

by Allen G. Taylor
Author of Database Development For Dummies,

SQL All-in-One For Dummies, and
Crystal Reports 2008 For Dummies

SQL

8th Edition

SQL For Dummies®, 8th Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013942771
ISBN 978-1-118-60796-1 (pbk); 978-1-118-65711-9 (ebk); ISBN 978-1-118-62783-9 (ebk);
ISBN 978-1-118-65718-8 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

Contents at a Glance
Introduction... 1

Part I: Getting Started with SQL.................................... 3
Chapter 1: Relational Database Fundamentals... 5
Chapter 2: SQL Fundamentals... 21
Chapter 3: The Components of SQL... 51

Part II: Using SQL to Build Databases.......................... 79
Chapter 4: Building and Maintaining a Simple Database Structure........................... 81
Chapter 5: Building a Multitable Relational Database... 105

Part III: Storing and Retrieving Data......................... 137
Chapter 6: Manipulating Database Data.. 139
Chapter 7: Handling Temporal Data... 157
Chapter 8: Specifying Values... 171
Chapter 9: Using Advanced SQL Value Expressions.. 197
Chapter 10: Zeroing In on the Data You Want.. 211
Chapter 11: Using Relational Operators.. 243
Chapter 12: Delving Deep with Nested Queries.. 267
Chapter 13: Recursive Queries.. 285

Part IV: Controlling Operations.................................. 295
Chapter 14: Providing Database Security.. 297
Chapter 15: Protecting Data.. 313
Chapter 16: Using SQL within Applications... 333

Part V: Taking SQL to the Real World......................... 347
Chapter 17: Accessing Data with ODBC and JDBC... 349
Chapter 18: Operating on XML Data with SQL.. 359

Part VI: Advanced Topics.. 381
Chapter 19: Stepping through a Dataset with Cursors.. 383
Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules....... 393
Chapter 21: Handling Errors.. 411
Chapter 22: Triggers... 423

SQL For Dummies, 8th Edition iv
Part VII: The Part of Tens.. 429
Chapter 23: Ten Common Mistakes.. 431
Chapter 24: Ten Retrieval Tips... 435

Appendix: SQL: 2011 Reserved Words........................ 439

Index... 443

Table of Contents
Introduction.. 1

About This Book... 1
Who Should Read This Book?... 2
Icons Used in This Book.. 2
Where to Go from Here.. 2

Part I: Getting Started with SQL..................................... 3

Chapter 1: Relational Database Fundamentals . 5
Keeping Track of Things.. 6
What Is a Database?... 7
Database Size and Complexity.. 7
What Is a Database Management System?.. 8
Flat Files... 9
Database Models.. 11

Relational model... 11
Components of a relational database.. 12
Dealing with your relations... 12
Enjoy the view... 14
Schemas, domains, and constraints... 16
The object model challenged the relational model.......................... 18
The object-relational model.. 18

Database Design Considerations.. 19

Chapter 2: SQL Fundamentals . 21
What SQL Is and Isn’t... 21
A (Very) Little History.. 23
SQL Statements... 24
Reserved Words.. 26
Data Types... 26

Exact numerics.. 27
Approximate numerics... 29
Character strings.. 30
Binary strings.. 32
Booleans... 33
Datetimes... 33
Intervals... 35
XML type.. 35
ROW types... 38
Collection types.. 39
REF types... 41

SQL For Dummies, 8th Edition vi
User-defined types.. 41
Data type summary.. 44

Null Values... 46
Constraints.. 46
Using SQL in a Client/Server System.. 47

The server.. 47
The client... 48

Using SQL on the Internet or an Intranet... 49

Chapter 3: The Components of SQL . 51
Data Definition Language... 52

When “Just do it!” is not good advice.. 52
Creating tables.. 53
A room with a view... 55
Collecting tables into schemas... 61
Ordering by catalog.. 61
Getting familiar with DDL statements.. 62

Data Manipulation Language... 64
Value expressions... 64
Predicates.. 68
Logical connectives.. 69
Set functions.. 69
Subqueries... 71

Data Control Language... 71
Transactions.. 71
Users and privileges... 73
Referential integrity constraints can jeopardize your data............ 75
Delegating responsibility for security.. 77

Part II: Using SQL to Build Databases.......................... 79

Chapter 4: Building and Maintaining a Simple Database Structure . . 81
Using a RAD Tool to Build a Simple Database.. 82

Deciding what to track... 82
Creating a database table.. 83
Altering the table structure... 90
Creating an index.. 92
Deleting a table... 94

Building POWER with SQL’s DDL.. 95
Using SQL with Microsoft Access... 95
Creating a table... 97
Creating an index.. 101
Altering the table structure... 102
Deleting a table... 102
Deleting an index.. 103

Portability Considerations.. 103

vii Table of Contents

Chapter 5: Building a Multitable Relational Database 105
Designing a Database... 105

Step 1: Defining objects.. 106
Step 2: Identifying tables and columns.. 106
Step 3: Defining tables.. 107
Domains, character sets, collations, and translations................... 111
Getting into your database fast with keys....................................... 112

Working with Indexes... 114
What’s an index, anyway?.. 115
Why you should want an index... 116
Maintaining an index.. 117

Maintaining Data Integrity... 118
Entity integrity.. 118
Domain integrity... 119
Referential integrity.. 120
Just when you thought it was safe 123
Potential problem areas... 124
Constraints.. 126

Normalizing the Database... 129
Modification anomalies and normal forms...................................... 129
First normal form.. 132
Second normal form... 132
Third normal form.. 134
Domain-key normal form (DK/NF).. 134
Abnormal form.. 135

Part III: Storing and Retrieving Data.......................... 137

Chapter 6: Manipulating Database Data . 139
Retrieving Data... 139
Creating Views.. 141

From tables.. 142
With a selection condition... 143
With a modified attribute... 144

Updating Views... 145
Adding New Data.. 146

Adding data one row at a time.. 146
Adding data only to selected columns... 148
Adding a block of rows to a table... 148

Updating Existing Data... 151
Transferring Data.. 154
Deleting Obsolete Data.. 156

SQL For Dummies, 8th Edition viii
Chapter 7: Handling Temporal Data . 157

Understanding Times and Periods in SQL:2011.. 158
Working with Application-Time Period Tables... 159

Designating primary keys in application-time period tables...............162
Applying referential constraints to application-time

period tables.. 163
Querying application-time period tables... 164

Working with System-Versioned Tables.. 165
Designating primary keys in system-versioned tables.................. 167
Applying referential constraints to system-versioned tables....... 168
Querying system-versioned tables... 168

Tracking Even More Time Data with Bitemporal Tables......................... 169

Chapter 8: Specifying Values . 171
Values... 171

Row values... 172
Literal values... 172
Variables.. 174
Special variables... 176
Column references.. 176

Value Expressions.. 177
String value expressions.. 178
Numeric value expressions... 179
Datetime value expressions.. 179
Interval value expressions... 180
Conditional value expressions.. 180

Functions... 181
Summarizing by using set functions... 181
Value functions... 184

Chapter 9: Using Advanced SQL Value Expressions 197
CASE Conditional Expressions.. 197

Using CASE with search conditions.. 198
Using CASE with values.. 200
A special CASE — NULLIF.. 202
Another special CASE — COALESCE.. 204

CAST Data-Type Conversions... 205
Using CAST within SQL.. 206
Using CAST between SQL and the host language........................... 206

Row Value Expressions.. 207

Chapter 10: Zeroing In on the Data You Want 211
Modifying Clauses.. 211
FROM Clauses... 213

ix Table of Contents

WHERE Clauses... 213
Comparison predicates.. 215
BETWEEN... 215
IN and NOT IN.. 217
LIKE and NOT LIKE... 218
SIMILAR.. 220
NULL... 220
ALL, SOME, ANY.. 221
EXISTS.. 224
UNIQUE... 225
DISTINCT.. 225
OVERLAPS.. 226
MATCH... 226
Referential integrity rules and the MATCH predicate........................228

Logical Connectives... 230
AND... 230
OR... 231
NOT... 232

GROUP BY Clauses... 232
HAVING Clauses.. 234
ORDER BY Clauses... 235
Limited FETCH.. 236
Peering through a Window to Create a Result Set................................... 238

Partitioning a window into buckets with NTILE............................. 239
Navigating within a window.. 239
Nesting window functions .. 241
Evaluating groups of rows... 242

Chapter 11: Using Relational Operators . 243
UNION.. 243

The UNION ALL operation... 245
The CORRESPONDING operation... 245

INTERSECT.. 246
EXCEPT.. 248
Join Operators.. 249

Basic join.. 249
Equi-join... 251
Cross join... 253
Natural join.. 253
Condition join.. 254
Column-name join... 254
Inner join.. 255
Outer join... 256
Union join... 259

ON versus WHERE.. 266

SQL For Dummies, 8th Edition x
Chapter 12: Delving Deep with Nested Queries 267

What Subqueries Do... 268
Nested queries that return sets of rows.. 269
Nested queries that return a single value.. 272
The ALL, SOME, and ANY quantifiers.. 275
Nested queries that are an existence test....................................... 277
Other correlated subqueries... 278
UPDATE, DELETE, and INSERT... 282
Retrieving changes with pipelined DML.. 284

Chapter 13: Recursive Queries . 285
What Is Recursion?... 285

Houston, we have a problem... 287
Failure is not an option.. 287

What Is a Recursive Query?.. 288
Where Might You Use a Recursive Query?.. 289

Querying the hard way... 290
Saving time with a recursive query.. 291

Where Else Might You Use a Recursive Query?....................................... 293

Part IV: Controlling Operations................................... 295

Chapter 14: Providing Database Security . 297
The SQL Data Control Language... 298
User Access Levels... 298

The database administrator.. 298
Database object owners... 299
The public.. 300

Granting Privileges to Users.. 300
Roles... 301
Inserting data.. 302
Looking at data.. 302
Modifying table data... 303
Deleting obsolete rows from a table.. 304
Referencing related tables... 304
Using domains... 305
Causing SQL statements to be executed.. 306

Granting Privileges across Levels.. 307
Granting the Power to Grant Privileges... 309
Taking Privileges Away.. 310
Using GRANT and REVOKE Together to Save Time and Effort............... 311

xi Table of Contents

Chapter 15: Protecting Data . . 313
Threats to Data Integrity... 313

Platform instability... 314
Equipment failure... 314
Concurrent access.. 315

Reducing Vulnerability to Data Corruption.. 317
Using SQL transactions.. 318
The default transaction.. 319
Isolation levels.. 320
The implicit transaction-starting statement................................... 322
SET TRANSACTION... 323
COMMIT... 324
ROLLBACK... 324
Locking database objects.. 324
Backing up your data... 325
Savepoints and subtransactions... 325

Constraints Within Transactions.. 327

Chapter 16: Using SQL within Applications . 333
SQL in an Application... 333

Keeping an eye out for the asterisk.. 334
SQL strengths and weaknesses... 334
Procedural languages’ strengths and weaknesses......................... 335
Problems in combining SQL with a procedural language.............. 335

Hooking SQL into Procedural Languages.. 336
Embedded SQL.. 336
Module language... 339
Object-oriented RAD tools... 342
Using SQL with Microsoft Access... 343

Part V: Taking SQL to the Real World......................... 347

Chapter 17: Accessing Data with ODBC and JDBC 349
ODBC.. 350

The ODBC interface.. 350
Components of ODBC... 351

ODBC in a Client/Server Environment... 352
ODBC and the Internet... 352

Server extensions... 353
Client extensions... 354

ODBC and an Intranet.. 355
JDBC... 355

SQL For Dummies, 8th Edition xii
Chapter 18: Operating on XML Data with SQL 359

How XML Relates to SQL... 359
The XML Data Type.. 360

When to use the XML type.. 361
When not to use the XML type.. 362

Mapping SQL to XML and XML to SQL... 362
Mapping character sets... 362
Mapping identifiers... 363
Mapping data types.. 364
Mapping tables.. 364
Handling null values... 365
Generating the XML Schema... 366

SQL Functions That Operate on XML Data... 367
XMLDOCUMENT... 367
XMLELEMENT... 367
XMLFOREST... 368
XMLCONCAT... 368
XMLAGG... 369
XMLCOMMENT... 369
XMLPARSE... 370
XMLPI... 370
XMLQUERY.. 370
XMLCAST... 371

Predicates.. 371
DOCUMENT... 371
CONTENT... 372
XMLEXISTS.. 372
VALID.. 372

Transforming XML Data into SQL Tables.. 373
Mapping Non-Predefined Data Types to XML... 375

Domain... 375
Distinct UDT.. 376
Row... 377
Array... 378
Multiset.. 379

The Marriage of SQL and XML.. 379

Part VI: Advanced Topics... 381

Chapter 19: Stepping through a Dataset with Cursors 383
Declaring a Cursor.. 384

Query expression.. 385
ORDER BY clause.. 385

xiii Table of Contents

Updatability clause... 387
Sensitivity.. 387
Scrollability.. 388

Opening a Cursor.. 388
Fetching Data from a Single Row.. 390

Syntax... 390
Orientation of a scrollable cursor.. 391
Positioned DELETE and UPDATE statements................................. 391

Closing a Cursor... 392

Chapter 20: Adding Procedural Capabilities with Persistent
Stored Modules . 393

Compound Statements... 393
Atomicity.. 394
Variables.. 395
Cursors... 396
Conditions.. 396
Handling conditions... 397
Conditions that aren’t handled... 400
Assignment.. 400

Flow of Control Statements... 400
IF…THEN…ELSE…END IF.. 401
CASE…END CASE.. 401
LOOP…ENDLOOP... 402
LEAVE... 403
WHILE…DO…END WHILE.. 404
REPEAT…UNTIL…END REPEAT... 404
FOR…DO…END FOR.. 405
ITERATE... 405

Stored Procedures.. 406
Stored Functions... 407
Privileges... 408
Stored Modules... 409

Chapter 21: Handling Errors . . 411
SQLSTATE.. 411
WHENEVER Clause... 413
Diagnostics Areas... 414

Diagnostics header area.. 414
Diagnostics detail area... 416
Constraint violation example.. 418
Adding constraints to an existing table... 419
Interpreting the information returned by SQLSTATE.................... 419

Handling Exceptions.. 420

SQL For Dummies, 8th Edition xiv
Chapter 22: Triggers . 423

Examining Some Applications of Triggers... 423
Creating a Trigger... 424

Statement and row triggers... 425
When a trigger fires.. 425
The triggered SQL statement.. 425
An example trigger definition.. 426

Firing a Succession of Triggers... 426
Referencing Old Values and New Values... 427
Firing Multiple Triggers on a Single Table... 428

Part VII: The Part of Tens... 429

Chapter 23: Ten Common Mistakes . 431
Assuming That Your Clients Know What They Need.............................. 431
Ignoring Project Scope... 432
Considering Only Technical Factors.. 432
Not Asking for Client Feedback... 432
Always Using Your Favorite Development Environment........................ 433
Using Your Favorite System Architecture Exclusively............................ 433
Designing Database Tables in Isolation... 433
Neglecting Design Reviews.. 434
Skipping Beta Testing... 434
Not Documenting Your Process... 434

Chapter 24: Ten Retrieval Tips . 435
Verify the Database Structure... 435
Try Queries on a Test Database... 436
Double-Check Queries That Include Joins.. 436
Triple-Check Queries with Subselects... 436
Summarize Data with GROUP BY... 436
Watch GROUP BY Clause Restrictions... 437
Use Parentheses with AND, OR, and NOT... 437
Control Retrieval Privileges.. 437
Back Up Your Databases Regularly.. 438
Handle Error Conditions Gracefully... 438

Appendix: SQL: 2011 Reserved Words......................... 439

Index.. 443

Introduction

W
elcome to database development using SQL, the industry-standard
database query language. Many database management system

(DBMS) tools run on a variety of hardware platforms. The differences among
the tools can be great, but all serious products have one thing in common:
They support SQL data access and manipulation. If you know SQL, you can
build relational databases and get useful information out of them.

About This Book
Relational database management systems are vital to many organizations.
People often think that creating and maintaining these systems must be
extremely complex activities — the domain of database gurus who possess
enlightenment beyond that of mere mortals. This book sweeps away the data-
base mystique. In this book, you

	 ✓	Get to the roots of databases.

	 ✓	Find out how a DBMS is structured.

	 ✓	Discover the major functional components of SQL.

	 ✓	Build a database.

	 ✓	Protect a database from harm.

	 ✓	Operate on database data.

	 ✓	Determine how to get the information you want out of a database.

The purpose of this book is to help you build relational databases and get
valuable information out of them by using SQL. SQL is the international stan-
dard language used to create and maintain relational databases. This edition
covers the latest version of the standard, SQL:2011.

This book doesn’t tell you how to design a database (I do that in Database
Development For Dummies, also published by Wiley). Here I assume that you
or somebody else has already created a valid design. I then illustrate how
you implement that design by using SQL. If you suspect that you don’t have a
good database design, then — by all means — fix your design before you try
to build the database. The earlier you detect and correct problems in a devel-
opment project, the cheaper the corrections will be.

2 SQL For Dummies, 8th Edition

Who Should Read This Book?
If you need to store or retrieve data from a DBMS, you can do a much better
job with a working knowledge of SQL. You don’t need to be a programmer to
use SQL, and you don’t need to know programming languages, such as Java,
C, or BASIC. SQL’s syntax is like that of English.

If you are a programmer, you can incorporate SQL into your programs. SQL
adds powerful data manipulation and retrieval capabilities to conventional
languages. This book tells you what you need to know to use SQL’s rich
assortment of tools and features inside your programs.

Icons Used in This Book
	 Tips save you a lot of time and keep you out of trouble.

	 Pay attention to the information marked by this icon — you may need
it later.

	 Heeding the advice that this icon points to can save you from major grief.
Ignore it at your peril.

	 This icon alerts you to the presence of technical details that are interesting
but not absolutely essential to understanding the topic being discussed.

Where to Go from Here
Now for the fun part! Databases are the best tools ever invented for keep-
ing track of the things you care about. After you understand databases and
can use SQL to make them do your bidding, you wield tremendous power.
Coworkers come to you when they need critical information. Managers seek
your advice. Youngsters ask for your autograph. But most importantly, you
know, at a very deep level, how your organization really works.

Part I
Getting Started with SQL

	

Visit www.dummies.com for great Dummies content online.

In this part…
	 ✓	 The essentials of relational databases
	 ✓	 Basic SQL concepts
	 ✓	 Fundamental database tools
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 1

Relational Database Fundamentals
In This Chapter
▶	Organizing information
▶	Defining “database” in digital terms
▶	Deciphering DBMS
▶	Looking at the evolution of database models
▶	Defining “relational database” (can you relate?)
▶	Considering the challenges of database design

S
QL (pronounced ess-que-ell, not see’qwl, though database geeks still
argue about that) is a language specifically designed with databases in

mind. SQL enables people to create databases, add new data to them, main-
tain the data in them, and retrieve selected parts of the data. Developed in
the 1970s at IBM, SQL has grown and advanced over the years to become
the industry standard. It is governed by a formal standard maintained by the
International Standards Organization (ISO).

Various kinds of databases exist, each adhering to a different model of how
the data in the database is organized.

SQL was originally developed to operate on data in databases that follow the
relational model. Recently, the international SQL standard has incorporated
part of the object model, resulting in hybrid structures called object-relational
databases. In this chapter, I discuss data storage, devote a section to how the
relational model compares with other major models, and provide a look at
the important features of relational databases.

Before I talk about SQL, however, I want to nail down what I mean by the
term database. Its meaning has changed, just as computers have changed the
way people record and maintain information.

6 Part I: Getting Started with SQL

Keeping Track of Things
Today people use computers to perform many tasks formerly done with
other tools. Computers have replaced typewriters for creating and modify-
ing documents. They’ve surpassed electromechanical calculators as the best
way to do math. They’ve also replaced millions of pieces of paper, file fold-
ers, and file cabinets as the principal storage medium for important informa-
tion. Compared with those old tools, of course, computers do much more,
much faster — and with greater accuracy. These increased benefits do come
at a cost, however: Computer users no longer have direct physical access to
their data.

When computers occasionally fail, office workers may wonder whether com-
puterization really improved anything at all. In the old days, a manila file
folder “crashed” only if you dropped it — then you merely knelt down, picked
up the papers, and put them back in the folder. Barring earthquakes or other
major disasters, file cabinets never “went down,” and they never gave you an
error message. A hard-drive crash is another matter entirely: You can’t “pick
up” lost bits and bytes. Mechanical, electrical, and human failures can make
your data go away into the Great Beyond, never to return.

Taking the necessary precautions to protect yourself from accidental data
loss allows you to start cashing in on the greater speed and accuracy that
computers provide.

If you’re storing important data, you have four main concerns:

	 ✓	Storing data has to be quick and easy because you’re likely to do it
often.

	 ✓	The storage medium must be reliable. You don’t want to come back later
and find some (or all) of your data missing.

	 ✓	Data retrieval has to be quick and easy, regardless of how many items
you store.

	 ✓	You need an easy way to separate the exact information you want now
from the tons of data that you don’t want right now.

State-of-the-art computer databases satisfy these four criteria. If you store
more than a dozen or so data items, you probably want to store those items
in a database.

7 Chapter 1: Relational Database Fundamentals

What Is a Database?
The term database has fallen into loose use lately, losing much of its original
meaning. To some people, a database is any collection of data items (phone
books, laundry lists, parchment scrolls . . . whatever). Other people define
the term more strictly.

In this book, I define a database as a self-describing collection of integrated
records. And yes, that does imply computer technology, complete with pro-
gramming languages such as SQL.

	 A record is a representation of some physical or conceptual object. Say, for
example, that you want to keep track of a business’s customers. You assign a
record for each customer. Each record has multiple attributes, such as name,
address, and telephone number. Individual names, addresses, and so on are
the data.

A database consists of both data and metadata. Metadata is the data that
describes the data’s structure within a database. If you know how your
data is arranged, then you can retrieve it. Because the database contains a
description of its own structure, it’s self-describing. The database is integrated
because it includes not only data items but also the relationships among data
items.

The database stores metadata in an area called the data dictionary, which
describes the tables, columns, indexes, constraints, and other items that
make up the database.

Because a flat-file system (described later in this chapter) has no metadata,
applications written to work with flat files must contain the equivalent of the
metadata as part of the application program.

Database Size and Complexity
Databases come in all sizes, from simple collections of a few records to
mammoth systems holding millions of records. Most databases fall into one
of three categories, which are based on the size of the database itself, the
size of the equipment it runs on, and the size of the organization that is
maintaining it:

	 ✓	A personal database is designed for use by a single person on a single
computer. Such a database usually has a rather simple structure and a
relatively small size.

8 Part I: Getting Started with SQL

	 ✓	A departmental or workgroup database is used by the members of a
single department or workgroup within an organization. This type of
database is generally larger than a personal database and is necessar-
ily more complex; such a database must handle multiple users trying to
access the same data at the same time.

	 ✓	An enterprise database can be huge. Enterprise databases may model
the critical information flow of entire large organizations.

What Is a Database Management
System?

Glad you asked. A database management system (DBMS) is a set of programs
used to define, administer, and process databases and their associated appli-
cations. The database being managed is, in essence, a structure that you
build to hold valuable data. A DBMS is the tool you use to build that structure
and operate on the data contained within the database.

You can find many DBMS programs on the market today. Some run on large
and powerful machines, and some on personal computers, notebooks, and
tablets. A strong trend, however, is for such products to work on multiple
platforms or on networks that contain different classes of machines. An
even stronger trend is to store data in data centers or even to store it out
in the cloud, which could be a public cloud run by a large company such
as Amazon, Google, or Microsoft, via the Internet, or it could be a private
cloud operated by the same organization that is storing the data on its own
intranet.

These days, cloud is a buzzword that is bandied about incessantly in techie
circles. Like the puffy white things up in the sky, it has indistinct edges and
seems to float somewhere out there. In reality, it is a collection of computing
resources that is accessible via a browser, either over the Internet or on a
private intranet. The thing that distinguishes the computing resources in the
cloud from similar computing resources in a physical data center is the fact
that the resources are accessible via a browser rather than an application
program that directly accesses those resources.

	 A DBMS that runs on platforms of multiple classes, large and small, is called
scalable.

9 Chapter 1: Relational Database Fundamentals

Whatever the size of the computer that hosts the database — and regardless
of whether the machine is connected to a network — the flow of information
between database and user is always the same. Figure 1-1 shows that the
user communicates with the database through the DBMS. The DBMS masks
the physical details of the database storage so that the application has to
concern itself only with the logical characteristics of the data, not with how
the data is stored.

	

Figure 1-1:
A block

diagram of
a DBMS-

based
information

system.
	

Flat Files
Where structured data is concerned, the flat file is as simple as it gets. No, a
flat file isn’t a folder that’s been squashed under a stack of books. Flat files
are so called because they have minimal structure. If they were buildings,
they’d barely stick up from the ground. A flat file is simply a collection of

The value is not in the data, but in the structure
Years ago, some clever person calculated that
if you reduce human beings to their compo-
nents of carbon, hydrogen, oxygen, and nitro-
gen atoms (plus traces of others), they would be
worth only 97 cents. However droll this assess-
ment, it’s misleading. People aren’t composed
of mere isolated collections of atoms. Our
atoms combine into enzymes, proteins, hor-
mones, and many other substances that would

cost millions of dollars per ounce on the phar-
maceutical market. The precise structure of
these combinations of atoms is what gives them
greater value. By analogy, database structure
makes possible the interpretation of seemingly
meaningless data. The structure brings to the
surface patterns, trends, and tendencies in the
data. Unstructured data — like uncombined
atoms — has little or no value.

10 Part I: Getting Started with SQL

data records, one after another, in a specified format — the data, the whole
data, and nothing but the data — in effect, a list. In computer terms, a flat file
is simple. Because the file doesn’t store structural information (metadata),
its overhead (stuff in the file that is not data but takes up storage space) is
minimal.

Say that you want to keep track of the names and addresses of your compa-
ny’s customers in a flat file system. The system may have a structure some-
thing like this:

Harold Percival 26262 S. Howards Mill Rd Westminster CA92683
Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette St Garden Grove CA92643
Michael Pens 77730 S. New Era Rd Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610
Linda Smith 444 S.E. Seventh St Costa Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Dr Stanton CA92610
Jed Style 3535 Randall St Santa Ana CA92705

As you can see, the file contains nothing but data. Each field has a fixed
length (the Name field, for example, is always exactly 15 characters long), and
no structure separates one field from another. The person who created the
database assigned field positions and lengths. Any program using this file
must “know” how each field was assigned, because that information is not
contained in the database itself.

Such low overhead means that operating on flat files can be very fast. On the
minus side, however, application programs must include logic that manipu-
lates the file’s data at a very detailed level. The application must know
exactly where and how the file stores its data. Thus, for small systems, flat
files work fine. The larger a system is, however, the more cumbersome a flat-
file system becomes.

	 Using a database instead of a flat-file system eliminates duplication of effort.
Although database files themselves may have more overhead, the applications
can be more portable across various hardware platforms and operating sys-
tems. A database also makes writing application programs easier because the
programmer doesn’t need to know the physical details of where and how the
data is stored.

The reason databases eliminate duplication of effort is because the DBMS
handles the data-manipulation details. Applications written to operate
on flat files must include those details in the application code. If multiple
applications all access the same flat-file data, these applications must all
(redundantly) include that data-manipulation code. If you’re using a DBMS,
however, you don’t need to include such code in the applications at all.

11 Chapter 1: Relational Database Fundamentals

Clearly, if a flat-file-based application includes data-manipulation code that
runs only on a particular operating system (OS), migrating the application
to a different OS is a headache waiting to happen. You have to change all the
OS-specific code — and that’s just for openers. Migrating a similar DBMS-
based application to another OS is much simpler — fewer complicated steps,
fewer aspirin consumed.

Database Models
The first databases, back at the dawn of time (1950s), were structured
according to a hierarchical model. They suffered from redundancy prob-
lems, and their structural inflexibility made database modification difficult.
They were soon followed by databases that adhered to the network model,
which strove to eliminate the main disadvantages of the hierarchical model.
Network databases have minimal redundancy but pay for that advantage with
structural complexity.

Some years later, Dr. E. F. Codd at IBM developed the relational model, which
featured minimal redundancy and an easily understood structure. The SQL
language was developed to operate on relational databases. Relational data-
bases eventually consigned the hierarchical and network databases to the
dustbin of history.

	 A new phenomenon is the emergence of the so-called NoSQL databases, which
lack the structure of the relational databases and do not use the SQL language.
I don’t cover NoSQL databases in this book.

Relational model
Dr. Codd first formulated the relational database model in 1970, and this
model started appearing in products about a decade later. Ironically, IBM did
not deliver the first relational DBMS. That distinction went to a small start-up
company, which named its product Oracle.

Relational databases have almost completely replaced earlier database types.
That’s largely because you can change the structure of a relational database
without having to change or modify applications that were based on the old
structures. Suppose, for example, that you add one or more new columns to
a database table. You don’t need to change any previously written applica-
tions that process that table — unless, of course, you alter one or more of the
columns that those applications have to use.

12 Part I: Getting Started with SQL

	 Of course, if you remove a column that an existing application has to use, you
experience problems no matter what database model you follow. One of the
quickest ways to make a database application crash is to ask it to retrieve a
kind of data that your database doesn’t contain.

Components of a relational database
Relational databases gain their flexibility because their data resides in tables
that are largely independent of each other. You can add, delete, or change
data in a table without affecting the data in the other tables, provided that
the affected table is not a parent of any of the other tables. (Parent-child table
relationships are explained in Chapter 5, and no, they don’t involve discuss-
ing allowances over dinner.) In this section, I show what these tables consist
of and how they relate to the other parts of a relational database.

Dealing with your relations
At holiday time, many of my relatives come to my house and sit down at my
table. Databases have relations, too, but each of their relations has its own
table. A relational database is made up of one or more relations.

	 A relation is a two-dimensional array of rows and columns, containing single-
valued entries and no duplicate rows. Each cell in the array can have only one
value, and no two rows may be identical. If that’s a little hard to picture, here’s
an example that will put you in the right ballpark. . . .

Most people are familiar with two-dimensional arrays of rows and columns, in
the form of electronic spreadsheets such as Microsoft Excel. A major-league
baseball player’s offensive statistics, as listed on the back of a baseball
card, are an example of such an array. On the baseball card are columns for
year, team, games played, at-bats, hits, runs scored, runs batted in, doubles,
triples, home runs, bases on balls, steals, and batting average. A row covers
each year that the player has played in the Major Leagues. You can also store
this data in a relation (a table), which has the same basic structure. Figure
1-2 shows a relational database table holding the offensive statistics for a
single major-league player. In practice, such a table would hold the statistics
for an entire team — or perhaps the whole league.

Columns in the array are self-consistent: A column has the same meaning in
every row. If a column contains a player’s last name in one row, the column
must contain a player’s last name in all rows. The order in which the rows
and columns appear in the array has no significance. As far as the DBMS is
concerned, it doesn’t matter which column is first, which is next, and which
is last. The same is true of rows. The DBMS processes the table the same way
regardless of the organization.

13 Chapter 1: Relational Database Fundamentals

	

Figure 1-2:
A table

showing
a baseball

player’s
offensive
statistics.

	

Every column in a database table embodies a single attribute of the table,
just like that baseball card. The column’s meaning is the same for every row
of the table. A table may, for example, contain the names, addresses, and
telephone numbers of all an organization’s customers. Each row in the table
(also called a record, or a tuple) holds the data for a single customer. Each
column holds a single attribute — such as customer number, customer name,
customer street, customer city, customer state, customer postal code, or
customer telephone number. Figure 1-3 shows some of the rows and columns
of such a table.

	 The relations in this database model correspond to tables in any database
based on the model. Try to say that ten times fast.

	

Figure 1-3:
Each

database
row contains

a record;
each

database
column
holds a

single
attribute.

	

14 Part I: Getting Started with SQL

Enjoy the view
One of my favorite views is of the Yosemite Valley from the mouth of the
Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer
face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls
forms a silver cascade of sparkling water, while wispy clouds weave a tapes-
try across the sky. Databases have views as well — even if they’re not quite
that picturesque. The beauty of database views is their sheer usefulness
when you’re working with your data.

Tables can contain many columns and rows. Sometimes all that data inter-
ests you, and sometimes it doesn’t. Only some columns of a table may
interest you, or perhaps you want to see only rows that satisfy a certain con-
dition. Some columns of one table and some other columns of a related table
may interest you. To eliminate data that isn’t relevant to your current needs,
you can create a view — a subset of a database that an application can pro-
cess. It may contain parts of one or more tables.

	 Views are sometimes called virtual tables. To the application or the user, views
behave the same as tables. Views, however, have no independent existence.
Views allow you to look at data, but views are not part of the data.

Say, for example, that you’re working with a database that has a CUSTOMER
table and an INVOICE table. The CUSTOMER table has the columns
CustomerID, FirstName, LastName, Street, City, State, Zipcode, and
Phone. The INVOICE table has the columns InvoiceNumber, CustomerID,
Date, TotalSale, TotalRemitted, and FormOfPayment.

A national sales manager wants to look at a screen that contains only the
customer’s first name, last name, and telephone number. Creating from the
CUSTOMER table a view that contains only the FirstName, LastName, and
Phone columns enables the manager to view what he or she needs without
having to see all the unwanted data in the other columns. Figure 1-4 shows
the derivation of the national sales manager’s view.

A branch manager may want to look at the names and phone numbers of
all customers whose zip codes fall between 90000 and 93999 (southern and
central California). A view that places a restriction on the rows it retrieves, as
well as the columns it displays, does the job. Figure 1-5 shows the sources for
the columns in the branch manager’s view.

15 Chapter 1: Relational Database Fundamentals

	

Figure 1-4:
The sales

manager’s
view derives

from the
CUSTOMER

table.
	

	

Figure 1-5:
The branch

man-
ager’s view

includes
only cer-
tain rows
from the

CUSTOMER
table.

	

16 Part I: Getting Started with SQL

The accounts-payable manager may want to look at customer names
from the CUSTOMER table and Date, TotalSale, TotalRemitted, and
FormOfPayment from the INVOICE table, where TotalRemitted is less
than TotalSale. The latter would be the case if full payment hasn’t yet
been made. This need requires a view that draws from both tables. Figure 1-6
shows data flowing into the accounts-payable manager’s view from both the
CUSTOMER and INVOICE tables.

Views are useful because they enable you to extract and format database
data without physically altering the stored data. They also protect the data
that you don’t want to show, because they don’t contain it. Chapter 6 illus-
trates how to create a view by using SQL.

	

Figure 1-6:
The

accounts-
payable

manager’s
view draws

from two
tables.

	

Schemas, domains, and constraints
A database is more than a collection of tables. Additional structures, on
several levels, help to maintain the data’s integrity. A database’s schema pro-
vides an overall organization to the tables. The domain of a table column tells
you what values you may store in the column. You can apply constraints to
a database table to prevent anyone (including yourself) from storing invalid
data in the table.

17 Chapter 1: Relational Database Fundamentals

Schemas
The structure of an entire database is its schema, or conceptual view. This
structure is sometimes also called the complete logical view of the database.
The schema is metadata — as such, it’s part of the database. The metadata
itself, which describes the database’s structure, is stored in tables that are
just like the tables that store the regular data. Even metadata is data; that’s
the beauty of it.

Domains
An attribute of a relation (that is, a column of a table) can assume some finite
number of values. The set of all such values is the domain of the attribute.

Say, for example, that you’re an automobile dealer who handles the newly
introduced Curarri GT 4000 sports coupe. You keep track of the cars you
have in stock in a database table that you name INVENTORY. You name one
of the table columns Color, which holds the exterior color of each car. The
GT 4000 comes in only four colors: blazing crimson, midnight black, snow-
flake white, and metallic gray. Those four colors are the domain of the Color
attribute.

Constraints
Constraints are an important, although often overlooked, component of a
database. Constraints are rules that determine what values the table attri-
butes can assume.

By applying tight constraints to a column, you can prevent people from enter-
ing invalid data into that column. Of course, every value that is legitimately
in the domain of the column must satisfy all the column’s constraints. As I
mention in the preceding section, a column’s domain is the set of all values
that the column can contain. A constraint is a restriction on what a column
may contain. The characteristics of a table column, plus the constraints that
apply to that column, determine the column’s domain.

In the auto dealership example, you can constrain the database to accept
only those four values (mentioned in the preceding section) in the Color
column. If a data entry operator then tries to enter in the Color column
a value of, for example, forest green, the system refuses to accept the
entry. Data entry can’t proceed until the operator enters a valid value into
the Color field.

You may wonder what happens when Curarri AutoWerks decides to offer
a forest-green version of the GT 4000 as a mid-year option. The answer is
(drum roll, please) job security for database-maintenance programmers.

18 Part I: Getting Started with SQL

This kind of thing happens all the time and requires updates to the database
structure. Only people who know how to modify the database structure
(such as you) will be able to prevent a major snafu.

The object model challenged
the relational model
The relational model has been fantastically successful in a wide variety of
application areas. However, it does not do everything that anyone would ever
want. The limitations have been made more visible by the rise in popularity
of object-oriented programming languages such as C++, Java, and C#. Such
languages are capable of handling more complex problems than traditional
languages due to their advanced features, such as user-extensible type sys-
tems, encapsulation, inheritance, dynamic binding of methods, complex and
composite objects, and object identity.

I am not going to explain all that jargon in this book (although I do touch on
some of these terms later). Suffice it to say that the classic relational model
doesn’t mesh well with many of these features. As a result, database manage-
ment systems based on the object model have been developed. However, the
idea never really took off. Although object-oriented programming languages
have become very popular, object-oriented databases have not.

Final score: Relational databases 1, object-oriented databases 0.

The object-relational model
Database designers, like everyone else, are constantly searching for the best
of all possible worlds. They mused, “Wouldn’t it be great if we could have the
advantages of an object-oriented database system and still retain compatibil-
ity with the relational system that we know and love?” This kind of thinking
led to the hybrid object-relational model. Object-relational DBMSs extend
the relational model to include support for object-oriented data modeling.
Object-oriented features have been added to the international SQL standard,
allowing relational DBMS vendors to transform their products into object-
relational DBMSs, while retaining compatibility with the standard. Thus,
whereas the SQL-92 standard describes a purely relational database model,
SQL:1999 describes an object-relational database model. SQL:2003 has more
object-oriented features, and subsequent versions of the SQL standard have
gone even further in that direction.

19 Chapter 1: Relational Database Fundamentals

In this book, I describe ISO/IEC international standard SQL. (If you’re curious,
IEC stands for International Electrotechnical Commission, but nobody really
cares about that. How many people know what the letters in the acronym
LASER stand for?) The system described by the ISO/IEC SQL standard is pri-
marily a relational database model. I also include the object-oriented exten-
sions to the standard that were introduced in SQL:1999 and the additional
extensions included in later versions. The object-oriented features of the new
standard allow developers to apply SQL databases to problems that are too
complex to address with the older, purely relational, paradigm. Vendors of
DBMS systems are incorporating the object-oriented features in the ISO stan-
dard into their products. Some of these features have been present for years,
but others are yet to be included.

Database Design Considerations
A database is a representation of a physical or conceptual structure, such as
an organization, an automobile assembly, or the performance statistics of all
the major-league baseball clubs. The accuracy of the representation depends
on the level of detail of the database design. The amount of effort that you
put into database design should depend on the type of information you want
to get out of the database. Too much detail is a waste of effort, time, and
hard-drive space. Too little detail may render the database worthless.

	 Decide how much detail you need now and how much you may need in the
future — and then provide exactly that level of detail in your design (no more
and no less). But don’t be surprised if you have to adjust the design eventually
to meet changing real-world needs.

	 Today’s database management systems, complete with attractive graphical
user interfaces and intuitive design tools, can give the would-be database
designer a false sense of security. These systems make designing a database
seem comparable to building a spreadsheet or engaging in some other rela-
tively straightforward task. No such luck. Database design is difficult. If you
do it incorrectly, not only is your database likely to suffer from poor perfor-
mance, but it also may well become gradually more corrupt as time goes on.
Often the problem doesn’t turn up until after you devote a great deal of effort
to data entry. By the time you know that you have a problem, it’s already seri-
ous. In many cases, the only solution is to completely redesign the database
and reenter all the data. The up side is that by the time you finish your second
version of the same database, you realize how much better you understand
database design.

20 Part I: Getting Started with SQL

Chapter 2

SQL Fundamentals
In This Chapter
▶	Understanding SQL
▶	Clearing up SQL misconceptions
▶	Taking a look at the different SQL standards
▶	Getting familiar with standard SQL commands and reserved words
▶	Representing numbers, characters, dates, times, and other data types
▶	Exploring null values and constraints
▶	Putting SQL to work in a client/server system
▶	Considering SQL on a network

S
QL is a flexible language that you can use in a variety of ways. It’s the
most widely used tool for communicating with a relational database. In

this chapter, I explain what SQL is and isn’t — specifically, what distinguishes
SQL from other types of computer languages. Then I introduce the com-
mands and data types that standard SQL supports and I explain two key con-
cepts: null values and constraints. Finally, I give an overview of how SQL fits
into the client/server environment, as well as the Internet and organizational
intranets.

What SQL Is and Isn’t
The first thing to understand about SQL is that SQL isn’t a procedural lan-
guage, as are BASIC, C, C++, C#, and Java. To solve a problem in one of those
procedural languages, you write a procedure — a sequence of commands that
performs one specific operation after another until the task is complete. The
procedure may be a straightforward linear sequence or may loop back on
itself, but in either case, the programmer specifies the order of execution.

SQL, on the other hand, is nonprocedural. To solve a problem using SQL,
simply tell SQL what you want (as if you were talking to Aladdin’s genie)
instead of telling the system how to get you what you want. The database

22 Part I: Getting Started with SQL

management system (DBMS) decides the best way to get you what you
request.

All right. I just told you that SQL is not a procedural language — and that’s
essentially true. However, millions of programmers out there (and you’re
probably one of them) are accustomed to solving problems in a procedural
manner. So, in recent years, there has been a lot of pressure to add some
procedural functionality to SQL — and SQL now incorporates features of a
procedural language: BEGIN blocks, IF statements, functions, and (yes) pro-
cedures. With these facilities added, you can store programs at the server,
where multiple clients can use your programs repeatedly.

To illustrate what I mean by “tell the system what you want,” suppose you
have an EMPLOYEE table from which you want to retrieve the rows that
correspond to all your senior people. You want to define a senior person as
anyone older than age 40 or anyone earning more than $100,000 per year.
You can make the desired retrieval by using the following query:

SELECT * FROM EMPLOYEE WHERE Age > 40 OR Salary > 100000 ;

This statement retrieves all rows from the EMPLOYEE table where either the
value in the Age column is greater than 40 or the value in the Salary column
is greater than 100,000. In SQL, you don’t have to specify how the informa-
tion is retrieved. The database engine examines the database and decides for
itself how to fulfill your request. You need only specify what data you want to
retrieve.

	 A query is a question you ask the database. If any of the data in the database
satisfies the conditions of your query, SQL retrieves that data.

Current SQL implementations lack many of the basic programming con-
structs that are fundamental to most other languages. Real-world applica-
tions usually require at least some of these programming constructs, which
is why SQL is actually a data sublanguage. Even with the extensions that were
added in 1999, 2003, 2005, and 2008, you still have to use SQL in combination
with a procedural language (such as C++) to create a complete application.

You can extract information from a database in one of two ways:

	 ✓	Make an ad hoc query from your keyboard by just typing an SQL
statement and reading the results from the screen. Queries from the
keyboard are appropriate when you want a quick answer to a specific
question. To meet an immediate need, you may require information that
you never needed before from a database. You’re likely never to need
that information again, either, but you need it now. Enter the appropri-
ate SQL query statement from the keyboard, and in due time, the result
appears on your screen.

23 Chapter 2: SQL Fundamentals

	 ✓	Execute a program that collects information from the database and
then reports on the information either onscreen or in a printed report.
Incorporating an SQL query directly into a program is a good way to
run a complex query that you’re likely to run again in the future. That
way, you can formulate a query just once for use as often as you want.
Chapter 16 explains how to incorporate SQL code into programs written
in another programming language.

A (Very) Little History
SQL originated in one of IBM’s research laboratories, as did relational
database theory. In the early 1970s, as IBM researchers developed early
relational DBMS (or RDBMS) systems, they created a data sublanguage to
operate on these systems. They named the pre-release version of this sub-
language SEQUEL (Structured English QUEry Language). However, when it
came time to formally release their query language as a product, they found
that another company had already trademarked the product name “Sequel.”
Therefore, the marketing geniuses at IBM decided to give the released
product a name that was different from SEQUEL but still recognizable as a
member of the same family. So they named it SQL (pronounced ess-que-ell).

	 The syntax of SQL is a form of structured English, which is where its original
name came from. However, SQL is not a structured language in the sense that
computer scientists understand that term. Thus, despite the assumptions of
many people, SQL is not an acronym standing for “structured query language.”
It is a sequence of three letters that don’t stand for anything, just like the
name of the C language does not stand for anything.

IBM’s work with relational databases and SQL was well known in the industry
even before IBM introduced its SQL/DS relational database (RDBMS) prod-
uct in 1981. By that time, Relational Software, Inc. (now Oracle Corporation)
had already released its first RDBMS. These early products immediately set
the standard for a new class of database management systems. They incor-
porated SQL, which became the de facto standard for data sublanguages.
Vendors of other relational database management systems came out with
their own versions of SQL. Typically these other implementations contained
all the core functionality of the IBM products, extended in ways that took
advantage of the particular strengths of their own RDBMS product. As a
result, although nearly all vendors used some form of SQL, compatibility
between platforms was poor.

	 An implementation is a particular RDBMS running on a specific hardware plat-
form.

24 Part I: Getting Started with SQL

Soon a movement began to create a universally recognized SQL standard
to which everyone could adhere. In 1986, ANSI (the American National
Standards Institute) released a formal standard it named SQL-86. ANSI
updated that standard in 1989 to SQL-89 and again in 1992 to SQL-92. As
DBMS vendors proceed through new releases of their products, they try
to bring their implementations ever closer to this standard. This effort has
brought the goal of true SQL portability much closer to reality.

	 The most recent full version of the SQL standard is SQL:2011 (ISO/IEC 9075-
X:2011). In this book, I describe SQL as SQL:2011 defines the language. Every
specific SQL implementation differs from the standard to a certain extent.
Because the complete SQL standard is comprehensive, currently available
implementations are unlikely to support it fully. However, DBMS vendors are
working to support a core subset of the standard SQL language. The full ISO/
IEC standard is available for purchase at http://webstore.ansi.org, but
you probably don’t want to buy it unless you intend to create your own ISO/
IEC SQL standard database management system. The standard is highly techni-
cal and virtually incomprehensible to anyone other than a computer language
scholar.

SQL Statements
The SQL command language consists of a limited number of statements that
perform three functions of data handling: Some of them define data, some
manipulate data, and others control data. I cover the data-definition state-
ments and data-manipulation statements in Chapters 4 through 12; I detail
the data-control statements in Chapters 13 and 14.

To comply with SQL:2011, an implementation must include a basic set of core
features. It may also include extensions to the core set (which the SQL:2011
specification also describes). Table 2-1 lists the core plus the extended
SQL:2011 statements. It’s quite a list. If you’re among those programmers
who love to try out new capabilities, rejoice.

Table 2-1	 SQL:2011 Statements
ADD DEALLOCATE

PREPARE
FREE LOCATOR

ALLOCATE CURSOR DECLARE GET DESCRIPTOR

ALLOCATE
DESCRIPTOR

DECLARE LOCAL
TEMPORARY TABLE

GET DIAGNOSTICS

ALTER DOMAIN DELETE GRANT PRIVILEGE

ALTER ROUTINE DESCRIBE INPUT GRANT ROLE

25 Chapter 2: SQL Fundamentals

ALTER SEQUENCE
GENERATOR

DESCRIBE OUTPUT HOLD LOCATOR

ALTER TABLE DISCONNECT INSERT

ALTER TRANSFORM DROP MERGE

ALTER TYPE DROP ASSERTION OPEN

CALL DROP ATTRIBUTE PREPARE

CLOSE DROP CAST RELEASE
SAVEPOINT

COMMIT DROP CHARACTER
SET

RETURN

CONNECT DROP COLLATION REVOKE

CREATE DROP COLUMN ROLLBACK

CREATE ASSERTION DROP CONSTRAINT SAVEPOINT

CREATE CAST DROP DEFAULT SELECT

CREATE CHARACTER
SET

DROP DOMAIN SET CATALOG

CREATE COLLATION DROP METHOD SET CONNECTION

CREATE DOMAIN DROP ORDERING SET CONSTRAINTS

CREATE FUNCTION DROP ROLE SET DESCRIPTOR

CREATE METHOD DROP ROUTINE SET NAMES

CREATE ORDERING DROP SCHEMA SET PATH

CREATE PROCEDURE DROP SCOPE SET ROLE

CREATE ROLE DROP SEQUENCE SET SCHEMA

CREATE SCHEMA DROP TABLE SET SESSION
AUTHORIZATION

CREATE SEQUENCE DROP TRANSFORM SET SESSION
CHARACTERISTICS

CREATE TABLE DROP TRANSLATION SET SESSION
COLLATION

CREATE TRANSFORM DROP TRIGGER SET TIME ZONE

CREATE
TRANSLATION

DROP TYPE SET TRANSACTION

CREATE TRIGGER DROP VIEW SET TRANSFORM
GROUP

CREATE TYPE EXECUTE IMMEDIATE START TRANSACTION

CREATE VIEW FETCH UPDATE

DEALLOCATE
DESCRIPTOR

26 Part I: Getting Started with SQL

Reserved Words
In addition to the statements, a number of other words have a special signifi-
cance within SQL. These words, along with the statements, are reserved for
specific uses, so you can’t use them as variable names or in any other way
that differs from their intended use. You can easily see why tables, columns,
and variables should not be given names that appear on the reserved word
list. Imagine the confusion that a statement such as the following would
cause:

SELECT SELECT FROM SELECT WHERE SELECT = WHERE ;

’Nuff said. A complete list of SQL reserved words appears in Appendix A.

Data Types
Depending on their histories, different SQL implementations support a vari-
ety of data types. The SQL specification recognizes seven predefined general
types:

	 ✓	Numerics

	 ✓	Binary

	 ✓	Strings

	 ✓	Booleans

	 ✓	Datetimes

	 ✓	Intervals

	 ✓	XML

Within each of these general types may be several subtypes (exact numerics,
approximate numerics, character strings, bit strings, large object strings).
In addition to the built-in, predefined types, SQL supports collection types,
constructed types, and user-defined types, all of which I discuss later in this
chapter.

	 If you use an SQL implementation that supports data types that aren’t
described in the SQL specification, you can keep your database more portable
by avoiding these undescribed data types. Before you decide to create and
use a user-defined data type, make sure that any DBMS you may want to port
to in the future also supports user-defined types.

27 Chapter 2: SQL Fundamentals

Exact numerics
As you can probably guess from the name, the exact numeric data types
enable you to express the value of a number exactly. Five data types fall into
this category:

	 ✓	INTEGER

	 ✓	SMALLINT

	 ✓	BIGINT

	 ✓	NUMERIC

	 ✓	DECIMAL

INTEGER data type
Data of the INTEGER type has no fractional part, and its precision depends
on the specific SQL implementation. As the database developer, you can’t
specify the precision.

	 The precision of a number is the maximum number of significant digits the
number can have.

SMALLINT data type
The SMALLINT data type is also for integers, but the precision of a SMALLINT
in a specific implementation can’t be any larger than the precision of an
INTEGER on the same implementation. In many implementations, SMALLINT
and INTEGER are the same.

If you’re defining a database table column to hold integer data and you
know that the range of values in the column won’t exceed the precision of
SMALLINT data on your implementation, assign the column the SMALLINT
type rather than the INTEGER type. This assignment may enable your DBMS
to conserve storage space.

BIGINT data type
The BIGINT data type is defined as a type whose precision is at least as great
as that of the INTEGER type (it may be greater). The exact precision of a
BIGINT data type depends on the SQL implementation used.

NUMERIC data type
NUMERIC data can have a fractional component in addition to its integer com-
ponent. You can specify both the precision and the scale of NUMERIC data.
(Precision, remember, is the maximum number of significant digits possible.)

28 Part I: Getting Started with SQL

	 The scale of a number is the number of digits in its fractional part. The scale of
a number can’t be negative or larger than that number’s precision.

If you specify the NUMERIC data type, your SQL implementation gives you
exactly the precision and scale that you request. You may specify NUMERIC
and get a default precision and scale, or NUMERIC (p) and get your specified
precision and the default scale, or NUMERIC (p,s) and get both your speci-
fied precision and your specified scale. The parameters p and s are place-
holders that would be replaced by actual values in a data declaration.

Say, for example, that the NUMERIC data type’s default precision for your
SQL implementation is 12 and the default scale is 6. If you specify a database
column as having a NUMERIC data type, the column can hold numbers up
to 999,999.999999. If, on the other hand, you specify a data type of NUMERIC
(10) for a column, that column can hold only numbers with a maximum
value of 9,999.999999. The parameter (10) specifies the maximum number of
digits possible in the number. If you specify a data type of NUMERIC (10,2)
for a column, that column can hold numbers with a maximum value of
99,999,999.99. In this case, you may still have ten total digits, but only two of
those digits can fall to the right of the decimal point.

	 NUMERIC data is used for values such as 595.72. That value has a precision of
5 (the total number of digits) and a scale of 2 (the number of digits to the right
of the decimal point). A data type of NUMERIC (5,2) is appropriate for such
numbers.

DECIMAL data type
The DECIMAL data type is similar to NUMERIC. This data type can have a frac-
tional component, and you can specify its precision and scale. The difference
is that your implementation may specify a precision greater than what you
specify — if so, the implementation uses the greater precision. If you do not
specify precision or scale, the implementation uses default values, as it does
with the NUMERIC type.

An item that you specify as NUMERIC (5,2) can never contain a number
with an absolute value greater than 999.99. An item that you specify as
DECIMAL (5,2) can always hold values up to 999.99, but if your SQL imple-
mentation permits larger values, then the DBMS won’t reject values larger
than 999.99.

	 Use the NUMERIC or DECIMAL type if your data has fractional positions, and
use the INTEGER, SMALLINT, or BIGINT type if your data always consists of
whole numbers. Use the NUMERIC type rather than the DECIMAL type if you
want to maximize portability, because a value that you define as NUMERIC
(5,2), for example, holds the same range of values on all systems.

29 Chapter 2: SQL Fundamentals

Approximate numerics
Some quantities have such a large range of possible values (many orders of
magnitude) that a computer with a given register size can’t represent all the
values exactly. (Examples of register sizes are 32 bits, 64 bits, and 128 bits.)
Usually in such cases, exactness isn’t necessary, and a close approximation
is acceptable. SQL defines three approximate NUMERIC data types to handle
this kind of data: REAL, DOUBLE PRECISION, and FLOAT (as detailed in the
next three subsections).

REAL data type
The REAL data type gives you a single-precision, floating-point number — the
precision of which depends on the SQL implementation. In general, the hard-
ware you use determines precision. A 64-bit machine, for example, gives you
more precision than does a 32-bit machine.

	 A floating-point number is a number that contains a decimal point. The decimal
point can “float” to different locations in the number, depending on the num-
ber’s value. Examples include 3.1, 3.14, and 3.14159 — and yes, all three can be
used as values for π — each with a different precision.

DOUBLE PRECISION data type
The DOUBLE PRECISION data type gives you a double-precision floating-
point number, the precision of which again depends on the implementation.
Surprisingly, the meaning of the word DOUBLE also depends on the imple-
mentation. Double-precision arithmetic is primarily employed by scientific
users. Different scientific disciplines have different needs in the area of preci-
sion. Some SQL implementations cater to one category of users, and other
implementations cater to other categories of users.

In some systems, the DOUBLE PRECISION type has exactly twice the capac-
ity of the REAL data type for both mantissa and exponent. (In case you’ve for-
gotten what you learned in high school, you can represent any number as a
mantissa multiplied by ten raised to the power given by an exponent. You can
write 6,626, for example, as 6.626E3. The number 6.626 is the mantissa, which
you multiply by ten raised to the third power; in that case, 3 is the exponent.)

You gain no benefit by representing numbers that are fairly close to 1 (such
as 6,626 or even 6,626,000) with an approximate NUMERIC data type. Exact
numeric types work just as well — and after all, they’re exact. For numbers
that are either very near 0 or much larger than 1, however, such as 6.626E-34
(a very small number), you must use an approximate NUMERIC type. Exact
NUMERIC data types can’t hold such numbers. On other systems, the
DOUBLE PRECISION type gives you somewhat more than twice the mantissa

30 Part I: Getting Started with SQL

capacity — and somewhat less than twice the exponent capacity as the
REAL type. On yet another type of system, the DOUBLE PRECISION type
gives double the mantissa capacity but the same exponent capacity as the
REAL type. In this case, accuracy doubles, but range does not.

	 The SQL specification doesn’t try to dictate, arbitrate, or establish by fiat what
DOUBLE PRECISION means. The specification requires only that the preci-
sion of a DOUBLE PRECISION number be greater than the precision of a REAL
number. Although this constraint is rather weak, it’s probably the best pos-
sible, given the great differences you encounter in hardware.

FLOAT data type
The FLOAT data type is most useful if you think that you may someday
migrate your database to a hardware platform with register sizes different
from those available on your current platform. By using the FLOAT data type,
you can specify a precision — for example, FLOAT (5). If your hardware
supports the specified precision with its single-precision circuitry, then your
present system uses single-precision arithmetic. If, after you migrate your
database, the specified precision requires double-precision arithmetic, then
the system uses double-precision arithmetic.

	 Using FLOAT rather than REAL or DOUBLE PRECISION makes moving your
databases to other hardware easier. That’s because the FLOAT data type
enables you to specify precision and lets the hardware fuss over whether to
use single- or double-precision arithmetic. (Remember, the precision of REAL
and DOUBLE PRECISION numbers is hardware-dependent.)

If you aren’t sure whether to use the exact NUMERIC data types (that is,
NUMERIC and DECIMAL) or the approximate NUMERIC data types (that is,
FLOAT and REAL), use the exact NUMERIC types. Exact data types demand
fewer system resources — and, of course, give exact (rather than approxi-
mate) results. If the range of possible values of your data is large enough to
require you to use approximate data types, you can probably determine this
fact in advance.

Character strings
Databases store many types of data, including graphic images, sounds, and
animations. I expect odors to come next. Can you imagine a three-dimensional
1920-x-1080, 24-bit color image of a large slice of pepperoni pizza on your
screen, while an odor sample taken at DiFilippi’s Pizza Grotto replays
through your super-multimedia card? Such a setup may get frustrating — at
least until you can afford to add taste-type data to your system as well. Alas,
you can expect to wait a long time before odor and taste become standard
SQL data types. These days, the data types that you use most commonly —
after the NUMERIC types, of course — are the character-string types.

31 Chapter 2: SQL Fundamentals

You have three main types of CHARACTER data:

	 ✓	Fixed character data (CHARACTER or CHAR)

	 ✓	Varying character data (CHARACTER VARYING or VARCHAR)

	 ✓	Character large-object data (CHARACTER LARGE OBJECT or CLOB)

You also have three variants of these types of character data:

	 ✓	NATIONAL CHARACTER

	 ✓	NATIONAL CHARACTER VARYING

	 ✓	NATIONAL CHARACTER LARGE OBJECT

Details coming right up.

CHARACTER data type
If you define the data type of a column as CHARACTER or CHAR, you can
specify the number of characters the column holds by using the syntax CHAR
(x), where x is the number of characters. If you specify a column’s data type
as CHAR (16), for example, the maximum length of any data you can enter
in the column is 16 characters. If you don’t specify an argument (that is, you
don’t provide a value in place of the x, SQL assumes a field length of one
character. If you enter data into a CHARACTER field of a specified length and
you enter fewer characters than the specified number, SQL fills the remaining
character spaces with blanks.

CHARACTER VARYING data type
The CHARACTER VARYING data type is useful if entries in a column can vary
in length but you don’t want SQL to pad the field with blanks. This data type
enables you to store exactly the number of characters that the user enters.
No default value exists for this data type. To specify this data type, use the
form CHARACTER VARYING (x) or VARCHAR (x), where x is the maximum
number of characters permitted.

CHARACTER LARGE OBJECT data type
The CHARACTER LARGE OBJECT (CLOB) data type was introduced with
SQL:1999. As its name implies, it’s used with huge character strings that are
too large for the CHARACTER type. CLOBs behave much like ordinary charac-
ter strings, but there are a number of restrictions on what you can do with
them.

For one thing, a CLOB may not be used in a PRIMARY KEY, FOREIGN KEY, or
UNIQUE predicate. Furthermore, it may not be used in a comparison other
than one for either equality or inequality. Because of their large size, applica-
tions generally do not transfer CLOBs to or from a database. Instead, a special

32 Part I: Getting Started with SQL

client-side data type called a CLOB locator is used to manipulate the CLOB
data. It’s a parameter whose value identifies a large character-string object.

	 A predicate is a statement that may either be logically True or logically False.

NATIONAL CHARACTER, NATIONAL CHARACTER VARYING,
and NATIONAL CHARACTER LARGE OBJECT data types
Various languages have some characters that differ from any characters
in another language. For example, German has some special characters
not present in the English-language character set. Some languages, such as
Russian, have a very different character set from that of English. For example,
if you specify the English character set as the default for your system, you
can use alternative character sets because the NATIONAL CHARACTER,
NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE
OBJECT data types function the same as the CHARACTER, CHARACTER
VARYING, and CHARACTER LARGE OBJECT data types — the only difference
is that the character set you’re specifying is different from the default charac-
ter set.

You can specify the character set as you define a table column. If you want,
each column can use a different character set. The following example of a
table-creation statement uses multiple character sets:

CREATE TABLE XLATE (
 LANGUAGE_1 CHARACTER (40),
 LANGUAGE_2 CHARACTER VARYING (40) CHARACTER SET GREEK,
 LANGUAGE_3 NATIONAL CHARACTER (40),
 LANGUAGE_4 CHARACTER (40) CHARACTER SET KANJI
) ;

Here the LANGUAGE_1 column contains characters in the implementation’s
default character set. The LANGUAGE_3 column contains characters in the
implementation’s national character set. The LANGUAGE_2 column contains
Greek characters. And the LANGUAGE_4 column contains Kanji characters.
After a long absence, Asian character sets, such as Kanji, are now available in
many DBMS products.

Binary strings
The BINARY string data types were introduced in SQL:2008. Considering that
binary data has been fundamental to digital computers since the Atanasoff-
Berry Computer of the 1930s, this recognition of the importance of binary
data seems a little late in coming to SQL. (Better late than never, I suppose.)
There are three different binary types, BINARY, BINARY VARYING, and
BINARY LARGE OBJECT.

33 Chapter 2: SQL Fundamentals

BINARY data type
If you define the data type of a column as BINARY, you can specify the
number of bytes (octets) the column holds by using the syntax BINARY
(x), where x is the number of bytes. If you specify a column’s data type as
BINARY (16), for example, the binary string must be 16 bytes in length.
BINARY data must be entered as bytes, starting with byte one.

BINARY VARYING data type
Use the BINARY VARYING or VARBINARY type when the length of a binary
string is a variable. To specify this data type, use the form BINARY VARYING
(x) or VARBINARY (x), where x is the maximum number of bytes permit-
ted. The minimum size of the string is zero and the maximum size is x.

BINARY LARGE OBJECT data type
The BINARY LARGE OBJECT (BLOB) data type is used with huge binary
strings that are too large for the BINARY type. Graphical images and music
files are examples of huge binary strings. BLOBs behave much like ordinary
binary strings, but SQL puts a number of restrictions on what you can do
with them.

For one thing, you can’t use a BLOB in a PRIMARY KEY, FOREIGN KEY, or
UNIQUE predicate. Furthermore, no BLOBs are allowed in comparisons other
than those for equality or inequality. BLOBs are large, so applications gener-
ally don’t transfer actual BLOBs to or from a database. Instead, they use a
special client-side data type called a BLOB locator to manipulate the BLOB
data. The locator is a parameter whose value identifies a binary large object.

Booleans
The BOOLEAN data type consists of the distinct truth values True and False,
as well as Unknown. If either a Boolean True or False value is compared to a
NULL or Unknown truth value, the result will have the Unknown value.

Datetimes
The SQL standard defines five data types that deal with dates and times;
they’re called datetime data types, or simply datetimes. Considerable overlap
exists among these data types, so some implementations you encounter may
not support all five.

34 Part I: Getting Started with SQL

	 Implementations that do not fully support all five data types for dates and
times may have problems with databases that you try to migrate from another
implementation. If you have trouble with a migration, check the source and
the destination implementations to see how they represent dates and times.

DATE data type
The DATE type stores year, month, and day values of a date, in that order.
The year value is four digits long, and the month and day values are both two
digits long. A DATE value can represent any date from the year 0001 to the
year 9999. The length of a DATE is ten positions, as in 1957-08-14.

TIME WITHOUT TIME ZONE data type
The TIME WITHOUT TIME ZONE data type stores hour, minute, and second
values of time. The hours and minutes occupy two digits. The seconds value
may be only two digits but may also expand to include an optional fractional
part. Therefore this data type can represent a time such as (for example) 32
minutes and 58.436 seconds past 9:00 a.m. as 09:32:58.436.

The precision of the fractional part is implementation-dependent but is at
least six digits long. A TIME WITHOUT TIME ZONE value takes up eight posi-
tions (including colons) when the value has no fractional part, or nine posi-
tions (including the decimal point) plus the number of fractional digits when
the value does include a fractional part. You specify TIME WITHOUT TIME
ZONE type data either as TIME, which gives you the default of no fractional
digits, or as TIME WITHOUT TIME ZONE (p), where p is the number of digit
positions to the right of the decimal. The example in the preceding paragraph
represents a data type of TIME WITHOUT TIME ZONE (3).

TIMESTAMP WITHOUT TIME ZONE data type
TIMESTAMP WITHOUT TIME ZONE data includes both date and time infor-
mation. The lengths and the restrictions on the values of the components
of TIMESTAMP WITHOUT TIME ZONE data are the same as they are for
DATE and TIME WITHOUT TIME ZONE data, except for one difference: The
default length of the fractional part of the time component of a TIMESTAMP
WITHOUT TIME ZONE is six digits rather than zero.

If the value has no fractional digits, the length of a TIMESTAMP WITHOUT
TIME ZONE is 19 positions — ten date positions, one space as a separa-
tor, and eight time positions, in that order. If fractional digits are present
(six digits is the default), the length is 20 positions plus the number of frac-
tional digits. The 20th position is for the decimal point. You specify a field
as TIMESTAMP WITHOUT TIME ZONE type by using either TIMESTAMP
WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE (p), where p
is the number of fractional digit positions. The value of p can’t be negative,
and the implementation determines its maximum value.

35 Chapter 2: SQL Fundamentals

TIME WITH TIME ZONE data type
The TIME WITH TIME ZONE data type is the same as the TIME WITHOUT
TIME ZONE data type except this type adds information about the offset
from Universal Time (UTC, the successor of Greenwich Mean Time or GMT).
The value of the offset may range anywhere from –12:59 to +13:00. This addi-
tional information takes up six more digit positions following the time — a
hyphen as a separator, a plus or minus sign, and then the offset in hours (two
digits) and minutes (two digits) with a colon in between the hours and min-
utes. A TIME WITH TIME ZONE value with no fractional part (the default) is
14 positions long. If you specify a fractional part, the field length is 15 posi-
tions plus the number of fractional digits.

TIMESTAMP WITH TIME ZONE data type
The TIMESTAMP WITH TIME ZONE data type functions the same as the
TIMESTAMP WITHOUT TIME ZONE data type except that this data type
also adds information about the offset from Universal Time. The additional
information takes up six more digit positions following the timestamp. (See
the preceding section for the form of the time-zone information.) Including
time-zone data sets up 25 positions for a field with no fractional part and 26
positions (plus the number of fractional digits) for fields that do include a
fractional part. (Six is the default number of fractional digits.)

Intervals
The interval data types relate closely to the datetime data types. An interval
is the difference between two datetime values. In many applications that deal
with dates, times, or both, you sometimes need to determine the interval
between two dates or two times.

SQL recognizes two distinct types of intervals: the year-month interval and
the day-time interval. A year-month interval is the number of years and
months between two dates. A day-time interval is the number of days, hours,
minutes, and seconds between two instants within a month. You can’t mix
calculations involving a year-month interval with calculations involving a
day-time interval, because months come in varying lengths (28, 29, 30, or 31
days long).

XML type
XML is an acronym for eXtensible Markup Language, which defines a set of
rules for adding markup to data. The markup structures the data in a way
that conveys what the data means. XML enables the sharing of data between
very different platforms.

36 Part I: Getting Started with SQL

The XML data type has a tree structure, so a root node may have child nodes,
which may, in turn, have children of their own. First introduced in SQL:2003,
the XML type was fleshed out in SQL/XML:2005, and further augmented in
SQL:2008. The 2005 edition defined five parameterized subtypes, while retain-
ing the original plain-vanilla XML type. XML values can exist as instances of
two or even more types, because some of the subtypes are subtypes of other
subtypes. (Maybe I should call them sub-subtypes, or even sub-sub-subtypes.
Fortunately, SQL:2008 defined a standard way of referring to subtypes.)

The primary modifiers of the XML type are SEQUENCE, CONTENT, and
DOCUMENT. The secondary modifiers are UNTYPED, ANY, and XMLSCHEMA.
Figure 2-1 shows the tree-like structure illustrating the hierarchical relation-
ships among the subtypes.

	

Figure 2-1:
The rela-
tionships

of the XML
subtypes.

	

The following list is a rundown of the XML types you should be familiar with.
Don’t freak out if it looks like Greek (or worse yet, Linear A) to you. I give a
more detailed explanation of these types in Chapter 18. I’ve organized the list
to begin with the most basic types and end with the most complicated:

	 ✓	XML(SEQUENCE): Every value in XML is either an SQL NULL value or
an XQuery sequence. That way, every XML value is an instance of the
XML(SEQUENCE) type. XQuery is a query language specifically designed
to extract information from XML data. This is the most basic XML type.

		 XML(SEQUENCE) is the least restrictive of the XML types. It can accept
values that are not well-formed XML values. The other XML types, on
the other hand, aren’t quite so forgiving.

	 ✓	XML(CONTENT(ANY)): This is a slightly more restrictive type than
XML(SEQUENCE). Every XML value that is either a NULL value or

37 Chapter 2: SQL Fundamentals

an XQuery document node (or a child of that document node) is an
instance of this type. Every instance of XML(CONTENT(ANY)) is also an
instance of XML(SEQUENCE). XML values of the XML(CONTENT(ANY))
type are not necessarily well formed, either. Such values may be inter-
mediate results in a query that are later reduced to well-formed values.

	 ✓	XML(CONTENT(UNTYPED)): This is more restrictive than XML(ANY
CONTENT), and thus any value of the XML(CONTENT(UNTYPED))
type is also an instance of the XML(CONTENT(ANY)) type and the
XML(SEQUENCE) type. Every XML value that is either the null value or
a non-null value of type XML(CONTENT(ANY)) is an XQuery document
node D, such that the following is true for every XQuery element node
contained in the XQuery tree T rooted in D:

	 •	The type-name property is xdt:untyped.

	 •	The nilled property is False.

	 •	For every XQuery attribute node contained in T, the type property
is xdt:untypedAtomic.

	 •	For every XQuery attribute node contained in T, the type property
is a value of type-name XML(CONTENT(UNTYPED)).

	 ✓	XML(CONTENT(XMLSCHEMA)): This is a second subtype of
XML(CONTENT(ANY)) besides XML(CONTENT(UNTYPED)). As such it
is also a subtype of XML(SEQUENCE). Every XML value that is either the
null value or a non-null value of type XML(CONTENT(ANY)) and is also
an XQuery document node D such that every XQuery element node that
is contained in the XQuery tree T rooted in D

	 •	Is valid according to the XML Schema S, or

	 •	Is valid according to an XML namespace N in an XML Schema S, or

	 •	Is valid according to a global element declaration schema compo-
nent E in an XML schema S, or

	 •	Is a value of type XML(CONTENT(XMLSCHEMA)), whose type
descriptor includes the registered XML Schema descriptor of S,
and, if N is specified, the XML namespace URI of N, or if E is speci-
fied, the XML namespace URI of E and the XML NCName of E.

	 ✓	XML(DOCUMENT(ANY)): This is another subtype of the
XML(CONTENT(ANY)) type with the added restriction that instances
of XML(DOCUMENT(ANY)) are document nodes that have exactly one
XQuery element node, zero or more XQuery comment nodes, and zero
or more XQuery processing instruction nodes.

	 ✓	XML(DOCUMENT(UNTYPED)): Every value that is either the NULL
value or a non-null value of type XML(CONTENT(UNTYPED))
that is an XQuery document node whose children property
has exactly one XQuery element node, zero or more XQuery

38 Part I: Getting Started with SQL

comment nodes, and zero or more XQuery processing instruc-
tion nodes is a value of type XML(DOCUMENT(UNTYPED)).
All instances of XML(DOCUMENT(UNTYPED)) are also
instances of XML(CONTENT(UNTYPED)). Furthermore, all
instances of XML(DOCUMENT(UNTYPED)) are also instances of
XML(DOCUMENT(ANY)). XML(DOCUMENT(UNTYPED)) is the most
restrictive of the subtypes, sharing the restrictions of all the other sub-
types. Any document that qualifies as an XML(DOCUMENT(UNTYPED)) is
also an instance of all the other XML subtypes.

ROW types
The ROW data type was introduced with SQL:1999. It’s not that easy to under-
stand, and as a beginning to intermediate SQL programmer, you may never
use it. After all, people got by without it just fine between 1986 and 1999.

One notable thing about the ROW data type is that it violates the rules of
normalization that E. F. Codd declared in the early days of relational database
theory. (I talk more about those rules in Chapter 5.) One of the defining char-
acteristics of first normal form is that a field in a table row may not be multival-
ued. A field may contain one and only one value. However, the ROW data type
allows you to declare an entire row of data to be contained within a single field
in a single row of a table — in other words, a row nested within a row.

	 The normal forms, first articulated by Dr. Codd, are defining characteristics of
relational databases. Inclusion of the ROW type in the SQL standard was the
first attempt to broaden SQL beyond the pure relational model.

Consider the following SQL statement, which defines a ROW type for a per-
son’s address information:

CREATE ROW TYPE addr_typ (
 Street CHARACTER VARYING (25),
 City CHARACTER VARYING(20),
 State CHARACTER (2),
 PostalCode CHARACTER VARYING (9)
) ;

After it’s defined, the new ROW type can be used in a table definition:

CREATE TABLE CUSTOMER (
 CustID INTEGER PRIMARY KEY,
 LastName CHARACTER VARYING (25),
 FirstName CHARACTER VARYING (20),
 Address addr_typ,
 Phone CHARACTER VARYING (15)
) ;

39 Chapter 2: SQL Fundamentals

The advantage here is that if you’re maintaining address information for
multiple entities — such as customers, vendors, employees, and stockholders —
you have to define the details of the address specification only once: in the
ROW type definition.

Collection types
After SQL broke out of the relational straightjacket with SQL:1999, data types
that violate first normal form became possible. It became possible for a field
to contain a whole collection of objects rather than just one. The ARRAY
type was introduced in SQL:1999, and the MULTISET type was introduced in
SQL:2003.

Two collections may be compared to each other only if they are both the
same type, either ARRAY or MULTISET, and if their element types are compa-
rable. Because arrays have a defined element order, corresponding elements
from the arrays can be compared. Multisets have no defined element order,
but you can compare them if (a) an enumeration exists for each multiset
being compared and (b) the enumerations can be paired.

ARRAY type
The ARRAY data type violates first normal form (1NF), but in a different way
than the way the ROW type violates 1NF. The ARRAY type, a collection type, is
not a distinct type in the same sense that CHARACTER and NUMERIC are dis-
tinct data types. An ARRAY type merely allows one of the other types to have
multiple values within a single field of a table. For example, say your orga-
nization needs to be able to contact customers whether they’re at work, at
home, or on the road. You want to maintain multiple telephone numbers for
them. You can do this by declaring the Phone attribute as an array, as shown
in the following code:

CREATE TABLE CUSTOMER (
 CustID INTEGER PRIMARY KEY,
 LastName CHARACTER VARYING (25),
 FirstName CHARACTER VARYING (20),
 Address addr_typ,
 Phone CHARACTER VARYING (15) ARRAY [3]
) ;

The ARRAY [3] notation allows you to store up to three telephone numbers
in the CUSTOMER table. The three telephone numbers represent an example
of a repeating group. Repeating groups are a no-no according to classical
relational database theory, but this is one of several examples of cases where
SQL:1999 broke the rules. When Dr. Codd first specified the rules of normal-
ization, he traded off functional flexibility for data integrity. SQL:1999 took

40 Part I: Getting Started with SQL

back some of that functional flexibility, at the cost of some added structural
complexity.

	 The increased structural complexity could translate into compromised data
integrity if you are not fully aware of all the effects of the actions you perform
on your database. Arrays are ordered, in that each element in an array is asso-
ciated with exactly one ordinal position in the array.

An array is an ordered collection of values, and the cardinality of an array is
the number of elements in the array. An SQL array can have any cardinality
from zero up to and including some declared maximum number of elements.
This means that the cardinality of a column of the array type can vary from
one row to the next. An array can be atomically null, in which case its car-
dinality would also be null. A null array is not the same as an empty array,
whose cardinality would be zero. An array that has only null elements would
have a cardinality greater than zero. For example, an array with five null ele-
ments would have a cardinality of five.

If an array has a cardinality that is less than the declared maximum, the
unused cells in the array are considered to be nonexistent. They are not con-
sidered to contain null values; they just aren’t there at all.

You can access individual elements in an array by enclosing their subscripts
in square brackets. If you have an array named Phone, then Phone [3] would
refer to the third element of the Phone array.

Since SQL:1999, it has been possible to find out the cardinality of an array
by invoking the CARDINALITY function. New in SQl:2011 is the ability to
discover the maximum cardinality of an array by using the ARRAY_MAX_
CARDINALITY function. This is very useful because it enables you to write
general-purpose routines that apply to arrays with different maximum car-
dinalities. Routines with hard-coded maximum cardinalities apply only to
arrays that have a given maximum cardinality and would have to be rewritten
for arrays of any other maximum cardinality.

Whereas SQ:1999 introduced the ARRAY data type and the ability to address
individual elements within an array, it did not make any provision for remov-
ing elements from an array. That oversight has been corrected in SQL:2011
with the introduction of the TRIM_ARRAY function, which enables you to
remove elements from the end of an array.

MULTISET type
A multiset is an unordered collection. Specific elements of the multiset may
not be referenced; usually that’s because those elements are not assigned
specific ordinal positions in the multiset.

41 Chapter 2: SQL Fundamentals

REF types
REF types are not part of core SQL. This means that a DBMS may claim
compliance with the SQL standard without implementing REF types at all.
The REF type is not a distinct data type in the sense that CHARACTER and
NUMERIC are. Instead, it’s a pointer to a data item, a row type, or an abstract
data type that resides in a row of a table (a site). Dereferencing the pointer
can retrieve the value stored at the target site.

If you’re confused, don’t worry, because you’re not alone. Using the REF
types requires a working knowledge of object-oriented programming (OOP)
principles. This book refrains from wading too deeply into the murky waters
of OOP. In fact, because the REF types are not a part of core SQL, you may
be better off if you don’t use them. If you want maximum portability across
DBMS platforms, stick to core SQL.

User-defined types
User-defined types (UDTs) represent another example of features that arrived
in SQL:1999 that come from the object-oriented programming world. As an
SQL programmer, you are no longer restricted to the data types defined in
the SQL specification. You can define your own data types, using the prin-
ciples of abstract data types (ADTs) found in such object-oriented program-
ming languages as C++.

One of the most important benefits of UDTs is the fact that you can use them
to eliminate the impedance mismatch between SQL and the host language that
is “wrapped around” the SQL. A long-standing problem with SQL has been the
fact the SQL’s predefined data types do not match the data types of the host
languages within which SQL statements are embedded. Now, with UDTs, a
database programmer can create data types within SQL that match the data
types of the host language.

A UDT has attributes and methods, which are encapsulated within the UDT.
The outside world can see the attribute definitions and the results of the
methods — but the specific implementations of the methods are hidden from
view. Access to the attributes and methods of a UDT can be further restricted
by specifying that they are public, private, or protected:

	 ✓	Public attributes or methods are available to all users of a UDT.

	 ✓	Private attributes or methods are available only to the UDT itself.

	 ✓	Protected attributes or methods are available only to the UDT itself or
its subtypes.

42 Part I: Getting Started with SQL

You see from this that a UDT in SQL behaves much like a class in an object-
oriented programming language. Two forms of user-defined types exist: dis-
tinct types and structured types.

Distinct types
Distinct types are the simpler of the two forms of user-defined types. A dis-
tinct type’s defining feature is that it’s expressed as a single data type. It is
constructed from one of the predefined data types, called the source type.
Multiple distinct types that are all based on a single source type are distinct
from each other; thus, they are not directly comparable. For example, you
can use distinct types to distinguish between different currencies. Consider
the following type definition:

CREATE DISTINCT TYPE USdollar AS DECIMAL (9,2) ;

This definition creates a new data type for U.S. dollars (USdollar), based on
the predefined DECIMAL data type. You can create another distinct type in a
similar manner:

CREATE DISTINCT TYPE Euro AS DECIMAL (9,2) ;

You can now create tables that use these new types:

CREATE TABLE USInvoice (
 InvID INTEGER PRIMARY KEY,
 CustID INTEGER,
 EmpID INTEGER,
 TotalSale USdollar,
 Tax USdollar,
 Shipping USdollar,
 GrandTotal USdollar
) ;

CREATE TABLE EuroInvoice (
 InvID INTEGER PRIMARY KEY,
 CustID INTEGER,
 EmpID INTEGER,
 TotalSale Euro,
 Tax Euro,
 Shipping Euro,
 GrandTotal Euro
) ;

The USdollar type and the Euro type are both based on the DECIMAL type,
but instances of one cannot be directly compared with instances of the other
or with instances of the DECIMAL type. In SQL, as in the real world, it is pos-
sible to convert U.S. dollars into euros, but doing so requires a special opera-
tion (CAST). After conversion is complete, comparisons are possible.

43 Chapter 2: SQL Fundamentals

Structured types
The second form of user-defined type — the structured type — is expressed
as a list of attribute definitions and methods instead of being based on a
single predefined source type.

Constructors
When you create a structured UDT, the DBMS automatically creates a con-
structor function for it, giving it the same name as the UDT. The construc-
tor’s job is to initialize the attributes of the UDT to their default values.

Mutators and observers
When you create a structured UDT, the DBMS automatically creates a muta-
tor function and an observer function. A mutator, when invoked, changes the
value of an attribute of a structured type. An observer function is the oppo-
site of a mutator function; its job is to retrieve the value of an attribute of a
structured type. You can include observer functions in SELECT statements to
retrieve values from a database.

Subtypes and supertypes
A hierarchical relationship can exist between two structured types. For
example, a type named MusicCDudt has a subtype named RockCDudt and
another subtype named ClassicalCDudt. MusicCDudt is the supertype of
those two subtypes. RockCDudt is a proper subtype of MusicCDudt if there is
no subtype of MusicCDudt that is a supertype of RockCDudt. If RockCDudt
has a subtype named HeavyMetalCDudt, HeavyMetalCDudt is also a sub-
type of MusicCDudt, but it is not a proper subtype of MusicCDudt.

A structured type that has no supertype is called a maximal supertype, and a
structured type that has no subtypes is called a leaf subtype.

Example of a structured type
You can create structured UDTs in the following way:

/* Create a UDT named MusicCDudt */
CREATE TYPE MusicCDudt AS
/* Specify attributes */
Title CHAR(40),
Cost DECIMAL(9,2),
SuggestedPrice DECIMAL(9,2)
/* Allow for subtypes */
NOT FINAL ;

CREATE TYPE RockCDudt UNDER MusicCDudt NOT FINAL ;

44 Part I: Getting Started with SQL

The subtype RockCDudt inherits the attributes of its supertype
MusicCDudt.

CREATE TYPE HeavyMetalCDudt UNDER RockCDudt FINAL ;

Now that you have the types, you can create tables that use them. Here’s an
example:

CREATE TABLE METALSKU (
 Album HeavyMetalCDudt,
 SKU INTEGER) ;

Now you can add rows to the new table:

BEGIN
 /* Declare a temporary variable a */
 DECLARE a = HeavyMetalCDudt ;
 /* Execute the constructor function */
 SET a = HeavyMetalCDudt() ;
 /* Execute first mutator function */
 SET a = a.title(‘Edward the Great’) ;
 /* Execute second mutator function */
 SET a = a.cost(7.50) ;
 /* Execute third mutator function */
 SET a = a.suggestedprice(15.99) ;
 INSERT INTO METALSKU VALUES (a, 31415926) ;
 END

User-defined types sourced from collection types
In the earlier section “Distinct types,” I illustrate how you can create a user-
defined type from a predefined type, using the example of creating a USDollar
type from the DECIMAL type. This capability was introduced in SQL:1999.
SQL:2011 expands on this capability by enabling you to create a new user-
defined type from a collection type. This enables the developer to define
methods on the array as a whole, not just on the individual elements of the
array, as allowed by SQL:1999.

Data type summary
Table 2-2 lists various data types and displays literals that conform to each
type.

45 Chapter 2: SQL Fundamentals

Table 2-2	 Data Types
Data Type Example Value
CHARACTER (20) ‘Amateur Radio ’

VARCHAR (20) ‘Amateur Radio’

CLOB (1000000) ‘This character string is a
million characters long . . .’

SMALLINT, BIGINT, or
INTEGER

7500

NUMERIC or DECIMAL 3425.432

REAL, FLOAT, or
DOUBLE PRECISION

6.626E-34

BINARY (1) ‘01100011’

VARBINARY (4) ‘011000111100011011100110’

BLOB (1000000) ‘1001001110101011010101010101. . .’

BOOLEAN ‘TRUE’

DATE DATE ‘1957-08-14’

TIME (2) WITHOUT
TIME ZONE 1

TIME ‘12:46:02.43’ WITHOUT TIME
ZONE

TIME (3) WITH
TIME ZONE

TIME ‘12:46:02.432-08:00’ WITH
TIME ZONE

TIMESTAMP WITHOUT
TIME ZONE (0)

TIMESTAMP ‘1957-08-14 12:46:02’
WITHOUT TIME ZONE

TIMESTAMP WITH
TIME ZONE (0)

TIMESTAMP ‘1957-08-14 12:46:02-
08:00’ WITH TIME ZONE

INTERVAL DAY INTERVAL ‘4’ DAY

XML(SEQUENCE) <Client>Vince Tenetria</Client>

ROW ROW (Street VARCHAR (25), City
VARCHAR (20), State CHAR (2),
PostalCode VARCHAR (9))

ARRAY INTEGER ARRAY [15]

MULTISET No literal applies to the MULTISET type.
REF Not a type, but a pointer
USER DEFINED TYPE Currency type based on DECIMAL
1 Argument specifies number of fractional digits.

46 Part I: Getting Started with SQL

	 Your SQL implementation may not support all the data types that I describe in
this section. Furthermore, your implementation may support nonstandard
data types that I don’t describe here. (Your mileage may vary, and so on. You
know the drill.)

Null Values
	 If a database field contains a data item, that field has a specific value. A field

that does not contain a data item is said to have a null value. Keep in mind that

	 ✓	In a numeric field, a null value is not the same as a value of zero.

	 ✓	In a character field, a null value is not the same as a blank.

Both a numeric zero and a blank character are definite values. A null value
indicates that a field’s value is undefined — its value is not known.

A number of situations exist in which a field may have a null value. The fol-
lowing list describes a few of these situations and gives an example of each:

	 ✓	The value exists, but you don’t know what the value is yet. You set
NUMBER to null in the Lifeforms row of the Exoplanets table before
astronomers have discovered unequivocal evidence of life beyond our
solar system in the Milky Way galaxy.

	 ✓	The value doesn’t exist yet. You set TOTAL_SOLD to null in the SQL
For Dummies, 8th Edition row of the BOOKS table because the
first set of quarterly sales figures is not yet reported.

	 ✓	The field isn’t applicable for this particular row. You set SEX to null in
the C3PO row of the EMPLOYEE table because C3PO is a droid that has
no gender. (You knew that.)

	 ✓	The value is out of range. You set SALARY to null in the Oprah
Winfrey row of the EMPLOYEE table because you designed the SALARY
column as type NUMERIC (8,2) and Oprah’s contract calls for pay in
excess of $999,999.99. (You knew that too.)

	 A field can have a null value for many different reasons. Don’t jump to any
hasty conclusions about what any particular null value means.

Constraints
Constraints are restrictions that you apply to the data that someone can enter
into a database table. You may know, for example, that entries in a particular
numeric column must fall within a certain range. If anyone makes an entry

47 Chapter 2: SQL Fundamentals

that falls outside that range, then that entry must be an error. Applying a
range constraint to the column prevents this type of error from happening.

