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t. This paper reports on the design and implementation ofFLORA | a powerful DOOD system that in
orporates the features ofF-logi
, HiLog, and Transa
tion Logi
. FLORA is implemented by trans-lation into XSB, a tabling logi
 engine that is known for its eÆ
ien
yand is the only known system that extends the power of Prolog with anequivalent of the Magi
 Sets style optimization, the well-founded seman-ti
s for negation, and many other important features. We dis
uss thefeatures of XSB that help our e�ort as well as the areas where it fallsshort of what is needed. We then des
ribe our solutions and optimizationte
hniques that address these problems and make FLORA mu
h moreeÆ
ient than other known DOOD systems based on F-logi
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tured data | is emerging to addressa spe
ialized segment of the resear
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ti
al DOOD systemthat has already been su
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ti
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FLORA is based on F-logi
 [22℄, HiLog [11℄, and Transa
tion Logi
 [8, 6, 9℄,whi
h are all in
orporated into a single, 
oherent logi
 language along the linesdes
ribed in [22, 21℄. However, rather than developing our own dedu
tive enginefor F-logi
 (su
h as the ones developed for FLORID [17, 27℄ or SiLRI [15℄), we
hose to utilize an existing engine, XSB [29℄, and implement FLORA throughsour
e-level translation to XSB. Apart from the bene�ts of saving 
onsiderableamount of time, our 
hoi
e of XSB was motivated by the following 
onsiderations:1. XSB augments OLD-resolution [32℄ with tabling, whi
h extends the well-known Magi
 Sets method [3℄, thereby o�ering both goal-driven top-downevaluation and data-driven bottom-up evaluation [31℄.2. Mapping of F-logi
 and HiLog into predi
ate 
al
ulus is well known [22, 11℄.3. XSB is known to be an order of magnitude faster than other similar logi
systems, su
h as LDL and CORAL [29℄.4. XSB has 
ompile-time optimizations parti
ularly suited for sour
e-level trans-lation, su
h as spe
ialization [30℄, uni�
ation fa
toring [14℄, and trie-basedindexing (whi
h permits indexing on multiple arguments of a predi
ate).To the best of our knowledge, the �rst fun
tioning F-logi
 prototype based onthe sour
e-level translation approa
h was FLIP [25℄. FLIP served as the startingpoint and the inspiration for our own work. Fortunately, there was plenty ofwork left for us to do, be
ause FLIP's translation was essentially identi
al tothat des
ribed in [22℄ and it was rather naively relying on the ability of XSB toapply the right optimizations. As a result, the implementation of FLIP su�eredfrom a number of serious problems. In parti
ular:1. As a 
ompiler optimization, XSB's spe
ialization does not apply to manyprograms obtained from a dire
t translation of F-logi
 [22℄. This is even moreso when HiLog terms (whi
h FLIP did not have) o

ur in the program.2. Although fundamental to evaluating F-logi
 programs, tabling 
annot beused without dis
retion. First, tabling 
an, in some 
ases, 
ause unne
essaryoverhead. Se
ond, tabling and databases updates do not work well together.3. FLIP did not have a 
onsistent obje
t model and had limited support forpath expressions, fun
tional attributes, and meta-programming.4. Finally, FLIP did not provide any module system, whi
h basi
ally 
on�nedusers to a single program �le, making serious software development diÆ
ult.In this paper we dis
uss how these problems are resolved in FLORA. The full pa-per will present performan
e results, whi
h 
ompare FLORA with other systemsthat implement F-logi
.2 PreliminariesIn this se
tion we review the te
hni
al foundations of FLORA | F-logi
 [22℄,HiLog [11℄, and Transa
tion Logi
 [8, 7℄ | and des
ribe their naive translationusing \wrapper" predi
ates. This dis
ussion forms the basis for understandingthe ar
hite
ture of FLORA and the optimizations built into it.



2.1 F-logi
F-logi
 subsumes predi
ate 
al
ulus while both its syntax and semanti
s arestill de�ned in obje
t-oriented terms. On the other hand, mu
h of F-logi
 
