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1 INTRODUCTION 1

1 Introduction

ERGO
Lite (also known under its older name Flora-2 ) is a sophisticated object-based knowledge

representation and reasoning system. ERGO
Lite is an open source subset of its commercial cousin

called ERGO Reasoner,1 which contains many important extensions and enhancements to Flora-2 ,
and is proprietary to Coherent Knowledge Systems. Flora-2 is implemented as a set of run-time
libraries and a compiler that translates a unified language of F-logic [10], HiLog [5], Transaction
Logic [3, 2], and defeasible reasoning [16] into tabled Prolog code.

Applications of Flora-2 include intelligent agents, Semantic Web, ontology management, in-
tegration of information, and others.

The language of ERGO
Lite/Flora-2 is a dialect of F-logic with numerous extensions, which

include a natural way to do meta-programming in the style of HiLog, logical updates in the style
of Transaction Logic, and a form of defeasible reasoning described in [16]. Flora-2 was designed
with extensibility and flexibility in mind, and it provides strong support for modular software
development through its unique feature of dynamic modules. Other extensions, such as the versa-
tile syntax of Florid path expressions, are borrowed from Florid, a C++-based F-logic system
developed at Freiburg University.2 Extensions aside, the syntax of Flora-2 differs in many im-
portant ways from Florid, from the original version of F-logic, as described in [10], and from an
earlier implementation, Flora-1 . These syntax changes made the system more user-friendly and
practical.

ERGO
Lite/Flora-2 is available at http://flora.sourceforge.net. This manual will mostly

refer to the system under its traditional name, Flora-2 .

2 Installation

Flora-2 has a simplified installation procedure for the official, pre-compiled releases of the system3

and a full procedure for those who downloaded the very latest development version of the software
directly from the SVN repository.4 Most users would use the simplified installation procedure,
especially on Windows.

1 http://coherentknowledge.com
2 http://www.informatik.uni-freiburg.de/~dbis/florid/.
3 https://sourceforge.net/projects/flora/files/FLORA-2/
4 For online browsing: https://sourceforge.net/p/flora/src/HEAD/tree/.

For downloading: svn checkout svn://svn.code.sf.net/p/flora/src/trunk flora-src.

http://flora.sourceforge.net
http://coherentknowledge.com
http://www.informatik.uni-freiburg.de/~dbis/florid/
https://sourceforge.net/projects/flora/files/FLORA-2/
https://sourceforge.net/p/flora/src/HEAD/tree/


2 INSTALLATION 2

2.1 Simplified Installation

You can use this procedure, if you downloaded an official pre-compiled release of Flora-2 ; it cannot
be used if you obtained the software from the SVN repository. The advantage of this procedure is
that everything installs with just one command and on Windows it does not require any special
software, such as the C++ compiler or nmake.

The official release also includes one of the latest versions of XSB that is compatible with the
Flora-2 release. Thus, there is no need to download XSB separately.

Unix-based systems (Linux, Mac, BSD, etc.). The Unix-style download is the file flora2.run.
This is a self-extracting archive. Put it in a suitable installation directory, DIR and then execute

cd DIR

sh ./flora2.run

This will create the folder Flora-2 with two subfolders: flora2 and XSB. The script to run
Flora-2 is DIR/Flora-2/flora2/runflora.

Windows. The Windows installer is called flora2.exe. Put it on your desktop and double-click
on it. You will be asked a series of questions, as usual with Windows installers. In the end, both
XSB and Flora-2 will be installed with the appropriate shortcuts placed on the desktop and in
the Start menu.

For 64-bit machines, the 64-bit version will be installed automatically. Otherwise, the 32-bit
version will be installed.

Starting Flora-2 . The command to run Flora-2 is ./runflora (Linux/Mac/BSD/etc.) or
runflora.bat (Windows). These scripts are located in the flora2 subfolder of the installation
folder. In most cases, the installer will place a Flora-2 icon on your desktop, and you can run
the software by double-clicking on that icon.

You may notice that during the first couple of uses of the system, the system startup and some
queries are delayed by 2-4 seconds. This is normal and is due to the compilation of some libraries.
The delay will disappea after a few uses.

2.2 Installing Flora-2 from SVN

This procedure is significantly more complex than the one for installing the official Flora-2 releases
described above. It is suitable only for the users who need the very latest development version of
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Flora-2—either in order to be up-to-date with respect to the bug fixes or in order to try the new
cutting-edge features.

First, install the most recent version of the XSB engine from XSB’s SVN repository.5

XSB sources must be installed. If you used the XSB Windows installer, make sure that the
appropriate boxes are checked. Otherwise, the installer will install only the basic system and the
subsequent installation of Flora-2 might fail.

Compile XSB, as explained in XSB’s manual, Section 2.2.2. It is highly recommended that
you compile XSB as a 64-bit application (if your hardware is 64 bit). Note that XSB cannot be
compiled in a directory whose path contains spaces. However, once compiled, XSB can be moved
to another directory, which may contain spaces. No recompilation is necessary after the move.

Next, check out Flora-2 from its SVN repository6 into a separate directory outside the XSB
installation tree. The Flora-2 sources will be placed in the flora2 subdirectory of the main
development branch.

Make sure that the typical development software is installed on your machine. On Unix-based
systems, this includes the GCC compiler, Make, and Autoconf. On Windows, this means Microsoft
Visual Studio, Community Edition (a free download) or a full (paid) Studio version.

Linux, Mac, BSD, etc. Configure Flora-2 as follows:

cd flora2
make clean
./makeflora all path-to-/XSB/bin/xsb

If the XSB executable is on your program search PATH, then instead of the third command above
you can simply type ./makeflora.

Windows. You need Microsoft’s Visual Studio with the C++ component installed. The free of
charge Microsoft Visual Studio, Community Edition, can be downloaded from

https://www.visualstudio.com/vs/community/

Next, find the nmake.exe program within Visual Studio and put the folder it is in on the PATH
environment variable. In fact, you really only need this nmake.exe, not the entire studio, unless
you are planning to add components written in C.

5 For browsing: https://sourceforge.net/p/xsb/src/HEAD/tree/.
For downloading: svn checkout svn://svn.code.sf.net/p/xsb/src/trunk xsb-src.

6 To download, use: svn checkout svn://svn.code.sf.net/p/flora/src/trunk flora-src

https://sourceforge.net/p/xsb/src/HEAD/tree/
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Then configure Flora-2 as follows:

cd flora2
makeflora clean
makeflora path-to-\XSB\bin\xsb64.bat

Here flora2 is the root directory for Flora-2 in your SVN checkout; it should have the form
something\flora2. The argument path-for-\XSB\bin\xsb.bat must be the full path name for the
XSB invocation script. Note, that unlike Linux/Macetc., there should be no “all” keyword in the
Windows version of the makeflora command.

If for some reason you compiled XSB as a 32-bit application, use xsb.bat above instead of
xsb64.bat in the makeflora command.

If you are a developer and wish to recompile the C part of Flora-2 (say, because you changed
it to fix a bug or added a feature) then you can type

makeflora -c64 path-for-\XSB\bin\xsb64.bat

(-c and xsb.bat for 32-bit versions of XSB). For this, the C++ component of Visual Studio must
be installed. Normally, however, there is no need to perform this step. For “makeflore -c64”
to work, it may be necessary to locate the file vcvars64.bat or vcvars32.bat — depending on
whether your XSB is 64 or 32 bits — and execute that batch file in the command window where
makeflora -c is to be run.

Note: Flora-2 does not work with Cygwin due to a problem with XSB calling external C
procedures under Cygwin.

3 Running Flora-2

Flora-2 is fully integrated into the underlying Prolog engine, including its module system. In
particular, Flora-2 modules can invoke predicates defined in other Prolog modules, and Prolog
modules can query the objects defined in Flora-2 modules. At present, XSB is the only Pro-
log platform where Flora-2 can run, because it heavily relies on tabling and the well-founded
semantics for negation, both of which are available only in XSB.

The easiest way to get a feel of the system is to start the Flora-2 shell and enter some queries
interactively:

.../flora2/runflora
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Here “...” stands for the directory in which Flora-2 is installed. For instance,

~/ENGINEDIR/flora2/runflora

At this point, Flora-2 takes over and F-logic syntax becomes the norm. To get back to the
Prolog command loop, type Control-D (Unix) or Control-Z (Windows), or

flora2 ?- \end.

If you are using the Flora-2 shell frequently, it pays to define an alias, say (in Bash):

alias flora2=’~/ENGINEDIR/flora2/runflora’

Flora-2 can then be invoked directly from the shell prompt by typing flora2. It is even possible
to tell Flora-2 to execute commands on start-up. For instance, typing

flora2 -e "\help."

in the command window of your operating system will cause the system to execute the help com-
mand right after after the initialization. Then the usual Flora-2 shell prompt is displayed.

Flora-2 comes with a number of demos that live in

.../flora2/demos/

The demos can be run with the command demo{demo-filename}. at the Flora-2 prompt, e.g.,

flora2 ?- demo{flogic_basics}.

There is no need to change to the demo directory, as demo{...} knows where to find these examples.

The initialization file. When Flora-2 starts up, it first executes the commands found in the
initialization file, if it is specified and exists. The initialization file is specified as a value of the
FLORA_RC_FILE environment variable of the operating system in use. If this variable is not set
or if the value of that variable is not a readable plain file, the initialization file is ignored. The
commands in the initialization file can be any kind of Flora-2 queries or commands. They must
be specified exactly as they would be written in the interactive Flora-2 shell, i.e., without the
query prefix “?-” and they must be terminated with the period. For instance, if FLORA_RC_FILE
is set to ~/test/myrc (note: the .flr suffix is not required) and that file contains
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writeln(’Welcome!’)@\plg.
insert{foo(bar)}.

then the message “Welcome!” will be printed and the fact foo(bar) will be inserted.

There is one restrictions on the initialization file: a comment cannot be the last statement. Also
note that the command-line option -e mentioned earlier is executed after all the initialization file
commands are processed.

4 Flora-2 Shell Commands

Loading knowledge bases from files. The most common shell commands you probably need
are the commands for loading and compiling knowledge bases:

flora2 ?- [myfile]. // e.g., [’c:/My Documents/data’].
flora2 ?- [url(myurl)]. // e.g., [url(’http://example.com/data’)].

or

flora2 ?- load{myfile}. // e.g., load{’/home/me/proj/kb’}.
flora2 ?- load{url(myurl)}.

Here myfile or myurl are a file names (respectively, a URL) that are assumed to be pointing to an
Flora-2 knowledge base or a Prolog program. Both myfile and URL must be Prolog atoms. If they
contain non-alphanumeric characters (as in the examples above) then they must be single-quoted
(as usual for Prolog atoms). A URL is expected when the argument has the form url(myurl ).7 The
file can be relative to the directory in which Flora-2 was started. For instance, if that directory
has the file foo.flr then one can simply type [foo] instead of [’/home/me/foo.flr’] or even
[’/home/me/foo’]. Note that our first example file, ’c:/My Documents/data’, is a Windows
file name, except that it uses forward slashes (like in URLs), which is preferred to backward
slashes. Backward slashes can also be used in Windows, but they must be doubled: ’c:\\My
Documents\data’. On Unix-based systems, such as Linux and Mac, only forward slashes can be
used.

If myfile.flr exists, it is assumed to be a knowledge base written for Flora-2 . The system
will compile the knowledge base, if necessary, and then load it. The compilation process is two-
stage: first, the knowledge base is compiled into a Prolog program (one or more files with extensions
.pl, .fdb, and others) and then into an executable byte-code, which has the extension .xwam. For
instance,

7 For this to work, the XSB package curl must be configured as described in the XSB manual, volume 2.
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flora2 ?- load{url(’http://example.com/test1’)}.
flora2 ?- [url(’http://example.com/test2’)].

will compile (if necessary) and load the Flora-2 files test1.flr and test2.flr found at the Web
site http://example.com/.

If there is no myfile.flr file, the file is assumed to contain a Prolog program and the system
will look for the file named myfile.P. This file then is compiled into myfile.xwam and loaded.
Note that in this case the program is loaded into a Prolog module of Flora-2 and, therefore,
calls to the predicates defined in that program must use the appropriate module attribution — see
Section 16.1 for the details about the module system in Flora-2 .

By default, all Flora-2 knowledge bases are loaded into the module called main, but you can
also load into other modules using the following command:

flora2 ?-
[myfile>>modulename].

flora2 ?- [url(myurl)>>modulename].

Understanding Flora-2 modules is very important in order to be able to take full advantage of
the system; we will discuss the module system of Flora-2 in Section 16.1. Once the knowledge
base is loaded, you can pose queries and invoke methods for the objects defined in that knowledge
base.

All the loading commands that apply to files also apply to URLs, so in the future we will be
giving examples for files only.

There is an important special case of the load{...} and [...] commands when the file name
is missing. In that case, Flora-2 creates a scratchpad file and starts reading user input. At
this point, the user can start typing in Flora-2 clauses, which the system saves in a scratchpad
file. When the user is done and types the end of file character Control-D (Unix) or Control-Z
(Windows), the file is compiled and loaded. It is also possible to load the scratchpad file into a
designated module, rather than the default one, using one of the following commands:

flora2 ?- [>>module].
flora2 ?- load{>>module}.

Adding rulebases to modules. When the load{...} command loads a rule base into a module,
it first wipes out all the rules and facts that previously formed the knowledge base of that module.
Sometimes it is desirable to add the facts and rules contained in a certain file to the already existing
knowledge base of a module. This operation, called add{...}, does not erase the old knowledge
base in the module in question. It is also possible to use the [...] syntax by prefixing the file
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name with a +-sign. Here are some examples of adding a rulebase contained in files to existing
modules:

flora2 ?- [+foo].
flora2 ?- [+foo>>bar].
flora2 ?- add{foo}.
flora2 ?- add{foo>>bar}.

When using the [...] syntax, adding and loading can be intermixed. For instance,

flora2 ?- [foo>>bar, +foo2>>bar].

This first loads the file foo.flr into the module bar and then adds the rule base contained in
foo2.flr to the same module.

Reloading and re-adding. Recompilation. Flora-2 ’s load{...} and add{...} commands
try to be smart in order to simplify maintenance of knowledge bases and to avoid undesirable side
effects. First, reloading and re-adding the same file to the same module will have no effect unless
one of the dependent files has changed since the previous load/add. So, cyclic add/load commands
are harmless, albeit they constitute evidence of bad design.

For the purpose of recompilation, a dependent file is one that is included with the #include
compiler directive. The dependent property is transitive, so if any of the dependent files down-
stream from the parent changes, loading or adding the parent file will cause that parent to be
recompiled.

Similar relationship exists with respect to the load/add dependency. Normally, as we said,
reloading a file will have no effect. But what if the file being loaded (or added) has an explicit
load/add command that loads another file (which we call load-dependent)? If the dependent file
was changed since the last loading, it needs to be reloaded and recompiled. In this case, if the
parent file is reloaded then this reloading will take place and so all the load/add commands in that
file will be re-executed causing the reloading of all the relevant load-dependent files. Such loading
will take place if any of the load-dependents changes—at any level down-stream from the parent.

Reporting query answers. When the user types in a query to the shell, the query is evaluated
and the results are returned. A result is a tuple of values for each variable mentioned in the query,
except for the anonymous variables represented as “?_” or ?, and named don’t care variables, which
are preceded with the underscore, e.g., ?_abc.
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By default, Flora-2 prints out all answers (if their number is finite). If only one at a time
is desired, type in the following command: \one. You can revert back to the all-answers mode by
typing \all. Note: \one and \all affect only the subsequent queries. That is, in

flora2 ?- \one, goallist1.
flora2 ?- goallist2.

the \one directive will affect goallist2, but not goallist1. This is because goallist1 executes
in the same query as \one and thus is not affected by this directive.

The Flora-2 shell includes many more commands beyond those mentioned above. These
commands are listed below. However, at this point the purpose of some of these commands might
seem a bit cryptic, so it is a good idea to come back here after you become more familiar with the
various concepts underlying the system.

Summary of shell commands. In the following command list, the suffixes .flr .P, .xwam are
optional. If the file suffix is specified explicitly, the system uses the file with the given name without
any modification. The .flr suffix denotes a Flora-2 knowledge base, the .P suffix indicates that
it is a Prolog program, and .xwam means that it is a bytecode file, which can be executed by Prolog.
If no suffix is given, the system assumes it is dealing with a Flora-2 knowledge base and adds the
suffix .flr. If the file with such a name does not exist, it assumes that the file contains a Prolog
program and tries the suffix .P. Otherwise, it tries .xwam in the hope that an executable Prolog
bytecode exists. If none of these tries are successful, an error is reported.

• \help: Show the help info.

• compile{file}: Compile file.flr for the default module main.

• compile{file>>module}: Compile file.flr for the module module.

• load{file>>module}: Load file.flr into the module module. If you specify file.P or file.xwam
then it will load those files.

• load{file}: Load file.flr into the default module main. If you specify file.P or file.xwam
then will load these files.

• compile{file}: Compile FILE.flr for adding to the default module main.

• compileadd{file>>module}: Compile FILE.flr for adding to the module module.

• add{file>>module}: Add file.flr to the module module.

• add{file}: Add file.flr to the default module main.
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• [file.{P|xwam|flr} > > module,...]: Load the files in the specified list into the module
module. The files can optionally be prefixed with a “+”, which means that the file should be
added to the module rather than loaded into it.

• demo{demofilename}: Consult a demo from Flora-2 demos directory.

• op{Precedence,Associativity,Operator}: Define an operator in shell mode.

• \all: Show all solutions (default). Affects subsequent queries only.

• \one: Show solutions to subsequent queries one by one.

• \trace and \notrace: Turn on/off Flora-2 trace.

• chatter{on} and chatter{off}: Turn on/off the display of the number of solutions at the
end of each query evaluation.

• feedback{on} and feedback{off}: Turn on/off the display of query answers. Mostly used
in Java applications.

• setwarnings{type}: Control the types of warnings to be shown to the user.

– all — show all warnings (default)

– off — do not show any warnings

– compiler=on, compiler=off — turn compiler warnings on (default) or off; no effect on
other types of warnings

– dependency=on/off — turn dependency checker warnings on (default) or off; does not
affect other types of warnings

– runtime=on/off — turn runtime warnings on (default) or off; does not affect other
types of warnings.

• warnings{?Type}: tell which warning control options are in effect. ?Type can be a variable
or a pattern like compiler=?X.

• \end: Say Ciao to Flora-2 , but stay in Prolog. You can still re-enter Flora-2 by executing
the flora_shell command at the Prolog prompt.

• \halt: Quit both Flora-2 and Prolog.

Of course, many other executable directives and queries can be executed at the Flora-2 shell.
These are described further in this manual
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In general, Flora-2 built-in predicates whose name is of the form fl[A-Z]... are either the
Flora-2 shell commands or predicates that can be used in Prolog to control the execution of
Flora-2 modules. We will discuss the latter in Section 16.8. Some of these commands — mostly
dealing with loading and compilation of Flora-2 modules — can also be useful within Flora-2
applications.

All commands with a FILE argument passed to them use the Prolog library_directory
predicate to search for the file, except that the command demo{FILE} first looks for FILE in the
Flora-2 demo directory. The search path typically includes the standard system’s directories
used by Prolog followed by the current directory.

All Prolog commands can be executed from Flora-2 shell, if the corresponding Prolog library
has already been loaded.

After a parsing or compilation error, Flora-2 shell will discard tokens read from the current
input stream until the end of file or a rule delimiter (“.”) is encountered. If Flora-2 shell seems
to be hanging after the message

++Warning[Flora-2]: discarding tokens (rule delimiter ‘.’ or EOF expected)

hit the Enter key once, type “.”, and then Enter again. This should reset the current input buffer
and you should see the Flora-2 command prompt:

flora2 ?-

5 F-logic and Flora-2 by Example

In the future, this section will contain a number of small introductory examples illustrating the use
of F-logic and Flora-2 . Meanwhile, the reader can read the Flora-2 tutorial available on the
Flora-2 Web site: http://flora.sourceforge.net/tutorial.html.

6 Differences Between Flora-2 and the F-logic Syntax

Flora-2 was developed years after the publication of the initial works on F-logic [10] and so it
benefits from the experience gained in the use and implementation of the logic. This experience
suggested a number of changes to the syntax (and to some degree also to the semantics). The main
differences are enumerated below.

1. Flora-2 uses “,” to separate methods in F-logic frame formulas. The version of the logic
in [10] used “;”. In Flora-2 , “;” represents disjunction instead. It is also possible to use

http://flora.sourceforge.net/tutorial.html
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“\and” instead of “,” and “\or” instead of “;”.

2. Flora-2 does not use the @-sign to separate method names from their arguments. With
HiLog extensions the “@” sign is redundant.

3. p::p is not a tautology in Flora-2 , i.e., “::” is not reflexive. This is because our experience
showed that the non-reflexive use of “::” is a more common idiom in knowledge representation.

4. In [10], types are always inheritable, but values are not. In Flora-2 , information about an
object is strictly separated into information about the object proper and information about
its superclasses. The latter information is inherited by the objects. The original F-logic in [10]
used four types of arrows: ->, ->>, => (and =>> because it distinguished between functional
and set-valued methods), and both were inheritable. Flora-2 uses only two types of arrows:
-> for values and => for types. However, there is now a new type of a formula that employs
these arrows: obj[|meth->val|] and obj[|meth=>type|]. Here, obj is considered as a class
and obj[|meth->val|] specifies the default value of the method meth, which is inherited by
the subclasses and members of obj, while obj[|meth=>type|] specifies the type of meth,
which is also inherited by the subclasses and members of the class obj.

The semantics of this new type of formulas can be characterized by the following logical
entailments (φ |= ψ means φ logically entails ψ):

X[|M => T|], Y::X |= Y[|M => T|]
X[|M => T|], Y:X |= Y[M => T]

5. Instead of class[method => {}] one should use class[method => ()].

6. Equality (the :=: predicate) is implemented only partially in Flora-2 . The main limitation
is that the congruence axiom for equality (“substitution by equals”) works only at the top
level and the first level of nesting. For deeper levels of nesting, substitution by equals has not
been implemented. This is discussed in more detail in Section 22.1.

7. Behavioral inheritance has a different (and better) semantics in Flora-2 compared to [10].
This is discussed in Section 21.

8. Flora-2 also has many extensions compared to F-logic. First, it supports HiLog [5, 4]
and Transaction Logic [1, 2, 3]. Second, it supports a form of defeasible reasoning known
as LPDA (logic programs with argumentation theories) [16]. Third, Flora-2 has many
syntactic extensions, including full first-order formulas that can appear in the rule bodies,
many useful builtins, set notation, etc.
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7 Main Syntactic Elements of Flora-2

Flora-2 has rich syntax, so it is useful to first list the various types of statements one may
encounter in this manual. First, we should note that Flora-2 does not have any alphanumeric
reserved keywords, so the user is not restricted in that name space in any way. The only reserved
keywords are those that start with a backslash, e.g., \and, \or, \if, etc.

The main types of Flora-2 statements are compiler and runtime directives, rules, queries,
latent queries, and facts:

• Compiler directives have the form

:- directiveName {arguments }.

Some directives do not have arguments. Compiler directives affect the compilation of the file
in which they appear—typically the semantic and optimization options.

• Runtime directives have the form

?- directiveName {arguments }.

Runtime directives are typically used to change the semantics of the runtime environment at
run time.

• Rules have the form

@!{statementDescriptors } ruleHead :- ruleBody.

Rules constitute the key part of an Flora-2 knowledge base as they (along with the class
hierarchy) represent the actual knowledge. The presence of rules is the main difference between
knowledge bases and mere databases.

The statement descriptor part (@!{...}) is optional. The body of a rule is sometimes also
called a premise.

• Queries have the form

?- ruleBody.

Syntactically queries have the same form as the rule bodies, but they use the symbol “?-” to
distinguish the two. Queries are used to request information from the knowledge base.

• Latent queries have the form
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@!{statementDescriptors } !- ruleBody.

Latent queries are similar to regular queries. However, regular queries are immediate requests
for information from the knowledge base, while latent queries are requests that intended to
be posed at a later time. A latent query also has descriptors, which are used to refer to the
query and to invoke it.

• Facts are statements that are considered to be unconditionally true. They have the form

@!{statementDescriptors } ruleHead.

Syntactically and conceptually, a fact is a rule without a premise. The descriptor part of the
syntax for facts is optional.

Rule heads, bodies, queries, and their arguments are typically composed out of base formulas
with the help of connectives, such as conjunction, disjunction, the various negations, and more.
The main forms of base formulas are

• F-logic frames are used for object-oriented knowledge representation.

• HiLog predicates are used for more traditional knowledge representation. However, in
Flora-2 , predicates can be higher-order and variables are allowed to range over them.

The different types of frames and predicates are described in the respective sections. The main
components used to construct predicates and frames include:

• Variables, which are expressions of the form ?Varname.

• Constants, which includes symbols, strings, numbers, and various other data types. There
are certain builtin constants, like \true, \false, and \undefined, which represent the three
truth values in Flora-2 : true, false, and undefined.

• Operators, including arithmetic operators.

• Quasi-constants and quasi-variables. Quasi-constants are symbols that get substituted
with real constants at compile time or at the time the knowledge base is loaded.

Examples of quasi-constants are \@F and \@L, which get substituted with the file name and
the line number in which these constants occur. Quasi-constants let one write statements that
refer to objects, such as the file name or line number, which are either unknown at the time
of writing or may change later. Quasi-constants never change during runtime—it is just that
their values are typically unknown at the time these constants are written into the knowledge
base by the knowledge engineer.
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As example of a quasi-variable is \?C. This variable can appear in the body of a rule and
it gets substituted with the name of the module that invoked that rule. This is a quasi-
variable because it gets instantiated by the runtime system and is not under the control
of the knowledge engineer. It is a variable (rather than a constant) because it may get
instantiated with different values during runtime (because, different modules may invoke the
same rule).

• Auxiliary symbols, such as ->, !, [, (, [|, etc., are used to glue together the aforesaid
components to form base formulas.

8 Basic Flora-2 Syntax

In this section we describe the basic syntactic structures used to specify Flora-2 knowledge
base. Subsequent sections describe the various advanced features that are needed to build practical
applications. The complete syntax is given in Appendix A. However, it should be noted that BNF
cannot describe the syntax of Flora-2 precisely, because it is based on operator grammar (as in
Prolog) mixed with context free grammars in places where operator grammar is inadequate (as, for
example, in parsing if-then-else).

8.1 F-logic Vocabulary

• Symbols: The F-logic alphabet of object constructors consists of the sets C and V (constants
and variables). Variables are symbols that begin with a questionmark, followed by a letter
or an underscore, and then followed by zero or more letters and/or digits and/or underscores
(e.g., ?X, ?name, ?_, ?_v_5). All other symbols, including the constants (which are 0-ary ob-
ject constructors), are symbols that start with a letter followed by zero or more letters and/or
digits and/or underscores (e.g., a, John, v_10). They are called general constant symbols
or Prolog atoms. General constant symbols can also be any sequence of symbols enclosed in
single quotes (e.g., ’AB@*c’). Later, in Section 38, we introduce additional constants, called
typed literals.

In addition to the usual first-order connectives and symbols, Flora-2 has a number of special
symbols: ], [, }, {, “,”, “;”, %, #, \#, -> , => , : , :: , ->->, –», :=:, etc.

• Numeric constants: These include integers, like 123 or 5063; decimals of the form 123.45; or
floating point numbers, like 12.345e12 (= 12.345∗1012), 0.34e+3 (same as 0.34e3), or 360.1e-2
(= 360.1 ∗ 10−2).

• Anonymous and don’t care variables: Variables of the form ?_ or ? are called anonymous
variable. They are used whenever a unique new variable name is needed. In particular, two
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different occurrences of ?_ or ? in the same clause are treated as different variables. Named
variables that start with ?_, e.g., ?_foo, are called don’t care variables. Unlike anonymous
variables, two different occurrences of such a variable in the same clause refer to the same
variable. Nevertheless, don’t care variables have special status when it comes to error checking
and returning answers. The practice of logic programming shows that a singleton occurrence
of a variable in a clause is often a mistake due to misspelling. Therefore, Flora-2 issues
a warning when it finds that some variable is mentioned only once in a clause. If such an
occurrence is truly intended, it must be replaced by an anonymous variable or a don’t care
variable to avoid the warning message from Flora-2 . Also, bindings for anonymous and
don’t care variables are not returned as answers.

• Id-Terms/Oids: Instead of the regular first-order terms used in Prolog, Flora-2 uses HiLog
terms. HiLog terms [5] generalize first-order terms by allowing variables in the position of
function symbols and even other terms can serve as functors. For instance, p(a)(?X(f,b))
is a legal HiLog term. Formally, a HiLog term is a constant, a variable, or an expression of
the form t(t1, ..., tn) where t, t1, ..., tn is a HiLog term.

HiLog terms over C and V are called Id-terms, and are used to name objects, methods, and
classes. Ground Id-terms (i.e., terms with no variables) correspond to logical object identifiers
(oids), also called object names. Numbers (including integers and floats) can also be used as
Id-terms, but such use might be confusing and is not recommended.

• Base formulas: Let O, M, Ri, Xi, C, D, T be Id-terms. In addition to the usual first-order predi-
cate formulas, like p(X1, . . . , Xn), Flora-2 allows higher-order HiLog base formulas of the
form ?X(s, ?Y), ?X(f, ?Y)(?X, g(k)), etc., where ?X and ?Y are variables, while the symbols not
prefixed with a ? are constants. Furthermore, the following frame formulas are supported in
Flora-2 :

1. O[M -> V], C[|M -> V|]

2. O[M -> {V1, ..., Vn}], C[|M -> {V1, ..., Vn}|]

3. O[M => T], C[|M => T|], C[|M{L..H} => T|]

4. O[V], C[|V|]

5. O[ => T], C[| => T|]

6. O[ ], C[| |]

Here O, C, M, Vi, Ti are HiLog terms of the form a, f(?X), ?X(s, ?Y), ?X(f, ?Y)(?X, g(k)), etc.,
where ?X and ?Y are variables and f, s, etc., are constants.

Expressions (1) and (2) above are data frames for value-returning methods. They specify
that a method expression M applied to an object O returns the result object V in case (1),
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or a set of objects, V1, ..., Vn, in case (2). In all cases, methods are assumed to be set-
valued. However, later we will see that cardinality constraints can be imposed on methods,
so it would be possible to state that a particular method is functional or has some other
cardinality constraints. The formula (2) says that the result consists of several objects, which
includes V1, V2, ..., Vn. Note that we emphasized “includes” to make it plain that other facts
and rules in the knowledge base can specify additional objects that must be included among
the method result.

In (1) and (2), when M is a constant, e.g., abc, then we say that it is an attribute or a property;
for example, John123[name -> ’John Doe’]. When M has the form f(X,Y,Z) then we refer to
it as a method f with arguments X, Y, and Z; for example, John123[salary(2017) -> 50000].
However, as we saw earlier, method expressions can be much more general than these two
possibilities: they can be arbitrary HiLog terms.

The formulas in (1) and (2) that use [|...|] apply to classes and specify the default values
inherited by the objects that belong to those classes. To make it easier to remember, we use
the letter C in those cases. The letter O (for “object”) is used with formulas of the form [...],
which apply to individual objects and specify concrete values of their attributes/methods as
opposed to the default values inherited from superclasses. These concepts are explained in
greater detail in Section 21.

The expression (3) above is a signature frame (or typing frame). It specifies a type constraint
that says that the method expression, M, when applied to objects that belong to class C,
must yield objects that belong to class T. The first form of type constraints in (3) applies to
individual objects, the second to classes, and this second form is inherited by subclasses and
individual objects. Third, while also applying to classes, imposes a cardinality constraint on
the possible number of values T that can correspond to the same M. Here L>0 is a number
that specifies the lower bound on that number of values and H specifies the upper limit. See
Section 21 for additional details on this type of formulas.

Note: Flora-2 does not automatically enforce type constraints. Also, run-time type
checking is possible—see Section 42.2. ✷

The form (4) is used for Boolean methods. Unlike the methods in (1) and (2), Boolean
methods can be either true or false: they do not return any values. Apart from that, the
previous conventions apply: O[V] says that object O has a Boolean property V and C[|V|]
says that class C has a default Boolean property that is inherited by C’s subclasses and member
objects.

The form (5) specifies signatures, i.e., types for the formulas in (4). Note that, unlike in (3),
cardinality constraints do not apply in this case.

Empty frames. Normally, a frame has at least one statement about the frame’s object, as in

John[spouse -> Mary]
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However, as seen from case (6) above, a frame can also be empty like this: e.g.,

Mary[]
Mary[| |]

Here we have an empty object specification and an empty class signature. This is to be
interpreted as a statement that the corresponding object (Mary, in our case) is known to
exist in the domain of discourse. This means that some statement about that object is
derivable from user specifications. For instance, if the knowledge base has statements that
imply, say, Mary:person, Mary[age -> 25], or if the “empty” fact Mary[] exists in the knowl-
edge base, then Mary[] holds true. This rule excludes builtin datatypes (see Section 38),
such as \integer, \object, and \symbol. For instance, even though 2:\integer and
foobar:\object are true, by definition, both 2[] and foobar[] would be false unless these
facts are implied by other parts of the knowledge base given by the user, i.e., unless the user
“told” the knowledge base about the existence of these objects.

Objects are grouped into classes using what we call ISA-literals, which account both for class
membership and subclass relationships:

5. O : C

6. C :: D

The expression (5) states that O is an instance of class C, while (6) states that C is a subclass
of D.

User-defined equality

7. O1 :=: O2

enables the user to state that two syntactically different (and typically non-unifiable) terms
represent the same object. For instance, one can assert that a :=: b and from then on
everything that is true about a will be true about b, and vice versa. Note that this is
different and more powerful than the unification-based equality built-in =, which exists both
in Flora-2 and Prolog. For instance, =-based formulas can never occur as a fact or in a rule
head, and a = b is always false. More on user-defined equality in Section 22.1.

8. Composite frames.

F-logic frames (or frame literals) and ISA-literals, can be combined in various ways, reducing
long conjunctions into very compact forms. For instance, the conjunction of John : person,
Bill : Student, John[age -> 31], John[children -> Bob], John[children -> Mary],
John[children -> Bill], and Mary[age -> 5] can be compacted into the following complex
frame:
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John : person[age -> 31, children -> {Bob,Mary[age -> 5],Bill:Student}]

Note that this shows that frames can be nested (e.g., Mary[age->5]) and val-
ues pertaining to the same method and object can be grouped into sets (e.g.,
John[children->{Bob,Mary,Bill}]). Furthermore, ISA-literals can be attached both to
the outermost object as well as the inner ones (as in John:person and Bill:Student).

• Atomic formulas. The base formulas of the types (1)-(7) above are called atomic formulas.
Atomic formulas are also base formulas, but the latter can also contain non-atomic formulas:
complex frames.

• Rules are constructs of the form head:-body, where

– head is a frame/HiLog literal or a conjunction of such literals. These literals can also be
negated with \neg. and

– body is a conjunction and/or disjunction of frame/HiLog literals or negated (with \+,
\neg, or \naf) frame/HiLog literals. Each rule must be terminated with a “.”.

Conjunction is specified, as in Prolog, using the “,” symbol but \and is also accepted. Dis-
junction is denoted using the semicolon symbol “;” or using \or. Negation is specified using
\+, \neg, or \naf— the difference will be explained later. For example,

p(?X), \neg ?Y[foo->bar(?X)] :- (q(?X,?Y) \or ?X[foo->moo,abc->cde(?Y)]),\naf w(?X).

ERGO supports much richer syntax in the rule heads, including disjunction and quantifiers.

As usual in logic languages, a single rule with a disjunction in the body

head :- John[age -> 31],
(John[children -> {Bob, Mary}] ; John[children -> Bill]).

(1)

is equivalent to the following pair of rules:

head :- John[age -> 31], John[children -> {Bob,Mary}].
head :- John[age -> 31], John[children -> Bill].

Disjunction is also allowed inside frame literals. For instance, rule (1) can be equivalently
rewritten as:

head :- John[age -> 31, (children -> {Bob,Mary} ; children -> Bill)].

Note that the conjunction “,” binds stronger than disjunction “;”, so the parentheses in the
above example are essential.
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• Knowledge bases and queries: A knowledge base is a set of rules. A query is a rule without
the head. In Flora-2 , such headless rules use ?- instead of :-, e.g.,

?- John[age->?X].

The symbol :- in headless Flora-2 expressions is used for various directives, which are
plenty and will be introduced in due course.

Example 8.1 (Publications Database) Figure 1 depicts a fragment of a Flora-2 knowledge
base that represents a database of scientific publications.

Schema:
paper[|authors => person, title => string|].
journal_p :: paper[|in_vol => volume|].
conf_p :: paper[|at_conf => conf_proc|].
journal_vol[|of => journal, volume => integer, number => integer, year => integer|].
journal[|name => string, publisher => string, editors => person|].
conf_proc[|of_conf => conf_series, year => integer, editors => person|].
conf_series[|name => string|].
publisher[|name => string|].
person[|name => string, affil(integer) => institution|].
institution[|name => string, address => string|].

Objects:
o_j1 : journal_p[title -> ’Records, Relations, Sets, Entities, and Things’,

authors -> {o_mes}, in_vol -> o_i11].
o_di : conf_p[ title -> ’DIAM II and Levels of Abstraction’,

authors -> {o_mes, o_eba}, at_conf -> o_v76].
o_i11 : journal_vol[of -> o_is, number -> 1, volume -> 1, year -> 1975].
o_is : journal[name -> ’Information Systems’, editors -> {o_mj}].
o_v76 : conf_proc[of -> vldb, year -> 1976, editors -> {o_pcl, o_ejn}].
o_vldb : conf_series[name -> ’Very Large Databases’].
o_mes : person[name -> ’Michael E. Senko’].
o_mj : person[name -> ’Matthias Jarke’, affil(1976) -> o_rwt].
o_rwt : institution[name -> ’RWTH_Aachen’].

Figure 1: A Publications Object Base and its Schema in Flora-2

8.2 Symbols, Strings, and Comments

Symbols. Flora-2 symbols (that are used for the names of constants, predicates, and object
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constructors) begin with a letter followed by zero or more letters (A . . . Z, a . . . z), digits (0 . . . 9), or
underscores (_), e.g., student, apple_pie. Symbols can also be any sequence of characters enclosed
in a pair of single quotes, e.g., ’JOHN SMITH’,’default.flr’. Internally, Flora-2 symbols are
represented as Prolog symbols, which are also called Prolog atoms. They are typically used as names
of predicates and function symbols. All Flora-2 symbols belong to the class \symbol.

Escaped Sequence ASCII (decimal) Symbol
\\ 92 \

\n or \N 10 NewLine
\t or \T 9 Tab
\r or \R 13 Return
\v or \V 11 Vertical Tab
\b or \B 8 Backspace
\f or \F 12 Form Feed
\e or \E 27 Escape
\d or \D 127 Delete
\s or \S 32 Whitespace

Table 1: Escaped Character Sequences and Their Corresponding Symbols

Flora-2 also recognizes escape sequences inside single quotes (’, symbols). An escape se-
quence begins with a backslash (\). Table 1 lists the special escape character sequences and their
corresponding special symbols. An escape sequence can also represent a Unicode character. Such
a character is preceded with a backslash followed by the letters x, u, X, or U followed by 1 to 8
hexadecimal digits (0–F) representing the character’s Unicode value. The sequence of digits must
be terminated with a vertical bar, |. For example, \xd| is the ASCII character Carriage Return,
\x3A| represents the semicolon, while \u05D0| is the Hebrew letter Alef. In other contexts, a
backslash is recognized as itself.

If it is necessary to include a quote inside a quoted symbol, that single quote must be escaped
by another single quote, e.g., ’isn’’t’ or by a backslash, e.g., ’isn\’t’.

Numbers. Normal Flora-2 integers are decimals represented by a sequence of digits, e.g., 892,
12. Flora-2 also recognizes integers in other bases (2 through 36). The base is specified by a
decimal integer followed by a single quote (’). The digit string immediately follows the single quote.
The letters A . . . Z or a . . . z are used to represent digits greater than 9. Table 2 lists a few example
integers.

Underscore (_) can be put inside any sequence of digits as delimiters. It is used to partition
some long numbers. For instance, 2’11_1111_1111 is the same as 2’1111111111. However, “_”
cannot be the first symbol of an integer, since variables can start with an underscore. For example,
1_2_3 represents the number 123 whereas ?_12_3 represents a variable named ?_12_3.
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Integer Base (decimal) Value (decimal)
1023 10 1023

2’1111111111 2 1023
8’1777 8 1023

16’3FF 16 1023
32’vv 32 1023

Table 2: Representation of Integers

Floating point numbers normally look like 24.38. The decimal point must be preceded by an
integral part, even if it is 0, e.g., 0.3 must be entered as 0.3, but not as .3. Each floating number
may also have an optional exponent. It begins with a lowercase e or an uppercase E followed by an
optional minus sign (-) or plus sign (+) and an integer. This exponent is recognized as in base 10.
For example, 2.43E2 is 243 whereas 2.43e-2 is 0.0243.

Other data types. Flora-2 supports an array of primitive data types, including string,
Boolean, dateTime, iri, and more. Primitive data types are described in Section 38.

Comments. Flora-2 supports two kinds of comments: (1) all characters following // until the
end of the line; (2) all characters inside a pair of /* and */. Note that only (2) can span multiple
lines.

Comments are recognized as whitespace by the compiler. Therefore, tokens can also be delimited
by comments.

8.3 Operators

As in Prolog, Flora-2 allows the user to define operators, to make the syntax more natural. There
are three kinds of operators: infix, prefix, and postfix. An infix operator appears between its two
arguments, while a prefix operator appears in front of its single argument. A postfix operator is
written after its single argument. For instance, if foo is defined as an infix operator, then ?X foo
a will be parsed as foo(?X,a) and if bar is a postfix operator then ?X bar is parsed as bar(?X).

Each operator has a precedence level, which is a positive integer. Each operator also has a type.
The possible types for infix operators are: xfx, xfy, yfx; the possible types for prefix operators
are: fx, fy; and the possible types for postfix operators are: xf, yf. In each of these expressions,
f stands for the operator, and x and y stand for the arguments. The symbol x in an operator
expression means that the precedence level of the corresponding argument should be strictly less
than that of the operator, while y means that the precedence level of the corresponding argument
should be less than or equal to that of the operator.
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The precedence level and the type together determine the way the operators are parsed. The
general rule is that precedence of a constant or a functor symbol that has not been defined as an
operator is zero. Precedence of a Prolog term is the same as the precedence of its main functor. An
expression that contains several operators is parsed in such a way that the operator with the highest
precedence level becomes the main functor of the parsed term, the operator with the next-highest
precedence level becomes the main functor of one of the arguments, and so on. If an expression
cannot be parsed according to this rule, a parse error is reported.

It is not our goal to cover the use of operators in any detail, since this information can be found
in any book on Prolog. Here we just give an example that illustrates the main points. For example,
in Flora-2 , - has precedence level 800 and type yfx, * has precedence level 700 and type yfx,
-> has precedence level 1100 and type xfx. Therefore, 8-2-3*4 is the same as -(-(8,2),*(3,4))
in prefix notation, and a -> b -> c will generate a parsing error.

Any symbol can be defined as an operator. The general syntax is

:- op{Precedence,Type,Name }.

For instance,

:- op{800, xfx, foo}

As a notational convenience, the argument Name can also be a list of operator names of the same
type and precedence level, for instance,

:- op{800,yfx,[+,-]}.

It is possible to have more than one operator with the same name provided they have different uses
(e.g., one infix and the other postfix). However, the Flora-2 built-in operators are not allowed to
be redefined. In particular, any symbol that is part of F-logic syntax, such as “,”, “.”, “[“, “:”, etc.,
as well as any name that begins with flora or fl followed by a capital letter should be considered
as reserved for internal use.

Although this simple rule is sufficient, in most cases, to keep you out of trouble, you should
be aware of the fact that symbols such as “,”, “;”, “+”, “.”, “->”, “::”, “:-”, “?-” and many
other parts of Flora-2 syntax are operators. Therefore, there is a chance that precedence levels
chosen for the user-defined operators may conflict with those of Flora-2 and, as a result, your
specification might not parse. If in doubt, check the declarations in the file flroperator.P in the
Flora-2 source code.

The fact that some symbols are operators can sometimes lead to surprises. For instance,
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?- (a,b,c).
:- (a,b).

will be interpreted as terms ’?-’(a,b,c) and ’:-’(a,b) rather than a query and a directive,
respectively. The reason for this is that, first, such terms are allowed in Prolog and there is no
good reason to ban them in Flora-2 ; and, second, the above syntax is ambiguous and the parser
makes the choice that is consistent with the choice made in Prolog. Typically, users do not put
parentheses around subgoals in such cases, and would instead write

?- a,b,c.
:- a,b.

Note that things like

?- (a,b),c.
?- ((a,b,c)).

will be interpreted as queries, so there are plenty of ways to satisfy one’s fondness for redundant
parentheses.

8.4 Logical Expressions

In a Flora-2 , any combination of conjunction, disjunction, and negation of literals can appear
wherever a logical formula is allowed, e.g., in a rule body.

Conjunction is made with the infix operator “,” and disjunction is made using the infix operator
“;”. Negation is specified using the prefix operators “\+” and “\naf”.8 When parentheses are omit-
ted, conjunction binds stronger than disjunction and the negation operators bind their arguments
stronger than the other logical operators. For example, in Flora-2 the following expression: a,
b; c, \naf d, is equivalent to the logical formula: (a ∧ b) ∨ (c ∧ (¬d)).

Logical formulas can also appear inside the frame specification of an object. For instance, the
following frame:

o[\naf att1 -> val1, att2 -> val2; meth -> res]

is equivalent to the following formula:

(\naf o[att1 -> val1], o[att2 -> val2]) ; o[meth -> res]
8 In brief, “\+” represents Prolog-style negation, which does not have an acceptable logical semantics. It is useful,

however, when applied to non-tabled Prolog predicates, F-logic frames, or HiLog predicates. “\naf”, on the other
hand, is negation that implements the logical well-founded semantics. Refer to Section 19 for more information on
the difference between negation operators.
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8.5 Arithmetic (and related) Expressions

In Flora-2 arithmetic expressions are not always evaluated. As in Prolog, the arithmetic op-
erators such as +, -, /, and *, are defined as normal binary functors. To evaluate an arithmetic
expression, Flora-2 provides another operator, \is. For example, ?X \is 3+4 will bind ?X to
the value 7. In addition, ERGO provides a powerful feature of inline evaluation of such expressions,
which allows these expressions to appear as arguments to predicates and frames, and be auto-
matically evaluated at runtime. Ergo also provides a number of additional operators, including
list/set append/union/intersect, and difference, and string concatenation, which also automatically
converts arbitrary terms to their printable form.

When dealing with arithmetic expressions, the order of literals is sometimes important. The
comparison and evaluation operators for which the order is unimportant (the logical operators) are:

• >, <, =<, >=

• !=, !==, =:=, =\=

• \is

• ˜, \˜, !˜

The operators for which the order is important (the non-logical operators) are:

• ==

• \=, \==, ?=

• @<, @>

Logical operators commute among themselves, but non-logical operators generally do not commute
with either logical or non-logical operators, and different orders of these operators in an expression
may produce different results. For instance, if ?X is not bound then ?X == abc, ?X = abc will
fail, while ?X = abc, ?X == abc will succeed with ?X = abc. The reason for this is, of course the
non-logical operator ==.

Arithmetic expression must be instantiated at the time of evaluation. Otherwise, a runtime
error will occur. However, Flora-2 tries to delay the evaluation of arithmetic expressions until
the variables become bound and it will issue a runtime error only if it determines that some variable
will never get bound. For instance,

?- ?X > 1, ?X \is 1+1.
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will not produce an error, while the following query will:

?- ?X > 1.

As in Prolog, the operands of an arithmetic expression can be any variable or a constant.
However, in Flora-2 , an operand can also be a path expression. For the purpose of this discussion,
a path expression of the form p.q should be understood as a shortcut for p[q -> ?X], where ?X is
a new variable, and p.q.r is a shortcut for p[q -> ?X], ?X[r -> ?Y], where ?X and ?Y are new
variables. More detailed discussion of path expressions appears in Section 9.

In arithmetic expressions, all variables are considered to be existentially quantified. For example,
the following query

flora2 ?- John.bonus + Mary.bonus > 1000.

should be understood as

flora2 ?- John[bonus -> ?_V1], Mary[bonus -> ?_V2], ?_V1+?_V2 > 1000.

Note that the first query does not have any variables, so after the evaluation the system would
print either yes or no. To achieve the same behavior, we use don’t care variables, ?_V1 and ?_V2.
If we used ?V1 and ?V2 instead, the values of these variables would have been printed out.

Flora-2 recognizes numbers as oids and, thus, it is perfectly normal to have arithmetic ex-
pressions inside path expressions such as this: 1.2.(3+4*2).7. When parentheses are omitted,
this might lead to ambiguity. For instance, does the expression

1.m+2.n.k

correspond to the arithmetic expression (1.m)+(2.n.k), to the path expressions (1.m+2.n).k, by
(1.m + 2).n.k, or to 1.(m+2).n.k? To disambiguate such expressions, we must remember that
the operator “.” used in path expressions binds stronger than the arithmetic operators +, −, etc.

Even more interesting is the following example: 2.3.4. Does it represent the path expression
(2).(3).(4), or (2.3).4, or 2.(3.4) (where in the latter two cases 2.3 and 3.4 are interpreted
as decimal numbers)? The answer to this puzzle (according to Flora-2 conventions) is (2.3).4:
when tokenizing, Flora-2 first tries to classify tokens into meaningful categories. Thus, when 2.3
is first found, it is identified as a decimal. Thus, the parser receives the expression (2.3).4, which
it identifies as a path expression that consists of two components, the oids 2.3 and 4.

Another ambiguous situation arises when the symbols - and + are used as minus and plus signs,
respectively. Flora-2 follows the common arithmetic interpretation of such expressions, where the
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Precedence Operator Use Associativity Arity

not applicable ( ) parentheses; used to change precedence not applicable not applicable

not applicable . decimal point not applicable not applicable

. object reference left binary
400 : :: class membership and subclass relationships left binary
600 - minus sign right unary

+ plus sign right unary

700 * multiplication left binary
700 ** power left binary

/ division left binary

800 - + subtraction and addition left binary
=< less than or equals to not applicable binary
>= greater than or equals to not applicable binary

1000 =:= numeric equals-to not applicable binary
=\= unequal to not applicable binary
\is arithmetic assignment not applicable binary
= unification left binary

!= or \= disunification left binary
== identity left binary
=.. meta decomposition left binary

!== or \== not identical left binary
@< lexicographical less-than left binary
?= identical or not unifiable left binary

1200 \naf well-founded negation not applicable unary
\neg explicit negation not applicable unary
\+ Prolog-style negation not applicable unary

1250 ∼ semantic unification left binary
! ∼ or \ ∼ semantic disunification left binary

Table 3: Operators in increasing precedence order

+/- signs bind stronger than the infix operators and thus 4–7 and 4-+7 are interpreted as 4-(-7)
and 4-(+7), respectively.

Table 3 lists various operators in decreasing precedence order, their associativity, and arity.
When in doubt, use parentheses. Here are some more examples of valid arithmetic expressions:

o1.m1+o2.m2.m3 same as (o1.m1)+(o2.m2)
2.(3.4) the value of the attribute 3.4 on object 2
3 + - - 2 same as 3+(-(-2))
5 * - 6 same as 5*(-6)
5.(-6) the value of the attribute -6 on object 5

Note that the parentheses in 5.(-6) are needed, because otherwise “.-” would be recognized
as a single token. Similarly, the whitespace around “+”, “-”, and “*” are also needed in these
examples to avoid *- and +– being interpreted as distinct tokens.
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In addition to the operators, the builtin function, and constants listed in Table 4 can occur in
arithmetic expressions, i.e., on the right side of \is/2 and on either side of the inequalities (>, <,
=<, and >=).

Note: the expression on the right side of \is/2 must not contain any variables at the time the
\is/2 predicate is evaluated. Otherwise, an error is issued. If you want to solve equations and
constraints (e.g., find ?X such that 5 =?X+2), \is/2 is a wrong predicate to do so: see Section 31
for the proper way to do this.

Function Arity Meaning

min, max 2 minimum and maximum of the arguments
abs 1 absolute value

ceiling, floor, round 1 ceiling, floor, and rounding of a real
float 1 convert to float

truncate 1 truncate the decimal part of a real
mod 2 integer division modulo
rem 2 remainder of integer division

div, %% 2 integer division
exp, ** 2 exponent of argument 1

exp 1 exponent of number E
sqrt 1 square root
sign 1 sign of number (1 or -1)

sin, cos 1 sine and cosine
asin,acos 1 arcsine and arccosine
tan, atan 1 tangent and arctangent

log 1 logarithm base E
log10 1 logarithm base 10
∧, ∨ 2 bit-wise AND and bit-wise OR

\e, \pi 0 the E and PI numbers

Table 4: Arithmetic functions that can be used in arithmetic expressions

Also, in the arithmetic expressions on the right side of \is/2, both pi, e, \pi, and \e are
recognized. However, outside of the context of \is/2, only \pi and \e are recognized as special
constants. The other functions in the above table (like min, max, trigonometry) are recognized
both in \is/2 expressions and inside constraints (see Section 31). Yet others (div, rem, mod) are
recognized only inside \is/2 expressions.

ERGO also supplies additional functions that can be used with \is, including sum, min, max,
avg, last, count, delete, reverse, and nth.

8.6 Quasi-constants and Quasi-variables

In some cases the developer might require the knowledge base to refer to the information about
the source code where the various Flora-2 statements occur. To this end, the compiler provides
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a number of quasi-constants, which get substituted for real constants at compile or a loading time.
The supported constants are:

• \#, \#1, \#2, etc. – Skolem constants.

• \@! – the Id of the rule where this quasi-constant occurs.

• \@ – the module into which the file containing this quasi-constant is loaded. In the Flora-2
shell, this quasi-constant is set to be the symbol main.

• \@F – the file in which this quasi-constant occurs. In the Flora-2 shell, this quasi-constant
is set to be the symbol ’(runtime)’.

• \@L – the line in the source code on which this quasi-constant occurs.

Some of these constants are further illustrated in later in this manual. A typical use of these
constants is to put them somewhere in place of a constant or a variable. For instance,

p(\@F,?X,?Y) :- ?X = \@L, ?Y = \@!.

In addition, Flora-2 provides a number of quasi-variables. Quasi-variables are similar to
quasi-constants in that Flora-2 replaces them by constants. However, this happens at run time,
during the evaluation. The supported quasi-variables are:

• \?C – the module from which the given rule was called. Used in the bodies of rules and
queries.

• \?F – the file name from which a sensor was called. Used only in the bodies of the rules that
are part of a sensor definition.

• \?L – the line number from which a sensor was called. Used only in the bodies of the rules
that are part of a sensor definition.

8.7 Synonyms

For better readability by non-experts and for documentation purposes, Flora-2 provides the
following useful mnemonic keywords, which can be used in place of the most commonly used
symbols:
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Symbol Synonym

: \isa, \memberof
:: \sub, \subclassof
=> \hastype
-> \hasvalue
+>> \contains

8.8 Reserved Symbols

Flora-2 reserves all symbols that begin with the backslash, such as \or, \hastype, \io, \neg,
etc. In addition, the symbols ->, =>, ==>, <==, <==>, ~~>, <~~, <~~>, :-, -:, !-, ?-, ?, |, #, “,”,
“;”, “:”, “::”, ->->, –», +», arithmetic operators, \/, and /\ are also reserved and cannot be used
as names of methods, function symbols, predicates, and the like.

9 Path Expressions

In addition to the basic F-logic syntax, the Flora-2 system also supports path expressions to
simplify object navigation along value-returning method applications, and to avoid explicit join
conditions [7]. The basic idea is to allow the following path expressions wherever Id-terms are
allowed:

7. O.M

The path expression in (7) refers to an object R0 for which O[M -> R0] holds. The symbols O and
M stand for an Id-term or a path expression. As a special case, M can be a method that takes
arguments. For instance, O.M(P1, . . . , Pk) is a valid path expression.

Path expressions associate to the left, so a.b.c is equivalent to (a.b).c, which specifies the object
o such that a[b -> x]∧x[c -> o] holds (note that x = a.b). To change that, parentheses can be used.
For instance, a.(b.c) is that object o1 for which b[c -> x1]∧a[x1 -> o1] holds (note that in this case,
x1 = b.c). In general, o and o1 can be different objects. Note also that in (a.b).c, b is a method
name, whereas in a.(b.c) it is used as an object name and b.c as a method. Observe that function
symbols can also be applied to path expressions, since path expressions, like Id-terms, represent
objects. Thus, f(a.b) is a valid expression.

Note: Since a path expression represents an object Id, it can appear wherever an oid can, and it
cannot appear in place of a truth-valued expression (e.g., a subquery). Thus,

?- ?P.authors.
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is illegal. To use a path expression as a query, square brackets must be attached. For instance, the
following are legal queries:

?- ?P.authors[].
?- ?P.authors[name->?N].

As path expressions and frames can be arbitrarily nested, this leads to a concise and flexible
specification language for object properties, as illustrated in the following example. ✷

Example 9.1 (Path Expressions) Consider again the schema given in Figure 1. If ?n represents
the name of a person, the following path expression is a query that returns all editors of conferences
in which ?n had a paper:

?- ?P[authors -> ?[name -> ?n]].at_conf.editors[].

Likewise, the answer to the query

?- ?P[authors -> ?[name -> ?n]].at_conf[editors -> ?E].

is the set of all pairs (P,E) such that P is (the logical oid of) a paper written by ?n, and E is the
corresponding proceedings editor. If we also want to see the affiliations of the above editors, we
only need to modify our query slightly:

?- ?P[authors -> ?[name -> ?n]].at_conf[year -> ?Y].editors[affil(?Y) -> ?A].

Thus, Flora-2 path expressions support navigation along the method application dimension using
the operator “.”. In addition, intermediate objects through which such navigation takes place can
be selected by specifying the properties of such objects inside square brackets.9

To access intermediate objects that arise implicitly in the middle of a path expression, one can
define the method self as

?X[self -> ?X].

and then simply write . . .[self -> ?O]. . . anywhere in a complex path expression. This would bind
the Id of the current object to the variable ?O.

9 A similar feature is used in other languages, e.g., XSQL [9].
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Example 9.2 (Path Expressions with self) To illustrate the convenience afforded by the use
of the self attribute in path expressions, consider the second query in Example 9.1. If, in addition,
we want to obtain the names of the conferences where the respective papers were published, that
query can be reformulated as follows:

?X[self -> ?X].
?- ?P[authors -> ?[name -> ?n]].at_conf[self -> ?C,year -> ?Y].editors[affil(?Y) -> ?A].

10 Set Notation

The original F-logic [10] permitted convenient set notation as return values of set-valued methods.
For instance,

John[children->{Mary,Bob}]

is a shortcut for the conjunction

John[children->Mary], John[children->Bob]

whether this expression occurs in the head or the body of a rule. Flora-2 makes a leap forward
in this direction and permits set notation anywhere a path expression is allowed. Here are some
examples of what is possible:

{Mary,Joe}:{Student,Worker}.
happily_married(?X,?Y) :- person({?X,?Y}), ?X[{spouse,loves}->?Y].
child(John,{Mary,Kate,Bob}).

The above statements are, respectively, shortcuts for

Mary:Student, Mary:Student, Joe:Student, Joe:Worker.
happily_married(?X,?Y) :- person(?X), person(?Y),

?X[spouse->?Y], ?X[loves->?Y].
child(John,Mary), child(John,Kate), child(John,Bob).

For some more extreme examples, consider these:

{p,q}(a,g(f({b,c}))).
r({?X,?Y}) :- {p,q}(?,?(f({?X,?Y}))).
{a,m}[{prop1,prop2} -> {1,{2,3},4}].
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These are shortcuts for the following statements, respectively:

p(a,g(f(b))), p(a,g(f(c))), q(a,g(f(b))), q(a,g(f(c))).
r(?X), r(?Y) :- p(?,?(f(?X))), p(?,?(f(?Y))), q(?,?(f(?X))), q(?,?(f(?Y))).
a[prop1->{1,2,3,4}, prop2->{1,2,3,4}], m[prop1->{1,2,3,4}, prop2->{1,2,3,4}].

The set term {1,{2,3},4} above is just a less readable way of writing {1,2,3,4}, by the way—
there are no true set-objects in Flora-2 or F-logic. Other extremely useful cases of the use of the
set notation involve equality and related operators. For instance,

?X={?Y,?Z,?W}
?X!={1,2,3}

instead of the much more tedious

?X=?Y, ?Y=?Z, ?Z=?W
?X!=1, ?X!=2, ?X!=3

11 Typed Variables

Apart from the regular variables, Flora-2 supports typed variables. Typed variables can be
bound to classes, which will restrict them so that they will be unifiable only with members of the
specified classes. This includes the classes associated with all the primitive data types such as
\integer, \real, \time, \list, \duration, etc., which are discussed in Section 38. The syntax is
?VarˆˆClass. The class can be a class name (which may have variables) or a class expression. For
instance,

father(?X^^\integer,?Y^^Person) :- parent(?X,?Y), male(?X).
grandfather(?X^^\integer,?Y^^Person) :- father(?X,?Z^^Person),parent(Z,Y).
?- foo(?Y^^(A,(B-C) ; \dateTyme).

As seen from the example, the type declaration can appear both in the head and the body of a
rule. The semantics is that once the variable is bound then the binding is checked for belonging to
the specified class. Theoretically this is equivalent to making a test like ?X:Class but in practice
typed variables can be much more efficient. Testing ?X:Class means enumerating the entire class
Class, which can be expensive when the class is large and may not terminate, if the class is infinite
(e.g., ?X:\integer).

The ?VarˆˆClass should be understood as a declaration, so it should be done only once per
variable in the same rule. Multiple declarations are treated as intersections. For instance,
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?- ?X^^foo=?, ?X^^moo=?.

?X = ?_h6272 { \$typed variable : type = (moo ’,’ foo) }

?- ?X^^foo=?Y^^moo.

?X = ?_h5593 { \$typed variable : type = (moo ’,’ foo) }
?Y = ?_h5593 { \$typed variable : type = (moo ’,’ foo) }

Here are some additional examples:

{1,2}:foo, {2,3}:moo. // facts

?- ?^^foo = 4. // false
?- ?^^foo = 1 // true
?- ?X^^foo = ?^^moo, ?X=3 // false
?- ?X^^foo = ?^^moo, ?X=2 // true
?- ?^^(foo-moo) = 2 // false
?- ?^^(foo-moo) = 1 // true
?- ?^^((foo-moo);(moo-foo)) = 2 // false
?- ?^^((foo-moo);(moo-foo)) = 3 // true
?- ?X^^\real=?, ?X^^\short=1 // false
?- {1,2,-3}:{\integer,\short,\long}, // true

{1.2,3.4}:{\real,\float,\double},
[a,3] = ?X^^\list,
?X:\list,
"abc"^^\charlist=?Y,
?Y:\charlist,
writeln(test6=ok)@\plg.

12 Truth Values and Object Values

Id-terms, terms and path expressions can be also understood as objects. This is clear for Id-terms.
The object interpretation for path expressions of the form (7) was given on page 30. On the
other hand, frame formulas, class membership, and subclassing are typically understood as truth-
valued formulas. However, there also is a natural way to interpret them as objects. For example,
o : c[m -> r] has object value o and some truth value. However, unlike the object value, the truth
value depends on the database (on whether o belongs to class c in the database and whether the
value of the attribute m is, indeed, r).
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Although previously we discussed only the object interpretation for path expressions, it is easy
to see that they have truth values as well, because a path expression corresponds to a conjunction of
F-logic frames. Consequently, all frame literals of the form (1) through (7) have dual readings: As
logical formulas (the deductive perspective), and as expressions that represent one or more objects
(the object-oriented perspective). Given an intended model, I, of an F-logic knowledge base, an
expression has:

• An object value, which yields the Id(s) of the object(s) that are reachable in I by the corre-
sponding expression, and

• A truth value, like any other literal of the language.

An important property that relates the above interpretations is: a frame, r, evaluates to false if I
has no object corresponding to r.

Consider the following path expression and an equivalent, decomposed expression:

a.b[c -> d.e] ⇔ a[b -> ?Xab] ∧ d[e -> ?Xde]∧?Xab[c -> ?Xde]. (2)

Such decomposition is used to determine the truth value of arbitrarily complex path expressions in
the body of a rule. Let obj(path) denote the Ids of all objects represented by the path expression.
Then, for (2) above, we have:

obj(d.e) = {xde | I |= d[e -> xde]}

where I |= ϕ means that ϕ holds in I. Observe two formulas can be equivalent, but their object
values might be different. For instance, d[e -> f] is equivalent to d.e as a formula. However, obj(d.e)
is f , while obj(d[e -> f]) is d.

In general, for an F-logic database I, the object values of ground path expressions are given by
the following mapping, obj, from ground frame literals to sets of ground oids (t, o, c, d, m can be
oids or path expressions):

obj(t) := {t | I |= t[]}, for a ground Id-term t
obj(o[. . .]) := {o1 | o1 ∈ obj(o), I |= o1[. . .]}
obj(o : c) := {o1 | o1 ∈ obj(o), I |= o1 : c}
obj(c :: d) := {c1 | c1 ∈ obj(c), I |= c1 :: d}
obj(o.m) := {r1 | r1 ∈ obj(r), I |= o[m -> r]}

Observe that if t[ ] does not occur in I, then obj(t) is ∅. Conversely, a ground frame r is called
active if obj(r) is not empty.
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Meta-predicates. Since path expressions can appear wherever Id-terms are allowed, the question
arises whether a path expression is intended to indicate a truth value or an object value. For
instance, we may want to call a predicate foobar/1, which expects as an argument a formula
because the predicate calls this formula as part of its definition. For instance, the predicate may
take a formula and a variable that occurs in that formula and joins this formula with some predicate
using that variable:

foobar(?Form,?Var) :- ?Form, mypred(?Var).
?- foobar($a[b->?X], ?X).

