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Abstract. This paper reports on the design and implementation of
FLORA — a powerful DOOD system that incorporates the features of
F-logic, HiLog, and Transaction Logic. FLORA is implemented by trans-
lation into XSB, a tabling logic engine that is known for its efficiency
and is the only known system that extends the power of Prolog with an
equivalent of the Magic Sets style optimization, the well-founded seman-
tics for negation, and many other important features. We discuss the
features of XSB that help our effort as well as the areas where it falls
short of what is needed. We then describe our solutions and optimization
techniques that address these problems and make FLORA much more
efficient than other known DOOD systems based on F-logic.

1 Introduction

Deductive object-oriented databases (abbr. DOOD) attracted much attention in
early 1990’s but difficulties in realizing these ideas and performance problems
had dampened the initial enthusiasm. Nevertheless, the second half of the last
decade witnessed several experimental systems [34, 20,2, 24,17,27]. They, along
with the proliferation of the Web and many recent developments, such as the
RDF! standard, have fueled renewed interest in DOOD systems; in particular,
systems for logic-based processing of object-oriented meta-data [15,18,28,4, 5].
Also, anew field  processing of semistructured data  is emerging to address
a specialized segment of the research on DOOD systems [1].

In this paper, we report our work on FLORA, a practical DOOD system
that has already been successfully used to build a number of sophisticated Web-
based information systems, as reported in [13,19,26]. By “practical” we mean
a DOOD system that has high expressive power, is built on strong theoretical
foundations and offers competitive performance and convenient software devel-
opment environment.
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FLORA is based on F-logic [22], HiLog [11], and Transaction Logic [8,6,9],
which are all incorporated into a single, coherent logic language along the lines
described in [22,21]. However, rather than developing our own deductive engine
for F-logic (such as the ones developed for FLORID [17,27] or SiLRI [15]), we
chose to utilize an existing engine, XSB [29], and implement FLORA through
source-level translation to XSB. Apart from the benefits of saving considerable

amount of time, our choice of XSB was motivated by the following considerations:

1. XSB augments OLD-resolution [32] with tabling, which extends the well-
known Magic Sets method [3], thereby offering both goal-driven top-down
evaluation and data-driven bottom-up evaluation [31].

2. Mapping of F-logic and HiLog into predicate calculus is well known [22,11].

3. XSB is known to be an order of magnitude faster than other similar logic
systems, such as LDL and CORAL [29].

4. XSB has compile-time optimizations particularly suited for source-level trans-
lation, such as specialization [30], unification factoring [14], and trie-based

indexing (which permits indexing on multiple arguments of a predicate).

To the best of our knowledge, the first functioning F-logic prototype based on
the source-level translation approach was FLIP [25]. FLIP served as the starting
point and the inspiration for our own work. Fortunately, there was plenty of
work left for us to do, because FLIP’s translation was essentially identical to
that described in [22] and it was rather naively relying on the ability of XSB to
apply the right optimizations. As a result, the implementation of FLIP suffered
from a number of serious problems. In particular:

1. As a compiler optimization, XSB’s specialization does not apply to many
programs obtained from a direct translation of F-logic [22]. This is even more
so when HiLog terms (which FLIP did not have) occur in the program.

2. Although fundamental to evaluating F-logic programs, tabling cannot be
used without discretion. First, tabling can, in some cases, cause unnecessary
overhead. Second, tabling and databases updates do not work well together.

3. FLIP did not have a consistent object model and had limited support for
path expressions, functional attributes, and meta-programming.

4. Finally, FLIP did not provide any module system, which basically confined
users to a single program file, making serious software development difficult.

In this paper we discuss how these problems are resolved in FLORA. The full pa-
per will present performance results, which compare FLORA with other systems
that implement F-logic.

2 Preliminaries

In this section we review the technical foundations of FLORA — F-logic [22],
HiLog [11], and Transaction Logic [8,7] — and describe their naive translation
using “wrapper” predicates. This discussion forms the basis for understanding
the architecture of FLORA and the optimizations built into it.



2.1 F-logic

F-logic subsumes predicate calculus while both its syntax and semantics are
still defined in object-oriented terms. On the other hand, much of F-logic can
be viewed as a syntactic variant of classical logic, which makes implementation
through source-level translation possible.

