes
• In FLORA-2 this has been simplified and generalized:

– Only set-valued methods and only -> are used

– Can specify cardinality constraints. The constraint {0:1} corresponds 
to functional attributes

– In F-logic, variables were denoted by capitalized symbols
• In FLORA-2 variables are preceded with a ?.

• Constants can start with lowercase or uppercase – does not matter:
– John, betty.
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Examples (contd.)

ISA hierarchy:

     John : Person             - class membership
     Mary : Person
     alice : Student

     Student :: Person       - subclass relationship

    Student : EntityType

 Person : EntityType

Class & instance 
at the same time
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Examples (Contd.)

Methods: like attributes, but take arguments

      ?P[ageAsOf(?Year) ?Age]  :-
                    ?P:Person, ?P[born B],  ?Age \is ?Year–?B.

•  Attributes can be viewed as  methods with no arguments 

Query:
    John’s children who were born when he was 30+ years old:

    ?–  John[born -> ?Y,  children -> ?C],
                ?C[born -> ?B],  ?B > ?Y+30.
   or
    ?–  John[ageAsOf(?Y) 30,  children ?C],
       ?C[born B],  ?B>?Y.
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Examples (Contd.)

•  Type signatures: Define the types for method   
    arguments and for their results

Person[born => \integer,
                         ageAsOf(integer) => \integer,
                         name => \string,

 address => \string,
                         children => person].

•  Signatures can be queried:
?-  Person[name  ?Type].

   Answer:    ?Type = \string
            ?-  Person[?Attr => \string].
   Answer:     ?Attr = name
                     ?Attr = address

Note: builtin types, like \integer, start with a backslash.
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Syntax
• Object ids: 

• Terms like in Prolog, but constants, functions can be capitalized – John, abc, 
f(john,34), Car(red,20000)

• Below,  O, C, M, T, ...  denote usual first order terms 

• IsA hierarchy (isa-atomsisa-atoms):
• O:C  --  object O is a member of class C
• C::S --  C is a subclass of S

• Structure (object-atomsobject-atoms):
• O [Method    Value]    --  invocation of method

• Type (signature-atomssignature-atoms):
• Class [Method  =>  Class]   – a method signature

• Combinations of the above: 
•  and, or, negation, quantifiers
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More Examples
 Browsing IsA hierarchy:
     ?-  John : ?X.
     ?-  Student ::?Y

Virtual (view) class:
     ?X : Redcar  :-  ?X:Car ,,  ?X[color -> red].

Meta-query about schema:
     ?O[attributesOf(?Class) -> ?A]  :-

   ?O[?A ->?V],  ?V:?Class.

Parameterized family of classes:
     []:list(?T).
     [?X|?L]:list(?T) :-  ?X:?T,  ?L:list(?T).

    E.g.,  list(integer), list(student)

Rule defines method, which 
returns attributes whose 

range is class Class
is implication,  or 

¬

and
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Model Theory for Object Definitions

Simplified (so-called Herbrand) semantics:
   Universe:  HB – set of all variable-free terms (“ground” terms)
    Interpretation:  I = (HB,I->,,<)

where   <  :   partial order on HB
                          :   binary relationship on HB

                        I-> :  HB  (HB      powerset(HB))
    Satisfaction of formulas in I:
           I  o[m->v]    if  v  I->(m)(o)
           I  o:c               if  o  c
           I  c::s               if  c < s

partialpartial

methods

objects

values
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Model Theory for Types

Interpretation:  I = (HB,I->, ,<, I )

where   I=> :   HB  (HB      powerset(HB))
                         

Satisfaction of method signatures:
    I  c[m=>t]      if  some element in  I=>(m)(c)   is  t

•     Basically, we want c[m=>t] and  t::t’  to imply c[m=>t’]
(if the result is of type t then it also  conforms to any supertype of  t)

partialpartial

set of methods
types for resultsset of classes

The function assigns 
types to methods

Added
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Semantics (cont’d)

  The well-typing condition:
    o[m  v] is well-typed in I  
              iff  whenever  o  c  then  v (I=>(m)(c))

I is well-typed if every true object atom is well-typed.

