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Abstract. Flora-2 is a rule-based object-oriented knowledge base sys-
tem designed for a variety of automated tasks on the Semantic Web,
ranging from meta-data management to information integration to in-
telligent agents. The Flora-2 system integrates F-logic, HiLog, and
Transaction Logic into a coherent knowledge representation and infer-
ence language. The result is a flexible and natural framework that com-
bines rule-based and object-oriented paradigms. This paper discusses
the principles underlying the design of the Flora-2 system and de-
scribes its salient features, including meta-programming, reification, log-
ical database updates, encapsulation, and support for dynamic modules.

1 Introduction

Flora-2 [42] is a rule-based knowledge representation and inference system,
which seeks to provide a rich infrastructure for reasoning with semantic infor-
mation on the Web. The logical foundations of Flora-2 are deeply rooted in
F-logic [20], HiLog [9], and Transaction Logic [5]. Firstly, F-logic brings many
important object-oriented features such as complex objects, class hierarchies,
and inheritance. Secondly, HiLog provides a basis for reification and enhances
F-logic with meta-information processing capabilities. Finally, Transaction Logic
supports declarative programming of “procedural knowledge” that is often em-
bedded in intelligent agents or Semantic Web services. In Flora-2 these three
formalisms are seamlessly pieced together, thus providing a coherent framework
for specifying and manipulating knowledge as well as meta-knowledge in a logi-
cally clean fashion.

In this paper we discuss the design principles underlying the Flora-2 system
and present the main features of its language. In particular, we point out how
these principles relate to the rule-based reasoning infrastructure for the Semantic
Web and to the various features of the Flora-2 system. Of special interest are
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many different extensions to F-logic, which have been developed in order to meet
the specific requirements of the Semantic Web. These include a logical theory
for nonmonotonic multiple inheritance [37]; reification [41], which extends the
basic theory provided by HiLog; and support for anonymous resources [41].

Another important extension is the novel module system of Flora-2, which
was designed explicitly with the goal of supporting intelligent agents and knowl-
edge integration. Unlike other module systems, which are tied to specific program
code, Flora-2 modules are abstractions that represent structural components
of a running system. Program code can be loaded into any module on-the-fly,
and the already loaded code can be replaced by other code while the system
runs. New modules can also be created and loaded at run time. Finally, to ac-
commodate a wide variety of semantic components in knowledge integration,
different modules can have different (even customized) semantics.

This paper is organized as follows. Section 2 introduces the principles un-
derlying the design of Flora-2. Section 3 provides an overview of the three
logics underlying Flora-2 and presents the extensions that have been devel-
oped specifically to support the Semantic Web infrastructure. In Section 4, we
introduce the module system of Flora-2. Section 5 concludes the paper with a
discussion of future work.

2 Design Principles

In this section we discuss and motivate the main principles underlying the design
of Flora-2. Some of the design decisions were adopted directly from the three
logics: F-logic, HiLog, and Transaction Logic. Other principles stem from the
high-level goal that motivated our effort — the development of a powerful rule-
based language that is suitable for the Semantic Web.

2.1 Choice of Semantics

Asserted vs. Inferred Knowledge. While current standardization efforts,
such as OWL [35], are focusing on first-order logic, new, forward-looking research
is arguing that nonmonotonic extensions are needed for more sophisticated uses
of the Semantic Web (e.g., [1, 23]). In ontologies, nonmonotonicity arises in ad-
vanced applications, such as Semantic Web services; in agent-based systems, it
arises in the form of common-sense reasoning.

In the past, claims has been made in various discussion forums that nonmono-
tonic closed-world assumption is inherently inappropriate for reasoning about
the Web because the totality of all the information is not known in advance to
the reasoner. We believe that this point of view stems from insufficient atten-
tion given to the view that knowledge on the Web comes in two main varieties:
asserted knowledge, which is specified mostly as sets of facts, and inferred knowl-
edge, which is derived using rules.

While the distinction between closed-world assumption and open-world as-
sumption may seem insignificant for asserted knowledge, it makes a world of
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difference in the interpretation of rules. To date, the best studied and the most
successful applications of rules in intelligent systems are based on a form of
nonmonotonic closed-world assumption.

The misconception about the inapplicability of semantic closure originates,
in part, in the tradition of logic programming, where data and rules are part
of the same program. In contrast, the tradition of databases has always made a
distinction between data and rules, and referred to these two kinds of knowledge
as extensional and intentional database, respectively. The extensional database
has been viewed as a variable part of the knowledge base, and closed-world
inferences were always subject to change when the extensional part changes.

