
ptg7041395

ptg7041395

Crash Course

Ben Forta

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

MariaDB

ptg7041395

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include elec-
tronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Forta, Ben.
 MariaDB crash course / Ben Forta.
 p. cm.
 Includes index.
 ISBN 978-0-321-79994-4 (pbk.)
 1. MariaDB. 2. Database management. 3. Client/server comput-
ing. I. Title.

 QA76.9.D3F663 2012
 004’.36--dc23
 2011023506

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This pub-
lication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-321-79994-4
ISBN-10: 0-321-79994-1

Text printed in the United States on recycled paper at R.R. Donnelley
in Crawfordsville, Indiana.

First printing September 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taber

Managing Editor
Kristy Hart

Project Editors
Elaine Wiley

Jovana San Nicolas-
Shirley

Copy Editor
Geneil Breeze

Indexer
Erika Millen

Proofreader
Leslie Joseph

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Gloria Schurick

ptg7041395

This page intentionally left blank

ptg7041395

Table of Contents

 Introduction 1

What Is MariaDB Crash Course? 1

Who Is This Book For? 2

Companion Web Site 3

Conventions Used in This Book 3

1: Understanding SQL 5

Database Basics 5

What Is a Database? 6

Tables 6

Columns and Datatypes 7

Rows 8

NULL 8

Primary Keys 9

What Is SQL? 10

Try It Yourself 11

Summary 11

2: Introducing MariaDB 13

What Is MariaDB? 13

Client-Server Software 14

MySQL Compatibility 15

MariaDB Tools 16

mysql Command Line 16

MySQL Workbench 17

Summary 19

3: Working with MariaDB 21

Making the Connection 21

Selecting a Database 22

Learning About Databases and Tables 23

Summary 26

4: Retrieving Data 27

The SELECT Statement 27

Retrieving Individual Columns 27

Retrieving Multiple Columns 29

Retrieving All Columns 30

ptg7041395

vContents

Retrieving Distinct Rows 31

Limiting Results 32

Using Fully Qualified Table Names 34

Using Comments 35

Summary 36

5: Sorting Retrieved Data 37

Sorting Data 37

Sorting by Multiple Columns 39

Specifying Sort Direction 40

Summary 43

6: Filtering Data 45

Using the WHERE Clause 45

The WHERE Clause Operators 46

Checking Against a Single Value 47

Checking for Nonmatches 48

Checking for a Range of Values 49

Checking for No Value 50

Summary 51

7: Advanced Data Filtering 53

Combining WHERE Clauses 53

Using the AND Operator 53

Using the OR Operator 54

Understanding Order of Evaluation 55

Using the IN Operator 57

Using the NOT Operator 58

Summary 59

8: Using Wildcard Filtering 61

Using the LIKE Operator 61

The Percent Sign (%) Wildcard 62

The Underscore (_) Wildcard 64

Tips for Using Wildcards 65

Summary 65

9: Searching Using Regular Expressions 67

Understanding Regular Expressions 67

Using Regular Expressions 68

ptg7041395

vi Contents

Basic Character Matching 68

Performing OR Matches 70

Matching One of Several Characters 71

Matching Ranges 72

Matching Special Characters 73

Matching Character Classes 75

Matching Multiple Instances 75

Anchors 77

Summary 79

 10: Creating Calculated Fields 81

Understanding Calculated Fields 81

Concatenating Fields 82

Using Aliases 84

Performing Mathematical Calculations 85

Summary 87

 11: Using Data Manipulation Functions 89

Understanding Functions 89

Using Functions 90

Text Manipulation Functions 90

Date and Time Manipulation Functions 92

Numeric Manipulation Functions 96

Summary 96

 12: Summarizing Data 97

Using Aggregate Functions 97

The AVG() Function 98

The COUNT() Function 99

The MAX() Function 100

The MIN() Function 101

The SUM() Function 102

Aggregates on Distinct Values 103

Combining Aggregate Functions 104

Summary 105

 13: Grouping Data 107

Understanding Data Grouping 107

Creating Groups 108

Filtering Groups 109

ptg7041395

viiContents

Grouping and Sorting 112

SELECT Clause Ordering 113

Summary 114

 14: Working with Subqueries 115

Understanding Subqueries 115

Filtering by Subquery 115

Using Subqueries as Calculated Fields 119

Summary 122

 15: Joining Tables 123

Understanding Joins 123

Understanding Relational Tables 123

Why Use Joins? 125

Creating a Join 125

The Importance of the WHERE Clause 127

Inner Joins 129

Joining Multiple Tables 130

Summary 132

 16: Creating Advanced Joins 133

Using Table Aliases 133

Using Different Join Types 134

Self Joins 134

Natural Joins 136

Outer Joins 137

Using Joins with Aggregate Functions 139

Using Joins and Join Conditions 140

Summary 140

 17: Combining Queries 141

Understanding Combined Queries 141

Creating Combined Queries 141

Using UNION 142

UNION Rules 144

Including or Eliminating Duplicate Rows 144

Sorting Combined Query Results 145

Summary 146

ptg7041395

viii Contents

 18: Full-Text Searching 147

Understanding Full-Text Searching 147

Using Full-Text Searching 148

Enabling Full-Text Searching Support 148

Performing Full-Text Searches 149

Using Query Expansion 152

Boolean Text Searches 154

Full-Text Search Usage Notes 158

Summary 159

 19: Inserting Data 161

Understanding Data Insertion 161

Inserting Complete Rows 161

Inserting Multiple Rows 165

Inserting Retrieved Data 166

Summary 168

 20: Updating and Deleting Data 169

Updating Data 169

Deleting Data 171

Guidelines for Updating and Deleting Data 172

Summary 173

 21: Creating and Manipulating Tables 175

Creating Tables 175

Basic Table Creation 176

Working with NULL Values 177

Primary Keys Revisited 179

Using AUTO_INCREMENT 180

Specifying Default Values 181

Engine Types 182

Updating Tables 183

Deleting Tables 185

Renaming Tables 185

Summary 186

ptg7041395

ixContents

 22: Using Views 187

Understanding Views 187

Why Use Views 188

View Rules and Restrictions 188

Using Views 189

Using Views to Simplify Complex Joins 189

Using Views to Reformat Retrieved Data 191

Using Views to Filter Unwanted Data 192

Using Views with Calculated Fields 193

Updating Views 194

Summary 195

 23: Working with Stored Procedures 197

Understanding Stored Procedures 197

Why Use Stored Procedures 198

Using Stored Procedures 199

Executing Stored Procedures 199

Creating Stored Procedures 200

Dropping Stored Procedures 201

Working with Parameters 202

Building Intelligent Stored Procedures 205

Inspecting Stored Procedures 208

Summary 208

 24: Using Cursors 209

Understanding Cursors 209

Working with Cursors 209

Creating Cursors 210

Opening and Closing Cursors 210

Using Cursor Data 212

Summary 216

 25: Using Triggers 217

Understanding Triggers 217

Creating Triggers 218

Dropping Triggers 219

ptg7041395

x Contents

Using Triggers 219

INSERT Triggers 219

DELETE Triggers 221

UPDATE Triggers 223

More on Triggers 223

Summary 224

 26: Managing Transaction Processing 225

Understanding Transaction Processing 225

Controlling Transactions 227

Using ROLLBACK 227

Using COMMIT 228

Using Savepoints 229

Changing the Default Commit Behavior 230

Summary 230

 27: Globalization and Localization 231

Understanding Character Sets and Collation Sequences 231

Working with Character Set and Collation Sequences 232

Summary 234

 28: Managing Security 235

Understanding Access Control 235

Managing Users 236

Creating User Accounts 237

Deleting User Accounts 238

Setting Access Rights 238

Changing Passwords 241

Summary 242

 29: Database Maintenance 243

Backing Up Data 243

Performing Database Maintenance 243

Diagnosing Startup Problems 245

Review Log Files 245

Summary 246

 30: Improving Performance 247

Improving Performance 247

Summary 249

ptg7041395

xiContents

A: Getting Started with MariaDB 251

What You Need 251

Obtaining the Software 252

Installing the Software 252

Preparing to Try It Yourself 253

B: The Example Tables 255

Understanding the Sample Tables 255

Table Descriptions 256

Creating the Sample Tables 259

Using mysql 260

Using MySQL Workbench 261

C: MariaDB Datatypes 263

String Datatypes 263

Numeric Datatypes 265

Date and Time Datatypes 266

Binary Datatypes 266

D: MariaDB Reserved Words 269

 Index 275

ptg7041395

Foreword
As the creator of MariaDB (and MySQL), I am thrilled to see the first MariaDB
book in print. I am equally thrilled that Ben Forta wrote it. Ben has a gift for
presenting complex topics (and really understanding SQL can be complex) in
an easy-to-understand way. MariaDB Crash Course is an easy read and goes
from explaining the basics to the very complex (including joins, regular expres-
sions, and triggers) simply and without painful effort. I recommend this book
to anyone new to SQL who wants to quickly learn how to get the best out of
MariaDB.

Michael “Monty” Widenius
Creator of MariaDB and MySQL

ptg7041395

Acknowledgments
I’d like to thank the folks at Addison-Wesley for once again granting me the
flexibility and freedom to build this book as I saw fit. Special thanks to Mark
Taber for helping turn this one around in record time, and for his guidance
into what this series is evolving into.

Thanks to project editor Elaine Wiley for keeping the project moving and me
on schedule, no easy task.

Thanks to Monty Widenius, (creator of MariaDB and MySQL), Daniel
Bartholomew, and Colin Charles for their thorough technical review and
feedback.

And finally, this book was written in response to an unsolicited request
by Monty Widenius. Monty is the driving force behind some of the most
successful database projects in history, and yet he still took the time to review
the manuscript, provide feedback, and write a much-appreciated foreword and
recommendation. Thank you for your time and support, Monty. I hope this
title lives up to your expectations.

ptg7041395

About the Author
Ben Forta is Adobe Systems’ Director of Developer Relations and has more
than 20 years experience in the computer industry in product development,
support, training, and product marketing. Ben is the author of the best-selling
Sams Teach Yourself SQL in 10 Minutes (now in its third edition, and translated
into more than a dozen languages), spinoff titles on MySQL and SQL Server
T-SQL, ColdFusion Web Application Construction Kit and Advanced ColdFusion
Application Development (both published by Adobe Press), Sams Teach Yourself
Regular Expressions in 10 Minutes, as well as books on Flash, Java, Windows,
and other subjects. He has extensive experience in database design and devel-
opment, has implemented databases for several highly successful commercial
software programs and Web sites, and is a frequent lecturer and columnist on
Internet and database technologies. Ben lives in Oak Park, Michigan, with his
wife, Marcy, and their seven children. Ben welcomes your e-mail at
ben@forta.com and invites you to visit his Web site at http://forta.com/.

http://forta.com/

ptg7041395

Introduction

MariaDB is an offshoot of MySQL, one of the most popular database management
systems in the world. From small development projects to some of the best-known
and most prestigious sites on the Web, MySQL has proven itself to be a solid, reli-
able, fast, and trusted solution to all sorts of data storage needs.

In 2008, MySQL was acquired by Sun Microsystems, which was in turn
acquired by Oracle Corporation in 2010. While the initial acquisition by Sun
was hailed by many in the MySQL community as exactly what the project
needed, that sentiment did not last, and the subsequent acquisition by Oracle
was unfortunately met with far lower expectations. Many of MySQL’s devel-
opers left Sun and Oracle to work on new projects. Among them was Michael
“Monty” Widenius, creator of MySQL and one of the project’s longtime tech-
nical leads.

Monty and his team created a fork (offshoot) of the MySQL codebase and
named his new DBMS MariaDB. The stated goals for the new MariaDB
DBMS include

■ Create a DBMS that is so compatible with MySQL that it could be
used as a drop-in replacement (you could uninstall MySQL, install
MariaDB, and your programs should continue to run as is). This is
accomplished by building MariaDB on the MySQL codebase.

■ Improve the source code to make MariaDB far more reliable and
stable.

■ Add features (and community contributions) at a faster rate.

■ Develop a new underlying database engine (don’t worry if that sounds
obscure for now) named Aria to improve performance and reliability.

What Is MariaDB Crash Course?
This book is based on my best-selling Sams Teach Yourself SQL in 10 Minutes.
That book has become one of the most-used SQL tutorials in the world, with
an emphasis on teaching what you really need to know—methodically, sys-
tematically, and simply. But as popular and as successful as that book is, it does
have some limitations:

ptg7041395

■ In covering all the major DBMSs, coverage of DBMS-specific features
and functionality had to be kept to a minimum.

■ To simplify the SQL taught, the lowest common denominator had
to be found—SQL statements that would (as much as possible) work
with all major DBMSs. This requirement necessitated that better
DBMS-specific solutions not be covered.

■ Although basic SQL tends to be rather portable between DBMSs,
more advanced SQL most definitely is not. As such, that book could
not cover advanced topics, such as triggers, cursors, stored procedures,
access control, transactions, and more, in any real detail.

And that is where this book comes in. MariaDB Crash Course builds on the
proven tutorials and structure of Sams Teach Yourself SQL in Ten Minutes, with-
out getting bogged down with anything but MariaDB. Starting with simple
data retrieval and working on to more complex topics, including the use of
joins, subqueries, regular expression and full text-based searches, stored pro-
cedures, cursors, triggers, table constraints, and much more. You learn what
you need to know methodically, systematically, and simply—in highly focused
chapters designed to make you immediately and effortlessly productive.

Who Is This Book For?
This book is for you if

■ You are new to SQL.

■ You are just getting started with MariaDB and want to hit the ground
running.

■ You want to quickly learn how to get the most out of MariaDB.

■ You want to learn how to use MariaDB in your own application
development.

■ You want to be productive quickly and easily using MariaDB without
having to call someone for help.

It is worth noting that this book is not intended for all readers. If you are an
experienced SQL user, you may find the content in this book too elementary.
Similarly, if you have existing MySQL experience, you’ll likely find this book
to be less useful (as noted, MariaDB is based on MySQL). If you own my
MySQL Crash Course, I do not recommend that you buy this book, as much of

2 Introduction

ptg7041395

3Conventions Used in This Book

the content is similar, and your existing MySQL knowledge will easily transfer
as is to MariaDB.

But, if the preceding li st describes you and your needs relative to MariaDB,
you’ll find this MariaDB Crash Course to be the fastest and easiest way to get up
to speed with MariaDB.

This book is also useful if you are new to MySQL, as most of the content also
applies to that DBMS. For you, this book has an extra benefit in that it helps
demonstrate some reasons to consider switching to MariaDB.

Companion Web Site
This book has a companion Web site online at
http://forta.com/books/0321799941/. Visit the site to access

■ Table creation and population scripts used to create the example tables
used throughout this book

■ The online support forum

■ Online errata (should one be required)

■ Other books that may be of interest to you

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular
English, and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented
in monospace type. It looks like this to mimic the way text
looks on your screen.

Placeholders for variables and expressions appear in monospace italic
font. You should replace the placeholder with the specific value it represents.

This arrow () at the beginning of a line of code means that a single line of
code is too long to fit on the printed page. Continue typing all the characters
after the as though they were part of the preceding line.

http://forta.com/books/0321799941/

ptg7041395

4 Introduction

Note

A Note presents interesting pieces of information related to the surrounding discussion.

Tip

A Tip offers advice or teaches an easier way to do something.

Caution

A Caution advises you about potential problems and helps you steer clear of disaster.

New Term

Provides clear definitions of new, essential terms.

▼ Input
The Input icon identifies code that you can type in yourself. It usually appears
next to a listing.

▼ Output
The Output icon highlights the output produced by running MariaDB code. It
usually appears after a listing.

▼ Analysis
The Analysis icon alerts you to the author’s line-by-line analysis of input or
output.

ptg7041395

1
Understanding SQL

In this chapter, you learn about databases and SQL, prerequisites to learning
MariaDB.

Database Basics
The fact that you are reading this book indicates that you, somehow, need to
interact with databases. And so before diving into MariaDB and its implemen-
tation of the SQL language, it is important that you understand some basic
concepts about databases and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time
you select a name from your e-mail address book, you are using a database.
If you conduct a search on an Internet search site, you are using a database.
When you log in to your network at work, you are validating your name and
password against a database. Even when you use your ATM card at a cash
machine, you are using databases for PIN verification and balance checking.

But even though we all use databases all the time, there remains much confu-
sion over what exactly a database is. This is especially true because different
people use the same database terms to mean different things. Therefore, a good
place to start our study is with a list and explanation of the most important
database terms.

Tip

Reviewing Basic Concepts What follows is a brief overview of some basic database
concepts. It is intended to either jolt your memory if you already have some database
experience, or to provide you with the absolute basics, if you are new to databases.
Understanding databases is an important part of mastering MariaDB, and you might
want to find a good book on database fundamentals to brush up on the subject if
needed.

ptg7041395

What Is a Database?
The term database is used in many different ways, but for our purposes a data-
base is a collection of data stored in some organized fashion. The simplest way
to think of it is to imagine a database as a filing cabinet. The filing cabinet is
simply a physical location to store data, regardless of what that data is or how it
is organized.

New Term

Database A container (usually a file or set of files) to store organized data.

Caution

Misuse Causes Confusion People often use the term database to refer to the data-
base software they are running. This is incorrect, and it is a source of much confusion.
Database software is actually called the Database Management System (or DBMS). The
database is the container created and manipulated via the DBMS. A database might
be a file stored on a hard drive, but it might not. And for the most part this is not even
significant as you never access a database directly anyway; you always use the DBMS,
and it accesses the database for you.

Tables
When you store information in your filing cabinet you don’t just toss it in a
drawer. Rather, you create files within the filing cabinet, and then you file
related data in specific files.

In the database world, that file is called a table. A table is a structured file that
can store data of a specific type. A table might contain a list of customers, a
product catalog, or any other list of information.

New Term

Table A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one
list. You would never store a list of customers and a list of orders in the same
database table. Doing so would make subsequent retrieval and access difficult.
Rather, you’d create two tables, one for each list.

Every table in a database has a name that identifies it. That name is always
unique—meaning no other table in that database can have the same name.

6 Chapter 1 Understanding SQL

ptg7041395

Database Basics 7

Note

Table Names What makes a table name unique is actually a combination of several
things, including the database name and table name. This means that while you cannot
use the same table name twice in the same database, you definitely can reuse table
names in different databases.

Tables have characteristics and properties that define how data is stored in
them. These include information about what data may be stored, how it is
broken up, how individual pieces of information are named, and much more.
This set of information that describes a table is known as a schema, and schema
are used to describe specific tables within a database, as well as entire databases
(and the relationship between tables in them, if any).

New Term

Schema Information about database and table layout and properties.

Note

Schema or Database? Occasionally schema is used as a synonym for database (and
schemata as a synonym for databases). While unfortunate, it is usually clear from the
context which meaning of schema is intended. In this book, schema will refer to the
definition given previously.

Columns and Datatypes
Tables are made up of columns. A column contains a particular piece of infor-
mation within a table.

New Term

Column A single field in a table. All tables are made up of one or more columns.

The best way to understand this is to envision database tables as grids, some-
what like spreadsheets. Each column in the grid contains a particular piece
of information. In a customer table, for example, one column contains the
customer number, another contains the customer name, and the address, city,
state, and Zip Code are all stored in their own columns.

Tip

Breaking Up Data It is important to break data into multiple columns correctly. For
example, city, state, and Zip Code should always be separate columns. By breaking
these out, it becomes possible to sort or filter data by specific columns (for example,
to find all customers in a particular state or in a particular city). If city and state are
combined into one column, it would be difficult to sort or filter by state.

ptg7041395

8 Chapter 1 Understanding SQL

Each column in a database has an associated datatype. A datatype defines what
type of data the column can contain. For example, if the column is to contain
a number (perhaps the number of items in an order), the datatype would be a
numeric datatype. If the column were to contain dates, text, notes, currency
amounts, and so on, the appropriate datatype would be used to specify this.

New Term

Datatype A type of allowed data. Every table column has an associated datatype that
restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for example,
preventing the entry of alphabetical characters into a numeric field). Datatypes
also help sort data correctly, and play an important role in optimizing disk
usage. As such, special attention must be given to picking the right datatype
when tables are created .

Rows
Data in a table is stored in rows; each record saved is stored in its own row.
Again, envisioning a table as a spreadsheet style grid, the vertical columns in
the grid are the table columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The num-
ber of rows in the table is the number of records in it.

New Term

Row A record in a table.

Note

Records or Rows? You might hear users refer to database records when referring to
rows. For the most part, the two terms are used interchangeably, but row is technically
the correct term.

NULL
Data is stored in rows and columns, and the exact data that may be stored
is based on the defined datatype. Columns may also be defined to accept no
value, meaning no data at all. In SQL, the term NULL is used to mean no value.
If a column is defined to allow NULL, then data can be omitted from that col-
umn when a row is inserted or updated. You will be seeing lots more of NULL
as you work through the lessons in this book.

ptg7041395

9Database Basics

Primary Keys
Every row in a table should have some column (or set of columns) that
uniquely identifies it. A table containing customers might use a customer num-
ber column for this purpose, whereas a table containing orders might use the
order ID. An employee list table might use an employee ID or the employee
Social Security number column.

New Term

Primary key A column (or set of columns) whose values uniquely identify every row in
a table.

This column (or set of columns) that uniquely identifies each row in a table
is called a primary key. The primary key is used to refer to a specific row.
Without a primary key, updating or deleting specific rows in a table becomes
difficult because there is no guaranteed safe way to refer to just the rows to be
affected.

Tip

Always Define Primary Keys Although primary keys are not actually required, most
database designers ensure that every table they create has a primary key so future data
manipulation is possible and manageable. In fact, if you omit the primary key, some
database engines create one automatically for you, and the odds of it being what you’d
have wanted are pretty slim. Bottom line, always define primary keys!

Any column in a table can be established as the primary key, as long as it meets
the following conditions:

■ No two rows can have the same primary key value.

■ Every row must have a primary key value (primary key columns may
not contain NULL values).

Tip

Primary Key Rules The rules listed here are enforced by MariaDB itself.

Primary keys are usually defined on a single column within a table. But this
is not required, and multiple columns may be used together as a primary key.
When multiple columns are used, the rules previously listed must apply to all
columns that make up the primary key, and the values of all columns together
must be unique (individual columns need not have unique values).

ptg7041395

10 Chapter 1 Understanding SQL

Tip

Primary Key Best Practices In addition to the rules that MariaDB enforces, several
universally accepted best practices should also be adhered to

■ Don’t update values in primary key columns.

■ Don’t reuse values in primary key columns.

■ Don’t use values that might change in primary key columns. (For example, when
you use a name as a primary key to identify a supplier, you would have to change
the primary key when the supplier merges and changes its name.)

There is another important type of key called a foreign key, but we discuss that
later on in Chapter 15, “Joining Tables.”

What Is SQL?
SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for
Structured Query Language. SQL is a language designed specifically for com-
municating with databases.

Unlike other languages (spoken languages such as English, or programming lan-
guages such as Java or Visual Basic), SQL is made up of very few words. This
is deliberate. SQL is designed to do one thing and do it well—provide a simple
and efficient way to read and write data from a database.

What are the advantages of SQL?

■ SQL is not a proprietary language used by specific database vendors.
Almost every major DBMS supports SQL, so learning this one lan-
guage enables you to interact with just about every database you run
into.

■ SQL is easy to learn. The statements are all made up of descriptive
English words, and there aren’t that many of them.

■ Despite its apparent simplicity, SQL is actually a powerful language,
and by cleverly using its language elements you can perform complex
and sophisticated database operations .

Note

DBMS-Specific SQL Although SQL is not a proprietary language and there is a stan-
dards committee that tries to define SQL syntax that can be used by all DBMSs, the
reality is that no two DBMSs implement SQL identically. The SQL taught in this book is
specific to MariaDB (and MySQL), and while much of the language taught will be usable
with other DBMSs, do not assume complete SQL syntax portability.

ptg7041395

11Summary

Try It Yourself
All the chapters in this book use working examples, showing you the SQL
syntax, showing what it does, and explaining why it does it. I strongly suggest
that you try each and every example for yourself so as to learn MariaDB
firsthand.

Appendix B, “The Example Tables,” describes the example tables used
throughout this book, and explains how to obtain and install them. If you have
not done so, refer to this appendix before proceeding.

Note

You Need MariaDB Obviously, you need access to a copy of MariaDB to follow along.
Appendix A, “Getting Started with MariaDB,” explains where to get a copy of MariaDB
and provides some pointers for getting started. If you do not have access to a copy of
MariaDB, refer to that appendix before proceeding.

Summary
In this first chapter, you learned what SQL is and why it is useful. Because
SQL is used to interact with databases, you also reviewed some basic database
terminology.

ptg7041395

This page intentionally left blank

ptg7041395

2
Introducing MariaDB

In this chapter, you learn what MariaDB is, and the tools you can use when working
with it.

What Is MariaDB?
In Chapter 1, “Understanding SQL,” you learned about databases and SQL. As
explained, it is the database software (DBMS or Database Management System)
that actually does all the work of storing, retrieving, managing, and manipulat-
ing data. MariaDB is a DBMS, that is, it is database software.

MariaDB is based on MySQL, which has been around for a long time, and is
now in use at millions of installations worldwide. Why do so many organiza-
tions and developers use MySQL? Here are some of the reasons :

■ Cost—MySQL is open-source, and free to use (and even modify)
without paying for it.

■ Performance—MySQL is fast (make that very fast).

■ Trusted—MySQL is used by some of the most important and presti-
gious organizations and sites, all of whom entrust it with their critical
data.

■ Simplicity—MySQL is easy to install and get up and running.

The biggest technical criticism of MySQL is that it has not always supported
the functionality and features offered by other DBMSs. There have also been
criticisms leveled at how MySQL software is licensed. And more recently,
MySQL has been criticized for a slowdown in updates and innovation.

In 2008, MySQL was acquired by Sun Microsystems, which was in turn
acquired by Oracle Corporation in 2010. While the initial acquisition by Sun
was hailed by many in the MySQL community as exactly what the project
needed, that sentiment did not last, and the subsequent acquisition by Oracle
was unfortunately met with far lower expectations. Many of MySQL’s devel-
opers left Sun and Oracle to work on new projects. Among them was Michael

ptg7041395

14 Chapter 2 Introducing MariaDB

“Monty” Widenius, creator of MySQL and one of the project’s longtime tech-
nical leads.

Monty and his team created a fork of the MySQL codebase, and named his
new DBMS MariaDB. As MariaDB is based on MySQL, it shares the MySQL
benefits listed previously. And as for those criticisms? Those are exactly what
the MariaDB team set out to resolve .

Note

What’s in a Name? Does MariaDB strike you as a strange name for a DBMS? Actually,
the name makes perfect sense once its origin has been explained. MySQL was named
after Monty Widenius’ daughter, My (and not for the possessive case of the word “I,” as
often assumed). Monty named the MaxDB database engine after his son, Max. And now,
his new MariaDB project is named for his younger daughter, Maria.

Client-Server Software
DBMSs fall into two categories: shared file based and client-server. The former
(which include products such as Microsoft Access and File Maker) are designed
for desktop use and are generally not intended for use on higher-end or more
critical applications (including Web sites and Web-based applications).

Databases such as MariaDB, MySQL, Oracle, and Microsoft SQL Server are
client-server based databases. Client-server applications are split into two dis-
tinct parts. The server portion is a piece of software responsible for all data access
and manipulation. This software runs on a computer called the database server.

Only the server software interacts with the data files. All requests for data, data
additions and deletions, and data updates are funneled through the server soft-
ware. These requests or changes come from computers running client software.
The client is the piece of software with which the user interacts. If you request
an alphabetical list of products, for example, the client software submits that
request over the network to the server software. The server software processes
the request; filters, discards, and sorts data as necessary; and sends the results
back to your client software.

Note

How Many Computers? The client and server software may be installed on two com-
puters or on one computer. Regardless, the client software communicates with the
server software for all database interaction, be it on the same machine or not.

