
A Guide to Flora-2 Packages

Version 1.2.1

(Monstera deliciosa)

September 8, 2017

Contents

1 JAVA-to-Flora-2 Interfaces 1

1.1 The Low-level Interface . 1

1.2 The High-Level Interface (experimental) . 5

1.3 Executing Java Application Programs with Flora-2 12

1.4 Summary of the Variables Used by the Interface 13

1.5 Building the Prepackaged Examples . 14

2 Persistent Modules 15

2.1 PM Interface . 15

2.2 Examples . 17

3 SGML and XML Parser for Flora-2 19

3.1 Introduction . 19

3.2 Import Modes for XML in Ergo . 20

3.2.1 White Space Handling . 20

3.2.2 Requesting Navigation Links . 21

3.3 Mapping XML to Flora-2 Objects . 22

3.3.1 Invention of Object Ids for XML Elements 22

3.3.2 Text and Mixed Element Content . 23

3.3.3 Translation of XML Attributes . 24

3.3.4 Ordering . 25

3.3.5 Additional Attributes and Methods in the navlinks Mode 25

3.4 Inspection Predicates . 27

3.5 XPath Support . 28

3.6 Low-level Predicates . 28

i

Chapter 1

JAVA-to-Flora-2 Interfaces
by Aditi Pandit and Michael Kifer

This chapter documents the API for accessing Flora-2 from Java programs. The API
has two versions: a low-level API (used most commonly), which enables Java programs
to send arbitrary queries to Flora-2 and get results, and an experimental high-level API,
which is more limited, but is easier to use. The high-level API establishes a correspondence
between Java classes and Flora-2 classes, which enables manipulation of Flora-2 classes
by executing appropriate methods on the corresponding Java classes. Both interfaces rely on
the Java-XSB interface, called Interprolog [1], developed by Interprolog.com.

The API assumes that a Java program is started first and then it invokes XSB/Flora-2
as a subprocess. The XSB/Flora-2 side is passive: it only responds to the queries sent
by the Java side. Queries can be anything that is accepted at the Flora-2 shell prompt:
queries, insert/delete commands, control switches, etc., are all fine. One thing to remember
is that the backslash is used in Java as an escape symbol and in Flora-2 as a prefix of the
builtin operators and commands. Therefore, each backslash must be escaped with another
backslash. That is, instead of a query like ”p(?X) \and q(?X).” the API requires ”p(?X)
\\and q(?X).”.

1.1 The Low-level Interface

The low-level API enables Java programs to send arbitrary queries to Flora-2 and get
results. It is assumed that the following environment variables are set:

JAVA BIN: This variable points to the folder containing the javac and java executable programs.
This variable is set in the windowsVariables.bat and unixVariables.sh scripts in the java
subfolder of the Flora-2 distribution.

PROLOGDIR: This variable points to the folder containing the XSB executable. This variable
is set in the flora settings.bat and flora settings.sh scripts in the java folder.

FLORADIR: This variable must point to the folder containing the Flora-2 installation. It is
set by the flora settings.bat and flora settings.sh files in the java subfolder and this
is where users should look in order to get the correct values for their systems. Both of the

1

Interprolog.com

above files are generated automatically by the system installation scripts.

In order to be able to access Flora-2 , the Java program must first establish a session for
a running instance of Flora-2 . Multiple sessions can be active at the same time. The
knowledge bases in the different running instances are completely independent. Sessions are
instances of the class javaAPI.src.FloraSession. This class provides methods for open-
ing/closing sessions and loading Flora-2 knowledge bases (which are also used in the high-
level interface). In addition, a session provides methods for executing arbitrary Flora-2
queries. The following is the complete list of the methods that are available in that class.

• public FloraSession()

This method creates a connection to an instance of Flora-2 .

• close()

This method must be called to terminate a Flora-2 session. Note that this does not
terminate the Java program that initiated the session: to exit the Java program that
talks to Flora-2 , one needs to execute the statement

System.exit();

Note that just returning from the main method is not enough.

• public Iterator<FloraObject> ExecuteQuery(String command)

This method executes the Flora-2 command given by the parameter command. It is
used to execute Flora-2 queries that do not require variable bindings to be returned
back to Java or queries that have only a single variable to be returned. Each binding
is represented as an instance of the class javaAPI.src.FloraObject. The examples
below illustrate how to process the results returned by this method.

• public Iterator<HashMap<String,FloraObject>> ExecuteQuery(String query,Vector vars)

This method executes the Flora-2 query given by the first argument. The Vector
vars (of strings) specifies the names of all the variables in the query for which bindings
need to be returned. These variables are added to the vector using the method add

before calling ExecuteQuery. For instance, vars.add("?X").

This version of ExecuteQuery returns an iterator over all bindings returned by the
Flora-2 query. Each binding is represented by a HashMap<String,FloraObject>

object which can be used to obtain the value of each variable in the query (us-
ing the get() method). The value of each variable returned is an instance of
javaAPI.src.FloraObject.

See the examples below for how to handle the results returned by this method.

• void loadFile(String fileName,String moduleName)

This method loads the Flora-2 program, specified by the parameter fileName into
the Flora-2 module specified in moduleName.

• void compileFile(String fileName,String moduleName)

This method compiles (but does not load) the Flora-2 program, specified by the
parameter fileName for the Flora-2 module specified in moduleName.

2

• void addFile(String fileName,String moduleName)

This method adds the Flora-2 program, specified by the parameter fileName to an
existing Flora-2 module specified in moduleName.

• void compileaddFile(String fileName,String moduleName)

This method compiles the Flora-2 program, specified by the parameter fileName for
addition to the Flora-2 module specified in moduleName.

The code snippet below illustrates the low-level API.

Step 1: Writing a Flora-2 program. Let us assume that we have a file, called
flogic basics.flr, which contains the following information:

person :: object.

dangerous_hobby :: object.

john:employee.

employee::person.

bob:person.

tim:person.

betty:employee.

person[|age=>integer,

kids=>person,

salary(year)=>value,

hobbies=>hobby,

believes_in=>something,

instances => person

|].

mary:employee[

age->29,

kids -> {tim,leo,betty},

salary(1998) -> a_lot

].

tim[hobbies -> {stamps, snowboard}].

betty[hobbies->{fishing,diving}].

snowboard:dangerous_hobby.

diving:dangerous_hobby.

?_X[self-> ?_X].

person[|believes_in -> {something, something_else}|].