It is not hard to see that this point of view is very similar to the Web
environment, where data sources can be viewed as sets of facts asserted into
the extensional database. When data at the sources changes or the sources are
added or deleted, the old nonmonotonic inferences are revised. For instance, an
intelligent travel agent service can be defined by a set of Flora-2 rules, which are
interpreted using the closed-world assumption. However, the concrete inferences
made by the agent would depend on the specific data sources that the agent is
aware of. Adding or removing these sources will change the recommendations
made by the agent.

Comprehensive Semantics. An important principle underlying Flora-2 is
that the language should be comprehensive and every syntactically correct spec-
ification should have a natural semantics. Since Flora-2 is as general as Prolog
and thus is Turing-complete, it is possible to write non-terminating programs. In
fact, since Transaction Logic is part of the language and thus Flora-2 programs
can modify the underlying database, the language is Turing-complete even if we
do not use function symbols in queries and rules [3]. However, it was always our
intention to design a complete language that has tractable subsets suitable for
query answering. For instance, [37] shows that query answering is polynomial in
function-free Flora-2 programs even in the presence of nonmonotonic multiple
inheritance, and [3] describes subsets of Transaction Logic with various degrees
of computational complexity.

The semantics of a rule-based object-oriented language that supports mul-
tiple inheritance with overriding was known to be a hard issue. The original
proposal [20], as well as a number of subsequent semantics [7, 17, 18, 29, 30], had
suffered from a number of anomalies (see [39] for more details). A comprehensive
solution was recently proposed in [39] and [40].

2.2 Lazy Assimilation of Knowledge

Due to the dynamic nature of data sources on the Web and general incom-
pleteness of information in this medium, a Semantic Web language must be as
impervious to changes in the asserted knowledge as possible.

Thus, Semantic Web applications need to be able to assimilate knowledge
lazily, without having to revise existing knowledge substantially when new knowl-
edge is added. This is especially important for data sources that are not under
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the control of client applications. When such sources change, they normally do
not send notification to the client applications, and exhaustive querying of these
sources (to determine what the changes are) is expensive and often impossible.

Partial Knowledge about Class Hierarchies and Objects. F-logic and
Flora-2 address the above problems in several ways. First, subclass relation-
ship, sub :: super, is not immediate, i.e., it is not invalidated if a new intermediate
class is discovered later on. Thus, sub :: intermediate and intermediate :: super do
not contradict sub :: super. Likewise, class membership, object : class, is not im-
mediate; it does not rule out the possibility that there may exist an intermediate
class between object and class, i.e., object : intermediate and intermediate :: class.
This reflects the view that knowledge about class hierarchies is incomplete. Like-
wise, any assertion about an object is assumed to be incomplete. For instance,
asserting that an object, say, john, has a set-valued attribute siblings with a
known set of values, e.g., {bill,mary}, does not imply that these are the only
values. It will not be a contradiction if later we learn that anne is also a sibling.
Moreover, the available knowledge of an object schema is also assumed to be in-
complete (unless the user imposes a strict type constraint on the object). Thus,
if john is said to be an object with the attributes name, parents, and siblings,
adding information about a new attribute, say, address will remain consistent
with the old knowledge about the schema. Note that traditional object-oriented
programming and database languages take exactly the opposite view on each of
the above four points.

Incomplete Knowledge about Identity. Logic-based languages do not nor-
mally support equality between terms and assume that distinct variable-free
terms represent different entities. However, this assumption is not appropriate
when applied to resources on the Semantic Web. For instance, different URIs
might, in fact, represent the same resource. Flora-2 addresses this problem by
offering an explicit equality operator, :=:, which has all the normal properties of
equality: commutativity, transitivity, congruence, etc. Another source of incom-
plete identity comes from the so-called anonymous resources (or blank nodes) in
RDF [26]. We discuss equality and anonymous resources in Section 3.

2.3 Integrated Meta-Knowledge Handling

Meta-Information. Most of Web data is semistructured in the sense that
it has object-like structure with complex relationships among the objects, but
the schema of these objects is not known to the application in advance. Two
scenarios are possible here: (1) Data is shipped together with the schema. In
this case the application must be able to query and explore the schema before
processing the data. We call this scenario schema-level meta-querying ; (2) Data
is shipped without the schema, but it is self-describing (i.e., some attribute
information is embedded in the data). In this case, the application should be
able to query whatever structural information is available as part of the data.
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We call this situation instance-level meta-querying. We claim that querying meta-
information should be as natural as querying instance data, and this capability
should be integrated into the language without any extra machinery. The next
section discusses how this is achieved in Flora-2 through its integration of
F-logic and HiLog.