Here $a[b->?X] is a reification of the formula a[b->?X] (see Section 18.2), i.e., an object that
represents the formula. Flora-2 does not allow one to write foobar(a[b->?X],?X) because this
notation proved to be error-prone and confusing to the user in the previous versions of the system.

13 Boolean Methods

As a syntactic sugar, Flora-2 provides boolean methods, which can be considered as value-
returning methods that return some fixed value, e.g., void. For example, the following facts:

John[is_tall -> void].
John[loves(tennis) -> void].

can be simplified as boolean methods as follows:

John[is_tall].
John[loves(tennis)].

Conceptually, boolean methods are statements about objects whose truth value is the only con-
cern. Boolean methods do not return any value (not even the value void). Therefore, boolean meth-
ods cannot appear in path expressions. For instance, John.is_vegetarian, where is_vegetarian
is a binary method, is illegal.

Like other methods, boolean methods can be inherited, if specified as part of the class informa-
tion:

Buddhist[|is_vegetarian|].
John:Buddhist.

The above says that all Buddhists are vegetarian by default and John (the object with oid John) is
a Buddhist. Since is_vegetarian is specified as a property of the entire class Buddhist, it follows
that John is also a vegetarian, i.e., John[is_vegetarian].
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13.1 Boolean Signatures

Boolean methods can have signatures like the value-returning methods. These signatures can be
specified as part of the object-level information (in which case they apply to specific objects) or
as part of the class information (in which case they apply to all objects in the class and to all
subclasses):

Obj[=>Meth]
Class[|=>Meth|]

The first statement refers to Class as an individual object, while the second is a statement about
the type of the object Class as a class. It thus is inherited by every member of Class and all its
subclasses. For instance,

Person[|=>loves(game)|].

14 Skolem Symbols

For applications where the particular names for oids are not important, Flora-2 provides the
quasi-constants \# and \#1, \#2, etc., to automatically generate a new Skolem constant or a Skolem
function symbol to test for such automatically generated constants. We call such symbols Skolem
symbols. Skolem symbols are interpreted differently in the rule heads and bodies.

Skolems in rule heads and descriptors outside of the reification operator. Outside of
reification (see Section 18.2 for the details of reification), the head-occurrences of Skolem symbols
are interpreted, as described below.

Each occurrence of \# in the rule head or a rule descriptor (see Section 35 to learn about rule
descriptors) represents a new Skolem constant, which is unique throughout the source code.

Uniqueness is achieved through the use of a special “weird” naming schema for such oids, which
internally prefixes them with several “_$”s. However, as long as the user does not use a similar
naming convention (who, on earth, would give names that begin with lots of “_$”s?), uniqueness
is guaranteed.

For example, in the following example

\#[ssn->123, father->\#[name->John, spouse->\#[name->Mary]]].
foo[\#(?X)->?Y] :- bar[?Y->?X].



14 SKOLEM SYMBOLS 38

the compiler will generate unique oids for each occurrence of \#. Note that, in the second clause,
only one oid is generated and it serves as a method name.

Co-reference of Skolem symbols. In some situations, it is necessary to be able to create a new
oid and use it within the same rule head or a fact multiple times. Sometimes the same Skolem might
need to be used across several different rules and facts. Since such an oid needs to be referenced
inside the same clause, it is no longer possible to use \#, because each occurrence of \# causes
the compiler to generate a new Skolem symbol. To solve this problem, Flora-2 allows numbered
Skolem symbols as well as named Skolem symbols, which are of the form \#132, or \#abc i.e., \#
with a number or an alphanumeric symbol attached to it. For instance,

\#1[ssn->123,father->f(\#1)[name->John,spouse->\#[name->Mary,knows->\#foobar2]]].
\#foobar2[self->\#foobar2,child->\#1].

The first time the compiler finds \#1 in the first clause above, it will generate a new Skolem
constant for an oid. However, the second occurrence of \#1 in the same clause first (i.e., in f(\#1))
will use the oid previously generated for the first occurrence. Similarly, the two occurrences of
\#foobar2 in the second clause refer to the same new constant. On the other hand, occurrences of
\#1 and \#foobar2 in different clauses stand for different oids. Thus, the occurrences of \#1 (and
of \#foobar2) in the first and second clauses above refer to different objects.

The same numbered or named Skolem can be co-referenced in different facts and rules. The
general rule is that the scope of a numbered Skolem is a Flora-2 sentence terminated with a
period. For instance, in the following

(h1(?X,\#1) :- b1(?X),c1(?X)),
p(a,\#1),
q(b(\#1)),
(h2(?X,\#1,?Y) :- b2(?X,?Y)).

the four occurrences of \#1 represent the same Skolem constant. Note that the first and the
last statement above are rules, while the two middle statements are facts. The reason why all
occurrences of \#1 are the same is because all four statements are withing the same scope: all four
are terminated by the same period. Note also that each rule must be enclosed in parentheses or
else ambiguity arises. For instance,

h1(?X,\#1) :- b1(?X),c1(?X),
p(a,\#1),
q(b(\#1)).
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would be interpreted as a single rule whose body has four literals, not as a statement that contains
a rule h1(?X,\#1) :- b1(?X),c1(?X) and two additional, separate facts. Also note that it is
not necessary to put each of the four sub-statement above on a separate line—this was done for
readability.

Controlling the scope of co-reference of Skolem symbols. In some advanced cases, the
scoping of named and numbered Skolems provided by default might be too limiting because it may
be too difficult, inconvenient, or impossible to thrust all the necessary clauses in one dot-terminated
group. To overcome this difficulty, Flora-2 provides global Skolems, which are always numbered
or named and the scope of the name is controlled by the programmer explicitly.

Global Skolems name the form \##Number or \##Name, where Number is an integer and Name
is an alphanumerical symbol. For instance, in our earlier example,

\##1[ssn->123,father->f(\##1)[name->John,spouse->\#[name->Mary,knows->\##foobar2]]].
\##foobar2[self->\##foobar2,child->\##1].

all occurrences of \##1 refer to the same new constant and all occurrences of \##foobar2 refer to
the same new constant (but different from the one for \##1).

The scope of co-reference for global Skolems will persist until it is changed explicitly with the
compile-time directive

:- new_global_oid_scope.

To use this effectively, one must understand when these directives take effect. The following example
may help clarify this. Suppose we load a file with the following contents

p(\##abc). // statement 1
:- new_global_oid_scope. // statement 2
p(\##abc). // statement 3
?- insert{p(\##abc)}. // statement 4
:- new_global_oid_scope. // statement 5
?- insert{p(\##abc)}. // statement 6
p(\##abc). // statement 7
p(\##abc). // statement 8
?- insert{p(\##abc)}. // statement 9

If we now ask the query

?- p(?X).
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we will get these three distinct answers (up to a renaming of the Skolem constants):

?X = \##abc (_$_$_ergo’autogen1|abc’2)
?X = \##abc (_$_$_ergo’autogen2|abc’2)
?X = \##abc (_$_$_ergo’autogen3|abc’2)

Why only three answers? At compile time, \##abc in statements 1, 3, 6 will be replaced with three
different Skolems because of the two intervening compile time directives new_global_oid_scope.
Statements 4 and 7–9 will generate no new oids and therefore will produce duplicate facts, which
will be discarded. (The occurrence of \##abc in statement 4 will be replaced with the same constant
as in statement 3 and the occurrences in statements 7–9 will be replaced with the same constant
as in statement 6).

In some very rare cases, one might need to employ the runtime version of the
new_global_oid_scope directive:

?- new_global_oid_scope.

This may be needed, for instance, to ensure that two different files share no global Skolems. Such
an effect can be achieved by executing the above runtime directive before compiling the second file.

Generating Skolems at run time. Normally, Skolem constants are generated at compile time
without regard for the oids that might exist at run time. Sometimes it is necessary to generate
a Skolem constant at run time. This can be accomplished with the skolem{...} built-in. For
instance,

flora2 ?- skolem{?X}.

?X = _$_$_flora’dyn_skolem308 (#)

1 solution(s) in 0.0000 seconds

Yes

flora2 ?- skolem{?X}.

?X = _$_$_flora’dyn_skolem309 (#)

etc.
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Skolems in subgoals of rule bodies outside of the reification operator. In a body sub-
goal outside of the reification operator, a Skolem symbol (numbered/named or not) is interpreted
differently that in the head: not as a new Skolem constant, but as a test of whether or not the cor-
responding argument is bound to a Skolem constant. One can think of it as a variable that is tested
for being bound to a Skolem constant. Numbered Skolems within the same rule are interpreted as
the same variable, so the occurrences of the same numbered or named Skolem are expected to be
bound to the same constant. For instance, in

?- insert{abc[prop1->\#, prop2->\#3, prop3->\#3],
cde[prop1->\#, prop2->\#3, prop3->\#]}.

test1 :- abc[prop1->\#, prop2->\#abc, prop3->\#abc].
test2 :- cde[prop1->\#, prop2->\#5, prop3->\#5].

Here the query test1 will return true because in the object abc the properties prop1 and prop2
are bound to the same Skolem constant. In contrast, in cde, these properties are not bound to the
same Skolem (since \#3 and \# are different Skolems), so the query test2 fails.

Note that, as a test, both \# and \#N , where N is an positive integer, match not only Skolem
constants, but also Skolem functions. For instance, the query

?- insert{p(\#(a,b))}, p(\#).

succeeds because \#(a,b) is a term obtained from an application of a Skolem function, \#, to its
arguments.

Note that, since Skolems have a different semantics in the rule head and in the body, the
following, somewhat counter-intuitive situation might occur:

p(\#1) :- q(\#1).

Here \#1 inside p(...) is a constant, while in inside q(...) it is a check that the argument of
q/1 is bound to a Skolem term.

Skolems in reified rules. If a reified rule, R, occurs somewhere in the body or a head of another,
normal rule (or fact), the Skolem symbols that occur in R are interpreted the same way as if the rule
were outside of reification. That is, the head occurrences in R are interpreted as Skolem constants
and the body occurrences are interpreted as tests for Skolems. For instance, in

head1(${head11(?X,\#) :- body11(\#1,\#1)}).
head2 :- body2(${head22(?X,\#) :- body22(\#1,\#1)}).
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the symbol \# in the fact head11(...) is a Skolem constant, while the two occurrences of the
symbol \#1 in body11 test if body11(?X,?Y) can succeed with ?X and ?Y bound to the same
Skolem constant. The interpretation of \# and \#1 in the second rule above is similar.

Skolems in reified subgoals. If a reified subgoal (not rule), G, contains a Skolem symbol, that
symbol is interpreted as a Skolem constant. This is true both if G occurs in the head of a rule or
in the body. Note that this implies that if one later uses G as a query then this query is likely to
fail. For instance, in

?- insert{p(a), p(\#)}.
?- ?X = ${p(\#)}, ?X.

the second query will fail because the occurrence of \# there is a Skolem constant that differs from
the Skolem constant in the first rule. However,

?- ?X = ${p(\#)}, insert{?X}, p(\#).

succeeds because when the reified subgoal ${p(\#)} is inserted into the database, the Skolem
symbol is interpreted as a constant and the subsequent check p(\#) tests that the argument of p
is bound to a Skolem constant.

Numbered/named Skolems are interpreted the same way as non-numbered/unnamed ones ex-
cept that different occurrences of the same numbered/named Skolem symbol are treated as identical
within the same rule or query. For instance, below,

?- ?X = ${p(\#2,\#2)}, insert{?X}, p(\#7,\#7).
?- erase{p(?,?)}, ?X = ${p(\#2,\#)}, insert{?X}, p(\#7,\#7).

the first query succeeds, while the second fails.

More on Skolems. A Skolem constant can also be used as a function symbol and even a predicate
symbol. For instance, \#(a,b). Since Flora-2 terms are actually HiLog terms, we can also have
higher-order Skolem functions, as in these terms:

\#1(foo,bar)(123)
\#(a,c,d)(o,w)(1,2)

Sometimes it is useful to know whether a particular term is a Skolem term, i.e., whether it is a
Skolem constant or is constructed using a Skolem function or a higher-order Skolem function. To
this end, Flora-2 provides a special built-in class, \skolem. For instance, in the following case
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p(\#1(foo,bar)(123)).
?- p(?X), ?X:\skolem.

the variable ?X gets bound to a higher-order Skolem term, so the query succeeds. But the query
?- f(a):\skolem fails, since f is not a Skolem symbol. In addition to this, Flora-2 provides a
builtin for checking if a particular symbol (symbol, not just any term) is Skolem. For instance,

?- skolem{?X}, isskolem{?X}.

will succeed. Of course, ?- skolem?X, ?X:\skolem will also succeed, but the \skolem class con-
tains all Skolem terms, while the isskolem{...} primitive is true of Skolem constants only.

Finally, we note that both the isskolem{...} primitive and the \skolem class require that the
argument (the class instance being tested) must be bound.

15 Testing Meta-properties of Symbols and Variables

Sometimes it useful to be able to be able to find out to what kind symbol a particular variable is
bound or even whether that variable is bound to a term or not. In Section 14, we already saw the
isskolem{...} primitive, which can tell whether a particular symbol is a Skolem constant. Here
is a summary of all such meta-predicates. For the meaning of the IRI and string constants, please
refer to Section 38.

• isnumber{Arg} — tests whether the argument is (or is bound to) a number.

• isinteger{Arg} — tests whether the argument is (or is bound to) an integer number.

• isfloat{Arg} — tests whether the argument is (or is bound to) a floating point number.

• isdecimal{Arg} — tests if the argument is (or is bound to) a decimal number. At present,
this is the same as isnumber{Arg}.

• isatom{Arg} — tests whether the argument is (or is bound to) a Prolog atom.

• iscompound{Arg} — tests whether the argument is (or is bound to) a compound term, i.e.,
a term that has a non-zero-ary function symbol.

• isatomic{Arg} — tests if the argument is (or is bound to) a Prolog atom or a number.

• islist{Arg} — tests if the argument is (or is bound to) a list term.
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• ischarlist{Arg} — tests whether the argument is (or is bound to) a list or ASCII characters.

• isiri{Arg} — tests whether the argument is (or is bound to) an IRI data type.

• isstring{Arg} — tests whether the argument is (or is bound to) a string data type.

• issymbol{Arg} — tests whether the argument is (or is bound to) an abstract symbol. An
abstract symbol is any atom that is not an internal representation of a string or an IRI.
(These internal representations involve special unprintable characters and thus are unlikely
to be used by a normal user directly.)

• isvar{Arg} — tests if the argument is an unbound variable.

• isnonvar{Arg} — tests if the argument is not an unbound variable.

• isground{Arg} — tests if the argument is a ground term (or is bound to one).

• isnonground{Arg} — tests if the argument is not a ground term.

• variables{Term,List} — binds List to the list of all the variables that occur in Term.

• cloneterm{Term,ClonedTerm} — creates a copy of Term with the same constants and func-
tion symbols, but variables are consistently renamed to become new variables.

In addition, some of the above primitives have delayable 2-argument versions. A delayable
version differs in that if the first argument is a variable then evaluation of such a builtin is delayed
until the argument gets bound. If the argument does not get bound at the end of the query
computation, then the outcome depends on the second mode-argument: if the mode is must then
an error is issued; if the mode is wish then the builtin is quietly evaluated to false. For instance,

flora2 ?- isinteger{?X}.

No

flora2 ?- isinteger{?X}, ?X=1.

No

flora2 ?- isinteger{?X,wish}, ?X=1.

?X = 1
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Yes

flora2 ?- isinteger{?X,must}, ?X=1.

?X = 1

Yes

flora2 ?- isinteger{?X,must}.

++Abort[Flora-2]> in file (runtime) on line 1: instantiation error in builtin:
isinteger{_h3464}; unbound argument

flora2 ?- isinteger{?X,wish}.

No

Thus, the delayable versions of the above primitives are insensitive to the order in which they
appear in the rule body, which makes them sometimes easier to use and renders their behavior
more logical. On the other hand, the delayable versions cannot serve as guards for subsequent
evaluations. For example, if foo(?X) expects ?X to be an integer then

... :- ..., isinteger{?X,must}, foo(?X), ...

will not prevent calling foo/1 with ?X an unbound variable, since isinteger{Arg,Mode} will be
delayed past the moment foo(?X) is evaluated. Using isinteger{?X} instead will do the job.

The delayable versions of the aforesaid builtins are listed below. The delayable versions
of isvar{Arg,Mode}, isnonvar{Arg,Mode}, isground{Arg,Mode}, and isnonground{Arg,Mode}
have slightly different semantics.

• isnumber{Arg,Mode} — the delayable version of isnumber{Arg}.

• isinteger{Arg,Mode} — the delayable version of isinteger{Arg}.

• isfloat{Arg,Mode} — the delayable version of isfloat{Arg}.

• isdecimal{Arg,Mode} — the delayable version of isdecimal{Arg}.

• isatom{Arg,Mode} — the delayable version of isatom{Arg}.

• iscompound{Arg,Mode} — the delayable version of iscompound{Arg}.
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• isatomic{Arg,Mode} — the delayable version of isatomic{Arg}.

• islist{Arg,Mode} — the delayable version of islist{Arg}.

• ischarlist{Arg,Mode} — the delayable version of ischarlist{Arg}.

• isiri{Arg,Mode} — the delayable version of isiri{Arg}.

• isstring{Arg,Mode} — the delayable version of isstring{Arg}.

• issymbol{Arg,Mode} — the delayable version of issymbol{Arg}.

• isvar{Arg,Mode} — the delayable version of isvar{Arg}. If the argument ?X in
isvar{?X,must} at the end of the query computation is not an unbound variable, an er-
ror is issued. Otherwise, the result is true. For isvar{?X,wish}, the evaluation is delayed
and then ?X is tested. If it is unbound, the result is true; otherwise, it is false. No errors are
issued.

• isnonvar{Arg,Mode} — the delayable version of isnonvar{Arg}. If ?X in
isnonvar{?X,must} at the end of the query computation is a variable, an error is issued.
Otherwise, the result is true. For isnonvar{?X,wish}, the evaluation is delayed and then ?X
is tested. If it is bound, the result is true; otherwise, it is false. No errors are issued.

• isground{Arg,Mode} — the delayable version of isground{Arg}. If ?X in
isground{?X,must} at the end of the query computation is non-ground, an error is issued.
Otherwise, the result is true. For isground{?X,wish}, the evaluation is delayed and then ?X
is tested. If it is bound to a ground term, the result is true; otherwise, it is false. No errors
are issued.

• isnonground{Arg,Mode} — the delayable version of isnonground{Arg}. If ?X in
isnonground{?X,must} at the end of the query computation is ground, an error is issued.
Otherwise, the result is true. For isnonground{?X,wish}, the evaluation is delayed and then
?X is tested. If it is bound to a ground term, the result is false; otherwise, it is true. No errors
are issued.

16 Multifile Knowledge Bases

Flora-2 supports many ways in which a knowledge base can be modularized. First, it can be split
into many files with separate namespaces. Each such file can be considered an independent library,
and the different libraries can call each other. In particular, the same method name (or a predicate)
can be used in different files and the definitions will not clash. Second, a file can be composed of
several files, and these files can be included by the preprocessor prior to the compilation. In this
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case, all files share the same namespace in the sense that the different rules that define the same
method name (or a predicate) in different files are assumed to be part of one definition. Third,
Flora-2 knowledge bases can invoke Prolog modules and vice versa. In this way, a large system
can be built partly in Prolog and partly in Flora-2 .

We discuss each of these modularization methods in turn.

16.1 Flora-2 Modules

A Flora-2 module is an abstraction that allows a large knowledge base to be split into separate
libraries that can be reused in multiple ways in the same system. Formally, a module is a pair that
consists of a name and a contents. The name must be an alphanumeric symbol (the underscore
character, _, is also allowed), and the contents consists of part of the knowledge base that is typically
loaded from some file (but can also be constructed runtime by inserting facts into another module).

The basic idea behind Flora-2 modularization is that reusable code libraries are to be placed
in separate files. To use a library, it must be loaded into a module. Other parts of the knowl-
edge base can then invoke this library’s methods by providing the name of the module (and the
method/predicate names, of course). The exported methods and predicates can be called by other
parts of the knowledge base. (A module can have non-public methods, if the module is encapsulated
— see Section 16.12.) In this way, the library loaded into a module becomes that module’s content.

Note that there is no a priori association between files and modules. Any file can be loaded
into any module and the same file can be loaded even into two different modules at the same time.
The same module can be reused during the same Flora-2 session by loading another file into that
module. In this case, the old contents is erased and the module gets new contents from the second
file.

In Flora-2 , modules are completely decoupled from file names. A knowledge base knows only
the module names it needs to call, but not the file names. Specific files can be loaded into modules
by some other, unrelated bootstrapping code. Moreover, a knowledge base can be written in such
a way that it invokes a method of some module without knowing that module’s name. The name
of the module can be passed as a parameter or in some other way and the concrete binding of the
method to the module will be done at runtime.

This dynamic nature of Flora-2 modules stands in sharp contrast to the module system of
Prolog, which is static and associates modules with files at compile time. Moreover, to call a
predicate from another module, that predicate must be imported explicitly and referred to by the
same name.

As a pragmatic measure, Flora-2 defines three kinds of modules rather than just one. The
kind described above is actually just one of the three: the user module. As explained, these modules
are decoupled from the actual code, and so they can contain different code at different times. The



16 MULTIFILE KNOWLEDGE BASES 48

next kind is a Prolog module. This is an abstraction in Flora-2 , which is used to call Prolog
predicates. Prolog modules are static and are assumed to be closely associated with their code. We
describe these modules in Section 16.7. (Do not confuse Flora-2 Prolog modules — an abstraction
used in the language of Flora-2— with Prolog modules, which is an abstraction used in Prolog.)
The third type of modules are the Flora-2 system modules. These modules are preloaded with
Flora-2 and provide useful methods and predicates (e.g., I/O) and, thus, are also static. These
modules are described in Section 16.9 and 45. The abstraction of system modules is a convenience
provided by Flora-2 , which enables users to perform common actions using standard names of
predicates and methods implemented in those modules. The syntactic conventions for calling each
of these types of modules are similar, but distinct.

16.2 Calling Methods and Predicates Defined in User Modules

If literal is a frame or a predicate defined in another user module, it can be called using the following
syntax:

literal @ module

The name of the module can be any alphanumeric symbol.10 For instance, foo(a) @ foomod tests
whether foo(a) is true in the user module named foomod, and Mary[children -> ?X]@genealogy
queries the information on Mary’s children available in the module genealogy. More interestingly,
the module specifier can be a variable that gets bound to a module name at run time. For instance,

..., ?Agent=Zagat, ..., NewYork[dinner(Italian) -> ?X]@?Agent.

A call to a literal with an unbound module specification or one that is not bound to a symbol will
result in a runtime error.

When calling the literals defined in the same module, the @module notation is not needed, of
course. (In fact, since knowledge bases do not know where they will be loaded, using the @module

idiom to call a literal in the same module is difficult. However, it is easy to do with the help of the
quasi-constant \@, which is described later, and is left as an exercise.)

The following rules apply when calling a literal defined in another module:

1. Literal reference cannot appear in a rule head or be specified as a fact. For example, the
following will generate a parsing error

John[father->Smith] @ foomod.

10 In fact, any symbol is allowed. However, it cannot contain the quote symbol, “’”.



16 MULTIFILE KNOWLEDGE BASES 49

foo(?X) @ foomod :- goo(?X).

because defining a literal that belongs to another module does not make sense.

2. Module specification is distributive over logical connectives, including the conjunction oper-
ator, “,”, the disjunction, “;”, and the negation operators, “\+” and “\naf”. For example,
the formula below:

(John[father->Smith], \naf Smith[spouse->Mary]) @ foomod

is equivalent to the following formula:

John[father->Smith] @ foomod, \naf (Smith[spouse->Mary] @ foomod)

3. Module specifications can be nested. The one closest to a literal takes effect. For example,

(foo(a), goo(b) @ goomod, hoo(c)) @ foomod

is equivalent to

foo(a) @ foomod, goo(b) @ goomod, hoo(c) @ foomod

4. The module specification propagates to any frame appearing in the argument of a predicate
for which the module is specified. For example,

foo(a.b[c->d]) @ foomod

is equivalent to

a[b->?X] @ foomod, ?X[c->d] @ foomod, foo(?X) @ foomod

5. Module specifications do not affect function terms that are not predicates or method names,
unless such a specification is explicitly attached to such a term. For instance, in

?- foo(goo(a)) @ foomod.

goo/1 refers to the same functor both in module foomod and in the calling module. However,
if the argument is reified (i.e., is an object that represents a formula — see Section 18.2), as
in

?- foo(${goo(a) @ goomod}) @ foomod.
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then foo/1 is assumed to be a meta-predicate that receives the query goo(a) in module
goomod as a parameter. Moreover, module specification propagates to any reified formula
appearing in the argument of a predicate for which the module is specified. For example,

?- foo(${goo(a)}) @ foomod.

is equivalent to

?- foo(${goo(a) @ foomod}) @ foomod.

16.3 Finding the Current Module Name

Since a Flora-2 knowledge base can be loaded into any module, it does not have a priori knowledge
of the module it will be executing in. However, the knowledge base can find its module at runtime
using the quasi-constant \@, which is replaced with the current module name when the module is
loaded. More precisely, if \@ occurs anywhere as an oid, method name, value, etc., in file foo.flr
then when foo.flr is loaded into a module, say, bar, then all such occurrences of \@ are replaced
with bar. For instance,

a[b->\@].
?- a[b->?X].

?X=main

Yes

16.4 Finding the Module That Invoked A Rule

Sometimes it is useful to find out which module called any particular rule at run time. This can
be used, for example, when the rule performs different services for different modules. The name
of the caller-module can be obtained by calling the primitive caller{?X} in the body of a rule.
Alternatively, the \?C quasi-variable can be used. For instance,

p(?X) :- caller{?X}, (write(’I was called by module: ’), writeln(?X))@\prolog.
p(?X) :- ?X=\?C, (write(’I was called by module: ’), writeln(?X))@\prolog.

When a call to predicate p(?X) is made from any module, say foobar, and the above rule is invoked
as a result, then the message “I was called by module: foobar” will be printed.
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16.5 Loading Files into User Modules

Flora-2 provides several commands for compiling and loading files into specified user modules.

Compilation. The command

?- compile{myfile>>mymodule}.

generates the byte code for the program to be loaded into the user module named module.
In practice this means that the compiler generates files named myfile_mymodule.P and my-
file_mymodule.xwam with symbols appropriately renamed to avoid clashes.

If no module is specified, the command

?- compile{myfile}.

compiles myfile.flr for the default module main.

Loading. The above commands compile files without actually loading their contents into the
in-memory knowledge base. To load a file, the following commands can be used:

?- [myfile ].
or
?- load{myfile }.

This command loads the byte code of the program in the file myfile.flr into the default user
module main. If a compiled byte code of the program for the module main already exists and is
newer than the source file, the byte code is used. If myfile.flr is newer than the compiled byte
code (or if the byte code does not exist), then the source file is recompiled and then loaded.

An optional module name can be given to tell Flora-2 to load the program into a specified
module:

?- [myfile >> foomod].
?- load{myfile >> foomod}.

This loads the byte code of the Flora-2 program myfile.flr into the user module named foomod.
As with the previous form of that command, if a compiled byte code of the program for the module
foomod already exists and is newer than the source file, the byte code is used. If myfile.flr is
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newer than that compiled byte code (or if the byte code does not exist), then the source file is
recompiled and then loaded.

The user can compile and load several program files at the same time: If the file was not
compiled before (or if the program file is newer), the program is compiled before being loaded. For
instance, the following command:

?- [mykb1, mykb2]

will load both mykb1 and mykb2 into the default module main. However, simply loading several
knowledge bases into the same module is not very useful: the content of the last file will wipe out
the code of the previous ones. This is a general rule in Flora-2 . Thus, loading multiple files is
normally used in conjunction with the module targets:

?- [’mykb1.flr’, mykb2 >> foomod].

which loads mykb1.flr into the module main and mykb2.flr into the module foomod.

Adding to already loaded modules. Files can also be added to an existing module, as ex-
plained in the following subsection.

Note that the [...] command can also load and compile Prolog programs. The overall algo-
rithm is as follows. If the file suffix is specified explicitly, the corresponding file is assumed to be a
Flora-2 file, a Prolog file, or a byte code depending on the suffix: .flr, .P, or .xwam. If the suffix
is not given explicitly, the compiler first checks if mykb.flr exists. If so, the file assumed to contain
Flora-2 code and is compiled as such. If mykb.flr is not found, but mykb.P or mykb.xwam is, the
file is passed to Prolog for compilation.

Sometimes it is useful to know which user modules are loaded or if a particular user module is
loaded (say, because you might want to load it, if not). To find out which modules are loaded at
the present time, use the primitive isloaded{...}. For instance, the first query, below, succeeds
if the module foo is loaded. The second query succeeds and binds L to the list of all user modules
that are loaded at the present time.

?- isloaded{foo}.
?- ?L= setof{?X|isloaded{?X}}.

setof and other aggregate operators are discussed in Section 29.

One can also check which files are loaded in what modules and in what mode. The mode is
load or add, and the file names are absolute path names. For instance,



16 MULTIFILE KNOWLEDGE BASES 53

?- isloaded{?F,?Module,?Mode}.
?F = /a/b/c/foo.flr
?Module = bar
?Mode = load

?F = /a/b/foo2.flr
?Module = bar
?Mode = add

?F = /a/b/d/bar.flr
?Module = main
?Mode = add

There is also a four-place version of isloaded: isloaded{FileAbsName,Module,FileLocalName,Mode}.
The difference is that argument 3 is now the local version of the file name (without the directory
part). This version is useful in many ways. For instance, it lets one find the full name of the
current file. To do so, recall that Flora-2 has a quasi-variable \@F, which represents the local file
name. So, the query

?- isloaded{?FullFile,\@,\@F,?}.

will bind ?FullFile to the absolute name of the file where the above query occurs.

Scratchpad code. In some cases—primarily for testing—it is convenient to be able to type up
and load small excerpts of code into a running Flora-2 session. To this end, the system provides
special idioms, [], [>>module], [+], and [+>>module]. This causes Flora-2 to start reading
input clauses from the standard input and load them into the default module or the specified
module. To indicate the end of the input, the user can type Control-D in Unix-like systems or
Control-Z in Windows. For instance,

flora2 ?- [>>foo].
aaa[bbb->ccc].
?X[foo->?Y] :- ?Y[?X->bar].
Control-D

A word of caution. It is dangerous to place the load{...} command in the body of a rule if
load{...} loads a file into the same module where the rule belongs. For instance, if the following
rule is in module bar
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p(X) :- ..., [foo>>bar], ...

then execution of such a rule is likely to crash Prolog. This is because this very rule will be wiped
out before it finishes execution — something that XSB is not ready for. Flora-2 tries to forewarn
the user about such dangerous occurrences of load{...}, but it cannot intercept all such cases
reliably.

16.6 Adding Rule Bases to Existing Modules

Loading a file into a module causes the knowledge base contained in that module to be erased
before the new information is loaded. Sometimes, however, it is desirable to add knowledge (rules
and facts) contained in a file to an existing module. This operation does not erase the old contents
of the module. For instance each of the following commands

?- [+mykb >> foomod].
or
?- add{mykb >> foomod}.

will add the rules and facts contained in the file mykb.flr into the module foomod without erasing
the old contents. The following commands

?- [+mykb].
?- add{mykb}.

will do the same for module main. Note that, in the [...] form, loading and adding can be freely
mixed. For instance,

?- [foo1, +foo2]

will first load the file foo1.flr into the default module main and then add the contents of foo2.flr
to that same module.

Like the loading commands, the addition statements first compile the files they load if necessary.
It is also possible to compile files for later addition without actually adding them. Since files are
compiled for addition a little differently from files compiled for loading, we use a different command:

?- compileadd{foo}.
?- compileadd{foo >> bar}.
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16.7 Calling Prolog from Flora-2

Prolog predicates can be called from Flora-2 through the Flora-2 module system Flora-2
models Prolog programs as collections of static Prolog modules, i.e., from Flora-2 ’s point of view,
Prolog modules are always available and do not need to be loaded explicitly because the association
between Prolog programs and modules is fixed.

@\prolog and @\plg. The syntax to call Prolog predicates is one of the following:

?- predicate@\prolog(module)

For instance, since the predicate member/2 is defined in the Prolog module basics, we can call it
as follows:

?- member(abc,[cde,abc,pqr])@\prolog(basics).

\plg instead of \prolog also works.

To use this mechanism, you must know which Prolog module the particular predicate is defined
in. Some predicates are defined by programs that do not belong to any module. When such a Prolog
program is loaded, the corresponding predicates become available in the default Prolog module. In
XSB, the default module is called usermod and Flora-2 can call such predicates as follows:

?- foo(?X)@\prolog(usermod).

Note that variables are not allowed in the module specifications of Prolog predicates, i.e.,

?- ?M=usermod, foo(?X)@\prolog(?M).

will cause a compilation error.

Some Prolog predicates are considered “well-known” and, even though they are defined in vari-
ous Prolog modules, the user can just use those predicates without remembering the corresponding
Prolog module names. These predicates (that are listed in the XSB manual) can be called from
Flora-2 with particular ease:

?- writeln(’Hello’)@\prolog

i.e., we can simply omit the Prolog module name (but parentheses must be preserved).
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@\prologall and @\plgall. The Prolog module specification @\prolog has one subtlety: it does
not affect the arguments of a call. For instance,

?- foo(f(?X,b))@\prolog.

will call the Prolog predicate foo/1. Recall that Flora-2 uses HiLog terms to represent objects,
while Prolog uses Prolog terms. Thus, the argument f(?X,b) above will be treated as a HiLog term.
Although it looks like a Prolog term and, in fact, HiLog terms generalize Prolog terms, the internal
representation of HiLog and Prolog terms is different. Therefore, if the fact foo(f(a,b)) is defined
somewhere in the Prolog program then the above query will fail, since a Prolog term f(?X,b) and
a HiLog term f(?X,b) are different even though their textual representation in Flora-2 is the
same.

A correct call to foo/1 in this case would be as follows:

?- foo(f(?X,b)@\prolog)@\prolog.

Here we explicitly tell the system to treat f(?X,b) as a Prolog term. Clearly, this might be too
much writing in some cases, and it is also error prone. Moreover, bindings returned by Prolog
predicates are Prolog terms and they somehow need to be converted into HiLog.

To simplify calls to Prolog, Flora-2 provides another, more powerful primitive: @\prologall.
In the above case, one can call

?- foo(f(?X,b))@\prologall.

without having to worry about the differences between the HiLog representation of terms in
Flora-2 and the representation used in Prolog.

One might wonder why is there the @\prolog module call in the first place. The reason is
efficiency. The @\prologall call does automatic conversion between Prolog and HiLog, which
is not always necessary. For instance, to check whether a term, f(a), is a member of a list,
[f(b),f(a)], one does not need to do any conversion, because the answer is the same whether
these terms are HiLog terms or Prolog terms. Thus,

?- member(f(a), [f(b),f(a)])@\prolog(basics).

is perfectly acceptable and is more efficient than

?- member(f(a), [f(b),f(a)])@\prologall(basics).

Flora-2 provides a special primitive, p2h{...,...}, which converts terms to and from the HiLog
representation, and the knowledge engineer can use it in conjunction with @\prolog to achieve a
greater degree of control over argument conversion. This issue is further discussed in Section 18.4.
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Builtin Prolog predicates. There is a large number of low-level builtin predicates in the un-
derlying Prolog system. Most of these builtins have been lifted to the Flora-2 level in various
ways and made easier to use. Other predicates were not lifted because they were subsumed by
various Flora-2 ’s constructs. Nevertheless, there still are XSB predicates whose lifting is not
being planned because of their rare use, but which can still be useful in some cases. A partial list
of such predicates appears in Section 49.

16.8 Calling Flora-2 from Prolog

Since Prolog does not understand Flora-2 syntax, it can call only predicates (not frames) defined
in Flora-2 knowledge bases. To expose such predicates to Prolog, they must be imported by the
Prolog program.

16.8.1 Importing Flora-2 Predicates into Prolog

To import a Flora-2 predicate into a Prolog shell, the following must be done:

• The query

?- [flora2], bootstrap_flora.

must be executed first. If you are importing Flora-2 predicates into a Prolog program, say
test.P, and not just into a Prolog shell then the above must be executed before compiling or
loading test.P and the following additional directive must appear near the top of test.P,
prior to any call to Flora-2 predicates:

:- import (’\\flimport’)/1 from flora2.

• One of the following ’\\flimport’ queries must be executed in the shell:

?- ’\\flimport’ flora-predicate/arity as xsb-name(_,_,...,_)
from filename >> flora-module-name

?- ’\\flimport’ flora-predicate/arity as xsb-name(_,_,...,_)
from flora-module-name

We will explain shortly which ’\\flimport’ query should be used in what situation. Note
that a double-backslash is required in front of flimport because in Prolog the backslash is
an escape character. This is also the reason why the backslash appears twice in the various
commands in the rest of this section.
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Note: You must let Prolog know the location of your installation of Flora-2 . This is done by
executing the prolog instruction asserta(library_directory(path-to-flora)). For instance

?- add_lib_dir(a(’/home/me/flora2’)).

before calling any of the Flora-2 modules. Observe that asserta and not assert must be used.

The first form for ’\\flimport’ above is used to both import a predicate and also to load the file
containing it into a given Flora-2 user module. The second syntax is used when the Flora-2
knowledge base is already loaded into a module and we only need to import the corresponding
predicate.

In ’\\flimport’, flora-predicate is the name of the imported predicate as it is known in the
Flora-2 module. For non-tabled predicates, whose names start with % in Flora-2 , flora-predicate
should have the following syntax: %(predicate-name). For instance, to import a Flora-2 non-
tabled predicate %foobar of arity 3 one can use the following statement:

?- ’\\flimport’ ’%’(foobar)/3 as foobar(_,_,_) from mymodule.

The imported predicate must be given a name by which this predicate will be known in Prolog.
(This name can be the same as the name used in Flora-2 .) It is important, however, that the
Prolog name be specified as shown, i.e., as a predicate skeleton with the same number of arguments
as in the Flora-2 predicate. For instance, foo(_,_,_) will do, but foo/3 will not. Once the
predicate is imported, it can be used under its Prolog name as a regular predicate.

Prolog programs can also load and compile Flora-2 knowledge bases using the following
queries (again, bootstrap_flora must be executed in advance):

:- import ’\\load’/1, ’\\compile’/1 from flora2.
?- ’\\load’(flora-file >> flora-module).
?- ’\\load’(flora-file).
?- ’\\compile’(flora-file >> flora-module).
?- ’\\compile’(flora-file).

The first query loads the file flora-file into the given user module and compiles it, if necessary. The
second query loads the knowledge base into the default module main. The last two queries compile
the file for loading into the module flora-module and main, respectively, but do not load it.

Finally, a Prolog program can check if a certain Flora-2 user module has been loaded using
the following call:

:- import ’\\isloaded’/1 from flora2.
?- ’\\isloaded’(flora-module-name).
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Note that in Prolog the ’\\isloaded’ predicate must be quoted and the backslash doubled.

Note: You must make sure that Prolog will find this installation and use it. One way of doing
this was described earlier (by executing an appropriate asserta/1). This method works best if
your application consists of both Flora-2 and Prolog modules, but the initial module of your
application (i.e., the one that bootstraps everything) is a Prolog program. If the initial module is
a Flora-2 knowledge base, then the best way is to start XSB and Flora-2 using the runflora
script (page 4) located in the distribution of Flora-2 . ✷

16.8.2 Passing Arbitrary Queries to Flora-2

The method of calling Flora-2 from Prolog, which we just described, assumes that the user knows
which predicates and methods to call in the Flora-2 module. Sometimes, it is useful to be able
to pass arbitrary queries to Flora-2 . This is particularly useful when Flora-2 runs under the
control of a Java or C program.

To enable such unrestricted queries, Flora-2 provides a special predicate, flora_query/4,
which is called from Prolog and takes the following arguments:

• String: A string that contains a Flora-2 query. It can be an atomic frame (e.g.,
’foo[bar->?X].’) or a list of character codes (e.g., "foo[bar->?X].").

• Vars: A list of the form [’?Name1’=Var1, ’?Name2’=Var2,...] or ["?Name1"=Var1,
"?Name2"=Var2,...]. ?Name is a name of a variable mentioned in String, for instance, ’?X’
(note: the name must be quoted, since it is a Prolog atom). Var is a Prolog (not Flora-2 !)
variable where you want the binding for the variable Name in String to be returned. For
instance, if String is ’p(?X,?Y).’ then Vars can be [’?X’ = Xyz, "?Y" = Qpr]. In this
case, Xyz will be bound to the value of ?X in p(?X,?Y) after the execution, and Qpr will be
bound to the value of ?Y in p(?X,?Y).

• Status: Indicates the status of compilation of the command in String. It is a list, which
contains various indicators. The most important ones are success and failure.

• Exception: If the execution of the query is successful, this variable is bound to normal.
Otherwise, this variable will contain an exception term returned by XSB (see the XSB manual,
if you need to process exceptions in sophisticated ways).

In order to use the flora_query/4 predicate from within Prolog, the following steps are neces-
sary:

1. The Flora-2 installation directory must be added to the XSB search path:
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?- add_lib_dir(a(’/home/myHomeDir/flora2’)).

2. The query

?- [flora2], bootstrap_flora

must be executed before compiling or loading the Prolog file.

3. flora_query/4 must be imported from flora2.

Here is an example of a Prolog file, test.P, which loads and then queries a Flora-2 file, flrtest.flr:

:- import bootstrap_flora/0 from flora2.
?- add_lib_dir(a(’/home/myHomeDir/flora2’)),

[flora2],
bootstrap_flora.

:- import flora_query/5 from flora2.
:- import ’\\load’/1 from flora2.

?- ’\\load’(flrtest).

?- Str="?X[b->?Y].",
flora_query(Str,["?X"=YYY,"?Y"=PPP], _Status,_XWamState,_Exception).

After the query to flrtest.flr is successfully executed, the bindings for the variable ?X in the
Flora-2 query will be returned in the Prolog variable YYY. The binding for ?Y in the query will
be returned in the Prolog variable PPP. If there are several answers, you can get them all using a
fail-loop, as usual in Prolog. For instance,

?- Str=’?X[b->?Y].’,
flora_query(Str,[’?X’=YYY,’?Y’=PPP], _Status,_XWamState,_Exception),
writeln(’?X’ = YYY),
writeln(’?Y’ = PPP),
\false.

Note that the Prolog variables in the variable list (like YYY and PPP above) can be bound and in
this way input to the Flora-2 query can be provided. For instance,

?- YYY=abc,
flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP],_Status,_XWamState,_Exception).
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yields the same result as

?- flora_query(’abc[b->?Y].’,[’?Y’=PPP],_Status,_XWamState,_Exception).

However, the user should be aware of the fact that if a query is going to be used many times with
different parameters then the first form is much faster. That is,

?- YYY=abc1,
flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP], _Status,_XWamState,_Exception).

?- YYY=abc2,
flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP], _Status,_XWamState,_Exception).

......

is noticeably faster than

?- flora_query(’abc1[b->?Y].’,[’?Y’=PPP],_Status,_XWamState,_Exception).
?- flora_query(’abc2[b->?Y].’,[’?Y’=PPP],_Status,_XWamState,_Exception).
......

if the above queries are executed thousands of times with different parameters abc1, abc2, etc.

The rest of the arguments for flora_query/5 are as follows:

• Status: If the query was parsed successfully, this variable is bound to normal. Otherwise, it
will be bound to an appropriate compiler error message.

• XWamState: If the query succeeds, the answer may be true or undefined in the well-founded
semantics. If XWamState =:= 0, it means the answer is true. Otherwise, it is undefined.

• Exception: If a runtime exception is thrown during the execution of the query, this variable
will be bound to the term representing that exception.

16.9 Flora-2 System Modules

Flora-2 provides a special set of modules that are preloaded with useful utilities, such as data
type manipulation or I/O. These modules have special syntax, \modname, and cannot be loaded
by the user. For this reason, these modules are called Flora-2 system modules. For instance, to
write to the standard output one can use

?- write(Something)@\io.

For more details on the currently existing Flora-2 system modules see Section 45.
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16.10 Including Files into Flora-2 Knowledge Bases

The last and the simplest way to construct multi-file Flora-2 knowledge bases is via the #include
preprocessing directive. For instance if file foo.flr contains the following instructions:

#include "file1"
#include "file2"
#include "file3"

the effect is the same as if the above three files were concatenated together and stored in foo.flr.
Note that the file names must be enclosed in double quotes.

Unix-style path names (i.e., using forward slashes) are understood universally and irrespective
of the actual OS under which Flora-2 runs. So, for portability, it is recommended to use only
Unix-style path names relative to the directory of the host file that contains the include-directive
(e.g., "../abc/cde.foo").

If one does need to use Windows-style path names for some reason, keep in mind that backslashes
in path names must be doubled. For instance,

#include "..\\foo\\bar.flr "

16.11 More on Variables as Module Specifications

Earlier we mentioned that a user module specification can be a variable, e.g., a[m->b]@?X, which
ranges over module names. This variable does not need to be bound to a concrete module name
before the call is made. If it is a variable, then ?X will get successively bound to the user modules
where a[m->b] is true. However, these bindings will not include \prolog, \prolog(module), or
\module.

Dynamic module bindings can be used to implement adaptive methods, which are used in many
types of applications, e.g., agent programming. Consider the following example:

Module foo Module moo
something :- ... ......
something_else :- ......

a[someservice(\@,?Arg)->?Res]@moo ......
...... a[someservice(?Module,?Arg)-> ?Res] :-
...... something@?Module, ...
...... ......
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Here the method someservice in user module moo performs different operation depending
on who is calling it, because something can be defined differently for different callers. When
something_else is called in module foo, it invokes the method someservice on object a in module
moo. The current module name (foo) is passed as a parameter (with the quasi-constant \@). When
someservice is executed in module moo it therefore calls the predicate something in module foo.
If someservice is called from a different module, say bar, it will invoke something defined in that
module and the result might be different, since something in module bar may have a different
definition than in module foo.

An example of the use of the above idea is the pretty printing module of Flora-2 . A pretty-
printing method is called on an object in some user module, and to do its job the pretty-printing
method needs to query the object in the context of the calling module to find the methods that the
object has.

It is also possible to view adaptive methods as a declarative counterpart of callback functions
in C/C++, which allows the callee to behave differently for different clients.

16.12 Module Encapsulation

So far, in multi-module knowledge bases, any module could invoke any method or predicate in
any other module. That is, modules were not encapsulated. However, Flora-2 lets the user
encapsulate any module and export the methods and predicates that other modules are allowed to
call. Calling an unexported method or predicate will result in a runtime error.

A module is encapsulated by placing an export directive in it or by executing an export
directive at run time. Modules that do not have export directives in them are not encapsulated,
which means that any method or predicate defined inside such a module can be called from the
outside.

Syntax. The export directive has the form:

:- export{MethodOrPredExportSpec1, MethodOrPredExportSpec2, ...}.

There can be one or more export specifications (MethodOrPredExportSpec) in each export state-
ment, and there can be any number of different export statements in a module. The effect of all
these statements is cumulative.

Each MethodOrPredExportSpec specifies three things, two of which are optional:

• The list of methods or predicates to export.
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• The list of modules to which to export. This list is optional. If it is not given then the
predicates and modules are exported to all modules.

• Whether the above are exported as updatable or not. If a method or a predicate is exported as
updatable, then the external modules can add or delete the corresponding facts. Otherwise,
these modules can only query these methods and predicates. If updatable is not specified,
the calls are exported for querying only.

The exact syntax of a MethodOrPredExportSpec is as follows:

[ updatable] ExportList [ >> ModuleList ]

The square brackets here denote optional parts. The module list is simply a comma-separated list
of modules and ExportList is a comma-separated list of predicate/method/ISA templates. Method
templates have the form

?[ termTemplate -> ?] or
?[ termTemplate ]

and predicate templates are the same as term templates. A term template is a HiLog term that has
no constants or function symbols in it. For instance, p(?,?)(?) and q(?,?,?) are term templates,
while p(a,?)(?) and q(?,?,f(?)) are not.

ISA templates have the form ?:? or ?::?. Of course, ?_ can also be used instead of ?.

Examples. Here are some examples of export directives:

:- export{?[a(?) -> ?]}.
:- export{?[b ->?], ?[c(?,?)], ?[d(?)(?,?) -> ?]}.
:- export{(?[e -> ?], ?[f(?,?)]) >> (foo, bar)}.
:- export{updatable (?[g -> ?], ?[h(?,?)]) >> (foo, bar)}.
:- export{updatable (?[g -> ?], ?[h(?,?)]) >> (foo, bar),

(?[k -> ?], m(?,?)(?)) >> abc}.

Observe that the method g and the boolean method h have been exported in the updatable mode.
This means that the modules foo and bar can insert and delete facts of the form a[g->b] and
a[h(b,c)] using the statements like (assuming that moo is the name of the module that includes
the above directives):

?- insert{a[g->b]@moo}.
?- delete{a[h(b,c)]@moo}.
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Parenthesizing rules. Note that the last three export statements above use parentheses to dis-
ambiguate the syntax. Without the parentheses, these statements would be understood differently:

:- export{?[e -> ?], (?[f(?,?)] >> foo), bar}.
:- export{updatable ?[g -> ?], (?[h(?,?)]) >> foo), bar}.
:- export{updatable ?[g -> ?], (?[h(?,?)] >> foo), bar,

?[k -> ?], (m(?,?)(?) >> abc)}.

We should also note that updatable binds stronger than the comma or >>, which means that an
export statement such as the one bellow

:- export{updatable ?[g -> ?], ?[h(?,?)] >> foo}.

is actually interpreted as

:- export{updatable(?[g -> ?]), (?[h(?,?)] >> foo)}.

Exporting frames other than ->. In order to export any kind of call to a non-Boolean method,
one should use only ->. This will allow other modules to make calls, such as a[|d(c)(e,f) ->
?X|], a[b ->-> ?Z], and c[e=>t] to the exported methods. The export directive does not allow
the user to separately control calls to the F-logic frames that involve method specifiers such as +>>,
=>, ->->, etc.

The export directive has an executable counterpart. For instance, at run time a module can
execute an export instruction such as

?- export{?[e -> ?], (?[f(?,?)] >> foo), bar}.

and export the corresponding methods. If the module was not encapsulated before, it will become
now. Likewise, it is possible to execute export directives in another module. For instance executing

?- export{?[e -> ?], (?[f(?,?)] >> foo), bar}@foo.

will cause the module foo to export the specified methods and to encapsulate it, if it was not
encapsulated before.

16.13 Importing Modules

Referring to methods and predicates defined in other modules is one way to invoke knowledge
defined separately elsewhere. Sometimes, however, it is convenient to import the entire module
into another module. This practice is particularly common when it comes to reusing ontologies.
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Flora-2 supports import of entire modules through the importmodule compile-time directive.
Its syntax is as follows:

:- importmodule{module1, module2, ..., module-k }.

Once a module is imported, its methods and predicates can be referenced without the need to
use the @module idiom.

Importing a module is not the same as including another module as a file with the #include
statement. First, only exported methods and predicates can be referenced by the importing module.
The non-exported elements of an imported module are encapsulated. Second, even when everything
is exported (as in the case when no explicit export directive is provided), import is still different
from inclusion. To see why, consider one module, main, that looks like this:

?- [mykb>>foo].
:- importmodule{foo}.

p(abc).
?- q(?X).

This module loads the contents of the file mykb.flr into a module foo and then imports that
module. The importing module itself contains a fact and a query.

Suppose mykb.flr is as follows:

q(?X) :- p(?X).
p(123).

It is easy to see that the query q(?X) in the importing module main will return the answer ?X =
123. In contrast, if the module main included mykb.flr instead of importing it, i.e., if it looked
like this:

#include "mykb.flr "
p(abc).
?- q(?X).

then the same query would have returned two answers: ?X = 123 and ?X = abc. This is because
the latter is simply
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q(?X) :- p(?X).
p(123).
p(abc).
?- q(?X).

In other words, in the first case, the query q(?X) still queries module foo even though the query
does not use the @foo idiom. The module foo has only one answer to the query, so only one answer
is returned. In contrast, when mykb.flr is included then the resulting knowledge base has two
p-facts and two answers are returned.

Note: If module modA imports module modB then modB must be loaded before any query is
issued against modA. Otherwise, modA might attempt to query modB and an error will be issued
telling the user that modB is not loaded. A good practice to avoid this sort of errors is to load modB
before modA.

16.14 Persistent Modules

Normally, the data in a Flora-2 module is transient — it is lost as soon as the system terminates.
The Flora-2 package persistentmodules allows one to make Flora-2 modules persistent. This
package is described in the document A Guide to Flora-2 Packages.

17 Truth about Relative File Names and Current Directories

When loading, adding, or opening files, it is often convenient to use relative names. In multifile
applications, the use of relative file names becomes not just a matter of convenience, but of necessity
because absolute file names make applications non-portable. To properly use relative names in
Flora-2 , one must understand how the current directory is determined in various situations. The
present section explains this and related issues.

Absolute file names (the ones starting with ’/’ in Linux and Mac and those starting with \ in
Windows) do not depend on the location of the Flora-2 file in which they appear and so they
can be used in load/add commands and in I/O operations without the fear of ambiguity. Not so
with relative file names like foo/bar.flr or ../moo.flr. These depend on the current directory in
which Flora-2 executes at the moment when these files are being used. So, what is this “current
directory?” This can be summarized as follows:

• When Flora-2 starts, the current directory is the directory in which Flora-2 was started.
Namely,
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– If Flora-2 was started from a command window then the current directory of Flora-2
is the current directory of that window unless that directory is non-writable or is
Flora-2 ’s installation directory. In the latter cases, the current directory is user’s
home directory.

– If it was started by clicking on an icon (via ERGO Studio) then the current directory is
the user’s home directory.

• During loading or adding of an Flora-2 ’s file, the current directory is that file’s directory.
If, during loading, that file loads another file, the current directory temporarily is switched
to the directory of that latter file.

• When file loading is finished, the current directory returns to what it was before the loading.

• The current directory of Flora-2 can be changed at run time by executing the subgoal
File[chdir(myNewDir )]@\io — see Section 45.1.

Now, regarding the relative file names that occur in the load{...} and add{...} commands,
the following natural rule holds:

• Any relative file name used in the load{...} or add{...} command is always relative to the
directory of the file in which that load/add command occurs.

This behavior is desirable because it greatly facilitates creation of location-independent multi-file
knowledge bases.

The other common place where file names occur are I/O operations, like tell(myfile), which
opens myfile for writing (see Section 45.1 for more details on I/O). Here the situation is more subtle
because I/O commands can execute in many different contexts, not necessarily in the context of
the file in which they are physically located. For that reason, the rule is that

• any relative file name that occurs in an I/O command is always relative to the directory that
is current at the time that command is executed.

For example, we know from the above that during loading of a file the current directory is the
directory of that file. Therefore, if a query like

?- tell(abc)@\io, writeln(abcdefg)@\io, told@\io.

occurs in a file /foo/bar/moo/myfile.flr then, when that file will be loaded, the file abc will
be created in the directory /foo/bar/moo/ and its contents will be a single line abcdefg. This is
because, as we discussed, the current directory during loading of a file is that file’s directory. In
contrast, if our file has a rule
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makefile(?X) :- tell(?X)@\io, writeln(12345678)@\io, told@\io.

and makefile(cde) is called at some point, this will create a file, called cde and containing the sin-
gle line 12345678, in the directory that was current at the time tell(?X)@\io (and makefile(cde))
was called.

Thus, the context in which files are interpreted in I/O commands is not uniform and depends
on how these commands are called—a somewhat unpleasant situation. Fortunately, to rectify this
problem, Flora-2 provides a primitive, here{...}, which takes any subgoal and calls it in the
directory of the file in which here{...} occurs. For instance, with a slightly modified rule

makefile(?X) :- here{tell(?X)@\io}, writeln(12345678)@\io, told@\io.

a call makefile(cde) will create cde in the directory of our example file, i.e. /foo/bar/moo/, and
not in the directory where makefile(cde) was called.

Finally, we note that here{...} can take any goal, even a complex one, provided it is enclosed
in parentheses. For instance, here{(p(?X,?Y),q(?Y))}. In fact, this primitive can be used to
temporarily localize the context of execution for any subgoal, not only for I/O commands.

18 HiLog and Meta-programming

HiLog [5] is the default syntax that Flora-2 uses to represent functor terms (including object Ids)
and predicates. In HiLog, complex terms can appear wherever a function symbol is allowed. For
example, group(?X)(?Y,?Z) is a HiLog term where the functor is no longer a symbol but rather a
complex term group(?X). Variables in HiLog can range over terms, predicate and function symbols,
and even over base formulas. For instance,

?− p(?X), ?X(p).

and
?− p(?X), ?X(p), ?X. (3)

are perfectly legal queries. If p(a(b)), a(b)(p), and a(b) are all true in the database, then
?X = a(b) is one of the answers to the query in HiLog.

Although HiLog has a higher order syntax, its semantics is first order [5]. Any HiLog term can be
consistently translated into a Prolog term. For instance, group(?X)(?Y,?Z) can be represented by
the Prolog term apply(apply(group,?X),?Y,?Z). The translation scheme is pretty straightforward
and is described in [5].

Any Id-term in Flora-2 , including function symbols and predicate symbols, are considered
to be HiLog terms and therefore are subject to translation. That is, even a normal Prolog term
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will by default be represented using the HiLog translation, e.g., foo(a) will be represented as
apply(foo,a). This guarantees that HiLog unification will work correctly at runtime. For instance,
foo(a) will unify with ?F(a) and bind the variable ?F to foo.

There is one important difference between HiLog, as described in [5], and its implementation in
Flora-2 . In HiLog, functor terms that appear as arguments to predicates and the base formulas
(i.e., predicates that are applied to some arguments) belong to the same domain. In contrast, in
Flora-2 they are in different domains.11 For instance, suppose p(a(b)) is true, and consider
the following query:

?- ?X ~ a(b), p(?X).

Here ~ is a meta-unification operator to be discussed shortly, in Section 18.1; it binds ?X to the
base formula a(b) in the current module. The answer to this query is ’No’ because ?X is bound to
the base formula a(b), while a(b) in p(a(b)) is a HiLog term.

Our earlier query, (3), will also not work (unlike the original HiLog) because ?X is bound to
a term and not a formula: if we execute the query (3), we will get an error stating that ?X is
bound to a HiLog term, not a predicate, and therefore the query ?X is meaningless. To correct the
problem, ?X must be promoted to a predicate and relativized to a concrete module—in our case to
the current module. So, the following query will work and produce a binding a(b) for ?X.

?- p(?X), ?X(p), ?X@ \@.

Like in classical logic, foo and foo() are different terms. However, it is convenient to make
these terms synonymous when they are treated as predicates. Prologs often disallow the use of
the foo() syntax altogether. The same distinction holds in HiLog: foo, foo() and foo()() are
all different. In terms of the HiLog to Prolog translation, this means that foo is different from
flapply(foo) is different from flapply(apply(foo)). However, just like in Prolog, we treat p as
syntactic sugar for p() when both occur as predicates. Thus, the following queries are the same:

?- p.
?- p().

In the following,

p.
q().
?- p(), ?X().
?- q, ?X().
?- r = r().

11 This is allowed in sorted HiLog [4].
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the first two queries will succeed (with ?X bound to p or q), but the last one will fail. Making p and
p() synonymous does not make them synonymous with p()()—the latter is distinct from both p
and p() not only as a term but also as a formula. Thus, in the following, all queries fail:

p.
q().
?- p()().
?- q()().
?- p = p()().
?- q() = q()().

18.1 Meta-programming, Meta-unification

F-logic together with HiLog is powerful stuff. In particular, it lends itself naturally to meta-
programming. For instance, it is easy to examine the methods and types defined for the various
classes. Here are some simple examples:

// all unary methods defined for John
?- John[?M(?) -> ?].

// all unary methods that apply to John,
// for which a signature was declared
?- John[?M(?) => ?].

// all method signatures that apply to John,
// which are either declared explicitly or inherited
?- John[?M => ?].

// all method invocations defined for John
?- John[?M -> ?].

However, a number of meta-programming primitives are still needed since they cannot be di-
rectly expressed in F-logic. Many such features are provided by the underlying Prolog system and
Flora-2 simply takes advantage of them:

?- functor(?X,f,3)@\prolog.
?X = f(_h455,_h456,_h457)@\prolog
Yes
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?- arg(2,f(?X,3)@\prolog,?Y)@\prolog.
?Y = 3
Yes

Note that these primitives are used for Prolog terms only and are described in the XSB manual.
These primitives have not been ported to work with HiLog terms yet.

Meta-unification. In Flora-2 , a variable can be bound to either a formula or a term. For
instance, in ?X = p(a), p(a) is viewed as a term and ?X is bound to it. Likewise, in ?X = a[m->v],
the frame is evaluated to its object value (which is a) and then unified with ?X. To bind variables
to formulas instead, Flora-2 provides a meta-unification operator, ~. This operator treats
its arguments as formulas and unifies them as such. For instance, ?X ~ a[m->v,k->?V] binds ?X
to the frame a[m->v,k->?V] and a[m->v,k->?V] ~ ?X[?M->v,k->p] unifies the two frames by
binding ?X to a, ?M to m, and ?V to p.

Meta-unification is very useful when it is necessary to determine the module in which a particular
formula lives. For instance,

?- ?X@?M ~ a[b->c]@foo.

would bind ?X to the formula a[b->c], ?M to the module of ?X. Note that in meta-unification the
variable ?X in the idiom ?X@?M or ?X@foo is viewed as a meta-variable that is bound to a formula.
More subtle examples are

?- ?X ~ f(a), ?X ~ ?Y@?M.
?- f(a)@foo ~ ?Y@?M.

?M is bound to the current module in the first query and foo in the second one. ?Y is bound to
the (internal representation of the) HiLog formula f(a)@ \@ in the first query and f(a)@foo in the
second — not to the HiLog term f(a)!

Another subtlety has to do with the scope of the module specification. In Flora-2 , module
specifications have scope and inner specifications override the outer ones. For instance, in

..., (abc@foo, cde)@bar, ...

the term abc is in module foo, while cde is in module bar. This is because the inner module
specification, @foo, overrides the outer specification @bar for the literal in which it occurs (i.e.,
abc). These scoping rules have subtle impact on literals that are computed dynamically at run
time. For instance, consider
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?- ?X@?M ~ a[b->c]@foo, ?X@bar.

Because ?X gets bound to a[b->c]@foo, the literal ?X@bar becomes the same as
(a[b->c]@foo)@bar, i.e., a[b->c]@foo. Thus, both of the following queries succeed:

?- ?X@?M ~ a[b->c]@foo, ?X@bar ~ a[b->c]@foo.
?- ?X@?M ~ a[b->c]@foo, ?X@?N ~ a[b->c]@foo.

Moreover, in the second query, the variable ?N is not bound to anything because, as noted before,
the literal ?X@?N becomes (a[b->c]@foo)@?N) at run time and, due to the scoping rules, is the
same as a[b->c]@foo.

Meta-disunification. The negation of meta-unification is meta-disunification, !∼. For instance,

?- abc !~ neg cde.

Yes

Note that neg, \naf, and \+ tie stronger than ~ and !~, so the above is parsed as abc!~neg(cde)
and neg cde!~abc is parsed as neg(cde)!~abc — not as neg(cde!~abc).12

18.2 Reification

It is sometimes useful to be able to treat Flora-2 frames and predicates as objects. For instance,
consider the following statement:

Tom[believes-> Alice[thinks->Flora2:coolThing]].

The intended meaning here is that one of Tom’s beliefs is that Alice thinks that Flora2 is a cool
thing. However, minute’s reflection shows that the above has a different meaning:

Tom[believes-> Alice].
Alice[thinks->Flora2:coolThing].

12 This is in contrast to =, ==, <, etc., which bind stronger than neg, \naf, and \+. For instance, neg cde=abc is
parsed as neg(cde=abc). This difference in parsing makes sense because ˜ and !˜ expect formulas as its operands,
while =, ==, and other comparison operators expect terms.
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That is, Tom believes in Alice and Alice thinks that Flora2 is cool. This is different from
what we originally intended. For instance, we did not want to say that Alice likes Flora-2
(she probably does, but she did not tell us). All we said was what Tom has certain beliefs
about what Alice thinks. In other words, to achieve the desired effect we must turn the formula
Alice[thinks->Flora2:coolThing] into an object, i.e., reify it.

Reification is done using the operator ${...}. For instance, to say that Tom believes that Alice
thinks that Flora2 is a cool thing one should write:

Tom[believes-> ${Alice[thinks->Flora2:coolThing]}].

When reification appears in facts or rule heads, then the module specification and the predicate
part of the reified formula must be bound. For instance, the following statements are illegal:

p(${?X@foo}) :- q(?X).
p(${q(a)@?M}).
?- insert{p(${?X@?M})}.

The semantics of reification in Flora-2 is described in [21].

Reification of complex formulas. In Flora-2 , one can reify not only simple facts, but also
anything that can occur in a rule body. Even a set of rules can be reified! The corresponding objects
can then be manipulated in ways that are semantically permissible for them. For instance, reified
conjunctions of facts can be inserted into the database using the insert{...} primitive. Reified
conjunctions of rules can be inserted into the rulebase using the insertrule{...} primitive. Reified
rule bodies, which can include disjunctions, negation, and even things like aggregate functions and
update operators(!), can be called as queries.

request[
input -> ${?Ticket[from->?From, to->?To, \naf international],
inputAxioms -> ${(?Ticket[international] :-

?Ticket[from->?From:?Country1, to->?To:?Country2],
?Country1 \= ?Country2)

}
].