Traditionally, the application program that uses the database applies any
constraints to a database. The most recent DBMS products, however, enable
you to apply constraints directly to the database. This approach has several
advantages. If multiple applications use the same database, you apply the
constraints only once (rather than multiple times). Also, adding constraints
at the database level is usually simpler than adding them to an application.
Often all you do is tack the appropriate clause onto your CREATE statement.

I discuss constraints and assertions (which are constraints that apply to more
than one table) in detail in Chapter 5.

Using SQL in a Client/Server System
SQL is a data sublanguage that works on a standalone system or on a mul-
tiuser system. SQL works particularly well on a client/server system. On such
a system, users on multiple client machines that connect to a server machine
can access — via a local-area network (LAN) or other communications chan-
nel — a database that resides on the server to which they’re connected. The
application program on a client machine contains SQL data-manipulation
commands. The portion of the DBMS residing on the client sends these com-
mands to the server across the communications channel that connects the
server to the client. At the server, the server portion of the DBMS interprets
and executes the SQL command and then sends the results back to the client
across the communication channel. You can encode very complex operations
into SQL at the client, and then decode and perform those operations at the
server. This type of setup results in the most effective use of the bandwidth
of that communication channel.

	 If you retrieve data by using SQL on a client/server system, only the data you
want travels across the communication channel from the server to the client.
In contrast, a simple resource-sharing system, with minimal intelligence at the
server, must send huge blocks of data across the channel to give you the small
piece of data that you want. This sort of massive transmission can slow opera-
tions considerably. The client/server architecture complements the charac-
teristics of SQL to provide good performance at a moderate cost on small,
medium, and large networks.

The server
Unless it receives a request from a client, the server does nothing; it just
stands around and waits. If multiple clients require service at the same time,
however, servers must respond quickly. Servers generally differ from client

48 Part I: Getting Started with SQL

machines in terms of how much data they handle. They have large amounts
of very fast disk storage, optimized for fast data access and retrieval. And
because they must handle traffic coming in simultaneously from multiple
client machines, servers need fast multi-core processors.

What the server is
The server (short for database server) is the part of a client/server system
that holds the database. The server also holds the server software — the part
of a database management system that interprets commands coming in from
the clients and translates these commands into operations in the database.
The server software also formats the results of retrieval requests and sends
the results back to the requesting client.

What the server does
The server’s job is relatively simple and straightforward. All a server needs to
do is read, interpret, and execute commands that come to it across the net-
work from clients. Those commands are in one of several data sublanguages.

A sublanguage doesn’t qualify as a complete language — it implements only
part of a language. A data sublanguage may, for example, deal only with data
handling. The sublanguage has operations for inserting, updating, deleting,
and selecting data, but may not have flow control structures such as DO
loops, local variables, functions, procedures, or input/output to printers.
SQL is the most common data sublanguage in use today and has become an
industry standard. In fact, SQL has supplanted proprietary data sublanguages
on machines in all performance classes. With SQL:1999, SQL acquired many
of the features missing from traditional sublanguages. However, SQL is still
not a complete general-purpose programming language; it must be combined
with a host language to create a database application.

The client
The client part of a client/server system consists of a hardware component
and a software component. The hardware component is the client computer
and its interface to the local-area network. This client hardware may be very
similar (or even identical) to the server hardware. The software is the distin-
guishing component of the client.

What the client is
The client’s primary job is to provide a user interface. As far as the user is
concerned, the client machine is the computer, and the user interface is the
application. The user may not even realize that the process involves a server.
The server is usually out of sight — often in another room. Aside from the

49 Chapter 2: SQL Fundamentals

user interface, the client also contains the application program and the client
part of the DBMS. The application program performs the specific task you
require (say, in accounts receivable or order entry). The client part of the
DBMS executes the application program’s commands and exchanges data
and SQL data-manipulation commands with the server part of the DBMS.

What the client does
The client part of a DBMS displays information on-screen and responds to
user input transmitted via the keyboard, mouse, or other input device. The
client may also process data coming in from a telecommunications link or
from other stations on the network. The client part of the DBMS does all the
application-specific “thinking.” To a developer, the client part of a DBMS is
the interesting part. The server part just handles the requests of the client
part in a repetitive, mechanical fashion.

Using SQL on the Internet or an Intranet
Database operation on the Internet and on intranets differs fundamentally
from database operation in a traditional client/server system. The difference
is primarily on the client end. In a traditional client/server system, much of
the functionality of the DBMS resides on the client machine. On an Internet-
based database system, most or all of the DBMS resides on the server. The
client may host nothing more than a web browser. At most, the client holds
a browser and a browser extension, such as a Firefox add-on or an ActiveX
control. Thus the conceptual “center of mass” of the system shifts toward the
server. This shift has several advantages:

	 ✓	The client portion of the system (browser) is low-cost or even free.

	 ✓	You have a standardized user interface.

	 ✓	The client is easy to maintain.

	 ✓	You have a standardized client/server relationship.

	 ✓	You have a common means of displaying multimedia data.

The main disadvantages of performing database manipulations over the
Internet involve security and data integrity:

	 ✓	To protect information from unwanted access or tampering, both the
web server and the client browser must support strong encryption.

	 ✓	Browsers don’t perform adequate data-entry validation checks.

	 ✓	Database tables residing on different servers may become
desynchronized.

50 Part I: Getting Started with SQL

Client and server extensions designed to address these concerns make the
Internet a feasible location for production database applications. The archi-
tecture of an intranet is similar to that of the Internet but security is less of
a concern. Because the organization maintaining the intranet has physical
control over all the client machines — as well as the servers and the network
that connects these components together — an intranet suffers much less
exposure to the efforts of malicious hackers. Data-entry errors and database
desynchronization, however, do remain concerns.

Chapter 3

The Components of SQL
In This Chapter
▶	Creating databases
▶	Manipulating data
▶	Protecting databases

S
QL is a special-purpose language designed for the creation and mainte-
nance of data in relational databases. Although the vendors of relational

database management systems have their own SQL implementations, an ISO/
IEC standard (revised in 2011) defines and controls what SQL is. All imple-
mentations differ from the standard to varying degrees. Close adherence to
the standard is the key to running a database (and its associated applica-
tions) on more than one platform.

Although SQL isn’t a general-purpose programming language, it contains
some impressive tools. Three languages within the language offer everything
you need to create, modify, maintain, and provide security for a relational
database:

	 ✓	The Data Definition Language (DDL): The part of SQL that you use to
create (completely define) a database, modify its structure, and destroy
it when you no longer need it.

	 ✓	The Data Manipulation Language (DML): The part of SQL that performs
database maintenance. Using this powerful tool, you can specify what
you want to do with the data in your database — enter it, change it,
remove it, or retrieve it.

	 ✓	The Data Control Language (DCL): The part of SQL that protects your
database from becoming corrupted. Used correctly, the DCL provides
security for your database; the amount of protection depends on the
implementation. If your implementation doesn’t provide sufficient pro-
tection, you must add that protection to your application program.

This chapter introduces the DDL, DML, and DCL.

52 Part I: Getting Started with SQL

Data Definition Language
The Data Definition Language (DDL) is the part of SQL you use to create,
change, or destroy the basic elements of a relational database. Basic ele-
ments include tables, views, schemas, catalogs, clusters, and possibly other
things as well. In the following sections, I discuss the containment hierarchy
that relates these elements to each other and look at the commands that
operate on these elements.

In Chapter 1, I mention tables and schemas, noting that a schema is an overall
structure that includes tables within it. Tables and schemas are two elements
of a relational database’s containment hierarchy. You can break down the con-
tainment hierarchy as follows:

	 ✓	Tables contain columns and rows.

	 ✓	Schemas contain tables and views.

	 ✓	Catalogs contain schemas.

The database itself contains catalogs. Sometimes the database is referred to
as a cluster. I mention clusters again later in this chapter, in the section on
ordering by catalog.

When “Just do it!” is not good advice
Suppose you set out to create a database for your organization. Excited by
the prospect of building a useful, valuable, and totally righteous structure of
great importance to your company’s future, you sit down at your computer
and start entering SQL CREATE statements. Right?

Well, no. Not quite. In fact, that’s a prescription for disaster. Many database-
development projects go awry from the start as excitement and enthusiasm
overtake careful planning. Even if you have a clear idea of how to structure
your database, write everything down on paper before touching your key-
board.

Here’s where database development bears some resemblance to a game
of chess. In the middle of a complicated and competitive chess game, you
may see what looks like a good move. The urge to make that move can be
overwhelming. However, the odds are good that you’ve missed something.
Grandmasters advise newer players — only partly in jest — to sit on their
hands. If sitting on your hands prevents you from making an ill-advised move,
then so be it: Sit on your hands. If you study the position a little longer, you

53 Chapter 3: The Components of SQL

might find an even better move — or you might even see a brilliant counter
move that your opponent can make. Plunging into creating a database with-
out sufficient forethought can lead to a database structure that, at best, is
suboptimal. At worst, it could be disastrous, an open invitation to data cor-
ruption. Sitting on your hands probably won’t help, but it will help to pick
up a pencil in one of those hands and start mapping your database plan on
paper. For help in deciding what to include in your plan, check out my book
Database Development For Dummies, which covers planning in depth.

Keep in mind the following procedures when planning your database:

	 ✓	Identify all tables.

	 ✓	Define the columns that each table must contain.

	 ✓	Give each table a primary key that you can guarantee is unique. (I dis-
cuss primary keys in Chapters 4 and 5.)

	 ✓	Make sure that every table in the database has at least one column in
common with (at least) one other table in the database. These shared
columns serve as logical links that enable you to relate information in
one table to the corresponding information in another table.

	 ✓	Put each table in third normal form (3NF) or better to ensure the preven-
tion of insertion, deletion, and update anomalies. (I discuss database
normalization in Chapter 5.)

After you complete the design on paper and verify that it’s sound, you’re
ready to transfer the design to the computer. You can do this bit of magic by
typing SQL CREATE statements. More likely, you will use your DBMS’s graphi-
cal user interface (GUI) to create the elements of your design. If you do use a
GUI, your input will be converted “under the covers” into SQL by your DBMS.

Creating tables
A database table looks a lot like a spreadsheet table: a two-dimensional
array made up of rows and columns. You can create a table by using the SQL
CREATE TABLE command. Within the command, you specify the name and
data type of each column.

After you create a table, you can start loading it with data. (Loading data is a
DML, not a DDL, function.) If requirements change, you can change a table’s
structure by using the ALTER TABLE command. If a table outlives its useful-
ness or becomes obsolete, you can eliminate it with the DROP command. The
various forms of the CREATE and ALTER commands, together with the DROP
command, make up SQL’s DDL.

54 Part I: Getting Started with SQL

Suppose you’re a database designer and you don’t want your database tables
to turn to guacamole as you make updates over time. You decide to structure
your database tables according to the best normalized form so that you can
maintain data integrity.

	 Normalization, an extensive field of study in its own right, is a way of structur-
ing database tables so that updates don’t introduce anomalies. Each table you
create contains columns that correspond to attributes that are tightly linked
to each other.

You may, for example, create a CUSTOMER table with the attributes
CUSTOMER.CustomerID, CUSTOMER.FirstName, CUSTOMER.LastName,
CUSTOMER.Street, CUSTOMER.City, CUSTOMER.State, CUSTOMER.
Zipcode, and CUSTOMER.Phone. All these attributes are more closely
related to the customer entity than to any other entity in a database that may
contain many tables. These attributes contain all the relatively permanent
customer information that your organization keeps on file.

Most database management systems provide a graphical tool for creating
database tables. You can also create such tables by using an SQL com-
mand. The following example demonstrates a command that creates your
CUSTOMER table:

CREATE TABLE CUSTOMER (
 CustomerID INTEGER NOT NULL,
 FirstName CHAR (15),
 LastName CHAR (20) NOT NULL,
 Street CHAR (25),
 City CHAR (20),
 State CHAR (2),
 Zipcode CHAR (10),
 Phone CHAR (13)) ;

For each column, you specify its name (for example, CustomerID), its data
type (for example, INTEGER), and possibly one or more constraints (for
example, NOT NULL).

Figure 3-1 shows a portion of the CUSTOMER table with some sample data.

	 If the SQL implementation you use doesn’t fully implement the latest ver-
sion of ISO/IEC standard SQL, the syntax you need to use may differ from the
syntax that I give in this book. Read the user documentation that came with
your DBMS for specific information.

55 Chapter 3: The Components of SQL

	

Figure 3-1:
Use the
CREATE

TABLE com-
mand to

create this
CUSTOMER

table.
	

A room with a view
At times, you want to retrieve specific information from the CUSTOMER
table. You don’t want to look at everything — only specific columns and
rows. What you need is a view.

A view is a virtual table. In most implementations, a view has no independent
physical existence. The view’s definition exists only in the database’s meta-
data, but the data comes from the table or tables from which you derive the
view. The view’s data is not physically duplicated somewhere else in online
disk storage. Some views consist of specific columns and rows of a single
table. Others, known as multitable views, draw from two or more tables.

Single-table view
Sometimes when you have a question, the data that gives you the answer
resides in a single table in your database. If the information you want exists
in a single table, you can create a single-table view of the data. For example,
suppose you want to look at the names and telephone numbers of all custom-
ers who live in the state of New Hampshire. You can create a view from the
CUSTOMER table that contains only the data you want. The following SQL
statement creates this view:

CREATE VIEW NH_CUST AS
 SELECT CUSTOMER.FirstName,
 CUSTOMER.LastName,
 CUSTOMER.Phone
 FROM CUSTOMER
 WHERE CUSTOMER.State = ‘NH’ ;

Figure 3-2 shows how you derive the view from the CUSTOMER table.

56 Part I: Getting Started with SQL

	

Figure 3-2:
You derive

the NH_
CUST view

from the
CUSTOMER

table.
	

	 This code is correct, but a little on the wordy side. You can accomplish the
same task with less typing if your SQL implementation assumes that all table
references are the same as the ones in the FROM clause. If your system makes
that reasonable default assumption, you can reduce the statement to the fol-
lowing lines:

CREATE VIEW NH_CUST AS
 SELECT FirstName, LastName, Phone
 FROM CUSTOMER
 WHERE STATE = ‘NH’;

Although the second version is easier to write and read, it’s more vulnerable
to disruption from ALTER TABLE commands. Such disruption isn’t a prob-
lem for this simple case, which has no JOIN, but views with JOINs are more
robust when they use fully qualified names. I cover JOINs in Chapter 11.

Creating a multitable view
More often than not, you need to pull data from two or more tables to answer
your question. Suppose, for example, that you work for a sporting goods
store, and you want to send a promotional mailing to all the customers who
have bought ski equipment since the store opened last year. You need infor-
mation from the CUSTOMER table, the PRODUCT table, the INVOICE table,
and the INVOICE_LINE table. You can create a multitable view that shows the
data you need. After you create the view, you can use that same view again
and again. Each time you use the view, it reflects any changes that occurred
in the underlying tables since you last used the view.

The database for this sporting goods store contains four tables: CUSTOMER,
PRODUCT, INVOICE, and INVOICE_LINE. The tables are structured as shown
in Table 3-1.

57 Chapter 3: The Components of SQL

Table 3-1	 Sporting Goods Store Database Tables
Table Column Data Type Constraint
CUSTOMER CustomerID INTEGER NOT NULL

FirstName CHAR (15)

LastName CHAR (20) NOT NULL

Street CHAR (25)

City CHAR (20)

State CHAR (2)

Zipcode CHAR (10)

Phone CHAR (13)

PRODUCT ProductID INTEGER NOT NULL

Name CHAR (25)

Description CHAR (30)

Category CHAR (15)

VendorID INTEGER

VendorName CHAR (30)

INVOICE InvoiceNumber INTEGER NOT NULL

CustomerID INTEGER

InvoiceDate DATE

TotalSale NUMERIC (9,2)

TotalRemitted NUMERIC (9,2)

FormOfPayment CHAR (10)

INVOICE_LINE LineNumber INTEGER NOT NULL

InvoiceNumber INTEGER NOT NULL

ProductID INTEGER NOT NULL

Quantity INTEGER

SalePrice NUMERIC (9,2)

Notice that some of the columns in Table 3-1 contain the constraint NOT
NULL. These columns are either the primary keys of their respective tables
or columns that you decide must contain a value. A table’s primary key must
uniquely identify each row. To do that, the primary key must contain a non-
null value in every row. (I discuss keys in detail in Chapter 5.)

58 Part I: Getting Started with SQL

	 The tables relate to each other through the columns that they have in
common. The following list describes these relationships (as shown in
Figure 3-3):

	 ✓	The CUSTOMER table bears a one-to-many relationship to the INVOICE
table. One customer can make multiple purchases, generating multiple
invoices. Each invoice, however, deals with one, and only one, customer.

	 ✓	The INVOICE table bears a one-to-many relationship to the INVOICE_
LINE table. An invoice may have multiple lines, but each line appears on
one, and only one, invoice.

	 ✓	The PRODUCT table also bears a one-to-many relationship to the
INVOICE_LINE table. A product may appear on more than one line on
one or more invoices. Each line, however, deals with one, and only one,
product.

	

Figure 3-3:
A sport-

ing goods
store’s

database
structure.

	

The CUSTOMER table links to the INVOICE table by the common
CustomerID column. The INVOICE table links to the INVOICE_LINE table
by the common InvoiceNumber column. The PRODUCT table links to the
INVOICE_LINE table by the common ProductID column. These links are
what makes this database a relational database.

To access the information about customers who bought ski equipment, you
need FirstName, LastName, Street, City, State, and Zipcode from the

59 Chapter 3: The Components of SQL

CUSTOMER table; Category from the PRODUCT table; InvoiceNumber
from the INVOICE table; and LineNumber from the INVOICE_LINE table. You
can create the view you want in stages by using the following statements:

CREATE VIEW SKI_CUST1 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 InvoiceNumber
 FROM CUSTOMER JOIN INVOICE
 USING (CustomerID) ;
CREATE VIEW SKI_CUST2 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 ProductID
 FROM SKI_CUST1 JOIN INVOICE_LINE
 USING (InvoiceNumber) ;
CREATE VIEW SKI_CUST3 AS
 SELECT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode,
 Category
 FROM SKI_CUST2 JOIN PRODUCT
 USING (ProductID) ;
CREATE VIEW SKI_CUST AS
 SELECT DISTINCT FirstName,
 LastName,
 Street,
 City,
 State,
 Zipcode
 FROM SKI_CUST3
 WHERE CATEGORY = ‘Ski’ ;

These CREATE VIEW statements combine data from multiple tables by using
the JOIN operator. Figure 3-4 diagrams the process.

60 Part I: Getting Started with SQL

	

Figure 3-4:
Creating
a multi-

table view
by using

JOINs.
	

Here’s a rundown of the four CREATE VIEW statements:

	 ✓	The first statement combines columns from the CUSTOMER table with a
column of the INVOICE table to create the SKI_CUST1 view.

	 ✓	The second statement combines SKI_CUST1 with a column from the
INVOICE_LINE table to create the SKI_CUST2 view.

	 ✓	The third statement combines SKI_CUST2 with a column from the
PRODUCT table to create the SKI_CUST3 view.

	 ✓	The fourth statement filters out all rows that don’t have a category
of Ski. The result is a view (SKI_CUST) that contains the names and
addresses of all customers who bought at least one product in the Ski
category.

		 The DISTINCT keyword in the fourth CREATE VIEW’s SELECT clause
ensures that you have only one entry for each customer, even if some
customers made multiple purchases of ski items. (I cover JOINs in detail
in Chapter 11.)

It’s possible to create a multitable view with a single SQL statement.
However, if you think that one or all of the preceding statements are com-
plex, imagine how complex a single statement would be that performed all
their functions. I tend to prefer simplicity over complexity, so whenever pos-
sible, I choose the simplest way to perform a function, even if it is not the
most “efficient.”

61 Chapter 3: The Components of SQL

Collecting tables into schemas
A table consists of rows and columns and usually deals with a specific
type of entity, such as customers, products, or invoices. Useful work
generally requires information about several (or many) related entities.
Organizationally, you collect the tables that you associate with these entities
according to a logical schema. A logical schema is the organizational struc-
ture of a collection of related tables.

	 A database also has a physical schema — which represents the physical
arrangement of the data and its associated items (such as indexes) on the sys-
tem’s storage devices. When I mention “the schema” of a database, I’m refer-
ring to the logical schema, not the physical schema.

On a system where several unrelated projects may co-reside, you can assign
all related tables to one schema. You can collect other groups of tables into
schemas of their own.

	 Be sure to name your schemas to ensure that no one accidentally mixes tables
from one project with tables from another. Each project has its own associ-
ated schema; you can distinguish it from other schemas by name. Seeing
certain table names (such as CUSTOMER, PRODUCT, and so on) appear in
multiple projects, however, is common. If any chance exists of a naming
ambiguity, qualify your table name by using its schema name as well (as in
SCHEMA_NAME.TABLE_NAME). If you don’t qualify a table name, SQL assigns
that table to the default schema.

Ordering by catalog
For really large database systems, multiple schemas may not be sufficient.
In a large distributed database environment with many users, you may even
find duplicated schema names. To prevent this situation, SQL adds another
level to the containment hierarchy: the catalog. A catalog is a named collec-
tion of schemas.

You can qualify a table name by using a catalog name and a schema name.
This safeguard is the best way to ensure that no one confuses the table in
one schema with a table that has the same name in some other schema that
has the same schema name. (Say what? Well, some folks just have a really
hard time thinking up different names.) The catalog-qualified name appears
in the following format:

CATALOG_NAME.SCHEMA_NAME.TABLE_NAME

62 Part I: Getting Started with SQL

	 At the top of the database containment hierarchy are clusters. Systems rarely
require use of the full scope of the containment hierarchy; going to the catalog
level is enough in most cases. A catalog contains schemas; a schema contains
tables and views; tables and views contain columns and rows.

The catalog also contains the information schema. The information schema
contains the system tables. The system tables hold the metadata associated
with the other schemas. In Chapter 1, I define a database as a self-describing
collection of integrated records. The metadata contained in the system tables
is what makes the database self-describing.

Because catalogs are identified by name, you can have multiple catalogs in
a database. Each catalog can have multiple schemas, and each schema can
have multiple tables. Of course, each table can have multiple columns and
rows. The hierarchical relationships are shown in Figure 3-5.

	

Figure 3-5:
The hier-
archical

structure
of a typical
SQL data-

base.
	

Getting familiar with DDL statements
SQL’s Data Definition Language (DDL) deals with the structure of a database.
It’s distinct from the Data Manipulation Language (described later in this
chapter), which deals with the data contained within that structure. The DDL
consists of these three statements:

	 ✓	CREATE: You use the various forms of this statement to build the essen-
tial structures of the database.

	 ✓	ALTER: You use this statement to change structures that you have
created.

	 ✓	DROP: You apply this statement to structures created with the CREATE
statement, to destroy them.

63 Chapter 3: The Components of SQL

In the following sections, I give you brief descriptions of the DDL statements.
In Chapters 4 and 5, I use these statements in examples.

CREATE
You can apply the SQL CREATE statement to a large number of SQL objects,
including schemas, domains, tables, and views. By using the CREATE SCHEMA
statement, you can not only create a schema, but also identify its owner and
specify a default character set. Here’s an example of such a statement:

CREATE SCHEMA SALES
 AUTHORIZATION SALES_MGR
 DEFAULT CHARACTER SET ASCII_FULL ;

Use the CREATE DOMAIN statement to apply constraints to column values.
The constraints you apply to a domain determine what objects the domain
can and cannot contain. You can create domains after you establish a
schema. The following example shows how to use this statement:

CREATE DOMAIN Age AS INTEGER
 CHECK (AGE > 20) ;

You create tables by using the CREATE TABLE statement, and you create
views by using the CREATE VIEW statement. Earlier in this chapter, I show
you examples of these two statements. When you use the CREATE TABLE
statement, you can specify constraints on the new table’s columns at the
same time.

	 Sometimes you may want to specify constraints that don’t specifically
attach to a table but apply to an entire schema. You can use the CREATE
ASSERTION statement to specify such constraints.

You also have CREATE CHARACTER SET,CREATE COLLATION, and CREATE
TRANSLATION statements, which give you the flexibility of creating new char-
acter sets, collation sequences, or translation tables. (Collation sequences
define the order in which you carry out comparisons or sorts. Translation
tables control the conversion of character strings from one character set
to another.) You can create a number of other things (which I won’t go into
here), as you can deduce if you flip to Chapter 2 for a glance at Table 2-1.

ALTER
After you create a table, you’re not necessarily stuck with that exact table
forever. As you use the table, you may discover that it’s not everything you
need it to be. You can use the ALTER TABLE statement to change the table
by adding, changing, or deleting a column in the table. Besides tables, you
can also ALTER columns and domains.

64 Part I: Getting Started with SQL

DROP
Removing a table from a database schema is easy. Just use a DROP TABLE
<tablename> statement. You erase all data from the table, as well as the
metadata that defines the table in the data dictionary. It’s almost as if the
table never existed. You can also use the DROP statement to get rid of any-
thing that was created by a CREATE statement.

	 DROP won’t work if it breaks referential integrity. I discuss referential integrity
later in this chapter.

Data Manipulation Language
Although the DDL is the part of SQL that creates, modifies, or destroys data-
base structures, it doesn’t deal with data itself. Handling data is the job of
the Data Manipulation Language (DML). Some DML statements read like ordi-
nary English-language sentences and are easy to understand. Unfortunately,
because SQL gives you very fine-grained control of your data, other DML
statements can be fiendishly complex.

If a DML statement includes multiple expressions, clauses, predicates (more
about them later in this chapter), or subqueries, understanding what that
statement is trying to do can be a challenge. After you deal with some of
these statements, you may even consider switching to an easier line of work,
such as brain surgery or quantum electrodynamics. Fortunately, such dras-
tic action isn’t necessary. You can understand complex SQL statements by
breaking them down into their basic components and analyzing them one
chunk at a time.

The DML statements you can use are INSERT, UPDATE, DELETE, MERGE,
and SELECT. These statements can consist of a variety of parts, including
multiple clauses. Each clause may incorporate value expressions, logical
connectives, predicates, aggregate functions, and subqueries. You can make
fine discriminations among database records and extract more information
from your data by including these clauses in your statements. In Chapter 6, I
discuss the operation of the DML commands, and in Chapters 7 through 13, I
delve into the details of these commands.

Value expressions
You can use value expressions to combine two or more values. Several kinds
of value expressions exist, corresponding to the different data types:

65 Chapter 3: The Components of SQL

	 ✓	Numeric

	 ✓	String

	 ✓	Datetime

	 ✓	Interval

	 ✓	Boolean

	 ✓	User-defined

	 ✓	Row

	 ✓	Collection

The Boolean, user-defined, row, and collection types were introduced with
SQL:1999. Some implementations may not support them all yet. If you want to
use these data types, make sure your implementation includes the ones you
want to use.

Numeric value expressions
To combine numeric values, use the addition (+), subtraction (-), multipli-
cation (*), and division (/) operators. The following lines are examples of
numeric value expressions:

12 – 7
15/3 - 4
6 * (8 + 2)

The values in these examples are numeric literals. These values may also be
column names, parameters, host variables, or subqueries — provided that
those column names, parameters, host variables, or subqueries evaluate to a
numeric value. The following are some examples:

SUBTOTAL + TAX + SHIPPING
6 * MILES/HOURS
:months/12

The colon in the last example signals that the following term (months) is
either a parameter or a host variable.

String value expressions
String value expressions may include the concatenation operator (||). Use con-
catenation to join two text strings, as shown in Table 3-2.

66 Part I: Getting Started with SQL

Table 3-2	 Examples of String Concatenation
Expression Result
‘military ’ || ‘intelligence’ ‘military intelligence’

CITY|| ‘ ‘ ||STATE|| ‘ ‘||ZIP A single string with city, state,
and zip code, each separated by a
single space.

	 Some SQL implementations use + as the concatenation operator rather than
||. Check your documentation to see which operator your implementation
uses.

Some implementations may include string operators other than concatena-
tion, but ISO-standard SQL doesn’t support such operators. Concatenation
applies to binary strings as well as to text strings.

Datetime and interval value expressions
Datetime value expressions deal with (surprise!) dates and times. Data of
DATE, TIME, TIMESTAMP, and INTERVAL types may appear in datetime value
expressions. The result of a datetime value expression is always another
datetime. You can add or subtract an interval from a datetime and specify
time zone information.

Here’s an example of a datetime value expression:

DueDate + INTERVAL ‘7’ DAY

A library may use such an expression to determine when to send a late
notice. The following example specifies a time rather than a date:

TIME ‘18:55:48’ AT LOCAL

	 The AT LOCAL keywords indicate that the time refers to the local time zone.

Interval value expressions deal with the difference (how much time passes)
between one datetime and another. You have two kinds of intervals: year-
month and day-time. You can’t mix the two in an expression.

As an example of an interval, suppose someone returns a library book after
the due date. By using an interval value expression such as that of the follow-
ing example, you can calculate how many days late the book is and assess a
fine accordingly:

(DateReturned - DateDue) DAY

67 Chapter 3: The Components of SQL

Because an interval may be of either the year-month or the day-time variety,
you need to specify which kind to use. (In the preceding example, I specify
DAY.)

Boolean value expressions
A Boolean value expression tests the truth value of a predicate. The following
is an example of a Boolean value expression:

(Class = SENIOR) IS TRUE

If this were a condition on the retrieval of rows from a student table, only
rows containing the records of seniors would be retrieved. To retrieve the
records of all non-seniors, you could use the following:

NOT (Class = SENIOR) IS TRUE

Alternatively, you could use:

(Class = SENIOR) IS FALSE

To retrieve every row that has a null value in the CLASS column, use

(Class = SENIOR) IS UNKNOWN

User-defined type value expressions
I describe user-defined data types in Chapter 2. If necessary, you can define
your own data types instead of having to settle for those provided by “stock”
SQL. Expressions that incorporate data elements of such a user-defined type
must evaluate to an element of the same type.

Row value expressions
A row value expression, not surprisingly, specifies a row value. The row value
may consist of one value expression, or two or more comma-delimited value
expressions. For example:

(‘Joseph Tykociner’, ‘Professor Emeritus’, 1918)

This is a row in a faculty table, showing a faculty member’s name, rank, and
year of hire.

Collection value expressions
A collection value expression evaluates to an array.

68 Part I: Getting Started with SQL

Reference value expressions
A reference value expression evaluates to a value that references some other
database component, such as a table column.

Predicates
Predicates are SQL equivalents of logical propositions. The following state-
ment is an example of a proposition:

“The student is a senior.”

In a table containing information about students, the domain of the CLASS
column may be SENIOR, JUNIOR, SOPHOMORE, FRESHMAN, or NULL. You can
use the predicate CLASS = SENIOR to filter out rows for which the predi-
cate is False, retaining only those for which the predicate is True. Sometimes
the value of a predicate in a row is Unknown (NULL). In those cases, you may
choose either to discard the row or to retain it. (After all, the student could
be a senior.) The correct course of action depends on the situation.

Class = SENIOR is an example of a comparison predicate. SQL has six com-
parison operators. A simple comparison predicate uses one of these opera-
tors. Table 3-3 shows the comparison predicates and some legitimate as well
as bogus examples of their use.

Table 3-3	 Comparison Operators and Comparison Predicates
Operator Comparison Expression
= Equal to Class = SENIOR

<> Not equal to Class <> SENIOR

< Less than Class < SENIOR

> Greater than Class > SENIOR

<= Less than or equal to Class <= SENIOR

>= Greater than or equal to Class >= SENIOR

	 In the preceding example, only the first two entries in Table 3-3 (Class =
SENIOR and Class <> SENIOR) make sense. SOPHOMORE is considered
greater than SENIOR because SO comes after SE in the default collation
sequence, which sorts in ascending alphabetical order. This interpretation,
however, is probably not the one you want.

69 Chapter 3: The Components of SQL

Logical connectives
Logical connectives enable you to build complex predicates out of simple
ones. Say, for example, that you want to identify child prodigies in a database
of high-school students. Two propositions that could identify these students
may read as follows:

“The student is a senior.”

“The student’s age is less than 14 years.”

You can use the logical connective AND to create a compound predicate that
isolates the student records that you want, as in the following example:

Class = SENIOR AND Age < 14

If you use the AND connective, both component predicates must be true for
the compound predicate to be true. Use the OR connective when you want
the compound predicate to evaluate to true if either component predicate is
true. NOT is the third logical connective. Strictly speaking, NOT doesn’t con-
nect two predicates, but instead reverses the truth value of the single predi-
cate to which you apply it. Take, for example, the following expression:

NOT (Class = SENIOR)

This expression is true only if Class is not equal to SENIOR.

Set functions
Sometimes the information you want to extract from a table doesn’t relate
to individual rows but rather to sets of rows. SQL provides five set (or aggre-
gate) functions to deal with such situations. These functions are COUNT, MAX,
MIN, SUM, and AVG. Each function performs an action that draws data from a
set of rows rather than from a single row.

COUNT
The COUNT function returns the number of rows in the specified table. To
count the number of precocious seniors in my example high-school database,
use the following statement:

SELECT COUNT (*)
 FROM STUDENT
 WHERE Grade = 12 AND Age <14 ;

70 Part I: Getting Started with SQL

MAX
Use the MAX function to return the maximum value that occurs in the speci-
fied column. Suppose you want to find the oldest student enrolled in your
school. The following statement returns the appropriate row:

SELECT FirstName, LastName, Age
 FROM STUDENT
 WHERE Age = (SELECT MAX(Age) FROM STUDENT);

This statement returns all students whose ages are equal to the maximum
age. That is, if the age of the oldest student is 23, this statement returns the
first and last names and the age of all students who are 23 years old.

This query uses a subquery. The subquery SELECT MAX(Age) FROM
STUDENT is embedded within the main query. I talk about subqueries (also
called nested queries) in Chapter 12.

MIN
The MIN function works just like MAX except that MIN looks for the minimum
value in the specified column rather than the maximum. To find the youngest
student enrolled, you can use the following query:

SELECT FirstName, LastName, Age
 FROM STUDENT
 WHERE Age = (SELECT MIN(Age) FROM STUDENT);

This query returns all students whose age is equal to the age of the youngest
student.

SUM
The SUM function adds up the values in a specified column. The column must
be one of the numeric data types, and the value of the sum must be within
the range of that type. Thus, if the column is of type SMALLINT, the sum must
be no larger than the upper limit of the SMALLINT data type. In the retail
database from earlier in this chapter, the INVOICE table contains a record of
all sales. To find the total dollar value of all sales recorded in the database,
use the SUM function as follows:

SELECT SUM(TotalSale) FROM INVOICE;

AVG
The AVG function returns the average of all the values in the specified
column. As does the SUM function, AVG applies only to columns with a

71 Chapter 3: The Components of SQL

numeric data type. To find the value of the average sale, considering all trans-
actions in the database, use the AVG function like this:

SELECT AVG(TotalSale) FROM INVOICE

Nulls have no value, so if any of the rows in the TotalSale column contain
null values, those rows are ignored in the computation of the value of the
average sale.

Subqueries
Subqueries, as you can see in the “Set functions” section earlier in this chap-
ter, are queries within a query. Anywhere you can use an expression in an
SQL statement, you can also use a subquery. Subqueries are powerful tools
for relating information in one table to information in another table; you can
embed (or nest) a query into one table, within a query into another table. By
nesting one subquery within another, you enable the access of information
from two or more tables to generate a final result. When you use subque-
ries correctly, you can retrieve just about any information you want from a
database. Don’t worry about how many levels of subqueries your database
supports. When you start building nested subqueries, you will run out of
comprehension of what you are doing long before your database runs out of
levels of subqueries that it supports.

Data Control Language
The Data Control Language (DCL) has four commands: COMMIT, ROLLBACK,
GRANT, and REVOKE. These commands protect the database from harm, both
accidental and intentional.

Transactions
Your database is most vulnerable to damage while you or someone else is
changing it. Even in a single-user system, making a change can be dangerous
to a database. If a software or hardware failure occurs while the change is in
progress, a database may be left in an indeterminate state that’s somewhere
between where it was before the change operation started and where it
would be if the change operation completed successfully.

72 Part I: Getting Started with SQL

SQL protects your database by restricting operations that can change the
database so they can occur only within transactions. During a transaction,
SQL records every operation performed on the data in a log file. If anything
interrupts the transaction before the COMMIT statement ends the transac-
tion, you can restore the system to its original state by issuing a ROLLBACK
statement. The ROLLBACK processes the transaction log in reverse, undo-
ing all the actions that took place in the transaction. After you roll back the
database to its state before the transaction began, you can clear up whatever
caused the problem and attempt the transaction again.

	 As long as a hardware or software problem can possibly occur, your database
is susceptible to damage. To minimize the chance of damage, today’s DBMSs
close the window of vulnerability as much as possible by performing all opera-
tions that affect the database within a transaction and then committing all
these operations at once, at the end of the transaction. Modern database man-
agement systems use logging in conjunction with transactions to guarantee
that hardware, software, or operational problems won’t damage data. After a
transaction has been committed, it’s safe from all but the most catastrophic of
system failures. Prior to commitment, incomplete transactions can be rolled
back to their starting points and applied again, after the problem is corrected.

In a multiuser system, database corruption or incorrect results are possible
even if no hardware or software failures occur. Interactions between two or
more users who access the same table at the same time can cause serious
problems. By restricting changes so that they occur only within transactions,
SQL addresses these problems, as well.

By putting all operations that affect the database into transactions, you can
isolate the actions of one user from those of another user. Such isolation is
critical if you want to make sure that the results you obtain from the data-
base are accurate.

	 You may wonder how the interaction of two users can produce inaccurate
results. Here’s a funny/scary example: Suppose Donna reads a record in a
database table. An instant later (more or less), David changes the value of a
numeric field in that record. Now Donna writes a value back into that field,
based on the value that she read initially. Because Donna is unaware of
David’s change, the value after Donna’s write operation is incorrect.

Another problem can result if Donna writes to a record and then David reads
that record. If Donna rolls back her transaction, David is unaware of the roll-
back and bases his actions on the value that he read, which doesn’t reflect
the value that’s in the database after the rollback. This sounds like the plot
for an episode of I Love Lucy — it makes for good comedy but lousy data
management.

73 Chapter 3: The Components of SQL

Users and privileges
Another major threat to data integrity is the users themselves. Some people
should have no access to the data. Others should have only restricted access
to some of the data but no access to the rest. Some (hint: not very many)
should have unlimited access to everything in the database. You need a
system for classifying users and for assigning access privileges to the users
in different categories.

The creator of a schema specifies who is considered its owner. As the owner
of a schema, you can grant access privileges to the users you specify. Any
privileges that you don’t explicitly grant are withheld. You can also revoke
privileges that you’ve already granted. A user must pass an authentication
procedure to prove his identity before he can access the files you authorize
him to use. The specifics of that procedure depend on the implementation.

SQL gives you the capability to protect the following database objects:

	 ✓	Tables

	 ✓	Columns

	 ✓	Views

	 ✓	Domains

	 ✓	Character sets

	 ✓	Collations

	 ✓	Translations

I discuss character sets, collations, and translations in Chapter 5.

SQL supports several different kinds of protection: seeing, adding, modifying,
deleting, referencing, and using databases. It also supports protections associ-
ated with the execution of external routines.

	 You permit access by using the GRANT statement and remove access by using
the REVOKE statement. By controlling the use of the SELECT statement, the
DCL controls who can see a database object such as a table, column, or view.
Controlling the INSERT statement determines who can add new rows in a
table. Restricting the use of the UPDATE statement to authorized users gives
you control of who can modify table rows; restricting the DELETE statement
controls who can delete table rows.

If one table in a database contains as a foreign key a column that is a
primary key in another table in the database, you can add a constraint to
the first table so that it references the second table. (Chapter 5 describes

74 Part I: Getting Started with SQL

foreign keys.) When one table references another, a user of the first table
may be able to deduce information about the contents of the second. As the
owner of the second table, you may want to prevent such snooping. The
GRANT REFERENCES statement gives you that power. The following sec-
tion discusses the problem of a renegade reference — and how the GRANT
REFERENCES statement prevents it. By using the GRANT USAGE statement,
you can control who can use — or even see — the contents of a domain,
character set, collation, or translation. (I cover provisions for security in
Chapter 14.)

Table 3-4 summarizes the SQL statements that you use to grant and revoke
privileges.

Table 3-4	 Types of Protection
Protection operation Statement
Enable user to see a table GRANT SELECT

Prevent user from seeing a table REVOKE SELECT

Enable user to add rows to a table GRANT INSERT

Prevent user from adding rows to a table REVOKE INSERT

Enable user to change data in table rows GRANT UPDATE

Prevent user from changing data in table
rows

REVOKE UPDATE

Enable user to delete table rows GRANT DELETE

Prevent user from deleting table rows REVOKE DELETE

Enable user to reference a table GRANT REFERENCES

Prevent user from referencing a table REVOKE REFERENCES

Enable user to use a domain, character
set, translation, or collation

GRANT USAGE ON DOMAIN,
GRANT USAGE ON CHARACTER
SET, GRANT USAGE ON
COLLATION, GRANT USAGE ON
TRANSLATION

Prevent user from using a domain,
character set, collation, or translation

REVOKE USAGE ON DOMAIN,
REVOKE USAGE ON
CHARACTER SET, REVOKE
USAGE ON COLLATION,
REVOKE USAGE ON
TRANSLATION

75 Chapter 3: The Components of SQL

You can give different levels of access to different people, depending on their
needs. The following commands offer a few examples of this capability:

GRANT SELECT
 ON CUSTOMER
 TO SALES_MANAGER;

The preceding example enables one person — the sales manager — to see
the CUSTOMER table.

The following example enables anyone with access to the system to see the
retail price list:

GRANT SELECT
 ON RETAIL_PRICE_LIST
 TO PUBLIC;

The following example enables the sales manager to modify the retail price
list. She can change the contents of existing rows, but she can’t add or delete
rows:

GRANT UPDATE
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER;

The following example enables the sales manager to add new rows to the
retail price list:

GRANT INSERT
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER;

Now, thanks to this last example, the sales manager can delete unwanted
rows from the table, too:

GRANT DELETE
 ON RETAIL_PRICE_LIST
 TO SALES MANAGER;

Referential integrity constraints
can jeopardize your data
You may think that if you can control who sees, creates, modifies, and
deletes data in a table, you’re well protected. Against most threats, you are.
A knowledgeable hacker, however, can still ransack the house by using an
indirect method.

76 Part I: Getting Started with SQL

A correctly designed relational database has referential integrity, which means
that the data in one table in the database is consistent with the data in all
the other tables. To ensure referential integrity, database designers apply
constraints to tables that restrict the data users can enter into the tables. But
here’s the downside of that protection: If you have a database with referential
integrity constraints, a user can possibly create a new table that uses a column
in a confidential table as a foreign key. That column then serves as a link
through which someone can possibly steal confidential information. Oops.

Say, for example, that you’re a famous Wall Street stock analyst. Many
people believe in the accuracy of your stock picks, so whenever you rec-
ommend a stock to your subscribers, many people buy that stock, and its
value increases. You keep your analysis in a database, which contains a
table named FOUR_STAR. Your top recommendations for your next newslet-
ter are in that table. Naturally, you restrict access to FOUR_STAR so that
word doesn’t leak out to the investing public before your paying subscribers
receive the newsletter.

You’re still vulnerable, however, if anyone else can create a new table that
uses the stock name field of FOUR_STAR as a foreign key, as shown in the fol-
lowing command example:

CREATE TABLE HOT_STOCKS (
 Stock CHARACTER (30) REFERENCES FOUR_STAR
);

The hacker can now try to insert the name of every stock on the New York
Stock Exchange, American Stock Exchange, and NASDAQ into the table.
Those inserts that succeed tell the hacker which stocks match the stocks
that you name in your confidential table. It doesn’t take long for the hacker to
extract your entire list of stocks.

You can protect yourself from hacks such as the one in the preceding exam-
ple by being very careful about entering statements similar to the following:

GRANT REFERENCES (Stock)
 ON FOUR_STAR
 TO SECRET_HACKER;

	 Clearly I’m exaggerating here. You would never grant any kind of access to a
critical table to an untrustworthy person, would you? Not if you realized what
you were doing. However, hackers today are not just clever technically. They
are also masters of social engineering, the art of misleading people into doing
what they ordinarily would not do. Ramp up to full alert whenever a smooth
talker mentions anything related to your confidential information.

77 Chapter 3: The Components of SQL

	 Avoid granting privileges to people who may abuse them. True, people don’t
come with guarantees printed on their foreheads. But if you wouldn’t lend
your new car to a person for a long trip, you probably shouldn’t grant him the
REFERENCES privilege on an important table, either.

The preceding example offers one good reason for maintaining careful
control of the REFERENCES privilege. Here are two other reasons why you
should maintain careful control of REFERENCES:

	 ✓	If the other person specifies a constraint in HOT STOCKS by using a
RESTRICT option and you try to delete a row from your table, the DBMS
tells you that you can’t, because doing so would violate a referential
integrity constraint.

	 ✓	If you want to use the DROP command to destroy your table, you find
you must get the other person to DROP his constraint (or his table) first.

	 The bottom line: Enabling another person to specify integrity constraints on
your table not only introduces a potential security breach, but also means
that the other user sometimes gets in your way.

Delegating responsibility for security
To keep your system secure, you must severely restrict the access privileges
you grant, as well as the people to whom you grant these privileges. But
people who can’t do their work because they lack access are likely to hassle
you constantly. To preserve your sanity, you’ll probably need to delegate
some of the responsibility for maintaining database security. SQL provides
for such delegation through the WITH GRANT OPTION clause. Consider the
following example:

GRANT UPDATE
 ON RETAIL_PRICE_LIST
 TO SALES_MANAGER WITH GRANT OPTION;

This statement is similar to the previous GRANT UPDATE example in that the
statement enables the sales manager to update the retail price list. The WITH
GRANT OPTION clause also gives her the right to grant the update privilege
to anyone she wants. If you use this form of the GRANT statement, you must
not only trust the grantee to use the privilege wisely, but also trust her to
choose wisely in granting the privilege to others.

78 Part I: Getting Started with SQL

	 The ultimate in trust — therefore the ultimate in vulnerability — is to execute
a statement such as the following:

GRANT ALL PRIVILEGES
 ON FOUR_STAR
 TO Benedict_Arnold WITH GRANT OPTION;

Be extremely careful about using statements such as this one. Granting
all privileges, along with the grant option, leaves you maximally exposed.
Benedict Arnold was one of George Washington’s trusted generals during the
American Revolutionary War. He defected to the British, thus becoming the
most reviled traitor in American history. You don’t want something like that
to happen to you.

Part II
Using SQL to Build Databases

	

Visit www.dummies.com/extras/sql for great Dummies content online.

In this part…
	 ✓	 Creating simple structures
	 ✓	 Establishing relationships between tables
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 4

Building and Maintaining a Simple
Database Structure

In This Chapter
▶	Using RAD to build, change, and remove a database table
▶	Using SQL to build, change, and remove a database table
▶	Migrating your database to another DBMS

C
omputer history changes so fast that sometimes the rapid turnover of
technological generations can be confusing. High-level (so-called third-

generation) languages such as FORTRAN, COBOL, BASIC, Pascal, and C were
the first languages used to build and change large databases. Later languages
included some specifically designed for use with databases — such as dBASE,
Paradox, and R:BASE. (So were these third-and-a-half-generation languages?
Never mind.) The next step in this progression was the emergence of devel-
opment environments such as Access, PowerBuilder, and C++ Builder, the so-
called fourth-generation languages (4GLs). Now things have moved beyond
the numbered generations to rapid application development (RAD) tools
and integrated development environments (IDEs) such as Eclipse and Visual
Studio .NET, which can be used with any of a number of languages (such as
C, C++, C#, Python, Java, Visual Basic, or PHP). You use them to assemble
application components into production applications.

	 Because SQL is not a complete language, it doesn’t fit tidily into one of the
generational categories I just mentioned. Nor is it an IDE. It makes use of
commands in the manner of a third-generation language, but it is essentially
nonprocedural, like a fourth-generation language. No matter how you classify
SQL, you can use it in conjunction with an IDE or with older third- and fourth-
generation development tools. You can write the SQL code yourself, or you
can move objects around onscreen and have the development environment
generate equivalent code for you. The commands that go out to the remote
database are pure SQL in either case.

82 Part II: Using SQL to Build Databases

In this chapter, I take you through the process of using a RAD tool to build,
alter, and drop a simple table, and then I discuss how to build, alter, and
drop the same table using SQL.

Using a RAD Tool to Build
a Simple Database

People use databases because they want to keep track of important informa-
tion. Sometimes the information that they want to track is simple, and some-
times it’s not. A good database management system provides what you need
in either case. Some DBMSs give you SQL. Others, such as RAD tools, give
you an object-oriented graphical environment. Some DBMSs support both
approaches. In the following sections, I show you how to build a simple sin-
gle-table database by using a graphical database design tool. I use Microsoft
Access in my examples, but the procedure is similar for other Windows-
based development environments.

Deciding what to track
The first step when you create a database is to decide what you want to
track. For example, imagine you’ve just won $248 million in the Powerball lot-
tery. (It’s okay to imagine something like this. In real life, it’s about as likely
as finding your car squashed by a giant meteorite.) Friends and acquain-
tances you haven’t heard from in years are suddenly coming out of the wood-
work. Some have surefire, can’t-miss business opportunities in which they
want you to invest. Others represent worthy causes that could benefit from
your support. As a good steward of your new wealth, you realize that some
business opportunities aren’t as good as others, and some causes aren’t as
worthy as others. You decide to put all the options into a database so you
can keep track of them and make fair and equitable judgments.

You decide to track the following information about your friends and
relations:

	 ✓	First name

	 ✓	Last name

	 ✓	Address

	 ✓	City

	 ✓	State or province

83 Chapter 4: Building and Maintaining a Simple Database Structure

	 ✓	Postal code

	 ✓	Phone

	 ✓	How known (your relationship to the person)

	 ✓	Proposal

	 ✓	Business or charity

You decide to put all the listed items into a single database table; you don’t
need something elaborate.

Creating a database table
When you fire up your Access 2013 development environment, you’re greeted
by the screen shown in Figure 4-1. From there, you can build a database table
in several different ways. I start with Datasheet view because that approach
shows you how to create a database from the ground up. Read on.

	

Figure 4-1:
The

Microsoft
Access
opening
screen.

	

Building a database table in Datasheet view
By default, Access 2013 opens in Datasheet view. To build an Access data-
base in Datasheet view, double-click the Blank Desktop Database template.

84 Part II: Using SQL to Build Databases

Your Access datasheet stands ready for you to start entering data into Table
1, the first table in your database, as shown in Figure 4-2. You can change the
table name to something more meaningful later. Access gives your new data-
base the default name Database1 (or Database31 if you’ve already created
30 databases and not bothered to give them meaningful names). It’s better to
give the database a meaningful name at the outset just to avoid confusion.

	

Figure 4-2:
The

Datasheet
view in the

Access
development
environment.

	

	 That’s the start-from-scratch method, but you have several different ways to
create an Access database table. This next one uses Design view.

Building a database table in Design view
In Datasheet view (refer to Figure 4-2), building a database table is pretty
easy: You just start entering data. That approach, however, is prone to
errors, because details are easy to overlook. A better way to create a table is
in Design view by following these steps:

	 1.	 With Access open in Datasheet view (the default), click the Home tab
on the Ribbon and then click View below the icon in the upper-left
corner of the window. Choose Design View from the drop-down menu.

		 When you choose Design View, a dialog box pops up and asks you to
enter a table name.

85 Chapter 4: Building and Maintaining a Simple Database Structure

	 2.	 Enter POWER (for your Powerball winnings) and click OK.

		 The Design view (shown in Figure 4-3) appears.

	

Figure 4-3:
The Design

view’s start-
ing screen.

	

		 Notice that the window is divided into functional areas. Two of them are
especially useful in building database tables:

	 •	Design view options: A menu across the top of the window offers
Home, Create, External Data, Database Tools, and Design options.
When the Ribbon is displayed, the tools available in Design view
are represented by the icons just below the menu. In Figure 4-3,
the highlighting shows that the Design and Primary Key icons are
selected.

	 •	Field Properties pane: In this area for defining database fields, the
cursor is blinking in the Field Name column of the first row. Access
is suggesting that you specify a primary key here, name it ID, and
give it the AutoNumber data type.

		 AutoNumber, an Access data type, isn’t a standard SQL type; it
increments an integer in the field by one automatically every time
you add a new record to a table. This data type guarantees that the
field you use as a primary key won’t be duplicated and will thus
stay unique.

	 3.	 In the Field Properties area, change the primary key’s Field Name
from ID to ProposalNumber.

86 Part II: Using SQL to Build Databases

		 The suggested Field Name for the primary key, ID, just isn’t very infor-
mative. If you get into the habit of changing it to something more mean-
ingful (and/or providing additional information in the Description
column), it’s easier to keep track of what the fields in your database are
for. Here the field name is sufficiently descriptive.

		 Figure 4-4 shows the database table’s design at this point.

	

Figure 4-4:
Using a

descriptive
field name

to define the
primary key.

	

	 4.	 In the Field Properties pane, check the assumptions that Access has
made automatically about the ProposalNumber field.

		 Figure 4-4 shows the following assumptions:

	 •	The Field Size has been set to Long Integer.

	 •	New Values are obtained by incrementing.

	 •	Indexing is called for and duplicates are not allowed.

	 •	Text alignment is general.

		 As is often the case, the assumptions Access makes are fine for what you
want to do. If any of the assumptions are incorrect, you can override
them by entering new values.

	 5.	 Specify the rest of the fields you want this table to have.

		 Figure 4-5 shows Design view after you’ve entered the FirstName field.

87 Chapter 4: Building and Maintaining a Simple Database Structure

	

Figure 4-5:
The table-

creation
window

after
FirstName
has been

defined.
	

		 The data type for FirstName is Short Text, rather than AutoNumber,
so the field properties that apply to it are different. Here Access has
given FirstName the default Field Size for short text data, which is 255
characters. I don’t know too many people whose first names are that
long. Access is smart enough to allocate only as much memory space
as is actually needed for an entry. It does not blindly allocate 255 bytes
regardless of what is entered. However, other development environ-
ments might not have this capability. I like to assign reasonable values
to field lengths. This keeps me out of trouble when I move from one
development environment to another.

		 Here the default Access assumption is that FirstName is not a required
field. You could enter a record in the POWER table and leave the
FirstName field blank, which takes into account folks who go by only
one name, such as Cher or Bono.

	 6.	 Change the Field Size for FirstName to 15.

		 For a rundown on why this is a good idea, see the accompanying side-
bar, “Thinking ahead as you design your table.”

88 Part II: Using SQL to Build Databases

	 7.	 To ensure that you can retrieve a record quickly from the POWER
table by LastName (which is likely), change the Indexed property for
LastName to Yes (Duplicates OK), as shown in Figure 4-6.

	

Figure 4-6:
The table-

creation
window

after
LastName
has been

defined.
	

Thinking ahead as you design your table
In some development environments (other
than Microsoft Access), reducing the size of
the FirstName field to 15 saves 240 bytes
for every record in the database if you’re using
ASCII (UTF-8) characters, 480 bytes if you’re
using UTF-16 characters, or 960 bytes if you’re
using UTF-32 characters. It adds up. While
you’re at it, take a look at other default assump-
tions for some other field properties, and try
to anticipate how you might use them as the
database grows. Some of these fields require
attention right away to make them more effi-
cient (FirstName is a handy example); others
apply only to relatively obscure cases.

You may notice one other field property that
comes up a lot: the Indexed property. If you
don’t anticipate having to retrieve a record by a
given field, then don’t waste processing power
indexing it. Note, however, that in a large table
with many rows, you can speed up retrievals
immensely by indexing the field you use to identify
the record you want to retrieve. The devil — or,
in this case, a potential performance boost —
is in the details when you’re designing your
database tables.

89 Chapter 4: Building and Maintaining a Simple Database Structure

		 The figure shows some changes I’ve made in the Field Properties pane:

	 •	I’ve reduced the maximum field size from 255 to 20.

	 •	I’ve changed Required to Yes, Allow Zero Length to No, and
Indexed to Yes (Duplicates OK). I want every proposal to include
the last name of the person responsible for it. A name of zero
length is not allowed, and the LastName field will be indexed.

	 •	I allow duplicates; two or more proposers might have the same last
name. This is practically certain in the case of the POWER table; I
expect proposals from all three of my brothers, as well as my sons
and unmarried daughter, not to mention my cousins.

	 •	The Yes (No Duplicates) option, which I did not choose, actually
would be appropriate for a field that is the primary key of a table.
A table’s primary key should never contain duplicates.

	 8.	 Enter the rest of the fields, changing the default Field Size to some-
thing appropriate in all cases.

		 Figure 4-7 shows the result.

	

Figure 4-7:
The table-

creation
window
after all

fields are
defined.

	

		 As you can see in Figure 4-7, the field for business or charity
(BusinOrCharity) is not indexed. There’s no point in indexing a field
that has only two possible entries; indexing doesn’t narrow down the
selection enough to be worth it.

90 Part II: Using SQL to Build Databases

		 Access uses the term field rather than attribute or column. The program’s
original file-processing systems weren’t relational and used the file, field,
and record terminology that are common for flat-file systems.

	 9.	 Save your table by clicking on the diskette icon in the upper left
corner of the window.

		 Keeping one eye on the future is wise as you develop your database.
It’s a good idea (for example) to save frequently as you develop; just
click that diskette icon now and then. Doing so could save you a lot of
tedious rework in the event of a power outage or other untoward event.
Also, though it won’t destroy the planet if you give the same name to a
database and to one of the tables that the database contains, it might be
mildly confusing for later administrators and users. As a rule, it’s hand-
ier (and kinder) to just come up with two different names.

After you save your table, you may find that you need to tweak your original
design, as I describe in the next section, “Altering the table structure.”

Altering the table structure
Often newly created database tables need some tweaking. If you’re working
for someone else, your client may come to you after you create the database
and tell you that she wants to keep track of another data item — perhaps sev-
eral more. That means you have to go back to the drawing board.

If you’re building a database for your own use, deficiencies in its structure
inevitably become apparent after you create the structure (it’s probably a
clause in Murphy’s Law). For example, say you start getting proposals from
other countries and need to add a Country column. Or you have an older
database that didn’t include e-mail addresses — time to bring it up to date. In
this section, I show you how to use Access to modify a table. Other RAD tools
have comparable capabilities and work in a similar fashion.

	 If a time comes when you need to update your database tables, take a moment
to assess all the fields they’re using. For example, you may as well add a
second Address field for people with complex addresses and a Country field
for proposals from other countries.

	 Although it is fairly easy to update database tables, you should avoid doing so
whenever possible. Any applications that depend on the old database struc-
ture are likely to break and will have to be fixed. If you have a lot of applica-
tions, this task could be a major undertaking. Try to anticipate expansions
that might be needed in the future and make provisions for them. Carrying

91 Chapter 4: Building and Maintaining a Simple Database Structure

along a little extra overhead in the database is usually preferable to updating
a slew of applications written several years ago. The knowledge of how they
work is probably long gone, and they may be essentially unfixable.

To insert new rows and accommodate changes, open the table and follow
these steps:

	 1.	 In the table-creation window, right-click in the small colored square to
the left of the City field to select that row and choose Insert Rows from
the menu that pops up.

		 A blank row appears above the cursor position and pushes down all the
existing rows, as shown in Figure 4-8.

	

Figure 4-8:
The table-

creation
window

after open-
ing up

space for
a second
address

line.
	

	 2.	 Enter the fields you want to add to your table.

		 I added an Address2 field above the City field and a Country field
above the Phone field.

	 3.	 After you finish your modifications, save the table before closing it.

		 The result should look similar to Figure 4-9.

92 Part II: Using SQL to Build Databases

	

Figure 4-9:
Your revised
table defini-
tion should
look similar

to this.
	

Creating an index
In any database, you need a quick way to access records of interest. (This is
never truer than when you win the lottery — the number of investment and
charitable proposals you receive could easily grow into the thousands.) Say,
for example, that you want to look at all the proposals from people claiming
to be your brother. Assuming none of your brothers have changed their last
names for theatrical or professional reasons, you can isolate these offers by
basing your retrieval on the contents of the LastName field, as shown in the
following SQL adhoc query:

SELECT * FROM POWER
 WHERE LastName = ‘Marx’ ;

That strategy may not work for the proposals made by half brothers and
brothers-in-law, so you need to look at a different field, as shown in the fol-
lowing example:

SELECT * FROM POWER
 WHERE HowKnown = ‘brother-in-law’
 OR
 HowKnown = ‘half brother’ ;

93 Chapter 4: Building and Maintaining a Simple Database Structure

SQL scans the table a row at a time, looking for entries that satisfy the WHERE
clause condition. If the POWER table is large (tens of thousands of records),
you may end up waiting a while. You can speed things up by applying indexes
to the POWER table. (An index is a table of pointers. Each row in the index
points to a corresponding row in the data table.)

You can define an index for all the different ways you may want to access
your data. If you add, change, or delete rows in the data table, you don’t have
to re-sort the table — you need only to update the indexes. You can update
an index much faster than you can sort a table. After you establish an index
with the desired ordering, you can use that index to access rows in the data
table almost instantaneously.

	 Because the ProposalNumber field is unique as well as short, using that field
is the quickest way to access an individual record. Those qualities make it an
ideal candidate for a primary key. And because primary keys are usually the
fastest way to access data, the primary key of any and every table should always
be indexed; Access indexes primary keys automatically. To use this field, how-
ever, you must know the ProposalNumber of the record you want. You may
want to create additional indexes based on other fields, such as LastName,
PostalCode, or HowKnown. For a table that you index on LastName, after
a search finds the first row containing a LastName of Marx, the search has
found them all. The index keys for all the Marx rows are stored one right after
another. You can retrieve Chico, Groucho, Harpo, Zeppo, and Karl almost
as fast as you could get the data on Chico alone.

Indexes add overhead to your system, which slows down operations. You
must balance this slowdown against the speed you gain by accessing records
through an index.

	 Here are some tips for picking good indexing fields:

	 ✓	Indexing the fields you frequently use to access records is always a good
idea. You can speedily access records without too much latency.

	 ✓	Don’t bother creating indexes for fields that you never use as retrieval
keys. Creating needless indexes is a waste of time and memory space,
and you gain nothing.

	 ✓	Don’t create indexes for fields that don’t differentiate one record from
a lot of others. For example, the BusinessOrCharity field merely
divides the table records into two categories; it doesn’t make a good
index.

	 The effectiveness of an index varies from one implementation to another. If
you migrate a database from one platform to another, the indexes that gave
the best performance on the first system may not perform the best on the new
platform. In fact, the performance may be worse than if you hadn’t indexed the
database at all. Try various indexing schemes to see which one gives you the

94 Part II: Using SQL to Build Databases

best overall performance, and optimize your indexes so that neither retrieval
speed nor update speed suffer from the migration.

To create indexes for the POWER table, just select Yes for Indexed in the
Field Properties pane of the table creation window.

	 Access does two handy tricks automatically: It creates an index for
PostalCode (because that field is often used for retrievals) and it indexes the
primary key. (Ah, progress. Gotta love it.)

PostalCode isn’t a primary key and isn’t necessarily unique; the opposite is
true for ProposalNumber. You already created an index for LastName. Do
the same for HowKnown because both are likely to be used for retrievals.

After you create all your indexes, don’t forget to save the new table structure
before closing it.

	 If you use a RAD tool other than Microsoft Access, the info in this section
doesn’t apply to you. However, the overall process is fairly similar.

Deleting a table
In the course of creating a table (such as the POWER table I describe in this
chapter) with the exact structure you want, you may have to create a few
intermediate versions along the way. Having these variant tables on your
system may confuse people later, so delete them now while they’re still fresh
in your mind. To do so, right-click the table you want to delete from the All
Tables list on the left side of the window. A menu pops up, and one of the
options it offers is Delete. When you click Delete, as shown in Figure 4-10, the
table is removed from the database.

	 Be really sure of what you’re doing. When you click Delete, that table, and all
the work you put into it, will be gone.

	

Figure 4-10:
Select

Delete to
delete a

table.
	

95 Chapter 4: Building and Maintaining a Simple Database Structure

	 If Access deletes a table, it deletes all subsidiary tables as well, including any
indexes the table may have.

Building POWER with SQL’s DDL
All the database-definition functions you can perform with a RAD tool (such
as Access) are also possible if you’re using SQL to build your table. Of
course, using SQL isn’t as glamorous — instead of clicking menu choices
with the mouse, you enter commands from the keyboard. People who prefer
to manipulate visual objects find the RAD tools easy to understand and use.
People who are happier stringing words together into logical statements find
SQL commands easier to use.

	 Becoming proficient at using both methods is worthwhile because some
things are more easily represented by using the object-oriented (mouse) tech-
nique and others are more easily handled by typing in SQL commands.

In the following sections, I use SQL to create the same table as before, and
then I do the same alteration and deletion operations I did with the RAD tool
in the first part of this chapter.

Using SQL with Microsoft Access
Access is designed as a rapid application development (RAD) tool that does
not require programming. You can write and execute SQL statements in
Access, but you have to use a back-door method to do it. To open a basic
editor where you can enter SQL code, follow these steps:

	 1.	 Open your database and click the CREATE tab to display the ribbon
across the top of the window.

	 2.	 Click Query Design in the Queries section.

		 The Show Table dialog box appears.

	 3.	 Select the POWER table. Click the Add button and then click the Close
button to close the dialog box.

		 Doing so produces the display shown in Figure 4-11.

		 A picture of the POWER table and its attributes appears in the upper
part of the work area and a Query By Example (QBE) grid appears below
it. Access expects you to enter a query now by using the QBE grid. (You
could do that, sure, but it wouldn’t tell you anything about how to use
SQL in the Access environment.)

96 Part II: Using SQL to Build Databases

	

Figure 4-11:
The Query

screen with
POWER

table
selected.

	

	 4.	 Click the Home tab and then the View icon in the left corner of the
Ribbon.

		 A menu drops down, displaying the different views available to you in
query mode, as shown in Figure 4-12.

	

Figure 4-12:
The data-

base views
available in

Query mode.
	

		 One of those views is SQL View.

	 5.	 Click SQL View to display the SQL View Object tab.

		 As Figure 4-13 shows, the SQL View Object tab has made the (very ratio-
nal) assumption that you want to retrieve some information from the
POWER table, so it has written the first part for you. It doesn’t know
exactly what you want to retrieve, so it displays only the part it feels
confident about.

97 Chapter 4: Building and Maintaining a Simple Database Structure

	

Figure 4-13:
The Object
tab in SQL

view.
	

		 Here’s what it’s written so far:
SELECT
FROM POWER ;

	 6.	 Fill in an asterisk (*) in the blank area in the first line and add a
WHERE clause after the FROM line.

		 If you had already entered some data into the POWER table, you could
make a retrieval with something like:
SELECT *
FROM POWER
 WHERE LastName = ‘Marx’ ;

		 Be sure the semicolon (;) is the last thing in the SQL statement. You
need to move it down from just after POWER to the end of the next line
down.

	 7.	 When you’re finished, click the floppy-diskette Save icon.

		 Access asks you for a name for the query you have just created.

	 8.	 Enter a name and then click OK.

Your statement is saved and can be executed as a query later.

Creating a table
Whether you’re working with Access or a full-featured enterprise-level
DBMS — such as Microsoft SQL Server, Oracle 11g, or IBM DB2 — to create
a database table with SQL, you must enter the same information that you’d

98 Part II: Using SQL to Build Databases

enter if you created the table with a RAD tool. The difference is that the
RAD tool helps you by providing a visual interface — in the form of a table-
creation dialog box (or some similar data-entry skeleton) — and by prevent-
ing you from entering invalid field names, types, or sizes.

	 SQL doesn’t give you as much help. You must know what you’re doing at the
onset; figuring things out along the way can lead to less-than-desirable data-
base results. You must enter the entire CREATE TABLE statement before SQL
even looks at it, let alone gives you any indication of whether you made errors
in the statement.

In ISO/IEC standard SQL, the statement that creates a proposal-tracking table
(identical to the one created earlier in the chapter) uses the following syntax:

CREATE TABLE POWERSQL (
 ProposalNumber INTEGER PRIMARY KEY,
 FirstName CHAR (15),
 LastName CHAR (20),
 Address CHAR (30),
 City CHAR (25),
 StateProvince CHAR (2),
 PostalCode CHAR (10),
 Country CHAR (30),
 Phone CHAR (14),
 HowKnown CHAR (30),
 Proposal CHAR (50),
 BusinessOrCharity CHAR (1));

The information in the SQL statement is essentially the same information you
enter using Access’s graphical user interface. The nice thing about SQL is
that the language is universal. The same standard syntax works regardless of
what standard-compliant DBMS product you use.

In Access 2013, creating database objects such as tables is a little more
complicated. You can’t just type a CREATE statement (such as the one just
given) into the SQL View Object tab. That’s because the SQL View Object
tab is available only as a query tool; you have to take a few extra actions to
inform Access that you’re about to enter a data-definition query rather than
a normal query that requests information from the database. A further com-
plication: Because table creation is an action that could possibly compromise
database security, it’s disallowed by default. You must tell Access that this is
a trusted database before it will accept a data-definition query.

	 1.	 Clickthe Create tab on the Ribbon to display the icons for creation
functionality.

	 2.	 Click Query Design in the Queries section.

		 This displays the Show Table dialog box, which at this point contains
several system tables along with POWER.

99 Chapter 4: Building and Maintaining a Simple Database Structure

	 3.	 Select POWER and click the Add button.

		 As you’ve seen in the previous example, a picture of the POWER table
and its attributes appears in the upper half of the work area.

	 4.	 Click the Close button on the Show Table dialog box.

	 5.	 Click the Home tab and then the View icon at the left end of the
Ribbon and then choose SQL View from the drop-down menu that
appears.

		 As in the previous example, Access has “helped” you by putting SELECT
FROM POWER in the SQL editor. This time you don’t want the help.

	 6.	 Delete SELECT FROM POWER and (in its place) enter the data-defini-
tion query given earlier, as follows:
CREATE TABLE POWERSQL (
 ProposalNumber INTEGER PRIMARY KEY,
 FirstName CHAR (15),
 LastName CHAR (20),
 Address CHAR (30),
 City CHAR (25),
 StateProvince CHAR (2),
 PostalCode CHAR (10),
 Country CHAR (30),
 Phone CHAR (14),
 HowKnown CHAR (30),
 Proposal CHAR (50),
 BusinOrCharity CHAR (1));

		 At this point, your screen should look something like Figure 4-14.

	

Figure 4-14:
Data-

definition
query to
create a

table.
	

100 Part II: Using SQL to Build Databases

	 7.	 After clicking the Design tab of the Ribbon, click the red exclamation
point Run icon.

		 Doing so runs the query, which creates the POWERSQL table (as shown
in Figure 4-15).

	

Figure 4-15:
Behold the

POWERSQL
table.

	

		 You should see POWERSQL listed under All Access Objects in the
column at the left edge of the window. In which case, you’re golden. Or
you may not see the table in the All Access Objects list. In that case,
read (and slog) on.

		 Access 2013 goes to great lengths to protect you from malicious hack-
ers and from your own inadvertent mistakes. Because running a data-
definition query is potentially dangerous to the database, Access has
a default that prevents the query from running. If this has happened to
you, POWERSQL won’t appear in the column at the left of the window,
because the query won’t have been executed. Instead, the Message Bar
may appear below the Ribbon, with this terse message:
Security Warning: Certain content in the database has

been disabled.

		 If you see this message, move on to the next steps.

	 8.	 Click the File tab and, from the menu of the left edge, choose Options.

		 The Access Options dialog box appears.

	 9.	 Select Trust Center from the Access Options dialog box.

101 Chapter 4: Building and Maintaining a Simple Database Structure

	 10.	 Click the Trust Center Settings button when it appears.

	 11.	 Select Message Bar from the menu on the left and then specify
Show the Message Bar by clicking its option button if it isn’t already
selected.

	 12.	 Click your way back to the place where you can execute the data-defi-
nition query that creates the POWERSQL table.

	 13.	 Execute the query.

	 Becoming proficient in SQL has long-term payoffs because it will be around for
a long time. The effort you put into becoming an expert in a particular devel-
opment tool is likely to yield a lower return on investment. No matter how
wonderful the latest RAD tool may be, it will be superseded by newer technol-
ogy within three to five years. If you can recover your investment in the tool in
that time, great! Use it. If not, you may be wise to stick with the tried and true.
Train your people in SQL, and your training investment will pay dividends
over a much longer period.

Creating an index
Indexes are an important part of any relational database. They serve as
pointers into the tables that contain the data of interest. By using an index,
you can go directly to a particular record without having to scan the table
sequentially, one record at a time, to find that record. For really large tables,
indexes are a necessity; without indexes, you may need to wait years rather
than seconds for a result. (Well, okay, maybe you wouldn’t actually wait
years. Some retrievals, however, may actually take that long if you let them
keep running. Unless you have nothing better to do with your computer’s
time, you’d probably do best to abort the retrieval and do without the result.
Life goes on.)

Amazingly, the SQL standard doesn’t provide a means to create an index.
The DBMS vendors provide their own implementations of the function.
Because these implementations aren’t standardized, they may differ from
one another. Most vendors provide the index-creation function by adding a
CREATE INDEX command to SQL.

	 Even though two vendors may use the same words for the command (CREATE
INDEX), the way the command operates may not be the same. You’re likely
to find quite a few implementation-dependent clauses. Carefully study your
DBMS documentation to determine how to use that particular DBMS to create
indexes.

102 Part II: Using SQL to Build Databases

Altering the table structure
To change the structure of an existing table, you can use SQL’s ALTER
TABLE command. Interactive SQL at your client station is not as convenient
as a RAD tool. The RAD tool displays your table’s structure, which you can
then modify. Using SQL, you must know in advance the table’s structure and
how you want to modify it. At the screen prompt, you must enter the appro-
priate command to perform the alteration. If, however, you want to embed
the table-alteration instructions in an application program, then using SQL is
usually the easiest way to do so.

To add a second address field to the POWERSQL table, use the following DDL
command:

ALTER TABLE POWERSQL
 ADD COLUMN Address2 CHAR (30);

You don’t need to be an SQL guru to decipher this code. Even professed com-
puter illiterates can probably figure this one out. The command alters a table
named POWERSQL by adding a column to the table. The column is named
Address2, is of the CHAR data type, and is 30 characters long. This example
demonstrates how easily you can change the structure of database tables by
using SQL DDL commands.

Standard SQL provides this statement for adding a column to a table and
allows you to drop an existing column in a similar manner, as in the following
code:

ALTER TABLE POWERSQL
 DROP COLUMN Address2;

Deleting a table
Deleting database tables that you no longer need is easy. Just use the DROP
TABLE command, as follows:

DROP TABLE POWERSQL;

What could be simpler? If you DROP a table, you erase all its data and its
metadata. No vestige of the table remains. This works great most of the time.
The only time it doesn’t is if another table in the database references the one
you are trying to delete. This is called a referential integrity constraint. In such
a case, SQL will spit out an error message rather than delete the table.

103 Chapter 4: Building and Maintaining a Simple Database Structure

Deleting an index
	 If you delete a table by issuing a DROP TABLE command, you also delete any

indexes associated with that table. Sometimes, however, you may want to
keep a table but remove an index from it. The SQL standard doesn’t define a
DROP INDEX command, but most implementations include that command
anyway. Such a command comes in handy if your system slows to a crawl and
you discover that your tables aren’t optimally indexed. Correcting an index
problem can dramatically improve performance — which will delight users
who’ve become accustomed to response times reminiscent of pouring molas-
ses on a cold day in Vermont.

Portability Considerations
Any SQL implementation you’re likely to use may have extensions that give it
capabilities that the SQL standard doesn’t cover. Some of these features may
appear in the next release of the SQL standard. Others are unique to a par-
ticular implementation and are probably destined to stay that way.

Often extensions make it easier to create an application that meets your
needs, and you’ll find yourself tempted to use them. Using the extensions
may be your best course, but be aware of the tradeoffs: If you ever want to
migrate your application to another SQL implementation, you may have to
rewrite those sections in which you used extensions that your new environ-
ment doesn’t support.

	 The more you know about existing implementations and development trends,
the better the decisions you’ll make. Think about the probability of such a
migration in the future — and also about whether the extension you’re con-
sidering is unique to your implementation or fairly widespread. Foregoing use
of an extension may be better in the long run, even if its use might save you
some time now. On the other hand, you may find no reason not to use the
extension. Your call.

104 Part II: Using SQL to Build Databases

Chapter 5

Building a Multitable
Relational Database

In This Chapter
▶	Deciding what to include in a database
▶	Determining relationships among data items
▶	Linking related tables with keys
▶	Designing for data integrity
▶	Normalizing the database

I
n this chapter, I take you through an example of how to design a multi-
table database. The first step to designing any database is to identify what

to include and what not to include. The next steps involve deciding how the
included items relate to each other and then setting up tables accordingly. I
also discuss how to use keys, which enable you to access individual records
and indexes quickly.

A database must do more than merely hold your data. It must also protect
the data from becoming corrupted. In the latter part of this chapter, I dis-
cuss how to protect the integrity of your data. Normalization is one of the
key methods you can use to protect the integrity of a database. I discuss the
various normal forms and point out the kinds of problems that normalization
solves.

Designing a Database
To design a database, follow these basic steps (I go into detail about each
step in the sections that follow this list):

	 1.	 Decide what objects you want to include in your database.

	 2.	 Determine which of these objects should be tables and which should
be columns within those tables.

106 Part II: Using SQL to Build Databases

	 3.	 Define tables based on how you need to organize the objects.

		 Optionally, you may want to designate a table column or a combination
of columns as a key. Keys provide a fast way to locate a row of interest
in a table.

The following sections discuss these steps in detail, as well as some other
technical issues that arise during database design.

Step 1: Defining objects
The first step in designing a database is deciding which aspects of the system
are important enough to include in the model. Treat each aspect as an object
and create a list of all the objects you can think of. At this stage, don’t try to
decide how these objects relate to each other. Just try to list them all.

	 You may find it helpful to gather a diverse team of people who, in one way
or another, are familiar with the system you’re modeling. These people can
brainstorm and respond to each other’s ideas. Working together, you’ll prob-
ably develop a more complete and accurate set of important objects than you
would on your own.

When you have a reasonably complete set of objects, move on to the next
step: deciding how these objects relate to each other. Some of the objects are
major entities (more about those in a minute) that are crucial to giving you
the results you want. Other objects are subsidiary to those major entities.
Ultimately you may decide that some objects don’t belong in the model at all.

Step 2: Identifying tables and columns
Major entities translate into database tables. Each major entity has a set of
attributes — the table columns. Many business databases, for example, have a
CUSTOMER table that keeps track of customers’ names, addresses, and other
permanent information. Each attribute of a customer — such as name, street,
city, state, zip code, phone number, and e-mail address — becomes a column
(and a column heading) in the CUSTOMER table.

If you’re hoping to find a set of rules to help you identify which objects
should be tables and which of the attributes in the system belong to which
tables, think again: You may have some reasons for assigning a particular

107 Chapter 5: Building a Multitable Relational Database

attribute to one table and other reasons for assigning the same attribute to
another table. You must base your judgment on two goals:

	 ✓	The information you want to get from the database

	 ✓	How you want to use that information

	 When deciding how to structure database tables, involve the future users of
the database as well as the people who will make decisions based on database
information. If you come up with what you think is a reasonable structure, but
it isn’t consistent with the way that people will use the information, your
system will be frustrating to use at best — and could even produce wrong
information, which is even worse. Don’t let this happen! Put careful effort into
deciding how to structure your tables.

Take a look at an example to demonstrate the thought process that goes into
creating a multitable database. Suppose you just established VetLab, a clini-
cal microbiology laboratory that tests biological specimens sent in by veteri-
narians. You want to track several things, including the following:

	 ✓	Clients

	 ✓	Tests that you perform

	 ✓	Employees

	 ✓	Orders

	 ✓	Results

Each of these entities has associated attributes. Each client has a name, an
address, and other contact information. Each test has a name and a standard
charge. Each employee has contact information as well as a job classification
and pay rate. For each order, you need to know who ordered it, when it was
ordered, and what test was ordered. For each test result, you need to know
the outcome of the test, whether the results were preliminary or final, and
the test order number.

Step 3: Defining tables
Now you want to define a table for each entity and a column for each attri-
bute. Table 5-1 shows how you may define the VetLab tables I introduce in
the previous section.

108 Part II: Using SQL to Build Databases

Table 5-1	 VetLab Tables
Table Columns
CLIENT Client Name

Address 1
Address 2
City
State
Postal Code
Phone
Fax
Contact Person

TESTS Test Name
Standard Charge

EMPLOYEE Employee Name
Address 1
Address 2
City
State
Postal Code
Home Phone
Office Extension
Hire Date
Job Classification
Hourly/Salary/Commission

ORDERS Order Number
Client Name
Test Ordered
Responsible Salesperson
Order Date

RESULTS Result Number
Order Number
Result
Date Reported
Preliminary/Final

109 Chapter 5: Building a Multitable Relational Database

You can create the tables defined in Table 5-1 by using either a rapid appli-
cation development (RAD) tool or by using SQL’s Data Definition Language
(DDL), as shown in the following code:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)) ;

CREATE TABLE TESTS (
 TestName CHAR (30) NOT NULL,
 StandardCharge CHAR (30)) ;

CREATE TABLE EMPLOYEE (
 EmployeeName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 HomePhone CHAR (13),
 OfficeExtension CHAR (4),
 HireDate DATE,
 JobClassification CHAR (10),
 HourSalComm CHAR (1)) ;

CREATE TABLE ORDERS (
 OrderNumber INTEGER NOT NULL,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE) ;

CREATE TABLE RESULTS (
 ResultNumber INTEGER NOT NULL,
 OrderNumber INTEGER,
 Result CHAR(50),
 DateReported DATE,
 PrelimFinal CHAR (1)) ;

110 Part II: Using SQL to Build Databases

These tables relate to each other by the attributes (columns) that they share,
as the following list describes:

	 ✓	The CLIENT table links to the ORDERS table by the ClientName column.

	 ✓	The TESTS table links to the ORDERS table by the TestName
(TestOrdered) column.

	 ✓	The EMPLOYEE table links to the ORDERS table by the EmployeeName
(Salesperson) column.

	 ✓	The RESULTS table links to the ORDERS table by the OrderNumber
column.

If you want a table to serve as an integral part of a relational database,
link that table to at least one other table in the database, using a common
column. Figure 5-1 illustrates the relationships between the tables.

	

Figure 5-1:
VetLab

database
tables and

links.
	

The links in Figure 5-1 illustrate four different one-to-many relationships. The
diamond in the middle of each relationship shows the maximum cardinality
of each end of the relationship. The number 1 denotes the “one” side of the
relationship, and N denotes the “many” side.

111 Chapter 5: Building a Multitable Relational Database

	 ✓	One client can make many orders, but each order is made by one, and
only one, client.

	 ✓	Each test can appear on many orders, but each order calls for one, and
only one, test.

	 ✓	Each order is taken by one, and only one, employee (or salesperson),
but each salesperson can (and, you hope, does) take multiple orders.

	 ✓	Each order can produce several preliminary test results and a final
result, but each result is associated with one, and only one, order.

As you can see in the code, the attribute that links one table to another can
have a different name in each table. Both attributes must, however, have
matching data types. At this point, I have not included any referential integ-
rity constraints, wanting to avoid hitting you with too many ideas at once. I
cover referential integrity later in this chapter, after I have laid the founda-
tion for understanding it.

Domains, character sets, collations,
and translations
Although tables are the main components of a database, additional elements
play a part, too. In Chapter 1, I define the domain of a column in a table as the
set of all values that the column may assume. Establishing clear-cut domains
for the columns in a table, through the use of constraints, is an important
part of designing a database.

People who communicate in standard American English aren’t the only ones
who use relational databases. Other languages — even some that use other
character sets — work equally well. Even if your data is in English, some
applications may still require a specialized character set. SQL enables you
to specify the character set you want to use. In fact, you can use a different
character set for each column in a table if you need to. This flexibility is gen-
erally unavailable in languages other than SQL.

A collation, or collating sequence, is a set of rules that determines how strings
in a character set compare with one another. Every character set has a
default collation. In the default collation of the ASCII character set, A comes
before B, and B comes before C. A comparison, therefore, considers A as less
than B and considers C as greater than B. SQL enables you to apply different
collations to a character set. This degree of flexibility isn’t generally available
in other languages, so you now have another reason to love SQL.

112 Part II: Using SQL to Build Databases

Sometimes you encode data in a database in one character set but want to
deal with the data in another character set. Perhaps you have data in the
German character set (for example) but your printer doesn’t support German
characters that aren’t included in the ASCII character set. SQL allows transla-
tion of character strings from one character set to another. A translation may
change one character into two, as when a German ü becomes an ASCII ue,
or change lowercase characters to uppercase. You can even translate one
alphabet into another (for example, Hebrew into ASCII).

Getting into your database fast with keys
A good rule for database design is to make sure that every row in a database
table is distinguishable from every other row; each row should be unique.
Sometimes you may want to extract data from your database for a specific
purpose (such as a statistical analysis), and in doing so, end up creating
tables in which the rows aren’t necessarily unique. For such a limited pur-
pose, this sort of duplication doesn’t matter. Tables that you may use in
more than one way, however, should not contain duplicate rows.

A key is an attribute (or combination of attributes) that uniquely identifies a
row in a table. To access a row in a database, you must have some way of dis-
tinguishing that row from all the other rows. Because keys must be unique,
they provide such an access mechanism.

	 Furthermore, a key must never contain a null value. If you use null keys, you
may not be able to distinguish between two rows that contain a null key field.

In the veterinary-lab example, you can designate appropriate columns as
keys. In the CLIENT table, ClientName is a good key. This key can distin-
guish each individual client from all other clients. Therefore entering a value
in this column becomes mandatory for every row in the table. TestName
and EmployeeName make good keys for the TESTS and EMPLOYEE tables.
OrderNumber and ResultNumber make good keys for the ORDERS and
RESULTS tables. Make sure that you enter a unique value for every row.

You can have two kinds of keys: primary keys and foreign keys. The keys I dis-
cuss in the preceding paragraph are examples of primary keys; they guarantee
uniqueness. I zero in on primary and foreign keys in the next two sections.

Primary keys
A primary key is a column or combination of columns in a table with values
that uniquely identify the rows in the table. To incorporate the idea of keys
into the VetLab database, you can specify the primary key of a table as

113 Chapter 5: Building a Multitable Relational Database

you create the table. In the following example, a single column is sufficient
(assuming that all of VetLab’s clients have unique names):

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

The constraint PRIMARY KEY replaces the constraint NOT NULL, given in the
earlier definition of the CLIENT table. The PRIMARY KEY constraint implies
the NOT NULL constraint, because a primary key can’t have a null value.

Although most DBMSs allow you to create a table without a primary key,
all tables in a database should have one. With that in mind, replace the NOT
NULL constraint in all your tables. In my example, the TESTS, EMPLOYEE,
ORDERS, and RESULTS tables should have the PRIMARY KEY constraint, as
in the following example:

CREATE TABLE TESTS (
 TestName CHAR (30) PRIMARY KEY,
 StandardCharge CHAR (30)) ;

Sometimes no single column in a table can guarantee uniqueness. In such
cases, you can use a composite key — a combination of columns that guar-
antee uniqueness when used together. Imagine that some of VetLab’s clients
are chains that have offices in several cities. ClientName isn’t sufficient to
distinguish between two branch offices of the same client. To handle this
situation, you can define a composite key as follows:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25) NOT NULL,
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 CONSTRAINT BranchPK PRIMARY KEY
 (ClientName, City)
) ;

114 Part II: Using SQL to Build Databases

As an alternative to using a composite key to uniquely identify a record, you
can let your DBMS assign one automatically, as Access does in suggesting
that the first field in a new table be named ID and be of the Autonumber type.
Such a key has no meaning in and of itself. Its only purpose is to be a unique
identifier.

Foreign keys
A foreign key is a column or group of columns in a table that corresponds to
or references a primary key in another table in the database. A foreign key
doesn’t have to be unique, but it must uniquely identify the column(s) in the
particular table that the key references.

If the ClientName column is the primary key in the CLIENT table (for
example), every row in the CLIENT table must have a unique value in the
ClientName column. ClientName is a foreign key in the ORDERS table. This
foreign key corresponds to the primary key of the CLIENT table, but the key
doesn’t have to be unique in the ORDERS table. In fact, you hope the foreign
key isn’t unique; if each of your clients gave you only one order and then
never ordered again, you’d go out of business rather quickly. You hope that
many rows in the ORDERS table correspond with each row in the CLIENT
table, indicating that nearly all your clients are repeat customers.

The following definition of the ORDERS table shows how you can add the
concept of foreign keys to a CREATE statement:

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE,
 CONSTRAINT NameFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName),
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName),
 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
) ;

In this example, foreign keys in the ORDERS table link that table to the pri-
mary keys of the CLIENT, TESTS, and EMPLOYEE tables.

Working with Indexes
The SQL specification doesn’t address the topic of indexes, but that omis-
sion doesn’t mean that indexes are rare or even optional parts of a database
system. Every SQL implementation supports indexes, but you’ll find no

115 Chapter 5: Building a Multitable Relational Database

universal agreement on how to support them. In Chapter 4, I show you how
to create an index by using Microsoft Access, a rapid application develop-
ment (RAD) tool. Refer to the documentation for your particular database
management system (DBMS) to see how the system implements indexes.

