Reference Manual

Volume 111
Interfaces Guide

Version 6.40 Beta
November 30th 2017

Copyright © 2017 by Gary Riley

CLIPS Reference Manual

CLIPS Interfaces Guide
Version 6.40 Beta November 29th 2017

CONTENTS

License INfOrmationceeiceiiiiniiciniiiisincisnieissniecssnnessssecssssessssseessssesssssessssssssssssssssssssssssssssnsssses i
g) 1N iii
Section 1: INtrOdUCTION......ccceiiieiiiiiiiitinntinninnticsttistesstssssssstssssssssssssssssesssssssssssssssssesssssssasss 1
Section 2: CLIPS .NET IDEcuiiiiiiniinnicnninseissnssosssssssssss 3
2.1 The F1le MENU......cociiiiiiiiieiie ettt ettt ettt st e bt e e bt e aeeenseesaeeens 4
2101 QUILE et h ettt e bt et e e a e e bt et e sntenteentenaeen 4

2.2 ThEe EdIt MEINU ...cooiiiiiiiie ettt ettt e et e e tae e e aae e estaeeessaeeeasaeesnsaeesnnaeennnes 4
2.2.1 CUL (CHIIHEX) ettt sttt et e bt et sa e bt et st e sae et saeen 4

2.2.2 COPY (CHITHC) ettt ettt se et e s aeenseeneesseenseennans 4

2.2.3 PASEE (CUIHV) ittt et s be e eeebeeesaeennaas 5

2.3 The Environment MENUcccueieiiieiiiieeiieeciieecieeesieeesaeeeseaeeeseseeesaeeesseessaeessseeesssesesnnes 5
2301 AT .ttt ettt et b et e a e bt et nt et entesaeens 5

2.3.2 Load Constructs... (CHIHL).....ooiiiiiiieeieeeee e 5

2.3.3 Load Batch... (CHrIFShifttL) .coocveeoiiiiiieiieiieeieeeeeee e e 5

2.3.4 SEt DITECIOTY. . . weeutieiietieiterieete ettt ettt ettt et ettt et st a et sbeenbeetenaeens 5

2.3.5 RESEE (CIIFR) e ee et e e bee e e 5

2.3.6 Run (CtrIHShiftHR) c..cooeieie et 6

2.3.7 Halt Rules (CHrIHH) .ooveeiiieieeeee ettt 6

2.3.8 Halt Execution (Ctrl+Shift-tH)coooiiiiiiii e 6

2.3.9 Clear SCrollDacCKcoiiiiiiiiiiiiieeee e e 6

2.5 The DEDUZ MENUoouiiiiiiiiiiiieieeeet ettt sttt sttt 6
2.5.1 Watch SUDMENU.....cc.coiiiiiiii e e 6

2.5.2 ANda BIOWSET....c..coiuiiiiiiiiiiiiieeitcteet ettt ettt sttt et 6

2.5.3 FACt BIOWSET ...ttt et st et e eaees 7

2.5.4 INStANCE BIOWSETccuviiiiiiiiiiieiiiee ettt ettt et e e 8

B N TS = (511 o TN, 1<) 010 USSR 9
2.6.1 CLIPS HOME PAZEoouiiiiiiiiieiieeceete ettt 9

2.6.2 Online DOCUMENLAtIONceeuviiiiiieeiiee ettt eetee e e sae e e eaeeseae e et e e enreeeenseeenns 9

2.6.3 ONlNE EXAMPIEScueiiiiiiiiiiieiieeiteie ettt ettt eneeas 9

2.6.4 CLIPS EXpert SYSTEmM GIOUPccceerviieeiiiiiieeeeiiieeeeeiiteeeesitteeesiieeeesennaeeessnsneessnnsees 9

2.6.5 SourceFOrge FOTUMScc..uiiiiiiiiiiieiiieeeeee et 10

2.6.6 Stack OVErflow Q&Aooo i et e e e e e 10

2.6.7 About CLIPS IDEciiiiiiiiiiiieeteecee ettt 10

2.8 Building the Windows EXecutables..........cccoooiiiiiiiiiiiieiie et 10
2.8.1 Building CLIPSIDE Using Microsoft Visual Studio Community 2017................... 10

2.8.2 Building CLIPSDOS Using Microsoft Visual Studio Community 2017 10

CLIPS Interfaces Guide i

CLIPS Reference Manual

Section 3: CLIPS macOS IDE w11
3.1 The CLIPS IDE MENUcoouiiiiieeiiieiieeieeiieeieeieeeteeieesreeseesnteessaessseenseesnseenssesnseesssesnsens 13
3. 1.1 ADOUL CLIPS ...ttt ettt et e e ne e te et e eneenseeneas 13
3.1.2 Preferences... (F8) ..ottt 14
3.1.3 Quit CLIPS IDE (D) .ottt 15
3.2 THE FIle MENU....cocuiiiiiieiiieiieeieeee ettt ettt ettt e b e e saesebeesabeenseennneenseas 15
3.2 1 NEW (FBN) oottt 15
3.2.2 0PEN... (D) ettt 16

R I I 0 T W ST o | F S PUR 16
3.2.4 ClOSE (FBV) oottt 16
3.2.5 SAVE (D) ettt ettt ettt ettt en e 16
3.2.6 SAVE AS... (T13) oo 16

R I A S) < ¢ PSPPI 16
3.2.8 Page Setup... (T dP) oo 16
3.2.9 PrINt.. (G) oot 17

3.3 The Edit MENUouviiiiieiieiieeieeee ettt ettt st e esb e et e sebaessseenseensseenseas 17
3.3 1 UNAO () vttt enenans 17
332 REA0 (T FHZ) coniniieeeee ettt 17
3.3.3 CUL (FBX) ettt eaenans 17
334 COPY () ettt 17
3.3.5 PaStE (G-t t e enenes 17

R B O TN D 1S) (S £ SRS 18
3.3.7 SEIECt ALL (FEA) oeoeeeeeeeeeeeeeeeeeeee ettt enenans 18
3.3.8 FINA SUDMENUviiiiiiiieciiicieecie ettt ettt e be et e e e e eaesnbaenaesnseenens 18
3.4 THe TeXt IMEINUL...ccuviiiiiiieiie ettt et e et e e et e e e aeeesaaeessbaeesssaeessseeesasaeessseeensseaenns 19
3.4.1 Load Selection (GK)ovoviieeeeeeeeeeeee et 19
3.4.2 Batch Selection (£ GK).....ooieiieeieeceeeeeeeeeeeee e 19
3.4.3 L0ad BUTTRTooiiiiieee ettt e 19
3.4.4Balance () ..ottt 20
3.4.5 COMIMENL....c.utiiiiiieeiiieeeieeeeteeeeteeesteeesetee e taeeesaeeesaeeesseeassseeasseeessseeenssaeennseeenseesns 20
3.4.6 UNCOMIMENT.....cciiiiiiieiiiiieeeiiieeeeeiieeeeeiteeeeetaaeeeessaaaeeeesssseeeeassseeeeassseeeesnsssaeesnsssees 20

3.5 The Environment MENUcccoieiiiiiiiieeiiie et ettt eie e eiee st eesteeesseeesnseeesnneeennseeenns 20
R T 0 B O =T SRS ST PRU RPNt 20
3.5.2 Load Constructs... () ..ottt 20
3.5.3 L0oad Batch... (T L) oot 20
3.5.4 SEt DITECIOTY. .. couviieeiieeeiieeeieeeetee et e et e et e e e rta e e e stteesteeesaaeeessaeessseeenssaeensseesnnseeenns 21
3.5.5 RESEE (GHR) coovieieieeeeeeeee ettt 21
3.5.6 RUN (T 3Rttt 21
3.5. 7 Halt RUIES (G8) ..uvvieieieieieiieiiieee sttt 21
3.5.8 Halt Execution (T @8)......cvoviieeieeeeeeeeeeeeeeeee e 21
3.5.9 Clear SCrollDacKcocuiiieiiiiieeiieiee et 21

3.6 The DEbUZ IMENUcooviiiiiiiieie ettt et et e e e s e e e e e e e s baeesnneeennseeenns 21
3.6.1 Watch SUDMENUooiiiiiiiiii et et 21

il Table of Contents

CLIPS Reference Manual

3.6.2 AENda BIrOWSET.....ccviiiiiiieciie ettt ettt et e it e et e e s e e e saaeesaseeessseeessseeennraeenns 22
3.0.3 FACE BIOWSET ..ceeuiiiieiiiie ettt ettt s e ettt e st e e st e e st eesabae e nbeeesaneeenns 22
3.6.4 INStANCE BIOWSETceiiiiiiiieeiiiiie ettt e e e ee e e et e e e et eeeesnnreaeeennnneas 24
3.6.5 CONSLIUCE INSPECIOTeeeiiiieiiie ettt ettt ettt e e e e sbeeenaneeees 25

3.7 The WINAOW MENUoiiiiiiiiiiieciie ettt e e s ae e e e e e e ssaeeeeaeeesssaeessneeennseaenns 25
3.8 The HElP MENUcviiiiieiiiiiie ettt ettt ettt et e be et e esbeeseesabaessbeenseesnneenseas 25
3.8.1 CLIPS HOME PAZE ...c.eeeniieiieiieieeeseee ettt st e 25
3.8.2 Online DOCUMENEALIONeecuieriiieiieiiietieeieeiee et et et eieeeaeesaeeesbeesseeenbeesseesnseenens 25
3.8.3 Online EXAMPIES...ccccviiiiiiieiie ettt e e et e e s e e e e beeeenraeenes 25
3.8.4 CLIPS EXpert SYStemM GIOUPceeeiieieriiieeiiieeiieeeiiteeeiteesieeesieeesneeessneeesseeesneeenns 26
3.8.5 SOUICEFOIZE FOTUMSoiiiieiiiieeeiiiee et e e e et e e e e e e eneaeas 26
3.8.6 Stack OVerflow QA&Aooouiiieeie et e 26

3.9 Creating the macOS EXecutables..........cocooiiiiriiiiiiiiniiiiiciceceeteeeeeeee e 26
3.9.1 Building the CLIPS IDE Using Xcode 9.1cccociiiiieiieiieeieeieeieeee e 26
Section 4: CLIPS SWINE IDEuiiiiiiiiiininiiiiniinninnninnnisssscsssisssessssiosssssssssssssssssessssssssessssssss 27
4.2 THE FIle MENU.......ccciiiiiiiiiieiiecie ettt ettt ettt eve e et eebeesaaeesbeessaesnsaessseenseessseenseas 28
.21 NEW (M) ittt e e e et e e et e e s beeesabea e sbaeessaeessseesssaeeassaeeasaeennraeenns 28
A4.2.2 0PCN... (M0t e be e st e e be e st e enbaeenaeenbeennes 28
4.2.3 SAVE (M8 ettt e ettt e b et ettt e b e rteebeeent e e b e nnee 29
4.2.4 SaVE AS... (M=) e e 29
4.2.5 PAZE SEIUP..c.eetiieiiiiiieete ettt et 29
A.2.0 PIINE....iiiiiieiiicieeeee ettt e et et e et e et e et e e e sbeebeesabeenbeeesaeenbaeeneeenseenes 29
4.2.7 Quit CLIPS IDE (™Q) teeteeieeiieieeteeeesie ettt ettt ssaesseese e nneenes 29

4.3 The EdIt MENU ...ooeciiiieiiieciie ettt ettt e et e e e e et e e eaaeesnsaeesnneeennseeenns 29
A3 1 UNAO (MZ) ettt ettt ettt ettt et et e et e s it e et essteeabeeeneeenbeennes 29
4.3.2 REAO (Ml mZ) ettt ettt ettt et 29
4.3.3 CUL (M) ettt ettt ettt ettt et et e et et e e bt e at e et e e nbeebeeenteenbeennes 30
A.3.4 COPY (M0 ittt ettt ettt ettt ettt e et e et e e ba e st e enbeentbeenbaeenseenreennes 30
4.3.5 PASEE (M-V) oot et e e b e et e e e b e e e ra e e e raeeeraeenraeanns 30
4.4 THE TEXE IMEINU....cccviiiiiieeiiieeiieeeitee ettt e et e ette e et e e s teeesnteeesbeeesaeeensseeenseessnsaeesnneesnnseennns 30
4.4.1 Load Selection (M-K)).....ccuiiiiieeiieeeeeee et ettt e e e eree e 30
4.4.2 Batch Selection (M5 -K) .o 30
4.4.3 10ad BUTTETooiiiiicee et rae e 30
4.4.4 Balance (M-B) uueeoeieieiie e et e e bee e bae e 31
4.4.5 COMIMENL.....ccutiieiiieeiiee et ee et ee et ee ettt e st e e st e e sateeesabeeessbeessteeensseesnsaeessnaeesseeesabeeenns 31
4.4.6 UNCOIMIMENTccoiiiiiiieiiiiiieeeiitieeeeritteeeetteeeeeatteeeesasaeeeesnasaeeesssssaeesansseeeessnnsseeessseees 31

4.5 The Environment MENU.........cccoeiiiiiiiiiiiiiieiieeie ettt ettt et e eebeesaaeebeesneeennees 31
T U O 1= USRS 31
4.5.2 Load Constructs... (M=) ..ueiooieieieeceeeee ettt e 31
4.5.3 Load BatCh... ("M =L) oo e 31
4.5.4 SEt DITECIOTY . .. teeutieiieeieeite ettt ettt ettt et e e bt e st e e bt e saaeenbeesateenseessbeenbeesneeenseennns 32
4.5.5 RESCE (MR et et e et eeaaeenbaeens 32

CLIPS Interfaces Guide iii

CLIPS Reference Manual

4.5.6 RUN (M1 mR) oot e 32
4.5.7 Halt RULES (M=.)eeeutieiieeieeiteeie ettt ettt ettt ettt e te e st eesbeessaesabaesneeenseennns 32
4.5.8 Halt EXeCUtion (M1l =) weeeiieiieie ettt e 32
4.5.9 Clear SCIOIIDACKcouiiiiirieiieieetee et 32
4.6 The DEDUZ MENUcccuiiiiiiieeieecee ettt ettt e et e et e e e saeeeaaeessaeesssaeessneeessseeenns 32
4.6.1 WatCh SUDMENUcc.eoiiiiiiiiiiieeeeeee et 32
4.6.2 AZENAA BIOWSETccciiiiiiiieeiie ettt ettt e e ste e e tveeeseaeeesaeesnsaeesssaeessseeennsaeenns 33
4.6.3 FACt BIOWSETceuiiiiiiiiieeieeete ettt st et 33
4.6.4 INStANCE BIOWSETciiiiiiiieiieiiiie ettt e e e e e e et e e e e nanaeeeesnsaeeeennnneas 34
4.6.5 CONSLIUCT INSPECLOTveeiiiiieiiiieeiiee ettt ettt et e e e st e e aeeenabeeenes 36
4.7 The WINAOW MENUcviiiiiiiiiiieeiiie ettt ste e e st eeseaeeessaeeessaesssaeessaaesssaeessseeessseaenns 36
4.8 The HElP MENU ...couviiiieeiiieiieeie ettt ettt ettt e et s e eteesaaeesbeessaesasaessbeenseessseenseas 36
4.8.1 CLIPS HOME PAZEcoueiiiiiiiiieiiececee et 36
4.8.2 Online DOCUMENTAtIONevieiieiiiriieiieie ettt 36
4.8.3 ONlNE EXAMPIEScuuiiiiiiiiiiiiieiie ettt e 36
4.8.4 CLIPS EXpert SYStEM GIOUP ...cccuveeeurieeiieeeiiieeniieenieeeniteeenereeesereessneesaneessneessseesnns 36
4.8.5 SourceFOorge FOTUMScocuiiiiiiiiiiicicce e e 37
4.8.6 Stack OVErflow Q&Aooouiieeeeeee ettt e e e e e erae e 37
4.8.7 ADOUL CLIPS IDE ...ttt sttt st 37

4.9 Creating the Swing IDE EXECUtabIEcccuieviiiiiiiiiiiicicceceece e 37
Section 5: CLIPS DLL Interface 39
5.1 Installing the SOUICE COAEc.uiiiiiiiiiiiiiiiieeieee ettt eeeees 39
5.2 Building the CLIPS LIDIATi€sccccectiriiiiiiiinienieeieetcie ettt 39
5.2.1 Building the Projects Using Microsoft Visual Studio Community 2017 39

5.3 Running the Library EXamplesccocueiiiiiiiiiiiiiiciee e 40
5.3.1 Building the Examples Using Microsoft Visual Studio Community 2017............... 40
Section 6: CLIPS .NET Interface 43
6.1 Installing the SOUTCE COAEoiiiiiiiiiiieiie et ree e e e saaee e 43
6.2 Building the .NET Library and Example Executables............c.cccoeouieiiininiiiniiiieiee. 43
6.2.1 Building the Projects Using Microsoft Visual Studio Community 2017 44

6.3 Running the .NET Demo Programscccceeiieiiiiiiiiiieieceee e 44
6.3.1 WINE DEIMO ...ttt ettt st e 44
6.3.2 AULO DIBIMO ..ottt ettt ettt e s e et e et e e et e e aaee e 45
6.3.3 ANIMAL D@IMO...cutiiiiiiiieieee e ettt 45
6.3.4 ROULET DIEIMOcniiiiiiiiieiect ettt st e 45

6.4 CLIPS INET ClaSSESecutteriieiiieiiieiiesite ettt ettt ettt ettt e bt e st e b e st e bt e enbeesaeeeaeeas 46
6.4.1 The Environment Class..........cocereeririinieneeieiierieeeeitesie sttt 46
6.5.2 The PrimitiveValue Class and Subclassescoceeveiiiiiiiiiiiinieiiieiceeeeeeeee 52
6.5.3 The CLIPSException and CLIPSLoadException CIassescccecveevieriiieneeenenne. 56
6.5.4 The ROULET CLaASS......eiiiiiiiiiiieie ettt st 56
6.5.5 The USerFUnCtion ClaSSc..ceouiriiriiiiiniierieeieniteniteeet ettt 58

iv Table of Contents

CLIPS Reference Manual

6.5.60 EXAMPICS...cccuiiiiiiiieiiie ettt e et e e e e e saae e e taeesaaeesssaeessraeennaaeeenaeeennraeenns 59
Section 7: CLIPS Java Native INterfacecuceivecsuccrersecsuecsenssensuccsenssesssecssnssesssnsssesssssecssees 65
7.1 CLIPSINI DIreCtOry STIUCLUIEcvviieiiieeiiieeiieeesiieeertteeesieeeeiteesreeessaeeesseeessseeessseeensseeenns 65
7.2 Issuing Commands from the Terminalcccooviiiiiiiiiiniiiieecee e 66