?- ?Request[input->?Input, inputAxioms->?Rules],
insertrule{?Rules},
?Input.
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In the above example, the object request has two attributes, which return reified formu-
las. The input attribute returns a Boolean combination of frames, while inputAxioms returns
a reified rule. In general, conjunctions of rules are allowed inside the reification operator (e.g.,
${(rule1), (rule2)}), where each rule is enclosed in a pair of parentheses. Such a conjunction
can then be inserted (or deleted) into the rulebase using the insertrule{...} primitive.13

Note that rule Ids and other meta-data (see Section 35) can be supplied with reified rules just
like it can be with regular rules. For instance,

... :- ?X=${@!{abc[tag->foo]} head(?X):-body(?X,?Y)}.

Reification and meta-unification. Reification should not be confused with meta-unification,
although they are closely related concepts. A reified formula reflects the exact structure that is
used to encode it, so structurally similar, but syntactically different, formulas might meta-unify,
but their internal representations could be very different. For instance,

?- a[b->?X]@?M ~ ?Y[b->d]@foo.

will return true, because the two frames are structurally similar and thus meta-unify. On the other
hand,

?- ${a[b->?X]@?M} = ${?Y[b->d]@foo}.

will be false, because a[b->?Y]@?X and ?Z[b->d]@foo have different internal representations (even
though their conceptual structures are similar), so they do not unify (using “=”, i.e., in the usual
first-order sense). Note, however, that the queries

?- ${a[b->?Y]@foo} = ${?Z[b->d]@foo}.
?- ?M=foo, ${a[b->?Y]@?M} = ${?Z[b->d]@?M}.
?- a[b->?Y]@foo ~ ?Z[b->d]@foo.
?- ?M=foo, a[b->?Y]@?M ~ ?Z[b->d]@?M.

will all return true, because a[b->?Y]@foo and ?Z[b->d]@foo are structurally similar — both
conceptually and as far as their internal encoding is concerned (and likewise are a[b->?Y]@foo and
?Z[b->d]@foo).

13 In fact, Boolean combinations of rules are also allowed inside the reification operator. However, such combinations
cannot be inserted into the rulebase. Flora-2 does not impose limitations here, since is impossible to rule out that
a knowledge base designer might use such a feature in creative ways.
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18.3 Meta-decomposition

Flora-2 supports an extended version of the Prolog meta-decomposition operator “=..”. On
Prolog terms, it behaves the same way as one would expect in Prolog. For instance,

?- ?X=p(a,?Z)@\prolog, ?X=..?Y.

?X = p(a,?_h4094)@\prolog
?Z = ?_h4094
?Y = [p, a, ?_h4094]

The main use of the =.. operator in Flora-2 is, however, for decomposing HiLog terms or
reifications of HiLog predicates and F-logic frame literals. The meta-decomposition operator uses
special conventions for these new cases.

For HiLog terms, the head of the list on the right-hand side of =.. has the form
hilog(HiLogPredicateName). For instance,

?- p(a,b) =.. ?L.

?L = [hilog(p), a, b]

For HiLog predicates the head of the list has the form hilog(HiLogPredicateName,Module). For
instance,

?- ${p(a,b)@foo} =.. ?L.

?L = [hilog(p,foo), a, b]

For non-tabled HiLog predicates, which represent actions with side-effects, the head of the list is
similar except that ’%hilog’ (quoted!) is used instead of hilog. For instance,

?- ${%p(a,b)@foo} =.. ?L.

?L = [’%hilog’(p,foo), a, b]

For frame literals, the head of the list has the form flogic(FrameSymbol,Module). The
FrameSymbol argument represents the type of the frame and can be one of the following: ->,
*->, =>, *=>, +>>, *+>>, ->->, *->->, :, ::, boolean (tabled Boolean methods), *boolean (class-
level tabled Boolean methods), %boolean (transactional, nontabled Boolean methods), :=:, []
(empty frames, such as a[]). Here are a number of examples that illustrate the use of =.. for
decomposition of frames:
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${a[b->c]@foo} =.. [flogic(->,foo), a, b, c]
${a[|b->c|]@foo} =.. [flogic(’*->’,foo), a, b, c]
${a[b=>c]@foo} =.. [flogic(=>,foo), a, b, c]
${a[|b=>c|]@foo} =.. [flogic(’*=>’,foo), a, b, c]
${a[b+>>c]@foo} =.. [flogic(+>>,foo), a, b, c]
${a[|b+>>c|]@foo} =.. [flogic(’*+>>’,foo), a, b, c]
${a[b->->c]@foo} =.. [flogic(->->,foo), a, b, c]
${a[|b->->c|]@foo} =.. [flogic(’*->->’,foo), a, b, c]
${a:b@foo} =.. [flogic(:,foo), a, b]
${a::b@foo} =.. [flogic(::,foo), a, b]
${a:=:b@foo} =.. [flogic(:=:,foo), a, b]
${a[]@foo} =.. [flogic([],foo), a]
${a[p]@foo} =.. [flogic(boolean,foo), p]
${a[|p|]@foo} =.. [flogic(’*boolean’,foo), a, p]
${a[%p]@foo} =.. [flogic(’%boolean’,foo), a, p]

The =.. operator supports explicit negation (Section 19.5). The corresponding type designators
are neg_hilog and neg_flogic. For instance,

${\neg a[b->c]@foo} =.. [negation(neg), $a[b->c]@main]
${\neg p(a,b)@foo} =.. [negation(neg), $p(a,b)@main]
${\naf a[b->c]@foo} =.. [negation(naf), $a[b->c]@main]
${\naf p(a,b)@foo} =.. [negation(naf), $p(a,b)@main]

Additional examples:

${foo;bar} =.. [logic(or),${foo},${bar}]
${\if foo\then bar\else moo} =.. [control(ifthenelse),main,${foo},${bar},${moo}]
${\while foo \do bar} =..[control(whiledo),main,${foo},${bar}]
${insert{?V|p(?V)}} =.. [update(insert),[?V],${p(?V)}]
${deleteall{?V|p(?V)}} =.. [update(deleteall),[?A],${p(?A)}]
${?X=min{?V|p(?V)}} =.. [logic(and),${?T=min{?V|p(?V)}},?X=?T]
avg{?V[?T]|p(?V,?T)} =.. [aggregate(avg),?V,[?T],${p(?V,?T)},?Result]
count{?V[?G]|p(?V,?G)} =.. [aggregate(count),?V,[?G],${p(?C,?G)},?R]
${insert{p,(q:-r)}} =.. [update(insert),main,[${p},${q :- r}]].
${delete{p,(q:-r)}} =.. [update(delete),main,[${p},${q :- r}]].
${wish(nonvar(?X))^p(?X)} =.. [quantifier(delay),wish,${nonvar(?X)@\plg},${p(?X)}].

The =.. operator is bi-directional, which means that either one or both of its arguments can
be bound. For instance,



18 HILOG AND META-PROGRAMMING 78

?- ?X =.. [flogic(’*boolean’,foo),a ,p].

?X = ${a[|p|]@foo}

However, that last feature, while it works for most statements, is not fully implemented in the sense
that the terms produced (if produced at all) on the left-hand side might not be a valid Flora-2
term or formula or the internal representations may be slightly different.

The statements for which the reverse mode of ?Variable =.. ?List has not yet been imple-
mented include clause{...}, newmodule{...}, and some others. The statements for which =..
is not fully reversible are the update operators, statements, and a few others. For instance, while

?- ${insert{p,(q:-r)}} =.. [update(insert),main,[${p}, ${q :- r}]].

succeeds, the following will fail:

?- ${delete{p,(q:-r)}} =.. [update(delete),main,[${p}, ${q :- r}]].

because the internal representations of the two sides of =.. happen to be slightly different. Nev-
ertheless, =.. does produce valid insert- and delete-statements from appropriate list on the right
side. For instance,

?- ?I =.. [update(insert),main,[${p}, ${r}, ${q :- r}]], ?I.
?- p,q,r.

will succeed, i.e., a valid insert statement was constructed in ?I and the call ?I did perform the
insertion. Likewise,

?- ?D =.. [update(delete),main,[${p}, ${r}, ${q :- r}]], ?D.

constructs a proper delete statement for ?D and a call to ?D then performs the deletion.

The low-level Prolog =.. is also available using the idiom (?Term =.. ?List)@\prolog. This
is rarely needed, however. One might use this when the term to be decomposed is known to be a
Prolog term (in this case the Prolog’s operator will run slightly faster) or if one wants to process
the Prolog terms into which Flora-2 literals are encoded internally (which is probably hardly
ever necessary).

18.4 Passing Parameters between Flora-2 and Prolog

The native HiLog support in Flora-2 causes some tension when crossing the boundaries from one
system to another. The reason is that Flora-2 terms and Prolog terms have different internal
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representations. Even though XSB supports HiLog (according to the manual, anyway), this support
is incomplete and is not integrated well into the system — most notably into the XSB module
system. As a result, XSB does not recognize terms passed to it from Flora-2 as HiLog terms
and, thus, many useful primitives will not work correctly. (Try ?- writeln(foo(abc))@\prolog
and see what happens.)

To cope with the problem, Flora-2 provides a primitive, p2h{?Plg,?Hlg}, which does the
translation. If the first argument, ?Plg, is bound, the primitive binds the second argument to the
HiLog representation of the term. If ?Plg is already bound to a HiLog term, then ?Hlg is bound
to the same term without conversion. Similarly, if ?Hlg is bound to a HiLog term, then ?Plg gets
bound to the Prolog representation of that term. If ?Hlg is bound to a non-HiLog term, then ?Plg
gets bound to the same term without conversion. In all these cases, the call to p2h{...} succeeds.
If both arguments are bound, then the call succeeds if and only if

• ?Plg is a Prolog term and ?Hlg is its HiLog representation.

• Both ?Plg and ?Hlg are identical Prolog terms.

Note that if both ?Plg and ?Hlg are bound to the same HiLog term then the predicate fails. Thus,
if you type the following queries into the Flora-2 shell, they both succeed:

?- p2h{?X,f(a)}, p2h{?X,?X}.

but the following will fail:

?- p2h{f(a),?X}, p2h{?X,?X}.
?- p2h{f(a),f(a)}.

The first query succeeds because ?X is bound to a Prolog term, and by the above rules p2h{?X,?X}
is supposed to succeed. The second query fails because ?X is bound to a HiLog term and, again
by the above rules, p2h{?X,?X} is supposed to fail. The reason why the last query fails is less
obvious. In that query, both occurrences of f(a) are HiLog terms, as are all the terms that appear
in a Flora-2 knowledge base (unless they are marked with @\prolog or @\prologall module
designations). Therefore, again by the rules above the query should fail.

One should not try to convert certain Prolog terms to HiLog and expect them to be the same as
similarly looking Flora-2 terms. In particular, this applies to reified statements. For instance, if
?X = $a[b->c] then ?- p2h{?X,?Y}, ?Y = $a[b->c] is not expected to succeed. This is because
p2h{...} does not attempt to mimic the Flora-2 compiler in cases where conversion to HiLog
(such as in the case of reified statements) makes no sense. Doing so would have substantially
increased the run-time overhead.
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Not all arguments passed back and forth to Prolog need conversion. For instance, sort/2,
ground/1, compound/1, and many others do not need conversion because they work the same for
Prolog and HiLog representations. On the other hand, most I/O predicates require conversion.
Flora-2 provides the io library, described in Section 45, which provides the needed conversions
for the I/O predicates.

Another mechanism for calling Prolog modules, described in Section 16.7, is use of the
@\prologall and @\prologall(module) specifiers (@\plgall also works). These specifiers cause
the compiler to include code for automatic conversion of arguments to and from Prolog represen-
tations. However, as mentioned above, such conversion is sometimes not necessary and the use of
@\prologall might incur unnecessary overhead.

19 Negation

Flora-2 supports three kinds of negation: a Prolog-style negation \+ [6]; default negation based
on well-founded semantics, denoted \naf, [14, 15]; and explicit negation \neg, which is analogous
to what is called “classical” negation in [8].

These three types of negation are quite different and should not be confused. Prolog-style
negation does not have a model-theoretic semantics and it is unsatisfactory in many other respects.
It is included in Flora-2 for completeness and is primarily used when one needs to negate a
Prolog predicate (in which case it is much faster than default negation). Explicit negation is mostly
syntactic sugar that enables one to represent negative information explicitly. Default negation is a
logically sound version of Prolog-style negation.

19.1 Default Negation \naf vs. Prolog Negation \+

Flora-2 has three operations for negation: \naf, \+, and \neg. In this subsection we discuss the
first two and Section 19.5 describes the third.

Prolog negation is specified using the operator \+. Negation based on the well-founded seman-
tics is specified using the operator \naf. The well-founded negation, \naf, applies to predicates
that are tabled (i.e., predicates that do not have the % prefix to be discussed in detail in Section 23)
or to frames that do not contain transactional methods (i.e., methods prefixed with a %).

The semantics for Prolog negation is simple. To find out whether \+ Goal is true, the system
first asks the query ?- Goal. If the query fails then \+ Goal is said to be satisfied. Unfortunately,
this semantics is problematic. It cannot be characterized model-theoretically and in certain simple
cases the procedure for testing whether \+ Goal holds may send the system into an infinite loop.
For instance, in the presence of the rule %p :- \+ %p, the query ?- %p will not terminate. Prolog
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negation is the recommended type of negation for non-tabled predicates (but caution is advised).

The well-founded negation, \naf, has a model-theoretic semantics and is much more satisfactory
from the logical point of view. Formally, this semantics uses three-valued models where formulas
can be true, false, or undefined. For instance, if we have the rule p :- \naf p then the truth value
of p is undefined. Although the details of this semantics are somewhat involved [15], it is usually
not necessary to know them, because this type of negation yields the results that the user normally
expects. The implementation of the well-founded negation in XSB requires that it be applied to
goals that consist entirely of tabled predicates or frames. Although Flora-2 allows \naf to be
applied to non-tabled goals, this may lead to unexpected results. For instance, Section 26 discusses
what might happen if the negated formula is defined in terms of an update primitive.

For more information on the implementation of the negation operators in XSB, we refer the
reader to the XSB manual.

Both \+ and \naf can be used as operators inside and outside of the frames. For instance,

?- \naf %p(a).
?- \+ %p(a).
?- \naf X[foo->bar, bar->foo].
?- X[\naf foo->bar, bar->foo, \+ %p(?Y)].

are all legal queries. Note that \+ applies only to non-tabled constructs, such as non-tabled
Flora-2 predicates and transactional methods.

To apply negation to multiple formulas, simply enclose them in parentheses. (Parentheses are
not needed for singleton formulas used in earlier examples.)

?- \+ (%p(a),%q(?X)).
?- \naf (p(a),q(?X)).
?- \naf (?X[foo->bar], ?X[bar->foo]).

19.2 Default Negation for Non-ground Subgoals

One major difference with other implementations of the well-founded default negation is that
Flora-2 lets one apply it to formulas that contain variables. Normally, systems either require
that the formula under \naf is ground or they interpret something like \naf p(?X) as meaning
“not exists ?X such that p(?X) is true” — the so-called Not-Exists semantics. However, this is
not the right semantics in many cases. The right semantics is usually “there exists ?X such that
p(?X) is not true.” This semantics is known as the Exists-Not semantics. Indeed, the standard
convention for variables that occur in the rule body but not in the head is existential. For instance,
if ?X does not occur in the head of some rule, p(?X) in the body of that rule is interpreted as ∃?X
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p(?X). Negation should not be treated differently, i.e., \naf p(?X) should be interpreted as ∃?X
\naf p(?X). Worse yet, if ?X does occur in the rule head then it is confusing and error-prone to in-
terpret h(?X) :- \naf p(?X) as h(?X) :- \naf ∃?X p(?X) using the Naf-Exists semantics. And
without the Naf-Exists semantics, \naf p(?X) has no meaning, if ?X happens to be non-ground.

Flora-2 takes a different approach. For body-only variables that appear under \naf the
semantics is Exists-Not. In addition, \neg p implies \naf p. So,

\neg p({1,2}).
?- \naf p(?X).

returns the bindings 1 and 2 for ?X. For variables that occur both under \naf and in the rule
head, the semantics is also standard: universal quantification that applies to the entire rule. What
happens if ?X is not ground at the time of the call to p(?X) (whether ?X does or does not occur in
the rule head)? In that case, Flora-2 defers the call in the hope that ?X might become ground
later. For instance, in

p(2).
?- \naf p(?X), ?X=1.

the query succeeds because the call \naf p(?X) will be delayed past the moment when ?X becomes
ground. Finally, what happens if ?X does not become ground even after the delay? Still the Exists-
Not semantics is used. If p(?X) is false for all ?X (i.e., if \naf ∃?X p(?X) holds) then, in particular,
∃ \naf?X p(?X) is also true (assuming an infinite number of constants) and the query succeeds
with the truth value true. If ∀?X p(?X) is true then \naf ∃?X p(?X) is false. However, if none
of the above cases apply then we are in a gray area and there is not enough information to tell
whether \naf ∃?X p(?X) is true or false, so this subgoal succeeds with the truth value undefined.
For instance, suppose that the only facts in the KB are the ones below:

p({1,2}).
?- \naf p(?X).
?- \naf q(?X).

Then the first query succeeds with the truth value undefined, since \naf ∃?X p(?X) is not true.
On the other hand, the second query succeeds with the truth value true. In both cases, Flora-2
makes an open domain assumption by refusing to commit to true or false based only on the explicitly
known elements of the domain of discourse.

Finally, what if the user does want the Not-Exists semantics after all? In Flora-2 one must
then say this explicitly and in a natural way through the use of existential quantifier:
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?- \naf exists(?X)^p(?X).

More on the logical quantifiers is given in Section 20.

19.3 Non-ground Subgoals Under \+

When \+ is applied to a non-ground goal, the semantic is the standard Prolog’s one: If for some
values of the variables in Goal the query succeeds, then \+ Goal is false; it is true only if for all
possible substitutions for the variables in Goal the query is false (fails). Therefore \+ Goal intu-
itively means ∀?Vars¬ Goal, where ?Vars represents all the nonbound variables in Goal. However,
here ¬ should be understood not as classical negation but rather as a statement that Goal cannot
be proved to be true.

19.4 True vs. Undefined Formulas

The fact that the well-founded semantics for negation is three-valued brings up the question of
what exactly does the success or failure of a call mean. Is undefinedness covered by success or by
failure? The way this is implemented in XSB is such that a call to a literal, P , succeeds if and
only if P is true or undefined. Therefore, it is sometimes necessary to be able to separate true
from undefined facts. In Flora-2 , this separation is accomplished with the Flora-2 primitives
true{Goal} and undefined{Goal}. For good measure, the primitive false{Goal} is also thrown
in. For instance,

a[b->c].
e[f->g] :- \naf e[f->g].

?- true{a[b->c]}.

Yes

?- undefined{e[f->g]}.

Yes

?- false{k[l->m]}.

Yes
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It should be noted that the primitives true{...} and undefined{...} can be used only in top-
level queries or in the rules whose heads are not mutually recursive with any of the query literals.
Otherwise, the result is undefined. The expression false{Goal} is equivalent to \naf Goal, and
can be used anywhere.

In addition, sometimes it may be necessary to to check if a succeeding query succeeds with the
truth value true or undefined. (A failing query never succeeds, so there is nothing to test in that
case.) To this end, Flora-2 provides the primitive truthvalue which takes a variable that gets
bound to the truth value of the query. For instance, suppose that the query q(?X) has two answers:
?X=a is a true answer and ?X=b is undefined (not false!). Then

q(a).
q(b) :- \undefined.
?- q(?X), truthvalue{?_P},

\if ?_P == \true \then writeln(?X=true)@\io
\else writeln(?X=undefined)@\io.

b = undefined
a = true

?X = a
?X = b - undefined

As with true{...} and undefined{...}, the truthvalue{...} primitive can be used only in top
level queries or in rules that are not mutually recursive with any of the query literals.

19.5 Explicit Negation

Explicit negation is denoted using the connective \neg, for instance, \neg p. It is a weaker form
of classical negation and is quite unlike the default negation. First, explicit negation can appear
both in rule heads and rule bodies. Second, unlike the default negation or Prolog negation, in order
to conclude \neg p one must actually prove \neg p—not simply fail to prove p. In other words,
establishing \neg p is a harder requirement than establishing \naf p, and \neg p always implies
\naf p.

Also, unlike classical negation, the law of excluded middle does not hold for \neg, so both p
and \neg p. In contrast, p and \naf p cannot be both true and cannot be both false—it is always
the case that one is true and the other is false. Can both p and \neg p be true? The answer may
surprise: yes. Flora-2 does not check that by default because this is somewhat expensive. To tell
it to check this inconsistency, two things must be done:

1. The module where these facts occur must be declared as defeasible using the



19 NEGATION 85

:- use_argumentation_theory.
directive—see Section 37 and

2. The facts and the rules where the above literals occur in the rule heads must be made
defeasible (also see Section 37). This can be done either by giving these rules/facts the
defeasible property or by assigning them explicit defeasibility tags:

For example,

:- use_defeasibility_theory.
@@{defeasible} p. // fact has defeasibility property
@{abc} \neg p. // explicit defeasibility tag
?- p.
No
?- \neg p.
No

As you can see, in this case, Flora-2 will detect an inconsistency and will “defeat” the offending
inferences by making both of them false. One can also find out why the various inferences were
defeated—see Section 37.

The explicit negation connective, \neg, can be applied to conjunctions or disjunctions of literals.
However, \neg p,q is not allowed in the rule head, since this is tantamount to a disjunction, \neg
p \or \neg q. In a rule body, the idioms \neg\naf p and \neg \+ p are illegal, but \naf\neg
p and \+\neg p are legal and should be informally understood as statements that p is not known
to be false.

As with the default negation \naf, \neg is allowed inside the frames in front of -> and => and
in front of Boolean (non-transactional) methods. For instance,

a[\neg b->c], a[|\neg b => c|], a[\neg b], a[|\neg b|]

are allowed, but a[\neg %b], a[\neg b ->-> c], a[\neg b +> c] are illegal.

At present, explicit negation works with defeasible reasoning, but it is not treated in any special
way in modules that do not use defeasible reasoning. For instance, no consistency check is done to
ensure that p and \neg p are not true at the same time. This is future work.

Explicit negation is fully integrated with meta-programming. For instance, the following is valid
syntax:

?- ?X = ${a[b->c]}, \neg ?X.
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This is equivalent to ?- \neg a[b->c]. The meta-unification and meta-decomposition operators,
∼ and =.., introduced in Sections 18.1 and 18.3, are also aware of explicit negation. For instance,

?- ${\neg a[b->c]@foo} =.. [neg_flogic(->,foo), a, b, c].
?- \neg a[b->?C]@foo ~ \neg ?X@?Z, \neg ?X ~ ${\neg ?A[?B->cc]@foo}.

The second query produces the following answer:

?C = cc
?X = ${\neg \neg a[b -> cc]@foo}
?Z = foo
?A = a
?B = b

The answer for ?X might look a little strange, but double negation works as expected:

?- ${\neg \neg a[b -> cc]@foo} ~ ${a[b -> cc]@foo}.

Transactional HiLog literals and methods cannot be negated using \neg. For instance, the
following literals are syntax errors:

\neg %p
\neg a[%p]

Similarly, Flora-2 update or aggregate operations cannot be negated.

20 General Formulas in Rule Bodies

Unlike most other rule engines, Flora-2 supports a much larger variety of formulas in the rule
body. In due time we will see various if-then-else clauses, loops, etc. But the free use of logical
quantifiers forall (all, each are also accepted) and exists (exist, some are also accepted) is,
perhaps the most unique. In fact, the rule bodies in Flora-2 can have arbitrary formulas involving
quantifiers, \and, \or, \naf, and the logical implications ~~>, <~~, <~~>, ==>, <==, and <==>. Here
are some examples:

h1(?Z) :- \naf exists(?X)^(\naf ((p(?X) ~~> q(?X,Z)))).
h2(?Y) :- forall(?X)^(p(?X,?Y) ~~> q(?X)).
h3(?V,?W) :- forall(?Y,?Z)^(\naf exists(?X)^(pp(?X,?W,?Y,?Z) , \naf qq(?X,?Y,?V,?Z))).
?- forall(?X)^(p(?X)<~~>p(?X)).
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Other connectives, such as ==>, <==, <==>, if-then-else, etc., can also be used in conjunction
with the quantifiers. The definitions of all these implications are as follows:

• φ~~>ψ (and \ifφ \thenψ) is a shorthand for \nafφ \or ψ.
ψ<~~φ is the same as φ~~>ψ, while φ<~~>ψ is (φ~~>ψ \and φ<~~ψ).

• φ==>ψ is a shorthand for \negφ \or ψ.
ψ<==φ is the same as φ==>ψ, while φ<==>ψ is (φ==>ψ \and φ<==ψ).

• ifφ thenψ else η is (φ~~>ψ \and (\nafφ)~~>η).

It should be noted that it makes no sense to place non-logical operators in the scope of the
quantifiers or \naf. For instance,

?- \naf load{abc}.

does not make a whole lot of sense (try it!). But some uses of quantification in conjunction with
actions do make sense and are quite natural: For instance,

?- forall(?X)^(data(?X)~~>writeln(?X)@\io).

will print out the contents of the predicate data/1.

Quantifiers in Flora-2 are implemented through the well-known Lloyd-Topor transformation
[13] except that the role of negation here is played by \naf, not \+. However, unlike Prolog for
which the Lloyd-Topor transform was originally defined, Flora-2 gives a logical treatment to
negation of non-ground formulas. In particular, as discussed in Section 19.2, when negating non-
ground subgoals the truth value may be undefined. Quantifiers and ~~> have implicit negation in
them, so, in order to know when to anticipate undefinedness, it is useful to understand what it
means to have a non-ground subgoal under \naf.

We say that a variable in the body of a rule occurs positively if it occurs in the scope of an even
number of \nafs. A variable occurs negatively if it occurs in the scope of an odd number of \nafs.
So, undefinedness can happen if some variable in the body of a rule occurs negatively and does not
occur positively.

To make the above more precise, we explain how to count the \nafs. This is not immediate
because of the implicit negations mentioned earlier. So, for the purpose of counting the \nafs, one
must break each forall(Varlist)̂φ into (\naf exists(Varlist)̂( \naf φ)). Each φ~~>ψ
must be broken into (\naf φ or ψ), and similarly with <~~; if-then is synonymous with ~~>;
and <~~> is a conjunction of ~~>, and <~~. The connective \ifφ \thenψ \else η is treated for the
purpose of counting \nafs as φ \and \nafψ \or \naf η. Note that ==> and related connectives do
not involve \nafs.
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20.1 Quantification of Free and Anonymous Variables

In logic, free variables (i.e., variables that do not occur in any quantifier) do not normally make
sense because it is unclear how to determine truth of a formula with such a variable. Nevertheless,
non-quantified variables are widely used. In fact, languages like Prolog and SQL have no syntax
for quantifiers, so one might be misled into thinking that all variables there are non-quantified.
This is incorrect, however: both languages have a set of conventions by which all variables are
quantified implicitly. In Prolog, for example, the convention is that all variables are implicitly
quantified outside of the rule, i.e., ∀X,Y, Z(head(...) : −body(...)). This rule is often also stated
equivalently as follows: variables that occur in the body only are quantified existentially in the
body and all the rest are universal in the scope of the entire rule, i.e., ∀X,Y, Z(head(X,Y, Z) :
−∃V,W (body(X,Y, Z, V,W ))). The situation gets muddies when negation as failure is taken into
account and we will not go there right now.

In Flora-2 , the situation is a bit more interesting because here we have explicit quantifiers,
but it is not mandatory to quantify all variables. According to the previous discussion, variables
that are not quantified explicitly must be quantified implicitly according to some rules. What are
these rules? The implicit quantification rules for free variables make a distinction between named
variables (which includes don’t-care variables) and anonymous variables. In addition, it matters
whether a free variable occurs under the scope of a \naf or not:

• Anonymous variables:
First, note that an anonymous variable is never explicitly quantified simply because it has no
name (at least, no name the user knows about) and so one does not have anything to refer
to that variable in the quantifier (something like forall(?) is not allowed because it can be
highly ambiguous).
So, the rule for such variables is that each anonymous variable that occurs in some literal,
p(...,?,...) or \neg p(...,?,...), is implicitly quantified with exists immediately be-
fore that literal, i.e., exists(?var123)ˆp(...,?var123,...) or exists(?var123)ˆ\neg
p(...,?var123,...), where var123 is some internal compiler-generated name for that
anonymous variable. This existential quantifier takes precedence over \naf (but not over
\neg, as we just saw).

• Named variables that do not occur under the \naf :
The rules for these variables are the same as in Prolog: if they occur in the head (and possibly
in the body also) then they are universal with respect to the entire rule; if they occur in the
body only then they are existential with respect to the body.

• Named variables under the \naf :
This implicit quantification rule has a bit of computational flavor and is not completely
declarative, which has to do with the fact that the declarative definition for \naf exists for
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top-down computation essentially only for the variable-free case.
If a named variable gets grounded during the evaluation before the evaluation of \naf starts
then it is not a variable any more and the question is moot. If it remains unbound by the
time \naf gets computed then the variable is treated existentially outside of the scope of
\naf. In many cases, this situation leads to answers whose truth value is undefined. This
because Flora-2 quantifiers do not specify the domain for the quantified variables and for
some domains such queries may be true and for some false.

20.2 The Difference Between ~~>, ==> (or, <~~, <==), and :-

Note that the connectives ==>, <==, and <==> do not involve \naf: they are translated using \neg.
For instance, φ==>ψ is a shorthand for (\neg φ) \or ψ, while φ~~>ψ is a shorthand for (\naf
φ) \or ψ (and \if-\then is synonymous to ~~>). This means that there is a significant semantic
difference between these types of formulas:

• φ==>ψ is true iff: when φ is not known to be false (i.e., when \negφ cannot be proven true)
then ψ is also true.

• φ~~>ψ is true iff: when φ is true then ψ is also true.

The second statement is true in more cases. To see this, recall that φ==>ψ is (\negφ) \orψ while
φ~~>ψ is (\nafφ) \orψ. Note that (\negφ) implies (\nafφ) i.e., the latter is true more often
than the former. Therefore, (\nafφ) \orψ is true more often than (\negφ) \or ψ.

Experience shows that in most cases φ~~>ψ is the correct intended usage in rule bodies. If the
user feels that ==> is needed, a careful analysis of the intended meaning based on above cases is
strongly suggested.

The other important differences are syntactic: φ==>ψ can appear both in the body of a rule
(i.e., on the right of : − and in the head (on the left of : −) provided that neither φ nor ψ use the
\naf. In contrast, φ~~>ψ can be used only in the body of a rule because its very definition involves
\naf.

As to :-, this connective is very different from the aforementioned ones, as it is the only one
that forms what we call rules. What’s on the left of :- is the head of the rule and what’s on the
right is the body. Neither ~~> nor ==> (nor their leftward brethren <~~ and <==) form rules: they
can appear only in rule bodies in Flora-2 (but in ERGO ==> can also appear in rule heads). But
the main difference is that these connectives test if, say, φ~~>ψ is true (false, or undefined) for
some variable bindings in φ and ψ. These tests are part of the process of determining if the body
of a rule is true (false or undefined). In contrast, head:-body tests if body is true (undefined) and,
if so, derives that head is also true (respectively, undefined). For instance, consider the following
example:
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p(1), q(1), r(2,1).
w(?X) :- r(?X,?Y), (p(?Y) ~~> q(?Y)).

Here one can verify that p(?Y) ~~>q(?Y) is true when ?Y is bound to 1, and it so happens that
r(?X,?Y) is also true for this binding if ?X is bound to 2. Then the rule on the second line of
the example derives the fact w(2). It is important to understand that, in contrast, neither p(?Y)
~~>q(?Y) nor p(?Y) ==>q(?Y) derive anything.

21 Inheritance of Default Properties and Types

In general, inheritance means that attribute and method specifications for a class are propagated to
the subclasses of that class and to the objects that are instances of that class. This section describes
the extensive support for inheritance both for default values as well as for typing information.

Flora-2 supports two types of inheritance: structural and behavioral. Structural inheritance
applies to signatures only, i.e., to class frame formulas that use the =>-style arrows. These formulas
specify the type information for classes as a whole. For instance, if student::person holds and we
have the signature person[|name=>string|] then the query ?- student[|name=>?X|] succeeds
with ?X=string.

Behavioral inheritance is much more involved. Flora-2 supports two versions of behavioral
inheritance—monotonic and non-monotonic—and the choice can be specified on the per-module
basis. In both cases, behavioral inheritance concerns class frame formulas that use the ->-style ar-
rows or to Boolean class frames, and these formulas are inherited to subclasses and class members.
The key difference is that monotonic inheritance (both structural and behavioral) is cumulative
and resembles the way types are inherited in structural inheritance. In contrast, behavioral inher-
itance is non-monotonic in the sense that the formulas being inherited are understood as default
specifications that can be overridden by the information explicitly specified for subclasses. This
also implies that adding new information to subclasses may invalidate previously true facts, i.e.,
true (inferred) information does not necessarily grow monotonically as we add more data.

21.1 Introduction to Inheritance

Flora-2 distinguishes between information defined for a class as a whole and information defined
for an individual object only. The former, class-wide information is inherited to the members of the
class and to its subclasses, and is specified using the frame formulas of the form (note the vertical
bars):

obj[|Meth->Val|]
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obj[|Meth=>Val|]
obj[|BoolProp|]
obj[|=>BoolProp|]

These formulas normally occur as part of the specifications for classes. Object-specific information
is given using the formulas of the form (no vertical bars!):

obj[Meth->Val]
obj[Meth=>Val]
obj[BoolProp]
obj[=>BoolProp]

This information is always attached to individual objects. Even if an object represents a class (and
in Flora-2 classes are also objects), this information does not apply to the members of that class
or its subclasses. For instance,

person[avg_age -> 40].

does not propagate to an object such as John even if John:person is true. The property
avg_age->40 is likewise not inherited by the various subclasses of person, such as student or
employee: it would not make sense to propagate such information because an average age of all
persons is likely to be different from the average age of students and employees, and this is why
we wrote person[avg_age->40] and not person[|avg_age->40|]. Similarly, attributes that typ-
ically refer to individuals are better specified as object-level information, because normally there is
nothing to inherit these attributes to. For instance,

John[age -> 30].

makes sense but neither person[avg->30] nor person[|avg->30|] does.

Class formulas typically define default properties for the objects in a class, which are inherited
unless there is information to the contrary. For instance, suppose we have

British[|nativeLanguage -> English|].

If John:British is true, then, without evidence to the contrary, we can derive
John[nativeLanguage -> English]. If we are also told that Scottish::British, i.e., Scottish
people are also British, then we can derive (again, in the absence of evidence to the contrary) that
Scottish[|nativeLanguage -> English|].
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Note that a class formula becomes an object-level formula when its information is inherited to
the members of the class. For instance, if we are also told that John:British then John inherits the
native language as follows: John[nativeLanguage->English] (no bars! because there is nothing to
inherit to from John). However, the inherited property remains a class formula when it is inherited
to a subclass (e.g., Scottish[|nativeLanguage->English|]).

Suppose now that we are told that John is actually a native speaker of Gaelic via the fact
John[nativeLanguage->Gaelic]. In that case, the explicitly given property nativeLanguage ->
Gaelic overrides the default property nativeLanguage->English and the latter is not inherited.

Overriding can happen also at the level of classes. Suppose Flora-2 has this pair of facts:
American[|nativeLanguage->English|] and Manuel:American. In the absence of any other in-
formation, we would have derived by inheritance that Manuel[nativeLanguage->English]. But
if our knowledge base also has these facts:

PuertoRican::American.
PuertoRican[|nativeLanguage->Spanish|].
Manuel:PuertoRican.

then Flora-2 would discover that, since PuertoRican is a subclass of American, the property
nativeLanguage->Spanish is more specific to Manuel than nativeLanguage->English, and so,
by inheritance, it would derive Manuel[nativeLanguage->Spanish]. Had Flora-2 been told
that Manuel[nativeLanguage->Portuguese], this most specific information would override that
inheritance of nativeLanguage->Spanish.

The signature frame formulas are inherited similarly, but there is no overriding. For instance,
suppose that we have a class language, which contains objects such as English, Spanish, Gaelic,
French, etc. The knowledge base might have a fact like

American[|nativeLanguage => language|].

which is read as a type constraint stating that, for every American, the property nativeLanguage
can take only the values that are members of the class language. That is, in the above example,
Manuel[nativeLanguage->Spanish] (or even Gaelic) would be ok, but Manuel[nativeLanguage
-> abracadabra] is not. This is because, as we said earlier, Spanish and Gaelic are known to be
in class language, but it is impossible to derive abracadabra:language given our knowledge base.
Section 42.2 explains how type constraints can be checked and ERGO has also means of automatic
enforcement of such constraints.

Like defaults, type information is inheritable. For instance, suppose the knowledge base has
this information:

American[|nativeLanguage => language|].



21 INHERITANCE OF DEFAULT PROPERTIES AND TYPES 93

PuertoRican::American.
Manuel:PuertoRican.

Flora-2 would then derive the following by inheritance:

PuertoRican[|nativeLanguage => language|].
Manuel[nativeLanguage => language].

Note that since Manuel is a member of PuertoRican and not a subclass, it has lost the vertical
bars during the inheritance, but the class PuertoRican still has them. From here on, nothing can
be inheritable from Manuel even if this object can somehow be considered as a class. For instance,
suppose Manuel has two alter egos: ManuelJekyll:Manuel and ManuelHyde:Manuel. Despite the
fact that now Manuel has its own class members, since Manuel[nativeLanguage->Spanish] is a
property of Manuel as individual and not as a class (the missing bars tell us that!), the property
nativeLanguage->Spanish is not inherited to either ManuelJekyll or ManuelHyde. Similarly,
Manuel[nativeLanguage => language] specifies the type of Manuel as an individual object and
so it is inherited to neither of the two alter egos.

To illustrate the no-overriding property of signature inheritance, suppose the knowledge base
also has PuertoRican[|nativeLanguage => latinLanguage|]. Unlike the inheritance of de-
fault values, this will not override the inheritance of the type PuertoRican[|nativeLanguage
=> language|]: it will still be inherited and this simply means that the actual values must
lie in the intersection of the classes language and latinLanguage, which in this case is simply
latinLanguage. However, this also means that one must be careful here. If the knowledge base
had American[|nativeLanguage => germanicLanguage|] then PuertoRican[|nativeLanguage
=> germanicLanguage|] would also be true, but Spanish would not be in the intersection of the
types germanicLanguage and latinLanguage (assuming our knowledge base is a good model of
the real world). Such a mistake can be detected via type-checking (Section 42.2), which should
prompt a revision of the way the types are specified. We should note, however, that an effect similar
to inheritance overriding can be achieved via the mechanism of defeasible reasoning described in
Section 37.

21.2 Monotonic Behavioral Inheritance

The default for behavioral inheritance is non-monotonic, so to request monotonic inheritance one
must use the following compiler directive:

:- setsemantics{inheritance=monotonic}.

This semantic can also be requested at runtime by executing the command
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?- setsemantics{inheritance=monotonic}.

(Of course, ?- is to be used only when such a command appears in a file; it should be omitted on
the Flora-2 shell command line.) Here is an example of how monotonic behavioral inheritance
works:

:- setsemantics{inheritance=monotonic}.
d(?_x):a(?_x).
g(?_x)::a(?_x).
a(r)[|b(y)->c|].
g(r)[|b(y)->e|].
a(u)[|d(1)|].
g(u)[|d(2)|].

?- d(?I)[b(?X)->?Y].

?I = r // inherited information
?X = y
?Y = c

?- g(?I)[|b(?X)->?Y|].

?I = r // inherited information
?X = y
?Y = c

?I = r // explicitly specified information
?X = y
?Y = e

?- d(?I)[d(?X)].

?I = u // inherited information
?X = 1

?- g(?I)[|d(?X)|].

?I = u // inherited information
?X = 1
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?I = u // explicitly specified information
?X = 2

21.3 Non-monotonic Behavioral Inheritance

Non-monotonic behavioral inheritance is the default, but sometimes one might also need or want
to specify it explicitly—either for documentation or to override a differently specified inheritance
at runtime. The compiler directive (that would appear in a file) is

:- setsemantics{inheritance=flogic}.

and the runtime command is

?- setsemantics{inheritance=flogic}.

The following is a Flora-2 specification for the classical Royal Elephant example:

elephant[|color=>color, color->gray|].
royal_elephant::elephant.
clyde:royal_elephant.

The first statement says that the color property of an elephant must be of type color and that
the default value is gray. The rest of the statements say that royal elephants are elephants and
that clyde is an individual elephant. The question is what is the color of clyde? The color of that
elephant is not given explicitly, but since clyde is an elephant and the default color for elephants
is gray, clyde must be gray. Thus, we can derive:

clyde[color->gray].

Observe once again that when class information is inherited by class’ individual members, the re-
sulting formula becomes object-level rather than class-level (i.e., ...[...] instead of ...[|...|]).
On the other hand, when this information is inherited by a subclass from its superclass, then the
resulting formula is a class-level formula because it should be still applicable to the members of the
subclass and to its subclasses. For instance, if we have

circus_elephant::elephant.

then we can derive
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circus_elephant[|color->gray|].

Non-monotonicity of behavioral inheritance becomes apparent when new information gets added
to the knowledge base. For instance, suppose we learn that

royal_elephant[|color->white|].

Although we have previously established that clyde is gray, this new information renders our
earlier conclusion invalid. Indeed, since clyde is a royal elephant, it must be white, while being an
elephant it must be gray. The conventional wisdom in knowledge representation is that inheritance
from more specific classes must take precedence. Thus, we must withdraw our earlier conclusion
that clyde is gray and infer that he is white:

clyde[color->white].

Nonmonotonicity also arises due to multiple inheritance. The following example, known as the
Nixon Diamond, illustrates the problem. Let us assume the following knowledge base:

republican[|policy -> security|].
quaker[|policy -> pacifist|].
Nixon:quaker.

Since Nixon is a Quaker, we can derive Nixon[policy -> pacifist] by inheritance from the
second clause. Let us now assume that the following information is added:

Nixon:republican.

Now we have a conflict. There are two conflicting inheritance candidates: quaker[|policy ->
pacifist|] and republican[|policy -> security|]. In Flora-2 , such conflicts cause previ-
ously established inheritance to be withdrawn and both policy->pacifist and policy->security
become false for object Nixon. This behavior can be altered by adding additional rules and facts.
For instance, adding Nixon[policy->security] would take precedence and override the inherited
information. More generally, one could introduce priority over superclasses, say with a predicate
hasPriority, and then add the rule

?Obj[policy->?P] :-
?Obj:?Class, ?Class[|policy->?P|], \naf hasPriority(?AnotherClass,?Class).

If we also had hasPriority(republican,pacifist) then inheritance from the class republican
would take precedence.
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Behavioral inheritance in F-logic is discussed at length in [18, 20]. The above non-monotonic
behavior is just the tip of an iceberg. Much more difficult problems arise when inheritance interacts
with regular deduction. To illustrate, consider the following:

b[|m->c|].
a:b.
a[m->d] :- a[m->c].

In the beginning, it seems that a[m->c] should be derived by inheritance, and so we can derive
a[m->d]. Now, however, we can reason in two different ways:

1. a[m->c] was derived based on the belief that attribute m is not defined for the object a.
However, once inherited, we must necessarily have a[m->{c,d}]. So, the value of attribute m
is not really the one produced by inheritance. In other words, inheritance of a[m->c] negates
the very premise on which the original inheritance was based, so we must give up the earlier
conclusion made by inheritance as well as the subsequent inference made by the rule.

2. We did derive a[m->d] as a result of inheritance, but that’s OK — we should not really be
looking back and undoing previously made inheritance inferences. Thus, the result must be
a[m->{c,d}].

A similar situation (with similarly conflicting conclusions) arises when the class hierarchy is not
static. For instance,

d[|m->e|]
d::b.
b[|m->c|].
a:b.
a:d :- a[m->c].

If we inherit a[m -> c] from b (which seems to be OK in the beginning, because nothing overrides
this inheritance), then we derive a:d, i.e., we get the following: a:d, d::b. This means that now
d seems to be negating the reason why a[m -> c] was inherited in the first place. Again, we can
either undo the inheritance or adopt the principle that inheritance is never undone.

A semantics that favors the second interpretation was proposed in [10]. This approach is based
on a fixpoint computation of non-monotonic behavioral inheritance. However, this semantics is
unsatisfactory in many respects, including because it is procedural in nature. Flora-2 uses a
different, more cautious semantics for inheritance, which favors the first interpretation above.

Details of this semantics are formally described in [18]. Under this semantics, clyde will still
inherit color white, but in the other two examples a[m->c] is not concluded. The basic intuition
can be summarized as follows:
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1. Method definitions in subclasses override the definitions that appear in the superclasses.

2. In case of a multiple inheritance conflict, the result of inheritance is false.

3. Inheritance from the same source through different paths is not considered a multiple inher-
itance conflict. For instance, in

a:c. c::e. e[|m->f|].
a:d. d::e.

Even though we derive c[|m->f|] and d[|m->f|] by inheritance, these two facts can be
further inherited to the object a, since they came from a single source e.

On the other hand, in a similar case

a:c. c[|m->f|].
a:d. d[|m->f|].

inheritance does not take place (a[m->f] is false), because the two inheritance candidates,
c[|m->f|] and d[|m->f|], are considered to be in conflict.

Note that in the last example one might argue that even if we did inherit both facts to a,
there would be no discrepancy because, in both cases, the values of the attribute m agree with
each other. However, Flora-2 views this agreement as accidental: had one of the values
changed to, say d[m->g], there would be a conflict.

4. At the level of methods of arity > 1, a conflict is considered to have taken place if there
are two non-overridden definitions of the same method attached to two different superclasses.
When deciding whether a conflict has taken place we disregard the arguments of the method.
For instance, assuming that c and d are classes that are incomparable with respect to ::, the
following has a multiple inheritance conflict

a:c. c[|m(k)->f|].
a:d. d[|m(u)->f|].

even though in one case the method m is applied to object k, while in the other it is applied
to object u. On the other hand,

a:c. c[|m(k)->f|].
a:d. d[|m(k,k)->f|].
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do not conflict, because m/1 in the first case is a different method than m/2 in the second.
Similarly,

a:c. c[|m(k)()->f|].
a:d. d[|m(u)()->f|].

are not considered to be in conflict because here it is assumed that the method names are
m(k) and m(u), which are distinct names. Finally,

a:c. c[|m(k)()->f|].
c[|m(u)()->f|].

is likewise not a conflict because inheritance here comes from the same class c.

In the examples that we have seen so far, path expressions queried only object-level information.
To query class-level information using path expressions, Flora-2 uses the symbol “!”. For instance,

royal_elephant!color

means: some ?X such that royal_elephant[|color->?X|] is true. In our earlier example, ?X
would be bound to white.

21.4 Inheritance of Negative Information

Certain kind of negative information can also be inherited, but inheritance goes in the opposite
direction: from class members and subclasses to superclasses. The following subsections discuss
this issue.

21.4.1 Negative Monotonic Behavioral Inheritance

If monotonic behavioral inheritance is requested using the setsemantics primitive, negative data
frames propagate from objects to their classes as class-level frames, i.e., as frames of the form
[|...|]. Similarly, class-level data frames are propagated from subclasses to superclasses. For
example, given the following data

:- setsemantics{inheritance=monotonic}.
obj:c1.
c1::c2.
obj[\neg prop->val]. // equivalently: \neg obj[prop->val]



21 INHERITANCE OF DEFAULT PROPERTIES AND TYPES 100

c1[|\neg prop2->val2|]. // equivalently: \neg c1[|prop2->val2|]
obj[\neg boolprop]. // equivalently: \neg obj[boolprop]
c1[|\neg boolprop2|]. // equivalently: \neg c1[|boolprop2|]

the following queries will return the answers as shown:

?- c2[|\neg ?prop->?val|]. // equivalently: \neg c2[|?prop->?val|]
?prop = prop
?val = val

?prop = prop2
?val = val2

?- c2[|\neg ?boolprop|]. // equivalently: \neg c2[|?boolprop|]

?boolprop = boolprop

?boolprop = boolprop2

21.4.2 Negative Structural Inheritance

Since structural inheritance is monotonic, negative structural inheritance works similarly to neg-
ative monotonic behavioral inheritance. This means that negative signatures from class members
propagate to become negative class-level (i.e., [|...|]) signatures for superclasses. Similarly,
class-level signatures propagate from subclasses to superclasses. For instance, given

obj:c1.
c1::c2.
obj[\neg prop => type]. // equivalently: \neg obj[|prop=>type|]
obj[\neg =>boolprop]. // equivalently: \neg obj[|=>boolprop|]
c1[|\neg prop2 => type2|].
c1[|\neg =>boolprop2|].

the following queries show how the negative properties propagate towards the class c2:

?- c2[|\neg ?prop=>?type|]. // equivalently: \neg c2[|?prop=>?type|]

?prop = prop
?type = type
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?prop = prop2
?type = type2

?- c2[|\neg =>?prop|]. // equivalently: \neg c2[|=>?prop|]

?prop = boolprop

?prop = boolprop2

21.4.3 Negative Non-monotonic Behavioral Non-Inheritance

For non-monotonic inheritance, propagation of negative information does not occur. First, it is a
logical fallacy to expect to inherit negative information like this:

c[|\neg attr->1|].
obj:c.
cc::c.

inferring

?- obj[\neg attr->1].
?- cc[|\neg attr->1|].

This does not make logical sense because the fact c[|\neg att->1|] says that it is known that
att->1 is not a default for class c. One cannot logically conclude from this that it is also known
that att->1 is false for obj or that att->1 is not a default for the subclass cc of c.

Neither does negative information propagate upwards the class hierarchy as was the case with
monotonic inheritance of signatures and behavior. For instance, given

obj::c.
obj[\neg attr->1].

it does not follow that the default for attr in class c is not attr->1 (i.e., c[|\neg attr->1|] has
no logical justification; in fact, c[|attr->1|] could well be true).

The overall intuition for the desire to inherit negative information can nevertheless be achieved
through a more powerful feature of defeasible reasoning described in Section 37. For instance, one
could write a rule like
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@{default(cl)} ?Obj[\neg att->1] :- ?Obj:cl.

which says that, by default, obj[att->1] is known to be false if obj happens to be a member of
class cl. Other statements for the members of class cl may have higher priority and override the
above. For instance,

abc:cl.
@{highpriority} abc[att->1].
\overrides(highpriority,default(cl)).

This says that, for the specific member abc of class cl, att->1 is actually true because this informa-
tion is specified with higher priority (highpriority) than the above default rule (default(cl)),
as indicated by the priority fact \overrides(highpriority,default(cl)).

Despite all of the above, negative information does play a role in blocking inheritance. More
specifically, explicit negative information specified for subclasses and class members is treated as
explicit local statements that override (block) the inherited information. For instance, in

c[|attr1->{1,2}, attr2->{3,4}, attr3->{5,6}|].
cc::c.
obj:cc.
cc[|\neg attr1->1|]. // blocks inheritance of attr1->1 only
obj[\neg attr2->{}]. // blocks inheritance of attr2->anything
?- obj[attr1->?X]. // ?X = 2. Inheritance of atr->1 is blocked
?- cc[|attr1->?X|]. // same
?- obj[attr2->?X]. // no answers: all inheritance is blocked
?- cc[|attr2->?X|]. // ?X = 3,4: inheritance is blocked at obj, below cc
?- obj[attr3->?X]. // ?X = 5,6: inheritance occurs, nothing is blocked
?- cc[|attr3->?Y|]. // same

the explicit negative statement cc[|\neg attr1->1|] blocks the inheritance of c[|attr1->1|]
down to both cc and obj. The explicit negative information obj[\neg attr2->{}] blocks the
inheritance of c[|attr2->val|] down to obj, for any val. For attr3 (and for attr2 at the level
of cc), however, no explicit blocking negative information exists, so the last three queries will report
that data is inherited in full.

21.5 Code Inheritance

The type of behavioral inheritance defined in the previous subsection is called value inheritance.
It originates in Artificial Intelligence, but is also found in modern main stream object-oriented
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languages. For instance, it is related to inheritance of static methods in Java. With this inheritance,
one would define a method for a class, e.g.,

cl[|foo(?Y) -> ?Z|] :- ?Z \is ?Y**2.

and every member of this class will then inherit exactly the same definition of foo. Since the
method definition has no way to refer to the instances on which it is invoked, this method yields
the same result for all class instances. One way to look at this is that class instances do not really
inherit the definition of the method. Instead, the method is invoked in the context of the class
where it is defined and then the computed value is inherited down to all instances (provided that
they do not override the inheritance). So, if a:cl and b:cl then a.foo(4) and b.foo(4) will
return exactly the same value, 16.

A more common kind of methods is called instance methods in Java. In this case, the method
definition refers to instances of the class in whose context the method is supposed to be invoked.
The invocation takes place as follows. First, a class member inherits the code of the method. Then
the code is executed in the context of that class member.

In F-logic this kind of inheritance is called code inheritance and it was studied in [19, 20]. Code
inheritance is not yet supported by Flora-2 . However, with some loss of elegance and extra work,
code inheritance can often be simulated using value inheritance. The idea consists of three steps.

1. Define the desired methods for all appropriate objects irrespective of classes. Definitions
of these methods are the ones to be inherited using simulated code inheritance. These are
auxiliary methods used in the process.

2. Define the attributes whose values are the names of the methods defined in step 1. These
attributes will be subject to value inheritance.

3. Specify how the “real” methods in step 1 represented by the “fake” methods in step 2 are to
be invoked on class instances.

We illustrate this process with the following example. First, assume the following information:

aa:c1.
bb:c2.
c1::c2.
aa[attr1->7, attr2->2].
bb[attr1->5, attr2->4].

We are going to show how code is inherited from c2 to bb. In an attempt to inherit the same code
from c2 to aa, it will be overridden by the code from c1 and the latter (more specific code at aa)
will be inherited by aa.
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Step 1: define auxiliary methods.

// auxiliary method foo/1 defined for every instance
?X[foo(?Y) -> ?Z] :- ?X[attr1->?V], ?Z \is ?V+?Y.
// auxiliary method bar/1 defined for every instance
?X[bar(?Y) -> ?Z] :- ?X[attr2->?V], ?Z \is ?V*?Y.

Unlike Java, the above code is not really local to any class, and this is one aspect in which simulation
of code inheritance by value inheritance is inelegant.

Step 2: define the “fake” method meth.
Next we define meth — the method whose value inheritance will simulate the inheritance of the
code of the methods foo and bar.

c1[|dispatch(meth) -> bar|].
c2[|dispatch(meth) -> foo|].

Clearly, the object bb will inherit dispatch(meth)->foo from c2, while the object aa will inherit
dispatch(meth)->bar from c1; inheritance from c2 is overridden by the more specific class c1.

Step 3: finishing up.
Next, we define how methods are to be invoked in a way that resembles code inheritance:

?X[?M(?Y) -> ?Z] :- ?X[dispatch(?M)->?RealMeth], ?X[?RealMeth(?Y) -> ?Z].

When ?M is bound to a particular method, say meth, and this method is invoked in the context
of a class instance, ?X, the invocation ?X[meth(?Y)->?Z] first computes the value of the attribute
dispatch(meth), which gives the name of the actual auxiliary method to be invoked. The value
of the dispatch(meth) attribute (represented by the variable ?RealMeth) is obtained by value
inheritance. As explained above, this value is foo when ?X is bound to bb and bar when ?X =
aa. Finally, the auxiliary method whose name is obtained by value inheritance is invoked in the
context of the class instance ?X. One can easily verify the following results:

flora2 ?- aa[meth(4) -> ?Z].
?Z = 8

flora2 ?- bb[meth(4) -> ?Z].
?Z = 9

This is exactly what would have happened in Java if aa inherited the instance method whose code
is that of bar/1 and if bb inherited the code of foo/1.
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22 Custom Module Semantics

Flora-2 enables the user to choose the desired semantics for any user module. This is done with
the help of the following directive:

:- setsemantics{Option1, Option2, ...}.

The following options are allowed:

Equality: equality=none, equality=basic, where equality=none is the default.

Inheritance: inheritance=none, inheritance=flogic inheritance=monotonic, where
inheritance=flogic is the default.

Tabling: tabling=reactive (default), tabling=passive, tabling=variant (default), and
tabling=subsumptive.

Custom: custom=none, custom=filename , where custom=none is the default.

These options are described in more detail in the following subsections. Within each group only
one choice can be present or else an error will result. It is not required that all options be present
— defaults are substituted for the missing options.

The compiler directive described above determines the initial semantics used by the module in
which the instruction occurs. However, it is also possible to change the semantics at run time using
the executable directive:

?- setsemantics{Option1, Option2, ...}.

Note the use of ?- here: the symbol :- in the first directive designates the directives that are used
at compile time only. Executable directives, on the other hand, can occur in any query or rule
body. It is also possible for one module to change the semantics in another module. Typically this
is needed when one module creates another. In this case the new module is created with the default
semantics, and the setsemantics executable directive makes it possible to change the semantics
of such a module.

The following options are available only with the executable version of setsemantics, while
the previously mentioned options can be used both at compile and run time.

Subclassing: subclassing=strict, subclassing=nonstrict, with strict being the default.

Class expressions: class_expressions=on, class_expressions=none; default: none.
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Here is an example:

?- setsemantics{equality=basic, custom=’a/b/c’}.

The order of the options in the directive does not matter.

Changing module semantics — precautions. Changing module semantics on the fly at run-
time is a rather drastic operation. It is therefore not recommended to do this in the body of a rule,
especially if the rule defines a tabled HiLog predicate or a frame. The only safe way to execute
setsemantics is in a query at the top level. For instance,

?- setsemantics{...}.

22.1 Equality Maintenance

User-defined equality. Flora-2 users can define equality explicitly using the predicate :=:.
For instance,

John:=:Batman.
?X:=:?Y :- ?X[similar->?Y].

Once two oids are established to be equal with respect to :=:, whatever is true of one object is
also true of the other. Note that :=: is different from the built-in =. The latter is a predefined
primitive, which cannot occur in facts or in rule heads. Since = is understood as unification, ground
terms can be =-equal only if they are identical. Thus, a=a is always true and a=b is always false.
In contrast, the user can assert a fact such as a:=:b, and from then on the object a and the object
b are considered the same (modulo the equality maintenance level, which is described below).

Equality maintenance levels. Once an equality between terms is derived, this information may
need to be propagated to all F-logic structures, including the subclass hierarchy, the ISA hierarchy,
etc. For instance, if x and y are equal, then so must be f(x) and f(y). If x:a has been previously
derived then we should now be able to derive y:a, etc. Although equality is a powerful feature,
its maintenance can slow down the execution quite significantly. In order to be able to eat the
cake and have it at the same time, Flora-2 allows the user to control how equality is handled, by
providing the following three compiler directives:
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:- setsemantics{equality=none}. // default
:- setsemantics{equality=basic}.

The first directive, setsemantics{equality=none}, does not maintain any equality and :=: is
just a symmetric transitive relation that includes the identity. However, the congruence properties
of equality are not supported (for instance, p(a) and a:=:b do not imply p(b)). The directive
setsemantics{equality=basic} guarantees that :=: obeys the usual rules for equality, i.e., tran-
sitivity, reflexivity, symmetry, and (limited) congruence.

If a Flora-2 module does not define facts of the form a:=:b, which involve the equality
predicate :=:, then the default equality maintenance level is none. If the knowledge base does have
such facts, then the default equality maintenance level is basic, because it is assumed that the use
of :=: in the source is not accidental. In any case, the explicit equality=... option overrides the
default.

Locality of equality. Equality in Flora-2 is always local to the module in which it is derived.
For example, if a:=:b is derived by the rules in module foo then the query

?- (a:=:b)@foo.

will succeed, but the query

?- (a:=:b)@bar.

will fail (unless, of course, a:=:b is also derived by the rules in module bar).

Since equality information is local to each module, the directives for setting the equality level
affect only the particular user modules in which they are included. Thus, equality can be treated
differently in different modules, which allows the knowledge engineer to compartmentalize the
performance problem associated with equality and, if used judiciously, can lead to significant gains
in performance.

Run-time changes to the equality maintenance level. In Flora-2 , the desired level of
equality maintenance can also be changed at run time by executing a goal such as

?- setsemantics{equality=basic}.

Furthermore, Flora-2 allows one user module to set, at run time, the level of equality maintenance
in another user module:
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?- setsemantics{equality=basic}@foobar.

This might be useful for dynamic modules, i.e., modules that are not associated with any files and
whose content is generated completely dynamically. (See Section 26.)

Using the preprocessor to avoid the need for equality maintenance. One final bit of
advice regarding equality: In many cases, knowledge engineers tend to use equality as an aliasing
technique for long messages, numbers, etc. In this case, we recommend the use of preprocessor
commands, which achieve the same result without loss of performance. For instance,

#define YAHOO ’http://yahoo.com’

?- YAHOO[fetch -> ?X].

Assuming that fetch is a method that applies to strings that represent Web sites and that it
fetches the corresponding Web pages, the above will fetch the page at the Yahoo site, because the
Flora-2 compiler will replace YAHOO with the corresponding string that represents a URL.

Limitations of equality maintenance in Flora-2 . The implementation of equality in
Flora-2 supports only a limited version of the congruence axiom due to the overhead associated
with such an implementation. A congruence axiom states that if α = β then β can be substituted
for any occurrence of α in any term. For instance, f(x, α) = f(x, β). In Flora-2 , however, the
query

a :=: b.
?- g(a) :=: g(b).

will fail. However, equal terms can be substituted for the arguments of frames and HiLog predicates.
For instance, the queries

a:=:b.
a[f->c].
p(a,c).
?- b[f->c].
?- p(b,c).

will succeed.
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22.2 Choosing a Semantics for Inheritance

As mentioned earlier, the setsemantics directive accepts three options: inheritance=none,
inheritance=flogic, and inheritance=monotonic. The default is flogic; this type of inher-
itance is described in Section 21.

With inheritance=none, behavioral inheritance is turned off in the corresponding module.
This can significantly improve performance in cases when inheritance is not needed.

Note that inheritance=none does not turn off inheritance of signatures. Inheritance of signa-
tures can be used for run-time type checking and it makes no good sense to disable it. Preserving
inheritance of signatures does not affect the performance either.

Monotonic inheritance inheritance=monotonic is also sometimes appropriate—mostly in situ-
ations when information from superclasses is to be propagated and accumulated by subclasses and
members without overriding. This type of inheritance is also significantly cheaper resource-wise
than the F-logic inheritance, although it is more expensive than turning inheritance off completely.

22.3 Choosing a Semantics for the Subclass Relationship

The default semantics for the subclass relationship :: in Flora-2 is strict. This means that there
can be no loops in the subclass hierarchy. If Flora-2 detects a cycle at run time, it issues an
error. The user can change this semantics by executing the runtime directive

?- setsemantics{subclassing=nonstrict}.

Note that the above sets the nonstrict semantics for subclassing in the current module only. To
change back to the strict semantics, one can execute

?- setsemantics{subclassing=strict}.

and to change the semantics in a different module one can execute

?- setsemantics{subclassing=nonstrict}@foo.

One can gind out the subclassing semantics in effect in the current module by executing the
following query:

?- semantics{subclassing=?Sem}.

Note: the subclassing option is not available as a static setsemantics directive (i.e., it works
only with “ ?− ” and not with “:–”).
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22.4 Choosing a Semantics for Tabling

The semantics for tabling can be specified along two different dimensions: reactivity and identifica-
tion. The options for reactivity are tabling=reactive and tabling=passive, which is explained
in Section 26.3. The options for the identification dimension are tabling=variant (the default)
and tabling=subsumptive. Subsumptive tabling currently works only in conjunction with passive
tabling, and it is experimental at present. In some cases, subsumptive tabling may significantly
speed up computation time and save memory.

22.5 Class Expressions

Flora-2 defines a number of set-theoretic operations on classes. For instance, (a, b) is the inter-
section class, (a; b) is the union class, and (a−b) is the difference class. More precisely, (a, b) is the
maximal subclass of a and b in the class hierarchy, and its extension is precisely the intersection of
the extensions of a and b. The class (a; b) is the smallest superclass of a and b. The class (a− b)
is the maximal subclass of a with extension that contains all the elements of a that are not in the
extension of b.

The class expressions feature is off by default and must be enabled at runtime with

?- setsemantics{class_expressions=on}.
?- setsemantics{class_expressions=on}@somemodule.

It can also be disabled via

?- setsemantics{class_expressions=none}.
?- setsemantics{class_expressions=none}@somemodule.

Suppose the following information is given:

a, b, c in class1
c in class2
e in class3

Then (class1− class2); class3 has the extension of a, b, e.

We call the above combinations of types class expressions. Type expressions can occur in
signature expressions as shown below:

cl[attr => ((c1 - c2) ; c3)].
cl[|attr => ((c1,c2) ; c3)|].
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In the first case, the type is specified for c1 as an individual object only. The second statement is
about c1 as a class, so this type specification is inherited by each member of the class c1 and each
subclass.

Flora-2 also defines a number of subclass relationships among class expressions as follows.

1. If c::c1 and c::c2 then c::(c1,c2), i.e., (c1,c2) is the greatest lower bound of c1 and c2
in the class hierarchy.

2. If c1::c and c2::c then (c1;c2)::c, i.e., (c1;c2) is the lowest upper bound of c1 and c2
in the class hierarchy.

3. Any class, c, is considered a superclass of (c,?_) and (?_,c). In particular, (c,c)::c. At
present, Flora-2 does not enforce the equality c:=:(c,c).

4. Any class, c, is considered a subclass of (c;?_) and (?_;c). In particular, c::(c;c). At
present, Flora-2 does not enforce the equality c:=:(c;c).