3

Step 2: Writing a JAVA application to interface with Flora-2 . The following code
loads a Flora-2 program from a file and then passes queries to the knowledge base.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

public static void main(String[] args) {

// create a new session for a running instance of the engine

FloraSession session = new FloraSession();

System.out.println("Engine session started");

// Assume that Java was called with -DINPUT_FILE=the-file-name

String fileName = System.getProperty("INPUT_FILE");

if(fileName == null || fileName.trim().length() == 0) {

System.out.println("Invalid path to example file!");

System.exit(0);

}

// load the program into module basic_mod

session.loadFile(fileName,"basic_mod");

/* Running queries from flogic_basics.flr */

/* Query for persons */

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.ExecuteQuery(command);

/* Printing out the person names and information about their kids */

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

System.out.println("Person name:"+personObj);

command = "person[instances -> ?X]@basic_mod.";

System.out.println("Query:"+command);

personObjs = session.ExecuteQuery(command);

/* Prining out the person names */

while (personObjs.hasNext()) {

Object personObj = personObjs.next();

System.out.println("Person Id: "+personObj);

}

4

/* Example of ExecuteQuery with two arguments */

Vector<String> vars = new Vector<String>();

vars.add("?X");

vars.add("?Y");

Iterator<HashMap<String,FloraObject>> allmatches =

session.ExecuteQuery("?X[believes_in -> ?Y]@basic_mod.",vars);

System.out.println("Query:?X[believes_in -> ?Y]@basic_mod.");

while(allmatches.hasNext()) {

HashMap<String,FloraObject> firstmatch = allmatches.next();

Object Xobj = firstmatch.get("?X");

Object Yobj = firstmatch.get("?Y");

System.out.println(Xobj+" believes in: "+?Yobj);

}

// quit the system

session.close();

System.exit(0);

}

}

For the information on how to invoke the above Java class in the context of the Java-Flora-2
API, please see Section 1.3.

1.2 The High-Level Interface (experimental)

The high-level API operates by creating proxy Java classes for Flora-2 classes selected
by the user. This enables the Java program to operate on Flora-2 classes by executing
appropriate methods on the corresponding proxy Java classes. The use of the high-level API
involves a number of steps, as described below.

Readers who intend to use only the low-level Java-Flora-2 interface can skip this section.

Note: This interface will not work for Flora-2 programs that use non-alphanumeric
names for methods and predicates. For instance, if a program involves statements like
foo[’bar$#123’->456] then the interface might generate syntactically incorrect Java proxy
classes and errors will be issued during the compilation.

Stage 1: Writing a Flora-2 file. We assume the same flogic basics.flr file as in the
previous example.

Stage 2: Generating Java classes that serve as proxies for Flora-2 classes. The
Flora-2 side of the Java-to-Flora-2 high level API provides a predicate to generate Java
proxy classes for each F-logic class which have a signature declaration in the Flora-2 knowl-
edge base. A proxy class gets defined so that it would have methods to manipulate the at-
tributes and methods of the corresponding F-logic class for which signature declarations are
available. If an F-logic class has a declared value-returning attribute foobar then the proxy

5

class will have the following methods. Each method name has the form actionS1S2S3 foobar,
where action is either get, set, or delete. The specifier S1 indicates the type of the method
— V for value-returning, B for Boolean, and P for procedural. The specifier S2 tells whether
the operation applies to the signature of the method (S), e.g., person[foobar=>string], or
to the actual data (D), for example, john[foobar->3]. Finally, the specifier S3 tells if the
operation applies to the inheritable variant of the method (I) or its non-inheritable variant
(N).

1. public Iterator<FloraObject> getVDI foobar()

public Iterator<FloraObject> getVDN foobar()

public Iterator<FloraObject> getVSI foobar()

public Iterator<FloraObject> getVSN foobar()

The above methods query the knowledge base and get all answers for the attribute
foobar. They return iterators through which these answers can be processed one-by-
one. Each object returned by the iterator is of type FloraObject. The getVDN form
queries non-inheritable data methods and getVDI the inheritable ones. The getVSI and
getVSN forms query the signatures of the attribute foobar.

2. public boolean setVDI foobar(Vector value)

public boolean setVDN foobar(Vector value)

public boolean setVSI foobar(Vector value)

public boolean setVSN foobar(Vector value)

These methods add values to the set of values returned by the attribute foobar. The
values must be placed in the vector parameter passed these methods. Again, setVDN
adds data for non-inheritable methods and setVDI is used for inheritable methods.
setVSI and setVSN add types to signatures.

3. public boolean setVDI foobar(Object value)

public boolean setVDN foobar(Object value)

public boolean setVSI foobar(Object value)

public boolean setVSN foobar(Object value)

These methods provide a simplified interface when only one value needs to be added. It
works like the earlier set * methods, except that only one value given as an argument
is added.

4. public boolean deleteVDI foobar(Vector value)

public boolean deleteVDN foobar(Vector value)

public boolean deleteVSI foobar(Vector value)

public boolean deleteVSN foobar(Vector value)

Delete a set of values of the attribute foobar. The set is specified in the vector argument.

5. public boolean deleteVDI foobar(Object value)

public boolean deleteVDN foobar(Object value)

public boolean deleteVSI foobar(Object value)

public boolean deleteVSN foobar(Object value)

A simplified interface for the case when only one value needs to be deleted.

6. public boolean deleteVDI foobar()

public boolean deleteVDN foobar()

6

public boolean deleteVSI foobar()

public boolean deleteVSN foobar()

Delete all values for the attribute foobar.

For F-logic methods with arguments, the high-level API provides Java methods as above,
but they take more arguments to accommodate the parameters that F-logic methods take.
Let us assume that the F-logic method is called foobar2 and it takes parameters arg1 and
arg2. As before the getVDI *, setVDI *, etc., forms of the Java methods are for dealing with
inheritable Flora-2 methods and the getVDN *, setVDN *, etc., forms are for dealing with
non-inheritable Flora-2 methods.

1. public Iterator<FloraObject> getVDI foobar2(Object arg1, Object arg2)

public Iterator<FloraObject> getVDN foobar2(Object arg1, Object arg2)

Obtain all values for the F-logic method invocation foobar2(arg1,arg2).

2. public boolean setVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean setVDN foobar2(Object arg1, Object arg2, Vector value)

Add a set of methods specified in the parameter value for the method invocation
foobar2(arg1,arg2).

3. public boolean setVDI foobar2(Object arg1, Object arg2, Object value)

public boolean setVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface when only one value is to be added.

4. public boolean deleteVDI foobar2(Object arg1, Object arg2, Vector value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Vector value)

Delete a set of values from foobar2(arg1,arg2). The set is given by the vector pa-
rameter value.