7.3 Running CLIPSINI in Command Line Mode............cccoeeviiieiiieeieeeie e 67
7.4 Running the Swing Demo Programsccccooieriiiniieeiiieniiecieeee e 67
7.4.1 SUAOKU D@IMO.......eiiiiiieiie ettt e e e e e e s te e e s baeessveeessseeennseeenns 67

742 WINE DEINO ...ttt ettt sttt ettt et seee b enees 68

743 AULO DOIMO....eiiiiiiieeeiiee ettt e et e e et e e e et e e e s nab e e e e e nbaeeeesnraaeeennnes 69

7.4.4 ANTMAL DOoiuiiiiiiiiiieiiee ettt sttt sttt et 70

7.4.5 ROULET DE@MIOeiiiieeeeiiiiee ettt e e et e e e et e e e et e e e e snnsaeeeenneneas 70

7.5 Creating the CLIPSINIJAR File.....c.cooviiiiiiiiieiieciicece ettt 71

7.6 Creating the CLIPSINI Native Library........cccccocevieiiiriininiiiiiinicieneeseeieeeeeecnie e 72
7.6.1 Creating the Native Library on macOScccoevvieiiiiiiienieeieeeeeeeee e 72

7.6.2 Creating the Native Library on Windows 10.......c..ccceeiiniiiiniininiinicnenicnceeeen 73

7.6.3 Creating the Native Library On LINUX........ccccovveeviieiiiiiiieiie e 73

7.7 Recompiling the Swing Demo Programs............cccceecuerieririiiniinienenieneeieeeeeeeie e 73
7.7.1 Recompiling the Swing Demo Programs on macOS............cccovvvieiiienieeciienieeieene, 73

7.7.2 Recompiling the Swing Demo Programs on Windowsc.ccccceevenienenicnecniennne. 74

7.7.3 Recompiling the Swing Demo Programs on LinuXcccceccveriieviienieenieenieeneenne, 74

7.8 Internationalizing the Swing Demo Programs............c.cccoeeviiriiniininiieniinenieneceeienens 74
7.9 CLIPSINI CIASSES ...ccuveeuteiieniieiieetietteitesite sttt etee bt eitesite bt e bt eate s bt etesatesbeebeentesneenseennesneens 76
7.9.1 The Environment CIaSS...........ccccuiieiiiieiiieeciie et eeeeseeeeereeesreeesveeesveeesavee e 76

7.9.2 The PrimitiveValue Class and Subclassescoceeveeiiiiiiiniiiiniiiiieicicceceeee 82

7.9.3 The CLIPSException and CLIPSLoadException Classescccceceveeruereeneenuennne. 85

7.9.4 The Router INterfacecooueoiiiiiiiiiiii e 86

7.9.5 The UserFunction INterfacecoocuieiiieiiiiiiiiiieeeeee e 88

7.9.6 EXAMPIES...ccouiiiiiiieiiie ettt ettt e et e et e e staeeetaeesaaeesssaeesnseeeennaeennseeennsaeenns 88
Appendix A: Support Information 95
A.1 Questions and INfOrmMatioN............cccoviiiiiiiiiii e 95
A2 DOCUMENTATION ...ttt ettt et ettt et ettt este e e bt e ssbeeabeesateenbeesseeenseessseanseesnneenseas 95
A.3 CLIPS Source Code and Executablesc.cccooiiiiiiiiiiiiiiiiieceececeeeeeen 95
Appendix B: Update Release Notes 97
BT VETSION 0.40 ...ttt ettt ettt ettt st e st e e e eaeas 97
B2 VErsion 0.30ocueiiiiiiiieieiiee ettt et st a et et sbe e 97
INAEX o ciiniiiiiiiniieinineeeniteeeninteesinnecsssnncsssnessssnecsssnesssseessssnsssssesssssssssssesssssessssasssssasssssssssssasssssassssanssss 99

CLIPS Interfaces Guide v

CLIPS Reference Manual

License Information

Permission is hereby granted, free of charge, to any person obtaining a copy of this software (the
“Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

CLIPS Interfaces Guide i

CLIPS Reference Manual

Preface

About CLIPS

Developed at NASA’s Johnson Space Center from 1985 to 1996, the ‘C’ Language Integrated
Production System (CLIPS) is a rule-based programming language useful for creating expert
systems and other programs where a heuristic solution is easier to implement and maintain than
an algorithmic solution. Written in C for portability, CLIPS can be installed and used on a wide
variety of platforms. Since 1996, CLIPS has been available as public domain software.

CLIPS Version 6.4

Version 6.4 of CLIPS includes three major enhancements: a redesigned C Application
Programming Interface; wrapper classes and example programs for .NET and Java; and
Integrated Development Environments with Unicode support for Windows and Java. For a
detailed listing of differences between releases of CLIPS, refer to appendix B of the Basic
Programming Guide and appendix B of the Advanced Programming Guide.

CLIPS Documentation

Two documents are provided with CLIPS.

» The CLIPS Reference Manual which is split into several volumes:

* Volume I - The Basic Programming Guide provides information on the CLIPS
programming language.

* Volume Il - The Advanced Programming Guide provides information on compiling
CLIPS and use of the C Application Programming Interfaces.

* Volume IIl - The Interfaces Guide provides information on the CLIPS Integrated
Development Environments, wrapper classes, and example programs.

» The CLIPS User’s Guide provides an introduction to CLIPS and rule-based programming.

CLIPS Interfaces Guide iii

CLIPS Reference Manual

Section 1;
Introduction

This manual is the Interfaces Guide for CLIPS. It is intended for users interested in using the
Integrated Development Environments (IDEs) for Windows, macOS, and Java; the wrapper
classes for .NET and Java; and the example programs for .NET and Java. Section 2 of this
manual describes the Windows IDE for CLIPS. Section 3 describes the macOS IDE for CLIPS.
Section 4 describes the Java Swing IDE for CLIPS. Section 5 describes the CLIPS DLL
Interface. Section 6 describes the CLIPS .NET Interface. Section 7 describes the CLIPS Java
Native Interface.

CLIPS Interfaces Guide 1

CLIPS Reference Manual

Section 2:

CLIPS .NET IDE

This section provides a brief summary of the CLIPS 6.4 .NET Integrated Development
Environment (IDE). The IDE provides a dialog pane that allows commands to be entered in a
manner similar to the standard CLIPS command line interface. Any CLIPS /O to standard input
or standard output is directed to this dialog pane. In addition, the IDE also provides a browser
pane for examining the current state of the CLIPS environment. When launched, the IDE
displays a window containing a menu bar, a status bar, and a dialog pane:

i CLIPSIDE - O X
File Environment Debug Help

Dir: C\Users\Gary Riley\Documents

CLIPS (Cypher Alpha 85/17/17)
CLIPS> |

The status bar is displayed beneath the menu bar. On the left side of the status bar is the current
working directory. The splitter along the bottom edge of the dialog pane can be dragged to reveal
or hide any browser tabs that are open in the browser pane.

Inline editing is supported in the dialog pane. The left and right arrow keys can be used to move
the caret backwards and forwards through the current command. Pressing the delete key will
delete the character to the left of the caret. Insertion of other characters or pasted text occurs at
the caret. The esc key moves the caret to the end of the current command. The caret must be at
the end of the current command in order for pressing the return key to execute the command.

CLIPS Interfaces Guide 3

CLIPS Reference Manual

A command history is also supported for the dialog pane. The up and down arrows allow you to
cycle through the command history. The up arrow restores the previous command and the down
arrow restores the next command. Holding the shift key down when the up or down arrow is
pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments)
will also clear all of the text in the dialog pane.

Holding down the control key while pressing the period key will halt rule execution. The RHS
actions of the currently executing rule will be allowed to complete before rule execution is
halted. Holding down the shift key, the control key, and the H key will halt rule execution after
the current RHS action. Remaining RHS actions will not be executed. This key combination can
also be used to halt the execution of commands and functions that loop. The Halt Rules menu
item can also be selected from the Environment menu during execution. Selecting this menu item
is equivalent to holding down the control key while pressing the H key. The Halt Execution
menu item can also be selected from the Environment menu during execution. Selecting this
menu item is equivalent to holding down the shift key and the control key while pressing the H
key.

2.1 The File Menu

2.1.1 Quit

This command exits CLIPS.

2.2 The Edit Menu

2.2.1 Cut (Ctrl+X)

This command removes selected text in the dialog pane and places it in the Clipboard. Only
selected text from the current command being entered can be cut.

2.2.2 Copy (Ctrl+C)

This command copies selected text in the dialog pane and places it in the Clipboard.

4 Section 2: CLIPS .NET IDE

CLIPS Reference Manual

2.2.3 Paste (Ctrl+V)

This command copies the contents of the Clipboard to the selection point or selected text in the
dialog pane. Text can only be pasted into the current command being entered.

2.3 The Environment Menu

2.3.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the
CLIPS command (clear) will be echoed to the dialog pane and executed. This command is not
available when CLIPS is executing.

2.3.2 Load Constructs... (Ctrl+L)

This command displays a file selection dialog, allowing the user to select a text file containing
constructs to be loaded into CLIPS. This command is equivalent to the CLIPS command (load
<file-name>). When this command is chosen and a file is selected, the appropriate CLIPS load
command will be echoed to the dialog pane and executed.

2.3.3 Load Batch... (Ctrl+Shift+L)

This command displays a file selection dialog, allowing the user to select a text file to be
executed as a batch file. This command is equivalent to the CLIPS command (batch <file-
name>). When this command is chosen and a file is selected, the appropriate CLIPS batch
command will be echoed to the dialog pane and executed.

2.3.4 Set Directory...

This command displays a folder selection dialog, allowing the user to select the current directory
associated with the CLIPS environment. File commands such as load, batch, and open use the
current directory to determine the location where file operations should occur. The current
directory for the dialog pane is displayed in the status bar.

2.3.5 Reset (Ctrl+R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the
CLIPS command (reset) will be echoed to the dialog pane and executed.

CLIPS Interfaces Guide 5

CLIPS Reference Manual

2.3.6 Run (Ctrl+Shift+R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the
CLIPS command (run) will be echoed to the dialog pane and executed.

2.3.7 Halt Rules (Ctrl+H)

This command halts execution when the currently executing rule has finished executing all of its
actions. This command has no effect if rules are not executing.

2.3.8 Halt Execution (Ctrl+Shift+H)

This command halts execution at the first available opportunity. If rules are executing, the
currently executing rule may not complete all of its actions.

2.3.9 Clear Scrollback

This command clears all of the text in the dialog pane. From the CLIPS command prompt, the
command clear-window (which takes no arguments) will also clear all of the text in the dialog
pane.

2.5 The Debug Menu

2.5.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have
a check to the left of the menu item. Disabled watch items have no check mark in their check
box. Choosing the All menu item checks all of the watch items. Choosing the None menu item
unchecks all of the watch items.

2.5.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left
side of the browser shows the modules currently on the focus stack. The list of the right side of
the browser shows the activations on the agenda of the selected module from the focus stack.

6 Section 2: CLIPS .NET IDE

CLIPS Reference Manual

Agenda X
Focus Stack Salience Rule Basis
QUESTIONS (4] ask-a-question f-8
CHOOSE-QUALITIES] ask-a-question -7
WINES 0 ask-a-question -6
PRINT-RESULTS 0 ask-a-question -5
MAIN 0 ask-a-question -3
0 ask-a-question -1

The Reset button sends a “(reset)” command to the dialog pane. The Run button sends a “(run)”
command to the dialog pane. The Step button sends a “(run 1)” command to the dialog pane.
Pressing the Halt Rules button when rules are executing will halt execution when the currently
executing rule has finished all of its actions.

2.5.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the
browser shows the modules currently defined. The list in the middle of the browser shows the
facts that are visible to the selected module from the module list. The list on the right side of the
browser shows the slot values of the selected fact from the fact list.

Facts X
[Display Defavlted Values Search:
Madule Index Template Slot Value
MAIN -1 rmonkey name big-pillow
f-2 thing location |t2-2
f-3 thing on-top-of |red-couch
-4 thing
-5 thing
-6 chest
-7 thing
f-8 chest
-9 thing
10 thing
f-11 chest
f-12 thing
f-13 goal-is-to

The list of facts can be sorted based on either the fact index or the associated deftemplate name
by clicking on either the Index or the Template column header. The list of slots can be sorted
based on either the slot name or the slot value by clicking on either the Slot or the Value column

CLIPS Interfaces Guide 7

CLIPS Reference Manual

header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
fact will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search
text is entered and the return key is pressed each fact and its slots are examined to determine if
the search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots
name with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then
the fact would be displayed in the fact list only if the search text was found in one of the
following strings:

f-4

thing name big-pillow
thing location t2-2
thing on-top-of red-couch

2.5.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the
left side of the browser shows the modules currently defined. The list in the middle of the
browser shows the instances that are visible to the selected module from the module list. The list
on the right side of the browser shows the slot values of the selected instance from the instance
list.

Instances X
Display Defaulted Values Search:
Madule Index Template Slot Value
MAIN genl status search-depth 3
gend opposite-of parent <Instance-genf>
gen3 opposite-of farmer-location share-1
genb status fox-location shore-1
gen’ status goat-location shore-2
gend status cabbage-location shore-1
genl2 status last-move alone
genl5 status
genl6 status
gen28 status
gen30 status
gen32 status
gen33 status

The list of instances can be sorted based on either the instance name or the associated defclass
name by clicking on either the Name or the Class column header. The list of slots can be sorted

8 Section 2: CLIPS .NET IDE

CLIPS Reference Manual

based on either the slot name or the slot value by clicking on either the Slot or the Value column
header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
instance will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list.
When search text is entered and the return key is pressed each instance and its slots are examined
to determine if the search text is found within one of the following templates:

[<name>]
<defclass—-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing]]
and slots name with value big-pillow, location with value t2-2, and on-top-of with value
red-couch, then the instance would be displayed in the instance list only if the search text was
found in one of the following strings:

[thingl]

THING name big-pillow
THING location t2-2

THING on-top-of red-couch

2.6 The Help Menu

2.6.1 CLIPS Home Page

Opens the CLIPS Home web page on SourceForge.

2.6.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide,
CLIPS Reference Manuals, and other Documentation.

2.6.3 Online Examples

Opens a web page with links to example programs.

2.6.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

CLIPS Interfaces Guide 9

CLIPS Reference Manual

2.6.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

2.6.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

2.6.7 About CLIPS IDE

This command displays version information about the CLIPS IDE application.

2.8 Building the Windows Executables

In order to create the Windows executables, you must install the source code by downloading the
clips_windows_projects 640.zip file (see appendix A for information on obtaining CLIPS).
Once downloaded, you must then extract the contents of the file by right clicking on it and
selecting the Extract All... menu item. Drag the Projects directory into the directory you’ll be
using for development. In addition to the source code specific to the Windows projects, the core
CLIPS source code is also included, so there is no need to download this code separately.

2.8.1 Building CLIPSIDE Using Microsoft Visual Studio Community 2017

Navigate to the Projects\MVS 2017 directory. Open the file CLIPS.sln by double clicking on it
or right click on it and select the Open menu item. After the file opens in Visual Studio, select
Configuration Manager ... from the Build menu. Select the Release Configuration for CLIPSIDE,
the appropriate platform (either x64 for a 64-bit system or x86 for a 32-bit system), and then
click the Close button. Right click on the CLIPSIDE project name in the Solution Explorer and
select the Build menu item. When compilation is complete, the CLIPSIDE executable will be in
the corresponding <Platform>\<Configuration> directory of MVS 2017\CLIPSIDE\bin.

2.8.2 Building CLIPSDOS Using Microsoft Visual Studio Community 2017

Navigate to the Projects\MVS 2017 directory. Open the file CLIPS.sln by double clicking on it
or right click on it and select the Open menu item. After the file opens in Visual Studio, select
Configuration Manager... from the Build menu. Select the Release Configuration for
CLIPSDOS and then click the Close button. Right click on the CLIPSDOS project name in the
Solution Explorer and select the Build menu item. When compilation is complete, the
CLIPSDOS executable will be in the corresponding <Platform>\<Configuration> directory of
the MVS 2017\CLIPSDOS\Executables.

10 Section 2: CLIPS .NET IDE

CLIPS Reference Manual

Section 3:

CLIPS macOS IDE

This section provides a brief summary of the CLIPS 6.4 macOS Integrated Development
Environment (IDE). The IDE provides a dialog window that allows commands to be entered in a
manner similar to the standard CLIPS command line interface. Any CLIPS /O to standard input
or standard output is directed to this dialog window. In addition, the IDE also provides browser
windows for examining the current state of the CLIPS environment. When launched, the IDE
displays a dialog window:

® Dialog
Dir: ~/Documents/CLIPS

CLIPS (Cypher Alpha 2/17/16)
CLIPS>

A status bar is displayed beneath the title bar. On the left side of the status bar is the current
working directory. A Pause button is on the right side of the status bar. The CLIPS IDE is multi-
threaded and uses a separate thread to execute commands entered in the dialog window.
Pressing the Pause button while a command is executing will suspend execution of the command

CLIPS Interfaces Guide 11

CLIPS Reference Manual

thread. This is useful if you need to examine the output of the executing program. Pressing the
Pause button a second time will resume execution of the command thread.

Inline editing is supported in the dialog window. The left and right arrow keys can be used to
move the caret backwards and forwards through the current command. Pressing the delete key
will delete the character to the left of the caret. Insertion of other characters or pasted text occurs
at the caret. The esc key moves the caret to the end of the current command. The caret must be at
the end of the current command in order for pressing the return key to execute the command.

A command history is also supported for the dialog window. The up and down arrows allow you
to cycle through the command history. The up arrow restores the previous command and the
down arrow restores the next command. Holding the shift key down when the up or down arrow
is pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments)
will also clear all of the text in the dialog window.

Holding down the command key while pressing the period key will halt rule execution. The
RHS actions of the currently executing rule will be allowed to complete before rule execution is
halted. Holding down the shift key, the command key, and the period key will halt rule
execution after the current RHS action. Remaining RHS actions will not be executed. This key
combination can also be used to halt the execution of commands and functions that loop. The
Halt Rules menu item can also be selected from the Environment menu during execution.
Selecting this menu item is equivalent to holding down the command key while pressing the
period key. The Halt Execution menu item can also be selected from the Environment menu
during execution. Selecting this menu item is equivalent to holding down the shift key and the
command key while pressing the period key.