Reification. Since the advent of RDF [26], the ability to reify statements about
Web resources has been viewed as one of the fundamental requirements for a Se-
mantic Web language. Here, again, we claim that reification should be integrated
into the language naturally, without extra machinery, and in a paradox-free way.
Section 3.6 discusses how this is achieved in Flora-2 by building on the ideas
underlying HiLog.

3 The Flora-2 Language

In this section we review the technical foundations of Flora-2 — F-logic [20],
HiLog [9], and Transaction Logic [5] — and discuss various extensions to F-logic
which were developed to meet the specific requirements of the Semantic Web.

3.1 F-logic

F-logic subsumes predicate calculus both syntactically and semantically by ex-
plicitly introducing the concepts adapted from object-oriented programming. At
the same time, much of F-logic can be viewed as a syntactic variant of classi-
cal logic, which makes implementation through source-level translation possible.
However, we will not discuss implementation issues here for want of space.

Basic Syntax. F-logic uses first-order variable-free terms to represent object
identity (abbr., OID), e.g., john and father(mary). Objects can have single-valued,
set-valued or Boolean attributes, for instance,

mary[spouse→ john, children→→{alice,nancy}].
mary[children→→{jack}, married].

These formulas are called F-logic molecules. Note that each formula above as-
serts several facts simultaneously. In the first formula spouse→ john says that
object mary has a single-valued attribute spouse, whose value is OID john, while
children→→{alice, nancy} in the same object description says that the value of
the set-valued attribute children is a set that contains two OIDs: alice and nancy.
We emphasize “contains” because sets do not need to be specified all at once. For
instance, the second formula above says that mary has another child jack. The
attribute married in the second formula is Boolean: its value is true in the above
example. This is one of the manifestations of the lazy knowledge assimilation
principle of Section 2.

While some attributes of an object are specified explicitly, as facts, other
attributes can be defined using inference rules. For instance, we can derive
john[children→→{alice, nancy, jack}] using the following rule:
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X[children→→{C}] :− Y[spouse→X, children→→{C}].

Here we adopt the standard convention that uppercase symbols denote variables
while symbols beginning with a lowercase letter denote constants.

F-logic objects can also have methods, which are functions that take argu-
ments. For instance,

john[grade(cs305,f99)→ 100, courses(f99)→→{cs305,cs306}].

says that john has a single-valued method, grade, whose value on the arguments
cs305 and f99 is 100; it also has a set-valued method courses, whose value on the
argument f99 is a set of OIDs that contains cs305 and cs306. Like attributes,
methods can be defined using inference rules.

The F-logic syntax for class membership is john : student and for subclass
relationship it is student :: person. In addition, F-logic supports specification
of schema information. For instance, person[name⇒ string, child⇒⇒ person] says
that the signature of class person has two attributes, a single-valued attribute
name and a set-valued attribute child. Moreover, the first attribute returns ob-
jects of type string and the second returns sets of objects such that each object
in the set is of type person. F-logic also supports first-order predicate syntax and
thus it integrates relational and object-oriented paradigms.

Querying Meta-Information. F-logic provides simple and natural facilities
for exploring the structure of object data. Both schema information associated
with classes and structures of individual objects can be queried by simply putting
variables in the appropriate syntactic positions. For instance, to find out which
set-valued methods defined in the schema of class student return objects of type
person one can pose the following simple query:

?- student[M⇒⇒ person].

The following query returns the type of the attribute name in class student and
all student’s superclasses:

?- student::C, student [name⇒T].

The above two queries involve subclass relationship and type information (as
indicated by the operators ::, ⇒ , and ⇒⇒ ); they are called schema-level meta-
queries. In contrast the following two queries return all methods that are defined
for the object with OID john3:

?- john[SingleM→ ].
?- john[SetM→→ ].

Note that these queries check what is defined for the object itself rather than
what is defined in the schema; they are thus called instance-level meta-queries.
The two kinds of meta-queries can return different results for several reasons.
First, in case of semistructured data, schema information might be incomplete

3 Every occurrence of “ ” stands for a don’t-care variable.
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and additional attributes can be defined for individual objects than what the
schema reveals. Second, even if the schema is complete, the values of some at-
tributes can be undefined for some of the objects in the class. In this latter case,
the undefined attributes will not be returned by instance-level meta-queries,
while they would be returned by schema-level meta-queries.