What’s an index, anyway?
Data generally appears in a table in the order in which you originally entered
the information. That order may have nothing to do with the order in which
you later want to process the data. Say, for example, that you want to pro-
cess your CLIENT table in ClientName order. The computer must first
sort the table in ClientName order. Sorting the data this way takes time.
The larger the table, the longer the sort takes. What if you have a table with
100,000 rows? Or a table with a million rows? In some applications, such table
sizes are not rare. The best sort algorithms would have to make some 20 mil-
lion comparisons and millions of swaps to put the table in the desired order.
Even if you’re using a very fast computer, you may not want to wait that long.

Indexes can be a great timesaver. An index is a subsidiary or support table
that goes along with a data table. For every row in the data table, you have
a corresponding row in the index table. The order of the rows in the index
table is different.

Table 5-2 is a small example of a data table for the veterinary lab.

Table 5-2	 CLIENT Table
ClientName Address1 Address2 City State
Butternut Animal
Clinic

5 Butternut Lane Hudson NH

Amber
Veterinary, Inc.

470 Kolvir Circle Amber MI

Vets R Us 2300 Geoffrey
Road

Suite 230 Anaheim CA

Doggie Doctor 32 Terry Terrace Nutley NJ
The Equestrian
Center

Veterinary 7890
Paddock
Parkway

Gallup NM

Dolphin Institute 1002 Marine Drive Key West FL
J. C. Campbell,
Credit Vet

2500 Main Street Los Angeles CA

Wenger’s Worm
Farm

15 Bait Boulevard Sedona AZ

116 Part II: Using SQL to Build Databases

Here the rows are not in alphabetical order by ClientName. In fact, they
aren’t in any useful order at all. The rows are simply in the order in which
somebody entered the data.

An index for this CLIENT table may look like Table 5-3.

Table 5-3	 Client Name Index for the CLIENT Table
ClientName Pointer to Data Table
Amber Veterinary, Inc. 2
Butternut Animal Clinic 1
Doggie Doctor 4
Dolphin Institute 6
J. C. Campbell, Credit Vet 7
The Equestrian Center 5
Vets R Us 3
Wenger’s Worm Farm 8

The index contains the field that forms the basis of the index (in this case,
ClientName) and a pointer into the data table. The pointer in each index
row gives the row number of the corresponding row in the data table.

Why you should want an index
If you want to process a table in ClientName order, and you have an index
arranged in ClientName order, you can perform your operation almost as
fast as you could if the data table itself were already in ClientName order.
You can work through the index, moving immediately to each index row’s
corresponding data record by using the pointer in the index.

If you use an index, the table processing time is proportional to N, where N is
the number of records in the table. Without an index, the processing time for
the same operation is proportional to N lg N, where lg N is the logarithm of
N to the base 2. For small tables, the difference is insignificant, but for large
tables, the difference is great. On large tables, some operations aren’t practi-
cal to perform without the help of indexes.

Suppose you have a table containing 1,000,000 records (N = 1,000,000), and
processing each record takes one millisecond (one-thousandth of a second).

117 Chapter 5: Building a Multitable Relational Database

If you have an index, processing the entire table takes only 1,000 seconds —
less than 17 minutes. Without an index, you need to go through the table
approximately 1,000,000 × 20 times to achieve the same result. This process
would take 20,000 seconds — more than five and a half hours. I think you can
agree that the difference between 17 minutes and five and a half hours is sub-
stantial. That’s just one example of the difference indexing makes on process-
ing records.

Maintaining an index
After you create an index, you must maintain it. Fortunately, you don’t have
to think too much about maintenance — your DBMS maintains your indexes
for you automatically, by updating them every time you update the corre-
sponding data tables. This process takes some extra time, but it’s worth it.
When you create an index and your DBMS maintains it, the index is always
available to speed up your data processing, no matter how many times you
need to call on it.

	 The best time to create an index is at the same time you create its correspond-
ing data table. If you create the index early and the DBMS starts maintaining
it at the same time, you don’t need to undergo the pain of building the index
later; the entire operation takes place in a single, long session. Try to antici-
pate all the ways that you may want to access your data, and then create an
index for each possibility.

Some DBMS products give you the capability to turn off index maintenance.
You may want to do so in some real-time applications where updating
indexes takes a great deal of time and you have precious little to spare. You
may even elect to update the indexes as a separate operation during off-peak
hours. As usual, “do what works for you” is the rule.

	 Don’t fall into the trap of creating an index for retrieval orders that you’re
unlikely ever to use. Index maintenance is an extra operation that the com-
puter must perform every time it modifies the index field or adds or deletes a
data table row — and this operation affects performance. For optimal perfor-
mance, create only those indexes that you expect to use as retrieval keys —
and only for tables containing a large number of rows. Otherwise indexes can
degrade performance.

	 You may need to compile something such as a monthly or quarterly report
that requires the data in an odd order that you don’t ordinarily need. Create
an index just before running that periodic report, run the report, and then
drop the index so the DBMS isn’t burdened with maintaining the index during
the long period between reports.

118 Part II: Using SQL to Build Databases

Maintaining Data Integrity
A database is valuable only if you’re reasonably sure that the data it con-
tains is correct. In medical, aircraft, and spacecraft databases, for example,
incorrect data can lead to loss of life. Incorrect data in other applications
may have less severe consequences but can still prove damaging. Database
designers must do their best to make sure that incorrect data never enters
the databases they produce. This isn’t always possible, but it is possible to
at least make sure the data that is entered is valid. Maintaining data integrity
means making sure any data that is entered into a database system satisfies
the constraints that have been established for it. For example, if a database
field is of the Date type, the DBMS should reject any entry into that field that
is not a valid date.

Some problems can’t be stopped at the database level. The application pro-
grammer must intercept these problems before they can damage the data-
base. Everyone responsible for dealing with the database in any way must
remain conscious of the threats to data integrity and take appropriate action
to nullify those threats.

Databases can experience several distinctly different kinds of integrity — and
a number of problems that can affect integrity. In the following sections, I
discuss three types of integrity: entity, domain, and referential. I also look at
some of the problems that can threaten database integrity.

Entity integrity
Every table in a database corresponds to an entity in the real world. That
entity may be physical or conceptual, but in some sense, the entity’s exis-
tence is independent of the database. A table has entity integrity if the table is
entirely consistent with the entity that it models. To have entity integrity, a
table must have a primary key that uniquely identifies each row in the table.
Without a primary key, you can’t be sure that the row retrieved is the one
you want.

To maintain entity integrity, be sure to specify that the column (or group of
columns) making up the primary key is NOT NULL. In addition, you must con-
strain the primary key to be UNIQUE. Some SQL implementations enable you
to add such constraints to the table definition. With other implementations,
however, you must apply the constraint later, after you specify how to add,
change, or delete data from the table.

119 Chapter 5: Building a Multitable Relational Database

	 The best way to ensure that your primary key is both NOT NULL and UNIQUE
is to give the key the PRIMARY KEY constraint when you create the table, as
shown in the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

An alternative is to use NOT NULL in combination with UNIQUE, as shown in
the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 UNIQUE (ClientName)) ;

Domain integrity
You usually can’t guarantee that a particular data item in a database is cor-
rect, but you can determine whether a data item is valid. Many data items
have a limited number of possible values. If you make an entry that is not
one of the possible values, that entry must be an error. The United States,
for example, has 50 states plus the District of Columbia, Puerto Rico, and a
few possessions. Each of these areas has a two-character code that the U.S.
Postal Service recognizes. If your database has a State column, you can
enforce domain integrity by requiring that any entry into that column be one
of the recognized two-character codes. If an operator enters a code that’s not
on the list of valid codes, that entry breaches domain integrity. If you test for
domain integrity, you can refuse to accept any operation that causes such a
breach.

120 Part II: Using SQL to Build Databases

Domain integrity concerns arise if you add new data to a table by using either
the INSERT statement or the UPDATE statement. You can specify a domain
for a column by using a CREATE DOMAIN statement before you use that
column in a CREATE TABLE statement, as shown in the following example,
which creates a table for major league baseball teams:

CREATE DOMAIN LeagueDom CHAR (8)
 CHECK (VALUE IN (‘American’, ‘National’));
CREATE TABLE TEAM (
 TeamName CHAR (20) NOT NULL,
 League LeagueDom NOT NULL
) ;

The domain of the League column includes only two valid values: American
and National. Your DBMS doesn’t enable you to commit an entry or update
to the TEAM table unless the League column of the row you’re adding has a
value of either ‘American’ or ‘National’.

Referential integrity
Even if every table in your system has entity integrity and domain integrity,
you may still have a problem because of inconsistencies in the way one table
relates to another. In most well-designed multitable databases, every table
contains at least one column that refers to a column in another table in the
database. These references are important for maintaining the overall integ-
rity of the database. The same references, however, make update anomalies
possible. Update anomalies are problems that can occur after you update the
data in a row of a database table. The next several sections look at a typical
example and suggest how to deal with it.

Trouble between parent and child tables
The relationships among tables are generally not bidirectional. One table is
usually dependent on the other. Say, for example, that you have a database
with a CLIENT table and an ORDERS table. You may conceivably enter a
client into the CLIENT table before she makes any orders. You can’t, how-
ever, enter an order into the ORDERS table unless you already have an entry
in the CLIENT table for the client who’s making that order. The ORDERS table
is dependent on the CLIENT table. This kind of arrangement is often called a
parent-child relationship, where CLIENT is the parent table and ORDERS is the
child table. The child is dependent on the parent.

	 Generally, the primary key of the parent table is a column (or group of
columns) that appears in the child table. Within the child table, that same
column (or group) is a foreign key. Keep in mind, however, that a foreign key
need not be unique.

121 Chapter 5: Building a Multitable Relational Database

Update anomalies arise in several ways between parent and child tables. A
client moves away, for example, and you want to delete her information from
your database. If she has already made some orders (which you recorded
in the ORDERS table), deleting her from the CLIENT table could present a
problem. You’d have records in the ORDERS (child) table for which you have
no corresponding records in the CLIENT (parent) table. Similar problems
can arise if you add a record to a child table without making a corresponding
addition to the parent table.

	 The corresponding foreign keys in all child tables must reflect any changes
to the primary key of a row in a parent table; otherwise an update anomaly
results.

Cascading deletions — use with care
You can eliminate most referential integrity problems by carefully control-
ling the update process. In some cases, you have to cascade deletions from
a parent table to its children. To cascade a deletion when you delete a row
from a parent table, you also delete all the rows in its child tables whose for-
eign keys match the primary key of the deleted row in the parent table. Take
a look at the following example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25) NOT NULL,
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

CREATE TABLE TESTS (
 TestName CHAR (30) PRIMARY KEY,
 StandardCharge CHAR (30)
) ;

CREATE TABLE EMPLOYEE (
 EmployeeName CHAR (30) PRIMARY KEY,
 ADDRESS1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 HomePhone CHAR (13),
 OfficeExtension CHAR (4),
 HireDate DATE,
 JobClassification CHAR (10),

122 Part II: Using SQL to Build Databases

 HourSalComm CHAR (1)
) ;

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE,
 CONSTRAINT NameFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName)
 ON DELETE CASCADE,
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName)
 ON DELETE CASCADE,
 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
 ON DELETE CASCADE
) ;

The constraint NameFK names ClientName as a foreign key that references
the ClientName column in the CLIENT table. If you delete a row in the
CLIENT table, you also automatically delete all rows in the ORDERS table that
have the same value in the ClientName column as those in the ClientName
column of the CLIENT table. The deletion cascades down from the CLIENT
table to the ORDERS table. The same is true for the foreign keys in the
ORDERS table that refer to the primary keys of the TESTS and EMPLOYEE
tables.

Alternative ways to control update anomalies
You may not want to cascade a deletion. Instead, you may want to change the
child table’s foreign key to a NULL value. Consider the following variant of the
previous example:

CREATE TABLE ORDERS (
 OrderNumber INTEGER PRIMARY KEY,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 SalesPerson CHAR (30),
 OrderDate DATE,
 CONSTRAINT NameFK FOREIGN KEY (ClientName)
 REFERENCES CLIENT (ClientName),
 CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
 REFERENCES TESTS (TestName),
 CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
 REFERENCES EMPLOYEE (EmployeeName)
 ON DELETE SET NULL
) ;

123 Chapter 5: Building a Multitable Relational Database

The constraint SalesFK names the Salesperson column as a foreign key
that references the EmployeeName column of the EMPLOYEE table. If a sales-
person leaves the company, you delete her row in the EMPLOYEE table. New
salespeople are eventually assigned to her accounts, but for now, deleting
her name from the EMPLOYEE table causes all of her orders in the ORDER
table to receive a null value in the Salesperson column.

	 You can also keep inconsistent data out of a database by using one of these
methods:

	 ✓	Refuse to permit an addition to a child table until a corresponding
row exists in its parent table. If you refuse to permit rows in a child
table without a corresponding row in a parent table, you prevent the
occurrence of “orphan” rows in the child table. This refusal helps main-
tain consistency across tables.

	 ✓	Refuse to permit changes to a table’s primary key. If you refuse to
permit changes to a table’s primary key, you don’t need to worry about
updating foreign keys in other tables that depend on that primary key.

Just when you thought it was safe . . .
The one thing you can count on in databases (as in life) is change. Wouldn’t
you know? You create a database, complete with tables, constraints, and
rows and rows of data. Then word comes down from management that the
structure needs to be changed. How do you add a new column to a table that
already exists? How do you delete one that you don’t need any more? SQL to
the rescue!

Adding a column to an existing table
Suppose your company institutes a policy of having a party for every
employee on his or her birthday. To give the party coordinator the advance
warning she needs when she plans these parties, you have to add a
Birthday column to the EMPLOYEE table. As they say in the Bahamas, “No
problem!” Just use the ALTER TABLE statement. Here’s how:

ALTER TABLE EMPLOYEE
 ADD COLUMN Birthday DATE ;

Now all you have to do is add the birthday information to each row in the
table, and you can party on. (By the way, where did you say you work?)

124 Part II: Using SQL to Build Databases

Deleting a column from an existing table
Now suppose that an economic downturn hits your company and it can no
longer afford to fund lavish birthday parties. Even in a bad economy, DJ fees
have gone through the roof. No more parties means no more need to retain
birthday data. With the ALTER TABLE statement, you can handle this situa-
tion too.

ALTER TABLE EMPLOYEE
 DROP COLUMN Birthday ;

Ah, well, it was fun while it lasted.

Potential problem areas
Data integrity is subject to assault from a variety of quarters. Some of these
problems arise only in multitable databases; others can happen even in data-
bases that contain only a single table. You want to recognize and minimize all
these potential threats.

Bad input data
The source documents or data files that you use to populate your database
may contain bad data. This data may be a corrupted version of the correct
data, or it may not be the data you want. A range check tells you whether the
data has domain integrity. This type of check catches some — but not all —
problems. (For example, incorrect field values that are within the acceptable
range — but still incorrect — aren’t identified as problems.)

Operator error
Your source data may be correct, but the data entry operator may incor-
rectly transcribe the data. This type of error can lead to the same kinds of
problems as bad input data. Some of the solutions are the same, too. Range
checks help, but they’re not foolproof. Another solution is to have a second
operator independently validate all the data. This approach is costly because
independent validation takes twice the number of people and twice the time.
But in some cases where data integrity is critical, the extra effort and expense
may prove worthwhile.

Mechanical failure
If you experience a mechanical failure, such as a disk crash, the data in the
table may be destroyed. Good backups are your main defense against this
problem.

125 Chapter 5: Building a Multitable Relational Database

Malice
Consider the possibility that someone may want to corrupt your data. Your
first line of defense against intentional corruption is to deny database access
to anyone who may have a malicious intent and to restrict authorized users
so they can access only the data they need. Your second defense is to main-
tain data backups in a safe place. Periodically re-evaluate the security fea-
tures of your installation. Being just a little paranoid doesn’t hurt.

Data redundancy
Data redundancy — the same data items cropping up in multiple places — is
a big problem with the hierarchical database model, but the problem can
plague relational databases, too. Not only does such redundancy waste stor-
age space and slow down processing, but it can also lead to serious data cor-
ruption. If you store the same data item in two different tables in a database,
the item in one of those tables may change while the corresponding item in
the other table remains the same. This situation generates a discrepancy,
and you may have no way of determining which version is correct. That’s a
good reason to keep data redundancy to a minimum.

	 Although a certain amount of redundancy is necessary for the primary key of
one table to serve as a foreign key in another, you should try to avoid the rep-
etition of any data items beyond that.

	 After you eliminate most redundancy from a database design, you may find
that performance is now unacceptable. Operators often purposefully use a
little redundancy to speed up processing. In the VetLab database, for example,
the ORDERS table contains only the client’s name to identify the source of
each order. If you prepare an order, you must join the ORDERS table with the
CLIENT table to get the client’s address. If this joining of tables makes the pro-
gram that prints orders run too slowly, you may decide to store the client’s
address redundantly in the ORDERS table as well as in the CLIENT table. Then,
at least, you can print the orders faster — but at the expense of slowing down
and complicating any updating of the client’s address.

	 A common practice is to initially design a database with little redundancy
and with high degrees of normalization, and then, after finding that important
applications run slowly, to selectively add redundancy and denormalize. The
key word here is selectively. The redundancy that you add back in must have
a specific purpose, and because you’re acutely aware of both the redundancy
and the hazard it represents, you take appropriate measures to ensure that
the redundancy doesn’t cause more problems than it solves. (For more infor-
mation, jump ahead a bit to the “Normalizing the Database” section.)

126 Part II: Using SQL to Build Databases

Exceeding the capacity of your DBMS
A database system might work properly for years and then start experiencing
intermittent errors that become progressively more serious. This may be a
sign that you’re approaching one of the system’s capacity limits. There are,
after all, limits to the number of rows that a table may have. There are also
limits on columns, constraints, and various other database features. Check
the current size and content of your database against the specifications
listed in the documentation of your DBMS. If you’re near the limit in any
area, consider upgrading to a system with a higher capacity. Or you may
want to archive older data that is no longer active and then delete it from
your database.

Constraints
Earlier in this chapter, I talk about constraints as mechanisms for ensuring
that the data you enter into a table column falls within the domain of that
column. A constraint is an application rule that the DBMS enforces. After you
define a database, you can include constraints (such as NOT NULL) in a table
definition. The DBMS makes sure that you can never commit any transaction
that violates a constraint.

	 You have three kinds of constraints:

	 ✓	A column constraint imposes a condition on a column in a table.

	 ✓	A table constraint puts a specified constraint on an entire table.

	 ✓	An assertion is a constraint that can affect more than one table.

Column constraints
An example of a column constraint is shown in the following Data Definition
Language (DDL) statement:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

127 Chapter 5: Building a Multitable Relational Database

The statement applies the constraint NOT NULL to the ClientName column,
specifying that ClientName may not assume a null value. UNIQUE is another
constraint that you can apply to a column. This constraint specifies that
every value in the column must be unique. The CHECK constraint is par-
ticularly useful because it can take any valid expression as an argument.
Consider the following example:

CREATE TABLE TESTS (
 TestName CHAR (30) NOT NULL,
 StandardCharge NUMERIC (6,2)
 CHECK (StandardCharge >= 0.0
 AND StandardCharge <= 200.0)
) ;

VetLab’s standard charge for a test must always be greater than or
equal to zero. And none of the standard tests costs more than $200. The
CHECK clause refuses to accept any entries that fall outside the range
0 <= StandardCharge <= 200. Another way of stating the same
constraint is as follows:

CHECK (StandardCharge BETWEEN 0.0 AND 200.0)

Table constraints
The PRIMARY KEY constraint specifies that the column to which it applies
is a primary key. This constraint applies to the entire table and is equivalent
to a combination of the NOT NULL and UNIQUE column constraints. You
can specify this constraint in a CREATE statement, as shown in the following
example:

CREATE TABLE CLIENT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30)
) ;

Named constraints, such as the NameFK constraint in the example in the
earlier “Cascading deletions — use with care” section, can have some addi-
tional functionality. Suppose for example, that you want to do a bulk load of
several thousand prospective clients into your PROSPECT table. You have
a file that contains mostly prospects in the United States, but with a few
Canadian prospects sprinkled throughout the file. Normally, you want to

128 Part II: Using SQL to Build Databases

restrict your PROSPECT table to include only U.S. prospects, but you don’t
want this bulk load to be interrupted every time it hits one of the Canadian
records. (Canadian postal codes include letters as well as numbers, but U.S.
zip codes contain only numbers.) You can choose to not enforce a constraint
on PostalCode until the bulk load is complete, and then you can restore
constraint enforcement later.

Initially, your PROSPECT table was created with the following CREATE
TABLE statement:

CREATE TABLE PROSPECT (
 ClientName CHAR (30) PRIMARY KEY,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 CONSTRAINT Zip CHECK (PostalCode BETWEEN 0 AND 99999)
) ;

Before the bulk load, you can turn off the enforcement of the Zip constraint:

ALTER TABLE PROSPECT
 CONSTRAINT Zip NOT ENFORCED;

After the bulk load is complete, you can restore enforcement of the con-
straint:

ALTER TABLE PROSPECT
 CONSTRAINT Zip ENFORCED;

At this point you can eliminate any rows that do not satisfy the constraint
with:

DELETE FROM PROSPECT
 WHERE PostalCode NOT BETWEEN 0 AND 99999 ;

Assertions
An assertion specifies a restriction for more than one table. The following
example uses a search condition drawn from two tables to create an
assertion:

129 Chapter 5: Building a Multitable Relational Database

CREATE TABLE ORDERS (
 OrderNumber INTEGER NOT NULL,
 ClientName CHAR (30),
 TestOrdered CHAR (30),
 Salesperson CHAR (30),
 OrderDate DATE
) ;

CREATE TABLE RESULTS (
 ResultNumber INTEGER NOT NULL,
 OrderNumber INTEGER,
 Result CHAR (50),
 DateOrdered DATE,
 PrelimFinal CHAR (1)
) ;

CREATE ASSERTION
 CHECK (NOT EXISTS (SELECT * FROM ORDERS, RESULTS
 WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
 AND ORDERS.OrderDate > RESULTS.DateReported)) ;

This assertion ensures that test results aren’t reported before the test is
ordered.

Normalizing the Database
Some ways of organizing data are better than others. Some are more logical.
Some are simpler. Some are better at preventing inconsistencies when you
start using the database. Yep, modifying a database opens another whole
nest of troubles and (fortunately) their solutions, known respectively as . . .

Modification anomalies and normal forms
A host of problems — called modification anomalies — can plague a database
if you don’t structure the database correctly. To prevent these problems, you
can normalize the database structure. Normalization generally entails split-
ting one database table into two simpler tables.

Modification anomalies are so named because they are generated by the addi-
tion of, change to, or deletion of data from a database table.

To illustrate how modification anomalies can occur, consider the table
shown in Figure 5-2.

130 Part II: Using SQL to Build Databases

	

Figure 5-2:
This SALES

table
leads to

modification
anomalies.

	

Suppose, for example, that your company sells household cleaning and per-
sonal-care products, and you charge all customers the same price for each
product. The SALES table keeps track of everything for you. Now assume that
customer 1001 moves out of the area and no longer is a customer. You don’t
care what he’s bought in the past, because he’s not going to buy anything
from your company again. You want to delete his row from the table. If you
do so, however, you don’t just lose the fact that customer 1001 has bought
laundry detergent; you also lose the fact that laundry detergent costs $12.
This situation is called a deletion anomaly. In deleting one fact (that customer
1001 bought laundry detergent), you inadvertently delete another fact (that
laundry detergent costs $12).

You can use the same table to illustrate an insertion anomaly. For example,
suppose you want to add stick deodorant to your product line at a price of
$2. You can’t add this data to the SALES table until a customer buys stick
deodorant.

The problem with the SALES table in the figure is that this table deals with
more than one thing: It covers not just which products customers buy, but
also what the products cost. To eliminate the anomalies, you have to split
the SALES table into two tables, each dealing with only one theme or idea, as
shown in Figure 5-3.

Figure 5-3 shows the SALES table divided into two tables:

	 ✓	CUST_PURCH, which deals with the single idea of customer purchases.

	 ✓	PROD_PRICE, which deals with the single idea of product pricing.

131 Chapter 5: Building a Multitable Relational Database

	

Figure 5-3:
Splitting the
SALES table

into two
tables.

	

You can now delete the row for customer 1001 from CUST_PURCH without
losing the fact that laundry detergent costs $12. (The cost of laundry deter-
gent is now stored in PROD_PRICE.) You can also add stick deodorant to
PROD_PRICE whether or not anyone has bought the product. Purchase infor-
mation is stored elsewhere, in the CUST_PURCH table.

The process of breaking up a table into multiple tables, each of which has a
single theme, is called normalization. A normalization operation that solves
one problem may not affect other problems. You may have to perform sev-
eral successive normalization operations to reduce each resulting table to a
single theme. Each database table should deal with one — and only one —
main theme. Sometimes (as you probably guessed) determining that a table
really deals with two or more themes can be difficult.

	 You can classify tables according to the types of modification anomalies to
which they’re subject. In a 1970 paper, E. F. Codd, the first to describe the rela-
tional model, identified three sources of modification anomalies and defined
first, second, and third normal forms (1NF, 2NF, 3NF) as remedies to those
types of anomalies. In the ensuing years, Codd and others discovered addi-
tional types of anomalies and specified new normal forms to deal with them.
The Boyce-Codd normal form (BCNF), the fourth normal form (4NF), and the
fifth normal form (5NF) each afforded a higher degree of protection against
modification anomalies. Not until 1981, however, did a paper, written by
Ronald Fagin, describe domain-key normal form or DK/NF (which gets a whole
section to itself later in this chapter). Using this last normal form enables you
to guarantee that a table is free of modification anomalies.

The normal forms are nested in the sense that a table that’s in 2NF is auto-
matically also in 1NF. Similarly, a table in 3NF is automatically in 2NF, and so
on. For most practical applications, putting a database in 3NF is sufficient to
ensure a high degree of integrity. To be absolutely sure of its integrity, you

132 Part II: Using SQL to Build Databases

must put the database into DK/NF; for more about why, flip ahead to the
“Domain-key normal form (DK/NF)” section.

	 After you normalize a database as much as possible, you may want to make
selected denormalizations to improve performance. If you do, be aware of the
types of anomalies that may now become possible.

First normal form
To be in first normal form (1NF), a table must have the following qualities:

	 ✓	The table is two-dimensional with rows and columns.

	 ✓	Each row contains data that pertains to some thing or portion of a thing.

	 ✓	Each column contains data for a single attribute of the thing it’s
describing.

	 ✓	Each cell (intersection of a row and a column) of the table must have
only a single value.

	 ✓	Entries in any column must all be of the same kind. If, for example, the
entry in one row of a column contains an employee name, all the other
rows must contain employee names in that column, too.

	 ✓	Each column must have a unique name.

	 ✓	No two rows may be identical (that is, each row must be unique).

	 ✓	The order of the columns and the order of the rows are not significant.

A table (relation) in first normal form is immune to some kinds of modifica-
tion anomalies but is still subject to others. The SALES table shown in Figure
5-2 is in first normal form, and as discussed previously, the table is subject to
deletion and insertion anomalies. First normal form may prove useful in some
applications but unreliable in others.

Second normal form
To appreciate second normal form, you must understand the idea of func-
tional dependency. A functional dependency is a relationship between or
among attributes. One attribute is functionally dependent on another if the
value of the second attribute determines the value of the first attribute. If you
know the value of the second attribute, you can determine the value of the
first attribute.

133 Chapter 5: Building a Multitable Relational Database

Suppose, for example, that a table has attributes (columns)
StandardCharge, NumberOfTests, and TotalCharge that relate through
the following equation:

TotalCharge = StandardCharge * NumberOfTests

TotalCharge is functionally dependent on both StandardCharge
and NumberOfTests. If you know the values of StandardCharge and
NumberOfTests, you can determine the value of TotalCharge.

Every table in first normal form must have a unique primary key. That key
may consist of one or more than one column. A key consisting of more than
one column is called a composite key. To be in second normal form (2NF),
all non-key attributes (columns) must depend on the entire key. Thus, every
relation that is in 1NF with a single attribute key is automatically in second
normal form. If a relation has a composite key, all non-key attributes must
depend on all components of the key. If you have a table where some non-key
attributes don’t depend on all components of the key, break the table up into
two or more tables so that — in each of the new tables — all non-key attri-
butes depend on all components of the primary key.

Sound confusing? Look at an example to clarify matters. Consider a table
like the SALES table back in Figure 5-2. Instead of recording only a single pur-
chase for each customer, you add a row every time a customer buys an item
for the first time. An additional difference is that charter customers (those
with Customer_ID values of 1001 to 1007) get a discount off the normal
price. Figure 5-4 shows some of this table’s rows.

	

Figure 5-4:
In the

SALES_
TRACK

table, the
Customer_

ID and
Product
columns

constitute a
composite

key.
	

134 Part II: Using SQL to Build Databases

In Figure 5-4, Customer_ID does not uniquely identify a row. In two rows,
Customer_ID is 1001. In two other rows, Customer_ID is 1010. The combi-
nation of the Customer_ID column and the Product column uniquely iden-
tifies a row. These two columns together are a composite key.

If not for the fact that some customers qualify for a discount and others
don’t, the table wouldn’t be in second normal form, because Price (a
non-key attribute) would depend only on part of the key (Product).
Because some customers do qualify for a discount, Price depends on both
CustomerID and Product, and the table is in second normal form.

Third normal form
Tables in second normal form are especially vulnerable to some types of
modification anomalies — in particular, those that come from transitive
dependencies.

	 A transitive dependency occurs when one attribute depends on a second
attribute, which depends on a third attribute. Deletions in a table with such a
dependency can cause unwanted information loss. A relation in third normal
form is a relation in second normal form with no transitive dependencies.

Look again at the SALES table in Figure 5-2, which you know is in first normal
form. As long as you constrain entries to permit only one row for each
Customer_ID, you have a single-attribute primary key, and the table is in
second normal form. However, the table is still subject to anomalies. What if
customer 1010 is unhappy with the chlorine bleach, for example, and returns
the item for a refund? You want to remove the third row from the table,
which records the fact that customer 1010 bought chlorine bleach. You have
a problem: If you remove that row, you also lose the fact that chlorine bleach
has a price of $4. This situation is an example of a transitive dependency.
Price depends on Product, which, in turn, depends on the primary key
Customer_ID.

Breaking the SALES table into two tables solves the transitive dependency
problem. The two tables shown in Figure 5-3, CUST_PURCH and PROD_PRICE,
make up a database that’s in third normal form.

Domain-key normal form (DK/NF)
After a database is in third normal form, you’ve eliminated most, but not
all, chances of modification anomalies. Normal forms beyond the third
are defined to squash those few remaining bugs. Boyce-Codd normal form

135 Chapter 5: Building a Multitable Relational Database

(BCNF), fourth normal form (4NF), and fifth normal form (5NF) are examples
of such forms. Each form eliminates a possible modification anomaly but
doesn’t guarantee prevention of all possible modification anomalies. Domain-
key normal form, however, provides such a guarantee.

	 A relation is in domain-key normal form (DK/NF) if every constraint on the
relation is a logical consequence of the definition of keys and domains. A con-
straint in this definition is any rule that’s precise enough that you can evalu-
ate whether or not it’s true. A key is a unique identifier of a row in a table. A
domain is the set of permitted values of an attribute.

Look again at the database in Figure 5-2, which is in 1NF, to see what you
must do to put that database in DK/NF.

Table: SALES (Customer_ID, Product, Price)
Key: Customer_ID

Constraints: 1. Customer_ID determines Product
2. Product determines Price
3. Customer_ID must be an integer > 1000

To enforce Constraint 3 (that Customer_ID must be an integer greater than
1000), you can simply define the domain for Customer_ID to incorporate
this constraint. That makes the constraint a logical consequence of the
domain of the CustomerID column. Product depends on Customer_ID,
and Customer_ID is a key, so you have no problem with Constraint 1, which
is a logical consequence of the definition of the key. Constraint 2 is a prob-
lem. Price depends on (is a logical consequence of) Product, and Product
isn’t a key. The solution is to divide the SALES table into two tables. One
table uses Customer_ID as a key, and the other uses Product as a key.
This setup is what you have in Figure 5-3. The database in Figure 5-3, besides
being in 3NF, is also in DK/NF.

	 Design your databases so they’re in DK/NF if possible. If you can do that, then
enforcing key and domain restrictions causes all constraints to be met, and
modification anomalies aren’t possible. If a database’s structure is designed in
a way that prevents you from putting it into DK/NF, then you have to build the
constraints into the application program that uses the database. The database
itself doesn’t guarantee that the constraints will be met.

Abnormal form
As in life, so in databases: Sometimes being abnormal pays off. You can get
carried away with normalization and go too far. You can break up a database

136 Part II: Using SQL to Build Databases

into so many tables that the entire thing becomes unwieldy and inefficient.
Performance can plummet. Often the optimal structure for your database
is somewhat denormalized. In fact, practical databases (the really big ones,
anyway) are almost never normalized all the way to DK/NF. You want to nor-
malize the databases you design as much as possible, however, to eliminate
the possibility of data corruption that results from modification anomalies.

After you normalize the database as far as you can, make some retrievals
as a dry run. If performance isn’t satisfactory, examine your design to see
whether selective denormalization would improve performance without sac-
rificing integrity. By carefully adding redundancy in strategic locations and
denormalizing just enough, you can arrive at a database that’s both efficient
and safe from anomalies.

Part III
Storing and Retrieving Data

	

Visit www.dummies.com/extras/sql for great Dummies content online.

In this part…
	 ✓	 Managing data
	 ✓	 Tracking time
	 ✓	 Processing values
	 ✓	 Building queries
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 6

Manipulating Database Data
In This Chapter
▶	Dealing with data
▶	Retrieving the data you want from a table
▶	Displaying only selected information from one or more tables
▶	Updating the information in tables and views
▶	Adding a new row to a table
▶	Changing some or all of the data in a table row
▶	Deleting a table row

C
hapters 3 and 4 reveal that creating a sound database structure is criti-
cal to maintaining data integrity. The stuff you’re really interested in,

however, is the data itself — not its structure. At any given time, you prob-
ably want to do one of four things with data: add it to tables, retrieve and
display it, change it, or delete it from tables.

In principle, database manipulation is quite simple. Understanding how to
add data to a table isn’t difficult — you can add your data either one row
at a time or in a batch. Changing, deleting, or retrieving one or more table
rows is also easy in practice. The main challenge to database manipulation is
selecting the rows that you want to change, delete, or retrieve. The data you
want may reside in a database that contains a large volume of data you don’t
want. Fortunately, if you can specify what you want by using an SQL SELECT
statement, the computer does all the searching for you. I guess that means
manipulating a database with SQL is a piece of cake. Adding, changing, delet-
ing, and retrieving are all easy! (Hmmm. Perhaps “easy” might be a slight
exaggeration.) At least you get to start off easy with simple data retrieval.

Retrieving Data
The data-manipulation task that users perform most frequently is retrieving
selected information from a database. You may want to retrieve the contents

140 Part III: Storing and Retrieving Data

of one row out of thousands in a table. You may want to retrieve all rows
that satisfy a condition or a combination of conditions. You may even want
to retrieve all rows in the table. One particular SQL statement, the SELECT
statement, performs all these tasks for you.

The simplest use of the SELECT statement is to retrieve all the data in all the
rows of a specified table. To do so, use the following syntax:

SELECT * FROM CUSTOMER ;

	 The asterisk (*) is a wildcard character that means everything. In this context,
the asterisk is a shorthand substitute for a listing of all the column names of
the CUSTOMER table. As a result of this statement, all the data in all the rows
and columns of the CUSTOMER table appear onscreen.

SELECT statements can be much more complicated than the statement in
this example. In fact, some SELECT statements can be so complicated that
they’re virtually indecipherable. This potential complexity is a result of the
fact that you can tack multiple modifying clauses onto the basic statement.
Chapter 10 covers modifying clauses in detail; in this chapter, I briefly dis-
cuss the WHERE clause, which is the most commonly used method of restrict-
ing the rows that a SELECT statement returns.

A SELECT statement with a WHERE clause has the following general form:

SELECT column_list FROM table_name
 WHERE condition ;

The column list specifies which columns you want to display. The state-
ment displays only the columns that you list. The FROM clause specifies from
which table you want to display columns. The WHERE clause excludes rows
that don’t satisfy a specified condition. The condition may be simple (for
example, WHERE CUSTOMER_STATE = ‘NH’), or it may be compound (for
example, WHERE CUSTOMER_STATE=‘NH’ AND STATUS=‘Active’).

The following example shows a compound condition inside a SELECT
statement:

SELECT FirstName, LastName, Phone FROM CUSTOMER
 WHERE State = ‘NH’
 AND Status = ‘Active’ ;

This statement returns the names and phone numbers of all active customers
living in New Hampshire. The AND keyword means that for a row to qualify
for retrieval, that row must meet both conditions: State = ‘NH’ and
Status = ‘Active’.

141 Chapter 6: Manipulating Database Data

Creating Views
The structure of a database that’s designed according to sound principles —
including appropriate normalization (see Chapter 5) — maximizes the integ-
rity of the data. This structure, however, is often not the best way to look at
the data. Several applications may use the same data, but each application
may have a different emphasis. One of the most powerful features of SQL is
its capability to display views of the data that are structured differently from
how the database tables store the data. The tables you use as sources for
columns and rows in a view are the base tables. Chapter 3 discusses views as
part of the Data Definition Language (DDL); this section looks at views in the
context of retrieving and manipulating data.

A SELECT statement always returns a result in the form of a virtual table. A
view is a special kind of virtual table. You can distinguish a view from other
virtual tables because the database’s metadata holds the definition of a view.
This distinction gives a view a degree of persistence that other virtual tables
don’t possess.

	 You can manipulate a view just as you can manipulate a real table. The differ-
ence is that a view’s data doesn’t have an independent existence. The view
derives its data from the table or tables from which you draw the view’s col-
umns. Each application can have its own unique views of the same data.

Consider the VetLab database that I describe in Chapter 5. That database
contains five tables: CLIENT, TESTS, EMPLOYEE, ORDERS, and RESULTS.
Suppose the national marketing manager wants to see from which states the
company’s orders are coming. Some of this information lies in the CLIENT

SQL in proprietary tools
Using SQL SELECT statements is not the only
way to retrieve data from a database. If you’re
interacting with your database through a
DBMS, this system probably already has propri-
etary tools for manipulating data. You can use
these tools (many of which are quite intuitive)
to add to, delete from, change, or query your
database.

Many DBMS front ends give you the choice of
using either their proprietary tools or SQL. In

some cases, the proprietary tools can’t express
everything that you can express by using SQL.
If you need to perform an operation that the pro-
prietary tool can’t handle, you may need to use
SQL. So becoming familiar with SQL is a good
idea, even if you use a proprietary tool most of
the time. To successfully perform an operation
that’s too complex for your proprietary tool, you
need a clear understanding of how SQL works
and what it can do.

142 Part III: Storing and Retrieving Data

table; some lies in the ORDERS table. Suppose the quality-control officer
wants to compare the order date of a test to the date on which the final test
result came in. This comparison requires some data from the ORDERS table
and some from the RESULTS table. To satisfy needs such as these, you can
create views that give you exactly the data you want in each case.

From tables
For the marketing manager, you can create the view shown in Figure 6-1.

	

Figure 6-1:
The

ORDERS_
BY_STATE

view for the
marketing
manager.

	

The following statement creates the marketing manager’s view:

CREATE VIEW ORDERS_BY_STATE
 (ClientName, State, OrderNumber)
 AS SELECT CLIENT.ClientName, State, OrderNumber
 FROM CLIENT, ORDERS
 WHERE CLIENT.ClientName = ORDERS.ClientName ;

The new view has three columns: ClientName, State, and OrderNumber.
ClientName appears in both the CLIENT and ORDERS tables and serves as
the link between the two tables. The new view draws State information from
the CLIENT table and takes the OrderNumber from the ORDERS table. In the

143 Chapter 6: Manipulating Database Data

preceding example, you declare the names of the columns explicitly in the
new view.

Note that I prefixed ClientName with the table that contains it, but I didn’t
do that for State and OrderNumber. That is because State appears only
in the CLIENT table and OrderNumber appears only in the ORDERS table, so
there is no ambiguity. However, ClientName appears in both CLIENT and
ORDERS, so the additional identifier is needed.

	 You don’t need this declaration if the names are the same as the names of the
corresponding columns in the source tables. The example in the following sec-
tion shows a similar CREATE VIEW statement, except that the view column
names are implied rather than explicitly stated.

With a selection condition
The quality-control officer requires a different view from the one that the
marketing manager uses, as shown by the example in Figure 6-2.

	

Figure 6-2:
The

REPORTING
_LAG view

for the
quality-
control
officer.

	

Here’s the code that creates the view in Figure 6-2:

CREATE VIEW REPORTING_LAG
 AS SELECT ORDERS.OrderNumber, OrderDate, DateReported
 FROM ORDERS, RESULTS
 WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
 AND RESULTS.PreliminaryFinal = ‘F’ ;

144 Part III: Storing and Retrieving Data

This view contains order-date information from the ORDERS table and final-
report-date information from the RESULTS table. Only rows that have an
‘F’ in the PreliminaryFinal column of the RESULTS table appear in the
REPORTING_LAG view. Note also that the column list in the ORDERS_BY_
STATE view is optional. The REPORTING_LAG view works fine without such
a list.

With a modified attribute
The SELECT clauses in the examples in the two preceding sections contain
only column names. You can include expressions in the SELECT clause as
well. Suppose VetLab’s owner is having a birthday and wants to give all his
customers a 10-percent discount to celebrate. He can create a view based on
the ORDERS table and the TESTS table. He may construct this table as shown
in the following code example:

CREATE VIEW BIRTHDAY
 (ClientName, Test, OrderDate, BirthdayCharge)
 AS SELECT ClientName, TestOrdered, OrderDate,
 StandardCharge * .9
 FROM ORDERS, TESTS
 WHERE TestOrdered = TestName ;

Notice that the second column in the BIRTHDAY view — Test — corre-
sponds to the TestOrdered column in the ORDERS table, which also corre-
sponds to the TestName column in the TESTS table. Figure 6-3 shows how to
create this view.

	

Figure 6-3:
The view

created
to show

birthday dis-
counts.

	

You can build a view based on multiple tables, as shown in the preceding
examples, or you can build a view based on a single table. If you don’t need
some of the columns or rows in a table, create a view to remove these

145 Chapter 6: Manipulating Database Data

elements from sight and then deal with the view rather than the original
table. This approach ensures that users see only the parts of the table that
are relevant to the task at hand.

	 Another reason for creating a view is to provide security for its underly-
ing tables. You may want to make some columns in your tables available
for inspection while hiding others. You can create a view that includes only
those columns that you want to make available and then grant broad access
to that view while restricting access to the tables from which you draw the
view. (Chapter 14 explores database security and describes how to grant and
revoke data-access privileges.)

Updating Views
After you create a table, that table is automatically capable of accommodat-
ing insertions, updates, and deletions. Views don’t necessarily exhibit the
same capability. If you update a view, you’re actually updating its underly-
ing table. Here are a few potential problems you may encounter when you
update views:

	 ✓	Some views may draw components from two or more tables. If you
update such a view, the underlying tables may not be updated properly.

	 ✓	A view may include an expression in a SELECT list. Because expres-
sions don’t map directly to rows in tables, your DBMS won’t know how
to update an expression.

Suppose you create a view by using the following statement:

CREATE VIEW COMP (EmpName, Pay)
 AS SELECT EmpName, Salary+Comm AS Pay
 FROM EMPLOYEE ;

You may think you can update Pay by using the following statement:

UPDATE COMP SET Pay = Pay + 100 ;

Unfortunately, this approach doesn’t make any sense. That’s because the
underlying table has no Pay column. You can’t update something that
doesn’t exist in the base table.

	 Keep the following rule in mind whenever you consider updating views: You
can’t update a column in a view unless it corresponds to a column in an under-
lying base table.

146 Part III: Storing and Retrieving Data

Adding New Data
Every database table starts out empty. After you create a table, either by
using SQL’s DDL or a RAD tool, that table is nothing but a structured shell
containing no data. To make the table useful, you must put some data into it.
You may or may not have that data already stored in digital form. Your data
may appear in one of the following forms:

	 ✓	Not yet compiled in any digital format: If your data is not already in
digital form, someone will probably have to enter the data manually, one
record at a time. You can also enter data by using optical scanners and
voice-recognition systems, but the use of such devices for data entry is
relatively rare.

	 ✓	Compiled in some sort of digital format: If your data is already in digital
form — but perhaps not in the format of the database tables you use —
you have to translate the data into the appropriate format and then
insert the data into the database.

	 ✓	Compiled in the correct digital format: If your data is already in digital
form and in the correct format, you’re ready to transfer it to a new
database.

The following sections address adding data to a table when it exists in each
of these three forms. Depending on the current form of the data, you may
be able to transfer it to your database in one operation, or you may need to
enter the data one record at a time. Each data record you enter corresponds
to a single row in a database table.

Adding data one row at a time
Most DBMSs support form-based data entry. This feature enables you to
create a screen form that has a field for every column in a database table.
Field labels on the form enable you to determine easily what data goes into
each field. The data-entry operator enters all the data for a single row into
the form. After the DBMS accepts the new row, the system clears the form to
accept another row. In this way, you can easily add data to a table one row at
a time.

Form-based data entry is easy and less susceptible to data-entry errors than
using a list of comma-delimited values. The main problem with form-based
data entry is that it is nonstandard; each DBMS has its own method of cre-
ating forms. This diversity, however, is not a problem for the data-entry
operator. You can make the form look generally the same from one DBMS to

147 Chapter 6: Manipulating Database Data

another. (The data-entry operator may not suffer too much, but the applica-
tion developer must return to the bottom of the learning curve every time
he or she changes development tools.) Another possible problem with form-
based data entry is that some implementations may not permit a full range of
validity checks on the data that you enter.

The best way to maintain a high level of data integrity in a database is to
keep bad data out of the database. You can prevent the entry of some bad
data by applying constraints to the fields on a data-entry form. This approach
enables you to make sure that the database accepts only data values of the
correct type and within a predefined range. Such constraints can’t prevent all
possible errors, but they can catch some errors.

	 If the form-design tool in your DBMS doesn’t let you apply all the validity
checks that you need to ensure data integrity, you may want to build your
own screen, accept data entries into variables, and check the entries by using
application program code. After you’re sure that all the values entered for a
table row are valid, you can then add that row by using the SQL INSERT
command.

If you enter the data for a single row into a database table, the INSERT com-
mand uses the following syntax:

INSERT INTO table_1 [(column_1, column_2, ..., column_n)]
 VALUES (value_1, value_2, ..., value_n) ;

As indicated by the square brackets ([]), the listing of column names is
optional. The default column list order is the order of the columns in the
table. If you put the VALUES in the same order as the columns in the table,
these elements go into the correct columns — whether you specify those col-
umns explicitly or not. If you want to specify the VALUES in some order other
than the order of the columns in the table, you must list the column names in
the same order as the list of values in the VALUES clause.

To enter a record into the CUSTOMER table, for example, use the following
syntax:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName,
 Street, City, State, Zipcode, Phone)
 VALUES (:vcustid, ‘David’, ‘Taylor’, ‘235 Loco Ave.’,
 ‘El Pollo’, ‘CA’, ‘92683’, ‘(617) 555-1963’) ;

The first VALUE in the third line, vcustid, is a variable that you incre-
ment with your program code after you enter each new row of the table.
This approach guarantees that you have no duplication of the CustomerID
(which is the primary key for this table and must be unique). The rest of
the values are data items rather than variables that contain data items. Of

148 Part III: Storing and Retrieving Data

course, you can hold the data for these columns in variables, too, if you want.
The INSERT statement works equally well whether you use variables or an
explicit copy of the data itself to form the arguments of the VALUES keyword.

Adding data only to selected columns
Sometimes you want to note the existence of an object even if you don’t have
all the facts on it yet. If you have a database table for such objects, you can
insert a row for the new object without filling in the data in all the columns.
If you want the table in first normal form, you must insert enough data to dis-
tinguish the new row from all the other rows in the table. (For the intricacies
of the normal forms, including first, see Chapter 5.) Inserting the new row’s
primary key is sufficient for this purpose. In addition to the primary key,
insert any other data that you have about the object. Columns in which you
enter no data contain nulls.

The following example shows such a partial row entry:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName)
 VALUES (:vcustid, ‘Tyson’, ‘Taylor’) ;

You insert only the customer’s unique identification number and name into
the database table. The other columns in this row contain null values.

Adding a block of rows to a table
Loading a database table one row at a time by using INSERT statements
can be tedious, particularly if that’s all you do. Even entering the data into a
carefully human-engineered ergonomic screen form gets tiring after a while.
Clearly, if you have a reliable way to enter the data automatically, you’ll find
occasions in which automatic entry is better than having a person sit at a
keyboard and type.

Automatic data entry is feasible, for example, if the data exists in electronic
form because somebody has already entered the data manually. If so, there’s
no reason to repeat history. Transferring data from one data file to another
is a task that a computer can perform with minimal human involvement. If
you know the characteristics of the source data and the desired form of the
destination table, a computer can (in principle) perform the data transfer
automatically.

149 Chapter 6: Manipulating Database Data

Copying from a foreign data file
Suppose you’re building a database for a new application. Some data that you
need already exists in a computer file. The file may be a flat file or a table in a
database created by a DBMS different from the one you use. The data may be in
ASCII or EBCDIC code or in some arcane proprietary format. What do you do?

The first things you do are hope and pray that the data you want is in a
widely used format. If the data is in a popular format, you have a good chance
of finding a format-conversion utility that can translate the data into one or
more other popular formats. Your development environment can probably
import at least one of these formats; if you’re really lucky, your development
environment can handle the current data format directly. On personal com-
puters, the Access, xBASE, and MySQL formats are the most widely used. If
the data you want is in one of these formats, conversion should be easy. If
the format of the data is less common, you may have to put it through a two-
step conversion.

	 If the data is in an old, proprietary, or defunct format, as a last resort, you can
turn to a professional data-translation service. These businesses specialize in
translating computer data from one format to another. They deal with hun-
dreds of formats — most of which nobody has ever heard of. Give one of these
services a tape or disk containing the data in its original format, and you get
back the same data translated into whatever format you specify.

Transferring all rows between tables
A less severe problem than dealing with foreign data is taking data that
already exists in one table in your database and combining that data with
compatible data in another table. This process works great if the structure
of the second table is identical to the structure of the first table — that is,
every column in the first table has a corresponding column in the second
table, and the data types of the corresponding columns match. In that case,
you can combine the contents of the two tables by using the UNION relational
operator. The result is a virtual table (that is, one that has no independent
existence) that contains data from both source tables. I discuss the relational
operators, including UNION, in Chapter 11.

Transferring selected columns and rows between tables
Generally, the structure of the data in the source table isn’t identical to the
structure of the table into which you want to insert the data. Perhaps only
some of the columns match, and these are the columns that you want to
transfer. By combining SELECT statements with a UNION, you can specify
which columns from the source tables to include in the virtual result table.

150 Part III: Storing and Retrieving Data

By including WHERE clauses in the SELECT statements, you can restrict the
rows that you place into the result table to those that satisfy specific condi-
tions. (I cover WHERE clauses extensively in Chapter 10.)

Suppose that you have two tables, PROSPECT and CUSTOMER, and you want
to list everyone living in the state of Maine who appears in either table. You
can create a virtual result table that contains the desired information; just
use the following command:

SELECT FirstName, LastName
 FROM PROSPECT
 WHERE State = ‘ME’
UNION
SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE State = ‘ME’ ;

Here’s a closer look:

	 ✓	The SELECT statements specify that the columns included in the result
table are FirstName and LastName.

	 ✓	The WHERE clauses restrict the rows included to those with the value
‘ME’ in the State column.

	 ✓	The State column isn’t included in the results table but is present in
both the PROSPECT and CUSTOMER tables.

	 ✓	The UNION operator combines the results of the SELECT statement on
PROSPECT with the results of the SELECT on CUSTOMER, deletes any
duplicate rows, and then displays the result.

	 Another way to copy data from one table in a database to another is to nest
a SELECT statement within an INSERT statement. This method (known as a
subselect and detailed in Chapter 12) doesn’t create a virtual table; instead, it
duplicates the selected data. You can take all the rows from the CUSTOMER
table, for example, and insert those rows into the PROSPECT table. Of course,
this works only if the structures of the CUSTOMER and PROSPECT tables are
identical. If you want to place only those customers who live in Maine into the
PROSPECT table, a simple SELECT with one condition in the WHERE clause
does the trick, as shown in the following example:

INSERT INTO PROSPECT
 SELECT * FROM CUSTOMER
 WHERE State = ‘ME’ ;

	 Even though this operation creates redundant data (you’re now storing cus-
tomer data in both the PROSPECT table and the CUSTOMER table), you may
want to do it anyway to improve the performance of retrievals. Beware of
the redundancy, however! To maintain data consistency, make sure that you
don’t insert, update, or delete rows in one table without inserting, updating, or

151 Chapter 6: Manipulating Database Data

deleting the corresponding rows in the other table. Another potential problem
is the possibility that the INSERT statement might generate duplicate primary
keys. If even one pre-existing prospect has a primary key of ProspectID that
matches the corresponding primary key (CustomerID) of a customer you’re
trying to insert into the PROSPECT table, the insert operation will fail. If both
tables have autoincrementing primary keys, you don’t want them to start with
the same number. Make sure the two blocks of numbers are far apart from
each other.

Updating Existing Data
You can count on one thing in this world — change. If you don’t like the
current state of affairs, just wait a while. Before long, things will be differ-
ent. Because the world is constantly changing, the databases used to model
aspects of the world also need to change. A customer may change her
address. The quantity of a product in stock may change (because, you hope,
someone buys an item now and then). A basketball player’s season perfor-
mance statistics change each time he plays in another game. If your database
contains such items, you have to update it periodically.

SQL provides the UPDATE statement for changing data in a table. By using a
single UPDATE statement, you can change one, some, or all rows in a table.
The UPDATE statement uses the following syntax:

UPDATE table_name
 SET column_1 = expression_1, column_2 = expression_2,
 ..., column_n = expression_n
 [WHERE predicates] ;

	 The WHERE clause is optional. This clause specifies the rows that you’re updat-
ing. If you don’t use a WHERE clause, all the rows in the table are updated. The
SET clause specifies the new values for the columns that you’re changing.

Consider the CUSTOMER table shown as Table 6-1.

Table 6-1	 CUSTOMER Table
Name City Area Code Telephone
Abe Abelson Springfield (714) 555-1111
Bill Bailey Decatur (714) 555-2222
Chuck Wood Philo (714) 555-3333
Don Stetson Philo (714) 555-4444
Dolph Stetson Philo (714) 555-5555

152 Part III: Storing and Retrieving Data

Customer lists change occasionally — as people move, change their phone
numbers, and so on. Suppose that Abe Abelson moves from Springfield to
Kankakee. You can update his record in the table by using the following
UPDATE statement:

UPDATE CUSTOMER
 SET City = ‘Kankakee’, Telephone = ‘666-6666’
 WHERE Name = ‘Abe Abelson’ ;

This statement causes the changes shown in Table 6-2.

Table 6-2	 CUSTOMER Table after UPDATE to One Row
Name City Area Code Telephone
Abe Abelson Kankakee (714) 666-6666
Bill Bailey Decatur (714) 555-2222
Chuck Wood Philo (714) 555-3333
Don Stetson Philo (714) 555-4444
Dolph Stetson Philo (714) 555-5555

You can use a similar statement to update multiple rows. Assume that Philo
is experiencing explosive population growth and now requires its own area
code. You can change all rows for customers who live in Philo by using a
single UPDATE statement, as follows:

UPDATE CUSTOMER
 SET AreaCode = ‘(619)’
 WHERE City = ‘Philo’ ;

The table now looks like the one shown in Table 6-3.

Table 6-3	 CUSTOMER Table after UPDATE to Several Rows
Name City Area Code Telephone
Abe Abelson Kankakee (714) 666-6666
Bill Bailey Decatur (714) 555-2222
Chuck Wood Philo (619) 555-3333
Don Stetson Philo (619) 555-4444
Dolph Stetson Philo (619) 555-5555

153 Chapter 6: Manipulating Database Data

Updating all the rows of a table is even easier than updating only some of
the rows. You don’t need to use a WHERE clause to restrict the statement.
Imagine that the city of Rantoul has acquired major political clout and has
now annexed not only Kankakee, Decatur, and Philo, but also all the cities
and towns in the database. You can update all the rows by using a single
statement, as follows:

UPDATE CUSTOMER
 SET City = ‘Rantoul’ ;

Table 6-4 shows the result.

Table 6-4	 CUSTOMER Table after UPDATE to All Rows
Name City Area Code Telephone
Abe Abelson Rantoul (714) 666-6666
Bill Bailey Rantoul (714) 555-2222
Chuck Wood Rantoul (619) 555-3333
Don Stetson Rantoul (619) 555-4444
Dolph Stetson Rantoul (619) 555-5555

When you use the WHERE clause with the UPDATE statement to restrict which
rows are updated, the contents of the WHERE clause can be a subselect — a
SELECT statement, the result of which is used as input by another SELECT
statement.

For example, suppose that you’re a wholesaler and your database includes
a VENDOR table containing the names of all the manufacturers from whom
you buy products. You also have a PRODUCT table containing the names of
all the products that you sell and the prices that you charge for them. The
VENDOR table has columns VendorID, VendorName, Street, City, State,
and Zip. The PRODUCT table has ProductID, ProductName, VendorID,
and SalePrice.

Your vendor, Cumulonimbus Corporation, decides to raise the prices of all its
products by 10 percent. To maintain your profit margin, you must raise your
prices on the products that you obtain from Cumulonimbus by 10 percent.
You can do so by using the following UPDATE statement:

UPDATE PRODUCT
 SET SalePrice = (SalePrice * 1.1)
 WHERE VendorID IN
 (SELECT VendorID FROM VENDOR
 WHERE VendorName = ‘Cumulonimbus Corporation’) ;

154 Part III: Storing and Retrieving Data

The subselect finds the VendorID that corresponds to Cumulonimbus. You
can then use the VendorID field in the PRODUCT table to find the rows that
you want to update. The prices on all Cumulonimbus products increase by 10
percent; the prices on all other products stay the same. (I discuss subselects
more extensively in Chapter 12.)

Transferring Data
In addition to using the INSERT and UPDATE statements, you can add data
to a table or view by using the MERGE statement. You can MERGE data from a
source table or view into a destination table or view. The MERGE can either
insert new rows into the destination table or update existing rows. MERGE is a
convenient way to take data that already exists somewhere in a database and
copy it to a new location.

For example, consider the VetLab database that I describe in Chapter 5.
Suppose some people in the EMPLOYEE table are salespeople who have
taken orders, whereas others are non-sales employees or salespeople who
have not yet taken an order. The year just concluded has been profitable,
and you want to share some of that success with the employees. You decide
to give a bonus of $100 to everyone who has taken at least one order and a
bonus of $50 to everyone else. First, you create a BONUS table and insert into
it a record for each employee who appears at least once in the ORDERS table,
assigning each record a default bonus value of $100.

Next, you want to use the MERGE statement to insert new records for those
employees who have not taken orders, giving them $50 bonuses. Here’s some
code that builds and fills the BONUS table:

CREATE TABLE BONUS (
 EmployeeName CHARACTER (30) PRIMARY KEY,
 Bonus NUMERIC DEFAULT 100) ;

INSERT INTO BONUS (EmployeeName)
 (SELECT EmployeeName FROM EMPLOYEE, ORDERS
 WHERE EMPLOYEE.EmployeeName = ORDERS.Salesperson
 GROUP BY EMPLOYEE.EmployeeName) ;

You can now query the BONUS table to see what it holds:

SELECT * FROM BONUS ;

EmployeeName Bonus
------------ -------------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100

155 Chapter 6: Manipulating Database Data

Now, by executing a MERGE statement, you can give $50 bonuses to the rest
of the employees:

MERGE INTO BONUS
 USING EMPLOYEE
 ON (BONUS.EmployeeName = EMPLOYEE.EmployeeName)
 WHEN NOT MATCHED THEN INSERT
 (BONUS.EmployeeName, BONUS.bonus)
 VALUES (EMPLOYEE.EmployeeName, 50) ;

Records for people in the EMPLOYEE table that don’t match records for
people already in the BONUS table are now inserted into the BONUS table.
Now a query of the BONUS table gives the following result:

SELECT * FROM BONUS ;

EmployeeName Bonus
-------------- -----------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100
Neth Doze 50
Matt Bak 50
Sam Saylor 50
Nic Foster 50

The first four records, which were created with the INSERT statement, are
in alphabetical order by employee name. The rest of the records, added
by the MERGE statement, appear in whatever order they were listed in the
EMPLOYEE table.

The MERGE statement is a relatively new addition to SQL and may not yet be
supported by some DBMS products. Even newer is an additional capability of
MERGE added in SQL:2011, paradoxically enabling you to delete records with
a MERGE statement.

Suppose, after doing the INSERT, you decide that you do not want to give
bonuses to people who have taken at least one order after all, but you
do want to give a $50 bonus to everybody else. You can remove the sales
bonuses and add the non-sales bonuses with the following MERGE statement:

MERGE INTO BONUS
 USING EMPLOYEE
 ON (BONUS.EmployeeName = EMPLOYEE.EmployeeName)
 WHEN MATCHED THEN DELETE
 WHEN NOT MATCHED THEN INSERT
 (BONUS.EmployeeName, BONUS.bonus)
 VALUES (EMPLOYEE.EmployeeName, 50);

156 Part III: Storing and Retrieving Data

The result is

SELECT * FROM BONUS;

EmployeeName Bonus
-------------- -----------
Neth Doze 50
Matt Bak 50
Sam Saylor 50
Nic Foster 50

Deleting Obsolete Data
As time passes, data can get old and lose its usefulness. You may want to
remove this outdated data from its table. Unneeded data in a table slows per-
formance, consumes memory, and can confuse users. You may want to trans-
fer older data to an archive table and then take the archive offline. That way,
in the unlikely event that you ever need to look at that data again, you can
recover it. In the meantime, it doesn’t slow down your everyday processing.
Whether or not you decide that obsolete data is worth archiving, you eventu-
ally come to the point where you want to delete that data. SQL provides for
the removal of rows from database tables by use of the DELETE statement.

You can delete all the rows in a table by using an unqualified DELETE state-
ment, or you can restrict the deletion to only selected rows by adding a
WHERE clause. The syntax is similar to the syntax of a SELECT statement,
except that you don’t need to specify columns. After all, if you want to delete
a table row, you probably want to remove all the data in that row’s columns.

For example, suppose that your customer, David Taylor, just moved to
Switzerland and isn’t going to buy anything from you anymore. You can
remove him from your CUSTOMER table by using the following statement:

DELETE FROM CUSTOMER
 WHERE FirstName = ‘David’ AND LastName = ‘Taylor’;

Assuming that you have only one customer named David Taylor, this state-
ment makes the intended deletion. If you have two or more customers who
share the name David Taylor (which, after all, is a fairly common name in
English-speaking countries), you can add more conditions to the WHERE
clause (such as STREET or PHONE or CUSTOMER_ID) to make sure that you
delete only the customer you want to remove. If you don’t add a WHERE
clause, all customers named David Taylor will be deleted.

Chapter 7

Handling Temporal Data
In This Chapter
▶	Defining times and periods
▶	Tracking what happened at specific times
▶	Providing an audit trail of changes to the data
▶	Handling both what happened and when the event was recorded

B
efore SQL:2011, ISO/IEC standard SQL had no mechanism for dealing
with data that was valid at one point in time but not valid at another.

Any application that requires that an audit trail be kept needs that capability.
This means that the burden of keeping track of what was true at a given time
falls on the application programmer rather than the database. This sounds
like a recipe for complicated, over-budget, late, and bug-infested applications.

New syntax has been added to SQL:2011 that enables handling of temporal
data without messing up the way code for nontemporal data is handled. This
is a big advantage for anyone who wants to add temporal capability to an
existing SQL database.

What do I mean by the term temporal data? The ISO/IEC SQL:2011 standard
does not use that term at all, but it is commonly used in the database com-
munity. In SQL:2011, temporal data is any data with one or more associated
time periods during which that data is deemed to be effective or valid along
some time dimension. In plain English, that means that with temporal data
capability, you can determine when a particular data item is true.

In this chapter, I introduce the concept of a period of time, defining it in a
very specific way. You look at various kinds of time and the effect that tem-
poral data has on the definition of primary keys and referential integrity con-
straints. Finally, I discuss the way that very complex data can be stored and
operated on in bitemporal tables.

158 Part III: Storing and Retrieving Data

Understanding Times and
Periods in SQL:2011

Although versions of the SQL standard prior to SQL:2011 provided for DATE,
TIME, TIMESTAMP, and INTERVAL data types, they did not address the idea
of a period of time with a definite start time and a definite end time. One
way of addressing this need is to define a new PERIOD data type. SQL:2011
however, does not do this. To introduce a new data type into SQL at this late
stage in its development would wreak havoc with the ecosystem that has
built up around SQL. Major surgery to virtually all existing database products
would be required to add a new data type.

Instead of adding a PERIOD data type, SQL:2011 solves the problem by
adding period definitions as metadata to tables. A period definition is a named
table component, identifying a pair of columns that capture the period start
and the period end time. The CREATE TABLE and ALTER TABLE statements
used to create and modify tables have been updated with new syntax to
create or destroy the periods created by these new period definitions.

A PERIOD is determined by two columns: a start column and an end column.
These columns are conventional, just like the columns of the existing date
data types, each with its own unique name. As mentioned previously, a
period definition is a named table component. It occupies the same name
space as column names, so it must not duplicate any existing column name.

SQL follows a closed-open model for periods, meaning that a period includes
the start time but not the end time. For any table row, a period end time must
be greater than its start time. This is a constraint that is enforced by the DBMS.

	 There are two dimensions of time that are important when dealing with tem-
poral data:

	 ✓	Valid time is the time period during which a row in a table correctly
reflects reality.

	 ✓	Transaction time is the time period during which a row is committed to
or recorded in a database.

The valid time and the transaction time for a row in a table need not be the
same. For example, in a business database that records the period during
which a contract is in effect, the information about the contract may be (and
probably is) inserted before the contract start time.

159 Chapter 7: Handling Temporal Data

In SQL:2011, separate tables may be created and maintained to accommodate
the two different kinds of time, or a single, bitemporal table (discussed later
in this chapter) may serve the purpose. Transaction time information is kept
in system-versioned tables, which contain the system-time period, denoted
by the keyword SYSTEM_TIME. Valid time information, on the other hand, is
maintained in tables that contain an application-time period. You can give an
application-time period any name you want, provided the name is not already
used for something else. You’re allowed to define at most one system-time
period and one application-time period.

Although temporal data support in SQL is being introduced for the first time
in SQL:2011, people have had to deal with temporal data long before the tem-
poral constructs of SQL:2011 were included in any database products. This
was typically done by defining two table columns, one for the start datetime
and the other for the end datetime. The fact that SQL:2011 does not define a
new PERIOD data type, but rather uses period definitions as metadata, means
that existing tables with such start and end columns can easily be upgraded
to incorporate the new capability. The logic for providing period information
can be removed from existing application programs, simplifying them, speed-
ing them up, and making them more reliable.

Working with Application-Time
Period Tables

Consider an example using application-period time tables. Suppose a busi-
ness wants to keep track of what department its employees belong to at any
time throughout their period of employment. The business can do this by
creating application-time period tables for employees and departments,
like this:

CREATE TABLE employee_atpt(
 EmpID INTEGER,
 EmpStart DATE,
 EmpEnd DATE,
 EmpDept VARCHAR(30),
 PERIOD FOR EmpPeriod (EmpStart, EmpEnd)
);

The starting datetime (EmpStart in the example) is included in the period,
but the ending datetime (EmpEnd in the example) is not. This is known as
closed-open semantics.

160 Part III: Storing and Retrieving Data

	 I haven’t specified a primary key yet, because that is a little more involved
when you’re dealing with temporal data. I deal with that later in this chapter.

For now, put some data into this table and see what it looks like:

INSERT INTO employee_atpt
VALUES (12345, DATE ‘2011-01-01’, DATE ‘9999-12-31’,

‘Sales’);

The resulting table has one row, as shown in Table 7-1.

Table 7-1	 The Application-Period Time Table Contains One Row
EmpID EmpStart EmpEnd EmpDept
12345 2011-01-01 9999-12-31 Sales

The end date of 9999-12-31 indicates that this employee’s tenure with the
company has not ended yet. For simplicity, I have left off the hours, minutes,
seconds, and fractional seconds in this and subsequent examples.

Now suppose that on March 15, 2012, employee 12345 is temporarily
assigned to the Engineering department until July 15, 2012, returning to the
Sales department thereafter. You can accomplish this with the following
UPDATE statement:

UPDATE employee_atpt
 FOR PORTION OF EmpPeriod
 FROM DATE ‘2012-03-15’
 TO DATE ‘2012-07-15’
 SET EmpDept = ‘Engineering’
 WHERE EmpID = 12345;

After the update, the table now has three rows, as shown in Table 7-2.

Table 7-2	 Application-Time Period Table after an Update
EmpID EmpStart EmpEnd EmpDept
12345 2011-01-01 2012-03-15 Sales
12345 2012-03-15 2012-07-15 Engineering
12345 2012-07-15 9999-12-31 Sales

161 Chapter 7: Handling Temporal Data

Assuming employee 12345 is still employed in the Sales department, the table
accurately records her department membership from New Year’s Day of 2011
up to the present time.

If you can insert new data into a table and update existing data in the table,
you’d better be able to delete data from the table, too. However, deleting
data from an application-time period table can be a little more complicated
than merely deleting rows from an ordinary, nontemporal table. As an
example, suppose that employee 12345, instead of being transferred to the
Engineering department on March 15 of 2012, leaves the company on that
date and is rehired on July 15 of the same year. Initially, the application-time
period table will have one row, as shown in Table 7-3.

Table 7-3	 Application-Time Period Table before Update or Deletion
EmpID EmpStart EmpEnd EmpDept
12345 2011-01-01 9999-12-31 Sales

A DELETE statement will update the table to show the period during which
employee 12345 was gone:

DELETE employee_atpt
 FOR PORTION OF EmpPeriod
 FROM DATE ‘2012-03-15’
 TO DATE ‘2012-07-15’
 WHERE EmpID = 12345;

The resulting table will be like Table 7-4.

Table 7-4	 Application-Time Period Table after Deletion
EmpID EmpStart EmpEnd EmpDept
12345 2011-01-01 2012-03-15 Sales
12345 2012-07-15 9999-12-31 Sales

The table now reflects the time periods during which employee 12345 was
employed by the company and shows the gap during which she was not
employed by the company.

You may have noticed something puzzling about the tables shown in this sec-
tion. In an ordinary, nontemporal table listing an organization’s employees, the

162 Part III: Storing and Retrieving Data

employee ID number is sufficient to serve as the table’s primary key because it
uniquely identifies each employee. However, an application-time period table
of employees may contain multiple rows for a single employee. The employee
ID number, by itself, is no longer usable as the table’s primary key. The tempo-
ral data must be added to the mix.

Designating primary keys in
application-time period tables
In Tables 7-2 and 7-4, it is clear that the employee ID (EmpID) does not guar-
antee uniqueness. There are multiple rows with the same EmpID. To guaran-
tee that there is no duplication of rows, the start date (EmpStart) and end
date (EmpEnd) must be included in the primary key. However, just including
them is not sufficient. Consider Table 7-5, showing the case where employee
12345 was merely transferred to Engineering for a few months, and then
returned to her home department.

Table 7-5	 A Situation You May Not Want to Occur
EmpID EmpStart EmpEnd EmpDept
12345 2011-01-01 9999-12-31 Sales
12345 2012-03-15 2012-07-15 Engineering

The two rows of the table are guaranteed to be unique by inclusion of
EmpStart and EmpEnd in the primary key, but notice that the two time
periods overlap. It looks like employee 12345 is a member of both the Sales
department and the Engineering department from March 15, 2012 until July
15, 2012. In some organizations, this may be possible, but it adds complica-
tion and could lead to data corruption. Enforcing a constraint that says that
an employee can be a member of only one department at a time is perhaps
what most organizations would want to do. You can add such a constraint to
a table with an ALTER TABLE statement such as the following:

ALTER TABLE employee_atpt
ADD PRIMARY KEY (EmpID, EmpPeriod WITHOUT OVERLAPS);

There’s a better way to do things than creating a table first and adding its
primary key constraint later — instead, you can include the primary key con-
straint in the original CREATE statement. It might look like the following:

163 Chapter 7: Handling Temporal Data

CREATE TABLE employee_atpt
 EmpID INTEGER NOT NULL,
 EmpStart DATE NOT NULL,
 EmpEnd DATE NOT NULL,
 EmpDept VARCHAR(30),
 PERIOD FOR EmpPeriod (EmpStart, EmpEnd)
 PRIMARY KEY (EmpID, EmpPeriod WITHOUT OVERLAPS)
);

Now overlapping rows are prohibited. While I was at it, I added NOT NULL
constraints to all the elements of the primary key. A null value in any of those
fields would be a source of errors in the future. Normally, the DBMS will take
care of this, but why take chances?

Applying referential constraints to
application-time period tables
Any database that is meant to maintain more than a simple list of items will
probably require multiple tables. If a database has multiple tables, the rela-
tionships between the tables must be defined, and referential integrity con-
straints must be put into place.

In the example in this chapter, you have an employee application-time period
table and a department application-time period table. There is a one-to-many
relationship between the department table and the employee table, because
a department may have multiple employees, but each employee belongs to
one and only one department. This means that you need to put a foreign key
into the employee table that references the primary key of the department
table. With this in mind, create the employee table again, this time using a
more complete CREATE statement, and create a department table in a similar
manner:

CREATE TABLE employee_atpt (
 EmpID INTEGER NOT NULL,
 EmpStart DATE NOT NULL,
 EmpEnd DATE NOT NULL,
 EmpName VARACHAR (30),
 EmpDept VARCHAR (30),
 PERIOD FOR EmpPeriod (EmpStart, EmpEnd)
 PRIMARY KEY (EmpID, EmpPeriod WITHOUT OVERLAPS)
 FOREIGN KEY (EmpDept, PERIOD EmpPeriod)
 REFERENCES dept_atpt (DeptID, PERIOD DeptPeriod)
);

164 Part III: Storing and Retrieving Data

CREATE TABLE dept_atpt (
 DeptID VARCHAR (30) NOT NULL,
 Manager VARCHAR (40) NOT NULL,
 DeptStart DATE NOT NULL,
 DeptEnd DATE NOT NULL,
 PERIOD FOR DeptTime (DeptStart, DeptEnd),
 PRIMARY KEY (DeptID, DeptTime WITHOUT OVERLAPS)
);

Querying application-time period tables
Now, detailed information can be retrieved from the database by using
SELECT statements that make use of the temporal data.

One thing you might want to do is to list all the people who are currently
employed by the organization. Even before SQL:2011, you could do it with a
statement similar to the following:

SELECT *
 FROM employee_atpt
 WHERE EmpStart <= CURRENT_DATE()
 AND EmpEnd > CURRENT_DATE();

With the new PERIOD syntax, you can get the same result a little more easily,
like this:

SELECT *
FROM employee_atpt
WHERE EmpPeriod CONTAINS CURRENT_DATE();

You can also retrieve employees who were employed during a specific period
of time, like so:

SELECT *
 FROM employee_atpt
 WHERE EmpPeriod OVERLAPS
 PERIOD (DATE (‘2012-01-01’), DATE (‘2012-09-16’));

Other predicates besides CONTAINS and OVERLAPS that you can use in this
context include EQUALS, PRECEDES, SUCCEEDS, IMMEDIATELY PRECEDES,
and IMMEDIATELY SUCCEEDS.

These predicates operate as follows:

	 ✓	If one period EQUALS another, they are exactly the same.

	 ✓	If one period PRECEDES another, it comes somewhere before it.

165 Chapter 7: Handling Temporal Data

	 ✓	If one period SUCCEEDS another, it comes somewhere after it.

	 ✓	If one period IMMEDIATELY PRECEDES another, it comes just before and
is contiguous with it.

	 ✓	If one period IMMEDIATELY SUCCEEDS another, it comes just after and
is contiguous with it.

Working with System-Versioned Tables
System-versioned tables have a different purpose than application-time
period tables, and consequently work differently. Application-time period
tables enable you to define periods of time and operate on the data that
falls within those periods. In contrast, system-versioned tables are designed
to create an auditable record of exactly when a data item was added to,
changed within, or deleted from a database. For example, it is important for
a bank to know exactly when a deposit or withdrawal was made, and this
information must be kept for a period of time designated by law. Similarly,
stock brokers need to track exactly when a purchase transaction was made.
There are a number of similar cases, where knowing when a particular event
occurred, down to a fraction of a second, is important.

Applications such as the bank application or the stock broker application
have strict requirements:

	 ✓	Any update or delete operation must preserve the original state of the
row before performing the update or delete operation.

	 ✓	The system, rather than the user, maintains the start and end times of
the periods of the rows.

		 Original rows that have been subjected to an update or delete operation
remain in the table and are henceforward referred to as historical rows.
Users are prevented from modifying the contents of historical rows or
the periods associated with any of the rows. Only the system, not the
user, may update the periods of rows in a system-versioned table. This
is done by updating the non-period columns of the table or as a result of
row deletions.

		 These constraints guarantee that the history of data changes is immune
to tampering, thus meeting audit standards and complying with govern-
ment regulations.

166 Part III: Storing and Retrieving Data

System-versioned tables are distinguished from application-time period
tables by a couple of differences in the CREATE statements that create them:

	 ✓	Whereas in an application-time period table the user can give any name
to the period, in a system-versioned table, the period name must be
SYSTEM_TIME.

	 ✓	The CREATE statement must include the keywords WITH SYSTEM
VERSIONING. Although SQL:2011 allows the data type for the period
start and period end to be either DATE type or one of the timestamp
types, you will almost always want to use one of the timestamp types,
which give you a level of precision much finer than a day. Of course,
whatever type you choose for the start column must also be used for the
end column.

To illustrate the use of system-versioned tables, I continue to use employee
and department examples. You can create a system-versioned table with the
following code:

CREATE TABLE employee_sys (
 EmpID INTEGER,
 Sys_Start TIMESTAMP(12) GENERATED ALWAYS AS ROW START,
 Sys_End TIMESTAMP(12) GENERATED ALWAYS AS ROW END,
 EmpName VARCHAR(30),
 PERIOD FOR SYSTEM_TIME (SysStart, SysEnd)
) WITH SYSTEM VERSIONING;

A row in a system-versioned table is considered to be a current system row if
the current time is contained in the system-time period. Otherwise it is con-
sidered to be a historical system row.

System-versioned tables are similar to application-time period tables in many
respects, but there are also differences. Here are a few:

	 ✓	Users may not assign or change the values in the Sys_Start and Sys_End
columns. These values are assigned and changed automatically by
the DBMS. This situation is mandated by the keywords GENERATED
ALWAYS.

	 ✓	When you use the INSERT operation to add something into a system-
versioned table, the value in the Sys_Start column is automatically set to
the transaction timestamp, which is associated with every transaction.
The value assigned to the Sys_End column is the highest value of that
column’s data type.

	 ✓	In system-versioned tables, the UPDATE and DELETE operations operate
only on current system rows. Users may not update or delete historical
system rows.

167 Chapter 7: Handling Temporal Data

	 ✓	Users may not modify the system-time period start or end time of either
current or historical system rows.

	 ✓	Whenever you either use the UPDATE or DELETE operation on a current-
system row, a historical system row is automatically inserted.

		 An update statement on a system-versioned table first inserts a copy of
the old row, with its system end time set to the transaction timestamp.
This indicates that the row ceased to be current at that timestamp. Next,
the DBMS performs the update, simultaneously changing the system-
period start time to the transaction timestamp. Now the updated row is
the current system row as of the transaction timestamp. UPDATE trig-
gers for the rows in question will fire, but INSERT triggers will not fire
even though historical rows are being inserted as a part of this opera-
tion. If you are wondering what triggers are, they are covered exten-
sively in Chapter 22.

A DELETE operation on a system-versioned table doesn’t actually delete the
specified rows. Instead it changes the system-time period end time of those
rows to the system timestamp. This indicates that those rows ceased to be
current as of the transaction timestamp. Now those rows are part of the his-
torical system rather than the current system. When you perform a DELETE
operation, any DELETE triggers for the affected rows will fire.

Designating primary keys in
system-versioned tables
Designating primary keys in system-versioned tables is a lot simpler than it is
in application-time period tables. This is because you don’t have to deal with
time period issues. In system-versioned tables, the historical rows cannot be
changed. Back when they were current rows, they were checked for unique-
ness. Because they cannot be changed now, they don’t need to be checked
for uniqueness now either.

If you add a primary key constraint to an existing system-versioned table
with an ALTER statement, because it applies only to the current rows, you
need not include period information in the statement. For example:

ALTER TABLE employee_sys
 ADD PRIMARY KEY (EmpID);

That does the trick. Short and sweet.

168 Part III: Storing and Retrieving Data

Applying referential constraints
to system-versioned tables
Applying referential constraints to system-versioned tables is also straight-
forward for the same reason. Here’s an example of that:

ALTER TABLE employee_sys
 ADD FOREIGN KEY (EmpDept)
 REFERENCES dept_sys (DeptID);

Because only current rows are affected, you don’t need to include the start
and end of the period columns.

Querying system-versioned tables
Most queries of system-versioned tables are concerned with what was true at
some point in time in the past or during some period of time in the past. To
deal with these situations, SQL:2011 adds some new syntax. To query a table
for information about what was true at a specific point in time, the SYSTEM_
TIME AS OF syntax is used. Suppose you want to know who was employed
by the organization on July 15, 2013. You could find out with the following
query:

SELECT EmpID, EmpName, Sys_Start, Sys_End
 FROM employee_sys FOR SYSTEM_TIME AS OF
 TIMESTAMP ‘2013-07-15 00:00:00’;

This statement returns all rows whose start time is equal to or before the
timestamp value and whose end time is later than the timestamp value.

To find what was true during a period of time, you can use a similar state-
ment, with appropriate new syntax. Here’s an example:

SELECT EmpID, EmpName, Sys_Start, Sys_End
 FROM employee_sys FOR SYSTEM_TIME FROM
 TIMESTAMP ‘2013-07-01 00:00:00’ TO
 TIMESTAMP ‘2013-08-01 00:00:00’;

This retrieval will include all the rows starting at the first timestamp, up to
but not including the second timestamp. Alternatively, you could use this:

SELECT EmpID, EmpName, Sys_Start, Sys_End
 FROM employee_sys FOR SYSTEM_TIME BETWEEN
 TIMESTAMP ‘2013-07-01 00:00:00’ AND
 TIMESTAMP ‘2013-07-31 24:59:59’;

169 Chapter 7: Handling Temporal Data

This retrieval will include all rows starting at the first timestamp, up to and
including the second timestamp.

If a query on a system-versioned table does not include a timestamp specifi-
cation, the default case is to return only the current system rows. This case
would be coded similar to the following:

SELECT EmpID, EmpName, Sys_Start, Sys_End
 FROM employee_sys;

If you want to retrieve all rows in a system-versioned table, both historical
and current, you can do it with the following syntax:

SELECT EmpID, EmpName, Sys_Start, Sys_End
 FROM employee_sys FOR SYSTEM_TIME FROM
 TIMESTAMP ‘2013-07-01 00:00:00’ TO
 TIMESTAMP ‘9999-12-31 24:59:59’;

Tracking Even More Time Data
with Bitemporal Tables

Sometimes you want to know both when an event occurred in the real world
and when that event was recorded in the database. For cases such as this,
you may use a table that is both a system-versioned table and an application-
time period table. Such tables are known as bitemporal tables.

There are a number of cases where a bitemporal table might be called for.
Suppose, for example, that one of your employees moves her residence
across the state line from Oregon to Washington. You must take account of
the fact that her state income tax withholding must change as of the official
date of the move. However, it is unlikely that the change to the database
will be made on exactly that same day. Both times need to be recorded, and
a bitemporal table can do that recording very well. The system-versioned
time period records when the change became known to the database, and
the application-time period records when the move legally went into effect.
Here’s some example code to create such a table:

CREATE TABLE employee_bt (
 EmpID INTEGER,
 EmpStart DATE,
 EmpEnd DATE,
 EmpDept Integer
 PERIOD FOR EmpPeriod (EmpStart, EmpEnd),
 Sys_Start TIMESTAMP (12) GENERATED ALWAYS
 AS ROW START,

170 Part III: Storing and Retrieving Data

 Sys_End TIMESTAMP (12) GENERATED ALWAYS
 AS ROW END,
 EmpName VARCHAR (30),
 EmpStreet VARCHAR (40),
 EmpCity VARCHAR (30),
 EmpStateProv VARCHAR (2),
 EmpPostalCode VARCHAR (10),
 PERIOD FOR SYSTEM_TIME (Sys_Start, Sys_End),
 PRIMARY KEY (EmpID, EPeriod WITHOUT OVERLAPS),
 FOREIGN KEY (EDept, PERIOD EPeriod)
 REFERENCES Dept (DeptID, PERIOD DPeriod)
) WITH SYSTEM VERSIONING;

Bitemporal tables serve the purposes of both system-versioned tables and
application-time tables. The user supplies values for the application-time
period start and end columns. An INSERT operation in such a table automati-
cally sets the value of the system-time period to the transaction timestamp.
The value of the system-time period end column is automatically set to the
highest value permitted for that column’s data type.

UPDATE and DELETE operations work as they do for standard application-
time period tables. As is true with system-versioned tables, UPDATE and
DELETE operations affect only current rows, and with each such operation a
historical row is automatically inserted.

A query made upon a bitemporal table can specify an application-time
period, a system-versioned period, or both. Here’s an example of the
“both” case:

SELECT EmpID
 FROM employee_bt FOR SYSTEM TIME AS OF
 TIMESTAMP ‘2013-07-15 00:00:00’
 WHERE EmpID = 314159 AND
 EmpPeriod CONTAINS DATE ‘2013-06-20 00:00:00’;

Chapter 8

Specifying Values
In This Chapter
▶	Using variables to eliminate redundant coding
▶	Extracting frequently required information from a database table field
▶	Combining simple values to form complex expressions

T
his book emphasizes the importance of database structure for maintain-
ing database integrity. Although the significance of database structure is

often overlooked, you must never forget that the most important thing is the
data itself. After all, the values held in the cells that form the intersections of
the database table’s rows and columns are the raw materials from which you
can derive meaningful relationships and trends.

You can represent values in several ways. You can represent them directly,
or you can derive them with functions or expressions. This chapter describes
the various kinds of values, as well as functions and expressions.

	 Functions examine data and calculate a value based on the data. Expressions
are combinations of data items that SQL evaluates to produce a single value.

Values
SQL recognizes several kinds of values:

	 ✓	Row values

	 ✓	Literal values

	 ✓	Variables

	 ✓	Special variables

	 ✓	Column references

172 Part III: Storing and Retrieving Data

Row values
The most visible values in a database are table row values. These are the
values that each row of a database table contains. A row value is typically
made up of multiple components because each column in a row contains a
value. A field is the intersection of a single column with a single row. A field
contains a scalar, or atomic, value. A value that’s scalar or atomic has only a
single component.

Literal values
In SQL, either a variable or a constant may represent a value. Logically
enough, the value of a variable may change from time to time, but the value
of a constant never changes. An important kind of constant is the literal value.
The representation is itself the value.

Just as SQL has many data types, it also has many types of literals. Table 8-1
shows some examples of literals of the various data types.

Notice that single quotes enclose the literals of the non-numeric types. These
marks help to prevent confusion; they can, however, also cause problems, as
you can see in Table 8-1.

Atoms aren’t indivisible either
In the 19th century, scientists believed that
an atom was the irreducible smallest possible
piece of matter. That’s why they named it atom,
which comes from the Greek word atomos,
which means indivisible. Now scientists know
that atoms aren’t indivisible — they’re made
up of protons, neutrons, and electrons. Protons
and neutrons, in turn, are made up of quarks,
gluons, and virtual quarks. Even these things
may not be indivisible. Who knows?

The value of a field in a database table is
called atomic, even though many fields aren’t

indivisible. A DATE value has components of
year, month, and day. A TIMESTAMP value
adds components of hour, minute, second, and
so on. A REAL or FLOAT value has compo-
nents of exponent and mantissa. A CHAR value
has components that you can access by using
SUBSTRING. Therefore, calling database field
values atomic is true to the analogy of atoms of
matter. Neither modern application of the term
atomic, however, is true to the word’s original
meaning.