The interface also provides a text editor for writing CLIPS programs. Editing windows contain a
control strip with a drop-down menu and a content area for text:

12 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

@ O] Untitled

=5

Load Selection
Batch Selection
Load Buffer

Balance
Comment
Uncomment

(defrule hello

=>

(println "Hello World"))
(defrule goodbye

=>

(println "Goodbye World"))

Newly created editing windows begin with the word Untitled in their title bar. If an editing
window is associated with a file, then the title bar will contain the file name. Beneath the title bar
is a control strip. The drop-down menu on the left side of the strip provides access to the same
menu items that are in the Text menu. In the window shown previously, selecting the Load
Selection menu item (either from the action menu or the Text menu) would load the selection in
the editing window in the Dialog window.

3.1 The CLIPS IDE Menu

3.1.1 About CLIPS

This command displays version information about the CLIPS IDE application.

CLIPS Interfaces Guide 13

CLIPS Reference Manual

3.1.2 Preferences... (38)

This command displays a dialog box that allows the user to set the parameters for several options
in the CLIPS MacOS IDE. With any tab selected, clicking the Default button restores the default
settings for all tabs in the dialog.

3.1.2.1 Dialog Tab

The Dialog tab allows text options for the dialog window to be set.

O Preferences

..ii. 'l u. Editor

Font: Change...

Menlo Regular - 11pt

Balance Parentheses

Defaults

The Change... button allows the font used in the editing windows to be changed. When you
click this button, a Fonts dialog will appear. Select a font or font size from the Font dialog and
the text in the Dialog tab will change to reflect the new font or font size.

The Balance Parentheses check box, if enabled, causes the matching left parenthesis to be

momentarily highlighted whenever a right parenthesis is type or the cursor is moved immediately
after a right parenthesis in the Dialog window.

3.1.2.2 Editor Tab

The Editor tab allows text options for editing windows to be set.

14 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

O Preferences
Dialog

Font: Change...

Menlo Regular - 11pt

Balance Parentheses

Defaults

The Change... button allows the font used in the editing windows to be changed. When you
click this button, a Fonts dialog will appear. Select a font or font size from the Font dialog and
the text in the Editor tab will change to reflect the new font or font size.

The Balance Parentheses check box, if enabled, causes the matching left parenthesis to be

momentarily highlighted whenever a right parenthesis is type or the cursor is moved immediately
after a right parenthesis in an editing window.

3.1.3 Quit CLIPS IDE (3))

This command causes the CLIPS IDE to quit. The user will be prompted to save any files with
unsaved changes.

3.2 The File Menu

3.2.1 New (V)

This command opens a new buffer for editing with the window name Untitled.

CLIPS Interfaces Guide 15

CLIPS Reference Manual

3.2.2 Open... (D)

This command displays the standard file selection dialog sheet, allowing the user to select a text
file to be opened in a window for editing. More than one file can be opened at the same time,
however, the same file cannot be opened more than once. As files are opened, they are
automatically stacked.

3.2.3 Open Recent

This command displays a list of recently opened files, allowing the user to select a text file to be
opened as a buffer for editing.

3.2.4 Close (38V)

This command closes the active window if it has red close button in its upper left corner. If the
active window is an editing window that has been modified since it was last saved, an alert sheet
will confirm whether the changes should be saved or discarded or whether the close command
should be canceled.

3.2.5 Save ()

This command saves the file in the active edit window. If the file is untitled, a save file dialog
sheet will prompt for a file name under which to save the file.

3.2.6 Save As... (1)

This command allows the active edit window to be saved under a new name. A save file dialog
sheet will appear to prompt for the new file name. The name of the editing window will be
changed to the new file name.

3.2.7 Revert

This command restores the active edit window to the last-saved version of the file in the buffer.
Any changes made since the file was last saved will be discarded.

3.2.8 Page Setup... (1)

This command allows the user to specify information about the size of paper used by the printer.

16 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

3.2.9 Print... (38)

This command allows the user to print the active edit window.

3.3 The Edit Menu

3.3.1 Undo (3%)

This command allows you to undo your last editing operation. Typing, cut, copy, paste, and
delete operations can all be undone. The Undo menu item will change in the Edit menu to reflect
the last operation performed. For example, if a Paste command was just performed, the Undo
menu item will read Undo Paste.

3.3.2 Redo (1 3&)

This command allows you to redo your last editing operation. Typing, cut, copy, paste, and
delete operations can all be redone. The Redo menu item will change in the Edit menu to reflect
the last operation performed. For example, if a Paste command was just performed, the Redo
menu item will read Undo Paste.

3.3.3 Cut (¥X)

This command removes selected text in the active edit window or the dialog window and places
it in the Clipboard. In the dialog window, only selected text from the current command being
entered can be cut.

3.3.4 Copy ()

This command copies selected text in the active edit window or the dialog window and places it
in the Clipboard.

3.3.5 Paste (38/)

This command copies the contents of the Clipboard to the selection point in the active edit
window or the dialog window. If the selected text is in the active edit window, it is replaced by
the contents of the Clipboard. In the dialog window, text can only be pasted/replaced in the
current command being entered.

CLIPS Interfaces Guide 17

CLIPS Reference Manual

3.3.6 Delete

This command removes selected text in the active edit window or the display window. The
selected text is not placed in the Clipboard.

3.3.7 Select All (32)

This command selects all of the text in the active edit or display window.

3.3.8 Find Submenu
3.3.8.1 Find... (®F)

This command displays a dialog box which allows the user to set parameters for text search and
replacement operations. The dialog box that appears allows a search and replacement string to be
specified.

] Find
Find:

Replace with:

(o < Jf <

Ignore case Wrap around Contains

Replace All Replace Replace & Find Previous m

Three other options can be set in the search dialog box. The Ignore Case option makes the string
search operation case-insensitive for alphabetic characters; that is, the string “Upper” will match
the string “uPPER”. The Wrap Around option determines whether the search is restarted at the
top of the document when the bottom of the document is reached. The drop-down menu allows
the match criterion to be set. If it is set to Contains, then the search matches any text containing
the search string. If it is set to Starts with, then only whole words beginning with the search
string will be matched. If it is set to Full word, then only whole words will be matched.

Once search options have been set, one of five search dialog buttons can be pressed. The
Replace All button replaces all occurrences of the Find string with the Replace With string. The
Replace button replaces the current selection with the Replace With string. The Replace &

18 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

Find button replaces the current selection with the Replace With string and finds and selects the
next match for the Find string. The Previous button finds and selects the previous match for the
Find string. The Next button finds and selects the next match for the Find string.

3.3.8.2 Find Next (385)

This command finds and selects the next match for the Find string.
3.3.8.3 Find Previous (1 38)

This command finds and selects the previous match for the Find string.
3.3.8.4 Use Selection for Find (3F)

This command sets the Find string to the current selection.

3.3.8.5 Jump to Selection (3§)

This command brings the current selection into view.

3.4 The Text Menu

3.4.1 Load Selection ()

This command loads the constructs in the active edit window’s current selection into CLIPS.
Standard error detection and recovery routines used to load constructs from a file are also used
when loading a selection (i.e., if a construct has an error in it, the rest of the construct will be
skipped over until another construct to be loaded is found).

3.4.2 Batch Selection (f #)

This command treats the active edit window’s current selection as a batch file and executes it as
a series of commands. Standard error detection and recovery routines used to load construct from
a file are not used when batching a selection (i.e., if a construct has an error in it, a number of
ancillary errors may be generated by subsequent parts of the same construct following the error).

3.4.3 Load Buffer

This command loads the constructs from the entire contents of active edit window into CLIPS. It
is equivalent to selecting the entire buffer and executing a L.oad Selection command.

CLIPS Interfaces Guide 19

CLIPS Reference Manual

3.4.4 Balance (3B)

This command operates on the active edit window’s current selection by expanding it until the
selection begins and ends with parentheses and each parenthesis contained in the selection is
properly nested (i.e. each left opening parenthesis has a properly nested right closing parenthesis
and vice versa). Repeatedly using this command will select larger and larger selections of text
until a balanced selection cannot be found. The balance command is a purely textual operation
and does not ignore parentheses contained within CLIPS string values.

3.4.5 Comment

This command operates on the current selection in the active edit window by adding a semicolon
to the beginning of each line contained in the selection.

3.4.6 Uncomment

This command operates on the current selection in the active edit window by removing a
semicolon (if one exists) from the beginning of each line contained in the selection.

3.5 The Environment Menu

3.5.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the
CLIPS command (clear) will be echoed to the dialog window and executed. This command is not
available when CLIPS is executing.

3.5.2 Load Constructs... (38

This command displays the standard file selection dialog sheet, allowing the user to select a text
file to be loaded into the knowledge base. This command is equivalent to the CLIPS command
(load <file-name>). When this command is chosen and a file is selected, the appropriate CLIPS
load command will be echoed to the environment window and executed.

3.5.3 Load Batch... (1 38.)

This command displays the standard file selection dialog sheet, allowing the user to select a text
file to be executed as a batch file. This command is equivalent to the CLIPS command (batch
<file-name>). When this command is chosen and a file is selected, the appropriate CLIPS batch
command will be echoed to the environment window and executed.

20 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

3.5.4 Set Directory...

This command displays the standard folder selection dialog sheet, allowing the user to select the
current directory associated with the environment. CLIPS file commands such as load, batch, and
open use the current directory to determine the location where file operations should occur. The
current directory for an environment window is displayed in the status pane below the window
title.

3.5.5 Reset (¢R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the
CLIPS command (reset) will be echoed to the dialog window and executed.

3.5.6 Run (1 #R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the
CLIPS command (run) will be echoed to the dialog window and executed.

3.5.7 Halt Rules (38)

This command halts execution when the currently executing rule has finished executing all of its
actions. This command has no effect if rules are not executing.

3.5.8 Halt Execution (1 38)

This command halts execution at the first available opportunity. If rules are executing, the
currently executing rule may not complete all of its actions.

3.5.9 Clear Scrollback

This command clears all of the text in the dialog window. From the CLIPS command prompt, the
command clear-window (which takes no arguments) will also clear all of the text in the
environment window.

3.6 The Debug Menu

3.6.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have
a check to the left of the menu item. Disabled watch items have no check mark in their check

CLIPS Interfaces Guide 21

CLIPS Reference Manual

box. Choosing the All menu item checks all of the watch items. Choosing the None menu item
unchecks all of the watch items.

3.6.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left
side of the window shows the modules currently on the focus stack. The list of the right side of
the window shows the activations on the agenda of the selected module from the focus stack.

® 0 Agenda
Reset Run Step
Focus Stack Salience Rule Basis
QUESTIONS 0] ask-a-question f-8
CHOOSE-QUALITIES 0 ask-a-question f-7
WINES 0 ask-a-question f-6
PRINT-RESULTS 0 ask-a-question f-5
MAIN 0 ask-a-question f-3
0 ask-a-question f-1

The Reset button sends a “(reset)” command to the dialog window. The Run button sends a
“(run)” command to the dialog window. The Step button sends a “(run 1)” command to the
dialog window. Pressing the Halt Rules button when rules are executing will halt execution
when the currently executing rule has finished all of its actions.

3.6.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the
window shows the modules currently defined. The list in the middle of the window shows the
facts that are visible to the selected module from the module list. The list on the right side of the
window shows the slot values of the selected fact from the fact list.

22 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

[NN Facts
Display Defaulted Values Q
Module Index Template Slot Value
MAIN 1 monkey name big-pillow
2 thing location t2-2
3 thing on-top-of red-couch
5 thing
6 chest
7 thing
8 chest
9 thing

The list of facts can be sorted based on either the fact index or the associated deftemplate name
by clicking on either the Index or the Template column header. The list of slots can be sorted
based on either the slot name or the slot value by clicking on either the Slot or the Value column
header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
fact will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search
text is entered and the return key is pressed each fact and its slots are examined to determine if
the search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots
name with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then
the fact would be displayed in the fact list only if the search text was found in one of the
following strings:

f-4

thing name big-pillow
thing location t2-2
thing on-top-of red-couch

CLIPS Interfaces Guide 23

CLIPS Reference Manual

3.6.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the
left side of the window shows the modules currently defined. The list in the middle of the
window shows the instances that are visible to the selected module from the module list. The list
on the right side of the window shows the slot values of the selected instance from the instance
list.

| NN Instances
Display Defaulted Values Q

Module Name Class Slot A Value

MAIN genl status cabbage-location shore-1
gen2 opposite-of farmer-location shore-1
gen3 opposite-of fox-location shore-1
gen6 status goat-location shore-2
gen?7 status last-move alone
gen9 status parent <Instance-gen6>
gen12 status search-depth 3

geni15 status
gen16 status

The list of instances can be sorted based on either the instance name or the associated defclass
name by clicking on either the Name or the Class column header. The list of slots can be sorted
based on either the slot name or the slot value by clicking on either the Slot or the Value column
header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
instance will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list.
When search text is entered and the return key is pressed each instance and its slots are examined
to determine if the search text is found within one of the following templates:

[<name>]
<defclass—-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing]]
and slots name with value big-pillow, location with value t2-2, and on-top-of with value
red-couch, then the instance would be displayed in the instance list only if the search text was
found in one of the following strings:

24 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

[thingl]

THING name big-pillow
THING location t2-2

THING on-top-of red-couch

3.6.5 Construct Inspector

The Construct Inspector floats above the other CLIPS IDE windows and changes to show the
text of the associated construct when one of the items from the browsers is selected.

| JON Construct Inspector

(deftemplate MAIN::thing
(slot name (type SYMBOL) (default ?NONE))
(slot location (type SYMBOL) (default ?NONE))
(slot on-top-of (type SYMBOL) (default floor))
(slot weight (type SYMBOL) (allowed-symbols light heavy) (default light)))

3.7 The Window Menu

The bottom portion of the Window menu (everything below the other window management
menu items) is a list of all windows associated with the CLIPS IDE. A check mark is placed by
the window name to indicate that it is the frontmost window. A filled circle appears next to an
edit window title that has changes that need to be saved (unless it is the frontmost window).

3.8 The Help Menu

3.8.1 CLIPS Home Page

Opens the CLIPS Home web page on SourceForge.

3.8.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide,
CLIPS Reference Manuals, and other Documentation.

3.8.3 Online Examples

Opens a web page with links to example programs.

CLIPS Interfaces Guide 25

CLIPS Reference Manual

3.8.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

3.8.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

3.8.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

3.9 Creating the macOS Executables

In order to create the macOSX executables, you must install the source code using the
clips_macOS_project_640.dmg disk image. This file can be downloaded from the SourceForge
web site (see appendix A). Once downloaded, double click the file and then drag the CLIPS 6.40
Xcode Project folder into the folder you’ll be using for development. In addition to the source
code specific to the macOS IDE, the core CLIPS source code is also included with the project, so
there is no need to download this code separately.

3.9.1 Building the CLIPS IDE Using Xcode 9.1

Open the CLIPS 6.40 Xcode project directory. Double click the CLIPS.xcodeproj file. After
the file opens in the Xcode application, select the Product menu, then the Scheme submenu, and
then select the Edit Scheme... menu item. On the Info tab, set the Build Configuration drop
down menu to Release and the Executable drop down menu to CLIPS IDE.app. Select the
Build menu item from the Product menu to create the CLIPS IDE executable. The generated
executable can be found in the :build:Release folder.

26 Section 3: CLIPS macOS IDE

CLIPS Reference Manual

Section 4:

CLIPS Swing IDE

This section provides a brief summary of the CLIPS 6.4 Swing Integrated Development
Environment (IDE). The IDE provides a dialog window that allows commands to be entered in a
manner similar to the standard CLIPS command line interface. Any CLIPS /O to standard input
or standard output is directed to this dialog window. In addition, the IDE also provides browser
windows for examining the current state of the CLIPS environment.

On Windows and macOS, enter the following command from the CLIPSJINI directory (see
section 7.1) to launch the Swing IDE:

java -jar CLIPSIDE.jar

On Linux, you must first create the CLIPSJINI native library (see section 7.6.3). Once created,
enter the following command from the CLIPSJNI directory:

java -Djava.library.path=. -jar CLIPSIDE.jar

When launched, the IDE displays a dialog window:

Dialog ::

Dir: [Users /garyriley/Documents

CLIPS (Cypher Alpha @5/17/17)
CLIPS>

A status bar is displayed beneath the title bar. On the left side of the status bar is the current
working directory. A Pause button is on the right side of the status bar. The CLIPS IDE is multi-

CLIPS Interfaces Guide 27

CLIPS Reference Manual

threaded and uses a separate thread to execute commands. Pressing the Pause button while a
command is executing will suspend execution of the command thread. This is useful if you need
to examine the output of the executing program. Pressing the Pause button a second time will
resume execution of the command thread.

Inline editing is supported in the dialog window. The left and right arrow keys can be used to
move the caret backwards and forwards through the current command. Pressing the delete key
will delete the character to the left of the caret. Insertion of other characters or pasted text occurs
at the caret. The esc key moves the caret to the end of the current command. The caret must be at
the end of the current command in order for pressing the return key to execute the command.

A command history is also supported for the dialog window. The up and down arrows allow you
to cycle through the command history. The up arrow restores the previous command and the
down arrow restores the next command. Holding the shift key down when the up or down arrow
is pressed takes you respectively to the beginning or end of the command history.

From the CLIPS command prompt, the command clear-window (which takes no arguments)
will also clear all of the text in the dialog window.

Holding down the control key while pressing the period key will halt rule execution. The RHS
actions of the currently executing rule will be allowed to complete before rule execution is
halted. Holding down the shift key, the control key, and the period key will halt execution at the
first possible opportunity. If rules are executing, this will typically occur after the current RHS
action. Remaining RHS actions will not be executed. This key combination can also be used to
halt the execution of commands and functions that loop.

4.2 The File Menu

4.2.1 New (*-N)

This command opens a new buffer for editing with the window name Untitled.

4.2.2 Open... (*-0)

This command displays the standard file selection dialog sheet, allowing the user to select a text
file to be opened as a buffer for editing. More than one file can be opened at the same time,
however, the same file cannot be opened more than once. As files are opened, they are
automatically stacked.