In Section 3.2, we will see more examples of meta-queries, which are enhanced
by the facilities of HiLog.

Path Expressions. In addition to the basic syntax, F-logic supports path ex-
pressions to simplify navigation along single-valued and set-valued attribute and
method invocations, and to avoid explicit join conditions [15]. The basic idea is
to allow path expressions like O.M and O..M wherever OIDs are allowed.

A single-valued path expression, O.M, refers to the unique object R for which
O[M→R] holds; a set-valued path expression, O..M, refers to some object, R,
such that O[M→→{R}] holds. Here the symbols O and M can be either an OID
or a path expression. Furthermore, M can be a method with arguments, e.g.,
O.M(P1,. . .,Pk) is a valid path expression that refers to the object R that satisfies
O[M(P1,. . .,Pk)→R].

Path expressions and F-logic formulas can be arbitrarily nested. This leads
to a very concise and flexible query language for specifying object properties.
For instance, the following path expression:

Paper[authors→→{Author[name→ john]}].publication..editors

refers to all editors of those papers in which john is the name of a co-author.
The reader has probably noticed the conceptual similarity of such extended
path expressions with XPath, which was developed after the extended path
expressions were introduced to F-logic in [15].

Equality. Unlike regular logic programming languages, such as Prolog, in F-
logic variable-free terms can become equal because of single-valued attributes
and methods. For instance, consider the following facts:

mary[spouse→ joseph]. mary[spouse→ joe]. joseph[son→→ frank].

Since spouse is a single-valued attribute, it can have at most one value for any
given object. Therefore, the OIDs joseph and joe must refer to the same object
and whatever is true about joseph should also be true about joe. In particular,
we should be able to derive that joe[son→→ frank].

On the Web, equality is also sometimes required to represent the fact that
two different URIs represent the same resource. To accommodate this require-
ment, Flora-2 provides inference infrastructure for user-defined equality theo-
ries. This is made possible through the explicit equality predicate, :=:. Equality
can be asserted as a fact or derived via rules, such as this:

U1 :=: U2 :− sameURL(U1,U2).
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Flora-2 supports two built-in equality theories: one where :=: is the usual
congruent equivalence relationship and the other where the functional constraints
imposed by single-valued methods are enforced, i.e., a[b → c] and a[b → d] im-
plies c:=:d. The user can specify the desired default equality theory to use for
each program module separately (see Section 4). The interested reader is referred
to [42] for more information about equality maintenance in Flora-2.

3.2 HiLog

HiLog was introduced in [9] in order to extend logic programming with higher-
order syntax, yet tractable and first-order semantics. In particular, the goal was
to extend classical predicate calculus to enable flexible and natural querying of
term structures and to support reification of atomic formulas. The simplest and
yet most unusual illustration of HiLog is the following definition of the standard
Prolog meta-predicate call:

call(X) :− X.

This means that HiLog does not distinguish between function terms and atomic
formulas: The same variable can range over both and thus atomic formulas
are reified. Variables can also range over function and predicate symbols, as in
X(Y,a), and queries of the form ?− p(X), X, X(Y,X) are well within the boundaries
of HiLog. The syntax for HiLog terms also extends that of classical logic. For
instance, g(X)(f(a,X),Y)(b,Y) is perfectly fine, and there are several important
uses for this multi-level syntax (see [9] for some).

Variables in the position of function and predicate symbols eliminate the need
for many uses of non-logical meta-operators of Prolog and serve as a much more
natural replacement for such uses. Combined with F-logic, HiLog enhances the
already powerful meta-features of the language. For instance, in the combined
language, one can write:

X[methods→→{M}] :− X[M( , )→ ].

Thus, a query of the form

?- john[methods→→{M}].

will return the set of all 2-argument set-valued methods defined for the object
john, while the query

X[methods→→{M}] :− X[M( )⇒ ].
?- student[methods→→{M}].

returns the set of all single-valued methods defined in the schema (signature) of
class student.
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3.3 Transaction Logic

A programming language, especially an object-oriented programming language,
needs primitives for modifying the underlying state of the system. In a logic-
based language, modifying the underlying state means updating the database
part of the program. This need was recognized by the designers of Prolog who
introduced the well-known assert and retract operators. From the very beginning,
assert and retract were perceived as the necessary evil in the absence of a truly
logical solution. Various attempts at formalizing updates in a logic programming
language met with limited success (e.g., [24, 33, 27]). A detailed discussion of this
subject appears in [5]. One of the most serious drawbacks of these approaches
is that they impose special programming styles (which require significant pro-
gramming effort) and that they do not support subroutines — one of the most
fundamental aspects of any programming language.