5. public boolean deleteVDI foobar2(Object arg1, Object arg2, Object value)

public boolean deleteVDN foobar2(Object arg1, Object arg2, Object value)

A simplified interface for deleting a single value.

6. public boolean deleteVDI foobar2(Object arg1, Object arg2)

public boolean deleteVDN foobar2(Object arg1, Object arg2)

Delete all values for the method invocation foobar2(arg1,arg2).

For Boolean and procedural methods, the generated methods are similar except that there
is only one version for the set and delete methods. In addition, Boolean inheritable methods
use the getBDI *, setBDI *, etc., form, while non-inheritable methods use the getBDN *, etc.,
form. Procedural methods use the getPDI *, getPDN *, etc., forms. For instance,

1. public boolean getBDI foobar3()

public boolean getBDN foobar3()

public boolean getPDI foobar3()

public boolean getPDN foobar3()

2. public boolean setBDI foobar3()

public boolean setBDN foobar3()

7

public boolean setPDI foobar3()

public boolean setPDN foobar3()

3. public boolean deleteBDI foobar3()

public boolean deleteBDN foobar3()

public boolean deletePDI foobar3()

public boolean deletePDN foobar3()

In addition, the methods to query the ISA hierarchy are available:

• public Iterator<FloraObject> getDirectInstances()

• public Iterator<FloraObject> getInstances()

• public Iterator<FloraObject> getDirectSubClasses()

• public Iterator<FloraObject> getSubClasses()

• public Iterator<FloraObject> getSuperClasses()

• public Iterator<FloraObject> getDirectSuperClasses()

These methods apply to the java proxy object that corresponds to the F-logic class person.

All these methods are generated automatically by executing the following Flora-2 query
(defined in the javaAPI package). All arguments in the query must be bound:

// write(?Class,?Module,?ProxyClassFileName).

?- write(foo,example,’myproject/foo.java’).

The first argument specifies the class for which to generate the methods, the file name tells
where to put the Java file for the proxy object, and the model argument tells which Flora-2
model to load this program to. The result of this execution will be the file foo.java which
should be included with your java program (the program that is going to interface with
Flora-2). Note that because of the Java conventions, the file name must have the same
name as the class name. It is important to remember, however, that proxy methods will be
generated only for those F-logic methods that have been declared using signatures.

Let us now come back to our program flogic basics.flr for which we want to use the high-
level API. Suppose we want to query the person class. To generate the proxy declarations for
that class, we create the file person.java for the module basic mod as follows.

?- load{’examples/flogic_basics’>>basic_mod}.

?- load{javaAPI}.

?- write(person,basic_mod,’examples/person.java’)@\prolog

The write method will create the file person.java shown below. The methods defined in
person.java are the class constructors for person, the methods to query the ISA hierarchy,
and the “get”, “set” and “delete” methods for each method and attribute declared in the
Flora-2 class person. The parameters for the “get”, “set” and “delete” Java methods

8

are the same as for the corresponding Flora-2 methods. The first constructor for class
person takes a low-level object of class javaAPI.src.FloraObject as a parameter. The
second parameter is the Flora-2 module for which the proxy object is to be created. The
second person-constructor takes F-logic object Id instead of a low-level FloraObject. It also
takes the module name, as before, but, in addition, it takes a session for a running Flora-2
instance. The session parameter was not needed for the first person-constructor because
FloraObject is already attached to a concrete session.

It can be seen from the form of the proxy object constructors that proxy objects are attached
to specific Flora-2 modules, which may seem to go against the general philosophy that F-
logic objects do not belong to any module — only their methods do. On closer examination,
however, attaching high-level proxy Java objects to modules makes perfect sense. Indeed, a
proxy object encapsulates operations for manipulating F-logic attributes and methods, which
belong to concrete Flora-2 modules, so the proxy object needs to know which module it
operates upon.

person.java file

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class person {

public FloraObject sourceFloraObject;

