
FLORA: Implementing an EÆient DOODSystem Using a Tabling Logi Engine?Guizhen Yang and Mihael KiferDepartment of Computer SieneSUNY at Stony BrookStony Brook, NY 11794, U.S.A.fguizyang, kiferg�CS.SunySB.EDUAbstrat. This paper reports on the design and implementation ofFLORA | a powerful DOOD system that inorporates the features ofF-logi, HiLog, and Transation Logi. FLORA is implemented by trans-lation into XSB, a tabling logi engine that is known for its eÆienyand is the only known system that extends the power of Prolog with anequivalent of the Magi Sets style optimization, the well-founded seman-tis for negation, and many other important features. We disuss thefeatures of XSB that help our e�ort as well as the areas where it fallsshort of what is needed. We then desribe our solutions and optimizationtehniques that address these problems and make FLORA muh moreeÆient than other known DOOD systems based on F-logi.1 IntrodutionDedutive objet-oriented databases (abbr. DOOD) attrated muh attention inearly 1990's but diÆulties in realizing these ideas and performane problemshad dampened the initial enthusiasm. Nevertheless, the seond half of the lastdeade witnessed several experimental systems [34, 20, 2, 24, 17, 27℄. They, alongwith the proliferation of the Web and many reent developments, suh as theRDF1 standard, have fueled renewed interest in DOOD systems; in partiular,systems for logi-based proessing of objet-oriented meta-data [15, 18, 28, 4, 5℄.Also, a new �eld | proessing of semistrutured data | is emerging to addressa speialized segment of the researh on DOOD systems [1℄.In this paper, we report our work on FLORA, a pratial DOOD systemthat has already been suessfully used to build a number of sophistiated Web-based information systems, as reported in [13, 19, 26℄. By \pratial" we meana DOOD system that has high expressive power, is built on strong theoretialfoundations and o�ers ompetitive performane and onvenient software devel-opment environment.? Work supported in part by a grant from New York State through the program forStrategi Partnership for Industrial Resurgene, by XSB, In., through the NSFSBIR Award 9960485, and by NSF grant INT9809945.1 http://www.w3.org/RDF/

FLORA is based on F-logi [22℄, HiLog [11℄, and Transation Logi [8, 6, 9℄,whih are all inorporated into a single, oherent logi language along the linesdesribed in [22, 21℄. However, rather than developing our own dedutive enginefor F-logi (suh as the ones developed for FLORID [17, 27℄ or SiLRI [15℄), wehose to utilize an existing engine, XSB [29℄, and implement FLORA throughsoure-level translation to XSB. Apart from the bene�ts of saving onsiderableamount of time, our hoie of XSB was motivated by the following onsiderations:1. XSB augments OLD-resolution [32℄ with tabling, whih extends the well-known Magi Sets method [3℄, thereby o�ering both goal-driven top-downevaluation and data-driven bottom-up evaluation [31℄.2. Mapping of F-logi and HiLog into prediate alulus is well known [22, 11℄.3. XSB is known to be an order of magnitude faster than other similar logisystems, suh as LDL and CORAL [29℄.4. XSB has ompile-time optimizations partiularly suited for soure-level trans-lation, suh as speialization [30℄, uni�ation fatoring [14℄, and trie-basedindexing (whih permits indexing on multiple arguments of a prediate).To the best of our knowledge, the �rst funtioning F-logi prototype based onthe soure-level translation approah was FLIP [25℄. FLIP served as the startingpoint and the inspiration for our own work. Fortunately, there was plenty ofwork left for us to do, beause FLIP's translation was essentially idential tothat desribed in [22℄ and it was rather naively relying on the ability of XSB toapply the right optimizations. As a result, the implementation of FLIP su�eredfrom a number of serious problems. In partiular:1. As a ompiler optimization, XSB's speialization does not apply to manyprograms obtained from a diret translation of F-logi [22℄. This is even moreso when HiLog terms (whih FLIP did not have) our in the program.2. Although fundamental to evaluating F-logi programs, tabling annot beused without disretion. First, tabling an, in some ases, ause unneessaryoverhead. Seond, tabling and databases updates do not work well together.3. FLIP did not have a onsistent objet model and had limited support forpath expressions, funtional attributes, and meta-programming.4. Finally, FLIP did not provide any module system, whih basially on�nedusers to a single program �le, making serious software development diÆult.In this paper we disuss how these problems are resolved in FLORA. The full pa-per will present performane results, whih ompare FLORA with other systemsthat implement F-logi.2 PreliminariesIn this setion we review the tehnial foundations of FLORA | F-logi [22℄,HiLog [11℄, and Transation Logi [8, 7℄ | and desribe their naive translationusing \wrapper" prediates. This disussion forms the basis for understandingthe arhiteture of FLORA and the optimizations built into it.