Basic Syntax. F-logic uses Prolog ground (i.e., variable-free) terms to represent
object identities (abbr., oid’s), e.g., john and father(mary). Objects can have
scalar (single-valued), multivalued, or Boolean attributes, for instance,

mary[spouse—john, children—»{alice, nancy}].
mary[children—»{jack}; married].

Here spouse—john says that mary has a scalar attribute spouse, whose value
is the oid john; children—»{alice, nancy} says that the value of the multivalued
attribute children is a set that contains two oid’s: alice and nancy. We emphasize
“contains” because sets do not need to be specified all at once. For instance, the
second fact above says that mary has one other child, jack. The attribute married
in the second fact is Boolean: its value is true in the above example.

While some attributes of an object can be specified explicitly as facts, other
attributes can be defined using inference rules. For instance, we can derive
john[children—»{alice, nancy, jack}] with the help of the following rule:

X]children—»{C}] : — Y[spouse—X, children—+{C}]. (1)

Here we adopt the usual Prolog convention that capitalized symbols denote
variables, while symbols beginning with a lower case letter denote constants.

F-logic objects can also have methods, i.e., functions that return a value or
a set of values when appropriate arguments are provided. For instance,

john[grade®(cs305,f99) —+100, courses@(f99)—»{cs305, cs306}].

says that john has a scalar method, grade, whose value on the arguments cs305
and f99 is 100, and a multivalued method courses, whose value on the argument
f99 is a set of oid’s that contains ¢s305 and cs306. As attributes, methods can
also be defined using rules.

One might wonder about the purpose of the “@”-sign in method specification.
Indeed, why not write grade(cs305,f99) instead? The purpose is to enable meta-
programming without using meta-logic. The “©@”-sign trick makes methods into
objects so that variables can range over them. For instance, the following rules

X[methods—»{M}]: — X[M@(_)—_]. @)
X[methods—»{M}]: — X[M@(_,_)—].

where the symbol “.” denotes a new unique variable, define a new method,
methods, which for any given object collects those of the object’s methods that
take one or two arguments.



Thus, the “@”-sign is just a syntactic gimmick that permits F-logic to stay
within the boundary of first-order logic syntax and avoids having to deal with
terms like M(X,Y), where M is a variable. However, there is a better gimmick,
HiLog [11], which will be discussed shortly.

Finally, we note that F-logic can specify class membership (e.g., john : student),
subclass relationship (e.g., student:: person), types (e.g., person[name=sstring]),

and many other things that are peripheral to the subject of this paper.

Translation into Predicate Calculus. A general translation technique, called
flattening, was described in [22]. It used a small, fixed assortment of wrapper
predicates to encode different types of specifications. For instance, the scalar
attribute specification mary[age—30] is encoded as fd(age,mary,[ ].30) whereas
the multivalued method specification john[courses@(f99)—+{cs305, cs306}] is en-
coded as mvd(courses,john,[f99],cs305) A mvd(courses,john,[f99],cs306).

However, one problem is that the indexing advantage is lost due to the small
number of wrapper predicates used, since most Prolog systems index on predicate
names. At first thought, one might think that the problem can be easily avoided
if the encoding used method and attribute names as predicates instead of the
“faceless” general wrappers. However, this is not the case, because variables are
allowed to occur in place of method names, which would make the translated
program second-order.

Recursion presents another serious difficulty. The naive translation scheme
will most likely produce rules that are highly recursive, due to the small number
of wrapper predicates used. For instance, consider the rule (1) presented earlier;
its naive translation is as follows:

mvd(children, X[ ],.C) : — fd(spouse,Y,[ ],X), mvd(children,Y,[ ],C).

In general, evaluating such rules using a regular Prolog-style engine will go to
infinite loop even if logically there is only a finite number of possible answers.
In contrast, such rules present no problems to a tabling logic engine, like XSB,
which uses memorization to terminate unnecessary loops in the evaluation.

For completeness, we note that class membership has its own translation, e.g.,
isa(john,student), and so does the subclass relationship, e.g., subclass(student,person).
Type specifications have their own translation as well. In addition, a set of axioms
must, be added to enforce various properties of F-logic. For instance, we have to
ensure that scalar attributes yield at most one value for any given object, that
the subclass relationship is transitively closed, and that subclass membership is
contained in the superclass membership.