// proxy objects’ constructors

public person(FloraObject sourceFloraObject, String moduleName) { ... }

public person(String floraOID,String moduleName, FloraSession session) { ... }

// ISA hierarchy queries

public Iterator<FloraObject> getDirectInstances() { ... }

public Iterator<FloraObject> getInstances() { ... }

public Iterator<FloraObject> getDirectSubClasses() { ... }

public Iterator<FloraObject> getSubClasses() { ... }

public Iterator<FloraObject> getDirectSuperClasses() { ... }

public Iterator<FloraObject> getSuperClasses() { ... }

// Java methods for manipulating methods

public boolean setVDI_age(Object value) { ... }

public boolean setVDN_age(Object value) { ... }

public Iterator<FloraObject> getVDI_age(){ ... }

public Iterator<FloraObject> getVDN_age(){ ... }

public boolean deleteVDI_age(Object value) { ... }

public boolean deleteVDN_age(Object value) { ... }

public boolean deleteVDI_age() { ... }

public boolean deleteVDN_age() { ... }

public boolean setVDI_salary(Object year,Object value) { ... }

9

public boolean setVDN_salary(Object year,Object value) { ... }

public Iterator<FloraObject> getVDI_salary(Object year) { ... }

public Iterator<FloraObject> getVDN_salary(Object year) { ... }

public boolean deleteVDI_salary(Object year,Object value) { ... }

public boolean deleteVDN_salary(Object year,Object value) { ... }

public boolean deleteVDI_salary(Object year) { ... }

public boolean deleteVDN_salary(Object year) { ... }

public boolean setVDI_hobbies(Vector value) { ... }

public boolean setVDN_hobbies(Vector value) { ... }

public Iterator<FloraObject> getVDI_hobbies(){ ... }

public Iterator<FloraObject> getVDN_hobbies(){ ... }

public boolean deleteVDI_hobbies(Vector value) { ... }

public boolean deleteVDN_hobbies(Vector value) { ... }

public boolean deleteVDI_hobbies(){ ... }

public boolean deleteVDN_hobbies(){ ... }

public boolean setVDI_instances(Vector value) { ... }

public boolean setVDN_instances(Vector value) { ... }

public Iterator<FloraObject> getVDI_instances(){ ... }

public Iterator<FloraObject> getVDN_instances(){ ... }

public boolean deleteVDI_instances(Vector value) { ... }

public boolean deleteVDN_instances(Vector value) { ... }

public boolean deleteVDI_instances(){ ... }

public boolean deleteVDN_instances(){ ... }

public boolean setVDI_kids(Vector value) { ... }

public boolean setVDN_kids(Vector value) { ... }

public Iterator<FloraObject> getVDI_kids(){ ... }

public Iterator<FloraObject> getVDN_kids(){ ... }

public boolean deleteVDI_kids(Vector value) { ... }

public boolean deleteVDN_kids(Vector value) { ... }

public boolean deleteVDI_kids(){ ... }

public boolean deleteVDN_kids(){ ... }

public boolean setVDI_believes_in(Vector value) { ... }

public boolean setVDN_believes_in(Vector value) { ... }

public Iterator<FloraObject> getVDI_believes_in(){ ... }

public Iterator<FloraObject> getVDN_believes_in(){ ... }

public boolean deleteVDI_believes_in(Vector value) { ... }

public boolean deleteVDN_believes_in(Vector value) { ... }

public boolean deleteVDI_believes_in(){ ... }

public boolean deleteVDN_believes_in(){ ... }

}

Stage 3: Writing Java applications that use the high-level API. The following
program (flogicbasicsExample.java) shows several queries that use the high-level interface.
The class person.java is generated at the previous stage. The methods of the high-level
interface operate on Java objects that are proxies for Flora-2 objects. These Java objects
are members of the class javaAPI.src.FloraObject. Therefore, before one can use the high-

10

level methods one need to first retrieve the appropriate proxy objects on which to operate.
This is done by sending an appropriate query through the method ExecuteQuery—the same
method that was used in the low-level interface. Alternatively, person-objects could be
constructed using the 3-argument proxy constructor, which takes F-logic oids.

import java.util.*;

import net.sf.flora2.API.*;

import net.sf.flora2.API.util.*;

public class flogicbasicsExample {

public static void main(String[] args) {

/* Initializing the session */

FloraSession session = new FloraSession();

System.out.println("Flora session started");

String fileName = "examples/flogic_basics"; // must be a valid path

/* Loading the flora file */

session.loadFile(fileName,"basic_mod");

// Retrieving instances of the class person through low-level API

String command = "?X:person@basic_mod.";

System.out.println("Query:"+command);

Iterator<FloraObject> personObjs = session.ExecuteQuery(command);

/* Print out person names and information about their kids */

person currPerson = null;

while (personObjs.hasNext()) {

FloraObject personObj = personObjs.next();

// Elevate personObj to the higher-level person-object

currPerson =new person(personObj,"basic_mod");

/* Set that person’s age to 50 */

currPerson.setVDN_age("50");

/* Get this person’s kids */

Iterator<FloraObject> kidsItr = currPerson.getVDN_kids();

while (kidsItr.hasNext()) {

FloraObject kidObj = kidsItr.next();

System.out.println("Person: " + personObj + " has kid: " +kidObj);

person kidPerson = null;

// Elevate kidObj to kidPerson

kidPerson = new person(kidObj,"basic_mod");

/* Get kidPerson’s hobbies */

Iterator<FloraObject> hobbiesItr = kidPerson.getVDN_hobbies();

11

while(hobbiesItr.hasNext()) {

FloraObject hobbyObj = hobbiesItr.next();

System.out.println("Kid:"+kidObj + " has hobby:" +hobbyObj);

}

}

}

FloraObject age;

// create a person-object directly by supplying its F-logic OID

// father(mary)

currPerson = new person("father(mary)", "example", session);

Iterator<FloraObject> maryfatherItr = currPerson.getVDN_age();

age = maryfatherItr.next();

System.out.println("Mary’s father is " + age + " years old");

// create a proxy object for the F-logic class person itself

person personClass = new person("person", "example", session);

// query its instances through the high-level interface

Iterator<FloraObject> instanceIter = personClass.getInstances();

System.out.println("Person instances using high-level API:");

while (instanceIter.hasNext())

System.out.println(" " + instanceIter.next());

session.close();

System.exit();

}

}

1.3 Executing Java Application Programs with Flora-2

To run Java programs that interface with Flora-2 , follow the following guidelines.

• Place the files flogicsbasicsExample.java (the program you have written) and
person.java (the automatically generated file) in the same directory and compile
them using the javac command. Add the jar-files containing the API code and
interprolog.jar to the Java classpath:

– FLORADIR/java/flora2java.jar

– FLORADIR/java/interprolog.jar

FLORADIR here should be replaced with the value of the variable FLORADIR, which
is set by the scripts flora settings.sh (Linux/Mac) or flora settings.bat (Win-
dows), as mentioned in Section 1.1 on page 1.

• Generally, Java programs that call Flora-2 should be invoked using the following
command. For Unix-like systems (Linux, Mac, etc.), change %VAR% to $VAR:

12

%JAVA_BIN%\java -DPROLOGDIR=%PROLOGDIR%

-DFLORADIR=%FLORADIR%

-Djava.library.path=%PROLOGDIR%

-classpath %MYCLASSPATH% flogicbasicsExample

The above command uses several shell variables, which are explained below. Instead of
using the variables, one can substitute their values directly.

JAVA BIN: This variable should point to the directory containing the java and javac

executables of the JDK.

PROLOGDIR: This variable should be set to the directory containing the XSB executable.

FLORADIR: This variable should be set to the directory containing the Flora-2 system.

MYCLASSPATH: This variable should include the jar files containing the API
code, i.e., .../java/flora2java.jar and file .../java/interprolog.jar,
plus the above flogicbasicsExample class. For instance, it can be set to
%CLASSPATH%;FLORADIR/java/flora2java.jar;FLORADIR/java/interprolog.jar;
flogicbasicsExample. For Linux and Mac, use ’:’ instead of ’;’ as a separator. As
before, FLORADIR should be replaced with a proper value, as explained above.

• Some Java applications may employ additional shell variables. For instance, the program
that uses the low-level API in Section 1.1 (in Step 2) has the line

String fileName = System.getProperty("INPUT FILE");

which means that it expects the shell variable INPUT FILE to be set. In this particular
case, it expects that variable to have the address of the flogic basics.flr Flora-2
file, which it then loads. Therefore, the java command shown above would also need
this parameter:

-DINPUT_FILE=%INPUT FILE%

In general, one such additional parameter is needed for each property that the Java
application queries using the getProperty() method.

1.4 Summary of the Variables Used by the Interface

The Java-Flora-2 interface needs the following shell variables to be set:

• JAVA HOME - this is normally set when you install Java. If not, set this variables manually.

• The following variables can be set by executing the scripts flora settings.bat (Win-
dows) or flora settings.sh (Linux/Mac) located in flora2/java/:

– FLORADIR — the path to the Flora-2 installation directory.