Transaction Logic [4, 5] provides a comprehensive theory of logical updates
in logic programming, which does not suffer from any of the above drawbacks,
and its programming style is very much in the spirit of Prolog. The utility
of Transaction Logic has been demonstrated on a vast range of applications:
from databases to robot action planning to reasoning about actions to workflow
analysis [6, 10].

One of the implications of the update semantics provided by Transaction Logic
is that update transactions are atomic. For instance, in Prolog, if a post-condition
of a state-changing operator is false, the entire execution fails, returning the an-
swer “No”. Despite that, all the changes made by assert and retract would stay
and the database may be left in a inconsistent state. This non-logical property is
responsible for many complications in Prolog programming. Transaction Logic
rectifies this and similar problems with updates in logic programming.

Flora-2 integrates F-logic and Transaction Logic along the lines of [19] with
new extensions, which distinguishes queries from transactions and thus enables
a number of compile-time checks. In Transaction Logic, both actions (transac-
tions) and queries are represented as predicates. In Flora-2, transactions are
expressed as object methods that are prefixed with the special symbol “#”.

The following program is an implementation of a block-stacking robot in
Flora-2. Here, the action stack is defined as a Boolean method of the robot.

R[#stack(0,X)] :− R : robot.
R[#stack(N,X)] :− R : robot, N > 0,

Y[#move(X)], R[#stack(N-1,Y)].
Y[#move(X)] :− Y : block, Y[clear], X[clear], X[widerThen(Y)],

delete{Y[on→Z]}, insert{Z[clear]},
insert{Y[on→X]}, delete{X[clear]}.

Informally, the program says that to stack a pyramid of N blocks on top of block
X, the robot must find a block Y, move it onto X, and then stack N-1 blocks on
top of Y. To move Y onto X, both blocks must be “clear” (i.e., with no other
block sitting on top of them), and X must be wider than Y. If these conditions are
satisfied, the database will be updated accordingly. If any of the conditions fails,
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it means that the current attempted execution is not a valid try and another
attempt will be made. If no valid execution is found, the transaction fails and
no changes will be made to the database. Again, we would like to point out that
in a similar situation an analogous Prolog program can leave the database in an
inconsistent state.

3.4 Value and Code Inheritance

Object-oriented languages normally distinguish between instance methods and
class methods. The former characterize all instances of a class while the latter
characterize classes as objects [32]. Class methods are analogous to “static”
methods in Java and instance methods correspond to nonstatic methods (which
are sometimes also called “instance methods” in Java). In object-oriented data
modeling, especially in dealing with semistructured objects on the Web, it is
also useful to consider object methods that are defined explicitly for individual
objects and override inheritance from superclasses. Object methods are similar to
class methods except that they cannot be inherited. All three kinds of methods
are specified using rules; the differences among them are illustrated with the
following examples.

Example 1. Suppose we want to compute bonus for employees in the software
department. Our policy is to award bonus based on the overall sales of the entire
department. For example, every employee gets a bonus of 1% of the total amount
of sales. This policy can be represented as follows:

softDept[bonus →→ N] :− softDept[salesTotal →→ S], N is S ∗ 1%.
softDept[salesTotal →→ 1000].
john : softDept.
mary : softDept.

The first two clauses in the above program are class method definitions for the
methods bonus and salesTotal, respectively. The first rule defines the method
bonus, whose value depends on the class method salesTotal, whose value is speci-
fied in the second clause. Both methods are class methods in the class salesTotal.
With these rules, we can infer softDept[bonus →→ 10].

The last two facts simply state that john and mary are members of the class
softDept. Although the program does not explicitly define the method bonus for
john, since john is a member of the class softDept, it will inherit the method bonus
together with its value (i.e., 10). Similarly, we can derive mary[bonus →→ 10].

Example 2. Rather than giving the same bonus to every employee, suppose that
the hardware department has a policy that rewards individual performance,
where an employee gets a bonus of 10% of the amount of his/her sales. This idea
can be illustrated using the following program:

code hardDept[bonus →→ N] :− hardDept[sales →→ S], N is S ∗ 10%.
mike : hardDept.
lucy : hardDept.
mike[sales →→ 300].
lucy[sales →→ 200].
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Note that the first rule is preceded with a special keyword, code, which
marks the definition of an instance method, bonus, for class hardDept. Recall
that instance methods, as part of class specifications, apply to every member
of the class. Intuitively, the symbol hardDept in the above rule is treated as a
“placeholder” that stands for every member of the class hardDept. The remaining
clauses state that mike and lucy are members of hardDept, and provide sales
figures for mike and lucy, respectively.