Here we want  c[m =>t],  o[m ->v],  o:c   to imply   v:t.
I.e., typing is a constraint
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Semantics (cont’d)

• I  P /\ Q  iff   I  P  and  I  Q

• I  P \/ Q  iff   I  P  or  I  Q

• I  ¬P  iff   not  I  P

• I  ?X P  iff   for all c  HB,  I  P’
P’ is P with all free occurrences of ?X replaced with c

• I  ?X P  iff   for some c  HB,  I  P’
P’ is P with some free occurrence of ?X replaced with c
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Shorthands

• /\-Composition: O[m1  v1, m2  v2]  is 

                     O[m1  v1] /\ O[m2  v2]

• \/-Composition: O[m1  v; m2  v2]  is 

                     O[m1  v1] \/ O[m2  v2]

• Nesting:  O[m1  v1[m2  v2]]  is 

              O[m1  v1] /\ v1[m2  v2]

• IsA-Composition: O:C[m  v] (or O[m ->v]:C) is 

                           O:C /\ O[m  v]

• Same for the other arrows

These are 
called 

molecules
or frames
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Boolean Methods

• Another shorthand:   Obj[Meth]
– E.g.  ?X[p(a,?X)],  f(?X)[p],  john[married(1999)]

• Think of these as a shorthand for
Obj[Meth -> void]

  (this is only conceptually: Obj[Meth]  is an independent 
construct and is not equivalent to Obj[Meth -> void])

• Boolean signatures:  Obj[=>MethType]
– E.g.,  Person[=>married(Year)]
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Proof Theory

• Resolution-based
– Will see later a special case

• Sound & complete w.r.t. the semantics
– Soundness of proofs:

        If  can prove Q  from a set of formulas P  then P  Q 
– Completeness of proofs:

         If  P  Q  then can prove Q from P
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A Note on the Semantics of FLORA-
2

• F-logic semantics & proof theory is completely general, like 
that of classical logic

• But FLORA-2 is a programming language, hence it uses non-
classical semantics
    … :-…, \naf P, …

   means:  true if cannot prove P  –  so called “negation as failure.”

   The exact semantics for negation used in  FLORA-2  is Van 
Gelder’s Well-Founded Semantics [Van Gelder et al., JACM 
1991, http://citeseer.nj.nec.com/gelder91wellfounded.html]
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A Note on the Semantics (cont’d)

• The Well-Founded semantics is 3-valued:
   p :-  \naf q.

   r  :- \naf r.

p  is true,  q  false, but  r  is undefined

• And non-monotonic:
  P |= Q  doesn’t imply  PP’ |= Q

p :-  \naf q   implies  p  true.

But
     q   and   p :-  \naf q   implies   p   false.

• Classical logic is both 2-valued and monotonic
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Inheritance in Flora-2

• Inheritance of structure vs. inheritance of behavior
– Structural inheritance  =  inheritance of the signature of a 

method
– Behavioral inheritance =  inheritance of the definition of a 

method

• Attributes/methods can be class-levelclass-level and object-levelobject-level
– Object-level statements about an object,  c, which may be a 

class-object,  apply only to c and nothing else
– Class-level statements are inheritedinherited from c. That is, they apply 

to all members of the class c and to all subclasses of c.
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Structural Inheritance

• Class-level signatures appear inside class-level statements 
([|…|]).  Object-level signatures appear inside object-level 
statements ([…]).

• For object-level statements:
• class[method => type]  and  subclass::class

 does not imply    subclass[method => type]

• For class-level statements:
• class[|method => type|]  and  subclass::class

 does imply    subclass[|method => type|] 

• class[|method => type|]  and  obj:class

 does imply    obj[method => type]

• Structural inheritance is monotonic: adding more 
signatures doesn’t invalidate old inferences



Don’t confuse “antimonotone” here with
“monotone” in “monotonic structural inheritance!”
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Structural Inheritance - 
Semantics

Interpretation:  I = (HB,I->,,<, I ,I [|=>|])
    where 

        I[|=>|]:   HB  (HB                  powerset(HB))

Added

partial partial andand antimonotone

person

student

<

I[|=>|](worksFor) … … …
organization

… … …
organization
university



I[|=>|](worksFor)

Why antimonotonicity?



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 40

Behavioral Inheritance
• Class-level statements use  …[|…->…|]

– Object-level statements use …[…->…]

• Behavioral inheritance is non-monotonic
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Relationship Between Inheritable and Non-
inheritable Methods

Inheritable methods are inherited as
– inheritable to subclasses

– non-inheritable to members

class[| m -> v|]

subclass[| m -> v |]

obj[ m -> v ]

class[| m => v|]

subclass[| m => v |]

obj[ m => v ]

Subclass 

Member of 

Specie

Bird

Tweety

[|populationSize => integer|]

[populationSize => integer]

[populationSize => integer]
Object-

level
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Behavioral Inheritance:
 Non-monotonicity

elephant[|color ->grey|]

fred

royalElephant[|color -> white|]

clyde

Inherited:Inherited:
    fred[color  -> grey]

          clyde[color -> grey]

Overriding

white

?
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Behavioral Inheritance:
 Problem with Rules

• Inheritance is hard to even define properly in the 
presence of rules.

a

b

 [| m  v |]

c[|m  w|]  :-  b[m  v]c

[ m  v ]

inherited

defeated??