– PROLOGDIR — the path to the folder containing XSB executable.

13

If you need to set the above variables in some other way, look inside the above scripts
to get the exact values these variables should be set to.

• The following variable is set by the scripts unixVariables.sh or
windowsVariables.bat:

– JAVA BIN — the directory where Java executables are (java, javac).

If you need to set this variable without running the aforesaid script, you need to know
the correct value for that variable. The simplest way is to execute the script and then
check the value of environment variable JAVA BIN.

1.5 Building the Prepackaged Examples

Sample applications of the Java-Flora-2 interface are found in the java/API/examples

folder. To build the code for the interface, use the scripts build.bat or build.sh (or
build.bat on Windows) in the java/API folder. To build the the examples, use the scripts
buildExample.sh or buildExample.bat in the java/API/examples folder, whichever ap-
plies. For instance, to build the flogicbasicsExample example, use these commands on
Linux, Mac, and other Unix-like systems:

cd examples

buildExample.sh flogicbasicsExample

On Windows, use this:

cd examples

buildExample.bat flogicbasicsExample

To run the demos, use the scripts runExample.sh or runExample.bat in the
java/API/examples folder. For instance, to run the flogicbasicsExample, use this com-
mand on Linux, Mac, and the like:

runExample.sh flogicbasicsExample

On Windows, use this:

runExample.bat flogicbasicsExample

14

Chapter 2

Persistent Modules
by Vishal Chowdhary

This chapter describes a Flora-2 package that enables persistent modules. A persistent
module (abbr., PM) is like any other Flora-2 module except that it is associated with a
database. Any insertion or deletion of base facts in such a module results in a corresponding
operation on the associated database. This data persists across Flora-2 sessions, so the
data that was present in such a module is restored when the system restarts and the module
is reloaded.

2.1 PM Interface

A module becomes persistent by executing a statement that associates the module with an
ODBC data source described by a DSN. To start using the module persistence feature, first
load the following package into some module. For instance:

?- [persistentmodules>>pm].

The following API is available. Note that if you load persistentmodules into some other
module, say foo, then foo should be used instead of pm in the examples below.

• ?- ?Module[attach(?DSN,?DB,?User,?Password)]@pm.

This action associates the data source described by an ODBC DSN with the module. If
?DB is a variable then the database is taken from the DSN. If ?DB is bound to an atomic
string, then that particular database is used. Not all DBMSs support the operation of
replacing the DSN’s database at run time. For instance, MS Access or PostgresSQL
do not. In this case, ?DB must stay unbound or else an error will be issued. For other
DBMS, such as MySQL, SQL Server, and Oracle, ?DB can be bound.

The ?User and ?Password must be bound to the user name and the password to be
used to connect to the database.

The database specified by the DSN must already exist and must be created by a previous
call to the method attachNew described below. Otherwise, the operation is aborted.

15

The database used in the attach statement must not be accessed directly—only through
the persistent modules interface. The above statement will create the necessary tables
in the database, if they are not already present.

Note that the same database can be associated with several different modules. The
package will not mix up the facts that belong to different modules.

• ?- ?Module[attachNew(?DSN,?DB,?User,?Password)]@pm.

Like attach, but a new database is created as specified by ?DSN. If the same database
already exists, an exception of the form FLORA DB EXCEPTION(?ErrorMsg) is thrown.
(In a program, include flora exceptions.flh to define FLORA DB EXCEPTION; in the
shell, use the symbol ’ $flora db error’.) This method creates all the necessary
tables, if they are not already present.

Note that this command works only with database systems that understand the SQL
command CREATE DATABASE. For instance, MS Access does not support this command
and will cause an error.

• ?- ?Module[detach]@pm.

Detaches the module from its database. The module is no longer persistent in the sense
that subsequent changes are not reflected in any database. However, the earlier data is
not lost. It stays in the database and the module can be reattached to that database.

• ?- ?Module[loadDB]@pm.

On re-associating a module with a database (i.e., when ?Module[attach(?DSN,

?DB,?User,?Password)]@pm is called in a new Flora-2 session), database facts previ-
ously associated with the module are loaded back into it. However, since the database
may be large, Flora-2 does not preload it into the main memory. Instead, facts are
loaded on-demand. If it is desired to have all these facts in main memory at once, the
user can execute the above command. If no previous association between the module
and a database is found, an exception is thrown.

• ?- set field type(?Type)@pm.

By default, Flora-2 creates tables with the VARCHAR field type because this is the
only type that is accepted by all major database systems. However, ideally, the CLOB
(character large object) type should be used because VARCHAR fields are limited to
4000-7000 characters, which is usually inadequate for most needs. Unfortunately, the
different database systems differ in how they support CLOBs, so the above call is
provided to let the user specify the field types that would be acceptable to the system(s)
at hand. The call should be made right before attachNew is used. Examples:

?- set_field_type(’TEXT DEFAULT NULL’)@pm. // MySQL, PostgreSQL

?- set_field_type(’CLOB DEFAULT NULL’)@pm. // Oracle, DB2

Once a database is associated with the module, querying and insertion of the data into the
module is done as in the case of regular (transient) modules. Therefore PM’s provide a
transparent and natural access to the database and every query or update may, in principle,
involve a database operation. For example, a query like ?- ?D[dept -> ped]@StonyBrook.

may invoke the SQL SELECT operation if module StonyBrook is associated with a database.
Similarly insert{a[b -> c]@stonyBrook} and delete{a[e -> f]@stonyBrook} will invoke

16

SQL INSERT and DELETE commands, respectively. Thus, PM’s provide a high-level abstraction
over the external database.

Note that if ?Module[loadDB]@pm has been previously executed, queries to a persistent mod-
ule will not access the database since Flora-2 will use its in-memory cache instead. However,
insertion and deletion of facts in such a module will still cause database operations.

2.2 Examples

Consider the following scenario sequence of operations.

// Create new modules mod, db_mod1, db_mod2.

flora2 ?- newmodule{mod}, newmodule{db_mod1}, newmodule{db_mod2}.
flora2 ?- [persistentmodules>>pm].

// insert data into all three modules.

flora2 ?- insert{q(a)@mod,q(b)@mod,p(a,a)@mod}.
flora2 ?- insert{p(a,a)@db_mod1, p(a,b)@db_mod1}.
flora2 ?- insert{q(a)@db_mod2,q(b)@db_mod2,q(c)@db_mod2}.