Let us examine how the method bonus is computed for mike. Since mike is a
member of hardDept and the first rule in the last program defines the method
bonus for all instances of hardDept, mike inherits the following instantiated rule:

mike[bonus →→ N] :− mike[sales →→ S], N is S ∗ 10%.

where mike is substituted for hardDept. This instantiation corresponds to the so
called late binding in traditional object-oriented languages like Java. From this
rule and the facts, we can derive mike[bonus →→ 30] and lucy[bonus →→ 20].

Inheritance via instance method definitions, as illustrated in Example 2, is
called code inheritance, because what is inherited is the code rather than the
result returned by the method (as in Example 1). Code inheritance is commonly
used in imperative object-oriented languages such as C++ and Java. Inheritance
via class method definitions, as illustrated in Example 1, is called value inheri-
tance, because what is inherited is the result returned by the method. This kind
of inheritance is commonly used in AI [36, 25].

The original F-logic [20] supports value inheritance only (and not satisfac-
torily at that — see [39]). Since Flora-2 is a practical knowledge engineering
environment, it requires a theory of code inheritance as well. The interaction of
the two kinds of inheritance introduces a number of interesting semantic and
algorithmic problems, which were solved in [37].

3.5 Anonymous Identity

It has been argued in [11] that F-logic is a natural formalism to provide inference
service for RDF(S) [26]. Representation of RDF statements with named resources
in F-logic is rather straightforward. For instance, the statement “Thomas Edison
is the inventor of the bulb (denoted by URI http://foo.org/TheBulb)” directly
corresponds to the following F-logic statement

′http : //foo.org/TheBulb′[inventor →→ ′Thomas Edison′].

However, one difficulty arises in representing RDF statements with anony-
mous resources. Consider the following statement: “Someone, named Thomas
Edison, born in 1847, is the inventor of the resource http://foo.org/TheBulb.”
The intent here is to make a structured resource without a known object ID and
assert that it has two properties, name and born.

Anonymous resources were not envisioned in the original work on F-logic [20],
but appropriate extensions were introduced in Flora-2 [42, 38]. To represent
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anonymous objects, Flora-2 uses a special symbol, #, called an unnumbered
anonymous ID symbol, and a countable set of numbered anonymous ID symbols:
#1, #2, ..., etc. The intended meaning is that each occurrence of # denotes

a distinct object ID that does not occur anywhere else in the program. All
occurrences of the same numbered anonymous ID symbol, e.g., #1, within the
same clause are treated as representing the same object ID, but this ID is distinct
from any other ID used elsewhere in the program (including the occurrences of
#1 in a different clause). The reader is referred to [41] for a formal treatment

of anonymous ID symbols in Flora-2.
Thus, in Flora-2, the above statement can be represented as follows:

’http://foo.org/TheBulb’[inventor→→ #1],
#1[name→→ ’Thomas Edison’, born→→ 1847].

Note that here the two occurrences of #1 are within the same clause (here
“,” means conjunction) and thus refer to the same object. If we want to state
that “Someone invented the bulb and someone called Thomas Edison was born
in 1847”, then we could write

’http://foo.org/TheBulb’[inventor→→ #],
#[name→→ ’Thomas Edison’, born→→ 1847].

Here we use unnumbered anonymous ID symbols. Even though they occur within
the same clause, they refer to distinct objects.

The semantics of anonymous ID symbols in Flora-2 as well as other uses
of this extension (e.g., to represent RDF containers) are described in [41].

3.6 Reification

Reification is needed to make statements about statements and is considered
an important part of RDF. Since statements are formulas, making statements
about them implies that formulas must be somehow treated as objects.

In Flora-2, reification is specified using a new language construct, ${...}.
The statement inside ${...} is reified and this reified formula itself is treated
as an object identity. For instance, the statement “Someone named John Doe
believes that a person, called Thomas Edison, invented the bulb (represented by
the resource http://foo.org/TheBulb)” is expressed in Flora-2 as follows:

#[
name→→ ’John Doe’,
believes→→

${’http://foo.org/TheBulb’[inventor→→{ #[name→→ ’Thomas Edison]}]}
].