All this action occurs transparently to you, the user. The fact that data is stored
elsewhere or that a database server is even performing all this processing for you
is hidden. You never need to access the data files directly. In fact, most net-
works are set up so that users have no access to the data, or even the drives on
which it is stored.

ptg7041395

15What Is MariaDB?

Why is this significant? Because to work with MariaDB you need access to
both a computer running the MariaDB server software and client software with
which to issue commands to MariaDB.

■ The server software is the MariaDB DBMS. You can run a locally
installed copy, or you can connect to a copy running on a remote
server to which you have access.

■ The client can be MariaDB-provided tools, MySQL tools, scripting
languages (such as Perl), Web application development languages (such
as ASP, ColdFusion, JSP, and PHP), programming languages (such as
C, C++, and Java), and more .

MySQL Compatibility
MariaDB was designed to be a drop-in replacement for MySQL. And while
MariaDB is already evolving to include features and innovation not in the core
MySQL DBMS, the MariaDB team has been careful to maintain true back-
wards compatibility.

For all intents and purposes, MariaDB is MySQL with new functionality added.
In fact, MariaDB’s MySQL legacy is readily apparent in everything from tool-
ing (the command line client is still named mysql), to documentation,
and more.

What does this mean in practice? Simply, it means that MySQL knowledge and
know-how translates easily to MariaDB. It also means that any tools and clients
designed for use with MySQL will work with MariaDB as well .

Tip

MySQL 5 MariaDB is based on the MySQL 5 codebase. If you are using tools or lan-
guages that do not list MariaDB as an option, you should be able to select MySQL 5 and
everything should just work.

Note

Converting From MySQL To MariaDB MariaDB can read all MySQL data formats and
use the MySQL protocol to communicate with the server. If you are planning on upgrad-
ing from MySQL to MariaDB, you don’t have to convert your data or change the tools
you use.

ptg7041395

16 Chapter 2 Introducing MariaDB

MariaDB Tools
As just explained, MariaDB is a client-server DBMS, and so to use MariaDB
you need a client, an application that you use to interact with MariaDB (giving
it commands to be executed).

There are many client application options, but when learning MariaDB (and
indeed, when writing and testing MariaDB scripts) you are best off using a
utility designed for just that purpose. Two tools in particular warrant specific
mention.

mysql Command Line
Every MariaDB installation comes with a simple command line utility called
mysql. This utility does not have any drop-down menus, fancy user interfaces,
mouse support, or anything like that.

Typing mysql at your operating system command prompt displays a welcome
message followed by a simple prompt that looks like this:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 1

Server version: 5.2.4-MariaDB Source distribution

This software comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to modify and redistribute it under the GPL v2
license

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]>

Note

MySQL Options and Parameters If you just type mysql by itself, you might receive an
error message. This will likely be because security credentials are needed or because
MySQL is not running locally or on the default port. mysql accepts an array of com-
mand line parameters you can (and might need to) use. For example, to specify a
user login name of ben, you’d use mysql –u ben. To specify a username, host
name, port, and be prompted for a password, you’d use mysql –u ben –p –h
myserver –P 9999.

A complete list of command line options and parameters can be obtained using mysql
--help.

Of course, your version and connection information might differ, but you’ll be
able to use this utility regardless. Note that:

ptg7041395

17MariaDB Tools

■ Commands are typed after the MariaDB > prompt. (MariaDB >
indicates that you are connected to a MariaDB server, the prompt
would be MySQL > if you were connected to a MySQL server .)

■ Commands end with ; or \g; in other words, just pressing Enter will
not execute the command.

■ You can use the up and down arrow keys to scroll through previously
entered commands.

■ You can type help or \h to obtain help. You can also provide addi-
tional text to obtain help on specific commands (for example, help
select to obtain help on using the SELECT statement).

■ You can type quit or exit to quit the command line utility.

Note

Execute Saved Scripts You can use mysql to execute saved scripts—the scripts
used to create and populate the tables used throughout this book, for example. To
do this, enter \. filename (specifying the full path to the file) and press Enter.
Appendix B, “The Example Tables,” walks you through this process for the chapters in
this book.

The mysql command line utility is one of the most used, and is invaluable for
quick testing and executing scripts (such as the sample table creation and popu-
lation scripts mentioned in the previous chapter and in Appendix B). In fact, all
the output examples used in this book are captured from mysql command
line output .

Tip

Familiarize Yourself with the mysql Command Line Even if you opt to use a graphi-
cal tool like the one described next, you should make sure to familiarize yourself with
the mysql command line utility, as this is the one client you can safely rely on to
always be present (as it is part of the core MariaDB installation).

MySQL Workbench
MySQL Workbench is a graphical interactive client designed to simplify the
administration of MySQL servers. And, as you’d expect, it works really well
with MariaDB, as well.

ptg7041395

18 Chapter 2 Introducing MariaDB

Note

Obtaining MySQL Workbench MySQL Workbench is not installed as part of the
MariaDB installation (nor MySQL installations, actually). Instead, it must be downloaded
from http://wb.mysql.com/ (versions are available for Linux, Mac OS X, and
Windows, and source code is downloadable, too).

When MySQL Workbench is launched, you see a screen organized in three
columns. From left to right these are:

■ SQL Development—Used to connect and actually perform database
and table operations, including executing SQL statements. If you opt
to use MySQL Workbench with this book, the Open Connection To
Start Querying option is what you use.

■ Data Modeling—Used to create and manage database and table struc-
tures. This is not covered in this book.

■ Server Administration—Used to manage the MariaDB server,
including stopping and starting the services, importing and exporting
data, and more .

Tip

Saving Connections MySQL Workbench needs to know information about your MariaDB
server before it can open a connection to the server for you to use. At a minimum, this
information includes the server address (hostname or IP address) and login information.
Rather than having to enter this every time you use MySQL Workbench, you can save the
details for future use (next time you just double-click on the saved settings to connect).

The SQL Editor screen is accessed via Open Connection To Start Querying in
the SQL Development options. This is where you can type and execute SQL
statements. Note the following:

■ SQL statements are typed into the window at the top of the screen.
When the statement has been entered, click the Execute button (the
one with the yellow lightning bolt on it) to submit it to MySQL for
processing.

■ Generated results (if there are any) are displayed in a grid at the bottom
of the screen, in a tab named Output.

■ The leftmost tab in the bottom section of the screen, named
Overview, lists all available databases (called schema here) and the tables
within them. Click on any database to see its tables.

■ You can right-click on tables to have MySQL Workbench write
SELECT and other statements for you.

http://wb.mysql.com/

ptg7041395

19Summary

■ The rightmost tab is a History tab that maintains a history of executed
SQL statements. This is useful when you need to test different ver-
sions of SQL statements.

■ You can have multiple SQL Editor windows open at the same time,
each in its own tab, allowing you to work with multiple databases or
SQL statements at once .

Note

Execute Saved Scripts You can use MySQL Workbench to execute saved scripts—the
scripts used to create and populate the tables used throughout this book, for example.
To do this, select File, Open Script; select the script (which will be displayed in a new
tab); and click the Execute button. Appendix B walks you through this process for the
chapters in this book .

Summary
In this chapter, you learned exactly what MariaDB is. You were also intro-
duced to two client utilities (one included command line utility, and one
optional but highly recommended graphical utility).

ptg7041395

This page intentionally left blank

ptg7041395

3
Working with MariaDB

In this chapter, you learn how to connect and log in to MariaDB, how to issue
MariaDB SQL statements, and how to obtain information about databases and
tables.

Making the Connection
Note

Example Tables Required From this point on, all chapters will use the example
databases and tables. If you have yet to install these, see Appendix B, “The Example
Tables,” before proceeding.

Now that you have a MariaDB DBMS and client software to use with it, it
would be worthwhile to briefly discuss connecting to the database.

MariaDB, like all client-server DBMSs, requires that you log in to the DBMS
before being able to issue commands. Login names might not be the same as
your network login name (assuming that you are using a network); MariaDB
maintains its own list of users internally and associates rights with each.

When you first installed MariaDB, you may have been prompted for an
administrative login (usually named root) and a password (if you weren’t, then
the root user account was created with no password). If you are using your
own local server and are simply experimenting with MariaDB, using this login
is fine. In the real world, however, the administrative login is closely protected
(as access to it grants full rights to create tables, drop entire databases, change
logins and passwords, and more).

To connect to MariaDB you need the following pieces of information:

■ The hostname (the name of the computer)—this is localhost if
connecting to a local MariaDB server

■ The port (if a port other than the default 3306 is used)

■ A valid user name

■ The user password (if required)

ptg7041395

222222 Chapter 3 Working with MariaDB

As explained in Chapter 2, “Introducing MariaDB,” all this information can be
passed to the mysql command line utility, or entered into the server connec-
tion screen in MySQL Workbench .

Note

Using Other Clients If you are using a client other than the ones mentioned here, you
still need to provide this information to connect to MariaDB.

After you are connected, you have access to whatever databases and tables your
login name has access to. (Logins, access control, and security are revisited in
Chapter 28, “Managing Security.”)

Selecting a Database
When you first connect to MariaDB, you do not have any databases open
for use. Before you can perform any database operations, you need to select a
database. To do this you use the USE keyword.

New Term

Keyword A reserved word that is part of the MariaDB SQL language. Never name a
table or column using a keyword. Appendix D, “MariaDB Reserved Words,” lists the
MariaDB keywords.

For example, to use the crashcourse database you would enter the
following:

▼ Input
USE crashcourse;

▼ Output
Database changed

▼ Analysis
The USE statement does not return any results. Depending on the client used,
some form of notification might be displayed. For example, the Database
changed message shown here is displayed by the mysql command line utility
upon successful database selection .

Tip

Preselecting a Database If you are using the mysql command line tool, you can pre-
select a database by typing its name after mysql when running the tool.

ptg7041395

23Learning About Databases and Tables

Remember, you must always USE a database before you can access any
data in it.

Learning About Databases and Tables
But what if you don’t know the names of the available databases? And for that
matter, how are clients like MySQL Workbench able to display a list of avail-
able databases?

Information about databases, tables, columns, users, privileges, and more is
stored within databases and tables themselves (yes, MariaDB uses MariaDB
to store this information). But these internal tables are generally not accessed
directly. Instead, the MariaDB SHOW command can be used to display this
information (information that MariaDB then extracts from those internal
tables). Look at the following example:

▼ Input
SHOW DATABASES;

▼ Output
+--------------------+

| Database |

+--------------------+

| information_schema |

| crashcourse |

| mysql |

| forta |

| coldfusion |

| flex |

| test |

+--------------------+

▼ Analysis
SHOW DATABASES; returns a list of available databases. Included in this
list might be databases used by MariaDB internally (such as mysql and
information_schema in this example). Of course, your own list of databases
might not look like those shown here .

To obtain a list of tables within a database, use SHOW TABLES;, as seen here :

▼ Input
SHOW TABLES;

ptg7041395

24 Chapter 3 Working with MariaDB

▼ Output
+-----------------------+

| Tables_in_crashcourse |

+-----------------------+

| customers |

| orderitems |

| orders |

| products |

| productnotes |

| vendors |

+-----------------------+

▼ Analysis
SHOW TABLES; returns a list of available tables in the currently selected
database.

To show a table’s columns, you can use DESCRIBE:

▼ Input
DESCRIBE customers;

▼ Output
+--------------+-----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+-----------+------+-----+---------+----------------+

| cust_id | int(11) | NO | PRI | NULL | auto_increment |

| cust_name | char(50) | NO | | | |

| cust_address | char(50) | YES | | NULL | |

| cust_city | char(50) | YES | | NULL | |

| cust_state | char(5) | YES | | NULL | |

| cust_zip | char(10) | YES | | NULL | |

| cust_country | char(50) | YES | | NULL | |

| cust_contact | char(50) | YES | | NULL | |

| cust_email | char(255) | YES | | NULL | |

+--------------+-----------+------+-----+---------+----------------+

▼ Analysis
DESCRIBE requires that a table name be specified (customers in this exam-
ple), and returns a row for each field containing the field name, its datatype,
whether NULL is allowed, key information, default value, and extra information
(such as auto_increment for field cust_id).

ptg7041395

25Learning About Databases and Tables

Note

What Is Auto Increment? Some table columns need unique values. For example,
order numbers, employee IDs, or (as in the example just seen) customer IDs. Rather
than have to assign unique values manually each time a row is added (and having
to keep track of what value was last used), MariaDB can automatically assign the
next available number for you each time a row is added to a table. This functional-
ity is known as auto increment. If it is needed, it must be part of the table definition
used when the table is created using the CREATE statement. We look at CREATE in
Chapter 21, “Creating and Manipulating Tables.”

Tip

The SHOW COLUMNS FROM Statement DESCRIBE is actually a shortcut for SHOW
COLUMNS FROM. In other words, the statement DESCRIBE customers;
is functionally identical to the statement SHOW COLUMNS FROM customers;.

Other SHOW statements are supported too, including

■ SHOW STATUS—Used to display extensive server status information

■ SHOW CREATE DATABASE and SHOW CREATE TABLE—Used to
display the MariaDB statements used to create specified databases or
tables respectively

■ SHOW GRANTS—Used to display security rights granted to users (all
users or a specific user)

■ SHOW ERRORS and SHOW WARNINGS—Used to display server error or
warning messages

It is worthwhile to note that client applications use these same MariaDB SQL
commands as you’ve seen here. Applications that display interactive lists of
databases and tables, that allow for the interactive creation and editing of tables,
that facilitate data entry and editing, or that allow for user account and rights
management, and more, all accomplish what they do using the same MariaDB
SQL commands that you can execute directly yourself .

Tip

Learning More About SHOW In the mysql command line utility, execute command
HELP SHOW; to display a list of allowed SHOW statements.

Note

Want Even More Information? MariaDB supports the use of INFORMATION_
SCHEMA to obtain and filter even more schema details. Coverage of INFORMATION_
SCHEMA is beyond the scope of this book. But, if you should need it, know that it’s
there for you.

ptg7041395

26 Chapter 3 Working with MariaDB

Summary
In this chapter, you learned how to connect and log in to MariaDB; how to
select databases using USE; and how to introspect MariaDB databases, tables,
and internals using SHOW and DESCRIBE. Armed with this knowledge, you can
now dig into the all-important SELECT statement.

ptg7041395

4
Retrieving Data

In this chapter, you learn how to use the SELECT statement to retrieve one or more
columns of data from a table.

The SELECT Statement
As explained in Chapter 1, “Understanding SQL,” SQL statements are made
up of plain English terms called keywords. Every SQL statement is made up
of one or more keywords. The SQL statement you’ll probably use most fre-
quently is the SELECT statement. Its purpose is to retrieve information from
one or more tables.

To use SELECT to retrieve table data you must, at a minimum, specify two
pieces of information—what you want to select, and from where you want to
select it.

Retrieving Individual Columns
We start with a simple SQL SELECT statement, as follows:

▼ Input
SELECT prod_name

FROM products;

▼ Analysis
The previous statement uses the SELECT statement to retrieve a single column
called prod_name from the products table. The desired column name is
specified right after the SELECT keyword, and the FROM keyword specifies the
name of the table from which to retrieve the data. The output from this state-
ment is shown in the following:

ptg7041395

222888 Chapter 4 Retrieving Data

▼ Output
+----------------+

| prod_name |

+----------------+

| .5 ton anvil |

| 1 ton anvil |

| 2 ton anvil |

| Oil can |

| Fuses |

| Sling |

| TNT (1 stick) |

| TNT (5 sticks) |

| Bird seed |

| Carrots |

| Safe |

| Detonator |

| JetPack 1000 |

| JetPack 2000 |

+----------------+

Note

Unsorted Data If you tried this query yourself, you might have discovered that the data
was displayed in a different order than shown here. If this is the case, don’t worry—it is
working exactly as it is supposed to. If query results are not explicitly sorted (we get to
that in the next chapter), data will be returned in no order of any significance. It might
be the order in which the data was added to the table, but it might not. As long as your
query returned the same number of rows, then it is working.

A simple SELECT statement like the one just shown returns all the rows in
a table. Data is not filtered (so as to retrieve a subset of the results), nor is it
sorted. We discuss these topics in the next few chapters.

Note

Terminating Statements Multiple SQL statements must be separated by semicolons
(the ; character). MariaDB (like most DBMSs) does not require that a semicolon be
specified after single statements. Of course, you can always add a semicolon if you
want. It’ll do no harm, even if it isn’t needed.

If you are using the mysql command line client, the semicolon is always needed (as
was explained in Chapter 2, “Introducing MariaDB”).

Note

SQL Statements and Case It is important to note that SQL statements are not case
sensitive, so SELECT is the same as select, which is the same as Select. Many
SQL developers find that using uppercase for all SQL keywords and lowercase for col-
umn and table names makes code easier to read and debug.

ptg7041395

29Retrieving Multiple Columns

However, be aware that while the SQL language is not case sensitive, identifiers (the
names of databases, tables, and columns) might be. As a best practice, pick a case
convention, and use it consistently.

Tip

Use of White Space All extra white space within a SQL statement is ignored when that
statement is processed. SQL statements can be specified on one long line or broken up
over many lines. Most SQL developers find that breaking up statements over multiple
lines makes them easier to read and debug.

Retrieving Multiple Columns
To retrieve multiple columns from a table, the same SELECT statement is used.
The only difference is that multiple column names must be specified after the
SELECT keyword, and each column must be separated by a comma.

Tip

Take Care with Commas When selecting multiple columns, be sure to specify a
comma between each column name, but not after the last column name. Doing so gen-
erates an error.

The following SELECT statement retrieves three columns from the products
table:

▼ Input
SELECT prod_id, prod_name, prod_price

FROM products;

▼ Analysis
Just as in the prior example, this statement uses the SELECT statement to
retrieve data from the products table. In this example, three column names
are specified, each separated by a comma. The output from this statement is as
follows:

▼ Output
+---------+----------------+------------+

| prod_id | prod_name | prod_price |

+---------+----------------+------------+

| ANV01 | .5 ton anvil | 5.99 |

| ANV02 | 1 ton anvil | 9.99 |

| ANV03 | 2 ton anvil | 14.99 |

| OL1 | Oil can | 8.99 |

ptg7041395

30 Chapter 4 Retrieving Data

| FU1 | Fuses | 3.42 |

| SLING | Sling | 4.49 |

| TNT1 | TNT (1 stick) | 2.50 |

| TNT2 | TNT (5 sticks) | 10.00 |

| FB | Bird seed | 10.00 |

| FC | Carrots | 2.50 |

| SAFE | Safe | 50.00 |

| DTNTR | Detonator | 13.00 |

| JP1000 | JetPack 1000 | 35.00 |

| JP2000 | JetPack 2000 | 55.00 |

+---------+----------------+------------+

Note

Presentation of Data SQL statements typically return raw, unformatted data. Data
formatting is a presentation issue, not a retrieval issue. Therefore, presentation (for
example, alignment and displaying the price values as currency amounts with the curren-
cy symbol and commas) is typically specified in the application that displays the data.
Actual raw retrieved data (without application-provided formatting) is rarely displayed
as is.

Retrieving All Columns
In addition to being able to specify desired columns (one or more, as seen pre-
viously), SELECT statements can also request all columns without having to list
them individually. This is done using the asterisk (*) wildcard character in lieu
of actual column names, as follows:

▼ Input
SELECT *

FROM products;

▼ Analysis
When a wildcard (*) is specified, all the columns in the table are returned. The
columns are in the order in which the columns appear in the table definition.
However, this cannot be relied on because changes to table schemas (adding
and removing columns, for example) could cause ordering changes .

Caution

Using Wildcards As a rule, you are better off not using the * wildcard unless you really
do need every column in the table. Even though use of wildcards might save you the
time and effort needed to list the desired columns explicitly, retrieving unnecessary
columns usually slows down the performance of your retrieval and your application.

ptg7041395

31Retrieving Distinct Rows

Tip

Retrieving Unknown Columns There is one big advantage to using wildcards. As you
do not explicitly specify column names (because the asterisk retrieves every column), it
is possible to retrieve columns whose names are unknown.

Retrieving Distinct Rows
As you have seen, SELECT returns all matched rows. But what if you do not
want every occurrence of every value? For example, suppose you want the
vendor ID of all vendors with products in your products table:

▼ Input
SELECT vesnd_id

FROM products;

▼ Output
+---------+

| vend_id |

+---------+

| 1001 |

| 1001 |

| 1001 |

| 1002 |

| 1002 |

| 1003 |

| 1003 |

| 1003 |

| 1003 |

| 1003 |

| 1003 |

| 1003 |

| 1005 |

| 1005 |

+---------+

The SELECT statement returned 14 rows (even though only four vendors are
in that list) because 14 products are listed in the products table. So how
could you retrieve a list of distinct values?

The solution is to use the DISTINCT keyword, which, as its name implies,
instructs MariaDB to return only distinct values .

▼ Input
SELECT DISTINCT vend_id

FROM products;

ptg7041395

32 Chapter 4 Retrieving Data

▼ Analysis
SELECT DISTINCT vend_id tells MariaDB to return only distinct (unique)
vend_id rows, and so only four rows are returned, as seen in the following
output. If used, the DISTINCT keyword must be placed directly in front of the
column names .

▼ Output
+---------+

| vend_id |

+---------+

| 1001 |

| 1002 |

| 1003 |

| 1005 |

+---------+

Caution

Can’t Be Partially DISTINCT The DISTINCT keyword applies to all columns, not
just the one it precedes. If you were to specify SELECT DISTINCT vend_id,
prod_price, all rows would be retrieved unless both of the specified columns were
distinct.

Limiting Results
SELECT statements return all matched rows, possibly every row in the specified
table. To return just the first row or rows, use the LIMIT clause. Here is an
example:

▼ Input
SELECT prod_name

FROM products

LIMIT 5;

▼ Analysis
The previous statement uses the SELECT statement to retrieve a single column.
LIMIT 5 instructs MariaDB to return no more than five rows. The output
from this statement is shown in the following:

▼ Output
+----------------+

| prod_name |

+----------------+

ptg7041395

33Limiting Results

| .5 ton anvil |

| 1 ton anvil |

| 2 ton anvil |

| Oil can |

| Fuses |

+----------------+

To get the next five rows, specify both where to start and the number of rows
to retrieve, like this:

▼ Input
SELECT prod_name

FROM products

LIMIT 5,5;

▼ Analysis
LIMIT 5,5 instructs MariaDB to return five rows starting from row 5. The
first number is where to start, and the second is the number of rows to retrieve.
The output from this statement is shown in the following :

▼ Output
+----------------+

| prod_name |

+----------------+

| Sling |

| TNT (1 stick) |

| TNT (5 sticks) |

| Bird seed |

| Carrots |

+----------------+

So, LIMIT with one value specified always starts from the first row, and the
specified number is the number of rows to return. LIMIT with two values
specified can start from wherever that first value tells it to.

Caution

Row 0 The first row retrieved is row 0, not row 1. As such, LIMIT 1,1 retrieves
the second row, not the first one.

Let’s review. Does LIMIT 3,4 mean 3 rows starting from row 4, or 4 rows
starting from row 3? As you just learned, it means 4 rows starting from row 3,
but it is a bit ambiguous. For this reason, MariaDB supports an alternative syn-
tax for LIMIT. LIMIT 4 OFFSET 3 means get 4 rows starting from row 3,

ptg7041395

34 Chapter 4 Retrieving Data

just like LIMIT 3,4. So, the following two statements are functionally identi-
cal, and you can use whichever you are more comfortable with :

▼ Input
SELECT prod_name

FROM products

LIMIT 10,2;

▼ Input
SELECT prod_name

FROM products

LIMIT 2 OFFSET 10;

Note

When There Aren’t Enough Rows The number of rows to retrieve specified in LIMIT
is the maximum number to retrieve. If there aren’t enough rows (for example, you speci-
fied LIMIT 10,5, but there were only 13 rows), MariaDB returns as many as it can.

Using Fully Qualified Table Names
The SQL examples used thus far have referred to columns by just the column
names. It is also possible to refer to columns using fully qualified names (using
both the table and column names). Look at this example:

▼ Input
SELECT products.prod_name

FROM products;

This SQL statement is functionally identical to the first one used in this chap-
ter, but here a fully qualified column name is specified.

Table names, too, may be fully qualified, as seen here:

▼ Input
SELECT products.prod_name

FROM crashcourse.products;

Once again, this statement is functionally identical to the one just used (assum-
ing, of course, that the products table is indeed in the crashcourse
database).

ptg7041395

35Using Comments

There are situations where fully qualified names are required, as we see in later
chapters. For now, it is worth noting this syntax so you know what it is if you
run across it .

Using Comments
As you have seen, SQL statements are instructions processed by MariaDB.
But what if you wanted to include text that you do not want processed and
executed? Why would you ever want to do this? Here are a few reasons:

■ The SQL statements we’ve been using here are all short and simple.
But, as your SQL statements grow (in length and complexity), you’ll
want to include descriptive comments (for your own future reference
or for whoever has to work on the project next). These comments
need to be embedded in the SQL scripts, but they are obviously not
intended for MariaDB processing. (For an example of this, see the
create.sql and populate.sql files used in Appendix B, “The
Example Tables.”)

■ The same is true for headers at the top of SQL files, perhaps contain-
ing the programmer contact information and a description and notes.
(This use case is also seen in the Appendix B .sql files.)

■ Another important use for comments is to temporarily stop SQL code
from being executed. If you were working with a long SQL statement,
and wanted to test just part of it, you could comment out some of the
code so that MariaDB saw it as comments and ignored it.

MariaDB supports several forms of comment syntax. We start with inline
comments:

▼ Input
SELECT prod_name -- this is a comment

FROM products;

▼ Analysis
Comments may be embedded inline using -- (two hyphens). Anything after
the -- is considered comment text, making this a good option for describing
columns in a CREATE TABLE statement, for example .

Here is another form of inline comment:

ptg7041395

36 Chapter 4 Retrieving Data

▼ Input
This is a comment

SELECT prod_name

FROM products;

▼ Analysis
A # at the start of a line makes the entire line a comment. You can see this
format comment used in the accompanying create.sql and populate.sql
scripts.

You can also create multiline comments, and comments that stop and start any-
where within the script:

▼ Input
/* SELECT prod_name, vend_id

FROM products; */

SELECT prod_name

FROM products;

▼ Analysis
/* starts a comment, and */ ends it. Anything between /* and */ is comment
text. This type of comment is often used to comment out code, as seen in this
example. Here, two SELECT statements are defined, but the first won’t execute
because it has been commented out .

Summary
In this chapter, you learned how to use the SQL SELECT statement to retrieve
a single table column, multiple table columns, and all table columns. You also
learned about commenting and saw various ways that comments can be used.
Next you learn how to sort the retrieved data.

ptg7041395

5
Sorting Retrieved Data

In this chapter, you learn how to use the SELECT statement’s ORDER BY clause
to sort retrieved data as needed.

Sorting Data
As you learned in Chapter 4, “Retrieving Data,” the following SQL statement
returns a single column from a database table. But look at the output. The data
appears to be displayed in no particular order at all.

▼ Input
SELECT prod_name

FROM products;

▼ Output
+----------------+

| prod_name |

+----------------+

| .5 ton anvil |

| 1 ton anvil |

| 2 ton an vil |

| Oil can |

| Fuses |

| Sling |

| TNT (1 stick) |

| TNT (5 sticks) |

| Bird seed |

| Carrots |

| Safe |

| Detonator |

| JetPack 1000 |

| JetPack 2000 |

+----------------+

Actually, the retrieved data is not displayed in a mere random order. If
unsorted, data is typically displayed in the order in which it appears in the

ptg7041395

333888 Chapter 5 Sorting Retrieved Data

underlying tables. This could be the order in which the data was added to
the tables initially. However, if data was subsequently updated or deleted, the
order is affected by how MariaDB reuses reclaimed storage space. The end
result is that you cannot (and should not) rely on the sort order if you do not
explicitly control it. Relational database design theory states that the sequence
of retrieved data cannot be assumed to have significance if ordering was not
explicitly specified.