[| m  w |]

derived

Other non-obvious cases 
also exist
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Behavioural Inheritance: 
Solutions

• Hard to define semantics for multiple inheritance + 
overriding + rules

•  Several semantics might look “reasonable” 
•  Should have no unnecessary restrictions

• The original semantics in [Kifer,Lausen,Wu: JACM-95] 
was one of the problematic “reasonable” semantics
– A number of other problematic semantics of various degrees of 

“reasonableness” exist

• Problem solved in [Yang&Kifer: Journal on Data 
Semantics 2006]

• Based on semantic postulates
• An extension of Van Gelder’s Well-Founded Semantics for negation
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2.2. Background: HiLog
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HiLog

• Allows certain forms of logically clean meta-
programming

• Syntactically appears to be higher-order, but 
semantically is first-order and tractable

• Has sound and complete proof theory

• [Chen,Kifer,Warren, HiLog: A Foundation for Higher-
Order Logic Programming,  J. of Logic Programming, 
1993]
– The recent work on SKIF and Common Logic (Hayes et. al.) 

is a rediscovery of HiLog with very minor differences – 12 
years later!
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Examples of HiLog

Variables over predicates and function symbols:
     p(?X,?Y) :-  ?X(a,?Z), ?Y(?Z(b)).

Variables over atomic formulas (reification):
     call(?X) :- ?X.

A use of HiLog in FLORA-2  (e.g., querying of schema):
     ?O[unaryMethods(?Class)  ->  ?M]  :-
              ?O[?M(?) ->?V],  ?V:?Class.

Meta-variable: ranges 
over method names
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Syntax and Semantics of HiLog

• In predicate logic, predicates and functions are disjoint, 
but predicate expressions (atomic formulas) and 
functional expressions (function terms) have the same 
syntax:  e.g., p(?X, f(a,b))  vs.  g(?X,f(a,b))

• HiLog makes no distinction between predicates and 
function symbols and atomic formulas are 
indistinguishable from function terms
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Syntax of HiLog

• Everything is built out of constant symbols and 
variables

• HiLog term:
• ?X   and  f  (if ?X is a variable, f – a constant)
• F(A1,…,An)  if F, A1,…,An are HiLog terms

– Note:  these are HiLog terms
• Any Prolog term is, of course, a HiLog term
• X(a,f(?Y)),  f(f(f,g),?Y(?Y,?Y)), h, ?Y
• ?X(a,f(Y))(f(f(f,g),Y(Y,Y)), h,Y)
• ?X(a,f(?Y))(X(a,f(?Y)))(f(f(f,g),?Y(?Y,?Y)), h,?Y)

• HiLog formula:
• Any HiLog term
• A\/B,  A/\B, A, X A, etc., if A, B are Hilog formulas

The “weird” 
ones
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Syntax of HiLog:
 What are the “Weird” terms for?

• Generic transitive closure:
transClosure(?P)(?X,?Y) :-  ?P(?X,?Y).

transClosure(?P)(?X,?Y) :-  ?P(?X,?Z), transClosure(?P)(?Z,?Y).

• For instance:  
•  transClosure(parent)  is  the ancestor relation

•  transClosure(edge)     pairs of all reachable            

    nodes in the graph defined by edge
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Semantics of HiLog

• Interpretation (Herbrand, for simplicity):
– I = any set of variable-free HiLog terms

– I |= a  (atomic variable-free), if  a  I

– I |= /\, if I |=   and  I |= 

– etc. (as usual)

– I |=  X , if for all constant symbols c,  I |=  [X\c], where 
[X\c] is  with free occurrences of X replaced with c
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Relationship to Predicate Logic

• |=classical    implies   |=hilog  

• |=hilog   does not imply   |=classical :
–  (q(a)  <-> r(a))  <- XY(X=Y)

     is valid in HiLog but not in predicate logic

• But:
– |=hilog  implies   |=classical  ,  except for formulas that are true 

in every interpretation with at least γ elements in the 
domain (for some γ >0), but are false in some interpretation 
that has less than γ elements [Chen,Kifer,Warren  JLP-93].