// Associate modules db_mod1, db_mod2 with an existing database db

// The data source is described by the DSN mydb.

flora2 ?- db_mod1[attach(mydb,db,user,pwd)]@pm.

flora2 ?- db_mod2[attach(mydb,db,user,pwd)]@pm.

// insert more data into db_mod2 and mod.

flora2 ?- insert{a(p(a,b,c),d)@db_mod2}.
flora2 ?- insert{q(a)@mod,q(b)@mod,p(a,a)@mod}.

// shut down the engine

flora2 ?- \halt.

Restart the Flora-2 system.

// Create the same modules again

flora2 ?- newmodule{mod}, newmodule{db_mod1}, newmodule{db_mod2}.

// try to query the data in any of these modules.

flora2 ?- q(?X)@mod.

No.

flora2 ?- p(?X,?Y)@db_mod1.

No.

// Attach the earlier database to db_mod1.

flora2 ?- [persistentmodules>>pm].

17

flora2 ?- db_mod1[attach(mydb,db,user,pwd)]@pm.

// try querying again...

// Module mod is still not associated with any database and nothing was

// inserted there even transiently, we have:

flora2 ?- q(?X)@mod.

No.

// But the following query retrieves data from the database associated

// with db_mod1.

flora2 ?- p(?X,?Y)@db_mod1.

?X = a,

?Y = a.

?X = a,

?Y = b.

Yes.

// Since db_mod2 was not re-attached to its database,

// it still has no data, and the query fails.

flora2 ?- q(?X)@db_mod2.

No.

18

Chapter 3

SGML and XML Import for
Flora-2

by Rohan Shirwaikar and Michael Kifer

This chapter documents the Flora-2 package that provides XML and XPath parsing ca-
pabilities. The main predicates support parsing SGML, XML, and HTML documents, and
create Flora-2 objects in the user specified module. Other predicates evaluate XPath queries
on XML documents and create Flora-2 objects in user specified modules. The predicates
make use of the sgml and xpath packages of XSB.

3.1 Introduction

This package supports parsing SGML, XML, and HTML documents, converting them to sets
of Flora-2 objects stored in user-specified Flora-2 modules. The SGML interface provides
facilities to parse input in the form of files, URLs and strings (Prolog atoms).

For example, the following XML snippet

<greeting id=’1’>

<first ssn=111’>

John

</first>

</greeting>

will be converted into the following Flora-2 objects:

obj1[greeting -> obj2]

obj2[attribute(id) -> ’1’]

obj2[first -> obj3]

obj3[attribute(ssn) -> ’111’]

obj3[\text -> ’John’]

19

To load the XML package, just call any of the API calls at the Flora-2 prompt.

The following calls are provided by the package. They take SGML, XML, HTML, or XHTML
documents and create the corresponding Flora-2 objects as specified in Section 3.3.

?InDoc[load sgml(?Module) -> ?Warn]@\xml

Import XML data as Flora-2 objects.

?InDoc[load xml(?Module) -> ?Warn]@\xml

Import SGML data as Flora-2 objects.

?InDoc[load html(?Module) -> ?Warn]@\xml

Import HTML data as Flora-2 objects.

?InDoc[load xhtml(?Module) -> ?Warn]@\xml

Import XHTML as Flora-2 objects.

The arguments to these predicates have the following meaning:

?InDoc is an input SGML, XML, HTML, or XHTML document. It must have one of these
forms: url(’url ’), file(’file name’) or string(’document as a string’). If ?InDoc is just a
plain Prolog atom (Flora-2 symbol) then file(?Source) is assumed. ?Module is the name
of the Flora-2 module where the objects created by the above calls should be placed; it
must be bound. ?Warn gets bound to a list of warnings, if any are generated, or to an empty
list; it is an output variable.

3.2 Import Modes for XML in Ergo

XML can be imported into Flora-2 in several different ways, which can be specified via the
set mode(...)@\xml primitive. These modes control two aspects of the import:

• white space handling, and

• navigation links that may be added to the imported data.

3.2.1 White Space Handling

The XML standard requires that white space (blanks, tabs, newlines, etc.) must be preserved
by XML parsers. However, in the applications where Flora-2 is used, XML typically is
viewed as a format for data in which white space is immaterial. For that reason, by default,
the Flora-2 ’s XML parser operates in the data mode in which every string is trimmed on
both sides to remove the white space. In addition, the empty strings ’’ are ignored. This
implies that, for example, there will be no \text attribute to represent a situation like this:

<doc>

<spaceonly> </spaceonly>

</doc>

20

and the only data created to represent the above document will be

obj1[doc->obj2]@bar

obj2[spaceonly->obj3]@bar

(plus some additional navigational data about order, siblings, parents, etc.). This means that,
if capturing certain white space is needed, it should be encoded explicitly in some way, e.g.,

<spaceonly>___</spaceonly>

instead of three spaces.

Alternatively, one can request to change the XML parsing mode to raw :

?- set_mode(raw)@\xml.

In this case, the parser will switch to the pedantic way XML parsers are supposed to interpret
XML and all white space will be preserved. However, beware what you wish because even
for the above tiny example the representation will end up not pretty because every little bit
of white space will be there (even the one that comes from line breaks):

obj1[doc->obj2]@bar

obj2[\text->obj3]@bar

obj2[\text->obj6]@bar

obj2[spaceonly->obj4]@bar

obj3[\string->’

’]@bar

obj4[\text->obj5]@bar

obj5[\string->’ ’]@bar

obj6[\string->’

’]@bar

It is more than likely an Flora-2 user will not want objects like obj3 and obj6.

Finally, if the raw mode is not what is desired, one can always switch back to the data mode:

?- set_mode(data)@\xml.

3.2.2 Requesting Navigation Links

This aspect can be changed via the calls

?- set_mode(nonavlinks)@\xml. // the default

?- set_mode(navlinks)@\xml.

where nonavlinks is the default.

The nonavlinks method uses a slightly simpler translation from XML to Flora-2 objects
and no extra navigation links are provided. This mode is used when the imported XML

21

document has known tructure and is viewed simply as set of data to be ingested (e.g., payroll
data).

In the navlinks mode, the representation is slightly more complex but, most importantly,
that imported data includes additional information that provides parent/child/sibling links
among XML objects as well as the ordering information, which allows one to reconstruct the
original XML document. This mode is used when the structure of the input XML has high
variability or may even be arbitrary. This arises, for instance, when one needs to transform
arbitrary XML import or to extract certain information from unknown structures. The exact
representation of this navigational information is described in subsequent sections.