New Term

Clause SQL statements are made up of clauses, some required and some optional.
A clause usually consists of a keyword and supplied data. An example of this is the
SELECT statement’s FROM clause, which you saw in the last chapter.

To explicitly sort data retrieved using a SELECT statement, the ORDER BY
clause is used. ORDER BY takes the name of one or more columns by which to
sort the output. Look at the following example:

▼ Input
SELECT prod_name

FROM products

ORDER BY prod_name;

▼ Analysis
This statement is identical to the earlier statement, except it also specifies an
ORDER BY clause instructing MariaDB to sort the data alphabetically by the
prod_name column. The results are as follows:

▼ Output
+----------------+

| prod_name |

+----------------+

| .5 ton anvil |

| 1 ton anvil |

| 2 ton anvil |

| Bird seed |

| Carrots |

| Detonator |

| Fuses |

| JetPack 1000 |

| JetPack 2000 |

| Oil can |

| Safe |

| Sling |

ptg7041395

39Sorting by Multiple Columns

| TNT (1 stick) |

| TNT (5 sticks) |

+----------------+

Tip

Sorting by Nonselected Columns More often than not, the columns used in an ORDER
BY clause are ones that were selected for display. However, this is actually not required,
and it is perfectly legal to sort data by a column that is not retrieved.

Sorting by Multiple Columns
It is often necessary to sort data by more than one column. For example, if
you are displaying an employee list, you might want to display it sorted by last
name and first name (first sort by last name, and then within each last name sort
by first name). This would be useful if there are multiple employees with the
same last name.

To sort by multiple columns, simply specify the column names separated by
commas (just as you do when you are selecting multiple columns).

The following code retrieves three columns and sorts the results by two of
them—first by price and then by name.

▼ Input
SELECT prod_id, prod_price, prod_name

FROM products

ORDER BY prod_price, prod_name;

▼ Output
+---------+------------+----------------+

| prod_id | prod_price | prod_name |

+---------+------------+----------------+

| FC | 2.50 | Carrots |

| TNT1 | 2.50 | TNT (1 stick) |

| FU1 | 3.42 | Fuses |

| SLING | 4.49 | Sling |

| ANV01 | 5.99 | .5 ton anvil |

| OL1 | 8.99 | Oil can |

| ANV02 | 9.99 | 1 ton anvil |

| FB | 10.00 | Bird seed |

| TNT2 | 10.00 | TNT (5 sticks) |

| DTNTR | 13.00 | Detonator |

| ANV03 | 14.99 | 2 ton anvil |

ptg7041395

40 Chapter 5 Sorting Retrieved Data

| JP1000 | 35.00 | JetPack 1000 |

| SAFE | 50.00 | Safe |

| JP2000 | 55.00 | JetPack 2000 |

+---------+------------+----------------+

It is important to understand that when you are sorting by multiple columns,
the sort sequence is exactly as specified. In other words, using the output in
the previous example, the products are sorted by the prod_name column only
when multiple rows have the same prod_price value. If all the values in the
prod_price column had been unique, no data would have been sorted by
prod_name.

Tip

An ORDER BY Shortcut Instead of type the column names in ORDER BY, you can
also type the column number specifying its sequence in the SELECT statement. This
statement:
SELECT prod_id, prod_price, prod_name

FROM products

ORDER BY prod_price, prod_name;

is functionally identical to this statement:
SELECT prod_id, prod_price, prod_name

FROM products

ORDER BY 2, 3;

Obviously, this syntax can save you some typing. But, keep in mind that if you do use
this shortcut, then your ORDER BY statement will essentially break if you ever make
changes to the SELECT columns .

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (from A to Z). Although
this is the default sort order, the ORDER BY clause can also be used to sort in
descending order (from Z to A). To sort by descending order, the keyword
DESC must be specified.

The following example sorts the products by price in descending order (most
expensive first):

▼ Input
SELECT prod_id, prod_price, prod_name

FROM products

ORDER BY prod_price DESC;

ptg7041395

41Specifying Sort Direction

▼ Output
+---------+------------+----------------+

| prod_id | prod_price | prod_name |

+---------+------------+----------------+

| JP2000 | 55.00 | JetPack 2000 |

| SAFE | 50.00 | Safe |

| JP1000 | 35.00 | JetPack 1000 |

| ANV03 | 14.99 | 2 ton anvil |

| DTNTR | 13.00 | Detonator |

| TNT2 | 10.00 | TNT (5 sticks) |

| FB | 10.00 | Bird seed |

| ANV02 | 9.99 | 1 ton anvil |

| OL1 | 8.99 | Oil can |

| ANV01 | 5.99 | .5 ton anvil |

| SLING | 4.49 | Sling |

| FU1 | 3.42 | Fuses |

| FC | 2.50 | Carrots |

| TNT1 | 2.50 | TNT (1 stick) |

+---------+------------+----------------+

But what if you were to sort by multiple columns? The following example sorts
the products in descending order (most expensive first), plus product name:

▼ Input
SELECT prod_id, prod_price, prod_name

FROM products

ORDER BY prod_price DESC, prod_name;

▼ Output
+---------+------------+----------------+

| prod_id | prod_price | prod_name |

+---------+------------+----------------+

| JP2000 | 55.00 | JetPack 2000 |

| SAFE | 50.00 | Safe |

| JP1000 | 35.00 | JetPack 1000 |

| ANV03 | 14.99 | 2 ton anvil |

| DTNTR | 13.00 | Detonator |

| FB | 10.00 | Bird seed |

| TNT2 | 10.00 | TNT (5 sticks) |

| ANV02 | 9.99 | 1 ton anvil |

| OL1 | 8.99 | Oil can |

| ANV01 | 5.99 | .5 ton anvil |

| SLING | 4.49 | Sling |

| FU1 | 3.42 | Fuses |

| FC | 2.50 | Carrots |

| TNT1 | 2.50 | TNT (1 stick) |

+---------+------------+----------------+

ptg7041395

42 Chapter 5 Sorting Retrieved Data

▼ Analysis
The DESC keyword applies only to the column name that directly precedes it.
In the previous example, DESC was specified for the prod_price column, but
not for the prod_name column. Therefore, the prod_price column is sorted
in descending order, but the prod_name column (within each price) is still
sorted in standard ascending order.

Tip

Sorting Descending on Multiple Columns If you want to sort descending on multiple
columns, be sure each column has its own DESC keyword.

The opposite of DESC is ASC (for ascending), which may be specified to sort in
ascending order. In practice, however, ASC is not usually used because ascend-
ing order is the default sequence (and is assumed if neither ASC nor DESC are
specified).

Tip

Case Sensitivity and Sort Orders When you are sorting textual data, is A the same as
a? And does a come before B or after Z? These are not theoretical questions, and the
answers depend on how the database is set up.

In dictionary sort order, A is treated the same as a, and that is the default behavior in
MariaDB (and indeed most DBMSs). However, administrators can change this behavior if
needed. (If your database contains many foreign language characters, this might become
necessary.)

The key here is that, if you do need an alternate sort order, you cannot accomplish it
with a simple ORDER BY clause. You need to use the CONVERT() function (functions
are introduced in Chapter 11, “Using Data Manipulation Functions”) or contact your data-
base administrator if you need the column character set changed.

Using a combination of ORDER BY and LIMIT, it is possible to find the highest
or lowest value in a column. The following example demonstrates how to find
the value of the most expensive item:

▼ Input
SELECT prod_price

FROM products

ORDER BY prod_price DESC

LIMIT 1;

ptg7041395

43Summary

▼ Output
+------------+

| prod_price |

+------------+

| 55.00 |

+------------+

▼ Analysis
prod_price DESC ensures that rows are retrieved from most to least expen-
sive, and LIMIT 1 tells MariaDB to just return one row .

Caution

Position of ORDER BY Clause When specifying an ORDER BY clause, be sure that
it is after the FROM clause. If LIMIT is used, it must come after ORDER BY. Using
clauses out of order generates an error message.

Summary
In this chapter, you learned how to sort retrieved data using the SELECT state-
ment’s ORDER BY clause. This clause, which must be the last in the SELECT
statement, can be used to sort data on one or more columns as needed.

ptg7041395

This page intentionally left blank

ptg7041395

6
Filtering Data

In this chapter, you learn how to use the SELECT statement’s WHERE clause to
specify search conditions.

Using the WHERE Clause
Database tables usually contain large amounts of data, and you seldom need
to retrieve all the rows in a table. More often than not, you want to extract a
subset of the table’s data as needed for specific operations or reports. Retrieving
just the data you want involves specifying search criteria, also known as a filter
condition.

Within a SELECT statement, data is filtered by specifying search criteria in the
WHERE clause. The WHERE clause is specified right after the table name (the
FROM clause) as follows:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE prod_price = 2.50;

▼ Analysis
This statement retrieves two columns from the products table, but instead of
returning all rows, only rows with a prod_price value of 2.50 are returned,
as follows:

▼ Output
+---------------+------------+

| prod_name | prod_price |

+---------------+------------+

| Carrots | 2.50 |

| TNT (1 stick) | 2.50 |

+---------------+------------+

ptg7041395

46

This example uses a simple equality test: It checks to see whether a column has
a specified value, and it filters the data accordingly. But SQL enables you to do
more than just test for equality.

Tip

SQL Versus Application Filtering Data can also be filtered at the application level. To
do this, the SQL SELECT statement retrieves more data than is actually required for
the client application, and the client code loops through the returned data to extract just
the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized to perform
filtering quickly and efficiently. Making the client application (or development language)
do the database’s job dramatically impacts application performance and creates applica-
tions that cannot scale properly. In addition, if data is filtered at the client, the server
has to send unneeded data across the network connections, resulting in a waste of net-
work bandwidth resources.

Caution

WHERE Clause Position When using both ORDER BY and WHERE clauses, make
sure ORDER BY comes after the WHERE; otherwise, an error will be generated. (See
Chapter 5, “Sorting Retrieved Data,” for more information on using ORDER BY.)

The WHERE Clause Operators
The first WHERE clause we looked at tests for equality—determining whether
a column contains a specific value. MariaDB supports a whole range of condi-
tional operators, some of which are listed in Table 6.1.

Table 6.1 WHERE Clause Operators

Operator Description

= Equality

<> Nonequality

!= Nonequality

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

BETWEEN Between two specified values

Chapter 6 Filtering Data

ptg7041395

47The WHERE Clause Operators

Checking Against a Single Value
We have already seen an example of testing for equality. Here’s one more:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE prod_name = 'fuses';

▼ Output
+-----------+------------+

| prod_name | prod_price |

+-----------+------------+

| Fuses | 3.42 |

+-----------+------------+

▼ Analysis
Checking for WHERE prod_name = 'fuses' returned a single row with a
value of Fuses. By default, MariaDB is not case sensitive when performing
matches, and so fuses and Fuses match.

Now look at a few examples to demonstrate the use of other operators.

This first example lists all products that cost less than 10:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE prod_price < 10;

▼ Output
+---------------+------------+

| prod_name | prod_price |

+---------------+------------+

| .5 ton anvil | 5.99 |

| 1 ton anvil | 9.99 |

| Carrots | 2.50 |

| Fuses | 3.42 |

| Oil can | 8.99 |

| Sling | 4.49 |

| TNT (1 stick) | 2.50 |

+---------------+------------+

This next statement retrieves all products costing 10 or less (resulting in two
additional matches) :

ptg7041395

48 Chapter 6 Filtering Data

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE prod_price <= 10;

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| .5 ton anvil | 5.99 |

| 1 ton anvil | 9.99 |

| Bird seed | 10.00 |

| Carrots | 2.50 |

| Fuses | 3.42 |

| Oil can | 8.99 |

| Sling | 4.49 |

| TNT (1 stick) | 2.50 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

Checking for Nonmatches
This next example lists all products not made by vendor 1003:

▼ Input
SELECT vend_id, prod_name

FROM products

WHERE vend_id <> 1003;

▼ Output
+---------+--------------+

| vend_id | prod_name |

+---------+--------------+

| 1001 | .5 ton anvil |

| 1001 | 1 ton anvil |

| 1001 | 2 ton anvil |

| 1002 | Fuses |

| 1005 | JetPack 1000 |

| 1005 | JetPack 2000 |

| 1002 | Oil can |

+---------+--------------+

ptg7041395

49

Tip

When to Use Quotes If you look closely at the conditions used in the examples’
WHERE clauses, you will notice that some values are enclosed within single quotes
(such as 'fuses' used previously), and others are not. The single quotes are used to
delimit strings. If you are comparing a value against a column that is a string datatype,
the delimiting quotes are required. Quotes are not used to delimit values used with
numeric columns.

The following is the same example, except this one uses the != operator
instead of <>:

▼ Input
SELECT vend_id, prod_name

FROM products

WHERE vend_id != 1003;

Note

!= Versus <> Yes, both <> and != look for nonmatches. != means not equal to, and
<> means less than or greater than (in other words, not equal to). Use whichever you
prefer.

Checking for a Range of Values
To check for a range of values, you can use the BETWEEN operator. Its syntax is
a little different from other WHERE clause operators because it requires two val-
ues: the beginning and end of the range. The BETWEEN operator can be used,
for example, to check for all products that cost between 5 and 10 or for all
dates that fall between specified start and end dates.

The following example demonstrates the use of the BETWEEN operator by
retrieving all products with a price between 5 and 10:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE prod_price BETWEEN 5 AND 10;

The WHERE Clause Operators

ptg7041395

50 Chapter 6 Filtering Data

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| .5 ton anvil | 5.99 |

| 1 ton anvil | 9.99 |

| Bird seed | 10.00 |

| Oil can | 8.99 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

▼ Analysis
As seen in this example, when BETWEEN is used, two values must be
specified—the low end and high end of the desired range. The two values must
also be separated by the AND keyword. BETWEEN matches all the values in the
range, including the specified range start and end values.

Checking for No Value
When a table is created, the table designer can specify whether individual col-
umns can contain no value. When a column contains no value, it is said to
contain a NULL value.

New Term

NULL No value, as opposed to a field containing 0, or an empty string, or just
spaces.

To determine if a value is NULL, you cannot simply check to see if = NULL.
Instead, the SELECT statement has a special WHERE clause that can be used to
check for columns with NULL values—the IS NULL clause. The syntax looks
like this:

▼ Input
SELECT prod_name

FROM products

WHERE prod_price IS NULL;

This statement returns a list of all products that have no price (an empty
prod_price field, not a price of 0), and because there are none, no data is
returned. The customers table, however, does contain columns with NULL
values—the cust_email column contains NULL if a customer has no e-mail
address on file:

ptg7041395

51Summary

▼ Input
SELECT cust_id

FROM customers

WHERE cust_email IS NULL;

▼ Output
+---------+

| cust_id |

+---------+

| 10002 |

| 10005 |

+---------+

Caution

NULL and Nonmatches You might expect that when you filter to select all rows that
do not have a particular value, rows with a NULL will be returned. But they will not.
Because of the special meaning of unknown, the database does not know whether they
match, and so they are not returned when filtering for matches or when filtering for non-
matches.

When filtering data, make sure to verify that the rows with a NULL in the filtered column
are really present in the returned data.

Summary
In this chapter, you learned how to filter returned data using the SELECT state-
ment’s WHERE clause. You learned how to test for equality, nonequality, greater
than and less than, value ranges, and NULL values.

ptg7041395

This page intentionally left blank

ptg7041395

7
Advanced Data Filtering

In this chapter, you learn how to combine WHERE clauses to create powerful and
sophisticated search conditions. You also learn how to use the NOT and IN
operators.

Combining WHERE Clauses
All the WHERE clauses introduced in Chapter 6, “Filtering Data,” filter data
using a single criterion. For a greater degree of filter control, MariaDB allows
you to specify multiple WHERE clauses. These clauses may be used in two ways:
as AND clauses or as OR clauses.

New Term

Operator A special keyword used to join or change clauses within a WHERE clause.
Also known as logical operators.

Using the AND Operator
To filter by more than one column, you use the AND operator to append con-
ditions to your WHERE clause. The following code demonstrates this:

▼ Input
SELECT prod_id, prod_price, prod_name

FROM products

WHERE vend_id = 1003 AND prod_price <= 10;

▼ Analysis
The preceding SQL statement retrieves the product name and price for all
products made by vendor 1003 as long as the price is 10 or less. The WHERE
clause in this SELECT statement is made up of two conditions, and the key-
word AND is used to join them. AND instructs the DBMS to return only rows
that meet all the conditions specified. If a product is made by vendor 1003 but
it costs more than 10, it is not retrieved. Similarly, products that cost less than
10 that are made by a vendor other than the one specified are not retrieved.

ptg7041395

54

The output generated by this SQL statement is as follows:

▼ Output
+---------+------------+----------------+

| prod_id | prod_price | prod_name |

+---------+------------+----------------+

| FB | 10.00 | Bird seed |

| FC | 2.50 | Carrots |

| SLING | 4.49 | Sling |

| TNT1 | 2.50 | TNT (1 stick) |

| TNT2 | 10.00 | TNT (5 sticks) |

+---------+------------+----------------+

New Term

AND A keyword used in a WHERE clause to specify that only rows matching all the
specified conditions should be retrieved.

The example just used contained a single AND clause and was thus made up of
two filter conditions. Additional filter conditions could be used as well, each
separated by an AND keyword.

Note

No ORDER BY Clause Specified In the interests of saving space (and your typing) I
omitted the ORDER BY clause in many of these examples. As such, it is entirely pos-
sible that your output won’t exactly match the output in the book. While the number of
returned rows should always match, their order may not. Of course, feel free to add an
ORDER BY clause if you want; it needs to go after the WHERE clause.

Using the OR Operator
The OR operator is exactly the opposite of AND. The OR operator instructs
MariaDB to retrieve rows that match either condition.

Look at the following SELECT statement:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE vend_id = 1002 OR vend_id = 1003;

▼ Analysis
The preceding SQL statement retrieves the product name and price for any
products made by either of the two specified vendors. The OR operator tells
the DBMS to match either condition, not both. If an AND operator had been
used here, no data would be returned (it would have created a WHERE clause
that could never be matched). The output generated by this SQL statement is
as follows:

Chapter 7 Advanced Data Filtering

ptg7041395

55Combining WHERE Clauses

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| Detonator | 13.00 |

| Bird seed | 10.00 |

| Carrots | 2.50 |

| Fuses | 3.42 |

| Oil can | 8.99 |

| Safe | 50.00 |

| Sling | 4.49 |

| TNT (1 stick) | 2.50 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

New Term

OR A keyword used in a WHERE clause to specify that any rows matching either of the
specified conditions should be retrieved.

Understanding Order of Evaluation
WHERE clauses can contain any number of AND and OR operators. Combining
the two enables you to perform sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. To dem-
onstrate this, look at an example. You need a list of all products costing 10 or
more made by vendors 1002 and 1003. The following SELECT statement uses
a combination of AND and OR operators to build a WHERE clause:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE vend_id = 1002 OR vend_id = 1003 AND prod_price >= 10;

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| Detonator | 13.00 |

| Bird seed | 10.00 |

| Fuses | 3.42 |

| Oil can | 8.99 |

| Safe | 50.00 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

ptg7041395

56 Chapter 7 Advanced Data Filtering

▼ Analysis
Look at the previously listed results. Two of the rows returned have prices less
than 10—so, obviously, the rows were not filtered as intended. Why did this
happen? The answer is the order of evaluation. SQL (like most languages) pro-
cesses AND operators before OR operators. When SQL sees the previous WHERE
clause, it reads products made by vendor 1002 regardless of price, and any products
costing 10 or more made by vendor 1003. In other words, because AND ranks
higher in the order of evaluation, the wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related
operators. Take a look at the following SELECT statement and output:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE (vend_id = 1002 OR vend_id = 1003) AND prod_price >= 10;

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| Detonator | 13.00 |

| Bird seed | 10.00 |

| Safe | 50.00 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

▼ Analysis
The only difference between this SELECT statement and the earlier one is that,
in this statement, the first two WHERE clause conditions are enclosed within
parentheses. As parentheses have a higher order of evaluation than either AND
or OR operators, the DBMS first filters the OR condition within those parenthe-
ses. The SQL statement then becomes any products made by either vendor 1002 or
vendor 1003 costing 10 or greater, which is exactly what you want.

Tip

Using Parentheses in WHERE Clauses Whenever you write WHERE clauses that use
both AND and OR operators, use parentheses to explicitly group operators. Don’t ever
rely on the default evaluation order, even if it is exactly what you want. There is no down-
side to using parentheses, and you are always better off eliminating any ambiguity.

ptg7041395

57Using the IN Operator

Using the IN Operator
Parentheses have another different use in WHERE clauses. The IN operator is
used to specify a range of conditions, any of which can be matched. IN takes a
comma-delimited list of valid values, all enclosed within parentheses. The fol-
lowing example demonstrates this:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE vend_id IN (1002,1003)

ORDER BY prod_name;

▼ Output
+----------------+------------+

| prod_name | prod_price |

+----------------+------------+

| Bird seed | 10.00 |

| Carrots | 2.50 |

| Detonator | 13.00 |

| Fuses | 3.42 |

| Oil can | 8.99 |

| Safe | 50.00 |

| Sling | 4.49 |

| TNT (1 stick) | 2.50 |

| TNT (5 sticks) | 10.00 |

+----------------+------------+

▼ Analysis
The SELECT statement retrieves all products made by vendor 1002 and vendor
1003. The IN operator is followed by a comma-delimited list of valid values,
and the entire list must be enclosed within parentheses.

If you are thinking that the IN operator accomplishes the same goal as OR, you
are right. The following SQL statement accomplishes the exact same thing as
the previous example:

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE vend_id = 1002 OR vend_id = 1003

ORDER BY prod_name;

ptg7041395

58 Chapter 7 Advanced Data Filtering

▼ Output
+---------------------+------------+

| prod_name | prod_price |

+---------------------+------------+

| 12 inch teddy bear | 8.9900 |

| 18 inch teddy bear | 11.9900 |

| 8 inch teddy bear | 5.9900 |

| Bird bean bag toy | 3.4900 |

| Fish bean bag toy | 3.4900 |

| Rabbit bean bag toy | 3.4900 |

| Raggedy Ann | 4.99000 |

+---------------------+------------+

Why use the IN operator? The advantages are

■ When you are working with long lists of valid options, the IN opera-
tor syntax is far cleaner and easier to read.

■ The order of evaluation is easier to manage when IN is used (as there
are fewer operators used).

■ IN operators almost always execute more quickly than lists of OR oper-
ators (although you’ll not see any performance difference with very
short lists like the ones used here).

■ The biggest advantage of IN is that the IN operator can contain
another SELECT statement, enabling you to build highly dynamic
WHERE clauses. We look at this in detail in Chapter 14, “Working with
Subqueries.”

New Term

IN A keyword used in a WHERE clause to specify a list of values to be matched using
an OR comparison.

Using the NOT Operator
The WHERE clause’s NOT operator has one function and one function only—
NOT negates whatever condition comes next.

New Term

NOT A keyword used in a WHERE clause to negate a condition.

The following example demonstrates the use of NOT. To list the products made
by all vendors except vendors 1002 and 1003, you can use the following:

ptg7041395

59Summary

▼ Input
SELECT prod_name, prod_price

FROM products

WHERE vend_id NOT IN (1002,1003)

ORDER BY prod_name;

▼ Output
+--------------+------------+

| prod_name | prod_price |

+--------------+------------+

| .5 ton anvil | 5.99 |

| 1 ton anvil | 9.99 |

| 2 ton anvil | 14.99 |

| JetPack 1000 | 35.00 |

| JetPack 2000 | 55.00 |

+--------------+------------+

▼ Analysis
The NOT here negates the condition that follows it; so instead of matching
vend_id to 1002 or 1003, MariaDB matches vend_id to anything that is
not 1002 or 1003.

So why use NOT? Well, for simple WHERE clauses, there really is no advantage
to using NOT. NOT is useful in more complex clauses. For example, using NOT
in conjunction with an IN operator makes it simple to find all rows that do not
match a list of criteria.

Note

NOT in MariaDB MariaDB supports the use of NOT to negate IN, BETWEEN, and
EXISTS clauses. This is different from most other DBMSs that allow NOT to be used to
negate any conditions.

Summary
This chapter picked up where the last chapter left off and taught you how to
combine WHERE clauses with the AND and OR operators. You also learned how
to explicitly manage the order of evaluation, and how to use the IN and NOT
operators.

ptg7041395

This page intentionally left blank

ptg7041395

8
Using Wildcard Filtering

In this chapter, you learn what wildcards are, how they are used, and how to
perform wildcard searches using the LIKE operator for sophisticated filtering of
retrieved data.

Using the LIKE Operator
All the previous operators we studied filter against known values. Be it match-
ing one or more values, testing for greater-than or less-than known values, or
checking a range of values, the common denominator is that the values used in
the filtering are known. But filtering data that way does not always work. For
example, how could you search for all products that contained the text anvil
within the product name? That cannot be done with simple comparison opera-
tors; that’s a job for wildcard searching. Using wildcards, you can create search
patterns that can be compared against your data. In this example, if you want
to find all products that contain the word anvil, you could construct a wildcard
search pattern enabling you to find that anvil text anywhere within a prod-
uct name.

New Term

Wildcards Special characters used to match parts of a value.

New Term

Search pattern A search condition made up of literal text, wildcard characters, or any
combination of the two.

The wildcards themselves are actually characters that have special meanings
within SQL WHERE clauses, and SQL supports several wildcard types.

To use wildcards in search clauses, the LIKE operator must be used. LIKE
instructs MariaDB that the following search pattern is to be compared using a
wildcard match rather than a straight equality match .

ptg7041395

62

Note

Predicates When is an operator not an operator? When it is a predicate. Technically,
LIKE is a predicate, not an operator. The end result is the same; just be aware of this
term in case you run across it in the MariaDB documentation.

The Percent Sign (%) Wildcard
The most frequently used wildcard is the percent sign (%). Within a search
string, % means match any number of occurrences of any character. For example,
to find all products that start with the word jet, you can issue the following
SELECT statement:

▼ Input
SELECT prod_id, prod_name

FROM products

WHERE prod_name LIKE 'jet%';

▼ Output
+---------+--------------+

| prod_id | prod_name |

+---------+--------------+

| JP1000 | JetPack 1000 |

| JP2000 | JetPack 2000 |

+---------+--------------+

▼ Analysis
This example uses a search pattern of 'jet%'. When this clause is evaluated,
any value that starts with jet is retrieved. The % tells MariaDB to accept any
characters after the word jet, regardless of how many characters there are.

Note

Case-Sensitivity Depending on how the column is defined in MariaDB, searches might
be case-sensitive, in which case 'jet%' would not match JetPack 1000.

Wildcards can be used anywhere within the search pattern, and multiple wild-
cards can be used as well. The following example uses two wildcards, one at
either end of the pattern :

▼ Input
SELECT prod_id, prod_name

FROM products

WHERE prod_name LIKE '%anvil%';

Chapter 8 Using Wildcard Filtering

ptg7041395

63Using the LIKE Operator

▼ Output
+---------+--------------+

| prod_id | prod_name |

+---------+--------------+

| ANV01 | .5 ton anvil |

| ANV02 | 1 ton anvil |

| ANV03 | 2 ton anvil |

+---------+--------------+

▼ Analysis
The search pattern '%anvil%' means match any value that contains the text
anvil anywhere within it, regardless of any characters before or after that text.

Wildcards can also be used in the middle of a search pattern, although that is
rarely useful. The following example finds all products that begin with an s and
end with an e:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name LIKE 's%e';

Tip

Searching For Partial Email Addresses There is one situation in which wildcards may
indeed be useful in the middle of a search pattern, and that is looking for email address-
es based on a partial address, such as WHERE email LIKE 'b%@forta.com'.

It is important to note that, in addition to matching one or more characters, %
also matches zero characters. % represents zero, one, or more characters at the
specified location in the search pattern .

Note

Watch for Trailing Spaces Trailing spaces can interfere with wildcard matching. For
example, if any of the anvils had been saved with one or more spaces after the word
anvil, the clause WHERE prod_name LIKE '%anvil' would not have matched them
as there would have been additional characters after the final l. One simple solution to
this problem is to always append a final % to the search pattern. A better solution is to
trim the spaces using functions, as discussed in Chapter 11, “Using Data Manipulation
Functions.”