– Examples: Horn clauses without “=”  in the head;

                      Any set of “=”-free formulas
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Reification: 
An Application of HiLog to F-logic

• Reification: makes an object out of a statement:
         john[believes -> ${mary[likes -> bob ]} ]

• Introduced in [Yang & Kifer, ODBASE 2002]

Object made out of 
the statement

mary[likes -> bob]•  Main idea:  
   -  Extend the syntax of F-logic to allow terms of the form

    ${mary[likes -> bob ]},  ${bob[name -> ‘Bob Doe’ ]} 
        and even more general ones, like

   ${mary[likes -> bob,  name -> ‘Bob Doe’ ]} 

    -  Eliminate the distinction between atomic formulas and terms both
      in the syntax and semantics (like in HiLog)
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The Role of HiLog

• HiLog and its applications to F-logic (reification, 
schema browsing) allows high degree of meta-
programming purely in logic

• Variables can be bound to predicate and function 
symbols and thus queried (e.g., which relation 
mentions constant ‘john’)

• Formulas can be represented as terms, decomposed, 
composed, and manipulated with in flexible ways

• One can mix frame syntax (F-logic) and predicate 
syntax (HiLog) in the same query/program:
a[b -> c, g(?X,e) -> d],  p(f(?X),a).
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2.3. Background: Transaction 
Logic



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 56

Transaction Logic
• A logic of change
• Unlike temporal/dynamic/process logics, it is also a logic for 

programming  (but can be used for reasoning as well)
• In the object-oriented context:

– A logic-based language for programming the behavior of objects, i.e., 
specifying methods that change the object state

[Bonner&Kifer, An Overview of Transaction Logic, in 
Theoretical Computer Science, 1995],

[Bonner&Kifer, A Logic for Programming Database 
Transactions,  in Logics for Databases and Information 
Systems, Chomicki+Saake (eds), Kluwer, 1998].

[Bonner&Kifer, Results on Reasoning about Action in 
Transaction Logic, in Transactions and Change in Logic 
Databases, LNCS 1472, 1998].
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What’s Wrong with Other Logics for 
Specifying Change?

• Designed for reasoning, not  programming
• E.g., situation calculus, temporal, dynamic, process logics

• Typically lack such basic facility as subroutines

• None became the basis for a reasonably useful 
programming language
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Problems with Specifying 
Change in Logic Programming 

(Prolog)?
• assert/retract  have no logical semantics

• Non-backtrackable, e.g.,

?-  assert(p), q.

    If q is false, p stays.

• Prolog programs with updates are the hardest to 
write, debug, and understand
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Example: Stacking a Pyramid

Program:
        stack(0,X).
        stack(N,X) :- N>0, move(Y,X), stack(N-1,Y).

        move(X,Y) :- pickup(X), putdown(X,Y).
        pickup(X)   :- clear(X), on(X,Y), retract(on(X,Y)), assert(clear(Y)).
        putdown(X,Y) :- wider(Y,X), clear(Y), assert(on(X,Y)), retract(clear(Y)).

Action:
       ?– stack(18,block32).   // stack 18-block pyramid on top of block 32

Note:
         Prolog won’t execute this intuitively correct program properly!
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Syntax

• Serial conjunction,   (often denoted using “,”)
•  a  b  – do  a  then do  b

• The usual /\, \/, ¬,  ,   (but with a different semantics)
•  Example:  a \/ (b  c) /\ (d \/ ¬e)

•  a :- b    a \/ ¬b
• Means: to execute  a  one must execute  b (i.e., a is a subroutine)

• Transaction logic also has hypothetical operators  ◊ 
and □, but won’t discuss (not implemented in 
FLORA-2)
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Semantics
• Model-theoretic, like F-logic and HiLog
• The basic ideas

– Execution path  sequence of database states
• Assume that the states are just sets of facts

– Truth values over paths, not over states
– Truth over a path  execution over that path
– Elementary state transitions  propositions that cause a priori defined 

state transitions
• For most purposes, can use the following elementary state transitions: 

t_insert{t_insert{factfact} and t_delete{t_delete{factfact} (for transactional insert and delete)
t_insert{t_insert{factfact}:  D    D + fact     - add fact to state D
t_delete{t_delete{factfact}: D    D – fact     - delete fact from state D

•  FLORA-2 allows more powerful state transitions (bulk updates): 
t_insert{t_insert{fact(?X)|condition(?X)fact(?X)|condition(?X)}}    and    t_delete{t_delete{fact(?X)|condition(?fact(?X)|condition(?