2.1 F-logiF-logi subsumes prediate alulus while both its syntax and semantis arestill de�ned in objet-oriented terms. On the other hand, muh of F-logi anbe viewed as a syntati variant of lassial logi, whih makes implementationthrough soure-level translation possible.Basi Syntax. F-logi uses Prolog ground (i.e., variable-free) terms to representobjet identities (abbr., oid's), e.g., john and father(mary). Objets an havesalar (single-valued), multivalued, or Boolean attributes, for instane,mary[spouse!john, hildren!!falie, nanyg℄.mary[hildren!!fjakg; married℄.Here spouse!john says that mary has a salar attribute spouse, whose valueis the oid john; hildren!!falie, nanyg says that the value of the multivaluedattribute hildren is a set that ontains two oid's: alie and nany. We emphasize\ontains" beause sets do not need to be spei�ed all at one. For instane, theseond fat above says that mary has one other hild, jak. The attribute marriedin the seond fat is Boolean: its value is true in the above example.While some attributes of an objet an be spei�ed expliitly as fats, otherattributes an be de�ned using inferene rules. For instane, we an derivejohn[hildren!!falie, nany, jakg℄ with the help of the following rule:X[hildren!!fCg℄ :�Y[spouse!X, hildren!!fCg℄. (1)Here we adopt the usual Prolog onvention that apitalized symbols denotevariables, while symbols beginning with a lower ase letter denote onstants.F-logi objets an also have methods, i.e., funtions that return a value ora set of values when appropriate arguments are provided. For instane,john[grade�(s305,f99)!100, ourses�(f99)!!fs305, s306g℄.says that john has a salar method, grade, whose value on the arguments s305and f99 is 100, and a multivalued method ourses, whose value on the argumentf99 is a set of oid's that ontains s305 and s306. As attributes, methods analso be de�ned using rules.One might wonder about the purpose of the \�"-sign in method spei�ation.Indeed, why not write grade(s305,f99) instead? The purpose is to enable meta-programming without using meta-logi. The \�"-sign trik makes methods intoobjets so that variables an range over them. For instane, the following rulesX[methods!!fMg℄ :�X[M�()! ℄.X[methods!!fMg℄ :�X[M�(,)! ℄. (2)where the symbol \ " denotes a new unique variable, de�ne a new method,methods, whih for any given objet ollets those of the objet's methods thattake one or two arguments.

Thus, the \�"-sign is just a syntati gimmik that permits F-logi to staywithin the boundary of �rst-order logi syntax and avoids having to deal withterms like M(X,Y), where M is a variable. However, there is a better gimmik,HiLog [11℄, whih will be disussed shortly.Finally, we note that F-logi an speify lass membership (e.g., john : student),sublass relationship (e.g., student :: person), types (e.g., person[name)string℄),and many other things that are peripheral to the subjet of this paper.Translation into Prediate Calulus. A general translation tehnique, alledattening, was desribed in [22℄. It used a small, �xed assortment of wrapperprediates to enode di�erent types of spei�ations. For instane, the salarattribute spei�ation mary[age!30℄ is enoded as fd(age,mary,[℄,30) whereasthe multivalued method spei�ation john[ourses�(f99)!!fs305, s306g℄ is en-oded as mvd(ourses,john,[f99℄,s305) ^ mvd(ourses,john,[f99℄,s306).However, one problem is that the indexing advantage is lost due to the smallnumber of wrapper prediates used, sine most Prolog systems index on prediatenames. At �rst thought, one might think that the problem an be easily avoidedif the enoding used method and attribute names as prediates instead of the\faeless" general wrappers. However, this is not the ase, beause variables areallowed to our in plae of method names, whih would make the translatedprogram seond-order.Reursion presents another serious diÆulty. The naive translation shemewill most likely produe rules that are highly reursive, due to the small numberof wrapper prediates used. For instane, onsider the rule (1) presented earlier;its naive translation is as follows:mvd(hildren,X,[℄,C) :� fd(spouse,Y,[℄,X), mvd(hildren,Y,[℄,C).In general, evaluating suh rules using a regular Prolog-style engine will go toin�nite loop even if logially there is only a �nite number of possible answers.In ontrast, suh rules present no problems to a tabling logi engine, like XSB,whih uses memorization to terminate unneessary loops in the evaluation.For ompleteness, we note that lass membership has its own translation, e.g.,isa(john,student), and so does the sublass relationship, e.g., sublass(student,person).Type spei�ations have their own translation as well. In addition, a set of axiomsmust be added to enfore various properties of F-logi. For instane, we have toensure that salar attributes yield at most one value for any given objet, thatthe sublass relationship is transitively losed, and that sublass membership isontained in the superlass membership.Last but not least, although the non-monotoni part of F-logi| inheritane| annot be diretly translated into prediate alulus, it an still be enodedusing Prolog-style rules and omputed using XSB's eÆient implementation ofthe well-founded semantis for negation [33℄.2.2 HiLogWe have seen that one an do ertain amount of meta-programming in F-logi,mostly owing to the \�"-sign gimmik. Although the rules in (2) show that