Caution

Watch for NULL While it may seem that the % wildcard matches anything, there is one
exception, NULL. Not even the clause WHERE prod_name LIKE '%' will match a row
with the value NULL as the product name.

ptg7041395

64 Chapter 8 Using Wildcard Filtering

The Underscore (_) Wildcard
Another useful wildcard is the underscore (_). The underscore is used just like
%, but instead of matching multiple characters, the underscore matches just a
single character.

Take a look at this example:

▼ Input
SELECT prod_id, prod_name

FROM products

WHERE prod_name LIKE '_ ton anvil';

▼ Output
+---------+-------------+

| prod_id | prod_name |

+---------+-------------+

| ANV02 | 1 ton anvil |

| ANV03 | 2 ton anvil |

+---------+-------------+

▼ Analysis
The search pattern used in this WHERE clause specifies a wildcard followed by
literal text. The results shown are the only rows that match the search pattern:
The underscore matches 1 in the first row and 2 in the second row. The .5
ton anvil product did not match because the search pattern matched a single
character, not two. By contrast, the following SELECT statement uses the %
wildcard and returns three matching products :

▼ Input
SELECT prod_id, prod_name

FROM products

WHERE prod_name LIKE '% ton anvil';

▼ Output
+---------+--------------+

| prod_id | prod_name |

+---------+--------------+

| ANV01 | .5 ton anvil |

| ANV02 | 1 ton anvil |

| ANV03 | 2 ton anvil |

+---------+--------------+

Unlike %, which can match zero characters, _ always matches one character—
no more and no less.

ptg7041395

65Summary

Tips for Using Wildcards
As you can see, MariaDB’s wildcards are powerful. But that power comes with
a price: Wildcard searches typically take far longer to process than any other
search types discussed previously. Here are some tips to keep in mind when
using wildcards:

 ■ Don’t overuse wildcards. If another search operator will do, use it
instead.

 ■ When you do use wildcards, try to not use them at the beginning
of the search pattern unless absolutely necessary. Search patterns that
begin with wildcards are the slowest to process.

 ■ Pay careful attention to the placement of the wildcard symbols. If they
are misplaced, you might not return the data you intended.

Having said that, wildcards are an important and useful search tool and one that
you will use frequently .

Summary
In this chapter, you learned what wildcards are and how to use SQL wildcards
within your WHERE clauses. You also learned that wildcards should be used
carefully and never overused.

ptg7041395

This page intentionally left blank

ptg7041395

9
Searching Using Regular

Expressions

In this chapter, you learn how to use regular expressions within MariaDB WHERE
clauses for greater control over data filtering.

Understanding Regular Expressions
The filtering examples in the previous two chapters enabled you to locate data
using matches, comparisons, and wildcard operators. For basic filtering (and
even some not-so-basic filtering) this might be enough. But as the complex-
ity of filtering conditions grows, so does the complexity of the WHERE clauses
themselves.

And this is where regular expressions become useful. Regular expressions are
part of a special language used to match text. If you needed to extract phone
numbers from a text file, you might use a regular expression. If you needed to
locate all files with digits in the middle of their names, you might use a regular
expression. If you wanted to find all repeated words in a block of text, you
might use a regular expression. And if you wanted to replace all URLs in a
page with actual HTML links to those same URLs, yes, you might use a regu-
lar expression (or two, for this last example).

Regular expressions are supported in all sorts of programming languages, text
editors, operating systems, and more. And savvy programmers and network
managers have long regarded regular expressions as a vital component of their
technical toolboxes.

Regular expressions are created using the regular expression language, a spe-
cialized language designed to do everything that was just discussed and much
more. Like any language, regular expressions have a special syntax and instruc-
tions that you must learn .

ptg7041395

68 Chapter 9 Searching Using Regular Expressions

Note

To Learn More Full coverage of regular expressions is beyond the scope of this
chapter. While the basics are covered here, for a more thorough introduction to regu-
lar expressions you might want to obtain a copy of my Sams Teach Yourself Regular
Expressions in 10 Minutes (ISBN 0672325667).

Using Regular Expressions
So what does this have to do with MariaDB? As already explained, all regular
expressions do is match text, comparing a pattern (the regular expression) with
a string of text. MariaDB provides rudimentary support for regular expressions
with WHERE clauses, allowing you to specify regular expressions that are used to
filter data retrieved using SELECT.

Note

Just a Subset of the Regular Expression Language If you are already familiar with reg-
ular expressions, take note. MariaDB supports only a small subset of what is supported
in most regular expression implementations, and this chapter covers most of what is
supported.

This will all become much clearer with some examples.

Basic Character Matching
We start with a simple example. The following statement retrieves all rows
where column prod_name contains the text 1000:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '1000'

ORDER BY prod_name;

▼ Output
+--------------+

| prod_name |

+--------------+

| JetPack 1000 |

+--------------+

ptg7041395

69Using Regular Expressions

▼ Analysis
This statement looks much like the ones that used LIKE (in Chapter 8, “Using
Wildcard Filtering”), except that the keyword LIKE has been replaced with
REGEXP. This tells MariaDB that what follows is to be treated as a regular
expression (one that just matches the literal text 1000).

So, why bother using a regular expression? Well, in the example just used,
regular expressions really add no value (and probably hurt performance), but
consider this next example :

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '.000'

ORDER BY prod_name;

▼ Output
+--------------+

| prod_name |

+--------------+

| JetPack 1000 |

| JetPack 2000 |

+--------------+

▼ Analysis
Here the regular expression .000 was used. . is a special character in the regu-
lar expression language. It means match any single character, and so both 1000
and 2000 matched and were returned.

Of course, this particular example could also have been accomplished using
LIKE and wildcards (as seen in Chapter 8) .

Note

LIKE Versus REGEXP There is one important difference between LIKE and REGEXP.
Look at these two statements:
SELECT prod_name

FROM products

WHERE prod_name LIKE '1000'

ORDER BY prod_name;

and
SELECT prod_name

FROM products

WHERE prod_name REGEXP '1000'

ORDER BY prod_name;

ptg7041395

70 Chapter 9 Searching Using Regular Expressions

If you were to try them both you’d discover that the first returns no data and the second
returns one row. Why is this?

As seen in Chapter 8, LIKE matches an entire column. If the text to be matched existed
in the middle of a column value, LIKE would not find it and the row would not be
returned (unless wildcard characters were used). REGEXP, on the other hand, looks for
matches within column values, and so if the text to be matched existed in the middle of
a column value, REGEXP would find it and the row would be returned. This is an impor-
tant distinction.

So can REGEXP be used to match entire column values (so that it functions like LIKE)?
Actually, yes, using the ^ and $ anchors, as explained later in this chapter .

Tip

Matches Are Not Case-Sensitive Regular expression matching in MariaDB is not
case-sensitive (either case will be matched). To force case-sensitivity, you can use the
BINARY keyword, as in WHERE prod_name REGEXP BINARY 'JetPack .000'

Performing OR Matches
To search for one of two strings (either one or the other), use | as seen here:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '1000|2000'

ORDER BY prod_name;

▼ Output
+--------------+

| prod_name |

+--------------+

| JetPack 1000 |

| JetPack 2000 |

+--------------+

▼ Analysis
Here the regular expression 1000|2000 was used. | is the regular expres-
sion OR operator. It means match one or the other, and so both 1000 and 2000
matched and were returned.

Using | is functionally similar to using OR statements in SELECT statements,
with multiple OR conditions being consolidated into a single regular expression .

ptg7041395

71Using Regular Expressions

Tip

More than Two OR Conditions More than two OR conditions may be specified. For
example, '1000|2000|3000' would match 1000 or 2000 or 3000.

Matching One of Several Characters
. matches any single character. But what if you wanted to match only specific
characters? You can do this by specifying a set of characters enclosed within [
and], as seen here:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '[123] Ton'

ORDER BY prod_name;

▼ Output
+-------------+

| prod_name |

+-------------+

| 1 ton anvil |

| 2 ton anvil |

+-------------+

▼ Analysis
Here the regular expression [123] Ton was used. [123] defines a set of char-
acters, and here it means match 1 or 2 or 3, so both 1 ton and 2 ton matched
and were returned (there was no 3 ton).

As you have just seen, [] is another form of OR statement. In fact, the regular
expression [123] Ton is shorthand for [1|2|3] Ton, which also would have
worked. But the [] characters are needed to define what the OR statement is
looking for. To better understand this, look at the next example:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '1|2|3 Ton'

ORDER BY prod_name;

ptg7041395

72 Chapter 9 Searching Using Regular Expressions

▼ Output
+---------------+

| prod_name |

+---------------+

| 1 ton anvil |

| 2 ton anvil |

| JetPack 1000 |

| JetPack 2000 |

| TNT (1 stick) |

+---------------+

▼ Analysis
Well, that did not work. The two required rows were retrieved, but so were
three others. This happened because MariaDB assumed that you meant ‘1’ or
‘2’ or ‘3 ton’. The | character applies to the entire string unless it is enclosed
with a set.

Sets of characters can also be negated. That is, they’ll match anything but the
specified characters. To negate a character set, place a ^ at the start of the set.
So, whereas [123] matches characters 1, 2, or 3, [^123] matches anything
but those characters .

Matching Ranges
Sets can be used to define one or more characters to be matched. For example,
the following matches digits 0 through 9:

[0123456789]

To simplify this type of set, - can be used to define a range. The following is
functionally identical to the list of digits just seen:

[0-9]

Ranges are not limited to complete sets—[1-3] and [6-9] are valid ranges,
too. In addition, ranges need not be numeric, and so [a-z] matches any
alphabetical character .

Here is an example:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '[1-5] Ton'

ORDER BY prod_name;

ptg7041395

73Using Regular Expressions

▼ Output
+--------------+

| prod_name |

+--------------+

| .5 ton anvil |

| 1 ton anvil |

| 2 ton anvil |

+--------------+

▼ Analysis
Here the regular expression [1-5] Ton was used. [1-5] defines a range, and
so this expression means match 1 through 5, and so three matches were returned.
.5 ton was returned because 5 ton matched (without the . character) .

Matching Special Characters
The regular expression language is made up of special characters that have spe-
cific meanings. You’ve already seen ., [], |, and -, and there are others, too.
Which begs the question, if you needed to match those characters, how would
you do so? For example, if you wanted to find values that contain the . char-
acter, how would you search for it? Look at this example:

▼ Input
SELECT vend_name

FROM vendors

WHERE vend_name REGEXP '.'

ORDER BY vend_name;

▼ Output
+----------------+

| vend_name |

+----------------+

| ACME |

| Anvils R Us |

| Furball Inc. |

| Jet Set |

| Jouets Et Ours |

| LT Supplies |

+----------------+

▼ Analysis
That did not work. . matches any character, and so every row was retrieved.

ptg7041395

74 Chapter 9 Searching Using Regular Expressions

To match special characters they must be preceded by \\. So, \\- means find
– and \\. means find .

▼ Input
SELECT vend_name

FROM vendors

WHERE vend_name REGEXP '\\.'

ORDER BY vend_name;

▼ Output
+--------------+

| vend_name |

+--------------+

| Furball Inc. |

+--------------+

▼ Analysis
That worked. \\. matches ., and so only a single row was retrieved. This pro-
cess is known as escaping, and all characters that have special significance within
regular expressions must be escaped this way. This includes ., |, [], and all the
other special characters used thus far .

\\ is also used to refer to metacharacters (characters that have specific mean-
ings), as listed in Table 9.1.

Table 9.1 Whitespace Metacharacters

Metacharacter Description
\\f Form feed

\\n Line feed

\\r Carriage return

\\t Tab

\\v Vertical tab

Tip

To Match \ To match the backslash character itself (\), you need to use \\\.

Note

\ or \\? Most regular expression implementations use a single backslash to escape
special characters to be able to use them as literals. MariaDB, however, requires two
backslashes (MariaDB itself interprets one, and the regular expression library interprets
the other).

ptg7041395

75Using Regular Expressions

Matching Character Classes
There are matches that you’ll find yourself using frequently—digits, or all
alphabetical characters, or all alphanumerical characters, and so on. To make
working with these easier, you may use predefined character sets known as
character classes. Table 9.2 lists the character classes and what they mean.

Table 9.2 Character Classes

Class Description
[:alnum:] Any letter or digit, (same as [a-zA-Z0-9])

[:alpha:] Any letter (same as [a-zA-Z])

[:blank:] Space or tab (same as [\\t])

[:cntrl:] ASCII control characters (ASCII 0 through 31 and 127)

[:digit:] Any digit (same as [0-9])

[:graph:] Same as [:print:] but excludes space

[:lower:] Any lowercase letter (same as [a-z])

[:print:] Any printable character

[:punct:] Any character that is neither in [:alnum:] nor [:cntrl:]

[:space:] Any whitespace character including the space (same as
[\\f\\n\\r\\t\\v])

[:upper:] Any uppercase letter (same as [A-Z])

[:xdigit:] Any hexadecimal digit (same as [a-fA-F0-9])

Matching Multiple Instances
All the regular expressions used thus far attempt to match a single occur-
rence. If there is a match, the row is retrieved, and if not, nothing is retrieved.
But sometimes you require greater control over the number of matches. For
example, you might want to locate all numbers regardless of how many digits
the number contains, or you might want to locate a word but also be able to
accommodate a trailing s if one exists, and so on.

This can be accomplished using the regular expressions repetition metacharac-
ters, listed in Table 9.3.

ptg7041395

76 Chapter 9 Searching Using Regular Expressions

Table 9.3 Repetition Metacharacters

Metacharacter Description
* 0 or more matches

+ 1 or more matches (equivalent to {1,})

? 0 or 1 match (equivalent to {0,1})

{n} Specific number of matches

{n,} No less than a specified number of matches

{n,m} Range of matches (m not to exceed 255)

Following are some examples .

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '\\([0-9] sticks?\\)'

ORDER BY prod_name;

▼ Output
+----------------+

| prod_name |

+----------------+

| TNT (1 stick) |

| TNT (5 sticks) |

+----------------+

▼ Analysis
Regular expression \\([0-9] sticks?\\) requires some explanation. \\
(matches (, [0-9] matches any digit (1 and 5 in this example), sticks?
matches stick and sticks (the ? after the s makes that s optional because ?
matches 0 or 1 occurrence of whatever it follows), and \\) matches the closing
). Without ? it would have been difficult to match both stick and sticks.

Here’s another example. This time we try to match four consecutive digits :

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '[[:digit:]]{4}'

ORDER BY prod_name;

ptg7041395

77Using Regular Expressions

▼ Output
+--------------+

| prod_name |

+--------------+

| JetPack 1000 |

| JetPack 2000 |

+--------------+

▼ Analysis
As explained previously, [:digit:] matches any digit, and so [[:digit:]]
is a set of digits. {4} requires exactly four occurrences of whatever it follows
(any digit), and so [[:digit:]]{4} matches any four consecutive digits.

It is worth noting that when using regular expressions there is almost always
more than one way to write a specific expression. The previous example could
have also been written as follows :

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '[0-9][0-9][0-9][0-9]'

ORDER BY prod_name;

Actually, it could also have been written as

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '[0-9]{4}'

ORDER BY prod_name;

Anchors
All the examples thus far have matched text anywhere within a string. To
match text at specific locations, you need to use anchors as listed in Table 9.4.

Table 9.4 Anchor Metacharacters

Metacharacter Description
^ Start of text

$ End of text

[[:<:]] Start of word

[[:>:]] End of word

ptg7041395

78 Chapter 9 Searching Using Regular Expressions

For example, what if you wanted to find all products that started with a num-
ber (including numbers starting with a decimal point)? A simple search for
[0-9\\.] (or [[:digit:]\\.]) would not work because it would find
matches anywhere within the text. The solution is to use the ^ anchor, as
seen here:

▼ Input
SELECT prod_name

FROM products

WHERE prod_name REGEXP '^[0-9\\.]'

ORDER BY prod_name;

▼ Output
+--------------+

| prod_name |

+--------------+

| .5 ton anvil |

| 1 ton anvil |

| 2 ton anvil |

+--------------+

▼ Analysis
^ matches the start of a string. As such, ^[0-9\\.] matches . or any digit
only if they are the first characters within a string. Without the ^, four other
rows would have been retrieved, too (those that have digits in the middle) .

Note

The Dual Purpose ^ ^ has two uses. Within a set (defined using [and]) it is used to
negate that set. Otherwise, it is used to refer to the start of a string.

Note

Making REGEXP Behave like LIKE Earlier in this chapter I mentioned that LIKE and
REGEXP behaved differently in that LIKE matched an entire string and REGEXP matched
substrings, too. Using anchors, REGEXP can be made to behave just like LIKE by simply
starting each expression with ^ and ending it with $.

ptg7041395

79Summary

Tip

Simple Regular Expression Testing You can use SELECT to test regular expressions
without using database tables. REGEXP checks always return 0 (not a match) or 1
(match). You can use REGEXP with literal strings to test expressions and to experiment
with them. The syntax would look like this:
SELECT 'hello' REGEXP '[0-9]';

This example would obviously return 0 (as there are no digits in the text hello).

Summary
In this chapter, you learned the basics of regular expressions and how to use
them in MariaDB SELECT statements via the REGEXP keyword.

ptg7041395

This page intentionally left blank

ptg7041395

10
Creating Calculated Fields

In this chapter, you learn what calculated fields are, how to create them, and how
to use aliases to refer to them from within your application.

Understanding Calculated Fields
Data stored within a database’s tables is often not available in the exact format
needed by your applications. Here are some examples:

■ You need to display a field containing the name of a company along
with the company’s location, but that information is stored in separate
table columns.

■ City, state, and ZIP Code are stored in separate columns (as they
should be), but your mailing label printing program needs them
retrieved as one correctly formatted field.

■ Column data is in mixed upper- and lowercase, and your report needs
all data presented in uppercase.

■ An order items table stores item price and quantity but not the
expanded price (price multiplied by quantity) of each item. To print
invoices, you need that expanded price.

■ You need total, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your
application needs. Rather than retrieve the data as it is and then reformat it
within your client application or report, what you really want is to retrieve
converted, calculated, or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns we retrieved
in the chapters thus far, calculated fields don’t actually exist in database
tables. Rather, a calculated field is created on-the-fly within a SQL SELECT
statement.

ptg7041395

New Term

Field Essentially means the same thing as column and often is used interchangeably,
although database columns are typically called columns and the term fields is normally
used in conjunction with calculated fields.

It is important to note that only the database knows which columns in a
SELECT statement are actual table columns and which are calculated fields.
From the perspective of a client (for example, your application), a calculated
field’s data is returned in the same way as data from any other column.

Tip

Client Versus Server Formatting Many of the conversions and reformatting that can
be performed within SQL statements can also be performed directly in your client appli-
cation. However, as a rule, it is far quicker to perform these operations on the database
server than it is to perform them within the client because DBMSs are built to perform
this type of processing quickly and efficiently.

Concatenating Fields
To demonstrate working with calculated fields, let’s start with a simple
example—creating a title made up of two columns.

The vendors table contains vendor name and address information. Imagine
you are generating a vendor report and need to list the vendor location as part
of the vendor name in the format name (location).

The report wants a single value, and the data in the table is stored in two col-
umns: vend_name and vend_country. In addition, you need to surround
vend_country with parentheses, and those are definitely not stored in the
database table. The SELECT statement that returns the vendor names and loca-
tions is simple enough, but how would you create this combined value?

New Term

Concatenate Joining values together (by appending them to each other) to form a
single long value.

The solution is to concatenate the two columns. In MariaDB SELECT state-
ments, you can concatenate columns using the Concat() function.

Tip

MariaDB Is Different Most DBMSs use operators + or || for concatenation; MariaDB
(like MySQL) uses the Concat() function. Keep this in mind when converting SQL
statements to MariaDB (and MySQL).

82 Chapter 10 Creating Calculated Fields

ptg7041395

83Concatenating Fields

▼ Input
SELECT Concat(vend_name, ' (', vend_country, ')')

FROM vendors

ORDER BY vend_name;

▼ Output
+--+

| Concat(vend_name, ' (', vend_country, ')') |

+--+

| ACME (USA) |

| Anvils R Us (USA) |

| Furball Inc. (USA) |

| Jet Set (England) |

| Jouets Et Ours (France) |

| LT Supplies (USA) |

+--+

▼ Analysis
Concat() concatenates strings, appending them to each other to create one
bigger string. Concat() requires one or more values to be specified, each
separated by commas. The previous SELECT statements concatenate four
elements:

■ The name stored in the vend_name column

■ A string containing a space and an open parenthesis

■ The state stored in the vend_country column

■ A string containing the close parenthesis

As you can see in the output shown previously, the SELECT statement returns
a single column (a calculated field) containing all four of these elements as
one unit.

Back in Chapter 8, “Using Wildcard Filtering,” I mentioned the need to trim
data so as to remove any trailing spaces. This can be done using the MariaDB
RTrim() function, as follows:

▼ Input
SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')

FROM vendors

ORDER BY vend_name;

ptg7041395

84 Chapter 10 Creating Calculated Fields

▼ Analysis
The RTrim() function trims all spaces from the right of a value. By using
RTrim(), the individual columns are all trimmed properly.

Note

The Trim() Functions In addition to RTrim() (which, as just seen, trims the right
side of a string), MariaDB supports the use of LTrim() (which trims the left side of a
string), and Trim() (which trims both the right and left).

Using Aliases
The SELECT statement used to concatenate the address field works well, as seen
in the previous output. But what is the name of this new calculated column?
Well, the truth is, it has no name; it is simply a value. Although this can be fine
if you are just looking at the results in a SQL query tool, an unnamed column
cannot be used within a client application because the client has no way to
refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an
alternative name for a field or value. Aliases are assigned with the AS keyword.
Take a look at the following SELECT statement:

▼ Input
SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')') AS vend_
title

FROM vendors

ORDER BY vend_title;

▼ Output
+-------------------------+

| vend_title |

+-------------------------+

| ACME (USA) |

| Anvils R Us (USA) |

| Furball Inc. (USA) |

| Jet Set (England) |

| Jouets Et Ours (France) |

| LT Supplies (USA) |

+-------------------------+

ptg7041395

85Performing Mathematical Calculations

▼ Analysis
The SELECT statement itself is the same as the one used in the previous code
snippet, except that here the calculated field is followed by the text AS vend_
title. This instructs SQL to create a calculated field named vend_title
containing the results of the specified calculation. As you can see in the output,
the results are the same as before, but the column is now named vend_title
and any client application can refer to this column by name, just as it would
to any actual table column. Indeed, the ORDER BY itself uses the calculated
vend_title.

Tip

Other Uses for Aliases Aliases have other uses, too. Some common uses include
renaming a column if the real table column name contains illegal characters (for exam-
ple, spaces) and expanding column names if the original names are either ambiguous
or easily misread.

Note

Derived Columns Aliases are also sometimes referred to as derived columns, so
regardless of the term you run across, they mean the same thing.

Performing Mathematical Calculations
Another frequent use for calculated fields is performing mathematical calcula-
tions on retrieved data. Let’s take a look at an example. The orders table
contains all orders received, and the orderitems table contains the individual
items within each order. The following SQL statement retrieves all the items
in order number 20005:

▼ Input
SELECT prod_id, quantity, item_price

FROM orderitems

WHERE order_num = 20005;

▼ Output
+---------+----------+------------+

| prod_id | quantity | item_price |

+---------+----------+------------+

| ANV01 | 10 | 5.99 |

| ANV02 | 3 | 9.99 |

| TNT2 | 5 | 10.00 |

| FB | 1 | 10.00 |

+---------+----------+------------+

ptg7041395

86 Chapter 10 Creating Calculated Fields

The item_price column contains the per unit price for each item in an
order. To expand the item price (item price multiplied by quantity ordered),
you simply do the following:

▼ Input
SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM orderitems

WHERE order_num = 20005;

▼ Output
+---------+----------+------------+----------------+

| prod_id | quantity | item_price | expanded_price |

+---------+----------+------------+----------------+

| ANV01 | 10 | 5.99 | 59.90 |

| ANV02 | 3 | 9.99 | 29.97 |

| TNT2 | 5 | 10.00 | 50.00 |

| FB | 1 | 10.00 | 10.00 |

+---------+----------+------------+----------------+

▼ Analysis
The expanded_price column shown in the previous output is a calculated
field; the calculation is simply quantity*item_price. The client application
can now use this new calculated column just as it would any other column.

MariaDB supports the basic mathematical operators listed in Table 10.1. In
addition, parentheses can be used to establish order of precedence. Refer to
Chapter 7, “Advanced Data Filtering,” for an explanation of precedence.

Table 10.1 MariaDB Mathematical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

ptg7041395

87Summary

Tip

How to Test Calculations SELECT provides a great way to test and experiment with
functions and calculations. Although SELECT is usually used to retrieve data from a
table, the FROM clause may be omitted to simply access and work with expressions.
For example, SELECT 3 * 2; would return 6, SELECT Trim(' abc '); would
return abc, and SELECT Now(); uses the Now() function to return the current date
and time. You get the idea—use SELECT to experiment as needed.

Summary
In this chapter, you learned what calculated fields are and how to create them.
We used examples demonstrating the use of calculated fields for both string
concatenation and mathematical operations. In addition, you learned how to
create and use aliases so your application can refer to calculated fields.

ptg7041395

This page intentionally left blank

ptg7041395

11
Using Data Manipulation

Functions

In this chapter, you learn what functions are, what types of functions MariaDB sup-
ports, and how to use these functions.

Understanding Functions
Like almost any other computer language, SQL supports the use of functions
to manipulate data. Functions are operations usually performed on data, usually
to facilitate conversion and manipulation.

An example of a function is the RTrim() that we used in the last chapter to
trim any spaces from the end of a string.

Note

Functions Are Less Portable Than SQL Code that runs on multiple systems is said to
be portable. Most SQL statements are relatively portable, and when differences between
SQL implementations do occur they are usually not that difficult to deal with. Functions,
on the other hand, tend to be far less portable. Just about every major DBMS supports
functions that others don’t, and sometimes the differences are significant.

With code portability in mind, many SQL programmers opt not to use any implementa-
tion-specific features. Although this is a somewhat noble and idealistic view, it is not
always in the best interests of application performance. If you opt not to use these
functions, you make your application code work harder. It must use other methods to do
what the DBMS could have done more efficiently.

If you do decide to use functions, make sure you comment your code well, so that at a
later date you (or another developer) will know exactly to which SQL implementation you
were writing. Code commenting was introduced back in Chapter 4, “Retrieving Data.”

ptg7041395

90 Chapter 11 Using Data Manipulation Functions

Using Functions
Most SQL implementations support the following types of functions:

■ Text functions are used to manipulate strings of text (for example,
trimming or padding values and converting values to upper- and
lowercase).

■ Numeric functions are used to perform mathematical operations on
numeric data (for example, returning absolute numbers and performing
algebraic calculations).

■ Date and time functions are used to manipulate date and time values
and to extract specific components from these values (for example,
returning differences between dates and checking date validity).

■ System functions return information specific to the DBMS being used
(for example, returning user login information or checking version
specifics).

Text Manipulation Functions
You’ve already seen an example of text-manipulation functions in the last
chapter—the RTrim() function was used to trim white space from the end
of a column value. Here is another example, this time using the Upper()
function:

▼ Input
SELECT vend_name, UPPER(vend_name) AS vend_name_upcase

FROM vendors

ORDER BY vend_name;

▼ Output
+----------------+------------------+

| vend_name | vend_name_upcase |

+----------------+------------------+

| ACME | ACME |

| Anvils R Us | ANVILS R US |

| Furball Inc. | FURBALL INC. |

| Jet Set | JET SET |

| Jouets Et Ours | JOUETS ET OURS |

| LT Supplies | LT SUPPLIES |

+----------------+------------------+

ptg7041395

91Using Functions

▼ Analysis
As you can see, Upper() converts text to uppercase and so in this example
each vendor is listed twice, first exactly as stored in the vendors table, and
then converted to uppercase as column vend_name_upcase.