Last but not least, although the non-monotonic part of F-logic inheritance

cannot be directly translated into predicate calculus, it can still be encoded
using Prolog-style rules and computed using XSB’s efficient implementation of
the well-founded semantics for negation [33].

2.2 HiLog

We have seen that one can do certain amount of meta-programming in F-logic,
mostly owing to the “@”-sign gimmick. Although the rules in (2) show that



all method names can be collected using this trick, it is not easy to collect
all method invocations (i.e., methods plus their arguments). Our experience
with FLORA 1.0 also shows that it is very convenient to treat both method
names and method invocations uniformly as objects, because the “@”-sign trick
is error-prone: people tend to forget to write down the “@”-sign (in F-logic,
grade©(cs305,f99) is different from grade(cs305,f99)).

Fortunately, with the extension of HiLog [11], all these problems disappear.
We illustrate HiLog through examples. The simplest yet most unusual one is the
definition of the standard Prolog meta-predicate, call: call(X):—X. This means
that HiLog does not distinguish between function terms and atomic formulas:
the same variable can range over both. Variables can also range over function
symbols, as in X(Y,a). A query of the form 7— p(X), X, X(Y,X) is well within the
boundaries of HiLog. The syntax for HiLog terms also extends that of classical
logic. For instance, g(X)(f(a,X),Y)(b,Y) is perfectly fine. Of course, such powerful
syntax should be used sparingly, but people have found many important uses
for these features (see [11] for some).

Obviously HiLog is a suitable replacement for the “©@”-sign gimmick. Now
with the HiLog extension, users can write, say,

X[methods—{M}]: — X[M(_,-)—]

instead of the rules shown earlier in (2). Trivial as it might appear, HiLog com-
pletely eliminates the need for special meta-syntax used in FLORA 1.0, and
reduces the danger of programming mistakes. In addition, the underlying con-
ceptual object model becomes much more consistent. The HiLog extension is
implemented in the upcoming FLORA 2.0. Section 4 discusses the techniques
that were developed to optimize the translation.

Encoding in Predicate Calculus. It turns out that the semantics of HiLog is
inherently first-order and that it can actually be encoded using standard pred-
icate calculus [11]. Although the translation is rather subtle, it is defined with
just two recursive transformation functions (we omit steps irrelevant to the main
subject): encode,, for translating formulas, and encodey, for translating terms:

1. encode((X) = X, for each variable X.

2. encode(s) = s, for each function symbol s.

3. encodey(t(ty,...,tn)) = applynsi(encode(t), encode;(t1),. .., encode(t,)).
4. encode,(A) = call(encodet(A)), where A is a HiLog atomic formula.

5. encode,(A A B) = encode,(A) A encode,(B).

For instance, f(a,X)(b,Y) A X(Y) A Z is encoded as:
applys(applys(f.a,X),b,Y) A apply2(X,Y) A call(Z)

Note that this naive HiLog encoding uses essentially one wrapper predicate
per arity. For a Prolog-style implementation, this poses an even greater chal-
lenge than F-logic, since all predicate-level indexing is lost. To overcome this
problem, two kinds of compiler optimizations can be used: unification factoring
[14] and specialization [30]. They both are source-level transformations aimed at
improving predicate-level indexing. These techniques are discussed in Section 4.



2.3 Transaction Logic

An important aspect of an object-oriented language is the ability to update the
internal states of objects. In this respect, F-logic is only partly object-oriented,
since it is just a query language. To address this problem, [23] introduced tech-
niques based on preserving the history of object states, so different object states
can be distinguished through the extra state argument. However, such techniques
do not support modular design. For instance, one cannot define more and more
complex update transactions using the previously defined subroutines.

In our view, subroutines are fundamental to programming, and any practi-
cal proposal for dealing with updates in a logic-based programming language
must address this issue. Transaction Logic [8,7,9] is one such proposal, which
provides a comprehensive theory of updates in logic programming. The util-
ity of Transaction Logic has been demonstrated in various applications ranging
from database updates, to robot action planning, to reasoning about actions, to
workflow analysis, and many more [8,10,12].