5. Any class, c, is considered a superclass of c-d for any class d.

Unfortunately, these subclass relationships may adversely affect the performance of user knowl-
edge bases, and Flora-2 provides an optimization option that allows the user to disable these
relationships for situations that do not need them, which is why this feature is off, by default.

Note: Type expressions introduce a potential for infinite answers for seemingly innocuous queries
and so this feature is disabled by default, as explained earlier in this section. For instance, suppose
that a:c is true. Then also a:(c,c), a:(c;c), a:(c,(c,c)), a:(c;(c;c)), etc. So, the query ?-
a:?X. will not terminate. To mitigate this problem, when class expressions are involved Flora-2
guarantees to provide sound answers to queries about class membership and subclasses only when
the arguments are ground; it does not guarantee that all class expressions will be returned to queries
that involve open calls to “::” and “:”. ✷

22.6 Ad Hoc Custom Semantics

The setsemantics directive allows the user to include additional axioms that define the semantics
of a particular module. These axioms should be stored in a file and included into the module using
the compiler or executable directive

:- setsemantics{custom=filename }.
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However, the default is custom=none.14 To take advantage of this feature, the user must write the
axioms using the same API that is used for Flora-2 trailers, which are located in the closure
directory of the distribution. This API will be described at a later date.

22.7 Querying the Module Semantics

In addition to the ability to change the semantics of a module, Flora-2 also lets the user query
the semantics used by any given module through the semantics primitive. The syntax is similar
to the setsemantics directive:

?- semantics{ Option1, Option2, ...}.
?- semantics{ Option1, Option2, ...}@modulename.

The options are the same as in the case of the setsemantics directive, but variables are allowed
in place of the specific semantic choices, e.g., equality=?X. The options unify with the current
semantic settings in the module, so queries such as

?- semantics{equality=?X, custom=none}.
?- semantics{inheritance=flogic, equality=?X, custom=?Y}@foo.

are allowed. The order of the options in a semantics-query does not matter.

The @module part in the semantics primitive must be bound to a module name at the time the
query is executed. However, it is still possible to determine which modules have a given combination
of semantic options by examining every loaded module via the isloaded{...} primitive and then
posing the desired semantics{...} query.

23 Flora-2 and Tabling

23.1 Tabling in a Nutshell

Tabling is a fundamental deduction technique that augments query evaluation with a mechanism
that remembers previously inferred conclusions. The result is a very efficient deductive engine.

Flora-2 automatically tables frames and HiLog predicates, but allows the user to have non-
tabled predicates as well. Such predicates are called transactional and are mostly used for side-
effects, such as writing to or reading from files (or to/from the screen) and to insert and delete

14 Which implies that if the file has the name none then a full path name should be specified — just “none” implies
no custom file.
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facts and rules. To indicate that a HiLog literal is non-tabled, it must be preceded with the “%”
sign.

For instance, in the following rules, tc/2 is tabled but %edge/2 is not tabled.

tc(X,Y) :- %edge(?X,?Y).
tc(X,Y) :- %edge(?X,?Y), tc(?Y,?Z).

A predicate with the % prefix is logically unrelated to the predicate without the % prefix. Thus,
p(a)(b) being true does not imply anything about %p(a)(b), and vice versa. However, Flora-2
issues a warning in case of such a double-use.

Symbols that are prefixed with the “%” sign can appear only as predicate formulas, predicate
names, Boolean method names, or variables. A variable prefixed with “%” cannot be a stand-alone
formula, unless it is associated with a module specification. The following occurrences of “%” are
legal

?- insert{%p(a)}, %?(?X). // %? is a variable ranging over non-tabled
// predicate names

?- a[%b(c)], a[%?Y]. // %b and %?Y are transactional Boolean methods
?- %?X@?M ~ %p(a). // %p - a non-tabled predicate

but the following are not:

?- p(%a). // %a appears as a term, not a formula
?- ?X = %a. // %a appears as a term, not a formula
?- %?X = a. // %?X appears as a term, not a formula
?- a[%b(c)->d]. // %b is not a Boolean method
?- %?X ~ %p(a). // %?X as a stand-alone formula

The first formula is illegal because %a occurs as a term and not as a predicate (it can be made legal
by reifying the argument: p(${%a})). In the second and third formulas %a and %?X also appear as
unreified arguments. The fourth formula is illegal because %b(c) is not a Boolean method. The
last one is illegal because %?X can not be a stand-alone formula (it can be made legal by associating
a module with it).

Occurrences of variables that are prefixed with % are treated specially. First, it should be kept
in mind that %?X and ?X represent the same variable. If ?X is already bound to something then both
of them mean the same thing. However, ?X itself can range not only over predicates but also terms,
conjunctions/disjunctions of predicates, and even rules. In contrast, %?X with module specification
can be bound only to non-tabled formulas and ?X with module specification can be bound only to
tabled formulas. Thus error messages will be issued for the following two queries:
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?- ?X ~ p(a), %?X@?M ~ p(a).
?- ?X ~ a[%b], ?X@?M ~ a[%b].

The following query fails because %?X and ?X represent the same variable: the first conjunct deter-
mines the binding for ?X, and this binding does not match the expression on the right side of ~ in
the second conjunct.

?- %?X@?M ~ %p(a), ?X ~ p(a).

In the query, ?X is bound to the non-tabled formula %p(a), and this does not meta-unify with the
tabled formula p(a).

When a bound variable occurs with an explicit module specification, then the following rules
apply:

• If the idiom ?X@module is used, ?X can be bound only to a tabled predicate, a tabled molecular
formula, or a HiLog term (not a predicate). Otherwise, an error is issued. If ?X is already
bound to a tabled predicate or molecular formula, then the explicit module specification
(@module) is discarded. When ?X is bound to a HiLog term, e.g., p(a)(?Z), ?X@module
represents the tabled predicate p(a)(?Z)@module.

• If the idiom %?X@module is used, ?X can be bound to only a non-tabled predicate, a non-
tabled molecular formula, or a HiLog term. If ?X is already bound to a non-tabled predicate
or molecular formula, the explicit module specification is discarded, as before. If ?X is bound
to a HiLog term, then %?X@module represents the non-tabled predicate p(a)(?Z)@module.

Due to these rules, the first query below succeeds, while the second fails and the third causes an
error.

?- ?X = p(a), %?X@?M ~ %p(a), ?X@?N ~ p(a)@foo.
?- ?X ~ p(a), ?X@?M ~ p(a)@foo.
?- ?X ~ p(a), %?X@?M ~ %p(a)@foo.

The first query succeeds because ?X is bound to the term p(a), which %?X@?M promotes to a
non-tabled predicate with a yet-to-be-determined module. The meta-unification that follows then
binds ?M to main. Similarly ?X@?N promotes the term p(a) to a tabled predicate with a yet-
to-be-determined module, and meta-unification binds ?N to foo. The second query fails because
?X is already bound to a tabled predicate and therefore ?X@?M represents p(a)@main, which does
not meta-unify with p(a)@foo. The third query gives an error because ?X is bound to a tabled
predicate, while %?X@?M expects a non-tabled predicate or a HiLog term.
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When ?X and %?X occur with explicit module specifications and are unbound then the occur-
rences of %?X indicate that ?X is expected to be bound to predicate names, Boolean method names,
or predicate/molecular formulas that correspond only to non-tabled methods or predicates. Like-
wise, an occurrence of an unbound ?X indicates that ?X is expected to be bound to predicate names
or predicate/molecular formulas that correspond to tabled methods or predicates.

Transactional (%-prefixed) literals and meta-programming. In meta-unifications, update
operations and the clause construct, variables that are prefixed with a “%” to indicate non-tabled
occurrences must have explicit module specifications. An unprefixed variable without a module
specification, such as ?X, can meta-unify with both tabled and non-tabled predicates. However,
when an explicit module specification is given, such as in ?X@main, unprefixed variables can be
bound only to tabled predicates. For example, all of the following queries succeed without errors.

?- ?X ~ %p(a).
?- ?X ~ p(a).
?- ?X ~ a[b->c]@foo.
?- ?X ~ a[%b]@?M.
?- ?X@?M ~ p(a).
?- %?X@foo ~ a[%b]@?M.

In the context of update operations, Flora-2 uses the same rules for variables of the form %?X
and ?X. Therefore, the following operations will succeed:

?- insert{p(a),%q(b)}. // Yes
?- delete{?X@\@}. // Yes, with ?X bound ${p(a)}
?- delete{%?X@\@}. // Yes, with ?X bound ${%q(b)}
?- insert{p(a),%q(b)}. // Yes
?- delete{?X}. // Yes, ?X bound to ${p(a)} or ${%q(b)}

These rules also apply to queries issued against rule bases using the clause primitive (see
Section 28 for the discussion of this primitive) or to deletion of rules with the deleterule primitive.

?- insertrule{p(?X) :- q(?X)}.
?- insertrule{%t(?X) :- %r(?X)}.
?- insertrule{pp(?X) :- q(?X), %r(?X)}.
?- clause{?X,?Y}. // all three inserted rules above would be retrieved
?- clause{%?X@\@,?Y}. // ?X = %t(?_var) and ?Y = %r(?_var)
?- clause{?X@\@,?Y@\@}. // ?X = p(?_var) and ?Y = q(?_var)
?- clause{?X@\@,?Y}. // the first and the third rules would be retrieved
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23.2 Transactional Methods

Queries can have unintended effects when used in conjunction with predicates that have non-logical
“side effects” (e.g., writing or reading to/from a file or a console) and queries that change the state
of the underlying knowledge base. If a tabled construct (a HiLog predicate or an F-logic frame)
has a side effect, the first time the predicate is called the side effect is performed. However, the
second time the call simply returns success or failure depending on the outcome of the first call,
since the answer is simply looked up in a table of previous answers. Indeed, tabled constructs
represent purely logical statements that are not supposed to have side effects, so there is no reason
to re-execute them. Thus, if a Flora-2 construct is intended to perform a side effect each time it
is called, it will not operate correctly.

Object-oriented programs often rely on methods that produce side effects or make updates. In
Flora-2 we call such methods transactional. Because by default Flora-2 tables everything that
looks like a frame, these transactional methods are potentially subject to the aforesaid problem.

To sidestep this issue, Flora-2 introduces a new syntax to identify transactional methods —
by allowing the “%” sign in front of a transactional method. For instance, the following rule defines
an output method that, for every object, writes out its oid:

?O[%output] :- write(?O)@\prolog.

Like boolean methods, transactional methods can take arguments, but do not return any values.
The only difference is that transactional methods are not tabled, while boolean methods are.

Transactional signatures. Transactional methods can have signatures like other kinds of meth-
ods, which are specified as follows:

Obj[=>%Meth]
Class[|=>%Meth|]

Flora-2 does not support transactional methods specified as defaults at the class level. How-
ever, as seen from the second statement above, class-level signatures for transactional methods are
supported.

23.3 Operational Semantics of Flora-2

Although Flora-2 is a declarative language, it provides primitives, such as input/output, certain
types of updates, cuts, etc., which have no logical meaning. In such cases, it is important to have
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an idea of the operational semantics of Flora-2 . This operational semantics is essentially the
same as in XSB and when no tabled predicates or frames are involved, the behavior is the same as
in Prolog. However, when tabled HiLog predicates or frames (other than transactional methods)
are used, the knowledge engineer must have some understanding of the way XSB evaluates tabled
predicates.

Unlike Prolog, which computes answers one-at-a-time, Flora-2 computes answers to the entire
clique of inter-dependent predicates are computed before the computation proceeds to the next
literal in a rule body. The following little example illustrates the difference:

a:b.
d:b.
c:b.

?X[foo(?Y)] :- ?X:?Y, writeln(?X)@\prolog.
%q(?X,?Y) :- ?X:?Y, writeln(?X)@\prolog.

?- ?X[foo(?Y)], writeln(done)@\prolog.
?- %q(?X,?Y), writeln(done)@\prolog.

The two queries are essentially the same. The first is a frame and so it is implemented inter-
nally as a tabled XSB predicate. The second query is implemented as a non-tabled predicate.
Thus, despite the fact that the two queries are logically equivalent, they are not operationally
equivalent. Indeed, a simple experiment shows that the answers to the above two queries are pro-
duced in different orders (as seen by the order of execution of the print statements). In the first
query, ?X[foo(?Y)] is evaluated completely before proceeding to writeln(done)@\prolog and
thus the executions of writeln(?X)@\prolog are grouped together. In the second case, executions
of writeln(?X)@\prolog and writeln(done)@\prolog alternate, because q/2 is not tabled and
thus its evaluation follows the usual Prolog semantics.

On the other hand, if we have

?X[foo(?Y)] :- ?X:?Y, writeln(?X)@\prolog.
q(?X,?Y) :- ?X:?Y, writeln(?X)@\prolog.

?- ?X[foo(?Y)], writeln(done)@\prolog.
?- q(?X,?Y), writeln(done)@\prolog.

then the two queries will behave the same, as both q/2 and ?X[foo(?Y)] would then be imple-
mented internally as tabled predicates. Likewise, if we replace foo with %foo then the corresponding
frame would be represented internally as a non-tabled predicate. Thus, the two queries, below,
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?X[%foo(?Y)] :- ?X:?Y, writeln(?X)@\prolog.
%q(?X,?Y) :- ?X:?Y, writeln(?X)@\prolog.

?- %?X[foo(?Y)], writeln(done)@\prolog.
?- %q(?X,?Y), writeln(done)@\prolog.

will produce the same result where a, b, c and done alternate in the output.

23.4 Tabling and Performance

It is important to keep in mind that Prolog does not reorder frames and predicates during joins.
Instead, all joins are performed left-to-right. Thus, rules and queries must be written in such a way
as to ensure that smaller predicates and classes appear early on in the join. Also, even though XSB
tables the results obtained from previous queries, the current tabling engine has several limitations.
In particular, when a new query comes in, XSB tries to determine if this query is “similar” to one
that already has been answered (or is in the process of being evaluated). Unfortunately, the default
notion of similarity used by XSB is fairly weak, and many unnecessary recomputations might
result. XSB has partial support for a novel technique called subsumptive tabling, and it is known
that subsumptive tabling can speed up certain queries by an order of magnitude. However, XSB’s
implementation of subsumptive tabling does not support active tabling, which prevents most of the
uses of this kind of tabling in Flora-2 .

23.5 Cuts

No discussion of a logic programming language is complete without a few words about the infamous
Prolog cut (!). Although Prolog cut has been (mostly rightfully) excommunicated as far as Database
Query Languages are concerned, it is sometimes indispensable when doing “real work”, like pretty-
printing Flora-2 knowledge bases or implementing a pattern matching algorithm. To facilitate
this kind of tasks, Flora-2 lets the user use Prolog-like cuts.

Cuts across tables. The current implementation of XSB has a limitation that Prolog cuts cannot
“cut tabled predicates.” If you get an error message saying something about cutting across tables
— you know that you have cut too much!

The basic rule that can keep you out of trouble is: do not put a cut in the body of a rule after
any frame or tabled HiLog predicate. However, it is OK to put a cut before any frame. It is even
OK to have a cut in the body of a rule that defines a frame (again, provided that the body has
no frame to the left of that cut). If you need to use cuts, plan on using transactional methods or
non-tabled predicates.
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The Prolog cut operator (!) in rule bodies may cause problems because XSB does not allow the
cut to appear in the middle of a computation of a tabled predicate. For instance,

?X[%foo(?Y)] :- ?Z[moo->?W], ?W:?X, !, rest.

will not cause problems, but

?X[foo->?Y] :- ?Z[moo->?W], ?W:?X, !, rest.

will likely result in a runtime error. The reason is that in the first case the frame ?X[%foo(?Y)]
is implemented using a non-tabled predicate, so by the time the evaluation reaches the cut, both
?Z[moo->?W] and ?W:?X will be evaluated completely and their tables will be marked as “complete.”
In contrast, in the second example, ?X[foo->?Y] is implemented as a tabled predicate, which is
interdependent with the predicates that are used to implement ?Z[moo->?W] and ?W:?X. Thus, the
cut would occur in the middle of the computation of the tabled predicate ?X[foo->?Y] and an
error will result.

In a future release, XSB might implement a different tabling schema. While cutting across
tables will still be prohibited, it will provide an alternative mechanism to achieve many of the goals
a cut is currently used for.

Cuts and facts. Prolog programmers are accustomed to treat facts as rules, and so Prolog
programs with cuts heavily rely on the order of the rules. For instance, in

p(X,Y) :- q(X), !, r(X,Y).
p(3,4).
q(1).
r(1,2).

it is expected that the open query p(X,Y) will succeed from the first rule and will return p(1,2).
The query will not match the fact p(3,4) due to the cut because that fact comes after the first
rule.

This kind of reasoning will not work in Flora-2 because facts are stored in an internal database
in an unordered fashion and one cannot know when they are going to be matched against the query.
So, in Flora-2 an open call p(?X,?Y) would return goth p(1,2) and p(3,4). A user who wants
to rely on rule ordering should convert the relevant facts into rules, as follows:

p(?X,?Y) :- q(?X), !, r(?X,?Y).
p(3,4) :- \true.
q(1).
r(1,2).
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In that case, p(?X,?Y) will return only one answer.

24 User Defined Functions

User-defined functions (abbr., UDF) are a syntactic extension that permits the users to enjoy
certain aspects of functional programming in the framework of a logic-based language.

24.1 Syntax

To define a UDF in Flora-2 , one uses the following syntax:

\udf foo(t1,...,tn) := Expr \if Body.

Expr is a term and Body can be any formula that can be used as a rule body. The “\if Body” part
is optional. The arguments of the UDF foo are terms, which usually are distinct variables.

Expr and Body can contain occurrences of other UDFs, but those UDFs must be defined previ-
ously. At first, this suggests that mutually-recursive UDFs cannot be defined. However, this is not
the case, as will be explained shortly.

Instead of “if”, Flora-2 also allows the use of the rule connective :-:

\udf foo(t1,...,tn) := Expr :- Body.

Example. The following simple example defines father/1 as a function.

\udf father(?x):=?y \if father(?x,?y).
father(mary,tom).
father(john,sam).

So, instead of writing father(John,?y) and then using ?y one can simply write father(?John):

?- ?y=father(?x).

will return

?x=mary
?y=tom
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?x=john
?y=sam

The query

?- writeln(father(mary))@\io.

will output

tom

Mutual recursion in UDF definitions. It was mentioned that any UDF that occur in a
definition of another UDF must be defined previously. However, this does not mean that mutually
recursive UDFs cannot be defined: one should just exercise care.

First, we should make it clear that recursive UDFs by themselves do not pose problems and can
be used freely. For example, in

\udf foo(...) := Expr \if Body.

A more complex situation arises when we have mutual recursion, as in

\udf foo(...) := Expr-cannot-contain-bar \if Body-contains-bar.
\udf bar(...) := Expr-can-contain-foo \if Body-might-contain-foo.

This is not allowed, because bar is used in Body-contains-bar before it was defined. But there is
a simple workaround: we can introduce a temporary predicate as follows:

\udf foo(...) := Expr-cannot-contain-bar \if tempfoo(...).
\udf bar(...) := Expr-can-contain-foo \if Body-can-contain-foo.
tempfoo(...) :- Body-contains-bar.

In this latter case, all uses of UDFs are defined previously, and UDFs are still mutually recursive.
If foo has more than one \udf-clause and one of the clauses does not involve bar then one does
not even need to introduce temporary predicates. For instance, the following is legal:

\udf foo(...) := Expr-contains-no-bar \if Body-contains-no-bar.
\udf bar(...) := Expr-can-contain-foo \if Body-can-contain-foo.
\udf foo(...) := Expr-can-contain-bar \if Body-can-contain-bar.

Here the first clause declares foo as a UDF, so the compiler is able to handle foo correctly in the
second clause despite the fact that foo has not been fully defined yet at that point.
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UDFs and modules. A UDF definition is a purely compile-time directive. It has an effect from
the moment the function is defined till the end of the file (which extends to all the files included
using the #include preprocessor directive). This implies that UDFs that occur inside calls to other
Flora-2 modules are subject to the directives of the module where the functions occur, not in the
module that is being called. For instance, consider

\udf func1(?x) := ?y \if pred1(?x,?y).
p(?x) :- q(func1(?x))@bar.
pred1(c,a).

Here func1 will be compiled according to the function definition shown above. If the module bar
has another definition for func1, that definition has no effect on the above occurrence of func1(?x).
Thus, the query

?- p(c).

results in a call to q(func1(c))@bar, and since func1(c) is defined to be a this is tantamount to
executing the query

?- q(a).

Note that, since function definitions can contain anything that constitutes a rule body, calls to
other modules are allowed. For instance,

\udf foo(?x):=?y \if pred(?x,?y)@bar, pred(?x,?y,?z)@moo, q(?z).

UDFs and updates. At present, only non-transactional UDFs are supported. If a UDF definition
contains an update then a runtime error will result. For instance, if a UDF foo(...) has such a
definition then the following error will likely occur at runtime:

++Error[Flora-2]> non-transactional head-literal foo(...) := ?A depends on an update

Advanced examples. One of the most interesting examples of the use of UDFs arises when we
define arithmetic operations as functions. For instance, normally one would write

?- ?x \is 1+2, writeln(?x)@\io.

but with UDFs we can define “+” as a function:
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\udf ?x+?y := ?z }\if ?z \is ?x+?y.

and then issue the following query:

?- writeln(1+2)@\io.

The following example shows how we can define the Fibonacci function:

\udf ?x+?y := ?z \if ?z \is ?x+?y.
\udf ?x-?y := ?z \if ?z \is ?x-?y.
\udf fib(0) := 0.
\udf fib(1) := 1.
\udf fib(?x) := fib(?x-1)+fib(?x-2) \if ?x>1.

We can now ask the query

?- writeln(fib(34))@\io.

Note that the above example also illustrates that a definition of a UDF can consist of multiple
\udf-statements—just like a definition of a predicate can have multiple rules.

Querying UDFs. Flora-2 maintains meta-information about UDFs and they can be queried
at runtime using the primitives clause{...} and @!{...}. For instance,

\udf foo(?X,?Y) := p(?Z) bar(?X,?Y,?Z).

flora2 ?- clause{@!{?X[type->?T]} ?H,?B}.

?X = 4 // 4 happens to be the Id of that UDF
?T = udf
?H = foo(?_h1642,?_h1643) := _h1637

?B = (${bar(?_h1642,?_h1643,?_h1660)@main}, ?_h1637 = p(?_h1660))

flora2 ?- clause{@!{?X[type->?T]} (?UDF(?,?) := ?s) ,?B}.

?X = 4
?T = udf
?UDF = foo
?B = ($bar(?_h5733,?_h5734,?_h5735)@main, ?_h5742 = p(?_h5735))
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flora2 ?- @!{?X[type->?T]}.

?X = 4
?T = udf

Note from the second query above that the head of a UDF can be queried using the (udf := result)
idiom. The parentheses around this idiom are important in that context. This is because the
expression ?UDF(?,?):= ?,?B inside clause{...} above is parsed as ?UDF(?,?):= (?,?B) and not
as (?UDF(?,?):= ?), ?B.

24.2 Higher-order UDFs

UDFs can use arbitrary HiLog terms. These terms can be used both in the head of the UDF
definition and in its body. For instance,

\udf abc(?x):=?x(a,b).
\udf ?x(?y,b)(?y):=t(?z) \if pred(?x,?y,?z).
\udf t(c):=d.
pred(foo,a,c).
q(d).
?- q(abc(?x)(?y)).

Perhaps it is not obvious, but the query succeeds with the answers ?x = foo, ?y = a. Indeed,
abc(?x) rewrites to ?x(a,b) by the first UDF definition, so the query becomes q(?x(a,b)(?y)).
By the second (higher-order!) UDF, this rewrites to q(t(c)) with the bindings ?x=foo and ?y=a.
Finally, the query rewrites to q(d), by the third UDF, and succeeds.

24.3 User-defined Functions and Multifile Modules

Recall from Section 16.5 that sets of rules can be added to an already loaded module using the
add{file} or [+file] commands. If the already loaded module has UDF definitions, say, for foo/2
and bar/3, and if the file file.flr uses those functions, then it is necessary to tell Flora-2 in
the file file.flr that these are UDFs and not regular HiLog function symbols. If this is not done,
the things are not unlikely to work correctly and it would be very hard to find out why. To prevent
this type of hard-to-find mistakes, the system will issue an error at loading time.15

15 It is impossible to catch this mistake at compile time, since one cannot know in advance that file.flr is
intended to be loaded into a module with existing UDF definitions. The useudf directive is used to supply precisely
this kind of information to the compiler.
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To deal with such situations, Flora-2 provides the useudf directive. For instance, if one puts
the following at the top of file.flr

:- useudf{foo/2, bar/3}.

then foo/2 and bar/3 will be compiled correctly in file.flr and no errors will be issued.

Note: UDF definitions and the useudf directives are intended to reside in different files (for the
same UDF): it makes no good sense to have both a function definition and a useudf directive for
the same UDF in the same file. However, Flora-2 is tolerant to this kind of misspecification. ✷

To simplify the use of UDFs, Flora-2 supports implicit useudf directives in certain cases.
Namely, if a file with a UDF definition is loaded into a module then any file that will be compiled
and then added to that same module in that Flora-2 session will inherit the existing function
definitions. In this case, there is no need to specify the useudf directive explicitly in foo.flr.
However, if the file being added, say foo.flr, is compiled in a different Flora-2 session (one
that does not have the appropriate UDF definitions) then an explicit useudf directive would be
required. Otherwise, a runtime error will be issued the next time foo.flr is added if there is a
mismatch between the UDF definitions in these two different Flora-2 sessions.

24.4 Semantics

Semantically, the functional notation is just a syntactic sugar. A function definition of the form

\udf foo(t1,...,tn) := Expr if Body

is converted into the rule

newpred_foo(t1,...,tn,Expr) :- Body.

Then every occurrence of the function in a rule head

head(...,foo(s1,...,sn),...) :- rulebody.

is rewritten into

head(...,?newvar,...) :- newpred_foo(s1,...,sn,?newvar), rulebody.

In the rule body, the occurrences of foo(s1,...,sn) are rewritten as follows:

... :- ..., pred(...,foo(s1,...,sn),...), ...
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is changed to

... :- ..., newpred_foo(s1,...,sn,?newvar), pred(...,?newvar,...), ...

It is important to keep in mind that UDFs are partial functions and that any argument bindings
for which an UDF is undefined falsifies the containing predicate or frame. For instance,

p(?).
\udf f(?x) := ?y \if cond(?x,?y).
cond(1,2).
?- p(f(1)).
Yes
?- p(f(2)).
No

Here f(?x) is a partial function that is defined only for ?x=1. Since f(1)=2 and p(...) is
true of everything, p(f(1)) evaluates to true. However, p(f(2)) evaluates to false because f(2) is
undefined and this falsifies p(f(2)). The rationale is that p(...) is true of every defined argument,
but is false when an argument cannot be evaluated to a bona fide term.

24.5 Representing equality with user defined functions

An important application of UDFs is simulation of certain cases of equality. Simulating equality
using UDFs is orders of magnitude more efficient. The equality that can be simulated in this way
must be such that all terms that one wants to equate must be explicitly given at compile time.
For instance, a term or its main function symbol cannot be represented by a variable (e.g., ?X
or ?X(?y,?z)) and determined only at run time. Also, if the system of UDF definitions is not
confluent (confluence is also known as the Church-Rosser property) then the fundamental property
of substitutivity of equals by equals cannot be guaranteed.

For instance, equality of the following kind ?x = abc, ?x(pqr) :=: cde cannot be simulated
because the term abc(pqr) that is equated to cde here is not explicitly given at compile time.

It is important to also keep in mind that UDFs provide only unidirectional rewriting. For
instance, in

\udf a := b.
\udf a := c.
q(c).
?- q(b).
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the query fails, since b is not rewritten back into a (and then into c).

To illustrate the cases where simulation is possible, suppose we want to state that any occurrence
of foo(?x) should be equated to (rewritten into) bar(?x) if pred(?x) is true and ?x>2:

\udf foo(?x):=bar(?x) if pred(?x), ?x>2.
pred(1).
pred(2).
pred(3).
pred(5).

If we ask query

?- foo(?x)=bar(?x)

The answers will be

?x=2
?x=3

Here are some very simple, but useful examples of equality: rather than writing things like

foo(1) :=: 3.
foo(4) :=: 7.

we can instead define

\udf foo(1):=3.
\udf foo(4):=7.

The latter does not involve complex equality maintenance and is much more efficient.

The following example illustrates the issue of non-confluence of the equality through UDFs.
Consider the following definitions:

\udf a := b.
\udf c := d.
\udf a := c.

and suppose p(d) is true. Then we can derive that p(a) and p(c) is true, but not that p(b) is
true.
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Note that if instead of p(d) we had p(a) then all these would be true: p(b), p(c), p(d). This
shows that one can go a long way with simulation of equality through UDFs, but care must be
exercised. For example, if the set of UDF definitions is not confluent then substitution of equals
by equals is not always guaranteed.

25 Controlling Context of Symbols

Using the same symbol in different contexts in the same knowledge base can be useful, but often
can be the result of a typo, and such errors is very hard to catch. Examples of different contexts
include the use of the same symbol as a function symbol and as a predicate, as a regular function
symbol and a UDF, and even the uses of the same symbol with different arities.

Flora-2 checks if the same symbol appears in different contexts and issues warnings if it finds
such uses. For instance, in

p(?x,?y,?z):-q(?x,?y,?z).
p(?x):-t(?x).

the predicate p is used with arity 3 and 1, which may or may not be a mistake. In the following,

p(?x):-q(?x).
f(p(?x,?y)):-t(?x).

p occurs both as a predicate and a function symbol, and with different arities on top. In the next
example we encounter the symbol f in the role of a UDF and also as a predicate:

\udf f(?x):=?y if ff(?x,?y).
t(?x):-f(?x).

and, in the next example, tp has both transactional and non-transactional occurrences.

%tp(?x,?y):-s(?x,?y).
tp(?x,?y,?z):-q(?x,?y,?z).

UDFs are also not allowed to have the same name as Flora-2 builtins, such as isatom...,
isground... and the like.

In all these cases, warnings will be issued. However, the user can turn off the warnings that she
believes not to indicate an error. This is done with the help of the directive symbol_context. The
syntax is the following
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:- symbol_context{comma-separated-list-of-terms}

The terms in the aforementioned list can be function symbols, predicates, or UDFs. For each
type there is a separate idiom to indicate what is to be permitted. The legal specifications are as
follows:

1. termName(?,...,?)@?, termName(?,...,?)@\@, termName(?,...,?)@moduleName — indi-
cates that termName is a predicate of the given arity. The first form applies to all modules, the
second applies to predicates that appear without any module specification (e.g., abc(1,2)),
and the third applies to predicates in a specific module, moduleName.

2. termName(?,...,?) — indicates that termName is a term (not a predicate).

3. udf termName(?,...,?) — indicates that termName is a UDF.

4. termName(*)@moduleName, termName(*), and udf termName(*) — these are wildcards that
have the same meaning as above except that the warnings for the terms of the form
termName(...) are suppressed for all arities in the corresponding contexts (predicate, HiLog
term, UDF).

5. termName/N, where N is a non-negative integer — suppresses warnings for terms of the form
termName(arg1,...,argN ) in any context (predicate, HiLog term, or a UDF).

6. termName/? — like termName/N above but suppresses warnings for all arities. Thus, warnings
will not be issued for termName(...) in all contexts and for all arities.

7. warnoff — suppresses symbol context warnings, but not errors.

8. constoff — suppresses warnings due to constants appearing in multiple contexts. This not
only affects warnings, but also performance. In very large fact bases, the number of constants
is typically very large. For each constant, Flora-2 would normally create an entry in the
.fls file, which is used to check for multiple contexts. For a large file, such an .fls file can
be much larger than the original set of facts. With the constoff option, entries describing
constants will not be saved in the .fls file, which can significantly improve the compilation
and load time.

In the above, the arguments must be anonymous variables and moduleName can be either a module
name or an anonymous variable. Examples:

:- symbol_context{p(?,?), q(?)@?, r(?,?)@bar, udf foo(?)}.
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Once this directive is issued, the compiler will no longer warn about the occurrences of p as a term
with two arguments, q as a predicate with one argument in any module, r as a binary predicate in
module bar, and foo as a unary UDF.

The symbol_context directive also has special syntax for sensors and predicates declared using
the :- prolog{...} directive:

:- symbol_context{sensor foo(?,?), prlg bar(?,?,?)}.

Note that Flora-2 issues warnings only on finding a second inconsistent use of the same
symbol. Since most symbols are used in just one context, there is no need to supply the above
directive in most cases. For instance, in the following

:- symbol_context{p(?,?)}.
p(?x):-q(?x), t(?x).
f(p(?x,?y)):-t(?x).

one needs to notify the compiler only about the use of p(?,?) as a function symbol, since there is
prior use of p/1 as a predicate. The other symbols are used consistently and there is no need to
do anything special for them.

26 Updating the Knowledge Base

Flora-2 provides primitives to update the runtime database. Unlike Prolog, Flora-2 does not
require the user to define a predicate as dynamic in order to update it. Instead, every predicate
and object has a base part and a derived part. Updates directly change only the base parts and
only indirectly the derived parts.

Note that the base part of a predicate or of an object contains both the facts that were inserted
explicitly into the knowledge base and the facts that are specified implicitly, via rules. For instance,
in

p(a).
a[m->b].

the fact p(a) will be placed in the base part of the predicate p/1 and it can be deleted by the
delete primitive. Likewise, the fact a[m->b] is updatable. If you do not want some facts to be
updatable, use the following syntax:

p(a) :- \true.
a[m->b] :- \true.
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Flora-2 updates can be non-transactional, as in Prolog, or transactional, as in Transaction
Logic [3, 2]. We first describe non-transactional updates.

26.1 Non-transactional (Non-logical) Updates

The effects of non-transactional updates persist even if a subsequent failure causes the system to
backtrack.

Flora-2 supports the following non-transactional update primitives: insert, insertall,
delete, deleteall, erase, eraseall. These primitives use special syntax (the curly braces)
and are not predicates. Thus, it is allowed to have a user-defined predicate such as insert.

Insertion. The syntax of an insertion is as follows (note the {,}s!):

insop {literals [| query ]}

where insop stands for either insert or insertall. The literals part represents a comma separated
list of literals, which can include predicates and frames. The optional part, |query, is an additional
condition that must be satisfied in order for literals to be inserted. The semantics is that query
is posed first and, if it is satisfied, literals is inserted (note that the query may affect the variable
binding and thus the particular instance of literals that will be inserted). For instance, in

?- insert{p(a),Mary[spouse->Smith,children->Frank]}
?- insert{?P[spouse->?S] | ?S[spouse->?P]}

the first statement inserts a particular frame. In the second case, the query ?S[spouse->?P] is
posed and one answer (a binding for ?P and ?S) is obtained. If there is no such binding, nothing
is inserted and the statement fails. Otherwise, the instance of ?P[spouse->?S] is inserted for that
binding and the statement succeeds.

The insert statement has two forms: insert and insertall. The difference between insert
and insertall is that insert inserts only one instance of literals that satisfies the formula, while
insertall inserts all instances of the literals that satisfy the formula. In other words, query is
posed first and all answers are obtained. Each answer is a tuple of bindings for some (or all) of
the variables that occur in literals. To illustrate the difference between insert and insertall,
consider the following queries:

?- p(?X,?Y), insert{q(?X,?Y,?Z)|r(?Y,?Z)}.
?- p(?X,?Y), insertall{q(?X,?Y,?Z)|r(?Y,?Z)}.
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In the first case, if p(x,y) and r(y,z) are true, then the fact q(x,y,z) is inserted. In the
second case, if p(x,y) is true, then the update means the following:

For each z such that r(y,z) holds, insert q(x,y,z).

The primitive insertall is also known as a bulk-insert operator.

Unlike insert, the operator insertall always succeeds and it always leaves its free variables
unbound.

The difference between insert and insertall is more subtle than it may appear from the
above discussion. In the all-answers mode, the above two queries will actually behave the same,
because Flora-2 will try to find all answers to the query p(?X,?Y), r(?Y,?Z) and will do the
insertion for each answer. The difference becomes apparent if Flora-2 is in one answer at a time
mode (because \one was executed in a preceding query) or when the all-answers mode is suppressed
by a cut as in

?- p(?X,?Y), insert{q(?X,?Y,?Z)|r(?Y,?Z)}, !.
?- p(?X,?Y), insertall{q(?X,?Y,?Z)|r(?Y,?Z)}, !.

In such cases, the first query will indeed insert only one fact, while the second will insert all.

Note that literals appearing inside an insert primitive (to the left of the | symbol, if it is
present) are treated as facts and should follow the syntactic rules for facts and literals in the
rule head. In particular, path expressions are not allowed. Similarly, module specifications inside
update operators are illegal. However, it is allowed to insert facts into a different module so module
specifications are permitted in the literals that appear in the insert{...} primitive:

?- insert{(Mary[children->Frank], John[father->Smith]) @ foomod}

The above statement will insert Mary[children->Frank] and John[father->Smith] into module
foomod.

Note that module specifications are also allowed in the condition part of an update operator
(to the right of the | mark):

?- insert{Mary[children->?X]@foobar | adult(?X)@infomod}

Updates to Prolog modules is accomplished using the usual Prolog assert/retract:

?- assert(foo(a,b,c))@\prolog.
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The following subtleties related to updates of Prolog modules are worth noting. Recall Section 18.4
on the issues concerning the difference between the HiLog representation of terms in Flora-2 and
the one used in Prolog. The problem is that foo(a,b,c) is a HiLog term that Prolog does not
understand and will not associate it with the predicate foo/3 that it might have. To avoid this
problem, use explicit conversion:

?- p2h{?PrologRepr,foo(a,b,c)}, assert(?PrologRepr)@\prolog.

This will insert foo(a,b,c) into the default XSB module called usermod.

If all this looks too complicated, Flora-2 provides a higher-level primitive, @\prologall
(equivalently @\plgall), as described in Section 16.7. This module specifier does automatic con-
version of terms to and from Prolog representation, so the above example can be written much
more simply:

?- assert(foo(a,b,c))@\prologall.

Another possible complication might be that if foo/3 is defined in another Prolog module, bar,
and is imported by usermod, then the above statement will not do anything useful due to certain
idiosyncrasies in the XSB module system. In this case, we have to tell the system that foo/3 was
defined in Prolog module bar. Thus, if foo/3 was defined as a dynamic predicate in the module
bar, we have to write:

?- assert(foo(a,b,c)@\prolog(bar))@\prolog.

Note that if we want to assert a more complex fact, such as foo(f(a),b,c), we would have to use
either

?- assert(foo(f(a)@\prolog(bar),b,c)@\prolog(bar))@\prolog.

or @\prologall:

?- assert(foo(f(a),b,c)@\prologall(bar))@\prolog.

We should also mention one important difference between insertion of facts in Flora-2 and
Prolog. Prolog treats facts as members of a list, so duplicates are allowed and the order matters.
In contrast, Flora-2 treats the database as a set of facts with no duplicates. Thus, insertion of a
fact that is already in the database has no effect.
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Deletion. The syntax of a deletion primitive is as follows:

delop {literals [| query ]}

where delop can be delete, deleteall, erase, and eraseall. The literals part is a comma sepa-
rated list of frames and predicates. The optional part, |query, represents an additional constraint
or a restricted quantifier, similar to the one used in the insertion primitive.

For instance, the following predicate:

?- deleteall{John[?Year(?Semester)->?Course] | ?Year < 2000}

will delete John’s course selection history before the year 2000.

Note that the semantics of a delete{literal|query} statement is that first the query literal ∧
query should be asked. If it succeeds, then deletion is performed. For instance, if the database is

p(a). p(b). p(c). q(a). q(c).

then the query below:

?- deleteall{p(?X)|q(?X)}

will succeed with the variable ?X bound to a and c, and p(a), p(c) will be deleted. However, if the
database contains only the facts p(b) and q(c), then the above predicate will succeed (deleteall
always succeeds) and the database will stay unchanged.

Flora-2 provides four deletion primitives: delete, deleteall, erase, and eraseall. The
primitive delete removes at most one fact at a time from the database. The primitives deleteall
and eraseall are bulk delete operations; erase is kind of a hybrid: it starts slowly, by deleting
one fact, but may go on a joy ride and end up deleting much of your data. These primitives are
described below.

1. If there are several bindings or matches for the literals to be deleted, then delete will choose
only one of them nondeterministically, and delete it. For instance, suppose the database
contains the following facts:

p(a). p(b). q(a). q(b).

then
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?- delete{p(?X),q(?X)}

will succeed with ?X bound to either a or b, depending on the ordering of facts in the database
at runtime.

However, as with insertion, in the all-answers mode the above deletion will take place for each
binding that makes the query true. To avoid this, use one answer at a time mode or a cut.

2. In contrast to the plain delete primitive, deleteall will try to delete all bindings or matches.
Namely, for each binding of variables produced by query it deletes the corresponding instance
of literal. If query ∧ literal is false, the deleteall primitive fails. To illustrate, consider the
following:

?- p(?X,?Y), deleteall{q(?X,?Y,?Z)|r(?Y,?Z)}.

and suppose p(x,y) is true. Then the above statement will, for each z such that r(y,z) is
true, delete q(x,y,z).

For another example, suppose the database contains the following facts:

p(a). q(b). q(c).

and the query is ?- deleteall{p(a),q(?X)}. The effect will be the deletion of p(a) and of
all the facts in q. (If you wanted to delete just one fact in q, delete should have been used.)

Unlike the delete predicate, deleteall always succeeds. Also, deleteall leaves all variables
unbound.

3. erase works like delete, but with an object-oriented twist: For each F-logic fact, f , that it
deletes, erase will traverse the object tree by following f ’s methods and delete all objects
reachable in this way. It is a power-tool that can cause maiming and injury. Safety glasses
and protective gear are recommended.

Note that only the base part of the objects can be erased. If the object has a part that is
derived from the facts that still exist, this part will not be erased.

4. eraseall is the take-no-prisoners version of erase. Just like deleteall, it first computes
query and for each binding of variables it deletes the corresponding instance of literal. For each
deleted object, it then finds all objects it references through its methods and deletes those.
This continues recursively until nothing reachable is left. This primitive always succeeds and
leaves its free variables unbound.
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26.2 Transactional (Logical) Updates

The effects of transactional updates are undone upon backtracking, i.e., if some post-condition fails
and the system backtracks, a previously inserted item will be removed from the database, and a
previously deleted item will be put back.

The syntax of transactional update primitives is similar to that of non-transactional ones and
the names are similar, too. The syntax for transactional insertion is:

t_insop{literals [| formula]}

while the syntax of a transactional deletion is:

t_delop{literals [| query]}

where t_insop stands for either t_insert or t_insertall, and t_delop stands for either of
the following four deletion operations: t_delete, t_deleteall, t_erase, and t_eraseall. The
meaning of literals and query is the same as in Section 26.1.

The new update operators t_insert, t_insertall, t_delete, t_deleteall, t_erase, and
t_eraseall work similarly to the non-transactional insert, delete, deleteall, erase, and
eraseall, respectively, except that the new operations are transactional. Please refer to Sec-
tion 26.1 for details of the non-transactional update operators.

The keywords tinsert, tinsertall, tdelete, tdeleteall, terase, and teraseall are also
understood and are synonymous to the t_* versions of the transactional operators.

To illustrate the difference between transactional and non-transactional updates, consider the
following execution trace immediately after the Flora-2 system starts:

flora2 ?- insert{p(a)}, \false.

No

flora2 ?- p(a).

Yes

flora2 ?- t_insert{q(a)}, \false. // or tinsert{q(a)},

No



26 UPDATING THE KNOWLEDGE BASE 137

flora2 ?- q(a).

No

In the above example, when the first \false executes, the system backtracks to insert{p(a)}
and does nothing. Thus the insertion of p(a) persists and the following query p(a) returns with
Yes. However, when the second \false executes, the system backtracks to t_insert{q(a)} and
removes q(a) that was previously inserted into the database. Thus the next query q(a) returns
with No. This behavior is similar to database transactions, hence the name “transactional” update.

Notes on working with transactional updates. Keep in mind that some things that Prolog
programmers routinely do with assert and retract go against the very concept of transactional
updates.

• fail-loops are not going to work (will leave the database unchanged) for obvious reasons.
The loop forms \while and \until should be used in such situations.

• Tabled predicates or methods must never depend on transactional updates. First, as ex-
plained on page 140, tabled predicates should not depend on any predicates that have side
effects, because this rarely makes sense. Second, when evaluating tabled predicates, XSB per-
forms backtracking unbeknownst to the knowledge engineer. Therefore, if a tabled predicate
depends on a transactional update, backtracking will happen invisibly, and the updates will
be undone. Therefore, in such situations transactional updates will have no effect.

• As before, t_insertall, t_deleteall, and t_eraseall primitives always succeed and leave
the free variables unbound. Likewise, in the all-answers mode, the primitives t_insert,
t_delete, and t_erase behave similarly to the t_*all versions in other respects, i.e., they
will insert or delete facts for every answer to the associated query. This can be prevented
with the use of a cut or the \one directive.

26.3 Updates and Tabling

Changing predicates on which tabled predicates depend. By default, Flora-2 uses an
advanced form of tabling, called reactive tabling. To understand what it is, consider the following
knowledge base.

p(?X) :- q(?X).
q(1).
?- p(?X).
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Loading this little example into Flora-2 will yield the answer ?X = 1, as expected. Next, suppose
we add q(2) to the knowledge base and ask the same query, p(?X). This time, the answer will be
both ?X = 1 and ?X = 2 — also as expected. Although one tends to take this behavior for granted,
it is useful to understand what is going on here.

After the first query, the query itself and its single answer is recorded in a table. All subse-
quent calls to that query are supposed to be answered just by a table lookup, without using the
rules that define p(?X). However, when q(2) is added, the system reacts and updates the answer
table for our query. This is why we got the correct result when the query was issues the second
time. This is achieved through the mechanism of reactive tabling of the underlying XSB inference
engine. Natural as it is, implementing this type of tabling is very hard and XSB is the only logic
programming system that supports it. Reactive tabling is similar to materialized view maintenance
in commercial database systems. However, commercial DBMS have an easier job, as none of them
does maintenance for recursive views. Even for non-recursive views, maintaining materialized views
is not straightforward from the user point of view in such systems.

Passive (non-reactive) tabling mode. Although reactive tabling is what one usually needs,
it is more expensive computationally. In some cases, a knowledge base might not be making any
updates at all and paying the computational price of reactive tabling would be unjustified. For this
case, Flora-2 allows the user to request passive tabling for any module.

In Flora-2 modules that use passive tabling, tables are not updated after they are constructed
in response to queries. Therefore, subsequent updates followed by further queries in such modules
may return incorrect (stale) answers. For instance, in the above example, the second query p(?X)
will return a stale answer in which ?X = 2 will be missing.

To request passive tabling in a module at compile time, use this directive:

:- setsemantics{tabling=passive}.

Passive tabling can also be requested at run time, in which case the mode will change from reactive
to passive on-the-fly:

?- setsemantics{tabling=passive}.

However, runtime changes to the tabling mode is not recommended and there are certain restric-
tions. For instance, this can be done only as a top-level query, not as part of any other query.

Interaction between passive and reactive tabling. In Flora-2 , passive modules can issue
calls to reactive modules and vice versa. However, inter-module queries (between passive and
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reactive and between passive and passive modules) will not be updated reactively in this case.
Consider the following example:

// Module m1 (reactive, by default) // Module m2 (passive)
:- setsemantics{tabling=passive}.

r(a).
s(?X) :- r(?X). p(?X) :- s(?X)@m1.
%upd :- insert{r(b)}.

If the query p(?X)@m2 is issued first, one gets the answer ?X=a. Suppose next %upd@m1 is invoked to
update r/1. If then p(?X)@m2 is asked again, the answer will still be ?X=a even though s(?X)@m1
would be reactively updated to include the answer ?X=b. The reason is that p(?X)@m2 is maintained
passively, and it will not be alerted to the change in s(?X)@m1. Similarly, if m1 were passive and m2
reactive, the query p(?X)@m2 will still not be updated, but for a different reason: here s(?X)@m1
will not get updated, since in that case it would be maintained passively.

More generally, passively tabled queries invoked anywhere in the call-chain will stop update
propagation up the chain. To illustrate, consider the following example:

// Module m1 (reactive, by default) // Module m2 (passive)
:- setsemantics{tabling=passive}.

r(a).
s(?X) :- r(?X). q(?X) :- s(?X)@m1.
p(?X) :- q(?X)@m2.
%upd :- insert{r(b)}.

Here module m1 calls m2 and the latter calls back. If the queries s(?X)@m1 and p(?X)@m1 are issued
then one gets ?X=a as an answer in both cases. Suppose now that %upd@m1 is invoked thereby
changing r/1. Since m1 is reactive, the query s(?X)@m1 will now return both ?X=a and ?X=b. On
the other hand, p(?X)@m1 will still return only the first answer because it calls q(?X)@m2 and the
change to r/1 is not propagated to q(?X)@m2, since the latter is defined in a passive module.

Explicit refresh of passive tables. What if updates in certain modules are very rare, but
queries are frequent and time is money? In this case, passive tabling might still make sense.
Flora-2 provides a partial redress in the form of the refresh{...} operator. This operator lets
the knowledge engineer explicitly remove stale answers from tables. For instance, in the above
example we could do the following:

flora2 ?- refresh{p(?)}, p(?X).
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and get the right result. In general, refresh{...} can take a comma-separated list of facts to be
purged from the tables, and these facts can even contain unbound variables. In the latter case, any
stale call that unifies with the given facts will be refreshed. For instance,

flora2 ?- refresh{a[b->?X], c:?Y, p(z,?V)@foo}.

will refresh the tables for a[b->?X] and c:?Y in module main, and for p(z,?V) in module foo.

Sometimes it is desirable to completely get rid of all the information stored in tables—for
instance, when it is hard to track down all the facts that might depend on the changed base facts.
In such a case, the command

flora2 ?- \abolishtables.

can be used. However, this command should be executed only as a standalone query. Also, neither
refresh{...} nor \abolishtables can occur under the scope of the negation operator \naf (either
directly or indirectly).

Note that both refresh and \abolishtables can be also used in modules that use reactive
tabling. However, in this case, refresh has no effect and \abolishtables will affect only the
passive modules, if there are any.

Tabled predicates that depend on update operations. A related issue is that a tabled
predicate (or a frame literal) might occur in the head of a rule that has an update operation in its
body, or it may be transitively dependent on such an update. Note that this is different from the
previous issue, where tabled predicates did not necessarily depend on update operations but rather
on other predicates that were modified by these update operations.

In this case, the update operation will be executed the first time the tabled predicate is evalu-
ated. Subsequent calls will return the predicate truth value from the tables, without invoking the
predicate definition. Moreover, if the update statement is non-logical (i.e., non-transactional), then
it is hard to predict how many times it will be executed (due to backtracking) before it will start
being ignored due to tabling.

If Flora-2 compiler detects that a tabled literal depends on an update statement, a warning
is issued, because such a dependency is most likely a mistake. This warning is issued also for
transactional methods (i.e., Boolean methods of the form %foo(...)) when a tabled literal depends
on them. Moreover, because non-tabled HiLog predicates are regarded as having transactional side-
effect by default, this warning is also issued when a tabled literal depends on non-tabled HiLog
predicates. Flora-2 also imposes restrictions on the use of updates that affect tabled facts: it
does not allow such dependency to occur in modules with reactive tabling. ERGO does allow such
dependency by providing the special feature of “stealth mode” updates.
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Here is an example of a situation where dependency on an update makes perfect sense. For
instance, we might be computing a histogram of some function by computing its values at every
point and then adding it to the histogram. When a value, f(a), is computed first, the histogram is
updated. However, subsequent calls to f(a) (which might be made during the computation of other
values for f) should not update the histogram. In this case it makes sense to make f/1 into a tabled
predicate, whose definition will include an update operator. For this reason, a compiler directive
ignore_depchk is provided to exempt certain predicates and methods from such dependency checks
and thus silence the warnings.

The example below shows the usage of the ignore_depchk directive.

:- ignore_depchk{%ins(?), ?[%?]@?}.
t(?X,?Y) :- %ins(?X), ?Y[close]@\io.
%ins(?X) :- insert{?X}.

No dependency warning is issued in this case. However, without the ignore_depchk{...} direc-
tive, three warnings would be issued saying that tabled literal t(?X,?Y) depends on %ins(?X),
?Y[%close], and insert. Notice that ignore_depchk{%ins(?_)} tells the compiler to ignore not
only dependencies on %ins/1, but also all dependencies that have %ins/1 in the path.

The ignore_depchk{...} directive can also be used to ignore direct dependencies on updates.
For example,

:- ignore_depchk{insert{?_,?_|?_}}.

ignores dependencies on conditional insertions which insert two literals such as insert{a,b|c,d,e}.
And

:- ignore_depchk{insert{?}}.

ignores dependencies on unconditional insertions which insert exactly one literal such as
insert{p(a)} but not insert{p(a),p(b)}.

We should also mention here that executing the command warnings{compiler} in the
Flora-2 shell will turn the dependency checking off globally. In some cases, this can reduce
the compilation time, but is discouraged except when debugging is finished.

26.4 Updates and Meta-programming

The update operators can take variables in place of literals to be inserted. For instance,
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?- ?X ~ a[b->c], insert{?X}.

Here ~ is a meta-unification operator described in Section 18.1. One use for this facility is when one
module, foo, provides methods that allow other modules to perform update operations on objects
in foo. For instance, foo can have a rule

%update(?X,?Y) :- delete{?X}, insert{?Y}.

Other modules can then issue queries like

?- John[salary->?X]@foo, ?Y \is ?X+1000,
%update(John[salary->?X],John[salary->?Y])@foo.

26.5 Updates and Negation

Negation applied to methods that have side effects is typically a rich source of trouble and confusion.

First of all, applying negation to frames that involve non-transactional updates does not have
logical semantics, and this requires the knowledge engineer to have a certain understanding of the
operational semantics of Flora-2 (Section 23.3). In this case, the semantics of negation applied to
methods or predicates that produce side-effects through updates or I/O is that of Prolog negation
(Section 19.1).

When only transactional updates are used, the semantics is well defined and is provided by
Transaction Logic [3, 2]. In particular, negation is also well defined. However, simply negating an
update, A, is useless, since logically it means jumping to some random state that is not reachable via
execution of A. As explained in [3, 2], negation is typically useful only in conjunction with ∧, where
it acts as a constraint, or with the hypothetical operator of possibility <>. In most cases, when
the knowledge engineer wants to apply negation to a method that performs logical (transactional)
updates, he has ∼<>method in mind, i.e., a test to verify that execution of method is not possible.
Both <> and ∼<> (equivalently \naf<>) are supported in Flora-2 .

The idiom \neg %method is considered to be an error, but \+ %method and \naf %method
(the latter interpreted as \+ %method) are permitted. However, they yield meaningful results only
if %method has no side effects and is non-recursive.

A transaction of the form ?− <>expression is true in the current state if the transaction
?−method can be executed in the current state. The state, however, is not changed even if
?−method does change the state during its execution. In other words, ?− <>expression only tests
if execution is possible. The transaction ?− ∼ <>expression tests if execution of expression is
impossible. It is true if ?− expression fails and false otherwise. However, regardless of whether
?− expression fails or not, the current state underlying the knowledge base does not change. Note
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that <> and sin<> can apply to a group of subgoals, if they are enclosed in parentheses. If the
expression does not change the underlying state of the knowledge base then ?− <> expression and
?−∼<> expression reduce to ?− expression and ?− \naf expression, respectively. Examples:

?- <> %p(?X).
?- <> (%p(?X), q(?X,?Y), %r(?Y)).
?- ~<> (%p(?X), q(?X,?Y), %r(?Y)).
?- ~<> (%p(?X), q(?X,?Y), <> %r(?Y)).

26.6 Counter Support

It is often necessary to maintain a global counter, which can be set, queried, and updated. In
principle, this can be done by designating a certain unary predicate and updating its content as
necessary. However, this is a bit cumbersome, and Flora-2 provides a more efficient way. A
counter is just an Flora-2 symbol that can be accessed via the following operations:

• counter{Name := Integer} — set counter

• counter{Name := ?Var} — query counter

• counter{Name + Integer} — increment counter

• counter{Name − Integer} — decrement counter

For example,

?- counter{abc:=3}, counter{abc+5}, counter{abc=?X}.
?X = 8.

27 Insertion and Deletion of Rules

Flora-2 supports non-transactional insertion of rules into modules as well as deletion of inserted
rules. A module in Flora-2 gets created when a file is loaded into it, as described in Section 4,
or it can be created using the primitive newmodule. Subsequently, rules can be added to an
existing module. Rules that are inserted via the insertrule and add{...} commands are called
dynamic and the rules loaded using the load{...} or [...] commands are called static or compiled.
Dynamic rules can be deleted via the deleterule command. As mentioned in Section 26, Flora-2
predicates and frames can have both static and dynamic parts and no special declaration is required
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to make a predicate dynamic. The same frame or a predicate can be defined by a mixture of static
or dynamic rules.

In this section, we will first look at the syntax of creating new modules. Then we will describe
how to insert rules and delete rules. Finally, we address other related issues, including tabling,
indexing, and the cut.

27.1 Creation of a New Module and Module Erasure at Run-time

The syntax for creating a new module is as follows:

newmodule {modulename }

This creates a blank module with the given name and default semantics. If a module by that name
already exists, an error results. A module created using newmodule can be used just as any module
that was created by loading a user knowledge base.

A dual operation to module creation is erasemodule with the following syntax:

erasemodule {modulename }

27.2 Insertion of Rules

Dynamic rules can be inserted before all static rules, using the primitive insertrule_a, or after
all static rules, using the primitive insertrule_z or just insertrule. The reason for having three
different insertion commands is the same as in Prolog: the position of a rule with respect to other
rules may sometimes have an affect on performance or query termination.

Several rules can be inserted in the same command. The syntax of inserting a list of rules is as
follows:

insruleop{rulelist}

where insruleop is either insertrule_a, insertrule_z, or insertrule, and rulelist is a comma-
separated list of rules. The rules being inserted should not terminate with a period (unlike the
static rules):

?- insertrule_a{?X:student :- %enroll(?X,?_T)}.

The above inserts the rule ?X:student :- %enroll(?X,?_T) in front of the current module.
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If a rule is meant to be inserted into a module other than the current one, then the rule needs
to be parenthesized and the module name must be attached using the usual module operator @. If
several rules need to be inserted using the same command, each rule must be parenthesized. For
example, the following statement inserts the same rule into two different modules: the current one
and into module mod1.

?- insertrule_a{(?X:student :- %enroll(?X,?_T)),
(?X:student :- %enroll(?X,?_T))@mod1}.

As a result, the rule ?X:student :- %enroll(?X,?_T) will be inserted in front of each of these
two modules. For this to be executed successfully, the module mod1 must already exist.

Note: rule Ids and other meta-data (see Sectin 35) can be supplied with the insert operator:

?- insertrule{@!{abc[foo->bar]} ?X:student :- %enroll(?X,?_T)}.

Meta information can also be supplied with the deleterule operator.

27.3 Deletion of Rules

Rules inserted dynamically using insertrule_a can be deleted using the primitive deleterule_a,
and rules inserted using insertrule_z can be deleted using the primitive deleterule_z. If the user
wishes to delete a rule that was previously inserted using either insertrule_a or insertrule_z
then the primitive deleterule can be used. Similarly to rule insertion, several rules can be deleted
in the same command:

delruleop {rulelist }

where delruleop is either deleterule_a or deleterule_z and rulelist is a comma-separated list of
rules. Rules in the list must be enclosed in parentheses and should not terminate with a period.

To delete the rules inserted in the second example of Section 27.2, we can use

?- deleterule_a{(?X:student :- %enroll(?X,?_T)),
(?X:student :- %enroll(?X,?_T))@mod1}.

or

?- deleterule{(?X:student :- %enroll(?X,?_T)),
(?X:student :- %enroll(?X,?_T))@mod1}.
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Flora-2 provides a flexible way to express rules to be deleted by allowing variable rule head,
variable rule body, and variable module specification. For example, the rule deletions below are all
valid:

?- deleterule{(?H:-q(?X))@foo}.
?- deleterule{(p(?X):-q(?X))@?M}.
?- deleterule{?H:-?B}.

The last query attempts to delete every dynamically inserted rule. So, it should be used with great
caution.

We should note that a rule with a composite head, such as

o[b->?V1,c->?V2] :- something(?V1,?V2).

is treated as a pair of separate rules

o[b->?V1] :- something(?V1,?V2).
o[c->?V2] :- something(?V1,?V2).

Therefore

?- deleterule{o[b->?V1] :- something(?V1,?V2)}.

will succeed and will delete the first of the above rules. Therefore, the following action will subse-
quently fail:

?- deleterule{o[b->?V1,d->?V2] :- ?Body}.

The problem of Cuts What is behind rule insertion is pretty simple. As we know from Sec-
tion 26, every predicate and object has a base part and a derived part. Now we further divide the
derived part into three sub-parts: the dyna sub-part (the part that precedes all other facts in the
predicate), the static sub-part, and the dynz sub-part. All rules inserted using insertrule_a go
into the dyna sub-part; all the rules in the file go into the static sub-part; and all the rules inserted
using insertrule_z go into the dynz sub-part.

This works well when there are no cuts in rules inserted by insertrule_a. With cuts, the
knowledge base might not behave as expected. For example, if we have the following rules:
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p(?X) :- r(?X).
r(a).
q(b).
?- insertrule_a{p(?X) :- q(?X),!}.
?- p(?X).

we would normally expect the answer to be b only. However, Flora-2 will return two answers, a
and b. This is because the cut affects only the dynamic part of p(?X), instead of all the rules for
p/1.

28 Querying the Rule Base

The rule base can be queried using the primitive clause. The syntax of clause is as follows:

clause{head,body}

where head can be anything that is allowed to appear in a rule head and body can be anything
that can appear in a rule body. In addition, explicit module specifications are allowed in rule heads
in the clause primitive. Both head and body represent templates that unify with the actual rules
and those rules that unify with the templates are returned.

The following example illustrates the use of the clause primitive. Suppose we have previously
inserted several rules:

?- insertrule_a{tc(?X,?Y) :- e(?X,?Y)}.
?- insertrule_a{tc(?X,?Y) :- tc(?X,?Z), e(?Z,?Y)}.
?- newmodule{foo}.
?- insertrule_a{(tc(?X,?Y) :- e(?X,?Y)@\@)@foo}.
?- insertrule_a{(tc(?X,?Y) :- tc(?X,?Z), e(?Z,?Y)@\@)@foo}.

Then the query

?- clause{?X,?Y}.

will list all the inserted rules. In this case, four rules will be returned. To query specific rules in a
specific module — for example, rules defined for the predicate tc/2 in the module foo — we can
use

?- clause{tc(?X,?Y)@foo,?Z}.
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We can also query rules by providing patterns for their bodies. For example, the query

?- clause{?X, e(?_,?_)}.

will return the first and the third rules.

Querying rules with composite heads involves the following subtlety. Recall from Section 27.3
that a rule with a composite head, such as

o[b->?V1,c->?V2] :- something(?V1,?V2).

is treated as a pair of rules

o[b->?V1] :- something(?V1,?V2).
o[c->?V2] :- something(?V1,?V2).

Therefore, if we delete one of these rules, for instance,

?- deleterule{o[b->?V1] :- something(?V1,?V2)}.

then a query with a composite head that involves the head of the deleted rule will fail (unless there
is another matching rule). Thus, the following query will fail:

?- clause{o[b->?V1,d->?V2], ?Body}.

The clause primitive can be used to query static rules just as it can be used to query dynamic
rules. The normal two-argument primitive queries all rules. If one wants to query only the static
(compiled) rules or only dynamic (inserted) rules, then the three-argument primitive can be used.

clause{type,head,body}

For example,

?- clause{static,?X,?Y}.
?- clause{dynamic,?X,?Y}.

Within the dynamic rules, one can separately query just the dynamic rules that precede all the
static rules (using the flag dyna) or just those dynamic rules that follow all the static ones (with
the dynz flag):
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?- clause{dyna,?X,?Y}.
?- clause{dynz,?X,?Y}.

Due to a limitation of the underlying Prolog system, the clause primitive cannot query rules
whose size exceeds a limit imposed by the Prolog system. A warning message is issued when a rule
exceeds this limit and thus cannot be retrieved by clause. The only way to remedy this problem
is to split the long rule into smaller rules by introducing intermediate predicates.

The clause statement can also be used to query the labels and meta-data associated with
Flora-2 rules. This form of the clause statement is described in Section 35.

Note that in Flora-2 facts are different from rules. They cannot be queried using the clause
primitive. Instead, the primitive isbasefact{...} should be used. For instance,

a:b.
?- isbasefact{a:b}.

Yes

?- clause{a:b,?}.

No

29 Aggregate Operations

Aggregate operators play important role in data analytics applications and are commonly used in
database languages. This section describes the aggregate operators available in Flora-2 .

29.1 Syntax of Aggregate Operators

An aggregate query in Flora-2 has the following form:16

agg{?X | query}
agg{?X[?Gs] | query}

where

16 The syntax for aggregates is similar to that used in the Florid system
http://www.informatik.uni-freiburg.de/~dbis/florid/.

http://www.informatik.uni-freiburg.de/~dbis/florid/
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• agg is the aggregate operator ; it can be one of these: min, max, count, countdistinct, sum,
sumdistinct, avg, avgdistinct, setof, bagof.

• ?X is called the aggregation variable

• ?Gs is a list of comma-separated grouping variables bagoff aggregate operations are to be
sorted.

• query is a logical formula that specifies the query conditions; it has the form of a rule body
formula (including conjunctions, disjunctions, quantifiers, and even nested aggregation).

All the variables appearing in query but not in ?X, ?Gs, and not appearing prior to the aggre-
gation are considered to be existentially quantified. Furthermore, the syntax of an aggregate must
satisfy the following conditions:

1. All names of variables in both ?X and ?Gs must appear in query;

2. ?Gs should not contain ?X.