Table 11.1 lists some commonly used text-manipulation functions.

Table 11.1 Commonly Used Text-Manipulation Functions

Function Description
Left() Returns characters from left of string

Length() Returns the length of a string

Locate() Finds a substring within a string

Lower() Converts string to lowercase

LTrim() Trims white space from left of string

Right() Returns characters from right of string

RTrim() Trims white space from right of string

Soundex() Returns a string’s SOUNDEX value

SubString() Returns characters from within a string

Upper() Converts string to uppercase

One item in Table 11.1 requires further explanation. SOUNDEX is an algo-
rithm that converts any string of text into an alphanumeric pattern describing
the phonetic representation of that text. SOUNDEX takes into account similar
sounding characters and syllables, enabling strings to be compared by how they
sound rather than how they have been typed. Although SOUNDEX is not a
SQL concept, MariaDB (like many other DBMSs) offers SOUNDEX support.

Here’s an example using the Soundex() function. Customer Coyote Inc.
is in the customers table and has a contact named Y. Lee. But what if that
were a typo, and the contact actually was supposed to have been Y. Lie?
Obviously, searching by the correct contact name would return no data, as
shown here :

▼ Input
SELECT cust_name, cust_contact

FROM customers

WHERE cust_contact = 'Y. Lie';

▼ Output
+-------------+--------------+

| cust_name | cust_contact |

+-------------+--------------+

ptg7041395

92 Chapter 11 Using Data Manipulation Functions

Now try the same search using the Soundex() function to match all contact
names that sound similar to Y. Lie:

▼ Input
SELECT cust_name, cust_contact

FROM customers

WHERE Soundex(cust_contact) = Soundex('Y Lie');

▼ Output
+-------------+--------------+

| cust_name | cust_contact |

+-------------+--------------+

| Coyote Inc. | Y Lee |

+-------------+--------------+

▼ Analysis
In this example, the WHERE clause uses the Soundex() function to con-
vert both the cust_contact column value and the search string to their
SOUNDEX values. Because Y. Lee and Y. Lie sound alike, their
SOUNDEX values match, and so the WHERE clause correctly filtered the
desired data .

Date and Time Manipulation Functions
Date and times are stored in tables using special datatypes using special internal
formats so they may be sorted or filtered quickly and efficiently, as well as to
save physical storage space.

The format used to store dates and times is usually of no use to your applica-
tions, and so date and time functions are almost always used to read, expand,
and manipulate these values. Because of this, date and time manipulation func-
tions are some of the most important functions in the MariaDB SQL language.

Table 11.2 lists some commonly used date and time manipulation functions.

Table 11.2 Commonly Used Date and Time Manipulation Functions

Function Description
AddDate() Add to a date (days, weeks, and so on)

AddTime() Add to a time (hours, minutes, and so on)

CurDate() Returns the current date

CurTime() Returns the current time

Date() Returns the date portion of a date time

DateDiff() Calculates the difference between two dates

ptg7041395

93Using Functions

Table 11.2 Continued

Function Description
Date_Add() Highly flexible date arithmetic function

Date_Format() Returns a formatted date or time string

Day() Returns the day portion of a date

DayOfWeek() Returns the day of week for a date

Hour() Returns the hour portion of a time

Minute() Returns the minute portion of a time

Month() Returns the month portion of a date

Now() Returns the current date and time

Second() Returns the second portion of a time

Time() Returns the time portion of a date time

Year() Returns the year portion of a date

This would be a good time to revisit data filtering using WHERE. Thus far we
have filtered data using WHERE clauses that compared numbers and text, but
frequently data needs to be filtered by date. Filtering by date requires some
extra care and the use of special MariaDB SQL functions.

The first thing to keep in mind is the date format used by MariaDB. Whenever
you specify a date, be it inserting or updating table values, or filtering using
WHERE clauses, the date must be in the format yyyy-mm-dd. So, for September
1st, 2011, specify 2011-09-01. Although other date formats might be recog-
nized, this is the preferred date format because it eliminates ambiguity (after all,
is 04/05/06 May 4th 2006, or April 5th 2006, or May 6th 2004, or… you get
the idea) .

Tip

Always Use Four-Digit Years Two-digit years are supported, and MariaDB treats years
00-69 as 2000-2069 and 70-99 as 1970-1999. While these might in fact be the
intended years, it is far safer to always use a full four-digit year so MariaDB does not
have to make any assumptions for you.

As such, a basic date comparison should be simple enough:

▼ Input
SELECT cust_id, order_num

FROM orders

WHERE order_date = '2011-09-01';

ptg7041395

94 Chapter 11 Using Data Manipulation Functions

▼ Output
+---------+-----------+

| cust_id | order_num |

+---------+-----------+

| 10001 | 20005 |

+---------+-----------+

▼ Analysis
That SELECT statement worked; it retrieved a single order record, one with an
order_date of 2011-09-01.

But is using WHERE order_date = '2011-09-01' safe? order_date has
a datatype of datetime. This type stores dates along with time values. The values
in our example tables all have times of 00:00:00, but that might not always
be the case. What if order dates were stored using the current date and time (so
you’d not only know the order date but also the time of day that the order was
placed)? Then WHERE order_date = '2011-09-01' fails if, for example,
the stored order_date value is 2011-09-01 11:30:05. Even though a row
with that date is present, it is not retrieved because the WHERE match failed.

The solution is to instruct MariaDB to only compare the specified date to the
date portion of the column instead of using the entire column value. To do this
you must use the Date() function. Date(order_date) instructs MariaDB
to extract just the date part of the column, and so a safer SELECT statement is

▼ Input
SELECT cust_id, order_num

FROM orders

WHERE Date(order_date) = '2011-09-01';

Tip

If You Mean Date Use Date() It’s a good practice to use Date() if what you
want is just the date, even if you know that the column only contains dates. This way, if
somehow a date time value ends up in the table in the future, your SQL won’t break. Oh,
and yes, there is a Time() function, too, and it should be used when you want
the time.

Now that you know how to use dates to test for equality, using all the
other operators (introduced in Chapter 6, “Filtering Data”) should be self-
explanatory.

ptg7041395

95Using Functions

But one other type of date comparison warrants explanation. What if you
wanted to retrieve all orders placed in September 2011? A simple equality test
does not work as it matches the day of the month, too. There are several solu-
tions, one of which follows :

▼ Input
SELECT cust_id, order_num

FROM orders

WHERE Date(order_date) BETWEEN '2011-09-01' AND '2011-09-30';

▼ Output
+---------+-----------+

| cust_id | order_num |

+---------+-----------+

| 10001 | 20005 |

| 10003 | 20006 |

| 10004 | 20007 |

+---------+-----------+

▼ Analysis
Here a BETWEEN operator is used to define 2011-09-01 and 2011-09-30 as
the range of dates to match .

Here’s another solution (one that won’t require you to remember how many
days are in each month, or worry about February in leap years):

▼ Input
SELECT cust_id, order_num

FROM orders

WHERE Year(order_date) = 2011 AND Month(order_date) = 9;

▼ Analysis
Year() is a function that returns the year from a date (or a date time).
Similarly, Month() returns the month from a date. WHERE Year(order_
date) = 2011 AND Month(order_date) = 9 thus retrieves all rows that
have an order_date in year 2011 and in month 9.

Note

Support For Microseconds MariaDB 5.3 adds support for microseconds when working
with date and time values.

ptg7041395

96 Chapter 11 Using Data Manipulation Functions

Numeric Manipulation Functions
Numeric manipulation functions do just that—manipulate numeric data. These
functions tend to be used primarily for algebraic, trigonometric, or geometric
calculations and, therefore, are not as frequently used as string or date and time
manipulation functions.

The ironic thing is that of all the functions found in the major DBMSs, the
numeric functions are the ones that are most uniform and consistent. Table
11.3 lists some of the more commonly used numeric manipulation functions.

Table 11.3 Commonly Used Numeric Manipulation Functions

Function Description
Abs() Returns a number’s absolute value

Cos() Returns the trigonometric cosine of a specified angle

Exp() Returns the exponential value of a specific number

Mod() Returns the remainder of a division operation

Pi() Returns the value of pi

Rand() Returns a random number

Sin() Returns the trigonometric sine of a specified angle

Sqrt() Returns the square root of a specified number

Tan() Returns the trigonometric tangent of a specified angle

Summary
In this chapter, you learned how to use SQL’s data manipulation functions and
paid special attention to working with dates.

ptg7041395

12
Summarizing Data

In this chapter, you learn what the SQL aggregate functions are and how to use
them to summarize table data.

Using Aggregate Functions
It is often necessary to summarize data without actually retrieving it all, and
MariaDB provides special functions for this purpose. Using these functions,
MariaDB queries are often used to retrieve data for analysis and reporting pur-
poses. Examples of this type of retrieval are

■ Determining the number of rows in a table (or the number of rows
that meet some condition or contain a specific value)

■ Obtaining the sum of a group of rows in a table

■ Finding the highest, lowest, and average values in a table column
(either for all rows or for specific rows)

In each of these examples, you want a summary of the data in a table, not the
actual data itself. Therefore, returning the actual table data would be a waste of
time and processing resources (not to mention bandwidth). To repeat, all you
really want is the summary information.

To facilitate this type of retrieval, MariaDB features a set of aggregate func-
tions, some of which are listed in Table 12.1. These functions enable you to
perform all the types of retrieval just enumerated.

Note

Aggregate functions Functions that operate on a set of rows to calculate and return a
single value.

ptg7041395

98 Chapter 12 Summarizing Data

Table 12.1 SQL Aggregate Functions

Function Description
AVG() Returns a column’s average value

COUNT() Returns the number of rows in a column

MAX() Returns a column’s highest value

MIN() Returns a column’s lowest value

SUM() Returns the sum of a column’s values

The use of each of these functions is explained in the following sections.

Note

Standard Deviation A series of standard deviation aggregate functions are also sup-
ported by MariaDB but are not covered in the chapters.

The AVG() Function
AVG() is used to return the average value of a specific column by counting both
the number of rows in the table and the sum of their values. AVG() can be used
to return the average value of all columns or of specific columns or rows.

This first example uses AVG() to return the average price of all the products in
the products table:

▼ Input
SELECT AVG(prod_price) AS avg_price

FROM products;

▼ Output
+-----------+

| avg_price |

+-----------+

| 16.133571 |

+-----------+

▼ Analysis
The previous SELECT statement returns a single value, avg_price, that contains
the average price of all products in the products table. avg_price is an alias as
explained in Chapter 10, “Creating Calculated Fields.”

AVG() can also be used to determine the average value of specific columns or
rows. The following example returns the average price of products offered by a
specific vendor:

ptg7041395

99Using Aggregate Functions

▼ Input
SELECT AVG(prod_price) AS avg_price

FROM products

WHERE vend_id = 1003;

▼ Output
+-----------+

| avg_price |

+-----------+

| 13.212857 |

+-----------+

▼ Analysis
This SELECT statement differs from the previous one only in that this one con-
tains a WHERE clause. The WHERE clause filters only products with a vend_id of
1003, and, therefore, the value returned in avg_price is the average of just that
vendor’s products.

Caution

Individual Columns Only AVG() may only be used to determine the average of a spe-
cific numeric column, and that column name must be specified as the function param-
eter. To obtain the average value of multiple columns, multiple AVG() functions must
be used.

Note

NULL Values Column rows containing NULL values are ignored by the AVG()
function.

The COUNT() Function
COUNT() does just that: It counts. Using COUNT(), you can determine the num-
ber of rows in a table or the number of rows that match a specific criterion.

COUNT() can be used two ways:

■ Use COUNT(*) to count the number of rows in a table, whether col-
umns contain values or NULL values.

■ Use COUNT(column) to count the number of rows that have values in a
specific column, ignoring NULL values.

This first example returns the total number of customers in the customers table:

ptg7041395

100 Chapter 12 Summarizing Data

▼ Input
SELECT COUNT(*) AS num_cust

FROM customers;

▼ Output
+----------+

| num_cust |

+----------+

| 5 |

+----------+

▼ Analysis
In this example, COUNT(*) is used to count all rows, regardless of values. The
count is returned in num_cust.

The following example counts just the customers with an e-mail address:

▼ Input
SELECT COUNT(cust_email) AS num_cust

FROM customers;

▼ Output
+----------+

| num_cust |

+----------+

| 3 |

+----------+

▼ Analysis
This SELECT statement uses COUNT(cust_email) to count only rows with a value
in the cust_email column. In this example, cust_email is 3 (meaning that only
three of the five customers have e-mail addresses).

Note

NULL Values Column rows with NULL values in them are ignored by the COUNT()

function if a column name is specified, but not if the asterisk (*) is used.

The MAX() Function
MAX() returns the highest value in a specified column. MAX() requires that the
column name be specified, as seen here:

ptg7041395

101Using Aggregate Functions

▼ Input
SELECT MAX(prod_price) AS max_price

FROM products;

▼ Output
+-----------+

| max_price |

+-----------+

| 55.00 |

+-----------+

▼ Analysis
Here MAX() returns the price of the most expensive.

Tip

Using MAX() with Non-Numeric Data Although MAX() is usually used to find the
highest numeric or date values, MariaDB allows it to be used to return the highest value
in any column including textual columns. When used with textual data, MAX() returns
the row that would be the last if the data were sorted by that column.

Note

NULL Values Column rows with NULL values in them are ignored by the MAX()
function.

The MIN() Function
MIN() does the exact opposite of MAX(); it returns the lowest value in a speci-
fied column. Like MAX(), MIN() requires that the column name be specified, as
seen here:

▼ Input
SELECT MIN(prod_price) AS min_price

FROM products;

▼ Output
+-----------+

| min_price |

+-----------+

| 2.50 |

+-----------+

ptg7041395

102 Chapter 12 Summarizing Data

▼ Analysis
Here MIN() returns the price of the least expensive item in the products table.

Tip

Using MIN() with Non-Numeric Data As with the MAX() function, MariaDB allows
MIN() to be used to return the lowest value in any columns including textual columns.
When used with textual data, MIN() returns the row that would be first if the data were
sorted by that column.

Note

NULL Values Column rows with NULL values in them are ignored by the MIN()
function.

The SUM() Function
SUM() is used to return the sum (total) of the values in a specific column.

Here is an example to demonstrate this. The orderitems table contains the
actual items in an order, and each item has an associated quantity. The total
number of items ordered (the sum of all the quantity values) can be retrieved
as follows:

▼ Input
SELECT SUM(quantity) AS items_ordered

FROM orderitems

WHERE order_num = 20005;

▼ Output
+---------------+

| items_ordered |

+---------------+

| 19 |

+---------------+

▼ Analysis
The function SUM(quantity) returns the sum of all the item quantities in an
order, and the WHERE clause ensures that just the right order items are included.

SUM() can also be used to total calculated values. In this next example the total
order amount is retrieved by totaling item_price*quantity for each item:

ptg7041395

103Aggregates on Distinct Values

▼ Input
SELECT SUM(item_price*quantity) AS total_price

FROM orderitems

WHERE order_num = 20005;

▼ Output
+-------------+

| total_price |

+-------------+

| 149.87 |

+-------------+

▼ Analysis
The function SUM(item_price*quantity) returns the sum of all the expanded
prices in an order, and again the WHERE clause ensures that just the correct order
items are included.

Tip

Performing Calculations on Multiple Columns All the aggregate functions can be used
to perform calculations on multiple columns using the standard mathematical operators,
as shown in the example.

Note

NULL Values Column rows with NULL values in them are ignored by the SUM()
function.

Aggregates on Distinct Values
The five aggregate functions can all be used in two ways:

■ To perform calculations on all rows, specify the ALL argument, or
specify no argument at all (because ALL is the default behavior).

■ To only include unique values, specify the DISTINCT argument.

Tip

ALL Is Default The ALL argument need not be specified because it is the default

behavior. If DISTINCT is not specified, ALL is assumed.

ptg7041395

104 Chapter 12 Summarizing Data

The following example uses the AVG() function to return the average product
price offered by a specific vendor. It is the same SELECT statement used in the
previous example, but here the DISTINCT argument is used so the average only
takes into account unique prices:

▼ Input
SELECT AVG(DISTINCT prod_price) AS avg_price

FROM products

WHERE vend_id = 1003;

▼ Output
+-----------+

| avg_price |

+-----------+

| 15.998000 |

+-----------+

▼ Analysis
As you can see, in this example avg_price is higher when DISTINCT is used
because there are multiple items with the same lower price. Excluding them
raises the average price .

Caution

Using DISTINCT With COUNT() DISTINCT may only be used with COUNT() if
a column name is specified. DISTINCT may not be used with COUNT(*), and so
COUNT(DISTINCT *) is not allowed and generates an error. Similarly, DISTINCT
must be used with a column name and not with a calculation or expression.

Tip

Using DISTINCT with MIN() and MAX() Although DISTINCT can technically
be used with MIN() and MAX(), there is actually no value in doing so. The minimum
and maximum values in a column are the same whether or not only distinct values are
included.

Combining Aggregate Functions
All the examples of aggregate functions used thus far have involved a single
function. But actually, SELECT statements may contain as few or as many aggre-
gate functions as needed. Look at this example:

ptg7041395

105Summary

▼ Input
SELECT COUNT(*) AS num_items,

 MIN(prod_price) AS price_min,

 MAX(prod_price) AS price_max,

 AVG(prod_price) AS price_avg

FROM products;

▼ Output
+-----------+-----------+-----------+-----------+

| num_items | price_min | price_max | price_avg |

+-----------+-----------+-----------+-----------+

| 14 | 2.50 | 55.00 | 16.133571 |

+-----------+-----------+-----------+-----------+

▼ Analysis
Here a single SELECT statement performs four aggregate calculations in one step
and returns four values (the number of items in the products table; and the
highest, lowest, and average product prices).

Tip

Naming Aliases When specifying alias names to contain the results of an aggregate
function, try not to use the name of an actual column in the table. Although there is
nothing actually illegal about doing so, using unique names makes your SQL easier to
understand and work with (and troubleshoot in the future).

Summary
Aggregate functions are used to summarize data. MariaDB supports a range of
aggregate functions, all of which can be used in multiple ways to return just the
results you need. These functions are designed to be highly efficient, and they
usually return results far more quickly than you could calculate them yourself
within your own client application.

ptg7041395

This page intentionally left blank

ptg7041395

13
Grouping Data

In this chapter, you learn how to group data so you can summarize subsets of table
contents. This involves two new SELECT statement clauses: the GROUP BY clause
and the HAVING clause.

Understanding Data Grouping
In the last chapter, you learned that the SQL aggregate functions can be used
to summarize data. This enables you to count rows, calculate sums and aver-
ages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far were performed on all the data in a table or on data
that matched a specific WHERE clause. As a reminder, the following example
returns the number of products offered by vendor 1003:

▼ Input
SELECT COUNT(*) AS num_prods

FROM products

WHERE vend_id = 1003;

▼ Output
+-----------+

| num_prods |

+-----------+

| 7 |

+-----------+

But what if you want to return the number of products offered by each ven-
dor? Or products offered by vendors who offer a single product, or only those
who offer more than ten products?

This is where groups come into play. Grouping enables you to divide data into
logical sets so you can perform aggregate calculations on each group .

ptg7041395

108 Chapter 13 Grouping Data

Creating Groups
Groups are created using the GROUP BY clause in your SELECT statement. The
best way to understand this is to look at an example:

▼ Input
SELECT vend_id, COUNT(*) AS num_prods

FROM products

GROUP BY vend_id;

▼ Output
+---------+-----------+

| vend_id | num_prods |

+---------+-----------+

| 1001 | 3 |

| 1002 | 2 |

| 1003 | 7 |

| 1005 | 2 |

+---------+-----------+

▼ Analysis
The previous SELECT statement specifies two columns, vend_id, which contains
the ID of a product’s vendor, and num_prods, which is a calculated field (cre-
ated using the COUNT(*) function). The GROUP BY clause instructs MariaDB to
sort the data and group it by vend_id. This causes num_prods to be calculated
once per vend_id rather than once for the entire table. As you can see in the
output, vendor 1001 has 3 products listed, vendor 1002 has 2 products listed,
vendor 1003 has 7 products listed, and vendor 1005 has 2 products listed.

Because you used GROUP BY, you did not have to specify each group to be
evaluated and calculated. That was done automatically. The GROUP BY clause
instructs MariaDB to group the data and then perform the aggregate on each
group rather than on the entire result set.

Before you use GROUP BY, here are some important rules about its use that you
need to know:

■ GROUP BY clauses can contain as many columns as you want. This
enables you to nest groups, providing you with more granular control
over how data is grouped.

■ If you have nested groups in your GROUP BY clause, data is summarized
at the last specified group. In other words, all the columns specified are
evaluated together when grouping is established (so you won’t get data
back for each individual column level).

ptg7041395

109Filtering Groups

■ Every column listed in GROUP BY must be a retrieved column or a valid
expression (but not an aggregate function). If an expression is used in
the SELECT, that same expression must be specified in GROUP BY. Aliases
cannot be used.

■ Aside from the aggregate calculations statements, every column in your
SELECT statement should be present in the GROUP BY clause.

■ If the grouping column contains a row with a NULL value, NULL will be
returned as a group. If there are multiple rows with NULL values, they’ll
all be grouped together.

■ The GROUP BY clause must come after any WHERE clause and before any
ORDER BY clause.

Tip

Using ROLLUP To obtain values at each group and at a summary level (for each group),
use the WITH ROLLUP keyword, as seen here:

SELECT vend_id, COUNT(*) AS num_prods
FROM products

GROUP BY vend_id WITH ROLLUP;

Filtering Groups
In addition to being able to group data using GROUP BY, MariaDB also allows
you to filter which groups to include and which to exclude. For example, you
might want a list of all customers who have made at least two orders. To obtain
this data you must filter based on the complete group, not on individual rows.

You’ve already seen the WHERE clause in action (introduced back in Chapter 6,
“Filtering Data.”) But WHERE does not work here because WHERE filters specific
rows, not groups. As a matter of fact, WHERE has no idea what a group is.

So what do you use instead of WHERE? MariaDB provides yet another clause
for this purpose: the HAVING clause. HAVING is similar to WHERE. In fact, all types
of WHERE clauses you learned about thus far can also be used with HAVING. The
only difference is that WHERE filters rows and HAVING filters groups.

Tip

HAVING Supports All of WHERE’s Operators In Chapter 6 and Chapter 7,
“Advanced Data Filtering,” you learned about WHERE clause conditions (including wild-
card conditions and clauses with multiple operators). All the techniques and options
you learned about WHERE can be applied to HAVING. The syntax is identical; just the
keyword is different.

ptg7041395

110 Chapter 13 Grouping Data

So how do you filter rows? Look at the following example:

▼ Input
SELECT cust_id, COUNT(*) AS orders

FROM orders

GROUP BY cust_id

HAVING COUNT(*) >= 2;

▼ Output
+---------+--------+

| cust_id | orders |

+---------+--------+

| 10001 | 2 |

+---------+--------+

▼ Analysis
The first three lines of this SELECT statement are similar to the statements seen
previously. The final line adds a HAVING clause that filters on those groups with
a COUNT(*) >= 2—two or more orders.

As you can see, a WHERE clause does not work here because the filtering is based
on the group aggregate value, not on the values of specific rows.

Note

The Difference Between HAVING and WHERE Here’s another way to look at it: WHERE
filters before data is grouped, and HAVING filters after data is grouped. This is an impor-
tant distinction; rows that are eliminated by a WHERE clause are not included in the
group. This could change the calculated values, which in turn could affect which groups
are filtered based on the use of those values in the HAVING clause.

So is there ever a need to use both WHERE and HAVING clauses in one statement?
Actually, yes, there is. Suppose you want to further filter the previous state-
ment so it returns any customers who placed two or more orders in the past 12
months. To do that, you can add a WHERE clause that filters out just the orders
placed in the past 12 months. You then add a HAVING clause to filter just the
groups with two or more rows in them.

To better demonstrate this, look at the following example that lists all vendors
who have 2 or more products priced at 10 or more:

ptg7041395

111Filtering Groups

▼ Input
SELECT vend_id, COUNT(*) AS num_prods

FROM products

WHERE prod_price >= 10

GROUP BY vend_id

HAVING COUNT(*) >= 2;

▼ Output
+---------+-----------+

| vend_id | num_prods |

+---------+-----------+

| 1003 | 4 |

| 1005 | 2 |

+---------+-----------+

▼ Analysis
This statement warrants an explanation. The first line is a basic SELECT using an
aggregate function—much like the examples thus far. The WHERE clause filters
all rows with a prod_price of at least 10. Data is then grouped by vend_id,
and then a HAVING clause filters just those groups with a count of 2 or more.
Without the WHERE clause two extra rows would have been retrieved (vendor
1002 that only sells products all priced under 10, and vendor 1001 that sells
three products but only one of them is priced greater or equal to 10) as
seen here:

▼ Input
SELECT vend_id, COUNT(*) AS num_prods

FROM products

GROUP BY vend_id

HAVING COUNT(*) >= 2;

▼ Output
+---------+-----------+

| vend_id | num_prods |

+---------+-----------+

| 1001 | 3 |

| 1002 | 2 |

| 1003 | 7 |

| 1005 | 2 |

+---------+-----------+

ptg7041395

112 Chapter 13 Grouping Data

Grouping and Sorting
It is important to understand that GROUP BY and ORDER BY are different, even
though they often accomplish the same thing. Table 13.1 summarizes the dif-
ferences between them.

Table 13.1 ORDER BY Versus GROUP BY

ORDER BY GROUP BY
Sorts generated output. Groups rows. The output might not be in group order,

however.

Any columns (even columns Only selected columns or expressions columns
not selected) may be used. may be used, and every selected column expression

must be used.

Never required. Required if using columns (or expressions) with
aggregate functions.

The first difference listed in Table 13.1 is extremely important. More often
than not, you will find that data grouped using GROUP BY will indeed be output
in group order. But that is not always the case, and it is not actually required by
the SQL specifications. Furthermore, you might actually want it sorted differ-
ently than it is grouped. Just because you group data one way (to obtain group-
specific aggregate values) does not mean that you want the output sorted that
same way. You should always provide an explicit ORDER BY clause as well, even
if it is identical to the GROUP BY clause.

Tip

Don’t Forget ORDER BY As a rule, anytime you use a GROUP BY clause, you should
also specify an ORDER BY clause. That is the only way to ensure that data is sorted
properly. Never rely on GROUP BY to sort your data.

To demonstrate the use of both GROUP BY and ORDER BY, let’s look at an exam-
ple. The following SELECT statement is similar to the ones seen previously. It
retrieves the order number and total order price of all orders with a total price
of 50 or more :

▼ Input
SELECT order_num, SUM(quantity*item_price) AS ordertotal

FROM orderitems

GROUP BY order_num

HAVING SUM(quantity*item_price) >= 50;

ptg7041395

113SELECT Clause Ordering

▼ Output
+-----------+------------+

| order_num | ordertotal |

+-----------+------------+

| 20005 | 149.87 |

| 20006 | 55.00 |

| 20007 | 1000.00 |

| 20008 | 125.00 |

+-----------+------------+

To sort the output by order total, all you need to do is add an ORDER BY clause,
as follows:

▼ Input
SELECT order_num, SUM(quantity*item_price) AS ordertotal

FROM orderitems

GROUP BY order_num

HAVING SUM(quantity*item_price) >= 50

ORDER BY ordertotal;

▼ Output
+-----------+------------+

| order_num | ordertotal |

+-----------+------------+

| 20006 | 55.00 |

| 20008 | 125.00 |

| 20005 | 149.87 |

| 20007 | 1000.00 |

+-----------+------------+

▼ Analysis
In this example, the GROUP BY clause is used to group the data by order number
(the order_num column) so that the SUM(*) function can return the total order
price. The HAVING clause filters the data so that only orders with a total price of
50 or more are returned. Finally, the output is sorted using the ORDER BY clause.