173 Chapter 8: Specifying Values

Table 8-1	 Example Literals of Various Data Types
Data Type Example Literal
BIGINT 8589934592

INTEGER 186282

SMALLINT 186

NUMERIC 186282.42

DECIMAL 186282.42

REAL 6.02257E23

DOUBLE PRECISION 3.1415926535897E00

FLOAT 6.02257E23

CHARACTER(15) ‘GREECE ’

Note: Fifteen total characters and spaces are between the quote marks above.
VARCHAR (CHARACTER VARYING) ‘lepton’

NATIONAL CHARACTER(15) ‘ΕΛΛΑΣ ’1

Note: Fifteen total characters and spaces are between the quote marks above.
NATIONAL CHARACTER VARYING(15) ‘λεπτον’2

CHARACTER LARGE OBJECT(512) (CLOB(512)) (A really long character
string)

BINARY(4) ‘0100110001110000
1111000111001010’

VARBINARY(4) (BINARY VARYING(4)) ‘0100110001110000’

BINARY LARGE OBJECT(512) (BLOB(512)) (A really long string of
ones and zeros)

DATE DATE ‘1969-07-20’

TIME(2) TIME
‘13.41.32.50’

TIMESTAMP(0) TIMESTAMP
‘2013-02-25-
13.03.16.000000’

TIME WITH TIMEZONE(4) TIME ‘13.41.32.
5000-08.00’

TIMESTAMP WITH TIMEZONE(0) TIMESTAMP ‘2013-02-
2513.03.16.0000+
02.00’

INTERVAL DAY INTERVAL ‘7’ DAY

1 This term is the word that Greeks use to name their own country in their own language. (The English
equivalent is Hellas.)
2 This term is the word lepton in Greek national characters.

174 Part III: Storing and Retrieving Data

What if a literal is a character string that itself contains a phrase in single
quotes? In that case, you must type two single quotes to show that one of the
quote marks that you’re typing is a part of the character string and not an
indicator of the end of the string. You’d type ‘Earth’’s atmosphere’, for
example, to represent the character literal ‘Earth’s atmosphere’.

Variables
Although being able to manipulate literals and other kinds of constants while
dealing with a database gives you great power, having variables is helpful,
too. In many cases, you’d need to do much more work if you didn’t have vari-
ables. A variable, by the way, is a quantity that has a value that can change.
Look at the following example to see why variables are valuable.

Suppose that you’re a retailer who has several classes of customers. You give
your high-volume customers the best price, your medium-volume customers
the next best price, and your low-volume customers the highest price. You
want to index all prices to your cost of goods. For your F-35 product, you
decide to charge your high-volume customers (Class C) 1.4 times your cost of
goods. You charge your medium-volume customers (Class B) 1.5 times your
cost of goods, and you charge your low-volume customers (Class A) 1.6 times
your cost of goods.

You store the cost of goods and the prices that you charge in a table named
PRICING. To implement your new pricing structure, you issue the following
SQL commands:

UPDATE PRICING
 SET Price = Cost * 1.4
 WHERE Product = ‘F-35’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * 1.5
 WHERE Product = ‘F-35’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * 1.6
 WHERE Product = ‘F-35’
 AND Class = ‘A’ ;

This code is fine and meets your needs — for now. But if aggressive competi-
tion begins to eat into your market share, you may need to reduce your mar-
gins to remain competitive. To change your margins, you need to enter code
something like this:

175 Chapter 8: Specifying Values

UPDATE PRICING
 SET Price = Cost * 1.25
 WHERE Product = ‘F-35’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * 1.35
 WHERE Product = ‘F-35’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * 1.45
 WHERE Product = ‘F-35’
 AND Class = ‘A’ ;

If you’re in a volatile market, you may need to rewrite your SQL code repeat-
edly. This task can become tedious, particularly if prices appear in multiple
places in your code. You can minimize your work by replacing literals (such
as 1.45) with variables (such as :multiplierA). Then you can perform
your updates as follows:

UPDATE PRICING
 SET Price = Cost * :multiplierC
 WHERE Product = ‘F-35’
 AND Class = ‘C’ ;
UPDATE PRICING
 SET Price = Cost * :multiplierB
 WHERE Product = ‘F-35’
 AND Class = ‘B’ ;
UPDATE PRICING
 SET Price = Cost * :multiplierA
 WHERE Product = ‘F-35’
 AND Class = ‘A’ ;

Now whenever market conditions force you to change your pricing, you need
to change only the values of the variables :multiplierC, :multiplierB,
and :multiplierA. These variables are parameters that pass to the SQL
code, which then uses the variables to compute new prices.

	 Sometimes variables used in this way are called parameters or host variables.
Variables are called parameters if they appear in applications written in SQL
module language. They’re called host variables when they’re used in embed-
ded SQL.

	 Embedded SQL means that SQL statements are embedded into the code of an
application written in a host language. Alternatively, you can use SQL module
language to create an entire module of SQL code. The host language applica-
tion then calls the module. Either method can give you the capabilities that
you want. The approach that you use depends on your SQL implementation.

176 Part III: Storing and Retrieving Data

Special variables
If a user on a client machine connects to a database on a server, this con-
nection establishes a session. If the user connects to several databases, the
session associated with the most recent connection is considered the current
session; previous sessions are considered dormant. SQL defines several special
variables that are valuable on multiuser systems. These variables keep track
of the different users. Here’s a list of the special variables:

	 ✓	SESSION_USER: The special variable SESSION_USER holds a value
that’s equal to the user authorization identifier of the current SQL ses-
sion. If you write a program that performs a monitoring function, you
can interrogate SESSION_USER to find out who is executing SQL state-
ments.

	 ✓	CURRENT_USER: An SQL module may have a user-specified authorization
identifier associated with it. The CURRENT_USER variable stores this
value. If a module has no such identifier, CURRENT_USER has the same
value as SESSION_USER.

	 ✓	SYSTEM_USER: The SYSTEM_USER variable contains the operating sys-
tem’s user identifier. This identifier may differ from that same user’s
identifier in an SQL module. A user may log on to the system as LARRY,
for example, but identify himself to a module as PLANT_MGR. The value
in SESSION_USER is PLANT_MGR. If he makes no explicit specification
of the module identifier, and CURRENT_USER also contains PLANT_MGR,
SYSTEM_USER holds the value LARRY.

	 The SYSTEM_USER, SESSION_USER, and CURRENT_USER special variables
track who is using the system. You can maintain a log table and periodically
insert into that table the values that SYSTEM_USER, SESSION_USER, and
CURRENT_USER contain. The following example shows how:

INSERT INTO USAGELOG (SNAPSHOT)
 VALUES (‘User ‘ || SYSTEM_USER ||
 ‘ with ID ‘ || SESSION_USER ||
 ‘ active at ‘ || CURRENT_TIMESTAMP) ;

This statement produces log entries similar to the following example:

User LARRY with ID PLANT_MGR active at 2013-04-07-23.50.00

Column references
Every column contains one value for each row of a table. SQL statements
often refer to such values. A fully qualified column reference consists of the

177 Chapter 8: Specifying Values

table name, a period, and then the column name (for example, PRICING.
Product). Consider the following statement:

SELECT PRICING.Cost
 FROM PRICING
 WHERE PRICING.Product = ‘F-35’ ;

Here PRICING.Product is a column reference. This reference contains the
value ‘F-35’. PRICING.Cost is also a column reference, but you don’t
know its value until the preceding SELECT statement executes.

	 Because it only makes sense to reference columns in the current table, you
don’t generally need to use fully qualified column references. The following
statement, for example, is equivalent to the previous one:

SELECT Cost
 FROM PRICING
 WHERE Product = ‘F-35’ ;

Sometimes you may be dealing with more than one table — say, when two
tables in a database contain one or more columns with the same name. In
such a case, you must fully qualify column references for those columns to
guarantee that you get the column you want.

For example, suppose that your company maintains facilities in both
Kingston and Jefferson, and you maintain separate employee records for
each site. You name the Kingston employee table EMP_KINGSTON, and you
name the Jefferson employee table EMP_JEFFERSON. You want a list of
employees who work at both sites, so you need to find the employees whose
names appear in both tables. The following SELECT statement gives you what
you want:

SELECT EMP_KINGSTON.FirstName, EMP_KINGSTON.LastName
 FROM EMP_KINGSTON, EMP_JEFFERSON
 WHERE EMP_KINGSTON.EmpID = EMP_JEFFERSON.EmpID ;

Because each employee’s ID number is unique and remains the same regard-
less of the work site, you can use this ID as a link between the two tables. This
retrieval returns only the names of employees who appear in both tables.

Value Expressions
An expression may be simple or complex. The expression can contain literal
values, column names, parameters, host variables, subqueries, logical con-
nectives, and arithmetic operators. Regardless of its complexity, an expres-
sion must reduce to a single value.

178 Part III: Storing and Retrieving Data

For this reason, SQL expressions are commonly known as value expressions.
Combining multiple value expressions into a single expression is possible, as
long as the component value expressions reduce to values that have compat-
ible data types.

SQL has five kinds of value expressions:

	 ✓	String value expressions

	 ✓	Numeric value expressions

	 ✓	Datetime value expressions

	 ✓	Interval value expressions

	 ✓	Conditional value expressions

String value expressions
The simplest string value expression specifies a single string value. Other
possibilities include a column reference, a set function, a scalar subquery, a
CASE expression, a CAST expression, or a complex string value expression. (I
discuss CASE and CAST value expressions in Chapter 9; I get into subqueries
in Chapter 12.)

Only one operator is possible in a string value expression: the concatenation
operator. You may concatenate any of the value expressions I mention in the
bulleted list in the previous section with another expression to create a more
complex string value expression. A pair of vertical lines (||) represents the
concatenation operator. The following table shows some examples of string
value expressions.

Expression Produces
‘Peanut ‘ || ‘brittle’ ‘Peanut brittle’

‘Jelly’ || ‘ ‘ || ‘beans’ ‘Jelly beans’

FIRST_NAME || ‘ ‘ || LAST_NAME ‘Joe Smith’

B’1100111’ || B’01010011’ ’110011101010011’

‘’ || ‘Asparagus’ ‘Asparagus’

‘Asparagus’ || ‘’ ‘Asparagus’

‘As’ || ‘’ || ‘par’ || ‘’ || ‘agus’ ‘Asparagus’

As the table shows, if you concatenate a string to a zero-length string, the
result is the same as the original string.

179 Chapter 8: Specifying Values

Numeric value expressions
In numeric value expressions, you can apply the addition, subtraction, multi-
plication, and division operators to numeric-type data. The expression must
reduce to a numeric value. The components of a numeric value expression
may be of different data types as long as all the data types are numeric. The
data type of the result depends on the data types of the components from
which you derive the result. Even so, the SQL standard doesn’t rigidly specify
the type that results from any specific combination of source-expression
components. That’s because of the differences among hardware platforms.
Check the documentation for your specific platform when you’re mixing
numeric data types.

Here are some examples of numeric value expressions:

	 ✓	–27

	 ✓	49 + 83

	 ✓	5 * (12 – 3)

	 ✓	PROTEIN + FAT + CARBOHYDRATE

	 ✓	FEET/5280

	 ✓	COST * :multiplierA

Datetime value expressions
Datetime value expressions perform operations on data that deal with dates
and times. These value expressions can contain components that are of the
types DATE, TIME, TIMESTAMP, or INTERVAL. The result of a datetime value
expression is always a datetime type (DATE, TIME, or TIMESTAMP). The fol-
lowing expression, for example, gives the date one week from today:

CURRENT_DATE + INTERVAL ‘7’ DAY

Times are maintained in Universal Time Coordinated (UTC) — known in the
UK as Greenwich Mean Time — but you can specify an offset to make the
time correct for any particular time zone. For your system’s local time zone,
you can use the simple syntax given in the following example:

TIME ‘22:55:00’ AT LOCAL

180 Part III: Storing and Retrieving Data

Alternatively, you can specify this value the long way:

TIME ‘22:55:00’ AT TIME ZONE INTERVAL ‘-08.00’ HOUR TO
MINUTE

This expression defines the local time as the time zone for Portland, Oregon,
which is eight hours earlier than that of Greenwich, England.

Interval value expressions
If you subtract one datetime from another, you get an interval. Adding one
datetime to another makes no sense, so SQL doesn’t permit you to do so. If
you add two intervals together or subtract one interval from another interval,
the result is an interval. You can also either multiply or divide an interval by
a numeric constant.

SQL has two types of intervals: year-month and day-time. To avoid ambigui-
ties, you must specify which to use in an interval expression. The following
expression, for example, gives the interval in years and months until you
reach retirement age:

(BIRTHDAY_65 - CURRENT_DATE) YEAR TO MONTH

The following example gives an interval of 40 days:

INTERVAL ‘17’ DAY + INTERVAL ‘23’ DAY

The example that follows approximates the total number of months that a
mother of five has been pregnant (assuming that she’s not currently expect-
ing number six!):

INTERVAL ‘9’ MONTH * 5

Intervals can be negative as well as positive and may consist of any value
expression or combination of value expressions that evaluates to an interval.

Conditional value expressions
The value of a conditional value expression depends on a condition. The con-
ditional value expressions CASE, NULLIF, and COALESCE are significantly
more complex than the other kinds of value expressions. In fact, these three
conditional value expressions are so complex that I don’t have enough room
to talk about them here. (I give conditional value expressions extensive cov-
erage in Chapter 9.)

181 Chapter 8: Specifying Values

Functions
A function is a simple (okay, no more than moderately complex) operation
that the usual SQL commands don’t perform but that comes up often in prac-
tice. SQL provides functions that perform tasks that the application code
in the host language (within which you embed your SQL statements) would
otherwise need to perform. SQL has two main categories of functions: set (or
aggregate) functions and value functions.

Summarizing by using set functions
Set functions apply to sets of rows in a table rather than to a single row. These
functions summarize some characteristic of the current set of rows. The
set may include all the rows in the table or a subset of rows that are speci-
fied by a WHERE clause. (I discuss WHERE clauses extensively in Chapter 10.)
Programmers sometimes call set functions aggregate functions because these
functions take information from multiple rows, process that information in
some way, and deliver a single-row answer. That answer is an aggregation of
the information in the rows making up the set.

To illustrate the use of the set functions, consider Table 8-2, a list of nutrition
facts for 100 grams of selected foods.

Table 8-2	 Nutrition Facts for 100 Grams of Selected Foods
Food Calories Protein

(grams)
Fat
(grams)

Carbohydrate
(grams)

Almonds, roasted 627 18.6 57.7 19.6
Asparagus 20 2.2 0.2 3.6
Bananas, raw 85 1.1 0.2 22.2
Beef, lean hamburger 219 27.4 11.3
Chicken, light meat 166 31.6 3.4
Opossum, roasted 221 30.2 10.2
Pork, ham 394 21.9 33.3
Beans, lima 111 7.6 0.5 19.8
Cola 39 10.0
Bread, white 269 8.7 3.2 50.4
Bread, whole wheat 243 10.5 3.0 47.7

(continued)

182 Part III: Storing and Retrieving Data

Table 8‑2 (continued)
Food Calories Protein

(grams)
Fat
(grams)

Carbohydrate
(grams)

Broccoli 26 3.1 0.3 4.5
Butter 716 0.6 81.0 0.4
Jelly beans 367 0.5 93.1
Peanut brittle 421 5.7 10.4 81.0

A database table named FOODS stores the information in Table 8-2. Blank
fields contain the value NULL. The set functions COUNT, AVG, MAX, MIN, and
SUM can tell you important facts about the data in this table.

COUNT
The COUNT function tells you how many rows are in the table or how many
rows in the table meet certain conditions. The simplest usage of this function
is as follows:

SELECT COUNT (*)
 FROM FOODS ;

This function yields a result of 15, because it counts all rows in the FOODS
table. The following statement produces the same result:

SELECT COUNT (Calories)
 FROM FOODS ;

Because the Calories column in every row of the table has an entry, the
count is the same. If a column contains nulls, however, the function doesn’t
count the rows corresponding to those nulls.

The following statement returns a value of 11 because 4 of the 15 rows in the
table contain nulls in the Carbohydrate column.

SELECT COUNT (Carbohydrate)
 FROM FOODS ;

	 A field in a database table may contain a null value for a variety of reasons.
One common reason is that the actual value is not known (or not yet known).
Or the value may be known but not yet entered. Sometimes, if a value is
known to be zero, the data-entry operator doesn’t bother entering anything in
a field — leaving that field a null. This is not a good practice because zero is
a definite value, and you can include it in computations. Null is not a definite
value, and SQL doesn’t include null values in computations.

183 Chapter 8: Specifying Values

You can also use the COUNT function, in combination with DISTINCT, to
determine how many distinct values exist in a column. Consider the following
statement:

SELECT COUNT (DISTINCT Fat)
 FROM FOODS ;

The answer that this statement returns is 12. You can see that a 100-gram
serving of asparagus has the same fat content as 100 grams of bananas (0.2
grams) and that a 100-gram serving of lima beans has the same fat content
as 100 grams of jelly beans (0.5 grams). Thus the table has a total of only 12
distinct fat values.

AVG
The AVG function calculates and returns the average of the values in the
specified column. Of course, you can use the AVG function only on columns
that contain numeric data, as in the following example:

SELECT AVG (Fat)
 FROM FOODS ;

The result is 15.37. This number is so high primarily because of the presence
of butter in the database. You may wonder what the average fat content may
be if you didn’t include butter. To find out, you can add a WHERE clause to
your statement, as follows:

SELECT AVG (Fat)
 FROM FOODS
 WHERE Food <> ‘Butter’ ;

The average fat value drops down to 10.32 grams per 100 grams of food.

MAX
The MAX function returns the maximum value found in the specified column.
The following statement returns a value of 81 (the fat content in 100 grams of
butter):

SELECT MAX (Fat)
 FROM FOODS ;

MIN
The MIN function returns the minimum value found in the specified column.
The following statement returns a value of 0.4, because the function doesn’t
treat the nulls as zeros:

SELECT MIN (Carbohydrate)
 FROM FOODS ;

184 Part III: Storing and Retrieving Data

SUM
The SUM function returns the sum of all the values found in the specified
column. The following statement returns 3,924, which is the total caloric con-
tent of all 15 foods:

SELECT SUM (Calories)
 FROM FOODS ;

Value functions
A number of operations apply in a variety of contexts. Because you need to
use these operations so often, incorporating them into SQL as value functions
makes good sense. ISO/IEC standard SQL offers relatively few value functions
compared with specific database management system implementations such
as Access, Oracle, or SQL Server, but the few that standard SQL does have
are probably the ones that you’ll use most often. SQL uses the following four
types of value functions:

	 ✓	String value functions

	 ✓	Numeric value functions

	 ✓	Datetime value functions

	 ✓	Interval value functions

String value functions
String value functions take one character string as an input and produce
another character string as an output. SQL has ten such functions:

	 ✓	SUBSTRING

	 ✓	SUBSTRING SIMILAR

	 ✓	SUBSTRING_REGEX

	 ✓	TRANSLATE_REGEX

	 ✓	OVERLAY

	 ✓	UPPER

	 ✓	LOWER

	 ✓	TRIM

	 ✓	TRANSLATE

	 ✓	CONVERT

185 Chapter 8: Specifying Values

SUBSTRING
Use the SUBSTRING function to extract a substring from a source string. The
extracted substring is of the same type as the source string. If the source
string is a CHARACTER VARYING string, for example, the substring is also a
CHARACTER VARYING string. Following is the syntax of the SUBSTRING
function:

SUBSTRING (string_value FROM start [FOR length])

The clause in square brackets ([]) is optional. The substring extracted
from string_value begins with the character that start represents
and continues for length characters. If the FOR clause is absent, the sub-
string extracted extends from the start character to the end of the string.
Consider the following example:

SUBSTRING (‘Bread, whole wheat’ FROM 8 FOR 7)

The substring extracted is ‘whole w’. This substring starts with the eighth
character of the source string and has a length of seven characters. On the
surface, SUBSTRING doesn’t seem like a very valuable function; if you have a
literal like ‘Bread, whole wheat’, you don’t need a function to figure out
characters 8 through 14. SUBSTRING really is a valuable function, however,
because the string value doesn’t need to be a literal. The value can be any
expression that evaluates to a character string. Thus, you could have a vari-
able named fooditem that takes on different values at different times. The
following expression would extract the desired substring regardless of what
character string the fooditem variable currently represents:

SUBSTRING (:fooditem FROM 8 FOR 7)

All the value functions are similar in that these functions can operate
on expressions that evaluate to values as well as on the literal values
themselves.

	 You need to watch out for a couple of things if you use the SUBSTRING func-
tion. Make sure that the substring that you specify actually falls within the
source string. If you ask for a substring that starts at (say) character eight
but the source string is only four characters long, you get a null result. You
must therefore have some idea of the form of your data before you specify a
substring function. You also don’t want to specify a negative substring length,
because the end of a string can’t precede the beginning.

If a column is of the VARCHAR type, you may not know how far the field
extends for a particular row. This lack of knowledge doesn’t present a prob-
lem for the SUBSTRING function. If the length that you specify goes beyond
the right edge of the field, SUBSTRING returns whatever it finds. It doesn’t
return an error.

186 Part III: Storing and Retrieving Data

Say that you have the following statement:

SELECT * FROM FOODS
 WHERE SUBSTRING (Food FROM 8 FOR 7) = ‘white’ ;

This statement returns the row for white bread from the FOODS table, even
though the value in the Food column (‘Bread, white’) is less than 14
characters long.

	 If any operand (value from which an operator derives another value) in the
substring function has a null value, SUBSTRING returns a null result.

SUBSTRING SIMILAR
The regular expression substring function is a triadic function (meaning it
operates on three parameters). The three parameters are a source character
string, a pattern string, and an escape character. It then uses pattern match-
ing (based on POSIX-based regular expressions) to extract and return a result
string from the source character string.

Two instances of the escape character, each followed by the double-quote
character, are used to partition the pattern string into three parts. Here’s an
example:

Suppose the source character string S is ‘Four score and seven years
ago, our fathers brought forth upon this continent, a new
nation’. Suppose further that the pattern string R is ‘and ‘/”’seven’/”’
years’, where the forward slash is the escape character.

Then

SUBSTRING S SIMILAR TO R ;

returns a result that is the middle piece of the pattern string, ‘seven’ in this
case.

SUBSTRING_REGEX
SUBSTRING_REGEX searches a string for an XQuery regular expression pat-
tern and returns one occurrence of the matching substring.

According to the ISO/IEC international standard JTC 1/SC 32, the syntax of a
substring regular expression is as follows:

SUBSTRING_REGEX <left paren>
 <XQuery pattern> [FLAG <XQuery option flag>]
 IN <regex subject string>
 [FROM <start position>]
 [USING <char length units>]
 [OCCURRENCE <regex occurrence>]
 { GROUP <regex capture group>] <right paren>

187 Chapter 8: Specifying Values

<XQuery pattern> is a character string expression whose value is an
XQuery regular expression.

<XQuery option flag> is an optional character string, corresponding to
the $flags argument of the [XQuery F&O] function fn:match.

<regex subject string> is the character string to be searched for
matches to the <XQuery pattern>.

<start position> is an optional exact numeric value with scale 0, indicat-
ing the character position at which to start the search. (The default is 1.)

<char length units> is CHARACTERS or OCTETS, indicating the unit in
which <start position> is measured. (The default is CHARACTERS.)

<regex occurrence> is an optional exact numeric value with scale 0, indi-
cating which occurrence of a match is desired. (The default is 1.)

<regex capture group> is an optional exact numeric value with scale 0
indicating which capture group of a match is desired. (The default is 0, indi-
cating the entire occurrence.)

Here are some examples of the use of SUBSTRING_REGEX:

SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’)=’Just’
SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’ FROM 2)= ‘ust’
SUBSTRING_REGEX (‘\p{L}*’ IN ‘Just do it.’ OCCURRENCE 2) = ‘do’
SUBSTRING_REGEX (‘(do) (\p{L}*’ IN ‘Just do it.’ GROUP 2) = ‘it’

TRANSLATE_REGEX
TRANSLATE_REGEX searches a string for an XQuery regular expression pat-
tern and returns the string with either one or every occurrence of the XQuery
regular expression replaced by an XQuery replacement string.

According to the ISO/IEC international standard JTC 1/SC 32, the syntax of a
regex transliteration is as follows:

TRANSLATE_REGEX <left paren>
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>
[WITH <regex replacement string>]
[FROM <start position>]
[USING <char length units>]
[OCCURRENCE <regex transliteration occurrence>] <right paren>
<regex transliteration occurrence> ::=
<regex occurrence>
| ALL

188 Part III: Storing and Retrieving Data

where:

	 ✓	<regex replacement string> is a character string whose value is
suitable for use as the $replacement argument of the [XQuery F&O]
function fn:replace. Default is the zero-length string.

	 ✓	<regex transliteration occurrence> is either the keyword ALL,
or an exact numeric value with scale 0, indicating which occurrence of a
match is desired (default is ALL).

Here are some examples with no replacement string:

TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’) = ‘Bll dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ OCCURRENCE ALL) = ‘Bll dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = ‘Bill dd st.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ Occurrence 2) = ‘Bill dd sit.’

Here are a few examples with replacement strings:

TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’) = ‘Ball dad sat. ‘
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ OCCURRENCE ALL)= ‘Ball dad sat.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ OCCURRENCE 2) = ‘Bill dad sit.’
TRANSLATE_REGEX (‘i’ IN ‘Bill did sit.’ WITH ‘a’ FROM 5) = ‘Bill dad sat.’

OVERLAY
OVERLAY replaces a given substring of a string (specified by a given numeric
starting position and a given length) with a replacement string. When the
length specified for the substring is zero, nothing is removed from the origi-
nal string, but the replacement string is inserted into the original string, start-
ing at the specified starting position.

UPPER
The UPPER value function converts a character string to all-uppercase char-
acters, as in the examples shown in the following table.

This Statement Returns
UPPER (‘e. e. cummings’) ‘E. E. CUMMINGS’

UPPER (‘Isaac Newton, Ph.D.’) ‘ISAAC NEWTON, PH.D.’

The UPPER function doesn’t affect a string that’s already in all-uppercase
characters.

189 Chapter 8: Specifying Values

LOWER
The LOWER value function converts a character string to all-lowercase char-
acters, as in the examples in the following table.

This Statement Returns
LOWER (‘TAXES’) ‘taxes’

LOWER (‘E. E. Cummings’) ‘e. e. cummings’

The LOWER function doesn’t affect a string that’s already in all-lowercase
characters.

TRIM
Use the TRIM function to trim off leading or trailing blanks (or other charac-
ters) from a character string. The following examples show how to use TRIM.

This Statement Returns
TRIM (LEADING ‘ ‘ FROM ‘ treat ‘) ‘treat ‘

TRIM (TRAILING ‘ ‘ FROM ‘ treat ‘) ‘ treat’

TRIM (BOTH ‘ ‘ FROM ‘ treat ‘) ‘treat’

TRIM (BOTH ‘t’ from ‘treat’) ‘rea’

The default trim character is the blank, so the following syntax also is legal:

TRIM (BOTH FROM ‘ treat ‘)

This syntax gives you the same result as the third example in the table —
‘treat’.

TRANSLATE and CONVERT
The TRANSLATE and CONVERT functions take a source string in one character
set and transform the original string into a string in another character set.
Examples might be English to Kanji or Hebrew to French. The conversion
functions that specify these transformations are implementation-specific.
Consult the documentation of your implementation for details.

	 If translating from one language to another were as easy as invoking an SQL
TRANSLATE function, that would be great. Unfortunately, it’s not that easy.
All TRANSLATE does is translate a character in the first character set to the
corresponding character in the second character set. The function can, for
example, translate ‘Ελλασ’ to ‘Ellas’. But it can’t translate ‘Ελλασ’ to
‘Greece’.

190 Part III: Storing and Retrieving Data

Numeric value functions
Numeric value functions can take a variety of data types as input, but the
output is always a numeric value. SQL has 15 types of numeric value functions:

	 ✓	Position expression (POSITION)

	 ✓	Regex occurrences function (OCCURRENCES_REGEX)

	 ✓	Regex position expression (POSITION_REGEX)

	 ✓	Extract expression (EXTRACT)

	 ✓	Length expression (CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGTH)

	 ✓	Cardinality expression (CARDINALITY)

	 ✓	Absolute value expression (ABS)

	 ✓	Modulus expression (MOD)

	 ✓	Natural logarithm (LN)

	 ✓	Exponential function (EXP)

	 ✓	Power function (POWER)

	 ✓	Square root (SQRT)

	 ✓	Floor function (FLOOR)

	 ✓	Ceiling function (CEIL, CEILING)

	 ✓	Width bucket function (WIDTH_BUCKET)

POSITION
POSITION searches for a specified target string within a specified source
string and returns the character position where the target string begins. For a
character string, the syntax looks like this:

POSITION (target IN source [USING char length units])

You can optionally specify a character length unit other than CHARACTER,
but this is rare. If Unicode characters are in use, depending on the type, a
character could be 8, 16, or 32 bits long. In cases where a character is 16 or
32 bits long, you can explicitly specify 8 bits with USING OCTETS.

For a binary string, the syntax looks like this:

POSITION (target IN source)

191 Chapter 8: Specifying Values

If the value of the target is equal to an identical-length substring of con-
tiguous octets in the source string, then the result is one greater than the
number of octets preceding the start of the first such substring.

The following table shows a few examples.

This Statement Returns
POSITION (‘B’ IN ‘Bread, whole wheat’) 1

POSITION (‘Bre’ IN ‘Bread, whole wheat’) 1

POSITION (‘wh’ IN ‘Bread, whole wheat’) 8

POSITION (‘whi’ IN ‘Bread, whole wheat’) 0

POSITION (‘’ IN ‘Bread, whole wheat’) 1

POSITION (‘01001001’ IN ‘001100010100100100100110’ 2

For both character strings and binary strings, if the function doesn’t find
the target string, the POSITION function returns a zero value. Also for both
string types, if the target string has zero length (as in the last character exam-
ple), the POSITION function always returns a value of one. If any operand in
the function has a null value, the result is a null value.

OCCURRENCES_REGEX
OCCURRENCES_REGEX is a numeric function that returns the number of
matches for a regular expression in a string. The syntax is as follows:

OCCURRENCES_REGEX <left paren>
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>
[FROM <start position>]
[USING <char length units>] <right paren>

Here are some examples:

OCCURRENCES_REGEX (‘i’ IN ‘Bill did sit.’) = 3
OCCURRENCES_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = 2
OCCURRENCES_REGEX (‘I’ IN ‘Bill did sit.’) = 0

POSITION_REGEX
POSITION_REGEX is a numeric function that returns the position of the
start of a match, or one plus the end of a match, for a regular expression in a
string. Here’s the syntax:

POSITION_REGEX <left paren> [<regex position start or after>]
<XQuery pattern> [FLAG <XQuery option flag>]
IN <regex subject string>

192 Part III: Storing and Retrieving Data

[FROM <start position>]
[USING <char length units>]
[OCCURRENCE <regex occurrence>]
[GROUP <regex capture group>] <right paren>

<regex position start or after> ::= START | AFTER

Perhaps some examples would make this clearer:

POSITION_REGEX (‘i’ IN ‘Bill did sit.’) = 2
POSITION_REGEX (START ‘i’ IN ‘Bill did sit.’) = 2
POSITION_REGEX (AFTER ‘i’ IN ‘Bill did sit.’) = 3
POSITION_REGEX (‘i’ IN ‘Bill did sit.’ FROM 5) = 7
POSITION_REGEX (‘i’ IN ‘Bill did sit.’ OCCURRENCE 2) = 7
POSITION_REGEX (‘I’ IN ‘Bill did sit.’) = 0

EXTRACT
The EXTRACT function extracts a single field from a datetime or an interval.
The following statement, for example, returns 08:

EXTRACT (MONTH FROM DATE ‘2013-08-20’)

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in a
character string. The following statement, for example, returns 16:

CHARACTER_LENGTH (‘Opossum, roasted’)

	 As I note in regard to the SUBSTRING function (in the “SUBSTRING” section,
earlier in the chapter), this function is not particularly useful if its argument is
a literal such as ‘Opossum, roasted’. I can just as easily write 16 as I can
CHARACTER_LENGTH (‘Opossum, roasted’). In fact, writing 16 is easier.
This function is more useful if its argument is an expression rather than a lit-
eral value.

OCTET_LENGTH
In music, a vocal ensemble made up of eight singers is called an octet.
Typically, the parts that the ensemble represents are first and second
soprano, first and second alto, first and second tenor, and first and second
bass. In computer terminology, an ensemble of eight data bits is called a
byte. The word byte is clever in that the term clearly relates to bit but implies
something larger than a bit. A nice wordplay — but (unfortunately) nothing
in the word byte conveys the concept of “eightness.” By borrowing the
musical term, a more apt description of a collection of eight bits becomes
possible.

193 Chapter 8: Specifying Values

Practically all modern computers use eight bits to represent a single alphanu-
meric character. More complex character sets (such as Chinese) require 16
bits to represent a single character. The OCTET_LENGTH function counts and
returns the number of octets (bytes) in a string. If the string is a bit string,
OCTET_LENGTH returns the number of octets you need to hold that number
of bits. If the string is an English-language character string (with one octet
per character), the function returns the number of characters in the string. If
the string is a Chinese character string, the function returns a number that is
twice the number of Chinese characters. The following string is an example:

OCTET_LENGTH (‘Beans, lima’)

This function returns 11 because each character takes up one octet.

	 Some character sets use a variable number of octets for different characters.
In particular, some character sets that support mixtures of Kanji and Latin
characters use escape characters to switch between the two character sets.
A string that contains both Latin and Kanji (for example) may have 30 char-
acters and require 30 octets if all the characters are Latin; 62 characters if all
the characters are Kanji (60 characters plus a leading and trailing shift char-
acter); and 150 characters if the characters alternate between Latin and Kanji
(because each Kanji character needs two octets for the character and one
octet each for the leading and trailing shift characters). The OCTET_LENGTH
function returns the number of octets you need for the current value of the
string.

CARDINALITY
Cardinality deals with collections of elements such as arrays or multi-
sets, where each element is a value of some data type. The cardinality of
the collection is the number of elements that it contains. One use of the
CARDINALITY function might be this:

CARDINALITY (TeamRoster)

This function would return 12, for example, if there were 12 team members
on the roster. TeamRoster, a column in the TEAMS table, can be either an
array or a multiset. An array is an ordered collection of elements, and a multi-
set is an unordered collection of elements. For a team roster, which changes
frequently, multiset makes more sense.

ARRAY_MAX_CARDINALITY
The CARDINALITY function returns the number of elements in the array or
multiset that you specify. What it does not tell you is the maximum cardinal-
ity that was assigned to that array. There are occasions when you might want
to know that.

194 Part III: Storing and Retrieving Data

As a result, SQL:2011 has added a new function ARRAY_MAX_CARDINALITY.
As you might guess, it returns the maximum cardinality of the array that you
specify. There is no declared maximum cardinality for a multiset.

TRIM_ARRAY
Whereas the TRIM function trims off the first or last character in a string, the
TRIM_ARRAY function trims off the last elements of an array.

To trim off the last three elements of the TeamRoster array, use the follow-
ing syntax:

TRIM_ARRAY (TeamRoster, 3)

ABS
The ABS function returns the absolute value of a numeric value expression.

ABS (-273)

In this case, the function returns 273.

MOD
The MOD function returns the modulus of two numeric value expressions.

MOD (3,2)

In this case, the function returns 1, the modulus of three divided by two.

LN
The LN function returns the natural logarithm of a numeric value expression.

LN (9)

Here this function returns something like 2.197224577. The number of digits
beyond the decimal point depends on the SQL implementation.

EXP
The EXP function raises the base of the natural logarithms e to the power
specified by a numeric value expression.

EXP (2)

Here the function returns something like 7.389056. The number of digits
beyond the decimal point depends on the SQL implementation.

195 Chapter 8: Specifying Values

POWER
The POWER function raises the value of the first numeric value expression to
the power of the second numeric value expression.

POWER (2,8)

Here this function returns 256, which is 2 raised to the eighth power.

SQRT
The SQRT function returns the square root of the value of the numeric value
expression.

SQRT (4)

In this case, the function returns 2, the square root of 4.

FLOOR
The FLOOR function truncates the numeric value expression to the largest
integer not greater than the expression.

FLOOR (3.141592)

This function returns 3.

CEIL or CEILING
The CEIL or CEILING function augments the numeric value expression to
the smallest integer not less than the expression.

CEIL (3.141592)

This function returns 4.

WIDTH_BUCKET
The WIDTH_BUCKET function, used in online application processing (OLAP),
is a function of four arguments, returning an integer between 0 (zero) and the
value of the fourth argument plus 1 (one). It assigns the first argument to an
equiwidth partitioning of the range of numbers between the second and third
arguments. Values outside this range are assigned to either 0 (zero) or the
value of the fourth argument plus 1 (one).

For example:

WIDTH_BUCKET (PI, 0, 10, 5)

196 Part III: Storing and Retrieving Data

Suppose PI is a numeric value expression with a value of 3.141592. The exam-
ple partitions the interval from zero to 9.999999 . . . into five equal buckets,
each with a width of two. The function returns a value of 2, because 3.141592
falls into the second bucket, which covers the range from 2 to 3.999999.

Datetime value functions
SQL includes three functions that return information about the current date,
current time, or both. CURRENT_DATE returns the current date; CURRENT_
TIME returns the current time; and CURRENT_TIMESTAMP returns (surprise!)
both the current date and the current time. CURRENT_DATE doesn’t take an
argument, but CURRENT_TIME and CURRENT_TIMESTAMP both take a single
argument. The argument specifies the precision for the “seconds” part of the
time value that the function returns. (Datetime data types and the precision
concept are described in Chapter 2.)

The following table offers some examples of these datetime value functions.

This Statement Returns
CURRENT_DATE 2012-12-31

CURRENT_TIME (1) 08:36:57.3

CURRENT_TIMESTAMP (2) 2012-12-31 08:36:57.38

The date that CURRENT_DATE returns is DATE type data. The time that
CURRENT_TIME (p) returns is TIME type data, and the timestamp that
CURRENT_TIMESTAMP(p) returns is TIMESTAMP type data. Because SQL
retrieves date and time information from your computer’s system clock, the
information is correct for the time zone in which the computer resides.

In some applications, you may want to take advantage of functions that oper-
ate on character-type data; to do so, you convert dates, times, or timestamps
to character strings. You can perform such a type conversion by using the
CAST expression, which I describe in Chapter 9.

Interval value functions
An interval value function named ABS was introduced in SQL:1999. It’s similar
to the ABS numeric value function, but operates on interval-type data rather
than numeric-type data. ABS takes a single operand and returns an interval of
the identical precision that is guaranteed not to have a negative value. Here’s
an example:

ABS (TIME ‘11:31:00’ – TIME ‘12:31:00’)

The result is

INTERVAL +’1:00:00’ HOUR TO SECOND

Chapter 9

Using Advanced SQL
Value Expressions

In This Chapter
▶	Using the CASE conditional expressions
▶	Converting a data item from one data type to another
▶	Saving data-entry time by using row value expressions

S
QL is described in Chapter 2 as a data sublanguage. In fact, the sole func-
tion of SQL is to operate on data in a database. SQL lacks many of the

features of a conventional procedural language. As a result, developers who
use SQL must switch back and forth between SQL and its host language to
control the flow of execution. This repeated switching complicates matters at
development time and negatively affects performance at run time.

The performance penalty exacted by SQL’s limitations prompts the addi-
tion of new features to SQL every time a new version of the international
specification is released. One of those added features, the CASE expression,
provides a long-sought conditional structure. A second feature, the CAST
expression, facilitates data conversion in a table from one type of data to
another. A third feature, the row value expression, enables you to operate on
a list of values where previously you could operate only on a single value. For
example, if your list of values is a list of columns in a table, you can now per-
form an operation on all those columns by using a very simple syntax.

CASE Conditional Expressions
Every complete computer language has some kind of conditional statement
or command. In fact, most have several kinds. Probably the most common
conditional statement or command is the IF…THEN…ELSE…ENDIF structure.

198 Part III: Storing and Retrieving Data

If the condition following the IF keyword evaluates to True, the block of com-
mands following the THEN keyword executes. If the condition doesn’t evalu-
ate to True, the block of commands after the ELSE keyword executes. The
ENDIF keyword signals the end of the structure. This structure is great for
any decision that goes one of two ways. The structure doesn’t work as well
for decisions that can have more than two possible outcomes.

	 Most complete languages have a CASE statement that handles situations in
which you may want to perform more than two tasks based on more than two
possible values of a condition.

SQL has a CASE statement and a CASE expression. A CASE expression is only
part of a statement — not a statement in its own right. In SQL, you can place
a CASE expression almost anywhere a value is legal. At run time, a CASE
expression evaluates to a value. SQL’s CASE statement doesn’t evaluate to a
value; rather, it executes a block of statements.

The CASE expression searches a table, one row at a time, taking on the value
of a specified result whenever one of a list of conditions is True. If the first
condition is not satisfied for a row, the second condition is tested — and if it
is True, the result specified for it is given to the expression, and so on until
all conditions are processed. If no match is found, the expression takes on a
NULL value. Processing then moves to the next row.

You can use the CASE expression in the following two ways:

	 ✓	Use the expression with search conditions. CASE searches for rows
in a table where specified conditions are True. If CASE finds a search
condition to be True for a table row, the statement containing the CASE
expression makes a specified change to that row.

	 ✓	Use the expression to compare a table field to a specified value. The
outcome of the statement containing the CASE expression depends
on which of several specified values in the table field is equal to each
table row.

The next two sections, “Using CASE with search conditions” and “Using CASE
with values,” help clarify these concepts. In the first section, two examples
use CASE with search conditions. One example searches a table and makes
changes to table values, based on a condition. The second section explores
two examples of the value form of CASE.

Using CASE with search conditions
One powerful way to use the CASE expression is to search a table for rows
in which a specified search condition is True. If you use CASE this way, the
expression uses the following syntax:

199 Chapter 9: Using Advanced SQL Value Expressions

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 ...
 WHEN conditionn THEN resultn
 ELSE resultx
END

CASE examines the first qualifying row (the first row that meets the condi-
tions of the enclosing WHERE clause, if any) to see whether condition1 is
True. If it is, the CASE expression receives a value of result1. If condi-
tion1 is not True, CASE evaluates the row for condition2. If condition2
is True, the CASE expression receives the value of result2, and so on. If
none of the stated conditions are True, the CASE expression receives the
value of resultx. The ELSE clause is optional. If the expression has no ELSE
clause and none of the specified conditions are True, the expression receives
a null value. After the SQL statement containing the CASE expression applies
itself to the first qualifying row in a table and takes the appropriate action,
it processes the next row. This sequence continues until the SQL statement
finishes processing the entire table.

Updating values based on a condition
Because you can embed a CASE expression within an SQL statement almost
anywhere a value is possible, this expression gives you tremendous flex-
ibility. You can use CASE within an UPDATE statement, for example, to make
changes to table values — based on certain conditions. Consider the follow-
ing example:

UPDATE FOODS
 SET RATING = CASE
 WHEN FAT < 1
 THEN ‘very low fat’
 WHEN FAT < 5
 THEN ‘low fat’
 WHEN FAT < 20
 THEN ‘moderate fat’
 WHEN FAT < 50
 THEN ‘high fat’
 ELSE ‘heart attack city’
 END ;

This statement evaluates the WHEN conditions in order until the first
True value is returned, after which the statement ignores the rest of the
conditions.

Table 8-2 in Chapter 8 shows the fat content of 100 grams of certain foods.
A database table holding this information can contain a RATING column
that gives a quick assessment of the fat content’s meaning. If you run the

200 Part III: Storing and Retrieving Data

preceding UPDATE on the FOODS table in Chapter 8, the statement assigns
asparagus a value of very low fat, gives chicken a value of low fat, and
puts roasted almonds in the heart attack city category.

Avoiding conditions that cause errors
Another valuable use of CASE is exception avoidance — checking for condi-
tions that cause errors.

Consider a case that determines compensation for salespeople. Companies
that compensate their salespeople by straight commission often pay their
new employees by giving them a draw against the future commissions they’re
expected to earn. In the following example, new salespeople receive a draw
against commission; the draw is phased out gradually as their commissions rise:

UPDATE SALES_COMP
 SET COMP = COMMISSION + CASE
 WHEN COMMISSION > DRAW
 THEN 0
 WHEN COMMISSION < DRAW
 THEN DRAW
 END ;

If the salesperson’s commission is zero, the structure in this example avoids a
division-by-zero operation, which would cause an error if allowed to happen. If
the salesperson has a nonzero commission, the total compensation is the com-
mission plus a draw that’s reduced in proportion to the size of the commission.

All of the THEN expressions in a CASE expression must be of the same type —
all numeric, all character, or all date. The result of the CASE expression is also
of the same type.

Using CASE with values
You can use a more compact form of the CASE expression if you’re compar-
ing a test value for equality with a series of other values. This form is useful
within a SELECT or UPDATE statement if a table contains a limited number of
values in a column and you want to associate a corresponding result value to
each of those column values. If you use CASE in this way, the expression has
the following syntax:

CASE test_value
 WHEN value1 THEN result1
 WHEN value2 THEN result2
 ...

201 Chapter 9: Using Advanced SQL Value Expressions

 WHEN valuen THEN resultn
 ELSE resultx
END

If the test value (test_value) is equal to value1, then the expression takes
on the value result1. If tests_value is not equal to value1 but is equal
to value2, then the expression takes on the value result2. The expres-
sion tries each comparison value in turn, all the way down to valuen, until
it achieves a match. If none of the comparison values equal the test value,
then the expression takes on the value resultx. Again, if the optional ELSE
clause isn’t present and none of the comparison values match the test value,
the expression receives a null value.

To understand how the value form works, consider a case in which you have
a table containing the names and ranks of various military officers. You want
to list the names preceded by the correct abbreviation for each rank. The fol-
lowing statement does the job:

SELECT CASE RANK
 WHEN ‘general’ THEN ‘Gen.’
 WHEN ‘colonel’ THEN ‘Col.’
 WHEN ‘lieutenant colonel’ THEN ‘Lt. Col.’
 WHEN ‘major’ THEN ‘Maj.’
 WHEN ‘captain’ THEN ‘Capt.’
 WHEN ‘first lieutenant’ THEN ‘1st. Lt.’
 WHEN ‘second lieutenant’ THEN ‘2nd. Lt.’
 ELSE NULL
 END,
 LAST_NAME
 FROM OFFICERS ;

The result is a list similar to the following example:

Capt. Midnight
Col. Sanders
Gen. Washington
Maj. Disaster
 Nimitz

Chester Nimitz was an admiral in the United States Navy during World War II.
Because his rank isn’t listed in the CASE expression, the ELSE clause doesn’t
give him a title.

For another example, suppose Captain Midnight gets a promotion to major
and you want to update the OFFICERS database accordingly. Assume that the
variable officer_last_name contains the value ‘Midnight’ and that the
variable new_rank contains an integer (4) that corresponds to Midnight’s
new rank, according to the following table.

202 Part III: Storing and Retrieving Data

new_rank Rank
1 general

2 colonel

3 lieutenant colonel

4 major

5 captain

6 first lieutenant

7 second lieutenant

8 NULL

You can record the promotion by using the following SQL code:

UPDATE OFFICERS
 SET RANK = CASE :new_rank
 WHEN 1 THEN ‘general’
 WHEN 2 THEN ‘colonel’
 WHEN 3 THEN ‘lieutenant colonel’
 WHEN 4 THEN ‘major’
 WHEN 5 THEN ‘captain’
 WHEN 6 THEN ‘first lieutenant’
 WHEN 7 THEN ‘second lieutenant’
 WHEN 8 THEN NULL
 END
 WHERE LAST_NAME = :officer_last_name ;

An alternative syntax for the CASE expression with values is:

CASE
 WHEN test_value = value1 THEN result1
 WHEN test_value = value2 THEN result2
 ...
 WHEN test_value = valuen THEN resultn
 ELSE resultx
END

A special CASE — NULLIF
The one thing you can be sure of in this world is change. Sometimes things
change from one known state to another. Other times, you think you know
something but later you find out you didn’t know it after all. Classical ther-
modynamics and modern chaos theory both tell us that systems naturally
migrate from a well-known, ordered state into a disordered state that no one

203 Chapter 9: Using Advanced SQL Value Expressions

can predict. Anyone who has ever monitored the status of a teenager’s room
for a one-week period after the room is cleaned can vouch for the accuracy of
these theories.

Database tables have definite values in fields containing known contents.
Usually, if the value of a field is unknown, the field contains the null value. In
SQL, you can use a CASE expression to change the contents of a table field
from a definite value to a null value. The null value indicates that you no
longer know the field’s value. Consider the following example.

Imagine that you own a small airline that offers flights between Southern
California and Washington state. Until recently, some of your flights stopped
at San Jose International Airport to refuel before continuing. Unfortunately,
you just lost your right to fly into San Jose. From now on, you must make
your refueling stop at either San Francisco International Airport or Oakland
International Airport. At this point, you don’t know which flights stop at
which airport, but you do know that none of the flights are stopping at San
Jose. You have a FLIGHT database that contains important information about
your routes, and now you want to update the database to remove all refer-
ences to San Jose. The following example shows one way to do this:

UPDATE FLIGHT
 SET RefuelStop = CASE
 WHEN RefuelStop = ‘San Jose’
 THEN NULL
 ELSE RefuelStop
 END ;

	 Because occasions like this one — in which you want to replace a known
value with a null value — frequently arise, SQL offers a shorthand notation
to accomplish this task. The preceding example, expressed in this shorthand
form, looks like this:

UPDATE FLIGHT
 SET RefuelStop = NULLIF(RefuelStop, ‘San Jose’) ;

You can translate this expression to English as, “Update the FLIGHT table by
setting the RefuelStop column to null if the existing value of RefuelStop
is ‘San Jose’. Otherwise make no change.”

NULLIF is even handier if you’re converting data that you originally accu-
mulated for use with a program written in a standard programming language
such as C++ or Java. Standard programming languages don’t have nulls, so
a common practice is to use special values to represent the concept of “not
known” or “not applicable”. A numeric –1 may represent a not-known value
for SALARY, for example, and a character string “***” may represent a not-
known or not-applicable value for JOBCODE. If you want to represent these

204 Part III: Storing and Retrieving Data

not-known and not-applicable states in an SQL-compatible database by using
nulls, you have to convert the special values to nulls. The following example
makes this conversion for an employee table, in which some salary values are
unknown:

UPDATE EMP
 SET Salary = CASE Salary
 WHEN -1 THEN NULL
 ELSE Salary
 END ;

You can perform this conversion more conveniently by using NULLIF,
as follows:

UPDATE EMP
 SET Salary = NULLIF(Salary, -1) ;

Another special CASE — COALESCE
COALESCE, like NULLIF, is a shorthand form of a particular CASE expression.
COALESCE deals with a list of values that may or may not be null. Here’s how
it works:

	 ✓	If one of the values in the list is not null: The COALESCE expression
takes on that value.

	 ✓	If more than one value in the list is not null: The expression takes on
the value of the first non-null item in the list.

	 ✓	If all the values in the list are null: The expression takes on the null
value.

A CASE expression with this function has the following form:

CASE
 WHEN value1 IS NOT NULL
 THEN value1
 WHEN value2 IS NOT NULL
 THEN value2
 ...
 WHEN valuen IS NOT NULL
 THEN valuen
 ELSE NULL
END

The corresponding COALESCE shorthand looks like this:

COALESCE(value1, value2, ..., valuen)

205 Chapter 9: Using Advanced SQL Value Expressions

You may want to use a COALESCE expression after you perform an OUTER
JOIN operation (discussed in Chapter 11). In such cases, COALESCE can save
you a lot of typing.

CAST Data-Type Conversions
Chapter 2 covers the data types that SQL recognizes and supports. Ideally,
each column in a database table has a perfect choice of data type. In this
non-ideal world, however, exactly what that perfect choice may be isn’t
always clear. In defining a database table, suppose you assign a data type to a
column that works perfectly for your current application. Suppose that later
on you want to expand your application’s scope — or write an entirely new
application that uses the data differently. This new use could require a data
type different from the one you originally chose.

You may want to compare a column of one type in one table with a column of
a different type in a different table. For example, you could have dates stored
as character data in one table and as date data in another table. Even if both
columns contain the same sort of information (dates, for example), the fact
that the types are different may prevent you from making the comparison.
In the earliest SQL standards, SQL-86 and SQL-89, type incompatibility posed
a big problem. SQL-92, however, introduced an easy-to-use solution in the
CAST expression.

The CAST expression converts table data or host variables of one type to
another type. After you make the conversion, you can proceed with the oper-
ation or analysis that you originally envisioned.

	 Naturally, you face some restrictions when using the CAST expression. You
can’t just indiscriminately convert data of any type into any other type. The
data that you’re converting must be compatible with the new data type. You
can, for example, use CAST to convert the CHAR(10) character string ‘2007-
04-26’ to the DATE type. But you can’t use CAST to convert the CHAR(10)
character string ‘rhinoceros’ to the DATE type. You can’t convert an
INTEGER to the SMALLINT type if the former exceeds the maximum size of a
SMALLINT.

You can convert an item of any character type to any other type (such as
numeric or date) provided the item’s value has the form of a literal of the
new type. Conversely, you can convert an item of any type to any of the
character types, provided the value of the item has the form of a literal of the
original type.

206 Part III: Storing and Retrieving Data

The following list describes some additional conversions you can make:

	 ✓	Any numeric type to any other numeric type. If converting to a less frac-
tionally precise type, the system rounds or truncates the result.

	 ✓	Any exact numeric type to a single component interval, such as
INTERVAL DAY or INTERVAL SECOND.

	 ✓	Any DATE to a TIMESTAMP. The time part of the TIMESTAMP fills in with
zeros.

	 ✓	Any TIME to a TIME with a different fractional-seconds precision or a
TIMESTAMP. The date part of the TIMESTAMP fills in with the current
date.

	 ✓	Any TIMESTAMP to a DATE, a TIME, or a TIMESTAMP with a different
fractional-seconds precision.

	 ✓	Any year-month INTERVAL to an exact numeric type or another year-
month INTERVAL with different leading-field precision.

	 ✓	Any day-time INTERVAL to an exact numeric type or another day-time
INTERVAL with different leading-field precision.

Using CAST within SQL
Suppose you work for a company that keeps track of prospective employ-
ees as well as the employees you’ve actually hired. You list the prospective
employees in a table named PROSPECT, and you distinguish them by their
Social Security numbers, which you happen to store as a CHAR(9) type. You
list the employees in a table named EMPLOYEE, and you distinguish them by
their Social Security numbers, which are of the INTEGER type. You now want
to generate a list of all people who appear in both tables. You can use CAST
to perform the task:

SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE.SSN =
 CAST(PROSPECT.SSN AS INTEGER) ;

Using CAST between SQL
and the host language
The key use of CAST is to deal with data types that are available in SQL but
not in the host language that you use. The following list offers some examples
of these data types:

207 Chapter 9: Using Advanced SQL Value Expressions

	 ✓	SQL has DECIMAL and NUMERIC, but FORTRAN and Pascal don’t.

	 ✓	SQL has FLOAT and REAL, but standard COBOL doesn’t.

	 ✓	SQL has DATETIME, which no other language has.

Suppose you want to use FORTRAN or Pascal to access tables with
DECIMAL(5,3) columns, and you don’t want any inaccuracies to result from
converting those values to the REAL data type used by FORTRAN and Pascal.
You can perform this task by using CAST to move the data to and from
character-string host variables. You retrieve a numeric salary of 198.37 as a
CHAR(10) value of ‘0000198.37’. Then, if you want to update that salary
to 203.74, you can place that value in a CHAR(10) as ‘0000203.74’. First
you use CAST to change the SQL DECIMAL(5,3) data type to the CHAR(10)
type for the employee whose ID number you’re storing in the host variable
:emp_id_var, as follows:

SELECT CAST(Salary AS CHAR(10)) INTO :salary_var
 FROM EMP
 WHERE EmpID = :emp_id_var ;

The FORTRAN or Pascal application examines the resulting character-
string value in :salary_var, possibly sets the string to a new value of
‘000203.74’, and then updates the database by calling the following SQL
code:

UPDATE EMP
 SET Salary = CAST(:salary_var AS DECIMAL(5,3))
 WHERE EmpID = :emp_id_var ;

Dealing with character-string values such as ‘000198.37’ is awkward in
FORTRAN or Pascal, but you can write a set of subroutines to do the neces-
sary manipulations. You can then retrieve and update any SQL data from any
host language, and get — and set — exact values.

The general idea is that CAST is most valuable for converting between host
types and the database rather than for converting within the database.

Row Value Expressions
In the original SQL standards, SQL-86 and SQL-89, most operations dealt
with a single value or a single column in a table row. To operate on multiple
values, you had to build complex expressions by using logical connectives
(which I discuss in Chapter 10).

208 Part III: Storing and Retrieving Data

SQL-92 introduced row value expressions, which operate on a list of values or
columns rather than on a single value or column. A row value expression is
a list of value expressions that you enclose in parentheses and separate by
commas. You can code these expressions to operate on an entire row at once
or on a selected subset of the row.

Chapter 6 covers how to use the INSERT statement to add a new row to an
existing table. To do so, the statement uses a row value expression. Consider
the following example:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (‘Cheese, cheddar’, 398, 25, 32.2, 2.1) ;

In this example, (‘Cheese, cheddar’, 398, 25, 32.2, 2.1) is a row
value expression. If you use a row value expression in an INSERT statement
this way, it can contain null and default values. (A default value is the value
that a table column assumes if you specify no other value.) The following
line, for example, is a legal row value expression:

(‘Cheese, cheddar’, 398, NULL, 32.2, DEFAULT)

You can add multiple rows to a table by putting multiple row value expres-
sions in the VALUES clause, as follows:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (‘Lettuce’, 14, 1.2, 0.2, 2.5),
 (‘Butter’, 720, 0.6, 81.0, 0.4),
 (‘Mustard’, 75, 4.7, 4.4, 6.4),
 (‘Spaghetti’, 148, 5.0, 0.5, 30.1) ;

You can use row value expressions to save yourself from having to enter
comparisons manually. Suppose you have two tables of nutritional values,
one compiled in English and the other in Spanish. You want to find those
rows in the English language table that correspond exactly to the rows in the
Spanish language table. Without a row value expression, you may need to for-
mulate something like the following example:

SELECT * FROM FOODS
 WHERE FOODS.CALORIES = COMIDA.CALORIA
 AND FOODS.PROTEIN = COMIDA.PROTEINAS
 AND FOODS.FAT = COMIDA.GRASAS
 AND FOODS.CARBOHYDRATE = COMIDA.CARBOHIDRATO ;

209 Chapter 9: Using Advanced SQL Value Expressions

Row value expressions enable you to code the same logic, as follows:

SELECT * FROM FOODS
 WHERE (FOODS.CALORIES, FOODS.PROTEIN, FOODS.FAT,
 FOODS.CARBOHYDRATE)
 =
 (COMIDA.CALORIA, COMIDA.PROTEINAS, COMIDA.GRASAS,
 COMIDA.CARBOHIDRATO) ;

	 In this example, you don’t save much typing. You would benefit slightly more
if you were comparing more columns. In cases of marginal benefit like this
example, you may be better off sticking with the older syntax because its
meaning is clearer.

You gain one benefit by using a row value expression instead of its coded
equivalent — the row value expression is much faster. In principle, a clever
implementation can analyze the coded version and implement it as the row
value version. In practice, this operation is a difficult optimization that no
DBMS that I am aware of can perform.

210 Part III: Storing and Retrieving Data

Chapter 10

Zeroing In on the Data You Want
In This Chapter
▶	Specifying the tables you want to work with
▶	Separating rows of interest from the rest
▶	Building effective WHERE clauses
▶	Handling null values
▶	Building compound expressions with logical connectives
▶	Grouping query output by column
▶	Putting query output in order
▶	Operating on related rows

A
 database management system has two main functions: storing data
and providing easy access to that data. Storing data is nothing special;

a file cabinet can perform that chore. The hard part of data management is
providing easy access. For data to be useful, you must be able to separate the
(usually) small amount you want from the huge amount you don’t want.

SQL enables you to use some characteristics of the data to determine
whether a particular table row is of interest to you. The SELECT, DELETE,
and UPDATE statements convey to the database engine (the part of the DBMS
that interacts directly with the data), which rows to select, delete, or update.
You add modifying clauses to the SELECT, DELETE, and UPDATE statements
to refine the search to your specifications.

Modifying Clauses
The modifying clauses available in SQL are FROM, WHERE, HAVING, GROUP BY,
and ORDER BY. The FROM clause tells the database engine which table or
tables to operate on. The WHERE and HAVING clauses specify a data charac-
teristic that determines whether or not to include a particular row in the cur-
rent operation. The GROUP BY and ORDER BY clauses specify how to display
the retrieved rows. Table 10-1 provides a summary.

212 Part III: Storing and Retrieving Data

Table 10-1	 Modifying Clauses and Functions
Modifying Clause Function
FROM Specifies from which tables data should be taken
WHERE Filters out rows that don’t satisfy the search condition
GROUP BY Separates rows into groups based on the values in the

grouping columns
HAVING Filters out groups that don’t satisfy the search condition
ORDER BY Sorts the results of prior clauses to produce final output

	 If you use more than one of these clauses, they must appear in the following
order:

SELECT column_list
 FROM table_list
 [WHERE search_condition]
 [GROUP BY grouping_column]
 [HAVING search_condition]
 [ORDER BY ordering_condition] ;

Here’s the lowdown on the execution of these clauses:

	 ✓	The WHERE clause is a filter that passes the rows that meet the search
condition and rejects rows that don’t meet the condition.

	 ✓	The GROUP BY clause rearranges the rows that the WHERE clause passes
according to the value of the grouping column.

	 ✓	The HAVING clause is another filter that takes each group that the
GROUP BY clause forms and passes those groups that meet the search
condition, rejecting the rest.

	 ✓	The ORDER BY clause sorts whatever remains after all the preceding
clauses process the table.

	 As the square brackets ([]) indicate, the WHERE, GROUP BY, HAVING, and
ORDER BY clauses are optional.

SQL evaluates these clauses in the order FROM, WHERE, GROUP BY, HAVING,
and finally SELECT. The clauses operate like a pipeline — each clause
receives the result of the prior clause and produces an output for the next
clause. In functional notation, this order of evaluation appears as follows:

SELECT(HAVING(GROUP BY(WHERE(FROM...))))

213 Chapter 10: Zeroing In on the Data You Want

ORDER BY operates after SELECT, which explains why ORDER BY can only
reference columns in the SELECT list. ORDER BY can’t reference other col-
umns in the FROM table(s).

FROM Clauses
The FROM clause is easy to understand if you specify only one table, as in the
following example:

SELECT * FROM SALES ;

This statement returns all the data in all the rows of every column in the
SALES table. You can, however, specify more than one table in a FROM clause.
Consider the following example:

SELECT *
 FROM CUSTOMER, SALES ;

This statement forms a virtual table that combines the data from the
CUSTOMER table with the data from the SALES table. (For more about virtual
tables, see Chapter 6.) Each row in the CUSTOMER table combines with every
row in the SALES table to form the new table. The new virtual table that this
combination forms contains the number of rows in the CUSTOMER table
multiplied by the number of rows in the SALES table. If the CUSTOMER table
has 10 rows and the SALES table has 100, then the new virtual table has
1,000 rows.

	 This operation is called the Cartesian product of the two source tables. The
Cartesian product is a type of JOIN. (I cover JOIN operations in detail in
Chapter 11.)

In most applications, when you take the Cartesian product of two tables,
most of the rows that are formed in the new virtual table are meaningless.
That’s also true of the virtual table that forms from the CUSTOMER and
SALES tables; only the rows where the CustomerID from the CUSTOMER
table matches the CustomerID from the SALES table are of interest. You can
filter out the rest of the rows by using a WHERE clause.

WHERE Clauses
I use the WHERE clause many times throughout this book without really
explaining it because its meaning and use are obvious: A statement performs

214 Part III: Storing and Retrieving Data

an operation (such as SELECT, DELETE, or UPDATE) only on table rows
WHERE a stated condition is True. The syntax of the WHERE clause is as follows:

SELECT column_list
 FROM table_name
 WHERE condition ;

DELETE FROM table_name
 WHERE condition ;

UPDATE table_name
 SET column1=value1, column2=value2, ..., columnn=valuen
 WHERE condition ;

The condition in the WHERE clause may be simple or arbitrarily complex.
You may join multiple conditions together by using the logical connectives
AND, OR, and NOT (which I discuss later in this chapter) to create a single
condition.

The following are some typical examples of WHERE clauses:

WHERE CUSTOMER.CustomerID = SALES.CustomerID
WHERE FOODS.Calories = COMIDA.Caloria
WHERE FOODS.Calories < 219
WHERE FOODS.Calories > 3 * base_value
WHERE FOODS.Calories < 219 AND FOODS.Protein > 27.4

The conditions that these WHERE clauses express are known as predicates. A
predicate is an expression that asserts a fact about values.

The predicate FOODS.Calories < 219, for example, is True if the value
for the current row of the column FOODS.Calories is less than 219. If the
assertion is True, it satisfies the condition. An assertion may be True, False,
or unknown. The unknown case arises if one or more elements in the asser-
tion are null. The comparison predicates (=, <, >, <>, <=, and >=) are the most
common, but SQL offers several others that greatly increase your capability
to filter out a desired data item from others in the same column. These predi-
cates give you that filtering capability:

	 ✓	Comparison predicates

	 ✓	BETWEEN

	 ✓	IN [NOT IN]

	 ✓	LIKE [NOT LIKE]

	 ✓	NULL

	 ✓	ALL, SOME, ANY

	 ✓	EXISTS

215 Chapter 10: Zeroing In on the Data You Want

	 ✓	UNIQUE

	 ✓	OVERLAPS

	 ✓	MATCH

	 ✓	SIMILAR

	 ✓	DISTINCT

Comparison predicates
The examples in the preceding section show typical uses of comparison
predicates in which you compare one value withanother. For every row in
which the comparison evaluates to a True value, that value satisfies the
WHERE clause, and the operation (SELECT, UPDATE, DELETE, or whatever)
executes upon that row. Rows that the comparison evaluates to FALSE are
skipped. Consider the following SQL statement:

SELECT * FROM FOODS
 WHERE Calories <219 ;

This statement displays all rows from the FOODS table that have a value of
less than 219 in the Calories column.

Six comparison predicates are listed in Table 10-2.

Table 10-2	 SQL’s Comparison Predicates
Comparison Symbol
Equal =

Not equal <>

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

BETWEEN
Sometimes you want to select a row if the value in a column falls within a
specified range. One way to make this selection is by using comparison predi-
cates. For example, you can formulate a WHERE clause to select all the rows in

216 Part III: Storing and Retrieving Data

the FOODS table that have a value in the Calories column greater than 100
and less than 300, as follows:

WHERE FOODS.Calories > 100 AND FOODS.Calories < 300

This comparison doesn’t include foods with a calorie count of exactly 100 or
300 — only those values that fall between these two numbers. To include the
end points (in this case, 100 and 300), you can write the statement as follows:

WHERE FOODS.Calories >= 100 AND FOODS.Calories <= 300

Another way of specifying a range that includes the end points is to use a
BETWEEN predicate in the following manner:

WHERE FOODS.Calories BETWEEN 100 AND 300

	 This clause is functionally identical to the preceding example, which uses
comparison predicates. This formulation saves some typing — and it’s a little
more intuitive than the one that uses two comparison predicates joined by the
logical connective AND.

	 The BETWEEN keyword may be confusing because it doesn’t tell you explicitly
whether the clause includes the end points. In fact, the clause does include
these end points. When you use the BETWEEN keyword, a little birdy doesn’t
swoop down to remind you that the first term in the comparison must be
equal to or less than the second. If, for example, FOODS.Calories contains a
value of 200, the following clause returns a True value:

WHERE FOODS.Calories BETWEEN 100 AND 300

However, a clause that you may think is equivalent to the preceding example
returns the opposite result, False:

WHERE FOODS.Calories BETWEEN 300 AND 100

	 If you use BETWEEN, you must be able to guarantee that the first term in your
comparison is always equal to or less than the second term.

You can use the BETWEEN predicate with character, bit, and datetime data
types as well as with the numeric types. You may see something like the fol-
lowing example:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE CUSTOMER.LastName BETWEEN ‘A’ AND ‘Mzzz’ ;

217 Chapter 10: Zeroing In on the Data You Want

This example returns all customers whose last names are in the first half of
the alphabet.

IN and NOT IN
The IN and NOT IN predicates deal with whether specified values (such as
OR, WA, and ID) are contained within a particular set of values (such as the
states of the United States). You may, for example, have a table that lists
suppliers of a commodity that your company purchases on a regular basis.
You want to know the phone numbers of the suppliers located in the Pacific
Northwest. You can find these numbers by using comparison predicates,
such as those shown in the following example:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State = ‘OR’ OR State = ‘WA’ OR State = ‘ID’ ;

You can also use the IN predicate to perform the same task, as follows:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State IN (‘OR’, ‘WA’, ‘ID’) ;

This formulation is a bit more compact than the one using comparison predi-
cates and logical OR. It also eliminates any possible confusion between the
logical OR operator and the abbreviation for the state of Oregon.

The NOT IN version of this predicate works the same way. Say that you have
locations in California, Arizona, and New Mexico, and to avoid paying sales
tax, you want to consider using suppliers located anywhere except in those
states. Use the following construction:

SELECT Company, Phone
 FROM SUPPLIER
 WHERE State NOT IN (‘CA’, ‘AZ’, ‘NM’) ;

Using the IN keyword this way saves you a little typing — though (frankly)
that isn’t much of an advantage. You can do the same job by using compari-
son predicates as shown in this section’s first example.

	 You may have another good reason to use the IN predicate rather than com-
parison predicates, even if using IN doesn’t save much typing: Your DBMS
probably implements the two methods differently, and one of the methods
may be significantly faster than the other on your system. You may want to
run a performance comparison on the two ways of expressing inclusion in (or

218 Part III: Storing and Retrieving Data

exclusion from) a group and then use the technique that produces the quicker
result. A DBMS with a good optimizer will probably choose the more efficient
method, regardless of which predicate you use.

The IN keyword is valuable in another area, too. If IN is part of a subquery,
the keyword enables you to pull information from two tables to obtain
results that you can’t derive from a single table. I cover subqueries in detail
in Chapter 12, but here’s an example that shows how a subquery uses the IN
keyword.

Suppose you want to display the names of all customers who’ve bought the
F-35 product in the last 30 days. Customer names are in the CUSTOMER table,
and sales transaction data is in the TRANSACT table. You can use the follow-
ing query:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE CustomerID IN
 (SELECT CustomerID
 FROM TRANSACT
 WHERE ProductID = ‘F-35’
 AND TransDate >= (CurrentDate - 30)) ;

The inner SELECT of the TRANSACT table nests within the outer SELECT
of the CUSTOMER table. The inner SELECT finds the CustomerID num-
bers of all customers who bought the F-35 product in the last 30 days. The
outer SELECT displays the first and last names of all customers whose
CustomerID is retrieved by the inner SELECT.

LIKE and NOT LIKE
You can use the LIKE predicate to compare two character strings for a par-
tial match. Partial matches are valuable if you don’t know the exact form of
the string for which you’re searching. You can also use partial matches to
retrieve multiple rows that contain similar strings in one of the table’s
columns.

To identify partial matches, SQL uses two wildcard characters. The percent
sign (%) can stand for any string of characters that have zero or more charac-
ters. The underscore (_) stands for any single character. Table 10-3 provides
some examples that show how to use LIKE.

219 Chapter 10: Zeroing In on the Data You Want

Table 10-3	 SQL’s LIKE Predicate
Statement Values Returned
WHERE Word LIKE ‘intern%’ intern

internal
international
internet
interns

WHERE Word LIKE ‘%Peace%’ Justice of the Peace
Peaceful Warrior

WHERE Word LIKE ‘T_p_’ Tape
Taps
Tipi
Tips
Tops
Type

The NOT LIKE predicate retrieves all rows that don’t satisfy a partial match,
including one or more wildcard characters, as in the following example:

WHERE Phone NOT LIKE ‘503%’

This example returns all the rows in the table for which the phone number
starts with something other than 503.

	 You may want to search for a string that includes an actual percent sign or
underscore. In that case, you want SQL to interpret the percent sign as a per-
cent sign and not as a wildcard character. You can conduct such a search by
typing an escape character just prior to the character you want SQL to take
literally. You can choose any character as the escape character as long as that
character doesn’t appear in the string that you’re testing, as shown in the fol-
lowing example:

SELECT Quote
 FROM BARTLETTS
 WHERE Quote LIKE ‘20#%’
 ESCAPE ‘#’ ;

220 Part III: Storing and Retrieving Data

The % character is escaped by the preceding # sign, so the statement inter-
prets this symbol as a percent sign rather than as a wildcard. You can
“escape” an underscore — or the escape character itself — in the same way.
The preceding query, for example, would find the following quotation in
Bartlett’s Familiar Quotations:

20% of the salespeople produce 80% of the results.

The query would also find the following:

20%

SIMILAR
SQL:1999 added the SIMILAR predicate, which offers a more powerful way of
finding partial matches than the LIKE predicate provides. With the SIMILAR
predicate, you can compare a character string to a regular expression. For
example, say you’re searching the OperatingSystem column of a software
compatibility table to look for Microsoft Windows compatibility. You could
construct a WHERE clause such as the following:

WHERE OperatingSystem SIMILAR TO
‘(‘Windows ‘(3.1|95|98|ME|CE|NT|2000|XP|Vista|7|8))’

This predicate retrieves all rows that contain any of the specified Microsoft
operating systems.

NULL
The NULL predicate finds all rows where the value in the selected column
is null. In the FOODS table in Chapter 8, several rows have null values in the
Carbohydrate column. You can retrieve their names by using a statement
such as the following:

SELECT (Food)
 FROM FOODS
 WHERE Carbohydrate IS NULL ;

This query returns the following values:

Beef, lean hamburger
Chicken, light meat
Opossum, roasted
Pork, ham

221 Chapter 10: Zeroing In on the Data You Want

As you might expect, including the NOT keyword reverses the result, as in the
following example:

SELECT (Food)
 FROM FOODS
 WHERE Carbohydrate IS NOT NULL ;

This query returns all the rows in the table except the four that the preceding
query returns.

	 The statement Carbohydrate IS NULL is not the same as Carbohydrate
= NULL. To illustrate this point, assume that, in the current row of the FOODS
table, both Carbohydrate and Protein are null. From this fact, you can
draw the following conclusions:

	 ✓	Carbohydrate IS NULL is True.

	 ✓	Protein IS NULL is True.

	 ✓	Carbohydrate IS NULL AND Protein IS NULL is True.

	 ✓	Carbohydrate = Protein is unknown.

	 ✓	Carbohydrate = NULL is an illegal expression.

Using the keyword NULL in a comparison is meaningless because the answer
always returns as unknown.

Why is Carbohydrate = Protein defined as unknown even though
Carbohydrate and Protein have the same (null) value? Because NULL
simply means “I don’t know.” You don’t know what Carbohydrate is, and
you don’t know what Protein is; therefore you don’t know whether those
(unknown) values are the same. Maybe Carbohydrate is 37, and Protein
is 14, or maybe Carbohydrate is 93, and Protein is 93. If you don’t know
both the carbohydrate value and the protein value, you can’t say whether the
two are the same.

ALL, SOME, ANY
Thousands of years ago, the Greek philosopher Aristotle formulated a system
of logic that became the basis for much of Western thought. The essence of
this logic is to start with a set of premises that you know to be true, apply
valid operations to these premises, and, thereby, arrive at new truths. An
example of this procedure is as follows:

Premise 1: All Greeks are human.

Premise 2: All humans are mortal.

Conclusion: All Greeks are mortal.

222 Part III: Storing and Retrieving Data

Another example:

Premise 1: Some Greeks are women.

Premise 2: All women are human.

Conclusion: Some Greeks are human.

By way of presenting a third example, let me state the same logical idea of
the second example in a slightly different way:

If any Greeks are women and all women are human, then some Greeks are
human.

The first example uses the universal quantifier ALL in both premises,
enabling you to make a sound deduction about all Greeks in the conclusion.
The second example uses the existential quantifier SOME in one premise,
enabling you to make a deduction about some Greeks in the conclusion. The
third example uses the existential quantifier ANY, which is a synonym for
SOME, to reach the same conclusion you reach in the second example.

Look at how SOME, ANY, and ALL apply in SQL.

Consider an example in baseball statistics. Baseball is a physically demand-
ing sport, especially for pitchers. A pitcher must throw the baseball from the
pitcher’s mound to home plate between 90 and 150 times during a game. This
effort can be exhausting, and if (as is often the case) the pitcher becomes
ineffective before the game ends, a relief pitcher must replace him. Pitching
an entire game is an outstanding achievement, regardless of whether the
effort results in a victory.

ANY can be ambiguous
The original SQL used the word ANY for existen-
tial quantification. This usage turned out to be
confusing and error-prone because the English
language connotations of any are sometimes
universal and sometimes existential:

	✓	 “Do any of you know where Baker Street
is?”

	✓	 “I can eat more hot dogs than any of you.”

The first sentence is probably asking whether
at least one person knows where Baker Street

is; here any is used as an existential quanti-
fier. The second sentence, however, is a boast
that’s stating that I can eat more hot dogs than
the biggest eater among all of you people can
eat. In this case, any is used as a universal
quantifier.

Thus, for the SQL-92 standard, the developers
retained the word ANY for compatibility with
early products, but they also added the word
SOME as a less confusing synonym. SQL con-
tinues to support both existential quantifiers.

223 Chapter 10: Zeroing In on the Data You Want

Suppose you’re keeping track of the number of complete games that all
major-league pitchers pitch. In one table, you list all the American League
pitchers, and in another table, you list all the National League pitchers. Both
tables contain the players’ first names, last names, and number of complete
games pitched.

The American League permits a designated hitter (DH) (who isn’t required to
play a defensive position) to bat in place of any of the nine players who play
defense. The National League doesn’t allow designated hitters, but does allow
pinch-hitters. When the pinch-hitter comes into the game for the pitcher, the
pitcher can’t play for the remainder of the game. Usually the DH bats for the
pitcher, because pitchers are notoriously poor hitters. Pitchers must spend
so much time and effort on perfecting their pitching that they don’t have as
much time to practice batting as the other players do.

Suppose you have a theory that, on average, American League starting pitch-
ers throw more complete games than do National League starting pitchers.
This idea is based on your observation that designated hitters enable hard-
throwing, weak-hitting, American League pitchers to keep pitching as long
as they’re effective, even in a close game. Because a DH is already batting for
these pitchers, their poor hitting isn’t a liability. In the National League, how-
ever, under everyday circumstances the pitcher would go to bat. When trail-
ing in the late innings, most managers would call for a pinch hitter to bat for
the pitcher, judging that getting a base hit in this situation is more important
than keeping an effective pitcher in the game. To test your theory, you formu-
late the following query:

SELECT FirstName, LastName
 FROM AMERICAN_LEAGUER
 WHERE CompleteGames > ALL
 (SELECT CompleteGames
 FROM NATIONAL_LEAGUER) ;

The subquery (the inner SELECT) returns a list showing, for every National
League pitcher, the number of complete games he pitched. The outer query
returns the first and last names of all American Leaguers who pitched more
complete games than ALL of the National Leaguers. The entire query returns
the names of those American League pitchers who pitched more complete
games than the pitcher who has thrown the most complete games in the
National League.

Consider the following similar statement:

SELECT FirstName, LastName
 FROM AMERICAN_LEAGUER
 WHERE CompleteGames > ANY
 (SELECT CompleteGames
 FROM NATIONAL_LEAGUER) ;

224 Part III: Storing and Retrieving Data

In this case, you use the existential quantifier ANY instead of the universal
quantifier ALL. The subquery (the inner, nested query) is identical to the
subquery in the previous example. This subquery retrieves a complete list of
the complete game statistics for all the National League pitchers. The outer
query returns the first and last names of all American League pitchers who
pitched more complete games than ANY National League pitcher. Because
you can be virtually certain that at least one National League pitcher hasn’t
pitched a complete game, the result probably includes all American League
pitchers who’ve pitched at least one complete game.

If you replace the keyword ANY with the equivalent keyword SOME, the result
is the same. If the statement that at least one National League pitcher hasn’t
pitched a complete game is a true statement, you can then say that SOME
National League pitcher hasn’t pitched a complete game.

EXISTS
You can use the EXISTS predicate in conjunction with a subquery to deter-
mine whether the subquery returns any rows. If the subquery returns at
least one row, that result satisfies the EXISTS condition, and the outer query
executes. Consider the following example:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE EXISTS
 (SELECT DISTINCT CustomerID
 FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

Here the SALES table contains all of your company’s sales transactions.
The table includes the CustomerID of the customer who makes each pur-
chase, as well as other pertinent information. The CUSTOMER table contains
each customer’s first and last names, but no information about specific
transactions.

The subquery in the preceding example returns a row for every customer
who has made at least one purchase. The outer query returns the first and
last names of the customers who made the purchases that the SALES table
records.

EXISTS is equivalent to a comparison of COUNT with zero, as the following
query shows:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE 0 <>

225 Chapter 10: Zeroing In on the Data You Want

 (SELECT COUNT(*)
 FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

For every row in the SALES table that contains a CustomerID that’s equal
to a CustomerID in the CUSTOMER table, this statement displays the
FirstName and LastName columns in the CUSTOMER table. For every sale
in the SALES table, therefore, the statement displays the name of the cus-
tomer who made the purchase.

UNIQUE
As you do with the EXISTS predicate, you use the UNIQUE predicate with
a subquery. Although the EXISTS predicate evaluates to True only if the
subquery returns at least one row, the UNIQUE predicate evaluates to True
only if no two rows returned by the subquery are identical. In other words,
the UNIQUE predicate evaluates to True only if all the rows that its subquery
returns are unique. Consider the following example:

SELECT FirstName, LastName
 FROM CUSTOMER
 WHERE UNIQUE
 (SELECT CustomerID FROM SALES
 WHERE SALES.CustomerID = CUSTOMER.CustomerID);

This statement retrieves the names of all new customers for whom the SALES
table records only one sale. Because a null value is an unknown value, two
null values aren’t considered equal to each other; when the UNIQUE keyword
is applied to a result table that contains only two null rows, the UNIQUE pred-
icate evaluates to True.

DISTINCT
The DISTINCT predicate is similar to the UNIQUE predicate, except in the
way it treats nulls. If all the values in a result table are UNIQUE, then they’re
also DISTINCT from each other. However, unlike the result for the UNIQUE
predicate, if the DISTINCT keyword is applied to a result table that contains
only two null rows, the DISTINCT predicate evaluates to False. Two null
values are not considered distinct from each other, while at the same time
they are considered to be unique.

	 This strange situation seems contradictory, but there’s a reason for it. In
some situations, you may want to treat two null values as different from each
other — in which case, use the UNIQUE predicate. When you want to treat the
two nulls as if they’re the same, use the DISTINCT predicate.

226 Part III: Storing and Retrieving Data

OVERLAPS
You use the OVERLAPS predicate to determine whether two time intervals
overlap each other. This predicate is useful for avoiding scheduling conflicts.
If the two intervals overlap, the predicate returns a True value. If they don’t
overlap, the predicate returns a False value.

You can specify an interval in two ways: either as a start time and an end
time or as a start time and a duration. Here are some examples:

(TIME ‘2:55:00’, INTERVAL ‘1’ HOUR)
OVERLAPS
(TIME ‘3:30:00’, INTERVAL ‘2’ HOUR)

This first example returns a True because 3:30 is less than one hour after
2:55.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:29:00’, TIME ‘9:31:00’)

This example returns a True because you have a one-minute overlap between
the two intervals.

(TIME ‘9:00:00’, TIME ‘10:00:00’)
OVERLAPS
(TIME ‘10:15:00’, INTERVAL ‘3’ HOUR)

This example returns a False because the two intervals don’t overlap.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:30:00’, TIME ‘9:35:00’)

This example returns a False because even though the two intervals are con-
tiguous, they don’t overlap.

MATCH
In Chapter 5, I discuss referential integrity, which involves maintaining con-
sistency in a multitable database. You can lose integrity by adding a row to a
child table that doesn’t have a corresponding row in the child’s parent table.
You can cause similar problems by deleting a row from a parent table if rows
corresponding to that row exist in a child table.

Suppose your business has a CUSTOMER table that keeps track of all your
customers and a SALES table that records all sales transactions. You don’t
want to add a row to SALES until after you enter the customer making the

227 Chapter 10: Zeroing In on the Data You Want

purchase into the CUSTOMER table. You also don’t want to delete a customer
from the CUSTOMER table if that customer made purchases that exist in the
SALES table.

	 Before you perform an insertion or a deletion, you may want to check the
candidate row to make sure that inserting or deleting that row doesn’t cause
integrity problems. The MATCH predicate can perform such a check.

Say you have a CUSTOMER table and a SALES table. CustomerID is the pri-
mary key of the CUSTOMER table and acts as a foreign key in the SALES table.
Every row in the CUSTOMER table must have a unique CustomerID that isn’t
null. CustomerID isn’t unique in the SALES table, because repeat custom-
ers buy more than once. This situation is fine; it doesn’t threaten integrity
because CustomerID is a foreign key rather than a primary key in that table.

	 Seemingly, CustomerID can be null in the SALES table, because someone can
walk in off the street, buy something, and walk out before you get a chance to
enter his or her name and address into the CUSTOMER table. This situation
can create trouble — a row in the child table with no corresponding row in the
parent table. To overcome this problem, you can create a generic customer in
the CUSTOMER table and assign all such anonymous sales to that customer.

Say that a customer steps up to the cash register and claims that she bought
an F-35 Strike Fighter on December 18, 2012. Although she has lost her
receipt, she now wants to return the plane because it shows up like an air-
craft carrier on opponents’ radar screens. You can verify whether she bought
an F-35 by searching your SALES database for a match. First, you must
retrieve her CustomerID into the variable vcustid; then you can use the
following syntax:

... WHERE (:vcustid, ‘F-35’, ‘2012-12-18’)
 MATCH
 (SELECT CustomerID, ProductID, SaleDate
 FROM SALES)

If the MATCH predicate returns a True value, the database contains a sale of
the F-35 on December 18, 2012, to this client’s CustomerID. Take back the
defective product and refund the customer’s money. (Note: If any values
in the first argument of the MATCH predicate are null, a True value always
returns.)

SQL’s developers added the MATCH predicate and the UNIQUE predicate for
the same reason — they provide a way to explicitly perform the tests defined
for the implicit referential integrity (RI) and UNIQUE constraints.

The general form of the MATCH predicate is as follows:

Row_value MATCH [UNIQUE] [SIMPLE| PARTIAL | FULL]
Subquery

228 Part III: Storing and Retrieving Data

The UNIQUE, SIMPLE, PARTIAL, and FULL options relate to rules that come
into play if the row value expression R has one or more columns that are null.
(For more about using row value expressions, see Chapter 9.) The rules for
the MATCH predicate are a copy of corresponding referential integrity rules.

Referential integrity rules
and the MATCH predicate
Referential integrity rules require that the values of a column or columns in
one table match the values of a column or columns in another table. You
refer to the columns in the first table as the foreign key and the columns in
the second table as the primary key or unique key. For example, you may
declare the column EmpDeptNo in an EMPLOYEE table as a foreign key that
references the DeptNo column of a DEPT table. This matchup ensures that
if you record an employee in the EMPLOYEE table as working in department
123, a row appears in the DEPT table where DeptNo is 123.

If the members of the foreign key/primary key pair both consist of a single
column, the situation is pretty straightforward. However, the two keys can
consist of multiple columns. The DeptNo value, for example, may be unique
only within a Location; therefore, to uniquely identify a DEPT row, you
must specify both a Location and a DeptNo. If both the Boston and Tampa
offices have a department 123, you need to identify the departments as
(‘Boston’, ‘123’) and (‘Tampa’, ‘123’). In this case, the EMPLOYEE
table needs two columns to identify a DEPT. Call those columns EmpLoc and
EmpDeptNo. If an employee works in department 123 in Boston, the EmpLoc
and EmpDeptNo values are ‘Boston’ and ‘123’. And the foreign-key decla-
ration in the EMPLOYEE table looks like this:

FOREIGN KEY (EmpLoc, EmpDeptNo)
 REFERENCES DEPT (Location, DeptNo)

	 Drawing valid conclusions from your data becomes immensely complicated
if the data contains nulls. That’s because sometimes you want to treat such
data one way, and sometimes you want to treat it another way. The UNIQUE,
SIMPLE, PARTIAL, and FULL keywords specify different ways of treating data
that contains nulls. If your data does not contain any null values, you can save
yourself a lot of head-scratching by merely skipping from here to the next
section of this chapter, “Logical Connectives.” If your data does contain null
values, drop out of speed-reading mode now and read the following list slowly
and carefully. Each entry in the list given here presents a different situation
with respect to null values — and tells how the MATCH predicate handles it.

229 Chapter 10: Zeroing In on the Data You Want

Here are scenarios that illustrate the rules for dealing with null values and
the MATCH predicate:

	 ✓	The values are both one way or the other. If neither of the values of
EmpLoc and EmpDeptNo are null (or both are null), then the referential
integrity rules are the same as for single-column keys with values that
are null or not null.

	 ✓	One value is null and one isn’t. If, for example, EmpLoc is null and
EmpDeptNo is not null — or EmpLoc is not null and EmpDeptNo is null —
you need new rules. When implementing rules, if you insert or update the
EMPLOYEE table with EmpLoc and EmpDeptNo values of (NULL, ‘123’)
or (‘Boston’, NULL), you have six main alternatives: SIMPLE, PARTIAL,
and FULL, each either with or without the UNIQUE keyword.