In Flora-2, one can reason about reified statements in many interesting
ways. For example, conjunctions, disjunctions, and even negations of formulas
can be reified. Because reification can lead to logical paradoxes, especially in an
expressive language like Flora-2, restrictions must be imposed on the language
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to prevent paradoxes. It turns out that it is enough to prohibit rules of the
form X :− body, where X is a variable. A detailed account of the semantics of
reification and of how paradoxes are avoided in Flora-2 can be found in [41].

4 Modules and Knowledge Integration

One of the most interesting and novel aspects of Flora-2 is its module system.
It was designed with the intent to support autonomous agents and knowledge
integration.

A Flora-2 module is an abstract container for a collection of data (which
can be in main memory, a file, or a database), a chunk of program code, or an
external procedure written in a different language. Modules can be created on
the fly, and code or data can be loaded into the modules at runtime. Modules
can be encapsulated, and the user can even specify the semantics for making
inferences inside any module.

This section provides further details of the Flora-2 module system and
discusses some applications.

Dynamic Module System. A Flora-2 program may consist of multiple
modules. A module has a name, which other modules use to refer to information
in that module, and the content. The content can be defined when the module
is created, or it can be loaded (and, in fact, replaced) at any moment during
runtime. The content of a module normally contains definitions of several classes,
predicates, objects, and rules. Rules and data loaded into different modules do
not interfere with each other, but they can interact: rule bodies can contain
queries and even update operators that refer to other modules. This interaction
is governed by encapsulation policies to be discussed later.

Suppose our program includes module people, which defines classes person,
student, etc. Assume that student-objects expose a single-valued attribute name
and a set-valued attribute major. Let us further assume that these definitions
and rules are stored in a file named foo.flr. We can load this file into module
people, and other modules will be able to query student-objects in it as follows:

?- load(foo >> people).
?- S:student[name→Name, major→→ ’Computer Science’]@people.

One can load a different file, say, bar.flr, into the same module at any time during
execution with the command load(bar >> people). Since other modules have to
know how to query the objects in module people, the code in file bar.flr would
normally export the same interface to other modules. However, this is not always
necessary, due to the flexible meta-programming features of Flora-2. A client
module can discover the methods exported by the new content of people through
a series of simple queries, such as

?- [SingValMeth→ ]@people, [SetValMeth→→ ]@people.

where “ ” is an anonymous variable. It is even possible to find out which modules
define, say, attribute major, by placing a variable in the module position:
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?- [major→→ ]@Module.

This type of flexibility is important in knowledge integration systems where the
mediators can formulate the right queries to the various data sources based on
the results of previously posed meta-queries.

A module can also be created empty and then filled in with rules and data.
For instance, the statement

?- newmodule{stuff}.

creates a module named stuff; it can be filled with content either by loading it
from a file (using the load statement) or through insertion of facts and rules at
runtime:

?- insert{p(a)@stuff, john[major→→ cs]@stuff}.
?- insertrule{(q(X):-p(X))@stuff, (X[Y→Z] :- p(X,Z),q(Y))@stuff}.

The content of a module, say stuff, can be manipulated freely by the owner
module — the module that created module stuff (i.e., the one that executed the
newmodule command). Previously inserted facts and rules can also be deleted.

?- delete{p(a)@stuff}.
?- deleterule{(q(X):-p(X))@stuff}.

Such ability to create the content of a module on-the-fly is very useful for systems
of autonomous intelligent agents. An agent may need to create a new module
dynamically for several reasons. One is to store acquired data or rules, which con-
stitute a separate corpus of knowledge. Storing this corpus in a separate module
can prevent unforeseen interaction with the agent’s main code or other acquired
knowledge. Second, an agent may need to create another module in order to
spawn off a “child” agent, similarly to how processes create child processes in
operating systems.4

Encapsulation. Encapsulation is a generally accepted software engineering de-
vice, which helps prevent erroneous interactions among software components.
Flora-2 supports encapsulation at the level of modules, and each module can
encapsulate several classes. To limit the ways in which other modules can in-
teract with a given module, the latter exports the methods and predicates that
other modules can query or update. This is accomplished using the export direc-
tive. When it is used as a compile-time directive, the exported interfaces become
available when the program is loaded into a module. An export instruction can
also be executed at runtime. A method or a predicate can be exported as ei-
ther readable or updatable. The latter allows the corresponding facts to be both
queried and modified. Finally, interfaces can be exported to all modules or only
to a specific list of modules.

The following directive, if executed in a module, people, will allow every other
module to query the membership of class student and the membership of each
of its subclasses.
4 A module designer or owner can also protect the content from being owned (and

thus modified) by other modules through the noowner directive.
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?- export : student readable.