SELECT Clause Ordering
This is probably a good time to review the order in which SELECT statement
clauses are to be specified. Table 13.2 lists all the clauses you have learned thus
far, in the order they must be used.

ptg7041395

114 Chapter 13 Grouping Data

Table 13.2 SELECT Clauses and Their Sequence

Clause Description Required
SELECT Columns or expressions Yes

to be returned

FROM Table to retrieve data from Only if selecting data from a table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggregates by group

HAVING Group-level filtering No

ORDER BY Output sort or der No

LIMIT Number of rows to retrieve No

Summary
In Chapter 12, “Summarizing Data,” you learned how to use the SQL aggre-
gate functions to perform summary calculations on your data. In this chapter,
you learned how to use the GROUP BY clause to perform these calculations
on groups of data, returning results for each group. You saw how to use the
HAVING clause to filter specific groups. You also learned the difference between
ORDER BY and GROUP BY and between WHERE and HAVING.

ptg7041395

14
Working with Subqueries

In this chapter, you learn what subqueries are and how to use them.

Understanding Subqueries
SELECT statements are SQL queries. All the SELECT statements you have seen
thus far are simple queries: single statements retrieving data from individual
database tables.

New Term

Query Any SQL statement. However, the term is usually used to refer to SELECT
statements.

SQL also enables you to create subqueries: queries that are embedded into other
queries. Why would you want to do this? The best way to understand this
concept is to look at a couple of examples.

Filtering by Subquery
The database tables used in all the chapters in this book are relational tables.
(See Appendix B, “The Example Tables,” for a description of each of the
tables and their relationships.) Order data is stored in two tables. The orders
table stores a single row for each order containing order number, customer
ID, and order date. The individual order items are stored in the related
orderitems table. The orders table does not store customer information.
It only stores a customer ID. The actual customer information is stored in the
customers table.

Now suppose you wanted a list of all the customers who ordered item TNT2.
What would you have to do to retrieve this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item TNT2.

2. Retrieve the customer ID of all the customers who have orders listed
in the order numbers returned in the previous step.

ptg7041395

116 Chapter 14 Working with Subqueries

3. Retrieve the customer information for all the customer IDs returned in
the previous step.

Each of these steps can be executed as a separate query. By doing so, you use
the results returned by one SELECT statement to populate the WHERE clause of
the next SELECT statement.

You can also use subqueries to combine all three queries into one single
statement.

The first SELECT statement should be self-explanatory by now. It retrieves the
order_num column for all order items with a prod_id of TNT2. The output
lists the two orders containing this item:

▼ Input
SELECT order_num

FROM orderitems

WHERE prod_id = 'TNT2';

▼ Output
+-----------+

| order_num |

+-----------+

| 20005 |

| 20007 |

+-----------+

The next step is to retrieve the customer IDs associated with orders 20005
and 20007. Using the IN clause described in Chapter 7, “Advanced Data
Filtering,” you can create a SELECT statement as follows:

▼ Input
SELECT cust_id

FROM orders

WHERE order_num IN (20005,20007);

▼ Output
+---------+

| cust_id |

+---------+

| 10001 |

| 10004 |

+---------+

ptg7041395

117Filtering by Subquery

Now, combine the two queries by turning the first (the one that returned the
order numbers) into a subquery. Look at the following SELECT statement:

▼ Input
SELECT cust_id

FROM orders

WHERE order_num IN (SELECT order_num

 FROM orderitems

 WHERE prod_id = 'TNT2');

▼ Output
+---------+

| cust_id |

+---------+

| 10001 |

| 10004 |

+---------+

▼ Analysis
Subqueries are always processed starting with the innermost SELECT statement
and working outward. When the preceding SELECT statement is processed,
MariaDB actually performs two operations.

First it runs the subquery:

SELECT order_num FROM orderitems WHERE prod_id='TNT2'

That query returns the two order numbers 20005 and 20007. Those two
values are then passed to the WHERE clause of the outer query in the comma-
delimited format required by the IN operator. The outer query now becomes

SELECT cust_id FROM orders WHERE order_num IN (20005,20007)

As you can see, the output is correct and exactly the same as the output
returned by the previous hard-coded WHERE clause .

Tip

Formatting Your SQL SELECT statements containing subqueries can be difficult to
read and debug, especially as they grow in complexity. Breaking up the queries over
multiple lines and indenting the lines appropriately as shown here can greatly simplify
working with subqueries.

You now have the IDs of all the customers who ordered item TNT2. The next
step is to retrieve the customer information for each of those customer IDs.
The SQL statement to retrieve the two columns is

ptg7041395

118 Chapter 14 Working with Subqueries

▼ Input
SELECT cust_name, cust_contact

FROM customers

WHERE cust_id IN (10001,10004);

Instead of hard-coding those customer IDs, you can turn this WHERE clause into
yet another subquery:

▼ Input
SELECT cust_name, cust_contact

FROM customers

WHERE cust_id IN (SELECT cust_id

 FROM orders

 WHERE order_num IN (SELECT order_num

 FROM orderitems

 WHERE prod_id = 'TNT2'));

▼ Output
+----------------+--------------+

| cust_name | cust_contact |

+----------------+--------------+

| Coyote Inc. | Y Lee |

| Yosemite Place | Y Sam |

+----------------+--------------+

▼ Analysis
To execute this SELECT statement, MariaDB had to actually perform three
SELECT statements. The innermost subquery returned a list of order numbers
that were then used as the WHERE clause for the subquery above it. That sub-
query returned a list of customer IDs that were used as the WHERE clause for
the top-level query. The top-level query actually returned the desired data.

As you can see, using subqueries in a WHERE clause enables you to write pow-
erful and flexible SQL statements. There is no limit imposed on the number
of subqueries that can be nested, although in practice you will find that perfor-
mance tells you when you are nesting too deeply .

Caution

Columns Must Match When using a subquery in a WHERE clause (as seen here),
make sure that the SELECT statement has the same number of columns as in the
WHERE clause. Usually, a single column will be returned by the subquery and matched
against a single column, but multiple columns may be used if needed.

ptg7041395

119Using Subqueries as Calculated Fields

Although usually used in conjunction with the IN operator, subqueries can also
be used to test for equality (using =), nonequality (using <>), and so on.

Caution

Subqueries and Performance The code shown here works, and it achieves the desired
result. However, using subqueries is not always the most efficient way to perform this
type of data retrieval, although it might be. More on this is in Chapter 15, “Joining
Tables,” where you revisit this same example.

Using Subqueries as Calculated Fields
Another way to use subqueries is in creating calculated fields. Suppose you
want to display the total number of orders placed by every customer in your
customers table. Orders are stored in the orders table along with the appro-
priate customer ID.

To perform this operation, follow these steps:

1. Retrieve the list of customers from the customers table.

2. For each customer retrieved, count the number of associated orders in
the orders table.

As you learned in the previous two chapters, you can use SELECT COUNT(*)
to count rows in a table, and by providing a WHERE clause to filter a specific
customer ID, you can count just that customer’s orders. For example, the fol-
lowing code counts the number of orders placed by customer 10001:

▼ Input
SELECT COUNT(*) AS orders

FROM orders

WHERE cust_id = 10001;

To perform that COUNT(*) calculation for each customer, use COUNT* as a
subquery. Look at the following code:

▼ Input
SELECT cust_name,

 cust_state,

 (SELECT COUNT(*)

 FROM orders

 WHERE orders.cust_id = customers.cust_id) AS orders

FROM customers

ORDER BY cust_name;

ptg7041395

120 Chapter 14 Working with Subqueries

▼ Output
+----------------+------------+--------+

| cust_name | cust_state | orders |

+----------------+------------+--------+

| Coyote Inc. | MI | 2 |

| E Fudd | IL | 1 |

| Mouse House | OH | 0 |

| Wascals | IN | 1 |

| Yosemite Place | AZ | 1 |

+----------------+------------+--------+

▼ Analysis
This SELECT statement returns three columns for every customer in the
customers table: cust_name, cust_state, and orders. orders is a cal-
culated field that is set by a subquery provided in parentheses. That subquery
is executed once for every customer retrieved. In this example, the subquery is
executed five times because five customers were retrieved.

The WHERE clause in the subquery is a little different from the WHERE clauses
used previously because it uses fully qualified column names (first mentioned in
Chapter 4, “Retrieving Data”). The following clause tells SQL to compare the
cust_id in the orders table to the one currently being retrieved from the
customers table:

WHERE orders.cust_id = customers.cust_id

New Term

Correlated subquery A subquery that refers to the outer query.

The type of subquery is called a correlated subquery. This syntax—the table name
and the column name separated by a period—must be used whenever there is
possible ambiguity about column names. Why? Well, let’s look at what happens
if fully qualified column names are not used :

▼ Input
SELECT cust_name,

 cust_state,

 (SELECT COUNT(*)

 FROM orders

 WHERE cust_id = cust_id) AS orders

FROM customers

ORDER BY cust_name;

ptg7041395

121Using Subqueries as Calculated Fields

▼ Output
+----------------+------------+--------+

| cust_name | cust_state | orders |

+----------------+------------+--------+

| Coyote Inc. | MI | 5 |

| E Fudd | IL | 5 |

| Mouse House | OH | 5 |

| Wascals | IN | 5 |

| Yosemite Place | AZ | 5 |

+----------------+------------+--------+

▼ Analysis
Obviously the returned results are incorrect (compare them to the previous
results), but why did this happen? There are two cust_id columns, one in
customers and one in orders, and those two columns need to be compared
to correctly match orders with their appropriate customers. Without fully quali-
fying the column names, MariaDB assumes you are comparing the cust_id in
the orders table to itself. And

SELECT COUNT(*) FROM orders WHERE c ust_id = cust_id;

always returns the total number of orders in the orders table (because
MariaDB checks to see that every order’s cust_id matches itself, which it
always does, of course).

▼ Analysis
Although subqueries are useful in constructing this type of SELECT statement,
care must be taken to properly qualify ambiguous column names.

Note

Always More Than One Solution As explained earlier in this chapter, although the sam-
ple code shown here works, it is often not the most efficient way to perform this type of
data retrieval. You revisit this example in a later chapter.

Tip

Build Queries with Subqueries Incrementally Testing and debugging queries with sub-
queries can be tricky, particularly as these statements grow in complexity. The safest
way to build (and test) queries with subqueries is to do so incrementally, in much the
same way as MariaDB processes them. Build and test the innermost query first. Then
build and test the outer query with hard-coded data, and only after you have verified that
it is working embed the subquery. Then test it again. And keep repeating these steps
as for each additional query. This takes just a little longer to construct your queries, but
doing so saves you a lot of time later (when you try to figure out why queries are not
working) and significantly increases the likelihood of them working the first time.

ptg7041395

122 Chapter 14 Working with Subqueries

Summary
In this chapter, you learned what subqueries are and how to use them. The
most common uses for subqueries are in WHERE clauses, in IN operators, and
for populating calculated columns. You saw examples of both of these types of
operations.

ptg7041395

15
Joining Tables

In this chapter, you learn what joins are, why they are used, and how to create
SELECT statements using them.

Understanding Joins
One of SQL’s most powerful features is the capability to join tables on-the-fly
within data retrieval queries. Joins are one of the most important operations
you can perform using SQL SELECT, and a good understanding of joins and
join syntax is an extremely important part of learning SQL.

Before you can effectively use joins, you must understand relational tables
and the basics of relational database design. What follows is by no means a
complete coverage of the subject, but it should be enough to get you up and
running.

Understanding Relational Tables
The best way to understand relational tables is to look at a real-world example.

Suppose you had a database table containing a product catalog, with each cata-
log item in its own row. The kind of information you would store with each
item would include a product description and price, along with vendor infor-
mation about the company that creates the product.

Now suppose you had multiple catalog items created by the same vendor.
Where would you store the vendor information (things such as vendor name,
address, and contact information)? You wouldn’t want to store that data along
with the products for several reasons:

■ Because the vendor information is the same for each product that ven-
dor produces, repeating the information for each product is a waste of
time and storage space.

■ If vendor information changes (for example, if the vendor moves or
his area code changes), you would need to update every occurrence of
the vendor information.

ptg7041395

124 Chapter 15 Joining Tables

■ When data is repeated (that is, the vendor information is used with
each product), there is a high likelihood that the data will not be
entered exactly the same way each time. Inconsistent data is extremely
difficult to use in reporting.

The key here is that having multiple occurrences of the same data is never
a good thing, and that principle is the basis for relational database design.
Relational tables are designed so information is split into multiple tables, one
for each data type. The tables are related to each other through common values
(and thus the relational in relational design).

In our example, you can create two tables, one for vendor information and one
for product information. The vendors table contains all the vendor informa-
tion, one table row per vendor, along with a unique identifier for each vendor.
This value, called a primary key, can be a vendor ID, or any other unique value.
(Primary keys were first mentioned in Chapter 1, “Understanding SQL”).

The products table stores only product information, and no vendor specific
information other than the vendor ID (the vendors table’s primary key). This
key, called a foreign key, relates the vendors table to the products table, and
using this vendor ID enables you to use the vendors table to find the details
about the appropriate vendor.

New Term

Foreign key A column in one table that contains the primary key values from another
table, thus defining the relationships between tables.

What does this do for you? Well, consider the following:

■ Vendor information is never repeated, and so time and space are not
wasted.

■ If vendor information changes, you can update a single record in the
vendors table. Data in related tables does not change.

■ As no data is repeated, the data used is obviously consistent, making
data reporting and manipulation much simpler.

The bottom line is that relational data can be stored efficiently and manipulated
easily. Because of this, relational databases scale far better than nonrelational
databases.

New Term

Scale Able to handle an increasing load without failing. A well-designed database or
application is said to scale well.

ptg7041395

125Creating a Join

Why Use Joins?
As just explained, breaking data into multiple tables enables more efficient stor-
age, easier manipulation, and greater scalability. But these benefits come with
a price.

If data is stored in multiple tables, how can you retrieve that data with a single
SELECT statement?

The answer is to use a join. Simply put, a join is a mechanism used to associ-
ate tables within a SELECT statement (and thus the name join). Using a special
syntax, multiple tables can be joined so a single set of output is returned, and
the join associates the correct rows in each table on-the-fly .

Note

Maintaining Referential Integrity It is important to understand that a join is not a
physical entity—in other words, it does not exist in the actual database tables. A join is
created by MariaDB as needed, and it persists for the duration of the query execution.

When using relational tables, it is important that only valid data is inserted into relation-
al columns. Going back to the example, if products were stored in the products table
with an invalid vendor ID (one not present in the vendors table), those products would
be inaccessible because they would not be related to any vendor.

To prevent this from occurring, MariaDB can be instructed to only allow valid values
(ones present in the vendors table) in the vendor ID column in the products table.
This is known as maintaining referential integrity and is achieved by specifying the
primary and foreign keys as part of the table definitions (as explained in Chapter 21,
“Creating and Manipulating Tables”).

For an example of this, see the create.sql script used to create the
crashcourse database tables. The ALTER TABLE statements at the end of
the file are defining constraints to enforce referential integrity.

Creating a Join
Creating a join is simple. You must specify all the tables to be included and
how they are related to each other. Look at the following example:

▼ Input
SELECT vend_name, prod_name, prod_price

FROM vendors, products

WHERE vendors.vend_id = products.vend_id

ORDER BY vend_name, prod_name;

ptg7041395

126 Chapter 15 Joining Tables

▼ Output
+-------------+----------------+------------+

| vend_name | prod_name | prod_price |

+-------------+----------------+------------+

| ACME | Bird seed | 10.00 |

| ACME | Carrots | 2.50 |

| ACME | Detonator | 13.00 |

| ACME | Safe | 50.00 |

| ACME | Sling | 4.49 |

| ACME | TNT (1 stick) | 2.50 |

| ACME | TNT (5 sticks) | 10.00 |

| Anvils R Us | .5 ton anvil | 5.99 |

| Anvils R Us | 1 ton anvil | 9.99 |

| Anvils R Us | 2 ton anvil | 14.99 |

| Jet Set | JetPack 1000 | 35.00 |

| Jet Set | JetPack 2000 | 55.00 |

| LT Supplies | Fuses | 3.42 |

| LT Supplies | Oil can | 8.99 |

+-------------+----------------+------------+

▼ Analysis
Take a look at the preceding code. The SELECT statement starts in the same
way as all the statements you’ve looked at thus far, by specifying the columns
to be retrieved. The big difference here is that two of the specified columns
(prod_name and prod_price) are in one table, whereas the other (vend_
name) is in another table.

Now look at the FROM clause. Unlike all the prior SELECT statements, this one
has two tables listed in the FROM clause, vendors and products. These are
the names of the two tables that are being joined in this SELECT statement.
The tables are correctly joined with a WHERE clause that instructs MariaDB to
match vend_id in the vendors table with vend_id in the products table.

Notice that the columns are specified as vendors.vend_id and products.
vend_id. This fully qualified column name is required here because if you
just specified vend_id, MariaDB cannot tell which vend_id columns you are
referring to (as there are two of them, one in each table).

Caution

Fully Qualifying Column Names You must use the fully qualified column name (table
and column separated by a period) whenever there is possible ambiguity about to which
column you are referring. MariaDB returns an error message if you refer to an ambigu-
ous column name without fully qualifying it with a table name.

ptg7041395

127Creating a Join

The Importance of the WHERE Clause
It might seem strange to use a WHERE clause to set the join relationship, but
actually, there is a good reason for this. Remember, when tables are joined
in a SELECT statement, that relationship is constructed on-the-fly. Nothing
in the database table definitions can instruct MariaDB how to join the tables.
You have to do that yourself. When you join two tables, what you are actually
doing is pairing every row in the first table with every row in the second table.
The WHERE clause acts as a filter to only include rows that match the specified
filter condition—the join condition, in this case. Without the WHERE clause,
every row in the first table is paired with every row in the second table, regard-
less of whether they logically go together.

New Term

Cartesian product The results returned by a table relationship without a join condition.
The number of rows retrieved is the number of rows in the first table multiplied by the
number of rows in the second table.

To understand this, look at the following SELECT statement and output:

▼ Input
SELECT vend_name, prod_name, prod_price

FROM vendors, products

ORDER BY vend_name, prod_name;

▼ Output
+----------------+----------------+------------+

| vend_name | prod_name | prod_price |

+----------------+----------------+------------+

| ACME | .5 ton anvil | 5.99 |

| ACME | 1 ton anvil | 9.99 |

| ACME | 2 ton anvil | 14.99 |

| ACME | Bird seed | 10.00 |

| ACME | Carrots | 2.50 |

| ACME | Detonator | 13.00 |

| ACME | Fuses | 3.42 |

| ACME | JetPack 1000 | 35.00 |

| ACME | JetPack 2000 | 55.00 |

| ACME | Oil can | 8.99 |

| ACME | Safe | 50.00 |

| ACME | Sling | 4.49 |

| ACME | TNT (1 stick) | 2.50 |

| ACME | TNT (5 sticks) | 10.00 |

| Anvils R Us | .5 ton anvil | 5.99 |

| Anvils R Us | 1 ton anvil | 9.99 |

ptg7041395

128 Chapter 15 Joining Tables

| Anvils R Us | 2 ton anvil | 14.99 |

| Anvils R Us | Bird seed | 10.00 |

| Anvils R Us | Carrots | 2.50 |

| Anvils R Us | Detonator | 13.00 |

| Anvils R Us | Fuses | 3.42 |

| Anvils R Us | JetPack 1000 | 35.00 |

| Anvils R Us | JetPack 2000 | 55.00 |

| Anvils R Us | Oil can | 8.99 |

| Anvils R Us | Safe | 50.00 |

| Anvils R Us | Sling | 4.49 |

| Anvils R Us | TNT (1 stick) | 2.50 |

| Anvils R Us | TNT (5 sticks) | 10.00 |

| Furball Inc. | .5 ton anvil | 5.99 |

| Furball Inc. | 1 ton anvil | 9.99 |

| Furball Inc. | 2 ton anvil | 14.99 |

| Furball Inc. | Bird seed | 10.00 |

| Furball Inc. | Carrots | 2.50 |

| Furball Inc. | Detonator | 13.00 |

| Furball Inc. | Fuses | 3.42 |

| Furball Inc. | JetPack 1000 | 35.00 |

| Furball Inc. | JetPack 2000 | 55.00 |

| Furball Inc. | Oil can | 8.99 |

| Furball Inc. | Safe | 50.00 |

| Furball Inc. | Sling | 4.49 |

| Furball Inc. | TNT (1 stick) | 2.50 |

| Furball Inc. | TNT (5 sticks) | 10.00 |

| Jet Set | .5 ton anvil | 5.99 |

| Jet Set | 1 ton anvil | 9.99 |

| Jet Set | 2 ton anvil | 14.99 |

| Jet Set | Bird seed | 10.00 |

| Jet Set | Carrots | 2.50 |

| Jet Set | Detonator | 13.00 |

| Jet Set | Fuses | 3.42 |

| Jet Set | JetPack 1000 | 35.00 |

| Jet Set | JetPack 2000 | 55.00 |

| Jet Set | Oil can | 8.99 |

| Jet Set | Safe | 50.00 |

| Jet Set | Sling | 4.49 |

| Jet Set | TNT (1 stick) | 2.50 |

| Jet Set | TNT (5 sticks) | 10.00 |

| Jouets Et Ours | .5 ton anvil | 5.99 |

| Jouets Et Ours | 1 ton anvil | 9.99 |

| Jouets Et Ours | 2 ton anvil | 14.99 |

| Jouets Et Ours | Bird seed | 10.00 |

| Jouets Et Ours | Carrots | 2.50 |

| Jouets Et Ours | Detonator | 13.00 |

| Jouets Et Ours | Fuses | 3.42 |

| Jouets Et Ours | JetPack 1000 | 35.00 |

| Jouets Et Ours | JetPack 2000 | 55.00 |

ptg7041395

129Creating a Join

| Jouets Et Ours | Oil can | 8.99 |

| Jouets Et Ours | Safe | 50.00 |

| Jouets Et Ours | Sling | 4.49 |

| Jouets Et Ours | TNT (1 stick) | 2.50 |

| Jouets Et Ours | TNT (5 sticks) | 10.00 |

| LT Supplies | .5 ton anvil | 5.99 |

| LT Supplies | 1 ton anvil | 9.99 |

| LT Supplies | 2 ton anvil | 14.99 |

| LT Supplies | Bird seed | 10.00 |

| LT Supplies | Carrots | 2.50 |

| LT Supplies | Detonator | 13.00 |

| LT Supplies | Fuses | 3.42 |

| LT Supplies | JetPack 1000 | 35.00 |

| LT Supplies | JetPack 2000 | 55.00 |

| LT Supplies | Oil can | 8.99 |

| LT Supplies | Safe | 50.00 |

| LT Supplies | Sling | 4.49 |

| LT Supplies | TNT (1 stick) | 2.50 |

| LT Supplies | TNT (5 sticks) | 10.00 |

+----------------+----------------+------------+

▼ Analysis
As you can see in the preceding output, the Cartesian product is seldom what
you want. The data returned here has matched every product with every ven-
dor, including products with the incorrect vendor (and even vendors with no
products at all).

Caution

Don’t Forget the WHERE Clause Make sure all your joins have WHERE clauses, or
MariaDB returns far more data than you want. Similarly, make sure your WHERE clauses
are correct. An incorrect filter condition causes MariaDB to return incorrect data.

Tip

Cross Joins Sometimes you’ll hear the type of join that returns a Cartesian product
referred to as a cross join.

Inner Joins
The join you have been using so far is called an equijoin—a join based on the
testing of equality between two tables. This kind of join is also called an inner
join. In fact, you may use a slightly different syntax for these joins, specifying
the type of join explicitly. The following SELECT statement returns the exact
same data as the preceding example:

ptg7041395

130 Chapter 15 Joining Tables

▼ Input
SELECT vend_name, prod_name, prod_price

FROM vendors INNER JOIN products

 ON vendors.vend_id = products.vend_id;

▼ Analysis
The SELECT in the statement is the same as the preceding SELECT statement,
but the FROM clause is different. Here the relationship between the two tables is
part of the FROM clause specified as INNER JOIN. When using this syntax the
join condition is specified using the special ON clause instead of a WHERE clause.
The actual condition passed to ON is the same as would be passed to WHERE.

Note

Which Syntax To Use? Per the ANSI SQL specification, use of the INNER JOIN
syntax is preferable. Furthermore, while the using the WHERE clause to define joins is
indeed simpler, using explicit join syntax ensures that you will never forget the join con-
dition and can impact performance, too (in some cases).

Joining Multiple Tables
SQL imposes no limit to the number of tables that may be joined in a SELECT
statement. The basic rules for creating the join remain the same. First list all the
tables, and then define the relationship between each. Here is an example:

▼ Input
SELECT prod_name, vend_name, prod_price, quantity

FROM orderitems, products, vendors

WHERE products.vend_id = vendors.vend_id

 AND orderitems.prod_id = products.prod_id

 AND order_num = 20005;

▼ Output
+----------------+-------------+------------+----------+

| prod_name | vend_name | prod_price | quantity |

+----------------+-------------+------------+----------+

| .5 ton anvil | Anvils R Us | 5.99 | 10 |

| 1 ton anvil | Anvils R Us | 9.99 | 3 |

| TNT (5 sticks) | ACME | 10.00 | 5 |

| Bird seed | ACME | 10.00 | 1 |

+----------------+-------------+------------+----------+

ptg7041395

131Creating a Join

▼ Analysis
This example displays the items in order number 20005. Order items are
stored in the orderitems table. Each product is stored by its product ID,
which refers to a product in the products table. The products are linked to
the appropriate vendor in the vendors table by the vendor ID, which is stored
with each product record. The FROM clause here lists the three tables, and the
WHERE clause defines both of those join conditions. An additional WHERE con-
dition is then used to filter just the items for order 20005.

Caution

Performance Considerations MariaDB processes joins at runtime, relating each table
as specified. This process can become resource intensive, so be careful not to join
tables unnecessarily. The more tables you join, the more performance degrades.

Now would be a good time to revisit the following example from Chapter 14,
“Working with Subqueries.” As you will recall, this SELECT statement returns
a list of customers who ordered product TNT2:

▼ Input
SELECT cust_name, cust_contact

FROM customers

WHERE cust_id IN (SELECT cust_id

 FROM orders

 WHERE order_num IN (SELECT order_num

 FROM orderitems

 WHERE prod_id = 'TNT2'));

As mentioned in Chapter 14, subqueries might not always be the most efficient
way to perform complex SELECT operations, and so as promised, here is the
same query using joins:

▼ Input
SELECT cust_name, cust_contact

FROM customers, orders, orderitems

WHERE customers.cust_id = orders.cust_id

 AND orderitems.order_num = orders.order_num

 AND prod_id = 'TNT2';

ptg7041395

132 Chapter 15 Joining Tables

▼ Output
+----------------+--------------+

| cust_name | cust_contact |

+----------------+--------------+

| Coyote Inc. | Y Lee |

| Yosemite Place | Y Sam |

+----------------+--------------+

▼ Analysis
As explained in Chapter 14, returning the data needed in this query requires
the use of three tables. But instead of using them within nested subqueries, here
two joins are used to connect the tables. There are three WHERE clause condi-
tions here. The first two connect the tables in the join, and the last one filters
the data for product TNT2.

Tip

It Pays to Experiment As you can see, there is often more than one way to perform
any given SQL operation. And there is rarely a definitive right or wrong way. Performance
can be affected by the type of operation, the amount of data in the tables, whether
indexes and keys are present, and a whole slew of other criteria. Therefore, it is often
worth experimenting with different selection mechanisms to find the one that works best
for you.

Summary
Joins are one of the most important and powerful features in SQL, and using
them effectively requires a basic understanding of relational database design. In
this chapter, you learned some of the basics of relational database design as an
introduction to learning about joins. You also learned how to create an equi-
join (also known as an inner join), which is the most commonly used form of
join. In the next chapter you learn how to create other types of joins.

ptg7041395

16
Creating Advanced Joins

In this chapter, you learn all about additional join types—what they are and how to
use them. You also learn how to use table aliases and how to use aggregate func-
tions with joined tables.