28 Section 4: CLIPS Swing IDE

CLIPS Reference Manual

4.2.3 Save (*-S)

This command saves the file in the active edit window. If the file is untitled, a save file dialog
sheet will prompt for a file name under which to save the file.

4.2.4 Save As... ("+1-S)

This command allows the active edit window to be saved under a new name. A save file dialog
sheet will appear to prompt for the new file name. The name of the editing window will be
changed to the new file name.

4.2.5 Page Setup...

This command allows the user to specify information about the size of paper used by the printer.

4.2.6 Print...

This command allows the user to print the active edit window.

4.2.7 Quit CLIPS IDE (*-Q)

This command causes the CLIPS IDE to quit. The user will be prompted to save any files with
unsaved changes.

4.3 The Edit Menu

4.3.1 Undo (*-2)

This command allows you to undo your last editing operation. Typing, cut, copy, and paste
operations can all be undone.

4.3.2 Redo (" +1t-2)

This command allows you to redo your last editing operation. Typing, cut, copy, and paste
operations can all be redone.

CLIPS Interfaces Guide 29

CLIPS Reference Manual

4.3.3 Cut (*-X)

This command removes selected text in the active edit window or the dialog window and places
it in the Clipboard. In the dialog window, only selected text from the current command being
entered can be cut.

4.3.4 Copy (*-C)

This command copies selected text in the active edit window or the dialog window and places it
in the Clipboard.

4.3.5 Paste (*-V)

This command copies the contents of the Clipboard to the selection point in the active edit
window or the dialog window. If the selected text is in the active edit window, it is replaced by
the contents of the Clipboard. In the dialog window, text can only be pasted/replaced in the
current command being entered.

4.4 The Text Menu

4.4.1 Load Selection ("-K)

This command loads the constructs in the active edit window’s current selection into CLIPS.
Standard error detection and recovery routines used to load constructs from a file are also used
when loading a selection (i.e., if a construct has an error in it, the rest of the construct will be
skipped over until another construct to be loaded is found).

4.4.2 Batch Selection (" +1 -K)

This command treats the active edit window’s current selection as a batch file and executes it as
a series of commands. Standard error detection and recovery routines used to load construct from
a file are not used when batching a selection (i.e., if a construct has an error in it, a number of
ancillary errors may be generated by subsequent parts of the same construct following the error).

4.4.3 Load Buffer

This command loads the constructs from the entire contents of active edit window into CLIPS. It
is equivalent to selecting the entire buffer and executing a Load Selection command.

30 Section 4: CLIPS Swing IDE

CLIPS Reference Manual

4.4.4 Balance (*-B)

This command operates on the active edit window’s current selection by expanding it until the
selection begins and ends with parentheses and each parenthesis contained in the selection is
properly nested (i.e. each left opening parenthesis has a properly nested right closing parenthesis
and vice versa). Repeatedly using this command will select larger and larger selections of text
until a balanced selection cannot be found. The balance command is a purely textual operation
and does not ignore parentheses contained within CLIPS string values.

4.4.5 Comment

This command operates on the current selection in the active edit window by adding a semicolon
to the beginning of each line contained in the selection.

4.4.6 Uncomment

This command operates on the current selection in the active edit window by removing a
semicolon (if one exists) from the beginning of each line contained in the selection.

4.5 The Environment Menu

45.1 Clear

This command is equivalent to the CLIPS command (clear). When this command is chosen, the
CLIPS command (clear) will be echoed to the dialog window and executed. This command is not
available when CLIPS is executing.

4.5.2 Load Constructs... (*-L)

This command displays a file selection dialog, allowing the user to select a text file containing
constructs to be loaded into CLIPS. This command is equivalent to the CLIPS command (load
<file-name>). When this command is chosen and a file is selected, the appropriate CLIPS load
command will be echoed to the dialog window and executed.

4.5.3 Load Batch... (*+1-L)

This command displays a file selection dialog, allowing the user to select a text file to be
executed as a batch file. This command is equivalent to the CLIPS command (batch <file-
name>). When this command is chosen and a file is selected, the appropriate CLIPS batch
command will be echoed to the dialog window and executed.

CLIPS Interfaces Guide 31

CLIPS Reference Manual

4.5.4 Set Directory...

This command displays a folder selection dialog, allowing the user to select the current directory
associated with the CLIPS environment. File commands such as load, batch, and open use the
current directory to determine the location where file operations should occur. The current
directory for the dialog window is displayed in the status pane below the window title.

4.5.5 Reset (*-R)

This command is equivalent to the CLIPS command (reset). When this command is chosen, the
CLIPS command (reset) will be echoed to the dialog window and executed.

4.5.6 Run (*+{-R)

This command is equivalent to the CLIPS command (run). When this command is chosen, the
CLIPS command (run) will be echoed to the dialog window and executed.

4.5.7 Halt Rules (*-.)

This command halts execution when the currently executing rule has finished executing all of its
actions. This command has no effect if rules are not executing.

4.5.8 Halt Execution (" +1-.)

This command halts execution at the first available opportunity. If rules are executing, the
currently executing rule may not complete all of its actions.

4.5.9 Clear Scrollback

This command clears all of the text in the dialog window. From the CLIPS command prompt, the
command clear-window (which takes no arguments) will also clear all of the text in the dialog
window.

4.6 The Debug Menu

4.6.1 Watch Submenu

Watch items can be enabled or disabled by the appropriate menu item. Enabled watch items have
a check to the left of the menu item. Disabled watch items have no check mark in their check

32 Section 4: CLIPS Swing IDE

CLIPS Reference Manual

box. Choosing the All menu item checks all of the watch items. Choosing the None menu item
unchecks all of the watch items.

4.6.2 Agenda Browser

The Agenda Browser allows the activations on the agenda to be examined. The list on the left
side of the window shows the modules currently on the focus stack. The list of the right side of
the window shows the activations on the agenda of the selected module from the focus stack.

. Agenda #1 o B [X
Reset Run Step Halt Rules
Focus Stack : Salience Rule Basis
QUESTIONS 0 ask-a-question f-8
CHOOSE-QUALITIES| 0 ask-a-question f-7
WINES 8 0 ask-a-question f-6
PRINT-RESULTS 0 ask-a-question f-5
MAIN 0 ask-a-question f-3
0 ask-a-question f-1

The Reset button sends a “(reset)” command to the dialog window. The Run button sends a
“(run)” command to the dialog window. The Step button sends a “(run 1)” command to the
dialog window. Pressing the Halt Rules button when rules are executing will halt execution
when the currently executing rule has finished all of its actions.

4.6.3 Fact Browser

The Fact Browser allows the facts in the fact list to be examined. The list on the left side of the
window shows the modules currently defined. The list in the middle of the window shows the
facts that are visible to the selected module from the module list. The list on the right side of the
window shows the slot values of the selected fact from the fact list.

CLIPS Interfaces Guide 33

CLIPS Reference Manual

l Fact Browser #1 o' @ B
[| Display Defaulted Values Search: |
Module : Index Template : Slot Value
MAIN f-1 monkey name big-pillow
i f-2 thing location t2-2
f-3 thing on-top-of red-couch
f-4 thing g3
f-5 thing
f-6 chest
f-7 thing
f-8 chest
f-9 thing
f-10 thing
f-11 chest
f-12 thing
f-13 goal-is-to

The list of facts can be sorted based on either the fact index or the associated deftemplate name
by clicking on either the Index or the Template column header. The list of slots can be sorted
based on either the slot name or the slot value by clicking on either the Slot or the Value column
header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
fact will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the facts that are displayed in the fact list. When search
text is entered and the return key is pressed each fact and its slots are examined to determine if
the search text is found within one of the following templates:

f-<index>
<deftemplate-name> <slot-name> <slot-value>

For example, if the fact associated with the deftemplate thing had a fact index of 4 and slots
name with value big-pillow, location with value t2-2, and on-top-of with value red-couch, then
the fact would be displayed in the fact list only if the search text was found in one of the
following strings:

f-4

thing name big-pillow
thing location t2-2
thing on-top-of red-couch

4.6.4 Instance Browser

The Instance Browser allows the instances in the instance list to be examined. The list on the
left side of the window shows the modules currently defined. The list in the middle of the
window shows the instances that are visible to the selected module from the module list. The list

34 Section 4: CLIPS Swing IDE

CLIPS Reference Manual

on the right side of the window shows the slot values of the selected instance from the instance

list.
n Instance Browser #1 o @ E
Display Defaulted Values Search: |

Module B Name Class 1 Slot Value

MAIN start status farmer shore-1
genl status fox shore-1
gen2 status goat shore-2
gen3 status cabbage shore-1
gen4 status parent <Instance-genl>
gens status search-depth 3
gen6 status last-move farmer
gen? status
gen8 status
gen9 status
genlO status
genll status
genl?2 status
genl3 status
genl4 status

The list of instances can be sorted based on either the instance name or the associated defclass
name by clicking on either the Name or the Class column header. The list of slots can be sorted
based on either the slot name or the slot value by clicking on either the Slot or the Value column
header. If the Display Defaulted Values checkbox is enabled, then all of the slots of the selected
instance will be displayed. If the checkbox is disabled, then only those slots that have a value
different from their default slot value will be displayed.

The search text field can be used to filter the instances that are displayed in the instance list.
When search text is entered and the return key is pressed each instance and its slots are examined
to determine if the search text is found within one of the following templates:

[<name>]
<defclass—-name> <slot-name> <slot-value>

For example, if the instance associated with the defclass THING had the instance name [thing]]
and slots name with value big-pillow, location with value t2-2, and on-top-of with value
red-couch, then the instance would be displayed in the instance list only if the search text was
found in one of the following strings:

[thingl]

THING name big-pillow
THING location t2-2

THING on-top-of red-couch

CLIPS Interfaces Guide 35

CLIPS Reference Manual

4.6.5 Construct Inspector

The Construct Inspector floats above the other CLIPS IDE windows and changes to show the
text of the associated construct when one of the items from the browsers is selected.

Construct Inspector :

(deftemplate MAIN::thing
(slot name (type SYMBOL) (default ?NONE))
(slot location (type SYMBOL) (default ?NONE))

(slot on-top-of (type SYMBOL) (default floor))
(slot weight (type SYMBOL) (allowed-symbols light heavy) (default light)))

4.7 The Window Menu

The Window menu is a list of all windows associated with the CLIPS IDE. A check mark is
placed by the window name to indicate that it is the frontmost window.

4.8 The Help Menu

4.8.1 CLIPS Home Page

Opens the CLIPS Home web page.

4.8.2 Online Documentation

Opens a web page with links to CLIPS Documentation including the CLIPS User’s Guide,
CLIPS Reference Manuals, and other Documentation.

4.8.3 Online Examples

Opens a web page with links to example programs.

4.8.4 CLIPS Expert System Group

Opens the CLIPS Expert System Group web page on Google Groups.

36 Section 4: CLIPS Swing IDE

CLIPS Reference Manual

4.8.5 SourceForge Forums

Opens the CLIPS Discussion Forums web page on SourceForge.

4.8.6 Stack Overflow Q&A

Opens the Stack Overflow web page for the CLIPS question tag.

4.8.7 About CLIPS IDE

This command displays version information about the CLIPS IDE application.

4.9 Creating the Swing IDE Executable

See section 7 for details on creating the Swing IDE executable.

CLIPS Interfaces Guide 37

CLIPS Reference Manual

Section 5:

CLIPS DLL Interface

This section describes various techniques for integrating CLIPS and creating executables using
Microsoft Windows. The examples in this section have been tested running Windows 10
Operating System with Visual Studio Community 2017.

5.1 Installing the Source Code

In order to run the integration examples, you must install the source code by downloading the
clips_windows_projects 640.zip file (see appendix A for information on obtaining CLIPS).
Once downloaded, you must then extract the contents of the file by right clicking on it and
selecting the “Extract All...” menu item. Drag the Projects directory into the directory you’ll be
using for development. In addition to the source code specific to the Windows projects, the core
CLIPS source code is also included, so there is no need to download this code separately.

5.2 Building the CLIPS Libraries

The Visual Studio CLIPS solution file includes four projects for building libraries. They are:

WrappedLib
DLL
WrappedDLL
CLIPSJINI

WrappedLib is a starter project that demonstrates how to build a CLIPS C++ library that is
statically linked with an executable. CLIPSINI is a starter project that demonstrates how to build
a CLIPS library for use with the Java Native Interface. DLL is a starter project that demonstrates
how to build a CLIPS Dynamic Link Library (DLL) that is dynamically linked with an
executable. WrappedDLL 1s a C++ “wrapper” library that simplifies the use of the CLIPS DLL.

Unless you want to make changes to the libraries, there is no need to build them. Windows
executables are available through a separate installer and the precompiled libraries are available
in the Libraries directory of the corresponding project directory.

5.2.1 Building the Projects Using Microsoft Visual Studio Community 2017

Navigate to the Projects\MVS 2017 directory. Open the file CLIPS.sln by double clicking on it
or right click on it and select the Open menu item. After the file opens in Visual Studio, select

CLIPS Interfaces Guide 39

CLIPS Reference Manual

Configuration Manager... from the Build menu. Select the Configuration (Debug or Release) for
the library project and then click the Close button. Right click on the library project name in the
Solution Explorer pane and select the Build menu item. When compilation is complete, the
example executable will be in the corresponding <Platform>\<Configuration> directory of the
Library directory of the corresponding DLL, WrappedLib, or WrappedDLL directory.

The CLIPSJINI project assumes that Java SE Development Kit 8ul44 is installed on your
computer and that the Java header files are contained in the directories C:\Program
Files\Java\jdk1.8.0 144\include and C:\Program Files\Java\jdk1.8.0 144\include\win32. To
change the directory setting for the location of the headers files, right click on the CLIPSINI
project and select the Properties menu item. In the tree view control, open the Configuration
Properties and C/C++ branches, then select the General leaf item. Edit the value in the
Additional Include Directories editable text box to include the appropriate directory for the Java
include files.

5.3 Running the Library Examples

The Visual Studio CLIPS solution file includes three projects that demonstrate the use of the
static and dynamic libraries from Section 5.2. They are:

e DLLExample
e WrappedLibExample
e WrappedDLLExample

The DLLExample project demonstrates how to statically load the CLIPS DLL. The example
code links with the DLL import library (CLIPS.dll). The WrappedLibExample project
demonstrates how to statically load the CLIPS Wrapped C++ library (WrappedLib.lib). The C++
class CLIPSCPPEnv is used to provide a C++ wrapper to the CLIPS APIL The
WrappedDLLExample project demonstrates the use of a C++ wrapper to simplify the use of the
DLL. The example code used in this project is identical to the code used with the
WrappedLibExample project.

5.3.1 Building the Examples Using Microsoft Visual Studio Community 2017

Navigate to the Projects\MVS 2017 directory. Open the file CLIPS.sln by double clicking on it
(or right click on it and select the Open menu item). After the file opens in Visual Studio, select
Configuration Manager ... from the Build menu. Select the Configuration (Debug or Release) for
the example project and then click the Close button. Note that the configuration chosen should
match the configuration of the libraries/DLL projects (DLL, WrappedLib, and WrappedDLL).
Right click on the example project name in the Solution Explorer pane and select the Build menu
item. When compilation is complete, the example executable will be in the corresponding

40 40 Section 5: CLIPS DLL Interface

CLIPS Reference Manual

<Platform>\<Configuration> directory of the Executables directory of the corresponding
DLLExample, WrappedLibExample, or WrappedDLLExample directory.

CLIPS Interfaces Guide 41

CLIPS Reference Manual

Section 6:

CLIPS .NET Interface

This section describes various techniques for integrating CLIPS and creating executables when
using Microsoft .NET. The examples in this section have been tested running on Windows 10
with Visual Studio Community 2017.

6.1 Installing the Source Code

In order to create the Windows .NET DLL and executables, you must install the source code by
downloading the clips windows projects 640.zip file (see appendix A for information on
obtaining CLIPS). Once downloaded, you must then extract the contents of the file by right
clicking on it and selecting the Extract All... menu item. Drag the Projects directory into the
directory you’ll be using for development. In addition to the source code specific to the Windows
projects, the core CLIPS source code is also included, so there is no need to download this code
separately.

6.2 Building the .NET Library and Example Executables

The Visual Studio CLIPS solution file includes nine .NET projects:

AnimalFormsExample
AnimalWPFExample
AutoFormsExample
AutoWPFExample
CLIPSCLRWrapper
RouterFormsExample
RouterWPFExample
WineFormsExample
WineWPFExample

The CLIPSCLRWrapper project creates a .NET DLL using a Common Language Runtime
wrapper around the native CLIPS code. There are four examples utilizing the DLL with each
example implemented using a Windows Forms project and a Windows Presentation Foundation
project (for a total of eight projects). Prebuilt 32 and 64 bit versions of the DLL and example
applications are contained in the bin subdirectory in each project directory.

CLIPS Interfaces Guide 43

CLIPS Reference Manual

6.2.1 Building the Projects Using Microsoft Visual Studio Community 2017

Navigate to the solution directory and open the file CLIPS.sln by double clicking on it (or right
click on it and select the Open menu item). After the file opens in Visual Studio, select
Configuration Manager... from the Build menu. Select the Configuration (Debug or Release)
and the Platform (x86 or x64) for each project and then click the Close button. To compile
projects individually, right click on the project name in the Solution Explorer pane and select the
Build menu item. When compilation is complete, each example application will be in the
<Platform>\<Configuration> subdirectory of the corresponding project bin directory and the
NET DLL files will be in the <Platform>\<Configuration> subdirectory of
CLIPSCLRWrapper\Libraries directory.

6.3 Running the .NET Demo Programs

The CLIPS .NET demonstration programs can be run on Windows by double clicking their
executable. The CLIPSCLR Wrapper.dll file must be in the same directory as the executable.

6.3.1 Wine Demo

When launched, the Wine Demo window should appear (WPF version pictured):

B | Wine Demo — X
Preferences Meal
Color: Don't Care ¥ Main Course: Don't Know v
Body: Don't Care he Sauce: Don't Know he
Sweetness: Don't Care ~ Flavor: Don't Know v
Wine Recommendation Weight
Chardonnay 59%
Riesling 59%
Soave 36%
Chenin Blanc 36%
Gamay 36%
Cabernet Sauvignon 36%
Zinfandel 36%
Chablis 20%
Sauvignon Blanc 20%
Geverztraminer 20%
Valpolicella 20%
Pinot Noir 20%
Burgundy 20%

44 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

6.3.2 Auto Demo

When launched, the Auto Demo window should appear (Forms version pictured):

55 Auto Demo — X

Welcome to the Engine Diagnosis Expert System.