In FLORA 2.0, F-logic and Transaction Logic are integrated along the lines of
the proposal in [21], and the corresponding implementation issues are described
in Section 4. In Transaction Logic, both actions (transactions) and queries are
represented as predicates. In the context of F-logic, transactions are expressed
as object methods. Underlying Transaction Logic are just a few basic ideas:

1. Ezecution = Truth. Execution of an action is tantamount to it being true on
a path, i.e., a sequence of database states that represent the execution trace.

2. Elementary Updates. These are the building blocks for constructing complex
transactions. Their behavior can be specified by a separate program (e.g., in
the C language) or via a set of axioms. In this paper, we shall use only two
types of elementary updates: insert and delete.

3. Atomicity of Updates. A transaction should either execute entirely (in which
case it is true along the execution path) or not at all. Although common in
databases, this behavior is not typical in logic programming, where assert
and retract are not backtrackable.

The following program is a FLORA 2.0 adaptation of the block-stacking program
from [8]. Here, the action stack is defined as a Boolean method of a robot. The
“#”-sign marks transactional methods that change the database state.

R[#stack(0,X)] :— R:robot.
R[#stack(N,X)] :— R:robot, N > 0,
Y[#move(X)], R[#stack(N-1,Y)].
Y[#move(X)] :— Y:block, Y]clear], X[clear], X[wider(Y)],
del(Y[on—Z]), ins(Z[clear]), ins(Y[on—X]), del(X[clear]).

Informally, the program says that to stack a pyramid of N blocks on top of block
X, the robot must find a block Y, move it onto X, and then stack N-1 blocks
on top of Y. To move Y onto X, both of them must be “clear” (i.e., with no
block on top), and X must be wider than Y. If these conditions are satisfied,



the database will be updated accordingly (ins and del are elementary insert and
delete transactions, respectively).

Note that because of the non-backtrackable nature of Prolog updates, using
assert and retract to translate the ins and del transactions in the above program
would not work properly. However, backtrackable updates can be implemented
efficiently in XSB at the engine level, due to XSB’s use of tries  a special data
structure for storing dynamic data. Transaction Logic provides semantics to this
type of updates.

3 Implementation Issues

3.1 Transactions in a Tabling Environment

As mentioned in Section 2.1, translation from F-logic to predicate calculus re-
quires tabling all the wrapper predicates used for flattening. It turns out, how-
ever, that tabling and database updates are fundamentally at odds: tabling has
the effect that whenever the same query is repeated, it is not evaluated and
instead the previously computed answers are returned. Even a subsumed query
does not necessarily need to be evaluated. Its answers can be computed from
the answers for the corresponding subsuming query. Obviously, this hurts the
semantics of update transactions and other procedures that have side effects. To
see the problem, consider the following program:

:— table p/1. p(X) : — write(X).

The first time p(a) is called, the system will print out “a” and return the answer
yes. However, if p(a) is called the second time, the system will only answer yes
without the “side effect” of “a” being printed out.

This problem implies that update transactions in Transaction Logic should
not be translated using tabled predicates. Moreover, a tabled predicate p should
not depend (directly or indirectly) on an update transaction q, since the se-
mantics of such dependency is murky: the first call to p will execute q while
subsequent calls might not. Therefore, FLORA must check that regular F-logic
methods and attributes do not depend on update transactions. A special syntax
is introduced to help FLORA perform proper translation: transactional methods
are preceded by a “#”-sign to distinguish them from regular F-logic methods.
Primitive update transaction, such as insertion and deletion, also look special:

ins(smith : professor[teach(1999 fall)—cse100])
del(cse200[taught_by(1999,spring)—david])

A more difficult problem arises when a transaction changes the base facts that
a tabled predicate depends on. In this case, the changes should propagate to all
answers that are already tabled for this predicate. This is similar to the view
maintenance problem in databases, but the overhead associated with database
view maintenance methods is unacceptable for fast in-memory logic engines.
Currently, FLORA takes a rather drastic approach of abolishing all tables and
letting subsequent queries rebuild them. However, this problem is not specific to
FLORA, and a more efficient solution can be developed at the XSB engine level.