anbe viewed as a synta
ti
 variant of 
lassi
al logi
, whi
h makes implementationthrough sour
e-level translation possible.Basi
 Syntax. F-logi
 uses Prolog ground (i.e., variable-free) terms to representobje
t identities (abbr., oid's), e.g., john and father(mary). Obje
ts 
an haves
alar (single-valued), multivalued, or Boolean attributes, for instan
e,mary[spouse!john, 
hildren!!fali
e, nan
yg℄.mary[
hildren!!fja
kg; married℄.Here spouse!john says that mary has a s
alar attribute spouse, whose valueis the oid john; 
hildren!!fali
e, nan
yg says that the value of the multivaluedattribute 
hildren is a set that 
ontains two oid's: ali
e and nan
y. We emphasize\
ontains" be
ause sets do not need to be spe
i�ed all at on
e. For instan
e, these
ond fa
t above says that mary has one other 
hild, ja
k. The attribute marriedin the se
ond fa
t is Boolean: its value is true in the above example.While some attributes of an obje
t 
an be spe
i�ed expli
itly as fa
ts, otherattributes 
an be de�ned using inferen
e rules. For instan
e, we 
an derivejohn[
hildren!!fali
e, nan
y, ja
kg℄ with the help of the following rule:X[
hildren!!fCg℄ :�Y[spouse!X, 
hildren!!fCg℄. (1)Here we adopt the usual Prolog 
onvention that 
apitalized symbols denotevariables, while symbols beginning with a lower 
ase letter denote 
onstants.F-logi
 obje
ts 
an also have methods, i.e., fun
tions that return a value ora set of values when appropriate arguments are provided. For instan
e,john[grade�(
s305,f99)!100, 
ourses�(f99)!!f
s305, 
s306g℄.says that john has a s
alar method, grade, whose value on the arguments 
s305and f99 is 100, and a multivalued method 
ourses, whose value on the argumentf99 is a set of oid's that 
ontains 
s305 and 
s306. As attributes, methods 
analso be de�ned using rules.One might wonder about the purpose of the \�"-sign in method spe
i�
ation.Indeed, why not write grade(
s305,f99) instead? The purpose is to enable meta-programming without using meta-logi
. The \�"-sign tri
k makes methods intoobje
ts so that variables 
an range over them. For instan
e, the following rulesX[methods!!fMg℄ :�X[M�( )! ℄.X[methods!!fMg℄ :�X[M�( , )! ℄. (2)where the symbol \ " denotes a new unique variable, de�ne a new method,methods, whi
h for any given obje
t 
olle
ts those of the obje
t's methods thattake one or two arguments.



Thus, the \�"-sign is just a synta
ti
 gimmi
k that permits F-logi
 to staywithin the boundary of �rst-order logi
 syntax and avoids having to deal withterms like M(X,Y), where M is a variable. However, there is a better gimmi
k,HiLog [11℄, whi
h will be dis
ussed shortly.Finally, we note that F-logi
 
an spe
ify 
lass membership (e.g., john : student),sub
lass relationship (e.g., student :: person), types (e.g., person[name)string℄),and many other things that are peripheral to the subje
t of this paper.Translation into Predi
ate Cal
ulus. A general translation te
hnique, 
alled
attening, was des
ribed in [22℄. It used a small, �xed assortment of wrapperpredi
ates to en
ode di�erent types of spe
i�
ations. For instan
e, the s
alarattribute spe
i�
ation mary[age!30℄ is en
oded as fd(age,mary,[ ℄,30) whereasthe multivalued method spe
i�
ation john[
ourses�(f99)!!f
s305, 
s306g℄ is en-
oded as mvd(
ourses,john,[f99℄,
s305) ^ mvd(
ourses,john,[f99℄,
s306).However, one problem is that the indexing advantage is lost due to the smallnumber of wrapper predi
ates used, sin
e most Prolog systems index on predi
atenames. At �rst thought, one might think that the problem 
an be easily avoidedif the en
oding used method and attribute names as predi
ates instead of the\fa
eless" general wrappers. However, this is not the 
ase, be
ause variables areallowed to o

ur in pla
e of method names, whi
h would make the translatedprogram se
ond-order.Re
ursion presents another serious diÆ
ulty. The naive translation s
hemewill most likely produ
e rules that are highly re
ursive, due to the small numberof wrapper predi
ates used. For instan
e, 
onsider the rule (1) presented earlier;its naive translation is as follows:mvd(
hildren,X,[ ℄,C) :� fd(spouse,Y,[ ℄,X), mvd(
hildren,Y,[ ℄,C).In general, evaluating su
h rules using a regular Prolog-style engine will go toin�nite loop even if logi
ally there is only a �nite number of possible answers.In 
ontrast, su
h rules present no problems to a tabling logi
 engine, like XSB,whi
h uses memorization to terminate unne
essary loops in the evaluation.For 
ompleteness, we note that 
lass membership has its own translation, e.g.,isa(john,student), and so does the sub
lass relationship, e.g., sub
lass(student,person).Type spe
i�
ations have their own translation as well. In addition, a set of axiomsmust be added to enfor
e various properties of F-logi
. For instan
e, we have toensure that s
alar attributes yield at most one value for any given obje
t, thatthe sub
lass relationship is transitively 
losed, and that sub
lass membership is
ontained in the super
lass membership.Last but not least, although the non-monotoni
 part of F-logi
| inheritan
e| 
annot be dire
tly translated into predi
ate 
al
ulus, it 
an still be en
odedusing Prolog-style rules and 
omputed using XSB's eÆ
ient implementation ofthe well-founded semanti
s for negation [33℄.2.2 HiLogWe have seen that one 
an do 
ertain amount of meta-programming in F-logi
,mostly owing to the \�"-sign gimmi
k. Although the rules in (2) show that