6.3.3 Animal Demo

When launched, the Animal Demo window should appear (WPF version pictured):

B | Animal Demo — X

Welcome to the Animal Identification Expert System.

6.3.4 Router Demo

When launched, the Router Demo window should appear (Forms version pictured):

CLIPS Interfaces Guide 45

CLIPS Reference Manual

8! Router Demo — O Pt

Welcome to the Engine Diagnosis Expert System.
Does the engine start? (no yes)

Welcome to the Animal Identification Expert System.
Does your animal have a backbone? (yes no) |

6.4 CLIPS .NET Classes

This section describes the classes and methods available in the CLIPSCLRWrapper.dll file for
developing CLIPS .NET applications. These classes and methods reside in the CLIPSNET

namespace.
6.4.1 The Environment Class
public class Environment

NET programs interacting with CLIPS must create at least one instance of the Environment
class.

6.4.1.1 Constructors

public Environment () ;

6.4.1.2 Clearing, Loading, and Creating Constructs

public void Clear();

public void Load(String fileName) ;

public void LoadFromString (String loadString);

public void LoadFromResource (String assemblyName, String resourceFile);
public void Build(String buildString);

46 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

The Clear method removes all constructs from an Environment instance. The Load,
LoadFromString, and LoadFromResource methods load constructs into an Environment
instance. The fileName parameter of the Load method specifies a file path to a text file
containing constructs. The loadString parameter of the LoadFromString method is a string
containing constructs. The resourceFile parameter of the LoadFromResource string specifies
the resource path to a text file containing constructs and the assemblyName parameter specifies
the assembly in which it’s contained. The Build method loads a single construct into an
Environment instance; it returns true if the construct was successfully loaded, otherwise it
returns false.

A CLIPSException is thrown by the Clear and Build methods if an error occurs. A
CLIPSLoadException is thrown by the Load, LoadFromString, and LoadFromResource
methods if an error occurs.

6.4.1.3 Executing Rules

public void Reset();

public long long Run(long long runLimit);
public long long Run();

The Reset method removes all fact and instances from an Environment instance and creates the
facts and instances specified in deffacts and definstances constructs. The Run method executes
the number of rules specified by the runLimit parameter or all rules if the runLimit parameter
is unspecified. The Run method returns the number of rules executed (which may be less than
the runLimit parameter value). A CLIPSException is thrown by the Reset and Run methods if
an error occurs.

6.4.1.4 Creating Facts and Instances
public FactAddressValue AssertString(String factString);
public InstanceAddressValue MakeInstance (String instanceString);

The AssertString method asserts a fact using the deftemplate and slot values specified by the
factString parameter. The Makelnstance method creates an instance using the instance name,
defclass, and slot values specified by the instanceString parameter. A CLIPSException is
thrown by the AssertString and Makelnstance methods if an error occurs.

6.5.1.5 Searching for Facts and Instances

public FactAddressValue FindFact (

String deftemplate);

CLIPS Interfaces Guide 47

CLIPS Reference Manual

public FactAddressValue FindFact (
String variable,
String deftemplateName,

String condition);

public List<FactAddressValue> FindAllFacts (

String deftemplateName) ;

public List<FactAddressValue> FindAllFacts (
String variable,
String deftemplateName,

String condition);

public InstanceAddressValue FindInstance (

String defclassName) ;

public InstanceAddressValue FindInstance (
String variable,
String defclassName,

String condition);

public List<InstanceAddressValue> FindAllInstances (

String defclassName) ;

public List<InstanceAddressValue> FindAllInstances (
String variable,
String defclassName,

String condition);

The FindFact methods return the first fact associated with the deftemplate construct specified by
the deftemplateName parameter. The optional variable and condition parameters can be jointly
specified to restrict the fact returned by specifying a CLIPS expression that must evaluate to a
value other FALSE in order for the fact to be returned. Each fact of the specified deftemplate
will be tested until a fact satisfying the condition is found. The fact being tested is assigned to the
CLIPS variable specified by the variable parameter and may be referenced in the condition
parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition, the
value nullptr is returned. A CLIPSException is thrown if an error occurs.

The FindAllFacts methods returns the list of facts associated with the deftemplate construct
specified by the deftemplateName parameter. The optional variable and condition parameters
can be jointly specified to restrict the facts returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for a fact to be returned. Each fact of the specified
deftemplate will be tested to determine whether it will be added to the list. The fact being tested
is assigned to the CLIPS variable specified by the variable parameter and may be referenced in

48 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

the condition parameter. If no facts of the specified deftemplate exist, or no facts satisfy the
condition, a list with no members is returned. A CLIPSException is thrown if an error occurs.

The FindInstance methods return the first instance associated with the defclass construct
specified by the defclassName parameter. The optional variable and condition parameters can
be jointly specified to restrict the instance returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for the instance to be returned. Each instance of the
specified defclass will be tested until an instance satisfying the condition is found. The instance
being tested is assigned to the CLIPS variable specified by the variable parameter and may be
referenced in the condition parameter. If no instances of the specified defclass exist, or no
instances satisfy the condition, the value nullptr is returned. A CLIPSException is thrown if an
error OCcurs.

The FindAlllnstances methods returns the list of instances associated with the defclass construct
specified by the defclassName parameter. The optional variable and condition parameters can
be jointly specified to restrict the instances returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for an instance to be returned. Each instance of the
specified defclass will be tested to determine whether it will be added to the list. The instance
being tested is assigned to the CLIPS variable specified by the variable parameter and may be
referenced in the condition parameter. If no instances of the specified defclass exist, or no
instances satisfy the condition, a list with no members is returned. A CLIPSException is thrown
if an error occurs.

6.5.1.5 Executing Functions and Commands

public PrimitiveValue Eval (String evalString);

The Eval method evaluates the command or function call specified by the evalString parameter
and returns the result of the evaluation. A CLIPSException is thrown if an error occurs.

6.5.1.6 Debugging

public void Watch(String watchItem);

public void Unwatch (String watchItem) ;

public bool GetWatchItem(String watchItem);

public void SetWatchItem(String watchItem,bool newValue);

The watchItem parameter should be one of the following static String values defined in the
Environment class: FACTS, RULES, DEFFUNCTIONS, COMPILATIONS, INSTANCES,
SLOTS, ACTIVATIONS, STATISTICS, FOCUS, GENERIC FUNCTIONS, METHODS,
GLOBALS, MESSAGES, MESSAGE _HANDLERS, NONE, or ALL.

CLIPS Interfaces Guide 49

CLIPS Reference Manual

The Watch method enables the specified watch item and the Unwatch method disables the
specified watch item. The GetWatchItem method returns the current state of the specified watch
item. The SetWatchItem method enables the specified watch item if the newValue parameter is
true and disables it if the newValue parameter is false.

6.5.1.7 Adding and Removing User Functions

public void AddUserFunction (
String functionName,

UserFunction callback);

public void AddUserFunction (
String functionName,
String returnTypes,
unsigned short minArgs,
unsigned short maxArgs,
String argTypes,

UserFunction callback);

public void RemoveUserFunction (

String functionName) ;

The AddUserFunction method associates a CLIPS function name (specified by the
functionName parameter) with an instance of a .NET class inheriting from the UserFunction
class (specified by the callback parameter). This allows you to call .NET code from within
CLIPS code. The optional parameters returnTypes, minArg, maxArgs, and argTypes can be
used to specify the CLIPS primitive types returned by the function, the minimum and maximum
number of arguments the function is expecting, and the primitive types allowed for each
argument. The UNBOUNDED constant from the UserFunction class can be used for the
maxArgs parameter to indicate that there is no upper limit on the number of arguments.

If the returnTypes parameter value is nullptr, then CLIPS assumes that the UDF can return any

valid type. Specifying one or more type character codes, however, allows CLIPS to detect errors

when the return value of a UDF is used as a parameter value to a function that specifies the types
allowed for that parameter. The following codes are supported for return values and argument

types:

Type Code Type

b Boolean

d Double Precision Float
e External Address

f Fact Address

i Instance Address

1 Long Long Integer

50 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

Multifield

Instance Name

String

Symbol

Void—No Return Value
Any Type

¥ << wp B

If the argTypes parameter value is null, then there are no argument type restrictions. One or
more character argument types can also be specified, separated by semicolons. The first type
specified is the default type (used when no other type is specified for an argument), followed by
types for specific arguments. For example, "ld" indicates that the default argument type is an
integer or float; "ld;s" indicates that the default argument type is an integer or float, and the first
argument must be a string; "*;;m" indicates that the default argument type is any type, and the
second argument must be a multifield; ";sy;ld" indicates that the default argument type is any
type, the first argument must be a string or symbol; and the second argument type must be an
integer or float.

The AddUserFunction method throws an ArgumentException if the association fails because
one already exists for the functionName parameter.

The RemoveUserFunction method removes the association between a CLIPS function name
and the user function code associated the function name. You can use this to remove a previously
created associated (either to remove it altogether or to replace the old associated with a new one).
The RemoveUserFunction method throws an ArgumentException if no association currently
exists for the functionName parameter.

6.5.1.8 Managing Routers

public void AddRouter (

Router theRouter) ;

public void DeleteRouter (

Router theRouter) ;

public void ActivateRouter (

Router theRouter) ;

public void DeactivateRouter (

Router theRouter);

public void Write(
String logicalName,

String printString);

CLIPS Interfaces Guide 51

CLIPS Reference Manual

public void Write(
String printString);

public void WriteLine (
String logicalName,

String printString);

public void WriteLine (

String printString);

The AddRouter method adds an instance of a .NET class inheriting from the Router class to the
list of routers checked by CLIPS for processing I/O requests. The DeleteRouter method removes
a Router instance from the list of CLIPS routers. The methods DeactivateRouter and
ActivateRouter allow a router to be disabled/enabled without removing it from the list of
routers.

The Write and WriteLine methods output the string specified by the printString parameter
through the router system. These methods direct the output to the logical name specified by the
logicalName parameter. If the logicalName parameter is unspecified, output is directed to
standard output. In addition, the WriteLine method appends a carriage return to the output.

6.5.1.9 Command Loop

public void CommandLoop () ;

The CommandLoop method starts the CLIPS Read-Eval-Print Loop (REPL) using the .NET
standard input and output streams.

6.5.2 The PrimitiveValue Class and Subclasses
public class PrimitiveValue abstract

public class VoidValue : PrimitiveValue

public class NumberValue abstract : PrimitiveValue
public class FloatValue : NumberValue

public class IntegerValue : NumberValue

public class LexemeValue abstract : PrimitiveValue
public class SymbolValue : LexemeValue

public class StringValue : LexemeValue

52 Section 6: CLIPS .NET Interface

public class

public class

public class

public class

public class

CLIPS Reference Manual

InstanceNameValue : LexemeValue

MultifieldvValue : PrimitiveValue , IEnumerable

FactAddressValue : PrimitiveValue

InstanceAddressValue : PrimitiveValue

ExternalAddressValue : PrimitiveValue

The PrimitiveValue class and its subclasses constitute the .NET representation of the CLIPS
primitive data types. Several methods (such as Eval and GetSlotValue) return objects belonging

to concrete subclasses of the PrimitiveValue class.
Several methods are provided for determining the type of a PrimitiveValue object:

public CLIPSNetType CLIPSType ()

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

public bool

IsVoid() ;

IsLexeme () ;

IsSymbol () ;

IsString();

IsInstanceName () ;

IsNumber () ;

IsFloat ()

IsInteger();

IsFactAddress () ;

IsInstance();

IsInstanceAddress () ;

IsMultifield();

IsExternalAddress () ;

The CLIPSType method returns one of the following CLIPSNETType enumerations: FLOAT,
INTEGER, SYMBOL, STRING, MULTIFIELD, EXTERNAL ADDRESS, FACT ADDRESS,

INSTANCE _

ADDRESS, INSTANCE NAME, or VOID.

CLIPS Interfaces Guide 53

CLIPS Reference Manual

Several methods are provided for creating objects belonging to the FloatValue, IntegerValue,
SymbolValue, StringValue, InstanceNameValue, MultifieldValue, and VoidValue classes:

public FloatValue();

public FloatValue (long long value);
public FloatValue (double value);

public IntegerValue();

public IntegerValue (long long value);
public IntegerValue (double value);
public SymbolValue ()

public SymbolValue (String value);
public StringValue();

public StringValue (String value);
public InstanceNameValue () ;

public InstanceNameValue (String value);
public Multifieldvalue();

public MultifieldValue (List<PrimitiveValue> value);
public Voidvalue () ;

The AssertString and Makelnstance methods of the Environment class can be used to create
objects of the FactAddressValue and InstanceAddressValue classes respectively.

The following NumberValue operators are available for retrieving the underlying .NET value
from NumberValue objects:

A

public static operator long long (NumberValue val) ;

A

public static operator double (NumberValue val);

The Value property is available for retrieving the underlying .NET value from IntegerValue
objects:

54 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

property long long Value { get; }

The Value property is available for retrieving the underlying .NET value from FloatValue
objects:

property double Value { get; }

The Value property is provided to retrieve the underlying Java value from SymbolValue,
StringValue, and InstanceNameValue objects:

public property String »~ Value { get; }

The InstanceNameValue class also provides a method for converting an instance name to the
corresponding instance address in a specified environment:

public InstanceAddressValue GetInstance (Environment theEnv);

The following MultifieldValue properties provide access to the list of PrimitiveValue objects
contained in a MultifieldValue method:

property PrimitiveValue » default[int] { get; }
property List<PrimitiveValue *> ~ Value { get; }
public property int Count { get; }

The following FactAddressValue methods and properties provide access to the slot values and
fact index of the associated CLIPS fact:

public property PrimitiveValue default[String] { get; }
public PrimitiveValue GetSlotValue (String slotName) { get; }
public property long long FactIndex { get; }

The following InstanceAddressValue methods and properties provide access to the slot values
and instance name of the associated CLIPS instance:

public property PrimitiveValue default[String] { get; }
public PrimitiveValue GetSlotValue (String slotName) ;
public property String InstanceName { get; }

Access to the underlying values of ExternalAddressValue objects is not currently supported.

CLIPS Interfaces Guide 55

CLIPS Reference Manual

6.5.3 The CLIPSException and CLIPSLoadException Classes

public class CLIPSException : Exception
public class CLIPSLoadException : CLIPSException

CLIPS.NET provides two subclasses of the Exception class for methods generating errors:
CLIPS Exception and CLIPSLoadException.

6.5.3.1 CLIPSLoadException Properties

public property CLIPSLineError » default[int] { get; }
public property List<CLIPSLineError> LineErrors { get; }
public property int Count { get; }

public class CLIPSLineError;

Loading constructs can generate multiple errors, so the LineErrors property of the
CLIPSLoadException class returns the list of CLIPSLineError objects detailing each error.

6.5.3.1.1 CLIPSLineError Properties

public property String FileName { get; }

public property long LineNumber { get; }

public property String Message { get; }

The FileName, LineNumber, and Message properties respectively return the file name, line

number, and error message associated with a CLIPSLineError object.

6.5.4 The Router Class

public class Router

The Router class allows .NET objects to interact with the CLIPS I/O router system.
6.5.4.1 Required Properties and Methods

public property int Priority { get; set; }

public property String Name;

public virtual bool Query(String logicalName) ;

56 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

public virtual void Write (String logicalName, String writeString);
public virtual int Read(String logicalName) ;

public virtual int Unread(String logicalName, int theChar);
public void Exit (bool failure);

The Priority property is the integer priority of the router. Routers with higher priorities are
queried before routers of lower priority to determine if they can process an I/O request. The
Name property is the identifier associated with the router. The Query method is called to
determine if the router handles I/O requests for the logicalName parameter. It should return true
if the router can process the request, otherwise it should return false. The Write method is called
to output the value specified by the writeString parameter to the logicalName parameter. The
Read method returns an input character for the logicalName parameter. It should return -1 if no
characters are available in the input queue. The Read method places the character specified by
parameter theChar back on the input queue so that it is available for the next Read request. It
returns the value of parameter theChar if successful, otherwise it returns -1. The Exit method is
invoked when the CLIPS exit command is issued or an unrecoverable error occurs. The failure
parameter will either be false for an exit command or true for an unrecoverable error.

6.5.4.2 Predefined Router Names
public static String STDIN;
public static String STDOUT;
public static String STDWRN;

public static String STDERR;

The String constants STDIN, STDOUT, STDWRN, and STDERR are the standard predefined
logical names used by CLIPS.

6.5.4.3 The BaseRouter Class

public class BaseRouter : Router

The BaseRouter class is an implementation of the Router interface. Its Write, Read, Unread,
and Exit methods are minimal implementations; the Write and Exit methods execute no
statements and the Read and Unread methods always return -1. Subclasses can override these
methods as needed to create functional routers.

CLIPS Interfaces Guide 57

CLIPS Reference Manual

6.5.4.3.1 Constructors

public BaseRouter (
Environment env,

String [] queryNames) ;

public BaseRouter (
Environment env,
String [] queryNames,

int priority);

public BaseRouter (
Environment env,
String [] queryNames,
int priority,

String routerName) ;

The BaseRouter constructor requires the env and queryName parameters. Optionally, the
priority parameter or the priority and routerName parameters can be supplied. The env
parameter is the Environment object associated with the Router object. The queryNames
parameter is an array of strings used by the Query method of the BaseRouter object to
determine whether the router handles I/O for a specific logical name. The priority parameter is
the priority of the router; if it is unspecified, it defaults to 0. The routerName parameter is the
name that serves as an identifier for the BaseRouter object; if it is unspecified an identifier will
be generated for the router.

6.5.5 The UserFunction Class

public class UserFunction

The UserFunction class provides a method for invoking a .NET method from CLIPS code.
6.5.5.1 Required Methods

public PrimitivevValue Evaluate (List<PrimitiveValue> arguments) ;

Once a linkage has been made between a CLIPS function name and an object implementing the
UserFunction interface, the Evaluate method is invoked when the linked CLIPS function call is
executed. The function arguments are evaluated and passed to the evaluate method via the
arguments parameter.

6.5.5.2 Constants

public static unsigned short UNBOUNDED;

58 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

The UNBOUNDED constant can be used for the maxArgs parameter of the AddUserFunction
method of the Environment class to indicate that there is no upper limit on the number of
arguments.