3.2 Problems with Naive Translation of HiLog and F-logic

Choice Points and Indexing. In Section 2 we described the naive transla-
tion from F-logic and HiLog into classical predicate calculus. Such translation,
however, cannot be the basis for practical implementation. The first problem is
that the naive translation lays down too many choice points in the top-down
execution tree and thus causes excessive backtracking. Consider the following
program and its encoding using the apply predicate (we consider translation of
HiLog, because it illustrates the problem more dramatically):

p(X.Y):—f(X), g(Y).  apply(p.X.Y):—apply(f X), apply(g,Y). (3)
s(X,Y):—p(X)Y). apply(s,X,Y) : — apply(p,X,Y).

If apply(p,X,Y) is evaluated, it will unify with all the rules even though its uni-
fication with the last rule is bound to fail. In large programs this might cause a
serious performance penalty.

Degradation of indexing is another source of performance penalty. Typically,
a deductive system indexes on the predicate name plus one of the arguments,
e.g., the first. In the naive translation, however, predicate-level indexing is lost,
because there are too few predicates used. For instance, in the above example,
the translated program has no indexing mechanism corresponding to the first-
argument indexing in predicates p and s in the original program.

These problems are not new to logic programming. To tackle them, XSB has
developed compiler optimization techniques known as specialization [30] and
unification factoring [14], which both perform source-to-source transformation.

Specialization takes place when a goal can only unify with a subset of the
candidate rules. By replacing this goal’s predicate with a different predicate
that can only unify with the heads of some of the rules, specialization throws
out the unnecessary choice points. For instance, performing specialization on
the translated program in (3) yields the following more efficient program, where
some occurrences of the predicate apply are replaced with apply_1:

apply(p.X,Y) : —apply(f,X), apply(g,Y).  apply(s.X,Y) : —apply_1(X,Y).

apply-1(a,X) : — apply(f,X), apply(g.Y).

In contrast to specialization, unification factoring is driven by the patterns
in rule heads. The idea is to factor out common function symbols to save on
unification and achieve better indexing. Consider the following program:

p(apply(a) X) : —a(X). p(apply(b) X) : — r(X).
and the query ?7- p(apply(X),Y). Here unification for apply has to take place once

with each rule head. However, this repeated unification can be avoided if the
same goal is executed against the following transformed program:

p-apply(a X):—q(X).  p(apply(X),Y):— p-apply(X,Y).
p-apply(b.X) : — r(X).

Because apply is used to encode HiLog terms, common functors, as in the
above example, occur very frequently in a translated FLORA program. It turns
out that the native XSB unification factoring performs quite well with FLORA-
translated programs. XSB specialization, however, exhibits subtle problems.



Double Tabling. The first problem with specialization is tabling. In HiLog
translation, it is not very clear how a tabling directive like :— table p/2 should
be translated. If FLORA handles this by tabling apply/3, then XSB specialization
may cause “double tabling” — a situation where certain predicates are tabled
unnecessarily. For instance, consider the following program (which computes
transitive closure) and its naive encoding:

:— table p/2. : — table apply/3.

p(ab). apply(p,a,b).

p(b.c). apply(p.b.c). (4)
t(X,Y): = p(X.Y). apply(t,X,Y) : — apply(p.X,Y).

t(X.)Y):—p(X,Z), t(Z,)Y). apply(t.X,Y):— apply(p.X,Z), apply(t.Z,Y).

XSB specialization on the translated program (4) would yield the following:

: — table apply/3.

: — table apply_1/2. : — table apply_2/2.

apply_1(a,b). apply2(X,Y) : — apply_1(X,Y).

apply_1(b,c). apply2(X,Y) : — apply_1(X,Z), apply_2(Z,Y).
apply(p.a,b). apply(t,X,Y) : —apply_1(X,Y).

apply(p.b,c). apply(t.X,Y) : —apply_1(X,Z), apply_2(Z,Y).

Being essentially another copy of apply(t,X,Y), tabling the tuples of apply-2(X,Y)
is redundant, although this caching is needed to guarantee termination of the
specialized program. The size of the compiled code is also considerably larger
than the original.