	 ✓	The UNIQUE keyword is present. A matching row in the subquery result
table must be unique in order for the predicate to evaluate to a True value.

	 ✓	Both components of the row value expression R are null. The MATCH
predicate returns a True value regardless of the contents of the sub-
query result table being compared.

	 ✓	Neither component of the row value expression R is null, SIMPLE is
specified, UNIQUE is not specified, and at least one row in the sub-
query result table matches R. The MATCH predicate returns a True
value. Otherwise it returns a False value.

	 ✓	Neither component of the row value expression R is null, SIMPLE is
specified, UNIQUE is specified, and at least one row in the subquery
result table is both unique and matches R. The MATCH predicate
returns a True value. Otherwise it returns a False value.

Rule by committee
The SQL-89 version of the standard specified
the UNIQUE rule as the default, before anyone
proposed or debated the alternatives. During
development of the SQL-92 version of the stan-
dard, proposals appeared for the alternatives.
Some people strongly preferred the PARTIAL
rules and argued that those should be the only
rules. These people thought that the SQL-89
(UNIQUE) rules were so undesirable that they
wanted those rules considered a bug and the
PARTIAL rules specified as a correction.
Other people preferred the UNIQUE rules and

thought that the PARTIAL rules were obscure,
error-prone, and inefficient. Still other people
preferred the additional discipline of the FULL
rules. The issue was finally settled by provid-
ing all three keywords so users could choose
whichever approach they preferred. SQL:1999
added the SIMPLE rules. Of course, the pro-
liferation of rules makes dealing with nulls
anything but simple. If SIMPLE, PARTIAL,
or FULL isn’t specified, the SIMPLE rules are
followed.

230 Part III: Storing and Retrieving Data

	 ✓	Any component of the row value expression R is null and SIMPLE is
specified. The MATCH predicate returns a True value.

	 ✓	Any component of the row value expression R isn’t null, PARTIAL
is specified, UNIQUE isn’t specified, and the non-null part of at least
one row in the subquery result table matches R. The MATCH predicate
returns a True value. Otherwise it returns a False value.

	 ✓	Any component of the row value expression R is non-null, PARTIAL is
specified, UNIQUE is specified, and the non-null parts of R match the
non-null parts of at least one unique row in the subquery result table.
The MATCH predicate returns a True value. Otherwise it returns a False
value.

	 ✓	Neither component of the row value expression R is null, FULL is spec-
ified, UNIQUE is not specified, and at least one row in the subquery
result table matches R. The MATCH predicate returns a True value.
Otherwise it returns a False value.

	 ✓	Neither component of the row value expression R is null, FULL is spec-
ified, UNIQUE is specified, and at least one row in the subquery result
table is both unique and matches R. The MATCH predicate returns a
True value. Otherwise it returns a False value.

	 ✓	Any component of the row value expression R is null, and FULL is
specified. The MATCH predicate returns a False value.

Logical Connectives
Often (as a number of previous examples show) applying one condition in a
query isn’t enough to return the rows you want from a table. In some cases, the
rows must satisfy two or more conditions. In other cases, if a row satisfies any
of two or more conditions, it qualifies for retrieval. On still other occasions,
you want to retrieve only rows that don’t satisfy a specified condition. To meet
these needs, SQL offers the logical connectives AND, OR, and NOT.

AND
If multiple conditions must all be True before you can retrieve a row, use the
AND logical connective. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE SaleDate>= ‘2012-12-14’
 AND SaleDate<= ‘2012-12-20’ ;

231 Chapter 10: Zeroing In on the Data You Want

The WHERE clause must meet the following two conditions:

	 ✓	SaleDate must be greater than or equal to December 14, 2012.

	 ✓	SaleDate must be less than or equal to December 20, 2012.

Only rows that record sales occurring during the week of December 14 meet
both conditions. The query returns only these rows.

	 Notice that the AND connective is strictly logical. This restriction can some-
times be confusing because people commonly use the word and with a looser
meaning. Suppose, for example, that your boss says to you, “I’d like to retrieve
the sales data for Ferguson and Ford.” He said, “Ferguson and Ford,” so you
may write the following SQL query:

SELECT *
 FROM SALES
 WHERE Salesperson = ‘Ferguson’
 AND Salesperson = ‘Ford’;

Well, don’t take that answer back to your boss. The following query is more
like what the big kahuna had in mind:

SELECT *
 FROM SALES
 WHERE Salesperson IN (‘Ferguson’, ‘Ford’) ;

The first query won’t return anything, because none of the sales in the SALES
table were made by both Ferguson and Ford. The second query will return
the information on all sales made by either Ferguson or Ford, which is prob-
ably what the boss wanted.

OR
If any one of two or more conditions must be True to qualify a row for
retrieval, use the OR logical connective, as in the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE Salesperson = ‘Ford’
 OR TotalSale >200 ;

This query retrieves all of Ford’s sales, regardless of how large, as well as all
sales of more than $200, regardless of who made the sales.

232 Part III: Storing and Retrieving Data

NOT
The NOT connective negates a condition. If the condition normally returns a
True value, adding NOT causes the same condition to return a False value. If a
condition normally returns a False value, adding NOT causes the condition to
return a True value. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES
 WHERE NOT (Salesperson = ‘Ford’) ;

This query returns rows for all sales transactions completed by salespeople
other than Ford.

	 When you use AND, OR, or NOT, sometimes the scope of the connective isn’t
clear. To be safe, use parentheses to make sure that SQL applies the connec-
tive to the predicate you want. In the preceding example, the NOT connective
applies to the entire predicate (Salesperson = ‘Ford’).

GROUP BY Clauses
Sometimes, rather than retrieving individual records, you want to know some-
thing about a group of records. The GROUP BY clause is the tool you need.

Suppose you’re the sales manager of another location, and you want to look
at the performance of your sales force. If you do a simple SELECT, such as
the following query:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
 FROM SALES;

you receive a result similar to that shown in Figure 10-1.

This result gives you some idea of how well your salespeople are doing
because so few total sales are involved. However, in real life, a company
would have many more sales — and it wouldn’t be so easy to tell whether
sales objectives were being met. To do the real analysis, you can combine
the GROUP BY clause with one of the aggregate functions (also called set func-
tions) to get a quantitative picture of sales performance. For example, you
can see which salesperson is selling more of the profitable high-ticket items
by using the average (AVG) function as follows:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson;

233 Chapter 10: Zeroing In on the Data You Want

	

Figure 10-1:
A result

set for
retrieval of
sales from

12/01/2012 to
12/07/2012.

	

The result of this query, when run on Microsoft Access 2013 is shown in
Figure 10-2. Running the query with a different database management system
would retrieve the same result, but might appear a little different.

	

Figure 10-2:
Average
sales for

each
salesperson.

	

As shown in Figure 10-2, the average value of Bennett’s sales is considerably
higher than that of the other two salespeople. You compare total sales with a
similar query:

SELECT Salesperson, SUM(TotalSale)
 FROM SALES
 GROUP BY Salesperson;

This query gives the result shown in Figure 10-3.

Bennett also has the highest total sales, which is consistent with having the
highest average sales.

234 Part III: Storing and Retrieving Data

	

Figure 10-3:
Total sales

for each
salesperson.

	

HAVING Clauses
You can analyze the grouped data further by using the HAVING clause. The
HAVING clause is a filter that acts similar to a WHERE clause, but on groups of
rows rather than on individual rows. To illustrate the function of the HAVING
clause, suppose the sales manager considers Bennett to be in a class by
himself. His performance distorts the overall data for the other salespeople.
(Aha — a curve-wrecker.) You can exclude Bennett’s sales from the grouped
data by using a HAVING clause as follows:

SELECT Salesperson, SUM(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 HAVING Salesperson <>’Bennett’;

This query gives you the result shown in Figure 10-4. Only rows where the
salesperson is not Bennett are considered.

	

Figure 10-4:
Total sales

for all
salespeople

except
Bennett.

	

235 Chapter 10: Zeroing In on the Data You Want

ORDER BY Clauses
Use the ORDER BY clause to display the output table of a query in either ascend-
ing or descending alphabetical order. Whereas the GROUP BY clause gathers
rows into groups and sorts the groups into alphabetical order, ORDER BY sorts
individual rows. The ORDER BY clause must be the last clause that you specify in
a query. If the query also contains a GROUP BY clause, the clause first arranges
the output rows into groups. The ORDER BY clause then sorts the rows within
each group. If you have no GROUP BY clause, then the statement considers the
entire table as a group, and the ORDER BY clause sorts all its rows according to
the column (or columns) that the ORDER BY clause specifies.

To illustrate this point, consider the data in the SALES table. The SALES
table contains columns for InvoiceNo, SaleDate, Salesperson, and
TotalSale. If you use the following example, you see all the data in the
SALES table — but in an arbitrary order:

SELECT * FROM SALES ;

In one implementation, this may be the order in which you inserted the rows
in the table; in another implementation, the order may be that of the most
recent updates. The order can also change unexpectedly if anyone physi-
cally reorganizes the database. That’s one reason it’s usually a good idea to
specify the order in which you want the rows. You may, for example, want to
see the rows in order by the SaleDate like this:

SELECT * FROM SALES ORDER BY SaleDate ;

This example returns all the rows in the SALES table in order by SaleDate.

	 For rows with the same SaleDate, the default order depends on the imple-
mentation. You can, however, specify how to sort the rows that share the
same SaleDate. You may want to see the sales for each SaleDate in order
by InvoiceNo, as follows:

SELECT * FROM SALES ORDER BY SaleDate, InvoiceNo ;

This example first orders the sales by SaleDate; then for each SaleDate, it
orders the sales by InvoiceNo. But don’t confuse that example with the fol-
lowing query:

SELECT * FROM SALES ORDER BY InvoiceNo, SaleDate ;

This query first orders the sales by INVOICE_NO. Then for each different
InvoiceNo, the query orders the sales by SaleDate. This probably won’t
yield the result you want, because it’s unlikely that multiple sale dates will
exist for a single invoice number.

236 Part III: Storing and Retrieving Data

The following query is another example of how SQL can return data:

SELECT * FROM SALES ORDER BY Salesperson, SaleDate ;

This example first orders by Salesperson and then by SaleDate. After you
look at the data in that order, you may want to invert it, as follows:

SELECT * FROM SALES ORDER BY SaleDate, Salesperson ;

This example orders the rows first by SaleDate and then by Salesperson.

All these ordering examples are in ascending (ASC) order, which is the
default sort order. The last SELECT shows earlier sales first — and, within a
given date, shows sales for ‘Adams’ before ‘Baker’. If you prefer descend-
ing (DESC) order, you can specify this order for one or more of the order
columns, as follows:

SELECT * FROM SALES
ORDER BY SaleDate DESC, Salesperson ASC ;

This example specifies a descending order for sale dates, showing the more
recent sales first, and an ascending order for salespeople, putting them in
alphabetical order. That should give you a better picture of how Bennett’s
performance stacks up against that of the other salespeople.

Limited FETCH
Whenever the ISO/IEC SQL standard is changed, it is usually to expand
the capabilities of the language. This is a good thing. However, sometimes
when you make such a change you cannot anticipate all the possible con-
sequences. This happened with the addition of limited FETCH capability in
SQL:2008.

The idea of the limited FETCH is that although a SELECT statement may
return an indeterminate number of rows, perhaps you care only about the
top three or perhaps the top ten. Pursuant to this idea, SQL:2008 added
syntax shown in the following example:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 ORDER BY AVG(TotalSale) DESC
 FETCH FIRST 3 ROWS ONLY;

That looks fine. You want to see who your top three salespeople are in terms
of those who are selling mostly high priced products. However, there is a

237 Chapter 10: Zeroing In on the Data You Want

small problem with this. What if three people are tied with the same average
total sale, below the top two salespeople? Only one of those three will be
returned. Which one? It is indeterminate.

Indeterminacy is intolerable to any self-respecting database person so this
situation was corrected in SQL:2011. New syntax was added to include ties, in
this manner:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 ORDER BY AVG(TotalSale) DESC
 FETCH FIRST 3 ROWS WITH TIES;

Now the result is completely determined: If there is a tie, you get all the tied
rows. As before, if you leave off the WITH TIES modifier, the result is inde-
terminate.

A couple of additional enhancements were made to the limited FETCH capa-
bility in SQL:2011.

First, percentages are handled, as well as just a specific number of rows.
Consider the following example:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 ORDER BY AVG(TotalSale) DESC
 FETCH FIRST 10 PERCENT ROWS ONLY;

It’s conceivable that there might be a problem with ties when dealing with
percentages, just as there is with a simple number of records, so the WITH
TIES syntax may also be used here. You can include ties or not, depending
on what you want in any particular situation.

Second, suppose you don’t want the top three or the top ten percent, but
instead want the second three or second ten percent? Perhaps you want to
skip directly to some point deep in the result set. SQL:2011 covers this situa-
tion also. The code would be similar to this:

SELECT Salesperson, AVG(TotalSale)
 FROM SALES
 GROUP BY Salesperson
 ORDER BY AVG(TotalSale) DESC
 OFFSET 3 ROWS
 FETCH NEXT 3 ROWS ONLY;

The OFFSET keyword tells how many rows to skip before fetching. The NEXT
keyword specifies that the rows to be fetched are the ones immediately
following the offset. Now the salespeople with the fourth, fifth, and sixth

238 Part III: Storing and Retrieving Data

highest average sale total is returned. As you can see, without the WITH
TIES syntax, there is still an indeterminacy problem. If the third, fourth, and
fifth salespeople are tied, it is indeterminate which two will be included in
this second batch and which one will have been included in the first batch.

	 It may be best to avoid using the limited FETCH capability. It’s too likely to
deliver misleading results.

Peering through a Window
to Create a Result Set

Windows and window functions were first introduced in SQL:1999. With a
window, a user can optionally partition a data set, optionally order the rows
in each partition, and specify a collection of rows (the window frame) that is
associated with a given row.

The window frame of a row R is some subset of the partition containing R.
For example, the window frame may consist of all the rows from the begin-
ning of the partition up to and including R, based on the way rows are
ordered in the partition.

A window function computes a value for a row R, based on the rows in the
window frame of R.

For example, suppose you have a SALES table that has columns of CustID,
InvoiceNo, and TotalSale. Your sales manager may want to know what the
total sales were to each customer over a specified range of invoice numbers.
You can obtain what she wants with the following SQL code:

SELECT CustID, InvoiceNo,
 SUM (TotalSale) OVER
 (PARTITION BY CustID
 ORDER BY InvoiceNo
 ROWS BETWEEN
 UNBOUNDED PRECEDING
 AND CURRENT ROW)
 FROM SALES;

The OVER clause determines how the rows of the query are partitioned
before being processed, in this case by the SUM function. A partition is
assigned to each customer. Within each partition will be a list of invoice num-
bers, and associated with each of them will be the sum of all the TotalSale
values over the specified range of rows, for each customer.

SQL:2011 has added several major enhancements to the original window
functionality, incorporating new keywords.

239 Chapter 10: Zeroing In on the Data You Want

Partitioning a window into
buckets with NTILE
The NTILE window function apportions an ordered window partition into
some positive integer number n of buckets, numbering the buckets from 1 to n.
If the number of rows in a partition m is not evenly divisible by n, then after the
NTILE function fills the buckets evenly, the remainder of m/n, called r, is appor-
tioned to the first r buckets, making them larger than the other buckets.

Suppose you want to classify your employees by salary, partitioning them into
five buckets, from highest to lowest. You can do it with the following code:

SELECT FirstName, LastName, NTILE (5)
 OVER (ORDER BY Salary DESC)
 AS BUCKET
 FROM Employee;

If there are, for example, 11 employees, each bucket is filled with two except
for the first bucket, which is filled with three. The first bucket will contain the
three highest paid employees, and the fifth bucket will contain the two lowest
paid employees.

Navigating within a window
Added in SQL:2011 are five window functions that evaluate an expression in
a row R2 that is somewhere in the window frame of the current row R1. The
functions are LAG, LEAD, NTH_VALUE, FIRST_VALUE, and LAST_VALUE.

These functions enable you to pull information from specified rows that are
within the window frame of the current row.

Looking back with the LAG function
The LAG function enables you to retrieve information from the current row
in the window you’re examining as well as information from another row that
you specify that precedes the current row.

Suppose, for example, that you have a table that records the total sales for
each day for the current year. One thing you might want to know is how
today’s sales compare to yesterday’s. You could do this with the LAG func-
tion, as follows:

SELECT TotalSale AS TodaySale,
 LAG (TotalSale) OVER
 (ORDER BY SaleDate) AS PrevDaySale
 FROM DailyTotals;

240 Part III: Storing and Retrieving Data

For each row in DailyTotals, this query would return a row listing that row’s
total sales figure and the previous day’s total sales figure. The default offset is
1, which is why the previous day’s result is returned rather than any other.

To compare the current day’s sales to those of a week prior, you could use
the following:

SELECT TotalSale AS TodaySale,
 LAG (TotalSale, 7) OVER
 (ORDER BY SaleDate) AS PrevDaySale
 FROM DailyTotals;

The first seven rows in a window frame will not have a predecessor that is
a week older. The default response to this situation is to return a null result
for PrevDaySale. If you would prefer some other result to a null result,
for example zero, you can specify what you want returned in this situation
instead of the default null value, for example, 0 (zero), as shown here:

SELECT TotalSale AS TodaySale,
 LAG (TotalSale, 7, 0) OVER
 (ORDER BY SaleDate) AS PrevDaySale
 FROM DailyTotals;

The default behavior is to count rows that have a lag extent, which in this
case is TotalSale, which contains a null value. If you want to skip over such
rows and count only rows that have an actual value in the lag extent, you can
do so by adding the keywords IGNORE NULLS as shown in the following vari-
ant of the example:

SELECT TotalSale AS TodaySale,
 LAG (TotalSale, 7, 0) IGNORE NULLS
 OVER (ORDER BY SaleDate) AS PrevDaySale
 FROM DailyTotals;

Looking ahead with the LEAD function
The LEAD window function operates exactly the same way the LAG function
operates except that, instead of looking back to a preceding row, it looks ahead
to a row following the current row in the window frame. An example might be:

SELECT TotalSale AS TodaySale,
 LEAD (TotalSale, 7, 0) IGNORE NULLS
 OVER (ORDER BY SaleDate) AS NextDaySale
 FROM DailyTotals;

Looking to a specified row with the NTH_VALUE function
The NTH_VALUE function is similar to the LAG and LEAD functions, except
that instead of evaluating an expression in a row preceding or following the
current row, it evaluates an expression in a row that is at a specified offset
from the first or the last row in the window frame.

241 Chapter 10: Zeroing In on the Data You Want

Here’s an example:

SELECT TotalSale AS ChosenSale,
 NTH_VALUE (TotalSale, 2)
 FROM FIRST
 IGNORE NULLS
 OVER (ORDER BY SaleDate)
 ROWS BETWEEN 10 PRECEDING AND 10 FOLLOWING)
 AS EarlierSale
 FROM DailyTotals;

In this example, EarlierSale is evaluated as follows:

	 ✓	The window frame associated with the current row is formed. It includes
the ten preceding and the ten following rows.

	 ✓	TotalSale is evaluated in each row of the window frame.

	 ✓	IGNORE NULLS is specified, so any rows containing a null value for
TotalSale are skipped.

	 ✓	Starting from the first value remaining after the exclusion of rows con-
taining a null value for TotalSale, move forward by two rows (forward
because FROM FIRST was specified).

The value of EarlierSale is the value of TotalSale from the specified
row.

If you don’t want to skip rows that have a null value for TotalSale, specify
RESPECT NULLS rather than IGNORE NULLS. The NTH_VALUE function
works similarly if you specify FROM LAST instead of FROM FIRST, except
instead of counting forward from the first record in the window frame, you
count backward from the last record in the window frame. The number speci-
fying the number of rows to count is still positive, even though you’re count-
ing backward rather than forward.

Looking to a very specific value with FIRST_VALUE and LAST_VALUE
The FIRST_VALUE and LAST_VALUE functions are special cases of the
NTH_VALUE function. FIRST_VALUE is equivalent to NTH_VALUE where FROM
FIRST is specified and the offset is 0 (zero). LAST_VALUE is equivalent to
NTH_VALUE where FROM LAST is specified and the offset is 0. With both of
these, you can choose to either ignore or respect nulls.

Nesting window functions
Sometimes to get the result you need, the easiest way is to nest one func-
tion within another. SQL:2011 added the capability to do such nesting with
window functions.

242 Part III: Storing and Retrieving Data

As an example, consider a case where a stock investor is trying to determine
whether it is a good time to buy a particular stock. To get a handle on this,
she decides to compare the current stock price to the price it sold for on the
immediately previous 100 trades. She wonders, how many times in the previ-
ous 100 trades it sold for less than the current price. To reach an answer, she
makes the following query:

SELECT SaleTime,
 SUM (CASE WHEN SalePrice <
 VALUE OF (SalePrice AT CURRENT ROW)
 THEN 1 ELSE 0)
 OVER (ORDER BY SaleTime
 ROWS BETWEEN 100 PRECEDING AND CURRENT ROW)
 FROM StockSales;

The window encompasses the 100 rows preceding the current row, which
correspond to the 100 sales immediately prior to the current moment. Every
time a row is evaluated where the value of SalePrice is less than the most
recent price, 1 is added to the sum. The end result is a number that tells you
the number of sales out of the previous hundred that were made at a lower
price than the current price.

Evaluating groups of rows
Sometimes the sort key you have chosen to place a partition in order will
have duplicates. You may want to evaluate all rows that have the same sort
key as a group. In such cases you can use the GROUPS option. With it you can
count groups of rows where the sort keys are identical.

Here’s an example:

SELECT CustomerID, SaleDate,
 SUM (InvoiceTotal) OVER
 (PARTITION BY CustomerID
 ORDER BY SaleDate
 GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
 FROM Customers;

The window frame in this example consists of up to five groups of rows: two
groups before the group containing the current row, the group containing the
current row, and two groups following the group containing the current row.
The rows in each group have the same SaleDate, and the SaleDate asso-
ciated with each group is different from the SaleDate values for the other
groups.

Chapter 11

Using Relational Operators
In This Chapter
▶	Combining tables with similar structures
▶	Combining tables with different structures
▶	Deriving meaningful data from multiple tables

Y
ou probably know by now that SQL is a query language for relational
databases. In previous chapters, I present simple databases, and in

most cases, my examples deal with only one table. In this chapter, I put the
relational in “relational database.” After all, the name means “a database that
consists of multiple related tables.” Here’s where you scrutinize those rela-
tionships.

Because the data in a relational database is distributed across multiple
tables, a query usually draws data from more than one table. SQL has opera-
tors that combine data from multiple sources into a single result table. These
are the UNION, INTERSECTION, and EXCEPT operators, as well as a family of
JOIN operators. Each operator combines data from multiple tables in a dif-
ferent way.

UNION
The UNION operator is the SQL implementation of relational algebra’s union
operator. The UNION operator enables you to draw information from two or
more tables that have the same structure. Same structure means

	 ✓	The tables must all have the same number of columns.

	 ✓	Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are union-compatible: The union of
the two tables returns all the rows that appear in either table and eliminates
duplicates.

244 Part III: Storing and Retrieving Data

Suppose you create a baseball-statistics database (like the one in Chapter
12). It contains two union-compatible tables named AMERICAN and
NATIONAL. Both tables have three columns, and corresponding columns
are all the same type. In fact, corresponding columns have identical column
names (although this condition isn’t required for union compatibility).

NATIONAL lists the players’ names and the number of complete games
pitched by National League pitchers. AMERICAN lists the same information
about pitchers in the American League. The UNION of the two tables gives
you a virtual result table containing all the rows in the first table plus all the
rows in the second table. For this example, I put just a few rows in each table
to illustrate the operation:

SELECT * FROM NATIONAL ;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12

SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

SELECT * FROM NATIONAL
UNION
SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Allie Reynolds 14
Bob Turley 8
Don Drysdale 12
Don Larson 10
Don Newcombe 9
Sal Maglie 11
Sandy Koufax 13
Whitey Ford 12

The UNION DISTINCT operator functions identically to the UNION operator
without the DISTINCT keyword. In both cases, duplicate rows are eliminated
from the result set.

245 Chapter 11: Using Relational Operators

	 I’ve been using the asterisk (*) as shorthand for all the columns in a table.
This shortcut is fine most of the time, but it can get you into trouble when you
use relational operators in embedded or module-language SQL. If you add one
or more new columns to one table and not to another, or you add different
columns to the two tables, the two tables are no longer union-compatible —
and your program will be invalid the next time it’s recompiled. Even if the
same new columns are added to both tables so they’re still union-compatible,
your program is probably not prepared to deal with the additional data. You
should explicitly list the columns you want, rather than relying on the * short-
hand. When you’re entering ad hoc SQL queries from the console, the asterisk
probably works fine, because you can quickly display a table structure to
verify union compatibility if your query isn’t successful.

The UNION ALL operation
As I mention previously, the UNION operation usually eliminates any dupli-
cate rows that result from its operation, which is the desired result most of
the time. Sometimes, however, you may want to preserve duplicate rows. On
those occasions, use UNION ALL.

Referring to the example, suppose that “Bullet” Bob Turley had been
traded in midseason from the New York Yankees in the American League
to the Brooklyn Dodgers in the National League. Now suppose that during
the season, he pitched eight complete games for each team. The ordinary
UNION displayed in the example throws away one of the two lines contain-
ing Turley’s data. Although he seemed to pitch only 8 complete games in the
season, he actually hurled a remarkable 16 complete games. The following
query gives you the true facts:

SELECT * FROM NATIONAL
UNION ALL
SELECT * FROM AMERICAN ;

	 You can sometimes form a UNION of two tables even if they’re not union-
compatible. If the columns you want in your result table are present and com-
patible in both tables, you can perform a UNION CORRESPONDING operation.
Only the specified columns are considered — and they are the only columns
displayed in the result table.

The CORRESPONDING operation
Baseball statisticians keep different statistics on pitchers than they keep
on outfielders. In both cases, first names, last names, putouts, errors, and

246 Part III: Storing and Retrieving Data

fielding percentages are recorded. Outfielders, of course, don’t have a won/
lost record, a saves record, or a number of other stats that pertain only to
pitching. You can still perform a UNION that takes data from the OUTFIELDER
table and from the PITCHER table to give you some overall information about
defensive skill:

SELECT *
 FROM OUTFIELDER
UNION CORRESPONDING
 (FirstName, LastName, Putouts, Errors, FieldPct)
SELECT *
 FROM PITCHER ;

The result table holds the first and last names of all the outfielders and pitch-
ers, along with the putouts, errors, and fielding percentage of each player.
As with the simple UNION, duplicates are eliminated. Thus, if a player spent
some time in the outfield and also pitched in one or more games, the UNION
CORRESPONDING operation loses some of his statistics. To avoid this prob-
lem, use UNION ALL CORRESPONDING.

	 Each column name in the list following the CORRESPONDING keyword must be
a name that exists in both union-joined tables. If you omit this list of names,
an implicit list of all names that appear in both tables is used. But this implicit
list of names may change when new columns are added to one or both tables.
Therefore you’re better off explicitly listing the column names than you are if
you omit them.

INTERSECT
The UNION operation produces a result table containing all rows that appear
in any of the source tables. If you want only rows that appear in all the
source tables, you can use the INTERSECT operation, which is the SQL imple-
mentation of relational algebra’s intersect operation. I illustrate INTERSECT
by returning to the fantasy world in which Bob Turley was traded to the
Dodgers in midseason:

SELECT * FROM NATIONAL;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

247 Chapter 11: Using Relational Operators

SELECT * FROM AMERICAN;
FIRST_NAME LAST_NAME COMPLETE_GAMES
---------- --------- --------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

Only rows that appear in all source tables show up in the INTERSECT opera-
tion’s result table:

SELECT *
 FROM NATIONAL
INTERSECT
SELECT *
 FROM AMERICAN;

FirstName LastName CompleteGames
--------- -------- -------------
Bob Turley 8

The result table tells you that Bob Turley was the only pitcher to throw the
same number of complete games in both leagues (a rather obscure distinc-
tion for old Bullet Bob). Note: As was the case with UNION, INTERSECT
DISTINCT produces the same result as the INTERSECT operator used alone.
In this example, only one of the identical rows featuring Bob Turley is
returned.

	 The ALL and CORRESPONDING keywords function in an INTERSECT operation
the same way they do in a UNION operation. If you use ALL, duplicates are
retained in the result table. If you use CORRESPONDING, the intersected tables
don’t need to be union-compatible, although the corresponding columns must
have matching types and lengths.

Here’s what you get with INTERSECT ALL:

SELECT *
 FROM NATIONAL
INTERSECT ALL
SELECT *
 FROM AMERICAN;

FirstName LastName CompleteGames
--------- -------- -------------
Bob Turley 8
Bob Turley 8

Consider another example: A municipality keeps track of the cell phones car-
ried by police officers, firefighters, street sweepers, and other city employ-
ees. A database table called PHONES contains data on all phones in active

248 Part III: Storing and Retrieving Data

use. Another table named OUT, with an identical structure, contains data on
all phones that have been taken out of service. No phones should ever exist
in both tables. With an INTERSECT operation, you can test to see whether
such an unwanted duplication has occurred:

SELECT *
 FROM PHONES
INTERSECT CORRESPONDING (PhoneID)
SELECT *
 FROM OUT ;

	 If this operation gives you a result table containing any rows at all, you know
you have a problem. You should investigate any PhoneID entries that appear
in the result table. The corresponding phone is either active or out of service;
it can’t be both. After you detect the problem, you can perform a DELETE
operation on one of the two tables to restore database integrity.

EXCEPT
The UNION operation acts on two source tables and returns all rows that
appear in either table. The INTERSECT operation returns all rows that
appear in both the first and the second tables. In contrast, the EXCEPT (or
EXCEPT DISTINCT) operation returns all rows that appear in the first table
but that do not also appear in the second table.

Returning to the municipal phone database example (see the “INTERSECT”
section, earlier in this chapter), say that a group of phones that had been
declared out of service and returned to the vendor for repairs have now been
fixed and placed back into service. The PHONES table was updated to reflect
the returned phones, but the returned phones were not removed from the
OUT table as they should have been. You can display the PhoneID numbers
of the phones in the OUT table, with the reactivated ones eliminated, using
an EXCEPT operation:

SELECT *
 FROM OUT
EXCEPT CORRESPONDING (PhoneID)
SELECT *
 FROM PHONES;

This query returns all the rows in the OUT table whose PhoneID is not also
present in the PHONES table.

249 Chapter 11: Using Relational Operators

Join Operators
The UNION, INTERSECT, and EXCEPT operators are valuable in multitable
databases that contain union-compatible tables. In many cases, however, you
want to draw data from multiple tables that have very little in common. Joins
are powerful relational operators that combine data from multiple tables into
a single result table. The source tables may have little (or even nothing) in
common with each other.

SQL supports a number of types of joins. The best one to choose in a given
situation depends on the result you’re trying to achieve. The following sec-
tions give you the details.

Basic join
Any multitable query is a type of join. The source tables are joined in the
sense that the result table includes information taken from all the source
tables. The simplest join is a two-table SELECT that has no WHERE clause
qualifiers: Every row of the first table is joined to every row of the second
table. The result table is the Cartesian product of the two source tables. The
number of rows in the result table is equal to the number of rows in the first
source table multiplied by the number of rows in the second source table.

For example, imagine that you’re the personnel manager for a company and
that part of your job is to maintain employee records. Most employee data,
such as home address and telephone number, is not particularly sensitive.
But some data, such as current salary, should be available only to authorized
personnel. To maintain security of the sensitive information, keep it in a sep-
arate table that is password protected. Consider the following pair of tables:

EMPLOYEE COMPENSATION
-------- ------------
EmpID Employ
FName Salary
LName Bonus
City
Phone

Fill the tables with some sample data:

EmpID FName LName City Phone
----- ----- ----- ---- -----
 1 Whitey Ford Orange 555-1001
 2 Don Larson Newark 555-3221

250 Part III: Storing and Retrieving Data

 3 Sal Maglie Nutley 555-6905
 4 Bob Turley Passaic 555-8908

Employ Salary Bonus
------ ------ -----
 1 33000 10000
 2 18000 2000
 3 24000 5000
 4 22000 7000

Create a virtual result table with the following query:

SELECT *
 FROM EMPLOYEE, COMPENSATION ;

Here’s what the query produces:

EmpID FName LName City Phone Employ Salary Bonus
----- ----- ----- ---- ----- ------ ------ -----
 1 Whitey Ford Orange 555-1001 1 33000 10000
 1 Whitey Ford Orange 555-1001 2 18000 2000
 1 Whitey Ford Orange 555-1001 3 24000 5000
 1 Whitey Ford Orange 555-1001 4 22000 7000
 2 Don Larson Newark 555-3221 1 33000 10000
 2 Don Larson Newark 555-3221 2 18000 2000
 2 Don Larson Newark 555-3221 3 24000 5000
 2 Don Larson Newark 555-3221 4 22000 7000
 3 Sal Maglie Nutley 555-6905 1 33000 10000
 3 Sal Maglie Nutley 555-6905 2 18000 2000
 3 Sal Maglie Nutley 555-6905 3 24000 5000
 3 Sal Maglie Nutley 555-6905 4 22000 7000
 4 Bob Turley Passaic 555-8908 1 33000 10000
 4 Bob Turley Passaic 555-8908 2 18000 2000
 4 Bob Turley Passaic 555-8908 3 24000 5000
 4 Bob Turley Passaic 555-8908 4 22000 7000

The result table, which is the Cartesian product of the EMPLOYEE and
COMPENSATION tables, contains considerable redundancy. Furthermore, it
doesn’t make much sense. It combines every row of EMPLOYEE with every
row of COMPENSATION. The only rows that convey meaningful information
are those in which the EmpID number that came from EMPLOYEE matches
the Employ number that came from COMPENSATION. In those rows, an
employee’s name and address are associated with his or her compensation.

When you’re trying to get useful information out of a multitable database, the
Cartesian product produced by a basic join is almost never what you want, but
it’s almost always the first step toward what you want. By applying constraints
to the JOIN with a WHERE clause, you can filter out the unwanted rows. The fol-
lowing section explains how to filter the stuff you don’t need to see.

251 Chapter 11: Using Relational Operators

Equi-join
The most common join that uses the WHERE clause filter is the equi-join. An
equi-join is a basic join with a WHERE clause that contains a condition specify-
ing that the value in one column in the first table must be equal to the value
of a corresponding column in the second table. Applying an equi-join to the
example tables from the previous section brings a more meaningful result:

SELECT *
 FROM EMPLOYEE, COMPENSATION
 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This query produces the following results:

EmpID FName LName City Phone Employ Salary Bonus
----- ------ ----- ---- ----- ------ ------ -----
 1 Whitey Ford Orange 555-1001 1 33000 10000
 2 Don Larson Newark 555-3221 2 18000 2000
 3 Sal Maglie Nutley 555-6905 3 24000 5000
 4 Bob Turley Passaic 555-8908 4 22000 7000

In this result table, the salaries and bonuses on the right apply to the employ-
ees named on the left. The table still has some redundancy because the
EmpID column duplicates the Employ column. You can fix this problem by
slightly reformulating the query, like this:

SELECT EMPLOYEE.*,COMPENSATION.Salary,COMPENSATION.Bonus
 FROM EMPLOYEE, COMPENSATION
 WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This query produces the following result table:

EmpID FName LName City Phone Salary Bonus
----- ----- ----- ---- ----- ------ -----
 1 Whitey Ford Orange 555-1001 33000 10000
 2 Don Larson Newark 555-3221 18000 2000
 3 Sal Maglie Nutley 555-6905 24000 5000
 4 Bob Turley Passaic 555-8908 22000 7000

This table tells you what you want to know but doesn’t burden you with any
extraneous data. The query is somewhat tedious to write, however. To avoid
ambiguity, you can qualify the column names with the names of the tables
they came from. Typing those table names repeatedly provides good exercise
for the fingers but has no other merit.

252 Part III: Storing and Retrieving Data

You can cut down on the amount of typing by using aliases (or correlation
names). An alias is a short name that stands for a table name. If you use
aliases in recasting the preceding query, it comes out like this:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E, COMPENSATION C
 WHERE E.EmpID = C.Employ ;

In this example, E is the alias for EMPLOYEE, and C is the alias for
COMPENSATION. The alias is local to the statement it’s in. After you declare
an alias (in the FROM clause), you must use it throughout the statement.
You can’t use both the alias and the long form of the table name in the same
statement.

	 Even if you could mix the long form of table names with aliases, you wouldn’t
want to, because doing so creates major confusion. Consider the following
example:

SELECT T1.C, T2.C
 FROM T1 T2, T2 T1
 WHERE T1.C > T2.C ;

In this example, the alias for T1 is T2, and the alias for T2 is T1. Admittedly,
this isn’t a smart selection of aliases, but it isn’t forbidden by the rules. If you
mix aliases with long-form table names, you can’t tell which table is which.

The preceding example with aliases is equivalent to the following SELECT
statement with no aliases:

SELECT T2.C, T1.C
 FROM T1 , T2
 WHERE T2.C > T1.C ;

SQL enables you to join more than two tables. The maximum number varies
from one implementation to another. The syntax is analogous to the two-
table case; here’s what it looks like:

SELECT E.*, C.Salary, C.Bonus, Y.TotalSales
 FROM EMPLOYEE E, COMPENSATION C, YTD_SALES Y
 WHERE E.EmpID = C.Employ
 AND C.Employ = Y.EmpNo ;

This statement performs an equi-join on three tables, pulling data from
corresponding rows of each one to produce a result table that shows the
salespeople’s names, the amount of sales they are responsible for, and their
compensation. The sales manager can quickly see whether compensation is
in line with production.

253 Chapter 11: Using Relational Operators

	 Storing a salesperson’s year-to-date sales in a separate YTD_SALES table
ensures better computer performance and data reliability than keeping that
data in the EMPLOYEE table. The data in the EMPLOYEE table is relatively
static. A person’s name, address, and telephone number don’t change very
often. In contrast, the year-to-date sales change frequently (you hope).
Because the YTD_SALES table has fewer columns than the EMPLOYEE table,
you may be able to update it more quickly. If, in the course of updating sales
totals, you don’t touch the EMPLOYEE table, you decrease the risk of acciden-
tally modifying employee information that should stay the same.

Cross join
CROSS JOIN is the keyword for the basic join without a WHERE clause.
Therefore

SELECT *
FROM EMPLOYEE, COMPENSATION ;

can also be written as

SELECT *
FROM EMPLOYEE CROSS JOIN COMPENSATION ;

The result is the Cartesian product (also called the cross product) of the two
source tables. CROSS JOIN rarely gives you the final result you want, but it
can be useful as the first step in a chain of data-manipulation operations that
ultimately produce the desired result.

Natural join
The natural join is a special case of an equi-join. In the WHERE clause of an
equi-join, a column from one source table is compared with a column of a
second source table for equality. The two columns must be the same type
and length and must have the same name. In fact, in a natural join, all col-
umns in one table that have the same names, types, and lengths as corre-
sponding columns in the second table are compared for equality.

Imagine that the COMPENSATION table from the preceding example has col-
umns EmpID, Salary, and Bonus rather than Employ, Salary, and Bonus.
In that case, you can perform a natural join of the COMPENSATION table with
the EMPLOYEE table. The traditional JOIN syntax would look like this:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E, COMPENSATION C
 WHERE E.EmpID = C.EmpID ;

254 Part III: Storing and Retrieving Data

This query is a special case of a natural join. The SELECT statement will
return joined rows where E.EmpID = C.EmpID. Consider the following:

SELECT E.*, C.Salary, C.Bonus
 FROM EMPLOYEE E NATURAL JOIN COMPENSATION C ;

This query will join rows where E.EmpID = C.EmpID, where E.Salary =
C.Salary, and where E.Bonus = C.Bonus. The result table will contain only
rows where all corresponding columns match. In this example, the results of
both queries will be the same because the EMPLOYEE table does not contain
either a Salary or a Bonus column.

Condition join
A condition join is like an equi-join, except the condition being tested doesn’t
have to be an equality (although it can be). It can be any well-formed predi-
cate. If the condition is satisfied, then the corresponding row becomes part
of the result table. The syntax is a little different from what you have seen so
far: The condition is contained in an ON clause rather than in a WHERE clause.

Say that a baseball statistician wants to know which National League pitchers
have pitched the same number of complete games as one or more American
League pitchers. This question is a job for an equi-join, which can also be
expressed with condition-join syntax:

SELECT *
 FROM NATIONAL JOIN AMERICAN
 ON NATIONAL.CompleteGames = AMERICAN.CompleteGames ;

Column-name join
The column-name join is like a natural join, but it’s more flexible. In a natural
join, all the source table columns that have the same name are compared
with each other for equality. With the column-name join, you select which
same-name columns to compare. You can choose them all if you want,
making the column-name join (effectively) a natural join. Or you may choose
fewer than all same-name columns. In this way, you have a great degree of
control over which cross-product rows qualify to be placed into your result
table.

Suppose you’re a chess-set manufacturer and have one inventory table that
keeps track of your stock of white pieces and another that keeps track of
black pieces. The tables contain data as follows:

255 Chapter 11: Using Relational Operators

WHITE BLACK
----- -----
Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Queen 398 Oak Queen 397 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony
Pawn 431 Oak Pawn 453 Ebony

For each piece type, the number of white pieces should match the number
of black pieces. If they don’t match, some chessmen are being lost or stolen,
and you need to tighten security measures.

A natural join compares all columns with the same name for equality. In this
case, a result table with no rows is produced because no rows in the WOOD
column in the WHITE table match any rows in the WOOD column in the BLACK
table. This result table doesn’t help you determine whether any merchandise
is missing. Instead, do a column-name join that excludes the WOOD column
from consideration. It can take the following form:

SELECT *
 FROM WHITE JOIN BLACK
 USING (Piece, Quant) ;

The result table shows only the rows for which the number of white pieces in
stock equals the number of black pieces:

Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony

The shrewd person can deduce that Queen and Pawn are missing from the
list, indicating a shortage somewhere for those piece types.

Inner join
By now, you’re probably getting the idea that joins are pretty esoteric and
that it takes an uncommon level of spiritual discernment to deal with them
adequately. You may have even heard of the mysterious inner join and specu-
lated that it probably represents the core or essence of relational operations.
Well, ha! The joke’s on you: There’s nothing mysterious about inner joins.

256 Part III: Storing and Retrieving Data

In fact, all the joins covered so far in this chapter are inner joins. I could have
formulated the column-name join in the last example as an inner join by using
the following syntax:

SELECT *
 FROM WHITE INNER JOIN BLACK
 USING (Piece, Quant) ;

The result is the same.

The inner join is so named to distinguish it from the outer join. An inner join
discards all rows from the result table that don’t have corresponding rows in
both source tables. An outer join preserves unmatched rows. That’s the dif-
ference. Nothing metaphysical about it.

Outer join
When you’re joining two tables, the first one (call it the one on the left) may
have rows that don’t have matching counterparts in the second table (the
one on the right). Conversely, the table on the right may have rows that don’t
have matching counterparts in the table on the left. If you perform an inner
join on those tables, all the unmatched rows are excluded from the output.
Outer joins, however, don’t exclude the unmatched rows. Outer joins come in
three types: the left outer join, the right outer join, and the full outer join.

Left outer join
In a query that includes a join, the left table is the one that precedes the key-
word JOIN, and the right table is the one that follows it. The left outer join
preserves unmatched rows from the left table but discards unmatched rows
from the right table.

To understand outer joins, consider a corporate database that maintains
records of the company’s employees, departments, and locations. Tables
11-1, 11-2, and 11-3 contain the database’s example data.

Table 11-1	 LOCATION
LOCATION_ID CITY
1 Boston
3 Tampa
5 Chicago

257 Chapter 11: Using Relational Operators

Table 11-2	 DEPT
DEPT_ID LOCATION_ID NAME
21 1 Sales
24 1 Admin
27 5 Repair
29 5 Stock

Table 11-3	 EMPLOYEE
EMP_ID DEPT_ID NAME
61 24 Kirk
63 27 McCoy

Now suppose you want to see all the data for all employees, including depart-
ment and location. You get this with an equi-join:

SELECT *
 FROM LOCATION L, DEPT D, EMPLOYEE E
 WHERE L.LocationID = D.LocationID
 AND D.DeptID = E.DeptID ;

This statement produces the following result:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy

This result table gives all the data for all the employees, including location
and department. The equi-join works because every employee has a location
and a department.

Next, suppose you want the data on the locations, with the related depart-
ment and employee data. This is a different problem because a location with-
out any associated departments may exist. To get what you want, you have
to use an outer join, as in the following example:

SELECT *
 FROM LOCATION L LEFT OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 LEFT OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID);

258 Part III: Storing and Retrieving Data

This join pulls data from three tables. First, the LOCATION table is joined to
the DEPT table. The result set is then joined to the EMPLOYEE table. Rows
from the table on the left of the LEFT OUTER JOIN operator that have no
corresponding row in the table on the right are included in the result. Thus,
in the first join, all locations are included, even if no department associated
with them exists. In the second join, all departments are included, even if no
employee associated with them exists. The result is as follows:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy
3 Tampa NULL NULL NULL NULL NULL NULL
5 Chicago 29 5 Stock NULL NULL NULL
1 Boston 21 1 Sales NULL NULL NULL

The first two rows are the same as the two result rows in the previous exam-
ple. The third row (3 Tampa) has nulls in the department and employee col-
umns because no departments are defined for Tampa and no employees are
stationed there. The fourth and fifth rows (5 Chicago and 1 Boston) con-
tain data about the Stock and the Sales departments, but the Employee
columns for these rows contain nulls because these two departments have
no employees. This outer join tells you everything that the equi-join told
you — plus the following:

	 ✓	All the company’s locations, whether they have any departments or not

	 ✓	All the company’s departments, whether they have any employees or
not

The rows returned in the preceding example aren’t guaranteed to be in the
order you want. The order may vary from one implementation to the next. To
make sure that the rows returned are in the order you want, add an ORDER
BY clause to your SELECT statement, like this:

SELECT *
 FROM LOCATION L LEFT OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 LEFT OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID)
 ORDER BY L.LocationID, D.DeptID, E.EmpID;

	 You can abbreviate the left outer join language as LEFT JOIN because there’s
no such thing as a left inner join.

Right outer join
I bet you figured out how the right outer join behaves. Right! The right outer
join preserves unmatched rows from the right table but discards unmatched

259 Chapter 11: Using Relational Operators

rows from the left table. You can use it on the same tables and get the same
result by reversing the order in which you present tables to the join:

SELECT *
 FROM EMPLOYEE E RIGHT OUTER JOIN DEPT D
 ON (D.DeptID = E.DeptID)
 RIGHT OUTER JOIN LOCATION L
 ON (L.LocationID = D.LocationID) ;

In this formulation, the first join produces a table that contains all depart-
ments, whether they have an associated employee or not. The second join
produces a table that contains all locations, whether they have an associated
department or not.

	 You can abbreviate the right outer join language as RIGHT JOIN because
there’s no such thing as a right inner join.

Full outer join
The full outer join combines the functions of the left outer join and the right
outer join. It retains the unmatched rows from both the left and the right
tables. Consider the most general case of the company database used in the
preceding examples. It could have

	 ✓	Locations with no departments

	 ✓	Departments with no locations

	 ✓	Departments with no employees

	 ✓	Employees with no departments

To show all locations, departments, and employees, regardless of whether
they have corresponding rows in the other tables, use a full outer join in the
following form:

SELECT *
 FROM LOCATION L FULL OUTER JOIN DEPT D
 ON (L.LocationID = D.LocationID)
 FULL OUTER JOIN EMPLOYEE E
 ON (D.DeptID = E.DeptID) ;

	 You can abbreviate the full-outer-join language as FULL JOIN because (this
may sound hauntingly familiar) there’s no such thing as a full inner join.

Union join
Unlike the other kinds of join, the union join makes no attempt to match
a row from the left source table with any rows in the right source table.

260 Part III: Storing and Retrieving Data

It creates a new virtual table that contains the union of all the columns in
both source tables. In the virtual result table, the columns that came from
the left source table contain all the rows that were in the left source table.
For those rows, the columns that came from the right source table all have
the null value. Similarly, the columns that came from the right source table
contain all the rows that were in the right source table. For those rows, the
columns that came from the left source table all have the null value. Thus,
the table resulting from a union join contains all the columns of both source
tables — and the number of rows it contains is the sum of the number of
rows in the two source tables.

The result of a union join by itself is not immediately useful in most cases; it
produces a result table with many nulls in it. But you can get useful informa-
tion from a union join when you use it in conjunction with the COALESCE
expression discussed in Chapter 9. Look at an example.

Suppose that you work for a company that designs and builds experimen-
tal rockets. You have several projects in the works. You also have several
design engineers who have skills in multiple areas. As a manager, you want to
know which employees, having which skills, have worked on which projects.
Currently, this data is scattered among the EMPLOYEE table, the PROJECTS
table, and the SKILLS table.

The EMPLOYEE table carries data about employees, and EMPLOYEE.EmpID
is its primary key. The PROJECTS table has a row for each project that an
employee has worked on. PROJECTS.EmpID is a foreign key that refer-
ences the EMPLOYEE table. The SKILLS table shows the expertise of each
employee. SKILLS.EmpID is a foreign key that references the EMPLOYEE
table.

The EMPLOYEE table has one row for each employee; the PROJECTS table
and the SKILLS table have zero or more rows.

Tables 11-4, 11-5, and 11-6 show example data in the three tables.

Table 11-4	 EMPLOYEE Table
EmpID Name
1 Ferguson
2 Frost
3 Toyon

261 Chapter 11: Using Relational Operators

Table 11-5	 PROJECTS Table
ProjectName EmpID
X-63 Structure 1
X-64 Structure 1
X-63 Guidance 2
X-64 Guidance 2
X-63 Telemetry 3
X-64 Telemetry 3

Table 11-6	 SKILLS Table
Skill EmpID
Mechanical Design 1
Aerodynamic Loading 1
Analog Design 2
Gyroscope Design 2
Digital Design 3
R/F Design 3

From the tables, you can see that Ferguson has worked on X-63 and X-64
structure design and has expertise in mechanical design and aerodynamic
loading.

Now suppose that, as a manager, you want to see all the information about
all the employees. You decide to apply an equi-join to the EMPLOYEE,
PROJECTS, and SKILLS tables:

SELECT *
 FROM EMPLOYEE E, PROJECTS P, SKILLS S
 WHERE E.EmpID = P.EmpID
 AND E.EmpID = S.EmpID ;

You can express this same operation as an inner join by using the following
syntax:

SELECT *
 FROM EMPLOYEE E INNER JOIN PROJECTS P
 ON (E.EmpID = P.EmpID)
 INNER JOIN SKILLS S
 ON (E.EmpID = S.EmpID) ;

262 Part III: Storing and Retrieving Data

Both formulations give the same result, as shown in Table 11-7.

Table 11-7	 Result of Inner Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill
1 Ferguson 1 X-63 Structure 1 Mechanical

Design
1 Ferguson 1 X-63 Structure 1 Aerodynamic

Loading
1 Ferguson 1 X-64 Structure 1 Mechanical

Design
1 Ferguson 1 X-64 Structure 1 Aerodynamic

Loading
2 Frost 2 X-63 Guidance 2 Analog

Design
2 Frost 2 X-63 Guidance 2 Gyroscope

Design
2 Frost 2 X-64 Guidance 2 Analog

Design
2 Frost 2 X-64 Guidance 2 Gyroscope

Design
3 Toyon 3 X-63 Telemetry 3 Digital Design
3 Toyon 3 X-63 Telemetry 3 R/F Design
3 Toyon 3 X-64 Telemetry 3 Digital Design
3 Toyon 3 X-64 Telemetry 3 R/F Design

This data arrangement is not particularly enlightening. The employee ID num-
bers appear three times, and the projects and skills are duplicated for each
employee. Bottom line: The inner joins are not well suited to answering this
type of question. You can put the union join to work here, along with some
strategically chosen SELECT statements, to produce a more suitable result.
You begin with the basic union join:

SELECT *
 FROM EMPLOYEE E UNION JOIN PROJECTS P
 UNION JOIN SKILLS S ;

	 Notice that the union join has no ON clause. It doesn’t filter the data, so an ON
clause isn’t needed. This statement produces the result shown in Table 11-8.

263 Chapter 11: Using Relational Operators

Table 11-8	 Result of Union Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill
1 Ferguson NULL NULL NULL NULL
NULL NULL 1 X-63 Structure NULL NULL
NULL NULL 1 X-64 Structure NULL NULL
NULL NULL NULL NULL 1 Mechanical

Design
NULL NULL NULL NULL 1 Aerodynamic

Loading
2 Frost NULL NULL NULL NULL
NULL NULL 2 X-63 Guidance NULL NULL
NULL NULL 2 X-64 Guidance NULL NULL
NULL NULL NULL NULL 2 Analog

Design
NULL NULL NULL NULL 2 Gyroscope

Design
3 Toyon NULL NULL NULL NULL
NULL NULL 3 X-63 Telemetry NULL NULL
NULL NULL 3 X-64 Telemetry NULL NULL
NULL NULL NULL NULL 3 Digital

Design
NULL NULL NULL NULL 3 R/F Design

Each table has been extended to the right or left with nulls, and those null-
extended rows have been union joined. The order of the rows is arbitrary and
depends on the implementation. Now you can massage the data to put it in a
more useful form.

Notice that the table has three ID columns, two of which are null in any
row. You can improve the display by coalescing the ID columns. As I note in
Chapter 9, the COALESCE expression takes on the value of the first non-null
value in a list of values. In the present case, it takes on the value of the only
non-null value in a column list:

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
 E.Name, P.ProjectName, S.Skill
 FROM EMPLOYEE E UNION JOIN PROJECTS P
 UNION JOIN SKILLS S
 ORDER BY ID ;

264 Part III: Storing and Retrieving Data

The FROM clause is the same as in the previous example, but now the three
EMP_ID columns are coalesced into a single column named ID. You’re also
ordering the result by ID. Table 11-9 shows the result.

Table 11-9	 Result of Union Join with COALESCE Expression
ID Name ProjectName Skill
1 Ferguson X-63 Structure NULL
1 Ferguson X-64 Structure NULL
1 Ferguson NULL Mechanical Design
1 Ferguson NULL Aerodynamic Loading
2 Frost X-63 Guidance NULL
2 Frost X-64 Guidance NULL
2 Frost NULL Analog Design
2 Frost NULL Gyroscope Design
3 Toyon X-63 Telemetry NULL
3 Toyon X-64 Telemetry NULL
3 Toyon NULL Digital Design
3 Toyon NULL R/F Design

Each row in this result has data about a project or a skill, but not both. When
you read the result, you first have to determine what type of information is in
each row (project or skill). If the ProjectName column has a non-null value,
the row names a project on which the employee has worked. If the Skill
column is not null, the row names one of the employee’s skills.

	 You can make the result a little clearer by adding another COALESCE to the
SELECT statement, as follows:

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
 E.Name, COALESCE (P.Type, S.Type) AS Type,
 P.ProjectName, S.Skill
 FROM EMPLOYEE E
 UNION JOIN (SELECT “Project” AS Type, P.*
 FROM PROJECTS) P
 UNION JOIN (SELECT “Skill” AS Type, S.*
 FROM SKILLS) S
 ORDER BY ID, Type ;

265 Chapter 11: Using Relational Operators

In this union join, the PROJECTS table in the previous example is replaced
with a nested SELECT that appends a column named P.Type with a constant
value “Project” to the columns coming from the PROJECTS table. Similarly,
the SKILLS table is replaced with a nested SELECT that appends a column
named S.Type with a constant value “Skill” to the columns coming from
the SKILLS table. In each row, P.Type is either null or “Project”, and
S.Type is either null or “Skill”.

The outer SELECT list specifies a COALESCE of those two Type columns into
a single column named Type. You then specify Type in the ORDER BY clause,
which sorts the rows that all have the same ID in an order that puts all proj-
ects first, followed by all skills. The result is shown in Table 11-10.

Table 11-10	 Refined Result of Union Join with
	 COALESCE Expressions
ID Name Type ProjectName Skill
1 Ferguson Project X-63 Structure NULL
1 Ferguson Project X-64 Structure NULL
1 Ferguson Skill NULL Mechanical Design
1 Ferguson Skill NULL Aerodynamic Loading
2 Frost Project X-63 Guidance NULL
2 Frost Project X-64 Guidance NULL
2 Frost Skill NULL Analog Design
2 Frost Skill NULL Gyroscope Design
3 Toyon Project X-63 Telemetry NULL
3 Toyon Project X-64 Telemetry NULL
3 Toyon Skill NULL Digital Design
3 Toyon Skill NULL R/F Design

The result table now presents a very readable account of the project experi-
ence and skill sets of all employees in the EMPLOYEE table.

Considering the number of JOIN operations available, relating data from dif-
ferent tables shouldn’t be a problem, regardless of the tables’ structure. You
can trust that if the raw data exists in your database, SQL has the means to
get it out and display it in a meaningful form.

266 Part III: Storing and Retrieving Data

ON versus WHERE
The function of the ON and WHERE clauses in the various types of joins is
potentially confusing. These facts may help you keep things straight:

	 ✓	The ON clause is part of the inner, left, right, and full joins. The cross join
and union join don’t have an ON clause because neither of them does
any filtering of the data.

	 ✓	The ON clause in an inner join is logically equivalent to a WHERE clause;
the same condition could be specified either in an ON clause or a WHERE
clause.

	 ✓	The ON clauses in outer joins (left, right, and full joins) are different from
WHERE clauses. The WHERE clause simply filters the rows returned by the
FROM clause. Rows rejected by the filter are not included in the result.
The ON clause in an outer join first filters the rows of a cross product
and then includes the rejected rows, extended with nulls.

Chapter 12

Delving Deep with Nested Queries
In This Chapter
▶	Pulling data from multiple tables with a single SQL statement
▶	Comparing a value from one table with a set of values from another table
▶	Using the SELECT statement to compare a value from one table with a single value from

another table
▶	Comparing a value from one table with all the corresponding values in another table
▶	Making queries that correlate rows in one table with corresponding rows in another

table
▶	Determining which rows to update, delete, or insert by using a subquery

O
ne of the best ways to protect your data’s integrity is to avoid modifica-
tion anomalies (see Chapter 5 for the gory details of those) by normal-

izing your database. Normalization involves breaking up a single table into
multiple tables, each of which has a single theme. You don’t want product
information in the same table with customer information, for example, even if
the customers have bought products.

If you normalize a database properly, the data is scattered across multiple
tables. Most queries that you want to make need to pull data from two or
more tables. One way to do this is to use a join operator or one of the other
relational operators (UNION, INTERSECT, or EXCEPT). The relational opera-
tors take information from multiple tables and combine it all into a single
result set. Different operators combine the data in different ways.

	 Another way to pull data from two or more tables is to use a nested query.
In SQL, a nested query is one in which an outer enclosing statement contains
within it a subquery. That subquery may serve as an enclosing statement for a
lower-level subquery that is nested within it. There are no theoretical limits to
the number of nesting levels a nested query may have, but you do face some
practical limits that depend on your SQL implementation.

Subqueries are invariably SELECT statements, but the outermost enclosing
statement may also be an INSERT, UPDATE, or DELETE statement.

268 Part III: Storing and Retrieving Data

	 A subquery can operate on a table other than the table that its enclosing state-
ment operates on, so nested queries give you another way to extract informa-
tion from multiple tables.

For example, suppose that you want to query your corporate database to find
all department managers who are more than 50 years old. With the joins I dis-
cuss in Chapter 11, you can use a query like this:

SELECT D.Deptno, D.Name, E.Name, E.Age
 FROM DEPT D, EMPLOYEE E
 WHERE D.ManagerID = E.ID AND E.Age >50 ;

D is the alias for the DEPT table, and E is the alias for the EMPLOYEE table.
The EMPLOYEE table has an ID column that is the primary key, and the
DEPT table has a ManagerID column that is the ID value of the employee
who is the department’s manager. A simple join (the list of tables in the FROM
clause) pairs the related tables, and a WHERE clause filters out all rows except
those that meet the criteria. Note that the SELECT statement’s parameter list
includes the Deptno and Name columns from the DEPT table and the Name
and Age columns from the EMPLOYEE table.

Next, suppose that you’re interested in the same set of rows but you want
only the columns from the DEPT table. In other words, you’re interested in
the departments whose managers are 50 or older, but you don’t care who
those managers are or exactly how old they are. You could then write the
query with a subquery rather than a join:

SELECT D.Deptno, D.Name
 FROM DEPT D
 WHERE EXISTS (SELECT * FROM EMPLOYEE E
 WHERE E.ID = D.ManagerID AND E.Age > 50) ;

This query has two new elements: the EXISTS keyword and the SELECT * in
the WHERE clause of the inner SELECT. The inner SELECT is a subquery (or
subselect), and the EXISTS keyword is one of several tools for use with a sub-
query that is described in this chapter.

What Subqueries Do
Subqueries are located within the WHERE clause of their enclosing statement.
Their function is to set the search conditions for the WHERE clause. Each kind
of subquery produces a different result. Some subqueries produce a list of
values that is then used as input by the enclosing statement. Other subque-
ries produce a single value that the enclosing statement then evaluates with
a comparison operator. A third kind of subquery returns a value of True or
False.

269 Chapter 12: Delving Deep with Nested Queries

Nested queries that return sets of rows
To illustrate how a nested query returns a set of rows, imagine that you
work for a systems integrator of computer equipment. Your company, Zetec
Corporation, assembles systems from components that you buy, and then it
sells them to companies and government agencies. You keep track of your
business with a relational database. The database consists of many tables,
but right now you’re concerned with only three of them: the PRODUCT
table, the COMP_USED table, and the COMPONENT table. The PRODUCT
table (shown in Table 12-1) contains a list of all your standard products. The
COMPONENT table (shown in Table 12-2) lists components that go into your
products, and the COMP_USED table (shown in Table 12-3) tracks which com-
ponents go into each product.

Table 12-1	 PRODUCT Table
Column Type Constraints
Model CHAR (6) PRIMARY KEY

ProdName CHAR (35)

ProdDesc CHAR (31)

ListPrice NUMERIC (9,2)

Table 12-2	 COMPONENT Table
Column Type Constraints
CompID CHAR (6) PRIMARY KEY

CompType CHAR (10)

CompDesc CHAR (31)

Table 12-3	 COMP_USED Table
Column Type Constraints
Model CHAR (6) FOREIGN KEY (for PRODUCT)
CompID CHAR (6) FOREIGN KEY (for COMPONENT)

A component may be used in multiple products, and a product can contain
multiple components (a many-to-many relationship). This situation can cause
integrity problems. To circumvent the problems, create the linking table

270 Part III: Storing and Retrieving Data

COMP_USED to relate COMPONENT to PRODUCT. A component may appear
in many rows in the COMP_USED table, but each of those rows will reference
only one component (a one-to-many relationship). Similarly, a product may
appear in many rows in COMP_USED, but each row references only one prod-
uct (another one-to-many relationship). Adding the linking table transforms
a troublesome many-to-many relationship into two relatively simple one-to-
many relationships. This process of reducing the complexity of relationships
is one example of normalization.

Subqueries introduced by the keyword IN
One form of a nested query compares a single value with the set of values
returned by a SELECT statement. It uses the IN predicate with the following
syntax:

SELECT column_list
 FROM table
 WHERE expression IN (subquery) ;

The expression in the WHERE clause evaluates to a value. If that value is IN
the list returned by the subquery, then the WHERE clause returns a True
value. The specified columns from the table row being processed are added
to the result table. The subquery may reference the same table referenced by
the outer query, or it may reference a different table.

In the following example, I use Zetec’s database to demonstrate this type of
query. Assume that there’s a shortage of computer monitors in the computer
industry, so that when you run out of monitors, you can no longer deliver
products that include them. You want to know which products are affected.
Glancing gratefully at your own monitor, enter the following query:

SELECT Model
 FROM COMP_USED
 WHERE CompID IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’) ;

SQL processes the innermost query first, so it processes the COMPONENT
table, returning the value of CompID for every row where CompType is
‘Monitor’. The result is a list of the ID numbers of all monitors. The outer
query then compares the value of CompID in every row in the COMP_USED
table against the list. If the comparison is successful, the value of the Model
column for that row is added to the outer SELECT’s result table. The result
is a list of all product models that include a monitor. The following example
shows what happens when you run the query:

Model

CX3000

271 Chapter 12: Delving Deep with Nested Queries

CX3010
CX3020
MB3030
MX3020
MX3030

You now know which products will soon be out of stock. It’s time to go to the
sales force and tell them to slow down on promoting these products.

When you use this form of nested query, the subquery must specify a single
column, and that column’s data type must match the data type of the argu-
ment preceding the IN keyword.

	 I’m sure you remember the KISS principle. Keeping things simple is important
when you’re dealing with software of any kind, but it is especially impor-
tant when dealing with database software. Statements that include nested
SELECTs can be difficult to get right. One way to get them working the way
they should is to run the inner SELECT all by itself first and then verify that
the result you get is the result you expect. When you’re sure the inner SELECT
is functioning properly, you can enclose it in the outer part of the statement
and have a better chance that the whole thing will work as advertised.

Subqueries introduced by the keyword NOT IN
Just as you can introduce a subquery with the IN keyword, you can do the
opposite and introduce it with the NOT IN keywords. In fact, now is a great
time for Zetec management to make such a query. By using the query in the
preceding section, Zetec management found out what products not to sell.
That is valuable information, but it doesn’t pay the rent. What Zetec manage-
ment really wants to know is what products to sell. Management wants to
emphasize the sale of products that don’t contain monitors. A nested query
featuring a subquery introduced by the NOT IN keywords provides the
requested information:

SELECT Model
 FROM COMP_USED
 WHERE CompID NOT IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’)) ;

This query produces the following result:

Model

PX3040
PB3050
PX3040
PB3050

272 Part III: Storing and Retrieving Data

	 Worth noting is the fact that the result set contains duplicates. The duplica-
tion occurs because a product containing several components that are not
monitors has a row in the COMP_USED table for each component. The query
creates an entry in the result table for each of those rows.

In the example, the number of rows does not create a problem because the
result table is short. In the real world, however, such a result table may have
hundreds or thousands of rows. To avoid confusion, it’s best to eliminate
the duplicates. You can do so easily by adding the DISTINCT keyword to the
query. Only rows that are distinct (different) from all previously retrieved
rows are added to the result table:

SELECT DISTINCT Model
 FROM COMP_USED
 WHERE CompID NOT IN
 (SELECT CompID
 FROM COMPONENT
 WHERE CompType = ‘Monitor’)) ;

As expected, the result is as follows:

Model

PX3040
PB3050

Nested queries that return a single value
Introducing a subquery with one of the six comparison operators (=, <>,
<,<=, >, >=) is often useful. In such a case, the expression preceding the
operator evaluates to a single value, and the subquery following the operator
must also evaluate to a single value. An exception is the case of the quantified
comparison operator, which is a comparison operator followed by a quantifier
(ANY, SOME, or ALL).

To illustrate a case in which a subquery returns a single value, look at
another piece of Zetec Corporation’s database. It contains a CUSTOMER table
that holds information about the companies that buy Zetec products. It also
contains a CONTACT table that holds personal data about individuals at each
of Zetec’s customer organizations. The tables are structured as shown in
Tables 12-4 and 12-5.

273 Chapter 12: Delving Deep with Nested Queries

Table 12-4	 CUSTOMER Table
Column Type Constraints
CustID INTEGER PRIMARY KEY

Company CHAR (40) UNIQUE

CustAddress CHAR (30)

CustCity CHAR (20)

CustState CHAR (2)

CustZip CHAR (10)

CustPhone CHAR (12)

ModLevel INTEGER

Table 12-5	 CONTACT Table
Column Type Constraints
CustID INTEGER PRIMARY KEY

ContFName CHAR (10)

ContLName CHAR (16)

ContPhone CHAR (12)

ContInfo CHAR (50)

Say that you want to look at the contact information for Olympic Sales, but
you don’t remember that company’s CustID. Use a nested query like this
one to recover the information you want:

SELECT *
 FROM CONTACT
 WHERE CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

The result looks something like this:

CustID ContFName ContLName ContPhone ContInfo
------ --------- --------- --------- --------
 118 Jerry Attwater 505-876-3456 Will play
		 major role in
		 additive
		 manufacturing.

274 Part III: Storing and Retrieving Data

You can now call Jerry at Olympic and tell him about this month’s special
sale on 3D printers.

When you use a subquery in an “=” comparison, the subquery’s SELECT list
must specify a single column (CustID in the example). When the subquery
is executed, it must return a single row in order to have a single value for the
comparison.

In this example, I assume that the CUSTOMER table has only one row with
a Company value of ‘Olympic Sales’. The CREATE TABLE statement for
CUSTOMER specifies a UNIQUE constraint for Company, and this statement
guarantees that the subquery in the preceding example returns a single value
(or no value). Subqueries like the one in this example, however, are com-
monly used on columns that are not specified to be UNIQUE. In such cases,
you must rely on prior knowledge of the database contents for believing that
the column has no duplicates.

If more than one customer has a value of ‘Olympic Sales’ in the Company
column (perhaps in different states), the subquery raises an error.

If no customer with such a company name exists, the subquery is treated as if it
was null, and the comparison becomes unknown. In this case, the WHERE clause
returns no row (because it returns only rows with the condition True and filters
rows with the condition False or unknown). This would probably happen, for
example, if someone misspelled the Companyas ‘Olumpic Sales’.

Although the equal operator (=) is the most common, you can use any of
the other five comparison operators in a similar structure. For every row in
the table specified in the enclosing statement’s FROM clause, the single value
returned by the subquery is compared with the expression in the enclos-
ing statement’s WHERE clause. If the comparison gives a True value, a row is
added to the result table.

You can guarantee that a subquery will return a single value if you include
an aggregate function in it. Aggregate functions always return a single value.
(Aggregate functions are described in Chapter 3.) Of course, this way of return-
ing a single value is helpful only if you want the result of an aggregate function.

Suppose you are a Zetec salesperson and you need to earn a big commission
check to pay for some unexpected bills. You decide to concentrate on selling
Zetec’s most expensive product. You can find out what that product is with a
nested query:

SELECT Model, ProdName, ListPrice
 FROM PRODUCT
 WHERE ListPrice =
 (SELECT MAX(ListPrice)
 FROM PRODUCT) ;

275 Chapter 12: Delving Deep with Nested Queries

In the preceding nested query, both the subquery and the enclosing state-
ment operate on the same table. The subquery returns a single value: the
maximum list price in the PRODUCT table. The outer query retrieves all rows
from the PRODUCT table that have that list price.

The next example shows a comparison subquery that uses a comparison
operator other than =:

SELECT Model, ProdName, ListPrice
 FROM PRODUCT
 WHERE ListPrice <
 (SELECT AVG(ListPrice)
 FROM PRODUCT) ;

The subquery returns a single value: the average list price in the PRODUCT
table. The outer query retrieves all rows from the PRODUCT table that have a
lower list price than the average list price.

	 In the original SQL standard, a comparison could have only one subquery, and
it had to be on the right side of the comparison. SQL:1999 allowed either or
both operands of the comparison to be subqueries, and later versions of SQL
retain that expansion of capability.

The ALL, SOME, and ANY quantifiers
Another way to make sure that a subquery returns a single value is to intro-
duce it with a quantified comparison operator. The universal quantifier ALL,
and the existential quantifiers SOME and ANY, when combined with a compari-
son operator, process the list returned by a subquery, reducing it to a single
value.

You’ll see how these quantifiers affect a comparison by looking at the base-
ball pitchers’ complete game database from Chapter 11, which is listed next.

The contents of the two tables are given by the following two queries:

SELECT * FROM NATIONAL

FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

SELECT * FROM AMERICAN

276 Part III: Storing and Retrieving Data

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

The presumption is that the pitchers with the most complete games should be
in the American League because of the presence of designated hitters in that
league. One way to verify this presumption is to build a query that returns all
American League pitchers who have thrown more complete games than all the
National League pitchers. The query can be formulated as follows:

SELECT *
 FROM AMERICAN
 WHERE CompleteGames > ALL
 (SELECT CompleteGames FROM NATIONAL) ;

This is the result:

FirstName LastName CompleteGames
---------- --------- --------------
Allie Reynolds 14

The subquery (SELECT CompleteGames FROM NATIONAL) returns the
values in the CompleteGames column for all National League pitchers. The
> ALL quantifier says to return only those values of CompleteGames in the
AMERICAN table that are greater than each of the values returned by the sub-
query. This condition translates into “greater than the highest value returned
by the subquery.” In this case, the highest value returned by the subquery is
13 (Sandy Koufax). The only row in the AMERICAN table higher than that is
Allie Reynolds’s record, with 14 complete games.

What if your initial presumption was wrong? What if the major-league leader
in complete games was a National League pitcher, in spite of the fact that the
National League has no designated hitter? If that was the case, the query

SELECT *
 FROM AMERICAN
 WHERE CompleteGames > ALL
 (SELECT CompleteGames FROM NATIONAL) ;

would return a warning that no rows satisfy the query’s conditions — mean-
ing that no American League pitcher has thrown more complete games than
the pitcher who has thrown the most complete games in the National League.

277 Chapter 12: Delving Deep with Nested Queries

Nested queries that are an existence test
A query returns data from all table rows that satisfy the query’s condi-
tions. Sometimes many rows are returned; sometimes only one comes back.
Sometimes none of the rows in the table satisfy the conditions, and no
rows are returned. You can use the EXISTS and NOT EXISTS predicates
to introduce a subquery. That structure tells you whether any rows in the
table located in the subquery’s FROM clause meet the conditions in its WHERE
clause.

	 Subqueries introduced with EXISTS and NOT EXISTS are fundamentally
different from the other subqueries in this chapter so far. In all the previous
cases, SQL first executes the subquery and then applies that operation’s result
to the enclosing statement. EXISTS and NOT EXISTS subqueries, on the
other hand, are examples of correlated subqueries.

A correlated subquery first finds the table and row specified by the enclosing
statement and then executes the subquery on the row in the subquery’s table
that correlates with the current row of the enclosing statement’s table.

The subquery either returns one or more rows or it returns none. If it returns
at least one row, the EXISTS predicate succeeds (see the following section),
and the enclosing statement performs its action. In the same circumstances,
the NOT EXISTS predicate fails (see the section after that), and the enclos-
ing statement does not perform its action. After one row of the enclosing
statement’s table is processed, the same operation is performed on the next
row. This action is repeated until every row in the enclosing statement’s
table has been processed.

EXISTS
Suppose you are a salesperson for Zetec Corporation and you want to call
your primary contact people at all of Zetec’s customer organizations in
California. Try the following query:

SELECT *
 FROM CONTACT
 WHERE EXISTS
 (SELECT *
 FROM CUSTOMER
 WHERE CustState = ‘CA’
 AND CONTACT.CustID = CUSTOMER.CustID) ;

Notice the reference to CONTACT.CustID, which is referencing a column
from the outer query and comparing it with another column, CUSTOMER.
CustID, from the inner query. For each candidate row of the outer query,

278 Part III: Storing and Retrieving Data

you evaluate the inner query, using the CustID value from the current
CONTACT row of the outer query in the WHERE clause of the inner query.

Here’s what happens:

	 1.	 The CustID column links the CONTACT table to the CUSTOMER table.

	 2.	 SQL looks at the first record in the CONTACT table, finds the row in
the CUSTOMER table that has the same CustID, and checks that row’s
CustState field.

	 3.	 If CUSTOMER.CustState = ‘CA’, the current CONTACT row is added to
the result table.

	 4.	 The next CONTACT record is then processed in the same way, and so on,
until the entire CONTACT table has been processed.

	 5.	 Because the query specifies SELECT * FROM CONTACT, all the contact
table’s fields are returned, including the contact’s name and phone
number.

NOT EXISTS
In the previous example, the Zetec salesperson wants to know the names
and numbers of the contact people of all the customers in California. Imagine
that a second salesperson is responsible for all of the United States except
California. She can retrieve her contact people by using NOT EXISTS in a
query similar to the preceding one:

SELECT *
 FROM CONTACT
 WHERE NOT EXISTS
 (SELECT *
 FROM CUSTOMER
 WHERE CustState = ‘CA’
 AND CONTACT.CustID = CUSTOMER.CustID) ;

Every row in CONTACT for which the subquery does not return a row is
added to the result table.

Other correlated subqueries
As noted in a previous section of this chapter, subqueries introduced by IN
or by a comparison operator need not be correlated queries, but they can be.

Correlated subqueries introduced with IN
In the earlier section “Subqueries introduced by the keyword IN,” I discuss
how a noncorrelated subquery can be used with the IN predicate. To show

279 Chapter 12: Delving Deep with Nested Queries

how a correlated subquery may use the IN predicate, ask the same question
that came up with the EXISTS predicate: What are the names and phone
numbers of the contacts at all of Zetec’s customers in California? You can
answer this question with a correlated IN subquery:

SELECT *
 FROM CONTACT
 WHERE ‘CA’ IN
 (SELECT CustState
 FROM CUSTOMER
 WHERE CONTACT.CustID = CUSTOMER.CustID) ;

The statement is evaluated for each record in the CONTACT table. If, for
that record, the CustID numbers in CONTACT and CUSTOMER match, then
the value of CUSTOMER.CustState is compared to ‘CA’. The result of the
subquery is a list that contains, at most, one element. If that one element is
‘CA’, the WHERE clause of the enclosing statement is satisfied, and a row is
added to the query’s result table.

Subqueries introduced with comparison operators
A correlated subquery can also be introduced by one of the six comparison
operators, as shown in the next example.

Zetec pays bonuses to its salespeople based on their total monthly sales
volume. The higher the volume is, the higher the bonus percentage is. The
bonus percentage list is kept in the BONUSRATE table:

MinAmount MaxAmount BonusPct
--------- --------- --------
 0.00 24999.99 0.
 25000.00 49999.99 0.1
 50000.00 99999.99 0.2
100000.00 249999.99 0.3
250000.00 499999.99 0.4
500000.00 749999.99 0.5
750000.00 999999.99 0.6

If a person’s monthly sales are between $100,000.00 and $249,999.99, the
bonus is 0.3 percent of sales.

Sales are recorded in a transaction master table named TRANSMASTER:

TRANSMASTER

Column Type Constraints
------ ---- -----------
TransID INTEGER PRIMARY KEY
CustID INTEGER FOREIGN KEY
EmpID INTEGER FOREIGN KEY

280 Part III: Storing and Retrieving Data

TransDate DATE
NetAmount NUMERIC
Freight NUMERIC
Tax NUMERIC
InvoiceTotal NUMERIC

Sales bonuses are based on the sum of the NetAmount field for all of a per-
son’s transactions in the month. You can find any person’s bonus rate with a
correlated subquery that uses comparison operators:

SELECT BonusPct
 FROM BONUSRATE
 WHERE MinAmount <=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID = 133)
 AND MaxAmount >=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID = 133) ;

This query is interesting in that it contains two subqueries, making use of
the logical connective AND. The subqueries use the SUM aggregate opera-
tor, which returns a single value: the total monthly sales of employee
number 133. That value is then compared against the MinAmount and the
MaxAmount columns in the BONUSRATE table, producing the bonus rate for
that employee.

If you had not known the EmpID but had known the EmplName, you could
arrive at the same answer with a more complex query:

SELECT BonusPct
 FROM BONUSRATE
 WHERE MinAmount <=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID =
 (SELECT EmpID
 FROM EMPLOYEE
 WHERE EmplName = ‘Coffin’))
 AND MaxAmount >=
 (SELECT SUM (NetAmount)
 FROM TRANSMASTER
 WHERE EmpID =
 (SELECT EmpID
 FROM EMPLOYEE
 WHERE EmplName = ‘Coffin’));

This example uses subqueries nested within subqueries, which, in turn, are
nested within an enclosing query to arrive at the bonus rate for the employee
named Coffin. This structure works only if you know for sure that the

281 Chapter 12: Delving Deep with Nested Queries

company has one, and only one, employee whose last name is Coffin. If you
know that more than one employee has the same last name, you can add
terms to the WHERE clause of the innermost subquery until you’re sure that
only one row of the EMPLOYEE table is selected.

Subqueries in a HAVING clause
You can have a correlated subquery in a HAVING clause just as you can in
a WHERE clause. As I mention in Chapter 10, a HAVING clause is usually pre-
ceded by a GROUP BY clause. The HAVING clause acts as a filter to restrict
the groups created by the GROUP BY clause. Groups that don’t satisfy the
condition of the HAVING clause are not included in the result. When used this
way, the HAVING clause is evaluated for each group created by the GROUP
BY clause.

	 In the absence of a GROUP BY clause, the HAVING clause is evaluated for
the set of rows passed by the WHERE clause — which is considered to be a
single group. If neither a WHERE clause nor a GROUP BY clause is present, the
HAVING clause is evaluated for the entire table:

SELECT TM1.EmpID
 FROM TRANSMASTER TM1
 GROUP BY TM1.Department
 HAVING MAX (TM1.NetAmount) >= ALL
 (SELECT 2 * AVG (TM2.NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.EmpID <> TM2.EmpID) ;

This query uses two aliases for the same table, enabling you to retrieve the
EmpID number of all salespeople who had a sale of at least twice the average
sale of all the other salespeople. The query works as follows:

	 1.	 The outer query groups TRANSMASTER rows by the employees’
department. This is done with the SELECT, FROM, and GROUP BY
clauses.

	 2.	 The HAVING clause filters these groups. For each group, it calculates the
MAX of the NetAmount column for the rows in that group.

	 3.	 The inner query evaluates twice the average NetAmount from all rows
of TRANSMASTER whose EmpID is different from the EmpID of the cur-
rent group of the outer query.

		 In the last line, you have to reference two different EmpID values — so
you use different aliases for TRANSMASTER in the FROM clauses of the
outer and inner queries.

	 4.	 You use those aliases in the comparison of the query’s last line to indi-
cate that you’re referencing both the EmpID from the current row of the
inner subquery (TM2.EmpID) and the EmpID from the current group of
the outer subquery (TM1.EmpID).

282 Part III: Storing and Retrieving Data

UPDATE, DELETE, and INSERT
In addition to SELECT statements, UPDATE, DELETE, and INSERT statements
can also include WHERE clauses. Those WHERE clauses can contain subqueries
in the same way that SELECT statements’WHERE clauses do.

For example, Zetec has just made a volume purchase deal with Olympic Sales
and wants to provide Olympic with a retroactive 10 percent credit for all its pur-
chases in the last month. You can give this credit with an UPDATE statement:

UPDATE TRANSMASTER
 SET NetAmount = NetAmount * 0.9
 WHERE SaleDate > (CurrentDate – 30) DAY AND CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

You can also have a correlated subquery in an UPDATE statement. Suppose
the CUSTOMER table has a column LastMonthsMax, and Zetec wants to give
such a credit for purchases that exceed LastMonthsMax for the customer:

UPDATE TRANSMASTER TM
 SET NetAmount = NetAmount * 0.9
 WHERE NetAmount>
 (SELECT LastMonthsMax
 FROM CUSTOMER C
 WHERE C.CustID = TM.CustID) ;

Note that this subquery is correlated: The WHERE clause in the last line refer-
ences both the CustID of the CUSTOMER row from the subquery and the
CustID of the current TRANSMASTER row that is a candidate for updating.

A subquery in an UPDATE statement can also reference the table that is being
updated. Suppose that Zetec wants to give a 10 percent credit to customers
whose purchases have exceeded $10,000:

UPDATE TRANSMASTER TM1
 SET NetAmount = NetAmount * 0.9
 WHERE 10000 < (SELECT SUM(NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.CustID = TM2.CustID);

The inner subquery calculates the SUM of the NetAmount column for all
TRANSMASTER rows for the same customer. What does this mean? Suppose
the customer with CustID = 37 has four rows in TRANSMASTER with
values for NetAmount: 3000, 5000, 2000, and 1000. The SUM of NetAmount
for this CustID is 11000.

The order in which the UPDATE statement processes the rows is defined
by your implementation and is generally not predictable. The order may

283 Chapter 12: Delving Deep with Nested Queries

differ depending on how the rows are arranged on the disk. Assume that the
implementation processes the rows for this CustID in this order: first the
TRANSMASTER with a NetAmount of 3000, then the one with NetAmount=
5000, and so on. After the first three rows for CustID 37 have been updated,
their NetAmount values are 2700 (90 percent of $3,000), 4500 (90 percent
of $5,000), and 1800 (90 percent of $2,000). Then, when you process the last
TRANSMASTER row for CustID 37 (whose NetAmount is 1000), the SUM
returned by the subquery would seem to be 10000 — that is, the SUM of the
new NetAmount values of the first three rows for CustID 37, and the old
NetAmount value of the last row for CustID 37. Thus it would seem that the
last row for CustID 37 isn’t updated, because the comparison with that SUM
is not True — after all, 10000 is not less than 10000. But that is not how the
UPDATE statement is defined when a subquery references the table that is being
updated.

	 All evaluations of subqueries in an UPDATE statement reference the old values
of the table— the ones that are being updated. In the preceding UPDATE for
CustID 37, the subquery returns 11000 — the original SUM.

The subquery in a WHERE clause operates the same as a SELECT statement or
an UPDATE statement. The same is true for DELETE and INSERT. To delete all
of Olympic’s transactions, use this statement:

DELETE FROM TRANSMASTER
 WHERE CustID =
 (SELECT CustID
 FROM CUSTOMER
 WHERE Company = ‘Olympic Sales’) ;

As with UPDATE, DELETE subqueries can also be correlated and can also ref-
erence the table being deleted. The rules are similar to the rules for UPDATE
subqueries. Suppose you want to delete all rows from TRANSMASTER for
customers whose total NetAmount is larger than $10,000:

DELETE FROM TRANSMASTER TM1
 WHERE 10000 < (SELECT SUM(NetAmount)
 FROM TRANSMASTER TM2
 WHERE TM1.CustID = TM2.CustID) ;

This query deletes all rows from TRANSMASTER that have CustID 37, as
well as any other customers with purchases exceeding $10,000. All references
to TRANSMASTER in the subquery denote the contents of TRANSMASTER
before any deletes by the current statement. So even when you’re deleting
the last TRANSMASTER row for CustID 37, the subquery is evaluated on
the original TRANSMASTER table and returns 11000.

	 When you update, delete, or insert database records, you risk making a
table’s data inconsistent with other tables in the database. Such an inconsis-
tency is called a modification anomaly, discussed in Chapter 5. If you delete
TRANSMASTER records and a TRANSDETAIL table depends on TRANSMASTER,

284 Part III: Storing and Retrieving Data

you must delete the corresponding records from TRANSDETAIL, too. This oper-
ation is called a cascading delete, because the deletion of a parent record must
cascade to its associated child records. Otherwise the undeleted child records
become orphans. In this case, they would be invoice detail lines that are in
limbo because they are no longer connected to an invoice record.

If your implementation of SQL doesn’t support cascading deletes, you must
do the deletions yourself. In this case, delete the appropriate records from the
child table before deleting the corresponding record from the parent. That
way, you don’t have orphan records in the child table, even for a second.

Retrieving changes with pipelined DML
In the preceding section, I show how an UPDATE, DELETE, or INSERT
statement can include a nested SELECT statement within a WHERE clause.
SQL:2011 introduces a related capability, in which a data manipulation com-
mand (such as UPDATE, INSERT, DELETE, or MERGE statements) can be
nested within a SELECT statement. This capability is called pipelined DML.

One way to look at a data change operation is to envision a table before it is
changed with a DELETE, INSERT, or UPDATE operation. You could call the
table before the change the old table and the table after the change, the new
table. During the data change operation, auxiliary tables, called delta tables,
are created. A DELETE operation creates an old delta table, which contains
the rows to be deleted. An INSERT operation creates a new delta table, which
contains the rows to be inserted. An UPDATE operation would create both an
old and a new delta table, the old for the rows being replaced and the new for
the rows replacing them.

With pipelined DML, you can retrieve the information in the delta tables.
Suppose you want to delete from your product line all products with
ProductIDs between 1000 and 1399, and you want a record of exactly which
products in that range are deleted. You could use the following code:

SELECT Oldtable.ProductID
 FROM OLD TABLE (DELETE FROM Product
 WHERE ProductID BETWEEN 1000 AND 1399)
 AS Oldtable ;

In this example, the keywords OLD TABLE specify that the result of the
SELECT is coming from the old delta table. The result is the list of ProductID
numbers for the products that are being deleted.

Similarly, you could retrieve a list from the new delta table by using the NEW
TABLE keywords, which displays the Product ID numbers of rows inserted
by an INSERT operation or updated by an UPDATE operation. Because an
UPDATE operation created both an old delta table and a new delta table, you
can retrieve the contents of either or both by using pipelined DML.

Chapter 13

Recursive Queries
In This Chapter
▶	Understanding recursive processing
▶	Defining recursive queries
▶	Finding ways to use recursive queries

O
ne of the major criticisms of SQL, up through and including SQL-92,
was its inability to implement recursive processing. Many important

problems that are difficult to solve by other means yield readily to recursive
solutions. Extensions included in SQL:1999 allow recursive queries — which
greatly expand the language’s power. If your SQL implementation includes
the recursion extensions, you can efficiently solve a large new class of prob-
lems. However, because recursion is not a part of core SQL, many implemen-
tations currently available do not include it.