6.5.6 Examples

The following examples require a new Console Application project to be created in a solution
containing the CLIPSCLRWrapper project.

To create a new project, right click on the solution in the Solution Explorer and select the Add -
> New Project... menu item. In the left pane of the dialog that appears, select Class Desktop
under Installed -> C# -> Windows. In the middle pane, select Console Application. Finally, in
the bar at the bottom of the dialog, change the contents of the Name: textbox to Example and
then click the OK button.

The new project must reference the CLIPSCLRWrapper project. To add a reference, right click
on References in the Example project in the Solution Explorer and then select the Add
Reference... menu item. In the left pane of the dialog that appears, select Solution under
Projects. In the middle pane, check the box for the CLIPSCLRWrapper project. Finally, click
the OK button.

6.5.6.1 Loading Constructs from an Embedded Resource file

This example demonstrates how to load a CLIPS source file that has been embedded in the
application.

First, right click on the Example project, select Add -> New Item... menu item. Under Visual C#
Items -> General, select Text File, change the name to hello.clp, and then click the Add button.
Select the hello.clp file in the Solution Explorer and then change the Build Action in the
Properties window to Embedded Resource.

Add the following content:

(defrule hello
=>
(println "Hello World"))

Next replace the contents of the Program.cs file with the following code:

namespace Example

{

class Program

{
static void Main(string[] args)

{
CLIPSNET.Environment clips = new CLIPSNET.Environment () ;

CLIPS Interfaces Guide 59

CLIPS Reference Manual

clips.LoadFromResource ("Example", "Example.hello.clp");

clips.Watch (CLIPSNET.Environment.RULES) ;
clips.Reset () ;
clips.Run();

Finally, build and run the program:

FIRE 1 hello: *
Hello World

6.5.6.2 Fact Query

This example demonstrates how to query CLIPS to retrieve facts.

First, replace the contents of the Program.cs file with the following code:

using System;
using System.Collections.Generic;

using CLIPSNET;

namespace Example

{

class Program

{
static void Main(string[] args)

{

CLIPSNET.Environment clips = new CLIPSNET.Environment () ;

clips.Build (" (deftemplate person (slot name) (slot age))");
clips.AssertString (" (person (name \"Fred Jones\") (age 17))");
clips.AssertString (" (person (name \"Sally Smith\") (age 23))");
clips.AssertString (" (person (name \"Wally North\") (age 35))");
clips.AssertString (" (person (name \"Jenny Wallis\") (age 11))");

Console.WriteLine ("All people:");

List<FactAddressValue> people = clips.FindAllFacts ("person");

foreach (FactAddressValue p in people)

{ Console.WriteLine (" " + p["name"]);

Console.WriteLine ("All adults:");

people = clips.FindAllFacts ("?f", "person"," (>

foreach (FactAddressValue p in people)

{ Console.WriteLine (" " + p["name"]);

Next, build and run the program:

60

= 2f:age 18)");

Section 6: CLIPS .NET Interface

CLIPS Reference Manual

All people:
"Fred Jones"
"Sally Smith"
"Wally North"
"Jenny Wallis"
Adults:
"Sally Smith"
"Wally North"

6.5.6.3 Big Integer Multiplication User Function

This example demonstrates how to add a user function to multiply two numbers together using
bit integer math. It also demonstrates using the Eval method to evaluate a CLIPS function call.

First, the Example project must reference the System.Numerics framework. To add a reference,
right click on References in the Example project in the Solution Explorer and then select the
Add Reference... menu item. In the left pane of the dialog that appears, select Framework
under Assemblies. In the middle pane, check the box for the System.Numerics framework.
Finally, click the OK button.

Next, replace the contents of the Program.cs file with the following code:

using System;
using System.Collections.Generic;
using System.Numerics;

using CLIPSNET;

namespace Example
{
public class BIM UDF : UserFunction
{
public BIM UDF ()
{
}

public override PrimitiveValue Evaluate (List<PrimitiveValue> arguments)
{
LexemeValue lv = (LexemeValue) arguments[0];
BigInteger rv = BiglInteger.Parse(lv.Value);

for (int 1 = 1; i < arguments.Count; i++)
{
1v (LexemeValue) arguments[i];
rv = BigInteger.Multiply(rv,BigInteger.Parse(lv.Value));
}

return new StringValue (rv.ToString()):;

}
}

class Program

{

static void Main(string[] args)

{
CLIPSNET.Environment clips = new CLIPSNET.Environment () ;

CLIPS Interfaces Guide 61

CLIPS Reference Manual

clips.AddUserFunction ("bi*","s", 2, UserFunction.UNBOUNDED, "s"
new BIM UDF ());

Console.WriteLine("(* 9 8) = " +
clips.Eval("(* 9 8)"));
Console.WriteLine (" (bi* \"9\™ \"8\") = " +
clips.Eval (" (bi* \"9\" \"8\")"));
Console.WriteLine (" (* 4294967296 429496729%96) = " +
clips.Eval (" (* 4294967296 4294967296)")) ;
Console.WriteLine (" (bi* \"4294967296\" \"4294967296\") = " +
clips.Eval (" (bi* \"4294967296\" \"4294967296\")"));

Finally, build and run the program:

(* 9.8) = 72
(bi* "om "gn) = m72n

(* 4294967296 4294967296) = 0

(bi* "4294967296" "4294967296") = "18446744073709551616"
$

6.5.6.4 Get Properties User Function

This example demonstrates how to add a user function that returns a multifield value containing
the list of environment variables.

First, replace the contents of the Program.cs file with the following code:

using System.Collections;
using System.Collections.Generic;

using CLIPSNET;

namespace Example

{
public class GV_UDF : UserFunction

{
public GV_UDF ()

{
}

public override PrimitiveValue Evaluate (List<PrimitiveValue> arguments)

{

List<PrimitiveValue> values = new List<PrimitiveValue>();

foreach (DictionaryEntry de in
System.Environment.GetEnvironmentVariables ())
{ values.Add (new SymbolValue (de.Key.ToString())); }

return new MultifieldValue (values);
}
}
class Program

{

62 Section 6: CLIPS .NET Interface

CLIPS Reference Manual

static void Main(string[] args)
{
CLIPSNET.Environment clips = new CLIPSNET.Environment () ;

clips.AddUserFunction ("get-variables","m",0,0,null,new GV _UDF());
clips.CommandLoop () ;

}

Next, build and run the program:

CLIPS (Cypher Alpha 07/27/17)
CLIPS> (get-variables)
(HOMEPATH COMPUTERNAME OneDrive VisualStudioEdition PROCESSOR REVISION
VS100COMNTOOLS DNX HOME PkgDefApplicationConfigFile PATHEXT SystemDrive TMP TEMP
LOCALAPPDATA PUBLIC USERDOMAIN Path PROCESSOR LEVEL PROCESSOR IDENTIFIER PROMPT
PSModulePath NUMBER OF PROCESSORS FPS BROWSER USER PROFILE STRING
CommonProgramFiles ProgramData ProgramFiles FP_NO HOST CHECK SystemRoot
SESSIONNAME VisualStudioVersion LOGONSERVER USERPROFILE
MSBuildLoadMicrosoftTargetsReadOnly VS140COMNTOOLS VSLANG
USERDOMAIN ROAMINGPROFILE APPDATA HOMEDRIVE USERNAME
FPS BROWSER APP PROFILE STRING PROCESSOR ARCHITECTURE OS ComSpec VisualStudioDir
windir ALLUSERSPROFILE)
CLIPS> (exit)

CLIPS Interfaces Guide 63

CLIPS Reference Manual

Section 7;
CLIPS Java Native Interface

This section describes the CLIPS Java Native Interface (CLIPSINI) and the examples
demonstrating the integration of CLIPS with a Swing interface. The examples have been tested
using Java version 1.8.0 144 running on macOS 10.13, Windows 10, Ubuntu 16 LTS, Fedora
26, Debian GNU/Linux 9, CentOS Linux 7, and Linux Mint 18.

7.1 CLIPSJNI Directory Structure

In order to use CLIPSJNI, you must obtain the source code by downloading the CLIPSINI zip
file from the Files page on the CLIPS SourceForge web page (see appendix A for the
SourceForge URL). When unzipped the CLIPSJINI project file contains the following directory
structure:

CLIPSJNI
bin
animal
auto
clipsjni
ide
router
sudoku
wine
java-src
net
sf
clipsrules
Jjni
examples
animal
resources
auto
resources
ide
resources
router
resources
sudoku
resources

CLIPS Interfaces Guide 65

CLIPS Reference Manual

wine
resources
library-src

If you are using the CLIPSINI on macOS, then the native CLIPS library is already contained in
the top-level CLIPSJINI directory.

On Windows, it is necessary to verify that the correct DLL is installed. By default, the DLL for
64-bit Windows is used as the CLIPSJNI.dII file in the top-level of the CLIPSJINI directory. If
running CLIPSJNI with 32-bit Windows, delete the existing CLIPSJNILAII file, then make a copy
of the CLIPSJNI32.dll file and rename it to CLIPSJNI.dII.

On other systems, you must create a native library using the source files contained in the library-
src directory before you can utilize the CLIPSINI.

The CLIPSJINI jar file is also contained in the top-level CLIPSINI directory. The source files
used to create the jar file are contained in the java-src directory.

7.2 Issuing Commands from the Terminal

As packaged, invoking and compiling various CLIPSJNI components requires that you enter
commands from a terminal application.

On Windows 10, to run the precompiled Java applications, launch the Command Prompt
application (select Start > Windows System > Command Prompt). To recompile the native
library or use the provided makefiles to rebuild the Java source code, you must have Visual
Studio installed. In this case, launch the Command Prompt application by selecting Start >
Visual Studio 2017 > Developer Command Prompt for VS2017. Using the Developer Command
Prompt application sets the appropriate paths to use the Visual Studio compiler and make tools.
Alternately x86 Native Tools Command Prompt for VS2017 or x64 Native Tools Command
Prompt for VS2017 can be used to compile a specific processor architecture.

On macOS, click the Spotlight icon in the menu bar, enter ‘Terminal’ in the search field, and
then double click on Terminal.app in the search results to launch the application.

On Ubuntu, click on the “Search your computer” icon, enter ‘Terminal’ in the search field, and
then click on Terminal in the search results to launch the application.

On Fedora and Debian, click on Activities in the menu bar, click the Show Applications icon,

enter ‘Terminal’ in the search field, and then click on Terminal in the search results to launch the
application.

66 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

On CentOS, click on Applications in the menu bar, click on Activities Overview, click the Show
Applications icon, enter ‘Terminal’ in the search field, and then click on Terminal in the search
results to launch the application.

On Mint, click on Menu in the lower toolbar, enter ‘Terminal’ in the search field, and then click
Terminal in the search results to launch the application.

Once the terminal has been launched, set the directory to the CLIPSINI top-level directory
(using the cd command). Unless otherwise noted, all commands should be entered while in the
CLIPSJNI directory.

7.3 Running CLIPSJNI in Command Line Mode

You can invoke the command line mode of CLIPS through CLIPSJINI to interactively enter
commands while running within a Java environment.

On Windows and macOS, enter the following command from the CLIPSINI directory:

java -jar CLIPSJNI.jar

On Linux, you must first create the CLIPSJNI native library (see section 7.6.3). Once created,
enter the following command from the CLIPSJNI directory:

java -Djava.library.path=. -jar CLIPSJNI.jar
The CLIPS banner and command prompt should appear:

CLIPS (6.40 11/24/17)
CLIPS>

7.4 Running the Swing Demo Programs

The Swing CLIPSINI demonstration programs can be run on Windows 10 or macOS using the
precompiled native libraries in the CLIPSINI top-level directory. On Linux and other systems, a
CLIPSJNI native library must first be created before the programs can be run.

7.4.1 Sudoku Demo

To run the Sudoku demo on Windows 10 or macOS, enter the following command:
java -jar SudokuDemo.jar

To run the Sudoku demo on Linux, enter the following command:

CLIPS Interfaces Guide 67

CLIPS Reference Manual

java -Djava.library.path=. -jar SudokuDemo.jar

The Sudoku Demo window should appear (Windows 10 pictured):

g -

|£| Sudoku Demo

Clear

Solve

din

Select cell and enter digit 1-8 or press backspace/delete.

e ——

7.4.2 Wine Demo

To run the Wine demo on Windows 10 or macOS, enter the following command:

java -jar WineDemo.jar

To run the Wine demo on Linux, enter the following command:

java -Djava.library.path=. -jar WineDemo.jar

68 Section 7: CLIPS Java Native Interface

The Wine Demo window should appear (macOS pictured):

ece

Wine Demao

Preferences

Meal

Color:
Body:

Sweetness:

Don't Care & '

Flavor: Don't Know 5

Wine
Chardonnay
Riesling
Soave
Chenin Blanc
Gamay

Zinfandel
Chablis
Sauvignon Blanc
Geverztraminer
Valpolicella
Pinot Noir
Burgundy

7.4.3 Auto Demo

Cabernet Sauvignon

| Recommendation Weight

[[[[[[mn"

CLIPS Reference Manual

To run the Auto demo on Windows 10 or macOS, enter the following command:

java -jar AutoDemo.jar

To run the Auto demo on Linux, enter the following command:

java -Djava.l

CLIPS Interfaces Guide

ibrary.path=. -jar AutoDemo.jar

69

CLIPS Reference Manual

The Auto Demo window should appear (Ubuntu pictured):

Welcome to the Engine Diagnosis
Expert System.

7.4.4 Animal Demo
To run the Animal demo on Windows 10 or macOS, enter the following command:

java -jar AnimalDemo.jar
To run the Animal demo on Linux, enter the following command:
java -Djava.library.path=. -jar AnimalDemo.jar

The Animal Demo window should appear (Windows 10 pictured):

”
[£ Animal Demao @M

Welcome to the Animal ldentification Expert System.

7.4.5 Router Demo
To run the Router demo on Windows 10 or macOS, enter the following command:

java -jar RouterDemo.jar

70 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

To run the Router demo on Linux, enter the following command:

java -Djava.library.path=. -jar RouterDemo.jar

The Router Demo window should appear (macOS pictured):

O ® Router Demo

Restart Auto Restart Animal

Welcome to the Engine Diagnosis Expert System.
Does the engine start? (no yes)

Welcome to the Animal Identification Expert System.
Does your animal have a backbone? (yes no) |

7.5 Creating the CLIPSJNI JAR File

If you wish to add new functionality to the CLIPSINI package, it is necessary to recreate the
CLIPSJNI jar file. The CLIPSJNI distribution already contains the precompiled CLIPSJNI jar
file in the top-level CLIPSJINI directory, so if you are not adding new functionality to the
CLIPSJNI package, you do not need to recreate the jar file (unless you want to create a jar file
using a Java version prior to version 1.8.0).

If you are adding new native functions to the CLIPSJNI package, it is also necessary to create the
JNI header file that is used to compile the native library. While you are in the CLIPSJNI
directory, enter the following command:

CLIPS Interfaces Guide 71

CLIPS Reference Manual

javah -d library-src -classpath java-src -jni net.sf.clipsrules.jni.Environment

This command creates a file named net sf clipsrules jni Environment.h and places it in the
CLIPSJNI/library-src directory.

On macOS, enter the following command to compile the CLIPSJNI java source and generate the
JAR file:

make -f makefile.mac clipsjni

On Windows 10, enter the following command to compile the CLIPSJNI java source and
generate the JAR file:

nmake -f makefile.win clipsjni

On Ubuntu, enter the following command to compile the CLIPSINI java source and generate the
JAR file:

make -f makefile.ubu clipsjni

7.6 Creating the CLIPSJNI Native Library

The CLIPSJINI distribution already contains a precompiled universal library for macOS,
libCLIPSJNLjnilib, and for Windows, CLIPSJNIL.dIl, in the top-level CLIPSJINI directory. It is
necessary to create a native library only if you are using the CLIPSINI with an operating system
other than macOS or Windows. You must also create the native library if you want to add new
functionality to the CLIPSINI package by adding additional native functions. The steps for
creating a native library varies between operating systems, so some research may be necessary to
determine how to create one for your operating system.

7.6.1 Creating the Native Library on macOS

Launch the Terminal application (as described in section 7.2). Set the directory to the
CLIPSJNI/lbrary-src directory (using the cd command).

To create a universal native library that can run on both Intel 32 and 64 bit architectures, enter
the following command:

make -f makefile.mac

Once you have create the native library, copy the libCLIPSINILjnilib file from the
CLIPSJNI/library-src to the top-level CLIPSINI directory.

72 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

7.6.2 Creating the Native Library on Windows 10

Launch the Terminal application (as described in section 7.2). Set the directory to the
CLIPSJNI/lbrary-src directory (using the cd command).

To create the native library DLL, enter the following command:

nmake -f makefile.win

Once you have create the native library, copy the CLIPSINILdII file from the CLIPSJNI/library-
src to the top-level CLIPSJINI directory.

7.6.3 Creating the Native Library On Linux

Launch the Terminal application (as described in section 7.2). Set the directory to the
CLIPSJNI/Ibrary-src directory (using the cd command).

To create a native library, enter the following command (where <distribution> is either ubuntu,
fedora, debian, mint, or centos):

make -f makefile.lnx <distribution>

Once you have create the shared library, copy the 1ibCLIPSINLso file from the
CLIPSJNI/library-src to the top-level CLIPSJNI directory.

7.7 Recompiling the Swing Demo Programs

If you want to make modification to the Swing Demo programs, you can recompile them using
the makefiles in the CLIPSJNI directory.

7.7.1 Recompiling the Swing Demo Programs on macOS

Use these commands to recompile the examples:
make —-f makefile.mac sudoku
make —-f makefile.mac wine
make —-f makefile.mac auto
make —f makefile.mac animal
make —-f makefile.mac router

make —-f makefile.mac ide

CLIPS Interfaces Guide 73

CLIPS Reference Manual

7.7.2 Recompiling the Swing Demo Programs on Windows

Use these commands to recompile the examples:

nmake

nmake

nmake

nmake

nmake

nmake

-f

makefile

makefile

makefile

makefile

makefile

makefile

.win sudoku

.win wine

.win auto

.win animal

.win router

.win ide

7.7.3 Recompiling the Swing Demo Programs on Linux

Use these commands to recompile the examples:

make —f makefile.lnx sudoku

make

make

make

make

make

-f

makefile.

makefile.

makefile.

makefile.

makefile.

lnx wine

1Inx auto

lnx animal

lnx router

lnx ide

7.8 Internationalizing the Swing Demo Programs

The Swing Demo Programs have been designed for internationalization. Several software
generated example translations have been provided including Japanese (language code ja),
Russian (language code ru), Spanish (language code es), and Arabic (language code ar). The
Sudoku and Wine demos make use of translations just for the Swing Interface. The Auto and
Animal demos also demonstrate the use of translation text from within CLIPS. To make use of
one of the translations, specify the language code when starting the demonstration program. For
example, to run the Animal Demo in Japanese on Mac OS X, use the following command:

java -Duser.language=ja -Jjar AnimalDemo.jar

The welcome screen for the program should appear in Japanese rather than English:

74

Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

| JON BT E
IF2N- I RATLBEBINES CZF.