all method names 
an be 
olle
ted using this tri
k, it is not easy to 
olle
tall method invo
ations (i.e., methods plus their arguments). Our experien
ewith FLORA 1.0 also shows that it is very 
onvenient to treat both methodnames and method invo
ations uniformly as obje
ts, be
ause the \�"-sign tri
kis error-prone: people tend to forget to write down the \�"-sign (in F-logi
,grade�(
s305,f99) is di�erent from grade(
s305,f99)).Fortunately, with the extension of HiLog [11℄, all these problems disappear.We illustrate HiLog through examples. The simplest yet most unusual one is thede�nition of the standard Prolog meta-predi
ate, 
all: 
all(X) :�X. This meansthat HiLog does not distinguish between fun
tion terms and atomi
 formulas:the same variable 
an range over both. Variables 
an also range over fun
tionsymbols, as in X(Y,a). A query of the form ?� p(X), X, X(Y,X) is well within theboundaries of HiLog. The syntax for HiLog terms also extends that of 
lassi
allogi
. For instan
e, g(X)(f(a,X),Y)(b,Y) is perfe
tly �ne. Of 
ourse, su
h powerfulsyntax should be used sparingly, but people have found many important usesfor these features (see [11℄ for some).Obviously HiLog is a suitable repla
ement for the \�"-sign gimmi
k. Nowwith the HiLog extension, users 
an write, say,X[methods!!fMg℄ :�X[M( , )! ℄instead of the rules shown earlier in (2). Trivial as it might appear, HiLog 
om-pletely eliminates the need for spe
ial meta-syntax used in FLORA 1.0, andredu
es the danger of programming mistakes. In addition, the underlying 
on-
eptual obje
t model be
omes mu
h more 
onsistent. The HiLog extension isimplemented in the up
oming FLORA 2.0. Se
tion 4 dis
usses the te
hniquesthat were developed to optimize the translation.En
oding in Predi
ate Cal
ulus. It turns out that the semanti
s of HiLog isinherently �rst-order and that it 
an a
tually be en
oded using standard pred-i
ate 
al
ulus [11℄. Although the translation is rather subtle, it is de�ned withjust two re
ursive transformation fun
tions (we omit steps irrelevant to the mainsubje
t): en
odea, for translating formulas, and en
odet, for translating terms:1. en
odet(X) = X, for ea
h variable X.2. en
odet(s) = s, for ea
h fun
tion symbol s.3. en
odet(t(t1,: : :,tn)) = applyn+1(en
odet(t), en
odet(t1),: : :, en
odet(tn)).4. en
odea(A) = 
all(en
odet(A)), where A is a HiLog atomi
 formula.5. en
odea(A ^ B) = en
odea(A) ^ en
odea(B).For instan
e, f(a,X)(b,Y) ^ X(Y) ^ Z is en
oded as:apply3(apply3(f,a,X),b,Y) ^ apply2(X,Y) ^ 
all(Z)Note that this naive HiLog en
oding uses essentially one wrapper predi
ateper arity. For a Prolog-style implementation, this poses an even greater 
hal-lenge than F-logi
, sin
e all predi
ate-level indexing is lost. To over
ome thisproblem, two kinds of 
ompiler optimizations 
an be used: uni�
ation fa
toring[14℄ and spe
ialization [30℄. They both are sour
e-level transformations aimed atimproving predi
ate-level indexing. These te
hniques are dis
ussed in Se
tion 4.