X)X)}}
    Insert/delete things of the form  fact(X) fact(X)  that satisfy  condition(X)condition(X).



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 62

Path Structures

• Semantics is defined using the notion of path structures 
(which play the same role as semantic structures in 
classical logic)

• A path structure maps execution paths to the ordinary 
semantic structures used in classical predicate logic:
I() = M ,  where  - path, M – classical semantic structure, 

which says which transactions can execute along the path 

    In addition:
• If  = <D> is a path that consists of only one database state then  I() 

must make every fact in D true.

• If  = <D, D+fact> then I()  should make t_insert{fact} true

• If  = <D, D-fact> then I()  should make t_delete{fact} true
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Satisfaction 

I(<D0,…,D4>) |= a

 I(<D0,…,D7>) |=  a  b

Intuition:
       a  b:  First execute a then b  -  represents sequencing of actions

D0 D1 D2 D3 D4 D5 D6 D7

I(<D4,…,D7>) |= bIf:

Then:

Definition:
    I(<D0,…,Dn>) |=  a  b    iff     Dk  such that I(<D0,…,Dk>) |=  a  and  I(<Dk,…,Dn>) |=  b
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Satisfaction (cont’d)
Intuition:
    a /\ b:  Execute a along a path that is also an execution of b  -  represents 
constraints

D0
D1

D2 D3 D4 D5 D6 D7

Then:      I(<D0,…,D7>) |=  a /\ b

 I(<D0,…,D7>) |=  a

 I(<D0,…,D7>) |=  b

If:

Definition:
    I(<D0,…,Dn>) |=  a /\ b    iff     I(<D0,…,Dn>) |=  a  and  I(<D0,…,Dn>) |=  b
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Satisfaction (cont’d)
Intuition:
    a \/ b:  Execute a along a path or execute b  -  represents choice

D0
D1

D2 D3 D4 D5 D6 D7

Then:      I(<D0,…,D7>) |=  a \/ b

 I(<D0,…,D7>) |=  a

 I(<D0,…,D7>) |=  b

If:

Definition:
    I(<D0,…,Dn>) |=  a \/ b    iff     I(<D0,…,Dn>) |=  a  or  I(<D0,…,Dn>) |=  b

or:
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Satisfaction (cont’d)
Intuition:
     a:  Execute in any way provided that it is not an execution of a

D0
D1

D2 D3 D4 D5 D6 D7

Then:      I(<D0,…,D7>) |=  a

 I(<D0,…,D7>)  |≠   aIf:

Definition:
    I(<D0,…,Dn>) |=  a   iff     I(<D0,…,Dn>) |≠  a
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Satisfaction (cont’d)

Then:    I(<D0,…,D7>) |= head

head  <-  body   (defined as   a \/ b)  

     Formally:  Every execution of body is also an execution of the head:

D0 D1 D2 D3 D4 D5 D6 D7

Informally:  One way to execute head is to execute body
                         => head is the name of a procedure 
                              and body is part of its definition

 If:     I(<D0,…,D7>) |=  body
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Properties of the Semantics 

The semantics has the “all or nothing” flavor which
makes updates logical:

actionaction
Post-conditionPost-conditiontrue

false

If actionaction is  true,  but postconditionpostcondition  false, then
 actionaction   postcondition  postcondition  is false on  π.

In practical terms: updates are undone on backtracking.

path π
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Transaction Programs

• A transaction program P is a set of rules of the form 
head :- body   like 

               move(?X,?Y) :- pickup(?X), putdown(?X,?Y) 

    which define complex transactions using simple 
actions (like t_insert/t_delete)

• A transaction (or action) is a query of the form
?- body.

(e.g.,  ?- stack(18,block32))
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Proof Theory

• Executional entailmentExecutional entailment:  P is a set of rules,  is a transaction 

(query), D1,…,Dn  – a sequence of states. Then

P, D1,…,Dn |=  

 iff   path structures I where  I |= P   (ie.,  path π, I(π) |= P),

                     it follows that I(<D1,…,Dn>) |= 

• To prove  from a set of rules (transaction definitions) P, the 
proof theory tries to find a path, D1,…,Dn, on which  is 
executionally entailed by P.
– Thus, the proof theory  executes     as it proves it (and changes the 

underlying database state from the initial state D1 to the final state Dn)
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Pyramid Building (again)

stack(0,?X).

stack(?N,?X) :- ?N>0  move(?Y,?X)  stack(?N-1,?Y).

move(?X,?Y) :- pickup(?X)  putdown(?X,?Y).

pickup(?X)   :- clear(?X)  on(?X,?Y)  t_delete{on(?X,?Y)}  t_insert{clear(?Y)}.

putdown(?X,?Y) :- wider(?Y,?X)  clear(?Y)  t_insert{on(?X,?Y)}  t_delete{clear(?Y)}.