It may be necessary to install additional fonts to view some languages. On macOS, you can see
which languages are supported by launching ‘System Preferences’ and clicking the ‘Language &
Region’ icon. On Windows 10, you can see which languages are supported by launching
Settings, selecting ‘Time and language,’ and then selecting ‘Region and language.’

To create translations for other languages, first determine the two-character language code for
the target language. Make a copy in the resources directory of the ASCII English properties file
for the demo program and save it as a UTF-8 encoded file including the language code in the
name and using the .source extension. A list of language code is available at
http://www.mathguide.de/info/tools/languagecode.html. For example, to create a Greek
translation file for the Wine Demo, create the UTF-8 encoded WineResources el.source file
from the ASCII WineResources.properties file. Note that this step requires that you to do more
than just duplicate the property file and rename it. You need to use a text editor that allows you
to change the encoding from ASCII to UTF-8.

Once you’ve created the translation source file, edit the values for the properties keys and
replaced the English text following each = symbol with the appropriate translation. When you
have completed the translation, use the Java native2ascii utility to create an ASCII text file from
the source file. For example, to create a Greek translation for the Wine Demo program, you’d
use the following command:

native2ascii -encoding UTF-8 WineResources el.source WineResources el.properties

Note that the properties file for languages containing non-ASCII characters will contain Unicode
escape sequences and is therefore more difficult to read (assuming of course that you can read
the language in the original source file). This is the reason that two files are used for creating the
translation. The UTF-8 source file is encoded so that you can read and edit the translation and the
ASCII properties file is encoded in the format expected for use with Java internationalization
features.

CLIPS Interfaces Guide 75

CLIPS Reference Manual

The CLIPS translation files stored in the resource directory (such as animal es.clp) can be
duplicated and edited to support new languages. The base name of each new file should end with
the appropriate two-letter language code. There is no need to convert these UTF-8 files to
another format as CLIPS can read these directly.

7.9 CLIPSJNI Classes

This section describes the classes and methods available in the CLIPSINIL.jar file for developing
CLIPS applications in Java.

7.9.1 The Environment Class

public class Environment

Java programs interacting with CLIPS must create at least one instance of the Environment
class.

7.9.1.1 Constructors

public Environment ()

7.9.1.2 Clearing, Loading, and Creating Constructs

public void clear () throws CLIPSException

public void load(String fileName) throws CLIPSLoadException

public void loadFromString (String loadString) throws CLIPSLoadException
public void loadFromResource (String resourceFile) throws CLIPSLoadException
public void build(String buildString) throws CLIPSException

The clear method removes all constructs from an Environment instance. The load,
loadFromString, and loadFromResource methods load constructs into an Environment
instance. The fileName parameter of the load method specifies a file path to a text file
containing constructs. The loadString parameter of the loadFromString method is a string
containing constructs. The resourceFile parameter of the loadFromResource string specifies
the resource path to a text file containing constructs. The build method loads a single construct
into an Environment instance.

7.9.1.3 Executing Rules

public void reset () throws CLIPSException

76 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

public long run(long runLimit) throws CLIPSException
public long run() throws CLIPSException

The reset method removes all fact and instances from an Environment instance and creates the
facts and instances specified in deffacts and definstances constructs. The run method executes
the number of rules specified by the runLimit parameter or all rules if the runLimit parameter
is unspecified. The run method returns the number of rules executed (which may be less than the
runLimit parameter value).

7.9.1.4 Creating Facts and Instances
public FactAddressValue assertString(String factStr) throws CLIPSException
public InstanceAddressValue makeInstance (String instanceStr) throws CLIPSException

The assertString method asserts a fact using the deftemplate and slot values specified by the
factStr parameter. The makelnstance method creates an instance using the instance name,
defclass, and slot values specified by the instanceStr parameter.

7.9.1.5 Searching for Facts and Instances

public FactAddressValue findFact (

String deftemplate) throws CLIPSException

public FactAddressValue findFact (
String variable,
String deftemplateName,

String condition) throws CLIPSException

public List<FactAddressValue> findAllFacts (

String deftemplateName) throws CLIPSException

public List<FactAddressValue> findAllFacts (
String variable,
String deftemplateName,

String condition) throws CLIPSException

public InstanceAddressValue findInstance (

String defclassName) throws CLIPSException

public InstanceAddressValue findInstance (
String variable,
String defclassName,

String condition) throws CLIPSException

CLIPS Interfaces Guide 77

CLIPS Reference Manual

public List<InstanceAddressValue> findAllInstances (

String defclassName) throws CLIPSException

public List<InstanceAddressValue> findAllInstances (
String variable,
String defclassName,

String condition) throws CLIPSException

The findFact methods return the first fact associated with the deftemplate construct specified by
the deftemplateName parameter. The optional variable and condition parameters can be jointly
specified to restrict the fact returned by specifying a CLIPS expression that must evaluate to a
value other FALSE in order for the fact to be returned. Each fact of the specified deftemplate
will be tested until a fact satisfying the condition is found. The fact being tested is assigned to the
CLIPS variable specified by the variable parameter and may be referenced in the condition
parameter. If no facts of the specified deftemplate exist, or no facts satisfy the condition, the
value null is returned.

The findAllFacts methods returns the list of facts associated with the deftemplate construct
specified by the deftemplateName parameter. The optional variable and condition parameters
can be jointly specified to restrict the facts returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for a fact to be returned. Each fact of the specified
deftemplate will be tested to determine whether it will be added to the list. The fact being tested
is assigned to the CLIPS variable specified by the variable parameter and may be referenced in
the condition parameter. If no facts of the specified deftemplate exist, or no facts satisfy the
condition, a list with no members is returned.

The findInstance methods return the first instance associated with the defclass construct
specified by the defclassName parameter. The optional variable and condition parameters can
be jointly specified to restrict the instance returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for the instance to be returned. Each instance of the
specified defclass will be tested until an instance satisfying the condition is found. The instance
being tested is assigned to the CLIPS variable specified by the variable parameter and may be
referenced in the condition parameter. If no instances of the specified defclass exist, or no
instances satisfy the condition, the value null is returned.

The findAlllnstances methods returns the list of instances associated with the defclass construct
specified by the defclassName parameter. The optional variable and condition parameters can
be jointly specified to restrict the instances returned by specifying a CLIPS expression that must
evaluate to a value other FALSE in order for an instance to be returned. Each instance of the
specified defclass will be tested to determine whether it will be added to the list. The instance
being tested is assigned to the CLIPS variable specified by the variable parameter and may be
referenced in the condition parameter. If no instances of the specified defclass exist, or no
instances satisfy the condition, a list with no members is returned.

78 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

7.9.1.5 Executing Functions and Commands
public PrimitiveValue eval (String evalStr) throws CLIPSException

The eval method evaluates the command or function call specified by the evalStr parameter and
returns the result of the evaluation.

7.9.1.6 Debugging

public void watch(String watchItem)

public void unwatch(String watchItem)

public boolean getWatchItem(String watchItem)

public void setWatchItem(String watchItem,boolean newValue)

The watchItem parameter should be one of the following static String values defined in the
Environment class: FACTS, RULES, DEFFUNCTIONS, COMPILATIONS, INSTANCES,
SLOTS, ACTIVATIONS, STATISTICS, FOCUS, GENERIC FUNCTIONS, METHODS,
GLOBALS, MESSAGES, MESSAGE _HANDLERS, NONE, or ALL.

The watch method enables the specified watch item and the unwatch method disables the
specified watch item. The getWatchItem method returns the current state of the specified watch
item. The setWatchItem method enables the specified watch item if the newValue parameter is
true and disables it if the newValue parameter is false.

7.9.1.7 Adding and Removing User Functions

public void addUserFunction (
String functionName,

UserFunction callback)

public void addUserFunction (
String functionName,
String returnTypes,
int minArgs,
int maxArgs,
String argTypes,

UserFunction callback)

public void removeUserFunction (

String functionName)

CLIPS Interfaces Guide 79

CLIPS Reference Manual

The addUserFunction method associates a CLIPS function name (specified by the
functionName parameter) with an instance of a Java class implementing the UserFunction
interface (specified by the callback parameter). This allows you to call Java code from within
CLIPS code. The optional parameters returnTypes, minArg, maxArgs, and argTypes can be
used to specify the CLIPS primitive types returned by the function, the minimum and maximum
number of arguments the function is expecting, and the primitive types allowed for each
argument. The UNBOUNDED constant from the UserFunction interface can be used for the
maxArgs parameter to indicate that there is no upper limit on the number of arguments.

If the returnTypes parameter value is null, then CLIPS assumes that the UDF can return any
valid type. Specifying one or more type character codes, however, allows CLIPS to detect errors
when the return value of a UDF is used as a parameter value to a function that specifies the types
allowed for that parameter. The following codes are supported for return values and argument

types:

Type Code Type

Boolean

Double Precision Float
External Address

Fact Address

Instance Address

Long Long Integer
Multifield

Instance Name

String

Symbol

Void—No Return Value
Any Type

¥ << vwp B~~~ o oo

If the argTypes parameter value is null, then there are no argument type restrictions. One or
more character argument types can also be specified, separated by semicolons. The first type
specified is the default type (used when no other type is specified for an argument), followed by
types for specific arguments. For example, "ld" indicates that the default argument type is an
integer or float; "ld;s" indicates that the default argument type is an integer or float, and the first
argument must be a string; "*;;m" indicates that the default argument type is any type, and the
second argument must be a multifield; ";sy;ld" indicates that the default argument type is any
type, the first argument must be a string or symbol; and the second argument type must be an
integer or float.

The addUserFunction method throws an IllegalArgumentException if the association fails
because one already exists for the functionName parameter.

80 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

The removeUserFunction method removes the association between a CLIPS function name and
the user function code associated the function name. You can use this to remove a previously
created associated (either to remove it altogether or to replace the old associated with a new one).
The removeUserFunction method throws an IllegalArgumentException if no association
currently exists for the functionName parameter.

7.9.1.8 Managing Routers

public void addRouter (
Router theRouter)

public void deleteRouter (
Router theRouter)

public void activateRouter (

Router theRouter)

public void deactivateRouter (

Router theRouter)

public void print (
String logicalName,

String printString)

public void print(
String printString)

public void println (
String logicalName,

String printString)

public void println(
String printString)

The addRouter method adds an instance of a Java class implementing the Router interface to
the list of routers checked by CLIPS for processing I/O requests. The deleteRouter method
removes a Router instance from the list of CLIPS routers. The methods deactivateRouter and
activateRouter allow a router to be disabled/enabled without removing it from the list of
routers.

The print and println methods output the string specified by the printString parameter through
the router system. These methods direct the output to the logical name specified by the
logicalName parameter. If the logicalName parameter is unspecified, output is directed to
standard output. In addition, the println method appends a carriage return to the output.

CLIPS Interfaces Guide 81

CLIPS Reference Manual

7.9.1.9 Command Loop

public void commandLoop ()

The commandLoop method starts the CLIPS Read-Eval-Print Loop
standard input and output streams.

7.9.2 The PrimitiveValue Class and Subclasses

public

public

public

public

public

public

public

public

public

public

public

public

abstract class PrimitiveValue

class

VoidValue extends PrimitiveValue

abstract class NumberValue extends PrimitiveValue

class

class

FloatValue extends NumberValue

IntegerValue extends NumberValue

abstract class LexemeValue extends PrimitiveValue

class

class

class

class

class

class

SymbolValue extends LexemeValue

StringValue extends LexemeValue

InstanceNameValue extends LexemeValue

MultifieldValue extends PrimitiveValue

implements Iterable<PrimitiveValue>

FactAddressValue extends PrimitiveValue

InstanceAddressValue extends PrimitiveValue

(REPL) using the Java

The PrimitiveValue class and its subclasses constitute the Java representation of the CLIPS
primitive data types. Several methods (such as eval and getSlotValue) return objects belonging
to concrete subclasses of the PrimitiveValue class.

Several methods are provided for determining the type of a PrimitiveValue object:

public CLIPSType getCLIPSType ()

public boolean isVoid()

public boolean isLexeme ()

82

Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

public boolean isSymbol ()

public boolean isString()

public boolean isInstanceName ()
public boolean isNumber ()

public boolean isFloat ()

public boolean isInteger()

public boolean isFactAddress|()
public boolean isInstance ()

public boolean isInstanceAddress ()
public boolean isMultifield()

public boolean isExternalAddress ()

The getCLIPSType method returns one of the following CLIPSType enumerations: FLOAT,
INTEGER, SYMBOL, STRING, MULTIFIELD, EXTERNAL ADDRESS, FACT ADDRESS,
INSTANCE ADDRESS, INSTANCE NAME, or VOID.

Several methods are provided for creating objects belonging to the FloatValue, IntegerValue,
SymbolValue, StringValue, InstanceNameValue, MultifieldValue, and VoidValue classes:

public FloatValue ()

public FloatValue (double value)
public FloatValue (Double value)
public IntegerValue ()

public IntegerValue (long value)
public IntegerValue (Long value)
public SymbolValue ()

public SymbolValue (String value)

public StringValue ()

CLIPS Interfaces Guide 83

CLIPS Reference Manual

public StringValue (String wvalue)

public InstanceNameValue ()

public InstanceNameValue (String value)

public MultifieldValue ()

public MultifieldValue (List<PrimitiveValue> value)
public Voidvalue ()

The assertString and makelnstance methods of the Environment class can be used to create
objects of the FactAddressValue and InstanceAddressValue classes respectively.

The following NumberValue methods are available for retrieving the underlying Java value
from IntegerValue and FloatValue objects:

public Number numberValue ()
public int intValue ()
public long longValue ()
public float floatValue()
public double doubleValue ()

The following LexemeValue method is provided to retrieve the underlying Java value from
SymbolValue, StringValue, and InstanceNameValue objects:

public String lexemeValue ()

The InstanceNameValue class also provides a method for converting an instance name to the
corresponding instance address in a specified environment:

public InstanceAddressValue getInstance (Environment theEnv)

The following MultifieldValue methods provide access to the list of PrimitiveValue objects
contained in a MultifieldValue method:

public List<PrimitiveValue> multifieldValue ()
public int size ()
public PrimitiveValue get (int index)

84 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

The following FactAddressValue methods provide access to the slot values and fact index of
the associated CLIPS fact:

public PrimitiveValue getSlotValue (String slotName)
public long getFactIndex ()

The following InstanceAddressValue methods provide access to the slot values and instance
name of the associated CLIPS instance:

public PrimitiveValue getSlotValue (String slotName)
public String getInstanceName ()

The following ExternalAddressValue method provides access to the value of the associated
CLIPS external address (a C pointer converted to a Java long integer):

public long getExternalAddress ()

The FactAddressValue, InstanceAddressValue, and ExternalAddressValue classes provide
the following reference count methods:

public void retain()
public void release()

Since objects of these classes retain pointers to C data structures, retaining the object prevents
the C code from releasing these data structures while there are still outstanding references to
them. Each call to the retain method increments the number of reference counts to the object and
each call to the release method decrements the number of reference counts to the object.

7.9.3 The CLIPSException and CLIPSLoadException Classes

public class CLIPSException extends Exception
public class CLIPSLoadException extends CLIPSException

CLIPSJINI provides two subclasses of the Exception class for methods generating errors: CLIPS
Exception and CLIPSLoadException.

7.9.3.1 CLIPSLoadException Methods
public List<CLIPSLineError> getErrorList ()

public class CLIPSLineError

CLIPS Interfaces Guide 85

CLIPS Reference Manual

Loading constructs can generate multiple errors, so the getErrorList method of the
CLIPSLoadException class returns the list of CLIPSLineError objects detailing each error.

7.9.3.1.1 CLIPSLineError Methods

public String getFileName ()

public long getLineNumber ()

public String getMessage ()

The getFileName, getLineNumber, and getMessage respectively return the file name, line

number, and error message associated with a CLIPSLineError object.

7.9.4 The Router Interface

public interface Router

The Router interface allows Java objects implementing the interface to interact with the CLIPS
I/O router system.

7.9.4.1 Required Methods

public int getPriority()

public String getName ()

public boolean query(String logicalName)

public void write(String logicalName,String writeString)
public int read(String logicalName)

public int unread(String logicalName, int theChar)

public void exit (boolean failure)

The getPriority method returns the integer priority of the router. Routers with higher priorities
are queried before routers of lower priority to determine if they can process an 1/O request. The
getName method returns the identifier associated with the router. The query method is called to
determine if the router handles I/O requests for the logicalName parameter. It should return true
if the router can process the request, otherwise it should return false. The write method is called
to output the value specified by the writeString parameter to the logicalName parameter. The
read method returns an input character for the logicalName parameter. It should return -1 if no
characters are available in the input queue. The unread method places the character specified by

86 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

parameter theChar back on the input queue so that it is available for the next read request. It
returns the value of parameter theChar if successful, otherwise it returns -1. The exit method is
invoked when the CLIPS exit command is issued or an unrecoverable error occurs. The failure
parameter will either be false for an exit command or true for an unrecoverable error.

7.9.4.2 Predefined Router Names

public static final String STDIN
public static final String STDOUT
public static final String STDWRN

public static final String STDERR

The String constants STDIN, STDOUT, STDWRN, and STDERR are the standard predefined
logical names used by CLIPS.

7.9.4.3 The BaseRouter Class

public class BaseRouter implements Router

The BaseRouter class is an implementation of the Router interface. Its write, read, unread,
and exit methods are minimal implementations; the write and exit methods execute no
statements and the read and unread methods always return -1. Subclasses can override these
methods as needed to create functional routers.