2.3 Transa
tion Logi
An important aspe
t of an obje
t-oriented language is the ability to update theinternal states of obje
ts. In this respe
t, F-logi
 is only partly obje
t-oriented,sin
e it is just a query language. To address this problem, [23℄ introdu
ed te
h-niques based on preserving the history of obje
t states, so di�erent obje
t states
an be distinguished through the extra state argument. However, su
h te
hniquesdo not support modular design. For instan
e, one 
annot de�ne more and more
omplex update transa
tions using the previously de�ned subroutines.In our view, subroutines are fundamental to programming, and any pra
ti-
al proposal for dealing with updates in a logi
-based programming languagemust address this issue. Transa
tion Logi
 [8, 7, 9℄ is one su
h proposal, whi
hprovides a 
omprehensive theory of updates in logi
 programming. The util-ity of Transa
tion Logi
 has been demonstrated in various appli
ations rangingfrom database updates, to robot a
tion planning, to reasoning about a
tions, towork
ow analysis, and many more [8, 10, 12℄.In FLORA 2.0, F-logi
 and Transa
tion Logi
 are integrated along the lines ofthe proposal in [21℄, and the 
orresponding implementation issues are des
ribedin Se
tion 4. In Transa
tion Logi
, both a
tions (transa
tions) and queries arerepresented as predi
ates. In the 
ontext of F-logi
, transa
tions are expressedas obje
t methods. Underlying Transa
tion Logi
 are just a few basi
 ideas:1. Exe
ution � Truth. Exe
ution of an a
tion is tantamount to it being true ona path, i.e., a sequen
e of database states that represent the exe
ution tra
e.2. Elementary Updates. These are the building blo
ks for 
onstru
ting 
omplextransa
tions. Their behavior 
an be spe
i�ed by a separate program (e.g., inthe C language) or via a set of axioms. In this paper, we shall use only twotypes of elementary updates: insert and delete.3. Atomi
ity of Updates. A transa
tion should either exe
ute entirely (in whi
h
ase it is true along the exe
ution path) or not at all. Although 
ommon indatabases, this behavior is not typi
al in logi
 programming, where assertand retra
t are not ba
ktra
kable.The following program is a FLORA 2.0 adaptation of the blo
k-sta
king programfrom [8℄. Here, the a
tion sta
k is de�ned as a Boolean method of a robot. The\#"-sign marks transa
tional methods that 
hange the database state.R[#sta
k(0,X)℄ :� R : robot.R[#sta
k(N,X)℄ :� R : robot, N > 0,Y[#move(X)℄, R[#sta
k(N-1,Y)℄.Y[#move(X)℄ :� Y : blo
k, Y[
lear℄, X[
lear℄, X[wider(Y)℄,del(Y[on!Z℄), ins(Z[
lear℄), ins(Y[on!X℄), del(X[
lear℄).Informally, the program says that to sta
k a pyramid of N blo
ks on top of blo
kX, the robot must �nd a blo
k Y, move it onto X, and then sta
k N-1 blo
kson top of Y. To move Y onto X, both of them must be \
lear" (i.e., with noblo
k on top), and X must be wider than Y. If these 
onditions are satis�ed,



the database will be updated a

ordingly (ins and del are elementary insert anddelete transa
tions, respe
tively).Note that be
ause of the non-ba
ktra
kable nature of Prolog updates, usingassert and retra
t to translate the ins and del transa
tions in the above programwould not work properly. However, ba
ktra
kable updates 
an be implementedeÆ
iently in XSB at the engine level, due to XSB's use of tries | a spe
ial datastru
ture for storing dynami
 data. Transa
tion Logi
 provides semanti
s to thistype of updates.3 Implementation Issues3.1 Transa
tions in a Tabling EnvironmentAs mentioned in Se
tion 2.1, translation from F-logi
 to predi
ate 
al
ulus re-quires tabling all the wrapper predi
ates used for 
attening. It turns out, how-ever, that tabling and database updates are fundamentally at odds: tabling hasthe e�e
t that whenever the same query is repeated, it is not evaluated andinstead the previously 
omputed answers are returned. Even a subsumed querydoes not ne
essarily need to be evaluated. Its answers 
an be 
omputed fromthe answers for the 
orresponding subsuming query. Obviously, this hurts thesemanti
s of update transa
tions and other pro
edures that have side e�e
ts. Tosee the problem, 
onsider the following program::� table p/1. p(X) :�write(X).The �rst time p(a) is 
alled, the system will print out \a" and return the answeryes. However, if p(a) is 
alled the se
ond time, the system will only answer yeswithout the \side e�e
t" of \a" being printed out.This problem implies that update transa
tions in Transa
tion Logi
 shouldnot be translated using tabled predi
ates. Moreover, a tabled predi
ate p shouldnot depend (dire
tly or indire
tly) on an update transa
tion q, sin
e the se-manti
s of su
h dependen
y is murky: the �rst 
all to p will exe
ute q whilesubsequent 
alls might not. Therefore, FLORA must 
he
k that regular F-logi
methods and attributes do not depend on update transa
tions. A spe
ial syntaxis introdu
ed to help FLORA perform proper translation: transa
tional methodsare pre
eded by a \#"-sign to distinguish them from regular F-logi
 methods.Primitive update transa
tion, su
h as insertion and deletion, also look spe
ial:ins(smith : professor[tea
h(1999,fall)!
se100℄)del(
se200[taught by(1999,spring)!david℄)A more diÆ
ult problem arises when a transa
tion 
hanges the base fa
ts thata tabled predi
ate depends on. In this 
ase, the 
hanges should propagate to allanswers that are already tabled for this predi
ate. This is similar to the viewmaintenan
e problem in databases, but the overhead asso
iated with databaseview maintenan
e methods is una

eptable for fast in-memory logi
 engines.Currently, FLORA takes a rather drasti
 approa
h of abolishing all tables andletting subsequent queries rebuild them. However, this problem is not spe
i�
 toFLORA, and a more eÆ
ient solution 
an be developed at the XSB engine level.