Using Table Aliases
Back in Chapter 10, “Creating Calculated Fields,” you learned how to use
aliases to refer to retrieved table columns. The syntax to alias a column looks
like this:

▼ Input
SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')
 AS vend_title

FROM vendors

ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL also
enables you to alias table names. There are two primary reasons to do this:

■ To shorten the SQL syntax

■ To enable multiple uses of the same table within a single SELECT
statement

Take a look at the following SELECT statement. It is basically the same state-
ment as an example used in the previous chapter, but it has been modified to
use aliases :

▼ Input
SELECT cust_name, cust_contact

FROM customers AS c, orders AS o, orderitems AS oi

WHERE c.cust_id = o.cust_id

 AND oi.order_num = o.order_num

 AND prod_id = 'TNT2';

ptg7041395

134 Chapter 16 Creating Advanced Joins

▼ Analysis
Notice that the three tables in the FROM clauses all have aliases. customers
AS c establishes c as an alias for customers, and so on. This enables you to
use the abbreviated c instead of the full text customers. In this example, the
table aliases were used only in the WHERE clause, but aliases are not limited to
just WHERE. You can use aliases in the SELECT list, the ORDER BY clause, and
in any other part of the statement as well.

It is also worth noting that table aliases are only used during query execution.
Unlike column aliases, table aliases are never returned to the client.

Using Different Join Types
So far, you have used only simple joins known as inner joins or equijoins. You
now take a look at three additional join types: the self join, the natural join,
and the outer join.

Self Joins
As mentioned earlier, one of the primary reasons to use table aliases is to be
able to refer to the same table more than once in a single SELECT statement.
An example demonstrates this.

Suppose that a problem was found with a product (item id DTNTR), and you
therefore wanted to know all of the products made by the same vendor to
determine whether the problem applied to them, too. This query requires that
you first find out which vendor creates item DTNTR, and next find which other
products are made by the same vendor. The following is one way to approach
this problem:

▼ Input
SELECT prod_id, prod_name

FROM products

WHERE vend_id = (SELECT vend_id

 FROM products

 WHERE prod_id = 'DTNTR');

ptg7041395

135Using Different Join Types

▼ Output
+---------+----------------+

| prod_id | prod_name |

+---------+----------------+

| DTNTR | Detonator |

| FB | Bird seed |

| FC | Carrots |

| SAFE | Safe |

| SLING | Sling |

| TNT1 | TNT (1 stick) |

| TNT2 | TNT (5 sticks) |

+---------+----------------+

▼ Analysis
This first solution uses subqueries. The inner SELECT statement does a simple
retrieval to return the vend_id of the vendor that makes item DTNTR. That ID
is the one used in the WHERE clause of the outer query so all items produced
by that vendor are retrieved. (You learned all about subqueries in Chapter 14,
“Working with Subqueries.” Refer to that chapter for more information.)

Now look at the same query using a join:

▼ Input
SELECT p1.prod_id, p1.prod_name

FROM products AS p1, products AS p2

WHERE p1.vend_id = p2.vend_id

 AND p2.prod_id = 'DTNTR';

▼ Output
+---------+----------------+

| prod_id | prod_name |

+---------+----------------+

| DTNTR | Detonator |

| FB | Bird seed |

| FC | Carrots |

| SAFE | Safe |

| SLING | Sling |

| TNT1 | TNT (1 stick) |

| TNT2 | TNT (5 sticks) |

+---------+----------------+

ptg7041395

136 Chapter 16 Creating Advanced Joins

▼ Analysis
The two tables needed in this query are actually the same table, and so the
products table appears in the FROM clause twice. Although this is perfectly
legal, any references to table products would be ambiguous because MariaDB
could not know to which instance of the products table you are referring .

To resolve this problem, table aliases are used. The first occurrence of
products has an alias of p1, and the second has an alias of p2. Now those
aliases can be used as table names. The SELECT statement, for example, uses
the p1 prefix to explicitly state the full name of the desired columns. If it did
not, MariaDB would return an error because there are two columns named
prod_id and prod_name. It cannot know which one you want (even though,
in truth, they are one and the same). The WHERE clause first joins the tables (by
matching vend_id in p1 to vend_id in p2), and then it filters the data by
prod_id in the second table to return only the desired data.

Tip

Self Joins Instead of Subqueries Self joins are often used to replace statements using
subqueries that retrieve data from the same table as the outer statement. Although the
end result is the same, sometimes these joins execute far more quickly than do subque-
ries. It is usually worth experimenting with both to determine which performs better .

Natural Joins
Whenever tables are joined, at least one column appears in more than one table
(the columns being joined). Standard joins (the inner joins you learned about
in the previous chapter) return all data, even multiple occurrences of the same
column. A natural join simply eliminates those multiple occurrences so only one
of each column is returned.

How does it do this? The answer is it doesn't—you do it. A natural join is a
join in which you select only columns that are unique. This is typically done
using a wildcard (SELECT *) for one table and explicit subsets of the columns
for all other tables. The following is an example:

▼ Input
SELECT c.*, o.order_num, o.order_date,

 oi.prod_id, oi.quantity, OI.item_price

FROM customers AS c, orders AS o, orderitems AS oi

WHERE c.cust_id = o.cust_id

 AND oi.order_num = o.order_num

 AND prod_id = 'FB';

ptg7041395

137Using Different Join Types

▼ Analysis
In this example, a wildcard is used for the first table only. All other columns are
explicitly listed so no duplicate columns are retrieved.

The truth is, every inner join you have created thus far is actually a natural
join, and you will probably never even need an inner join that is not a
natural join.

Outer Joins
Most joins relate rows in one table with rows in another. But occasionally, you
want to include rows that have no related rows. For example, you might use
joins to accomplish the following tasks:

■ Count how many orders each customer placed, including customers
who have yet to place an order

■ List all products with order quantities, including products not ordered
by anyone

■ Calculate average sale sizes, taking into account customers who have
not yet placed an order

In each of these examples, the join includes table rows that have no associated
rows in the related table. This type of join is called an outer join.

The following SELECT statement is a simple inner join . It retrieves a list of all
customers and their orders:

▼ Input
SELECT customers.cust_id, orders.order_num

FROM customers INNER JOIN orders

 ON customers.cust_id = orders.cust_id;

Outer join syntax is similar. To retrieve a list of all customers, including those
who have placed no orders, you can do the following:

▼ Input
SELECT customers.cust_id, orders.order_num

FROM customers LEFT OUTER JOIN orders

 ON customers.cust_id = orders.cust_id;

ptg7041395

138 Chapter 16 Creating Advanced Joins

▼ Output
+---------+-----------+

| cust_id | order_num |

+---------+-----------+

| 10001 | 20005 |

| 10001 | 20009 |

| 10002 | NULL |

| 10003 | 20006 |

| 10004 | 20007 |

| 10005 | 20008 |

+---------+-----------+

▼ Analysis
Like the inner join seen in the previous chapter, this SELECT statement uses
the keywords OUTER JOIN to specify the join type (instead of specifying it in
the WHERE clause). But unlike inner joins, which relate rows in both tables,
outer joins also include rows with no related rows. When using OUTER JOIN
syntax you must use the RIGHT or LEFT keywords to specify the table from
which to include all rows (RIGHT for the one on the right of OUTER JOIN,
and LEFT for the one on the left). The previous example uses LEFT OUTER
JOIN to select all the rows from the table on the left in the FROM clause (the
customers table). To select all the rows from the table on the right, you use a
RIGHT OUTER JOIN as seen in this example:

▼ Input
SELECT customers.cust_id, orders.order_num

FROM customers RIGHT OUTER JOIN orders

 ON orders.cust_id = customers.cust_id;

Note

No *= MariaDB does not support the use of the simplified *= and =* syntax popular-
ized by other DBMSs.

Tip

Outer Join Types There are two basic forms of outer joins—the left outer join and the
right outer join. The only difference between them is the order of the tables they are
relating. In other words, a left outer join can be turned into a right outer join simply by
reversing the order of the tables in the FROM or WHERE clause. As such, the two types
of outer join can be used interchangeably, and the decision about which one is used is
based purely on convenience .

ptg7041395

139Using Joins with Aggregate Functions

Using Joins with Aggregate Functions
As you learned in Chapter 12, “Summarizing Data,” aggregate functions are
used to summarize data. Although all the examples of aggregate functions thus
far summarized data from a single table only, these functions can also be used
with joins.

To demonstrate this, let's look at an example. You want to retrieve a list of all
customers and the number of orders that each has placed. The following code
uses the COUNT() function to achieve this:

▼ Input
SELECT customers.cust_name,

 customers.cust_id,

 COUNT(orders.order_num) AS num_ord

FROM customers INNER JOIN orders

 ON customers.cust_id = orders.cust_id

GROUP BY customers.cust_id;

▼ Output
+----------------+---------+---------+

| cust_name | cust_id | num_ord |

+----------------+---------+---------+

| Coyote Inc. | 10001 | 2 |

| Wascals | 10003 | 1 |

| Yosemite Place | 10004 | 1 |

| E Fudd | 10005 | 1 |

+----------------+---------+---------+

▼ Analysis
This SELECT statement uses INNER JOIN to relate the customers and
orders tables to each other. The GROUP BY clause groups the data by cus-
tomer, and so the function call COUNT(orders.order_num) counts the
number of orders for each customer and returns it as num_ord.

Aggregate functions can be used just as easily with other join types. See the fol-
lowing example:

▼ Input
SELECT customers.cust_name,

 customers.cust_id,

 COUNT(orders.order_num) AS num_ord

FROM customers LEFT OUTER JOIN orders

 ON customers.cust_id = orders.cust_id

GROUP BY customers.cust_id;

ptg7041395

140 Chapter 16 Creating Advanced Joins

▼ Output
+----------------+---------+---------+

| cust_name | cust_id | num_ord |

+----------------+---------+---------+

| Coyote Inc. | 10001 | 2 |

| Mouse House | 10002 | 0 |

| Wascals | 10003 | 1 |

| Yosemite Place | 10004 | 1 |

| E Fudd | 10005 | 1 |

+----------------+---------+---------+

▼ Analysis
This example uses a left outer join to include all customers, even those who
have not placed any orders. The results show that customer Mouse House
(with 0 orders) is also included this time.

Using Joins and Join Conditions
Before wrapping up this two chapter discussion on joins, it is worthwhile to
summarize some key points regarding joins and their use:

■ Pay careful attention to the type of join being used. More often than
not, you'll want an inner join, but there are often valid uses for outer
joins, too.

■ Make sure you use the correct join condition, or you'll return incor-
rect data.

■ Make sure you always provide a join condition, or you'll end up with
the Cartesian product.

■ You may include multiple tables in a join and even have different
join types for each. Although this is legal and often useful, make sure
you test each join separately before testing them together. This makes
troubleshooting far simpler .

Summary
This chapter was a continuation of the previous chapter on joins. This chapter
started by teaching you how and why to use aliases, and then continued with
a discussion on different join types and various forms of syntax used with each.
You also learned how to use aggregate functions with joins, and some impor-
tant do's and don'ts to keep in mind when working with joins.

ptg7041395

17
Combining Queries

In this chapter you learn how to use the UNION operator to combine multiple
SELECT statements into one result set.

Understanding Combined Queries
Most SQL queries contain a single SELECT statement that returns data from
one or more tables. MariaDB also enables you to perform multiple queries
(multiple SELECT statements) and return the results as a single query result set.
These combined queries are usually known as unions or compound queries.

There are basically two scenarios in which you’d use combined queries:

■ To return similarly structured data from different tables in a single
query

■ To perform multiple queries against a single table returning the data as
one query

Tip

Combining Queries and Multiple WHERE Conditions For the most part, combining two
queries to the same table accomplishes the same thing as a single query with multiple
WHERE clause conditions. In other words, any SELECT statement with multiple WHERE
clauses can also be specified as a combined query, as you see in the section that fol-
lows. However, the performance of each of the two techniques can vary based on the
queries used. As such, it is always good to experiment to determine which is preferable
for specific queries.

Creating Combined Queries
SQL queries are combined using the UNION operator. Using UNION, multiple
SELECT statements can be specified, and their results can be combined into a
single result set.

ptg7041395

142 Chapter 17 Combining Queries

Using UNION
Using UNION is simple enough. All you do is specify each SELECT statement
and place the keyword UNION between each.

Let’s look at an example. You need a list of all products costing 5 or less. You
also want to include all products made by vendors 1001 and 1002, regardless
of price. Of course, you can create a WHERE clause that does this, but this time
we use a UNION instead.

As just explained, creating a UNION involves writing multiple SELECT state-
ments. First look at the individual statements:

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE prod_price <= 5;

▼ Output
+---------+---------+------------+

| vend_id | prod_id | prod_price |

+---------+---------+------------+

| 1003 | FC | 2.50 |

| 1002 | FU1 | 3.42 |

| 1003 | SLING | 4.49 |

| 1003 | TNT1 | 2.50 |

+---------+---------+------------+

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE vend_id IN (1001,1002);

▼ Output
+---------+---------+------------+

| vend_id | prod_id | prod_price |

+---------+---------+------------+

| 1001 | ANV01 | 5.99 |

| 1001 | ANV02 | 9.99 |

| 1001 | ANV03 | 14.99 |

| 1002 | FU1 | 3.42 |

| 1002 | OL1 | 8.99 |

+---------+---------+------------+

ptg7041395

143Creating Combined Queries

▼ Analysis
The first SELECT retrieves all products with a price of no more than 5. The
second SELECT uses IN to find all products made by vendors 1001 and 1002.

To combine these two statements, do the following:

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE prod_price <= 5

UNION

SELECT vend_id, prod_id, prod_price

FROM products

WHERE vend_id IN (1001,1002);

▼ Output
+---------+---------+------------+

| vend_id | prod_id | prod_price |

+---------+---------+------------+

| 1003 | FC | 2.50 |

| 1002 | FU1 | 3.42 |

| 1003 | SLING | 4.49 |

| 1003 | TNT1 | 2.50 |

| 1001 | ANV01 | 5.99 |

| 1001 | ANV02 | 9.99 |

| 1001 | ANV03 | 14.99 |

| 1002 | OL1 | 8.99 |

+---------+---------+------------+

▼ Analysis
The preceding statements are made up of both of the previous SELECT state-
ments separated by the UNION keyword. UNION instructs MariaDB to execute
both SELECT statements and combine the output into a single query result set.

As a point of reference, here is the same query using multiple WHERE clauses
instead of a UNION:

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE prod_price <= 5

 OR vend_id IN (1001,1002);

ptg7041395

144 Chapter 17 Combining Queries

In this simple example, the UNION might actually be more complicated than
using a WHERE clause. But with more complex filtering conditions, or if the
data is being retrieved from multiple tables (and not just a single table), the
UNION could have made the process much simpler .

UNION Rules
As you can see, unions are easy to use. But a few rules govern exactly which
can be combined:

■ A UNION must be comprised of two or more SELECT statements, each
separated by the keyword UNION (so, if combining four SELECT state-
ments, three UNION keywords would be used).

■ Each query in a UNION must contain the same columns, expressions, or
aggregate functions (although columns need not be listed in the same
order).

■ Column datatypes must be compatible: They need not be the exact
same type, but they must be of a type that MariaDB can implicitly
convert (for example, different numeric types or different date types).

Aside from these basic rules and restrictions, unions can be used for any data
retrieval tasks.

Including or Eliminating Duplicate Rows
Go back to the preceding section titled “Using UNION” and look at the sample
SELECT statements used. Notice that when executed individually, the first
SELECT statement returns four rows, and the second SELECT statement returns
five rows. However, when the two SELECT statements are combined with a
UNION, only eight rows are returned, not nine.

The UNION automatically removes any duplicate rows from the query result set
(in other words, it behaves just as multiple WHERE clause conditions in a single
SELECT would). Because vendor 1002 creates a product that costs less than 5,
that row was returned by both SELECT statements. When the UNION was used,
the duplicate row was eliminated.

This is the default behavior of UNION, but you can change this if you want.
If you do, in fact, want all occurrences of all matches returned, you can use
UNION ALL instead of UNION.

Look at the following example:

ptg7041395

145Creating Combined Queries

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE prod_price <= 5

UNION ALL

SELECT vend_id, prod_id, prod_price

FROM products

WHERE vend_id IN (1001,1002);

▼ Output
+---------+---------+------------+

| vend_id | prod_id | prod_price |

+---------+---------+------------+

| 1003 | FC | 2.50 |

| 1002 | FU1 | 3.42 |

| 1003 | SLING | 4.49 |

| 1003 | TNT1 | 2.50 |

| 1001 | ANV01 | 5.99 |

| 1001 | ANV02 | 9.99 |

| 1001 | ANV03 | 14.99 |

| 1002 | FU1 | 3.42 |

| 1002 | OL1 | 8.99 |

+---------+---------+------------+

▼ Analysis
Using UNION ALL, MariaDB does not eliminate duplicates. Therefore, the pre-
ceding example returns nine rows, one of them occurring twice.

Tip

UNION Versus WHERE The beginning of this chapter said that UNION almost always
accomplishes the same thing as multiple WHERE conditions. UNION ALL is the form
of UNION that accomplishes what cannot be done with WHERE clauses. If you do, in
fact, want all occurrences of matches for every condition (including duplicates), you must
use UNION ALL and not WHERE.

Sorting Combined Query Results
SELECT statement output is sorted using the ORDER BY clause. When com-
bining queries with a UNION, only one ORDER BY clause may be used, and
it must occur after the final SELECT statement. There is little point in sorting
part of a result set one way and part another way, and so multiple ORDER BY
clauses are not allowed.

ptg7041395

146 Chapter 17 Combining Queries

The following example sorts the results returned by the previously used UNION:

▼ Input
SELECT vend_id, prod_id, prod_price

FROM products

WHERE prod_price <= 5

UNION

SELECT vend_id, prod_id, prod_price

FROM products

WHERE vend_id IN (1001,1002)

ORDER BY vend_id, prod_price;

▼ Output
+---------+---------+------------+

| vend_id | prod_id | prod_price |

+---------+---------+------------+

| 1001 | ANV01 | 5.99 |

| 1001 | ANV02 | 9.99 |

| 1001 | ANV03 | 14.99 |

| 1002 | FU1 | 3.42 |

| 1002 | OL1 | 8.99 |

| 1003 | TNT1 | 2.50 |

| 1003 | FC | 2.50 |

| 1003 | SLING | 4.49 |

+---------+---------+------------+

▼ Analysis
This UNION takes a single ORDER BY clause after the final SELECT statement.
Even though the ORDER BY appears to only be a part of that last SELECT stat e-
ment, MariaDB in fact uses it to sort all the results returned by all the SELECT
statements.

Note

Combining Different Tables For the sake of simplicity, all the examples in this chap-
ter combined queries using the same table. However, everything you learned here also
applies to using UNION to combine queries of different tables.

Summary
In this chapter, you learned how to combine SELECT statements with the
UNION operator. Using UNION, you can return the results of multiple queries
as one combined query, either including or excluding duplicates. The use of
UNION can greatly simplify complex WHERE clauses and retrieving data from
multiple tables.

ptg7041395

18
Full-Text Searching

In this chapter, you learn how to use MariaDB's full-text searching capabilities to
perform sophisticated data querying and selection.

Understanding Full-Text Searching
Note

Not All Engines Support Full-Text Searching As explained in Chapter 21, “Creating
and Manipulating Tables,” MariaDB supports the use of several underlying database
engines. The MariaDB ARIA engine supports full-text searching, and all the
crashcourse tables were created to use the ARIA engine (by specifying
ENGINE=Aria) in the CREATE TABLE statements in create.sql. Keep
this in mind, if you need full-text searching functionality in your applications;
you need to use an engine that supports this capability.

In Chapter 8, “Using Wildcard Filtering,” you were introduced to the LIKE
keyword that is used to match text (and partial text) using wildcard operators.
Using LIKE it is possible to locate rows that contain specific values or parts of
values, regardless of the location of those values within row columns.

In Chapter 9, “Searching Using Regular Expressions,” text-based searching
was taken one step further with the introduction to using regular expres-
sions to match column values. Using regular expressions, it is possible to write
sophisticated matching patterns to locate the desired rows.

But as useful as these search mechanisms are, they have several important
limitations:

 ■ Performance—Wildcard and regular expression matching usually
requires that MariaDB try and match each and every row in a table
(and table indexes are rarely of use in these searches). As such, these
searches can be time-consuming as the number of rows to be searched
grows.

ptg7041395

148 Chapter 18 Full-Text Searching

 ■ Explicit control—Using wildcard and regular expression matching,
it is difficult (and not always possible) to explicitly control what is and
what is not matched. An example of this is a search specifying a word
that must be matched, a word that must not be matched, and a word
that may or may not be matched but only if the first word is indeed
matched.

 ■ Intelligent results—Although wildcard- and regular expression–based
searching provide for flexible searching, neither provides an intelligent
way to select results. For example, searching for a specific word returns
all rows that contain that word and does not distinguish between rows
that contain a single match and those that contain multiple matches
(ranking them as potentially better matches). Similarly, searches for a
specific word does not find rows that do not contain that word but do
contain other related words.

All these limitations and more are addressed by full-text searching. When full-
text searching is used, MariaDB does not need to look at each row individually,
analyzing and processing each word individually. Rather, an index of the words
(in specified columns) is created by MariaDB, and searches can be made against
those words. MariaDB can thus quickly and efficiently determine which words
match (which rows contain them), which don't, how often they match, and
so on .

Using Full-Text Searching
To perform full-text searches, the columns to be searched must be indexed and
constantly reindexed as data changes. MariaDB handles all indexing and rein-
dexing automatically after table columns have been appropriately designated.

After indexing, SELECT can be used with Match() and Against() to actu-
ally perform the searches.

Enabling Full-Text Searching Support
Generally, full-text searching is enabled when a table is created. The CREATE
TABLE statement (which is introduced in Chapter 21) accepts a FULLTEXT
clause, which is a comma-delimited list of the columns to be indexed.

The following CREATE statement demonstrates the use of the FULLTEXT
clause:

ptg7041395

149Using Full-Text Searching

▼ Input
CREATE TABLE productnotes

(

 note_id int NOT NULL AUTO_INCREMENT,

 prod_id char(10) NOT NULL,

 note_date datetime NOT NULL,

 note_text text NULL ,

 PRIMARY KEY(note_id),

 FULLTEXT(note_text)

) ENGINE=Maria;

▼ Analysis
We look at the CREATE TABLE statement in detail in Chapter 21. For now,
just note that this CREATE TABLE statement defines table productnotes and
lists the columns that it is to contain. One of those columns is named note_
text, and it is indexed by MariaDB for full-text searching as instructed by the
clause FULLTEXT(note_text). Here FULLTEXT indexes a single column, but
multiple columns may be specified if needed.

Once defined, MariaDB automatically maintains the index. When rows are
added, updated, or deleted, the index is automatically updated accordingly.

FULLTEXT may be specified at table creation time, or later on (in which case all
existing data would have to be immediately indexed) .

Tip

Don't Use FULLTEXT When Importing Data Updating indexes takes time—not a
lot of time, but time nonetheless. If you are importing data into a new table, you should
not enable FULLTEXT indexing at that time. Rather, first import all the data, and then
modify the table to define FULLTEXT. This makes for a much faster data import (and
the total time needed to index all data will be less than the sum of the time needed to
index each row individually).

Performing Full-Text Searches
After indexing, full-text searches are performed using two functions: Match()
to specify the columns to be searched and Against() to specify the search
expression to be used.

Here is a basic example:

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('rabbit');

ptg7041395

150 Chapter 18 Full-Text Searching

▼ Analysis
The SELECT statement retrieves a single column, note_text. For the WHERE
clause, a full-text search is performed. Match(note_text) instructs MariaDB
to perform the search against that named column, and Against('rabbit')
specifies the word rabbit as the search text. As two rows contained the word
rabbit, those two rows were returned .

Note

Use Full Match() Specification The value passed to Match() must be the same
as the one used in the FULLTEXT() definition. If multiple columns are specified, all of
them must be listed (and in the correct order).

Note

Searches Are Case Insensitive Full-text searches are case insensitive, unless BINARY
mode (not covered in this chapter) is used.

The truth is that the search just performed could just as easily have used a LIKE
clause, as seen here :

▼ Input
SELECT note_text

FROM productnotes

WHERE note_text LIKE '%rabbit%';

▼ Output
+---+

| note_text |

+---|

| Customer complaint: rabbit has been able to detect trap, food apparently |

| less effective now. |

| Quantity varies, sold by the sack load. All guaranteed to be bright and |

| orange, and suitable for use as rabbit bait. |

+---+

▼ Output
+---+

| note_text |

+---|

| Quantity varies, sold by the sack load. All guaranteed to be bright and |

| orange, and suitable for use as rabbit bait. |

| Customer complaint: rabbit has been able to detect trap, food apparently |

| less effective now. |

+---+

ptg7041395

151Using Full-Text Searching

▼ Analysis
This SELECT retrieves the same two rows, but the order is different (although
that may not always be the case).

Neither of the two SELECT statements contained an ORDER BY clause. The
latter (using LIKE) returns data in no particularly useful order. But the former
(using full-text searching) returns data ordered by how well the text matched.
Both rows contained the word rabbit, but the row that contained the word
rabbit as the third word ranked higher than the row that contained it as the
twentieth word. This is important. An important part of full-text searching is
the ranking of results. Rows with a higher rank are returned first (as there is a
higher degree of likelihood that those are the ones you really wanted).

To demonstrate how ranking works, look at this example :

▼ Input
SELECT note_text,

 Match(note_text) Against('rabbit') AS rank

FROM productnotes;

▼ Output
+--+----------------+

| note_text | rank |

+--+----------------+

| Customer complaint: Sticks not individually wrapped, too | 0 |

| easy to mistakenly detonate all at once. Recommend | |

| individual wrapping. | |

| Can shipped full, refills not available. Need to order | 0 |

| new can if refill needed. | |

| Safe is combination locked, combination not provided | 0 |

| with safe. This is rarely a problem as safes are | |

| typically blown up or dropped by customers | |

| Quantity varies, sold by the sack load. All guaranteed | 1.5905543170914|

| to be bright and orange, and suitable for as rabbit bait.| |

| Included fuses are short and have been known to detonate | 0 |

| too quickly for some customers. Longer fuses are | |

| available (item FU1) and should be recommended. | |

| Matches not included, recommend purchase of matches or | 0 |

| detonator (item DTNTR). | |

| Please note that no returns will be accepted if safe | 0 |

| opened using explosives. | |

| Multiple customer returns, anvils failing to drop fast | 0 |

| enough or falling backwards on purchaser. Recommend | |

| that customer considers using heavier anvils. | |

| Item is extremely heavy. Designed for dropping, not | 0 |

| recommended for use with slings, ropes, pulleys, or | |

| tightropes. | |

ptg7041395

152 Chapter 18 Full-Text Searching

| Customer complaint: rabbit has been able to detect trap, | 1.6408053837485|

| food apparently less effective now. | |

| Shipped unassembled, requires common tools (including | 0 |

| oversized hammer). | |

| Customer complaint: Circular hole in safe floor can | 0 |

| apparently be easily cut with handsaw. | |

| Customer complaint: Not heavy enough to generate flying | 0 |

| stars around head of victim. If being purchased for | |

| dropping, recommend ANV02 or ANV03 instead. | |

| Call from individual trapped in safe plummeting to the | 0 |

| ground, suggests an escape hatch be added. Comment | |

| forwarded to vendor. | |

+--+----------------+

▼ Analysis
Here Match() and Against() are used in the SELECT instead of the WHERE
clause. This causes all rows to be returned (as there is no WHERE clause).
Match() and Against() are used to create a calculated column (with the
alias rank), which contains the ranking value calculated by the full-text search.
The ranking is calculated by MariaDB based on the number of words in the
row, the number of unique words, the total number of words in the entire
index, and the number of rows that contain the word. As you can see, the rows
that do not contain the word rabbit have a rank of 0 (and were therefore not
selected by the WHERE clause in the previous example). The two rows that do
contain the word rabbit each have a rank value, and the one with the word
earlier in the text has a higher rank value than the one in which the word
appeared later. This helps demonstrate how full-text searching eliminates rows
(those with a rank of 0), and how it sorts results (by rank in descending order).