7.9.4.3.1 Constructors

public BaseRouter (
Environment env,

String [] queryNames)

public BaseRouter (
Environment env,
String [] queryNames,

int priority)

public BaseRouter (
Environment env,
String [] queryNames,
int priority,

String routerName)

The BaseRouter constructor requires the env and queryName parameters. Optionally, the
priority parameter or the priority and routerName parameters can be supplied. The env

CLIPS Interfaces Guide 87

CLIPS Reference Manual

parameter is the Environment object associated with the Router object. The queryNames
parameter is an Array of strings used by the query method of the BaseRouter object to
determine whether the router handles I/O for a specific logical name. The priority parameter is
the priority of the router; if it is unspecified, it defaults to 0. The routerName parameter is the
name that serves as an identifier for the BaseRouter object; if it is unspecified an identifier will
be generated for the router.

7.9.5 The UserFunction Interface
public interface UserFunction
The UserFunction interface provides a method for invoking a Java method from CLIPS code.

7.9.5.1 Required Methods

public PrimitiveValue evaluate (List<PrimitiveValue> arguments)

Once a linkage has been made between a CLIPS function name and an object implementing the
UserFunction interface, the evaluate method is invoked when the linked CLIPS function call is
executed. The function arguments are evaluated and passed to the evaluate method via the
arguments parameter.

7.9.5.2 Constants
public static final int UNBOUNDED

The UNBOUNDED constant can be used for the maxArgs parameter of the AddUserFunction
method of the Environment class to indicate that there is no upper limit on the number of
arguments.

7.9.6 Examples

The following examples assume the example code is placed in the top-level CLIPSINI directory.
Additionally the native libraries must be built and present in the directory (either
libCLIPSJNI,jnilib for macOS, CLPSINIL.dIl for Windows, or libCLIPSINLso for Linux). The
CLIPSJINI Java source files should also be compiled using the appropriate command for
Windows, macOS, or Linux:

make -f makefile.win clipsjni
make -f makefile.mac clipsjni
make -f makefile.lnx clipsjni

88 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

7.9.6.1 Loading Constructs from a JAR file

This example demonstrates how to load a CLIPS source file that has been stored inside a JAR
file.

First, create the source file hello.clp within the CLIPSJINI directory with the following content:

(defrule hello
=>
(println "Hello World"))

Next create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

public class Example
{
public static void main(String args([])

{

Environment clips;
clips = new Environment () ;

try
{
clips.loadFromResource ("/hello.clp");
clips.reset();
clips.run();
}
catch (Exception e)
{ e.printStackTrace(); }

Next, compile the Java source and create a jar file to contain the Example class, the CLIPSINI
classes, and the CLIPS construct file:

javac -cp CLIPSJNI.jar Example.java

jar -cfe Example.jar Example Example.class
jar -uf Example.jar -C bin/clipsjni net
jar -uf Example.jar hello.clp

Uy Ur U 0 Uy

Finally, run the program:

$ java -jar Example.jar
Hello World
$

7.9.6.2 Fact Query

This example demonstrates how to query CLIPS to retrieve facts.

First create the Java source file Example.java with the following content:

CLIPS Interfaces Guide 89

CLIPS Reference Manual

import net.sf.clipsrules.jni.*;
import java.util.List;

public class Example
{
public static void main(String args([])
{

Environment clips;

clips = new Environment () ;

try
{
clips.build (" (deftemplate person (slot name) (slot age))");
clips.assertString (" (person (name \"Fred Jones\") (age 17))");
clips.assertString (" (person (name \"Sally Smith\") (age 23))");
clips.assertString (" (person (name \"Wally North\") (age 35))");
clips.assertString (" (person (name \"Jenny Wallis\") (age 11))");

System.out.println ("All people:");
List<FactAddressValue> people = clips.findAllFacts ("person");

for (FactAddressValue p : people)
{ System.out.println (" " + p.getSlotValue ("name")); }

System.out.println ("Adults:");
people = clips.findAllFacts ("?f","person"," (>= ?f:age 18)");

for (FactAddressValue p : people)
{ System.out.println (" " + p.getSlotValue ("name")); }

}
catch (Exception e)
{ e.printStackTrace(); }

Next, compile the Java source and create a jar file to contain the Example and CLIPSJINI classes:

$ javac -cp CLIPSJNI.jar Example.java
$ jar -cfe Example.jar Example Example.class
$ jar -uf Example.jar -C bin/clipsjni net

$

Finally, run the program:

$ java -jar Example.jar
All people:

"Fred Jones"

"Sally Smith"

"Wally North"

"Jenny Wallis"
Adults:

"Sally Smith"

"Wally North"

90 Section 7: CLIPS Java Native Interface

CLIPS Reference Manual

7.9.6.3 Big Integer Multiplication User Function

This example demonstrates how to add a user function to multiply two numbers together using
bit integer math. It also demonstrates using the eval method to evaluate a CLIPS function call.

First create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

import java.util.List;
import java.math.BiglInteger;

public class Example

{

public static void main(String args([])

{

Environment clips;
clips = new Environment () ;

clips.addUserFunction ("bi*","s",2,Router.UNBOUNDED, "s",
new UserFunction ()
{
public PrimitiveValue evaluate (List<PrimitiveValue> arguments)
{
LexemeValue lv = (LexemeValue) arguments.get (0);
BigInteger rv = new BiglInteger (lv.lexemeValue()):;

for (int 1 = 1; 1 < arguments.size(); 1i++)
{
1lv = (LexemeValue) arguments.get(i);
rv = rv.multiply (new BigInteger (lv.lexemeValue()));
}
return new StringValue (rv.toString());
}
1)
try
{
System.out.println("(* 9 8) = " +
clips.eval("(* 9 8)"));
System.out.println (" (bi* \"9\" \"8\") = " +
clips.eval (" (bi* \"9\" \"8\™)"));
System.out.println (" (* 4294967296 4294967296) = " +
clips.eval (" (* 4294967296 4294967296)")) ;
System.out.println (" (bi* \"4294967296\" \"4294967296\") = " +

clips.eval (" (bi* \"4294967296\" \"4294967296\™)"));
}

catch (Exception e)
{ e.printStackTrace(); }

Next, compile the Java source and create a jar file to contain the Example and CLIPSJINI classes:

$ javac -cp CLIPSJNI.jar Example.java

CLIPS Interfaces Guide 91

CLIPS Reference Manual

$ jar -cfe Example.jar Example Example*.class
$ jar -uf Example.jar -C bin/clipsjni net

$

Finally, run the program:

$ java -jar Example.jar

(* 9 8) =72

(bi* m9m m8m") = "j2"

(* 4294967296 4294967296) = 0

(bi* "4294967296™ "4294967296") = "18446744073709551616"
$

7.9.6.4 Get Properties User Function

This example demonstrates how to add a user function that returns a multifield value containing
the list of system properties.

First create the Java source file Example.java with the following content:

import net.sf.clipsrules.jni.*;

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

public class Example

{

public static void main(String args([])

{

Environment clips;
clips = new Environment () ;

clips.addUserFunction ("get-properties","m",0,0,null,
new UserFunction ()

{

public PrimitiveValue evaluate (List<PrimitiveValue> arguments)

{

List<PrimitiveValue> values = new ArraylList<PrimitiveValue>();

Properties props = System.getProperties();
for (String key : props.stringPropertyNames ())
{ values.add(new SymbolValue (key)); }

return new MultifieldValue (values);
}
)i

clips.commandLoop () ;

}

Next, compile the Java source and create a jar file to contain the Example and CLIPSJINI classes:

$ javac -cp CLIPSJNI.jar Example.java

$ jar -cfe Example.jar Example Example*.class
$ jar -uf Example.jar -C bin/clipsjni net

$

92 Section 7: CLIPS Java Native Interface

Finally, run the program:

$ java -jar Example.jar

CLIPS Reference Manual

CLIPS (Cypher Alpha 06/03/17)

CLIPS> (get-properties)

(java.runtime.name sun.boot.library.path java.vm.version gopherProxySet
java.vm.vendor java.vendor.url path.separator java.vm.name file.encoding.pkg

user.country sun.java.launcher sun

sun.jnu.encoding java.library.path
sun.management.compiler os.version

.0s.patch.level java.vm.specification.name
user.dir java.runtime.version java.
java.io.tmpdir line.separator java.

awt.graphicsenv java.endorsed.dirs os.arch
vm.specification.vendor os.name

java.specification.name java.class.version
http.nonProxyHosts user.home user.timezone

java.awt.printerjob file.encoding java.specification.version user.name
java.class.path java.vm.specification.version sun.arch.data.model java.home
sun.java.command java.specification.vendor user.language awt.toolkit java.vm.info
java.version java.ext.dirs sun.boot.class.path java.vendor file.separator

java.vendor.url.bug sun.cpu.endian
ftp.nonProxyHosts sun.cpu.isalist)
CLIPS> (exit)

$

CLIPS Interfaces Guide

sun.io.unicode.encoding socksNonProxyHosts

93

CLIPS Reference Manual

Appendix A:
Support Information

A.1 Questions and Information

The URL for the CLIPS Web page is http://www.clipsrules.net.

Questions regarding CLIPS can be posted to one of several online forums including the CLIPS
Expert System Group, http://groups.google.com/group/CLIPSESG/, the SourceForge CLIPS
Forums, http://sourceforge.net/forum/?group id=215471, and Stack Overflow,
http://stackoverflow.com/questions/tagged/clips.

Inquiries related to the use or installation of CLIPS can be sent via electronic mail to
support@clipsrules.net.

A.2 Documentation

The CLIPS Reference Manuals and other documentation is available at
http://www.clipsrules.net/?g=Documentation.

Expert Systems: Principles and Programming, 4th Edition, by Giarratano and Riley comes with
a CD-ROM containing CLIPS 6.22 executables (DOS, Windows XP, and Mac OS),
documentation, and source code. The first half of the book is theory oriented and the second half
covers rule-based, procedural, and object-oriented programming using CLIPS.

A.3 CLIPS Source Code and Executables

CLIPS executables and source code are available on the SourceForge web site at
http://sourceforge.net/projects/clipsrules/files.

CLIPS Interfaces Guide 95

http://www.clipsrules.net/
http://groups.google.com/group/CLIPSESG/
http://sourceforge.net/forum/?group_id=215471
http://stackoverflow.com/questions/tagged/clips
mailto:support@clipsrules.net
http://www.clipsrules.net/?q=Documentation
http://sourceforge.net/projects/clipsrules/files

CLIPS Reference Manual

Appendix B:
Update Release Notes

The following sections denote the changes and bug fixes for CLIPS versions 6.30 and 6.40.

B.1 Version 6.40

* Compiler Support - The following compilers are now supported.
* Xcode9.1.

* Microsoft Visual Studio Community 2017.

B.2 Version 6.30

» Compiler Support - The following compilers are now supported.
* Xcode 6.2 for Mac OS X.
* Microsoft Visual C++ 2010 Express and Microsoft Visual Studio 2013.
* Windows Interface Bug Fixes - The following bugs were fixed by the 6.30 release:

* The position and size of the CLIPSWin window is now properly save and restored when
the executable is exited and started.

* Windows Interface Changes - The following enhancements were added by the 6.30
release:

» Text in the dialog window can be selected and copied.
* Inline editing is supported in the dialog window.
* A command history is supported for the dialog window.

* In the dialog window, whenever the caret is placed to the immediate right of a right
parenthesis, the matching left parenthesis is momentarily highlighted.

CLIPS Interfaces Guide 97

CLIPS Reference Manual

98

* The (clear-window) function can be used to programmatically clear the contents of the
dialog window.

+ Text files opened in an editing window have their line endings automatically converted
to the Windows line ending convention if they are not already using that convention.

Mac OS X Interface - The Mac OS X Interface has been rewritten from a Carbon
application to a Cocoa application.

X Windows Interface - The X Windows Interface is no longer supported.

Appendix B — Update Release Notes

Index

ActivateRoutercccoeevvvvvevinnnenennnn, 51, 81
AddROULET......cooveeiiiieeieeee 51, 81
AddUserFunction..........cccoeeeevvvveneennn. 50, 79
Advanced Programming Guide.................. 1ii
AnimalFormsExample............cccccceveennnn. 43
AnimalWPFExample.........c.cccoveeiieenneen. 43
ASSETtSING......eeevieieeiieeieeiieeeeeneen 47,77
AutoFormsExample.........ccceeevveeciieennenn. 43
AutoWPFExample........ccccccoevieeiiiniiennnn. 43
BaseRouter...........uevvvvveveveiiiiiiiiiiiininnns 57, 87
Basic Programming Guide......................... ii
Build....oooveieeeeeeeeeeeeeeeeee 46, 76
Clear......ccccooiiiiiiii 46, 76
CLIPSCLRWIapper.......ccccceeveveeencieeennneen. 43
CLIPSExceptionccceevvveennnee. 47, 56, 85
CLIPSINI.....ooiiieiieeeeeeeeeeeeeeeeee 39
CLIPSLoadException.................... 47, 56, 85
CLIPSTYPE oo 53
CommandLoopcccceeevveevcieeniieeeen. 52,82
DeactivateRouter................ccccuvveeennn.e. 51, 81
DeleteRouterouveveeeveieieiiiiiiiiienanns 51, 81
DLL. oot 39
DLLExample.......ccccovevvvieeeiieeieecieeee. 40
Environment.......cccccceveeieiviiiiieienenennnnn. 46,76
Eval ...ooooviioieeieeeee e 49,79
evaluatecoeeeeeeiiiei e, 88
EXItoiiiiiiiiiieceeceeeee e 57, 86
ExternalAddressValuecc...ccoeevneennne. 53
FactAddressValue.........ccccceevvvevevenenenns 53, 82
FindAIIFacts.....cccoovveveeiiiiiiiiiiiieeee, 48,77
Find AIlINStancescccooeevvvvvveennenn. 48,78
FIndFactcoovveviiiiiiiiiiiiiiiieeeee, 47,77
FindInstance.......ccccccvveveviievinvnennennennn. 48, 77
FloatValue.......ccoovvvvveeiiinnnnnn. 52,54, 82, 83
getCLIPSTYPE...oievviieeiieeeeeeieeeeeee 82
etErrorListcooveeiiiiiieic 85
getExternal Address........ooeeveeveiieeiciieennnenn. 85

CLIPS Interfaces Guide

CLIPS Reference Manual

getFactIndeX......cccoevvvveiieniieiienieeee, 85
getFileName.......c.ococeeeeveeecieeeee e, 86
GetInStancecccevveeeeeciieeeeeiiee e, 55
getlnstanceName..........cccceeeeviieeienciieeene 85
getLineNumbercceeeveevvienieeiienn, 86
ZEtMESSAZE...vvveeeiiiieeeeiiee e 86
GEtNAME .o, 86
EtPTIOTILY .o 86
GetSlotValue.......ccccccovvveevvnnnnnnn, 55, 56, 85
GetWatchltem............cccoveeeeecneeeennne. 49, 79
InstanceAddressValue...............uuuu..... 53, 82
InstanceNameValue................. 53,54, 82, 84
IntegerValue........ccceeveveeneen. 52, 54, 82, 83
Interfaces Guide.........cooovvvvvveieiiiviiiinnnnnen. 1
IsExternal Address.......cooevvvvevcnnneenenn.. 53, 83
ISFactAddress.......ovvvvvvvecvnvieiiieieeieins 53, 83
ISFloat ..ooovvviiiiiiiiiiieeeeeee s 53, 83
IsInstancecccccccovveveviiiiiiiiiiiiee 53,83
IsInstance Addressevevveeeevevenennnns 53, 83
IsInstanceName.............cccceeeeveeeeennne. 53, 83
ISINtE@ET ..o, 53,83
IsLexeme.......cccccvveiiiiiiiiiiiiiiieeeeeeee, 53,82
IsMultifieldcoooveeeiiiieieiciieee. 53,83
ISNUmMber........cooeviiiieiieiieeeeeeee e, 53,83
ISSHING .o, 53,83
ISSymbolcccoeviiiiiiiiiiieee 53,83
ISVOId. oo 53, 82
LexemeValue.......coocoooeveviiieecnnnncnne, 52,82
L0ad c.oooiiiiiiiiieeee s 46,76
LoadFromResource.........cccoevuvvvvnneeen.. 46, 76
LoadFromString.........cccceevvveveveennnenn. 46, 76
MakeInstancecccceevveeeevivviinnnnennennnn. 47,77
MultifieldValue....................... 53, 54, 82, 84
NumberValue......ccoocvvvvveiiiiiiiiiiinnn, 52, 82
PrimitiveValuecccccccoovvvvevnnnnnnnn. 52,82
PIINE ettt 81
PrNIN ..o 81
99

CLIPS Reference Manual

QUETY .. 57, 86
Read ..oovveiiiiiiiiii e 57, 86
Reference Manualcoooevvvvvieiiiiiiiinnns i1l
RemoveUserFunctionccccuvveeeeeeen. 50, 79
RS, 47,76
ROULET....oiiiiiiiiiiiiiieieeeeeeis 56, 86
RouterFormsExamplecccccceevevveennenn. 43
RouterWPFExamplecccccoeevvieiiennnnn. 43
RUN ..o, 47,77
SetWatchltem.........ooovevvveeveiiiiiiinnnee, 49,79
STDERRooooiiiiiiiiieeeeeeeee 57, 87
STDIN ... 57, 87
STDOUT ..o 57, 87
STDWRN......oooiiiiiieeeeeeeeeeee 57, 87
StringValuecccccoevieeenen. 53, 54, 82, 83
SymbolValue.........c..ccveennennen. 53,54, 82, 83
100

UNBOUNDEDcccocteiiieieeieeeieene 88
Unread......ccooeevvivveeeiiiiieeeeeeeeeeeeeee, 57, 86
UnwatChoooovvvviiiiiiiiiieeeceieeeee, 49,79
User’s GUIdecc.eevevveenienienieecieeieniene il
UserFunction........cccceeeeeeeeieveiiveenennennn. 58, 88
VoidValue......ccooevvvivviiiiinnnn. 52,54, 82, 84
WatCh ..ovvvveeiiiiieeeeeeee, 49,79
WineFormsExampleccccccoeeevieniennnnnn. 43
WineWPFExampleccccoceveviieeveennnnen. 43
WrappedDLLccccoveviiiiieieeieeeeeee 39
WrappedDLLExample.......c.cccceeeenveeneen. 40
WrappedLibcocoveeiieiiiiiieiecceieee 39
WrappedLibExample............cccceeveiveeneen. 40
WIIEE oo 52,57, 86
WIIteLINevveeeiieeeieeeeeeeece e, 52

Appendix B: Update Release Notes