Meta-Programming. Yet another problem is due to meta-programming, which
tends to produce programs that preclude XSB specialization. To see the crip-
pling effect of meta-rules on XSB specialization, consider the following program
and its naive translation:

p(a). apply(p.a).

p(b). apply(p.b). (5)
X(Y):—X=p, Y=c apply(X,Y): — X=p, Y=c.

t(X) : = p(X) apply(t.X) : — apply(p.X).

apply(p.a). apply-1(p.a).

apply(p.b). apply-1(p.b).

apply(X,Y) : — X=p, Y=c. apply_1(X,Y) : — X=p, Y=c.
apply(t,X) : — apply_1(p.X).

In this program, the predicate apply_1(p,X) still has to unify with all the apply_1
facts and rules. Not only the unification on p is repeated, but indexing on the
first argument in the original program is lost as well.



Note that although so far we have been illustrating the XSB specialization
problems using HiLog only, F-logic exhibits the same problem. Consider the
following F-logic program and its naive translation:

obja[atta—vala]. fd(atta,obja,[ ],vala).

objb[atta—valb]. fd(atta,objb,[ ].valb). (6)
objc[X—Y]:— X=atta, Y=valc. fd(X,objc,[]Y):— X=atta, Y=valc.
Olattb—»{X}] : — O[atta—X].  mvd(attb,O,[ ].X) : — fd(atta,O,[ ].X).

It is easy to see that the translation is just another version of the previous HiLog
program (5) and thus it cripples XSB specialization just as badly.

The next section proposes a new kind of specialization, called skeleton-based
specialization, which is used in FLORA 2.0 to optimize source-level translation
for F-logic and HiLog. The system is designed in such a way that skeleton-based
specialization and XSB specialization compliment each other.

4 Solutions

As explained in Section 3, a major problem with the naive translation of F-logic
and HiLog is the loss of indexing and while XSB unification factoring performs
well for the translated programs, specialization often fails to yield any improve-
ments and, in some cases, it might even cause unnecessary overhead. In this
section we propose skeleton-based specialization, which supplements the native
XSB specialization and fixes the aforesaid problems.

4.1 Skeleton-Based Specialization Algorithm

Definition 1 (Skeleton). Given a HiLog term T, its skeleton Skel(T) is an
abstract view of the syntactic structure of T. Skel(T) is defined as follows:

1. Skel(T) =T, if T is a constant.
2. Skel(T) = _, if T is a variable.
3. Skel(T) = Skel(F)/n, if T = F(Tq,....Ty).

Ezample 1 (Skeletons of HiLog Terms).

1. Skel(f) = f
2. Skel(X(a,

b)(Y)) = -/2/1
3. Skel(X(f(Y)))

) =1

The algorithm in Figure 1 describes FLORA skeleton-based specialization.
It applies to F-logic and HiLog translation separately, since the set of wrapper
predicates used for F-logic translation is disjoint from those wrapper predicates
used for HiLog predicates.

First we explain the algorithm in the context of HiLog translation. It takes a
FLORA program as input and yields an equivalent program in predicate logic;
the algorithm has the following steps:



Input: a FLORA program F consisting of rules (including facts)
Output: an XSB program that encodes F

1 HL := {L | L is a literal in a rule head of F};

2 BL := {L | L is a literal in a rule body of F};

3 HS := {Skel(L) | L € HL};

4 BS := {Skel(L) | L € BL};

5 for each skeleton S € HS U BS do seq(S) := a unique integer;
6 for each rule H:— B from the input program F do {

7 H' := flatten(H,Skel(H));

8

B' := B;
9 for each literal L € B’ do L := flatten(L,Skel(L));
10 output the rule H' : — B';
1}
12 for each literal H € HL do {
13 H' := naive(H);
14 H" := flatten(H,Skel(H));
15 output the rule H : — H";
16 }
17  for each literal L € BL do
18 for each rule H: — B from the input program F do
19 if L unifies with H with the mgu ¢ and Skel(L) # Skel(H) then {
20 H' := flatten(H,Skel(L));
21 B’ := B;
22 for each literal T € B’ do {
23 S:=T6;
24 if Skel(S) € BS
25 then T := flatten(S,Skel(S));
26 else T := flatten(S,Skel(T));
27 output the rule H': — B’;
28 }

Fig. 1. Skeleton-Based Specialization Algorithm

Skeleton Analysis (Lines 1 5). First we collect all the literals in rule heads
into the set HL and all the literals in rule bodies into the set BL.2 Then, the
algorithm computes the set of skeletons HS and BS for each literal in HL and
BL, respectively. Each unique skeleton in the union of HS and BS is assigned a
unique sequence number.