What Is Recursion?
Recursion is a feature that’s been around for years in programming languages
such as Logo, LISP, and C++. In these languages, you can define a function (a
set of one or more commands) that performs a specific operation. The main
program invokes the function by issuing a command called a function call. If
the function calls itself as a part of its operation, you have the simplest form
of recursion.

A simple program that uses recursion in one of its functions provides an illus-
tration of the joys and pitfalls of recursion. The following program, written in
C++, draws a spiral on the computer screen. It assumes that the drawing tool is
initially pointing toward the top of the screen, and it includes three functions:

	 ✓	The function line(n) draws a line n units long.

	 ✓	The function left_turn(d) rotates the drawing tool d degrees
counterclockwise.

286 Part III: Storing and Retrieving Data

	 ✓	You can define the function spiral(segment) as follows:
void spiral(int segment)
{
 line(segment)
 left_turn(90)
 spiral(segment + 1)
} ;

If you call spiral(1) from the main program, the following actions take
place:

spiral(1) draws a line one unit long toward the top of the screen.

spiral(1) turns left 90 degrees.

spiral(1) calls spiral(2).

spiral(2) draws a line two units long toward the left side of the screen.

spiral(2) turns left 90 degrees.

spiral(2) calls spiral(3).

And so on. . . .

Eventually the program generates the spiral shown in Figure 13-1.

	

Figure 13-1:
Result of

calling
spiral(1).

	

287 Chapter 13: Recursive Queries

Houston, we have a problem
Well, okay, the situation here is not as serious as it was for Apollo 13 when
the main oxygen tank exploded while the spacecraft was en route to the
moon. Your problem is that the spiral-drawing program keeps calling itself
and drawing longer and longer lines. It will continue to do that until the
computer executing it runs out of resources and (if you’re lucky) puts an
obnoxious error message on the screen. If you’re unlucky, the computer just
crashes.

Failure is not an option
The scenario described in the previous section shows one of the dangers of
using recursion. A program written to call itself invokes a new instance of
itself — which in turn calls yet another instance, ad infinitum. This is gener-
ally not what you want. (Think of a certain cartoon mouse in a wizard’s hat
trying to stop all those marching broomsticks. . . .)

To address this problem, programmers include a termination condition within
the recursive function — a limit on how deep the recursion can go — so the
program performs the desired action and then terminates gracefully. You can
include a termination condition in your spiral-drawing program to save com-
puter resources and prevent dizziness in programmers:

void spiral2(int segment)
{
 if (segment <= 10)
 {
 line(segment)
 left_turn(90)
 spiral2(segment + 1)
 }
} ;

When you call spiral2(1), it executes and then (recursively) calls itself
until the value of segment exceeds 10. At the point where segment equals
11, the if (segment <=10) construct returns a False value, and the code
within the interior braces is skipped. Control returns to the previous invoca-
tion of spiral2 and, from there, returns all the way up to the first invoca-
tion, after which the program terminates. Figure 13-2 shows the sequence of
calls and returns that occur.

288 Part III: Storing and Retrieving Data

	

Figure 13-2:
Descending

through
recursive
calls, and

then climb-
ing back up

to terminate.
	

Every time a function calls itself, it takes you one level farther away from
the main program that was the starting point of the operation. For the main
program to continue, the deepest iteration must return control to the itera-
tion that called it. That iteration will have to do likewise, returning all the way
back to the main program that made the first call to the recursive function.

	 Recursion is a powerful tool for repeatedly executing code when you don’t
know at the outset how many times the code should be repeated. It’s ideal for
searching through tree-shaped structures such as family trees, complex elec-
tronic circuits, or multilevel distribution networks.

What Is a Recursive Query?
A recursive query is a query that is functionally dependent upon itself. The
simplest form of such functional dependence works like this: Query Q1
invokes itself in the body of the query expression. A more complex case is
where query Q1 depends on query Q2, which in turn depends on query Q1.
There is still a functional dependency, and recursion is still involved, no
matter how many queries lie between the first and the second invocation of
the same query. If that sounds weird, don’t worry: Here’s how it works . . .

289 Chapter 13: Recursive Queries

Where Might You Use a Recursive Query?
Recursive queries may help save you time and frustration in dealing with
various kinds of problems. Suppose, for example, that you have a pass that
gives you free air travel on any flight of the (fictional) Vannevar Airlines. Way
cool. The next question you ask is, “Where can I go for free?” The FLIGHT
table contains all the flights that Vannevar runs. Table 13-1 shows the flight
number and the source and destination of each flight.

Table 13-1	 Flights Offered by Vannevar Airlines
Flight No. Source Destination
3141 Portland Orange County
2173 Portland Charlotte
623 Portland Daytona Beach
5440 Orange County Montgomery
221 Charlotte Memphis
32 Memphis Champaign
981 Montgomery Memphis

Figure 13-3 illustrates the routes on a map of the United States.

	

Figure 13-3:
Route

map for
Vannevar

Airlines.
	

290 Part III: Storing and Retrieving Data

To get started on your vacation plan, create a database table for FLIGHT by
using SQL as follows:

CREATE TABLE FLIGHT (
 FlightNo INTEGER NOT NULL,
 Source CHAR (30),
 Destination CHAR (30));

After the table is created, you can populate it with the data shown in Table 13-1.

Suppose you’re starting from Portland and you want to visit a friend in
Montgomery. Naturally you wonder, “What cities can I reach via Vannevar
if I start from Portland?” and “What cities can I reach via the same airline if
I start from Montgomery?” Some cities are reachable in one hop; others are
not. Some might require two or more hops. You can find all the cities that
you can get to via Vannevar, starting from any given city on its route map —
but if you do it one query at a time, you’re . . .

Querying the hard way
To find out what you want to know — provided you have the time and
patience — you can make a series of queries, first using Portland as the
starting city:

SELECT Destination FROM FLIGHT WHERE Source = ‘Portland’;

The first query returns Orange County, Charlotte, and Daytona Beach.
Your second query uses the first of these results as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ‘Orange
County’;

The second query returns Montgomery. Your third query returns to the
results of the first query and uses the second result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ‘Charlotte’;

The third query returns Memphis. Your fourth query goes back to the results
of the first query and uses the remaining result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ‘Daytona
Beach’;

Sorry, the fourth query returns a null result because Vannevar offers no outgo-
ing flights from Daytona Beach. But the second query returned another city
(Montgomery) as a possible starting point, so your fifth query uses that result:

SELECT Destination FROM FLIGHT WHERE Source = ‘Montgomery’;

291 Chapter 13: Recursive Queries

This query returns Memphis, but you already know it’s among the cities you
can get to (in this case, via Charlotte). But you go ahead and try this latest
result as a starting point for another query:

SELECT Destination FROM FLIGHT WHERE Source = ‘Memphis’;

The query returns Champaign — which you can add to the list of reachable
cities (even if you have to get there in two hops). As long as you’re consider-
ing multiple hops, you plug in Champaign as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = ‘Champaign’;

Oops. This query returns a null value; Vannevar offers no outgoing flights
from Champaign. (Seven queries so far. Are you fidgeting yet?)

Vannevar doesn’t offer a flight out of Daytona Beach, either, so if you go
there, you’re stuck — which might not be a hardship if it’s Spring Break week.
(Of course, if you use up a week running individual queries to find out where
to go next, you might get a worse headache than you’d get from a week of
partying.) Or you might get stuck in Champaign — in which case, you could
enroll in the University of Illinois and take a few database courses.

Granted, this method will (eventually) answer the question, “What cities are
reachable from Portland?” But running one query after another, making each
one dependent on the results of a previous query, is complicated, time-con-
suming, and fidgety.

Saving time with a recursive query
A simpler way to get the info you need is to craft a single recursive query that
does the entire job in one operation. Here’s the syntax for such a query:

WITH RECURSIVE
 REACHABLEFROM (Source, Destination)
 AS (SELECT Source, Destination
 FROM FLIGHT
 UNION
 SELECT in.Source, out.Destination
 FROM REACHABLEFROM in, FLIGHT out
 WHERE in.Destination = out.Source
)
 SELECT * FROM REACHABLEFROM
 WHERE Source = ‘Portland’;

The first time through the recursion, FLIGHT has seven rows and
REACHABLEFROM has none. The UNION takes the seven rows from FLIGHT
and copies them into REACHABLEFROM. At this point, REACHABLEFROM has
the data shown in Table 13-2.

292 Part III: Storing and Retrieving Data

	 As I mention earlier, recursion is not a part of core SQL, and thus some imple-
mentations may not include it.

Table 13-2	 REACHABLEFROM After One Pass through Recursion
Source Destination
Portland Orange County
Portland Charlotte
Portland Daytona Beach
Orange County Montgomery
Charlotte Memphis
Memphis Champaign
Montgomery Memphis

The second time through the recursion, things start to get interest-
ing. The WHERE clause (WHERE in.Destination = out.Source)
means that you’re looking only at rows where the Destination field
of the REACHABLEFROM table equals the Source field of the FLIGHT
table. For those rows, you’re taking two fields — the Source field from
REACHABLEFROM and the Destination field from FLIGHT — and adding
them to REACHABLEFROM as a new row. Table 13-3 shows the result of this
iteration of the recursion.

Table 13-3	 REACHABLEFROM After Two Passes through
	 the Recursion
Source Destination
Portland Orange County
Portland Charlotte
Portland Daytona Beach
Orange County Montgomery
Charlotte Memphis
Memphis Champaign
Montgomery Memphis
Portland Montgomery
Portland Memphis
Orange County Memphis
Charlotte Champaign

293 Chapter 13: Recursive Queries

The results are looking more useful. REACHABLEFROM now contains all the
Destination cities that are reachable from any Source city in two hops or
less. Next, the recursion processes three-hop trips, and so on, until all pos-
sible destination cities have been reached.

After the recursion is complete, the third and final SELECT statement (which
is outside the recursion) extracts from REACHABLEFROM only those cities
you can reach from Portland by flying Vannevar. In this example, all six other
cities are reachable from Portland — in few enough hops that you won’t feel
like you’re traveling by pogo stick.

	 If you scrutinize the code in the recursive query, it doesn’t look any simpler
than the seven individual queries it replaces. It does, however, have two
advantages:

	 ✓	When you set it in motion, it completes the entire operation without any
further intervention.

	 ✓	It can do the job fast.

Imagine a real-world airline with many more cities on its route map. The
more possible destinations that are available, the greater the advantage of
using the recursive method.

What makes this query recursive? The fact that you’re defining
REACHABLEFROM in terms of itself. The recursive part of the definition is the
second SELECT statement, the one just after the UNION. REACHABLEFROM
is a temporary table that fills with data progressively as the recursion pro-
ceeds. Processing continues until all possible destinations have been added
to REACHABLEFROM. Any duplicates are eliminated, because the UNION
operator doesn’t add duplicates to the result table. After the recursion has
finished running, REACHABLEFROM contains all the cities that are reachable
from any starting city. The third and final SELECT statement returns only
those destination cities that you can reach from Portland. Bon voyage.

Where Else Might You Use
a Recursive Query?

Any problem that you can lay out as a treelike structure can potentially be
solved by using a recursive query. The classic industrial application is mate-
rials processing (the process of turning raw materials into finished goods).
Suppose your company is building a new gasoline-electric hybrid car. Such
a machine is built of subassemblies (engine, batteries, and so on), which are
constructed from smaller subassemblies (crankshaft, electrodes, and so on),
which are made of even smaller parts.

294 Part III: Storing and Retrieving Data

Keeping track of all the various parts can be difficult in a relational database
that does not use recursion. Recursion enables you to start with the com-
plete machine and ferret your way along any path to get to the smallest part.
Want to find out the specs for the fastening screw that holds the clamp to the
negative electrode of the auxiliary battery? The WITH RECURSIVE structure
gives SQL the capability to address such a brass-tacks-level problem.

	 Recursion is also a natural for what-if processing. In the Vannevar Airlines
example, what if management discontinues service from Portland to
Charlotte? How does that affect the cities that are reachable from Portland? A
recursive query quickly gives you the answer.

Part IV
Controlling Operations

	

Visit www.dummies.com/extras/sql for great Dummies content online.

In this part…
	 ✓	 Controlling access
	 ✓	 Protecting data from corruption
	 ✓	 Applying procedural languages
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 14

Providing Database Security
In This Chapter
▶	Controlling access to database tables
▶	Deciding who has access to what
▶	Granting access privileges
▶	Taking access privileges away
▶	Defeating attempts at unauthorized access
▶	Passing on the power to grant privileges

A
 system administrator must have special knowledge of how a database
works. That’s why, in preceding chapters, I discuss the parts of SQL

that create databases and manipulate data — and (in Chapter 3) introduce
SQL’s facilities for protecting databases from harm or misuse. In this chap-
ter, I go into more depth on the subject of misuse — and preventing it by the
savvy use of SQL features.

The person in charge of a database can determine who has access to the
database — and can set users’ access levels, granting or revoking access to
aspects of the system. The system administrator can even grant or revoke
the right to grant and revoke access privileges. If you use them correctly, the
security tools that SQL provides are powerful protectors of important data.
Used incorrectly, these same tools can tie up the efforts of legitimate users in
a big knot of red tape when they’re just trying to do their jobs.

Because databases often contain sensitive information that you shouldn’t
make available to everyone, SQL provides different levels of access — from
complete to none, with several levels in between. By controlling which opera-
tions each authorized user can perform, the database administrator can
make available all the data that the users need to do their jobs — but restrict
access to parts of the database that not everyone should see or change.

298 Part IV: Controlling Operations

The SQL Data Control Language
The SQL statements that you use to create databases form a group known as
the Data Definition Language (DDL). After you create a database, you can use
another set of SQL statements — known collectively as the Data Manipulation
Language (DML) — to add, change, and remove data from the database. SQL
includes additional statements that don’t fall into either of these categories.
Programmers sometimes refer to these statements collectively as the Data
Control Language (DCL). DCL statements primarily protect the database from
unauthorized access, from harmful interaction among multiple database
users, and from power failures and equipment malfunctions. In this chapter, I
discuss protection from unauthorized access.

User Access Levels
SQL provides controlled access to nine database-management functions:

	 ✓	Creating, seeing, modifying, and deleting: These functions correspond
to the INSERT, SELECT, UPDATE, and DELETE operations that I discuss
in Chapter 6.

	 ✓	Referencing: Using the REFERENCES keyword (which I discuss in
Chapters 3 and 5) involves applying referential integrity constraints to a
table that depends on another table in the database.

	 ✓	Using: The USAGE keyword pertains to domains, character sets, colla-
tions, and translations. (I define domains, character sets, collations, and
translations in Chapter 5.)

	 ✓	Defining new data types: You deal with user-defined type names with
the UNDER keyword.

	 ✓	Responding to an event: The use of the TRIGGER keyword causes an
SQL statement or statement block to be executed whenever a predeter-
mined event occurs.

	 ✓	Executing: Using the EXECUTE keyword causes a routine to be executed.

The database administrator
In most installations with more than a few users, the supreme database
authority is the database administrator (DBA). The DBA has all rights and
privileges to all aspects of the database. Being a DBA can give you a feeling
of power — and responsibility. With all that power at your disposal, you can

299 Chapter 14: Providing Database Security

easily mess up your database and destroy thousands of hours of work. DBAs
must think clearly and carefully about the consequences of every action they
perform.

The DBA not only has all rights to the database, but also controls the rights
that other users have. Thus, highly trusted individuals can access more func-
tions — and, perhaps, more tables — than can the majority of users.

A surefire way to become a DBA is to install the database management
system. The person that installs a database is automatically a DBA. The
installation manual gives you an account, or login, and a password. That login
identifies you as a specially privileged user. Sometimes, the system calls this
privileged user the DBA, sometimes the system administrator, and sometimes
the super user (sorry, no cape and boots provided). As your first official
act after logging in, you should change your password from the default to a
secret one of your own.

	 If you don’t change the password, then anyone who reads the manual can also
log in with full DBA privileges. After you change the password, only people
who know the new password can log in as DBA. I suggest that you share the
new DBA password with only a small number of highly trusted people. After
all, a falling meteor could strike you tomorrow; you could win the lottery; or
you may become unavailable to the company in some other way. Your col-
leagues must be able to carry on in your absence. Anyone who knows the DBA
login and password becomes the DBA after using that information to access
the system.

	 If you have DBA privileges, log in as DBA only if you need to perform a specific
task that requires DBA privileges. After you finish, log out. For routine work,
log in by using your own personal login ID and password. This approach may
prevent you from making mistakes that have serious consequences for other
users’ tables (as well as for your own).

Database object owners
Another class of privileged user, along with the DBA, is the database object
owner. Tables and views, for example, are database objects. Any user who
creates such an object can specify its owner. A table owner enjoys every
possible privilege associated with that table, including the privilege to grant
access to the table to other people. Because you can base views on underly-
ing tables, someone other than a table’s owner can create a view based on
that table. However, the view owner only receives privileges that he or she
has for the underlying table. Bottom line: A user can’t circumvent the protec-
tion on another user’s table simply by creating a view based on that table.

300 Part IV: Controlling Operations

The public
In network terms, “the public” consists of all users who are not specially
privileged users (that is, either DBAs or object owners) and to whom a privi-
leged user hasn’t specifically granted access rights. If a privileged user grants
certain access rights to PUBLIC, then everyone who can access the system
gains those rights.

In most installations, a hierarchy of user privilege exists, in which the DBA
stands at the highest level and the public at the lowest. Figure 14-1 illustrates
the privilege hierarchy.

	

Figure 14-1:
The access-

privilege
hierarchy.

	

Granting Privileges to Users
The DBA, by virtue of his or her position, has all privileges on all objects in
the database. After all, the owner of an object has all privileges with respect
to that object — and the database itself is an object. No one else has any
privileges with respect to any object — unless someone who already has
those privileges (and the authority to pass them on) specifically grants the
privileges. You grant privileges to someone by using the GRANT statement,
which has the following syntax:

GRANT privilege-list
 ON object
 TO user-list
 [WITH HIERARCHY OPTION]
 [WITH GRANT OPTION]
 [GRANTED BY grantor] ;

301 Chapter 14: Providing Database Security

In this statement, privilege-list is defined as follows:

privilege [, privilege] ...

or

ALL PRIVILEGES

Here privilege is defined as follows:

SELECT
| DELETE
| INSERT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| REFERENCES [(column-name [, column-name]...)]
| USAGE
| UNDER
| TRIGGER
| EXECUTE

In the original statement, object is defined as follows:

[TABLE] <table name>
| DOMAIN <domain name>
| COLLATION <collation name>
| CHARACTER SET <character set name>
| TRANSLATION <transliteration name>
| TYPE <schema-resolved user-defined type name>
| SEQUENCE <sequence generator name>
| <specific routine designator>

And user-list in the statement is defined as follows:

 login-ID [, login-ID]...
| PUBLIC

The grantor is either the CURRENT_USER or theCURRENT_ROLE.

	 The preceding syntax considers a view to be a table. The SELECT, DELETE,
INSERT, UPDATE, TRIGGER, and REFERENCES privileges apply to tables and
views only. The USAGE privilege applies to domains, character sets, collations,
and translations. The UNDER privilege applies only to types, and the EXECUTE
privilege applies only to routines. The following sections give examples of the
various ways you can use the GRANT statement — and the results of those uses.

Roles
A user name is one type of authorization identifier, but it’s not the only one.
It identifies a person (or a program) authorized to perform one or more

302 Part IV: Controlling Operations

functions on a database. In a large organization with many users, granting
privileges to every individual employee can be tedious and time-consuming.
SQL addresses this problem by introducing the notion of roles.

A role, identified by a role name, is a set of zero or more privileges that can
be granted to multiple people who all require the same level of access to the
database. For example, everyone who performs the role SecurityGuard has
the same privileges. These privileges are different from those granted to the
people who have the role SalesClerk.

	 As always, not every feature mentioned in the latest version of the SQL specifi-
cation is available in every implementation. Check your DBMS documentation
before you try to use roles.

You can create roles by using syntax similar to the following:

CREATE ROLE SalesClerk ;

After you’ve created a role, you can assign people to the role with the GRANT
statement, similar to the following:

GRANT SalesClerk to Becky ;

You can grant privileges to a role in exactly the same way that you grant
privileges to users, with one exception: It won’t argue or complain.

Inserting data
To grant a role the privilege of adding data to a table, follow this example:

GRANT INSERT
 ON CUSTOMER
 TO SalesClerk ;

This privilege enables any clerk in the sales department to add new customer
records to the CUSTOMER table.

Looking at data
To enable people to view the data in a table, use the following example:

GRANT SELECT
 ON PRODUCT
 TO PUBLIC ;

303 Chapter 14: Providing Database Security

This privilege enables anyone with access to the system (PUBLIC) to view
the contents of the PRODUCT table.

	 This statement can be dangerous. Columns in the PRODUCT table may contain
information that not everyone should see, such as CostOfGoods. To provide
access to most information while withholding access to sensitive information,
define a view on the table that doesn’t include the sensitive columns. Then
grant SELECT privileges on the view rather than the underlying table. The fol-
lowing example shows the syntax for this procedure:

CREATE VIEW MERCHANDISE AS
 SELECT Model, ProdName, ProdDesc, ListPrice
 FROM PRODUCT ;
GRANT SELECT
 ON MERCHANDISE
 TO PUBLIC ;

Using the MERCHANDISE view, the public doesn’t get to see the PRODUCT
table’s CostOfGoods column or any other column. The public sees only the
four columns listed in the CREATE VIEW statement.

Modifying table data
In any active organization, table data changes over time. You need to grant to
some people the right and power to make changes — and also prevent every-
one else from doing so. To grant change privileges such as updating, follow
this example:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO SalesMgr ;

The sales manager can adjust the bonus rate that salespeople receive for
sales (the BonusPct column), based on changes in market conditions.
However, the sales manager can’t modify the values in the MinAmount and
MaxAmount columns that define the ranges for each step in the bonus sched-
ule. To enable updates to all columns, you must specify either all column
names or no column names, as shown in the following example:

GRANT UPDATE
 ON BONUSRATE
 TO VPSales ;

304 Part IV: Controlling Operations

Deleting obsolete rows from a table
Customers go out of business or stop buying products for some other reason.
Employees quit, retire, are laid off, or die. Products become obsolete. Life
goes on, and things that you tracked in the past may no longer be of interest.
Someone needs to remove obsolete records from your tables. You want to
carefully control who can remove which records. Regulating such privileges
is another job for the GRANT statement, as shown in the following example:

GRANT DELETE
 ON EMPLOYEE
 TO PersonnelMgr ;

The personnel manager can remove records from the EMPLOYEE table. So
can the DBA and the EMPLOYEE table owner (who’s probably also the DBA).
No one else can remove personnel records (unless another GRANT statement
gives that person the power to do so).

Referencing related tables
If one table includes a second table’s primary key as a foreign key, informa-
tion in the second table becomes available to users of the first table. This
situation potentially creates a dangerous back door through which unauthor-
ized users can extract confidential information. In such a case, a user doesn’t
need access rights to a table to discover something about its contents. If the
user has access rights to a table that references the target table, those rights
often enable the user to access the target table as well.

Suppose, for example, that the table LAYOFF_LIST contains the names of the
employees who will be laid off next month. Only authorized management has
SELECT access to the table. An unauthorized employee, however, deduces
that the table’s primary key is EmpID. The employee then creates a new table
SNOOP, which has EmpID as a foreign key, enabling him to sneak a peek at
LAYOFF_LIST. (I describe how to create a foreign key with a REFERENCES
clause in Chapter 5. It’s high on the list of techniques every system adminis-
trator should know how to use — and how to spot.) Here’s the code that cre-
ates the sneaky table:

CREATE TABLE SNOOP
 (EmpID INTEGER REFERENCES LAYOFF_LIST) ;

Now all that the employee needs to do is try to INSERT rows corresponding
to all employee ID numbers into SNOOP. The table accepts the inserts for
only the employees on the layoff list. All rejected inserts are for employees
not on the list.

305 Chapter 14: Providing Database Security

	 All is not lost. You aren’t at risk of exposing all private data you want to keep
to yourself. Recent versions of SQL prevent this security breach by requiring
privileged users to grant explicitly any reference rights to other users, as
shown in the following example:

GRANT REFERENCES (EmpID)
 ON LAYOFF_LIST
 TO PERSONNEL_CLERK ;

You might want to check that your DBMS has this updated feature.

Using domains
Domains, character sets, collations, and translations also have an effect on
security issues. You must keep a close watch on all of these — on created
domains, in particular — to avoid having them be used to undermine your
security measures.

You can define a domain that encompasses a set of columns. In doing so, you
want all these columns to have the same type and to share the same con-
straints. The columns you create in your CREATE DOMAIN statement inherit
the type and constraints of the domain. You can override these characteris-
tics for specific columns, if you want, but domains provide a convenient
way to apply numerous characteristics to multiple columns with a single
declaration.

Domains come in handy if you have multiple tables that contain columns
with similar characteristics. Your business database, for example, may con-
sist of several tables, each of which contains a Price column that should
have a type of DECIMAL(10,2) and values that aren’t negative and are no
greater than 10,000. Before you create tables that hold these columns, create
a domain that specifies the columns’ characteristics, like this:

CREATE DOMAIN PriceTypeDomain DECIMAL (10,2)
 CHECK (Price >= 0 AND Price <= 10000) ;

Perhaps you identify your products in multiple tables by ProductCode,
which is always of type CHAR (5), with a first character of X, C, or H and a
last character of either 9 or 0. You can create a domain for these columns,
too, as in the following example:

CREATE DOMAIN ProductCodeDomain CHAR (5)
 CHECK (SUBSTR (VALUE, 1,1) IN (‘X’, ‘C’, ‘H’)
 AND SUBSTR (VALUE, 5, 1) IN (9, 0)) ;

306 Part IV: Controlling Operations

With the domains in place, you can now proceed to create tables, as follows:

CREATE TABLE PRODUCT (
 ProductCode 	 ProductCodeDomain,
 ProductName 	 CHAR (30),
 Price 		 PriceTypeDomain) ;

	 As I have mentioned previously for other ISO/IEC standard SQL features, no
DBMS product supports them all. CREATE DOMAIN is one that is not univer-
sally supported. Sybase’s iAnywhere DBMS supports it, as does PostgreSQL,
but Oracle 11g and SQL Server 2012 do not.

In the table definition, instead of giving the data type for ProductCode and
Price, specify the appropriate domain. This action gives those columns the
correct type and also applies the constraints you specify in your CREATE
DOMAIN statements.

When you use domains, you open up your database to certain security impli-
cations. What if someone else wants to use the domains you create — can
this cause problems? Yes. What if someone creates a table with a column that
has a domain of PriceTypeDomain? That person can assign progressively
larger values to that column until it rejects a value. By doing so, the user can
determine the upper bound on PriceType that you specify in the CHECK
clause of your CREATE DOMAIN statement. If you consider that upper bound
to be private information, you don’t want others to access the PriceType
domain. To protect tables in such situations, SQL allows only those to whom
the domain owner explicitly grants permission to use domains. Thus, only
the domain owner (as well as the DBA) can grant such permission. After you
deem that it’s safe to do so, you can grant users permission by using a state-
ment such as the one shown in the following example:

GRANT USAGE ON DOMAIN PriceType TO SalesMgr ;

	 Different security problems may arise if you DROP domains. Tables that con-
tain columns that you define in terms of a domain cause problems if you try to
DROP the domain. You may need to DROP all such tables first. Or you may find
yourself unable to DROP the domain. How a domain DROP is handled may vary
from one implementation to another. iAnywhere may do it one way, whereas
PostgreSQL may do it another way. At any rate, you may want to restrict
who can DROP domains. The same applies to character sets, collations, and
translations.

Causing SQL statements to be executed
Sometimes the execution of one SQL statement triggers the execution of
another SQL statement, or even a block of statements. SQL supports triggers.

307 Chapter 14: Providing Database Security

A trigger specifies a trigger event, a trigger action time, and one or more trig-
gered actions:

	 ✓	The trigger event causes the trigger to execute, or fire.

	 ✓	The trigger action time determines when the triggered action occurs,
either just before or just after the trigger event.

	 ✓	The triggered action is the execution of one or more SQL statements.

		 If more than one SQL statement is triggered, the statements must all be
contained within a BEGIN ATOMIC...END structure. The trigger action
can be an INSERT, UPDATE, or DELETE statement.

For example, you can use a trigger to execute a statement that checks the
validity of a new value before an UPDATE is allowed. If the new value is found
to be invalid, the update can be aborted.

A user or role must have the TRIGGER privilege in order to create a trigger.
Here’s an example:

CREATE TRIGGER CustomerDelete BEFORE DELETE
 ON CUSTOMER FOR EACH ROW
 WHEN State = ‘NY’
 INSERT INTO CUSTLOG VALUES (‘deleted a NY customer’) ;

Whenever a New York customer is deleted from the CUSTOMER table, an
entry in the log table CUSTLOG records the deletion.

Granting Privileges across Levels
In Chapter 2, I described structured types as one kind of user-defined type
(UDT). Much of the architecture of structured types is derived from the ideas
of object-oriented programming. One of the ideas that comes out of that is
the idea of a hierarchy, in which a type can have subtypes that derive some of
their attributes from the type they come from (their supertype). In addition to
those inherited attributes, they can also have attributes that are exclusively
their own. There can be multiple levels of such a hierarchy, with the type at
the bottom being called a leaf type.

A typed table is a table in which each row stored in the table is an instance of
the associated structured type. A typed table has one column for each attri-
bute of its associated structured type. The name and data type of the column
are the same as the name and data type of the attribute.

As an example, suppose you are a creator of paintings that you sell through
galleries. In addition to original works of art, you also sell signed, numbered,

308 Part IV: Controlling Operations

limited editions, unsigned unnumbered open editions, and posters. You can
create a structured type for your artwork as follows:

CREATE TYPE artwork (
 artist CHARACTER VARYING (30),
 title CHARACTER VARYING (50),
 description CHARACTER VARYING (256),
 medium CHARACTER VARYING (20),
 creationDate DATE)
 NOT FINAL

	 Here’s another case of a feature that is not present on all DBMS products.
However, PostgreSQL has the CREATE TYPE statement, as do Oracle 11g and
SQL Server 2012.

As an artist trying to keep track of your inventory, you want to distinguish
between originals and reproductions. You might further want to distinguish
between different kinds of reproductions. Figure 14-2 shows one possible
use of a hierarchy to facilitate the needed distinctions. The artwork type can
have subtypes, which in turn can have subtypes of their own.

	

Figure 14-2:
Artwork

table
hierarchy.

	

There is a one-to-one correspondence between the types in the type hierar-
chy and the tables in the typed table hierarchy. Standard tables, as discussed
in Chapters 4 and 5, cannot be placed into a hierarchy similar to the one dis-
cussed here for typed tables.

Instead of a primary key, a typed table has a self-referencing column that
guarantees uniqueness, not only for the maximal supertable of a hierarchy,

309 Chapter 14: Providing Database Security

but also for all its subtables. The self-referencing column is specified by a
REF IS clause in the maximal supertable’sCREATE statement. When the ref-
erence is system generated, uniqueness across the board is guaranteed.

Granting the Power to Grant Privileges
The DBA can grant any privileges to anyone. An object owner can grant any
privileges on that object to anyone. But users who receive privileges this way
can’t in turn grant those privileges to someone else. This restriction helps
the DBA or table owner to retain control. Only users that the DBA or object
owner empowers to do so can perform the operation in question.

From a security standpoint, putting limits on the capability to delegate
access privileges makes a lot of sense. Many occasions arise, however, in
which users need the power to delegate their authority. Work can’t come to a
screeching halt every time someone is ill, on vacation, or out to lunch.

	 You can trust some users with the power to delegate their access rights to
reliable designated alternates. To pass such a right of delegation to a user, the
GRANT uses the WITH GRANT OPTION clause. The following statement shows
one example of how you can use this clause:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO SalesMgr
 WITH GRANT OPTION ;

Now the sales manager can delegate the UPDATE privilege by issuing the fol-
lowing statement:

GRANT UPDATE (BonusPct)
 ON BONUSRATE
 TO AsstSalesMgr ;

After the execution of this statement, anyone with the role of assistant sales
manager can make changes to the BonusPct column in the BONUSRATE
table.

	 Of course, you make a tradeoff between security and convenience when
you delegate access rights to a designated alternate. The owner of the
BONUSRATE table relinquishes considerable control in granting the UPDATE
privilege to the sales manager by using the WITH GRANT OPTION. The table
owner hopes that the sales manager takes this responsibility seriously and is
careful about passing on the privilege.

310 Part IV: Controlling Operations

Taking Privileges Away
If you have a way to give access privileges to people, you should also have
a way of taking those privileges away. People’s job functions change, and
with these changes their data access needs change. Say an employee leaves
the organization to join a competitor. You should probably revoke all access
privileges to that person — immediately.

SQL allows you to remove access privileges by using the REVOKE statement.
This statement acts like the GRANT statement does, except that it has the
reverse effect. The syntax for this statement is as follows:

REVOKE [GRANT OPTION FOR] privilege-list
 ON object
 FROM user-list [RESTRICT|CASCADE] ;

You can use this structure to revoke specified privileges while leaving others
intact. The principal difference between the REVOKE statement and the
GRANT statement is the presence of the optional RESTRICT or CASCADE key-
word in the REVOKE statement.

For example, suppose you used WITH GRANT OPTION when you granted
certain privileges to a user. Eventually, when you want to revoke those privi-
leges, you can use CASCADE in the REVOKE statement. When you revoke a
user’s privileges in this way, you also yank privileges from anyone to whom
that person had granted privileges.

On the other hand, the REVOKE statement with the RESTRICT option works
only if the grantee hasn’t delegated the specified privileges. In that case, the
REVOKE statement revokes the grantee’s privileges just fine. But if the grantee
passed on the specified privileges, the REVOKE statement with the RESTRICT
option doesn’t revoke anything — and instead returns an error code. This is
a clear warning to you that you need to find out who was granted privileges
by the person whose privileges you are trying to revoke. You may or may not
want to revoke that person’s privileges.

You can use a REVOKE statement with the optional GRANT OPTION FOR
clause to revoke only the grant option for specified privileges while enabling
the grantee to retain those privileges for himself. If the GRANT OPTION FOR
clause and the CASCADE keyword are both present, you revoke all privileges
that the grantee granted, along with the grantee’s right to bestow such privi-
leges — as if you’d never granted the grant option in the first place. If the

311 Chapter 14: Providing Database Security

GRANT OPTION FOR clause and the RESTRICT clause are both present, one
of two things happens:

	 ✓	If the grantee didn’t grant to anyone else any of the privileges you’re
revoking, then the REVOKE statement executes and removes the grant-
ee’s ability to grant privileges.

	 ✓	If the grantee has already granted at least one of the privileges you’re
revoking, the REVOKE statement doesn’t execute and returns an error
code instead.

	 The fact that you can grant privileges by using WITH GRANT OPTION, com-
bined with the fact that you can also selectively revoke privileges, makes
system security much more complex than it appears at first glance. Multiple
grantors, for example, can conceivably grant a privilege to any single user.
If one of those grantors then revokes the privilege, the user still retains that
privilege because of the still-existing grant from another grantor. If a privilege
passes from one user to another by way of the WITH GRANT OPTION, this
situation creates a chain of dependency, in which one user’s privileges depend
on those of another user. If you’re a DBA or an object owner, always be aware
that after you grant a privilege by using the WITH GRANT OPTION clause,
that privilege may show up in unexpected places. Revoking the privilege
from unwanted users while letting legitimate users retain the same privilege
may prove challenging. In general, the GRANT OPTION and CASCADE clauses
encompass numerous subtleties. If you use these clauses, check both the SQL
standard and your product documentation — carefully — to ensure that you
understand how the clauses work.

Using GRANT and REVOKE Together
to Save Time and Effort

Enabling multiple privileges for multiple users on selected table columns may
require a lot of typing. Consider this example: The vice president of sales
wants everyone in the sales department to see everything in the CUSTOMER
table, but only sales managers should update, delete, or insert rows. Nobody
should update the CustID field. The sales managers’ names are Tyson, Keith,
and David. You can grant appropriate privileges to these managers with
GRANT statements, as follows:

GRANT SELECT, INSERT, DELETE
 ON CUSTOMER
 TO Tyson, Keith, David ;

312 Part IV: Controlling Operations

GRANT UPDATE
 ON CUSTOMER (Company, CustAddress, CustCity,
 CustState, CustZip, CustPhone, ModLevel)
 TO Tyson, Keith, David ;
GRANT SELECT
 ON CUSTOMER
 TO Jen, Val, Mel, Neil, Rob, Sam, Walker, Ford,
 Brandon, Cliff, Joss, MichelleT, Allison, Andrew,
 Scott, MichelleB, Jaime, Lynleigh, Matthew, Amanda;

That should do the trick. Everyone has SELECT rights on the CUSTOMER
table. The sales managers have full INSERT and DELETE rights on the table,
and they can update any column but the CustID column.

	 Here’s an easier way to get the same result:

GRANT SELECT
 ON CUSTOMER
 TO SalesReps ;
GRANT INSERT, DELETE, UPDATE
 ON CUSTOMER
 TO Managers ;
REVOKE UPDATE
 ON CUSTOMER (CustID)
 FROM Managers ;

Assuming you’ve assigned roles appropriately, it still takes three statements
in this example for the same protection as was given by the three statements
in the preceding example. No one may change data in the CustID column;
only Tyson, Keith, and David have INSERT, DELETE, and UPDATE privi-
leges. These latter three statements are significantly shorter than those in
the preceding example because you don’t name all the users in the sales
department, all the managers, or all the columns in the table.

Chapter 15

Protecting Data
In This Chapter
▶	Avoiding database damage
▶	Understanding the problems caused by concurrent operations
▶	Dealing with concurrency problems through SQL mechanisms
▶	Tailoring protection to your needs with SET TRANSACTION
▶	Protecting your data without paralyzing operations

E
veryone has heard of Murphy’s Law — usually stated, “If anything can go
wrong, it will.” People joke about this pseudo-law because most of the

time things go fine. At times, you may feel lucky because you’re untouched
by what purports to be one of the basic laws of the universe. When unex-
pected problems arise, you probably just recognize what has happened and
deal with it.

In a complex structure, the potential for unanticipated problems shoots way
up. (A mathematician might say it “increases approximately as the square of
the complexity.”) Thus large software projects are almost always delivered
late and are often loaded with bugs. A nontrivial, multiuser DBMS application
is a large, complex structure. In the course of operation, many things can
go wrong. Methods have been developed for minimizing the impact of these
problems, but the problems can never be eliminated completely. This is good
news for professional people who do database maintenance and repair —
automating them out of a job will probably never be possible. This chapter
discusses the major things that can go wrong with a database and the tools
that SQL provides for you to deal with the problems that arise.

Threats to Data Integrity
Cyberspace (including your network) is a nice place to visit, but for the data
living there, it’s no picnic. Data can be damaged or corrupted in a variety of
ways. Chapter 5 discusses problems resulting from bad input data, opera-
tor error, and deliberate destruction. Poorly formulated SQL statements and

314 Part IV: Controlling Operations

improperly designed applications can also damage your data — and figuring
out how doesn’t take much imagination. Two relatively obvious threats —
platform instability and equipment failure — can also trash your data. Both
hazards are detailed in the following sections, as well as problems that can
be caused by concurrent access.

Platform instability
Platform instability is a category of problem that shouldn’t even exist, but
alas, it does. It is most prevalent when you’re running one or more new and
relatively untried components in your system. Problems can lurk in a new
DBMS release, a new operating system version, or new hardware. Conditions
or situations that have never appeared before can show up while you’re run-
ning a critical job. Your system locks up, and your data is damaged. Beyond
directing a few choice words at your computer and the people who built it,
you can’t do much except hope your latest backup was a good one.

	 Never put important production work on a system that has any unproven
components. Resist the temptation to put your bread-and-butter work on an
untried beta release of the newest, most function-laden version of your DBMS
or operating system. If you must gain some hands-on experience with a new
software product, do so on a machine that’s completely isolated from your
production network.

Equipment failure
Even well-proven, highly reliable equipment fails sometimes, sending your
data to the great beyond. Everything physical wears out eventually — even
modern, solid-state computers. If such a failure happens while your database
is open and active, you can lose data — and sometimes (even worse) not
realize it. Such a failure will happen sooner or later. If Murphy’s Law is in
operation that day, the failure will happen at the worst possible time.

	 One way to protect data against equipment failure is redundancy. Keep extra
copies of everything. For maximum safety (provided your organization can
swing it financially), have duplicate hardware configured exactly like your pro-
duction system. Have database and application backups that can be loaded
and run on your backup hardware when needed. If cost constraints keep you
from duplicating everything (which effectively doubles your costs), at least
be sure to back up your database and applications frequently enough that
an unexpected failure doesn’t require you to reenter a large amount of data.
Many DBMS products include replication capabilities. That is all well and
good, but it won’t help unless you configure your system to actually use them.

315 Chapter 15: Protecting Data

Another way to avoid the worst consequences of equipment failure is to use
transaction processing — a topic that takes center stage later in this chapter.
A transaction is an indivisible unit of work, so when you use transaction pro-
cessing, either an entire transaction is executed or none of it is. This all-or-
nothing approach may seem drastic, but the worst problems arise when a
series of database operations is only partially processed. Thus you’re much
less likely to lose or corrupt your data, even if the machine on which the
database resides is crashing.

Concurrent access
Assume that you’re running proven hardware and software, your data is
good, your application is bug-free, and your equipment is inherently reliable.
Data utopia, right? Not quite. Problems can still arise when multiple people
try to use the same database table at the same time (concurrent access), and
their computers argue about who gets to go first (contention). Multiple-user
database systems must be able to handle the ruckus efficiently.

Transaction interaction trouble
Contention troubles can lurk even in applications that seem straightfor-
ward. Consider this example. You’re writing an order-processing application
that involves four tables: ORDER_MASTER, CUSTOMER, LINE_ITEM, and
INVENTORY. The following conditions apply:

	 ✓	The ORDER_MASTER table has OrderNumber as a primary key and
CustomerNumber as a foreign key that references the CUSTOMER table.

	 ✓	The LINE_ITEM table has LineNumber as a primary key, ItemNumber
as a foreign key that references the INVENTORY table, and Quantity as
one of its columns.

	 ✓	The INVENTORY table has ItemNumber as a primary key; it also has a
field named QuantityOnHand.

	 ✓	All three tables have other columns, but they don’t enter into this
example.

Your company policy is to ship each order completely or not at all. No partial
shipments or back orders are allowed. (Relax. It’s a hypothetical situation.)
You write the ORDER_PROCESSING application to process each incoming
order in the ORDER_MASTER table as follows: It first determines whether
your company can ship all the line items. If so, it writes the order and then
decrements the QuantityOnHand column of the INVENTORY table as
required. (This action deletes the affected entries from the ORDER_MASTER

316 Part IV: Controlling Operations

and LINE_ITEM tables.) So far, so good. You set up the application to process
orders in one of two ways when users access the database concurrently:

	 ✓	Method 1 processes the INVENTORY row that corresponds to each row
in the LINE_ITEM table. If QuantityOnHand is large enough, the appli-
cation decrements that field. If QuantityOnHand is not large enough,
it rolls back the transaction to restore all inventory reductions made to
other LINE_ITEMs in this order.

	 ✓	Method 2 checks every INVENTORY row that corresponds to a row in
the order’s LINE_ITEMs. If they are all big enough, then it processes
those items by decrementing them.

Usually, Method 1 is more efficient when you succeed in processing the
order; Method 2 is more efficient when you fail. Thus, if most orders can
be filled most of the time, you’re better off using Method 1. If most orders
can’t be filled most of the time, you’re better off with Method 2. Suppose
this hypothetical application is up and running on a multiuser system that
doesn’t have adequate concurrency control. Yep.Trouble is brewing, all right.
Consider this scenario:

	 1.	 A customer contacts an order processor at your company (User 1) to
order ten bolt cutters and five wide adjustable wrenches.

	 2.	 User 1 uses Method 1 to process the order. The first item in the order
is ten pieces of Item 1 (bolt cutters).

		 As it happens, your company has ten bolt cutters in stock, and User 1’s
order takes them all.

	 	 The order-processing function chugs along, decrementing the quantity
of bolt cutters to zero. Then things get (as the Chinese proverb says)
interesting. Another customer contacts your company to process an
order and talks to User 2.

	 3.	 User 2 attempts to process the customer’s small order for one bolt-
cutter — and finds that there are no bolt cutters in stock.

		 User 2’s order is rolled back because it can’t be filled.

	 4.	 Meanwhile, User 1 tries to complete his customer’s order and checks
the system for five pieces of Item 37 (wide adjustable wrenches).

		 Unfortunately, your company only has four wide adjustable wrenches in
stock. User 1’s complete order (including the bolt cutters) is rolled back
because it can’t be completely filled.

		 The INVENTORY table is now back to the state it was in before either
user started operating. Neither order has been filled, even though User
2’s order could have been.

317 Chapter 15: Protecting Data

In a slightly different scenario, method 2 fares little better, although for a dif-
ferent reason. User 1 checks all the items ordered and decides that all the
items ordered are available. Then User 2 comes in and processes an order for
one of those items before User 1 performs the decrement operation; User 1’s
transaction fails.

Serialization eliminates harmful interactions
No conflict occurs if transactions are executed serially rather than concur-
rently. (Taking turns — what a concept.) In the first example, if User 1’s
unsuccessful transaction was completed before User 2’s transaction started,
the ROLLBACK function would have made the single bolt cutter ordered by
User 2 available. (The ROLLBACK function rolls back, or undoes the entire
transaction.) If the transactions had run serially in the second example, User
2 would have had no opportunity to change the quantity of any item until
User 1’s transaction was complete. User 1’s transaction completes, either
successfully or unsuccessfully, and User 2 then sees how many bolt cutters
are left in stock.

If transactions are executed serially (one after the other), they have no
chance of interacting destructively. Execution of concurrent transactions is
serializable if the result is the same as it would be if the transactions were
executed serially.

	 Serializing concurrent transactions isn’t a cure-all. You have to make a trad-
eoff between performance and protection from harmful interactions. The more
you isolate transactions from each other, the more time it takes to perform
each function. (In cyberspace, as in real life, waiting in line takes time.) Be
aware of the tradeoffs so you can configure your system for adequate protec-
tion — but not more protection than you need. Controlling concurrent access
too tightly can kill overall system performance.

Reducing Vulnerability
to Data Corruption

You can take precautions at several levels to reduce the chances of losing
data through some mishap or unanticipated interaction. You can set up your
DBMS to take some of these precautions for you. When you configure your
DBMS appropriately, it acts like a guardian angel to protect you from harm,
operating behind the scenes; you don’t even know that the DBMS is helping
you out. Your database administrator (DBA) can take other precautions at
his or her discretion that you may not be aware of. As the developer, you can
take precautions as you write your code.

318 Part IV: Controlling Operations

	 To avoid a lot of grief, get into the habit of adhering to a few simple principles
automatically so they’re always included in your code or in your interactions
with your database:

	 ✓	Use SQL transactions.

	 ✓	Tailor the level of isolation to balance performance and protection.

	 ✓	Know when and how to set transactions, lock database objects, and per-
form backups.

Details coming right up.

Using SQL transactions
The transaction is one of SQL’s main tools for maintaining database integrity.
An SQL transaction encapsulates all the SQL statements that can have an
effect on the database. An SQL transaction is completed with either a COMMIT
or ROLLBACK statement:

	 ✓	If the transaction finishes with a COMMIT, the effects of all the state-
ments in the transaction are applied to the database in one rapid-fire
sequence.

	 ✓	If the transaction finishes with a ROLLBACK, the effects of all the state-
ments are rolled back (that is, undone), and the database returns to the
state it was in before the transaction began.

	 In this discussion, the term application means either an execution of a pro-
gram (whether in Java, C++, or some other programming language) or a series
of actions performed at a terminal during a single logon.

An application can include a series of SQL transactions. The first SQL trans-
action begins when the application begins; the last SQL transaction ends
when the application ends. Each COMMIT or ROLLBACK that the application
performs ends one SQL transaction and begins the next. For example, an
application with three SQL transactions has the following form:

Start of the application
 Various SQL statements (SQL transaction-1)
COMMIT or ROLLBACK
 Various SQL statements (SQL transaction-2)
COMMIT or ROLLBACK
 Various SQL statements (SQL transaction-3)
COMMIT or ROLLBACK
End of the application

319 Chapter 15: Protecting Data

	 I use the phrase SQL transaction because the application may be using other
capabilities (such as for network access) that do other sorts of transactions. In
the following discussion, I use transaction to mean SQL transaction specifically.

A normal SQL transaction has an access mode that is either READ-WRITE or
READ-ONLY; it has an isolation level that is SERIALIZABLE, REPEATABLE
READ, READ COMMITTED, or READ UNCOMMITTED. (You can find transaction
characteristics in the “Isolation levels” section, later in this chapter.) The
default characteristics are READ-WRITE and SERIALIZABLE. If you want any
other characteristics, you have to specify them with a SET TRANSACTION
statement such as the following:

SET TRANSACTION READ ONLY ;

or

SET TRANSACTION READ ONLY REPEATABLE READ ;

or

SET TRANSACTION READ COMMITTED ;

You can have multiple SET TRANSACTION statements in an applica-
tion, but you can specify only one in each transaction, and it must be the
first SQL statement executed in the transaction. If you want to use a SET
TRANSACTION statement, execute it either at the beginning of the application
or after a COMMIT or ROLLBACK.

	 You must perform a SET TRANSACTION at the beginning of every transaction
for which you want nondefault properties, because each new transaction after
a COMMIT or ROLLBACK is given the default properties automatically.

	 A SET TRANSACTION statement can also specify a DIAGNOSTICS SIZE,
which determines the number of error conditions for which the implementa-
tion should be prepared to save information. (Such a numerical limit is nec-
essary because an implementation can detect more than one error during a
statement.) The SQL default for this limit is implementation-defined, and that
default is almost always adequate.

The default transaction
The default SQL transaction has characteristics that are satisfactory for most
users most of the time. If necessary, you can specify different transaction
characteristics with a SET TRANSACTION statement, as described in the pre-
vious section. (SET TRANSACTION gets its own spotlight treatment later in
the chapter.)

320 Part IV: Controlling Operations

The default transaction makes a couple of other implicit assumptions:

	 ✓	The database will change over time.

	 ✓	It’s always better to be safe than sorry.

It sets the mode to READ-WRITE, which, as you may expect, enables you to
issue statements that change the database. It also sets the isolation level to
SERIALIZABLE, which is the highest level of isolation possible (thus the
safest). The default diagnostics size is implementation-dependent. Look at
your SQL documentation to see what that size is for your system.

Isolation levels
Ideally, the system handles your transactions independently from every
other transaction, even if those transactions happen concurrently with
yours. This concept is referred to as isolation. In the real world of networked
multiuser systems with real-time access requirements, however, complete
isolation is not always feasible. Isolation may exact too large a performance
penalty. A tradeoff question arises: “How much isolation do you really want,
and how much are you willing to pay for it in terms of performance?”

Getting mucked up by a dirty read
The weakest level of isolation is called READ UNCOMMITTED, which allows
the sometimes-problematic dirty read. A dirty read is a situation in which a
change made by one user can be read by a second user before the first user
completes her transaction with a COMMIT statement.

The problem arises if the first user aborts and rolls back her transaction.
The second user’s operations are now based on an incorrect value. The
classic example of this foul-up can appear in an inventory application. In
“Transaction interaction trouble,” earlier in this chapter, I outline one pos-
sible scenario of this type, but here’s another example: One user decrements
inventory; a second user reads the new (lower) value. The first user rolls
back her transaction (restoring the inventory to its initial value), but the
second user, thinking inventory is low, orders more stock and possibly cre-
ates a severe overstock. And that’s if you’re lucky.

	 Don’t use the READ UNCOMMITTED isolation level unless you don’t care about
accurate results.

321 Chapter 15: Protecting Data

You can use READ UNCOMMITTED if you want to generate approximate statis-
tical data, such as these examples:

	 ✓	Maximum delay in filling orders

	 ✓	Average age of salespeople who don’t make quota

	 ✓	Average age of new employees

In many such cases, approximate information is sufficient; the extra cost of
the concurrency control required to give an exact result — mainly a perfor-
mance slowdown — may not be worthwhile.

Getting bamboozled by a nonrepeatable read
The next highest level of isolation is READ COMMITTED: A change made by
another transaction isn’t visible to your transaction until the other user
has finalized the other transaction with the COMMIT statement. This level
gives you a better result than you can get from READ UNCOMMITTED, but it’s
still subject to a nonrepeatable read — serious problem that happens like a
comedy of errors.

Consider the classic inventory example:

	 1.	 User 1 queries the database to see how many items of a particular prod-
uct are in stock. The number is ten.

	 2.	 At almost the same time, User 2 starts, and then finalizes, a transaction
with the COMMIT statement that records an order for ten units of that
same product, decrementing the inventory to zero.

	 3.	 Now User 1, having seen that ten are available, tries to order five of
them. Five are no longer left, however, because User 2 has raided the
pantry.

User 1’s initial read of the quantity available is not repeatable. Because the
quantity has changed out from under User 1, any assumptions made on the
basis of the initial read are not valid.

Risking the phantom read
An isolation level of REPEATABLE READ guarantees that the nonrepeatable-
read problem doesn’t happen. This isolation level, however, is still haunted
by the phantom read — a problem that arises when the data a user is reading
changes in response to another transaction (and does not show the change
on-screen) while the user is reading it.

Suppose, for example, that User 1 issues a command whose search condition
(the WHERE clause or HAVING clause) selects a set of rows — and, immediately

322 Part IV: Controlling Operations

afterward, User 2 performs and commits an operation that changes the data
in some of those rows. Those data items met User 1’s search condition at the
start of this snafu, but now they no longer do. Maybe some other rows that
first did not meet the original search condition now do meet it. User 1, whose
transaction is still active, has no inkling of these changes; the application
behaves as if nothing has happened. The hapless User 1 issues another SQL
statement with the same search conditions as the original one, expecting
to retrieve the same rows. Instead, the second operation is performed on
rows other than those used in the first operation. Reliable results go out the
window, spirited away by the phantom read.

Getting a reliable (if slower) read
An isolation level of SERIALIZABLE is not subject to any of the problems
that beset the other three levels. At this level, concurrent transactions can
be run without interfering with each other, and results are the same as they’d
be if the transactions had been run serially — one after the other — rather
than in parallel. If you’re running at this isolation level, hardware or software
problems can still cause your transaction to fail, but at least you don’t have
to worry about the validity of your results if you know your system is func-
tioning properly.

Of course, superior reliability may come at the price of slower performance,
so you’re back in Tradeoff City. Table 15-1 shows how the different isolation
levels stack up.

Table 15-1	 Isolation Levels and Problems Solved
Isolation Level Problems Solved

Dirty Read

Nonrepeatable |Phantom

Read | Read
READ UNCOMMITTED No No | No
READ COMMITTED Yes No | No
REPEATABLE READ Yes Yes | No
SERIALIZABLE Yes Yes | Yes

The implicit transaction-starting statement
Some SQL implementations require that you signal the beginning of a transac-
tion with an explicit statement, such as BEGIN or BEGIN TRAN. Standard SQL
does not. If you don’t have an active transaction and you issue a statement
that calls for one, standard SQL starts a default transaction for you. CREATE

323 Chapter 15: Protecting Data

TABLE, SELECT, and UPDATE are examples of statements that require the
context of a transaction. Issue one of these statements, and standard SQL
starts a transaction for you.

SET TRANSACTION
On occasion, you may want to use transaction characteristics that are differ-
ent from those set by default. You can specify different characteristics with
a SET TRANSACTION statement before you issue your first statement that
actually requires a transaction. The SET TRANSACTION statement enables
you to specify mode, isolation level, and diagnostics size.

To change all three, for example, you may issue the following statement:

SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED,
 DIAGNOSTICS SIZE 4 ;

With these settings, you can’t issue any statements that change the database
(READ ONLY), and you have set the lowest and most hazardous isolation
level (READ UNCOMMITTED). The diagnostics area has a size of 4. You are
making minimal demands on system resources.

In contrast, you may issue this statement:

SET TRANSACTION
 READ WRITE,
 ISOLATION LEVEL SERIALIZABLE,
 DIAGNOSTICS SIZE 8 ;

These settings enable you to change the database; they also give you the
highest level of isolation — and a larger diagnostics area. The tradeoff is that
they also make larger demands on system resources. Depending on your
implementation, these settings may turn out to be the same as those used by
the default transaction. Naturally, you can issue SET TRANSACTION state-
ments with other choices for isolation level and diagnostics size.

	 Set your transaction isolation level as high as you need to, but no higher.
Always setting your isolation level to SERIALIZABLE just to be on the safe
side may seem reasonable, but it isn’t so for all systems. Depending on your
implementation (and on what you’re doing), you may not need to do so — and
performance can suffer significantly if you do. If you don’t intend to change
the database in your transaction, for example, set the mode to READ ONLY.
Bottom line: Don’t tie up any system resources that you don’t need.

324 Part IV: Controlling Operations

COMMIT
Although SQL doesn’t require an explicit transaction-starting keyword, it has
two that terminate a transaction: COMMIT and ROLLBACK. Use COMMIT when
you’ve come to the end of the transaction and you want to make permanent
the changes (if any) that you made to the database. You may include the
optional keyword WORK (COMMIT WORK) if you want. If the database encoun-
ters an error or the system crashes while a COMMIT is in progress, you may
have to roll the transaction back and try it again.

ROLLBACK
When you come to the end of a transaction, you may decide that you don’t
want to make permanent the changes that have occurred during the trans-
action. In such a case, you should restore the database to the state it was
in before the transaction began. To do this, issue a ROLLBACK statement.
ROLLBACK is a fail-safe mechanism.

	 Even if the system crashes while a ROLLBACK is in progress, you can restart
the ROLLBACK after you restore the system; the rollback will continue its
work, restoring the database to its pre-transaction state.

Locking database objects
The isolation level — set either by default or by a SET TRANSACTION state-
ment — tells the DBMS how zealous to be in protecting your work from
interaction with the work of other users. The main protection from harmful
transactions that the DBMS gives to you is its application of locks to the data-
base objects you’re using. Here are a few examples:

	 ✓	The table row you’re accessing is locked, preventing others from access-
ing that record while you’re using it.

	 ✓	An entire table is locked, if you’re performing an operation that could
affect the whole table.

	 ✓	Reading, but not writing, is allowed. Sometimes writing is allowed but
not reading.

Each implementation handles locking in its own way. Some implementations
are more bulletproof than others, but most up-to-date systems protect you
from the worst problems that can arise in a concurrent-access situation.

325 Chapter 15: Protecting Data

Backing up your data
Backing up data is a protective action that your DBA should perform on a
regular basis. All system elements should be backed up at intervals that
depend on how frequently they’re updated. If your database is updated daily,
it should be backed up daily. Your applications, forms, and reports may
change, too, though less frequently. Whenever you make changes to them,
your DBA should back up the new versions.

	 Keep several generations of backups. Sometimes, database damage doesn’t
become evident until some time has passed. To return to the last good ver-
sion, you may have to go back several backup versions.

You can perform a backup in one of several different ways:

	 ✓	Use SQL to create backup tables and copy data into them.

	 ✓	Use an implementation-defined mechanism that backs up the whole
database or portions of it. Using such a mechanism is generally more
convenient and efficient than using SQL.

	 ✓	Your installation may have a mechanism in place for backing up
everything, including databases, programs, documents, spreadsheets,
utilities, and computer games. If so, you may not have to do anything
beyond assuring yourself that the backups are performed frequently
enough to protect you.

Savepoints and subtransactions
Ideally, transactions should be atomic — as indivisible as the ancient Greeks
thought atoms were. However, atoms are not really indivisible — and, start-
ing with SQL:1999, database transactions are not really atomic. A transaction
is divisible into multiple subtransactions. Each subtransaction is terminated
by a SAVEPOINT statement. The SAVEPOINT statement is used in conjunc-
tion with the ROLLBACK statement. Before the introduction of savepoints
(the point in the program where the SAVEPOINT statement takes effect), the
ROLLBACK statement could be used only to cancel an entire transaction. Now
it can be used to roll back a transaction to a savepoint within the transaction.
What good is this, you might ask?

Granted, the primary use of the ROLLBACK statement is to prevent data cor-
ruption if a transaction is interrupted by an error condition. And no, rolling
back to a savepoint does not make sense if an error occurred while a transac-
tion was in progress; you’d want to roll back the entire transaction to bring
the database back to the state it was in before the transaction started. But
you might have other reasons for rolling back part of a transaction.

326 Part IV: Controlling Operations

Suppose you’re performing a complex series of operations on your data.
Partway through the process, you receive results that lead you to conclude
that you’re going down an unproductive path. If you were thinking ahead
enough to put a SAVEPOINT statement just before you started on that path,
you can roll back to the savepoint and try another option. Provided the rest
of your code was in good shape before you set the savepoint, this approach
works better than aborting the current transaction and starting a new one
just to try a new path.

To insert a savepoint into your SQL code, use the following syntax:

SAVEPOINT savepoint_name ;

Having an ACID database
You may hear database designers say they
want their databases to have ACID. Well, no,
they’re not planning to zonk their creations with
a 1960s psychedelic or dissolve the data they
contain into a bubbly mess. ACID is simply an
acronym for Atomicity, Consistency, Isolation,
and Durability. These four characteristics are
necessary to protect a database from corrup-
tion:

	✓	 Atomicity: Database transactions should be
atomic in the classic sense of the word: The
entire transaction is treated as an indivis-
ible unit. Either it is executed in its entirety
(committed), or the database is restored
(rolled back) to the state it would have been
in if the transaction had not been executed.

	✓	 Consistency: Oddly enough, the meaning
of consistency is not consistent; it varies
from one application to another. When you
transfer funds from one account to another
in a banking application, for example, you
want the total amount of money from both

accounts at the end of the transaction to be
the same as it was at the beginning of the
transaction. In a different application, your
criterion for consistency might be different.

	✓	 Isolation: Ideally, database transactions
should be totally isolated from other trans-
actions that execute at the same time. If
the transactions are serializable, then total
isolation is achieved. If the system has to
process transactions at top speed, some-
times lower levels of isolation can enhance
performance.

	✓	 Durability: After a transaction has commit-
ted or rolled back, you should be able to
count on the database being in the proper
state: well stocked with uncorrupted, reli-
able, up-to-date data. Even if your system
suffers a hard crash after a commit — but
before the transaction is stored to disk —
a durable DBMS can guarantee that upon
recovery from the crash, the database can
be restored to its proper state.

327 Chapter 15: Protecting Data

You can cause execution to roll back to that savepoint with code such as the
following:

ROLLBACK TO SAVEPOINT savepoint_name ;

Some SQL implementations may not include the SAVEPOINT statement. If
your implementation is one of those, you won’t be able to use it.

Constraints Within Transactions
Ensuring the validity of the data in your database means doing more than
just making sure the data is of the right type. Perhaps some columns, for
example, should never hold a null value — and maybe others should hold
only values that fall within a certain range. Such restrictions are constraints,
as discussed in Chapter 5.

Constraints are relevant to transactions because they can conceivably pre-
vent you from doing what you want. For example, suppose that you want to
add data to a table that contains a column with a NOT NULL constraint. One
common method of adding a record is to append a blank row to your table
and then insert values into it later. The NOT NULL constraint on one column,
however, causes the append operation to fail. SQL doesn’t allow you to add
a row that has a null value in a column with a NOT NULL constraint, even
though you plan to add data to that column before your transaction ends.
To address this problem, SQL enables you to designate constraints as either
DEFERRABLE or NOT DEFERRABLE.

Constraints that are NOT DEFERRABLE are applied immediately. You can set
DEFERRABLE constraints to be either initially DEFERRED or IMMEDIATE. If a
DEFERRABLE constraint is set to IMMEDIATE, it acts like a NOT DEFERRABLE
constraint — it is applied immediately. If a DEFERRABLE constraint is set to
DEFERRED, it is not enforced. (No, your code doesn’t have an attitude prob-
lem; it’s simply following orders.)

To append blank records or perform other operations that may violate
DEFERRABLE constraints, you can use a statement similar to the following:

SET CONSTRAINTS ALL DEFERRED ;

This statement puts all DEFERRABLE constraints in the DEFERRED condition.
It does not affect the NOT DEFERRABLE constraints. After you’ve performed
all operations that could violate your constraints — and the table reaches a
state that doesn’t violate them — you can reapply them. The statement that
reapplies your constraints looks like this:

SET CONSTRAINTS ALL IMMEDIATE ;

328 Part IV: Controlling Operations

If you made a mistake and any of your constraints are still being violated, you
find out as soon as this statement takes effect.

If you do not explicitly set your DEFERRED constraints to IMMEDIATE, SQL
does it for you when you attempt to COMMIT your transaction. If a violation is
still present at that time, the transaction does not COMMIT; instead, SQL gives
you an error message.

SQL’s handling of constraints protects you from entering invalid data (or an
invalid absence of data, which is just as important), at the same time giving
you the flexibility to violate constraints temporarily while a transaction is
still active.

Consider a payroll example to see why being able to defer the application of
constraints is important.

Assume that an EMPLOYEE table has columns EmpNo, EmpName, DeptNo,
and Salary. EMPLOYEE.DeptNo is a foreign key that references the DEPT
table. Assume also that the DEPT table has columns DeptNo and DeptName.
DeptNo is the primary key.

In addition, you want to have a table like DEPT that also contains a Payroll
column which (in turn) holds the sum of the Salary values for employees in
each department.

Assuming you are using a DBMS that supports this SQL standard functional-
ity, you can create the equivalent of this table with the following view:

CREATE VIEW DEPT2 AS
 SELECT D.*, SUM(E.Salary) AS Payroll
 FROM DEPT D, EMPLOYEE E
 WHERE D.DeptNo = E.DeptNo
 GROUP BY D.DeptNo ;

You can also define this same view as follows:

CREATE VIEW DEPT3 AS
 SELECT D.*,
 (SELECT SUM(E.Salary)
 FROM EMPLOYEE E
 WHERE D.DeptNo = E.DeptNo) AS Payroll
 FROM DEPT D ;

But suppose that, for efficiency, you don’t want to calculate the SUM every
time you reference DEPT3.Payroll. Instead, you want to store an actual
Payroll column in the DEPT table. You will then update that column every
time you change a Salary.

329 Chapter 15: Protecting Data

To make sure that the Salary column is accurate, you can include a
CONSTRAINT in the table definition:

CREATE TABLE DEPT
 (DeptNo CHAR(5),
 DeptNameCHAR(20),
 Payroll DECIMAL(15,2),
 CHECK (Payroll = (SELECT SUM(Salary)
 FROM EMPLOYEE E
 WHERE E.DeptNo= DEPT.DeptNo)));

Now, suppose you want to increase the Salary of employee 123 by 100. You
can do it with the following update:

UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;

With this approach, you must remember to do the following as well:

UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;

(You use the subquery to reference the DeptNo of employee 123.)

But there’s a problem: Constraints are checked after each statement. In prin-
ciple, all constraints are checked. In practice, implementations check only
the constraints that reference the values modified by the statement.

After the first preceding UPDATE statement, the implementation checks
all constraints that reference any values that the statement modifies. This
includes the constraint defined in the DEPT table, because that constraint
references the Salary column of the EMPLOYEE table and the UPDATE
statement is modifying that column. After the first UPDATE statement, that
constraint is violated. You assume that before you execute the UPDATE state-
ment the database is correct, and each Payroll value in the DEPT table
equals the sum of the Salary values in the corresponding columns of the
EMPLOYEE table. When the first UPDATE statement increases a Salary
value, this equality is no longer true. The second UPDATE statement corrects
this — and again leaves the database values in a state for which the con-
straint is True. Between the two updates, the constraint is False.

The SET CONSTRAINTS DEFERRED statement lets you temporarily disable
or suspend all constraints, or only specified constraints. The constraints are

330 Part IV: Controlling Operations

deferred until either you execute a SET CONSTRAINTS IMMEDIATE state-
ment or you execute a COMMIT or ROLLBACK statement. So you surround the
previous two UPDATE statements with SET CONSTRAINTS statements. The
code looks like this:

SET CONSTRAINTS DEFERRED ;
UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;
UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;
SET CONSTRAINTS IMMEDIATE ;

This procedure defers all constraints. If you insert new rows into DEPT, the
primary keys won’t be checked; you’ve removed protection that you may
want to keep. Instead, you should specify the constraints that you want to
defer. To do this, name the constraints when you create them:

CREATE TABLE DEPT
 (DeptNo CHAR(5),
 DeptName CHAR(20),
 Payroll DECIMAL(15,2),
 CONSTRAINT PayEqSumsal
 CHECK (Payroll = SELECT SUM(Salary)
 FROM EMPLOYEE E
 WHERE E.DeptNo = DEPT.DeptNo)) ;

With constraint names in place, you can then reference your constraints
individually:

SET CONSTRAINTS PayEqSumsal DEFERRED;
UPDATE EMPLOYEE
 SET Salary = Salary + 100
 WHERE EmpNo = ‘123’ ;
UPDATE DEPT D
 SET Payroll = Payroll + 100
 WHERE D.DeptNo = (SELECT E.DeptNo
 FROM EMPLOYEE E
 WHERE E.EmpNo = ‘123’) ;
SET CONSTRAINTS PayEqSumsal IMMEDIATE;

Without a constraint name in the CREATE statement, SQL generates one
implicitly. That implicit name is in the schema information (catalog) tables.
But specifying the names explicitly is more straightforward.

331 Chapter 15: Protecting Data

Now suppose that you mistakenly specified an increment value of 1000 in
the second UPDATE statement. This value is allowed in the UPDATE state-
ment because the constraint has been deferred. But when you execute SET
CONSTRAINTS . . . IMMEDIATE, the specified constraints are checked.
If they fail, SET CONSTRAINTS raises an exception. If, instead of a SET
CONSTRAINTS . . . IMMEDIATE statement, you execute COMMIT and the
constraints are found to be False, COMMIT instead performs a ROLLBACK.

	 Bottom line: You can defer the constraints only within a transaction. When
the transaction is terminated by a ROLLBACK or a COMMIT, the constraints
are both enabled and checked. The SQL capability of deferring constraints is
meant to be used within a transaction. If used properly, the terminated trans-
action doesn’t create any data that violates a constraint available to other
transactions.

332 Part IV: Controlling Operations

Chapter 16

Using SQL within Applications
In This Chapter
▶	Using SQL within an application
▶	Combining SQL with procedural languages
▶	Avoiding interlanguage incompatibilities
▶	Embedding SQL in your procedural code
▶	Calling SQL modules from your procedural code
▶	Invoking SQL from a RAD tool

P
revious chapters address SQL statements mostly in isolation. For exam-
ple, questions are asked about data, and SQL queries are developed that

retrieve answers to the questions. This mode of operation, interactive SQL, is
fine for discovering what SQL can do — but it’s not how SQL is typically used.

Even though SQL syntax can be described as similar to that of English, it
isn’t an easy language to master. The overwhelming majority of computer
users are not fluent in SQL — and you can reasonably assume that they
never will be, even if this book is wildly successful. When a database ques-
tion comes up, Joe User probably won’t sit down at his terminal and enter an
SQL SELECT statement to find the answer. Systems analysts and application
developers are the people who are likely to be comfortable with SQL, and
they typically don’t make a career out of entering ad hoc queries into data-
bases. Instead, they develop applications to make those queries.

	 If you plan to perform the same operation repeatedly, you shouldn’t have to
rebuild it every time from your keyboard. Write an application to do the job
and then run it as often as you like. SQL can be a part of an application, but
when it is, it works a little differently than it does in an interactive mode.

SQL in an Application
In Chapter 2, SQL is presented to you as an incomplete programming lan-
guage. To use SQL in an application, you have to combine it with a proce-
dural language such as Visual Basic, C, C++, C#, Java, COBOL, or Python.

334 Part IV: Controlling Operations

Because of the way it’s structured, SQL has some strengths and weaknesses.
Procedural languages are structured differently from SQL, and consequently
have different strengths and weaknesses.

Happily, the strengths of SQL tend to make up for the weaknesses of proce-
dural languages, and the strengths of the procedural languages are in those
areas where SQL is weak. By combining the two, you can build powerful
applications with a broad range of capabilities. Recently, object-oriented rapid
application development (RAD) tools, such as Microsoft’s Visual Studio and
the open-source Eclipse environment, have appeared, which incorporate SQL
code into applications developed by manipulating onscreen objects instead
of writing procedural code.

Keeping an eye out for the asterisk
In the interactive SQL discussions in previous chapters, the asterisk (*)
serves as a shorthand substitute for “all columns in the table.” If the table
has numerous columns, the asterisk can save a lot of typing. However, using
the asterisk this way is problematic when you use SQL in an application pro-
gram. After your application is written, you or someone else may add new
columns to a table or delete old ones. Doing so changes the meaning of “all
columns.” When your application specifies “all columns” with an asterisk, it
may retrieve columns other than those it thinks it’s getting.

Such a change to a table doesn’t affect existing programs until they have to
be recompiled to fix a bug or make some change, perhaps months after the
change was made. Then the effect of the * wildcard expands to include all the
now-current columns. This change may cause the application to fail in a way
unrelated to the bug fix (or other change made), creating your own personal
debugging nightmare.

	 To be safe, specify all column names explicitly in an application instead of using
the asterisk wildcard. (For more about wildcard characters, see Chapter 6.)

SQL strengths and weaknesses
SQL is strong in data retrieval. If important information is buried somewhere
in a single-table or multitable database, SQL gives you the tools you need to
retrieve it. You don’t need to know the order of the table’s rows or columns
because SQL doesn’t deal with rows or columns individually. The SQL trans-
action-processing facilities ensure that your database operations are unaf-
fected by any other users who may be simultaneously accessing the same
tables that you are.

335 Chapter 16: Using SQL within Applications

A major weakness of SQL is its rudimentary user interface. It has no provision
for formatting screens or reports. It accepts command lines from the key-
board and sends retrieved values to the monitor screen, one row at a time.

Sometimes a strength in one context is a weakness in another. One strength
of SQL is that it can operate on an entire table at once. Whether the table
has one row, a hundred rows, or a hundred thousand rows, a single SELECT
statement can extract the data you want. SQL can’t easily operate on one
row at a time, however — and sometimes you do want to deal with each row
individually. In such cases, you can use SQL’s cursor facility (described in
Chapter 19) or you can use a procedural host language.

Procedural languages’ strengths
and weaknesses
In contrast to SQL, procedural languages are designed for one-row-at-a-time
operations, which give the application developer precise control over the
way a table is processed. This detailed control is a great strength of pro-
cedural languages. But a corresponding weakness is that the application
developer must have detailed knowledge about how the data is stored in the
database tables. The order of the database’s columns and rows is significant
and must be taken into account.

	 Because of the step-by-step nature of procedural languages, they have the flex-
ibility to produce user-friendly screens for data entry and viewing. You can
also produce sophisticated printed reports with any desired layout.

Problems in combining SQL
with a procedural language
It makes sense to try to combine SQL and procedural languages in such a
way that you can benefit from their mutual strengths and not be penalized by
their combined weaknesses. As valuable as such a combination may be, you
must overcome some challenges before you can achieve this perfect mar-
riage in a practical way.

Contrasting operating modes
A big problem in combining SQL with a procedural language is that SQL oper-
ates on tables a set at a time, whereas procedural languages work on them
a row at a time. Sometimes this issue isn’t a big deal. You can separate set
operations from row operations, doing each with the appropriate tool.

336 Part IV: Controlling Operations

But if you want to search a table for records meeting certain conditions and
perform different operations on the records depending on whether they meet
the conditions, you may have a problem. Such a process requires both the
retrieval power of SQL and the branching capability of a procedural language.
Embedded SQL gives you this combination of capabilities. You can simply
embed SQL statements at strategic locations within a program that you have
written in a conventional procedural language. (See “Embedded SQL,” later in
this chapter, for more information.)

Data type incompatibilities
Another hurdle to the smooth integration of SQL with any procedural lan-
guage is that SQL’s data types differ from the data types of all the major pro-
cedural languages. This circumstance shouldn’t be surprising, because the
data types defined for any procedural language are different from the types
for the other procedural languages.

	 You can look high and low, but you won’t find any standardization of data
types across languages. In SQL releases before SQL-92, data-type incompat-
ibility was a major concern. In SQL-92 (and also in subsequent releases of the
SQL standard), the CAST statement addresses the problem. Chapter 9 explains
how you can use CAST to convert a data item from the procedural language’s
data type to one recognized by SQL, as long as the data item itself is compat-
ible with the new data type.

Hooking SQL into Procedural Languages
Although you face some potential hurdles when you integrate SQL with
procedural languages, mark my words — the integration can be done suc-
cessfully. In fact, in many instances, you must integrate SQL with procedural
languages if you intend to produce the desired result in the allotted time —
or produce it at all. Luckily, you can use any of several methods for combin-
ing SQL with procedural languages. Three of the methods — embedded SQL,
module language, and RAD tools — are outlined in the next few sections.

Embedded SQL
The most common method of mixing SQL with procedural languages is called
embedded SQL. Wondering how embedded SQL works? Take one look at the
name and you have the basics down: Drop SQL statements into the middle of
a procedural program, wherever you need them.

337 Chapter 16: Using SQL within Applications

Of course, as you may expect, an SQL statement that suddenly appears in
the middle of a C program can present a challenge for a compiler that isn’t
expecting it. For that reason, programs containing embedded SQL are usu-
ally passed through a preprocessor before being compiled or interpreted. The
EXEC SQL directive warns the preprocessor of the imminent appearance of
SQL code.

As an example of embedded SQL, look at a program written in Oracle’s
Pro*C version of the C language. The program, which accesses a company’s
EMPLOYEE table, prompts the user for an employee name and then displays
that employee’s salary and commission. It then prompts the user for new
salary and commission data — and updates the employee table with it:

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR uid[20];
 VARCHAR pwd[20];
 VARCHAR ename[10];
 FLOAT salary, comm;
 SHORT salary_ind, comm_ind;
EXEC SQL END DECLARE SECTION;
main()
{
 int sret; /* scanf return code */
 /* Log in */
 strcpy(uid.arr,”FRED”); /* copy the user name */
 uid.len=strlen(uid.arr);
 strcpy(pwd.arr,“TOWER“); /* copy the password */
 pwd.len=strlen(pwd.arr);
 EXEC SQL WHENEVER SQLERROR STOP;
 EXEC SQL WHENEVER NOT FOUND STOP;
 EXEC SQL CONNECT :uid;
 printf(„Connected to user: percents \n“,uid.arr);
 printf(„Enter employee name to update: „);
 scanf(„percents“,ename.arr);
 ename.len=strlen(ename.arr);
 EXEC SQL SELECT SALARY,COMM INTO :salary,:comm
 FROM EMPLOY
 WHERE ENAME=:ename;
 printf(„Employee: percents salary: percent6.2f comm:
 percent6.2f \n“,
 ename.arr, salary, comm);
 printf(„Enter new salary: „);
 sret=scanf(„percentf“,&salary);
 salary_ind = 0;
 if (sret == EOF !! sret == 0) /* set indicator */
 salary_ind =-1; /* Set indicator for NULL */
 printf(“Enter new commission: “);
 sret=scanf(„percentf“,&comm);
 comm_ind = 0; /* set indicator */

338 Part IV: Controlling Operations

 if (sret == EOF !! sret == 0)
 comm_ind=-1; /* Set indicator for NULL */
 EXEC SQL UPDATE EMPLOY
 SET SALARY=:salary:salary_ind
 SET COMM=:comm:comm_ind
 WHERE ENAME=:ename;
 printf(„Employee percents updated. \n“,ename.arr);
 EXEC SQL COMMIT WORK;
 exit(0);
}

You don’t have to be an expert in C to understand the essence of what this
program is doing (and how it intends to do it). Here’s a rundown of the order
in which the statements execute:

	 1.	 SQL declares host variables.

	 2.	 C code controls the user login procedure.

	 3.	 SQL sets up error handling and connects to the database.

	 4.	 C code solicits an employee name from the user and places it in a variable.

	 5.	 An SQL SELECT statement retrieves the data for the named employee’s
salary and commission, and the statement stores the data in the host
variables :salary and :comm.

	 6.	 C then takes over again and displays the employee’s name, salary, and
commission and then solicits new values for salary and commission. It
also checks to see whether an entry has been made, and if one has not,
it sets an indicator.

	 7.	 SQL updates the database with the new values.

	 8.	 C then displays an Operation complete message.

	 9.	 SQL commits the transaction, and C finally exits the program.

	 You can mix the commands of two languages like this because of the prepro-
cessor. The preprocessor separates the SQL statements from the host lan-
guage commands, placing the SQL statements in a separate external routine.
Each SQL statement is replaced with a host-language CALL of the correspond-
ing external routine. The language compiler can now do its job.

	 The way the SQL part is passed to the database depends on the implemen-
tation. You, as the application developer, don’t have to worry about any of
this. The preprocessor takes care of it. You should be concerned about a few
things, however, that do not appear in interactive SQL — things such as host
variables and incompatible data types.

339 Chapter 16: Using SQL within Applications

Declaring host variables
Some information must be passed between the host language program and
the SQL segments. You pass this data with host variables. In order for SQL to
recognize the host variables, you must declare them before you use them.
Declarations are included in a declaration segment that precedes the program
segment. The declaration segment is announced by the following directive:

EXEC SQL BEGIN DECLARE SECTION ;

The end of the declaration segment is signaled by this line:

EXEC SQL END DECLARE SECTION ;

Every SQL statement must be preceded by an EXEC SQL directive. The end
of an SQL segment may or may not be signaled by a terminator directive. In
COBOL, the terminator directive is “END-EXEC”, and in C, it’s a semicolon.

Converting data types
Depending on the compatibility of the data types supported by the host lan-
guage and those supported by SQL, you may have to use CAST to convert
certain types. You can use host variables that have been declared in the
DECLARE SECTION. Remember to prefix host variable names with a colon
(:) when you use them in SQL statements, as in the following example:

INSERT INTO FOODS
 (FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
 VALUES
 (:foodname, :calories, :protein, :fat, :carbo) ;

Module language
Module language provides another method for using SQL with a procedural
programming language. With module language, you explicitly put all the SQL
statements into a separate SQL module.

	 An SQL module is simply a list of SQL statements. Each SQL statement is
included in an SQL procedure and is preceded by a specification of the proce-
dure’s name and the number and types of parameters.

Each SQL procedure contains only one SQL statement. In the host program,
you explicitly call an SQL procedure at whatever point in the host program
you want to execute the SQL statement in that procedure. You call the SQL
procedure as if it were a subprogram in the host language.

340 Part IV: Controlling Operations

Thus you can use an SQL module and the associated host program to explic-
itly hand-code the result of the SQL preprocessor for embedded syntax.

	 Embedded SQL is much more common than module language. Most vendors
offer some form of module language, but few emphasize it in their documenta-
tion. Module language does have several advantages:

	 ✓	SQL programmers don’t have to be experts in the procedural lan-
guage. Because the SQL is completely separated from the procedural
language, you can hire the best SQL programmers available to write
your SQL modules, whether or not they have any experience with your
procedural language. In fact, you can even defer deciding which pro-
cedural language to use until after your SQL modules are written and
debugged.

	 ✓	You can hire the best programmers who work in your procedural lan-
guage, even if they know nothing about SQL. It stands to reason that
if your SQL experts don’t have to be procedural language experts, cer-
tainly the procedural language experts don’t have to worry themselves
over learning SQL.

	 ✓	No SQL is mixed in with the procedural code, so your procedural
language debugger works. This can save you considerable development
time.

	 Once again, what can be looked at as an advantage from one perspective may
be a disadvantage from another. Because the SQL modules are separated
from the procedural code, following the flow of the logic isn’t as easy as it is in
embedded SQL when you’re trying to understand how the program works.

Module declarations
The syntax for the declarations in a module is as follows:

MODULE [module-name]
 [NAMES ARE character-set-name]
 LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}
 [SCHEMA schema-name]
 [AUTHORIZATION authorization-id]
 [temporary-table-declarations...]
 [cursor-declarations...]
 [dynamic-cursor-declarations...]
 procedures...

The square brackets indicate that the module name is optional. Naming it
anyway is a good idea if you want to keep things from getting too confusing.

341 Chapter 16: Using SQL within Applications

	 The optional NAMES ARE clause specifies a character set. If you don’t include
a NAMES ARE clause, the default set of SQL characters for your implementa-
tion is used. The LANGUAGE clause tells the module which language it will be
called from. The compiler must know what the calling language is, because it
will make the SQL statements appear to the calling program as if they are sub-
programs in that program’s language.

Although the SCHEMA clause and the AUTHORIZATION clause are both
optional, you must specify at least one of them. Or you can specify both. The
SCHEMA clause specifies the default schema, and the AUTHORIZATION clause
specifies the authorization identifier. The authorization identifier establishes
the privileges you have. If you don’t specify an authorization ID, the DBMS uses
the authorization ID associated with your session to determine the privileges
that your module is allowed. If you don’t have the privileges needed to perform
the operation your procedure calls for, your procedure isn’t executed.

	 If your procedure requires temporary tables, declare them with the tempo-
rary-table declaration clause. Declare cursors and dynamic cursors before
you declare any procedures that use them. Declaring a cursor after a proce-
dure starts executing is permissible as long as that procedure doesn’t use the
cursor. Declaring cursors to be used by later procedures may make sense.
(You can find more in-depth information on cursors in Chapter 19.)

Module procedures
Following all the declarations I discuss in the previous section, the functional
parts of the module are the procedures. An SQL module language procedure
has a name, parameter declarations, and executable SQL statements. The pro-
cedural language program calls the procedure by its name and passes values
to it through the declared parameters. Procedure syntax looks like this:

PROCEDURE procedure-name
 (parameter-declaration [, parameter-declaration]...
 SQL statement ;
 [SQL statements] ;

The parameter declaration should take the following form:

parameter-name data-type

or

SQLSTATE

342 Part IV: Controlling Operations

The parameters you declare may be input parameters, output parameters,
or both. SQLSTATE is a status parameter through which errors are reported.
(You can delve deeper into parameters by heading to Chapter 21.)

Object-oriented RAD tools
By using state-of-the-art RAD tools, you can develop sophisticated applica-
tions without knowing how to write a single line of code in C++, C#, Python,
Java, or any procedural language, for that matter. Instead, you choose
objects from a library and place them in appropriate spots on the screen.

	 Objects of different standard types have characteristic properties, and
selected events are appropriate for each object type. You can also associate
a method with an object. The method is a procedure written in (well, yeah) a
procedural language. Building useful applications without writing any meth-
ods is possible, however.

	 Although you can build complex applications without using a procedural
language, sooner or later you’ll probably need SQL. SQL has a richness of
expression that is difficult, if not impossible, to duplicate with object-oriented
programming. As a result, full-featured RAD tools offer you a mechanism for
injecting SQL statements into your object-oriented applications. Microsoft’s
Visual Studio is an example of an object-oriented development environment
that offers SQL capability. Microsoft Access is another application develop-
ment environment that enables you to use SQL in conjunction with its proce-
dural language, VBA.

Chapter 4 shows you how to create database tables with Access. That opera-
tion represents only a small fraction of Access’s capabilities. Access is a tool,
and its primary purpose is to develop applications that process the data in
database tables. Using Access, you can place objects on forms and then cus-
tomize the objects by giving them properties, events, and methods. You can
manipulate the forms and objects with VBA code, which can contain embed-
ded SQL.

	 Although RAD tools such as Access can deliver high-quality applications in
less time, they usually don’t work across all platforms. Access, for instance,
runs only with the Microsoft Windows operating system. You may get lucky
and discover that the RAD tool you chose works on a few platforms, but if
building platform-independent functionality is important to you — or if you
think you may want to migrate your application to a different platform eventu-
ally — beware.

343 Chapter 16: Using SQL within Applications

RAD tools such as Access represent the beginning of the eventual merger of
relational and object-oriented database design. The structural strengths of
relational design and SQL will both survive. They will be augmented by the
rapid — and comparatively bug-free — development that comes from object-
oriented programming.

Using SQL with Microsoft Access
The primary audience for Microsoft Access is people who want to develop
relatively simple applications without programming. If that describes you,
you might want to put Access For Dummies on your shelf as a reference
book. The procedural language VBA (Visual Basic for Applications) and SQL
are both built into Access, but are not emphasized in either advertising or
documentation. If you want to use VBA and SQL to develop more sophisti-
cated applications, try my book, Access 2003 Power Programming with VBA,
also published by Wiley. The programming aspect of Access hasn’t changed
much over the past decade. Be aware though, that the SQL in Access is not
a full implementation — and you almost need the detective skills of Sherlock
Holmes to even find it.

	 I mention the three components of SQL — Data Definition Language, Data
Manipulation Language, and Data Control Language — in Chapter 3. The
subset of SQL contained in Access primarily implements the Data Manipulation
Language. You can do table creation operations with Access SQL, but they are
a lot easier to do with the RAD tool I describe in Chapter 4. The same goes for
implementing security features, which I cover in Chapter 14.