all method names an be olleted using this trik, it is not easy to olletall method invoations (i.e., methods plus their arguments). Our experienewith FLORA 1.0 also shows that it is very onvenient to treat both methodnames and method invoations uniformly as objets, beause the \�"-sign trikis error-prone: people tend to forget to write down the \�"-sign (in F-logi,grade�(s305,f99) is di�erent from grade(s305,f99)).Fortunately, with the extension of HiLog [11℄, all these problems disappear.We illustrate HiLog through examples. The simplest yet most unusual one is thede�nition of the standard Prolog meta-prediate, all: all(X) :�X. This meansthat HiLog does not distinguish between funtion terms and atomi formulas:the same variable an range over both. Variables an also range over funtionsymbols, as in X(Y,a). A query of the form ?� p(X), X, X(Y,X) is well within theboundaries of HiLog. The syntax for HiLog terms also extends that of lassiallogi. For instane, g(X)(f(a,X),Y)(b,Y) is perfetly �ne. Of ourse, suh powerfulsyntax should be used sparingly, but people have found many important usesfor these features (see [11℄ for some).Obviously HiLog is a suitable replaement for the \�"-sign gimmik. Nowwith the HiLog extension, users an write, say,X[methods!!fMg℄ :�X[M(,)! ℄instead of the rules shown earlier in (2). Trivial as it might appear, HiLog om-pletely eliminates the need for speial meta-syntax used in FLORA 1.0, andredues the danger of programming mistakes. In addition, the underlying on-eptual objet model beomes muh more onsistent. The HiLog extension isimplemented in the upoming FLORA 2.0. Setion 4 disusses the tehniquesthat were developed to optimize the translation.Enoding in Prediate Calulus. It turns out that the semantis of HiLog isinherently �rst-order and that it an atually be enoded using standard pred-iate alulus [11℄. Although the translation is rather subtle, it is de�ned withjust two reursive transformation funtions (we omit steps irrelevant to the mainsubjet): enodea, for translating formulas, and enodet, for translating terms:1. enodet(X) = X, for eah variable X.2. enodet(s) = s, for eah funtion symbol s.3. enodet(t(t1,: : :,tn)) = applyn+1(enodet(t), enodet(t1),: : :, enodet(tn)).4. enodea(A) = all(enodet(A)), where A is a HiLog atomi formula.5. enodea(A ^ B) = enodea(A) ^ enodea(B).For instane, f(a,X)(b,Y) ^ X(Y) ^ Z is enoded as:apply3(apply3(f,a,X),b,Y) ^ apply2(X,Y) ^ all(Z)Note that this naive HiLog enoding uses essentially one wrapper prediateper arity. For a Prolog-style implementation, this poses an even greater hal-lenge than F-logi, sine all prediate-level indexing is lost. To overome thisproblem, two kinds of ompiler optimizations an be used: uni�ation fatoring[14℄ and speialization [30℄. They both are soure-level transformations aimed atimproving prediate-level indexing. These tehniques are disussed in Setion 4.

2.3 Transation LogiAn important aspet of an objet-oriented language is the ability to update theinternal states of objets. In this respet, F-logi is only partly objet-oriented,sine it is just a query language. To address this problem, [23℄ introdued teh-niques based on preserving the history of objet states, so di�erent objet statesan be distinguished through the extra state argument. However, suh tehniquesdo not support modular design. For instane, one annot de�ne more and moreomplex update transations using the previously de�ned subroutines.In our view, subroutines are fundamental to programming, and any prati-al proposal for dealing with updates in a logi-based programming languagemust address this issue. Transation Logi [8, 7, 9℄ is one suh proposal, whihprovides a omprehensive theory of updates in logi programming. The util-ity of Transation Logi has been demonstrated in various appliations rangingfrom database updates, to robot ation planning, to reasoning about ations, toworkow analysis, and many more [8, 10, 12℄.In FLORA 2.0, F-logi and Transation Logi are integrated along the lines ofthe proposal in [21℄, and the orresponding implementation issues are desribedin Setion 4. In Transation Logi, both ations (transations) and queries arerepresented as prediates. In the ontext of F-logi, transations are expressedas objet methods. Underlying Transation Logi are just a few basi ideas:1. Exeution � Truth. Exeution of an ation is tantamount to it being true ona path, i.e., a sequene of database states that represent the exeution trae.2. Elementary Updates. These are the building bloks for onstruting omplextransations. Their behavior an be spei�ed by a separate program (e.g., inthe C language) or via a set of axioms. In this paper, we shall use only twotypes of elementary updates: insert and delete.3. Atomiity of Updates. A transation should either exeute entirely (in whihase it is true along the exeution path) or not at all. Although ommon indatabases, this behavior is not typial in logi programming, where assertand retrat are not baktrakable.The following program is a FLORA 2.0 adaptation of the blok-staking programfrom [8℄. Here, the ation stak is de�ned as a Boolean method of a robot. The\#"-sign marks transational methods that hange the database state.R[#stak(0,X)℄ :� R : robot.R[#stak(N,X)℄ :� R : robot, N > 0,Y[#move(X)℄, R[#stak(N-1,Y)℄.Y[#move(X)℄ :� Y : blok, Y[lear℄, X[lear℄, X[wider(Y)℄,del(Y[on!Z℄), ins(Z[lear℄), ins(Y[on!X℄), del(X[lear℄).Informally, the program says that to stak a pyramid of N bloks on top of blokX, the robot must �nd a blok Y, move it onto X, and then stak N-1 blokson top of Y. To move Y onto X, both of them must be \lear" (i.e., with noblok on top), and X must be wider than Y. If these onditions are satis�ed,