The rest of the algorithm consists of three main tasks: flattening, trap rule
generation, and instantiation.

Flattening (Lines 6 — 11). The purpose of flattening is to eliminate unneces-
sary wrapper predicates and unification. Let S = X/n1/.../ny, where X is either

2 Each HiLog literal is assumed to have the functor part and the arity. Propositional
constants are treated as O-ary literals, e.g., p().



“” or a constant, and L be of the form T(T1n,,-- - Tang) - (Tinee - - Tagne)- The
transformation procedure flatten(L,S) then does the following: Let n be the se-
quence number assigned to the skeleton S, then the wrapper predicate used
to encode the HiLog literal L is apply_n, which is unique across HilLog trans-
lation. Next, if X is a constant in X/ni/.../ny, then so must be T (in Lines
7, 14 and 25 the skeleton argument of flatten is that of the literal argument
whereas in Lines 20 and 26 the skeleton either subsumes or is the same as
that of the literal) and flatten(L,S) yields apply-n(E1n,.. . ..Enynyoe - - E1ngse - < Enyny)-
Otherwise, X is “_” and T might be any HiLog term, then flatten(L,S) will return
apply_n(E.E1n,.- - ..Enynyo- - E1ny - Engny ), where E, Ejj = encode(T), encode(Tj),
respectively, encode; is the naive encoding of HiLog terms described in Section 2.2.
For instance, if the sequence number assigned to the skeleton f/1/2 is 2, then
flatten(f(Y)(a,Z),f/1/2) will produce apply_-2(Y,a,Z). The reason why the functor
symbol f can be omitted is because it is already encoded in the sequence number
for the skeleton.

Trap Rule Generation (Lines 12 16). These steps generate rules to “trap”
the naive encoding of literals. The translation outputs a rule whose head is
the naive encoding of the original rule-head, while the body is the result of
flattening the head. For instance, the trap rule for f(Y)(a,Z):— body is like
apply(apply(f,Y),a,Z) : — apply_2(Y,a,Z). Trap rule generation is indispensable for
inter-module communications in FLORA. Since specialization in principle has
no knowledge of other modules, calls referring to other modules have to be en-
coded using the naive translation. Due to space limits, we will not elaborate on
this topic further.

Instantiation (Lines 17 28). Even when two literals unify, their encodings
might not unify after flattening. For instance, X(Y) and f(a)(Z) unify, but their
flattened forms, e.g., apply_1(X,Y) and apply_2(a,Z) (with respect to the skeletons
_/1 and f/1/1, respectively), do not unify.

Instantiation ensures that unifiability is preserved after specialization. The
idea is that if a body literal unifies with the head of a rule, R, using the mgu
f, but the two literals have different skeletons, then a new rule, Rf, must be
generated. For instance, consider the following program:

gX):—p(X).  Y(2):—q(Y.2).

Here p(X) will be flattened as apply_-1(X) and Y(Z) as apply-2(Y,Z). Because p(X)
unifies with Y(Z) : — q(VY,Z), this rule must be instantiated using the substitution

Y /p, yielding p(Z) : — q(p,Z). Specializing this rule yields apply_1(Z) : — apply_2(p.Z),
which ensures that the semantics of the original program is preserved.

However, rule instantiation might generate body literals with new skeletons
that have not been seen before in the original program. Thus, instantiation
might have to be applied again, using these new body literals. This opens up
the possibility of an infinite instantiation process. For instance, in the following
program:



g(X):—p(X).  Y(2):-Y(2)(2).

when the second rule is instantiated with Y/p (the mgu of p(X) and Y(Z)), a new
rule p(Z) : — p(Z)(Z) is generated. The literal p(Z)(Z) has a completely new skele-
ton: p/1/1. If p(X)(X) is flattened with respect to p/1/1, the rule Y(Z): — Y(Z)(Z)
has to be instantiated with Y/p(X), the mgu of p(X)(X) and Y(Z). Thus yet an-
other new skeleton p/1/1/1 will emerge, and so on.