?– stack(18,block32).           // stack 18-block pyramid on top of block 32

•  Under the Transaction Logic semantics the above      
   program does the right thing
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Constraints
• Can express not only execution, but all kinds of sophisticated 

constraints:

   ?– stack(10, block43)

          /\   ?X,?Y (move(?X,?Y)  color(?X,red))  =>  ( ?Z color(?Z,blue)  move(?Z,?X))

     Whenever a red block is stacked, the next block to be stacked must be blue

• Extensions (concurrent, game-theoretic) have been shown 
useful for process modeling
 [Davulcu, Kifer, Ramakrishnan, & Ramakrishnan, Logic Based Modeling 

and Analysis of Workflows, in Proceedings of PODS, 1997]
[Davulcu, Kifer, Ramakrishnan, CTR-S: A Logic for Specifying Contracts 

in Semantic Web Services, Proceedings of WWW2004]
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Reasoning

• Can be used to reason  about the effects of actions  
such as:
– If   was true before the execution of transaction then  

must be true after

– If   was true after the execution of transaction then  must 
have been true before

[Bonner&Kifer, Results on Reasoning about Action in 
Transaction Logic, in Transactions and Change in Logic 
Databases, LNCS 1472, 1998]
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Planning

• Transaction Logic is ideal for specifying planning 
strategies.

• The planning problem:
– Given:

•  A set of primitive actions –  aa11, ..., a, ..., ann

                      each aaii can have preconditions
•  A goal –  GG 

   a condition on the final state of the DB,
                                 which we want to achieve

•  An initial state DD00

– Find:
• A sequence of these actions that starting at DD00 leads to a 

state DD that satisfies GG.
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Naïve Planning is Easy in Transaction 
Logic

Specification:

 plan  :-  action  plan.

plan  :-  action.

action :- aa11.

… … …

action :- aann.

To find a plan, just pose the query

?-  plan  goal.

Example:

     ?-  plan    (on(b,c)/\on(c,d)/\clear(b)).

Problem: 

Proof theory might search through all sequences.
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Planning with Heuristics

• Planning strategies employ heuristics to avoid 
exhaustive search

• Transaction Logic is ideal for specifying (and 
executing!) such heuristics

• Will illustrate using STRIPS (a classic planning 
system) as an example
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STRIPS

• Uses actions of the form:
      NameName:             unstack(?X,?Y)
      CommentComment:       Pick up block X from block Y
      PreconditionPrecondition:  handempty, clear(?X), on(?X,?Y)
      DeleteDelete:            handempty, clear(?X), on(?X,?Y)
      InsertInsert:             clear(?Y), holding(?X)

• Uses an ad hoc algorithm to construct plans
• Most AI planning systems use ad hoc algorithms
• We can write planning strategies at the high level in 

Transaction Logic without worrying about the 
low-level details
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Specifying STRIPS in Transaction Logic

• First, write a rule for each action – straightforward

unstack(?X,?Y) :-  handempty  clear(?X)  on(?X,?Y)

                              t_delete{clear(?X), on(?X,?Y), handempty}

                              t_insert{holding(?X), clear(?Y)}
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STRIPS in Transaction Logic 
(cont’d)

• Next, show how to achieve each goal of interest
achieve_clear(?Y) :- achieve_unstack(?X,?Y).

achieve_holding(?X) :- achieve_unstack(?X,?Y).

achieve_unstack(?X,?Y) :-

         (achieve_clear(?X) * achieve_on(?X,?Y) * achieve_handempty)

          unstack(?X,?Y).

(We use a*b as a shorthand for (a  b) \/ (b  a).)

• The above says:

– To achieve a goal, achieve the precondition of an action that inserts that 
goal

– To achieve a precondition, achieve each of the subgoals in that 
precondition
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STRIPS in Transaction Logic 
(cont’d)

• Base case: if a goal is already true, then it has been 
achieved
achieve_on(?X,?Y) :- on(?X,?Y).

achieve_clear(?X) :- clear(?X).

achieve_holding(?X) :- holding(?X).

achieve_handempty :- handempty.
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STRIPS in Transaction Logic 
(cont’d)

• A STRIPS planning query in Transaction Logic
– Stack c on d and b on c

?- (achieve_on(b,c) * achieve_on(c,d))  on(b,c)  on(c,d).