the database will be updated aordingly (ins and del are elementary insert anddelete transations, respetively).Note that beause of the non-baktrakable nature of Prolog updates, usingassert and retrat to translate the ins and del transations in the above programwould not work properly. However, baktrakable updates an be implementedeÆiently in XSB at the engine level, due to XSB's use of tries | a speial datastruture for storing dynami data. Transation Logi provides semantis to thistype of updates.3 Implementation Issues3.1 Transations in a Tabling EnvironmentAs mentioned in Setion 2.1, translation from F-logi to prediate alulus re-quires tabling all the wrapper prediates used for attening. It turns out, how-ever, that tabling and database updates are fundamentally at odds: tabling hasthe e�et that whenever the same query is repeated, it is not evaluated andinstead the previously omputed answers are returned. Even a subsumed querydoes not neessarily need to be evaluated. Its answers an be omputed fromthe answers for the orresponding subsuming query. Obviously, this hurts thesemantis of update transations and other proedures that have side e�ets. Tosee the problem, onsider the following program::� table p/1. p(X) :�write(X).The �rst time p(a) is alled, the system will print out \a" and return the answeryes. However, if p(a) is alled the seond time, the system will only answer yeswithout the \side e�et" of \a" being printed out.This problem implies that update transations in Transation Logi shouldnot be translated using tabled prediates. Moreover, a tabled prediate p shouldnot depend (diretly or indiretly) on an update transation q, sine the se-mantis of suh dependeny is murky: the �rst all to p will exeute q whilesubsequent alls might not. Therefore, FLORA must hek that regular F-logimethods and attributes do not depend on update transations. A speial syntaxis introdued to help FLORA perform proper translation: transational methodsare preeded by a \#"-sign to distinguish them from regular F-logi methods.Primitive update transation, suh as insertion and deletion, also look speial:ins(smith : professor[teah(1999,fall)!se100℄)del(se200[taught by(1999,spring)!david℄)A more diÆult problem arises when a transation hanges the base fats thata tabled prediate depends on. In this ase, the hanges should propagate to allanswers that are already tabled for this prediate. This is similar to the viewmaintenane problem in databases, but the overhead assoiated with databaseview maintenane methods is unaeptable for fast in-memory logi engines.Currently, FLORA takes a rather drasti approah of abolishing all tables andletting subsequent queries rebuild them. However, this problem is not spei� toFLORA, and a more eÆient solution an be developed at the XSB engine level.

3.2 Problems with Naive Translation of HiLog and F-logiChoie Points and Indexing. In Setion 2 we desribed the naive transla-tion from F-logi and HiLog into lassial prediate alulus. Suh translation,however, annot be the basis for pratial implementation. The �rst problem isthat the naive translation lays down too many hoie points in the top-downexeution tree and thus auses exessive baktraking. Consider the followingprogram and its enoding using the apply prediate (we onsider translation ofHiLog, beause it illustrates the problem more dramatially):p(X,Y) :� f(X), g(Y). apply(p,X,Y) :� apply(f,X), apply(g,Y).s(X,Y) :� p(X,Y). apply(s,X,Y) :� apply(p,X,Y). (3)If apply(p,X,Y) is evaluated, it will unify with all the rules even though its uni-�ation with the last rule is bound to fail. In large programs this might ause aserious performane penalty.Degradation of indexing is another soure of performane penalty. Typially,a dedutive system indexes on the prediate name plus one of the arguments,e.g., the �rst. In the naive translation, however, prediate-level indexing is lost,beause there are too few prediates used. For instane, in the above example,the translated program has no indexing mehanism orresponding to the �rst-argument indexing in prediates p and s in the original program.These problems are not new to logi programming. To takle them, XSB hasdeveloped ompiler optimization tehniques known as speialization [30℄ anduni�ation fatoring [14℄, whih both perform soure-to-soure transformation.Speialization takes plae when a goal an only unify with a subset of theandidate rules. By replaing this goal's prediate with a di�erent prediatethat an only unify with the heads of some of the rules, speialization throwsout the unneessary hoie points. For instane, performing speialization onthe translated program in (3) yields the following more eÆient program, wheresome ourrenes of the prediate apply are replaed with apply 1:apply(p,X,Y) :� apply(f,X), apply(g,Y). apply(s,X,Y) :� apply 1(X,Y).apply 1(a,X) :� apply(f,X), apply(g,Y).In ontrast to speialization, uni�ation fatoring is driven by the patternsin rule heads. The idea is to fator out ommon funtion symbols to save onuni�ation and ahieve better indexing. Consider the following program:p(apply(a),X) :� q(X). p(apply(b),X) :� r(X).and the query ?- p(apply(X),Y). Here uni�ation for apply has to take plae onewith eah rule head. However, this repeated uni�ation an be avoided if thesame goal is exeuted against the following transformed program:p apply(a,X) :� q(X). p(apply(X),Y) :� p apply(X,Y).p apply(b,X) :� r(X).Beause apply is used to enode HiLog terms, ommon funtors, as in theabove example, our very frequently in a translated FLORA program. It turnsout that the native XSB uni�ation fatoring performs quite well with FLORA-translated programs. XSB speialization, however, exhibits subtle problems.