The setof and bagof aggregates have three additional forms:

agg{?X(SortSpec) | query}
agg{?X[?Gs](SortSpec) | query}
agg{?X[?Gs](SortSpec1,SortSpec2) | query}

where SortSpec specifies how the result of the setof. The exact syntax for this is described in
Section 29.4.

29.2 Evaluation of Aggregates

Aggregates are evaluated as follows: First, the query condition specified in query is evaluated to
obtain all the bindings for the template of the form <?X, ?Gs>. Then, these tuples are grouped
according to each distinct binding for <?Gs>. Finally, for each group, the aggregate operator is
applied to the list of bindings for the aggregate variable ?X.

The following aggregate operators are supported in Flora-2 : min, max, count, countdistinct,
sum, sumdistinct, avg, avgdistinct, setof, and bagof.

The operators min and max can apply to any list of terms. The order among terms is defined
by the Prolog operator @=<. In contrast, the operators sum, avg, sumdistinct, and avgdistinct
can take numbers only. If the aggregate variable is instantiated to something other than a number,
these operators will discard it and produce a runtime warning message.
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The operator bagof collects all the bindings of the aggregation variable into a list. The operator
setof works similarly to bagof, except that all the duplicates are removed from the result list and
the resulting list is sorted lexicographically. Note that these operators create ordered lists, not sets,
unlike what as the operator names might suggest.

Note: The aggregates min, max, avg, and avgdistinct fail if query produces no answers. In
contrast, sum, count, sumdistinct, and countdistinct return 0 in such a case, and the operators
bagof and setof return the empty list.

The difference between sum, count, and avg on the one hand and sumdistinct, countdistinct,
and avgdistinct on the other is that the latter eliminate duplicates from the bindings produced
by query. Thus, for example, if query binds the aggregate variable to, say 31, more than once
then countdistinct will count this only once (and sumdistinct, avgdistinct will consider this
binding only once also), while count (respectively, sum and avg) will consider 31 as many times as
it was produced by the query. Example:

p({31,45}).
p(?X) :- ?X=31.

Here count{?X|p(?X)} yields 3 and sum{?X|p(?X)} evaluates to 107, while
countdistinct{?X|p(?X)} yields 2 and sumdistinct{?X|p(?X)} produces 76. This is be-
cause the answer p(31) will be derived twice: once via one of the above facts and once via the rule.
(One might not realize this by posing the top-level query ?- p(?X), since Flora-2 eliminates
duplicate answers before showing them to the user).

In general, aggregates can appear wherever a number or a list is allowed. Therefore, aggregates
can be nested. The following examples illustrate the use of aggregates (some borrowed from the
Florid manual):

?- ?Z = min{?S|John[salary(?Year)->?S]}.
?- ?Z = count{?Year|John.salary(?Year)<max{?S|John[salary(?Y)->?S], ?Y<?Year}}.
?- avg{?S[?Who]|?Who:employee[salary(?Year)->?S]} > 20000.

If an aggregate contains grouping variables then this aggregate would backtrack over such grouping
variables. In other words, grouping variables are considered to be existentially quantified (and the
scope of that quantifier is the entire rule body). For instance, in the last query above, the aggregate
will backtrack over the variable ?Who. Thus, if John’s and Mary’s average salary is greater than
20000, this query will backtrack and return both John and Mary.

The following query returns, for each employee, a list of years when this employee had salary
less than 60. This illustrates the use of the setof aggregate.

flora2 ?- ?Z = setof{?Year[?Who]|?Who[salary(?Year)->?X], ?X < 60}.
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?Z = [1990,1991]
?Who = Mary

?Z = [1990,1991,1997]
?Who = John

29.3 Notes on Scoping for Variables in Aggregate Operators

Another very important aspect is that the aggregation variable, ?X, has the scope that is restricted
to query. The scope of the grouping variables, ?G, is not limited to the query, but it is usually
meaningless for them to occur to the left of that scope. (The semantics of the aggregates will be
explained shortly.) Such an occurrence will cause a compile-time warning and, possibly, a run-time
error. To illustrate, consider the following rules:

head :- p(?X), r(?X), ?P = sum{?X | q(?X)}. // rule 1
head :- p(?X,?W), r(?X), ?P = avg{?X[?V,?W] | q(?X,?V,?W)}. // rule 2
head :- r(?X), ?P = min{?X[?V,?W] | q(?X,?V,?W)}, p(?X,?W). // rule 3

In the first rule, the first two occurrences of ?X are outside of the scope of sum{...} where ?X is used
as an aggregation variable. Therefore, the first two occurrences represent variables that are distinct
from the variable used in the aggregation. This is similar to scoping of variables by universal and
existential quantifiers. In the second rule, the first two occurrences of ?X are likewise unrelated to
the last two occurrences of ?X in avg{...}. The occurrence of ?W to the left of the aggregation is
likely a logical error caused by a misunderstanding of grouping (or, at best, is meaningless). The
user probably needed this instead:

head :- p(?X,?W), r(?X), ?P = avg{?X[?V] | q(?X,?V,?W)}. // rule 2’

If the user thought ?W was really needed among the grouping variables, then a different behavior
must have been sought. Flora-2 is zealous about this and will issue an stern warning, if it finds
such occurrences.17 Moreover, if, in the second rule above, p/2 binds ?W to a ground term then
a runtime error will be issued because it makes little sense to keep a constant in a grouping list.
It the user really understands what he is doing, he can avoid both the error and the warning by
rewriting the second rule as

head :- p(?X,?WW),r(?X),?P = avg{?X[?V,?W] |q(?X,?V,?W),?W=?WW}. // rule 2’’

17 In some cases (e.g., in a disjunction like p(?X) ; ?Z = sum{?P[?X]|q(?P,?X)}), Flora-2 might issue a false
warning. The user can circumvent this by renaming one of the occurrences of ?X.
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but most likely the intent was rule 2’ above where ?W was simply removed from the grouping list.

In contrast, the third rule above is proper (since ?W occurs to the right, not left, of the aggre-
gation) but, perhaps, renaming the first ?X would have been an improvement.

29.4 Aggregation and Sorted Results

The aggregate functions setof and bagof also have other forms, which supports sorting of the
output of these aggregates:

agg{?X(SortSpec) | query}
agg{?X[?Gs](SimpleSortSpec) | query}
agg{?X[?Gs](SortSpec1,SortSpec2) | query}

where agg can be setof or bagof.

A SortSpec specifies how the output is to be sorted. It is either the constant asc (ascending),
desc (descending), or a list of the form [spec1,...,specN], where each component has the form
asc(N) or desc(N) for some positive integer N. A SimpleSortSpec is either asc or desc.

The first form of the setof/bagof operator does not have grouping and the sort specification
controls the order in which the values of ?X that satisfy query will appear in the result of the
aggregation. As the names suggest, asc means ascending lexicographic ordering and desc means
that the order is descending. If the sort specification has the form [spec1,...,specN], the control
of the sorted order is finer. The elements of the aggregation result will be sorted first according to
spec1, then spec2, etc.

Recall that each spec-i has the form asc(N) or desc(N), where N refers to a component of
each member of the aggregation result. In HiLog predicates, 1 refers to the predicate term (the
predicate name), 2 refers to the first argument, etc. In a frame obj[prop->val], 1 refers to obj, 2
to prop, and 3 to val. In binary formulas, such as L:=:R, L:R, or L::R, 1 refers to L and 2 to R. For
lists, 1 refers to the first list element, 2 to the second, etc. Note that if N refers to a non-existing
component of a formula, an error will be issued from the Prolog level.

The second form of the above aggregates uses a simplified form of the sort specification (i.e.,
asc or desc). It provides a simple way of controlling the ordering for both the instantiations of
the grouping variables and the aggregation result. For example, if the sorting specification is asc
then first we will get the results that are grouped around the smallest instance of Gs, and those
results themselves will be ordered in the ascending order. On backtracking, we get the results
grouped around the next-smallest instantiation of Gs and, again, those results will be ordered in
the ascending order.

The third form of the above setof/bagof aggregates provides the most general means of con-
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trolling the ordering for the case when grouping is used. Here SortSpec1 is used to control the
results and SortSpec2 controls the grouping order. That is, the instances of Gs are first ordered
according to SortSpec2, and then the results associated with the first grouping in the SortSpec2-
ordering are returned. These results are ordered according to SortSpec1. Then the next grouping
in the SortSpec2 -ordering is chosen and its associated results are returned according to SortSpec1-
ordering, etc. Both SortSpec1 and SortSpec2 can be the simple sort specs asc/desc or they can be
lists of the fine-grained specs of the form asc(i)/desc(i).

Example:

q(a,a,r(z,1)). q(a,a,r(g,2)). q(b,b,r(b,2)). q(b,b,r(d,3)).
q(b,b,r(d,3)). q(b,c,r(d,3)). q(b,c,r(e,1)). q(e,e,r(k,3)).
q(e,e,s(k,4)). q(e,e,s(p,5)). q(e,e,s(p,5)). q(e,e,s(p,5)).

?- ?Y = setof{?Z[?X,?Q]([asc(1),desc(2),desc(3)],[desc(1),asc(2)])|q(?X,?Q,?Z)}.

will produce this result:

?Y = [r(d,3), r(b,2)]
?X = b
?Q = b

?Y = [r(e,1), r(d,3)]
?X = b
?Q = c

?Y = [r(k,3), s(p,5), s(k,4)]
?X = e
?Q = e

?Y = [r(z,1), r(g,2)]
?X = a
?Q = a

29.5 Aggregation and Set-Valued Methods

Aggregation is often used in conjunction with set-valued methods, and Flora-2 provides several
shortcuts to facilitate this use. In particular, the operator ->-> collects all the values of the given
method for a given object in a set. The semantics of these operators can be expressed by the
following rules:

?O[?M->->?L] :- ?L=setof{?V|?O[?M->?V]}
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?O[|?M->->?L|] :- ?L=setof{?V|?O[|?M->?V|]}

Note that ?L in ?O[?M->->?L] and ?O[|?M->->?L|] is a list of oids.

The special meaning for ->-> implies that this construct cannot appear in the head of a rule.
One other caveat: recursion through aggregation is not supported and can produce incorrect results.

Sets collected in the above manner often need to be compared to other sets. For this, Flora-2
provides another the primitive +>>. A statement of the form o[m+>>s] is true if the list of all
values of the attribute m for object o contains every element in the list s. A statement of the
form o[|m+>>s|] is true if s is the list of all values of m on the object o, which are obtained by
inheritance from the superclasses of o.

For instance, the following query tests whether all Mary’s children are also John’s children:

?- Mary[children->->?L], John[children+>>?L].

As with ->->, the use of +>> is restricted to rule bodies.

30 Control Flow Statements

Flora-2 supports a number of control statements that are commonly used in procedural languages.
These include if - then - else and a number of looping constructs.

30.1 If-Then-Else

This is the usual conditional control flow construct supported by most programming languages.
For instance,

?- \if (foo(a),foo2(b)) \then (abc(?X),cde(?Y)) \else
(qpr(?X),rts(??Y)).

Here the system first evaluates foo(a),foo2(b) and, if true, evaluates abc(?X),cde(?Y). Oth-
erwise, it evaluates qpr(?X),rts(?Y). Note that \if, \then, and \else bind stronger than the
conjunction “,”, the disjunction “;”, etc. This is why the parentheses are needed in the above
example.

The abbreviated if-then construct is also supported. However, it should be mentioned that
Flora-2 gives a different semantics to if-then than Prolog does. In Prolog,

..., (Cond -> Action), Statement, ...
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fails if Cond fails and Statement is not executed. If the knowledge engineer wants such a conditional
to succeed even if Cond fails, then (Cond->Action; \true) must be used. Our experience shows,
however, that it is the latter form that is used in most cases in Prolog programming, so in Flora-2
the conditional

..., \if Cond \then Action, Statement, ...

succeeds even if Cond fails and Statement is executed next. To fail when Cond fails, one should
explicitly use else: \if Cond \then Action \else \false. More precisely:

• \if Cond \then Action fails if and only if Cond succeeds but Action fails.

• \if Cond \then Action \else Alternative succeeds if and only if Cond and Action both
succeed or Cond fails while Alternative succeeds.

The form if-then also has the following alternative forms: ~~>and <~~.

Note that the if-statement is friendly to transactional updates in the sense that transactional
updates executed as part of an if-statement would be undone on backtracking, unless the changes
done by such updates are explicitly committed using the commit method of the system module \db
(see Section 45.2).

30.2 Loops

unless-do. This construct is an abbreviation of \if Cond \then \true else Action. If Cond
is true, it succeeds without executing the action. Otherwise, it executes Action and succeeds or
fails depending on whether Action succeeds or fails.

30.2.1 The while-do and do-until Loops

These loops are similar in intent to those in C, Java, and other procedural languages. In \while
Condition \do Action, Condition is evaluated before each iteration. If it is true, Action is
executed. This statement succeeds even if Condition fails at the very beginning. The only case
when this loop fails is when Condition succeeds, but Action fails (for all possible instantiations).

The loop \do Action \until Condition is similar, except that Condition is evaluated after
each iteration. Thus, Action is guaranteed to execute at least once.

These loops work by backtracking through Condition and terminate when all ways to satisfy
them have been exhausted (or when Action fails). The loop condition should not be modified
inside the loop body. If it is modified (e.g., new facts are inserted in a predicate that Condition
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uses), it is not guaranteed that the changes will be seen during backtracking and thus the result
of such a loop is indeterminate. If you need to modify Condition, use the statements while-loop
and loop-until described below. Examples:

p({1,2,3}).
?- \while p(?X) \do writeln(?X)@\plg.
?- \do (p(?X),writeln(’loop executed for’=?X)@\io) \until \naf p(?X).

For the second loop above, note that ?X must be bound at the time the until-condition is checked.
When negating conditions under \until, caution should be exercised. For instance, something like

?- \do writeln(’loop executed’)@\io \until \naf p(?X).

would not have worked: the loop would execute only once because \naf p(?X) will succeed on the
first check (since ?X is unbound, \naf p(?X) is undefined, and in loop conditions “undefined” is
treated as a successful test).

The above loop statements have special semantics for transactional updates. Namely, changes
done by these types of updates are committed at the end of each iteration. Thus, if Condition
fails, the changes done by transactional updates that occur in Cond are undone. Likewise, if Action
fails, backtracking occurs and the corresponding updates are undone. However, changes made by
transactional update statements during the previous iteration remain committed. If the current
iteration finishes then its changes will also remain committed regardless of what happens during
the next iteration.

Subtleties related to the loop conditions. In both of the above loops, Condition should
normally be user-defined backtrackable predicate. The use of non-backtrackable predicates as
conditions requires special care, as described below.

First, not all non-backtrackable Prolog predicates fail when their work is done. For instance,
file_read_line_atom/2, which reads files line-by-line, fails at the end, but read/1 and read/2
do not. Instead, they return the atom end_of_file when done. Therefore, read(?X)@\prolog
or read(?X)@\io can never be a condition in the above loops; use (read(?X)@\prolog, ?X \==
end_of_file) instead.

Second, non-backtrackable predicates, like file_read_line_atom and read, will fail if they are
backtracked over. Therefore, if they are used as conditions in the while-do or do-until loops,
they will execute only once. Fortunately, Flora-2 provides a way to use such predicates in the
above loops by wrapping them with the \repeat hint. For instance (where we use Flora-2 ’s
equivalents for file_read_line_atom, open, and close),
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?- myfile[open(read) -> ?Stream]@\io,
\while \repeat(?Stream[readline(atom,?Line)]@\io) \do writeln(?Line)@\io,
?Stream[close]@\io.

Third, for the do-until loop, the loop quits immediately after the condition becomes true.
Therefore, if one wants to use non-backtrackable predicates like file_read_line_atom or read
(or their Flora-2 equivalents like ?Stream[readline(atom,?Line)]@\io) then they must be
negated. For instance,

q({1,2,3,4,5}).
?- myfile[open(read) -> ?Stream]@\io,

\do (q(?X),writeln(’loop executed for X’=?X)@\io)
\until \repeat(\+ (?Stream[readline(atom,?Line)], writeln(?Line))@\io),
?Stream[close]@\io.

If myfile has 5 or more lines, this loop will execute 5 times and then fail. If myfile has less than
5 lines, the loop will execute once per line and then succeed.

Observe that \naf should never be used with non-logical conditions like the above, especially
if these conditions are called with unbound variables.

30.2.2 The while-loop and loop-until Loops

This pair of loop statements is similar to while-do and do-until, except that transactional updates
are not committed after each iteration. Thus, failure of a statement following such a loop can
cause all changes made by the execution of the loop to be undone. In addition, while-loop
and loop-until do not work through backtracking. Instead, they execute as long as Condition
stays true in while-loop loops and until it becomes true in loop-until loops. Therefore, the
intended use of these loop statements is that Action in the loop body must modify Condition
and, eventually, make it false (for instance, by deleting objects or tuples from some predicates
mentioned in Condition) or true, in case of loop-until.

As in the case of the previous two loops, while-loop and loop-until succeed even if Condition
is false (while-loop) or is true (loop-until) right from the outset. The only case when these loops
fail is when Action fails — see below for the ways to avoid this (i.e., to continue executing the loop
even when Action fails) and the possible pitfalls.

The statements while-loop and loop-until are more expensive (both time- and space-wise)
than while-do and do-until. Therefore, they should be used only when truly transactional
updates are required. In particular, such loops are rarely used with non-transactional updates.
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Subtleties related to the while-loop and loop-until statements. Observe that while-loop
and loop-until assume that the condition in the loop is being updated inside the loop body.
Therefore, the condition must not contain tabled predicates. If such predicates are involved in the
loop condition, the loop is likely to continue forever.

Also, keep in mind that in any of the four loop statements, if Action fails, the loops terminate
and are evaluated to false. Therefore, if the intention is that the loop should continue even if
Action fails, use the

(Action ; \true)

idiom in the loop body. In case of while-do and do-until, continuing execution of the loop is
not a problem, because these loops work by backtracking through Condition and the loop will
terminate when there are no more ways to backtrack. However, while-loop and loop-until
have a potential pitfall. The problem is that these loops will continue as long as there is a way
to satisfy Condition. If condition stays true, the loop runs forever. Therefore, as mentioned
above, the while-loop/loop-until loops must make sure that Condition is modified by Action.
Thus, if Action has non-transactional updates, the user must arrange that if Action fails then
Condition is modified appropriately anyway for, otherwise the loop will never end. If Action
is fully transactional and it fails, then using the (Action ; \true) idiom in the loop body will
definitely make the loop not terminate, so the use of this idiom in the body of while-loop and
loop-until is dangerous if there is a possibility that Action will fail, and this idiom is useless if
the action is expected to always succeed.

31 Constraint Solving

Flora-2 provides an interface to constraint solving capabilities of the underlying Prolog engine.
Currently XSB supports linear constraint solving over the domain of real numbers (CLPR). To
pass a constraint to a constraint solver in the body of a Flora-2 rule (or query), simply include
it inside curly braces.

Here is a 2-minute introduction to CLPR. Try the following:

?- insert{p(1),p(2),p(3)}.
?- ?X>1, ?X<5, p(?X).

Traditional logic languages, like Prolog, would give an error in response to this query. Flora-2 is
actually pretty good in this respect, as it will delay the inequalities until they can be solved. So, it
will return two answers: 2 and 3. But what if we ask Flora-2 to solve an equation:
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?- insert{p(1),p(2),p(3),p(9)}.
?- ?X=?Y*?Z, ?Y>1, ?Z>2, p(?X), p(?Y).

That Flora-2 cannot do without the help of Constraint Logic Programming. Constraint logic
programming takes the view that ?X=?Y*?Z, ?Y>1, ?Z>2 is a a constraint on the set of solutions
of the query p(?X). This approach allows Prolog to return meaningful answers to the above query
by solving this constraint. However, the user must explicitly tell Flora-2 which view to take: the
traditional view that treats arithmetic built-ins as infinite predicates or the one that treats them as
constraints. This latter view is indicated by enclosing constraints in curly braces. Thus, the above
program becomes:

?- insert{p(1),p(2),p(3),p(9)}.
?- {?X=?Y*?Z, ?Y>1, ?Z>2}, p(?X), p(?Y).

?X = 9
?Y = 2
?Z = 4.5000

?X = 9
?Y = 3
?Z = 3.0000

Note the use of curly braces in the above example: they are essential in order to tell the system
that you want constraints to be solved rather than checked.

32 Low-level Predicates

Unadulterated Prolog predicates. Sometimes it is useful to define predicates that are handled
directly by the underlying Prolog engine. Such predicates would be represented as Prolog, not HiLog
predicates. They are visible to HiLog queries, are not tabled automatically, and they are indexed
as any other Prolog predicate. One use of such predicates, as sensors, is described in Section 33.
To support this feature, Flora-2 provides two directives:

:- prolog{predname/arity, predname/arity, ...}.
:- table{predname/arity, predname/arity, ...}.

The first directive defines a predicate of a certain arity as a Prolog predicate to be handled directly
by Prolog. If this predicate is defined recursively, it might need to be tabled to help with termination
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or to reduce computational complexity. This is accomplished with the help of the second directive.
The table directive implies the prolog directive, however, so there is no need for the former in
that case.

As mentioned above, predicates declared with the prolog directive are not visible to HiLog
queries. For instance, in

:- prolog{foo/2}.
?- ?X(?,?).

the variable ?X will not be bound to foo.

The names of the predicates defined via the prolog directive are scrambled so there is no fear
of a clash with Prolog builtins or :- prolog{...}-defined predicates in other Flora-2 modules.

At present prolog predicates are automatically exported and there is no way to encapsulate
them in a module. To refer to a prolog predicate defined in a different module, e.g., predicate
foo/1 in module bar, the following idiom can be used:

:- prolog{foo/1}.
... ... ...
... :- ..., foo(?X)@bar, ...

Note that there are no executable prolog or table directives (i.e., invocable via ?− or from the
Flora-2 shell).

The prolog and table directives in multi-file modules. Recall from Section 16.5 that a
module can consist of several files: the first file would be normally loaded into the module and the
subsequent files are added. Once a prolog or table directive is issued, it affects the compilation
of the corresponding predicate symbols. The files added after the file that contains the initial
prolog/table directives must include the necessary prolog directives, if that uses the affected
predicate symbols. If this is not done, the system would issue an error, to prevent hard-to-find
error from creeping into the knowledge base.18 It should be noted, however, that if a file with
prolog declarations (e.g., :- prolog{p/1} or :- table{p/1}) is loaded into a module, foo, that
declaration is automatically made available to the Flora-2 shell. So, such predicates are readily
accessible from the shell (e.g., as p(?X)@foo).

The \nontabled_module directive. For simple modules that do not have recursive rules, sig-
nificant amount of main memory can be saved by telling Flora-2 to not table predicates and

18 Note: subsequently added files need only the prolog directives—even for predicates that are declared with a
table directive.
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methods. This is especially useful for modules that process large amounts of data and can be done
by placing the following directive in the module file:

:- \nontabled_module.

33 Sensors: Predicates with Restricted Invocation Patterns

Sometimes it is useful to define predicates that have fixed invocation patterns: the requirements
that certain arguments must be bound (non-variable) or be ground. Flora-2 provides special
support for this kind of predicates, which are called sensors. Namely, if a predicate is registered
as a sensor, Flora-2 will monitor the binding pattern of that predicate and, if the predicate is
called before the binding conditions are fulfilled, it will delay the predicate until the conditions
are fulfilled. If at some point Flora-2 determines that the binding condition cannot be satisfied,
Flora-2 will call the sensor anyway. The sensor’s implementation can then examine the state of
the argument bindings and issue an error, if appropriate.

The overall scenario for sensor use is as follows:

• Sensors are used and defined in separate files. Sensors must also be declared. Declaration is
done via the defsensor directive; definitions are done by means of the regular rules.

• A sensors can be defined in a .P file using the Prolog syntax (P-sensors) or in .flr files using
the Flora-2 syntax (F-sensors). P-sensors can also be defined as external modules in the
C language. Usually all sensor declarations are collected in one .flr file, which should be
loaded into a separate Flora-2 module. That .flr file should also contain the rules that
define F-sensors.

• Flora-2 files containing sensor definitions cannot be added to another Flora-2 module
(e.g., loaded using the add{...} command).

• There are no restrictions on how sensors are to be defined. For instance, they can be recursive.
However, there are certain conventions to abide by for P-sensors.

• Sensors are used in modules other than those where they are defined. To use a sensor in a
file, it has to be declared in that file with the usesensor directive.

However, if a file with a usesensor declaration is loaded into some module, all files that are
compiled in the same Flora-2 session and then added into the same module will inherit that
declaration. In that case, no explicit usesensor declaration is needed. However, if the file
being added is compiled in a different Flora-2 session (which does not have the requisite
usesensor declarations loaded) then explicit usesensor declarations are required.
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• Flora-2 also provides executable versions of the directives defsensor and usesensor.

In most cases, the developer would choose F-sensors. There are two slight advantages in choosing
to define a sensor as a P-sensor, however: the encapsulation provided by Prolog modules or if the
sensor is implemented completely in C.

Declaring a sensor. There are two forms of the defsensor directive. The first is used for P-
sensors (defined in .P files in Prolog or in .c files in C); the second is used for F-sensors (defined
using Flora-2 syntax in .flr files).

:- defsensor{sens1(?Y,?X), sensorfoo, (nonvar(?X),ground(?Y))}. // P-sensor
:- defsensor{sens2(?Y,?X), (ground(?X),ground(?Y))}. // F-sensor

The first argument is a sensor invocation template. The last argument is a guard: a Boolean
combination of nonvar/1 and ground/1 predicates applied to the input variables of the sensor.
The sensor will be delayed by the Flora-2 engine until the guard is satisfied (or until the engine
determines that the guard cannot be satisfied).

In the first defsensor directive, which applies only to P-sensors, the middle argument is the
name of the Prolog module in which the P-sensor is defined. In our case, sens1 is declared as a
P-sensor in the Prolog module sensorfoo. In that case, Flora-2 will expect those rules to be in
a file named sensorfoo.P (or sensorfoo.c, if the sensor is defined as an external C module) and
that file should be found somewhere on the Flora-2 search path (e.g., in the current directory).

Defining an F-sensor. The F-sensor sens2 above is declared using a two-argument defsensor
directive, so its definition is expected to be in a .flr file and then loaded into a separate Flora-2
module. Here is an example of such a definition:

sens2(abc,cde) :- !, writeln(details=\?F+\?L)@\io.
sens2(?X,?Y) :-

\if \+ground(?X) // only ?X must be ground
\then

abort([’In file ’, \?F, ’, line ’, \?L, ’: ’,
’Instantiation error in arg 3 in sens2’])@\sys,

?Y \is ?X/2,
writeln(Y=?Y)@\prolog,
sens2(abc,cde).

The above rules are quite standard except for the quasi-variables \?F and \?L. When these quasi-
variables occur in the body of a sensor definition, \?F is replaced with the file name from which the
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sensor was called; the quasi-variable \?L is replaced with the line number in the file where the call
to the sensor occurred. A typical use of these quasi-variables is to report errors or issue warnings
in case the sensor guard is not satisfied at the time the sensor is called, as illustrated in the above
example. If these quasi-variables are used outside of a sensor definition, they are treated as new
unbound variables.

Defining an P-sensor. From the perspective of the user, the above P-sensor sens1 is a binary
predicate. However, from the perspective of the developer, a P-sensor has two “hidden” extra
arguments. These arguments are automatically pre-pended by the compiler to the list of the
arguments that the user specified in a defsensor directive.

In any actual call (in a .flr file) to a P-sensor, the first argument will always be bound (at
compile time) to the file in which the sensor is used and the second argument will be bound to the
line number on which the call to the sensor occurs. This is done to make it possible to define sensors
so that they would issue useful runtime errors to enable the user to quickly locate the offending
call. Thus, in the actual rules that define a P-sensor, the first two arguments to the sensor must be
distinct variables, and this is the responsibility of the P-sensor developer. The remaining arguments
are up to the developer to choose.

The upshot of the above is that to define sens1 one uses a predicate of arity 4, not 2. Here
is an example of a definition for sens1 in a Prolog file sensorfoo.P. As we have just explained,
the actual predicate to be defined here must be sens1 and its first two arguments must be distinct
variables reserved for file names and line numbers (Prolog variables F and L).

:- export sens1/4.
sens1(F,L,X,Y) :-

(var(X) // X must be nonvar
-> abort([’In file ’, F, ’, line ’, L, ’: ’,

’Instantiation error in arg 1 in in sens1/2’])
; \+ground(Y) // Y must be ground
-> abort([’In file ’, F, ’, line ’, L, ’: ’,

’Instantiation error in arg 2 in sens1/2’])
),
Z \is X+Y,
writeln(z=Z).

It should be noted that F-sensors are also internally represented by predicates that have two
extra arguments. However, the transformations that add these arguments are done by the Flora-2
compiler completely transparently to both the users and the developers of F-sensors.
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Using a sensor. When sensors are used in Flora-2 modules (which are different from the
modules where the sensors are defined), they must be declared using the usesensor directive. For
instance,

:- usesensor{sens1/2, sens2/2}.
?- sens1(?X,?Y), ?X=123, ?Y=aaaaa, sens2(?X,?Y), ?Y=345, ?X=bbbbb.

Note that if the definition of a sensor is recursive, tabling might be needed in order to ensure
termination. In a .P file, this is done using the usual Prolog table directive. Flora-2 provides a
similar directive for sensors defined in .flr files:

:- table{sens2/2}.

This directive is to be placed in the file that contains the rules defining the sensor and the number
of arguments must match the number used in the F-sensor declaration. It must come after the
defsensor directive. For P-sensors, the arity must match the number of arguments used in the
sensor definition, i.e.,

:- table{sens1/4}.

Sensors are viewed as low-level non-logical predicates, analogous to builtins, so they are not
visible to HiLog queries. For instance, neither

?- ?X(?,?,?,?).
nor

?- ?X(?,?).

would bind ?X to sens1 or sens2 (cf. Section 32).

34 Rearranging the Order of Subgoals at Run Time

Sometimes certain subgoals should be executed only if certain arguments are bound or ground and
should be delayed otherwise. The reason for this might be correctness or efficiency of the execution.
Since it may be impossible to know at compile time when the requisite arguments become bound,
one might want to place the relevant subgoals as early as possible to the left and then wait until the
binding conditions become true. Once they become true, the affected subgoals can be executed. It
the binding condition never becomes true, then we can have two possible actions: abort or execute
the subgoals anyway.

Flora-2 supports this mode of goal rearranging via delay quantifiers. A delay quantifier has
one of these forms:
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must(Condition)
wish(Condition)

where Condition consists of the terms of the form ground(?Var) and ground(?Var) connected with
“,” (or and) and “;” (or or). If parentheses are not used in Condition, then the comma is considered
to bind stronger than the semicolon.

Delay quantifiers are connected via the operator ˆ to the actual goal that is to be executed with
possible delay. The goal can be a simple frame or a predicate, or it can be a more complex goal of
any kind that is allowed to appear in the rule bodies. In the latter case, the goal has to be enclosed
inside parentheses. A subgoal with an attached delay quantifier is called a delayable subgoal and
the regular subgoal part in a delayable subgoal is said to be controlled by the quantifiers. So, the
general syntax is

delay-quantifierˆdelay-quantifierˆ...ˆGoal

Delayable subgoals can be nested and multiple delay quantifiers can be attached to the same goal.
For instance,

must(ground(?X) or nonvar(?Y))^?X[foo->?Y]
wish(ground(?X) and ground(?Y) ; nonvar(?Z))^(p(?X), foo[bar(?Y)->?Z])
wish(ground(?X) or ground(?Y))^must(nonvar(?Z))^

(p(?X), wish(nonvar(?W))^q(?W), foo[bar(?Y)->?Z])

When a delayable subgoal is to be executed, the attached delay quantifiers are checked. If at
least one the quantifiers is not satisfied (i.e., if its condition is not satisfied) then the goal is not
executed, but is delayed instead until such time that all the quantifiers are satisfied or the engine
determines that satisfying all the quantifiers is impossible. In the above example, the first goal
would be delayed is ?X is non-ground and ?Y is an unbound variable. The second delayable subgoal
has a more complex execution condition and it controls a more complex subgoal, the conjunction
of p(?X) and foo[bar(?Y)->?Z]. This subgoal will be delayed if either ?X or ?Y is non-ground and
?Z is an unbound variable. The third delayable subgoal is even more complex. First, it involves
two delay quantifiers; second, it controls a complex subgoal that is a conjunction of three other
subgoals, and one of them is itself a delayable subgoal. This complex delayable subgoal will be
executed immediately only if ?X or ?Y are ground and ?Z is not a variable. Otherwise, it will
be delayed. But when the controlled subgoal is eventually ready for execution, its middle part,
wish(nonvar(?W))ˆq(?W), might still be delayed if ?W is an unbound variable.

When a delayable subgoal is delayed, its attached quantifiers are periodically checked for sat-
isfaction. If the first (leftmost) quantifier is satisfied, the controlled subgoal is executed. If this
subgoal still has a controlling delay quantifier, then this quantifier’s condition will be checked, etc.
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At some point during the execution, the inference engine might stumble upon a delayed subgoal
and determine (provably!) that its first delay quantifier is not satisfiable any more, i.e., subsequent
execution will not be able to bind the variables in that quantifier in the required way. In this
case, the cause of action depends on the type of the quantifier. If the unsatisfied quantifier is a
wish-quantifier, then the controlled subgoal is executed anyway: the unsatisfied delay condition
was only a “wish.” If, however, the unsatisfied quantifier is a must-quantifier, the execution of
the subgoal is aborted and the error message will indicate which must-condition was at fault. To
illustrate this on an example, consider the following delayable subgoal issued as a query against a
knowledge base that contains the listed facts:

p(1).
foo[bar(2)->3].
?- must(ground(?X) or ground(?Y))^wish(nonvar(?Z))^

(p(?X), must(nonvar(?W))^q(?W), foo[bar(?Y)->?Z]),
?X=1.

When the subgoal is first encountered, it is delayed because ?X and ?Y are not ground. Then the
engine executes the subgoal ?X=1 and ?X gets bound to 1. The delay condition becomes satisfied,
so the engine considers the subgoal

wish(nonvar(?Z))^(p(?X), must(nonvar(?W))^q(?W), foo[bar(?Y)->?Z])

Clearly, ?Z will not be bound if the engine continues delaying the controlled subgoal, so it must
decide on the final disposition for this delayable subgoal. Since the delayable subgoal is controlled
by a wish-quantifier, the subgoal is executed despite the fact that the delay condition does not
hold. During the execution, p(1) is satisfied, must(nonvar(?W))ˆq(?W) gets delayed, and then
foo[bar(?Y)->?Z] is satisfied. Now the disposition of the remaining delayed subgoal has to be
decided. Since ?W cannot be bound any more and the controlling quantifier is of the must-variety,
the engine will throw an error:

++Abort[Flora-2]> in file foo.flr, line 3: unsatisfied must-condition.
Goal: q(?A)
Condition: nonvar(?A)

Forcing immediate execution of delayed subgoals. Sometimes it is necessary to tell the
system to stop delaying subgoals and force their immediate execution. For instance, in

?- must(ground(?X) or ground(?Y))^wish(nonvar(?Z))^
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(p(?X), wish(nonvar(?W))^q(?W), foo[bar(?Y)->?Z]),
...,
...,
test(?X,?Y,?Z,?W).

the query test might be executed before the queries p(?X), q(?W), and foo[bar(?Y)->?Z]), if
some of the delay quantifiers remain unsatisfied. If instead we want to make sure that those queries
are executed before test(?X,?Y,?Z,?W), Flora-2 provides the immediate execution operator, !!,
which forces immediate execution of all the “reachable” delayed subgoals:

?- must(ground(?X) or ground(?Y))^wish(nonvar(?Z))^
(p(?X), wish(nonvar(?W))^q(?W), foo[bar(?Y)->?Z]),

...,

...,
!!,
test(?X,?Y,?Z,?W).

In this example, the aforesaid queries will be executed before test(?X,?Y,?Z,?W).

A delayed subgoal, G, is reachable by an occurrence of the immediate execution operator !!
if G is suspended on a ground/nonvar condition that involves a variable that appears in the the
scope of the rule or the query where the aforesaid occurrence of !! is found. What it means to be
suspended on a variable is a little trickier. In the above example, if neither ?X nor ?Y is ground,
then p(?X), q(?W), and foo[bar(?Y)->?Z]) would be suspended on either ?X or ?Y. If one of these
variables becomes ground, then these queries would be suspended on ?Z, if ?Z is still not bound.
Once ?Z gets bound, then p(?X) and foo[bar(?Y)->?Z]) will no longer be suspended, but q(?W)
will still be suspended on ?W unless ?W is already bound by that time.

Note, however, that !! will not have any effect on subgoals that are suspended on variables
that are not in the scope of the rule or query containing this immediate execution operator. For
instance, in

p(?X) :- must(nonvar(?X))^foo(?X,?Y), wish(ground(?Z))^bar(?Z), moo(?Y,?X,?Z).
moo(?Y,?X,?Z) :- ..., !!, ...
?- p(?W), !!, writeln(?W)@\plg.

the variable ?W is in scope for the query. Since p(?W) unifies with the head of the first rule, ?W and
?X become the same variable. This means that foo(?X,?Y) is reachable from !! and will be forced
to execute by that operator. In contrast, bar(?Z) is suspended on the variable ?Z, which is not in
the scope of the query. Therefore, bar(?Z) will not be forced to execute by the operator !! in the
above query. On the other hand, ?Z is in the scope of the second rule above, so the occurrence of
!! in that rule will force the execution of bar(?Z).
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35 Rule Ids and Meta-information about Rules

Every rule in Flora-2—whether it appears in a file, is inserted at run time, or is reified and lives
as an object it its own right—is assigned a unique rule Id and the user can also supply additional
meta-data for it. The rule Id can be either given explicitly by the knowledge engineer or, if not
given explicitly, is assigned by the system (at compile time for rules that live in files and at run
time for inserted and reified rules).

A rule Id is a triple of the form
(local_id, file_name,module), where

• local_id is a term that is either explicitly given to the rule by the author or is generated by
the compiler or loader.

• file_name is the file name where the rule occurs. The name does not include the directory
part, but it does include the name extensions (e.g., foo.flr). The #include commands are
taken into account, so if a rule is found in file foo that is #included in file bar then the rule
Id will use foo, not bar.

• module is the module into which the rule is loaded.

For rules that are inserted dynamically at run time via an insert{...} or insertrule{...}
statement, their file name is to be specified as dynrule(containing-file), where containing-file is
the file that contains the insert statement in question.

Flora-2 supports the use of rule descriptors of the form

• Rule Id descriptor : @!{id[frame]} or just @!{id},
where id is a term and the frame information is the same as what is allowed in a simple (not
nested) frame. Some properties in the frame have special meaning as detailed below.

The rule Id descriptor is used to explicitly specify only the local id part of the rule Id, as
described above. The other two components are assigned by the system. If no explicit rule
Id is given, the system will generate one.

• Tag descriptor: The property tag indicates that the values of that property are rule tags,
which are used in defeasible reasoning (Section 37). For instance,

@!{abc[tag->{tag1,tag2},author->’kifer@cs.stonybrook.edu’]} head :- body.

Here the rule is given an explicit rule Id, abc, and two tags, the terms tag1 and tag2. The
property author (as most others) is not special; it can be used for whatever purpose the user
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decides to use it.
Because rule tags are very common pieces of metadata, Flora-2 provides a convenient
shortcut, which is used as a standalone descriptor. For instance, the following is equivalent
to the previous descriptor:

@{tag1,tag2} @!{abc[author->’kifer@cs.stonybrook.edu’]} head :- body.

• Defeasibility descriptor : Defeasibility descriptors are used for defeasible reasoning, as de-
scribed in Section 37. The descriptor strict means that the rule cannot be defeated by a
higher-priority rule, and defeasible means it can be. These are Boolean properties in the
descriptor frame and, as one may guess, only one of them can be specified for any given rule.
For instance,

@{tag1,tag2}
@!{abc[author->’kifer@cs.stonybrook.edu’, defeasible]} head :- body.

Defeasibility descriptors are also fairly common and Flora-2 provides shortcuts for them as
well. As with tags, these shortcuts are specified as standalone descriptors. For instance,

@{tag1,tag2}
@@{defeasible}
@!{abc[author->’kifer@cs.stonybrook.edu’]}
head :- body.

Of course, we did not save any typing with the above defeasibility shortcut. However, this
shortcut does improve the visibility of the fact that a particular rule is defeasible (or strict).
Also, when no explicit Id and frame properties are specified and the user opts for the default
rule Id, the defeasibility and the tag shortcuts save significant amount of typing. For instance,

@{tag1,tag2} @@{defeasible} head :- body.

Without these shortcuts, the user would have to use the current rule Id quasi-constant, \@!,
which gets substituted for the Id of the rule in which it occurs:

@!{\@![tag->{tag1,tag2}, defeasible]} head :- body.

In this case, \@! gets replaced by the default Id, which the system assigns to this rule.

The descriptors extend the rule syntax as follows:



35 RULE IDS AND META-INFORMATION ABOUT RULES 171

rule-descriptors Head :- Body.
rule-descriptors Fact.

Any number of tag descriptors is allowed but only one rule Id and one defeasibility descriptor. In
other places, rule descriptors are either ignored or will cause syntax errors.

Rule tags and Ids are terms and so can have variables. For instance,

@{allow(?Device,?Person)} authorized(?Person,?Device) :- \naf abused(?Person,?Device).

If no Id is given, a system-generated rule Id is used. If no tag is given, the Id of the rule also serves
as a tag.

If no defeasibility descriptor is given then a rule is considered defeasible by default if an explicit
tag is specified. Otherwise, the rule is considered strict. However, for defeasibility to have any
effect, the rule must be in a defeasibility-capable document (local file or a remote document), i.e.,
the document must have the directive :- use_argumentation_theory at the top (see Section 37).
Also, rules whose heads are transactional predicates or methods are currently never defeasible—no
matter what the defeasibility descriptor says.

35.1 The Current Rule Id Quasi-constant

We have already seen a use of this quasi-constant earlier. In general, rules can reference their Ids
even if the Id is not given explicitly by the author and thus cannot be determined by just looking
at the rule. This is accomplished with the help of the special “current rule Id” quasi-constant \@!.
This quasi-constant gets replaced by the local part of the Id of the rule where the quasi-constant
occurs. The replacement happens at compile time for the static rules and at run time for dynamic
or reified rules. To get the file name part, use \@F and the module part use \@ — the quasi-constants
introduced in Section 8.6.

35.2 Enabling and Disabling Rules

Rule Ids make it possible to enable and disable rules, producing the effect of deleting and re-inserting
rules. The difference is, however, that enabling and disabling do not actually change the rules in
the system (so they are very fast compared to insert and delete) and, most importantly, they
apply to static rules, not just the dynamic rules. To specify a rule, one needs to specify the local
Id of the rule in question, the file name of the rule, and its module. For dynamic rules, the file
name is dynrule(containing-file), where containing-file is the file that contains the insert... or
insertrule... statement that inserted the dynamic rule. The following primitives are provided:
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• enable{LocalId,File,Module}

• disable{LocalId,File,Module}

• tenable{LocalId,File,Module}

• tdisable{LocalId,File,Module}

• isenabled{LocalId,File,Module}

• isdisabled{LocalId,File,Module}

In the enable/tenable primitives, all arguments must be bound. The first two primitives are
non-transactional, i.e., these operations will not be undone if the query in which they occur fails.
The second two primitives, tenable and tdisable, are transactional. Their effects are undone on
backtracking. For instance,

bbbb.
@!{r1} aaaa:-bbbb.
?- tdisable{r1,\@F,\@}, aaaa.
No
?- aaaa.
Yes

Here the first query disables the rule r1 so aaaa becomes false and thus the entire query fails. Due
to that, the disabling action is undone, so the rule remains enabled. Therefore, the second query
succeeds.

The last two primitives are queries that tell us whether a particular rule is enabled or disabled.
To enable or disable a rule, the rule must already exist as a static or dynamic rule. Enabling and
disabling operations are idempotent: they always succeed and applying enable to an enabled rule
or disable to a disabled rule has no effect. If a rule with the specified Id and module does not
exist in the system, both enable and disable fail and so do both of the above queries.

All of the above primitives have a one-argument form, which is a shortcut for the three-argument
version, where argument 2 is \@F and argument 3 is \@. For instance, tenable{foo} instead of
tenable{foo,\@F,\@}.

The difference between disabling and deleting a rule. It is important to realize that dis-
abling a rule, as described here, and deleting a rule, described in Section 27.3, are two very different
operations, although there are similarities. For similarities, both operations take the affected rule(s)
out of the reasoning process and the effect is as if the rule is “not there.” The major differences are:
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1. Rule deletion works only for dynamic rules (those added with insertrule), while disabling
works for all rules.

2. A deleted rule is physically removed from the system. A disabled rule is only marked as
disabled. It can be re-enabled by supplying its Id and module as arguments to the enable
primitive. In contrast, to re-instate a deleted rule, it must be re-inserted, which requires
supplying the entire original rule as an argument. Disabling/enabling are very fast operations,
while deleting/inserting a rule is much more expensive.

3. For multi-headed rules, there is another important difference. A multi-headed rule is one that
has more than one literal in the head, which is equivalent to several single-headed rules. Such
rules typically arise when a complex frame is put in a rule head. With a deleterule operation,
one can delete just one of the heads, leaving the remainder of the rule intact. For instance,
in

?- insertrule{?X:person[name->?N] :- pred(?X,?N)}.
?- deleterule{?X:person :- pred(?X,?N)}.

the person[name->?N] :- pred(?X,?N) part of the rule remains. In contrast, in

?- insertrule{@!{abc} ?X:person[name->?N] :- pred(?X,?N)}.
?- disable{abc,\@}.

the disable-primitive takes all parts of the rule out of circulation, while a subsequent match-
ing enable-operation would reinstate the entire rule.

35.3 Changing the Defeasibility at Run Time

The defeasibility status of a rule can be changed via the following statements:

• makedefeasible{Id,File,Module}

• makestrict{Id,File,Module}

• isdefeasible{Id,File,Module}

• isstrict{Id,File,Module}

The last two primitives are queries. The primitive makedefeasible and makestrict are idempotent
and always succeed. The queries isdefeasible and isstrict tell us whether the rule in question
is currently defeasible or strict. If the rule with the given Id does not exist in the given module,
both of these queries fail.
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All of these primitives have a short, one-argument form, which is a shortcut for the
three-argument version, where argument 2 is \@F and argument 3 is \@. For instance,
makedefeasible{foo} instead of makedefeasible{foo,\@F,\@}.

35.4 Querying Rule Descriptors

Rule Ids and other rule descriptor data can be queried using the clause{...} and @!{...} con-
structs. The clause{...} construct was already introduced in Section 28. Now we introduce two
new forms of this statement, which extend the statements defined in Section Section 28:

clause{descriptors head,body}
clause{descriptors type,head,body}

Here descriptors are rule descriptors as above and type, head, and body are as in Section 28. For
instance,

?- clause{@{?Tag} @@{defeasible} foo[bar->?Val],?Body}.

This query will retrieve all defeasible rules whose head matches foo[bar->?Val]. The variable
?Tag will be bound to the tag of the rule.

Note: The clause{...} primitive queries the rules as they were created by the author. Dis-
abling a rule or changing its defeasibility status won’t affect clause.... For instance, if we
had a rule @!{abc} @{defeasible} p:- q and then this rule was disabled and/or made strict,
clause{@@{defeasible} p,q} will still be true and clause{@@{strict} p,q} false. In this way,
one can investigate the changes made to the status of the various rules in the course of time. ✷

The @!{...} construct is more convenient than the clause-construct and much more efficient,
if one needs to query the descriptor data only, not the rule base. Inside the braces, this construct
expects a usual frame formula of the form ruleId[prop1,prop2,...], where propi have the form
attr->val or term. In the first case, the property is a regular attribute-value pair and in the second
it is a Boolean property. Nested or composite frames are not allowed, but module specifications
are supported, so one can query rule descriptors in another module. For instance,

?- @!{?R[foo->bar, tag->low, defeasible]}.
?- @!{rule123[]@foo}.
?- @!{?R[tag->high,strict,author->Bob]@foo}.

Recall that in all the above examples, only the local part of the rule Ids was queried (cf. ?R in the
queries above). To enable querying the file name and the module components of rule Ids, Flora-2
also provides the file and module properties. For instance,
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?- @!{?R[foo->bar, tag->low, defeasible, file->?F, module->?M]}.
?- @!{rule123[file->?F, module->?M]@foo}.
?- @!{?R[tag->high,strict,author->Bob, file->?F, module->?M]@foo}.

In addition, the type property can be used to find out whether a particular annotated statement
is a rule or a latent query (see Section 36):

?- @!{statement43[type->?T, module->main]}.

If the statement is a rule then ?T will get bound to rule; if it is a latent query then this variable
gets bound to query.

35.5 Reserved Properties in Rule Descriptors

The following property names in rule descriptors or in rule descriptor queries (described in Sec-
tion 35.4) are reserved:

• tag

• module

• file

• type

• defeasible

• strict

The properties module, file, and type are not allowed in rule descriptors (i.e., in @!{...} in rule
heads)—only in rule descriptor queries (i.e., in @!{...} and clause{...} in rule bodies)—because
they are assigned at compile or load time.

36 Latent Queries

Latent queries are a cross between queries and rules. From queries they borrow the main purpose:
to query the knowledge base. From rules they borrow the ability to use descriptors (so, latent
queries have Ids and, possibly, other meta-data) and the fact that such queries are not executed
immediately. Instead, they are saved to be called on-demand some other time. Like rules, latent
queries can also be inserted, deleted, enabled, disabled, and queries.
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Latent queries are useful as integrity constraints and also in GUI development, but because
these queries can have arbitrary properties attached to them via descriptors, they can be used for
various other, specialized needs (e.g., as standing queries that are called periodically to update
user views). At the same time, latent queries is an older mechanism, which is primarily retained
for Flora-2 and ERGO

Lite users. ERGO has newer, much more powerful mechanisms of integrity
constraints and alerts.

A latent query has the following form:

descriptor !- query-body.

The descriptor part is mandatory and has the same form as the rule descriptors introduced in
Section 35. The query-body part is the same as the body of a query. Thus, from regular queries
the latent queries differ in that they have descriptors and they use !- instead of ?-. From rules,
this new type of queries differs in that they have no heads and use !- instead of :-.

The main difference with queries, however, is the fact that latent queries, when they appear in
a file, are not executed right away. Instead, they are saved and must be called explicitly by their
query Id using the query{...} primitive. In order to get results from such a query, the query Id
must have variables. For instance,

p(1,2), p(2,3), p(3,4), p(2,4).
@!{test(?X,?Y)} !- p(?X,?Z), p(?Z,?Y).
?- query{test(?X,4),\@F,\@}.

?X = 1

?X = 2

(The quasi-constants \@F, \@, and others were introduced in Section 8.6.) Observe that latent
queries are executed using their Ids. This is different from rule invocation, which is done using the
rule-head as a query. In the above, test(?X,4) is not a predicate and it does not interfere with
any other rule (even with the ones that have test(?X,?Y) as head- or body-predicates!).

The following two forms are equivalent:

?- query{test(?X,4),\@F,\@}.
?- query{test(?X,4)}.

However, one must keep in mind that \@F occurring in the Flora-2 shell is different from \@F
occurring in a file (Section 8.6) and that the file component of the rule Id of a dynamically inserted
rule has its own representation (Section 35).
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Latent queries can be inserted, deleted, enabled, and disabled using the same primitives as the
ones used for rules:

?- insertrule@!rr2(?X)[bar->4] !- q(?X), ?X<4.
?- deleterule@!rr2(?)[bar->?X] !- ?.
?- enableqq1(?),’foobar.flr’,.
?- tenableqq1(?),?F,?M.
?- disableqq2(?),F,.
?- tdisableqq2(?).

Finally, like rules, latent queries can be themselves queried using the primitive clause... and
the meta-query @!.... In the clause... primitive, the head part is ignored.

?- clause{@!{?X[type->query]} ?,?B}.

?X = rr1(?_h4115)
?B = (${p(?_h4115)@main}, ?_h4115 < 3)

?X = rr2(?_h4156)
?B = (${q(?_h4156)@main}, ?_h4156 < 4)

flora2 ?- @!{?X[type->query]}.

?X = rr1(?_h3033)

?X = rr2(?_h3046)

Note the use of the type property in the descriptors of the above two queries. This is a special
builtin descriptor property, which can be used only in rule bodies. The value of that property is
query for latent queries and rule for rules.

In ERGO, latent queries are used for automatic maintenance of integrity constraints—a feature
not available in Flora-2/ERGO

Lite.

37 Defeasible Reasoning

Defeasible reasoning is a form of non-monotonic logical reasoning where some rule instances can
be defeated by other rule instances. The defeated rules do not need to be satisfied by the intended
model of the knowledge base. Flora-2 supports the form of defeasible reasoning known as Logic
Programs with Defaults and Argumentation Theories, as described in [16].
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The basic mechanisms by which the user can control defeasible reasoning include the notions
of rule overriding and literal opposition. We will not describe the semantics of defeasible reasoning
formally, but instead will give an informal overview.

The basic idea is that the user specifies overriding and opposition using the appropriate predi-
cates and then the associated argumentation theory decides which ground instances of which rules
are defeated (and thus do not need to be satisfied by the intended model).

To this end, any rule can be tagged by adding a primitive @tagname to the left of the rule.
Tags do not have to be unique and should not be confused with rule Ids. However, if no rule tag
is explicitly given, the Id of the rule is used.

To see how it all works, consider a few examples. The first is a classical example that states
that all birds generally fly, but some do not:

:- use_argumentation_theory. // tell the system that rules can be defeasible
@{default} ?X:Flies :- ?X:Bird. // all birds fly (by default)
@{penguin} \neg ?X:Flies :- ?X:Penguin. // but penguins don’t
@{wounded} \neg ?X:Flies :- ?X:Wounded. // and neither do wounded things
Penguin::Bird. // penguins are birds
Sam:Penguin. // Sam is a penguin
Fred:Bird. // Fred is a bird
Bob:{Bird,Wounded}. // Bob is a wounded bird
\overrides({wounded,penguin},default). // being wounded or penguin

// trumps the default rule

Here the first three rules have tags, which makes them defeasible. That is, whatever they might
derive may still be invalidated. How? For instance, all birds fly by penguins do not. Sam is a
penguin and thus a bird. According to the default rule, he should be able to fly, but according to
the penguin rule he should not—a contradiction. The situation with Bob is similar: as a bird, he
should be able to fly, but not as a wounded being. The way out is given by the last \overrides
statement, which says that if a default rule’s conclusion conflicts with a conclusion made via the
penguin or a wounded rule, the latter take precedence. In other words, no contradiction occurs
and both \neg Sam:Flies and \neg Bob:Flies are true (but not Sam:Flies or Bob:Flies). On
the other hand, no conflict exists with respect to Fred and Fred:Flies is derived. What would
have happened if the above conflicts were not resolved by the \overrides statement? In that case,
both Sam:Flies and \neg Sam:Flies would be false, and similarly for Bob.

In the previous example, we do not have the \opposes statement, which was mentioned earlier.
This is because the conflicting nature of any statement, like Sam:Flies and its \neg-negation is
obvious. In some cases, however, such a conflict cannot be assumed a priori, and this where the
\opposes statement helps. Consider a pricing database where the prices o items depend on the
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supplier:

:- use_argumentation_theory.
@{food} bread[price(store1) -> 2].
@{food} bread[price(store2) -> 3].
@{food} milk[price(store3) -> 2].
@{food} milk[price(store4) -> 2].
@{food} carrots[price(store2) -> 1].
@{food} carrots[price(store3) -> 1.5].

There is nothing strange in prices being different in different stores, but in some countries certain
staple foods, such as bread, are regulated and must have the same price. There are many ways
to deal with this problem. One would be to abort insert operations if they violate the same-price
constraint. However, this is not always possible or desirable (e.g., when information is integrated
from different sources). Defeasibility provides a different solution, which allows Flora-2 to tolerate
contradictions. What we can do is to say that it is a contradiction for a regulated item to have two
prices:

\opposes(?Itm[price(?)->?P1],?Itm[price(?)->?P2]) :-
regulated(?Itm),
?P1 != ?P2.

regulated({bread,milk}).

In the previous example, we provided a way to resolve a contradiction, but here we did not. As
a result, the facts bread[price(store1)->2] and bread[price(store2)->3] will be false (i.e.,
the conflicting information will be zapped) while the price of milk will not be zapped, since there
is no variation in prices in different stores. For carrots, the price varies, but it is not a regulated
product, so no contradiction arises.

37.1 Concepts of Defeasible Reasoning

The previous section illustrated the concepts of overriding and opposition used in defeasible rea-
soning. We will look at these and other related concepts in more detail here.

A rule instance ρ1, tagged i1, opposes another rule instance, ρ2 tagged i2, if and only if
\opposes(i1,head(ρ1),i2,head(ρ2)) is true, where head(ρi) denotes the head-literal of the cor-
responding rule. Literals for the form lit and \neg lit always oppose each other so this fact does
not need to be explicitly specified using \opposes. A rule instance ρ1, tagged i1, overrides another
rule instance ρ2, tagged i2, if and only if \overrides(i1,head(ρ1),i2,head(ρ2)) is true. (For con-
venience, Flora-2 also defines 2-argument versions of these predicates, but this is unimportant
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for the present discussion.) We say that two rule instances are in conflict if they oppose each other
and their bodies are true in the intended model of the knowledge base. A more detailed description
of rule conflict and overriding appears in Section 37.3.

A rule can be defeated in several different ways. It can be

• refuted

• rebutted

• disqualified.

Different argumentation theories may assign different meanings to these concepts, but roughly they
mean the following. A rule instance ρ1, tagged i1, refutes another rule instance ρ2, tagged i2, if
and only if these rules are in conflict and the former rule instance overrides the latter. The rule
instance ρ1, tagged i1, rebuts the rule ρ2 with tag i2 if and only if the two instances are in conflict
and neither instance is refuted by some other rule instance.

Rule disqualification is not so commonly agreed upon a notion as the other two. A rule is dis-
qualified, if it is canceled, i.e., if it matches a cancellation literal that is true and not defeated. More
details on cancellation appear in Section 37.4. More details on cancellation appear in Section 37.4.
In addition, some argumentation theories disqualify rules in other cases as well. The default argu-
mentation theory in Flora-2 postulates that a rule instance ρ1, tagged i1, is disqualified if

• If it transitively defeats itself, i.e., there is a sequence of tagged rule instances (i1, ρ1), (i2, ρ2),
..., (in−1, ρn−1), (in, ρn), such that in = i1, ρn = ρ1, and at each step (ii, ρi) either refutes or
rebuts (ii+1, ρi+1).

These notions are very useful for debugging the knowledge base (finding out why certain in-
ferences were or were not made), and we will discuss the corresponding debugging primitives in
Section 37.8.

It is important to keep in mind that both \overrides and \opposes are user-level predicates,
which are defined by the user as a set of facts (most commonly) and (less commonly) rules. The
system uses these predicates to determine which rules are defeated but the user normally does not
query these predicates explicitly except for debugging. These predicates are typically queried by
the system to get answers to questions like “is there a rule that overrides (or opposes to) a given
rule?” (e.g., \overrides(?X,r123)) or “check that this rule is not overwritten (or is opposed to) by
some other rule” (e.g., \naf \overrides(?X,r345)). In other words, \overrides and \opposes
are likely to be called with some of the arguments unbound. Because of that, one must be careful
with what is in the body of the rules that define these predicates. For instance, in the following rule
for \overrides, one parametrized rule-tag (as we shall see, rule tags can be terms with variables) is
said to override another based on the values of the parameters, which are assumed to be numbers:
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\overrides(rule1(?h),rule2(?j)) :- ?h >?j.

The problem here is that > is a mode-sensitive predicate, which expects both of its arguments to
be bound to an integer. However, as discussed above, \overrides might be called with one of the
arguments, say the first, unbound. In this case, ?h will be unbound at the time ?h >?j is called
and a runtime error will ensue.

37.2 Specifying an Argumentation Theory to Use

Flora-2 supports a generalized form of defeasible reasoning. The user can enable defeasible
reasoning on a per-module basis, and different theories of defeasibility can be used in different
modules. The type of defeasible reasoning to be used depends on the chosen argumentation theory,
which defines the arguments (as in “arguing”) that the reasoner has to use in order to decide what
inferences are to be defeated. Syntactically, defeasible reasoning is requested by placing one of the
following directives at the top of the appropriate module (before any rules are given):

:- use_argumentation_theory.
:- use_argumentation_theory{Module }.

The first instruction directs Flora-2 to use the default argumentation theory module, \gcl, which
stands for Generalized Courteous Logic (or GCL). One can use a different theory of defeasible
reasoning by implementing an appropriate argumentation theory and loading its file into some
module foo. A file that actually uses this argumentation theory should have the directive

:- use_argumentation_theory{foo}.

at the top. Thus, different modules of the same Flora-2 knowledge base can use different the-
ories of defeasible reasoning. For instance, if some argumentation theory is implemented in file
myargth.flr, then it can be declared in a Flora-2 module using

:- use_argumentation_theory{foo}.
?- [myargth>>foo].

Defeasible theories must use certain API, which will be described in a later version of this
manual. Meanwhile, one can construct such theories by analogy with GCL—see AT/flrgclp.flr.

Note that argumentation theories affect only defeasible rules and the defeasibility status of a
rule can be changed from strict to defeasible and vice versa—see Section 35.



37 DEFEASIBLE REASONING 182

37.3 Rule Overriding and Conflicts

Rule overriding can be specified via one of the following two forms:

\overrides(RuleLab1,RuleLab2).
\overrides(RuleLab1,AtomForm1,RuleLab2,AtomForm2).

The first form of the \overrides statement says that the rule with tag RuleLab1 overrides the rule
with the rule tag RuleLab2 regardless of what the heads of those rules are. The second form of
\overrides says the following. Let ρ1 be a rule with the tag RuleLab1 and head H1, and ρ2 be a
rule with the tag RuleLab2 and head H2. Assume that the variables in ρ1, ρ2, and the \overrides
rule are standardized apart (i.e., are not shared, which can be always achieved by renaming).
Then for any substitution θ such that θ(H1) = θ(AtomForm1) = θ(H2) = θ(AtomForm2), the
rule-instance θ(ρ1) overrides the rule-instance θ(ρ2).

The \opposes predicate specifies which literals in the rule heads should be considered to be in
conflict, if derived simultaneously. As with the \overrides predicate, \opposes has two forms:

\opposes(AtomForm1,AtomForm2).
\opposes(RuleLab1,AtomForm1,RuleLab2,AtomForm2).

The first form of the \opposes predicate says that the base formulas AtomForm1 and AtomForm2
contradict each other. More precisely, for any variable substitution θ, the knowledge base must not
infer θ(AtomForm1) if θ(AtomForm2) is also inferred, and vice versa. The 4-argument version
of \opposes is more restrictive: it says that, for any substitution θ, the knowledge base must not
infer θ(AtomForm1) by means of a rule with tag RuleLab1, if θ(AtomForm2) is inferred by means
of a rule with tag RuleLab2, and vice versa. Note that by “inference” here we mean inference with
respect to the argumentation theory in use—not just with respect to the usual first-order logic. For
instance, a :- b and b do not necessarily imply a because the rule a :- b may be defeated by a
different rule.

Both \opposes and \overrides can be defined via user rules as well as facts, and these rules
and facts can even be added and deleted or disabled/enabled at run-time using the statements
insert{...}/delete{...}, insertrule{...}/deleterule{...}, enable{...}/disable{...}.
However, excessive use of these facilities is not recommended because the knowledge base might
get hairy and hard to understand. This is especially true in the case of the \opposes predicate.
Although it is advised to be conservative with these predicates lest the meaning of a knowledge
base becomes obscure, there are no syntactic restrictions on the use of \overrides and \opposes:
they can appear in rule bodies, heads, in aggregate functions, and so on.

It should be kept in mind that for any non-transactional literal L (base HiLog formula, frame,
ISA, or subclass), L and \neg L always oppose each other, and there is no need to state this
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explicitly: it is part of the underlying theory of defeasible reasoning. Transactional literals do not
participate in defeasible reasoning. They cannot be negated using \neg, but the compiler does not
check if they appear as arguments to \opposes. If they do, this information is ignored.

37.4 Cancellation of Rules

Sometimes it is useful to turn off—or cancel—a rule instance, if certain conditions are satisfied.
This can be specified using the special predicate \cancel. The default argumentation theory in
Flora-2 understands two versions of that predicate:

\cancel(tag).
\cancel(tag,head).

The first rule cancels all rule instances whose tag unifies with tag and the second version cancels
only those rules whose tag unifies with tag and whose head unifies with head.

Cancellation rules can also be tagged, overridden, or canceled by other cancellation rules. To
illustrate, consider the following example:

t(aa).
t(bb).
@{L1} tt1(?X) :- t(?X).
@{L2} tt2(?X) :- t(?X).
@{L3} tt3(?X) :- t(?X).

@{c1} \cancel(?,tt1(bb)).
@{c2} \cancel(L2).
@{c3} \cancel(?,tt3(aa)).
@{c4} \cancel(?,tt3(bb)).
@{c5} \cancel(c4).

Here tt1 is true only of aa and tt3 only of bb. tt2 is false for both aa and bb. For instance,
tt1(bb) is false because of the cancellation rule c1. Similarly, tt3(a) is false because it is canceled
by the rule c3. More interesting, however, is the reason for tt3(bb) being true. Note that rule
tagged with c4 cancels the derivation of tt3(bb). However, rule c5 cancels rule c4, so tt3(bb)
stays put.