• The above is “ultimate” STRIPS:  it finds a solution 
when one exists

• STRIPS was not based on a logic, so they kept 
refining their ad hoc execution mechanism
– The original STRIPS was not complete. Was made 

complete after a series of papers

• The right logic makes the whole problem almost 
trivial!
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Concurrent Transaction Logic

• Extends Transaction Logic with two connectives:
–  a | b – parallel conjunction, denotes parallel execution
 a   – isolation, denotes isolated execution (in the sense of transaction 

processing)
– Extends the model theory and the proof theory of Transaction Logic

    [Bonner&Kifer, Concurrency and Communication in 
Transaction Logic, in Joint Int'l Conference and Symposium 
on Logic Programming, MIT Press, 1996]

• Suitable for process modeling and programming concurrent 
systems
  [Davulcu, Kifer, Ramakrishnan, & Ramakrishnan, Logic Based 

Modeling and Analysis of Workflows, in Proceedings of PODS, 1997]

• Harder to implement (not implemented in FLORA-2)
– An interpreter available at http://www.cs.toronto.edu/~bonner/ctr/ 

http://www.cs.toronto.edu/~bonner/ctr/
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Concurrent Transaction Logic
 for Services

• Extends Concurrent Transaction Logic with one 
additional connective:

         a ∏ b   – the opponent’s conjunction

• Enables specification of the behavioral aspects of service 
contracts
– When different parties to the contract can make different choices (e.g., 

ship insured or uninsured, pay in full or in installments)

• [Davulcu, Kifer, & Ramakrishnan, CTR-S: A Logic for 
Specifying Contracts in Semantic Web Services, WWW 2004, 
May 2004]
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2.4. Background:
 Top-down Execution and Tabling
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SLD-Resolution

• Strategy at the core of any top-down execution engine
• Sound inference strategy
• Complete only for pure Horn clauses, i.e.,

– Set of rules:    head :- body  where head is atomic (of the form p(…)) 
and body is  b1, …, bn (conjunction of atomic formulas). No negation in 
the head or the rule body.

• Can be viewed as  head \/ b1 \/ … \/ bn 

– Set of facts:    atomic formulas. 
• Same syntax as head. 
• Can be viewed as a rule with empty body.

– Goal:  same syntax as the rule body.
• The purpose of SLD resolution is to prove that ?X goal (?X represents all 

the vars in goal) follows from the set of facts plus the set of rules
• Find all x such that goal[?X\x] (goal in which all occurrences of  ?X  are 

replaced with x) is implied by  rules + facts.



03/28/18 FLORA-2  Tutorial      2004 - 2007  ©  Michael Kifer 86

SLD (cont’d)

• Goal:  g1,…,gk

Rule:  h :- b1,…,bn

Rename vars in the rule to be disjoint from the vars in goal

    θ: most general substitution s.t. hθ = g1θ

• Derive new goal: (b1,…,bn, g2,…,gk)θ

Note:   g1  replaced with b1,…,bn

• Example:  
– Goal: p(?X,f(?Y)), q(?X,?Y,?Z)

– Rule:  p(g(?V),?W) :-  r(?V,f(?W)), h(?W,?U).

– θ:  ?X -> g(?V),  ?W -> f(?Y)

– Derived goal:   r(?V,f(f(?Y))), h(f(?Y),?U),  q(g(?V),?Y,?Z)
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SLG (SLD with negation)

• When rules have negation in the body, the logically 
sound approach is to use the 3-valued Well-Founded 
Semantics (mentioned earlier)

• The adaptation of SLD to this case is called SLG 
Resolution. [Swift and Warren, Intl. Logic 
Programming Symposium, 1994] 
– RoughlyRoughly works as SLD, but when it sees  \naf p  in the rule 

body, tries to prove p, possibly delaying until the literals to 
the right of  \naf p  have been proved. Three outcomes:

• Proved p:  \naf p is falsefalse

• Proved that p cannot be proved:  \naf p  is truetrue

• All ways of deriving  p rely on assuming  \naf p:   p is undefinedundefined
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Prolog Execution Strategy

• What if several rules have heads that unify with g1 in 
g1,…,gk?
– SLD doesn’t assume any order in which these rules are 

tried. If all orders are tried, then SLD is complete for Horn 
rules

– Prolog does assume an order:  rules are tried in the order in 
which they occur in the program. This causes Prolog to 
miss solutions even if they exist:

Goal:   ?-  p(?X)

Rules:  p(?X) :-  p(?X).

    p(?X) :-  r(?X).

        r(a).