Double Tabling. The �rst problem with speialization is tabling. In HiLogtranslation, it is not very lear how a tabling diretive like :� table p/2 shouldbe translated. If FLORA handles this by tabling apply/3, then XSB speializationmay ause \double tabling" | a situation where ertain prediates are tabledunneessarily. For instane, onsider the following program (whih omputestransitive losure) and its naive enoding::� table p/2. :� table apply/3.p(a,b). apply(p,a,b).p(b,). apply(p,b,).t(X,Y) :� p(X,Y). apply(t,X,Y) :� apply(p,X,Y).t(X,Y) :� p(X,Z), t(Z,Y). apply(t,X,Y) :� apply(p,X,Z), apply(t,Z,Y). (4)XSB speialization on the translated program (4) would yield the following::� table apply/3.:� table apply 1/2. :� table apply 2/2.apply 1(a,b). apply 2(X,Y) :� apply 1(X,Y).apply 1(b,). apply 2(X,Y) :� apply 1(X,Z), apply 2(Z,Y).apply(p,a,b). apply(t,X,Y) :� apply 1(X,Y).apply(p,b,). apply(t,X,Y) :� apply 1(X,Z), apply 2(Z,Y).Being essentially another opy of apply(t,X,Y), tabling the tuples of apply 2(X,Y)is redundant, although this ahing is needed to guarantee termination of thespeialized program. The size of the ompiled ode is also onsiderably largerthan the original.Meta-Programming. Yet another problem is due to meta-programming, whihtends to produe programs that prelude XSB speialization. To see the rip-pling e�et of meta-rules on XSB speialization, onsider the following programand its naive translation:p(a). apply(p,a).p(b). apply(p,b).X(Y) :�X=p, Y=. apply(X,Y) :�X=p, Y=.t(X) :� p(X). apply(t,X) :� apply(p,X). (5)XSB speialization on the previous translated program (5) looks as follows:apply(p,a). apply 1(p,a).apply(p,b). apply 1(p,b).apply(X,Y) :�X=p, Y=. apply 1(X,Y) :�X=p, Y=.apply(t,X) :� apply 1(p,X).In this program, the prediate apply 1(p,X) still has to unify with all the apply 1fats and rules. Not only the uni�ation on p is repeated, but indexing on the�rst argument in the original program is lost as well.

Note that although so far we have been illustrating the XSB speializationproblems using HiLog only, F-logi exhibits the same problem. Consider thefollowing F-logi program and its naive translation:obja[atta!vala℄. fd(atta,obja,[℄,vala).objb[atta!valb℄. fd(atta,objb,[℄,valb).obj[X!Y℄ :�X=atta, Y=val. fd(X,obj,[℄,Y) :�X=atta, Y=val.O[attb!!fXg℄ :�O[atta!X℄. mvd(attb,O,[℄,X) :� fd(atta,O,[℄,X). (6)It is easy to see that the translation is just another version of the previous HiLogprogram (5) and thus it ripples XSB speialization just as badly.The next setion proposes a new kind of speialization, alled skeleton-basedspeialization, whih is used in FLORA 2.0 to optimize soure-level translationfor F-logi and HiLog. The system is designed in suh a way that skeleton-basedspeialization and XSB speialization ompliment eah other.4 SolutionsAs explained in Setion 3, a major problem with the naive translation of F-logiand HiLog is the loss of indexing and while XSB uni�ation fatoring performswell for the translated programs, speialization often fails to yield any improve-ments and, in some ases, it might even ause unneessary overhead. In thissetion we propose skeleton-based speialization, whih supplements the nativeXSB speialization and �xes the aforesaid problems.4.1 Skeleton-Based Speialization AlgorithmDe�nition 1 (Skeleton). Given a HiLog term T, its skeleton Skel(T) is anabstrat view of the syntati struture of T. Skel(T) is de�ned as follows:1. Skel(T) = T, if T is a onstant.2. Skel(T) = , if T is a variable.3. Skel(T) = Skel(F)/n, if T = F(T1,...,Tn).Example 1 (Skeletons of HiLog Terms).1. Skel(f) = f2. Skel(X(a,b)(Y)) = /2/13. Skel(X(f(Y))) = /1The algorithm in Figure 1 desribes FLORA skeleton-based speialization.It applies to F-logi and HiLog translation separately, sine the set of wrapperprediates used for F-logi translation is disjoint from those wrapper prediatesused for HiLog prediates.First we explain the algorithm in the ontext of HiLog translation. It takes aFLORA program as input and yields an equivalent program in prediate logi;the algorithm has the following steps:

Input: a FLORA program F onsisting of rules (inluding fats)Output: an XSB program that enodes F1 HL := fL j L is a literal in a rule head of Fg;2 BL := fL j L is a literal in a rule body of Fg;3 HS := fSkel(L) j L 2 HLg;4 BS := fSkel(L) j L 2 BLg;5 for eah skeleton S 2 HS [BS do seq(S) := a unique integer;6 for eah rule H :�B from the input program F do f7 H0 := atten(H,Skel(H));8 B0 := B;9 for eah literal L 2 B0 do L := atten(L,Skel(L));10 output the rule H0 :�B0;11 g12 for eah literal H 2 HL do f13 H0 := naive(H);14 H00 := atten(H,Skel(H));15 output the rule H0 :�H00;16 g17 for eah literal L 2 BL do18 for eah rule H :�B from the input program F do19 if L uni�es with H with the mgu � and Skel(L) 6= Skel(H) then f20 H0 := atten(H�,Skel(L));21 B0 := B;22 for eah literal T 2 B0 do f23 S := T�;24 if Skel(S) 2 BS25 then T := atten(S,Skel(S));26 else T := atten(S,Skel(T));27 output the rule H0 :�B0;28 gFig. 1. Skeleton-Based Speialization AlgorithmSkeleton Analysis (Lines 1 { 5). First we ollet all the literals in rule headsinto the set HL and all the literals in rule bodies into the set BL.2 Then, thealgorithm omputes the set of skeletons HS and BS for eah literal in HL andBL, respetively. Eah unique skeleton in the union of HS and BS is assigned aunique sequene number.The rest of the algorithm onsists of three main tasks: attening, trap rulegeneration, and instantiation.Flattening (Lines 6 { 11). The purpose of attening is to eliminate unnees-sary wrapper prediates and uni�ation. Let S = X/n1/: : :/nk, where X is either2 Eah HiLog literal is assumed to have the funtor part and the arity. Propositionalonstants are treated as 0-ary literals, e.g., p().

\ " or a onstant, and L be of the form T(T1n1 ,: : :,Tn1n1): : :(T1nk ,: : :,Tnknk). Thetransformation proedure atten(L,S) then does the following: Let n be the se-quene number assigned to the skeleton S, then the wrapper prediate usedto enode the HiLog literal L is apply n, whih is unique aross HiLog trans-lation. Next, if X is a onstant in X/n1/: : :/nk, then so must be T (in Lines7, 14 and 25 the skeleton argument of atten is that of the literal argumentwhereas in Lines 20 and 26 the skeleton either subsumes or is the same asthat of the literal) and atten(L,S) yields apply n(E1n1 ,: : :,En1n1 ,: : :,E1nk ,: : :,Enknk).Otherwise, X is \ " and T might be any HiLog term, then atten(L,S) will returnapply n(E,E1n1 ,: : :,En1n1 ,: : :,E1nk ,: : :,Enknk), where E, Eij = enodet(T), enodet(Tij),respetively, enodet is the naive enoding of HiLog terms desribed in Setion 2.2.For instane, if the sequene number assigned to the skeleton f/1/2 is 2, thenatten(f(Y)(a,Z),f/1/2) will produe apply 2(Y,a,Z). The reason why the funtorsymbol f an be omitted is beause it is already enoded in the sequene numberfor the skeleton.Trap Rule Generation (Lines 12 { 16). These steps generate rules to \trap"the naive enoding of literals. The translation outputs a rule whose head isthe naive enoding of the original rule-head, while the body is the result ofattening the head. For instane, the trap rule for f(Y)(a,Z) :� body is likeapply(apply(f,Y),a,Z) :� apply 2(Y,a,Z). Trap rule generation is indispensable forinter-module ommuniations in FLORA. Sine speialization in priniple hasno knowledge of other modules, alls referring to other modules have to be en-oded using the naive translation. Due to spae limits, we will not elaborate onthis topi further.Instantiation (Lines 17 { 28). Even when two literals unify, their enodingsmight not unify after attening. For instane, X(Y) and f(a)(Z) unify, but theirattened forms, e.g., apply 1(X,Y) and apply 2(a,Z) (with respet to the skeletons/1 and f/1/1, respetively), do not unify.Instantiation ensures that uni�ability is preserved after speialization. Theidea is that if a body literal uni�es with the head of a rule, R, using the mgu�, but the two literals have di�erent skeletons, then a new rule, R�, must begenerated. For instane, onsider the following program:g(X) :� p(X). Y(Z) :� q(Y,Z).Here p(X) will be attened as apply 1(X) and Y(Z) as apply 2(Y,Z). Beause p(X)uni�es with Y(Z) :� q(Y,Z), this rule must be instantiated using the substitutionY/p, yielding p(Z) :� q(p,Z). Speializing this rule yields apply 1(Z) :� apply 2(p,Z),whih ensures that the semantis of the original program is preserved.However, rule instantiation might generate body literals with new skeletonsthat have not been seen before in the original program. Thus, instantiationmight have to be applied again, using these new body literals. This opens upthe possibility of an in�nite instantiation proess. For instane, in the followingprogram:

g(X) :� p(X). Y(Z) :�Y(Z)(Z).when the seond rule is instantiated with Y/p (the mgu of p(X) and Y(Z)), a newrule p(Z) :� p(Z)(Z) is generated. The literal p(Z)(Z) has a ompletely new skele-ton: p/1/1. If p(X)(X) is attened with respet to p/1/1, the rule Y(Z) :�Y(Z)(Z)has to be instantiated with Y/p(X), the mgu of p(X)(X) and Y(Z). Thus yet an-other new skeleton p/1/1/1 will emerge, and so on.Lines 24 { 26 in the algorithm are designed to ensure termination of the in-stantiation proess. The solution is simple: the quality of speialization is tradedin for termination. When a literal with a new skeleton shows up in a newlyinstantiated rule, its skeleton must extend the skeleton of that literal beforeinstantiation. Thus, we an atten the instantiated literal with respet to theskeleton of the original literal. Uni�ability is also preserved by suh translation.For instane, speializing the above example yields the following program (wherethe trap rules are omitted):apply 1(X) :� apply 2(X). apply 2(X) :� apply 4(p,X,X).apply 3(Y,Z) :� apply 4(Y,Z,Z). apply 4(Y,Z,Z) :� apply 4(apply(Y,Z),Z,Z).4.2 Putting it All TogetherFor the translated program (4), whih omputes transitive losure, the result ofskeleton-based speialization is as follows::� table apply 2/2.apply 1(a,b). apply 2(X,Y) :� apply 1(X,Y).apply 1(b,). apply 2(X,Y) :� apply 1(X,Z), apply 2(Z,Y).The following program is the result of skeleton-based speialization of the pro-gram shown in (5):apply 1(a). apply 3(X) :� apply 1(X).apply 1(b). apply 1(X) :� p=p, X=.apply 2(X,Y) :�X=p, Y=.Note that although we illustrate the idea of skeleton-based speializationusing HiLog translation, our algorithm applies to F-logi translation as well. Infat, the translation views F-logi literals as just another kind of HiLog literals,whih just happen to use di�erent wrapper prediates.For instane, a slight variation of the naive F-logi translation an onvertO[M!V℄ into the HiLog literal M(O,V) and then further onvert it to prediatelogi using the wrapper prediate fd instead of apply. Likewise, O[M!!V℄ anbe onverted to M(O,V) and then to prediate alulus using mvd as a wrap-per. Therefore, skeleton-based speialization an be performed on HiLog andF-logi independently. The only part of the algorithm that needs to be hangedis the pre�x used to onstrut the wrappers. For instane, instead of apply 2 wewould use fd 2. Thus, the result of applying skeleton-based speialization to theprogram (6) would be the following (where the trap rules are omitted):

fd 1(obja,vala). mvd 1(O,X) :� fd 1(O,X).fd 1(objb,valb). fd 1(obj,Y) :� atta=atta, Y=val.fd 2(X,obj,Y) :�X=atta, Y=val.Our experiments show that even for small programs disussed in this setionFLORA skeleton-based speialization an speed up programs by a fator of 2.1,whereas XSB native speialization redues exeution time only by a fator of1.85. A more detailed omparison will be reported in the full version of this paper.Nevertheless, as said earlier, FLORA speialization is not intended to replaeXSB speialization. Instead, it is used as a �rst-line optimization tehnique.Then the FLORA-translated program is further optimized through the nativeXSB speialization and uni�ation fatoring.Another observation about FLORA speialization is that better-quality spe-ialization is possible with more detailed skeleton representation. Indeed, on-sidering HiLog terms as trees, we ould de�ne skeletons as the abstrat viewof their strutures at some depth level. For example, a two-level skeleton forf(X)(X,a,f(b)) would be f/()/(,a,(f/1)). There is a subtle relationship, though,between the amount of detail preserved in skeletons and the quality of speializedprograms. More detailed skeletons normally mean better speialized programsand thus better performane, but longer ompilation time and larger programsize.5 ConlusionThis paper disusses tehniques for building eÆient DOOD systems by transla-tion into lower-level Prolog syntax and utilizing an existing tabling logi engine,suh as XSB [29℄. The feasibility of our approah has been demonstrated bythe F-logi based FLORA system, whih delivers very enouraging performane.(Performane results will be inluded in the full version of this paper.) We alsodisuss the ompiler optimization tehniques that were used to ahieve this per-formane; some of them are just native XSB optimizations, while others aredesigned spei�ally for FLORA. Due to lak of spae we omitted a number ofother implementation issues, suh as the FLORA module system and perfor-mane optimizations related to handling path expressions. Details an be foundat http://www.s.sunysb.edu/~guizyang/papers/florateh.psAknowledgement We would like to thank Hasan Davulu, Kostis Sagonas,C.R. Ramakrishnan, and David S. Warren for their patiene in explaining usthe intriaies of XSB optimization tehniques. We are also grateful to BertramLud�asher and the anonymous referees for the very helpful omments.Referenes1. S. Abiteboul, P. Buneman, and D. Suiu. Data on the Web. Morgan Kaufmann,San Franiso, CA, 2000.