To get a look at some Access SQL, you need to sneak up on it from behind.
Consider an example taken from the database of the fictitious Oregon Lunar
Society, a nonprofit research organization. The Society has several research
teams, one of which is the Moon Base Research Team (MBRT). A question
has arisen as to which scholarly papers have been written by members of the
team. A query was formulated using Access’s Query By Example (QBE) facil-
ity to retrieve the desired data. The query, shown in Figure 16-1, pulls data
from the RESEARCHTEAMS, AUTHORS, and PAPERS tables with the help of
the AUTH-RES and AUTH-PAP intersection tables that were added to break up
many-to-many relationships.

344 Part IV: Controlling Operations

	

Figure 16-1:
The Design

View of
MBRT

Papers
query.

	

After clicking on the Home tab to access the toolbar, you can click the View
icon drop-down menu in the upper-left corner of the window to reveal the
other available views of the database. One of the choices is SQL View. (See
Figure 16-2.)

	

Figure 16-2:
One of your
View menu

options is
SQL View.

	

When you click SQL View, the SQL editing window appears, showing the SQL
statement that Access has generated, based on the choices you made using
QBE.

	 This SQL statement, shown in Figure 16-3, is what actually gets sent to the
database engine. The database engine, which interfaces directly with the
database itself, understands only SQL. Any information entered into the QBE
environment must be translated into SQL before it is sent on to the database
engine for processing.

345 Chapter 16: Using SQL within Applications

	

Figure 16-3:
An SQL

statement
that

retrieves the
names of all

the papers
written by

members of
the MBRT.

	

	 You may notice that the syntax of the SQL statement shown in Figure 16-3 dif-
fers somewhat from the syntax of ANSI/ISO-standard SQL. Take the old adage,
“When in Rome, do as the Romans do,” to heart here. When working with
Access, use the Access dialect of SQL. That advice also goes for any other
environment that you may be working in. All implementations of SQL differ
from the standard in one respect or another.

If you want to write a new query in Access SQL — one that has not already
been created using QBE, that is — you can simply erase some existing query
from the SQL editing window and type in a new SQL SELECT statement. Click
the DESIGN tab and then the red Exclamation Point (Run) icon on the toolbar
at the top of the screen to run your new query. The result appears onscreen
in Datasheet View.

346 Part IV: Controlling Operations

Part V
Taking SQL to the Real World

	

Visit www.dummies.com/extras/sql for great Dummies content online.

In this part…
	 ✓	 Using ODBC
	 ✓	 Using JDBC
	 ✓	 Operating on XML data
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 17

Accessing Data with
ODBC and JDBC

In This Chapter
▶	Finding out about ODBC
▶	Taking a look at the parts of ODBC
▶	Using ODBC in a client/server environment
▶	Using ODBC on the Internet
▶	Using ODBC on an intranet
▶	Using JDBC

I
n recent years, computers have become increasingly interconnected,
both within and between organizations. With this connection comes the

need for sharing database information across networks. The major obstacle
to the free sharing of information across networks is the incompatibility of
the operating software and applications running on different machines. SQL’s
creation and its ongoing evolution have been major steps toward overcoming
hardware and software incompatibility.

Unfortunately, “standard” SQL is not all that standard. Even DBMS vendors
who claim to comply with the international SQL standard have included pro-
prietary extensions in their SQL implementations — which make them incom-
patible with the proprietary extensions in other vendors’ implementations.
The vendors are loath to give up their extensions because their customers
have designed them into their applications and have become dependent on
them. User organizations, particularly large ones, need another way to make
cross-DBMS communication possible — a tool that doesn’t require vendors
to dumb down their implementations to the lowest common denominator.
This other way is ODBC (Open DataBase Connectivity).

350 Part V: Taking SQL to the Real World

ODBC
ODBC is a standard interface between a database and an application that
accesses the data in the database. Having a standard enables any application
front end to access any database back end by using SQL. The only require-
ment is that the front end and the back end both adhere to the ODBC stan-
dard. ODBC 4.0 is the current version of the standard.

An application accesses a database by using a driver (in this case, the
ODBC driver), which is specifically designed to interface with that particu-
lar database. The driver’s front end, the side that goes to the application,
rigidly adheres to the ODBC standard. It looks the same to the application,
regardless of what database engine is on the back end. The driver’s back
end is customized to the specific database engine that it’s addressing. With
this architecture, applications don’t have to be customized to — or even
be aware of — which back-end database engine actually controls the data
they’re using. The driver masks the differences between back ends.

The ODBC interface
The ODBC interface is essentially a set of definitions, each of which is
accepted as standard. The definitions cover everything needed to establish
communication between an application and a database. The ODBC interface
defines the following:

	 ✓	A function-call library

	 ✓	Standard SQL syntax

	 ✓	Standard SQL data types

	 ✓	A standard protocol for connecting to a database engine

	 ✓	Standard error codes

The ODBC function calls make the connection to a back-end database engine
possible; they execute SQL statements and pass results back to the application.

	 To perform an operation on a database, include the appropriate SQL state-
ment as an argument of an ODBC function call. As long as you use the ODBC-
specified standard SQL syntax, the operation works — regardless of what
database engine is on the back end.

351 Chapter 17: Accessing Data with ODBC and JDBC

Components of ODBC
The ODBC interface consists of four functional components, referred to as
ODBC layers. Each component plays a role in making ODBC flexible enough
to provide transparent communication from any compatible front end to any
compatible back end. The four layers of the ODBC interface are between the
user and the data that the user wants, as follows:

	 ✓	Application: The application is the part of the ODBC interface that’s
closest to the user. Of course, even systems that don’t use ODBC include
an application. Nonetheless, including the application as a part of the
ODBC interface makes sense. The application has to know that it’s
communicating with its data source through ODBC. It must connect
smoothly with the ODBC driver manager, in strict accordance with the
ODBC standard.

	 ✓	Driver manager: The driver manager is a dynamic link library
(DLL),which is generally supplied by Microsoft. It loads appropriate
drivers for the system’s (possibly multiple) data sources and directs
function calls coming in from the application to the appropriate data
sources via their drivers. The driver manager also handles some ODBC
function calls directly and detects and handles some types of errors.
Although Microsoft originated the ODBC standard, it is now universally
accepted, even by open-source hardliners.

	 ✓	Driver DLL: Because data sources can be different from each other (in
some cases, very different), you need a way to translate standard ODBC
function calls into the native language of each data source. Translation
is the job of the driver DLL. Each driver DLL accepts function calls
through the standard ODBC interface and then translates them into
code that is understandable to its associated data source. When the data
source responds with a result set, the driver reformats it in the reverse
direction into a standard ODBC result set. The driver is the crucial ele-
ment that enables any ODBC-compatible application to manipulate the
structure and the contents of an ODBC-compatible data source.

	 ✓	Data source: The data source may be one of many different things.
It may be a relational DBMS and an associated database residing on
the same computer as the application. It may be such a database on a
remote computer. It may be an indexed sequential access method (ISAM)
file with no DBMS, either on the local or a remote computer. It may or
may not include a network. The myriad different forms that the data
source can take require that a custom driver be available for each one.

352 Part V: Taking SQL to the Real World

ODBC in a Client/Server Environment
In a client/server system, the interface between the client part and the server
part is called the application programming interface (API). An ODBC driver, for
instance, includes an API. APIs can be either proprietary or standard. A pro-
prietary API is one in which the client part of the interface has been specifi-
cally designed to work with one particular back end on the server. The actual
code that forms this interface is a driver — and in a proprietary system,
it’s called a native driver. A native driver is optimized for use with a specific
front-end client and its associated back-end data source. Because native driv-
ers are optimized for both the specific front-end application and the specific
DBMS back end that they’re working with, the drivers tend to pass com-
mands and information back and forth quickly, with a minimum of delay.

	 If your client/server system always accesses the same type of data source,
and you’re sure you’ll never need to access data on another type of data
source, then you may want to use the native driver supplied with your DBMS.
However, if you may need to access data that’s stored in a different form
sometime in the future, then using an ODBC API now could save you a great
deal of rework later.

ODBC drivers are also optimized to work with specific back-end data sources,
but they all have the same front-end interface to the driver manager. Any
driver that hasn’t been optimized for a particular front end, therefore, is
probably not as fast as a native driver that’s specifically designed for that
front end. A major complaint about the first generation of ODBC drivers was
their poor performance when compared with native drivers. Recent bench-
marks, however, have shown that ODBC 4.0 drivers are quite competitive
in performance to native drivers. The technology is mature enough that it’s
no longer necessary to sacrifice performance to gain the advantages of stan-
dardization.

ODBC and the Internet
Database operations over the Internet differ in several important ways from
database operations on a client/server system, although the user may not
notice any difference. The most visible difference from the user’s point of
view is the client portion of the system, which includes the user interface.
In a client/server system, the user interface is the part of an application that
communicates with the data source on the server — using ODBC-compatible
SQL statements. Over the web, the client portion of the system is still on
the local computer, but it communicates with the data source on the server
using the HTTP standard protocol.

353 Chapter 17: Accessing Data with ODBC and JDBC

Anyone with the appropriate client-end software (and the appropriate autho-
rization) can access the data that is stored out on the web. This means that
you can create an application at your work computer and then access it later
with your mobile device. Figure 17-1 compares client/server systems with
web-based systems.

	

Figure 17-1:
A client/

server
system

versus a
web-based

database
system.

	

Server extensions
In the web-based system, communication between the application front end
on the client machine and the web server on the server machine takes place
using HTTP. A system component called a server extension translates the
commands coming over the network into ODBC-compatible SQL. Then the
database server acts on the SQL, which in turn deals directly with the data
source. In the reverse direction, the data source sends the result set that is
generated by a query through the database server to the server extension,
which then translates it into a form that the web server can handle. The
results are then sent over the web to the application front-end on the client
machine, where they’re displayed to the user. Figure 17-2 shows the anatomy
of this type of system.

354 Part V: Taking SQL to the Real World

	

Figure 17-2:
A web-based

database
system with

a server
extension.

	

Client extensions
Applications such as Mircosoft Access 2013 are designed to operate either
on data that is stored locally on the user’s machine, on a server located on a
local or wide area network (LAN or WAN), or out on the Internet in the cloud.
Microsoft’s cloud repository is called SkyDrive. It’s also possible to access an
application in the cloud using nothing more than a web browser. Web brows-
ers were designed — and are now optimized — to provide easy-to-under-
stand and easy-to-use interfaces to web sites of all kinds. The most popular
browsers, Google Chrome, Mozilla Firefox, Microsoft Internet Explorer, and
Apple Safari, were not designed or optimized to be database front ends. For
meaningful interaction with a database to occur over the Internet, the client
side of the system needs functionality that the browser does not provide.
To fill this need, several types of client extensions have been developed.
These extensions include ActiveX controls, Java applets, and scripts. The
extensions communicate with the server via HTTP, using HTML, which is
the language of the web. Any HTML code that deals with database access is
translated into ODBC-compatible SQL by the server extension before being
forwarded to the data source.

355 Chapter 17: Accessing Data with ODBC and JDBC

ActiveX controls
Microsoft’s ActiveX controls work with Microsoft’s Internet Explorer, which
is a very popular browser. However, it has recently lost market share to
Google Chrome and Mozilla’s Firefox.

Scripts
Scripts are the most flexible tools for creating client extensions. Using a
scripting language, such as the ubiquitous JavaScript or Microsoft’s VBScript,
gives you maximum control over what happens at the client end. You can put
validation checks on data-entry fields, thus enabling the rejection or correc-
tion of invalid entries without ever going out onto the web. This can save you
time as well as reduce traffic on the web, thus benefiting other users as well.
Of course, validation checks can also be made at the server end by apply-
ing constraints to the values that data items can take. As with Java applets,
scripts are embedded in an HTML page and execute as the user interacts
with that page.

ODBC and an Intranet
An intranet is a local- or wide-area network that operates like a simpler ver-
sion of the Internet. Because an intranet is contained within a single orga-
nization, you don’t need complex security measures such as firewalls. All
the tools that are designed for application development on the web operate
equally well as development tools for intranet applications. ODBC works on
an intranet in the same way that it does on the Internet. If you have multiple
data sources, clients using web browsers (and the appropriate client and
server extensions) can communicate with them with SQL that passes through
HTML and ODBC stages. At the driver, the ODBC-compliant SQL is translated
into the database’s native command language and executed.

JDBC
JDBC (Java DataBase Connectivity) is similar to ODBC, but it differs in a
few important respects. One such difference is hinted at by its name. JDBC
is a database interface that always looks the same to the client program —
regardless of what data source is sitting on the server (back end). The dif-
ference is that JDBC expects the client application to be written in the Java
language rather than another language such as C++ or Visual Basic. Another
difference is that Java and JDBC were both specifically designed to run on the
web or on an intranet.

356 Part V: Taking SQL to the Real World

Java is a C++-like language that was developed by Sun Microsystems specifi-
cally for the development of web-client programs. When a connection is
established between a server and a client over the web, the appropriate Java
applet is downloaded to the client, where the applet commences to run. The
applet, which is embedded in an HTML page, provides the database-specific
functionality that the client needs to provide flexible access to server data.
Figure 17-3 is a schematic representation of a web database application with
a Java applet running on the client machine.

	

Figure 17-3:
A web

database
application,

using a Java
applet.

	

An applet is a small application that resides on a server. When a client con-
nects to that server over the web, the applet is downloaded and starts run-
ning in the client computer. Java applets are specially designed so they can
run in a sandbox — a well-defined (and isolated) area in the client computer’s
memory set aside for running applets. The applet is not allowed to affect any-
thing outside the sandbox. This architecture is designed to protect the client
machine from potentially hostile applets that may try to extract sensitive
information or cause malicious damage.

357 Chapter 17: Accessing Data with ODBC and JDBC

A major advantage to using Java applets is that they’re always up to date.
Because the applets are downloaded from the server every time they’re used
(as opposed to being retained on the client), the client is always guaranteed
to have the latest version whenever it runs a Java applet.

	 If you’re responsible for maintaining your organization’s server, you never
have to worry about losing compatibility with some of your clients when you
upgrade the server software. Just make sure that your downloadable Java
applet is compatible with the new server configuration — because, as long
as their web browsers have been configured to enable Java applets, all your
clients automatically become compatible too. Java is a full-featured program-
ming language, and it is entirely possible to write robust applications with
Java that can access databases in some kind of client/server system. When
used this way, a Java application that accesses a database via JDBC is similar
to a C++ application that accesses a database via ODBC. But a Java application
acts quite different from a C++ application when it comes to the Internet (or an
intranet).

When the system that you’re interested in is on the Net, the operating condi-
tions are different from the conditions in a client/server system. The client
side of an application that operates over the Internet is a browser, with
minimal computational capabilities. These capabilities must be augmented
in order for significant database processing to be done; Java applets provide
these capabilities.

	 You face a certain amount of danger when you download anything from a
server that you don’t know to be trustworthy. If you download a Java applet,
that danger is greatly reduced but not completely eliminated. Be wary about
letting executable code enter your machine from a questionable server.

Like ODBC, JDBC passes SQL statements from the front-end application
(applet) running on the client to the data source on the back end. It also
serves to pass result sets or error messages from the data source back to the
application. The value of using JDBC is that the applet writer can write to the
standard JDBC interface without needing to know or care what database is
located at the back end. JDBC performs whatever conversion is necessary for
accurate two-way communication to take place. Although designed to work
over the web, JDBC also works in client/server environments where an appli-
cation written in Java communicates with a database back end through the
JDBC interface.

358 Part V: Taking SQL to the Real World

Chapter 18

Operating on XML Data with SQL
In This Chapter
▶	Using SQL with XML
▶	Exploring the relationship between XML, databases, and the Internet

S
tarting with SQL:2008, ISO/IEC standard SQL supports XML. XML (eXten-
sible Markup Language) files have become a universally accepted stan-

dard for exchanging data between dissimilar platforms. With XML, it doesn’t
matter if the person you’re sharing data with has a different application envi-
ronment, a different operating system, or even different hardware. XML can
form a data bridge between the two of you.

How XML Relates to SQL
XML, like HTML, is a markup language, which means that it’s not a full-
function language such as C++ or Java. It’s not even a data sublanguage such
as SQL. However, unlike those languages, it is cognizant of the content of
the data it transports. Where HTML deals only with formatting the text and
graphics in a document, XML gives structure to the document’s content. XML
itself does not deal with formatting. To do that, you have to augment XML
with a style sheet. As it does with HTML, a style sheet applies formatting to an
XML document.

The structure of an XML document is provided by its XML schema, which is
an example of metadata (data that describes data). An XML schema describes
where elements may occur in a document and in what order. It may also
describe the data type of an element and constrain the values that a type
may include.

360 Part V: Taking SQL to the Real World

SQL and XML provide two different ways of structuring data so that you can
save it and retrieve selected information from it:

	 ✓	SQL is an excellent tool for dealing with numeric and text data that can
be categorized by data type and have a well-defined size.

		 SQL was created as a standard way to maintain and operate on data kept
in relational databases.

	 ✓	XML is better at dealing with free-form data that cannot be easily
categorized.

		 The driving motivations for the creation of XML were to provide a uni-
versal standard for transferring data between dissimilar computers and
for displaying it on the web.

The strengths and goals of SQL and XML are complementary. Each reigns
supreme in its own domain and forms alliances with the other to give users
the information they want, when they want it, and where they want it.

The XML Data Type
The XML type was introduced with SQL:2003. This means that conforming
implementations can store and operate on XML-formatted data directly, with-
out first converting it to XML from one of the other SQL data types.

The XML data type, including its subtypes, although intrinsic to any implemen-
tation that supports it, acts like a user-defined type (UDT). The subtypes are:

	 ✓	XML(DOCUMENT(UNTYPED))

	 ✓	XML(DOCUMENT(ANY))

	 ✓	XML(DOCUMENT(XMLSCHEMA))

	 ✓	XML(CONTENT(UNTYPED))

	 ✓	XML(CONTENT(ANY))

	 ✓	XML(CONTENT(XMLSCHEMA))

	 ✓	XML(SEQUENCE)

The XML type brings SQL and XML into close contact because it enables
applications to perform SQL operations on XML content, and XML operations
on SQL content. You can include a column of the XML type with columns of
any of the other predefined types covered in Chapter 2 in a join operation in
the WHERE clause of a query. In true relational database fashion, your DBMS
will determine the optimal way to execute the query and then will do it.

361 Chapter 18: Operating on XML Data with SQL

When to use the XML type
Whether or not you should store data in XML format depends on what you
plan to do with that data. Here are some instances where it makes sense to
store data in XML format:

	 ✓	When you want to store an entire block of data and retrieve the whole
block later.

	 ✓	When you want to be able to query the whole XML document. Some
implementations have expanded the scope of the EXTRACT operator to
enable extracting desired content from an XML document.

	 ✓	When you need strong typing of data inside SQL statements. Using the
XML type guarantees that data values are valid XML values and not just
arbitrary text strings.

	 ✓	To ensure compatibility with future, as yet unspecified, storage sys-
tems that might not support existing types such as CHARACTER LARGE
OBJECT, or CLOB. (See Chapter 2 for more information on CLOB.)

	 ✓	To take advantage of future optimizations that will support only the XML
type.

Here’s an example of how you might use the XML type:

CREATE TABLE CLIENT (
 ClientName CHAR (30) NOT NULL,
 Address1 CHAR (30),
 Address2 CHAR (30),
 City CHAR (25),
 State CHAR (2),
 PostalCode CHAR (10),
 Phone CHAR (13),
 Fax CHAR (13),
 ContactPerson CHAR (30),
 Comments XML(SEQUENCE)) ;

This SQL statement will store an XML document in the Comments column
of the CLIENT table. The resulting document might look something like the
following:

<Comments>
 <Comment>
 <CommentNo>1</CommentNo>
 <MessageText>Is VetLab equipped to analyze penguin

blood?</MessageText>
 <ResponseRequested>Yes</ResponseRequested>
 </Comment>

362 Part V: Taking SQL to the Real World

 <Comment>
 <CommentNo>2</CommentNo>
 <MessageText>Thanks for the fast turnaround on the

leopard seal sputum sample.</MessageText>
 <ResponseRequested>No</ResponseRequested>
 </Comment>
</Comments>

When not to use the XML type
Just because the SQL standard allows you to use the XML type doesn’t mean
that you always should. In fact, on many occasions, it doesn’t make sense
to use the XML type. Most data in relational databases today is better off in
its current format than it is in XML format. Here are a couple of examples of
when not to use the XML type:

	 ✓	When the data breaks down naturally into a relational structure with
tables, rows, and columns

	 ✓	When you will need to update pieces of the document rather than deal
with the document as a whole

Mapping SQL to XML and XML to SQL
To exchange data between SQL databases and XML documents, the various
elements of an SQL database must be translatable into equivalent elements
of an XML document, and vice versa. I describe which elements need to be
translated in the following sections.

Mapping character sets
In SQL, the character sets supported depend on which implementation
you’re using. This means that IBM’s DB2 may support character sets that are
not supported by Microsoft’s SQL Server. SQL Server may support character
sets not supported by Oracle. Although the most common character sets are
almost universally supported, if you use a less common character set, migrat-
ing your database and application from one RDBMS platform to another may
be difficult.

363 Chapter 18: Operating on XML Data with SQL

XML has no compatibility issue with character sets — it supports only one,
Unicode. This is a good thing from the point of view of exchanging data
between any given SQL implementation and XML. All the RDBMS vendors
have to define a mapping between strings of each of their character sets and
Unicode, as well as a reverse mapping from Unicode to each of their charac-
ter sets. Luckily, XML doesn’t also support multiple character sets. If it did,
vendors would have a many-to-many problem that would require several
more mappings and reverse mappings to resolve.

Mapping identifiers
XML is much stricter than SQL in the characters it allows in identifiers.
Characters that are legal in SQL but illegal in XML must be mapped to some-
thing legal before they can become part of an XML document. SQL supports
delimited identifiers. This means that all sorts of odd characters such as %,
$, and & are legal, as long as they’re enclosed within double quotes. Such
characters are not legal in XML. Furthermore, XML Names that begin with the
characters XML in any combination of cases are reserved and thus cannot be
used with impunity. If you have any SQL identifiers that begin with those let-
ters, you have to change them.

An agreed-upon mapping bridges the identifier gap between SQL and XML. In
moving from SQL to XML, all SQL identifiers are converted to Unicode. From
there, any SQL identifiers that are also legal XML Names are left unchanged.
SQL identifier characters that are not legal XML Names are replaced with a
hexadecimal code that either takes the form “_xNNNN_” or “_xNNNNNNNN_”,
where N represents an uppercase hexadecimal digit. For example, the under-
score will be represented by “_x005F_”. The colon will be represented by
“_x003A_”. These representations are the codes for the Unicode characters
for the underscore and colon. The case where an SQL identifier starts with
the characters x, m, and l is handled by prefixing all such instances with a
code in the form “_xFFFF_”.

Conversion from XML to SQL is much easier. All you need to do is scan the
characters of an XML Name for a sequence of “_xNNNN_” or “_xNNNNNNNN_”.
Whenever you find such a sequence, replace it with the character that the
Unicode corresponds to. If an XML Name begins with the characters
“_xFFFF_”, ignore them.

	 By following these simple rules, you can map an SQL identifier to an XML
Name and then back to an SQL identifier again. However, this happy situation
does not hold for a mapping from XML Name to SQL identifier and back to
XML Name.

364 Part V: Taking SQL to the Real World

Mapping data types
The SQL standard specifies that an SQL data type must be mapped to the
closest possible XML Schema data type. The designation closest possible
means that all values allowed by the SQL type will be allowed by the XML
Schema type, and the fewest possible values not allowed by the SQL type will
be allowed by the XML Schema type. XML facets, such as maxInclusive
and minInclusive, can restrict the values allowed by the XML Schema
type to the values allowed by the corresponding SQL type. For example,
if the SQL data type restricts values of the INTEGER type to the range
–2157483648<value<2157483647, in XML the maxInclusive value can
be set to 2157483647, and the minInclusive value can be set
to –2157483648. Here’s an example of such a mapping:

<xsd:simpleType>
 <xsd:restriction base=”xsd:integer”/>
 <xsd:maxInclusive value=”2157483647”/>
 <xsd:minInclusive value=”-2157483648”/>
 <xsd:annotation>
 <sqlxml:sqltype name=”INTEGER”/>
 </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

	 The annotation section retains information from the SQL type definition that is
not used by XML, but you may find it valuable later if the document is mapped
back to SQL.

Mapping tables
You can map a table to an XML document. Similarly, you can map all the
tables in a schema or all the tables in a catalog. Privileges are maintained
by the mapping. A person who has the SELECT privilege on only some table
columns will be able to map only those columns to the XML document. The
mapping actually produces two documents, one that contains the data in the
table and the other that contains the XML Schema that describes the first
document. Here’s an example of the mapping of an SQL table to an XML data-
containing document:

<CUSTOMER>
 <row>
 <FirstName>Abe</FirstName>
 <LastName>Abelson</LastName>
 <City>Springfield</City>
 <AreaCode>714</AreaCode>

365 Chapter 18: Operating on XML Data with SQL

 <Telephone>555-1111</Telephone>
 </row>
 <row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <City>Decatur</City>
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
 </row>
.
.
.
</CUSTOMER>

The root element of the document has been given the name of the table. Each
table row is contained within a <row> element, and each row element con-
tains a sequence of column elements, each named after the corresponding
column in the source table. Each column element contains a data value.

Handling null values
Because SQL data might include null values, you must decide how to repre-
sent them in an XML document. You can represent a null value either as nil
or absent. If you choose the nil option, then the attribute xsi:nil=“true”
marks the column elements that represent null values. It might be used in the
following way:

<row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <City xsi:nil=”true” />
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
</row>

If you choose the absent option, you could implement it as follows:

<row>
 <FirstName>Bill</FirstName>
 <LastName>Bailey</LastName>
 <AreaCode>714</AreaCode>
 <Telephone>555-2222</Telephone>
</row>

In this case, the row containing the null value is absent. There is no reference
to it.

366 Part V: Taking SQL to the Real World

Generating the XML Schema
When mapping from SQL to XML, the first document generated is the one
that contains the data. The second contains the schema information. As an
example, consider the schema for the CUSTOMER document shown in the
“Mapping tables” section, earlier in this chapter:

<xsd:schema>
 <xsd:simpleType name=”CHAR_15”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “15”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_25”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “25”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_3”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “3”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”CHAR_8”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value = “8”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:sequence>
 <xsd:element name=”FirstName” type=”CHAR_15”/>
 <xsd:element name=”LastName” type=”CHAR_25”/>
 <xsd:element
 name=”City” type=”CHAR_25 nillable=”true”/>
 <xsd:element
 name=”AreaCode” type=”CHAR_3” nillable=”true”/>
 <xsd:element
 name=”Telephone” type=”CHAR_8” nillable=”true”/>
 </xsd:sequence>

</xsd:schema>

This schema is appropriate if the nil approach to handling nulls is used. The
absent approach requires a slightly different element definition. For example:

<xsd:element
 name=”City” type=”CHAR_25” minOccurs=”0”/>

367 Chapter 18: Operating on XML Data with SQL

SQL Functions That Operate
on XML Data

The SQL standard defines a number of operators, functions, and pseudo-func-
tions that, when applied to an SQL database, produce an XML result, or when
applied to XML data produce a result in standard SQL form. The functions
include XMLELEMENT, XMLFOREST, XMLCONCAT, and XMLAGG. In the following
sections, I give brief descriptions of these functions, as well as several others
that are frequently used when publishing to the web. Some of the functions
rely heavily on XQuery, a standard query language designed specifically for
querying XML data. XQuery is a huge topic in itself and is beyond the scope
of this book. To find out more about XQuery, a good source of information
is Jim Melton and Stephen Buxton’s Querying XML, published by Morgan
Kaufmann.

XMLDOCUMENT
The XMLDOCUMENT operator takes an XML value as input and returns another
XML value as output. The new XML value is a document node that is con-
structed according to the rules of the computed document constructor in
XQuery.

XMLELEMENT
The XMLELEMENT operator translates a relational value into an XML element.
You can use the operator in a SELECT statement to pull data in XML format
from an SQL database and publish it on the web. Here’s an example:

SELECT c.LastName
 XMLELEMENT (NAME”City”, c.City) AS “Result”
FROM CUSTOMER c
WHERE LastName=”Abelson” ;

Here is the result returned:

LastName Result
Abelson <City>Springfield</City>

368 Part V: Taking SQL to the Real World

XMLFOREST
The XMLFOREST operator produces a list, or forest, of XML elements from a
list of relational values. Each of the operator’s values produces a new ele-
ment. Here’s an example of this operator:

SELECT c.LastName
 XMLFOREST (c.City,
 c.AreaCode,
 c.Telephone) AS “Result”
FROM CUSTOMER c
WHERE LastName=”Abelson” OR LastName=”Bailey” ;

This snippet produces the following output:

LastName Result
Abelson <City>Springfield</City>

<AreaCode>714</AreaCode>

<Telephone>555-1111</Telephone>

Bailey <City>Decatur</City>

<AreaCode>714</AreaCode>

<Telephone>555-2222</Telephone>

XMLCONCAT
XMLCONCAT provides an alternate way to produce a forest of elements by
concatenating its XML arguments. For example, the following code:

SELECT c.LastName,
 XMLCONCAT(
 XMLELEMENT (NAME”first”, c.FirstName,
 XMLELEMENT (NAME”last”, c.LastName)
) AS “Result”
FROM CUSTOMER c ;

produces these results:

LastName Result
Abelson <first>Abe</first>

<last>Abelson</last>

Bailey <first>Bill</first>

<last>Bailey</last>

369 Chapter 18: Operating on XML Data with SQL

XMLAGG
XMLAGG, the aggregate function, takes XML documents or fragments of XML
documents as input and produces a single XML document as output in GROUP
BY queries. The aggregation contains a forest of elements. Here’s an example
to illustrate the concept:

SELECT XMLELEMENT
 (NAME”City”,
 XMLATTRIBUTES (c.City AS “name”) ,
 XMLAGG (XMLELEMENT (NAME”last” c.LastName)
)
) AS “CityList”
FROM CUSTOMER c
GROUP BY City ;

When run against the CUSTOMER table, this query produces the following
results:

CityList
<City name=”Decatur”>
 <last>Bailey</last>
</City>
<City name=”Philo”>
 <last>Stetson</last>
 <last>Stetson</last>
 <last>Wood</last>
</City
<City name=”Springfield”>
 <last>Abelson</last>
</City>

XMLCOMMENT
The XMLCOMMENT function enables an application to create an XML comment.
Its syntax is:

XMLCOMMENT (‘comment content’
 [RETURNING
 { CONTENT | SEQUENCE }])

For example:

XMLCOMMENT (‘Back up database at 2 am every night.’)

would create an XML comment that looks like this:

<!--Back up database at 2 am every night. -->

370 Part V: Taking SQL to the Real World

XMLPARSE
The XMLPARSE function produces an XML value by performing a nonvalidat-
ing parse of a string. You might use it like this:

XMLPARSE (DOCUMENT ‘ GREAT JOB!’
 PRESERVE WHITESPACE)

The preceding code would produce an XML value that is either
XML(UNTYPED DOCUMENT) or XML(ANY DOCUMENT). Which of the two sub-
types is chosen depends on the implementation you’re using.

XMLPI
The XMLPI function allows applications to create XML processing instruc-
tions. The syntax for this function is:

XMLPI NAME target
 [, string-expression]
 [RETURNING
 { CONTENT | SEQUENCE }])

The target placeholder represents the identifier of the target of the pro-
cessing instruction. The string-expression placeholder represents the
content of the PI. This function creates an XML comment of the form:

<? target string-expression ?>

XMLQUERY
The XMLQUERY function evaluates an XQuery expression and returns the
result to the SQL application. The syntax of XMLQUERY is:

XMLQUERY (XQuery-expression
 [PASSING { By REF | BY VALUE }
 argument-list]
 RETURNING { CONTENT | SEQUENCE }
 { BY REF | BY VALUE })

Here’s an example of the use of XMLQUERY:

SELECT max_average,
 XMLQUERY (
 ‘for $batting_average in
 /player/batting_average

371 Chapter 18: Operating on XML Data with SQL

 where /player/lastname = $var1
 return $batting_average’
 PASSING BY VALUE
 ‘Mantle’ AS var1,
 RETURNING SEQUENCE BY VALUE)
FROM offensive_stats

XMLCAST
The XMLCAST function is similar to an ordinary SQL CAST function, but it has
some additional restrictions. The XMLCAST function enables an application
to cast a value from an XML type to either another XML type or an SQL type.
Similarly, you can use it to cast a value from an SQL type to an XML type.
Here are a few restrictions:

	 ✓	At least one of the types involved, either the source type or the destina-
tion type, must be an XML type.

	 ✓	Neither of the types involved may be an SQL collection type, row type,
structured type, or reference type.

	 ✓	Only values of one of the XML types or the SQL null type may be cast to
XML(UNTYPED DOCUMENT) or to XML(ANY DOCUMENT).

Here’s an example:

XMLCAST (CLIENT.ClientName AS XML(UNTYPED CONTENT))

	 The XMLCAST function is transformed into an ordinary SQL CAST. The only
reason for using a separate keyword is to enforce the restrictions listed here.

Predicates
Predicates return a value of True or False. Some new predicates have been
added that specifically relate to XML.

DOCUMENT
The purpose of the DOCUMENT predicate is to determine whether an XML value
is an XML document. It tests to see whether an XML value is an instance of
either XML(ANY DOCUMENT) or XML(UNTYPED DOCUMENT). The syntax is:

XML-value IS [NOT]
 [ANY | UNTYPED] DOCUMENT

372 Part V: Taking SQL to the Real World

If the expression evaluates to True, the predicate returns TRUE; otherwise,
it returns FALSE. If the XML value is null, the predicate returns an UNKNOWN
value. If you don’t specify either ANY or UNTYPED, the default assumption
is ANY.

CONTENT
You use the CONTENT predicate to determine whether an XML value is an
instance of XML(ANY CONTENT) or XML(UNTYPED CONTENT). Here’s the
syntax:

XML-value IS [NOT]
 [ANY | UNTYPED] CONTENT

If you don’t specify either ANY or UNTYPED, ANY is the default.

XMLEXISTS
As the name implies, you can use the XMLEXISTS predicate to determine
whether a value exists. Here’s the syntax:

XMLEXISTS (XQuery-expression
 [argument-list])

The XQuery expression is evaluated using the values provided in the argu-
ment list. If the value queried by the XQuery expression is the SQL NULL
value, the predicate’s result is unknown. If the evaluation returns an empty
XQuery sequence, the predicate’s result is FALSE; otherwise, it is TRUE.
You can use this predicate to determine whether an XML document con-
tains some particular content before you use a portion of that content in an
expression.

VALID
The VALID predicate is used to evaluate an XML value to see whether it is
valid in the context of a registered XML Schema. The syntax of the VALID
predicate is more complex than is the case for most predicates:

xml-value IS [NOT] VALID
 [XML valid identity constraint option]
 [XML valid according-to clause]

373 Chapter 18: Operating on XML Data with SQL

This predicate checks to see whether the XML value is one of the five XML
subtypes: XML(SEQUENCE), XML(ANY CONTENT), XML(UNTYPED CONTENT),
XML(ANY DOCUMENT), or XML(UNTYPED DOCUMENT). Additionally, it might
optionally check to see whether the validity of the XML value depends on
identity constraints, and whether it is valid with respect to a particular XML
Schema (the validity target).

There are four possibilities for the identity-constraint-option compo-
nent of the syntax:

	 ✓	WITHOUT IDENTITY CONSTRAINTS: If the identity-constraint-
option syntax component isn’t specified, WITHOUT IDENTITY
CONSTRAINTS is assumed. If DOCUMENT is specified, then it acts like a
combination of the DOCUMENT predicate and the VALID predicate WITH
IDENTITY CONSTRAINTS GLOBAL.

	 ✓	WITH IDENTITY CONSTRAINTS GLOBAL: This component of the
syntax means the value is checked not only against the XML Schema,
but also against the XML rules for ID/IDREF relationships.

		 ID and IDREF are XML attribute types that identify elements of a document.

	 ✓	WITH IDENTITY CONSTRAINTS LOCAL: This component of the syntax
means the value is checked against the XML Schema but not against the
XML rules for ID/IDREF or the XML Schema rules for identity constraints.

	 ✓	DOCUMENT: This component of the syntax means the XML value expres-
sion is a document and is valid WITH IDENTITY CONSTRAINTS
GLOBAL syntax with an XML valid according to clause. The XML
valid according to clause identifies the schema that the value will
be validated against.

Transforming XML Data into SQL Tables
Until recently, when thinking about the relationship between SQL and XML,
the emphasis has been on converting SQL table data into XML to make it
accessible on the Internet. SQL:2008 addressed the complementary problem
of converting XML data into SQL tables so that it can be easily queried using
standard SQL statements. The XMLTABLE pseudo-function performs this
operation. The syntax for XMLTABLE is:

XMLTABLE ([namespace-declaration,]
XQuery-expression
[PASSING argument-list]
COLUMNS XMLtbl-column-definitions

374 Part V: Taking SQL to the Real World

where the argument-list is:

value-expression AS identifier

and XMLtbl-column-definitions is a comma-separated list of column
definitions, which may contain:

column-name FOR ORDINALITY

and/or:

column-name data-type
[BY REF | BY VALUE]
[default-clause]
[PATH XQuery-expression]

Here’s an example of how you might use XMLTABLE to extract data from an
XML document into an SQL pseudo-table. A pseudo-table isn’t persistent,
but in every other respect, it behaves like a regular SQL table. If you want to
make it persistent, you can create a table with a CREATE TABLE statement
and then insert the XML data into the newly created table.

SELECT clientphone.*
FROM
 clients_xml ,
 XMLTABLE(
 ‘for $m in
 $col/client
 return
 $m’
 PASSING clients_xml.client AS “col”
 COLUMNS
 “ClientName” CHARACTER (30) PATH ‘ClientName’ ,
 “Phone” CHARACTER (13) PATH ‘phone’
) AS clientphone

When you run this statement, you see the following result:

ClientName Phone
------------------------------ -------------
Abe Abelson (714)555-1111
Bill Bailey (714)555-2222
Chuck Wood (714)555-3333

(3 rows in clientphone)

375 Chapter 18: Operating on XML Data with SQL

Mapping Non-Predefined
Data Types to XML

In the SQL standard, the non-predefined data types include domain, distinct
UDT, row, array, and multiset. You can map each of these to XML-formatted
data, using appropriate XML code. The next few sections show examples of
how to map these types.

Domain
To map an SQL domain to XML, you must first have a domain. For this exam-
ple, create one by using a CREATE DOMAIN statement:

CREATE DOMAIN WestCoast AS CHAR (2)
 CHECK (State IN (‘CA’, ‘OR’, ‘WA’, ‘AK’)) ;

Now, create a table that uses that domain:

CREATE TABLE WestRegion (
 ClientName Character (20) NOT NULL,
 State WestCoast NOT NULL
) ;

Here’s the XML Schema to map the domain into XML:

<xsd:simpleType>
 Name=’DOMAIN.Sales.WestCoast’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’DOMAIN’
 schemaName=’Sales’
 typeName=’WestCoast’
 mappedType=’CHAR_2’
 final=’true’/>
 <xsd:appinfo>
 </xsd:annotation>

 <xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

376 Part V: Taking SQL to the Real World

When this mapping is applied, it results in an XML document that contains
something like the following:

<WestRegion>
<row>
 .
 .
 .
 <State>AK</State>
 .
 .
 .
 </row>
 .
 .
 .
</WestRegion>

Distinct UDT
With a distinct UDT, you can do much the same as what you can do with a
domain, but with stronger typing. Here’s how:

CREATE TYPE WestCoast AS Character (2) FINAL ;

The XML Schema to map this type to XML is as follows:

<xsd:simpleType>
 Name=’UDT.Sales.WestCoast’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’DISTINCT’
 schemaName=’Sales’
 typeName=’WestCoast’
 mappedType=’CHAR_2’
 final=’true’/>
 <xsd:appinfo>
 </xsd:annotation>

 <xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

This creates an element that is the same as the one created for the preceding
domain.

377 Chapter 18: Operating on XML Data with SQL

Row
The ROW type enables you to cram multiple items, or even a whole row’s
worth of information, into a single field of a table row. You can create a ROW
type as part of the table definition, in the following manner:

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30)
 Phone ROW (Home CHAR (13), Work CHAR (13))
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’ROW.1’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’ROW’>
 <sqlxml:field name=’Home’
 mappedType=’CHAR_13’/>
 <sqlxml:field name=’Work’
 mappedType=’CHAR_13’/>
 </sqlxml:sqltype>
 <xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’Home’ nillable=’true’
 Type=’CHAR_13’/>
 <xsd:element Name=’Work’ nillable=’true’
 Type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This mapping could generate the following XML for a column:

<Phone>
 <Home>(888)555-1111</Home>
 <Work>(888)555-1212</Work>
</Phone>

378 Part V: Taking SQL to the Real World

Array
You can put more than one element in a single field by using an Array rather
than the ROW type. For example, in the CONTACTINFO table, declare Phone as
an array and then generate the XML Schema that will map the array to XML.

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30),
 Phone CHARACTER (13) ARRAY [4]
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’ARRAY_4.CHAR_13’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’ARRAY’
 maxElements=’4’
 mappedElementType=’CHAR_13’/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’element’
 minOccurs=’0’ maxOccurs=’4’
 nillable=’true’ type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This schema would generate something like this:

<Phone>
 <element>(888)555-1111</element>
 <element>xsi:nil=’true’/>
 <element>(888)555-3434</element>
</Phone>

	 The element in the array containing xsi:nil=‘true’ reflects the fact that
the second phone number in the source table contains a null value.

379 Chapter 18: Operating on XML Data with SQL

Multiset
The phone numbers in the preceding example could just as well be stored in a
multiset as in an array. To map a multiset, use something akin to the following:

CREATE TABLE CONTACTINFO (
 Name CHARACTER (30),
 Phone CHARACTER (13) MULTISET
) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=’MULTISET.CHAR_13’>

 <xsd:annotation>
 <xsd:appinfo>
 <sqlxml:sqltype kind=’MULTISET’
 mappedElementType=’CHAR_13’/>
 </xsd:appinfo>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element Name=’element’
 minOccurs=’0’ maxOccurs=’unbounded’
 nillable=’true’ type=’CHAR_13’/>
 </xsd:sequence>

</xsd:complexType>

This schema would generate something like this:

<Phone>
 <element>(888)555-1111</element>
 <element>xsi:nil=’true’/>
 <element>(888)555-3434</element>
</Phone>

The Marriage of SQL and XML
SQL provides the worldwide standard method for storing data in a highly
structured fashion. The structure enables users to maintain data stores of
a wide range of sizes and to efficiently extract from those data stores the
information they want. XML has risen from a defacto standard to an official

380 Part V: Taking SQL to the Real World

standard vehicle for transporting data between incompatible systems, par-
ticularly over the Internet. By bringing these two powerful methods together,
the value of both is greatly increased. SQL can now handle data that doesn’t
fit nicely into the strict relational paradigm that was originally defined by Dr.
Codd. XML can now efficiently take data from SQL databases or send data to
them. The result is more readily available information that is easier to share.
After all, at its core, sharing is what marriage is all about.

Part VI
Advanced Topics

	

Visit www.dummies.com/extras/sql for great Dummies content online.

In this part…
	 ✓	 Creating cursors
	 ✓	 Building compound statements
	 ✓	 Handling errors
	 ✓	 Applying triggers
	 ✓	 Visit www.dummies.com/extras/sql for great Dummies

content online.

Chapter 19

Stepping through a Dataset
with Cursors

In This Chapter
▶	Specifying cursor scope with the DECLARE statement
▶	Opening a cursor
▶	Fetching data one row at a time
▶	Closing a cursor

A
 major incompatibility between SQL and the most popular application
development languages is that SQL operates on the data of an entire set

of table rows at a time, whereas the procedural languages operate on only a
single row at a time. A cursor enables SQL to retrieve (or update, or delete) a
single row at a time so that you can use SQL in combination with an applica-
tion written in any of the popular languages.

A cursor is like a pointer that locates a specific table row. When a cursor is
active, you can SELECT, UPDATE, or DELETE the row at which the cursor
is pointing.

Cursors are valuable if you want to retrieve selected rows from a table, check
their contents, and perform different operations based on those contents.
SQL can’t perform this sequence of operations by itself. SQL can retrieve the
rows, but procedural languages are better at making decisions based on field
contents. Cursors enable SQL to retrieve rows from a table one at a time and
then feed the result to procedural code for processing. By placing the SQL
code in a loop, you can process the entire table row by row.

In a pseudocode representation of embedded SQL, the most common flow of
execution looks like this:

EXEC SQL DECLARE CURSOR statement
EXEC SQL OPEN statement
Test for end of table
Procedural code

384 Part VI: Advanced Topics

Start loop
 Procedural code
 EXEC SQL FETCH
 Procedural code
 Test for end of table
End loop
EXEC SQL CLOSE statement
Procedural code

The SQL statements in this listing are DECLARE, OPEN, FETCH, and CLOSE.
Each of these statements is discussed in detail in this chapter.

	 If you can perform the operation that you want with normal SQL (set-at-a-time)
statements, then do so. Declare a cursor, retrieve table rows one at a time,
and use your system’s host language only when you can’t do what you want to
do with SQL alone.

Declaring a Cursor
To use a cursor, you first must declare its existence to the DBMS. You do
this with a DECLARE CURSOR statement. The DECLARE CURSOR statement
doesn’t actually cause anything to happen; it just announces the cursor’s
name to the DBMS and specifies what query the cursor will operate on. A
DECLARE CURSOR statement has the following syntax:

DECLARE cursor-name [<cursor sensitivity>]
 [<cursor scrollability>]
CURSOR [<cursor holdability>] [<cursor returnability>]
FOR query expression
 [ORDER BY order-by expression]
 [FOR updatability expression] ;

Note: The cursor name uniquely identifies a cursor, so it must be unlike that
of any other cursor name in the current module or compilation unit.

	 To make your application more readable, give the cursor a meaningful name.
Relate it to the data that the query expression requests or to the operation
that your procedural code performs on the data.

Here are some characteristics that you must establish when you declare a
cursor:

	 ✓	Cursor sensitivity: Choose SENSITIVE, INSENSITIVE, or ASENSITIVE
(default).

	 ✓	Cursor scrollability: Choose either SCROLL or NO SCROLL (default).

385 Chapter 19: Stepping through a Dataset with Cursors

	 ✓	Cursor holdability: Choose either WITH HOLD or WITHOUT HOLD
(default).

	 ✓	Cursor returnability: Choose either WITH RETURN or WITHOUT RETURN
(default).

Query expression
	 You can use any legal SELECT statement as a query expression. The rows that

the SELECT statement retrieves are the ones that the cursor steps through
one at a time. These rows are the scope of the cursor.

The query is not actually performed when the DECLARE CURSOR statement is
read. You can’t retrieve data until you execute the OPEN statement. The row-
by-row examination of the data starts after you enter the loop that encloses
the FETCH statement.

ORDER BY clause
You may want to process your retrieved data in a particular order, depend-
ing on what your procedural code will do with the data. You can sort the
retrieved rows before processing them by using the optional ORDER BY
clause. The clause has the following syntax:

ORDER BY sort-specification [, sort-specification]...

You can have multiple sort specifications. Each has the following syntax:

(column-name) [COLLATE BY collation-name] [ASC|DESC]

You sort by column name, and to do so, the column must be in the select list
of the query expression. Columns that are in the table but not in the query
select list do not work as sort specifications. For example, suppose you want
to perform an operation that is not supported by SQL on selected rows of the
CUSTOMER table. You can use a DECLARE CURSOR statement like this:

DECLARE cust1 CURSOR FOR
 SELECT CustID, FirstName, LastName, City, State, Phone
 FROM CUSTOMER
 ORDER BY State, LastName, FirstName ;

In this example, the SELECT statement retrieves rows sorted first by state,
then by last name, and then by first name. The statement retrieves all
customers in Alaska (AK) before it retrieves the first customer from
Alabama (AL). The statement then sorts customer records from Alaska

386 Part VI: Advanced Topics

by the customer’s last name (Aaron before Abbott). When the last name is the
same, sorting then goes by first name (George Aaron before Henry Aaron).

Have you ever made 40 copies of a 20-page document on a photocopier with-
out a collator? What a drag! You must make 20 stacks on tables and desks,
and then walk by the stacks 40 times, placing a sheet on each stack. This
process of putting things in the desired order is called collation. A similar
process plays a role in SQL.

A collation is a set of rules that determines how strings in a character set
compare. A character set has a default collation sequence that defines the
order in which elements are sorted. But, you can apply a collation sequence
other than the default to a column. To do so, use the optional COLLATE BY
clause. Your implementation probably supports several common collations.
Pick one and then make the collation ascending or descending by appending
an ASC or DESC keyword to the clause.

In a DECLARE CURSOR statement, you can specify a calculated column that
doesn’t exist in the underlying table. In this case, the calculated column
doesn’t have a name that you can use in the ORDER BY clause. You can give
it a name in the DECLARE CURSOR query expression, which enables you to
identify the column later. Consider the following example:

DECLARE revenue CURSOR FOR
 SELECT Model, Units, Price,
 Units * Price AS ExtPrice
 FROM TRANSDETAIL
 ORDER BY Model, ExtPrice DESC ;

In this example, no COLLATE BY clause is in the ORDER BY clause, so the
default collation sequence is used. Notice that the fourth column in the select
list is the result of a calculation of the data in the second and third columns.
The fourth column is an extended price named ExtPrice. In my example,
the ORDER BY clause is sorted first by model name and then by ExtPrice.
The sort on ExtPrice is descending, as specified by the DESC keyword;
transactions with the highest dollar value are processed first.

The default sort order in an ORDER BY clause is ascending. If a sort specifica-
tion list includes a DESC sort and the next sort should also be in descending
order, you must explicitly specify DESC for the next sort. For example:

ORDER BY A, B DESC, C, D, E, F

is equivalent to

ORDER BY A ASC, B DESC, C ASC, D ASC, E ASC, F ASC

387 Chapter 19: Stepping through a Dataset with Cursors

Updatability clause
Sometimes, you may want to update or delete table rows that you access
with a cursor. Other times, you may want to guarantee that such updates
or deletions can’t be made. SQL gives you control over this issue with the
updatability clause of the DECLARE CURSOR statement. If you want to pre-
vent updates and deletions within the scope of the cursor, use the clause:

FOR READ ONLY

For updates of specified columns only — leaving all others protected — use
the following:

FOR UPDATE OF column-name [, column-name]...

	 Any columns listed must appear in the DECLARE CURSOR’s query expression.
If you don’t include an updatability clause, the default assumption is that all
columns listed in the query expression are updatable. In that case, an UPDATE
statement can update all the columns in the row to which the cursor is point-
ing, and a DELETE statement can delete that row.

Sensitivity
The query expression in the DECLARE CURSOR statement determines the
rows that fall within a cursor’s scope. Consider this possible problem: What
if a statement in your program, located between the OPEN and the CLOSE
statements, changes the contents of some of those rows so that they no
longer satisfy the query? Does the cursor continue to process all the rows
that originally qualified, or does it recognize the new situation and ignore
rows that no longer qualify?

A normal SQL statement, such as UPDATE, INSERT, or DELETE, operates on
a set of rows in a database table (or perhaps the entire table). While such a
statement is active, SQL’s transaction mechanism protects it from interfer-
ence by other statements acting concurrently on the same data. If you use a
cursor, however, your window of vulnerability to harmful interaction is wide
open. When you open a cursor, data is at risk of being the victim of simul-
taneous, conflicting operations until you close the cursor again. If you open
one cursor, start processing through a table, and then open a second cursor
while the first is still active, the actions you take with the second cursor can
affect what the statement controlled by the first cursor sees.

	 Changing the data in columns that are part of a DECLARE CURSOR query
expression after some — but not all — of the query’s rows have been pro-
cessed results in a big mess. Your results are likely to be inconsistent and
misleading. To avoid this problem, make sure that the cursor doesn’t change
as a result of any of the statements within its scope. Add the INSENSITIVE

388 Part VI: Advanced Topics

keyword to your DECLARE CURSOR statement. As long as your cursor is open,
it is insensitive to (unaffected by) table changes that affect qualified rows in
the cursor’s scope. A cursor can’t be both insensitive and updatable. An insen-
sitive cursor must be read-only.

For example, suppose that you write these queries:

DECLARE C1 CURSOR FOR SELECT * FROM EMPLOYEE
 ORDER BY Salary ;
DECLARE C2 CURSOR FOR SELECT * FROM EMPLOYEE
 FOR UPDATE OF Salary ;

Now, suppose you open both cursors and fetch a few rows with C1 and then
update a salary with C2 to increase its value. This change can cause a row
that you have fetched with C1 to appear again on a later fetch of C1.

	 The peculiar interactions that are possible with multiple open cursors, or
open cursors and set operations, are the sort of concurrency problems that
transaction isolation avoids. If you operate this way, you’re asking for trouble.
So remember: Don’t operate with multiple open cursors. For more information
about transaction isolation, check out Chapter 15.

The default condition of cursor sensitivity is ASENSITIVE. Although you
might think you know what this means, nothing is ever as simple as you’d like
it to be. Each implementation has its own definition. For one implementation
ASENSITIVE could be equivalent to SENSITIVE, and for another it could be
equivalent to INSENSITIVE. Check your system documentation for its mean-
ing in your own case.

Scrollability
Scrollability gives you the capability to move the cursor around within a
result set. With the SCROLL keyword in the DECLARE CURSOR statement, you
can access rows in any order you want. The syntax of the FETCH statement
controls the cursor’s movement. I describe the FETCH statement later in this
chapter.

Opening a Cursor
Although the DECLARE CURSOR statement specifies which rows to include
in the cursor, it doesn’t actually cause anything to happen because DECLARE
is just a declaration and not an executable statement. The OPEN statement
brings the cursor into existence. It has the following form:

OPEN cursor-name ;

389 Chapter 19: Stepping through a Dataset with Cursors

To open the cursor that I use in the discussion of the ORDER BY clause (ear-
lier in this chapter), use the following:

DECLARE revenue CURSOR FOR
 SELECT Model, Units, Price,
 Units * Price AS ExtPrice
 FROM TRANSDETAIL
 ORDER BY Model, ExtPrice DESC ;
OPEN revenue ;

	 You can’t fetch rows from a cursor until you open the cursor. When you open
a cursor, the values of variables referenced in the DECLARE CURSOR state-
ment become fixed, as do all current date-time functions. Consider the follow-
ing example of SQL embedded in a host language program:

EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM ORDERS
 WHERE ORDERS.Customer = :NAME
 AND DueDate < CURRENT_DATE ;
NAME :=’Acme Co’; //A host language statement
EXEC SQL OPEN C1;
NAME :=’Omega Inc.’; //Another host statement
...
EXEC SQL UPDATE ORDERS SET DueDate = CURRENT_DATE;

The fix is in (for date-times)
As I describe in the section “Opening a Cursor,”
the OPEN statement fixes the value of all vari-
ables referenced in the declare cursor. It also
fixes a value for date-time functions. A similar
fixing of date-time values exists in set opera-
tions. Consider this example:
UPDATE ORDERS SET RecheckDate =

CURRENT_DATE WHERE....;

Now suppose that you have a bunch of orders.
You begin executing this statement at a minute
before midnight. At midnight, the statement is
still running, and it doesn’t finish executing until
five minutes after midnight. It doesn’t matter. If
a statement has any reference to CURRENT_
DATE (or TIME or TIMESTAMP), the value is
set to the date and time the statement begins,
so all the ORDERS rows in the statement get the
same RecheckDate. Similarly, if a statement
references TIMESTAMP, the whole statement

uses only one timestamp value, no matter how
long the statement runs.

Here’s an interesting example of an implication
of this rule:
UPDATE EMPLOYEE SET KEY=CURRENT_

TIMESTAMP;

You may expect that statement to set a unique
value in the key column of each employee,
because time is measured down to a small
fraction of a second. You’d be disappointed; it
sets the same value in every row. You’ll have to
come up with another way to generate a unique
key.

So when the OPEN statement fixes date-time
values for all statements referencing the cursor,
it treats all these statements like an extended
statement.

390 Part VI: Advanced Topics

The OPEN statement fixes the value of all variables referenced in the declare
cursor and also fixes a value for all current date-time functions. As a result,
the second assignment to the name variable (NAME := ‘Omega Inc.’)
has no effect on the rows that the cursor fetches. (That value of NAME is used
the next time you open C1.) And even if the OPEN statement is executed a
minute before midnight and the UPDATE statement is executed a minute after
midnight, the value of CURRENT_DATE in the UPDATE statement is the value
of that function at the time the OPEN statement executed — even if DECLARE
CURSOR doesn’t reference the date-time function.

Fetching Data from a Single Row
Processing cursors is a three-step process:

	 1.	 The DECLARE CURSOR statement specifies the cursor’s name and scope.

	 2.	 The OPEN statement collects the table rows selected by the DECLARE
CURSOR query expression.

	 3.	 The FETCH statement actually retrieves the data.

The cursor may point to one of the rows in the cursor’s scope, or to the loca-
tion immediately before the first row in the scope, or to the location imme-
diately after the last row in the scope, or to the empty space between two
rows. You can specify where the cursor points with the orientation clause in
the FETCH statement.

Syntax
The syntax for the FETCH statement is

FETCH [[orientation] FROM] cursor-name
 INTO target-specification [, target-specification]... ;

Seven orientation options are available:

	 ✓	NEXT

	 ✓	PRIOR

	 ✓	FIRST

	 ✓	LAST

	 ✓	ABSOLUTE

	 ✓	RELATIVE

	 ✓	<simple value specification>

391 Chapter 19: Stepping through a Dataset with Cursors

The default option is NEXT, which, incidentally, was the only orientation avail-
able in versions of SQL prior to SQL-92. The NEXT orientation moves the cursor
from wherever it is to the next row in the set specified by the query expres-
sion. That means that if the cursor is located before the first record, it moves
to the first record. If it points to record n, it moves to record n+1. If the cursor
points to the last record in the set, it moves beyond that record, and notifi-
cation of a no data condition is returned in the SQLSTATE system variable.
(Chapter 21 details SQLSTATE and the rest of SQL’s error-handling facilities.)

The target specifications are either host variables or parameters, depending
on whether embedded SQL or a module language, respectively, is using the
cursor. The number and types of the target specifications must match the
number and types of the columns specified by the query expression in the
DECLARE CURSOR. So in the case of embedded SQL, when you fetch a list of
five values from a row of a table, five host variables must be there to receive
those values, and they must be the right types.

Orientation of a scrollable cursor
Because the SQL cursor is scrollable, you have other choices besides NEXT.
If you specify PRIOR, the pointer moves to the row immediately preceding its
current location. If you specify FIRST, it points to the first record in the set,
and if you specify LAST, it points to the last record.

When you use the ABSOLUTE and RELATIVE orientation, you must specify an
integer value, as well. For example, FETCH ABSOLUTE 7 moves the cursor to
the seventh row from the beginning of the set. FETCH RELATIVE 7 moves
the cursor seven rows beyond its current position. FETCH RELATIVE 0
doesn’t move the cursor.

FETCH RELATIVE 1 has the same effect as FETCH NEXT. FETCH RELATIVE
–1 has the same effect as FETCH PRIOR. FETCH ABSOLUTE 1 gives you the
first record in the set, FETCH ABSOLUTE 2 gives you the second record in
the set, and so on. Similarly, FETCH ABSOLUTE –1 gives you the last record
in the set, FETCH ABSOLUTE –2 gives you the next-to-last record, and so
on. Specifying FETCH ABSOLUTE 0 returns the no-data exception condi-
tion code, as will FETCH ABSOLUTE 17 if only 16 rows are in the set. FETCH
<simple value specification> gives you the record specified by the
simple value specification.

Positioned DELETE and UPDATE statements
You can perform delete and update operations on the row to which a cursor
is currently pointing. The syntax of the DELETE statement looks like this:

DELETE FROM table-name WHERE CURRENT OF cursor-name ;

392 Part VI: Advanced Topics

If the cursor doesn’t point to a row, the statement returns an error condition,
and no deletion occurs.

The syntax of the UPDATE statement is as follows:

UPDATE table-name
 SET column-name = value [,column-name = value]...
 WHERE CURRENT OF cursor-name ;

The value you place into each specified column must be a value expres-
sion or the keyword DEFAULT. If an attempted positioned update operation
returns an error, the update isn’t performed.

Closing a Cursor
	 After you finish with a cursor, make a habit of closing it immediately. Leaving

a cursor open as your application goes on to other issues may cause harm.
Also, open cursors use system resources.

If you close a cursor that was insensitive to changes made while it was open,
when you reopen it, the reopened cursor reflects any such changes.

You can close the cursor that I opened earlier in the TRANSDETAIL table with
a simple statement such as the following:

CLOSE revenue ;

Chapter 20

Adding Procedural Capabilities
with Persistent Stored Modules

In This Chapter
▶	Tooling up compound statements with atomicity, cursors, variables, and conditions
▶	Regulating the flow of control statements
▶	Doing loops that do loops that do loops
▶	Retrieving and using stored procedures and stored functions
▶	Assigning privileges, creating stored modules, and putting stored modules to good use

S
ome of the leading practitioners of database technology have been
working on the standards process for years. Even after a standard has

been issued and accepted by the worldwide database community, progress
toward the next standard doesn’t slow down. A seven-year gap separated
the issuance of SQL-92 and the release of the first component of SQL:1999.
During the intervening years, ANSI and ISO issued an addendum to SQL-92,
called SQL-92/PSM (Persistent Stored Modules). This addendum formed the
basis for a part of SQL:1999 with the same name. SQL/PSM defines a number
of statements that give SQL flow of control structures comparable to the flow
of control structures available in full-featured programming languages. It
enables you to use SQL to perform tasks that programmers previously were
forced to use other tools for. Can you imagine what your life would have
been like in the caveman times of 1992, when you’d have to repeatedly swap
between SQL and its procedural host language just to do your work?

Compound Statements
Throughout this book, SQL is represented as a nonprocedural language that
deals with data a set at a time rather than a record at a time. With the addi-
tion of the facilities covered in this chapter, however, this statement is not
as true as it used to be. Although SQL still deals with data a set at a time, it is
becoming more procedural.

394 Part VI: Advanced Topics

Archaic SQL (defined by SQL-92) doesn’t follow the procedural model —
where one instruction follows another in a sequence to produce a desired
result — so early SQL statements were standalone entities, perhaps embed-
ded in a C++ or Visual Basic program. With these early versions of SQL,
posing a query or performing other operations by executing a series of SQL
statements was discouraged because these complicated activities resulted in
a performance penalty in the form of network traffic. SQL:1999 and all follow-
ing versions allow compound statements, made up of individual SQL state-
ments that execute as a unit, easing network congestion.

All the statements included in a compound statement are enclosed between a
BEGIN keyword at the beginning of the statement and an END keyword at the
end of the statement. For example, to insert data into multiple related tables,
you use syntax similar to the following:

void main {
 EXEC SQL
 BEGIN
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
 INSERT INTO receivable (StudentID, Class, Fee)
 VALUES (:sid, :cname, :cfee)
 END ;
/* Check SQLSTATE for errors */
}

This little fragment from a C program includes an embedded compound SQL
statement. The comment about SQLSTATE deals with error handling. If the
compound statement doesn’t execute successfully, an error code is placed in
the status parameter SQLSTATE. Of course, placing a comment after the END
keyword doesn’t correct the error. The comment is placed there simply to
remind you that in a real program, error-handling code belongs in that spot.
(I discuss error handling in detail in Chapter 21.)

Atomicity
Compound statements introduce a possibility for error that you don’t face
when you construct simple SQL statements. A simple SQL statement either
completes successfully or doesn’t, and if it doesn’t complete successfully, the
database is unchanged. This is not necessarily the case when a compound
statement creates an error.

Consider the example in the preceding section. What if the INSERT to the
STUDENTS table and the INSERT to the ROSTER table both took place, but

395 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

because of interference from another user, the INSERT to the RECEIVABLE
table failed? A student would be registered for a class but would not be
billed. This kind of error can be hard on a university’s finances.

The concept that is missing in this scenario is atomicity. An atomic state-
ment is indivisible — it either executes completely or not at all. Simple SQL
statements are atomic by nature, but compound SQL statements are not.
However, you can make a compound SQL statement atomic by specifying it
as such. In the following example, the compound SQL statement is safe by
introducing atomicity:

void main {
 EXEC SQL
 BEGIN ATOMIC
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
 INSERT INTO receivable (StudentID, Class, Fee)
 VALUES (:sid, :cname, :cfee)
 END ;
/* Check SQLSTATE for errors */
}

By adding the keyword ATOMIC after the keyword BEGIN, you ensure that
either the entire statement executes, or — if an error occurs — the entire
statement rolls back, leaving the database in the state it was in before the
statement began executing. Atomicity is discussed in detail in Chapter 15 in
the course of the discussion of transactions.

You can find out whether a statement executed successfully. Read the sec-
tion “Conditions,” later in this chapter, for more information.

Variables
Full computer languages such as C and BASIC have always offered variables,
but SQL didn’t offer them until the introduction of SQL/PSM. A variable is
a symbol that takes on a value of any given data type. Within a compound
statement, you can declare a variable, assign it a value, and use it in a com-
pound statement.

After you exit a compound statement, all the variables declared within it
are destroyed. Thus, variables in SQL are local to the compound statement
within which they are declared.

396 Part VI: Advanced Topics

Here’s an example:

BEGIN
 DECLARE prezpay NUMERIC ;
 SELECT salary
 INTO prezpay
 FROM EMPLOYEE
 WHERE jobtitle = ‘president’ ;
END;

Cursors
You can declare a cursor within a compound statement. You use cursors to
process a table’s data one row at a time. (See Chapter 19 for details.) Within
a compound statement, you can declare a cursor, use it, and then forget it
because the cursor is destroyed when you exit the compound statement.
Here’s an example of this usage:

BEGIN
 DECLARE ipocandidate CHARACTER(30) ;
 DECLARE cursor1 CURSOR FOR
 SELECT company
 FROM biotech ;
 OPEN CURSOR1 ;
 FETCH cursor1 INTO ipocandidate ;
 CLOSE cursor1 ;
END;

Conditions
When people say that a person has a condition, they usually mean that some-
thing is wrong with that person — he or she is sick or injured. People usually
don’t bother to mention that a person is in good condition; rather, they talk
about people who are in serious condition or, even worse, in critical condi-
tion. This idea is similar to the way programmers talk about the condition of
an SQL statement. The execution of an SQL statement leads to a successful
result, a questionable result, or an outright erroneous result. Each of these
possible results corresponds to a condition.

Every time an SQL statement executes, the database server places a value
into the status parameter SQLSTATE. SQLSTATE is a five-character field. The
value that is placed into SQLSTATE indicates whether the preceding SQL
statement executed successfully. If it did not execute successfully, the value
of SQLSTATE provides some information about the error.

397 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

The first two of the five characters of SQLSTATE (the class value) give you
the major news as to whether the preceding SQL statement executed suc-
cessfully, returned a result that may or may not have been successful, or pro-
duced an error. Table 20-1 shows the four possible results.

Table 20-1	 SQLSTATE Class Values
Class Description Details
00 Successful

completion
The statement executed successfully.

01 Warning Something unusual happened during the execution of
the statement, but the DBMS can’t tell whether there
was an error. Check the preceding SQL statement
carefully to ensure that it is operating correctly.

02 Not Found No data was returned as a result of the execution of
the statement. This may or may not be good news,
depending on what you were trying to do with the
statement. You may be hoping for an empty result table.

Other Exception The two characters of the class code, plus the three
characters of the subclass code, comprise the five
characters of SQLSTATE. They also give you an
inkling about the nature of the error.

Handling conditions
You can have your program look at SQLSTATE after the execution of every
SQL statement. What do you do with the knowledge that you gain?

	 ✓	If you find a class code of 00, you probably don’t want to do anything.
You want execution to proceed as you originally planned.

	 ✓	If you find a class code of 01 or 02, you may want to take special
action. If you expected the “Warning” or “Not Found” indication, then
you probably want to let execution proceed. If you didn’t expect either
of these class codes, then you probably want to have execution branch
to a procedure that is specifically designed to handle the unexpected,
but not totally unanticipated, warning or not found result.

	 ✓	If you receive any other class code, something is wrong. You should
branch to an exception-handling procedure. Which procedure you
choose to branch to depends on the contents of the three subclass

398 Part VI: Advanced Topics

characters, as well as the two class characters of SQLSTATE. If multiple
different exceptions are possible, there should be an exception-handling
procedure for each one because different exceptions often require dif-
ferent responses. You may be able to correct some errors or find work-
arounds. Other errors may be fatal; no one will die, but you may end up
having to terminate the application.

Handler declarations
You can put a condition handler within a compound statement. To create a
condition handler, you must first declare the condition that it will handle.
The condition declared can be some sort of exception, or it can just be some-
thing that’s true. Table 20-2 lists the possible conditions and includes a brief
description of what causes each type of condition.

Table 20-2	 Conditions That May Be Specified in a
	 Condition Handler
Condition Description
SQLSTATE VALUE ‘xxyyy’ Specific SQLSTATE value
SQLEXCEPTION SQLSTATE class other than 00, 01, or 02
SQLWARNING SQLSTATE class 01
NOT FOUND SQLSTATE class 02

The following is an example of a condition declaration:

BEGIN
 DECLARE constraint_violation CONDITION
 FOR SQLSTATE VALUE ‘23000’ ;
END ;

This example is not realistic, because typically the SQL statement that may
cause the condition to occur — as well as the handler that would be invoked
if the condition did occur — would also be enclosed within the BEGIN…END
structure.

Handler actions and handler effects
If a condition occurs that invokes a handler, the action specified by the han-
dler executes. This action is an SQL statement, which can be a compound

399 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

statement. If the handler action completes successfully, then the handler
effect executes. The following is a list of the three possible handler effects:

	 ✓	CONTINUE: Continue execution immediately after the statement that
caused the handler to be invoked.

	 ✓	EXIT: Continue execution after the compound statement that contains
the handler.

	 ✓	UNDO: Undo the work of the previous statements in the compound state-
ment and then continue execution after the statement that contains the
handler.

If the handler can correct whatever problem invoked the handler, then the
CONTINUE effect may be appropriate. The EXIT effect may be appropriate if
the handler didn’t fix the problem, but the changes made to the compound
statement do not need to be undone. The UNDO effect is appropriate if you
want to return the database to the state it was in before the compound state-
ment started execution. Consider the following example:

BEGIN ATOMIC
 DECLARE constraint_violation CONDITION
 FOR SQLSTATE VALUE ‘23000’ ;
 DECLARE UNDO HANDLER
 FOR constraint_violation
 RESIGNAL ;
 INSERT INTO students (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 INSERT INTO roster (ClassID, Class, StudentID)
 VALUES (:cid, :cname, :sid) ;
END ;

If either of the INSERT statements causes a constraint violation, such as
trying to add a record with a primary key that duplicates a primary key
already in the table, SQLSTATE assumes a value of ‘23000’, thus setting the
constraint_violation condition to a true value. This action causes the
handler to UNDO any changes that have been made to any tables by either
INSERT command. The RESIGNAL statement transfers control back to the
procedure that called the currently executing procedure.

If both INSERT statements execute successfully, execution continues with
the statement following the END keyword.

The ATOMIC keyword is mandatory whenever a handler’s effect is UNDO. This
is not the case for handlers whose effect is either CONTINUE or EXIT.

400 Part VI: Advanced Topics

Conditions that aren’t handled
In the example in the preceding section, consider this possibility: What if an
exception occurred that returned an SQLSTATE value other than ‘23000’?
Something is definitely wrong, but the exception handler that you coded
can’t handle it. What happens now?

Because the current procedure doesn’t know what to do, a RESIGNAL occurs.
This bumps the problem up to the next higher level of control. If the problem
isn’t handled there, it continues to be elevated to higher levels until either it
is handled or it causes an error condition in the main application.

	 The idea that I want to emphasize here is that if you write an SQL statement
that may cause exceptions, then you should write exception handlers for all
such possible exceptions. If you don’t, you will have more difficulty isolating
the source of a problem when it inevitably occurs.

Assignment
With SQL/PSM, SQL gained a function that even the lowliest procedural lan-
guages have had since their inception: the ability to assign a value to a vari-
able. Essentially, an assignment statement takes the following form:

SET target = source ;

In this usage, target is a variable name, and source is an expression.
Several examples include the following:

SET vfname = ‘Joss’ ;

SET varea = 3.1416 * :radius * :radius ;

SET vWIMPmass = NULL ;

Flow of Control Statements
Since its original formulation in the SQL-86 standard, one of the main draw-
backs that has prevented people from using SQL in a procedural manner has
been its lack of flow of control statements. Until SQL/PSM was included in the
SQL standard, you couldn’t branch out of a strict sequential order of execu-
tion without reverting to a host language like C or BASIC. SQL/PSM intro-
duces the traditional flow of control structures that other languages provide,
thus allowing SQL programs to perform needed functions without switching
back and forth between languages.

401 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

IF…THEN…ELSE…END IF
The most basic flow of control statement is the IF…THEN…ELSE…END IF
statement. This statement, roughly translated from computerese, means IF
a condition is true, then execute the statements following the THEN keyword.
Otherwise, execute the statements following the ELSE keyword. For example:

IF
 vfname = ‘Joss’
THEN
 UPDATE students
 SET Fname = ‘Joss’
 WHERE StudentID = 314159 ;
ELSE
 DELETE FROM students
 WHERE StudentID = 314159 ;
END IF

In this example, if the variable vfname contains the value ‘Joss’, then the
record for student 314159 is updated with ‘Joss’ in the Fname field. If the
variable vfname contains any value other than ‘Joss’, then the record for
student 314159 is deleted from the STUDENTS table.

The IF…THEN…ELSE…END IF statement is great if you want to choose one
of two actions based on the value of a condition. Often, however, you want
to make a selection from more than two choices. At such times, you should
probably use a CASE statement.

CASE…END CASE
CASE statements come in two forms: the simple CASE statement and the
searched CASE statement. Both kinds allow you to take different execution
paths based on the values of conditions.

Simple CASE statement
A simple CASE statement evaluates a single condition. Based on the value of
that condition, execution may take one of several branches. For example:

CASE vmajor
 WHEN ‘Computer Science’
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN ‘Sports Medicine’
 THEN INSERT INTO jocks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN ‘Philosophy’
 THEN INSERT INTO skeptics (StudentID, Fname, Lname)

402 Part VI: Advanced Topics

 VALUES (:sid, :sfname, :slname) ;
 ELSE INSERT INTO undeclared (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
END CASE

The ELSE clause handles everything that doesn’t fall into the explicitly
named categories in the THEN clauses.

You don’t need to use the ELSE clause — it’s optional. However, if you don’t
include it, and the CASE statement’s condition is not handled by any of the
THEN clauses, SQL returns an exception.

Searched CASE statement
A searched CASE statement is similar to a simple CASE statement, but it eval-
uates multiple conditions rather than just one. For example:

CASE
 WHEN vmajor
 IN (‘Computer Science’, ‘Electrical Engineering’)
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN vclub
 IN (‘Amateur Radio’, ‘Rocket’, ‘Computer’)
 THEN INSERT INTO geeks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 WHEN vmajor
 IN (‘Sports Medicine’, ‘Physical Education’)
 THEN INSERT into jocks (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
 ELSE
 INSERT INTO skeptics (StudentID, Fname, Lname)
 VALUES (:sid, :sfname, :slname) ;
END CASE

You avoid an exception by putting all students who are not geeks or jocks
into the SKEPTICS table. Because not all nongeeks and nonjocks are skeptics,
this may not be strictly accurate in all cases. If it isn’t, you can always add a
few more WHEN clauses.

LOOP…ENDLOOP
The LOOP statement allows you to execute a sequence of SQL statements
multiple times. After the last SQL statement enclosed within the LOOP…
ENDLOOP statement executes, control loops back to the first such statement

403 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

and makes another pass through the enclosed statements. The syntax is as
follows:

SET vcount = 0 ;
LOOP
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END LOOP

This code fragment preloads your ASTEROID table with unique identifiers.
You can fill in other details about the asteroids as you find them, based on
what you see through your telescope when you discover them.

Notice the one little problem with the code fragment in the preceding
example: It is an infinite loop. No provision is made for leaving the loop, so
it will continue inserting rows into the ASTEROID table until the DBMS fills
all available storage with ASTEROID table records. If you’re lucky, the DBMS
will raise an exception at that time. If you’re unlucky, the system will merely
crash.

For the LOOP statement to be useful, you need a way to exit loops before you
raise an exception. That way is the LEAVE statement.

LEAVE
The LEAVE statement works just like you might expect it to work. When exe-
cution encounters a LEAVE statement embedded within a labeled statement,
it proceeds to the next statement beyond the labeled statement. For example:

AsteroidPreload:
SET vcount = 0 ;
LOOP
 SET vcount = vcount + 1 ;
 IF vcount > 10000
 THEN
 LEAVE AsteroidPreload ;
 END IF ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END LOOP AsteroidPreload

The preceding code inserts 10,000 sequentially numbered records into the
ASTEROID table and then passes out of the loop.

404 Part VI: Advanced Topics

WHILE…DO…END WHILE
The WHILE statement provides another method of executing a series of SQL
statements multiple times. While a designated condition is true, the WHILE
loop continues to execute. When the condition becomes false, looping stops.
For example:

AsteroidPreload2:
SET vcount = 0 ;
WHILE
 vcount< 10000 DO
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
END WHILE AsteroidPreload2

This code does exactly the same thing that AsteroidPreload did in the
preceding section. This is just another example of the often-cited fact that
with SQL, you usually have multiple ways to accomplish any given task. Use
whichever method you feel most comfortable with, assuming your implemen-
tation allows both.

REPEAT…UNTIL…END REPEAT
The REPEAT loop is very much like the WHILE loop, except that the condition
is checked after the embedded statements execute rather than before. For
example:

AsteroidPreload3:
SET vcount = 0 ;
REPEAT
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
 UNTIL X = 10000
END REPEAT AsteroidPreload3

Although you can perform the same operation three different ways (with
LOOP, WHILE, and REPEAT), you will encounter some instances when one of
these structures is clearly better than the other two. Have all three methods
in your bag of tricks so that when a situation like this arises you can decide
which one is the best tool available for the situation.

405 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

FOR…DO…END FOR
The SQL FOR loop declares and opens a cursor, fetches the rows of the
cursor, executes the body of the FOR statement once for each row, and then
closes the cursor. This loop makes processing possible entirely within SQL,
instead of switching out to a host language. If your implementation supports
SQL FOR loops, you can use them as a simple alternative to the cursor pro-
cessing described in Chapter 19. Here’s an example:

FOR vcount AS Curs1 CURSOR FOR
 SELECT AsteroidID FROM asteroid
DO
 UPDATE asteroid SET Description = ‘stony iron’
 WHERE CURRENT OF Curs1 ;
END FOR

In this example, you update every row in the ASTEROID table by putting
‘stony iron’ into the Description field. This is a fast way to identify
the compositions of asteroids, but the table may suffer some in the accuracy
department. Perhaps you’d be better off checking the spectral signatures of
the asteroids and then entering their types individually.

ITERATE
The ITERATE statement provides a way to change the flow of execution
within an iterated SQL statement. The iterated SQL statements are LOOP,
WHILE, REPEAT, and FOR. If the iteration condition of the iterated SQL state-
ment is true or not specified, then the next iteration of the loop commences
immediately after the ITERATE statement executes. If the iteration condition
of the iterated SQL statement is false or unknown, then iteration ceases after
the ITERATE statement executes. For example:

AsteroidPreload4:
SET vcount = 0 ;
WHILE
 vcount< 10000 DO
 SET vcount = vcount + 1 ;
 INSERT INTO asteroid (AsteroidID)
 VALUES (vcount) ;
 ITERATE AsteroidPreload4 ;
 SET vpreload = ‘DONE’ ;
END WHILE AsteroidPreload4

Execution loops back to the top of the WHILE statement immediately after the
ITERATE statement each time through the loop until vcount equals 9999.

406 Part VI: Advanced Topics

On that iteration, vcount increments to 10000, the INSERT performs, the
ITERATE statement ceases iteration, vpreload is set to ‘DONE’, and execu-
tion proceeds to the next statement after the loop.

Stored Procedures
Stored procedures reside in the database on the server rather than execute
on the client — where all procedures were located before SQL/PSM. After you
define a stored procedure, you can invoke it with a CALL statement. Keeping
the procedure located on the server rather than on the client reduces net-
work traffic, thus speeding performance. The only traffic that needs to pass
from the client to the server is the CALL statement. You can create this pro-
cedure in the following manner:

EXEC SQL
 CREATE PROCEDURE ChessMatchScore
 (IN score CHAR (3),
 OUT result CHAR (10))
 BEGIN ATOMIC
 CASE score
 WHEN ‘1-0’ THEN
 SET result = ‘whitewins’ ;
 WHEN ‘0-1’ THEN
 SET result = ‘blackwins’ ;
 ELSE
 SET result = ‘draw’ ;
 END CASE
 END ;

After you have created a stored procedure like the one in this example, you
can invoke it with a CALL statement similar to the following statement:

CALL ChessMatchScore (‘1-0’, :Outcome) ;

The first argumentis an input parameter that is fed to the ChessMatchScore
procedure. The second argument is an embedded variable that accepts the
value assigned to the output parameter that the ChessMatchScore proce-
dure uses to return its result to the calling routine. In this case, it returns
‘white wins’.

SQL:2011 has added a couple of enhancements to stored procedures. The
first of these is the introduction of named arguments. Here’s the equivalent of
the preceding call, with named arguments:

CALL ChessMatchScore (result => :Outcome,score =>’1-0’);

407 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

Because the arguments are named, they can be written in any order without
a danger of them being confused.

The second enhancement added in SQL:2011 is the addition of default input
arguments. You can specify a default argument for the input parameter. After
you do that, you don’t need to specify an input value in the CALL statement;
the default value is assumed. (Of course, you would want to do this only if the
default value were in fact the value you wanted to send to the procedure.)

Here’s an example of that usage:

EXEC SQL
 CREATE PROCEDURE ChessMatchScore
 (IN score CHAR (3)DEFAULT ‘1-0’,
 OUT result CHAR (10))
 BEGIN ATOMIC
 CASE score
 WHEN ‘1-0’ THEN
 SET result = ‘whitewins’ ;
 WHEN ‘0-1’ THEN
 SET result = ‘blackwins’ ;
 ELSE
 SET result = ‘draw’ ;
 END CASE
 END ;

You can now call this procedure thusly with the default value:

CALL ChessMatchScore (:Outcome) ;

Of course, you would only want to do this if the default value was in fact the
value you wanted to send to the procedure.

Stored Functions
A stored function is similar in many ways to a stored procedure. Collectively,
the two are referred to as stored routines. They are different in several ways,
including the way in which they are invoked. A stored procedure is invoked
with a CALL statement, and a stored function is invoked with a function call,
which can replace an argument of an SQL statement. The following is an exam-
ple of a function definition, followed by an example of a call to that function:

CREATE FUNCTION PurchaseHistory (CustID)
 RETURNS CHAR VARYING (200)

 BEGIN
 DECLARE purch CHAR VARYING (200)

408 Part VI: Advanced Topics

 DEFAULT ‘’ ;
 FOR x AS SELECT *
 FROM transactions t
 WHERE t.customerID = CustID
 DO
 IF a <>’’
 THEN SET purch = purch || ‘, ‘ ;
 END IF ;
 SET purch = purch || t.description ;
 END FOR
 RETURN purch ;
 END ;

This function definition creates a comma-delimited list of purchases made
by a customer that has a specified customer number, taken from the
TRANSACTIONS table. The following UPDATE statement contains a function
call to PurchaseHistory that inserts the latest purchase history for cus-
tomer number 314259 into her record in the CUSTOMER table:

SET customerID = 314259 ;
UPDATE customer
 SET history = PurchaseHistory (customerID)
 WHERE customerID = 314259 ;

Privileges
I discuss the various privileges that you can grant to users in Chapter 14. The
database owner can grant the following privileges to other users:

	 ✓	The right to DELETE rows from a table

	 ✓	The right to INSERT rows into a table

	 ✓	The right to UPDATE rows in a table

	 ✓	The right to create a table that REFERENCES another table

	 ✓	The right of USAGE on a domain

SQL/PSM adds one more privilege that can be granted to a user — the
EXECUTE privilege. Here are two examples:

GRANT EXECUTE on ChessMatchScore to TournamentDirector ;

GRANT EXECUTE on PurchaseHistory to SalesManager ;

409 Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules

These statements allow the tournament director of the chess tournament
to execute the ChessMatchScore procedure, and the sales manager of the
company to execute the PurchaseHistory function. People lacking the
EXECUTE privilege for a routine aren’t able to use it.

Stored Modules
A stored module can contain multiple routines (procedures and/or functions)
that can be invoked by SQL. Anyone who has the EXECUTE privilege for a
module has access to all the routines in the module. Privileges on routines
within a module can’t be granted individually. The following is an example of
a stored module:

CREATE MODULE mod1
 PROCEDURE MatchScore
 (IN score CHAR (3),
 OUT result CHAR (10))
 BEGIN ATOMIC
 CASE result
 WHEN ‘1-0’ THEN
 SET result = ‘whitewins’ ;
 WHEN ‘0-1’ THEN
 SET result = ‘blackwins’ ;
 ELSE
 SET result = ‘draw’ ;
 END CASE
 END ;
 FUNCTION PurchaseHistory (CustID)
 RETURNS CHAR VARYING (200)
 BEGIN
 DECLARE purch CHAR VARYING (200)
 DEFAULT ‘’ ;
 FOR x AS SELECT *
 FROM transactions t
 WHERE t.customerID = CustID
 DO
 IF a <>’’
 THEN SET purch = purch || ‘, ‘ ;
 END IF ;
 SET purch = purch || t.description ;
 END FOR
 RETURN purch ;
 END ;
END MODULE ;

410 Part VI: Advanced Topics

The two routines in this module (a procedure and a function) don’t have
much in common, but they don’t need to. You can gather related routines
into a single module, or you can stick all the routines you’re likely to use into
a single module, regardless of whether they have anything in common.

Chapter 21

Handling Errors
In This Chapter
▶	Flagging error conditions
▶	Branching to error-handling code
▶	Determining the exact nature of an error
▶	Finding out which DBMS generated an error condition

W
ouldn’t it be great if every application you wrote worked perfectly
every time? Yeah, and it would also be really cool to win $314.9 mil-

lion playing Powerball. Unfortunately, both possibilities are equally unlikely
to happen. Error conditions of one sort or another are inevitable, so it’s help-
ful to know what causes them. SQL’s mechanism for returning error informa-
tion to you is the status parameter (or host variable) SQLSTATE. Based on the
contents of SQLSTATE, you can take different actions to remedy the error
condition.

For example, the WHENEVER directive enables you to take a predetermined
action whenever a specified condition (if SQLSTATE has a non-zero value, for
example) is met. You can also find detailed status information about the SQL
statement that you just executed in the diagnostics area. In this chapter, I
explain these helpful error-handling facilities and how to use them.

SQLSTATE
SQLSTATE specifies a large number of anomalous conditions. SQLSTATE is
a five-character string in which only the uppercase letters A through Z and
the numerals 0 through 9 are valid characters. The five-character string is
divided into two groups: a two-character class code and a three-character
subclass code. The class code holds a status after the completion of an SQL
statement. That status could indicate successful completion of the statement,
or one of a number of major types of error conditions. The subclass code
provides additional detail about this particular execution of the statement.
Figure 21-1 illustrates the SQLSTATE layout.

412 Part VI: Advanced Topics

The SQL standard defines any class code that starts with the letters A
through H or the numerals 0 through 4; therefore, these class codes mean
the same thing in any implementation. Class codes that start with the letters
I through Z or the numerals 5 through 9 are left open for implementors (the
people who build database management systems) to define because the SQL
specification can’t anticipate every condition that may come up in every
implementation. However, implementors should use these nonstandard class
codes as little as possible to avoid migration problems from one DBMS to
another. Ideally, implementors should use the standard codes most of the
time and the nonstandard codes only under the most unusual circumstances.

	

Figure 21-1:
SQLSTATE

of 00000
indicates

successful
completion
of an SQL:
statement.

	

I introduce SQLSTATE in Chapter 20, but here’s a recap. A class code of 00
indicates successful completion. Class code 01 means that the statement
executed successfully but produced a warning. Class code 02 indicates a no
data condition. Any SQLSTATE class code other than 00, 01, or 02 indicates
that the statement did not execute successfully.

Because SQLSTATE updates after every SQL operation, you can check it after
every statement executes. If SQLSTATE contains 00000 (successful comple-
tion), you can proceed with the next operation. If it contains anything else,
you may want to branch out of the main line of your code to handle the situ-
ation. The specific class code and subclass code that an SQLSTATE contains
determine which of several possible actions you should take.