Observe the use of the 1-argument and 2-argument cancellation predicate. The first argument
is always a term that matches rule tags for the rules to be canceled. The second argument, if
present, matches the heads of the rules to be canceled. For instance, \cancel(L2) cancels only
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the rule tagged L2. If more than one rule matches L2 (this is possible, but is not the case in our
example), then all such rules are canceled. Two-argument cancellation predicates cancel only the
rules that match both arguments. In our case, however, the first argument is a variable, as in
\cancel(?,tt3(aa)), which means that all the rules matching the head are canceled, regardless
of the tag.19

Here is a more complicated example:

device(printer). abused(Bob,printer). pardoned(printer,Bob).
device(scanner). abused(Bob,scanner). pardoned(scanner,Bill).
device(fax). abused(Bill,scanner).

abused(Bill,printer).
abused(Mary,fax).

person(Bob), person(Bill), person(Mary).
@{id1} authorized(?Persn,?Device) :- device(?Device), person(?Persn).
@{id2(?Dev,?Persn)} \cancel(id1,authorized(?Persn,?Dev)) :- abused(?Persn,?Dev).
@{id3} \cancel(id2(?Device,?Persn)) :- pardoned(?Device,?Persn).

The most interesting feature here is the tag id2 parametrized with variables and the rule tagged
id3, which uses that parametrized tag in the head. Note also that here the cancellation rules
are conditional. The effect is that rule id3 cancels the instances of the cancellation rule tagged
id2(printer,Bob) and id2(scanner,Bill), which has the effect of authorizing Bob to use the
printer and Bill to use the scanner, despite the reported abuses. The reader can verify that the net
effect of all the cancellations and counter-cancellations is that Bill and Bob can use the fax, Bob
and Mary are authorized to use the printer, and Bill and Mary can use the scanner.

Another interesting situation arises when cancellation rules are defeated not due to overriding,
but due to a conflict with some other cancellation rule. For instance,

@{r} P.
@{c1} \cancel(r).
@{c2} \neg \cancel(r).

Here rule c1 cancels rule r, but c1 conflicts with c2, since the two rules contradict each other. As
a result, P stays true.

Finally, we should note that, if a rule that is being canceled overrides the canceling rule, than
the first-mentioned rule stands and the cancellation rule is defeated instead. For example, in

@{L1} foo(1).

19 Again, in our case, only one rule head matches the literal tt3(a), but in general there can be several.
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@{L2} foo(2).
@{L3} \cancel(?,foo(?)).
\overrides(L1,foo(1),?,\cancel(L1,foo(1))).

the instance \cancel(L1,foo(1)) is defeated and foo(1) remains true. However, foo(2) gets
canceled.

One might think that it makes little sense to specify the rule being canceled as having higher
priority than the canceling rule and that it is simply a case of ill-design. However, there can be
good reasons to design rules in this way. Suppose the following information is given at two different
sites:

Site 1:
@{L11} foo(1).
@{L12} bar.

Site 2:
@{L21} \cancel(?,foo(?)).
@{L22} foo(2).

Site 1 might want to merge the rules from Site 2, but it is unwilling to let the \cancel(?,foo(?))
statement tagged L21 to have effect on the rules of Site 1. That is, for the merged set of rules, it
is ok to let the L22 statement to be canceled (because it was supposed to be canceled at Site 2),
but it is not ok for the newly merged rules to cancel L21. To achieve this effect, we can add the
following statements to the above:

origin(L11,site1).
origin(L12,site1).
origin(L21,site2).
origin(L22,site2).
\overrides(?lab1,?, ?lab2,?) :- origin(?lab1,site1), origin(?lab2,site2).

The first four facts simply tell us where each rule came from. The last rule says that the rules
that came from site1 take precedence over the rules that came from site2. Note that we are in
the same situation as described earlier: the fact L21 cancels both L11 and L22, but L11 has higher
priority. As a result, L22 remains canceled and is false, but L11 is not canceled and remains true.

37.5 Changing the Default Defeasibility Status

In Section 35, we discussed the default defeasibility policy and the fact that defeasibility can be
changed using the makestrict/makedefeasible primitives. This policy says that rules that have
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no explicit tags and no explicit defeasibility descriptor @@{defeasible} are considered strict. To
change this default policy, Flora-2 provides two compiler directives:

:- default_is_defeasible_rules.
:- default_is_defeasible. // short form
:- default_is_strict_rules.
:- default_is_strict. // short form

The \default_is_defeasible_rules directive changes the default so that untagged rules become
defeasible. The directive \default_is_strict_rules changes the default back to strict. These
directives can appear any number of times in the file, changing the treatment of the untagged rules
to the desired default. (Of course, such frequent switching is not advisable.)

Sometimes it is useful to be able to query the rule base based on rule tags and heads. Such
queries can be issued using the clause{...} primitive. However, if you do not need to query the
rule bodies, a faster fay is to use the tag primitive. For instance, if we have the rules

:- use_argumentation_theory.
abc(?X) :- cde(?X).
@{p} foo :- bar.
@@{defeasible} abc2(?X) :- cde2(?X).
@@{strict} foo2 :- bar2.

then the query

?- tag{?X,?Y@main}.

will return the following answers:

?X = 2
?Y = ${abc(?_h8660)@main}

?X = 4
?Y = ${abc2(?_h8623)@main}

?X = 5
?Y = ${foo2@main}

?X = p
?Y = ${foo@main}
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Note that the query tag{?X,?Y} (without the module specification for the head, will likely return
many answers, as there can be many rules in different loaded modules.

37.6 Supported Argumentation Theories

At present, Flora-2 supports several different argumentation theories: the cautious, the original,
and the strong courteous logics plus also a logic with general exclusion constraints. The Flora-2
library of argumentation theories also contains a number of experimental packages that are not
described here.

37.6.1 The Cautious, Original, and Strong Courteous Argumentation Theories

These argumentation theories are very similar to each other; the differences lie on the edges. All
these theories use the \opposes and \overrides predicates as well as the notions of rebuttal,
refutation, and cancellation as the means for determining which rule instances are to be defeated.
The difference is that, in the original courteous theory, a rule, R, is defeated if another rule defeats,
rebuts, or cancels R. In the cautious theory, that other (defeating) rule must not itself be defeated
in order to defeat R. The cautious theory does not also let that other rule be involved in a circular
defeating relationships, i.e., there can be no sequence of tagged rule instances (i1, ρ1), (i2, ρ2), ...,
(in−1, ρn−1), (in, ρn), such that in = i1, ρn = ρ1, and at each step (ii, ρi) either refutes or rebuts
(ii+1, ρi+1).

The strong Courteous argumentation theory is in-between the cautious and the original Cour-
teous theories. It is very similar to the original theory except that it does not allow the defeating
rule, ρ1, to be rebutted or refuted by the rule ρ2 that is being defeated by ρ1.

The cautious argumentation theory is the default and should be good for most applications. It
can be invoked by placing

:- use_argumentation_theory.

at the top of a Flora-2 module where defeasible reasoning is to be used. This loads the new cour-
teous argumentation theory into the builtin module \gcl. For the original courteous argumentation
theory, place the following at the top:

:- use_argumentation_theory{ogcl}.
?- [ogclp>>ogcl].

The original argumentation theory is then available in the module ogcl (which stands for “original
gcl;” of course, the user can choose a different module name).
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The strong argumentation theory can be requested as follows (where, again, the choice of the
module is up to the user):

:- use_argumentation_theory{sgcl}.
?- [sgclp>>sgcl].

37.6.2 Courteous Logic with Exclusion Constraints

This argumentation theory allows a group of facts larger than two to oppose to each other. This
does not mean that the facts in that group are pairwise exclusive. Instead, it means that the facts
in the group cannot be true together (but subsets of these facts can be true).

The argumentation theory with exclusion constraints can be invoked by placing the following
at the top of an appropriate module:

:- use_argumentation_theory{gcle}.
?- [gclpe>>gcle].

Again, the user can choose to load this argumentation theory into a differently named module.

The main difference between this argumentation theory and the two previous ones is that it
allows more than two rule heads to oppose each other. The syntax is

id:\Exclusion[\opposers->{opposer1, ..., opposerN}].

This kind of statements is called an exclusion constraint and it means that opposer1, ..., opposerN
cannot be all true at the same time. The opposers opposer1, ..., opposerN must be all reified.
The term id is the identifier of the exclusion constraint. The usual \opposes statements are
also understood; they are treated as binary exclusion constraints. As with \opposes, the above
exclusion constraints can have variables and they can also be defined by rules.

In case all opposers in an inclusion constraint are true, overriding determines which of them are
defeated. Intuitively, the defeated opposers are those that do not “beat” (rebut) any other opposer
in the same exclusion constraint.

37.7 Defeasible Rules Must Be Purely Logical

It must be kept in mind that all rules involved in defeasible reasoning must be purely logical. This
includes both the tagged rules of the core knowledge base (whether they are explicitly mentioned in
the overrides/opposes statements or not) as well as the rules that define the predicates \overrides
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and \opposes. If such a rule depends on a strict rule then the latter must also be purely logical.
“Purely logical” here means that the bodies of such rules cannot use non-logical or dynamic features,
such as:

• I/O statements

• Insert/delete statements

• The cut (!), the predicates ground/1, var/1, nonvar/1, and similar. These predicates can
be used only if the alternatives (when the predicates fail) cause an abort and issue an error
message for the user. For instance, the following predicate

%check_state(?s) :- ground(?s), !.
%check_state(?s) :- abort([’Nonground state found: ’, ?s,

’. Might cause infinite recursion.’])@\sys.

can be used in the body of a defeasible rule (or of the rules defining \overrides and
\opposes) because the alternative to being ground here aborts the inference process. This is
because ground/1 is a logically clean predicate: if its argument is not ground, the predicate
%check_state(?s) aborts.

• Modal predicates that require bound arguments, which include:

– Comparison operators >, <, etc., unless it is assured that both sides of the comparison
are ground during the inference.

– Inequality operators, such as !=, !==, \=, \==, unless it is certain that both arguments
get bound during the evaluation.

– The evaluation operator left \is right, unless right is bound to an appropriate evaluable
expression.

In all these cases, a general remedy in case of a runtime error that complains about unbound
arguments is to identify the appropriate domain for the variables that must be bound and
bind the variables in question before the modal predicate is invoked. For instance, suppose
we wish to say that argument 2 of the predicate price must not have two different values for
the same item (in argument 1):

\opposes(price(?x,?p1),price(?x,?p2)) :- ?p1 \= ?p2.

Unfortunately, such a definition will almost certainly cause a runtime error because one of
the ?p1 or ?p2 will end up unbound in the course of the reasoning performed inside the
argumentation theory. However, we do know that these variables must be bound to prices
and thus we could write
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\opposes(price(?x,?p1),price(?x,?p2)) :-
price(?x,?p1),
price(?x,?p2),
?p1 \= ?p2.

This will likely bind ?p1 and ?p2 before the inequality \= is used.20 On the other hand,

\opposes(price(?x,?p1),price(?x,?p2)) :- ?p1 != ?p2.

is likely to work fine because != is delayed until both arguments become bound. Generally,
!= and !== are slower than but safer and more declarative than \= and \== because their
evaluation is delayed when necessary and they are not that dependent on their position in
the rule body. The comparison operators <, >, etc., as well as the \is operator are also
generally safe, if their arguments get bound eventually.

37.8 Debugging Defeasible Knowledge Bases

To help the user debug defeasible knowledge base, argumentation theories provide a special API,
which can be used to find out why certain inferences were or were not made. The API consists of
several methods, which take status-objects of the form status(ruleTag,ruleHead) and returns
information such as why a certain rule was defeated, which rules are defeated by the given one, etc.
The list of methods follows:

• status(?T,?H)[howDefeated -> ?Reason].
Here ?T is a rule Id and ?H is a rule head. The rule head cannot be a variable. There is no
need to reify the rule head: Flora-2 understands that a rule-head literal is expected and
will compile it accordingly.

If the corresponding rule is not defeated, the query fails. Otherwise, ?Reason is the result of
the query. It can take three different forms:

– refutedBy(ruleTag,ruleHead): In this case, all rule tag/head pairs that refute the
rule(s) represented by the ?T/?H pair (i.e., whose tag unifies with ?T and head with ?H)
will be returned.

– rebuttedBy(ruleTag,ruleHead): All the rule tag/head pairs that rebut the rule(s)
represented by the ?T/?H pair will be returned.

20 We say “likely” because price(?x,?p) itself may be defined by rules (rather than by a collection of facts) and
these rules might involve comparisons, arithmetic operations, etc., and thus may require that it be called with some
arguments (e.g., ?x) bound. However, it cannot be guaranteed that, in the above rule, price(?x,...) will always
be called with ?x bound.
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– disqualified: This is returned if the rule is disqualified. In the default \gcl theory,
a rule is disqualified if it is canceled, overridden by a strict rule, or if it transitively
refutes/rebuts itself. In this case, an auxiliary method, howDisqualified, can provide
additional information, as described next.

– canceled: Other argumentation theories disqualify a rule only if it is canceled. These
theories return canceled in this case instead of disqualified.

– beatenByStrictRule(?ruleHead): This means that a strict rule with the head
?ruleHead opposes the rule with tag ?T and head ?H.

• status(?T,?H)[howDisqualified->defeatCycle(?Defeater,?Defeated)].
If the rules represented by the ?T/?H pair are disqualified (in the default argumentation
theory), this method returns the set of terms of the form defeats(?Defeater,?Defeated).
Here both ?Defeater and ?Defeated are tag/head pairs that are defeated by the ?T/?H
pair and, in addition, ?Defeater defeats ?Defeated. By following these pairs one should
be able to discover a cycle of defeats starting and ending with ?T/?H, which constitutes a
self-defeating cycle.

• status(?T,?H)[howDisqualified->canceled].
This query is true if all the rules whose tag unifies with ?T and head with ?H are canceled.

• status(?T,?H)[howDisqualified->beatenByStrictRule(?SRH)].
This literal is true if all the defeasible rules with tag ?T and head ?H have an opposing strict
rule. In that case, ?SRH is bound to the head of that opposing rule.

• status(?T,?H)[info->?Info].
This method provides all kinds of details about the behavior of the rule with head ?H
and tag ?T. The information returned includes candidate (if the corresponding rule is a
candidate), conflictsWith(?Head), competes(?Exclusion,?Head), refutes(?Head), and
rebuts(?Head).

All these methods are provided by all argumentation theories and are available in their respec-
tive modules (\gcl for the default argumentation theory; for other argumentation theories, these
methods are available in the modules in which these argumentation theories are loaded). How-
ever, the information returned by these methods differs from one argumentation theory to an-
other. For instance, for the default, sgclp, and ogclp theories, the method howDefeated may
return refutedBy(...) and rebuttedBy(...), but in case of gclpe this method might return
notBeaterFor(ExclusionConstraintId) as well as canceled and beatenByStrictRule(?SRH).
Here are some of the examples of these queries:

?- status(?T,configuration(0,block4,square7))[info->conflictsWith(?X)]@\gcl.
?- status(?T,configuration(nxt(nxt(0)),block4,square3))[howDefeated->?X]@\gcl.
?- status(?T,configuration(0,block4,square7))[info->competes(?Exclusion,?O)]@gcle.
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38 Primitive Data Types

Flora-2 supports the following built-in data types: \boolean, \long, \integer, \double,
\decimal, \string, \symbol, \charlist, \iri (international resource identifier; generalization
of URLs), \time, \date, \dateTime, and \duration.

Following the now accepted practice on the Semantic Web, Flora-2 denotes the constants
that belong to a particular primitive data type using the idiom "literal "̂̂type . The literal
part represents the lexical form of the constant and the type part is the type name. For instance,
"2004-12-24"̂̂\date, "2004-12-24T15:33:44"̂̂\dateTime.

A type name must be a Prolog atom. Some data types, like time, dateTime, etc., are exact
analogues of the corresponding XML Schema types. In this case, their names will be denoted using
symbols that have the form of a URL. For instance, ’http://www.w3.org/2001/XMLSchema#time’.
However, for convenience, all type names will have one or more Flora-2 -specific abbreviated forms,
such as \time or \t. These abbreviated forms are case-insensitive. So, \time and \TiMe are as-
sumed to be equivalent. In addition, when the type names have the form of an IRI, the compact
prefix representation is supported (see Section 38.2 below). For instance, if xsd is a prefix name for
’http://www.w3.org/2001/XMLSchema#’ then the constant "12:33:55"̂̂’http://www.w3.org/
2001/XMLSchema#time’ can be written as "12:33:55"̂̂xsd#time’. Taking into account the
various abbreviations for this data type, we can also write it as "12:33:55"̂̂\time or even
"12:33:55"̂̂\t.

Variables can be also typed, i.e., restricted to be bound only to objects of a particular primitive
data type. The notation is ?variablename ˆˆtypename . For instance, the variable ?Xˆˆ\time can
be bound only to constants that have the primitive type \time. This mechanism is more general
and allows bounding of variables to arbitrary classes, not just data types; it has already been
discussed in Section 11.

The methods that are applicable to each particular primitive type vary from type to type.
However, certain methods are more or less common:

• toSymbol, which applies to a data type constant and returns its printable representation (a
Prolog atom). For instance, if ?Y is bound to "12:44:23"ˆˆ\time then
?Y[toSymbol->’12:44:23’]@\basetype will be true.

• toType( parameters ), which applies to any class corresponding to a primitive data
type (for instance, \time). Most types will have two versions of this method. One
will apply to arguments that represent the components of a data type. For instance,
\time[toType(12,23,45) -> "12:23:45"ˆˆ\time]@\basetype. The other will apply to
the general constant symbol (≡ Prolog atom) representation of the data type. For instance,
\time[toType(’12:23:45’)->"12:23:45"ˆˆ\time]@\basetype.
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• isTypeOf( constant ), which applies to every data type class (e.g., \time) and determines
whether constant has the given primitive type (\time in this example).

• equals( constant ), which tells when the given datatype constant equals some other term.

• lessThan( constant ), which tells when one constant is less than some other term. For
integers, floats, time, dates, durations, and strings, this method corresponds to the natural
order on these types. For other types, this method returns false.

• typeName, which tells the type name (and thus also class) of the given data type.

All these methods are available in the Flora-2 system module \basetype.

In addition, each primitive data type has a built-in class associated with it. For instance, the
primitive data type \integer has an associated class named \integer and the data type \dateTime
has an associated class with the same name.

Note: Since built-in classes have infinite extensions, Flora-2 allows only ground membership
tests with respect to these classes. Non-ground tests are permitted, but evaluate to false or true
depending on the situation. For instance, the following query

?- f(?X):\symbol.

returns the answer “No.” On the other hand,

?- ?X:\integer, ?X=1. // true
?- ?X:\integer, ?X=abc. // false

If at the top level ?X in ?X:\integer remains an unbound variable, the expression should evaluate
to undefined and leave ?X unbound. (Currently, though, such an expression evaluates to true). ✷

The following subsections describe each data type separately.

38.1 Flora-2 Symbols

Before describing the actual data types, we remind that in Section 8.1 we introduced alphanumeric
constants, such as abc12, and sequences of characters enclosed in single quotes, such as ’aaa 2*)@’,
and called them general constant symbols or Prolog atoms. These are not the only constants in
Flora-2 . In the following subsections we will introduce typed literals that represent time, date,
and more.

The general constant symbols mentioned above are partitioned into three subcategories: strings
(class \string) , IRIs (class \iri), and abstract symbols (class \symbol).
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Basically, abstract symbols are all the Prolog atoms that do not serve as internal representations
for the data types of the form "..."ˆˆ\iri or "..."ˆˆ\strings.21

The class \symbol has only the following methods apart from the already mentioned toSymbol,
lessThan, etc.:

• \symbol[|toNumber => \number|]
When applied to a symbol that is convertible to a number, returns the result of that conver-
sion:

?- ’123.5’[toNumber->?R]@\basetype.
?P = 123.5000

?- ’456’[toNumber->?R]@\basetype.
?P = 456

When applied to a symbol that is not convertible to a number, issues a warning and returns
the input object.
When applied to a number, returns that number (without a warning). In all other cases, fails
(returns a No).

• \symbol[concat(List ) => \object]
Note that that this is not a class-level signature, but an object level one. That is, it applies to
the object \symbol itself and not to the individual objects that belong to the class \symbol.
For instance,

flora2 ?- \symbol[concat([abc,cde,fgh])->?X]@\basetype.

?X = abccdefgh

The List argument in the concat method can be a list of anything, not necessarily of other
symbols. For instance,

flora2 ?- \symbol[concat(["11:11:11"^^\time,cde,fgh])->?X]@\basetype.

?X = ’11:11:11cdefgh’
21 For efficiency, IRIs and strings are encoded as atoms that are prefixed with a character sequence that is unlikely

to be engaged by the user. IRIs are thus atoms prefixed with the character i and the backspace character; strings
are atoms that are prefixed with the character s and the backspace symbol.
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38.2 The \iri Data Type

The canonical representation of constants of type IRI (international resource identifiers, a general-
ization of URLs, uniform resource locators) is "some iri "ˆˆ\iri, where literal must have a lexical
form corresponding to IRIs on the World Wide Web. IRIs have the shorthand notation \"some

iri ", as mentioned before. The full IRI name of this type is ’http://www.w3.org/2007/rif#iri’.

IRIs can come in the usual full form or in an abbreviated form known as the curi form (for
compact IRI ).

A compact form of an IRI (curi) consists of a prefix and a local-name as follows: PREFIX-
NAME#LOCALNAME. Here PREFIXNAME is an alphanumeric identifier that must be defined
as a shortcut for an IRI elsewhere (see below). LOCALNAME can be a string, an alphanumeric
identifier, or a quoted atom. (If LOCALNAME contains non-alphanumeric symbols, it must be
enclosed in double quotes as in "ab%20".) A compact IRI is treated as a macro that expands into
a full IRI by concatenating the expansion of PREFIXNAME with LOCALNAME.

The prefix of a compact IRI must be defined in one of the following ways:

:- iriprefix{PREFIXNAME = PREFIXIRI}.
:- irilocalprefix{PREFIXNAME = PREFIXIRI}.
?- iriprefix{PREFIXNAME = PREFIXIRI}.

Here PREFIXIRI can be an alphanumeric identifier or a quoted atom. Prefixes can also be defined
at run time using a query:

?- iriprefix{PREFIXNAME = PREFIXIRI}.

Such a prefix becomes defined only after the command is executed. If a prefix is used before it is
defined, an error will result. For example,

:- iriprefix{w3c = ’http://www.w3c.org/’, AAAWEB = ’http://www.AAA.com/’}.

Defines two prefixes, which can be used in subsequent commands like this:

?- ?X = w3c#a.

This will bind ?X to \"http://www.w3c.org/a". Likewise,

?- ?Y = AAAWEB#"ab%20"

binds ?Y to \"http://www.AAA.com/ab%20".
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Scope of IRI prefixes: module locality. IRI prefix definitions are local to the module where
they are defined. If we define the following in module foo:

:- iriprefix{W3=’http://w3.org/’.
C[a->\"http://w3.org/abc"].

and then load the following file into module main

r(?X):-?X[a->W3#abc]@foo.
s(?X):-?X[a->W3#cde].

then W3 will have an expansions for calls to foo, but not to the current module. Thus, the answer
to

?- r(?X).

will be C but

?- s(?X).

will get an error saying that the prefix W3 is not defined. If the same prefix is defined both in the
file and in a module being referenced by a query then the prefix definition in the current file takes
precedence. For instance, if in the above example the module main had another declaration for
the IRI prefix W3 then ?X[a->W3#abc]@foo will use that definition rather than the one in module
foo.22

The prefix macro-expansion works also for transactional predicate and method names. For
instance,

:- iriprefix{W3 = ’http://w3.org/’}.
C[%W3#aaa(b)].
%W3#r(?Y)(?X):-?X[%W3#abc(?Y)]@foo.

Note, however, that transactional (%-prefixed) symbols can occur only as the names of predicates
and methods (possibly higher-order predicates and methods).

For convenience, some IRI prefixes are predefined:

22 The rationale here is the theory of the “least surprise.”



38 PRIMITIVE DATA TYPES 197

xsd ’http://www.w3.org/2001/XMLSchema#’
rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
rdfs ’http://www.w3.org/2000/01/rdf-schema#’
owl ’http://www.w3.org/2002/07/owl#’
rif ’http://www.w3.org/2007/rif#’
swrlb ’http://www.w3.org/2003/11/swrlb#’).
dc ’http://purl.org/dc/elements/1.1/’).

However, one can always override these built-in definitions using either a compile time directive
iriprefix or a runtime query iriprefix.

Flora-2 also provides the necessary primitives to enable querying the available prefix defi-
nitions at run time: prefix{?prefix,?expansion} and prefix{?prefix,?expansion}@module.
When @module is not specified, the current module is assumed. When module is given, only the
prefixes defined for the given module are returned. The aforesaid predefined prefixes are considered
to be defined for every module. For example:

:- iriprefix{foo = ’bar.com’}.
?- prefix{foo,?exp}@?M.

?exp = bar.com
?M = main

?- prefix{?p,?exp}@main.

?p = foo
?exp = bar.com

?p = owl
?exp = http://www.w3.org/2002/07/owl#

?p = rdf
?exp = http://www.w3.org/1999/02/22-rdf-syntax-ns#

?p = rdfs
?exp = http://www.w3.org/2000/01/rdf-schema#

?p = rif
?exp = http://www.w3.org/2007/rif#
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?p = xsd
?exp = http://www.w3.org/2001/XMLSchema#

Scope of IRI prefixes: file locality. The iriprefix directives are global within the module.
This means that these directives take effect not only in the file in which they appear, but also in
all files added to the same module afterwards. Prefixes defined in the files loaded/added to module
main also become known in the Flora-2 shell. However, if an added file has an iriprefix directive
for a previously defined prefix then the new definition overrides the old one (and is inherited by all
subsequently added files). Note: loading a file into a module zaps all the prefix definitions known
to the module and replaces them with whatever is defined in that file.

Sometimes, however, it is preferable to have prefix definitions that are truly local to a file and are
not inherited by subsequently added files. This can be done using the irilocalprefix directive.
For instance, suppose file A was loaded into module Mod and has these prefix definitions:

:- iriprefix{foo=’http://123’}.
:- iriprefix{moo=’http://abc’}.
:- iriprefix{doo=’http://456’}.
:- irilocalprefix{bar=’http://cde’}.

Suppose also that file B has these definitions and was added to Mod later:

:- iriprefix{foo=’http://789’}.
:- irilocalprefix{moo=’http://fgh’}.

Finally, suppose file C was added later to the same module Mod. Then file A has prefixes foo,
moo, doo, and bar. File B does not have prefix bar defined because it is local to file A. Moreover,
prefixes foo and moo are overridden and have a different meaning than they have in file A. Prefix
doo has the same meaning, however.

In file C, the situation is as follows. Prefixes foo, moo, doo are inherited. Prefix doo has the
same meaning as in files A and B. However, prefix foo was overridden in file B, so it is file B’s
expansion that is inherited by file C. As to prefix moo, it is inherited from file A and has the same
meaning. Note that even though moo was overridden by file B, this overriding was local and did
not propagate to file C.

Note that

:- iriprefix{foo=bar}.

is equivalent to the pair
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:- irilocalprefix{foo=bar}.
?- iriprefix{foo=bar}.

The irilocalprefix directive takes case of compiling prefix foo within the given file and the
executable iriprefix directive propagates the prefix to all subsequently added files (and to the
Flora-2 shell, if applicable).

Class \iri. All constants of the primitive type IRI are members of the built-in class \iri.

The IRI data type supports the following methods, which are available in the Flora-2 module
\basetype (or, in the abbreviated form, \btp). They are described here by their signatures.

Class methods:

• \iri[toType(\symbol) => \iri]

• \iri[=> isTypeOf(\object)]

Component methods:

• \iri[|scheme => \symbol|]

• \iri[|user => \symbol|]

• \iri[|host => \symbol|]

• \iri[|port => \symbol|]

• \iri[|path => \symbol|]

• \iri[|query => \symbol|]

• \iri[|fragment => \symbol|]

Note that the exact meaning of the above components depends on the IRI scheme. For http, ftp,
file, etc., the meaning of the first five components is clear. The query is an optional part of the
IRI that follows the ?-sign, and fragment is the last part that follows #. Some components might
be optional for some IRI schemes. For instance, for the urn and file schemata, only the path
component is defined. For the mailto scheme, port, path, query, and fragment are not defined. If
a scheme is not recognized, then the part of the IRI that follows the scheme goes into the path
component unparsed.
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Other methods:

• \iri[|toSymbol => \symbol|]

• \iri[|=> equals(\object)|]

• \iri[|typeName => \symbol|]

Examples:

• \"http://foo.bar.com/abc"

• "http://foo.bar.com/abc"ˆˆ\iri

• ?- \iri[toType(’http://foo.bar.com/abc’) ->
"http://foo.bar.com/abc"ˆˆ\iri]@\basetype

• ?- \"http://foo.bar.com/abc"ˆˆ\iri[host -> ’foo.bar.com’]@\btp

38.3 The Primitive Type \dateTime

This data type corresponds to the XML Schema dateTime type. The constants of this data type
have the form "ZYYYY-MM-DDTHH:MM:SS.sZHH:MM"ˆˆ\dateTime. The symbols -, :, T, and . are
part of the syntax. The leftmost Z is an optional sign (-). The part that starts with the second Z is
optional and represents the time zone (the second Z is a sign, which can be either + or -; note that
the first Z can be only the minus sign or nothing). The part that starts with T is also optional; it
represents the time of the specified day. The part of the time component of the form .s represents
fractions of the second. Here s can be any positive integer.

The constants of this primitive type all belong to the class \dateTime. The name of this type
has the following synonyms: \dt, ’http://www.w3.org/2001/XMLSchema#dateTime’.

The following methods are available in the Flora-2 system module \basetype; they are
described by their signatures below.

Class methods:

• \dateTime[toType(\integer,\integer,\integer,\integer,\integer,\integer,\decimal,
\integer,\integer,\integer) => \dateTime]
The meaning of the arguments is as follows (in that order): date sign (1 or -1), year, month,
day, hour, minute, second, zone sign (1 or -1), zone hour, zone minute. All arguments, except
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date sign and zone sign, are assumed to be positive integers; date sign and zone sign can be
either 1 or -1.

• \dateTime[toType(\symbol) => \dateTime]

• \dateTime[=> isTypeOf(\object)]
Tells if object belongs to the primitive type \dateTime.

• \dateTime[now => \dateTime]
Current local date+time.

• \dateTime[now(utc) => \dateTime]
Current UTC date+time.

• \dateTime[now(\decimal) => \dateTime]
Current UTC date+time adjusted for the time zone given by the argument. The decimal
argument has the form SHH.MM, where S is the plus sign (or empty) or the minus sign. If more
than two MM digits are provided, the rest are cut off. If HH>24 then the query fails.

Component methods:

• \dateTime[|dateSign => \integer|]

• \dateTime[|year => \integer|]

• \dateTime[|month => \integer|]

• \dateTime[|day => \integer|]

• \dateTime[|hour => \integer|]

• \dateTime[|minute => \integer|]

• \dateTime[|second => \integer|]

• \dateTime[|zoneSign => \integer|]

• \dateTime[|zoneHour => \integer|]

• \dateTime[|zoneMinute => \integer|]

• \dateTime[|date => \date|]

• \dateTime[|time => \time|]

Note: the methods date and time listed above exist only in ERGO.
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Other methods:

• \dateTime[|toSymbol => \symbol|]

• \dateTime[|=> equals(\object)|]

• \dateTime[|=> lessThan(\object)|]

• \dateTime[|typeName => \symbol|]

• \dateTime[|add(\duration) => \dateTime|]

• \dateTime[|minus(\dateTime) => \duration|]

Note: the method minus exists only in ERGO.

Examples:

• "2001-11-23T12:33:55.123-02:30"ˆˆ\dateTime

• "2001-11-23T12:33:55.123-02:30"ˆˆ’http://www.w3.org/2001/XMLSchema#dateTime’

• "2001-11-23"ˆˆ\dateTime

• "-0237-11-23T12:33:55"ˆˆ\dateTime
Note that this date refers to year 238 BCE.

• ?- "2001-11-23"ˆˆ\dateTime[day -> 23]@\basetype.

• ?- "2001-11-23"ˆˆ\dateTime[toSymbol -> ’2001-11-23T00:00:00+00:00’]@\basetype.

• ?- "2001-11-23T18:33:44-02:30"ˆˆ\dateTime[add("-P22Y2M10DT1H2M3S"ˆˆ\duration)
-> "1979-09-13T17:31:41-02:30"ˆˆ\dateTime]@\btp.

• ?- "2011-12-22+2:19"ˆˆ\dt[minus("2019-11-29T2:30:30-2:09"ˆˆ\dt)->
"-P0007Y11M07DT02H30M30S"ˆˆ\duration]@\btp

Note: the example involving minus will not work in Flora-2— only in ERGO.
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38.4 The Primitive Type \date

This type corresponds to the XML Schema date type. Constants of this type have the form
"ZYYYY-MM-DDSHH:MM"ˆˆ\date. The symbols - and : are part of the syntax. The symbol S
represents the timezone sign (+ or -). The timezone part (beginning with S) is optional. The
leftmost Z is the optional sign (-). Note that unlike \dateTime, which represents a single time
point, \date represents duration of a single day.

All constants of this type belong to the built-in class \date. The type name \date has the
following synonyms: \d, ’http://www.w3.org/2001/XMLSchema#date’.

The following methods are defined for this type and are available through the system module
\basetype.

Class methods:

• \date[toType(\integer,\integer,\integer,\integer,\integer,\integer,\integer)
=> \date]
The meaning of the arguments is as follows (in that order): date sign (1 or -1), year, month,
day, zone sign (1 or -1), zone hour, zone minute. All arguments, except date sign and zone
sign, are assumed to be positive integers; date sign and zone sign can be either 1 or -1.

• \date[toType(\symbol) => \date]

• \date[=> isTypeOf(\object)]
Tells if object belongs to the primitive type \date.

• \date[now => \date]
Current local date.

• \date[now(utc) => \date]
Current UTC date.

• \date[now(\decimal) => \date]
Current UTC date adjusted for the time zone given by the argument. The decimal argument
has the form SHH.MM, where S is the plus sign (or empty) or the minus sign. If more than two
MM digits are provided, the rest are cut off. If HH>24 then the query fails.

Component methods:

• \date[|dateSign => \integer|]
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• \date[|year => \integer|]

• \date[|month => \integer|]

• \date[|day => \integer|]

• \date[|zoneSign => \integer|]

• \date[|zoneHour => \integer|]

• \date[|zoneMinute => \integer|]

Other methods:

• \date[|toSymbol => \symbol|]

• \date[|=> equals(\object)|]

• \date[|=> lessThan(\object)|]

• \date[|typeName => \symbol|]

• \date[|add(\duration) => \date|]

• \date[|minus(\date) => \duration|]

• \date[|toDateTime(\integer,\integer,\decimal) => \dateTime|]
The arguments are hours, minutes, and seconds (with possible milliseconds).

Note: the methods toDateTime and minus exist only in ERGO.

Examples:

• "2001-11-23-2:30"ˆˆ\date

• "2001-11-23"ˆˆ\date

• "-237-11-23"ˆˆ\date
Note that this date refers to year 238 BCE.

• ?- "2001-11-23"ˆˆ\date[day -> 23]@\basetype.

• ?- "2001-11-23"ˆˆ\date[toSymbol -> ’2001-11-23+00:00’]@\basetype.
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• ?- "2011-12-22"ˆˆ\date[toDateTime(11,15,7.6) ->
"2011-12-22T11:15:07.6"ˆˆ\dateTime]@\basetype.

This example will not work in Flora-2— only in ERGO.
?- "2011-12-22+2:09"ˆˆ\d[minus("2019-10-29+3:19"ˆˆ\d)->

"-P0007Y10M07DT00H00M00S"ˆˆ\du]@\btp.
This example will not work in Flora-2— only in ERGO.
?- "2001-11-23-02:30"ˆˆ\date[add("-P2Y2M10DT"ˆˆ\duration) ->

"1999-09-13-02:30"ˆˆ\date]@\basetype.
Note that when adding a duration to a date, the time-part of the duration constant must be
empty.

38.5 The Primitive Type \time

This primitive type corresponds to the XML Schema time data type. Constants of this type have
the form "HH:MM:SS.sZHH:MM"ˆˆ\time. The symbols : and “.” are part of the syntax. The part
.s is optional. It represents fractions of a second. Here s can be any positive integer. The sign Z
represents the sign of the timezone (+ or -). The following HH represents time zone hours and MM
time zone minutes. The time zone part is optional.

The name of this type has the following alternative versions: \t and
’http://www.w3.org/2001/ XMLSchema#time’. All constants of this type are also assumed
to be members of the built-in class \time.

The following methods are available for the class \time and are provided by the module
\basetype. Their signatures are given below.

Class methods:

• \time[toType(\integer,\integer,\decimal,\integer,\integer,\integer) =>
\time]
The arguments represent hour, minute, second, time zone sign, time zone hour, and time
zone minute.

• \time[toType(\symbol) => \time]

• \time[=> isTypeOf(\object)]
Tells if object belongs to the primitive type \time

• \time[now => \time]
Current local time.
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• \time[now(utc) => \time]
Current UTC time.

• \time[now(\decimal) => \time]
Current UTC time adjusted for the time zone given by the argument. The decimal argument
has the form SHH.MM, where S is the plus sign (or empty) or the minus sign. If more than two
MM digits are provided, the rest are cut off. If HH>24 then the query fails.

Component methods:

• \time[|hour => \integer|]

• \time[|minute => \integer|]

• \time[|second => \integer|]

• \time[|zoneSign => \integer|]

• \time[|zoneHour => \integer|]

• \time[|zoneMinute => \integer|]
The arguments are years, months, and days.

Other methods:

• \time[|toSymbol => \symbol|]

• \time[|=> equals(\object)|]

• \time[|=> lessThan(\object)|]

• \time[|typeName => \symbol|]

• \time[|add(\duration) => \time|]

• \time[|minus(\time) => \duration|]

• \time[|toDateTime(\integer,\integer,\integer) => \dateTime|]

Note: the methods minus and toDateTime exist only in ERGO.
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Examples:

• "11:24:22"ˆˆ\time

• "11:24:22"ˆˆ’http://www.w3.org/2001/XMLSchema#time’

• ?- \time[toType(12,44,55) -> "12:44:55"ˆˆ\time]@\basetype.

• ?- "12:44:55"ˆˆ\time[minute -> 44]@\basetype.

• ?- "12:44:55"ˆˆ\time[toSymbol -> ’12:44:55’]@\basetype.

• ?- "20:12:22"ˆˆ\time[toDateTime(2011,12,22) ->
"2011-12-22T20:12:22"ˆˆ\dateTime]@\basetype.

This example will not work in Flora-2— only in ERGO.
?- "11:22:33+2:22"ˆˆ\t[minus("12:23:44+2:09"ˆˆ\t)->

"-P0000Y00M00DT01H01M11S"ˆˆ\du]@\btp.
This example will not work in Flora-2— only in ERGO.
?- "12:44:55"ˆˆ\time[add("PT2M3S"ˆˆ\duration) -> "12:46:58"ˆˆ\time]@\btp.
Note that when adding a duration to a time, the date-part of the duration constant must not
be present.

38.6 The Primitive Type \duration

The primitive type duration corresponds to the XML Schema duration data type. The constants
that belong to this type have the form "sPnYnMnDTnHnMdS"ˆˆ\duration. Here s is optional sign
-, P indicates that this is a duration data type, and Y, M, D, H, M, S denote year, month, day, hour,
minutes, and seconds. T separates date from time. The symbols P, Y, M, D, H, M, and S are part of
the syntax. The symbol n stands for any positive integer (for instance, the number of hours can be
more than 12 and the number of minutes and seconds can exceed 60) and d stands for a decimal
number. The part that starts with T is optional and any element in the date and the time parts
can be omitted.

The constants of this data type all belong to the class \duration.

The type name has the following synonyms: ’http://www.w3.org/2001/XMLSchema#duration’,
\du.

The following classes are available in module \basetype. Their signatures are shown below.

Class methods:
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• \duration[toType(\integer,\integer,\integer,\integer,\integer,
\integer) => \duration]

The meaning of the arguments (in that order) is: year, month, day, hour, minute, second.

• \duration[toType(\symbol) => \duration]

• \duration[=> isTypeOf(\object)]
Tells if an object belongs to the primitive type \duration.

Component methods:

• \duration[|year => \integer|]

• \duration[|month => \integer|]

• \duration[|day => \integer|]

• \duration[|hour => \integer|]

• \duration[|minute => \integer|]

• \duration[|second => \integer|]

Other methods:

• \duration[|toSymbol => \symbol|]

• \duration[|=> equals(\object)|]

• \duration[|=> lessThan(\object)|]

• \duration[|typeName => \symbol|]

• \duration[|add(\duration) => \duration|]

Examples:

• "P5Y5M10DT11H24M22S"ˆˆ\duration

• ?- "-P2Y05M10DT11H24M22S"ˆˆ\duration[minute -> 24]@\basetype.
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38.7 The Primitive Type \boolean

This corresponds to the XML Schema boolean type. Constants of this type have the form
"true"ˆˆ\boolean "false"ˆˆ\boolean or the shorter form \true, \false. A synonym for the
\boolean type name is ’http://www.w3.org/2001/XMLSchema#boolean’.

All constants in this type belong to the built-in class \boolean. The following methods are
available in module \basetype.

Class methods:

• \boolean[toSymbol => \symbol]

• \boolean[=> isTypeOf(\object)]

Other methods:

• \boolean[|toSymbol => \symbol|]

• \boolean[|=> equals(\object)|]

• \boolean[|=> lessThan(\object)|]
Note: \false[lessThan(\true)].

• \boolean[|typeName => \symbol|]

• \boolean[|rawValue => \symbol|]
Extract the content value from the \boolean data type. For instance,
?- "true"ˆˆ\boolean[rawValue->?X]@\basetype.
?X = true

38.8 The Primitive Type \double

This corresponds to the XML Schema type double. The constants in this type all belong to the
class \double and have the form "value"ˆˆ\double, where value is a floating point number that
uses the regular decimal point representation with an optional exponent. Doubles have a short
form where the "..."ˆˆ\double wrapper is removed.

In Flora-2 , the \float and \double type designators are interchangeable, and the constants
of these data types are treated as regular floating point numbers. This means that, for example,
"1.2"ˆˆ\double, "1.2"ˆˆ\float, and 1.2 represent the same number.
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This type name has a synonym ’http://www.w3.org/2001/XMLSchema#double’. The follow-
ing methods are available for type \double in module \basetype.

Class methods:

• \double[toType(\decimal) => \double]
Converts decimals to doubles. Error, if overflow.

• \double[toType(\long) => \double]
Converts long integers to doubles.

• \double[toType(\string) => \double]
\double[toType(\symbol) => \double]
Converts strings and symbols into doubles, if the textual representation of these values is a
number.

• \double[=> isTypeOf(\object)]

Instance methods:

• \double[|floor => \integer|]

• \double[|ceiling => \integer|]

• \double[|round => \integer|]

Other methods:

• \double[|toSymbol => \symbol|]

• \double[|=> equals(\object)|]

• \double[|=> lessThan(\object)|]

• \double[|typeName => \symbol|]

• \double[|rawValue => \double|]
Extract the number part of the \double data type.
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Examples: "2.50"ˆˆ\double, 2.50, 25E-1 — different forms of \double.
?- "3.54"\double[round->?X]@\basetype. // answer: ?X = 4,
?- 5.51[floor->?X]@\basetype. //answer: ?X = 5,
?- \double[toType(51)->?X]@\basetype. // ?X = 51.0000 — long-to-double conversion.

38.9 The Primitive Type \long

This data type corresponds to XML Schema’s long integers. The constants in this data type
belong to class \long and have the form "value"ˆˆ\long, where value is an integer in its regular
representation in the decimal system. A shorter form without the "..."ˆˆ\long wrapper is also
allowed. This type name has a synonym: ’http://www.w3.org/2001/XMLSchema#long’.

Class methods:

• \long[toType(\symbol) => \long]
\long[toType(\symbol) => \long]
Converts strings to long integers, if the string represents an integer in textual form. If it does
not then this method fails.

• \long[toType(\integer) => \long]
Converts long integers to arbitrary big integers.

• \long[=> isTypeOf(\object)]

Other methods:

• \long[|toSymbol => \symbol|]

• \long[|=> equals(\object)|]

• \long[|=> lessThan(\object)|]

• \long[|typeName => \symbol|]

• \long[|rawValue => \long|]
Extract the number part of the \long data type.

Examples: 123, 55, "55"ˆˆ\long.



38 PRIMITIVE DATA TYPES 212

38.10 The Primitive Types \decimal, \number, \integer, and \short

At present, Flora-2 does not implement the \decimal and the \integer types, which correspond
to XML Schema arbitrary precision types decimal and integer. Instead, \decimal and \number
are synonyms for \double, while \short and \integer for \long, which are described in previous
subsections. As usual, there are corresponding classes \integer, \short, \number, and \decimal.

38.11 The Primitive Type \string

This corresponds to the XML Schema type string. The constants in this class belong to type
\string and the type name has the synonym http://www.w3.org/2001/XMLSchema#string. The
values of this class have the form "value"ˆˆ\string. Alphanumeric strings that start with a letter
do not need to be quoted. In the full representation (with the "..."ˆˆ\string wrapper), the
double quote symbol and the backslash must be escaped with a backslash.

The following methods are available in module \basetype:

Class methods:

• \string[=> isTypeOf(\object)]

• \string[toType(\object) => \string]

Note that the method toType in class \string can be used to serialize any term as a string.
For instance,

flora2 ?- \string[toType(abc(cde))->?val]@\basetype.

?val = "abc(cde)"^^\string

Instance methods:

• \string[|=> contains(\string)|]

• \string[|concat(\string) => \string|]

• \string[|reverse => \string|]

• \string[|length => \integer|]

• \string[|toUpper => \string|]
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• \string[|toLower => \string|]

• \string[|=> startsWith(\string)|]

• \string[|=> endsWith(\string)|]

• \string[|substring(\integer,\integer) => \string|]
Returns a substring of the object string, where the starting and the ending position of the
substring are given by the arguments of the method. -1 in argument 2 means the end of the
string.

Other methods:

• \string[|=> equals(\object)|]

• \string[|=> lessThan(\object)|]

• \string[|typeName => \symbol|]

Examples:

• "abc"ˆˆ\string

• "a string\n"ˆˆ\string

• "a\tstring\b"ˆˆ\string

• "string with a ’quoted’ substring"ˆˆ\string

• ?- "abc"ˆˆ\string[concat("bbb"ˆˆ\string)->?X]@\basetype.
?X = "abcbbb"^^\string

Note that internally the string "abc"^^\string and the atom ’abc’ are different. To extract
the actual pure Prolog atom (stripped from the internal stuff), use the method rawValue. For
instance, ?- "abc"ˆˆ\string[rawValue->?X]@\basetype.

38.12 The Primitive Type \list

This is the usual Prolog list type. The members of this type have the form "[elt1, ...,
eltn]"ˆˆ\list (short form [elt1, ..., eltn]) and belong to class \list.

The following methods are available from the standard module \basetype:
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Class methods:

• \list[=> isTypeOf(\object)]

• \list[toType(\list) => \list]

Other methods:

• \list[|=> contains(\list)|]
Tells if a list object contains the method’s argument as a sublist.
Since checking list containment is a very common operation, this method has a special shortcut
\in:

?- [b,?A] \subset [b,c,a,d].
?A = c
?A = a
?A = d

• \list[|=> member(\object)|]
The method’s argument and the list-object may not be fully ground. In this case, the method
succeeds if the argument to the method unifies with a member of the list.
Since checking list membership is a very common operation, this method has a special shortcut
\in:

?- a \in [b,c,a,d].
Yes

• \list[|select(\object) => \list|]
Find an member in list that unifies with the object-argument and return the list with the
selected member removed. For instance,

?- "[a,b(1),c,b(2)]"^^\list[select(b(?X))->?R]@\btp.

?X = 1
?R = [a, c, b(2)]

?X = 2
?R = [a, b(1), c]
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• \list[|delete(\object) => \list|]
Delete all occurrences of the object in list. Selection is made using ==, not unification. For
instance,

?- [a,b(1),c,b(?X),b(1)][delete(b(?X))->?R]@\btp.

?X = ?_h4800
?R = [a, b(1), c, b(1)]

Note that b(?X) was deleted, but not b(1). On the other hand,

?- "[a,b(1),c,b(1)]"^^\list[delete(b(1))->?R]@\btp.

?R = [a, c]

i.e., all occurrences of b(1) are deleted.

• \list[|append(\list) => \list|]
Appends one list to another and returns the resulting list.

• \list[append(\list) => \list]
Here the signature is attached directly to \list as an object. This means that the append
method applies directly to class \list. In this case, it takes a list of lists and returns the list
that is the result of appending the lists found in that argument list of lists. For instance

?- \list[append(["[a,b]"^^\list,[c,d],"[e,f]"^^\list])->?R]@\btp.

?R = [a, b, c, d, e, f]

• \list[|ith(\integer) => \object|]
Given a list, returns the object in the ith position. If the position is a variable, returns the
position in the list at which the result-object is found. If both the position and the object
are variables, enumerates all elements in the list and their position number.

• \list[|length => \long|]
Computes the length of the list.

• \list[|reverse => \list|]

• \list[|sort => \list|]

• \list[|=> startsWith(\list)|]
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• \list[|=> endsWith(\list)|]

• \list[|=> subset(\list)|]
True if the list object contains the argument list.

Other methods:

• \list[|toSymbol => \symbol|]

• \list[|=> equals(\object)|]

• \list[|typeName => \symbol|]

Examples:

• [a,b,c]

• [a,b|?X]

• [a,b,c|[d,e]]

• "[a,b,c]"ˆˆ\list

• "[a,b|?X]"ˆˆ\list

• "[a,b,c|[d,e]]"ˆˆ\list

As in Prolog, the part of a list term that follows the bar | represents the tail of the list.

38.13 Character Lists

Flora-2 character lists, charlists, are represented as "..."ˆˆ\charlist. Since character lists are
... lists, they can also be represented using the list notation. For instance, [102,111,111] is the
same as "foo"ˆˆ\charlist. The main reason for the existence of the \charlist data type is that
writing "foo"ˆˆ\charlist is a lot easier than consulting the ASCII table to find the numeric code
for each character in order to write [102,111,111]. In addition, expert users can simply write
"foo", but this syntax is disabled by default because novice users tend to not understand this data
structure and misuse it in various ways.

Do not confuse character lists with symbols: symbols are not lists and have a completely
different representation and one should never use charlists in place of symbols. Character lists are
useful in situations when it is necessary to parse the contents of a sequence of characters.
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Escape sequences and Unicode are recognized inside Flora-2 charlists similarly to Flora-2
symbols. However, inside a charlist, a single quote character does not need to be escaped. A double
quote character, however, needs to be escaped by another double quote, e.g., """foo""", or by a
backslash.

Instance methods. All methods applicable to the \list datatype are also applicable to charlists.
In addition, some methods applicable to the datatype \string also apply to character lists:

• \charlist[|substring(\integer,\integer) => \charlist|]

• \charlist[|toUpper => \charlist|]

• \charlist[|toLower => \charlist|]

• \charlist[|concat(\charlist) => \charlist|]

Class methods. The usual class-level methods likewise apply to charlists:

• \charlist[=> isTypeOf(\object)]

• \charlist[toType(\charlist) => \charlist]

38.14 Special Classes for Callable Literals

In addition to the above, Flora-2 provides the following builtin meta-classes:

• \modular — this is a class for atomic formulas whose truth value depends on the module. This
includes F-logic molecules, HiLog predicates, and Prolog predicates declared as :- prolog
or :- table. For instance, ${a[b->c]}:\modular is true.

• \callable — this class includes all atomic formulas that can possibly have a truth value in
Flora-2 . It includes \modular formulas as well as various @\prolog formulas and builtin
primitives like isinteger{...}.
\callable does exclude terms that, by their semantics, are not supposed to be truth-
valued. These include HiLog terms (as opposed to HiLog predicates), datatype constants, and
builtin class names. For instance, ${p(b,?X)}:\callable and isinteger{...}:\callable
are true, but p(b,?X):\callable and "abc"ˆˆfoobar:\callable are false. The former
is false because p(b,?X) in a HiLog term, not a predicate, and the latter is false because
"abc"ˆˆfoobar is a datatype constant.
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In both cases, if the class member being tested is a variable then the result is \undefined unless
this is a typed variable of the matching type. For instance, ?X:\modular is \undefined, but
?Xˆˆ\callable:\callable is \true.

38.15 User-defined Types

Flora-2 also supports user-defined types. A user-defined type can be any atom, say foo, that is
not reserved for the builtin types, i.e., is not prefixed with a “\”. A literal of a user-defined type,
such as foo, has the form "some string"ˆˆfoo, i.e., it has the same form as the built-in data types.
However, Flora-2 does not prescribe the contents of the data type and, at present, there is no
hook to let the user plug in a personal parser to sort out which literals belongs to the data type
and which do not.

Typed variables, introduced in Section 11, also work with user-defined types. Since foo may
denote a class, a user-defined type, or both, such a variable, ?Xˆˆfoo binds to both the members
of the class foo and the literals of type foo. For example,

{a,b}:foo.

?- a=?X^^foo, b=?Y^^foo. // true
?- "abc"^^foo=?X^^foo. // true
?- d=?X^^foo. // false: d is not in class foo
?- "abc"^^moo=?X^^foo. // false: type mismatch
?- "abc"^^foo=?X^^(foo;moo). // false: don’t use foo both as a class & type
?- insert{"abc"^^foo:foo}, "abc"^^foo=?X^^(foo;moo). // true

However, it is not recommended to use the same symbol both as a class and as a user-defined type
at the same time in the same module. For example, in the next-to-last example above, foo is used
as a class in the expression ?Xˆˆ(foo;moo), so it will not unify with the literal of type foo unless
"abc"ˆˆfoo is a member of the class foo. That last possibility is illustrated by the last line in the
above example.

39 Cardinality Constraints

The earlier versions of F-logic made a distinction between functional and set-valued attributes and
methods. The former were allowed to have only one value for any particular object and the latter
could have any. In Flora-2 , this dichotomy was replaced with the much more general mechanism
of cardinality constraints. These constraints can be specified in signature expressions, which we
have earlier used only to define types of attributes and methods. The extended syntax is as follows:
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Cl[Meth{LowerBound..UpperBound}=>Cl2]
Cl[|Meth{LowerBound..UpperBound}=>Cl2|]

The first signature applies to object Cl and to its method Meth. The second expression is a class-
level statement, so it applies to all members of C1 (now viewed as a class) and to all subclasses of
C1.

The lower and upper bounds in cardinality constraints can be non-negative integers, variables,
or the symbol * (which denotes infinity). Variables can occur in signatures in rule bodies, which is
useful especially when one wants to query the bounds of the cardinality constraints.

For example,

?- c1[m{2..?X}=>c2].

means that the method m of class c1 must have at least 2 at most 3 values. Similarly,

c1[m{2..*}=>c2].

means that m has at least 2 values; there is no upper bound.

We can query the specified cardinality constraints by putting variables in the appropriate places.
For instance, consider the following knowledge base loaded into module foo:

C[|m{3..*}=>B|].
C[m{?x..1}=>B] :- ?x=0.

v:C.
C2::C.
v2:C2.

C[m->{1,2}].
v[m->2].
C2[|m->{1,2,3}|].

The query

?- ?C[?M{?L..?H}=>?]@foo.

will yield three solutions:
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?C = C
?M = m
?L = 0
?H = 1

?C = v
?M = m
?L = 3
?H = *

?C = v2
?M = m
?L = 3
?H = *

Note that the objects v and v2 are in the answer to the query because they inherited the cardinality
constraint from the first clause, C[|m3..*=>B|].

On the other hand, the query

?- ?C[|?M{?L..?H}=>?|]@foo.

has two solutions:

?C = C
?M = m
?L = 3
?H = *

?C = C2
?M = m
?L = 3
?H = *

Class C is in the result because the constraint is specified explicitly and C2 is in the result because
it inherited the constraint from C.

40 Exception Handling

Flora-2 supports the common catch/throw paradigm through the primitives catch{?Goal,
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?Error, ?Handler} and throw{?Error}. Here ?Goal can be any Flora-2 query, ?Error is a
HiLog (or Prolog) term, and ?Handler is a Flora-2 query that will be called if an exception that
unifies with ?Error is thrown during the execution of ?Goal. For instance,

%someQuery(?Y) :- ?Y[value->?X], ?X > 0, %doSomethingUseful(?X).
%someQuery(?Y) :- ?Y[value->?X], ?X =< 0, throw{myError(’?X non-positive’, ?X)}.

?- %p(?Y), catch{%someQuery(?Y), myError(?Reason,?X), %handleException(?Reason,?X)}.

%handleException(?Reason,?X) :-
format(’~w: ?X=~w~n’,[?Reason,?X])@\prolog(format), \false.

The catch construct first calls the query %someQuery/1. If ?X is positive then nothing special
happens, the query executes normally, and catch{...} has no effect. However, if ?X turns out to
be non-positive then the query throws an exception myError(’?X non-positive’, ?X), where ?X
is bound to the non-positive value that was deemed by the logic of the program to be an exceptional
situation. The term thrown as an exception is then unified with the term myError(?Reason,?X)
that was specified in catch{...}. If the two terms do not unify (e.g., if the error specified in catch
was something like myError(foo,?X)) then the exception is propagated upwards and if the user
does not explicitly catch it, the exception will eventually be caught by the Flora-2 command
loop. In the above example, however, the thrown term and the exception specified in catch unify
and thus %handleException/2 is called with ?Reason and ?X bound by this unification.

The queries ?Goal and ?Handler in the catch{...} primitive can be frames, not just predicates.
However, ?Error — both in catch and in throw — must be HiLog or Prolog terms. No frame
literals are allowed inside these terms unless they are reified. That is, myError(’problem found’,
a[b->c]) will result in a parser error, but an exception of the form myError(’problem found’,
${a[b->c]}) is correct because the frame is reified.

Some exceptions are thrown by Flora-2 itself, and applications might want to catch them:

• ’_$flora_undefined’(?MethodSpec,?ErrMsg) — thrown when undefinedness checking is in
effect (see Section 42.1) and an attempt is made to execute an undefined method or predicate.
The first argument in the thrown exception is a specification of the undefined predicate or
the method that caused the exception. The second argument is the error message.

• ’_$flora_abort’ or ’_$flora_abort’(?Message) — thrown when Flora-2 encounters
other kinds of errors. This exception comes in two flavors: with an error message and without.

A rule can also throw this exception when immediate exit to the top level is required. The
safest way to do so is by calling abort(?Message)@\sys, as explained in Section 45.3.
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These exceptions are defined by Flora-2 under the symbolic names FLORA_UNDEFINED_EXCEPTION
and FLORA_ABORT. When a user application needs to catch these errors we recommend that the
applicable files include flora_exceptions.flh and use the above symbolic names. For instance,

#include "flora_exceptions.flh"
?- ..., catch{myQuery(?Y),

FLORA_ABORT(FLORA_UNDEFINED_EXCEPTION(?MethSpec,?Message),?_),
myHandler(?MethSpec)}.

?- ..., catch{yourQuery(?Y),FLORA_ABORT(?Message,?_),yourHandler(?Message)}.

The catch{...} primitive can also catch exceptions thrown by the underlying Prolog system.
For this to happen you need to know the format of the exceptions thrown by Prolog (which can be
found in the manual). These exceptions have the form

error(errortype(arguments),context(Message,Backtrace))

However, Flora-2 aims to intercept all Prolog exceptions and contextualize them in the appro-
priate Flora-2 terms and any non-caught Prolog exception should be treated as an omission to
be fixed in the next release.

41 The Compile-time Preprocessor

Flora-2 supports a C-style preprocessor, which is invoked during the compilation. The most
important commands are

#define variable value

#define macro (arg_1,...,arg_n ) expression

#ifdef variable

#ifndef variable

#else
#endif
#include "file "

There are many features that go beyond the C preprocessor such as the tests

#if exists("file ")
#if !exists("file ")

and many others. For example, it is possible to enable macro substitution inside quotes. An
advanced user is referred to the XSB manual where this preprocessor, called gpp, is described in
an appendix to Manual 1.
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42 Debugging User Knowledge bases

Flora-2 comes with an interactive, Prolog-style debugger, which is described in Appendix B. The
compiler makes many useful checks, such as the occurrence of singleton variables, which is often an
error (see Section 8.1). When a problem is deemed serious enough, errors are reported.

The most important rule in debugging Flora-2 knowledge bases is: never ignore any
kind of warnings issued by system. This golden rule actually applies to programming in any lan-
guage. In addition, it is possible to tell Flora-2 to perform various run-time checks, as described
below.

42.1 Checking for Undefined Methods and Predicates

Flora-2 has support for checking for the invocation of undefined methods and predicates at run
time. This feature can be of great help because a trivial typo can cause a method/predicate call to
fail, sending the user on a wild goose chase after a hard-to-find bug. It should be noted, however,
that enabling these checks can slow the runtime by up to 2 times (typically about 50% though), so
we recommend that this be done during debugging only.

To enable runtime checks for undefined invocations, Flora-2 provides two methods, which can
be called at any time during execution (and thus enable and disable the checks dynamically):

?- Method[mustDefine(?Flag)]@\sys.
?- Method[mustDefine(?Flag(?Module))]@\sys.

The argument ?Flag can be on, off, or it can be a variable. The argument ?Module must be a
valid loaded Flora-2 module name or it can be a variable. When the flag argument is on, the
first method turns on the checks for undefinedness in all modules. The second method does it in a
specific module. When the flag argument is off, the above methods turn the undefinedness checks
off globally or in a specific module, respectively.

When either ?Flag or ?Module (or both) is a variable, the above methods do not change the
way undefined calls are treated. Instead, they query the state of the system. For instance, in

?- Method[mustDefine(?Flag)]@\sys.
?- Method[mustDefine(?Flag(foo))]@\sys.
?- Method[mustDefine(on(?Module))]@\sys.

the first query binds ?Flag to on or off depending on whether the checks are turned on or off
globally. The second query reports on the state of the undefinedness checks in Flora-2 module
foo, while the third query tells in which modules these checks are turned on.
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In addition to turning on/off the checks for undefinedness on the per-module basis, Flora-2
provides a way to turn off such checks for individual predicates and methods:

?- Method[mustDefine(off,Predicate/Method-spec)]@\sys.

For example,

?- Method[mustDefine(off,?(?)@foo)]@\sys.

specifies that all undefinedness errors of predicates that unify with ?(?)@foo are ignored, provided
that foo is a loaded module. Note that the module must always be specified. For instance, to
ignore undefinedness checking in the current module, use

?- Method[mustDefine(off,?(?)@ \@)]@\sys.

The use of the current module symbol \@ is essential in this example. Omitting it is probably
not what you want because the module specification \sys propagates inward and so the above
statement (without the \@) would turn off undefinedness checks in module \sys instead of the
current module.

One can also turn undefinedness checks off in all modules by putting a variable in the module
position:

?- Method[mustDefine(off,?(?)@ ?Mod)]@\sys.

However, this must not be an anonymous variable like ?, ?_, or a don’t care variable like
?_Something. If one uses an anonymous or a don’t-care variable then undefinedness checks will be
ignored only in some randomly picked module.

A pair of parentheses is needed when multiple predicates/methods are listed in one call.

?- Method[mustDefine(off,(?:class@foo, ?[%?]@ \@))]@\sys.

The undefinedness exception in Flora-2 can be caught using Flora-2 ’s catch{...} built-in.
For instance, suppose FOO is a predicate or a frame whose execution might trigger the undefinedness
exception. Then we can catch this exception as follows:

#include "flora_exceptions.flh"

..., catch{FOO, \FLUNDEFEXCEPTION(?Call,?ErrorMessage), handler(?Call)}, ...
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Here FLORA_UNDEFINED_EXCEPTION is the exception name defined in the Flora-2 system file
flora_exceptions.flh, which must be included as shown. The predicate handler/1 is user-
defined (can be a frame as well), which will be called when an undefinedness exception occurs. The
variable ?Call will be bound to an internal representation of the method or predicate call that
caused the exception. For instance, if we define

handler(?_) :- !.

then the undefinedness exception that occurs while executing FOO will be ignored and the call to
FOO will succeed.

Undefinedness checks and meta-programming. We should note one subtle interaction be-
tween these checks and meta-programming. Suppose the user knowledge base does not have any
class membership facts and the undefinedness checks are turned on. Then the meta-query

?- a:?X.

would cause the following error:

++Error[Flora-2]: Undefined class ?:? in user module main

Likewise, if the knowledge base does not have any method definitions, the query ?- ?X[?Y->?Z].
would cause an error. This might not be what one expects because the application in question
might be exploring the schema or the available data, and the intention in the above cases might be
to fail rather than to get an error.

One way of circumventing this problem is to insert some “weird” facts into the knowledge base
and special-case them. For instance, one could add the following facts to silence the above errors:

ads_asd_fsffdfd : ads_asd_fsffdfd.
ads_asd_fsffdfd[ads_asd_fsffdfd -> ads_asd_fsffdfd].

The user can then arrange the things so that anything that contains ads_asd_fsffdfd would be
discarded.

Another way to circumvent the problem is to turn the undefinedness checks off temporarily.
For instance, suppose the query ?- ?X:a causes an unintended undefinedness error in module foo.
Then we can avoid the problem by posing the following query instead:

?- Method[mustDefine(off(foo))]@\sys,
?X:a,
Method[mustDefine(on(foo))]@\sys.
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A more selective way to circumvent this problem is to turn off undefinedness checking just for the
offending classes. For instance,

?- Method[mustDefine(off,?:a@ \@)]@\sys.

The fourth way is to deal with the exception is to use Flora-2 ’s catch{...} built-in (note
the curly braces):

#include "flora_exception.flh"

?- catch{?X:a, \FLUNDEFEXCEPTION(?,?)@\prolog, true}.