2. M.L. Barja, A.A.A. Fernandes, N.W. Paton, A.H. Williams, A. Dinn, and A.I.Abdelmoty. Design and implementation of ROCK & ROLL: A dedutive objet-oriented database system. Information Systems, 20(3):185{211, 1995.3. C. Beeri and R. Ramakrishnan. On the power of magi. Journal of Logi Pro-gramming, 10:255{300, April 1991.4. T. Berners-Lee. Semanti web road map.http://www.w3.org/DesignIssues/Semanti.html, September 1998.5. T. Berners-Lee. The semanti toolbox: Building semantis on top of XML-RDF.http://www.w3.org/DesignIssues/Toolbox.html, May 1999.6. A.J. Bonner and M. Kifer. Transation logi programming. In Int'l Conferene onLogi Programming, pages 257{282, Budapest, Hungary, June 1993. MIT Press.7. A.J. Bonner and M. Kifer. An overview of transation logi. Theoretial ComputerSiene, 133:205{265, Otober 1994.8. A.J. Bonner and M. Kifer. Transation logi programming (or a logi ofdelarative and proedural knowledge). Tehnial Report CSRI-323, Uni-versity of Toronto, November 1995. http://www.s.toronto.edu/~bonner/transation-logi.html.9. A.J. Bonner and M. Kifer. A logi for programming database transations. InJ. Chomiki and G. Saake, editors, Logis for Databases and Information Systems,hapter 5, pages 117{166. Kluwer Aademi Publishers, Marh 1998.10. A.J. Bonner and M. Kifer. Results on reasoning about updates in transation logi.In [16℄. 1998.11. W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logiprogramming. Journal of Logi Programming, 15(3):187{230, February 1993.12. H. Davulu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan. Logi basedmodeling and analysis of workows. In ACM Symposium on Priniples of DatabaseSystems, pages 25{33, Seattle, Washington, June 1998.13. H. Davulu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Design and implementa-tion of the physial layer in webbases: The XRover experiene. In Int'l Confereneon Computational Logi (DOOD-2000 Stream), July 2000.14. S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, K. Sagonas, S. Skiena,T. Swift, and D.S. Warren. Uni�ation fatoring for eÆient evaluation of logiprograms. In ACM Symposium on Priniples of Programming Languages, 1995.15. S. Deker, D. Brikley, J. Saarela, and J. Angele. A query and inferene serviefor RDF. In QL'98 - The Query Languages Workshop, Deember 1998.16. B. Freitag, H. Deker, M. Kifer, and A. Voronkov, editors. Transations and Changein Logi Databases, volume 1472 of LNCS. Springer-Verlag, Berlin, 1998.17. J. Frohn, R. Himmeroeder, P.-Th. Kandzia, G. Lausen, and C. Shlepphorst.FLORID { A prototype for F-logi. In Pro. Intl. Conferene on Data Engineering(ICDE, Exhibition Program). IEEE Computer Siene Press, 1997.18. R.V. Guha, O. Lassila, E. Miler, and D. Brikley. Enabling inferening. In QL'98- The Query Languages Workshop, Deember 1998.19. A. Gupta, B. Lud�asher, and M. E. Martone. Knowledge-based integration ofneurosiene data soures. In 12th Intl. Conferene on Sienti� and StatistialDatabase Management (SSDBM), Berlin, Germany, July 2000. IEEE ComputerSoiety.20. M. Jarke, R. Gallersd�orfer, M.A. Jeusfeld, M. Staudt, and Stefan Eherer. Conept-Base { A dedutive objet base for meta data management. Journal of IntelligentInformation Systems, February 1995.

21. M. Kifer. Dedutive and objet-oriented data languages: A quest for integration.In Int'l Conferene on Dedutive and Objet-Oriented Databases, volume 1013 ofLeture Notes in Computer Siene, pages 187{212, Singapore, Deember 1995.Springer-Verlag. Keynote address at the 3d Int'l Conferene on Dedutive andObjet-Oriented databases.22. M. Kifer, G. Lausen, and J. Wu. Logial foundations of objet-oriented and frame-based languages. Journal of ACM, 42:741{843, July 1995.23. G. Lausen and B. Lud�asher. Updates by reasoning about states. In 2-nd Inter-national East/West Database Workshop, Klagenfurt, Austria, September 1994.24. M. Liu. A dedutive objet base language. Information Systems, 21(5):431{457,1996.25. B. Lud�asher. Tour de FLIP. The FLIP manual, 1998.26. B. Lud�asher, A. Gupta, and M. E. Martone. A mediator system for model-basedinformation integration. In Int'l Conferene on Very Large Data Bases, Cairo,Egypt, 2000. system demonstration.27. B. Lud�asher, R. Himmer�oder, G. Lausen, W. May, and C. Shlepphorst. Manag-ing semistrutured data with FLORID: A dedutive objet-oriented perspetive.Information Systems.28. Mozilla RDF/Enabling inferene. http://www.mozilla.org/rdf/do/inferene.html,1999.29. K. Sagonas, T. Swift, and D.S. Warren. XSB as an eÆient dedutive databaseengine. In ACM SIGMOD Conferene on Management of Data, pages 442{453,New York, May 1994. ACM.30. K. Sagonas and D.S. Warren. EÆient exeution of HiLog in WAM-based Prologimplementations. In Int'l Conferene on Logi Programming, 1995.31. T. Swift and D. S. Warren. An abstrat mahine for SLG resolution: De�niteprograms. In Int'l Logi Programming Symposium, Cambridge, MA, November1994. MIT Press.32. H. Tamaki and T. Sato. OLD resolution with tabulation. In Int'l Conferene onLogi Programming, pages 84{98, Cambridge, MA, 1986. MIT Press.33. A. Van Gelder, K.A. Ross, and J.S. Shlipf. The well-founded semantis for generallogi programs. Journal of ACM, 38(3):620{650, 1991.34. K. Yokota and H. Yasukawa. Towards an integrated knowledge-base managementsystem. In Proeedings of the Int'l Conferene on Fifth Generation ComputerSystems, pages 89{109, June 1992.