In contrast, the following directive

?- export [major→→ ] updatable to administrator.

will allow the administrator module (but no other modules) to not only query,
but also change the majors of student-objects in module person. If module root is
the owner of module people then it can also control what is exported by module
person by executing an appropriate export directive in the latter module. For
instance, executing

?- (export :major readable)@person.

will give the right to query student majors, but the update privilege stays with
the administrator module only (and the owner module).

Customized Semantics of Modules. A system that integrates different in-
formation sources or agents should be prepared to deal with modules that are
implemented using different semantics. The module system of Flora-2 has been
specially designed so as to allow each module to have its own semantics, which
can vary according to three parameters: equality maintenance, inheritance se-
mantics, and customized semantics.

– Equality Maintenance. As discussed in Sections 2 and 3.1, it is important to
be able to equate OIDs that denote the same resource. However, Flora-2
recognizes that different equality theories are possible. First, there is a stan-
dard theory, where equality is a congruent equivalence relationship. F-logic [20]
introduces one additional axiom that allows to infer new equalities from
single-valued methods. Finally, for efficiency reasons, it is important to be
able to tell the system that no equality maintenance is required if a cer-
tain module is known to not need this feature. Thus, at present, Flora-2
supports three equality options: basic, flogic, and none.

– Inheritance Semantics. This is the second parameter that a knowledge en-
gineer can vary to tune the semantics of a module. At present, the user can
request either the default inheritance semantics, as described in [39] (us-
ing the flogic option), or inheritance can be turned off (which can speed up
queries, if inheritance is not needed).

– Customized Semantics. Flora-2 provides APIs, which allow the user to
specify the semantics of a module through a set of axioms, which will be
loaded into the module when it is created. The set of the axioms is placed in
a file, which is communicated to the module loader using the custom option.

For instance, the following directive says that the module should be created with
no support for equality, with F-logic style inheritance, and additional axioms that
are defined in a file:

:− setsemantics equality(none), inheritance(flogic), custom(’myaxioms.P’).

The system also provides a primitive to query the semantic parameters used by
any of the currently loaded modules. Thus, the architecture of Flora-2 supports
integration of heterogeneous resources with different semantics.
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5 Discussion and Conclusion

Flora-2 provides a large number of fundamental features that are essential for
modeling semantic information on the Web. These include rules, classification,
and frame-based syntax, powerful ways of processing meta-information, reifica-
tion, transactional updates, and so on. All this is achieved using a natural and
coherent syntax, which is supported by a comprehensive model-theoretic seman-
tics for the unified language. In this way, Flora-2 is an embodiment of the
principles outlined in Section 2.

We should note that other Semantic Web languages, such as OWL [35] and
RDF [26], do follow some of the principles discussed in Section 2. However, these
languages are rather limited in their features compared with Flora-2. In par-
ticular, they do not support general rules (including recursive rules and rules
with negation in the rule body), common-sense reasoning, multiple inheritance,
or logical updates. As a result, designing such languages and defining their se-
mantics is in many ways a simpler task.

Flora-2 was inspired by and has inspired a number of other F-logic based
systems, such as FLORID [14], TFL [8], FLIP [28], Ontobroker [12], and
TRIPLE [34]. None of these systems supports HiLog, none (except TFL) sup-
ports Transaction Logic, none (except FLORID) supports inheritance, and none
(except TRIPLE) supports reification.

The module systems of Flora-2 has some similarity with TRIPLE. However,
in TRIPLE modules cannot be created and reloaded at run time — they have to
be defined before the system starts running. Likewise, TRIPLE does not support
encapsulation and, although one of its design goals is to enable integration of
modules with different semantics, the system does not provide infrastructural
support for this goal.

We have presented an overview of the Flora-2 system, its underlying de-
sign principles, logical foundations, language features, as well as its novel module
system. Although Flora-2 already provides a wealth of features in support of
semantic reasoning on the Web, a number of important issues still need to be
addressed. For instance, we believe that the ability to handle inconsistent infor-
mation should be part of the infrastructure. Handling imprecise and probabilistic
information is another important missing piece. These issues can possibly be ad-
dressed with the help of paraconsistent and probabilistic logics such as [2, 21,
22, 31]. Another possible extension could be in the direction of prioritized rules,
such as those described in [16].
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27. G. Lausen and B. Ludäscher. Updates by reasoning about states. In Second In-
ternational East/West Database Workshop, Klagenfurt, Austria, September 1994.
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