Undefinedness checks and update operators. Although undefinedness checking can be
turned on and off at will, it cannot always capture all cases correctly. Namely, if an insert or
delete statement is executed while undefinedness checking is off, the corresponding methods will
not be properly captured and spurious undefinedness errors might result. For instance, if

?- insert{a[meth->b]}, delete{a[meth->b]}.
?- Method[mustDefine(on)]@\sys.

are executed then the query ?- a[meth->b] will cause the undefinedness error. However,

?- insert{a[meth->b]}, delete{a[meth->b]}.
?- Method[mustDefine(on)]@\sys.
?- a[meth->b].

will not flag the method meth as undefined.

42.2 Type Checking

Although Flora-2 allows specification of object types through signatures, type correctness is not
checked automatically. A future version of Flora-2 might support some form of run-time type
checking. Nevertheless, run-time type checking is possible even now, although you should not
expect any speed here and this should be done during debugging only.

Run-time type checking is possible because F-logic naturally supports powerful meta-
programming, although currently the knowledge engineer has to do some work to make type check-
ing happen. For instance, one can write simple queries to check the types of methods that might
look suspicious. Here is one way to construct such a type-checking query:
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type_error(?O,?M,?R,?D) :-
%% Values that violate typing
?O[?M->?R], ?O[?M=>?D], \naf ?R:?D
;
%% Defined methods that do not have type information
?O[?M->?R], \naf ?O[?M=>?_D].

?- type_error(?Obj,?Meth,?Result,?Class).

Here, we define what it means to violate type checking using the usual F-logic semantics. The
corresponding predicate can then be queried. A “no” answer means that the corresponding attribute
does not violate the typing rules.

In this way, one can easily construct special purpose type checkers. This feature is particularly
important when dealing with semistructured data. (Semistructured data has object-like structure
but normally does not need to conform to any type; or if it does, the type would normally cover only
certain portions of the object structure.) In this situation, one might want to limit type checking
only to certain methods and classes, because other parts of the data might not be expected to have
regular structure.

Note that in a multi-module knowledge base, the module information should be added to the
various parts of the above type-checker. It is reasonable to assume that the schema information
and the definition for the same object resides in the same module (a well-designed knowledge base
is likely to satisfy this requirement). In this case, a type-checker that take the module information
into account can be written as follows:

type_error(?O,?M,?R,?D) :-
%% Values that violate typing
(?O[?M->?R], ?O[?M=>?D])@?Mod1, \naf ?R:?D@?Mod1
;
%% Defined methods that do not have type information
(?O[?M->?R], \naf ?O[?M=>?_D])@?Mod1.

?- type_error(?Obj,?Meth,?Result,?Class).

We should note that type-checking queries in Flora-2 are likely to work only for “pure”
queries, i.e., ones that do not involve built-ins like arithmetic expressions. Built-ins pose a problem
because they typically expect certain variable binding patterns when these built-ins are called. This
assumption may not hold when one asks queries as general as type_error.

To facilitate all these checks, Flora-2 provides a method, check, in class Type of module
\typecheck (which can be abbreviated to \tpck). Its syntax is:

?- Type[check(?Specification,?Result)]@\typecheck.
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?- Type[check(?Specification,?Result)]@\tpck.

The ?Specification variable must be bound to a base frame, as described below. ?Result gets
bound to the evidence of type violation (one or two atoms that violate the typing constraint).

• If ?Specification is of the form ?[?Meth->?]@?Mod then all type constraints for ?Meth
are checked in module ?Mod. Missing types (semistructured data) are flagged. If ?Mod is
an unbound variable, then the constraints are checked in all modules. ?Meth can also be a
variable. In this case all non-transactional methods will be checked.

• If ?Specification is of the form ?[?Meth=>?]@?Mod then the type constraints for ?Meth are
checked in module ?Mod but missing types (semistructured data) are ignored. As before, ?Mod
and ?Meth can be unbound variables.

• If ?Specification is of the form ?[|?Meth->?|]@?Mod then only the consistency between
-> and => is checked and only for frames that are statements about classes as a whole,
i.e., the frame formulas of the form ?[|?Meth->?|]@?Mod and ?[|?Meth=>?|]@?Mod. The
obj[...]-style frames are ignored. Missing types (semistructured data) are flagged.

• If ?Specification is of the form ?[|?Meth=>?|]@?Mod then again only the consistency be-
tween ?[|?Meth->?|]@?Mod and ?[|?Meth=>?|]@?Mod is checked, but missing types are not
flagged.

For example, if our knowledge base consists of:

a[b->c].
a[b=>d].
c:d.

then the query will fail, as the typing is correct:

?- Type[check(?[?Meth->?],?Result)]@\typecheck.

But if, in addition, we had

a[b->e].
a[foo->e].

then the above query would yield multiple evidences of type inconsistency:

?Result = [(${a[b -> e]}, ${a[b => d]}), ${a[foo -> e]}]
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The first item in the list (the pair inside parentheses) means that the frame a[b -> e] violates
the type constraint specified by the signature a[b => d]. The second item means that the frame
a[foo -> e] does not have a corresponding signature. On the other hand,

?- Type[check(?[?Meth=>?],?Result)]@\typecheck.

will yield only the first evidence because a[foo->e] does not violate any typing constraint for
semistructured data.

If the object position in the first argument of check is bound then this object is treated as a
class and only the objects in that class will be type-checked. For instance, if we also had

q[foo->bar].
q:qq.

in our knowledge base then the query

?- Type[check(qq[?Meth->?],?Result)]@\typecheck.

will return one evidence of type inconsistency:

?Result = [${q[foo -> bar]}]

because q is the only object in class qq that has type violations.

An easy way to remember which type of constraint represents what kind of type checking
is to think that => represents typing and, therefore the =>-style constraints mean that only the
methods that have typing information will be type-checked. The ->-style constraints, on the
other hand, mean that all methods will be checked—whether they have signatures or not. Simi-
larly, ...[|...|]-style constraints indicate that only information about classes as a whole will be
type-checked, while information specified explicitly for individual objects will not be. In contrast,
...[...]-style constraints indicate that all type information will be verified.

42.3 Checking Cardinality of Methods

Flora-2 does not automatically enforce the cardinality constraint specified in method signatures.
However, the type system module in Flora-2 provides methods for checking cardinality con-
straints for methods that have such constraints declared in their signatures.

In practice as well as in theory things are more complicated, however. First, it is theoretically
impossible to have a terminating query that will flag a violation of a cardinality constraint if and
only if one exists.
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In practice, the constraint checking methods in the type system library may trigger run-time
errors if there are rules that use non-logical features or certain built-ins in their bodies. There-
fore, in practice, the user should do constraint-checking methods only for purely logical methods.
Cardinality constraints declared for methods that are defined with the help of non-logical features
should be used for documentation only.

The above problems aside, in Flora-2 it is easy to verify that a particular method satisfies a
cardinality constraint. For instance, if method foo is declared as

someclass[|foo {2..3}=> sometype|].

then to check that the cardinality constraint is not violated, one can ask the following query:

?- Cardinality[check(?Obj[foo =>?])]@\typecheck.

If no violations are found, the above query will fail. If there are violations of this constraint then
?Obj will get bound to the objects for which the violation was detected. For instance, consider the
following knowledge base:

cl[|foo {2..3}=> int|].
c::cl.

o1:c.
o2:c.
o3:c.

o1[foo->{1,2,3,4}].
o3[foo->{3,4}].

c[|foo -> 2|].
cl[|foo -> {3,4,5}|].

Then the query

?- Cardinality[check(?O[foo=>?])]@\typecheck.

will return ?O = o1 and ?O = o2 because o1 has a method foo with four values while at most 3
are allowed according to the signature. The object o2 is returned because foo has no values for
that object, while at least 2 are required. The object o3 is not returned because it does not violate
the constraint. Similarly, the query
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?- Cardinality[check(?O[|foo=>?|])]@\typecheck.

will return ?O = c because the method foo has only 1 value for that class, while at least two are
required by the signature. The class cl is not returned because it does not violate the constraint.

In general, the allowed forms of the method check in class Cardinality are as follows. The
argument is always an atomic signature frame (no need to specify reification ${...}). The method
type of the signature can be only =>, but the frames can have the ...[...]-style or ...[|...|]-
style. The former checks the cardinality constraints of object methods, while the latter checks
cardinality constraints only for default values of the methods.

• Cardinality[check(?Object[?Method => ?])]@\typecheck
Checks cardinality constraints for ?Method of type => in the current module. That is, whether
there are instances of the literal ?Object[?Method -> ?Val] that violate a cardinality con-
straint imposed by some signature of the form ?Object[?Method{?Low..?High}=>?Type]
(which may be a derived signature).

• Cardinality[check(?Obj[|?Method =>?|]@?Module)]@\typecheck
Checks cardinality constraints for the default values of ?Method in module ?Module. If
?Module is unbound and a cardinality constraint violation is detected in some module then
?Module is bound to that module. That is, it is a check for whether there are instances of the
literal ?Object[|?Method -> ?Val|] that violate a cardinality constraint imposed by some
signature of the form ?Object[|?Method{?Low..?High}=>?Type|] (which may be a derived
signature).

• Cardinality[check(?Obj[?Method {?LoBound..?HiBound} => ?]@?Mod)]@\typecheck
Like the previous query, but the variables ?LoBound and ?HiBound, which must be unbound
variables, can be used to indicate which bounds are violated. If the lower bound is violated,
then ?LoBound will be bound to the violated lower bound; otherwise, it is bound to ok. If the
higher bound is violated, then ?HiBound is bound to the violated higher bound; otherwise it
is bound to ok.

If ?Mod is unbound then it will be bound to the module(s) in which the cardinality constraint
is violated.

For instance, for the above knowledge base, the query

?- Cardinality[check(?O[|foo {?Low..?High} => ?|]@?Module)]@\typecheck.

will bind ?O to c, ?Mod to main, ?Low to 2, and ?High to ok. Indeed, only the lower bound of
the cardinality constraint c[|foo {2..3}=> int|] (which was inherited from cl) is violated
by the class c.
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?- Cardinality[check(?O[foo {?Low..?High} => ?])]@\typecheck.

will return the following results:

?O = o1
?Low = ok
?High = 3

?O = o2
?Low = 2
?High = ok

42.4 Logical Assertions that Depend on Transactional and Non-logical Features

On page 140 we mentioned the potential problems when tabled predicates or frames depend on
updates. A similar problem arises when such statements depend on non-logical features, such
as var(...) or on statements that have side effects, such as I/O operations (e.g., write(’foo
bar’)@\prolog). Since tabled statements in Flora-2 are considered purely logical, one cannot
assume that the evaluation happens in the same way as in Prolog. For instance, consider the
following knowledge base:

?O[bar] :- ?O:foo.
?O:foo :- writeln(’executed’)@\prolog.
?- abc[bar].

Despite what one might expect, the above query will cause “executed” to be printed twice — once
when abc[bar] will be proved for the first time and once when the system will attempt some other
way of proving abc[bar]. (The system may not realize that the second proof is not necessary.) In
general, transactional and side-effectfull statements might be executed even if the attempt to prove
the statement in the rule head ultimately fails.

Flora-2 issues warnings when it finds that a tabled predicate depends on non-logical or
side-effectfull statements, but it does not warn about all Prolog predicates of this kind. There-
fore, caution needs to be exercised in specifying purely logical statements and warnings should
not be ignored. If you are certain that a particular suspicious dependency is harmless, use the
ignore_depchk directive to suppress the warning.

42.5 Examining Tables

Sometimes it is useful to be able to examine the tables that XSB has generated while answering
queries. To this end, Flora-2 provides the following library predicates:
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\tabledump(File,AtomicGoal)
\tabledump(File,AtomicGoal,Option)

The File argument specifies the file in which to place the results. The results are in the Flora-2
format, as explained below. If File is userout then the results go to the standard output.
AtomicGoal is a HiLog predicate or an atomic frame (e.g., ?[?->foo]). It specifies the subgoals
for which tables are being requested. Option is the option selected. Currently three options are
supported: summary (minimalist output that summarizes the overall statistics of tables), subgoals
(more details about individual subgoals). The third option, answers, will output full details, in-
cluding the information about each called subgoal and all answers to all subgoals.

The first (binary) form of \tabledump above is equivalent to
\tabledump(File,AtomicGoal,summary).

In all three cases, \tabledump generates information about the tables for subgoals that are
subsumed by AtomicGoal. If AtomicGoal is a variable, information is displayed about all tables.

When the summary option is used, the information is displayed in the following format:

AtomicGoal[total_subgoals->..., total_subgoal_answers->...].

For instance,

?- \tabledump(userout,?).

${?A(?B)}[total_subgoals->1, total_subgoal_answers->0].
${?A(?B,?C)}[total_subgoals->3, total_subgoal_answers->2].

?- \tabledump(userout,p(2,?)).

${p(2,?A)}[total_subgoals->1, total_subgoal_answers->1].

If the third option is used (answers), then in addition to the output produced for the summary
option the system will show the individual subgoals subsumed by AtomicGoal and the answers to
each:

AtomicGoal[
total_subgoals->1,
subgoal_details->{Subgoal1[total_answers->..., answer_list->[answer1,...],

Subgoal2[total_answers->..., answer_list->[answer2,...],
...}].
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For instance, the following might be produced for the two earlier requests, if the details option is
specified :

?- \tabledump(userout,?,answers).

${?A(?B)}[total_subgoals->1, total_subgoal_answers->0].
${?A(?B)}[total_subgoals->1,

subgoal_details->{${q(?_h34)}[total_answers->0, answer_list->[]]}].
${?A(?B,?C)}[total_subgoals->3, total_subgoal_answers->2].
${?A(?B,?C)}[total_subgoals->3,

subgoal_details->{${p(2,b)}[total_answers->1, answer_list->[${p(2,b)}]],
${p(1,a)}[total_answers->1, answer_list->[${p(1,a)}]],
${p(?_h65,?_h67)}[total_answers->0, answer_list->[]]}].

?- \tabledump(userout,p(2,?),answers).

${p(2,?A)}[total_subgoals->1, total_subgoal_answers->1].
${p(2,?A)}[total_subgoals->1,

subgoal_details->{${p(2,b)}[total_answers->1, answer_list->[${p(2,b)}]]}].

If the second option is used (subgoals), then the output is similar to the third option, but the
answer_list part is not shown. In this case, the output is slightly smaller. However, it should
be kept in mind that for large knowledge bases with large numbers of answers table dumps can be
huge (hundreds of megabytes) and it can take considerable time to dump these tables. In this case
only the first option (and maybe the second, if you must) is recommended.

42.6 Examining Incomplete Tables

Sometimes it becomes necessary to examine incomplete tables (i.e., tables to subgoals that have
not yet been completely evaluated) in the middle of execution or upon exception.

To get a dump of all incomplete tables in the middle of the computation, one has to insert the
predicate \dump_incomplete_tables in an appropriate place in user’s rule bodies. For instance,

r(0,?):- !, \dump_incomplete_tables(temp).
r(3,?A):- r(5,?A).
r(?N,?A):- ?N1 is ?N - 1, r(?N1,?A).
?- r(5,foo(a)).
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will put the following into the file temp:

${r(5,foo(a))}[scc->1].
${r(4,foo(a))}[scc->1].
${r(3,foo(a))}[scc->1].
${r(2,foo(a))}[scc->2].
${r(1,foo(a))}[scc->3].
${r(0,foo(a))}[scc->4].

It says that there are four strongly connected components of subgoals, numbered 1, 2, 3, and 4.
All of these subgoals are still waiting to be fully computed, but at the moment their truth values
are still unknown.

More often, though, one might need to examine incomplete tables after an exception, if the user
suspects that the exception has something to do with tabled subgoals. Such a table dump looks
exactly like the dump produced by \dump_incomplete_tables/1 but it is requested differently.
First, one must execute the query

?- \set_dump_incomplete_tables_on_exception.

Then, after an exception took place, the user should execute the query

?- \dump_incomplete_tables_after_exception(filename ).

For instance,

?- \set_dump_incomplete_tables_on_exception.
q(0,?):- !, abort@\sys.
q(3,?A):- q(5,?A).
q(?N,?A):- ?N1 is ?N - 1,q(?N1,?A).
?- q(5,foo(a)).
?- \dump_incomplete_tables_after_exception(temp).

The dump of the tables that were incomplete at the time of the abort will be in the file temp and
will have the same structure as before:

${q(5,foo(a))}[scc->1].
${q(4,foo(a))}[scc->1].
${q(3,foo(a))}[scc->1].
${q(2,foo(a))}[scc->2].
${q(1,foo(a))}[scc->3].
${q(0,foo(a))}[scc->4].
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ERGO, in addition, has a much more useful primitive, showgoals{...}, which can show the
information about incomplete computations without the need to modify the program rules and in
a more focused way.

42.7 Tracing Tabled Calls via Forest Logging

While the regular Call-Redo-Exit-Fail logging is useful in many cases, it is extremely slow and
generates large amounts of output. A query that runs mere 10 seconds can take hours to execute
under tracing and it may generate hundreds of megabytes worth of trace output. Clearly, it is hard
to use the regular tracing facility under such conditions. On top of this, even though the regular
trace is capable of producing queriable output, such trace does not supply parent-child relationships
between calls, and, due to this, automatic analysis of such trace is very hard.

Fortunately, there is an alternative: forest logging. Forest logging is a kind of tracing that
keeps track only of tabled predicate calls. It is very fast (time overhead is less than 80% compared
to orders of magnitude for the regular trace), it generates drastically smaller trace logs, and it
preserves the parent-child relationship between the calls. The drawback is that logforest traces
track tabled calls only, but in Flora-2 this is not a serious problem since most calls that are of
interest to the user are tabled (except for transactional predicates and methods).

Flora-2 ’s forest logging is implemented as a presentation layer on top of XSB’s forest logging.
Its format and other details are described next.

Forest logging. To start forest logging, the user must issue the command \logforest at the
Flora-2 prompt or include the query ?- \logforest where appropriate. In the latter case,
logging will start after this subgoal gets executed. To stop forest logging, issue the command
\nologforest.

The entries in the log represent the following actions that occur during tabled evaluation of
queries and every entry has an Id which is a non-negative integer.

• A call to a tabled subgoal. When a call to a tabled subgoal S1 is made from a derivation tree
for S2, a frame literal is recorded in the following format:

call(Id)[goal->S1, stage->Stage, parent->S2].

where Id is the generated Id of the call and Stage is

– new if S1 is a new subgoal.

– comp if S1 is an old completed subgoal.
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– incmp if S1 is an old incomplete subgoal (i.e., it has not been fully evaluated yet).

If S1 is the first tabled subgoal in an evaluation, S2 is represented by the atom null. If the
call is negative, a similar fact of the form negative_call(Id)[goal->S1, stage->Stage,
parent->S2] is logged.

• Derivation of a new answer. When a new unconditional answer A is derived for subgoal S
and added to the table, the following fact is logged:

answer(Id)[goal->S, answer->A].

As before, Id is the identity number generated for this particular action.

When a new conditional answer A is derived for subgoal S and the delayed literals are D, a
log of the form conditional_answer(Id)[goal->S, answer->A, delayed_literals->D]
is recorded.

• Return of an answer to a consuming subgoal. When an answer A is computed and returned
to a consumer subgoal S in a derivation tree for ST and the table for S is incomplete, the
following fact is recorded:

answer_to_consumer(Id)[goal->S, answer->A, consumer->ST].

If A is conditional, this entry delayed_answer_to_consumer(Id)[goal->S, answer->A,
consumer->ST] is recorded.

• Delaying a negative literal. When a selected negative literal N of a node S is delayed due to
its involvement in a loop through negation, and S is in a derivation tree for ST, a fact of this
form is logged.

delay(Id)[delayed_literal->N, parent->ST].

• Subgoal completion. When a set S of subgoals is completely evaluated, for each S ∈ S a fact
of the following format is logged for each S:

completed(Id)[goal->S, sccnum->SCCNum].

Here SCCNum is the identifier generated for the set of subgoals S. If S is completed early,
SCCNum is the atom ec.

• Table abolishes. There are three occasions where tables are abolished.

– When a tabled subgoal S is abolished, a fact of the following form is logged:
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table_abolished(Id)[type->subg, goal->S].

– When all tables for a predicate p/n are abolished, a fact of the following form is logged:

table_abolished(Id)[type->pred, goal->[p/n]].

– When all tables are abolished, the following fact is logged:

table_abolished(Id)[type->all].

• Recording of errors. If an error is thrown and the execution is in a derivation tree for subgoal
S, forest logging records the following fact:

error(Id)[goal->S].

By default, logs are sent to the current output stream. However, it is usually more convenient to
dump the logs to a file using the following command: \logforest(File). For instance, executing

?- \logforest(’foobar.flr’).

will direct Flora-2 to dump the entire forest log into the file foobar.flr. In case the user also
wants to examine the original XSB’s forest logging trace, the following command can be executed:
\logforest(FloraTraceFile,XSBTraceFile). For instance, executing

?- \logforest(’foobar.flr’, ’foobar.P’).

will dump the trace in the above Flora-2 format into the file foobar.flr and keep the original
XSB’s forest log in the file foobar.P.

We may want to skip certain types of log entries in some circumstances such as reducing log
file sizes. Flora-2 provides \logforest(HideOptions) and \logforest(File, HideOptions),
where HideOptions is a list of log types to be skipped. The elements of HideOptions can be
one of the following: call, negative_call, delayed_call, answer, conditional_answer,
answer_to_consumer, delayed_answer_to_consumer, completed, table_abolished, and
error. For instance,

?- \logforest([table_abolished, error]).
?- \logforest(’foobar.flr’, [table_abolished, error]).

will not record logs for table abolish and error actions.

Note that \logforest(FloraTraceFile,XSBTraceFile) and
\logforest(File,HideOptions) will not be mixed since Flora-2 checks whether their second
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argument is a list or not to tell which command is executed. Similarly, \logforest(HideOptions)
and \logforest(File) will not be mixed.

It is important to keep in mind, however, that no output is produced (to the file or output
stream) unless the user issues the command \nologforest. In other words, forest logging can be
obtained only after the evaluation is finished. If you expect the query to throw an error, it is a
good idea to use the Flora-2 catch... primitive. If the query does not terminate, you should
also wrap the query with the timed_call/3 XSB predicate.23

Low-level forest logging. Sometimes it is necessary to look into the guts of forest logging
without converting it into the Flora-2 format. Typically this is needed for low-level debugging
of Flora-2 itself. The command for this is \logforestlow; it directs Flora-2 to display forest
logs directly in the XSB format. There is also a version of this command for saving the log in a
file:

?- \logforestlow(’foobar.flr’).

As before, one should remember to issue the command \nologforest in order to flush the log
to the output. Flora-2 also provides \logforestlow(HideOptions) and \logforestlow(File,
HideOptions) to skip certain types of low-level log entries.

42.8 Controlling Subgoal and Answer Size, Timeouts, Unification Mode

Sometimes it is useful to be able to control the term-size of the subgoals that can be generated
during evaluation and the size of the answers returned. The former is useful if the user knowledge
base has recursive rules in which the size of the body literals is greater than the size of the head.
The latter is useful when a query has an infinite number of answers. In both cases, limiting the
size can terminate a run-away computation. Timeouts are useful when it is desirable to stop
the computation if it does not finish within a preset amount of time. To control these features,
Flora-2 provides the builtin primitive that can appear in any query or rule body:

?- setruntime{Opt1,Opt2,...}

Several options can be used in the same setruntime command. These options are described below.

23 timed_call/3 is described in the XSB Manual, Part 1. Do not forget to reify the query argument to
timed_call/3.
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42.8.1 Timeouts

The following setruntime{...} options can be used to control various types of timeouts:

timeout(Spec )
timeout(Spec ,Spec )
timeout(0)

where Spec is either max(Time,Handler ) or repeating(Time,Handler ). Here Time is a positive
integer that specifies the number of seconds after which queries should be interrupted. The first
form will interrupt the queries once (so this form is used to specify timeouts) and the second will
interrupt queries periodically, after each Time seconds. Either max, or repeating, or both can
be specified (via the 1-argument and 2-argument form of timeout). In either case, Handler will
be called at each interrupt. The last form above removes all timeout restrictions. Note that each
subsequent setruntime timeout-setting command will override the previous one.

Here are some examples:

?- setruntime{timeout(max(4,fail))}.
?- setruntime{timeout(max(100,abort))}.
?- setruntime{timeout(repeating(4,Handler(?)),max(100,abort))}.
?- setruntime{timeout(0)}.

Note that once any of these commands is issued, it applies to all subsequent queries. The last
command resets the timeout to infinity.

Handler in the max and repeating specifications must have one of the following forms:

• A predefined error handler: ignore (ignore the timer interrupt), abort (abort the current
goal), fail (make the current goal fail); or

• A Prolog predicate defined in some Prolog module; or

• A predicate declared using Flora-2 ’s :- prolog{...} directive.

• A predefined error handler pause, which is available only in ERGO. In that case, the execution
pauses and the user is given the opportunity to inspect the state of the system and then either
continue or abort the computation.24 The pause interrupt handler is perhaps the most useful
when the system runs in interactive mode.

24The ability to pause a computation exists only in ERGO and this is why the pause interrupt handler is available
only there.
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If Handler is a Prolog predicate that exists in the default Prolog’s usermod module then the
handler should look like foobar(?) or foobar (i.e., one or zero arguments) . The argument (if
present) must be an unbound variable, which will be bound at runtime to the goal being interrupted.
A Prolog handler can be also specified as foobar(?)@\prolog or foobar(?)@\prolog(mod ). The
latter is especially useful if foobar/1 is in the Prolog’s module mod rather than the usermod
module. In either of these cases, foobar/1 must be defined in a Prolog program that Flora-2
has already loaded. In ERGO, information primitives such as showgoals{}, can also be used as
handlers.

If the handler is an Flora-2 predicate declared as :- prolog then it must be specified as
foobar(?)@mod (note: not \prolog(mod ), but mod), where mod is an Flora-2 module (or \@,
if the current module is desired (see Section 16.3).

For instance, the following fragment in Flora-2 sets the system for periodic timer interrupts:

:- prolog{periodic_handler/1}.
periodic_handler(?Goal) :- writeln(interrupted_goal=?Goal)@\prolog.
?- setruntime{timeout(repeating(2,periodic_handler(?)@\@))}.

In this example, the Flora-2 predicate periodic_handler/1 will be called every two seconds.

Alternatively, one could define periodic_handler/1 as a Prolog predicate in a .P file, e.g.,
foo.P, and then set periodic interrupts as follows:

?- [’foo.P’].
?- setruntime{timeout(repeating(2,periodic_handler(?)@\prolog))}.

Care must be taken to not obliterate periodic handlers during loading. For instance, in either
of the above cases periodic_handler/1 may get erased. In case of a Prolog program (the second
example), the danger is not as great: periodic_handler/1 may get replaced only if another Prolog
file gets loaded and happens to have the same predicate. A Prolog predicate may also be explicitly
abolished by the user, but this is rare. In case of periodic handlers defined in Flora-2 modules,
however, the problem occur more frequently. For instance, the first example may be loaded into
some module, foo, and then, due to an oversight, something else may get loaded (as opposed to
“added”) into the same module. In that case, periodic_handler/1 will be obliterated and the
periodic timer interrupt specification will become orphaned, resulting in a runtime error. If this
happens, errors will be issued whenever the interrupt handler is called.

42.8.2 Subgoal Size Control

The following options provide subgoal size control:
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goalsize(TermSize ,abort)
goalsize(TermSize ,abstract)
goalsize(TermSize ,pause) // Ergo only

These options control the maximum size of the subgoals called during the evaluation. TermSize
specifies the max size of the terms returned as answers. This takes into account both nesting of
all function symbols except lists (lists are considered to be of size 1) and the arity (width) of the
terms.

The first form of the above options will abort the query if the specified limit is reached. The
second form will perform call abstraction and replace the deeply nested subterms with new variables.
The pause-action will pause the computation and allow the user to examine the state of the
computation before deciding what to do next. Examples:

?- setruntime{goalsize(100,abort)}.
?- setruntime{goalsize(100,abstract)}.

The above options are incompatible, so each subsequent option overrides the previous one.

42.8.3 Answer Size Control

The following options enable answer size control:

answersize(TermSize ,abort)
answersize(TermSize ,abstract)
answersize(TermSize ,pause) // Ergo only

The meaning of the abort options is the same as for the goal size. The meaning of the abstract
options is that the size of terms is limited to the specified numbers. If higher size answer-objects
are generated, their truth value is set to undefined. This is called answer abstraction. For instance,
if the computation generates the answers p(f(a)), p(f(f(a))), etc., then answer abstraction at
size 5 will generate the answers up to p(f(f(f(a)))) and the last answer, p(f(f(f(f(?))))), will
be undefined. This means that some of the instances of that last answer might be true and some
false.

Examples:

?- setruntime{answersize(100,abort)}.
?- setruntime{answersize(100,abstract)}.
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42.8.4 Controlling the Number of Active Goals

The following options enable one to control the number of active (i.e., not completely evaluated)
tabled subgoals during query evaluation, which is useful for termination and performance analysis.

activegoals(TermSize ,abort)
activegoals(TermSize ,pause) // Ergo only

The meaning of the abort and pause actions is the same as in the case of subgoal and answer size
controls.

42.8.5 Memory Usage Limit

The following option is available:

memory(memory-limit-in-GBs )

For instance,

?- setruntime{memory(12)}.

will set the limit to 12 GBs. If the Flora-2 process exceeds this amount, the computation will be
aborted.

ERGO (but not Flora-2 ) also supports the following:

memory(memory-limit-in-GBs,Action )

where Action is either abort or pause. The abort option works exactly like memory(Size ), while
if pause is given then the computation will pause instead of aborting. The user can then ask
informational queries about the system state and decide what to do. For instance, one may decide
whether to abort or to increase the memory limit and continue.

42.8.6 Unification Mode

The default unification mode in Flora-2 is unsound, in general. That is, non-unifiable terms
might be unified, as explained below. The following runtime options can be used to change the
unification mode:
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unification(fast)
unification(pedantic)

For instance,

?- setruntime{unification(fast)}.
?- setruntime{unification(pedantic)}.

These commands controls the experimental feature of unification mode. The default unification
mode is fast. This is a logically unsound mode: it does not do the occurs-check and so the
unification ?X = f(?X) will succeed even though the two terms are not unifiable in the classical
sense. Under the pedantic mode, such a unification would fail.

Unifying in the fast mode can lead to hard-to-find errors, although Flora-2 makes attempts to
limit the damage and the probability of serious problems occurring due to this mode of unification
is low.

42.9 Non-termination Analysis

There are two main non-termination causes in Flora-2 : infinite number of calls and infinite num-
ber of answers, and both of them arise due to recursive rules together with function symbols. Since
non-termination is normally very hard to debug, Flora-2 provides a tool, called a non-Termination
Analyzer, or the Terminyzer, to help the user to locate and understand non-terminating behavior.

When a runaway computation is suspected, the user should stop the execution manually or he
could set a time limit or a term-size limit prior to starting the query, as explained in Section 42.8.
Terminyzer then analyzes the execution’s forest logging trace and reports the sequences of tabled
unfinished calls and their respective rule ids (the rules in the knowledge base from which these calls
were issued) that actually caused the non-termination. Below, we describe the usage of Terminyzer;
more information can be found in [11, 12].

To start Terminyzer, the user issues the following command

?- terminyzer(XSBTraceFile,SummaryFile)@\prolog(flrterminyzer).

where XSBTraceFile is the XSB logforest trace that can be obtained by executing the query
\logforest(FloraTraceFile,XSBTraceFile ), as described in Section 42.7 and SummaryFile is
the non-termination analysis summary in the Flora-2 loadable format. (Note: the input to
Terminyzer is XSBTraceFile, not FloraTraceFile.) The entries in the summary file can be used to
explain non-terminating behavior, if it has occurred. They are as follows:
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• Logforest file. The logforest trace file being analyzed is reported as:

logfile(XSBTraceFile).

• Unfinished tabled calls. If a tabled subgoal S1 is called from a derivation tree for subgoal S2

because of the rule with id RId (i.e., S2 matches this rule’s head and S1 matches one of its
body subgoals) and S1 if is not completely evaluated, the following two frames are reported:

unfinished_subgoal(SubgoalId1)[subgoal->S1,ruleid->RId].
unfinished_call(CallId)[parent->SubgoalId2,child->SubgoalId1,ruleid->RId].

where SubgoalId1 and SubgoalId2 are unique ids generated for S1 and S2. (Note: only one
id is generated for each non-variant subgoal.) CallId is the unique id generated for this
call from S2 to S1. Both subgoal ids and call ids are non-negative integers generated in the
temporal order of subgoal and call creation during the evaluation.

Besides, the number of unfinished subgoals and calls are also recorded as follows:

number_of_subgoals(unfinished,NumOfSubgoals).
number_of_calls(unfinished,NumOfCalls).

• Non-termination due to infinite number of subgoals. If the trace is generated by an execution
that generates infinitely many subgoals, these subgoals must be generated by a set of re-
cursive predicates that generate subgoals with increasing term-size. Furthermore, each cycle
of recursive calls to these predicates produces a set of deeper and deeper subgoals. The id
sequence of subgoals produced by the first recursive cycle is recorded in the following form:

call_loop[subgoals->SubgoalIdSequence].

The number of subgoals in the sequence is reported as:

number_of_subgoals(callloop,NumOfSubgoals).

• Non-termination due to infinite number of answers. When the trace is generated by an
execution that produces infinitely many answers, these answers are produced by a set of
recursive predicates that generate answers of increasingly large term-size. This set of recursive
unfinished subgoals and their relationships are reported as follows.

answerflow[subgoals->SubgoalIds,calls->CallIds,loop->LoopSubgoalIds].
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where subgoals and calls are the ids of those unfinished subgoals and calls that are involved
in answer generation and loop is the sequence of subgoal ids that form the recursive loop. The
loop also indicates the call-relationship among the subgoals in the sequence. For instance,
[5,6,5] says that subgoal 5 calls subgoal 6 and subgoal 6 calls subgoal 5, and this recursion
is producing infinitely many answers.

The number of recursive subgoals and calls and the size of the loop are recorded as follows:

number_of_subgoals(answerflow,NumOfSubgoals).
number_of_calls(answerflow,NumOfCalls).
number_of_subgoals(answerflowloop,LoopSize).

The information produced by Terminyzer can be used to locate the rules and specific calls that
cause non-terminating behavior.

43 Considerations for Improving Performance of Queries

Left-to-right processing. The first rule in improving the performance of Flora-2 queries is
to remember that query evaluation proceeds from left to right. Therefore it is generally advisable
to place subgoals with smaller answer sets as close to the left of the rule body as possible. And, as
with databases, Cartesian products should be avoided at all costs.

Nested frames and path expressions. The Flora-2 compiler makes decisions about where
to place the various parts of complex frames, and the knowledge engineer can affect this placement
by writing frames in various ways. For instance,

?- ..., ?X[attr1 -> ?Y, attr2 -> ?Y], ...

is translated as

?- ..., ?X[attr1 -> ?Y], ?X[attr2 -> ?Y], ...

so the first attribute will be computed first. If the second attribute has a smaller answer set, the
attributes in the frame should be written in the opposite order. The other consideration has to do
with literals that have nested frames in them. For instance, the following query

?- ..., ?X[attr1->?Y[attr2->?Z]], f(?P.attr3), ...

is translated as
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?- ..., ?X[attr1->?Y], ?Y[attr2->?Z], f[?P->?_newvar], f(?_newvar), ...

i.e., the nested literals follow their hosts in the translation. Thus, writing terms in this way is con-
sidered a hint to the compiler, which indicates that bindings are propagated from ?X[attr1->?Y]
to ?Y[attr2->?Z], etc. If, on the other hand, ?Y[attr2->?Z] has only one solution then, perhaps,
writing ?Y[attr2->?Z], ?X[attr1->?Y] might produce more efficient code.

Similar considerations apply to f(?P.attr3), but here ?P.attr3 is computed first and the
result is passed to the predicate f/1. Note that frames and truth-valued path expressions are
not allowed as nested arguments in predicates and functions. That is, f(?Y[attr2->?Z]) or
f(?Y.attr2[]) would cause compiler to issue errors. However, pure path expressions, which have
no truth values, can be nested inside predicates and functions. For instance, f(?Y.attr2) or even
f(?Y[foo->bar].attr2) are acceptable except inside insert... and delete... primitives.

As with nested frame literals, the Flora-2 compiler assumes that path expressions represent a
hint that bindings are propagated left-to-right. In other words, in ?X.?Y.?Z, ?X will be bound first.
Based on this, the oids of the objects ?X.?Y are computed, and then the attribute ?Z is applied.
In other words, the translation will be ?X[?Y->?Newvar1], ?Newvar1[?Z->?Newvar2].

Unfortunately, unlike databases, statistical information is not available to the Flora-2 com-
piler and only a few heuristics (such as variable binding analysis, which the compiler does not
perform) can be used to optimize such queries. If the order chosen by the compiler is not right, the
user may unnest the literals and place them in the right order in the rule body.

Open calls vs. bound calls. In Prolog it is much more efficient (space- and time-wise) to make
one unbound call than multiple bound ones. For instance, suppose we have a class, cl, that has
hundreds of members, and consider the following query:

?- ?X:cl[attr->?Y].

Here, Prolog would first evaluate the open call ?X : cl and then for each answer x for ?X it will
evaluate x[attr->?Y]. If the cost of computing x[attr->?Y] is higher than the cost of x : cl and
the number of answers to ?X[attr->?Y] is not significantly higher than the number of answers to
?X:cl, then the following query might be evaluated much faster:

?- ?X[attr->?Y], ?X:cl.

In this query, a single call ?X[attr->?Y] is evaluated first and then x:cl is computed for each an-
swer for ?X. Since, as we remarked, the cost of this call can be much smaller than the combined cost
of multiple calls to x[attr->?Y] for different x. If the number of bindings for ?X in ?X[attr->?Y]
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that are not members of class cl is small, the second query might take significantly less space and
time.

The delay quantifiers wish and must, described in Section 34, can also be helpful in ensuring
that certain variables are bound.

44 Compiler Directives

44.1 Executable vs. Compile-time Directives

Like a Prolog compiler, the Flora-2 compiler can take compiler directives. As in Prolog, these
directives can be executable or compile-time, and this distinction is very important. Executable
directives are treated as queries and they begin with ?-. Compile-time directives begin with :-.

Executable directives are mostly used to control how the Flora-2 shell interprets the expres-
sions that the user types in. These directives have no effect during the compilation of the knowledge
base. Instead, when they are executed as queries they affect the shell. In contrast, compile-time
directives affect the compilation of the files they occur in. Also, if a module is loaded into the main
module in the shell, then all compile time directives in that module are executed in the shell as
well, so there is no need to explicitly execute these directives in the shell. Flora-2 requires that
all compile-time directives appear at the top of the file prior to the first appearance of a rule or a
fact, because such directives have effect only after they are found and processed.

To better understand the issue, consider the following simple example (say, in the file test.flr):

:- op{400,xfx,fff}.
a fff b.
?- ?X fff ?Y.

If one loads this example, it will execute correctly and return the bindings a and b for ?X and
?Y, respectively. If you execute the same query ?X fff ?Y in the Flora-2 shell, the result will
still be correct because Flora-2 made sure that the directive op{400,xfx,fff} in test.flr was
executed in the shell as well. On the other hand, if the example were

?- op{400,xfx,fff}.
a fff b.
?- ?X fff ?Y.

then fff would be known to the shell, but, unfortunately, we will not get that far to find out: The
compiler will issue an error, since fff will not be known as an operator during the compilation.
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Summary of directives. The following is a summary of all supported compiler directives:

:- setsemantics{Option1, Option2, ...}.
Sets the semantic options in the current user module. The currently allowed options are:

equality=none (default), equality=basic,
inheritance=none, inheritance=flogic (default), inheritance=monotonic,
tabling=reactive (default), tabling=passive,
tabling=variant (default), tabling=subsumptive,
custom=none (default), custom=filename .

The form option=val1+val2+val3 is also supported. For instance,
tabling=variant+reactive.

These options are explained in detail in Section 22.

?- setsemantics{Option1, Option2, ...}.
This is an executable version of the setsemantics directive. The following options can be
used only with the executable version of setsemantics:

subclassing=strict (default), subclassing=nonstrict,
class_expressions=on, class_expressions=none (default),

?- setsemantics{Option1, Option2, ...}@module.
Same as above, except that the semantics is set for the specified user module.

:- index{Arity-Argument}.

Says that all tabled HiLog predicates of arity Arity should be indexed on argument number
Argument (the count starts at 1). This directive should appear at the beginning of a module
to have any effect. Normally predicates in Flora-2 are indexed on predicate name only. The
above directive changes this so that indexing is done on the given argument number instead.

Note that the index directive is not very useful for predicates that mostly contain facts,
because these are trie-indexed anyway (regardless of what you say). Thus, this instruction
is useful only for predicates with partially instantiated arguments that appear in the rule
heads.
This is an executable version of the index directive. The module of the predicates can be
specified.

:- index{%Arity-Argument}.

The index directive for non-tabled HiLog predicates.

?- (index{%Arity-Argument)[@module]}.

The executable index for non-tabled HiLog predicates.
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:- op{precedence,type,operator}.

Defines operator as a Flora-2 operator with the given precedence and type. The type is the
same as in Prolog operators, i.e., fx, xf, xfy, etc. Note that the op directive is confined to
the module in which it is executed or defined. For instance, if example.flr has a call (a foo
b)@bar, the symbol foo is declared as an operator in the knowledge base loaded to module
bar, but not in example.flr, then a syntax error will result, because example.flr does not
know about the operator declaration for foo.

:- op{precedence,type,[operator, ..., operator]}.

Same as above, except that this directive defines a list of operators with the same precedence
and type.

?- op{precedence,type,operator}@module.

Same as above, except that a module is also given. However, unless the module is main, this
directive acts as a no-op.

44.2 Miscellaneous Compiler Options

Sometimes it is desirable to pass miscellaneous compiler options to the Flora-2 compiler. To
do this, Flora-2 provides the directive compiler_options. It takes one argument — a list of
options that is understood by the underlying Prolog compiler. At present, the following options
are supported:

• production=on – compile the file without various debugging features such as the rule Ids
embedded in the heads and bodies of rules.

• production=off – compile the file in the development mode. In this mode, rule Id information
is added to the heads and the bodies of the rules, which facilitates tracing and profiling of
Flora-2 queries. This mode is the default. This compiler option was introduced to make
it possible to override production mode when it is requested from the Flora-2 shell via the
primitive production{on} (see Section 48.2).

• expert=on – allow advanced syntax. Do not turn this option on if you are not a very
experienced Flora-2 user: the expert mode was introduced to prevent misuse by novice
users. See Section 51 to learn about the features that are available only in the expert mode.

• expert=off – do not allow advanced syntax. Note that, like production, the expert mode
is a compile-time option. In the Flora-2 shell, use expert{on} and expert{off}.

• prolog=[Opt1,Opt2,...,OptN] – pass the list of Prolog compiler options
[Opt1,Opt2,...,OptN] to the underlying Prolog compiler. The prolog options are
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not checked by the Flora-2 compiler and are simply passed to the underlying Prolog
engine. If any of the given options is invalid, runtime warnings or errors will result. Also,
unlike expert and production options, the prolog option cannot be issued at run time via
the Flora-2 shell.

Example:

:- compiler_options{production=on,expert=on,prolog=[spec_repr]}.
...
?- expert{off}.

will cause the module that contains this directive to be compiled without the special debugging fea-
tures that slow the running code down. This will also pass the spec_repr option to the underlying
Prolog compiler so it will perform the specialization optimization.25

45 Flora-2 System Modules

Flora-2 provides a number of useful libraries that the user can use. These libraries are statically
preloaded into modules that are accessible through the special @\modname syntax, and they are
called system modules. We describe the functionality of these modules below. Some of these
modules also have longer synonyms. These synonyms are mentioned below, if they exist.

45.1 Input and Output

This library simplifies access to the most common Prolog I/O facilities. This library is preloaded
into the system module \io and can be accessed using the @\io syntax.

The purpose of the I/O library is not to replace the standard I/O predicates with Flora-2
methods, but rather to relieve the user from the need to do explicit conversion of arguments between
the HiLog representation of terms used in Flora-2 and the standard Prolog representation of the
underlying engine.26 The methods and predicates accessible through the \io library are listed
below. Note that some operations are defined as transactional methods and others as predicates.
This is because we use the object-oriented representation only where it makes sense — we avoid
introducing additional classes and objects that require more typing just for the sake of keeping the
syntax object-oriented.

25 Although the spec_repr optimization option is the default in XSB, Flora-2 turns it off because, we believe, it
is buggy and causes some Flora-2 queries to go wrong.

26 See Section 18 for a discussion of the problems associated with this representation mismatch.
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Standard I/O interface. This interface to input-output uses the concept of default streams
that can be opened with see (for input) and tell (for output). Subsequent see/tell commands
push the current streams to the respective input and output stacks and open new default streams.
Subsequent reads and writes operate with those default streams. The commands seen and told
close the current default streams and pop up the appropriate streams from the appropriate stacks,
making them the default streams. The seeing and telling commands obtain references to the
current default streams. If these streams are pushed on the stack and are no longer the default
ones, those references can still be used to write to or read from the streams that are no longer
default. This could be useful, for example, if one wants to copy one file to another. The following
is a list of commands in this interface followed by some examples. Again, keep in mind that all the
calls below must be invoked with @\io.

• see(?Filename), ?Filename[see] — open ?Filename and make it the current input
stream. The file can live remotely at some URL. In that case, ?Filename must be instantiated
to the form url(...).

• seeing(?Stream) — binds ?Stream to the current input stream.

• seen — closes the current input stream.

• tell(?Filename), ?Filename[tell] — opens ?Filename as the current output stream.
The file can live remotely at some URL. In that case, ?Filename must be instantiated to the
form url(...). In that case, Flora-2 will attempt to use the HTTP POST request to store
the file remotely.

• telling(?Stream) — binds ?Stream to the current output stream.

• told — closes the current output stream.

• write(?Obj) — writes ?Obj to the current output stream.

• writeln(?Obj) — same as above, except that the newline character is output after ?Obj.

• write(?Obj,?Options), writeln(?Obj,?Options) — like write(?Obj) and writeln(?Obj)
but takes the ?Options argument, which is a list. At present, the only options in that list that
are supported are oid and goal. The difference shows only when printing reified statements:
with the oid option, ?Obj is printed as an object, while with goal it is printed as a goal
(without the reification symbol). For instance,

?- write(${p(1)},[oid])@\io.
${p(1)}
?- write(${p(1)},[goal])@\io.
p(1)
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If the argument is not a reified formula then the two options give the same result. The
1-argument versions write(?Obj), writeln(?Obj) are equivalent to write(?Obj,[oid]),
writeln(?Obj,[oid]), respectively.

• nl — writes the newline character to the current output stream.

• write_canonical(?Term) — write ?Term to standard output in canonical Prolog form.

• fmt_write(?Format,?Term) — C-style formatted output to the standard output. See the
XSB manual, volume 2, for the description of all the details. Here we just mention that the
format is an atom ’....’ whose structure is like in C (some formats might not be supported)
with the addition of the format specified %S, which can take any term. ?Term must have the
format args(arg1, ..., argn) (i.e., all the arguments to be printed must be grouped under a
singe functor; the name of the functor is immaterial).

• fmt_write(?Format,?Term,?Options) — like fmt_write(?Format,?Term), but take op-
tions whose meaning is the same as in case of write/writeln above.

• fmt_write_string(?String,?Format,?Obj) — same as above, but binds ?String to the
result. See the XSB manual for the details.

• fmt_write_string(?String,?Format,?Obj,?Options) — same as above, but takes options
whose meaning is the same as in the case of write/writeln above.

Stream-based I/O. Stream-based I/O is like the standard I/O interface except that it does not
use the default streams that can be pushed to or popped from the stack of streams. Instead, there
is a notion of standard input and output streams, which are usually associated with and interactive
window, and user-defined streams. Standard input and output streams always exist, while user-
defined streams are created and destroyed when files are open and closed. This is somewhat similar
to the I/O interface described earlier, but nothing gets pushed on stacks. Instead, all read and
write operations must use the appropriate streams explicitly.

For reading, we recommend to use only the stream-based I/O and so we omitted most of the
read operations from the standard I/O interface above.

Note that to read an entire file via the various read operations below, it is recommended to use
the fail-loop idiom like

%do_read(?Stream) :- ?Stream[some_read_operation(...) -> ?Result]@\io,
process_result(?Result), \false.

%do_read(?Stream) :- ?Stream[close]@\io.

where some_read_operation can be any of the read methods described below.
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• ?Filename[open(?Mode,?Stream)] or ?Filename[open(?Mode)->?Stream]— opens
?Filename with mode ?Mode (which can be read, write, append, write_binary, or
append_binary) and binds ?Stream to the stream Id. The file can live remotely at some
URL. In that case, ?Filename must have the form url(...).

The modes write_binary and append_binary are used in Windows only. In Unix-based
systems (Linux, Mac, etc.), these modes coincide with write and append, respectively.

One way to think of ?Filename[open(read,?Stream)] is that it is like see(?Filename)
followed by seeing(?Stream). Similarly, ?Filename[open(write,?Stream)] is like
tell(?Filename) followed by telling(?Stream). But open provides one more option,
append, which does not exist in stream-based I/O, plus the binary modes for Windows.

• ?Stream[close] — closes ?Stream. It is similar to told but it can close any stream, not
just the default one.

• ?Stream[prolog_read->?Result] — bind ?Result to the next Prolog term in the previously
open input stream ?Stream. Each term must be terminated with a period. After being read
in, each term is converted to HiLog. If the term being read is not in the form of a Prolog
term, ?Term gets bound to prolog_read_error.

• ?Stream[write(?Obj)], ?Stream[writeln(?Obj)] — like write(?Obj), writeln(?Obj)
but write to a previously open output ?Stream instead of the current output stream.

• ?Stream[write(?Obj,?Option)], ?Stream[writeln(?Obj,?Option)] — like
write(?Obj,?Option), writeln(?Obj,?Option) but write to a previously open out-
put ?Stream instead of the current output stream.

• ?Stream[fmt_write(?Format,?O)] — same as fmt_write(?Format,?O), but uses ?Stream
for the output.

• ?Stream[fmt_write(?Format,?O,?Options)] — same as
fmt_write(?Format,?Term,?Options) but uses a previously open stream.

• ?Stream[fmt_read(?Format) -> ?Result] — formatted read; uses ?Stream for input.
?Format is a C-style format string with some limitations (and a new format %S, which accepts
any term). See the XSB manual for details. If ?Result is returned unbound, it means that
there was a formatting read error. In that case, the current position within the input file
would not change and, if one continues to persist with exactly the same read command (e.g.,
using the fail-loop) then an infinite loop may result.

• ?Stream[write_canonical(?Term)] — write out ?Term using the canonical format. Uses
?Stream for output.
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• ?Stream[read_canonical->?Term] — reading canonical terms (i.e., no infix, postfix, prefix
operators); uses ?Stream for input. As with prolog_read, each term must be terminated
with a period and is converted to HiLog. If the term being read is not in the canonical form,
?Term gets bound to read_canonical_error.

The read_canonical method is much faster than the prolog_read method described earlier,
but it cannot read non-canonical terms like a+b. So, if a file contains only

• ?Stream[flora_read->?Term] — reads Flora-2 terms from ?Stream, including HiLog and
reified terms. Each term must be terminated with a period. If input is not a valid Flora-2
term, ?Term gets bound to flora_read_error.

This is similar to the prolog_read and read_canonical methods, but is more general, as this
method also understands HiLog (e.g., a(b)(c)) and reified (e.g., ${Mary[age->12]}) terms.
The three methods have significant overlap, where read_canonical is least general, but also
the fastest, prolog_read is more general, but slower, and flora_read is most general and
also the slowest. Therefore, if the contents of a file permits so, read_canonical should be
preferred.

Note that this method is similar to readAll in the module \parse in Section 45.6. The
difference is that it is simpler to use: it does not return any status or error information and
instead binds ?Term to flora_read_error in case of an error. It also ignores spaces and
newlines.

• ?Stream[readline(?Type) -> ?String] — reads a line from file; uses ?Stream for input.
Binds ?String to the line that was just read. ?Type is either atom or charlist. The former
means that ?String is to be bound to a Prolog atom (Flora-2 symbol), while the latter
tells the system to convert the line to a list of characters (usually used when further parsing is
required). If the line that was read in ends with a newline, that newline character is retained
in ?String.

Here are some examples. To read a file, one must open it first. If, say, foo.txt has foo.
p(a). then the following will result:

?- (see(’foo.txt’), seeing(?Stream),
?Stream[prolog_read->?X, prolog_read->?Y, seen])@\io.

?X = foo
?Y = p(a)

The following illustrates writing to a file.

?- (tell(’foo.txt’), telling(?Stream1), tell(’bar.txt’),
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?Stream1[writeln(abc)], writeln(cde), told, ?Stream1[close])@\io.

In this case, the files foo.txt and bar.txt will be created (or erased, if they exist) and abd will
be written out to the first file and cde to the second. In more detail, the first tell opens foo.txt
and the next telling command obtains a reference to the stream associated with that file. The
next tell opens bar.txt. The default stream now becomes associated with that file, but we still
have a reference ?Stream1 to the first stream, so we can write to it, which is done by the next
command. After that, cde gets written to the default stream and told closes that stream. The
last command closes (the non-default) ?Stream1 explicitly.

To read from or write to the window through which the user interacts with a running session of
Flora-2 , one does not need to open (or see/tell) any files: when Flora-2 starts, the default
input and output streams are connected to that window. For instance,

?- write(foobar)@\io.

will display foobar to the user unless the current default was changed by an earlier tell command.
If the user needs to work with several files at once, he must keep track of the open streams by binding
them to variables, as in the above example.

Debugging output. The above output methods and predicates make every effort to present the
output in the valid Flora-2 syntax. However, sometimes—usually for debugging—one would like
to see the internal representation of certain Flora-2 constructs. Using write(...)@\prolog is
the ultimate way to see the internals, while setdisplaymode{...} and setdisplayschema{...}
can be seen as an intermediate device.

There are these display modes: default, stickydefault, answer, deepanswer, and debug. At
present, the only difference between debug and default is that in the debug mode the Skolems
are written out using their internal representation while in the default mode the output looks like
a Flora-2 term. For instance,

? setdisplaymode{debug}.
?- insert{p(\#)}, p(?_X), writeln(?_X)@\io.
_$_$_ergo’skolem2|_2

? setdisplaymode{default}.
?- insert{p(\#)}, p(?_X), writeln(?_X)@\io.
\#

In the answer mode the values of the variables bound to Skolems are shown both in the user-
readable as well as the internal representation. (Skolems that appear as arguments to other terms
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are not shown with their internal representations.) This mode is set automatically when printing
out answers:

p(\#foo,f(\#2)).
?- p(?X,?Y).
?X = \#foo (_$_$_ergo’skolem2|foo’1)
?Y = f(\#2)

Note that for ?Y the internal representation of the Skolem constant is not shown because it appears
as an argument, and including the internal representation would be confusing. If, however, one
wishes to see internal representations of Skolem constants at any depth, setting the display mode to
deepanswer will do the trick. To suppress showing the internal representation completely, set the
display mode to stickydefault. The difference between this mode and default is that default
temporarily changes to answer when answers are being printed, while in the stickydefault mode
this automatic switch does not happen.

Flora-2 also provides the primitive displaymode{?X}, which can be used to find out the
current mode in effect. At present, only one mode can be in effect, so setting a new mode cancels
the old one.

The primitive setdisplayschema{...} can be used to affect whether the answers and terms
are printed using the Flora-2 ’s representation or the internal Prolog representation. For instance,

?- setdisplayschema{raw}.
?- ergo> ?X=p(?p).

?X = flapply(p,_h9195)

while in the default schema, flora, the answer will be shown as

ergo> ?X=p(?p).

?X = p(?_h9195)

The display schema also affects the write(...)@\io predicates.

Finally, the primitive displayschema{?X} can be used to tell which schema is currently in
effect.

Common file operations. The \io module also provides a class File, which has methods for
the most common file operations. These include:
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• File[exists(?F)]. True if file ?F exists.

• File[isdir(?F)]. True if file ?F is a directory.

• File[isplain(?F)]. True if file ?F is a plain file, not a directory.

• File[readable(?F)]. True if file ?F is readable.

• File[writable(?F)]. True if the file is writable.

• File[executable(?F)]. True if the file is executable.

• File[modtime(?F)->?T]. Binds ?T to the last modification time of ?F.

• File[mkdir(?Dir)]. Makes a directory named after the value of ?Dir.

• File[rmdir(?Dir)]. Removes the directory ?Dir.

• File[chdir(?Dir)]. Changes the current directory to ?Dir.

• File[cwd->?Dir]. Binds ?Dir to the current working directory in the shell.

• File[link(?F,?Dest)]. Creates a link named after ?F to the existing file ?Dest.

• File[unlink(?F)]. Removes the link ?F.

• File[remove(?F)]. Removes the file ?F.

• File[tmpfilename(?F)]. Binds ?F to a temporary file with a completely new name.

• File[isabsolute(?F)]. True if ?F is an absolute path name.

• File[rename(?F,?To)]. Renames file ?F to file ?To.

• File[basename(?F) -> ?Base]. Binds ?Base to the base name of file path ?F. For
instance, ?- File[basename(’/a/b/cde’) -> ?Base]. would bind ?Base to cde.

• File[extension(?F) -> ?Ext]. Binds ?Ext to the extension of the file ?F. For instance,
?- File[extension(’/a/b/cde.exe’) -> ?Ext] would bind ?Ext to exe.

• File[dirname(?F) -> ?Dir]. Binds ?Dir to the directory name of file ?F.

• File[expand(?F) -> ?Expanded]. Expands the file ?F by attaching the directory name
(if the file is not absolute) and binds ?Expanded to that expansion.

• File[newerthan(?F,?F2)]. True if ?F is a newer file than ?F2.

• File[copy(?F,?To)]. Copies the contents of the file ?F to ?To.
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45.2 Storage Control

Flora-2 keeps the facts that are part of the knowledge base or those that are inserted at runtime
in special data structures called storage tries. The system module \db, accessible through the
module reference @\db, provides primitives for controlling this storage. This module also has a
longer synonym \storage.

• %commit — commits all changes made by transactional updates. If this statement is executed
in the middle of an update transaction, changes made by transactional updates prior to this
will be committed and will not be undone even if a subsequent subgoal fails.

• %commit(?Module) — commits all changes made by transactional updates to facts in the user
module ?Module. Transactional updates to other modules are unaffected.

• %purgedb(?Module) — deletes all facts previously inserted into the storage associated with
module ?Module.

45.3 System Control

The system module \sys provides primitives that affect the global behavior of the system. It is
accessible though the system module reference @\sys (or through its synonym \system).

• Libpath[add(?Path)] — adds ?Path to the library search path. This works similarly to the
PATH environment variable of Unix and Windows in that when the compiler or the loader are
trying to locate a file specified by its name only (without directory) then they examine the
files stored in the directories on the library search path.
Using Libpath[add(a(?Path))] will move the directory to the front of the library search
path (deleting any other occurrences of that directory on that search path).
Using Libpath[add(push(?Path))] will put the directory at the front of the library search
path. The other occurrences of that directory on the search path stay put.

• Libpath[remove(?Path)] — removes one ?Path from the library search path.

• Libpath[removeall(?Path)] — removes all occurrences of ?Path from the library search
path.

• Libpath[query(?Path)] — queries the library search path. If ?Path is bound, checks if the
specified directory is on the library search path. Otherwise, binds (through backtracking)
?Path to each directory on the library search path.

• Tables[abolish] — discards all tabled data in Prolog.
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This module also provides the following amenities:

• Method[mustDefine(?Mode)] — affects the system behavior when stumbling upon an unde-
fined predicate or method. This method is described separately, in Section 42.1.

• abort(?Message) — prints ?Message on the standard error stream and terminates the current
execution. Message can also be in the form (?M1, ?M2, ..., ?Mn). In this case, all the
component strings are concatenated before printing them out.

User aborts can be caught as follows:

?- catch{?Goal, FLORA_ABORT(FLORA_USER_ABORT(?Message),?_), ?Handler}

In order to be able to use the predefined constants FLORA_ABORT and FLORA_USER_ABORT the
file must contain the include statement

#include "flora_exceptions"

• warning(?Message) — prints a warning header, then message, ?Message, and continues.
Output goes to the standard error stream. ?Message can be of the form (?M1, ?M2, ...,
?Mn).

• message(?Message) — Like warning/1, but does not print the warning header. ?Message
can be of the form (?M1, ?M2, ..., ?Mn).

• System[type->?Info] — returns information about the system type. ?Info, for example,
could be bound to unix/linux/64, macos/darwin/64, windows/windows/32, depending on
the system type.

45.4 Type and Cardinality Checking

This system module of Flora-2 provides methods for testing type and cardinality constraints of
the methods defined in the Flora-2 knowledge base. The module defines the method check in
classes Type and Cardinality of module \typecheck (or, abbreviated, \tpck). This method is
described in Section 42.3.

45.5 Data Types

The system module \basetype of Flora-2 provides methods for accessing the components of data
types such as \dateTime, \iri, and so on. Data types are described in Section 38.
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45.6 Reading and Compiling Input Terms

Sometimes it may be necessary for an application to read and compile Flora-2 statements from
an input source. To this end, the \parse system library provides the following predicates and
methods.

• read(?Code,?Stat)@\parse.
• read(?Module)(?Code,?Stat)@\parse.
Read the next term from the standard input and compile it. The resulting term is bound to the
variable ?Code. The term can also be a reified formula and even a reified rule. Such a formula/rule
can be used in a query or inserted into the knowledge base as appropriate.

The second form does the following: If the input term is not reified, the ?Module parameter has no
effect. If the formula is reified and has no explicit module (i.e., ${foo} as opposed to ${foo@bar}),
then it will be built for the module specified in ?Module. If ?Module is unbound then the default
module main is assumed.

The variable ?Stat is bound to the status code returned by the call and has the form [OutcomeFlag,
EOF_flag|ErrorList], where:

OutcomeFlag = null/ok/error
null - a blank line was read, no code generated (?Code = null)
ok - good code was generated, no errors
error - parsing/compilation errors

EOF_flag = eof/not_eof
not_eof - end-of-file has not been reached
eof - if it has been reached.

ErrorList: if OutcomeFlag=null/ok, then this list would be empty.
if OutcomeFlag=error, then this would be a list of the
form [error(N1,N2,Message), ...], where N1 , N2 encode the line
and character numbers, which are largely irrelevant in this context.
Message is an error message. Error messages are displayed.

Example:

?- read(?Code,?Stat)@\parse.
f(a). <-----user input

?Code = f(a)
?Stat = [ok, not_eof]
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?- read(?Code,?Stat)@\parse.
${a[b->c]@foo}. <-----user input

?Code = ${a[b -> c]@foo}
?Stat = [ok, not_eof]

Note that read@\parse reads just one term from the input and succeeds. If called repeatedly, it
will read the second, third, etc., term from the input stream. On reaching the end of file, ?Stat
will be bound to [null,eof].

• ?Stream[read(?Code,?Stat)]@\parse.
• ?Stream[read(?Module)(?Code,?Stat)]@\parse.
These versions of read@\parse are similar to the above except that the input comes from an input
stream ?Stream, which must be open previously, and not from the standard input.

The second form of this API call supplies a module for reified terms, as explained above.

• readAll(?Code,?Stat)@\parse.
• readAll(?Module)(?Code,?Stat)@\parse.
Used for reading terms one-by-one and returning answers interactively. The meaning of the argu-
ments is the same. Under one-at-a-time solution (\one), will wait for input, return compiled code,
then wait for input again, if the user types ";". If the user types RET then this predicate succeeds
and exits. Under all-solutions semantics (\all), will wait for inputs and process them, but will not
return answers unless the file is closed (e.g., Ctl-D at standard input).

The second form of this API call supplies a module for reified terms, as explained above.

• ?Stream[readAll(?Code,?Stat)]@\parse.
• ?Stream[readAll(?Module)(?Code,?Stat)]@\parse.
Like readAll(?Code,?Stat)@\parse but the input comes from the input stream ?Stream, which
must be open in advance. After finishing working with the stream, it should be closed.

The second form of this API call provides a module for reified terms, as above.

Note: there is a simpler version of this method in the system module \io. It is called flora_read
(and flora_read(?Module)) and is described in Section 45.1.

• ?Source[readAll(?CodeList)]@\parse.
• ?Source[readAll(?Module)(?CodeList)]@\parse.
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This collects all answers from a source, which can be either a file or a string. If the source is a string,
it should be specified as string(Str), where Str is either an atom or a variable that is bound to
an atom. If the source is a file, then it should be specified as file(FileName), where FileName
is an atom that specifies a file name (or a variable bound to it). ?CodeList gets bound to a list
of the form [code(TermCode1,Status1), code(TermCode2,Status2), ...], where TermCode is
the compiled code of a term in the source, and ?Status is the status of the compilation for this
term. It has the form [OutcomeFlag, EOF_flag|ErrorList], as explained before.

The second form of this call provides an explicit module for building reified terms, as above.

45.7 Displaying Flora-2 Terms and Goals

The system library loaded into the module \show can be used to obtain printable representation of
Flora-2 terms and goals. This is needed when one needs to show those terms to the user in a form
that the user can recognize (rather than in the internal form into which the terms are compiled).

The available methods are:

• ?Term[show->?Result] — ?Result is bound to an atom that represents the printable view
of the term. For instance,

?- ${d(c,k,?M)}[show->?P]@\show.

?P = ’${d(c,k,?_h0)@main}’

?- [f(a,?X),b,${d(c,k,?M)}][show->?Result]@\show.