3.2 Problems with Naive Translation of HiLog and F-logi
Choi
e Points and Indexing. In Se
tion 2 we des
ribed the naive transla-tion from F-logi
 and HiLog into 
lassi
al predi
ate 
al
ulus. Su
h translation,however, 
annot be the basis for pra
ti
al implementation. The �rst problem isthat the naive translation lays down too many 
hoi
e points in the top-downexe
ution tree and thus 
auses ex
essive ba
ktra
king. Consider the followingprogram and its en
oding using the apply predi
ate (we 
onsider translation ofHiLog, be
ause it illustrates the problem more dramati
ally):p(X,Y) :� f(X), g(Y). apply(p,X,Y) :� apply(f,X), apply(g,Y).s(X,Y) :� p(X,Y). apply(s,X,Y) :� apply(p,X,Y). (3)If apply(p,X,Y) is evaluated, it will unify with all the rules even though its uni-�
ation with the last rule is bound to fail. In large programs this might 
ause aserious performan
e penalty.Degradation of indexing is another sour
e of performan
e penalty. Typi
ally,a dedu
tive system indexes on the predi
ate name plus one of the arguments,e.g., the �rst. In the naive translation, however, predi
ate-level indexing is lost,be
ause there are too few predi
ates used. For instan
e, in the above example,the translated program has no indexing me
hanism 
orresponding to the �rst-argument indexing in predi
ates p and s in the original program.These problems are not new to logi
 programming. To ta
kle them, XSB hasdeveloped 
ompiler optimization te
hniques known as spe
ialization [30℄ anduni�
ation fa
toring [14℄, whi
h both perform sour
e-to-sour
e transformation.Spe
ialization takes pla
e when a goal 
an only unify with a subset of the
andidate rules. By repla
ing this goal's predi
ate with a di�erent predi
atethat 
an only unify with the heads of some of the rules, spe
ialization throwsout the unne
essary 
hoi
e points. For instan
e, performing spe
ialization onthe translated program in (3) yields the following more eÆ
ient program, wheresome o

urren
es of the predi
ate apply are repla
ed with apply 1:apply(p,X,Y) :� apply(f,X), apply(g,Y). apply(s,X,Y) :� apply 1(X,Y).apply 1(a,X) :� apply(f,X), apply(g,Y).In 
ontrast to spe
ialization, uni�
ation fa
toring is driven by the patternsin rule heads. The idea is to fa
tor out 
ommon fun
tion symbols to save onuni�
ation and a
hieve better indexing. Consider the following program:p(apply(a),X) :� q(X). p(apply(b),X) :� r(X).and the query ?- p(apply(X),Y). Here uni�
ation for apply has to take pla
e on
ewith ea
h rule head. However, this repeated uni�
ation 
an be avoided if thesame goal is exe
uted against the following transformed program:p apply(a,X) :� q(X). p(apply(X),Y) :� p apply(X,Y).p apply(b,X) :� r(X).Be
ause apply is used to en
ode HiLog terms, 
ommon fun
tors, as in theabove example, o

ur very frequently in a translated FLORA program. It turnsout that the native XSB uni�
ation fa
toring performs quite well with FLORA-translated programs. XSB spe
ialization, however, exhibits subtle problems.



Double Tabling. The �rst problem with spe
ialization is tabling. In HiLogtranslation, it is not very 
lear how a tabling dire
tive like :� table p/2 shouldbe translated. If FLORA handles this by tabling apply/3, then XSB spe
ializationmay 
ause \double tabling" | a situation where 
ertain predi
ates are tabledunne
essarily. For instan
e, 
onsider the following program (whi
h 
omputestransitive 
losure) and its naive en
oding::� table p/2. :� table apply/3.p(a,b). apply(p,a,b).p(b,
). apply(p,b,
).t(X,Y) :� p(X,Y). apply(t,X,Y) :� apply(p,X,Y).t(X,Y) :� p(X,Z), t(Z,Y). apply(t,X,Y) :� apply(p,X,Z), apply(t,Z,Y). (4)XSB spe
ialization on the translated program (4) would yield the following::� table apply/3.:� table apply 1/2. :� table apply 2/2.apply 1(a,b). apply 2(X,Y) :� apply 1(X,Y).apply 1(b,
). apply 2(X,Y) :� apply 1(X,Z), apply 2(Z,Y).apply(p,a,b). apply(t,X,Y) :� apply 1(X,Y).apply(p,b,
). apply(t,X,Y) :� apply 1(X,Z), apply 2(Z,Y).Being essentially another 
opy of apply(t,X,Y), tabling the tuples of apply 2(X,Y)is redundant, although this 
a
hing is needed to guarantee termination of thespe
ialized program. The size of the 
ompiled 
ode is also 
onsiderably largerthan the original.Meta-Programming. Yet another problem is due to meta-programming, whi
htends to produ
e programs that pre
lude XSB spe
ialization. To see the 
rip-pling e�e
t of meta-rules on XSB spe
ialization, 
onsider the following programand its naive translation:p(a). apply(p,a).p(b). apply(p,b).X(Y) :�X=p, Y=
. apply(X,Y) :�X=p, Y=
.t(X) :� p(X). apply(t,X) :� apply(p,X). (5)XSB spe
ialization on the previous translated program (5) looks as follows:apply(p,a). apply 1(p,a).apply(p,b). apply 1(p,b).apply(X,Y) :�X=p, Y=
. apply 1(X,Y) :�X=p, Y=
.apply(t,X) :� apply 1(p,X).In this program, the predi
ate apply 1(p,X) still has to unify with all the apply 1fa
ts and rules. Not only the uni�
ation on p is repeated, but indexing on the�rst argument in the original program is lost as well.