• Prolog will get stuck in an infinite loop due to the first rule
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Solution: Tabling

• When an attempt to solve a literal in the rule body is 
made (a call to the literal is made), save it in a table

• If the same call is made again, don’t use SLD – look 
up the table instead; feed the answers from the first 
call to the second. Meanwhile, explore the other 
possibilities

• Example:
Goal:   ?-  p(?X)

Rules:  p(?X) :-  p(?X).

        p(?X) :-  r(?X).

        r(a).

Call to  p(?X). Save it in the table.
First derivation branch:
    Use SLD with rule #1;
      - create another call to p(?X).
      - Look up the table—don’t execute!
      - Postpone this derivation branch.
Second derivation branch: Use SLD with rule #2
     Call to  r(?X). Save in the table.
     Resolve with the fact  r(a), get a result: ?X=a
     No answers in the 1st derivation branch
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Tabling (cont’d)

• See [Warren, CACM 1992]

• SLG resolution incorporates tabling

• SLG (unlike Prolog) is complete for Horn clauses; it 
is complete for the Well-Founded semantics for 
queries with negation in the rule body

• XSB is the only complete implementation of SLG

• YAP (http://yap.sourceforge.net) has an 
implementation of tabling; aims at having a complete 
implementation in the future
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SLD and SLG in F-logic

• Similar to Prolog. Difference: goals and rule heads 
can have F-logic molecules in them:

Goal:  ?-  a[b -> c, d -> e].

Rules:   ?Z[b -> ?Y, f -> ?Z]  :-  body.

             ?X[d -> ?Y, h -> ?Z] :-  anotherBody.

Can these rules resolve with the goal?

• Answer:  The notion of SLD resolution needs a 
slight modification.
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SLD in F-logic (cont’d)
• Goals are transformed to eliminate disjunction (remember: 

disjunction is allowed in rule bodies and goals, but not in 
rule heads):

?-  ?X[disj1 ; disj2],  rest.

becomes a pair of goals:

  ?-  ?X[disj1],  rest.

?-  ?X[disj2],  rest.

Must solve each goal and union the solutions.

• Note: a similar transformation is done in regular logic 
programming:

?- (p ; q), rest.

becomes
?- p, rest.

?- q, rest.
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SLD in F-logic (cont’d)

• Goals are further transformed to simplify molecules:
?-  ?X[part1 , part2], rest.

becomes
  ?-  ?X[part1],  ?X[part2],  rest.

and
      ?- ?X[foo -> {bar1, bar2}],  rest.

becomes

      ?- ?X[foo -> bar1],  ?X[foo -> bar2}],  rest.

Break molecules down into atomic (indivisible) ones.
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SLD in F-logic (cont’d)

• SLD rule:
Goal:    ?-  subgoal-atomic-molecule, rest.

Rule:    head-molecule :- body.

 Rename vars in the rule to be disjoint from the vars in the 
goal

θ: most general unifier of  subgoal-atomic-molecule into head-
molecule, i.e, θ(subgoal-atomic-molecule)  θ(head-
molecule) 

   (  means both have the same object-term and the single 
component of  subgoal-atomic-molecule  inside the […] is 
one of the components of  head-molecule)

New goal:   ?- θ(body), θ(rest).
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SLD in F-logic (cont’d)

• Example:
• ?-   f(?X,a)[m1 -> ?X, m2(?Y) -> b],   p(?Y).

• ?V[?W -> c, m2(?V) -> b, m1 -> ?W]  :-   a[?V ->?W].

– Transform:
• ?-   f(?X,a)[m1 -> ?X],  f(?X,a)[m2(?Y) -> b],   p(?Y).

– One unifier and new goal:
θ:  ?V -> f(?X,a),  ?W -> m1,  ?X -> c

?-  a[f(?X,a) -> m1],  f(?X,a)[m2(?Y) -> b],  p(f(?X,a)).

– Another possibility:
θ:  ?V -> f(?X,a),   ?W -> ?X

?-  a[f(?X,a) -> ?X], f(?X,a)[m2(?Y) -> b], p(f(?X,a)).
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SLG in F-logic

•  FLORA-2 uses Prolog-like execution strategy
– To be complete, it uses tabling

– For negation in the rule body, it uses the Well-Founded 
Semantics and thus the SLG resolution

• To support inheritance, it uses an extended Well-
Founded semantics, as mentioned earlier.
– This is implemented by a translation into a Prolog program, 

which utilizes SLG resolution
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