?P = ’[f(a,?_h0), b, ${d(c,k,?_h1)@main}]’

• ?Term[show(?Option)->?Result] — like the above but also takes an option argument, which
can be goal or oid. ?Term[show->?Result] is the same as ?Term[show(oid)->?Result].
The goal option affects the display of reified statements only. In that case, these statements
are shown as goals (without the reification symbol), while with oid they are shown as objects.
For instance,

?- ${p(a,b)}[show(oid) -> ?R]@\show.
?R = ’${p(a,b)@main}’

?- ${p(a,b)}[show(goal) -> ?R]@\show.
?R = ’p(a,b)’
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For HiLog terms, which are not reified, the two forms give the same result. For instance,

?- p(a,b)[show(oid) -> ?R]@\show.
?R = ’p(a,b)’

• ?List[splice(?Separator)->?Result] — ?Result is bound to an atom that represents
the printable view of the sequence of elements in ?List with ?Separator (an atom) inserted
in-between every pair of consecutive elements. For instance,

?- [f(a,?X),b,${d(c,k,?M)}][splice(’ ’)->?P]@\show.

?P = ’f(a,?_h0) b ${d(c,k,?_h1)@main}’

?- [f(a,?X),b,${d(c,k,?M)}][splice(’| |’)->?P]@\show.

?P = ’f(a,?_h0)| |b| |${d(c,k,?_h1)@main}’

46 Unicode and Character Encodings

If all your applications deal only with ASCII characters, like the ones found on an English keyboard,
you can safely skip this section. Otherwise, if your are dealing with alphabets other than English
(even if it is just one of the European languages based on Latin alphabet) then read on.

46.1 What Is a Character Encoding?

Data (including programs, databases, and knowledge bases) is represented as sequences of char-
acters, where each character is encoded as a sequence of bits. All these bits are useless, however,
unless one knows what character each particular subsequence represents. The mapping between
bit sequences and characters is known as a code table. The best-known coding table is ASCII, and
it assigns a number between 0 and 127 to various characters found on English keyboards, including
digits, lower- and uppercase letters, and punctuation.

Unfortunately, ASCII encodes too few characters and various groups took initiative to define
bigger code tables, typically appropriating the characters in the 128 – 255 range for various na-
tional alphabets. One of the best-known such tables is Latin-1, which encodes all special accented
letters in Latin-based alphabets. But these extra 128 symbols are too few to accommodate other
alphabets, like Russian, Greek, Hebrew, etc. As a result, many more coding tables sprang up—all
appropriating the same characters from the range 128 – 255 for the different alphabets, and this
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is where many problems originate. Data could now come in any of the dozens of different encod-
ings and, unless one knows which encoding was used, that data is all but useless. On top of all
this, Far-Eastern languages need so many characters for writing that they require different kinds
of coding tables all together.

To bring some order into this business, Unicode Consortium was created and tasked to come up
with one coding table that is capable of encoding all existing alphabets and common characters,
including many mathematical characters, currency symbols, and then some. This eventually led
to the Unicode standard known as UTF-8, which is a coding table that represents all known
characters using sequences of one to four bytes. Thus, ASCII characters are represented using one
byte, Latin-1 (and much more) using two bytes, etc. This picture is complicated by the fact that
Unicode Consortium did not come to UTF-8 right away, but through a series of less successful
standards, like UTF-16 and UTF-32, which are still around and make things more complicated.

46.2 Character Encodings in Flora-2

With all this multitude of encodings, Flora-2 supports only the three most common ones: UTF-8,
CP1252, and Latin-1. Since these three (and, in fact, all coding systems) subsume and agree on
the ASCII character set, the latter is, of course, also supported.

CP1252 is very similar to Latin-1 in its intent and their encodings agree everywhere except for
about two dozen of symbols in the 128 – 159 range. The only reason why CP1252 is supported by
Flora-2 is that it happens to be the default on Windows and much of the data produced on that
platform still tends to be encoded using the CP1252 coding table.

46.3 Specifying Encodings in Flora-2

To specify the encoding to use in processing programs or data, Flora-2 provides one compiler
directive and one executable directive as follows:

:- encoding{enc_name}. // compiler directive
?- encoding{enc_name}. // executable directive

where enc_name can be one of the following: utf8, latin1, cp1252.

First, if a knowledge base or a data file contains only ASCII characters, the encoding is imma-
terial and nothing needs to be specified. Otherwise, if one has a ruleset or a set of Flora-2 facts
that contain non-ASCII symbols, then the compiler directive encoding should be used at the top
of the corresponding file. If a data file that contains non-ASCII characters needs to be read in or
written out, the executable directive must be executed just before the file is opened (say, using the
see, tell, or open operations).
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Note that, on Linux and Mac, the default encoding is UTF-8, but on Windows it is CP1252.
Therefore, forgetting to place or execute the encoding directive in a non-ASCII situation may
result in the same knowledge base being compiled differently or the same file being ingested or
written out differently under Linux and Windows.

We also note that the scope of the compiler directive encoding is the file in which the directive
occurs. After the file is compiled and loaded, the encoding returns to what it was before. On
the other hand, the effect of the executable directive persists until the next encoding directive is
executed.

47 Notes on Style and Common Pitfalls

Knowledge engineering in Flora-2 is similar to programming in Prolog, but is more declarative.
For one thing, frame literals are always tabled, so the knowledge engineer does not need to worry
about tabling the right predicates. Second, there is no need to worry that a predicate must be
declared as dynamic in order to be updatable. Third — and most important — the facts specified
in the knowledge base are stored in special data structures so that their order does not matter and
duplicates are eliminated automatically.

47.1 Facts are Unordered

The fact that Flora-2 does not assume any particular order for facts has a far-reaching impact on
the knowledge engineering style and is one of the pitfalls that an engineer should avoid. In Prolog,
it is a common practice to put the catch-all facts at the end of a program block in order to capture
subgoals that do not match the rest of the program clauses. For instance,

p(f(?X)) :- ...
p(g(?X)) :- ...
%% If all else fails, simply succeed.
p(?_).

This will not work in Flora-2 , because p(?_) will be treated as a database fact, which is placed
in no particular order with respect to the program. If one wants the same effect in Flora-2 ,
represent the catch-all facts as rules:

p(f(?X)) :- ...
p(g(?X)) :- ...
%% If all else fails, simply succeed. Use rule notation for p/1.
p(?_) :- \true.
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47.2 Testing for Class Membership

In imperative programming, users specify objects’ properties together with the statements about
the class membership of those objects. The same is true in Flora-2 . For instance, we would
specify an object John as follows, which is conceptually similar to, say, Java:

John : person
[ name->’John Doe’,

address->’123 Main St.’,
hobby->{chess, hiking}

].

However, in Flora-2 attributes can also be specified using rules. For instance, we can say that (in
our particular enterprise) an employee works in the same building where the employee’s department
is located:

?X[building->?B] :- ?X:employee[department->?_[building->?B]].

Our experience in teaching F-logic-based knowledge engineering to users indicates that initially
there is a tendency to confuse premises with consequents when it comes to class membership. So,
a common mistake is to write the above as

?X:employee, ?X[building->?B] :- ?X[department->?[building->?B]].

A minute of reflection should convince the reader that this is incorrect, since the above rule is
equivalent to two statements:

?X[building->?B] :- ?X[department->?_[building->?B]].
?X:employee :- ?X[department->?_[building->?B]].

It is the second statement, which is problematic. Certainly, we did not intend to say that any object
with a department attribute pointing to an object with a building attribute is an employee!

It is interesting to note that such a confusion between premises and consequences is common
only when it comes to class membership. Therefore, the user should carefully check the validity of
placing class membership formulas in rule heads.

47.3 Composite Frames in Rule Heads

Another common mistake is the inappropriate use of complex frames in rule heads. When using a
complex frame, such as a[b->c, d->e], one must always keep in mind that its meaning is a[b->c]



47 NOTES ON STYLE AND COMMON PITFALLS 268

and a[d->e] whether the frame occurs in a rule head or in its body. Therefore, if a[b->c, d->e]
occurs in the head of a rule like

a[b->c, d->e] :- body.

then the rule can be broken in two using the usual logical tautology ((X∧Y)← Z) ≡ (X← Z)∧ (Y←
Z):

a[b->c] :- body.
a[d->e] :- body.

Forgetting this tautology sometimes causes logical mistakes. For instance, suppose flight is a
binary relation that represents direct flights between cities. Then a rule like this

flightobj[from->?F, to->?T] :- flight(?F,?T).

is likely to be a mistake if the user simply wanted to convert the relational representation into an
object-oriented one. Indeed, in the head, flightobj is a single object and therefore both from
and to will get multiple values and it will not be possible to find out (by querying that object)
which cities have direct flights between them. The easiest way to see this is through the use of the
aforesaid tautology:

flightobj[from->?F] :- flight(?F,?T).
flightobj[to->?T] :- flight(?F,?T).

Therefore, if the flight relation has the following facts

flight(NewYork,Boston).
flight(Seattle,Toronto).

then the following frames will be derived (where the last two are unintended):

flightobj[from->NewYork, to->Boston].
flightobj[from->Seattle, to->Toronto].
flightobj[from->NewYork, to->Toronto].
flightobj[from->Seattle, to->Boston].

To rectify this problem one must realize that each tuple in the flight relation must correspond
to a separate object in a rule head. The error in the above is that all tuples in flight correspond
to the same object flightobj. There are two general ways to achieve our goal. Both try to make
sure that a new object is used in the head for each flight-tuple.

The first method is to use a new function symbol, say f, to construct the oids in the rule head:
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f(?F,?T):flight, f(?F,?T)[from->?F, to->?T] :- flight(?F,?T).

As an added bonus, we also created a class, flight, and made the flight objects into the members
of that class. While it solves the problem, this approach might not always be acceptable, since the
oid essentially explicitly encodes all the information in the tuple.

An alternative approach is to use the skolem{...} primitive from Section 14. Here we are
using the fact that each time flight(?F,?T) is satisfied, skolem{?X} generates a new value for ?X.

%convert_rel_to_oo :-
flight(?F,?T), skolem{?O}, insert{?O:flight[from->?F,to->?T]}.

This approach is not as declarative as the first one, but it saves the user from the need to figure
out how exactly the oids in the rule head should be constructed.

48 Miscellaneous Features

48.1 Suppression of Banners

When Flora-2 initializes itself, it generates quite a bit of chatter, which is suppressed by default.
The user who needs this information (e.g., the developer), can force the chatter to appear by
starting Flora-2 with

runflora --devel

In normal operation, Flora-2 issues a prompt after every query or command. However, some-
times it might be necessary to suppress the prompt. For instance, when Flora-2 interacts with
other programs (e.g., with a GUI) then sending the prompt to the other program just compli-
cates things, as the receiving program needs to remember to ignore the prompt. To avoid this
complication, the invocation flag –noprompt is provided. Thus,

runflora --noprompt

will print no chatter, not even the prompt, on startup and will be just waiting for user input. When
the input occurs, Flora-2 will evaluate the query and return the result. After this, it will return
to wait for input without issuing any prompts.
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48.2 Production and Development Compilation Modes

By default, Flora-2 compiler compiles everything in the development mode. However, before
deploying an application, it is desirable to recompile it in the production mode to gain significant
performance benefits. One way to do this is to put the directive

:- compiler_options{production=on}.

in each file. However, this is often inconvenient, takes time, and might be error-prone. An alterna-
tive method is to execute the following command at the prompt:

?- production{on}.

Executing

?- production{off}.

puts Flora-2 back into the development mode.

Note that the mode is reset to the default development mode after compiling any file, so
production{on} must be re-executed each time when compilation in that mode is desired.

Also note that the explicit compiler directives

:- compiler_options{production=on}.
:- compiler_options{production=off}.

placed at the top of a file override any prior production{on}/production{off} commands.

49 Useful XSB Predicates Without a Counterpart in Flora-2

This section contains a list of useful predicates that are available in XSB, have no direct counterpart
in Flora-2 , and for which such counterparts are not being planned.

49.1 Time-related Predicates

• cputime(?X)@\prolog — returns the CPU time in seconds (floating point number; including
fractions of seconds) used by the Flora-2 process so far. This excludes the idle time.
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• walltime(?X)@\prolog — returns the total time in (including fractions of seconds) seconds
that elapsed since Flora-2 started, including the idle time.

• epoch_seconds(?X)@\prolog(machine) — time in seconds (no fractions) that has passed
since Thursday, 1 January 1970.

• epoch_milliseconds(?Secs,?Fraction)@\prolog(machine) — time that has passed since
Thursday, 1 January 1970. Both ?Secs and ?Fraction are integers, where ?Secs is the
number of seconds and ?Fraction is the number of additional milliseconds since the above
date.

49.2 Hashing

• term_hash(?Term, ?Size, ?Value)@\prolog(machine) — binds ?Value to the hash num-
ber of ?Term in the range from 0 to ?Size-1.

• crypto_hash(?Type, ?Input, ?Result)@\prolog(machine) — produce a cryptographic
hash of the input and bind ?Result to it. Input must be either an atom or have the form of
file(filename)@\prolog. ?Type specifies the type of the hash function to use. Currently,
only md5 (for MD5 hash) and sha1 (for SHA1) are supported.

49.3 Input/Output

• write(?X)@\prolog and writeln(?X)@\prolog — these are similar to the corresponding
predicates in the Flora-2 module \io, but they print out the internal form of the term
bound to ?X. For atoms, numbers, and variables, there is no substantial difference with
\io, but for more complex terms there is. These predicates are mostly useful for debugging
Flora-2 itself and for bug reporting.

49.4 Meta-programming

Flora-2 has a high-level predicate =.., which lets one inspect the internal structure of most
Flora-2 ’s constructs in high-level terms of that system. However, if more sophisticated, low-level
parsing of terms is needed, the following Prolog predicates can be used:

• (?Left =.. ?Right)@\prolog — decomposes the ?Left term into a list of the form
[functor, arg1,...,argN]. The result is bound to ?Right.

• functor(?Term,?Functor,?Arity)@\prolog — binds ?Functor to the function symbol used
in ?Term and ?Arity to the arity of ?Term.
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• arg(?ArgNum,?Term,?Arg)@\prolog — binds ?Arg to the ?ArgNum’s argument of ?Term.

50 Bugs in Prolog and Flora-2 : How to Report

The Flora-2 system includes a compiler and runtime libraries, but for execution it relies on
Prolog. Thus, some bugs that you might encounter are the fault of Flora-2 , while others are
Prolog bugs. For instance, a memory violation that occurs during the execution is in all likelihood
an internal Prolog bug. (Flora-2 is a stress test — all bugs come to the surface.)

An incorrect result during the execution can be equally blamed on Prolog or on Flora-2— it
requires a close look at the knowledge base. A compiler or a runtime error issued for a perfectly
valid Flora-2 specification is probably a bug in Flora-2 .

Bugs that are the fault of the underlying Prolog engine are particularly hard to fix, because
Flora-2 knowledge bases are translated into mangled, unreadable to humans Prolog code. To
make things worse, this code might contain calls to Flora-2 system libraries.

To simplify bug reporting, Flora-2 provides a utility that makes the compiled Prolog program
more readable. The dump{...} primitive can be used to strip the macros from the code, making it
much easier to understand. If you issue the following command

?- dump{foo}.

then foo.flr will be compiled without the macros and dump the result in the file foo_dump.P.
This file is pretty-printed to make it easier to read. Similarly,

?- dump{foo,bar}

will compile foo.flr for module bar and will dump the result to the file foo_dump.P.

Unfortunately, this more readable version of the translated Flora-2 specification might still
not be executable on its own because it might contain calls to Flora-2 libraries or other modules.
The set of guidelines, below, can help cope with these problems.

Reporting Flora-2 -related Prolog bugs. If you find a Prolog bug triggered by Flora-2 ,
here is a set of guidelines that can simplify the job of the XSB developers and increase the chances
that the bug will be fixed promptly:

1. Reduce the size of your Flora-2 knowledge base as much as possible, while still being able
to reproduce the bug.
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2. Eliminate all calls to the system modules that use the @\lib syntax. (Prolog modules that are
accessible through the @\prolog(modname) syntax are OK, but the more you can eliminate
the better.)

3. If the knowledge base has several user modules, try to put them into one file and use just one
module.

4. Use dump{...} to strip Flora-2 macros from the output of the Flora-2 compiler.

5. See if the resulting program runs under XSB (without the Flora-2 shell). If it does not, it
means that the program contains calls to Flora-2 runtime libraries. Try to eliminate such
calls.

One common library call is used to collect all query answers in a list and then print them
out. You can get rid of this library call by finding the predicate fllibprogramans/2 in
the compiled .P program and removing it while preserving the subgoal (the first argument)
and renaming the variables (as indicated by the second argument). Make sure the resulting
program is still syntactically correct!

Other calls that are often no longer needed in the dumped code are those that load Flora-2
runtime libraries (which we are trying to eliminate!). These calls have the form

?- flora_load_library(...).

If there are other calls to Flora-2 runtime libraries, try to delete them, but make sure that
the bug is still reproducible.

6. If the program still does not run because of the hard-to-get-rid-of calls to Flora-2 runtime
libraries, then see if it runs after you execute the command

?- bootstrap_flora.

in the Prolog shell. If the program runs after this (and reproduces the bug) — it is better
than nothing. If it does not, then something went wrong during the above process: start
anew.

7. Try to reduce the size of the resulting program as much as possible.

8. Tell the XSB developers how to reproduce the bug. Make sure you include all the steps
(including such gory details as whether it is necessary to call bootstrap_flora/0).

Finally, remember to include the details of your OS and other relevant information. Some bugs
might be architecture-dependent.
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Reporting Flora-2 bugs. If you believe that the bug is in the Flora-2 system rather than
in the underlying Prolog engine, the algorithm is much simpler:

1. Reduce the size of the program as much as possible by deleting unrelated rules and squeezing
a multi-module program into just one file.

2. Remove all the calls to system modules, unless such a call is the essence of the bug.

3. Tell Flora-2 developers how to reproduce the bug.

The current version contains the following known bugs, which are due to the fact that certain
features are yet to be implemented:

1. Certain queries may cause the following XSB error message:

++Error[XSB]: [Compiler] ’!’ after table dependent symbol

or something like that. This is due to certain limitations in the implementation of tabled
predicates in the XSB system. This problem might be eliminated in a future release of XSB.

2. Inheritance of transactional methods is not supported: a[|%p(?X)|].

51 The Expert Mode

Skip this section unless you are an experienced Flora-2 user who has good under-
standing of the syntactic, semantic, and computational aspects of Flora-2 .

Flora-2 has plethora of syntactic constructs, which may be daunting for a novice and certain
constructs are especially prone to be misused by such users to detrimental effect. To fence off
these features from a novice, Flora-2 ’s parser works in the novice mode by default. Only very
experienced users should work in the expert mode—see Section 44.2 for how to do that.

The following syntactic constructs are available only in the expert mode:

• Shortcut for charlists. This shortcut permits to write "abc" instead of "abc"ˆˆ\charlist.
Charlists are commonly used for parsing, but novice users tend to misuse them for the same
purpose as atoms. Because charlists are much more expensive in terms of memory, compilation
time, and various runtime operations, using them in place of atoms is a very bad idea.

• Embedded ISA-literals in rule heads. An embedded ISA-literal is one that appears as an
argument to a predicate, function symbol, or is part of a composite frame. For instance,
p(a:b), p(a,f(c::d)), a:b[c->d:f]. Flora-2 allows these to appear in rule bodies and
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in facts, but their appearance in rule heads (that have non-empty body) is restricted to the
expert mode.

One reason why embedded ISA-literals in rule heads are not advisable to novice users is
because they tend to confuse them with typed variables. Note that

p(?X:foo) :- ...
p(?X^^foo) :- ...

are very different things and using the first form is frequently a mistake. An embedded
ISA-literal, p(?X:foo), represents the conjunction p(?X), ?X:foo, so the first rule above is
equivalent to

p(?X), ?X:foo :- ...

That is, ?X:foo is derived, not checked. Inexperienced users tend to incorrectly assume the
latter. On the other hand, the second rule, one that uses typed variables is equivalent to

p(?X) :- ?X:foo, ...

but using ?Xˆˆfoo can be much more efficient, since the actual tests for class membership
are done only when the variable gets bound.

• Expanded scope of the operators -> and => . The symbols -> and => are infix operators
when they appear in the context of a frame. In other contexts, using them as infix operators
will cause an error, as mistyping round parentheses for square brackets is a common mistake.
Advanced users, however, may wish to use these operators for other purposes as well, e.g.,
to simulate predicates with named arguments, such as p(foo->1,bar->2). However, this
syntax, is allowed only in the expert mode.

• The <==> and <~~> double implications. These double-implications are blocked off in the
novice mode because inexperienced users tend make logical mistakes by using “iff” when only
“if” is called for.
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Appendices

A A BNF-style Grammar for Flora-2

This BNF is an approximation of the operator-based, context sensitive syntax used in Flora-2 .
Not all features mentioned in the preceding sections (especially directives and a number of non-
logical commands) are listed in this BNF.

%% To avoid confusion between some language elements and meta-syntax
%% (e.g., parentheses and brackets are part of BNF and also of the language
%% being described), we enclose some symbols in single quotes to make it
%% clear that they are part of the language syntax, not of the grammar.
%% However, in Flora-2 these symbols can be used with or without the quotes.

Statement := (Rule | Query | LatentQuery | Directive) ’.’

Rule := (RuleDescriptor)? Head (’:-’ Body)? ’.’

Query := ’?-’ Body ’.’

LatentQuery := RuleDescriptor ’!-’ Body ’.’

Directive := ’:-’ ExportDirective | OperatorDirective | SetSemanticsDirective
| IgnoreDependencyCheckDirective | ImportModuleDirective

| PrefixDirective | CompilerDirective | IndexDirective

RuleDescriptor := ’{’ RuleTag ’}’
| ’{’ BooleanRuleDescriptor ’}’
| ’@!{’ RuleId ( ’[’ DescrBody ’]’ )? ’}’

RuleTag := Term
RuleId := Term
BooleanRuleDescriptor := Term
DescrBody := DescrBodyElement (’,’ DescrBodyElement)*
DescrBodyElement := Term | Term ’->’ Term

%% Heads in ERGO (not Flora-2) can also have ==>, <==, <==>, \or, and quantifiers
Head := (’\neg’)? HeadLiteral
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Head := Head (’,’ | ’\and’) Head

HeadLiteral := BinaryRelationship | ObjectSpecification | Term

Body := BodyLiteral
Body := BodyConjunct | BodyDisjunct | BodyNegative | ControlFlowStatement
%% ’exists’ can be used instead of ’exist’.
%% Body-parentheses are optional, if Body is BodyLiteral
Body := ’forall(’ VarList ’)’ ’̂’ ’(’ Body ’)’ | ’exist(’ VarList ’)’ ’̂’ ’(’ Body ’)’
Body := Body ’@’ ModuleName
Body := BodyConstraint

ModuleName := Atom | ’Atom()’ | Atom ’(’ Atom ’)’ | ThisModuleName

BodyConjunct := Body (’,’ | ’\and’) Body
BodyDisjunct := Body (’;’ | ’\or’) Body
BodyNegative := ((’\naf’ | ’\neg | ’\+’) Body)
BodyConstraint := ’{’ CLPR-style constraint ’}’

ControlFlowStatement := IfThenElse | UnlessDo
| WhileDo | WhileLoop
| DoUntil | LoopUntil

IfThenElse := ’\if’ Body ’\then’ Body (’\else’ Body)?
| Body ’<~~’ Body | Body ’~~>’ Body | Body ’<~~>’ Body
| Body ’<==’ Body | Body ’==>’ Body | Body ’<==>’ Body

UnlessDo := ’\unless’ Body ’\do’ Body
WhileDo := ’\while’ Body ’\do’ Body
WhileLoop := ’\while’ Body ’\loop’ Body
DoUntil := ’\do’ Body ’\until’ Body
LoopUntil := ’\loop’ Body ’\until’ Body

BodyLiteral := BinaryRelationship | ObjectSpecification | Term
| DBUpdate | RuleUpdate | Refresh
| NewSkolemOp | Builtin | Loading | Compiling
| CatchExpr | ThrowExpr | TruthTest

Builtin := ArithmeticComparison | Unification | MetaUnification | ...

Loading := ’[’ LoadingCommand (’,’ LoadingCommand)* ’]’
| ’load{’ LoadingCommand (’,’ LoadingCommand)* ’}’
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LoadingCommand := Filename (’>>’ Atom)

Compiling := ’compile{’ Filename ’}’

BinaryRelationship := PathExpression ’:’ PathExpression
BinaryRelationship := PathExpression ’::’ PathExpression

ObjectSpecification := PathExpression ’[’ SpecBody ’]’

SpecBody := (’\naf’)? MethodSpecification
SpecBody := (’\neg’)? ExplicitlyNegatableMethodSpecification
SpecBody := SpecBody ’,’ SpecBody
SpecBody := SpecBody ’;’ SpecBody

MethodSpecification := (’%’)? Term
MethodSpecification := PathExpression

(ValueReferenceConnective | SigReferenceConnective)
PathExpression

ValueReferenceConnective := ’->’ | ’+>>’ | ’->->’ | ’-->>’

SigReferenceConnective := (’{’ (Integer|Variable) ’:’ (Integer|Variable) ’}’)? (’=>’ )

ExplicitlyNegatableMethodSpecification := Term
ExplicitlyNegatableMethodSpecification :=

PathExpression ExplicitlyNegatableReferenceConnective PathExpression

ExplicitlyNegatableReferenceConnective := ’->’ | SigReferenceConnective

PathExpression := Atom | Number | String | Iri | Variable | SpecialOidToken
PathExpression := Term | List | ReifiedFormula
PathExpression := PathExpression PathExpressionConnective PathExpression
PathExpression := BinaryRelationship
PathExpression := ObjectSpecification
PathExpression := Aggregate

Iri := SQname | FullIri

SQname := Identifier ’#’ String
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FullIri := ’Śtring

PathExpressionConnective := ’.’ | ’!’

SpecialOidToken := AnonymousSkolem | NumberedSkolem | ThisModuleName

ReifiedFormula := ’${’ (Body | ’(’ Rule ’)’) ’}’

%% No quotes are allowed in the following quasi-constants!
%% No space allowed between \# and Integer
%% AnonymousSkolem & NumberedSkolem can occur only in rule head
%% or in reified formulas
AnonymousSkolem := ’\#’
%% No space between \# and Integer
NumberedSkolem := ’\#’Integer
ThisModuleName := ’\@’

List := ’[’ PathExpression (’,’ PathExpression)* (’|’ PathExpression)? ’]’

Term := Functor ’(’ Arguments ’)’

Term := ’%’ Functor ’(’ Arguments ’)’

Functor := PathExpression

Arguments := PathExpression (’,’ PathExpression)*

Aggregate := AggregateOperator ’{’ TargetVariable (GroupingVariables)? ’|’ Body ’}’
AggregateOperator := ’max’ | ’min’ | ’avg’ | ’sum’ | ’setof’ | ’bagof’
%% Note: only one TargetVariable is permitted.
%% It must be a variable, not a term. If you need to aggregate over terms,
%% as for example, in setof/bagof, use the following idiom:
%% S = setof{ V | ... , V=Term }
TargetVariable := Variable
GroupingVariables := ’[’ VarList ’]’

Variable := ’?’ ([_a-zA-Z][_a-zA-Z0-9]*)?
VarList := Variable, (’,’ Variable)*

DBUpdate := DBOp ’{’ UpdateList (’|’ Body)? ’}’
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DBOp := ’insert’ | ’insertall’ | ’delete’ | ’deleteall’ | ’erase’ | ’eraseall’
%% In ERGO, UpdateList can also contain stealth literals
UpdateList := HeadLiteral (’@’ Atom)?
UpdateList := UpdateList (’,’ | ’and’) UpdateList
Refresh := ’refresh{’ UpdateList ’}’

RuleUpdate := RuleOp ’{’ RuleList ’}’
RuleOp := ’insertrule’ | ’insertrule_a’ | ’insertrule_z’ |

’deleterule’ | ’deleterule_a’ | ’deleterule_z’
RuleList := Rule | ’(’ Rule ’)’ ( (’,’ | ’and’) ’(’ Rule ’)’ )*

NewSkolemOp := ’skolem{’ Variable ’}’

CatchExpr := ’catch{’ Body, Term, Body ’}’
ThrowExpr := ’throw{’ Term ’}’
TruthTest := ’true{’ Body ’}’ | ’undefined{’ Body ’}’ | ’false{’ Body ’}’

| ’truthvalue{’ Variable ’}’

B The Flora-2 Tracing Debugger

The Flora-2 debugger is implemented as a presentation layer on top of the Prolog debugger, so
familiarity with the latter is highly recommended (XSB Manual, Part I). Here we sketch only a few
basics.

The debugger has two facilities: tracing and spying. Tracing allows the user to watch the
execution step by step, and spying allows one to tell Flora-2 that it must pause when execution
reaches certain predicates or object methods. The user can trace the execution from then on. At
present, only the tracing facility has been implemented in Flora-2 .

Tracing. To start tracing, you must issue the command \trace at the Flora-2 prompt. It is
also possible to put the subgoal \trace in the middle of a program. In that case, tracing will start
after this subgoal gets executed. This is useful when you know where exactly you want to start
tracing the program. To stop tracing, type \notrace.

During tracing, the user is normally prompted at the four parts of subgoal execution: Call
(when a subgoal is first called), Exit (when the call exits), Redo (when the subgoal is tried with
a different binding on backtracking), and Fail (when a subgoal fails). At each of the prompts,
the user can issue a number of commands. The most common ones are listed below. See the XSB
manual for more.
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• carriage return (creep): to go to the next step

• s (skip): execute this subgoal non-interactively; prompt again when the call exits (or fails)

• S (verbose skip): like s, but also show the trace generated by this execution

• l (leap): stop tracing and execute the remainder of the program

The behavior of the debugger is controlled by the predicate debug_ctl. For instance, executing
debug_ctl(profile, on) at the Flora-2 prompt tells XSB to measure the CPU time it takes
to execute each call. This is useful for tuning your knowledge base for performance. Other useful
controls are: debug_ctl(prompt, off), which causes the trace to be generated without user inter-
vention; and debug_ctl(redirect, foobar), which redirects debugger output to the file named
foobar. The latter feature is usually useful only in conjunction with the aforesaid prompt-off mode.
See the XSB manual for additional information on debugger control.

Flora-2 provides a convenient shortcut that captures some of the most common uses of the
aforesaid debug_ctl interface. Executing

?- \trace(’foobar.txt’).

will switch Flora-2 to non-interactive trace mode and the entire trace will be dumped to file
foobar.txt. Note that you have to execute \notrace or exit Prolog in order for the entire file to
be flushed to disk.

Another useful form of non-interactive tracing is to dump the trace into a file in the form of
Flora-2 facts, so that the file could later be loaded and queried. This is accomplished with the
following call:

?- \trace(’foobar.txt’,log).

The second argument denotes the option to be passed to the trace facility. Currently the only
available option is log. The form of the facts is as follows:

flora_tracelog(CallId,CallNumber,PortType,CurrentCall,Time)

Here CallId is an identifier generated when the engine encounters a new top-level call. This
identifier remains the same for all subgoals called while tracing that top-level call. CallNumber
is the call number that the underlying generates to show the nesting of the calls being traced. It
is the same number that the user sees when tracing interactively. PortType is ’Call’, ’Redo’,
’Exit’, or ’Fail’. CurrentCall is the call being traced. Time is the CPU time it took to execute
CurrentCall. On ’Call’ and ’Redo’, Time is always 0 — it has a meaningful value only for the
’Exit’ and ’Fail’ log entries.
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Low-level tracing. The Flora-2 debugger also supports low-level tracing via the shell com-
mand \tracelow. With normal tracing, the debugger converts low-level subgoals to Flora-2
syntax and are thus meaningful to the programmer. With low-level tracing, the debugger displays
the actual Prolog subgoals (of the compiled .P program) that are being executed. This facility is
useful for debugging Flora-2 runtime libraries.

As with \trace, Flora-2 provides a convenient shortcut that allows the entire execution trace
to be dumped into a file:

?- \tracelow(’foobar.txt’).

As with the \trace/1 call, there is a \tracelow/2 version:

?- \tracelow(’foobar.txt’,log).

which dumps the trace in the form of queriable facts. However, in this case the facts are in the
low-level Prolog form, not Flora-2 form.
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C For Emacs Aficionados: Editing and Invoking Flora-2 in
Emacs

For power-users who prefer Emacs to all other editors, Flora-2 includes a special major mode,
flora-mode. This mode provides support for syntactic highlighting, automatic indentation, and the
ability to load knowledge bases and pose Flora-2 queries right out of the Emacs buffer.

Note that this mode has not been tested in XEmacs—only in Emacs.

C.1 Installation of flora-mode

To install flora-mode, you must perform the following steps. Put the file

.../flora2/emacs/flora.elc

found in your Flora-2 distribution on the load path of Emacs. The best way to work with Emacs
is to make a separate directory for Emacs libraries (if you do not already have one), and put
flora.elc there. Such a directory can be added to the emacs search path by putting the following
command in the file ∼/.emacs (in Windows the .emacs file will likely be in your home directory):

(setq load-path (cons "your-directory" load-path))

Finally, you must tell Emacs how to recognize Flora-2 files, so Emacs will be able to invoke
flora-mode automatically when you are editing such files:

(setq auto-mode-alist
(cons '("\\.flr$" . flora-mode) auto-mode-alist))

(autoload 'flora-mode "flora" "Major mode for editing Flora-2 knowledge bases." t)

and where the Flora-2 startup script is:

(setq flora-program-path "full-path-to-your-runflora-script")

This script is found in the Flora-2 reasoner’s installation folder. In Linux and Mac it is called
runflora and in Windows it is runflora.bat.

C.2 Functionality of flora-mode

The Flora-2 menu. Once Flora-2 editing mode is installed, it provides a number of functions.
First, whenever you edit a Flora-2 file, you will see the “Flora-2” menu in the menubar. This
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menu provides commands for starting and stopping the Flora-2 process (i.e., the Flora-2 shell).
When this process starts, a command window will appear in a separate Emacs buffer, and you can
type commands to it as in a regular terminal window. In addition, the menu Flora-2 in the
menubar lets one send queries to the Flora-2 process directly from Emacs buffers containing
Flora-2 statements, and one can load and add portions of these buffers, entire buffers, or other
files.

Because Emacs provides automatic file completion and allows you to edit what you typed,
performing these operations directly out of the Emacs buffer is much faster than typing the corre-
sponding commands to the Flora-2 shell.

Keystrokes. In addition to the menu, flora-mode lets you execute most of the menu commands
using the keyboard. Once you get the hang of it, keyboard commands are much faster to invoke:

Load file: Ctl-c Ctl-f
Load buffer: Ctl-c Ctl-b
Load region: Ctl-c Ctl-r

When you invoke any of the above commands, a Flora-2 process is started, unless it is already
running. However, if you want to invoke this process explicitly, type

ESC x run-flora

You can control the Flora-2 process using the following commands:

Interrupt Flora-2 Process: Ctl-c Ctl-c
Quit Flora-2 Process: Ctl-c Ctl-d
Restart Flora-2 Process: Ctl-c Ctl-s

Interrupting Flora-2 is equivalent to typing Ctl-c at the Flora-2 prompt. Quitting the process
stops the Prolog engine, and restarting the process shuts down the old Prolog process and starts a
new one with the Flora-2 shell running.

Indentation. The Emacs editing mode for Flora-2 understands many aspects of the Flora-2
syntax, which enables it to provide correct indentation in most cases. The only area where Flora-2
sometimes gets indentation wrong is when nested control constructs are used (e.g., nested \if-\then-
\else, \while-\do, etc.).

The most common way of using the indentation facility is by typing the TAB-key. This tells
flora-mode to indent the line according to its taste. In most cases, after you finish the previous line
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and type <Enter>, flora-mode will guess correctly where the next line should start. If it cannot
guess, typing TAB after the line is finished will indent the line properly. Closing parentheses and
some other characters are electric, meaning that typing them may also cause Emacs to indent the
current line.
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D Inside Flora-2

D.1 How Flora-2 Works

As an F-logic-to-Prolog compiler, Flora-2 first parses its source file, compiles it into Prolog syntax
and then outputs the resulting code. For instance the command

?- compile{mykb}.

compiles the knowledge base found in the file mykb.flr and generates the following files: mykb.P,
mykb_main.xwam, and mykb.fdb (if mykb.flr contains facts in addition to rules). By default,
load{mykb} loads the knowledge base into the default user module named main. If mykb.flr
contains F-logic facts, all these facts will be compiled separately into the file mykb.fdb that is
dynamically loaded at runtime. Next, the file mykb.P is generated — take a look at “mykb_main.P”
to see what has become of your Flora-2 knowledge base(!) — and passed to the Prolog compiler,
yielding Prolog byte code mykb.xwam, which is then renamed to mykb_main.xwam. This file is
then loaded and executed. If mykb.flr contains queries, they are immediately executed by Prolog
(provided there are no errors).

In the module system of Flora-2 , any knowledge base can be loaded into any user module.
The same file can even be loaded into two different modules at the same time, in which case there
will be two distinct copies of the same knowledge base running at the same time. For each user
module, a different byte code is generated (this is why mykb.xwam was renamed into an object file
that contains the module name as part of the file name).

The main purpose of the Flora-2 shell is to allow the evaluation of ad-hoc F-logic queries. For
example, after consulting and loading the file default.flr from the demo directory by launching
the command ?- demo{default}., pose the following query and see what happens.

?- ?X.kids[ // Whose kids
self -> ?K, // ... (list them by name)
hobbies -> // ... have hobbies
?H:dangerous_hobby // ... that are dangerous?

].

Flora-2 compilation. The basic idea behind the implementation of F-logic by translating it
into predicate calculus is described in [10]. It consists of two parts: translation of frames into
various kinds of Prolog predicates, and addition of appropriate “closure rules” that implement the
object-oriented semantics of the logic.



D INSIDE FLORA-2 287

Consider, for instance, the following complex frame, which represents some facts about the
object Mary:

Mary:employee[age->29, kids->{Tim,Leo}, salary(1998)->100000].

As described in [10], any complex frame can be decomposed into a conjunction of simpler atomic
F-logic formulas. These latter frames can be directly represented using Prolog syntax. For different
kinds of F-logic frames we use different Prolog predicates. For instance, the result of translating
the above frame might be:

isa(Mary,employee). // Mary:employee.
mvd(Mary,age,29). // Mary[age->29].
mvd(Mary,kids,Tim). // Mary[kids->{Tim}].
mvd(Mary,kids,Leo). // Mary[kids->{Leo}].
mvd(Mary,salary(1998),100000). // Mary[salary(1998)->100000].

The mvd predicate is used to encode methods that return values (as opposed to Boolean meth-
ods). The predicates isa and sub encode the IS-A and subclass relationships, respectively. We call
these predicates wrapper predicates. Of course, Flora-2 has much more: signatures, class-level
vss. object-level statements, directives, and all kinds of auxiliary predicates needed to improve
efficiency.

Flora-2 facts, such as those above, are then stored in a special data structure, called a trie,
and are retrieved using “patch rules”, which have the form

mvd(Obj,Meth,Val) :- storage_find_fact(TrieName, mvd(Obj,Meth,Val)).

where storage_find_fact/2 is an XSB predicate that retrieves facts from tries. TrieName is the
storage trie that is specifically dedicated to storing facts. There is one such trie per module. Since
knowledge bases are loaded into modules dynamically, the name of the storage trie is determined
at the load time. Also, as we shall discuss later, fd, mvd, etc., are not the actual names of the
predicates used in the encoding. The actual names have the module name pre-pended to them
and thus are different for different modules. Moreover, since module names are determined at the
load time, the names of the wrapper predicates are also generated at that time from predefined
templates.

The way Flora-2 rules are encoded is more complex. Consider the following rule:

Mary[parent->?X] :- Mary[father->?X].
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This is translated as follows:

derived_mvd(Mary,parent,?X) :- d_mvd(Mary,father,?X).

This is done for a number of reasons. The prefix derived_ is used to separate the head predi-
cates from the body. It is necessary in order to be able to implement inheritance rules correctly,
using the XSB well-founded semantics for negation (\naf, see Section 19). The prefix used in the
body of a rule, d_, is introduced in order to be able to capture undefined methods, i.e., meth-
ods whose definition was not supplied by the user (see Section 42.1). All these predicates are
connected through an elaborate set of rules, which appear in closure/*.flh files and also in
genincludes/flrpreddef.flh (these flh-files are generated from the corresponding fli-files at
Flora-2 configuration time). The following diagram shows the main predicates involved in the
plumbing system that connects the derived_ and d_ predicates. The arrow <–- indicates the im-
mediate dependency relationship, i.e., that the predicate on the right appears in the body of a rule
that defines the predicate on the left.

In the rules:

derived_mvd <–- d_mvd

In auxiliary runtime libraries:

d_mvd <–- mvd
d_imvd <–- imvd
mvd <–- inferred_mvd
mvd <–- \naf inferred_mvd <–- derived_mvd
mvd <–- \naf conflict_obj_imvd <–- imvddef <–- mvd
mvd <–- imvd
mvd <–- immediate_isa

imvd <–- immediate_sub
imvd <–- inferred_imvd <–- derived_imvd
imvd <–- \naf inferred_imvd
imvd <–- \naf conflict_imvd <–- imvddef

imvddef <–- imvd

derived_mvd <–- storage_find_fact(...trie_name..., mvd(...))

Here we have listed only the predicates that are used to model value-returning class-level (imvd) and
object-level (mvd) statements. A similar diagram exists for method signatures. There is additional
machinery for IS-A and subclass relationships, and for equality maintenance.
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The closure axioms tie all these predicates together to implement the semantics of F-logic. In
particular, they take care of the following features:

• Computing the transitive closure of “ :: ” (the subclass relationship). A runtime check warns
about cycles in the subclass hierarchy.

• Computing the closure of “ : ” with respect to “ :: ”, i.e., if X :C,C ::D then X :D.

• Performing monotonic and non-monotonic inheritance. The predicates conflict_obj_imvd,
conflict_imvd, immediate_sub, and immediate_isa, are used for this purpose.

• Making sure that when the equality maintenance mode changes as a result of the executable
instruction :- equality {basic|flogic|none}, the existing clauses are not overridden by
the rules specified in Flora-2 runtime libraries. This is the reason for having the wrappers
derived_mvd and inferred_mvd. The former appear only in rule heads of the clauses gen-
erated by the compiler from the clauses in the original user knowledge base, while the latter
appear only in rule heads in runtime libraries.

• Providing the infrastructure for capturing undefined methods. The purpose of the d_mvd/mvd
dichotomy is to provide a gap into which we inject rules (which are enabled only if runtime
debugging is turned on using Method[mustDefine(on)]) that can capture calls to undefined
methods at run time.

Files that implement these axioms reside in the subdirectory closure/ and have the suffix .fli.
These files are used as components from which Flora-2 trailers are created. Trailers are called
so because they are typically included at the end of the compiled program. The template for all
trailers is found in includes/flrtrailer.flh. Several kinds of trailers can be generated from this
file: the no-equality trailer (whose main component is closure/flrnoeqltrailer.fli), which
maintains no equality, and the basic trailer (closure/flreqltrailer.fli), which maintains only
the standard equality axioms. There are variations of these trailers that also support F-logic
inheritance (flreqltrailer_inh.fli and flrnoeqltrailer_inh.fli).

When a Flora-2 knowledge bases are compiled, the compiler includes the trailers into the .P
file. However, there also is a need to be able to load the trailers dynamically. First, this is needed in
the system shell, because the shell is not invoked by user knowledge bases and so there is no place
where one can include the trailer. Second, the user may enter the following executable instruction

?- setsemantics{equality=...}.

at the shell prompt and knowledge base may also contain these instructions as part of their content.
When an equality maintenance instruction is executed for a particular module, the trailer for that
module must be compiled and loaded dynamically. (The need for this compilation will become clear
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after we explain the implementation of the module system.) These trailers are stored in the user
home directory in the subdirectory .xsb/flora/. As mentioned earlier, Flora-2 uses different
names for the wrapper predicates that appear in the rule heads and those that appear in the rule
heads in trailers. This makes it possible to load the trailers (by executing the equality instruction)
at any time without overriding the currently loaded knowledge bases.

The above is a much simplified picture of the inner-workings of Flora-2 . The actual translation
into Prolog and the form of the closure rules is very complex. Some of this complexity exists to
ensure good performance. Other complications come from the need to provide a module system
and integrate it with the underlying Prolog engine. The module system serves two purposes.
First, it promotes modular design for Flora-2 knowledge bases, making it possible to split the
specifications into separate files and import objects defined in other modules. Second, it allows
Flora-2 to communicate with Prolog by using the predicates defined in Prolog programs and
letting Prolog programs use Flora-2 objects. Some of these implementation issues are described
in [17].

The module system. The module system is implemented by providing separate namespaces for
the various predicates used to encode F-logic formulas. First, all predicates have a “weird” prefix to
make clashes with other Prolog programs unlikely. The prefix is defined in includes/header.flh
and currently is _$_$_flora. The user, of course, does not need to worry about it, unless she runs
Flora-2 in a very unfriendly Prolog environment in which other programs also use this prefix. In
this case, the prefix can be made even harder to match.27

Apart from the general prefix, each predicate name’s prefix contains the module name where this
predicate is defined. Since the same F-logic knowledge base can be loaded into different modules,
the Flora-2 compiler does not actually know the real names of the predicates it is producing.
Instead, it dumps code where each predicate is wrapped with a preprocessor macro. For instance,
the predicate mvd would be dumped as

FLORA_THIS_WORKSPACE(FLORA_USER_WORKSPACE,mvd)

where FLORA_THIS_WORKSPACE and FLORA_USER_WORKSPACE are preprocessor macros. When a pro-
gram, mykb.P, which is generated by the Flora-2 compiler, needs to be loaded into a user module,
say main, the preprocessor, gpp, is called with the macro FLORA_USER_WORKSPACE set to main. Gpp
replaces all macros with the actual values. For instance, the above macro expression will be replaced
with something like

_$_$_flora’usermod’main’mvd

27 It is necessary to ensure that the resulting predicate names are symbol strings acceptable to the Prolog compiler.
Look at the macros FLORA_THIS_WORKSPACE and FLORA_THIS_FDB_STORAGE in includes/flrheader.flh to see what
is involved.
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Gpp then includes all the necessary files, and then pipes the result to the Prolog compiler. The
latter produces the object mykb.xwam file where all the predicate names are wrapped with the user
module name, as described above. This object file is renamed to mykb_main.xwam. If later we
need to compile mykb.P for another user module, foo, gpp is called again, but this time it sets
FLORA_USER_WORKSPACE to foo. When Prolog finally compiles the program into an object file, the
file is renames to mykb_foo.xwam.

It is important to keep in mind that only the predicate names are wrapped with the
FLORA_PREFIX macro and a module name. Predicate arguments are not wrapped and thus, the
space of object Ids is shared among modules. However, this is not a problem and, actually, is very
convenient: we can easily refer to objects defined in other modules and yet the same object can
have completely different sets of properties in each separate module. This does not preclude the
possibility of encapsulating objects, because only the methods need to be encapsulated — oids do
not carry any meaning by themselves.

To provide encapsulation for HiLog predicates, they are also pre-pended with the module name.
In particular, this implies that HiLog atomic formulas have different representations than HiLog
terms: a formula p(a,f(b)) would be encoded as

FLORA_THIS_WORKSPACE(FLORA_USER_WORKSPACE,apply)(p,a,FLORA_PREFIX’apply(f,b))

The same term would be encoded differently if it occurs as an argument of a predicate of another
functor:

FLORA_PREFIX’apply(p,a,FLORA_PREFIX’apply(f,b))

Thus, Flora-2 implements a 2-sorted version of HiLog [4].

The updatable part of the database. All objects and facts that are explicitly inserted by
the user knowledge base are kept in the special storage trie associated with the user module where
the knowledge base is loaded. A trie is a special data structure, which is well-suited for indexing
tree-structured objects, like Prolog terms. This workhorse does much of the grunge work in the
Prolog engine. To manipulate the storage tries, Flora-2 uses the XSB package called storage.P,
which is described in the XSB manual. This package was originally created to support Flora-2 ,
but it has independent uses as well.

All primitives in this package take a Prolog symbol, called a triehandle, a Prolog term, and
some also return status in the third argument. Here are some of the most relevant predicates:

storage_insert_fact(Triehandle,Term,Status)
storage_delete_fact(Triehandle,Term,Status)
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storage_insert_fact_bt(Triehandle,Term,Status)
storage_delete_fact_bt(Triehandle,Term,Status)

The first two methods insert and delete in a non-transactional manner, while the last two are
transactional.

Flora-2 associates a separate triehandle (and, thus, a separate trie) with each module. The
mechanism is similar to that used for predicate names:

FLORA_THIS_FDB_STORAGE(FLORA_USER_WORKSPACE)

As explained earlier, when Prolog compiles the file generated by the Flora-2 compiler, the macro
FLORA_USER_WORKSPACE gets replaced with the module name and out comes a unique, hard to
replicate triehandle.

Unfortunately, putting something in a trie does not mean that Prolog will find it there automat-
ically. That is, if you insert p(a) in a trie, it does not mean that the query ?- p(a) will evaluate
to true, and this is another major source of complexity that the Flora-2 compiler has to deal
with. To find out if a term exists in a trie, we must use the primitive

storage_find_fact(Triehandle,Term)

If the term exists in the trie identified by its triehandle, then the predicate succeeds; if the term
does not exist, then it fails. The above primitive can be used to query tries in a more general way,
with the second variable unbound. In this case, we can backtrack through all the terms that exist
in the trie.

Suppose we insert a fact, a[m->v], represented by the formula mvd(a,m,v). Since this formula
is inserted in the trie and Prolog knows nothing about it, we need to connect the trie to Prolog
through a rule like this:

mvd(O,M,V) :- storage_find_fact(triehandle,f(O,M,V)).

Of course, the name of the triehandle and the predicate names must be generated using the
macros, as described above, so that they could be used for any module. In Flora-2 such rules are
called patch rules.

Since F-logic uses only the predicates that represent frames, we can create such rules statically
and let gpp wrap them with the appropriate prefixes on the fly. The problem arises with predicates,
since although they are represented using HiLog encoding using a single predicate, this predicate can
have any arity. At present we statically create patch rules for such predicates up to a certain large
arity. The static patch rules are located in genincludes/flrpatch.fli (from which flrpatch.flh
is generated by the Flora-2 installation script).
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For the compiled code, the patch rules are included in the compiled code by the Flora-2
compiler. For the Flora-2 shell, however, these rules are loaded when the corresponding shell
module is created (either the default “main” module or any module that was created by the
newmodule command). This patch file is loaded exactly once per shell module and is kept in
the file .xsb/flora/patch.P, in the user’s home directory.

D.2 System Architecture

The overall architecture of Flora-2 is depicted in Figure 2. The input is first tokenized and then
the composer combines the disparate tokens into terms. Since, due to the existence of operators,
not everything looks like a term in the source specification, the composer consults the operator
definitions in the file flroperator.P to get the directives on how to turn the operator expressions
into terms. Next, the parser checks the syntax of the rules and of the various other primitives
(e.g., the aggregates, updates, module specifications, etc.). The output of the parser is a canonical
term list, which represents the entire parsed specification. The canonical term is taken up by the
intermediate code generator, which generates abstract code. This code is represented in a form
that is convenient for manipulation and is not yet Prolog code. The compiler might add additional
rules (such as patch rules) and Prolog instructions. The compiled specification is converted into
(almost) Prolog syntax by the coder. As mentioned previously, the code produced by the compiler
is full of preprocessor macros, so before passing it to Prolog it must be preprocessed by GPP. GPP
pipes the result to Prolog, which finally produces the byte code program that can run under the
control of the Prolog emulator.

The following is a list of the key files of the system.

• flrshell.P: The top level module that implements the Flora-2 shell — a subsystem for
accepting user commands and queries and passing them to the compiler. See Section 4 for a
full description of shell commands.

• flrlexer.P: The Flora-2 tokenizer.

• flrcomposer.P: The Flora-2 composer, which parses tokens according to the operator
grammar and does other magic.

• flrparser.P: The Flora-2 parser.

• flrcompiler.P: The generator of the intermediate code.

• flrcoder.P: The Flora-2 coder, which generates Prolog code.

• flrutils.P: Miscellaneous utility predicates for loading knowledge bases, checking if files
exist, whether they need to be recompiled, etc.
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Figure 2: The architecture of the Flora-2 system.

Additional system libraries are located in the syslib/ subdirectory. These include the various
printing utilities, implementation for aggregates, update primitives, and some others. The com-
piler automatically determines which of these libraries are needed. When a library is needed, the
compiler generates an #include statement to include an appropriate file in the syslibinc direc-
tory. For instance, to include support for the avg aggregate function, the compiler copies the file
syslibinc/flraggavg_inc.flh to the output .P file. Since syslibinc/flraggavg_inc.flh con-
tains the code to load the library syslib/flraggavg.P, this library will be loaded together with
that output file. The association between the libraries and the files that need to be included to pro-
vide the appropriate functionality is implemented in the file flrlibman.P, which also implements
the utility used to load the libraries.

While syslib/ directory contains the libraries implemented in Prolog, the lib/ directory con-
tains libraries implemented in Flora-2 itself. Apart from that, the two types of libraries differ in
functionality. The libraries in syslib/ implement the primitives that are part of the syntax of the
Flora-2 language itself. In contrast, the libraries in lib/ are utilities that are part of the system,
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but not part of the syntax. An example is the pretty-printing library. Methods and predicates
defined in the libraries in lib/ are accessible through the @\libname system module and (unlike
user modules) they are loaded automatically at startup.

There are several subdirectories that hold the various files that contain definitions included at
compile time. These will be described in a technical document.

A number of other important directories contain the various included files (many of which
include other files). The directory flrincludes/ contains the all-important flora_terms.flh file,
which defines all the names used in the system. These names are defined as preprocessor macros, so
that it would be easy to change them, if necessary. The directory genincludes/ currently contains
the already mentioned patch rules. The file flrpatch.fli is a template, and flrpatch.flh, which
contains the actual patch rules, is generated from flrpatch.fli during installation.

The directory includes/ contains (among others) the header file, which defines a number of
important macros (e.g., FLORA_THIS_WORKSPACE) that wrap all the names with prefixes to separate
the different modules found in the user knowledge base. The directory headerinc/ is another
place where the template files are located. Each of these files contains just a few #include state-
ments, mostly for the files in the closure/ directory (which, if you recall, contains pieces of the
trailer). All meaningful combinations of these pieces of the trailer are represented in the file
includes/flrtrailer.flh. (Recall that trailers implement the closure axioms.)

The directory cc contains several C programs used by Flora-2 . Finally, the pkgs/ directory
contains a number of Flora-2 packages that are not core part of the system.
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\nontabled_module, 161
defsensor, 162
encoding{...}, 265
importmodule, 65
new_global_oid_scope, 39
prolog, 160
table, 160
usesensor, 162
useudf, 124

directory
current, 67

disable{...} primitive, 171
displaymode{...} primitive, 257
displayschema{...} primitive, 257
don’t care variable, 8
dump{...} primitive, 272
dynamic module, 108
dynamic rule, 143

empty frame, 17
enable{...} primitive, 171
encapsulation, 63
encoding{...} directive, 265
environment variable

FLORA_RC_FILE, 5
equality, 106, 126

setsemantics option, 105, 249
equality maintenance level, 106
equality with user defined functions,

120
escape sequences, 21
expert compiler option, 250
expert{...} primitive, 250
explicit negation, 84
export compiler directive, 63
expression

arithmetic, 25

F-logic frame formula, 18
false{...} primitive, 83
feedback{...}, 10
file

descriptor property, 174, 175
file name

absolute, 67
relative, 67

FLIP, 1
floating number, 21
floating point number, 15
flora_query/4 predicate, 59
FLORID, 1
folder

current, 67
forest logging, 236
formula

atomic, 19
base, 14

frame, 18
data, 16
empty, 17
logic expressions, 24
object value, 35
signature, 17
truth value, 35



INDEX 302

frame literal, 18
free variable, 88
function

in UDF definitions, 120

GCL, 181
general constant symbol, 193
Generalized Courteous Logic, 181
global Skolem, 39
goalsize option, 241

here{...} primitive, 69
HiLog, 69

translation, 69
unification, 70

HiLog to Prolog conversion, 79

I/O
standard interface, 251
stream-based, 251

Id-term, 16
ignore_depchk, 141, 232
immediate execution of delayed

subgoals, 167
immediate execution operator, 167
importmodule directive, 65
index compiler directive, 249
inheritance

behavioral, 90
monotonic, 90
non-monotonic, 90
of code, 103
of value, 102
setsemantics option, 105, 249
structural, 90

initialization file, 5
insert

bulk, 132
insert{...} primitive, 131
insertall{...} primitive, 131
insertrule, 144

insertrule_a, 144
insertrule_z, 144
insertrule{...} primitive, 143
integer, 15, 21
integrity constraint, 175
IRI prefix scope, 196
irilocalprefix directive, 195, 198
iriprefix directive, 195
isatom{Arg,Mode}, 45
isatom{Arg}, 43
isatomic{Arg,Mode}, 45
isatomic{Arg}, 43
isbasefact{...} primitive, 149
ischarlist{Arg,Mode}, 46
ischarlist{Arg}, 43
iscompound{Arg,Mode}, 45
iscompound{Arg}, 43
isdecimal{Arg,Mode}, 45
isdecimal{Arg}, 43
isdefeasible{...}, 173
isdisabled{...} primitive, 171
isenabled{...} primitive, 171
isfloat{Arg,Mode}, 45
isfloat{Arg}, 43
isground{Arg}, 44
isinteger{Arg,Mode}, 45
isinteger{Arg}, 43
isiri{Arg,Mode}, 46
isiri{Arg}, 44
islist{Arg,Mode}, 46
islist{Arg}, 43
isloaded{FileAbsName,Module,

FileLocalName,Mode} primitive, 53
isloaded{FileAbsName,Module,Mode}

primitive, 52
isloaded{Module} primitive, 52
isnonground{Arg}, 44
isnonvar{Arg}, 44
isnumber{Arg,Mode}, 45
isnumber{Arg}, 43
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isskolem{...} primitive, 43
isstrict{...}, 173
isstring{Arg,Mode}, 46
isstring{Arg}, 44
issymbol{Arg,Mode}, 46
issymbol{Arg}, 44
isvar{Arg,Mode}, 46
isvar{Arg}, 44

latent query, 175
insertion and deletion, 176
meta-querying, 177

Latin1 character encoding, 264, 265
list containment

\subset, 214
contains, 214

list membership
\in, 214
member, 214

literal
isa, 18
subclass, 18

load{...} primitive, 51
loading files, 51
local name, 195
logical expressions, 24
logical operator, 25
loop-until, 158

makedefeasible{...}, 173
makestrict{...}, 173
meta-data

in inserted rules, 145
in reified rules, 75
in rules, 169

meta-decomposition operator =.., 76
meta-disunification operator ! ∼, 73
meta-programming, 71
meta-unification operator ∼, 70, 72,

114, 142

method, 16
boolean, 36

class-level, 36
self, 31
transactional, 116
value-returning, 16

Method class in module \system, 223
module, 47

\prolog, 55
\prolog(modulename), 55
\prologall, 55
\prologall(modulename), 55
\@, 50
\modulename, 61
contents, 47
descriptor property, 174, 175
isloaded{Module}, 52
name, 47
Prolog, 47, 55
rules for, 48
system, 47, 61, 251
user, 47

compilation of, 51
reference to, 48

module \basetype, 199
module \btp, 199
mustDefine/1 in class Method,

module \system, 223
mustDefine/2 in class Method,

module \system, 223

named Skolem constant, 38
negation

default, 80
explicit, 84
Prolog-style, 80
well-founded semantics for, 80

new_global_oid_scope directive, 39
newmodule/1, 144
non-logical operator, 25
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non-tabled predicate
in Flora-2, 113

non-tabled predicates
importing into Prolog, 58

non-termination, 244
non-transactional update, 131

delete, 133
deleteall, 133
erase, 133
eraseall, 133
insert, 131
insertall, 131

nonstrict
subclassing semantics, 109

number, 21
numbered Skolem constant, 38

object
base part of, 130
derived part of, 130

object constructor, 15
object identifier, 16
oid, 16

generated at run time, 40
op compiler directive, 250
operator

arithmetic, 25
logical, 25
non-logical, 25

operators, 22
precedence level, 22
type, 22

p2h{...}, 79
p2h{...} primitive, 56
passive tabling, 138

interaction with reactive, 138
patch rules, 292
path expression, 30
persistence, 67

predicate
base part of, 130
derived part of, 130

prefix{...} primitive, 197
primitive

add{...}, 8
caller{...}, 50
catch{...}, 220
clause{...}, 147
cloneterm{...}, 44
compile{...}, 51
counter{...}, 143
delete{...}, 134
deleteall{...}, 134
deleterule{...}, 143
disable{...}, 171
displaymode{...}, 257
displayschema{...}, 257
dump{...}, 272
enable{...}, 171
false{...}, 83
here{...}, 69
insert{...}, 131
insertall{...}, 131
insertrule{...}, 143
isbasefact{...}, 149
isdisabled{...}, 171
isenabled{...}, 171
isloaded{...}, 52
isskolem{...}, 43
load{...}, 51
p2h{...}, 56
prefix{...}, 197
production{...}, 270
query{...}, 176
semantics{...}, 112
setdisplaymode{...}, 256
setdisplayschema{...}, 257
setruntime{...}, 239
showgoals{...}, 236
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skolem{...}, 40
tag{...}, 186
tdelete{...}, t_delete{...}, 136
tdeleteall{...}, t_deleteall{...},

136
tdisable{...}, 171
tenable{...}, 171
terase{...}, t_erase{...}, 136
teraseall{...}, t_eraseall{...}, 136
throw{...}, 220
true{...}, 83
truthvalue{...}, 84
undefined{...}, 83
variables{...}, 44

primitive expert{...}, 250
production compiler option, 250
production{...} primitive, 270
Prolog atom, 15, 193
prolog directive, 160
Prolog module, 47, 55
Prolog to HiLog conversion, 79
property

default, 91

quantifier
all, 86
delay, 165
each, 86
exist, 86
exists, 86
forall, 86
some, 86

quasi-constant, 14, 28, 29
quasi-variable, 14, 29
query

latent, 175
latent; insertion and deletion, 176
latent; meta-querying, 177

query{...} primitive, 176

reactive tabling, 137
interaction with passive, 138

refresh{...}, 139
reification operator ${...}, 73
relative file name, 67
rule

defeasible, 185
dynamic, 143
static, 143
strict, 185

rule deletion, 143
rule descriptor, 169
rule Id, 169, 171

in inserted rules, 145
in reified rules, 75

rule insertion, 143
rule meta-data, 169
runtime Skolem symbol, 40

scratchpad code, 53
semantics{...} primitive, 112
sensor, 162
set-valued methods

aggregation, 154
setdisplaymode{...} primitive, 256
setdisplayschema{...} primitive, 257
setruntime{...} primitive, 239
setsemantics

custom=filename, 111
directive, 105
equality=basic, 106
equality=none, 106
inheritance=flogic, 109
inheritance=monotonic, 109
inheritance=none, 109
subclassing=nonstrict, 109
subclassing=strict, 109
tabling=passive, 138

setsemantics{...} compiler directive,
249
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setwarnings{...}, 10
show

method in module \show, 263
showgoals{...} primitive, 236
signature

in F-logic, 17
Skolem

constant, 37
function, 37
generated at run time, 40
symbol, 37
term, 37

Skolem constant, 37
skolem{...} primitive, 40
skolem..., 40
splice

method in module \show, 263
spying, 280
static rule, 143
strict

descriptor property, 170, 175
subclassing semantics, 109

strict rule, 185
subclass, 18
subclassing

setsemantics option, 105, 249
subclassing semantics

nonstrict, 109
strict, 109

subgoal
controlled by delay quantifier, 166
delayable, 166

subgoal size, 239
symbol, 20, 128
symbol_context, 128
system module, 47, 61, 251

table directive, 160
tabling, 112

interaction of passive and reactive,
138

passive, 138
reactive, 137
setsemantics option, 105, 249

tag
descriptor property, 169, 175

tag{...} primitive, 186
tdelete{...}, t_delete{...} primitives,

136
tdeleteall{...}, t_deleteall{...}

primitives, 136
tdisable{...} primitive, 171
tenable{...} primitive, 171
terase{...}, t_erase{...} primitives,

136
teraseall{...}, t_eraseall{...}

primitives, 136
Terminyzer, 244
throw{...} primitive, 220
timeout, 239
timeout option, 240
timer

max, 240
repeating, 240

timer interrupt handler
abort, 240
fail, 240
ignore, 240
pause, 240

tracing, 280
transactional update, 136

t_delete, tdelete, 136
t_deleteall, tdeleteall, 136
t_erase, terase, 136
t_eraseall, teraseall, 136
t_insert, tinsert, 136
t_insertall, tinsertall, 136

triehandle, 291
true{...} primitive, 83
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truthvalue{...} primitive, 84
type

descriptor property, 175, 177
user-defined, 218

type checking, 226
type constraint, 17, 92
typed variable, 33, 218

UDF
:=, 120
\if, 120
user-defined function, 120

undefined{...} primitive, 83
Unicode, 265
Unicode character, 21, 216
unification option, 243
update, 130

non-transactional, 131
transactional, 136

updates
and tabling, 137

URL, 192
use_argumentation_theory directive, 181
usefunction

implicit directive, 125
user defined functions, 120
user module, 47
user-defined type, 218
usesensor directive, 162
useudf directive, 124
UTF-8 character encoding, 265

value inheritance, 102
variable, 15

aggregation, 149
anonymous, 8
don’t care, 8
free, 88
implicitly quantified, 88
typed, 33, 218

variables{...} primitive, 44

warnings{...}, 10
warnoff, 129
well-founded semantics, 99
well-founded semantics for negation, 80
while-loop, 158
wrapper predicates, 287
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