3.3 Mapping XML to Flora-2 Objects

This mapping is based on an XML-to-Flora-2 object correspondence developed by Guizhen
Yang. It specifies how an XML parser can construct the corresponding F-logic objects after
parsing an input XML document. The basic ideas are as follows:

• XML elements, attribute values, and text strings are modeled as objects in F-logic.

• XML elements are reachable from parent objects via F-logic frame attributes of the
same name as the XML element name.

• XML element attributes are also modeled as F-logic frame attributes but their name is
attribute(XML attribute name).

This mapping does not address comments or processing instructions—they are simply ignored.
However, this mapping does address the issue of mixed text/element content in which plain
text and subelements are interspersed. This mapping also assumes that XML entities are
resolved by the XML parser.

3.3.1 Invention of Object Ids for XML Elements

According to the XML specification 1.0, an XML element can be identified by an oid that
is unique across the document. The import mechanism invents such an oid automatically.
Sitting on top of the XML root element, there is an additional root object which just functions
as the access point to the entire object hierarchy corresponding to the XML document. The
oids of leaf nodes, which have no outgoing arcs and carry plain text only, are just the string
values themselves.

For example, the following XML document

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name first="John"

last="Smith"/>

</person>

is represented via the following F-logic objects:

22

obj1[person -> obj2].

obj2[attribute(ssn) -> ’111-22-3333’, name -> obj3].

obj3[attribute(first) -> John, attribute(last) -> Smith].

Here obj1 is the root object, obj2 is the object corresponding to the person element, and
obj3 is the object that represents the name element. The strings ’111-22-3333’, John, and
Smith are oids that stand for themselves.

3.3.2 Text and Mixed Element Content

The content of an XML element may consist of plain text, or subelements interspersed with
plain text as in

<greeting>Hi! My name is <first>John</first><last>Smith</last>.</greeting>

How text is actually handled in the translation to F-logic depends on the mode of import:
nonavlinks or navlinks. The former is simpler because it discards all the information about
the order of the text nodes with respect to subelements and other text nodes.

• In the nonavlinks mode:
Each text segment is modeled as a value of the attribute \text of the parent element-
object of that text segment.1 Thus, for the above XML fragment, the translation would
be

obj1[greeting -> obj2].

obj2[\text -> {’Hi! My name is ’, ’.’},

first -> obj3,

last -> obj4

].

obj3[\text -> John].

obj4[\text -> Smith].

• In the navlinks mode:
Here the order of the text and subelement nodes must be preserved and so each text
node is modeled as if it were a value of a special attribute \string in an empty XML
element named \text, e.g.,

<\text \string="John"/>

As a consequence, a separate F-logic object is created to represent each text segment.
(Compare this to the translation in the nonavlinks mode, which does not create sepa-
rate objects for text nodes.) Thus, for the aforesaid greetings element the translation
will be

1 Of course, XML does not allow such names for tags and attributes, and this is the whole point: adding

such an invented name to the F-logic translation will not clash with other tag names that might be used in

the XML documents.

23

obj1[greeting -> obj2].

obj2[\text -> {obj3, obj8},

first -> obj4,

last -> obj6

].

obj3[\string -> ’Hi! My name is ’].

obj4[\text -> obj5].

obj5[\string -> John].

obj6[\text -> obj7].

obj7[\string -> Smith].

obj8[\string -> ’.’].

How exactly the aforesaid order is preserved in the navlinks mode is explained later.

3.3.3 Translation of XML Attributes

An XML attribute, attr, in an element is translated as an attribute by the name
attribute(attr) attached to the object that corresponds to that element.

XML element attributes of type IDREFS are multivalued, in the sense that their value is a
string consisting of one or more oids separated by whitespaces. Therefore, the value of such
an attribute is a set. The value of an XML IDREFS attribute is represented as a list.

For example, the following XML segment:

<paper id="yk00" references="klw95 ckw91">

<title>paper title</title>

</paper>

will generate the following F-logic atoms, assuming that the reference attribute is of type
IDREFS:

obj1[paper -> obj2]

obj2[title -> obj4]

obj2[attribute(id) -> yk00]

obj2[attribute(references) -> ’klw95 ckw91’

obj4[\text -> obj5] // here we assume that the navlinks mode was used

obj5[\string -> ’paper title’]

However: if the document has an associated DTD and the attribute references were specified
there as IDREFS as in

<!ATTLIST paper references IDREFS #IMPLIED>

then that attribute is translated as

obj2[attribute(references)->[klw95,ckw91]]

24

i.e., the value becomes a list.

With this, we are done describing the nonavlinks mode. The remaining subsections in the
current section apply to the navlinks mode only.

3.3.4 Ordering

This section applies to the navlinks mode only.

XML is order-sensitive and the order in which elements and text appear is significant, in
general. The order of the attributes within the same element tag is not significant, however.

While the nonavlinks mode is sufficient for most data-intensive uses of XML in Flora-2 ,
more complex tasks may require the knowledge of how items are ordered within XML docu-
ments. Specifying a total order among the elements and text in an XML document suffices
for that purpose, if this order agrees with the local order within each element’s content.

Consider the following XML document

<?xml version="1.0"?>

<person ssn="111-22-3333">

<name>

<first>John</first>

<last>Smith</last>

</name>

<email>jsmith@abc.com</email>

</person>

It can be represented by the tree in Figure 3.1 in which the parenthesized integers show the
total order assigned to the F-logic objects.

The ordering information that exists in XML documents is captured in F-logic via a special
attribute called \order, which tells position within the total ordering for each element and
text node. It is for that purpose that text segments are modeled in the navlinks mode as
element-style objects (each segment having its own oid) and not simply as attributes, as is
the case with the simpler nonavlinks mode.

3.3.5 Additional Attributes and Methods in the navlinks Mode

Since the navlinks mode is intended for applications that need to navigate from children
to parents, to siblings, and more, the importer adds the following additional attributes and
methods to the F-logic objects into which XML elements and text are mapped.

1. \in arc

For each node, \in arc returns the unordered set of labels of the arcs pointing to this
node, i.e., this node’s in-arcs. Roughly, \in arc is defined as follows:

?O[\in_arc -> ?InArc] :- ?[?InArc -> ?O].

25

obj0 (0)

|

| person

|

id /---- obj1 (1)

/ ^

/ / \

111-22-3333 name / \ email

/ \

(2) obj2 obj7 (7)

/ \ \

first / \last \ \text

/ \ \

(3) obj3 obj5 (5) obj8 (8)

| | \

\text | | \text \ \string

| | \

(4) obj4 obj6 (6) ’jsmith@abc.com’

| |

\string | | \string

| |

John Smith

Figure 3.1: Total ordering of the F-logic objects arising from XML ordering

Note that for a node representing a text segment, the value of its \in arc attribute is
\text.