To use SQLSTATE in a module language program (which I describe in Chapter
16), include a reference to it in your procedure definitions, as the following
example shows:

PROCEDURE NUTRIENT
 (SQLSTATE, :foodname CHAR (20), :calories SMALLINT,
 :protein DECIMAL (5,1), :fat DECIMAL (5,1),
 :carbo DECIMAL (5,1))
INSERT INTO FOODS
 (FoodName, Calories, Protein, Fat, Carbohydrate)
 VALUES
 (:foodname, :calories, :protein, :fat, :carbo) ;

413 Chapter 21: Handling Errors

At the appropriate spot in your procedural language program, you can make
values available for the parameters (perhaps by soliciting them from the
user) and then call up the procedure. The syntax of this operation varies
from one language to another, but it looks something like this:

foodname = “Okra, boiled” ;
calories = 29 ;
protein = 2.0 ;
fat = 0.3 ;
carbo = 6.0 ;
NUTRIENT(state, foodname, calories, protein, fat, carbo) ;

The state of SQLSTATE is returned in the variable state. Your program can
examine this variable and then take the appropriate action based on the vari-
able’s contents.

WHENEVER Clause
What’s the point of knowing that an SQL operation didn’t execute success-
fully if you can’t do anything about it? If an error occurs, you don’t want your
application to continue executing as if everything is fine. You need to be able
to acknowledge the error and do something to correct it. If you can’t correct
the error, at the very least you want to inform the user of the problem and
bring the application to a graceful termination. The WHENEVER directive is
the SQL mechanism for dealing with execution exceptions.

The WHENEVER directive is actually a declaration and is therefore located in
your application’s SQL declaration section, before the executable SQL code.
The syntax is as follows:

WHENEVER condition action ;

	 The condition may be either SQLERROR or NOT FOUND. The action may be
either CONTINUE or GOTO address. SQLERROR is True if SQLSTATE has a class
code other than 00, 01, or 02. NOT FOUND is True if SQLSTATE is 02000.

If the action is CONTINUE, nothing special happens, and the execution contin-
ues normally. If the action is GOTO address (or GO TO address), execution
branches to the designated address in the program. At the branch address,
you can put a conditional statement that examines SQLSTATE and takes differ-
ent actions based on what it finds. Here are some examples of this scenario:

WHENEVER SQLERROR GO TO error_trap ;

or

WHENEVER NOT FOUND CONTINUE ;

414 Part VI: Advanced Topics

The GO TO option is simply a macro: The implementation (that is, the embed-
ded language precompiler) inserts the following test after every EXEC SQL
statement:

IF SQLSTATE <>’00000’
 AND SQLSTATE <>’00001’
 AND SQLSTATE <>’00002’
THEN GOTOerror_trap ;

The CONTINUE option is essentially a NO-OP that says “ignore this.”

Diagnostics Areas
Although SQLSTATE can give you some information about why a particular
statement failed, the information is pretty brief. So SQL provides for the cap-
ture and retention of additional status information in diagnostics areas.

Multiple diagnostics areas are maintained in the form of a last-in-first-out
(LIFO) stack. That is, information on the most recent error can be found at
the top of the stack, with info on older errors farther down in the list. The
additional status information in a diagnostics area can be particularly helpful
in cases in which the execution of a single SQL statement generates multiple
warnings followed by an error. SQLSTATE reports the occurrence of only one
error, but the diagnostics area has the capacity to report on multiple (hope-
fully all) errors.

The diagnostics area is a DBMS-managed data structure that has two
components:

	 ✓	Header: The header contains general information about the most recent
SQL statement that was executed.

	 ✓	Detail area: The detail area contains information about each code
(error, warning, or success) that the statement generated.

Diagnostics header area
In the SET TRANSACTION statement (described in Chapter 15), you can spec-
ify DIAGNOSTICS SIZE. The SIZE that you specify is the number of detail
areas allocated for status information. If you don’t include a DIAGNOSTICS
SIZE clause in your SET TRANSACTION statement, your DBMS assigns its
default number of detail areas, whatever that happens to be.

415 Chapter 21: Handling Errors

The header area contains several items, as listed in Table 21-1.

Table 21-1	 Diagnostics Header Area
Fields Data Type
NUMBER Exact numeric with no fractional part
ROW_COUNT Exact numeric with no fractional part
COMMAND_FUNCTION VARCHAR (implementation defined max

length)
COMMAND_FUNCTION_CODE Exact numeric with no fractional part
DYNAMIC_FUNCTION VARCHAR (implementation defined max

length)
DYNAMIC_FUNCTION_CODE Exact numeric with no fractional part
MORE Exact numeric with no fractional part
TRANSACTIONS_COMMITTED Exact numeric with no fractional part
TRANSACTIONS_ROLLED_BACK Exact numeric with no fractional part
TRANSACTION_ACTIVE Exact numeric with no fractional part

The following list describes these items in more detail:

	 ✓	The NUMBER field is the number of detail areas that have been filled with
diagnostic information about the current exception.

	 ✓	The ROW_COUNT field holds the number of rows affected if the previous
SQL statement was an INSERT, UPDATE, or DELETE.

	 ✓	The COMMAND_FUNCTION field describes the SQL statement that was
just executed.

	 ✓	The COMMAND_FUNCTION_CODE field gives the code number for the SQL
statement that was just executed. Every command function has an asso-
ciated numeric code.

	 ✓	The DYNAMIC_FUNCTION field contains the dynamic SQL statement.

	 ✓	The DYNAMIC_FUNCTION_CODE field contains a numeric code corre-
sponding to the dynamic SQL statement.

	 ✓	The MORE field may be either a ‘Y’ or an ‘N’. ‘Y’ indicates that there
are more status records than the detail area can hold. ‘N’ indicates
that all the status records generated are present in the detail area.
Depending on your implementation, you may be able to expand the
number of records you can handle by using the SET TRANSACTION
statement.

416 Part VI: Advanced Topics

	 ✓	The TRANSACTIONS_COMMITTED field holds the number of transactions
that have been committed.

	 ✓	The TRANSACTIONS_ROLLED_BACK field holds the number of transac-
tions that have been rolled back.

	 ✓	The TRANSACTION_ACTIVE field holds a ‘1’ if a transaction is cur-
rently active and a ‘0’ otherwise. A transaction is deemed to be active
if a cursor is open or if the DBMS is waiting for a deferred parameter.

Diagnostics detail area
The detail areas contain data on each individual error, warning, or success
condition. Each detail area contains 28 items, as Table 21-2 shows.

Table 21-2	 Diagnostics Detail Area
Fields Data Type
CONDITION_NUMBER Exact numeric with no fractional part
RETURNED_SQLSTATE CHAR (6)

MESSAGE_TEXT VARCHAR (implementation defined max length)
MESSAGE_LENGTH Exact numeric with no fractional part
MESSAGE_OCTET_LENGTH Exact numeric with no fractional part
CLASS_ORIGIN VARCHAR (implementation defined max length)
SUBCLASS_ORIGIN VARCHAR (implementation defined max length)
CONNECTION_NAME VARCHAR (implementation defined max length)
SERVER_NAME VARCHAR (implementation defined max length)
CONSTRAINT_CATALOG VARCHAR (implementation defined max length)
CONSTRAINT_SCHEMA VARCHAR (implementation defined max length)
CONSTRAINT_NAME VARCHAR (implementation defined max length)
CATALOG_NAME VARCHAR (implementation defined max length)
SCHEMA_NAME VARCHAR (implementation defined max length)
TABLE_NAME VARCHAR (implementation defined max length)
COLUMN_NAME VARCHAR (implementation defined max length)
CURSOR_NAME VARCHAR (implementation defined max length)
CONDITION_IDENTIFIER VARCHAR (implementation defined max length)
PARAMETER_NAME VARCHAR (implementation defined max length)
PARAMETER_ORDINAL_
POSITION

Exact numeric with no fractional part

417 Chapter 21: Handling Errors

Fields Data Type
PARAMETER_MODE Exact numeric with no fractional part
ROUTINE_CATALOG VARCHAR (implementation defined max length)
ROUTINE_SCHEMA VARCHAR (implementation defined max length)
ROUTINE_NAME VARCHAR (implementation defined max length)
SPECIFIC_NAME VARCHAR (implementation defined max length)
TRIGGER_CATALOG VARCHAR (implementation defined max length)
TRIGGER_SCHEMA VARCHAR (implementation defined max length)
TRIGGER_NAME VARCHAR (implementation defined max length)

CONDITION_NUMBER holds the sequence number of the detail area. If
a statement generates five status items that fill up five detail areas, the
CONDITION_NUMBER for the fifth detail area is 5. To retrieve a specific detail
area for examination, use a GET DIAGNOSTICS statement (described later in
this chapter in the “Interpreting the information returned by SQLSTATE” sec-
tion) with the desired CONDITION_NUMBER. RETURNED_SQLSTATE holds the
SQLSTATE value that caused this detail area to be filled.

CLASS_ORIGIN tells you the source of the class code value returned in
SQLSTATE. If the SQL standard defines the value, the CLASS_ORIGIN is ‘ISO
9075’. If your DBMS implementation defines the value, CLASS_ORIGIN holds
a string identifying the source of your DBMS. SUBCLASS_ORIGIN tells you
the source of the subclass code value returned in SQLSTATE.

	 CLASS_ORIGIN is important. If you get an SQLSTATE of ‘22012’, for exam-
ple, the values indicate that it is in the range of standard SQLSTATEs, so you
know that it means the same thing in all SQL implementations. However, if the
SQLSTATE is ‘22500’, the first two characters are in the standard range and
indicate a data exception, but the last three characters are in the implementa-
tion-defined range. And if SQLSTATE is ‘90001’, it’s completely in the imple-
mentation-defined range. SQLSTATE values in the implementation-defined
range can mean different things in different implementations, even though the
code itself may be the same.

So how do you find out the detailed meaning of ‘22500’ or the meaning
of ‘90001’? You must look in the implementor’s documentation. Which
implementor? If you’re using CONNECT, you may be connecting to various
products. To determine which one produced the error condition, look at
CLASS_ORIGIN and SUBCLASS_ORIGIN: They have values that identify each
implementation. You can test the CLASS_ORIGIN and SUBCLASS_ORIGIN to
see whether they identify implementors for which you have the SQLSTATE
listings. The actual values placed in CLASS_ORIGIN and SUBCLASS_ORIGIN
are implementor-defined, but they also are expected to be self-explanatory
company names.

418 Part VI: Advanced Topics

If the error reported is a constraint violation, the CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME identify the constraint being
violated.

Constraint violation example
The constraint violation information is probably the most important information
that GET DIAGNOSTICS provides. Consider the following EMPLOYEE table:

CREATE TABLE EMPLOYEE
 (ID CHAR(5) CONSTRAINT EmpPK PRIMARY KEY,
 Salary DEC(8,2) CONSTRAINT EmpSal CHECK Salary > 0,
 Dept CHAR(5) CONSTRAINT EmpDept,
 REFERENCES DEPARTMENT) ;

And this DEPARTMENT table:

CREATE TABLE DEPARTMENT
 (DeptNo CHAR(5),
 Budget DEC(12,2) CONSTRAINT DeptBudget
 CHECK(Budget >= SELECT SUM(Salary)
 FROM EMPLOYEE
 WHERE
 EMPLOYEE.Dept=DEPARTMENT.DeptNo),
 ...) ;

Now consider an INSERT as follows:

INSERT INTO EMPLOYEE VALUES(:ID_VAR, :SAL_VAR, :DEPT_VAR)
;

Suppose that you get an SQLSTATE of ‘23000’. You look it up in your SQL
documentation and discover that this means that the statement is commit-
ting an “integrity constraint violation.” Now what? That SQLSTATE value
means that one of the following situations is true:

	 ✓	The value in ID_VAR is a duplicate of an existing ID value: You have
violated the PRIMARY KEY constraint.

	 ✓	The value in SAL_VAR is negative: You have violated the CHECK con-
straint on Salary.

	 ✓	The value in DEPT_VAR isn’t a valid key value for any existing row of
DEPARTMENT: You have violated the REFERENCES constraint on Dept.

	 ✓	The value in SAL_VAR is large enough that the sum of the employees’
salaries in this department exceeds the BUDGET: You have violated
the CHECK constraint in the BUDGET column of DEPARTMENT. (Recall
that if you change the database, all constraints that may be affected are
checked, not just those defined in the immediate table.)

419 Chapter 21: Handling Errors

Under normal circumstances, you would need to do a great deal of testing
to figure out what is wrong with that INSERT. But you can find out what you
need to know by using GET DIAGNOSTICS as follows:

DECLARE ConstNameVarCHAR(18) ;
GET DIAGNOSTICS EXCEPTION 1
 ConstNameVar = CONSTRAINT_NAME ;

Assuming that SQLSTATE is ‘23000’, this GET DIAGNOSTICS sets
ConstNameVar to ‘EmpPK’, ‘EmpSal’, ‘EmpDept’, or ‘DeptBudget’.
Notice that, in practice, you also want to obtain the CONSTRAINT_SCHEMA
and CONSTRAINT_CATALOG to uniquely identify the constraint given by
CONSTRAINT_NAME.

Adding constraints to an existing table
This use of GET DIAGNOSTICS — determining which of several constraints
has been violated — is particularly important in the case where ALTER TABLE
is used to add constraints that didn’t exist when you wrote the program:

ALTER TABLE EMPLOYEE
 ADD CONSTRAINT SalLimitCHECK(Salary < 200000) ;

Now if you insert data into EMPLOYEE or update the Salary column of
EMPLOYEE, you get an SQLSTATE of ‘23000’ if Salary exceeds $200,000.
You can program your INSERT statement so that, if you get an SQLSTATE of
‘23000’ and you don’t recognize the particular constraint name that GET
DIAGNOSTICS returns, you can display a helpful message, such as Invalid
INSERT: Violated constraint SalLimit.

Interpreting the information
returned by SQLSTATE
CONNECTION_NAME and ENVIRONMENT_NAME identify the connection and
environment to which you are connected at the time the SQL statement is
executed.

If the report deals with a table operation, CATALOG_NAME, SCHEMA_NAME,
and TABLE_NAME identify the table. COLUMN_NAME identifies the column
within the table that caused the report to be made. If the situation involves a
cursor, CURSOR_NAME gives its name.

Sometimes a DBMS produces a string of natural language text to explain a
condition. The MESSAGE_TEXT item is for this kind of information. The con-
tents of this item depend on the implementation; the SQL standard doesn’t

420 Part VI: Advanced Topics

explicitly define them. If you do have something in MESSAGE_TEXT, its length
in characters is recorded in MESSAGE_LENGTH, and its length in octets is
recorded in MESSAGE_OCTET_LENGTH. If the message is in normal ASCII
characters, MESSAGE_LENGTH equals MESSAGE_OCTET_LENGTH. If, on the
other hand, the message is in kanji or some other language whose charac-
ters require more than an octet to express, MESSAGE_LENGTH differs from
MESSAGE_OCTET_LENGTH.

To retrieve diagnostic information from a diagnostics area header, use the
following:

GET DIAGNOSTICS status1 = item1 [, status2 = item2]... ;

statusn is a host variable or parameter; itemn can be any of the keywords
NUMBER, MORE, COMMAND_FUNCTION, DYNAMIC_FUNCTION, or ROW_COUNT.

To retrieve diagnostic information from a diagnostics detail area, use the fol-
lowing syntax:

GET DIAGNOSTICS EXCEPTION condition-number
 status1 = item1 [, status2 = item2]... ;

Again statusn is a host variable or parameter, and itemn is any of the 28
keywords for the detail items listed in Table 21-2. The condition number is
(surprise!) the detail area’s CONDITION_NUMBER item.

Handling Exceptions
When SQLSTATE indicates an exception condition by holding a value other
than 00000, 00001, or 00002, you may want to handle the situation in one of
the following ways:

	 ✓	Return control to the parent procedure that called the subprocedure
that raised the exception.

	 ✓	Use a WHENEVER clause (as described earlier in this chapter) to branch
to an exception-handling routine or perform some other action.

	 ✓	Handle the exception on the spot with a compound SQL statement (as
described in Chapter 20). A compound SQL statement consists of one
or more simple SQL statements, sandwiched between BEGIN and END
keywords.

421 Chapter 21: Handling Errors

The following is an example of a compound-statement exception handler:

BEGIN
DECLARE ValueOutOfRange EXCEPTION FOR SQLSTATE’73003’ ;
 INSERT INTO FOODS
 (Calories)
 VALUES
 (:cal) ;
 SIGNAL ValueOutOfRange ;
 MESSAGE ‘Process a new calorie value.’
 EXCEPTION
 WHEN ValueOutOfRange THEN
 MESSAGE ‘Handling the calorie range error’ ;
 WHEN OTHERS THEN
 RESIGNAL ;
END

With one or more DECLARE statements, you can give names to specific
SQLSTATE values that you suspect may arise. The INSERT statement is the
one that might cause an exception to occur. If the value of :cal exceeds the
maximum value for a SMALLINT data item, SQLSTATE is set to “73003”. The
SIGNAL statement signals an exception condition. It clears the top diagnos-
tics area. It sets the RETURNED_SQLSTATE field of the diagnostics area to the
SQLSTATE for the named exception. If no exception has occurred, the series
of statements represented by the MESSAGE ‘Process a new calorie
value’ statement is executed. However, if an exception has occurred, that
series of statements is skipped, and the EXCEPTION statement is executed.

If the exception was a ValueOutOfRange exception, then a series of state-
ments represented by the MESSAGE ‘Handling the calorie range
error’ statement is executed. The RESIGNAL statement is executed if the
exception isn’t a ValueOutOfRange exception.

	 RESIGNAL merely passes control of execution to the calling parent procedure.
That procedure may have additional error-handling code to deal with excep-
tions other than the expected value-out-of-range error.

422 Part VI: Advanced Topics

Chapter 22

Triggers
In This Chapter
▶	Creating triggers
▶	Considerations in firing a trigger
▶	Executing a trigger
▶	Firing multiple triggers

I
n the course of executing a database application, occasions may arise
where if some specific action occurs, you want that action to cause

another action, or perhaps a succession of actions, to occur. In a sense, that
first action triggers the execution of the following actions. SQL provides the
TRIGGER mechanism to provide this capability.

Triggers, of course, are best known as those parts of a firearm that cause it to
fire. More generally, a trigger is an action or event that causes another event
to occur. In SQL, the word trigger is used in this more general sense. A trigger-
ing SQL statement causes another SQL statement (the triggered statement) to
be executed.

Examining Some Applications of Triggers
The firing of a trigger is useful in a number of situations. One example is to
perform a logging function. Certain actions that are critical to the integrity
of a database — such as inserting, editing, or deleting a table row — could
trigger the making of an entry in a log that documents that action. Log entries
can record not only what action was taken, but also when it was taken and by
whom.

Triggers can also be used to keep a database consistent. In an order entry
application, an order for a specific product can trigger a statement that
changes the status of that product in the inventory table from available to
reserved. Similarly, the deletion of a row in the orders table can trigger a
statement that changes the status of the subject product from reserved to
available.

424 Part VI: Advanced Topics

Triggers offer even greater flexibility than is illustrated in the preceding
examples. The triggered item doesn’t have to be an SQL statement. It can
be a host language procedure that performs some operation in the outside
world, such as shutting down a production line or causing a robot to fetch a
cold beer from the fridge.

Creating a Trigger
You create a trigger, logically enough, with a CREATE TRIGGER statement.
After the trigger is created, it lies in wait — waiting for the triggering event to
occur. When the triggering event occurs, bang! The trigger fires.

The syntax for the CREATE TRIGGER statement is fairly involved, but you
can break it down into understandable pieces. First take a look at the overall
picture:

CREATE TRIGGER trigger_name
 trigger_action_timetrigger_event
 ON table_name
 [REFERENCING old_or_new_value_alias_list]
 triggered_action

The trigger name is the unique identifier for this trigger. The trigger action
time is the time you want the triggered action to occur: either BEFORE or
AFTER the triggering event. The fact that a triggered action can occur before
the event that is supposedly causing it to happen may seem a little bizarre,
but in some cases, this ability can be very useful (and can be accomplished
without invoking time travel). Because the database engine knows that it is
about to execute a triggering event before it actually executes it, it has the
ability to sandwich in the triggered event ahead of the execution of the trig-
gering event, if a trigger action time of BEFORE has been specified.

Three possible trigger events can cause a trigger to fire: the execution of
an INSERT statement, a DELETE statement, or an UPDATE statement. These
three statements have the power to change the contents of a database table.
Thus, any insertion of one or more rows into the subject table, any deletion
of one or more rows from the subject table, or any update of one or more col-
umns in one or more rows in the subject table can cause a trigger to fire. ON
table_name, of course, refers to the table for which an INSERT, DELETE, or
UPDATE has been specified.

425 Chapter 22: Triggers

Statement and row triggers
The triggered_action in the preceding example has the following syntax:

[FOR EACH { ROW | STATEMENT }]
 WHEN <left paren><search condition><right paren>
 <triggered SQL statement>

You can specify how the trigger will act:

	 ✓	Row trigger: The trigger will fire once upon encountering the INSERT,
DELETE, or UPDATE statement that constitutes the triggering event.

	 ✓	Statement trigger: The trigger will fire multiple times, once for every
row in the subject table that is affected by the triggering event.

As indicated by the square brackets, the FOR EACH clause is optional.
Despite this, the trigger must act one way or the other. If no FOR EACH
clause is specified, the default behavior is FOR EACH STATEMENT.

When a trigger fires
The search condition in the WHEN clause enables you to specify the circum-
stances under which a trigger will fire. Specify a predicate, and if the predi-
cate is true, the trigger will fire; if it’s false, it won’t. This capability greatly
increases the usefulness of triggers. You can specify that a trigger fires only
after a certain threshold value has been exceeded, or when any other condi-
tion can be determined to be either True or False.

The triggered SQL statement
The triggered SQL statement can be a single SQL statement or a sequence of
SQL statements executed one after another. In the case of a single SQL state-
ment, the triggered SQL statement is merely an ordinary SQL statement. For
a sequence of SQL statements, however, you must guarantee atomicity to
ensure that the operation is not aborted midstream, leaving the database in
an unwanted state. You can do this with a BEGIN-END block that includes
the ATOMIC keyword:

BEGIN ATOMIC
 { SQL statement 1 }
 { SQL statement 2 }
 ...
 { SQL statement n }
END

426 Part VI: Advanced Topics

An example trigger definition
Suppose the corporate human resources manager wants to be informed
whenever one of the regional managers hires a new employee. The following
trigger can handle this situation nicely:

CREATE TRIGGER newhire
 BEFORE INSERT ON employee
 FOR EACH STATEMENT
 BEGIN ATOMIC
 CALL sendmail (‘HRDirector’)
 INSERT INTO logtable
 VALUES (‘NEWHIRE’, CURRENT_USER, CURRENT_TIMESTAMP);
 END;

Whenever a new row is inserted into the NEWHIRE table, an e-mail is fired off
to the HR manager with the details, and the logon name of the person making
the insertion and the time of the insertion are recorded in a log table, provid-
ing an audit trail.

Firing a Succession of Triggers
You can probably see a complication in the way triggers operate. Suppose
you create a trigger that causes an SQL statement to be executed on a table
upon the execution of some preceding SQL statement. What if that triggered
statement itself causes a second trigger to fire? That second trigger causes a
third SQL statement to be executed on a second table, which may itself cause
yet another trigger to fire, affecting yet another table. How is it possible to
keep everything straight? SQL handles this machine-gun-style trigger firing
with something called trigger execution contexts.

A succession of INSERT, DELETE, and UPDATE operations can be performed
by nesting the contexts in which they occur. When a trigger fires, an execu-
tion context is created. Only one execution context can be active at a time.
Within that context, an SQL statement may be executed that fires a second
trigger. At that point, the existing execution context is suspended in an
operation analogous to pushing a value onto a stack. A new execution con-
text, corresponding to the second trigger, is created, and its operation is per-
formed. There is no arbitrary limit to the depth of nesting possible. When an
operation is complete, its execution context is destroyed, and the next higher
execution context is “popped off the stack” and reactivated. This process
continues until all actions are complete and all execution contexts have been
destroyed.

427 Chapter 22: Triggers

Referencing Old Values and New Values
The one part of the CREATE TRIGGER syntax that I have not talked about yet
is the optional REFERENCING old_or_new_value_alias_list phrase. It
enables you to create an alias or correlation name that references values in
the trigger’s subject table. After you create a correlation name for new values
or an alias for new table contents, you can then reference the values that will
exist after an INSERT or UPDATE operation. In a similar way, after you create
a correlation name for old values or an alias for old table contents, you can
then reference the values that existed in the subject table before an UPDATE
or DELETE operation.

The old_or_new_values_alias_list in the CREATE TRIGGER syntax
can be one or more of the following phrases:

OLD [ROW] [AS] <old values correlation name>

or

NEW [ROW] [AS] <new values correlation name>

or

OLD TABLE [AS] <old values table alias>

or

NEW TABLE [AS] <new values table alias>

The table aliases are identifiers for transition tables, which are not persistent,
but which exist only to facilitate the referencing operation. As you would
expect, NEW ROW and NEW TABLE cannot be specified for a DELETE trigger,
and OLD ROW as well as OLD TABLE cannot be specified for an INSERT trig-
ger. After you delete a row or table, there is no new value. Similarly, OLD ROW
and OLD TABLE cannot be specified for an INSERT trigger. There are no old
values to reference.

In a row-level trigger, you can use an old value correlation name to refer-
ence the values in the row being modified or deleted by the triggering SQL
statement as that row existed before the statement modified or deleted it.
Similarly, an old value table alias is what you use to access the values in the
entire table as they existed before the triggering SQL statement’s action took
effect.

428 Part VI: Advanced Topics

You may not specify either OLD TABLE or NEW TABLE with a BEFORE trigger.
The transition tables created by the OLD TABLE or NEW TABLE keyword are
too likely to be affected by the actions caused by the triggered SQL state-
ment. To eliminate this potential problem, using OLD TABLE and NEW TABLE
with a BEFORE trigger is prohibited.

Firing Multiple Triggers
on a Single Table

One final topic that I want to cover in this chapter is the case in which mul-
tiple triggers are created, all causing an SQL statement to be executed that
operates on the same table. All of those triggers are primed and ready to fire.
When the triggering event occurs, which one goes first? This conundrum
is solved by an executive decision. Whichever trigger was created first is
the first to fire. The trigger created second fires next, and so on down the
line. Thus the potential ambiguity is avoided, and execution proceeds in an
orderly fashion.

Part VII
The Part of Tens

	

Visit www.dummies.com for great Dummies content online.

In this part…
	 ✓	 Frequent foul-ups
	 ✓	 Rapid retrieval
	 ✓	 Visit www.dummies.com for great Dummies content

online.

Chapter 23

Ten Common Mistakes
In This Chapter
▶	Assuming that your clients know what they need
▶	Not worrying about project scope
▶	Considering only technical factors
▶	Never asking for user feedback
▶	Using only your favorite development environment or system architecture
▶	Designing database tables in isolation
▶	Skipping design reviews, beta testing, and documentation

I
f you’re reading this book, you must be interested in building relational
database systems. Face it — nobody studies SQL for the fun of it. You use

SQL to build database applications, but before you can build one, you need
a database. Unfortunately, many projects go awry before the first line of the
application is coded. If you don’t get the database definition right, your appli-
cation is doomed — no matter how well you write it. Here are ten common
database-creation mistakes that you should be on the lookout for.

Assuming That Your Clients
Know What They Need

Generally, clients call you in to design a database system when they have a
problem getting the information they need because their current methods
aren’t working. Clients often believe that they have identified the problem
and its solution. They figure that all they need to do is tell you what to do.

Giving clients exactly what they ask for is usually a sure-fire prescription for
disaster. Most users (and their managers) don’t possess the knowledge or
skills necessary to accurately identify the problem, so they have little chance
of determining the best solution.

432 Part VII: The Part of Tens

Your job is to tactfully convince your client that you are an expert in systems
analysis and design and that you must do a proper analysis to uncover the
real cause of the problem. Usually the real cause of the problem is hidden
behind the more obvious symptoms.

Ignoring Project Scope
Your client tells you what he or she expects from the new application at
the beginning of the development project. Unfortunately, the client almost
always forgets to tell you something — usually several things. Throughout
the job, these new requirements crop up and are tacked onto the project. If
you’re being paid on a project basis rather than an hourly basis, this growth
in scope can change what was once a profitable project into a loser. Make
sure that everything you’re obligated to deliver is specified in writing before
you start the project.

Considering Only Technical Factors
Application developers often consider potential projects in terms of their
technical feasibility, and they base their time and effort estimates on that
determination. However, issues of cost maximums, resource availability,
schedule requirements, and organization politics can have a major effect on
the project. These issues may turn a project that is technically feasible into a
nightmare. Make sure that you understand all relevant nontechnical factors
before you start any development project. You may decide that it makes no
sense to proceed; you’re better off reaching that conclusion at the beginning
of the project than after you have expended considerable effort.

Not Asking for Client Feedback
Your first inclination might be to listen to the managers who hire you. After
all, the users themselves don’t have any clout and they sure as heck don’t
pay your fee. On the other hand, there may be good reason to ignore the
managers, too. They usually don’t have a clue about what the users really
need. Wait a minute! Don’t ignore everyone or assume that you know more
than a manager or user about what a database should do and how it should
work. Data-entry clerks don’t typically have much organizational clout, and
many managers have only a dim understanding of some aspects of the work
that data-entry clerks do. But isolating yourself from either group is almost
certain to result in a system that solves a problem that nobody has. You can
learn a lot from managers and from users by asking the right questions.

433 Chapter 23: Ten Common Mistakes

Always Using Your Favorite
Development Environment

You’ve probably spent months or even years becoming proficient in the use
of a particular DBMS or application development environment. But your
favorite environment — no matter what it is — has strengths and weak-
nesses. Occasionally, you come across a development task that makes heavy
demands in an area where your preferred development environment is weak.
So rather than kludge together something that isn’t really the best solution,
bite the bullet. You have two options: Either climb the learning curve of a
more appropriate tool and then use it, or candidly tell your clients that their
job would best be done with a tool that you’re not an expert at using. Then
suggest that the client hire someone who can be productive with that tool
right away. Professional conduct of this sort garners your clients’ respect.
(Unfortunately, if you work for a company instead of for yourself, that con-
duct may also get you laid off or fired. It’s best to go with option one — dive
on into a new development environment.)

Using Your Favorite System
Architecture Exclusively

Nobody can be an expert at everything. Database management systems that
work in a teleprocessing environment are different than systems that work in
client/server, resource sharing, web-based, or distributed database environ-
ments. The one or two systems that you are expert in may not be the best for
the job at hand. Choose the best architecture anyway, even if it means pass-
ing on the job. Not getting the job is better than getting it and producing a
system that doesn’t serve the client’s needs.

Designing Database Tables in Isolation
If you incorrectly identify data objects and their relationships to each other,
your database tables are likely to introduce errors into the data and destroy
the validity of any results. To design a sound database, you must consider
the overall organization of the data objects and carefully determine how they
relate to each other. Usually, no single right design exists. You must deter-
mine what is appropriate, considering your client’s present and projected
needs.

434 Part VII: The Part of Tens

Neglecting Design Reviews
Nobody’s perfect. Even the best designer and developer can miss important
points that are evident to someone looking at the situation from a different
perspective. Presenting your work before a formal design review can actu-
ally make you more disciplined in your work — probably helping you avoid
numerous problems that you may otherwise have experienced. Have a com-
petent professional review your proposed design before you start develop-
ment. You should have a database designer check it over, but you may want
to show it to the client, as well.

Skipping Beta Testing
Any database application complex enough to be truly useful is also com-
plex enough to contain bugs. Even if you test it in every way you can think
of, the application is sure to contain failure modes that you don’t uncover.
Beta testing means giving the application to people who don’t know how it
was designed. They’re likely to have problems that you never encountered
because you know too much about the application. If they’re familiar with
the data, but not the database, they’re also more likely to use the application
as they would on a daily basis, so they can pinpoint queries that take a long
time to generate results. You can then fix the bugs or performance shortfalls
that others find before the product goes officially into use.

Not Documenting Your Process
If you think your application is so perfect that it never needs to be looked at,
even once more, think again. The only thing you can be absolutely sure of in
this world is change. Count on it. Six months from now, you won’t remem-
ber why you designed things the way you did, unless you carefully docu-
ment what you did and why you did it that way. If you transfer to a different
department or win the lottery and retire, your replacement has almost no
chance of modifying your work to meet new requirements if you didn’t docu-
ment your design. Without documentation, your replacement may need to
scrap the whole thing and start from scratch.

	 Don’t just document your work adequately — over-document your work. Put
in more detail than you think is reasonable. If you come back to this project
after six or eight months away from it, you’ll be glad you documented it in
detail.

Chapter 24

Ten Retrieval Tips
In This Chapter
▶	Verifying the structure of your database
▶	Using test databases
▶	Scrutinizing any queries containing joins
▶	Examining queries containing subselects
▶	Using GROUP BY with the SET functions
▶	Being aware of restrictions on the GROUP BY clause
▶	Using parentheses in expressions
▶	Protecting your database by controlling privileges
▶	Backing up your database regularly
▶	Anticipating and handling errors

A
 database can be a virtual treasure trove of information, but like the
treasure of the Caribbean pirates of long ago, the stuff that you really

want is probably buried and hidden from view. The SQL SELECT statement
is your tool for digging up this hidden information. Even if you have a clear
idea of what you want to retrieve, translating that idea into SQL can be a
challenge. If your formulation is just a little off, you may end up with the
wrong results — but results that are so close to what you expected that they
mislead you. To reduce your chances of being misled, use the following ten
principles.

Verify the Database Structure
If you retrieve data from a database and your results don’t seem reasonable,
check the database design. Many poorly designed databases are in use, and
if you’re working with one, fix the design before you try any other remedy.
Remember — good design is a prerequisite of data integrity.

436 Part VII: The Part of Tens

Try Queries on a Test Database
Create a test database that has the same structure as your production data-
base, but with only a few representative rows in the tables. Choose the data
so that you know in advance what the results of your queries should be. Run
each test query on the test data and see whether the results match your
expectations. If they don’t, you may need to reformulate your queries. If a
query is properly formulated but you end up with bad results all the same,
you may need to restructure your database.

Build several sets of test data and be sure to include odd cases, such as
empty tables and extreme values at the very limit of allowable ranges. Try to
think of unlikely scenarios and check for proper behavior when they occur.
In the course of checking for unlikely cases, you may gain insight into prob-
lems that are more likely to happen.

Double-Check Queries That Include Joins
Joins are notoriously counterintuitive. If your query contains one, make sure
that it’s doing what you expect before you add WHERE clauses or other com-
plicating factors.

Triple-Check Queries with Subselects
Queries with subselects take data from one table and, based on what is
retrieved, take some data from another table. Therefore, by definition, such
queries can really be hard to get right. Make sure the data that the inner
SELECT retrieves is the data that the outer SELECT needs to produce the
desired result. If you have two or more levels of subselects, you need to be
even more careful.

Summarize Data with GROUP BY
Say that you have a table (NATIONAL) that contains the name (Player),
team (Team), and number of home runs hit (Homers) by every baseball
player in the National League. You can retrieve the team homer total for all
teams with a query like this:

SELECT Team, SUM (Homers)
 FROM NATIONAL
 GROUP BY Team ;

437 Chapter 24: Ten Retrieval Tips

This query lists each team, followed by the total number of home runs hit by
all that team’s players.

Watch GROUP BY Clause Restrictions
Suppose that you want a list of National League power hitters. Consider the
following query:

SELECT Player, Team, Homers
 FROM NATIONAL
 WHERE Homers >= 20
 GROUP BY Team ;

In most implementations, this query returns an error. Generally, only columns
used for grouping or columns used in a set function may appear in the select
list. However, if you want to view this data, the following formulation works:

SELECT Player, Team, Homers
 FROM NATIONAL
 WHERE Homers >= 20
 GROUP BY Team, Player, Homers ;

Because all the columns you want to display appear in the GROUP BY clause,
the query succeeds and delivers the desired results. This formulation sorts
the resulting list first by Team, then by Player, and finally by Homers.

Use Parentheses with AND, OR, and NOT
Sometimes when you mix AND and OR, SQL doesn’t process the expression in
the order that you expect. Use parentheses in complex expressions to make
sure that you get the desired results. Typing a few extra keystrokes is a small
price to pay for better results.

	 Parentheses also help to ensure that the NOT keyword is applied to the term
or expression that you want it to apply to.

Control Retrieval Privileges
Many people don’t use the security features available in their DBMS. They
don’t want to bother with them because they think misuse and misappropria-
tion of data are things that only happen to other people. Don’t wait to get
burned. Establish and maintain security for all databases that have any value.

438 Part VII: The Part of Tens

Back Up Your Databases Regularly
Understatement alert: Data is hard to retrieve after a power surge, a fire, an
earthquake, or some other disaster destroys your hard drive. (Remember,
sometimes computers just die for no good reason.) Make frequent backups
and put the backup media in a safe place.

	 What constitutes a safe place depends on how critical your data is. It might
be a fireproof safe in the same room as your computer. It might be in another
building. It might be in the cloud. It might be in a concrete bunker under a
mountain that has been hardened to withstand a nuclear attack. Decide what
level of safety is appropriate for your data.

Handle Error Conditions Gracefully
Whether you’re making ad hoc queries from a workstation or embedding
queries in an application, occasionally SQL returns an error message rather
than the desired results. At a workstation, you can decide what to do next,
based on the message returned. In an application, the situation is different.
The application user probably doesn’t know what action is appropriate. Put
extensive error handling into your applications to cover every conceivable
error that may occur. Creating error-handling code takes a great deal of
effort, but it’s better than having the user stare quizzically at a frozen screen.

Appendix

SQL: 2011 Reserved Words
ABS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

ARRAY_AGG

AS

ASENSITIVE

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

BEGIN

BETWEEN

BIGINT

BINARY

BLOB

BOOLEAN

BOTH

BY

CALL

CALLED

CARDINALITY

CASCADED

CASE

CAST

CEIL

CEILING

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_
LENGTH

CHECK

CLOB

CLOSE

COALESCE

COLLATE

COLLECT

COLUMN

COMMIT

CONDITION

CONNECT

CONSTRAINT

CONVERT

CORR

CORRESPONDING

COUNT

COVAR_POP

COVAR_SAMP

CREATE

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_
CATALOG

CURRENT_DATE

CURRENT_
DEFAULT_
TRANSFORM_
GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_SCHEMA

CURRENT_TIME

CURRENT_
TIMESTAMP

CURRENT_
TRANSFORM_
GROUP_FOR_TYPE

CURRENT_USER

CURSOR

440 SQL For Dummies, 8th Edition

CYCLE

DATE

DAY

DAYS

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENSE_RANK

DEREF

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

DOUBLE

DROP

DYNAMIC

EACH

ELEMENT

ELSE

END

END-EXEC

ESCAPE

EVERY

EXCEPT

EXEC

EXECUTE

EXISTS

EXP

EXTERNAL

EXTRACT

FALSE

FETCH

FILTER

FIRST_VALUE

FLOAT

FLOOR

FOR

FOREVER

FOREIGN

FREE

FROM

FULL

FUNCTION

FUSION

GET

GLOBAL

GRANT

GROUP

GROUPING

HAVING

HOLD

HOUR

HOURS

IDENTITY

IN

INDICATOR

INNER

INOUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

IS

JOIN

KEEP

LAG

LANGUAGE

LARGE

LAST_VALUE

LATERAL

LEAD

LEADING

LEFT

LIKE

LIKE_REGEX

LN

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOWER

MATCH

MAX

MAX_
CARDINALITY

MEMBER

MERGE

METHOD

MIN

MINUTE

441 Appendix: SQL: 2008 Reserved Words

MINUTES

MOD

MODIFIES

MODULE

MONTH

MULTISET

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NIL

NO

NONE

NORMALIZE

NOT

NTH_VALUE

NTILE

NULL

NULLIF

NUMERIC

OCCURRENCES_
REGEX

OCTET_LENGTH

OF

OFFSET

OLD

ON

ONLY

OPEN

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

PARAMETER

PARTITION

PERCENT_RANK

PERCENTILE_
CONT

PERCENTILE_
DISC

POSITION

POSITION_REGEX

POWER

PRECISION

PREPARE

PRIMARY

PROCEDURE

RANGE

RANK

READS

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

RELEASE

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROW

ROW_NUMBER

ROWS

SAVEPOINT

SCOPE

SCROLL

SEARCH

SECOND

SECONDS

SELECT

SENSITIVE

SESSION_USER

SET

SIMILAR

SMALLINT

SOME

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

442 SQL For Dummies, 8th Edition

SQLWARNING

SQRT

START

STATIC

STDDEV_POP

STDDEV_SAMP

SUBMULTISET

SUBSTRING

SUBSTRING_
REGEX

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

TABLE

TABLESAMPLE

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_
MINUTE

TO

TRAILING

TRANSLATE

TRANSLATE_
REGEX

TRANSLATION

TREAT

TRIGGER

TRUNCATE

TRIM

TRIM_ARRAY

TRUE

UESCAPE

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPPER

USER

USING

VALUE

VALUES

VAR_POP

VAR_SAMP

VARBINARY

VARCHAR

VARYING

VERSION

VERSIONING

VERSIONS

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

YEAR

YEARS

Index
• Symbols and
Numerics •
% (percent sign) wildcard, 218–220
* (asterisk), 140, 245, 334
_ (underscore) wildcard, 218–220
|| (concatenation operator), 65–66, 178
= (equal operator), 274
1NF (first normal form), 132
2NF (second normal form), 132–134
3NF (third normal form), 53
4GLs (fourth-generation languages), 81

• A •
abnormal form, 135–136
ABS function, 194
ABS interval value functions, 196
ABSOLUTE orientation, 391
Access, Microsoft

altering table structure, 90–92
data-definition queries, 98–100
Datasheet view, building database tables

in, 83–84
deleting tables, 94–95
Design view, building database tables in,

84–86
Design view, setting field properties in,

86–90
indexes, creating, 92–94
security, 100–101
SQL in, 95–97, 342, 343–345

access privileges. See privileges
accessing data. See also WHERE clauses
FROM clause, 213
GROUP BY clause, 232–234
HAVING clause, 234

limited FETCH capability, 236–238
logical connectives, 230–232
modifying clauses, 211–213
ORDER BY clause, 235–236
overview, 211
windows, 238–242

ACID databases, 326
ActiveX controls, Microsoft, 355
ad hoc queries, from keyboard, 22
aggregate functions, 181–184, 274. See also

set functions
aliases, 252, 427
ALL predicate, 221–224
ALL quantifier, nested queries, 275–276
ALTER statement, 62, 63
ALTER TABLE statement, 53, 102, 123,

124, 419
altering table structure, 90–92, 102
AND logical connectives, 69, 230–231, 437
ANY predicate, 221–224
ANY quantifier, nested queries, 275–276
API (application programming interface), 352
applets, Java, 356–357
application, ODBC interface, 351
application development environments, 433
application programming interface

(API), 352
applications, 318, 423–424
applications, SQL in

* wildcard, 334
embedded SQL, 336–339
Microsoft Access, 343–345
module language, 339–342
overview, 333–334
procedural languages and SQL, 335–336
RAD tools, 342–343
strengths and weaknesses of SQL,

 334–335

444 SQL For Dummies, 8th Edition

application-time period tables
overview, 159–162
primary keys, designating in, 162–163
querying, 164–165
referential constraints, applying to,

163–164
approximate numeric data types, 29–30
architecture, system, 433
ARRAY data type, 39–40, 378
ARRAY_MAX_CARDINALITY function, 40,

193–194
arrays, 193
ASENSITIVE keyword, 388
assertions, 126, 128–129
assignment, in SQL/PSM, 400
asterisk (*), 140, 245, 334
AT LOCAL keywords, 66
ATOMIC keyword, 395, 399
atomic transactions, 326
atomic values, 172
atomicity, compound statements, 394–395
attributes

domains, 17
functional dependency, 132–133
modified, creating views with, 144–145
overview, 7, 13
transitive dependency, 134
UDTs, 41

auditable records of database entries.
See system-versioned tables

AUTHORIZATION clause, 341
authorization identifier, 341
automatic data entry, 148
AutoNumber data type, Microsoft Access, 85
AVG function, 70–71, 183, 232

• B •
backing up data, 314, 325, 438
bad input data, 124
base tables, 141
basic joins, 249–250
BEFORE triggers, 428
BEGIN keyword, 394
beta testing, 434

BETWEEN predicate, 215–217
BIGINT data type, 27
BINARY data type, 33
BINARY LARGE OBJECT (BLOB) data

type, 33
BINARY strings, 32–33
BINARY VARYING data type, 33
bitemporal tables, 169–170
BLOB (BINARY LARGE OBJECT) data

type, 33
BLOB locators, 33
BOOLEAN data type, 33
Boolean value expression, 67
buckets, partitioning windows into, 239
bugs, fixing, 434
building database structure. See also rapid

application development tools
altering table structure, 102
creating tables, 97–101
deleting indexes, 103
deleting tables, 102
indexes, creating, 101
overview, 81
portability considerations, 103
using SQL with Microsoft Access, 95–97

bytes, 192–193

• C •
C language, 337–338
CALL statements, 406
CARDINALITY function, 40, 193
cardinality of arrays, 40
Cartesian product, 213, 250, 253
CASCADE keyword, 310
cascading deletions, 121–122, 284
CASE expressions
COALESCE, 204–205
general discussion, 197–198
NULLIF, 202–204
with search conditions, 198–200
with values, 200–202

CASE statement, 198
CASE…END CASE statements, 401–402
CAST expressions, 205–207, 336, 339

445445 Index

CATALOG_NAME field, 419
catalogs, 52, 61–62
CEIL function, 195
CEILING function, 195
chain of dependency, 310
CHAR value, 172
CHARACTER data type, 31
CHARACTER LARGE OBJECT (CLOB) data

type, 31–32, 361
character sets

access privileges, assigning, 74
collation, 386
CONVERT value function, 189
mapping, 362–363
multitable relational databases, 111–112
TRANSLATE value function, 189

character strings, 30–32
CHARACTER VARYING data type, 31
CHARACTER_LENGTH function, 192
characters, language, 32
CHECK constraint, 127
CLASS_ORIGIN field, diagnostics detail

area, 417
client extensions, 354–355
clients, 48–49
client/server systems

ODBC in, 352
SQL in, 47–49

CLOB (CHARACTER LARGE OBJECT) data
type, 31–32, 361

CLOB locator, 32
cloud, 8, 354
clusters, 52, 62
COALESCE expressions

general discussion, 204–205
union joins, using with, 260, 263–265

COLLATE BY clause, 386
collation, 386
collation sequences, 63, 74, 111–112
collection data types, 39–40, 44
collection value expressions, 67
column constraints, 126–127
column references, 176–177
COLUMN_NAME field, 419
column-name joins, 254–255

columns
adding data to, 148
adding to existing tables, 123
DBMS processing of, 12–13
deleting from existing tables, 124
identifying, in multitable relational

databases, 106–107
transferring between tables, 149–150

comma-delimited values, 146
COMMAND_FUNCTION field, diagnostics

header area, 415
COMMAND_FUNCTION_CODE field,

diagnostics header area, 415
comments, XML, 369
COMMIT statement, 72, 318, 324
comparison operators

correlated subqueries introduced with,
279–281

using with subqueries, 272–274
comparison predicates, 68, 214, 215
complete logical view, 17
complexity of databases, 7–8
composite keys, 113, 133
compound statements

assignment, 400
atomicity, 394–395
conditions, 396–400
cursors, declaring within, 396
exception handlers, 420–421
overview, 393–394
variables, 395–396

concatenation, 65–66, 368
concatenation operator (||), 65–66, 178
conceptual view, 17
concurrent access, 315–317
condition handlers, 398–399
condition joins, 254
CONDITION_NUMBER field, 417, 420
conditional value expressions, 180
conditions, in compound statements,

396–400
CONNECTION_NAME field, 419
connectives, 207
consistency, 326, 423
constants, 172

446 SQL For Dummies, 8th Edition

constraints
adding to existing tables, 419
general discussion, 17–18, 46–47
overview, 16
primary key, in application-time period

tables, 162
specifying, 63
within transactions, 327–331
types of, 126–129
violation information, 418–419

constructor function, for structured
UDTs, 43

containment hierarchy, 52
CONTENT predicate, 372
contention, 315
CONTINUE effect, 399
CONVERT value function, 189
copying from foreign data files, 149
correlated subqueries, 277–281, 282–283
correlation names, 252, 427
CORRESPONDING keyword, 245–246, 247
COUNT function, 69, 182–183
CREATE ASSERTION statement, 63
CREATE CHARACTER SET statement, 63
CREATE COLLATION statement, 63
CREATE DOMAIN statement, 63, 305, 306
CREATE SCHEMA statement, 63
CREATE statements, 53, 62, 63, 166
CREATE TABLE statement, 53, 54, 63, 98
CREATE TRANSLATION statement, 63
CREATE TRIGGER statement, 424
CREATE TYPE statement, 308
CREATE VIEW statements, 59–60, 63
CROSS JOIN, 253
cross product, 253
current sessions, 176
CURRENT_DATE function, 196
CURRENT_TIME function, 196
CURRENT_TIMESTAMP function, 196
CURRENT_USER special variable, 176
CURSOR_NAME field, 419
cursors

closing, 392
compound statements, declaring

within, 396
declaring, 341, 384–388

fetching data from single rows, 390–392
opening, 388–390
overview, 383–384

• D •
damage to databases, avoiding, 71–72
Data Control Language (DCL)

access privileges, assigning to users,
73–75

delegating responsibility for security,
77–78

overview, 51, 71, 298
referential integrity, 75–77
transactions, 71–72

data corruption, vulnerability to, 317–318
Data Definition Language (DDL)

catalogs, 61–62
collecting tables into schemas, 61
creating tables, 109
multitable views, 56–60
overview, 51, 52, 298
planning databases, 52–53
single-table views, 55–56
statements, 62–64
tables, creating, 53–55

data dictionary, 7
data integrity

columns, adding to existing tables, 123
columns, deleting from existing

tables, 124
constraints, 126–129, 147
domain integrity, 119–120
entity integrity, 118–119
Internet, performing database

manipulations over, 49–50
overview, 118
potential threats, 124–126
referential integrity, 120–123

data loss, 6
Data Manipulation Language (DML)

logical connectives, 69
in Microsoft Access, 343
overview, 51, 64, 298
predicates, 68
set functions, 69–71

447447 Index

subqueries, 71
value expressions, 64–68

data redundancy, 125
data source, ODBC interface, 351
data storage, 6
data types

approximate numerics, 29–30
BINARY strings, 32–33
BOOLEAN, 33
character strings, 30–32
collection, 39–40
converting with CAST expressions,

205–207, 339
datetimes, 33–35
exact numerics, 27–28
intervals, 35
mapping, 364, 375–379
overview, 26
procedural languages versus SQL, 336
REF, 41
ROW, 38–39
table of, 45
UDTs, 41–44
user privileges, 298
XML, 35–38, 360–362
XMLCAST function, 371

database administrator (DBA), 298–299
database management system (DBMS)

exceeding capacity of, 126
general discussion, 8–9
index maintenance, 117
object-relational model, 18–19
preferred, using on projects, 433

database manipulation
adding data, 146–151
creating views, 141–145
deleting obsolete data, 156
overview, 139
retrieving data, 139–141
transferring data, 154–156
updating existing data, 151–154
updating views, 145

database models
constraints, 16, 17–18
domains, 16, 17
object model, 18
object-relational model, 18–19

relational model, 11–13
schemas, 16, 17
views, 14–16

database object owners, 298–299
database objects, 299, 324
database structure, verifying, 435
database-management functions, 298
data-definition queries, Microsoft Access,

98–100
Datasheet view, Microsoft Access, building

tables in, 83–84
DATE data type, 34
DATE value, 172
datetime data type, 33–35
datetime value expressions, 66–67, 179–180
datetime value functions, 196
date-time values, fixing, 389
day-time intervals, 35, 66, 180
DBA (database administrator), 298–299
DBMS. See database management system
DCL. See Data Control Language
DDL. See Data Definition Language
DECIMAL data type, 28
declaration segments for host variables, 339
declarations in modules, 340
DECLARE CURSOR statement, 384, 386,

387–388
default SQL transactions, 319–320
default values, 208
DEFERRABLE constraint, 327
DELETE statements

bitemporal tables, 170
nested queries, 282–284
obsolete data, deleting, 156
pipelined DML, 284
restricting, 73
system-versioned tables, 166, 167
trigger events, 424, 426
user access, 298
using with cursors, 391–392

deleting data
in application-time period tables, 161
indexes, 103
obsolete data, 156, 304
rows, in cursor operations, 387, 391–392
tables, 94–95, 102

448 SQL For Dummies, 8th Edition

deletion anomaly, 130
deletions, cascading, 121–122
delimited identifiers, 363
delta tables, 284
departmental databases, 8
design of databases, 20, 105–106
design reviews, 434
Design view, Microsoft Access

database tables, building in, 84–86
field properties, setting in, 86–90

detail area, diagnostics, 414, 416–418
diagnostics areas

constraint violation information, 418–419
constraints, adding to existing tables, 419
details area, 416–418
header area, 414–416
information returned by SQLSTATE,

interpreting, 419–420
overview, 414

DIAGNOSTICS SIZE clause, 414
dirty read, 320
DISTINCT keyword, 272
DISTINCT predicate, 225
DK/NF (domain-key normal form), 134–135
DLL (dynamic link library), 351
DML. See Data Manipulation Language
DOCUMENT component of VALID

predicate, 373
DOCUMENT predicate, 371–372
documenting progress, 434
domain-key normal form (DK/NF), 134–135
domains

access privileges, assigning to users, 74
creating, 63
general discussion, 17, 305–306
integrity, 119–120
mapping to XML, 375–376
multitable relational databases, 111–112
overview, 16

dormant sessions, 176
DOUBLE PRECISION data type, 29–30
driver DLL, ODBC interface, 351
driver manager, ODBC interface, 351
drivers, ODBC, 350, 352
DROP domains, 306

DROP statement, 53, 62, 64
DROP TABLE command, 102
duplicate hardware, 314
durability, 326
dynamic link library (DLL), 351
DYNAMIC_FUNCTION_CODE field, 415

• E •
embedded SQL, 175, 336–339
END keyword, 394
enterprise databases, 8
entity integrity, 118–119
ENVIRONMENT_NAME field, 419
equal operator (=), 274
EQUALS predicates, 164
equi-joins, 251–253
equipment failure, 314–315
equiwidth partitioning, 195
error handling

adding to applications, 438
conditions causing errors, 200
diagnostics areas, 414–420
handling exceptions, 420–421
overview, 411
SQLSTATE status parameter, 411–413
WHENEVER clause, 413–414

escape characters, 186, 193
exact numeric data types, 27–28
EXCEPT operator, 248
exception avoidance, 200
exception handlers, 420–421
EXEC SQL directive, 339
EXECUTE keyword, 298
EXECUTE privilege, 408–409
execution contexts, trigger, 426
existence tests, nested queries, 277–278
EXISTS predicate, 224–225, 277–278
EXIT effect, 399
EXP function, 194
expressions, defined, 171
eXtensible Markup Language. See XML
EXTRACT function, 192

449449 Index

• F •
failure of equipment, 314–315
feasibility of projects, 432
feedback on projects, listening to, 432
FETCH statement, 236–238, 390–391
Field Properties pane, Microsoft Access,

85, 86
fields, defined, 172
files, copying from foreign data, 149
first normal form (1NF), 132
FIRST orientation, 391
FIRST_VALUE function, 241
flat files, 9–11
FLOAT data type, 30
FLOAT value, 172
floating-point number, 29
FLOOR function, 195
flow of control statement
CASE…END CASE statements, 401–402
FOR…DO…END FOR statements, 405
IF…THEN…ELSE…END IF statements, 401
ITERATE statement, 405–406
LEAVE statement, 403
LOOP…ENDLOOP statements, 402–403
overview, 400
REPEAT…UNTIL…END REPEAT

statements, 404
WHILE…DO…END WHILE statements, 404

FOR EACH clause, 425
FOR…DO…END FOR statements, 405
foreign data files, copying from, 149
foreign keys, 73–74, 114, 121
forests of XML values, producing, 368
format-conversion utility, 149
form-based data entry, 146–148
FORTRAN, 207
fourth-generation languages (4GLs), 81
FROM clause, 212
FULL keyword, 229–230
full outer joins, 259
function calls, 285, 350, 407–408
functional dependency, 132–133

functions. See also specific functions by
name

defined, 171
overview, 181
recursion, 285
set, 181–184
stored, 407–408
for XML data, 367–371

• G •
GENERATED ALWAYS keyword, 166
GRANT DELETE statement, 74
GRANT INSERT statement, 74
GRANT OPTION FOR clause, 310–311
GRANT REFERENCES statement, 74
GRANT SELECT statement, 74
GRANT statement, 73, 300–301, 311–312
GRANT UPDATE statement, 74
granting privileges to users. See privileges
GROUP BY clause

general discussion, 232–234
HAVING clause, subqueries with, 281
overview, 212
restrictions, 437
summarizing data with, 436–437

• H •
handlers, condition, 398–399
handling exceptions, 420–421
hardware failures, 314–315
HAVING clause, 212, 234, 281
header area, diagnostics, 414–416
hierarchies, 307
historical rows, 165, 166–167
holdability, cursor, 385
host languages, using CAST expressions

with, 206–207
host variables, 175, 205–207, 339, 411
HTML code for database access, 354–355

450 SQL For Dummies, 8th Edition

• I •
icons, used in book, 2
identifiers, mapping, 363
identity-constraint-option

component of VALID predicate, 373
IDEs (integrated development

environments), 81
IF…THEN…ELSE…END IF statements, 401
IGNORE NULLS keywords, 240
IMMEDIATELY PRECEDES predicates, 165
IMMEDIATELY SUCCEEDS predicates, 165
impedance mismatch, eliminating, 41
implementations, 23
IN predicate, 217–218, 270–271, 277–278
Indexed property, Microsoft Access, 88
indexed sequential access method

(ISAM), 351
indexes

benefits of, 116–117
creating, 92–94, 101
deleting, 103
general discussion, 114–116
maintaining, 117

information schema, 62
inner joins, 255–256
input arguments, default, 407
INSENSITIVE keyword, 387–388
INSERT statements

copying data between tables, 150–151
nested queries, 282–284
pipelined DML, 284
privileges, 298, 302
restricting, 73
row value expressions, using with, 208
rows, adding data by, 147–148
trigger events, 424, 426

insertion anomaly, 130
instability, platform, 314
INTEGER data type, 27
integrated databases, 7
integrated development environments

(IDEs), 81
interactive SQL, 333
interface, ODBC, 350

Internet, SQL over, 49–50
Internet-based database systems, 352–353
INTERSECT operator, 246–248
interval data type, 35
interval overlap, determining, 226
interval value expressions, 66–67, 180
interval value functions, 196
intranets, 49–50, 355
ISAM (indexed sequential access

method), 351
ISO/IEC SQL standard, 19
isolation, 326
isolation levels, 320–322, 323
ITERATE statement, 405–406

• J •
Java applets, 356–357
JDBC (Java DataBase Connectivity),

355–357
join operators

basic joins, 249–250
Cartesian product, 213
ON clauses, 266
column-name joins, 254–255
condition joins, 254
CROSS JOIN, 253
double-checking queries including, 436
equi-joins, 251–253
inner joins, 255–256
natural joins, 253–254
outer joins, 256–259
overview, 249
union joins, 259–265
in views, 56
WHERE clauses, 266

• K •
keys, 112–114

• L •
LAG function, 239–240
language characters, 32

451451 Index

LANGUAGE clause, 341
LAST orientation, 391
LAST_VALUE function, 241
last-in-first-out (LIFO) stack, 414
LEAD function, 240
leaf subtypes of structured UDTs, 43
leaf types, 307
LEAVE statement, 403
left outer joins, 256–258
LIFO (last-in-first-out) stack, 414
LIKE predicate, 218–220
literal values, 172–174
LN function, 194
locking database objects, 324
logging functions, 423
logical connectives, 230–232
logical schemas, 61
login, 299
LOOP…ENDLOOP statements, 402–403
LOWER value function, 189
lowercase characters, converting

character strings to, 189

• M •
major entities, 106
malicious corruption, 125
managers, listening to opinions of, 432
mantissa, 29–30
mapping

character sets, 362–363
data types, 364
identifiers, 363
non-predefined data types to XML,

375–379
tables, 364–365

MATCH predicate, 226–230
materials processing, 293
MAX function, 70, 183
maximal supertypes of structured UDTs, 43
mechanical failure, 124
MERGE statements, 154–156, 284
MESSAGE_LENGTH field, 420
MESSAGE_OCTET_LENGTH field, 420
MESSAGE_TEXT field, 419–420

metadata, 7, 359
methods, UDTs, 41
Microsoft Access. See Access, Microsoft
Microsoft ActiveX controls, 355
MIN function, 70, 183
MOD function, 194
modification anomalies, 129–130, 283–284
modified attributes, creating views with,

144–145
modifying clauses. See also WHERE clauses
FROM clause, 213
general discussion, 211–213
GROUP BY clause, 232–234
HAVING clause, 234
ORDER BY clause, 235–236

modifying table data, granting user access
to, 303

module language, 339–342
modules, 339
modules, stored, 409–410
modulus, 194
MORE field, diagnostics header area, 415
MULTISET data type, 40
multisets, 193, 379
multitable relational databases. See also

data integrity; normalization
character sets, 111–112
collations, 111–112
defining objects, 106
designing, 105–106
domains, 111–112
indexes, 114–117
keys, 112–114
overview, 105
tables, defining, 107–111
tables and columns, identifying, 106–107
translations, 111–112

multitable views, creating, 56–60
mutator function, for structured UDTs, 43

• N •
named arguments, 406–407
named constraints, 127
NAMES ARE clause, 341

452 SQL For Dummies, 8th Edition

NATIONAL CHARACTER data type, 32
NATIONAL CHARACTER LARGE OBJECT

data type, 32
NATIONAL CHARACTER VARYING data

type, 32
native drivers, 352
natural joins, 253–254
nested queries
ALL quantifier, 275–276
ANY quantifier, 275–276
correlated subqueries, 278–281
DELETE statements, 282–284
existence tests, 277–278
INSERT statements, 282–284
overview, 71, 267–268
pipelined DML, 284
returning sets of rows with, 269–272
returning single values with, 272–275
SOME quantifier, 275–276
UPDATE statements, 282–284

nesting window functions, 241–242
NEW TABLE keywords, 284
NEXT orientation, 391
non-predefined data types, mapping to

XML, 375–379
nonrepeatable read, 321
normal forms, 38
normalization

abnormal form, 135–136
DK/NF, 134–135
first normal form, 132
modification anomalies, 129–131
normal forms, 131–132
overview, 54, 129, 267
reducing complexity of relationships, 270
second normal form, 132–134
third normal form, 134

NoSQL databases, 11
NOT DEFERRABLE constraint, 327
NOT EXISTS predicate, 277, 278
NOT IN keywords, 271–272
NOT IN predicate, 217–218
NOT LIKE predicate, 218–220
NOT logical connectives, 69, 232, 437
NOT NULL constraints, 163, 327
NTH_VALUE function, 240–241

NTILE window function, partitioning into
buckets with, 239

NULL predicate, 220–221
null values

changing values to, with CASE
expressions, 202–204

finding rows with, 220–221
general discussion, 46
MATCH predicate, 229–230
reasons to use, 182
in XML, handling, 365

NULLIF expressions, 202–204
NUMBER field, diagnostics header area, 415
NUMERIC data type, 27–28
numeric literals, 65
numeric value expressions, 65, 179
numeric value functions, 190–196

• O •
object model, 5, 18
object-oriented programming languages, 18
object-oriented rapid application

development (RAD) tools, 334, 342–343
object-relational databases, 5, 18–19
objects, defining, 106
observer function, for structured UDTs, 43
obsolete data, deleting, 156
OCCURRENCES_REGEX function, 191
OCTET_LENGTH function, 192–193
ODBC (Open DataBase Connectivity)

client extensions, 354–355
in client/server environment, 352
components of, 351
and Internet, 352–353
intranets, 355
ODBC interface, 350
overview, 349–350
server extensions, 353

ODBC interface, 350
OFFSET keyword, 237
OLAP (online application processing), 195
ON clauses, 266
one-to-many relationships, 58, 110
online application processing (OLAP), 195

453453 Index

Open DataBase Connectivity. See ODBC
OPEN statement, 388–390
opening cursors, 388–390
operator error, 124
OR logical connectives, 69, 230–231, 437
ORDER BY clause

general discussion, 235–236
overview, 212–213
using with cursors, 385–386

orientation of cursors, 391
OUTER JOIN operation, 205
outer joins, 256–259
OVERLAPS predicate, 226
OVERLAY value function, 188

• P •
parameters, 175
parent-child relationship, 120–121
parentheses, using with AND, OR, and

NOT, 437
parses of strings, 370
PARTIAL keyword, 229–230
partial matches, comparing, 218–220
partitioning windows into buckets, 239
Pascal, 207
passwords, 299
percent sign (%) wildcard, 218–220
period definitions, 158–159
Persistent Stored Modules. See SQL/PSM
personal databases, 7
phantom read, 321–322
physical schemas, 61
pipelined DML, 284
planning databases, 52–53
platform instability, 314
portability considerations, 103
POSITION function, 190–191
POSITION_REGEX function, 191–192
POWER function, 195
PRECEDES predicates, 164
precision of numbers, 27
predicates. See also specific predicates

by name
defined, 32
general discussion, 68

querying application-time period
tables, 164

for XML, 371–373
preprocessor, 337, 338
previous sessions, 176
PRIMARY KEY constraint, 127
primary keys

in application-time period tables,
designating, 162–163

changes to, 122
descriptive field names for, 86
general discussion, 112–114
in indexes, 93
overview, 53
in system-versioned tables, designating, 167

PRIOR orientation, 391
privilege hierarchy, 300
privileges

across levels, granting, 307–309
assigning to users, 73–75, 77–78
database object owners, 298–299
DBA, 298–299
of delegating access, 309
deleting obsolete rows, 304
inserting data, 302
maintaining when mapping tables to

XML, 364
modifying table data, 303
referencing related tables, 304–305
retrieval of data, 437
revoking, 310–311
SQL/PSM, 408–409
TRIGGER, 306–307
to use domains, 306
using GRANT and REVOKE together,

311–312
viewing data, 302–303

procedural languages
combining SQL and, 335–336
overview, 21, 22, 333–334
strengths and weaknesses of, 335

procedures, 339
procedures, stored, 406–407
professional design reviews, 434
programs, incorporating SQL code into, 23
proper subtypes of structured UDTs, 43

454 SQL For Dummies, 8th Edition

proprietary APIs, 352
proprietary tools, 141
protecting data. See also SQL transactions

concurrent access, 315–317
constraints, 327–331
equipment failure, 314–315
overview, 313
platform instability, 314

public access level, 300

• Q •
QBE (Query By Example) grid, 95
qualifying rows, 199
quantified comparison operator, 272
queries. See also nested queries; recursive

queries
application-time period tables, 164–165
bitemporal tables, 170
including joins, double-checking, 436
from keyboard, 22
overview, 22
sort order for output, 235
with subselects, double-checking, 436
system-versioned tables, 168–169
on test databases, 436
in XML documents, 361

Query By Example (QBE) grid, 95
query expressions, 385

• R •
RAD tools. See rapid application

development tools
range check, 124
rapid application development (RAD) tools

altering table structure, 90–92
Datasheet view, building database tables

in, 83–84
deleting tables, 94–95
Design view, building database tables in,

84–86
Design view, setting field properties in,

86–90
indexes, creating, 92–94

overview, 82
tracking information, 82–83
using SQL with, 95–97, 342–343

READ COMMITTED isolation level, 321, 322
READ UNCOMMITTED isolation level,

320–321, 322
READ-WRITE mode, 320
REAL data type, 29
REAL value, 172
records, 7, 13
recursion, 285–288
recursive queries

general discussion, 288
overview, 285
recursion, 285–288
saving time with, 289–293
uses for, 293–294

redundancy, 125, 314
REF data types, 41
REF IS clause, 309
reference value expressions, 68
REFERENCES privilege, 74, 77, 298
REFERENCING old_or_new_value_

alias_list phrase, 427–428
referencing related tables, granting access

for, 304–305
referential integrity, 75–77, 120–123
referential integrity constraints, 102,

163–164, 168
referential integrity rules, and MATCH

predicate, 228–230
register sizes, 29
relational databases

complexity of, 7–8
components of, 12
constraints, 16, 17–18
data storage, 6
database, defined, 7
DBMS, 8–9
design of, 20
domains, 16, 17
flat files, 9–11
versus object model, 18
object-relational model, 18–19
overview, 5
relational model, 11–12

455455 Index

relations, 12–13
schemas, 16, 17
sizes of, 7–8
views, 14–16

relational model, 5, 11–13
relational operators. See also join

operators
EXCEPT, 248
INTERSECT, 246–248
overview, 243
UNION, 243–246

relational values, translating into XML
elements, 367

relations, 12–13
RELATIVE orientation, 391
Remember icon, 2
REPEAT…UNTIL…END REPEAT

statements, 404
REPEATABLE READ isolation level, 321–322
repeating groups, 39
reserved words, 26, 439–442
RESIGNAL statement, 399, 400, 421
RESTRICT keyword, 310–311
retrieving data

backing up data, 438
error handling in applications, 438
general discussion, 139–141
GROUP BY clause, restrictions on, 437
overview, 435
parentheses, using with AND, OR, and

NOT, 437
privileges, controlling, 437
queries including joins, double-

checking, 436
queries on test databases, 436
queries with subselects, double-

checking, 436
summarize data with GROUP BY, 436–437
verifying database structure, 435

returnability, cursor, 385
REVOKE DELETE statement, 74
REVOKE INSERT statement, 74
REVOKE REFERENCES statement, 74
REVOKE SELECT statement, 74
REVOKE statement, 73, 310–312
REVOKE UPDATE statement, 74

revoking privileges, 310–311
right outer joins, 258–259
roles, 301–302
ROLLBACK function, 317
ROLLBACK statement, 72, 318, 324
routines, stored, 407
ROW data type, 38–39, 377
row triggers, 425
row value expressions, 67, 207–209
row values, 172
ROW_COUNT field, diagnostics header

area, 415
rows. See also cursors

blocks of, adding to tables, 148–151
data, adding to, 146–148
DBMS processing of, 12–13
deleting, 156
groups of, evaluating in windows, 242
inserting in database tables, 91
sets of, returning with nested queries,

269–272
transferring between tables, 149–150

• S •
sandbox, 356
SAVEPOINT statement, 325, 326–327
savepoints, 325, 326–327
scalable database management systems, 8
scalar value, 172
scale of numbers, 28
SCHEMA clause, 341
SCHEMA_NAME field, 419
schemas, 16, 17, 52, 61–63
schemas, XML, 359, 366
scripts, 355
SCROLL keyword, 388
scrollability, cursor, 384, 388, 391
search conditions, CASE expressions with,

198–200
second normal form (2NF), 132–134
security. See also privileges

DCL statements, 298
delegating responsibility for, 77–78
domains, 305–306
Microsoft Access, 100–101

456 SQL For Dummies, 8th Edition

overview, 297
performing database manipulations over

Internet, 49–50
referential integrity, 75–77
roles, 301–302
user access levels, 298–300
views, creating, 145

SELECT statements
pipelined DML, 284
as query expressions, 385
restricting, 73
retrieving data with, 140
transferring data between tables, 150
user access, 298

selection conditions, creating views with,
143–144

sensitivity, cursor, 384, 387–388
SEQUEL (Structured English QUEry

Language), 23
SERIALIZABLE isolation level, 320, 322, 323
serializing concurrent transactions, 317
server extensions, 353
servers, 47–48
SESSION_USER special variable, 176
sessions, 176
SET CONSTRAINTS DEFERRED statement,

329–330
set functions
AVG, 183
COUNT, 182–183
general discussion, 69–71
GROUP BY clause, combining with, 232
MAX, 183
MIN, 183
overview, 181–183
SUM, 184

SET TRANSACTION statement, 319, 323, 414
SIMILAR predicate, 220
SIMPLE keyword, 229–230
single-table views, 55–56
SMALLINT data type, 27
social engineering, 76
software, stability of, 314
SOME predicate, 221–224
SOME quantifier, nested queries, 275–276
sort order for output, 235, 386

source types, 42
special variables, 176
SQL

in client/server systems, 47–49
general discussion, 21–23
history of, 23–24
on Internet, 49–50
on intranets, 49–50
overview, 21
reserved words, 26, 439–442
statements, 24–25

SQL transactions
ACID databases, 326
backing up data, 325
COMMIT statement, 324
constraints in, 327–331
default, 319–320
isolation levels, 320–322
locking database objects, 324
ROLLBACK statement, 324
savepoints, 325, 326–327
SET TRANSACTION statement, 323
subtransactions, 325, 326–327
transaction-starting statements, 322–323

SQL View, Microsoft Access, 96–97, 344
SQL View Object tab, Microsoft Access,

96–97, 98
SQL:2008 reserved words, 439–442
SQL:2011, 24. See also temporal data
SQL/PSM (Persistent Stored Modules).

See also compound statements
flow of control statement, 400–406
overview, 393
privileges, 408–409
stored functions, 407–408
stored modules, 409–410
stored procedures, 406–407

SQLSTATE status parameter
general discussion, 396–398, 411–413
interpreting information returned by,

419–420
SQRT function, 195
statement triggers, 425
statements

DDL, 62–64
SQL, 24–25

457457 Index

status parameter. See SQLSTATE status
parameter

stored functions, 407–408
stored modules, 409–410
stored procedures, 406–407
stored routines, 407
string concatenation, 65–66
string value expressions
CONVERT, 189
general discussion, 65–66, 178
LOWER, 189
OVERLAY, 188
overview, 184
SUBSTRING, 185–186
SUBSTRING SIMILAR, 186
SUBSTRING_REGEX, 186–187
TRANSLATE, 189
TRANSLATE_REGEX, 187–188
TRIM, 189
UPPER, 188

structure of database, 9, 435
Structured English QUEry Language

(SEQUEL), 23
structured user-defined types, 43–44,

307–308
style sheets, 359
SUBCLASS_ORIGIN field, diagnostics detail

area, 417
sublanguage, 22
subqueries
ALL quantifier, 275–276
ANY quantifier, 275–276
correlated subqueries, 278–281
DELETE statements, 282–284
existence tests, 277–278
EXISTS predicate, using with, 224–225
INSERT statements, 282–284
overview, 71, 267–268
pipelined DML, 284
returning sets of rows with, 269–272
returning single values with, 272–275
SOME quantifier, 275–276
UNIQUE predicate, using with, 225
UPDATE statements, 282–284

subselects, 150, 153, 436
SUBSTRING SIMILAR value function, 186

SUBSTRING value function, 185–186
SUBSTRING_REGEX value function, 186–187
substrings, 185, 188
subtransactions, 325, 326–327
subtypes of structured UDTs, 43
SUCCEEDS predicates, 165
SUM function, 70, 184
summarizing data with GROUP BY, 436–437
super user, 299
syntax of SQL, 23
system administrator, 299
system architecture, 433
SYSTEM_TIME AS OF syntax, 168
SYSTEM_TIME keyword, 159
SYSTEM_USER special variable, 176
system-versioned tables, 166–169

• T •
table constraints, 126, 127–128
TABLE_NAME field, 419
tables. See also application-time period

tables; views
access privileges, assigning, 74
altering, 63, 102
bitemporal, 169–170
blocks of rows, adding to, 148–151
changing data in, 12
collecting into schemas, 61
columns, adding to existing, 123
columns, deleting from existing, 124
constraints, adding to existing, 419
creating, 53–55, 63, 97–101
defining, in multitable relational

databases, 107–111
deleting, 94–95, 102
deleting rows in, granting privileges

for, 304
firing multiple triggers, 428
identifying, in multitable relational

databases, 106–107
mapping to XML documents, 364–365
removing, 64
system-versioned, 165–169
transferring data between, 149–150

458 SQL For Dummies, 8th Edition

tables (continued)
typed, 307–308
updating existing data, 151–154
views, 14–16, 142–143
XML data, transforming into, 373–374

Technical Stuff icon, 2
temporal data. See also application-time

period tables
bitemporal tables, 169–170
overview, 157
periods, 158–159
system-versioned tables, 165–169
times, 158–159

termination condition, 287
test databases, queries on, 436
third normal form (3NF), 53
third-generation languages, 81
TIME WITH TIME ZONE data type, 35
TIME WITHOUT TIME ZONE data type, 34
time zones, 179–180
times, 158–159, 179–180, 226
TIMESTAMP value, 172
TIMESTAMP WITH TIME ZONE data

type, 35
TIMESTAMP WITHOUT TIME ZONE data

type, 34
timestamps, 168–169
Tip icon, 2
transaction processing, 315
transaction time, 158
TRANSACTION_ACTIVE field, 416
transactions, 71–72
TRANSACTIONS_COMMITTED field, 416
TRANSACTIONS_ROLLED_BACK field, 416
transaction-starting statements, 322–323
transferring data, 149–150, 154–156
transitive dependency, 134
TRANSLATE value function, 189
TRANSLATE_REGEX value function,

187–188
translation tables, 63, 74
translations, 111–112
trigger execution contexts, 426
TRIGGER keyword, 298
TRIGGER privileges, granting, 306–307
triggered SQL statements, 425

triggers
applications of, 423–424
creating, 424–426
firing multiple, on single tables, 428
overview, 423
referencing old and new values, 427–428
in system-versioned tables, 167
trigger execution contexts, 426

TRIM value function, 189
TRIM_ARRAY function, 40, 194
two-dimensional arrays, 12
typed tables, 307–308

• U •
UDTs (user-defined types), 41–44, 67, 376
UNDER keyword, 298
underscore (_) wildcard, 218–220
UNDO effect, 399
Unicode, 363
UNION ALL operation, 245
UNION CORRESPONDING operation,

245–246
union joins, 259–265
UNION operator, 150, 243–246
union-compatible tables, 243–245
UNIQUE keyword, 229–230
UNIQUE predicate, 225
updatability clause of DECLARE CURSOR

statement, 387
update anomalies, 120–123
UPDATE statements

bitemporal tables, 170
CASE expressions, using with, 199–200
general discussion, 151–154
nested queries, 282–284
pipelined DML, 284
restricting, 73
system-versioned tables, 166, 167
trigger events, 424, 426
user access, 298
using with cursors, 391–392

updating
application-time period tables, 160–161
database tables, 90–91
existing data, 151–154

459459 Index

rows in cursor operations, 391–392
system-versioned tables, 165
table rows accessed with cursors, 387
values, based on conditions, 199–200
views, 145

UPPER value function, 188
uppercase characters, converting

character strings to, 188
USAGE keyword, 298
user access levels, 298–300
user access privileges. See privileges
user interface, 335
user names, 301–302
user-defined types (UDTs), 41–44, 67, 376

• V •
VALID predicate, 372–373
valid time, 158
validation checks, 355
value expressions. See also CASE

expressions
CAST, 205–207
conditional, 180
datetime, 179–180
general discussion, 64–68
interval, 180
numeric, 179
overview, 177–178
row, 207–209
string, 178

value functions. See also string value
expressions

datetime, 196
interval, 196
numeric, 190–196
overview, 184

values. See also functions; value functions
CASE expressions with, 200–202
COALESCE expressions, 204–205
column references, 176–177
literal, 172–174
overview, 171
row, 172
special variables, 176
types of, 171–172

updating based on conditions, 199–200
value expressions, 177–180
variables, 174–175

VARBINARY data type, 33
variables, 172, 174–175, 395–396
verifying database structure, 435
viewing data, granting user access to,

302–303
views

creating, 141–145
general discussion, 14–16
multitable, 56–60
overview, 55
single-table, 55–56
updating, 145

virtual tables, 14–16, 141

• W •
Warning icon, 2
web-based database systems, 352–354
WHEN clause, 425
WHENEVER clause, 413–414
WHERE clauses. See also nested queries
ALL predicate, 221–224
ANY predicate, 221–224
comparison predicates, 215
DISTINCT predicate, 225
equi-joins, 251–253
EXISTS predicate, 224–225
general discussion, 213–215
join operators, 266
LIKE predicate, 218–220
MATCH predicate, 226–228
NOT IN predicate, 217–218
NOT LIKE predicate, 218–220
NULL predicate, 220–221
OVERLAPS predicate, 226
overview, 140, 212
BETWEEN predicate, 215–217
IN predicate, 217–218
recursive queries, 292
referential integrity rules and MATCH

predicate, 228–230
SIMILAR predicate, 220
SOME predicate, 221–224

460 SQL For Dummies, 8th Edition

WHERE clauses (continued)
UNIQUE predicate, 225
with UPDATE statements, 153

WHILE…DO…END WHILE statements, 404
WIDTH_BUCKET function, 195–196
windows, 238–242
WITH GRANT OPTION clause, 77–78, 309
WITH IDENTITY CONSTRAINTS GLOBAL

component of VALID predicate, 373
WITH IDENTITY CONSTRAINTS LOCAL

component of VALID predicate, 373
WITH SYSTEM VERSIONING keyword, 166
WITH TIES syntax, 237–238
WITHOUT IDENTITY CONSTRAINTS

component of VALID predicate, 373
WORK keyword, 324
workgroup databases, 8
written agreements about projects, 432

• X •
XML (eXtensible Markup Language)

character sets, mapping, 362–363
data types, mapping, 364
generating XML schemas, 366
identifiers, mapping, 363
non-predefined data types, mapping to,

375–379
null values, handling, 365
overview, 359
predicates, 371–373
and SQL, 359–360, 379–380
SQL functions for XML data, 367–371
tables, mapping, 364–365
transforming into SQL tables, 373–374
XML data type, 360–362

XML data type, 35–38, 360–362
XML Names, 363
XML schemas, 359, 366
XMLAGG function, 369
XMLCAST function, 371
XMLCOMMENT function, 369
XMLCONCAT function, 368
XML(CONTENT(ANY)) type, 36–37
XML(CONTENT(UNTYPED)) type, 37
XML(CONTENT(XMLSCHEMA)) subtype, 37
XMLDOCUMENT function, 367
XML(DOCUMENT(ANY)) subtype, 37
XML(DOCUMENT(UNTYPED)) type, 37–38
XMLELEMENT function, 367
XMLEXISTS predicate, 372
XMLFOREST function, 368
XMLPARSE function, 370
XMLPI function, 370
XMLQUERY function, 370–371
XML(SEQUENCE) type, 36
XMLTABLE pseudo-function, 373–374
XQuery

overview, 36, 367
regular expression patterns, replacing

with replacement strings, 187–188
regular expression patterns, searching

strings for, 186–187
XMLQUERY function, 370–371

• Y •
year-month intervals, 35, 66, 180

About the Author
Allen G. Taylor is a 30-year veteran of the computer industry and the author
of over 30 books, including Crystal Reports 2008 For Dummies, Database
Development For Dummies, Access Power Programming with VBA, and SQL
All-in-One For Dummies. He lectures internationally on databases, networks,
innovation, astronomy and entrepreneurship. He also teaches database
development through a leading online educational program. For the latest
news on Allen’s activities, check out www.DatabaseCentral.Info. You can
contact Allen at allen.taylor@ieee.org.

Dedication
This book is dedicated to Walker Taylor, who will do amazing things when he
grows up.

Author’s Acknowledgments
First and foremost, I would like to acknowledge the help of Jim Melton, editor
of the ISO/ANSI specification for SQL. Without his untiring efforts, this book,
and indeed SQL itself as an international standard, would be of much less value.
Andrew Eisenberg has also contributed to my knowledge of SQL through his
writing. I would like to thank Michael Durthaler for helpful suggestions regarding
the coverage of cursors. I would also like to thank my project editor Pat O’Brien,
my technical editor Mike Chapple, and my acquisitions editor Kyle Looper for
their key contributions to the production of this book. Thanks also to my agent,
Carole McClendon of Waterside Productions, for her support of my career.

Publisher’s Acknowledgments

Senior Acquisitions Editor: Kyle Looper
Project Editor: Pat O’Brien
Copy Editor: Virginia Sanders
Technical Editor: Mike Chapple
Editorial Assistant: Anne Sullivan
Sr. Editorial Assistant: Cherie Case

Project Coordinator: Sheree Montgomery
Cover Image: ©iStockphoto.com/pagadesign

	Table of Contents
	Introduction
	About This Book
	Who Should Read This Book?
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started with SQL
	Chapter 1: Relational Database Fundamentals
	Keeping Track of Things
	What Is a Database?
	Database Size and Complexity
	What Is a Database Management System?
	Flat Files
	Database Models
	Database Design Considerations

	Chapter 2: SQL Fundamentals
	What SQL Is and Isn’t
	A (Very) Little History
	SQL Statements
	Reserved Words
	Data Types
	Null Values
	Constraints
	Using SQL in a Client/Server System
	Using SQL on the Internet or an Intranet

	Chapter 3: The Components of SQL
	Data Definition Language
	Data Manipulation Language
	Data Control Language

	Part II: Using SQL to Build Databases
	Chapter 4: Building and Maintaining a Simple Database Structure
	Using a RAD Tool to Build a Simple Database
	Building POWER with SQL’s DDL
	Portability Considerations

	Chapter 5: Building a Multitable Relational Database
	Designing a Database
	Working with Indexes
	Maintaining Data Integrity
	Normalizing the Database

	Part III: Storing and Retrieving Data
	Chapter 6: Manipulating Database Data
	Retrieving Data
	Creating Views
	Updating Views
	Adding New Data
	Updating Existing Data
	Transferring Data
	Deleting Obsolete Data

	Chapter 7: Handling Temporal Data
	Understanding Times and Periods in SQL: 2011
	Working with Application-Time Period Tables
	Working with System-Versioned Tables
	Tracking Even More Time Data with Bitemporal Tables

	Chapter 8: Specifying Values
	Values
	Value Expressions
	Functions

	Chapter 9: Using Advanced SQL Value Expressions
	CASE Conditional Expressions
	CAST Data-Type Conversions
	Row Value Expressions

	Chapter 10: Zeroing In on the Data You Want
	Modifying Clauses
	FROM Clauses
	WHERE Clauses
	Logical Connectives
	GROUP BY Clauses
	HAVING Clauses
	ORDER BY Clauses
	Limited FETCH
	Peering through a Window to Create a Result Set

	Chapter 11: Using Relational Operators
	UNION
	INTERSECT
	EXCEPT
	Join Operators
	ON versus WHERE

	Chapter 12: Delving Deep with Nested Queries
	What Subqueries Do

	Chapter 13: Recursive Queries
	What Is Recursion?
	What Is a Recursive Query?
	Where Might You Use a Recursive Query?
	Where Else Might You Use a Recursive Query?

	Part IV: Controlling Operations
	Chapter 14: Providing Database Security
	The SQL Data Control Language
	User Access Levels
	Granting Privileges to Users
	Granting Privileges across Levels
	Granting the Power to Grant Privileges
	Taking Privileges Away
	Using GRANT and REVOKE Together to Save Time and Effort

	Chapter 15: Protecting Data
	Threats to Data Integrity
	Reducing Vulnerability to Data Corruption
	Constraints Within Transactions

	Chapter 16: Using SQL within Applications
	SQL in an Application
	Hooking SQL into Procedural Languages

	Part V: Taking SQL to the Real World
	Chapter 17: Accessing Data with ODBC and JDBC
	ODBC
	ODBC in a Client/Server Environment
	ODBC and the Internet
	ODBC and an Intranet
	JDBC

	Chapter 18: Operating on XML Data with SQL
	How XML Relates to SQL
	The XML Data Type
	Mapping SQL to XML and XML to SQL
	SQL Functions That Operate on XML Data
	Predicates
	Transforming XML Data into SQL Tables
	Mapping Non-Predefined Data Types to XML
	The Marriage of SQL and XML

	Part VI: Advanced Topics
	Chapter 19: Stepping through a Dataset with Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching Data from a Single Row
	Closing a Cursor

	Chapter 20: Adding Procedural Capabilities with Persistent Stored Modules
	Compound Statements
	Flow of Control Statements
	Stored Procedures
	Stored Functions
	Privileges
	Stored Modules

	Chapter 21: Handling Errors
	SQLSTATE
	WHENEVER Clause
	Diagnostics Areas
	Handling Exceptions

	Chapter 22: Triggers
	Examining Some Applications of Triggers
	Creating a Trigger
	Firing a Succession of Triggers
	Referencing Old Values and New Values
	Firing Multiple Triggers on a Single Table

	Part VII: The Part of Tens
	Chapter 23: Ten Common Mistakes
	Assuming That Your Clients Know What They Need
	Ignoring Project Scope
	Considering Only Technical Factors
	Not Asking for Client Feedback
	Always Using Your Favorite Development Environment
	Using Your Favorite System Architecture Exclusively
	Designing Database Tables in Isolation
	Neglecting Design Reviews
	Skipping Beta Testing
	Not Documenting Your Process

	Chapter 24: Ten Retrieval Tips
	Verify the Database Structure
	Try Queries on a Test Database
	Double-Check Queries That Include Joins
	Triple-Check Queries with Subselects
	Summarize Data with GROUP BY
	Watch GROUP BY Clause Restrictions
	Use Parentheses with AND, OR, and NOT
	Control Retrieval Privileges
	Back Up Your Databases Regularly
	Handle Error Conditions Gracefully

	Appendix: SQL: 2011 Reserved Words
	Index
	About the Author
	Dedication
	Author’s Acknowledgments