Note that although so far we have been illustrating the XSB spe
ializationproblems using HiLog only, F-logi
 exhibits the same problem. Consider thefollowing F-logi
 program and its naive translation:obja[atta!vala℄. fd(atta,obja,[ ℄,vala).objb[atta!valb℄. fd(atta,objb,[ ℄,valb).obj
[X!Y℄ :�X=atta, Y=val
. fd(X,obj
,[ ℄,Y) :�X=atta, Y=val
.O[attb!!fXg℄ :�O[atta!X℄. mvd(attb,O,[ ℄,X) :� fd(atta,O,[ ℄,X). (6)It is easy to see that the translation is just another version of the previous HiLogprogram (5) and thus it 
ripples XSB spe
ialization just as badly.The next se
tion proposes a new kind of spe
ialization, 
alled skeleton-basedspe
ialization, whi
h is used in FLORA 2.0 to optimize sour
e-level translationfor F-logi
 and HiLog. The system is designed in su
h a way that skeleton-basedspe
ialization and XSB spe
ialization 
ompliment ea
h other.4 SolutionsAs explained in Se
tion 3, a major problem with the naive translation of F-logi
and HiLog is the loss of indexing and while XSB uni�
ation fa
toring performswell for the translated programs, spe
ialization often fails to yield any improve-ments and, in some 
ases, it might even 
ause unne
essary overhead. In thisse
tion we propose skeleton-based spe
ialization, whi
h supplements the nativeXSB spe
ialization and �xes the aforesaid problems.4.1 Skeleton-Based Spe
ialization AlgorithmDe�nition 1 (Skeleton). Given a HiLog term T, its skeleton Skel(T) is anabstra
t view of the synta
ti
 stru
ture of T. Skel(T) is de�ned as follows:1. Skel(T) = T, if T is a 
onstant.2. Skel(T) = , if T is a variable.3. Skel(T) = Skel(F)/n, if T = F(T1,...,Tn).Example 1 (Skeletons of HiLog Terms).1. Skel(f) = f2. Skel(X(a,b)(Y)) = /2/13. Skel(X(f(Y))) = /1The algorithm in Figure 1 des
ribes FLORA skeleton-based spe
ialization.It applies to F-logi
 and HiLog translation separately, sin
e the set of wrapperpredi
ates used for F-logi
 translation is disjoint from those wrapper predi
atesused for HiLog predi
ates.First we explain the algorithm in the 
ontext of HiLog translation. It takes aFLORA program as input and yields an equivalent program in predi
ate logi
;the algorithm has the following steps:



Input: a FLORA program F 
onsisting of rules (in
luding fa
ts)Output: an XSB program that en
odes F1 HL := fL j L is a literal in a rule head of Fg;2 BL := fL j L is a literal in a rule body of Fg;3 HS := fSkel(L) j L 2 HLg;4 BS := fSkel(L) j L 2 BLg;5 for ea
h skeleton S 2 HS [ BS do seq(S) := a unique integer;6 for ea
h rule H :�B from the input program F do f7 H0 := 
atten(H,Skel(H));8 B0 := B;9 for ea
h literal L 2 B0 do L := 
atten(L,Skel(L));10 output the rule H0 :�B0;11 g12 for ea
h literal H 2 HL do f13 H0 := naive(H);14 H00 := 
atten(H,Skel(H));15 output the rule H0 :�H00;16 g17 for ea
h literal L 2 BL do18 for ea
h rule H :�B from the input program F do19 if L uni�es with H with the mgu � and Skel(L) 6= Skel(H) then f20 H0 := 
atten(H�,Skel(L));21 B0 := B;22 for ea
h literal T 2 B0 do f23 S := T�;24 if Skel(S) 2 BS25 then T := 
atten(S,Skel(S));26 else T := 
atten(S,Skel(T));27 output the rule H0 :�B0;28 gFig. 1. Skeleton-Based Spe
ialization AlgorithmSkeleton Analysis (Lines 1 { 5). First we 
olle
t all the literals in rule headsinto the set HL and all the literals in rule bodies into the set BL.2 Then, thealgorithm 
omputes the set of skeletons HS and BS for ea
h literal in HL andBL, respe
tively. Ea
h unique skeleton in the union of HS and BS is assigned aunique sequen
e number.The rest of the algorithm 
onsists of three main tasks: 
attening, trap rulegeneration, and instantiation.Flattening (Lines 6 { 11). The purpose of 
attening is to eliminate unne
es-sary wrapper predi
ates and uni�
ation. Let S = X/n1/: : :/nk, where X is either2 Ea
h HiLog literal is assumed to have the fun
tor part and the arity. Propositional
onstants are treated as 0-ary literals, e.g., p().