2. \parent
For each node, \parent returns the oid of the parent node.

3. \leftsibling
For each node, \leftsibling returns the oid of the node appearing immediately before
the current node. This attribute is not defined for the nodes without a left sibling.

4. \rightsibling
For each node, \rightsibling returns the oid of the node appearing immediately after
the current node. This attribute is not defined for the nodes without a right sibling.

5. \childcount
For each element node, \childcount returns the number of the immediate children of
that element, which includes subelements and text segments.

6. \childlist
For each element node, \childlist returns a list of the oids of the immediate children
(subelements and text segments) of that element.

7. \child(N)

26

For each node, \child(N) returns the N-th child, where 0 ≤ N < \childcount. Note:
the first child is the 0-th child.

8. \in child arc(N)

For each node, \in child arc(N) returns the in-arcs of the N-th child, where 0 ≤ N <

\childcount. This attribute is defined as follows:

?O[\in_child_arc(?N)->?InArc] :- ?O[\child(?N)->?[\in_arc->?InArc]].

3.4 Inspection Predicates

This section applies both to the nonavlinks mode and the navlinks mode.

It is sometimes hard to see which objects have actually been created to represent an XML
document or an element. This is especially true in case of navlinks mode, which includes a
host of special navigational attributes. The purpose of inspection predicates is to provide a
simple way to view the objects, and they also filter the navigational attributes out. Consider
the document foo.xml below:

<mydoc id=’1’><first ssn=’111’>John</first></mydoc>

Even for such a simple document, the query

?- ’foo.xml’[load_xml(bar) -> ?W]@\xml. // load foo.xml into module bar

?- ?_X[?_Y->?_Z]@bar, ?Z = ${?_X[?_Y->?_Z]}. // get all facts

that asks for all the facts—stored and derived—will yield 56 results in the navlinks mode,
which is overwhelming to inspect visually. However, the core facts that describe these objects
are only 8, and they can be obtained by asking the query

?- bar[show->?P]@\xml.

One furthermore might want to see the representation of individual elements (e.g., element
named first):

?- bar[show(first)->?P]@\xml.

and this is much more manageable:

?P = ${obj4[\text->obj5]@bar}

?P = ${obj4[attribute(ssn)->’111’]@bar}

or of elements that have particular attributes (ssh in this example):

?- bar[show(attribute(ssn))->?P]@\xml.

which yields the same result as above (because the element first has the attribute ssn).

27

3.5 XPath Support

The XPath support is based on the XSB xpath package, which must be configured as explained
in the XSB manual. This package, in turn, relies on the XML parser called libxml2. It comes
with most Linux distributions and is also available for Windows, MacOS, and other Unix-
based systems from http://xmlsoft.org. Note that both the library itself and the .h files
of that library must be installed.

Note: XPath support does not currently work under Windows 64 bit (but does under 32
bits) due to the fact that we could not produce a working libxml2.lib file (xmlsoft.org
provides linxml2.dll for Windows 64, but not libxml2.lib).

The following predicates are provided. They select parts of the input document using the
provided XPath expression and create Flora-2 objects as specified in Section 3.3. These
predicates handle XML, SGML, HTML, and XHTML, respectively.

?InDoc[xpath xml(?XPathExp,?NS,?Mod)->?Warn] apply XPath expression to an XML
document and import the result

?InDoc[xpath xhtml(?XPathExp,?NS,?Mod)->?Warn] apply XPath expression to XHTML
and import the result

The arguments have the following meaning:

InDoc specifies the input document; this parameter has the same format as in Section 3.1.
?XPath is an XPath expression specified as a Prolog atom. ?Module is the module where the
resulting Flora-2 objects should be placed. ?Module must be bound. ?Warn gets bound to
a list of warnings, if any are generated during the processing—or to an empty list, if none.

?NamespacePrefList is a string that has the form of a space separated list of items of the
form prefix = namespaceURL . This allows one to use namespace prefixes in the ?XPath

parameter. For example if the XPath expression is ’/x:html/x:head/x:meta’ where x

stands for ’http://www.w3.org/1999/xhtml’, then this prefix would have to be defined
in ?NamespacePrefList:

url(’http://w3.org’)[xpath_xhtml(’/x:html/x:head/x:meta’,

’x=http://www.w3.org/1999/xhtml’,

foomodule)

-> ?Warnings]@\xml.

3.6 Low-level Predicates

This section describes low-level predicates in the XML package. These predicates parse the
input documents into Prolog terms that then must be further traversed recursively in order
to get the desired information.

• parse structure(?InDoc,?InType,?Warnings,?ParsedDoc)@\xml — take the docu-
ment ?InDoc or type ?InType (xml, xhtml, html, sgml) and parse it as a Prolog term
(will not be imported into any module as an object).

28

• apply xpath(?InDoc,?InType,?XPathExp,?NamespacePrefList,?Warnings,?ParsedDoc)@\xml
— like the above, but first applies the XPath expression ?XPathExp to ?InDoc. The
?InType parameter must be bound to xml or xhtml.

The output, ?ParsedDoc, is a Prolog term that represents the parse of the input XML doc-
ument in case of parse structure and the result of application of ?XPathExp to the input
document in case of apply xpath. The format of that parse is described in the XSB Man-
ual, Volume 2: Interfaces and Packages, in the chapter on SGML/XML/HTML Parsers and
XPath.

29

Bibliography

[1] Miguel Calejo. Interprolog: Towards a declarative embedding of logic programming in
java. In Jóse Júlio Alferes and João Leite, editors, Logics in Artificial Intelligence: 9th
European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings,
pages 714–717. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

30

	JAVA-to-Flora-2 Interfaces
	The Low-level Interface
	The High-Level Interface (experimental)
	Executing Java Application Programs with Flora-2
	Summary of the Variables Used by the Interface
	Building the Prepackaged Examples

	Persistent Modules
	PM Interface
	Examples

	SGML and XML Parser for Flora-2
	Introduction
	Import Modes for XML in Ergo
	White Space Handling
	Requesting Navigation Links

	Mapping XML to Flora-2 Objects
	Invention of Object Ids for XML Elements
	Text and Mixed Element Content
	Translation of XML Attributes
	Ordering
	Additional Attributes and Methods in the navlinks Mode

	Inspection Predicates
	XPath Support
	Low-level Predicates