Lines 24 — 26 in the algorithm are designed to ensure termination of the in-
stantiation process. The solution is simple: the quality of specialization is traded
in for termination. When a literal with a new skeleton shows up in a newly
instantiated rule, its skeleton must extend the skeleton of that literal before
instantiation. Thus, we can flatten the instantiated literal with respect to the
skeleton of the original literal. Unifiability is also preserved by such translation.
For instance, specializing the above example yields the following program (where
the trap rules are omitted):

apply_1(X) : — apply-2(X). apply_2(X) : — apply_4(p.X,X).
apply-3(Y,Z) : — apply-4(Y,Z,Z). apply 4(Y,Z,Z):— apply_4(apply(Y.,Z),Z,Z).

4.2 Putting it All Together

For the translated program (4), which computes transitive closure, the result of
skeleton-based specialization is as follows:

: — table apply_2/2.
apply_1(a,b). apply2(X,Y) : — apply_1(X,Y).
apply_1(b,c). apply2(X,Y) : —apply_1(X,Z), apply_2(Z,Y).

The following program is the result of skeleton-based specialization of the pro-
gram shown in (5):

apply_1(a). apply_3(X) : — apply_1(X).
apply_1(b). apply_1(X): — p=p, X=c.
apply2(X,Y): — X=p, Y=c.

Note that although we illustrate the idea of skeleton-based specialization
using HiLog translation, our algorithm applies to F-logic translation as well. In
fact, the translation views F-logic literals as just another kind of HiLog literals,
which just happen to use different wrapper predicates.

For instance, a slight variation of the naive F-logic translation can convert
O[M—V] into the HiLog literal M(O,V) and then further convert it to predicate
logic using the wrapper predicate fd instead of apply. Likewise, O[M—»V] can
be converted to M(0,V) and then to predicate calculus using mvd as a wrap-
per. Therefore, skeleton-based specialization can be performed on HiLog and
F-logic independently. The only part of the algorithm that needs to be changed
is the prefix used to construct the wrappers. For instance, instead of apply_2 we
would use fd_2. Thus, the result of applying skeleton-based specialization to the
program (6) would be the following (where the trap rules are omitted):



fd_1(obja,vala). mvd_1(0,X) : — fd_1(0,X).
fd_1(objb,valb). fd_1(objc,Y) : — atta=atta, Y=valc.
fd_2(X,objc,Y) : — X=atta, Y=valc.

Our experiments show that even for small programs discussed in this section
FLORA skeleton-based specialization can speed up programs by a factor of 2.1,
whereas XSB native specialization reduces execution time only by a factor of
1.85. A more detailed comparison will be reported in the full version of this paper.
Nevertheless, as said earlier, FLORA specialization is not intended to replace
XSB specialization. Instead, it is used as a first-line optimization technique.
Then the FLORA-translated program is further optimized through the native
XSB specialization and unification factoring.

Another observation about FLORA specialization is that better-quality spe-
cialization is possible with more detailed skeleton representation. Indeed, con-
sidering HiLog terms as trees, we could define skeletons as the abstract view
of their structures at some depth level. For example, a two-level skeleton for
f(X)(X,a,f(b)) would be f/(.)/(-a.(f/1)). There is a subtle relationship, though,
between the amount of detail preserved in skeletons and the quality of specialized
programs. More detailed skeletons normally mean better specialized programs
and thus better performance, but longer compilation time and larger program
size.

5 Conclusion

This paper discusses techniques for building efficient DOOD systems by transla-
tion into lower-level Prolog syntax and utilizing an existing tabling logic engine,
such as XSB [29]. The feasibility of our approach has been demonstrated by
the F-logic based FLORA system, which delivers very encouraging performance.
(Performance results will be included in the full version of this paper.) We also
discuss the compiler optimization techniques that were used to achieve this per-
formance; some of them are just native XSB optimizations, while others are
designed specifically for FLORA. Due to lack of space we omitted a number of
other implementation issues, such as the FLORA module system and perfor-
mance optimizations related to handling path expressions. Details can be found
at http://www.cs.sunysb.edu/ guizyang/papers/floratech.ps
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