\ " or a 
onstant, and L be of the form T(T1n1 ,: : :,Tn1n1): : :(T1nk ,: : :,Tnknk). Thetransformation pro
edure 
atten(L,S) then does the following: Let n be the se-quen
e number assigned to the skeleton S, then the wrapper predi
ate usedto en
ode the HiLog literal L is apply n, whi
h is unique a
ross HiLog trans-lation. Next, if X is a 
onstant in X/n1/: : :/nk, then so must be T (in Lines7, 14 and 25 the skeleton argument of 
atten is that of the literal argumentwhereas in Lines 20 and 26 the skeleton either subsumes or is the same asthat of the literal) and 
atten(L,S) yields apply n(E1n1 ,: : :,En1n1 ,: : :,E1nk ,: : :,Enknk).Otherwise, X is \ " and T might be any HiLog term, then 
atten(L,S) will returnapply n(E,E1n1 ,: : :,En1n1 ,: : :,E1nk ,: : :,Enknk), where E, Eij = en
odet(T), en
odet(Tij),respe
tively, en
odet is the naive en
oding of HiLog terms des
ribed in Se
tion 2.2.For instan
e, if the sequen
e number assigned to the skeleton f/1/2 is 2, then
atten(f(Y)(a,Z),f/1/2) will produ
e apply 2(Y,a,Z). The reason why the fun
torsymbol f 
an be omitted is be
ause it is already en
oded in the sequen
e numberfor the skeleton.Trap Rule Generation (Lines 12 { 16). These steps generate rules to \trap"the naive en
oding of literals. The translation outputs a rule whose head isthe naive en
oding of the original rule-head, while the body is the result of
attening the head. For instan
e, the trap rule for f(Y)(a,Z) :� body is likeapply(apply(f,Y),a,Z) :� apply 2(Y,a,Z). Trap rule generation is indispensable forinter-module 
ommuni
ations in FLORA. Sin
e spe
ialization in prin
iple hasno knowledge of other modules, 
alls referring to other modules have to be en-
oded using the naive translation. Due to spa
e limits, we will not elaborate onthis topi
 further.Instantiation (Lines 17 { 28). Even when two literals unify, their en
odingsmight not unify after 
attening. For instan
e, X(Y) and f(a)(Z) unify, but their
attened forms, e.g., apply 1(X,Y) and apply 2(a,Z) (with respe
t to the skeletons/1 and f/1/1, respe
tively), do not unify.Instantiation ensures that uni�ability is preserved after spe
ialization. Theidea is that if a body literal uni�es with the head of a rule, R, using the mgu�, but the two literals have di�erent skeletons, then a new rule, R�, must begenerated. For instan
e, 
onsider the following program:g(X) :� p(X). Y(Z) :� q(Y,Z).Here p(X) will be 
attened as apply 1(X) and Y(Z) as apply 2(Y,Z). Be
ause p(X)uni�es with Y(Z) :� q(Y,Z), this rule must be instantiated using the substitutionY/p, yielding p(Z) :� q(p,Z). Spe
ializing this rule yields apply 1(Z) :� apply 2(p,Z),whi
h ensures that the semanti
s of the original program is preserved.However, rule instantiation might generate body literals with new skeletonsthat have not been seen before in the original program. Thus, instantiationmight have to be applied again, using these new body literals. This opens upthe possibility of an in�nite instantiation pro
ess. For instan
e, in the followingprogram:



g(X) :� p(X). Y(Z) :�Y(Z)(Z).when the se
ond rule is instantiated with Y/p (the mgu of p(X) and Y(Z)), a newrule p(Z) :� p(Z)(Z) is generated. The literal p(Z)(Z) has a 
ompletely new skele-ton: p/1/1. If p(X)(X) is 
attened with respe
t to p/1/1, the rule Y(Z) :�Y(Z)(Z)has to be instantiated with Y/p(X), the mgu of p(X)(X) and Y(Z). Thus yet an-other new skeleton p/1/1/1 will emerge, and so on.Lines 24 { 26 in the algorithm are designed to ensure termination of the in-stantiation pro
ess. The solution is simple: the quality of spe
ialization is tradedin for termination. When a literal with a new skeleton shows up in a newlyinstantiated rule, its skeleton must extend the skeleton of that literal beforeinstantiation. Thus, we 
an 
atten the instantiated literal with respe
t to theskeleton of the original literal. Uni�ability is also preserved by su
h translation.For instan
e, spe
ializing the above example yields the following program (wherethe trap rules are omitted):apply 1(X) :� apply 2(X). apply 2(X) :� apply 4(p,X,X).apply 3(Y,Z) :� apply 4(Y,Z,Z). apply 4(Y,Z,Z) :� apply 4(apply(Y,Z),Z,Z).4.2 Putting it All TogetherFor the translated program (4), whi
h 
omputes transitive 
losure, the result ofskeleton-based spe
ialization is as follows::� table apply 2/2.apply 1(a,b). apply 2(X,Y) :� apply 1(X,Y).apply 1(b,
). apply 2(X,Y) :� apply 1(X,Z), apply 2(Z,Y).The following program is the result of skeleton-based spe
ialization of the pro-gram shown in (5):apply 1(a). apply 3(X) :� apply 1(X).apply 1(b). apply 1(X) :� p=p, X=
.apply 2(X,Y) :�X=p, Y=
.Note that although we illustrate the idea of skeleton-based spe
ializationusing HiLog translation, our algorithm applies to F-logi
 translation as well. Infa
t, the translation views F-logi
 literals as just another kind of HiLog literals,whi
h just happen to use di�erent wrapper predi
ates.For instan
e, a slight variation of the naive F-logi
 translation 
an 
onvertO[M!V℄ into the HiLog literal M(O,V) and then further 
onvert it to predi
atelogi
 using the wrapper predi
ate fd instead of apply. Likewise, O[M!!V℄ 
anbe 
onverted to M(O,V) and then to predi
ate 
al
ulus using mvd as a wrap-per. Therefore, skeleton-based spe
ialization 
an be performed on HiLog andF-logi
 independently. The only part of the algorithm that needs to be 
hangedis the pre�x used to 
onstru
t the wrappers. For instan
e, instead of apply 2 wewould use fd 2. Thus, the result of applying skeleton-based spe
ialization to theprogram (6) would be the following (where the trap rules are omitted):



fd 1(obja,vala). mvd 1(O,X) :� fd 1(O,X).fd 1(objb,valb). fd 1(obj
,Y) :� atta=atta, Y=val
.fd 2(X,obj
,Y) :�X=atta, Y=val
.Our experiments show that even for small programs dis
ussed in this se
tionFLORA skeleton-based spe
ialization 
an speed up programs by a fa
tor of 2.1,whereas XSB native spe
ialization redu
es exe
ution time only by a fa
tor of1.85. A more detailed 
omparison will be reported in the full version of this paper.Nevertheless, as said earlier, FLORA spe
ialization is not intended to repla
eXSB spe
ialization. Instead, it is used as a �rst-line optimization te
hnique.Then the FLORA-translated program is further optimized through the nativeXSB spe
ialization and uni�
ation fa
toring.Another observation about FLORA spe
ialization is that better-quality spe-
ialization is possible with more detailed skeleton representation. Indeed, 
on-sidering HiLog terms as trees, we 
ould de�ne skeletons as the abstra
t viewof their stru
tures at some depth level. For example, a two-level skeleton forf(X)(X,a,f(b)) would be f/( )/( ,a,(f/1)). There is a subtle relationship, though,between the amount of detail preserved in skeletons and the quality of spe
ializedprograms. More detailed skeletons normally mean better spe
ialized programsand thus better performan
e, but longer 
ompilation time and larger programsize.5 Con
lusionThis paper dis
usses te
hniques for building eÆ
ient DOOD systems by transla-tion into lower-level Prolog syntax and utilizing an existing tabling logi
 engine,su
h as XSB [29℄. The feasibility of our approa
h has been demonstrated bythe F-logi
 based FLORA system, whi
h delivers very en
ouraging performan
e.(Performan
e results will be in
luded in the full version of this paper.) We alsodis
uss the 
ompiler optimization te
hniques that were used to a
hieve this per-forman
e; some of them are just native XSB optimizations, while others aredesigned spe
i�
ally for FLORA. Due to la
k of spa
e we omitted a number ofother implementation issues, su
h as the FLORA module system and perfor-man
e optimizations related to handling path expressions. Details 
an be foundat http://www.
s.sunysb.edu/~guizyang/papers/florate
h.psA
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