Note

Ranking Multiple Search Terms If multiple search terms are specified, those that con-
tain the most matching words will be ranked higher than those with less (or just a single
match).

As you can see, full-text searching offers functionality not available with simple
LIKE searches. And as data is indexed, full-text searches are considerably
faster, too .

Using Query Expansion
Query expansion is used to try to widen the range of returned full-text search
results. Consider the following scenario. You want to find all notes with refer-
ences to anvils in them. Only one note contains the word anvils, but you

ptg7041395

153Using Full-Text Searching

also want any other rows that may be related to your search, even if the specific
word anvils is not contained within them.

This is a job for query expansion. When query expansion is used, MariaDB
makes two passes through the data and indexes to perform your search:

 ■ First, a basic full-text search is performed to find all rows that match
the search criteria.

 ■ Next, MariaDB examines those matched rows and selects all useful
words (we explain how MariaDB figures out what is useful and what is
not shortly).

 ■ Then, MariaDB performs the full-text search again, this time using not
just the original criteria, but also all the useful words.

Using query expansion you can therefore find results that might be relevant,
even if they don't contain the exact words for which you were looking.

Here is an example. First, a simple full-text search, without query expansion :

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('anvils');

▼ Output
+---+

| note_text |

+---+

| Multiple customer returns, anvils failing to drop fast enough or falling |

| backwards on purchaser. Recommend that customer considers using heavier |

| anvils. |

+---+

▼ Analysis
Only one row contains the word anvils, so only one row is returned.

Here is the same search, this time using query expansion :

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('anvils' WITH QUERY EXPANSION);

ptg7041395

154 Chapter 18 Full-Text Searching

▼ Output
+---+

| note_text |

+---+

| Multiple customer returns, anvils failing to drop fast enough or falling |

| backwards on purchaser. Recommend that customer considers using heavier |

| anvils. |

| Customer complaint: Sticks not individually wrapped, too easy to |

| mistakenly detonate all at once. Recommend individual wrapping. |

| Customer complaint: Not heavy enough to generate flying stars around head |

| of victim. If being purchased for dropping, recommend ANV02 or ANV03 |

| instead. |

| Please note that no returns will be accepted if safe opened using |

| explosives. |

| Customer complaint: rabbit has been able to detect trap, food apparently |

| less effective now. |

| Customer complaint: Circular hole in safe floor can apparently be easily |

| cut with handsaw. |

| Matches not included, recommend purchase of matches or detonator (item |

| DTNTR). |

+---+

▼ Analysis
This time seven rows were returned. The first contains the word anvils
and is thus ranked highest. The second row has nothing to do with anvils,
but as it contains two words that are also in the first row (customer and
recommend) it was retrieved, too. The third row also contains those same
two words, but they are further into the text and further apart, and so it was
included, but ranked third. And this third row does indeed refer to anvils (by
their product name).

As you can see, query expansion greatly increases the number of rows returned,
but in doing so also increases the number of returns that you might not act-
ually want .

Tip

The More Rows the Better The more rows in your table (and the more text within
those rows), the better the results returned when using query expansion.

Boolean Text Searches
MariaDB supports an additional form of full-text searching called boolean mode.
In boolean mode you may provide specifics as to

ptg7041395

155Using Full-Text Searching

 ■ Words to be matched

 ■ Words to be excluded (if a row contained this word it would not be
returned, even though other specified words were matched)

 ■ Ranking hints (specifying which words are more important than others
so they can be ranked higher)

 ■ Expression grouping

 ■ And more

Tip

Useable Even Without a FULLTEXT Index Boolean mode differs from the full-text
search syntax used thus far in that it may be used even if no FULLTEXT index is
defined. However, this would be a slow operation (and the performance would degrade
further as data volume increased).

To demonstrate what IN BOOLEAN MODE does, here is a simple example:

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('heavy' IN BOOLEAN MODE);

▼ Output
+---+

| note_text |

+---+

| Item is extremely heavy. Designed for dropping, not recommended for use |

| with slings, ropes, pulleys, or tightropes. |

| Customer complaint: Not heavy enough to generate flying stars around head |

| of victim. If being purchased for dropping, recommend ANV02 or ANV03 |

| instead. |

+---+

▼ Analysis
This full-text search retrieves all rows containing the word heavy (there are
two of them). The keywords IN BOOLEAN MODE are specified, but no boolean
operators are actually specified and so the results are just as if boolean mode had
not been specified .

ptg7041395

156 Chapter 18 Full-Text Searching

Note

IN BOOLEAN MODE Behaves Differently Although the results in this example are
the same as they would be without IN BOOLEAN MODE, there is an important dif-
ference in behavior (even if it did not manifest itself in this particular example). I point
these out in the “Full-Text Search Usage Notes” section later in this chapter.

To match the rows that contain heavy but not any word beginning with
rope, the following can be used:

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('heavy –rope*' IN BOOLEAN MODE);

▼ Output
+---+

| note_text |

+---+

| Customer complaint: Not heavy enough to generate flying stars around head |

| of victim. If being purchased for dropping, recommend ANV02 or ANV03 |

| instead. |

+---+

▼ Analysis
This time only one row is returned. Again, the word heavy is matched, but
this time –rope* instructs MariaDB to explicitly exclude any row that contains
rope* (any word beginning with rope, including ropes, which is why one
of the rows was excluded).

You have now seen two full-text search boolean operators: - excludes a word
and * is the truncation operator (think of it as a wildcard used at the end of a
word). Table 18.1 lists all the supported boolean operators.

Table 18.1 Full-Text Boolean Operators

Privilege Description

+ Include, word must be present.

- Exclude, word must not be present.

> Include, and increase ranking value.

< Include, and decrease ranking value.

 () Group words into subexpressions (allowing them to be included,
excluded, ranked, and so forth as a group).

~ Negate a word's ranking value.

* Wildcard at end of word.

"" Defines a phrase. (As opposed to a list of individual words,
the entire phrase is matched for inclusion or exclusion.)

ptg7041395

157Using Full-Text Searching

Here are some more examples to demonstrate the use of some of these
operators:

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('+rabbit +bait' IN BOOLEAN MODE);

▼ Analysis
This search matches rows that contain both the words rabbit and bait.

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('rabbit bait' IN BOOLEAN MODE);

▼ Analysis
Without operators specified, this search matches rows that contain at least one
of rabbit or bait.

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('"rabbit bait"' IN BOOLEAN MODE);

▼ Analysis
This search matches the phrase rabbit bait instead of the two words
rabbit and bait.

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('>rabbit <carrot' IN BOOLEAN MODE);

▼ Analysis
Match both rabbit and carrot, increasing the rank of the former and
decreasing the rank of the latter.

ptg7041395

158 Chapter 18 Full-Text Searching

▼ Input
SELECT note_text

FROM productnotes

WHERE Match(note_text) Against('+safe +(<combination)' IN BOOLEAN MODE);

▼ Analysis
This search matches the words safe and combination, lowering the ranking
of the latter.

Note

Ranked, But Not Sorted In boolean mode, rows will not be returned sorted descending
by ranking score.

Full-Text Search Usage Notes
Before finishing this chapter, here are some important notes pertaining to the
use of full-text searching:

 ■ When indexing full-text data, short words are ignored and are
excluded from the index. Short words are defined as those having
three or fewer characters (this number can be changed if needed).

 ■ MariaDB comes with a built-in list of stopwords, words that are always
ignored when indexing full-text data. This list can be overridden
if needed. (Refer to the MariaDB documentation to learn how to
accomplish this.)

 ■ Many words appear so frequently that searching on them would be
useless (too many results would be returned). As such, MariaDB hon-
ors a 50% rule—if a word appears in 50% or more of the rows, it is
treated as a stopword and is effectively ignored. (The 50% rule is not
used for IN BOOLEAN MODE).

 ■ Full-text searching never returns any results if there are fewer than
three rows in a table (because every word is always in at least 50% of
the rows).

 ■ Single quote characters in words are ignored. For example, don't is
indexed as dont.

 ■ Languages that don't have word delimiters (including Japanese and
Chinese) will not return full-text results properly.

 ■ As already noted, full-text searching is not supported in all database
engines (it is supported in ARIA and MyISAM).

ptg7041395

159Summary

Note

No Proximity Operators One feature supported by many full-text search engines is
proximity searching, the ability to search for words that are near each other (in the same
sentence, in the same paragraph, or no more than a specific number of words apart,
and so on). Proximity operators are not yet supported by MariaDB full-text searching,
although this is planned for a future release.

Summary
In this chapter, you learned why full-text searching is used, and how to use the
MariaDB Match() and Against() functions to perform these searches. You
also learned about query expansion as a way to increase the chances of finding
related matches, and how to use boolean mode for more granular lookup
control.

ptg7041395

This page intentionally left blank

ptg7041395

19
Inserting Data

In this chapter, you learn how to insert data into tables using the SQL INSERT
statement.

Understanding Data Insertion
SELECT is undoubtedly the most frequently used SQL statement (which is
why the past 18 chapters were dedicated to it). But there are three other fre-
quently used SQL statements that you should learn. The first one is INSERT.
(You get to the other two in the next chapter.)

As its name suggests, INSERT is used to insert (add) rows to a database table.
Insert can be used in several ways:

■ To insert a single complete row

■ To insert a single partial row

■ To insert multiple rows

■ To insert the results of a query

We look at each of these in the following sections.

Tip

INSERT and System Security Use of the INSERT statement can be disabled
per table or per user using MariaDB security, as explained in Chapter 28, “Managing
Security.”

Inserting Complete Rows
The simplest way to insert data into a table is to use the basic INSERT syntax,
which requires that you specify the table name and the values to be inserted
into the new row. Here is an example of this:

ptg7041395

162 Chapter 19 Inserting Data

▼ Input
INSERT INTO Customers

VALUES(NULL,

 'Pep E. LaPew',

 '100 Main Street',

 'Los Angeles',

 'CA',

 '90046',

 'USA',

 NULL,

 NULL);

Note

No Output INSERT statements usually generate no output.

▼ Analysis
The preceding example inserts a new customer into the customers table. The
data to be stored in each table column is specified in the VALUES clause, and a
value must be provided for every column. If a column has no value (for exam-
ple, the cust_contact and cust_email columns), the NULL value should be
used (assuming the table allows no value to be specified for that column). The
columns must be populated in the order in which they appear in the table defi-
nition. The first column, cust_id, is also NULL. This is because that column
is automatically incremented by MariaDB each time a row is inserted. You'd
not want to specify a value (that is MariaDB's job), and nor could you omit the
column (as already stated, every column must be listed), and so a NULL value is
specified (it is ignored by MariaDB, which inserts the next available cust_id
value in its place).

Although this syntax is indeed simple, it is not at all safe and should gener-
ally be avoided at all costs. The previous SQL statement is highly dependent
on the order in which the columns are defined in the table. It also depends
on information about that order being readily available. Even if it is available,
there is no guarantee that the columns will be in the exact same order the next
time the table is reconstructed. Therefore, writing SQL statements that depend
on specific column ordering is unsafe. If you do so, something will inevitably
break at some point.

The safer (and unfortunately more cumbersome) way to write the INSERT
statement is as follows:

ptg7041395

163Inserting Complete Rows

▼ Input
INSERT INTO customers(cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country,

 cust_contact,

 cust_email)

VALUES('Pep E. LaPew',

 '100 Main Street',

 'Los Angeles',

 'CA',

 '90046',

 'USA',

 NULL,

 NULL);

▼ Analysis
This example does the exact same thing as the previous INSERT statement, but
this time the column names are explicitly stated in parentheses after the table
name. When the row is inserted MariaDB matches each item in the columns
list with the appropriate value in the VALUES list. The first entry in VALUES
corresponds to the first specified column name. The second value corresponds
to the second column name, and so on.

Because column names are provided, the VALUES must match the specified col-
umn names in the order in which they are specified, and not necessarily in the
order that the columns appear in the actual table. The advantage of this is that,
even if the table layout changes, the INSERT statement will still work correctly.
You'll also notice that the NULL for cust_id was not needed; the cust_id
column was not listed in the column list and so no value was needed.

The following INSERT statement populates all the row columns (just as before),
but it does so in a different order. Because the column names are specified, the
insertion works correctly:

▼ Input
INSERT INTO customers(cust_name,

 cust_contact,

 cust_email,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

ptg7041395

164 Chapter 19 Inserting Data

 cust_country)

VALUES('Pep E. LaPew',

 NULL,

 NULL,

 '100 Main Street',

 'Los Angeles',

 'CA',

 '90046',

 'USA');

Tip

Always Use a Columns List As a rule, never use INSERT without explicitly specifying
the column list. This greatly increases the probability that your SQL will continue to func-
tion in the event that table changes occur.

Caution

Use VALUES Carefully Regardless of the INSERT syntax being used, the correct
number of VALUES must be specified. If no column names are provided, a value must
be present for every table column. If columns names are provided, a value must be pres-
ent for each listed column. If none is present, an error message will be generated, and
the row will not be inserted.

Using this syntax, you can also omit columns. This means you provide values
only for some columns, but not for others. (You've actually already seen an
example of this, cust_id was omitted when column names were explicitly
listed.)

Caution

Omitting Columns You may omit columns from an INSERT operation if the table defi-
nition so allows. One of the following conditions must exist:

 ■ The column is defined as allowing NULL values (no value at all).

 ■ A default value is specified in the table definition. This means the default value
will be used if no value is specified.

If you omit a value from a table that does not allow NULL values and does not have a
default, MariaDB generates an error message, and the row is not inserted.

Tip

Improving Overall Performance Databases are frequently accessed by multiple clients,
and it is MariaDB's job to manage which requests are processed and in which order.
INSERT operations can be time consuming (especially if there are many indexes to
be updated), and this can hurt the performance of SELECT statements waiting to be
processed.

ptg7041395

165Inserting Multiple Rows

If data retrieval is of utmost importance (as it usually is), you can instruct MariaDB to
lower the priority of your INSERT statement by adding the keyword LOW_PRIORITY in
between INSERT and INTO, like this:

INSERT LOW_PRIORITY INTO

Incidentally, this also applies to the UPDATE and DELETE statements that you learn
about in the next chapter.

Inserting Multiple Rows
INSERT inserts a single row into a table. But what if you need to insert mul-
tiple rows? You could simply use multiple INSERT statements, and could even
submit them all at once, each terminated by a semicolon, like this:

▼ Input
INSERT INTO customers(cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

VALUES('Pep E. LaPew',

 '100 Main Street',

 'Los Angeles',

 'CA',

 '90046',

 'USA');

INSERT INTO customers(cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

VALUES('M. Martian',

 '42 Galaxy Way',

 'New York',

 'NY',

 '11213',

 'USA');

Or, as long as the column names (and order) are identical in each INSERT, you
could combine the statements as follows :

ptg7041395

166 Chapter 19 Inserting Data

▼ Input
INSERT INTO customers(cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

VALUES(

 'Pep E. LaPew',

 '100 Main Street',

 'Los Angeles',

 'CA',

 '90046',

 'USA'

),

 (

 'M. Martian',

 '42 Galaxy Way',

 'New York',

 'NY',

 '11213',

 'USA'

);

▼ Analysis
Here a single INSERT statement has multiple sets of values, each enclosed
within parentheses and separated by commas .

Tip

Improving INSERT Performance This technique can improve the performance of your
database processing, as MariaDB process es multiple insertions in a single INSERT
faster than it processes multiple INSERT statements.

Inserting Retrieved Data
INSERT is usually used to add a row to a table using specified values. Another
form of INSERT can be used to insert the result of a SELECT statement into a
table. This is known as INSERT SELECT, and, as its name suggests, it is made
up of an INSERT statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into your
customers table. Instead of reading one row at a time and inserting it with
INSERT, you can do the following:

ptg7041395

167Inserting Retrieved Data

Note

Instructions Needed for the Next Example The following example imports data from
a table named custnew into the customers table. To try this example, create a
new table named custnew using the CREATE TABLE customers statement in
create.sql, and obviously replacing customers with custnew. Then add a few
customers of your own, being careful to not use cust_id values that were already
used in customers (the subsequent INSERT operation will fail if primary key values
are duplicated). The easiest way to do this is just start the numbers much higher,
perhaps at 20000.

▼ Input
INSERT INTO customers(cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

SELECT cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country

FROM custnew;

▼ Analysis
This example uses INSERT SELECT to import all the data from custnew into
customers. Instead of listing the VALUES to be inserted, the SELECT state-
ment retrieves them from custnew. Each column in the SELECT corresponds
to a column in the specified columns list. How many rows will this statement
insert? That depends on how many rows are in the custnew table. If the table
is empty, no rows are inserted (and no error is generated because the operation
is still valid). If the table does, in fact, contain data, all that data is inserted into
customers.

This example imports cust_id (and assumes that you have ensured that
cust_id values are not duplicated). You could also simply omit that column
(from both the INSERT and the SELECT) so MariaDB would generate new
values.

ptg7041395

168 Chapter 19 Inserting Data

Tip

Column Names in INSERT SELECT This example uses the same column names
in both the INSERT and SELECT statements for simplicity's sake. But there is no
requirement that the column names match. In fact, MariaDB does not even pay attention
to the column names returned by the SELECT. Rather, the column position is used, so
the first column in the SELECT (regardless of its name) is used to populate the first
specified table column, and so on. This is useful when importing data from tables that
use different column names.

The SELECT statement used in an INSERT SELECT can include a WHERE
clause to filter the data to be inserted.

Note

More Examples Looking for more examples of INSERT use? See the example table
population scripts (described in Appendix B, “The Example Tables”) used to create the
example tables in this book.

Summary
In this chapter, you learned how to use INSERT to insert rows into a database
table. You learned several other ways to use INSERT, and why explicit col-
umn specification is preferred. You also learned how to use INSERT SELECT
to import rows from another table. In the next chapter, you learn how to use
UPDATE and DELETE to further manipulate table data.

ptg7041395

20
Updating and Deleting Data

In this chapter, you learn how to use the UPDATE and DELETE statements to
enable you to further manipulate your table data.

Updating Data
To update (modify) data in a table the UPDATE statement is used. UPDATE can
be used in two ways:

 ■ To update specific rows in a table

 ■ To update all rows in a table

Let's take a look at each of these uses.

Caution

Don't Omit the WHERE Clause Special care must be exercised when using UPDATE
because it is all too easy to mistakenly update every row in your table. Please read this
entire section on UPDATE before using this statement.

Tip

UPDATE and Security Use of the UPDATE statement can be restricted and con-
trolled. More on this in Chapter 28, “Managing Security.”

The UPDATE statement is easy to use—some would say too easy. The basic
format of an UPDATE statement is made up of three parts:

■ The table to be updated

■ The column names and their new values

■ The filter condition that determines which rows should be updated

ptg7041395

170 Chapter 20 Updating and Deleting Data

Let's take a look at a simple example. Customer 10005 now has an e-mail
address, and so his record needs updating. The following statement performs
this update:

▼ Input
UPDATE customers

SET cust_email = 'elmer@fudd.com'

WHERE cust_id = 10005;

▼ Analysis
The UPDATE statement always begins with the name of the table being
updated. In this example, it is the customers table. The SET command is
then used to assign the new value to a column. As used here, the SET clause
sets the cust_email column to the specified value:

SET cust_email = 'elmer@fudd.com'

The UPDATE statement finishes with a WHERE clause that tells MariaDB which
row to update. Without a WHERE clause, MariaDB would update all the rows
in the customers table with this new e-mail address—definitely not the
desired effect.

Updating multiple columns requires a slightly different syntax:

▼ Input
UPDATE customers

SET cust_name = 'The Fudds',

 cust_email = 'elmer@fudd.com'

WHERE cust_id = 10005;

▼ Analysis
When updating multiple columns, only a single SET command is used, and
each column = value pair is separated by a comma. (No comma is specified
after the last column.) In this example, columns cust_name and cust_email
are updated for customer 10005.

Tip

Using Subqueries in an UPDATE Statement Subqueries may be used in UPDATE
statements, enabling you to update columns with data retrieved with a SELECT state-
ment. Refer to Chapter 14, “Working with Subqueries,” for more information on subque-
ries and their uses.

ptg7041395

171Deleting Data

Tip

The IGNORE Keyword If your UPDATE statement updates multiple rows and an
error occurs while updating one or more of those rows, the entire UPDATE operation is
cancelled (and any rows updated before the error occurred are restored to their original
values). To continue processing updates, even if an error occurs, use the IGNORE key-
word, like this:

UPDATE IGNORE customers ...

To delete a column's value, you can set it to NULL (assuming the table is
defined to allow NULL values). You can do this as follows:

▼ Input
UPDATE customers

SET cust_email = NULL

WHERE cust_id = 10005;

Here the NULL keyword is used to save no value to the cust_email column.

Deleting Data
To delete (remove) data from a table, the DELETE statement is used. DELETE
can be used in two ways:

 ■ To delete specific rows from a table

 ■ To delete all rows from a table

We now take a look at each of these.

Caution

Don't Omit the WHERE Clause Special care must be exercised when using DELETE
because it is all too easy to mistakenly delete every row from your table. Please read
this entire section on DELETE before using this statement.

Tip

DELETE and Security Use of the DELETE statement can be restricted and con-
trolled. More on this in Chapter 28.

I already stated that UPDATE is easy to use. The good (and bad) news is that
DELETE is even easier to use.

The following statement deletes a single row from the customers table:

ptg7041395

172 Chapter 20 Updating and Deleting Data

▼ Input
DELETE FROM customers

WHERE cust_id = 10006;

▼ Analysis
This statement should be self-explanatory. DELETE FROM requires that you
specify the name of the table from which the data is to be deleted. The WHERE
clause filters which rows are to be deleted. In this example, only customer
10006 will be deleted. If the WHERE clause were omitted, this statement would
delete every customer in the table.

DELETE takes no column names or wildcard characters. DELETE deletes entire
rows, not columns. To delete specific columns use an UPDATE statement (as
seen earlier in this chapter).

Note

Table Contents, Not Tables The DELETE statement deletes rows from tables, even
all rows from tables. But DELETE never deletes the table itself.

Tip

Faster Deletes If you really do want to delete all rows from a table, don't use
DELETE. Instead, use the TRUNCATE TABLE statement, which accomplishes the
same thing but does it much more quickly (TRUNCATE actually drops and re-creates the
table, instead of deleting each row individually).

Guidelines for Updating and Deleting
Data
The UPDATE and DELETE statements used in the previous sections all have
WHERE clauses, and there is a good reason for this. If you omit the WHERE
clause, the UPDATE or DELETE is applied to every row in the table. In other
words, if you execute an UPDATE without a WHERE clause, every row in the
table is updated with the new values. Similarly if you execute DELETE without
a WHERE clause, all the contents of the table are deleted.

Here are some best practices that many SQL programmers follow:

 ■ Never execute an UPDATE or a DELETE without a WHERE clause unless
you really do intend to update and delete every row.

ptg7041395

173Summary

 ■ Make sure every table has a primary key (refer to Chapter 15, “Joining
Tables,” if you have forgotten what this is) and use it as the WHERE
clause whenever possible. (You may specify individual primary keys,
multiple values, or value ranges.)

 ■ Before you use a WHERE clause with an UPDATE or a DELETE, first test
it with a SELECT to make sure it is filtering the right records—it is far
too easy to write incorrect WHERE clauses.

 ■ Use database enforced referential integrity (refer to Chapter 15 for this
one, too) so MariaDB does not allow the deletion of rows that have
data in other tables related to them .

Caution

Use with Caution The bottom line is that MariaDB has no Undo button. Be very careful
using UPDATE and DELETE, or you might find yourself updating and deleting the wrong
data.

Summary
In this chapter, you learned how to use the UPDATE and DELETE statements
to manipulate the data in your tables. You learned the syntax for each of these
statements, as well as the inherent dangers they expose. You also learned why
WHERE clauses are so important in UPDATE and DELETE statements, and you
were given guidelines to follow to help ensure that data does not get damaged
inadvertently.

ptg7041395

This page intentionally left blank

ptg7041395

21
Creating and Manipulating

Tables

In this chapter you learn the basics of table creation, alteration, and deletion.

Creating Tables
MariaDB SQL statements are not used just for table data manipulation. Indeed,
SQL statements can be used to perform all database and table operations,
including the creation and manipulation of tables themselves.

There are generally two ways to create database tables:

 ■ Using an administration tool (like the ones discussed in Chapter 2,
“Introducing MariaDB”) that can be used to create and manage data-
base tables interactively.

 ■ Tables may also be manipulated directly with MariaDB SQL
statements.

To create tables programmatically, the CREATE TABLE SQL statement is used.
It is worth noting that when you use interactive tools, you are actually using
MariaDB SQL statements. Instead of your writing these statements, however,
the interface generates and executes the SQL seamlessly for you (the same is
true for changes to existing tables).

Tip

Additional Examples For additional examples of table creation scripts, see the code
used to create the sample tables used in this book.

ptg7041395

176 Chapter 21 Creating and Manipulating Tables

Note

Just the Basics MariaDB supports a vast array of table creation options, far more
than a single chapter can do justice to. In this chapter we cover the basics, just so you
can get a feel for what’s involved in table creation, and so that the accompanying table
creation scripts make sense. To learn more about all that CREATE TABLE can do,
consult the MariaDB documentation.

Basic Table Creation
To create a table using CREATE TABLE, you must specify the following infor-
mation:

 ■ The name of the new table specified after the keywords CREATE
TABLE.

 ■ The name and definition of the table columns separated by commas.

The CREATE TABLE statement may also include other keywords and options,
but at a minimum you need the table name and column details. The follow-
ing MariaDB SQL statement creates the customers table used throughout
this book:

▼ Input
CREATE TABLE customers

(

 cust_id int NOT NULL AUTO_INCREMENT,

 cust_name char(50) NOT NULL ,

 cust_address char(50) NULL ,

 cust_city char(50) NULL ,

 cust_state char(5) NULL ,

 cust_zip char(10) NULL ,

 cust_country char(50) NULL ,

 cust_contact char(50) NULL ,

 cust_email char(255) NULL ,

 PRIMARY KEY (cust_id)

) ENGINE= Aria;

▼ Analysis
As you can see in the preceding statement, the table name is specified immedi-
ately following the CREATE TABLE keywords. The actual table definition (all
the columns) is enclosed within parentheses. The columns themselves are
separated by commas. This particular table is made up of nine columns.

ptg7041395

177Creating Tables

Each column definition starts with the column name (which must be unique
within the table), followed by the column’s datatype. (Refer to Chapter 1,
“Understanding SQL,” for an explanation of datatypes. In addition, Appendix
C, “MariaDB Datatypes,” lists the datatypes supported by MariaDB.) The
table’s primary key may be specified at table creation time using the PRIMARY
KEY keywords; here, column cust_id is specified as the primary key column.
The entire statement is terminated with a semicolon after the closing parenthe-
sis. (Ignore the ENGINE=Aria and AUTO_INCREMENT statements for now; we
come back to that later.)

Tip

Statement Formatting As you will recall, whitespace is ignored in SQL statements.
Statements can be typed on one long line or broken up over many lines. It makes no
difference at all. This enables you to format your SQL as best suits you. The preceding
CREATE TABLE statement is a good example of SQL statement formatting—the code
is specified over multiple lines, with the column definitions indented for easier reading
and editing. Formatting your SQL this way is entirely optional, but highly recommended.

Tip

Handling Existing Tables When you create a new table, the table name specified must
not exist or you’ll generate an error. To prevent accidental overwriting, SQL requires that
you first manually remove a table (see later sections for details) and then re-create it,
rather than just overwriting it.

If you want to create a table only if it does not already exist, specify IF NOT EXISTS
after the table name. This does not check to see that the schema of the existing table
matches the one you are about to create. It simply checks to see whether the table
name exists, and only proceeds with table creation if it does not.

Working with NULL Values
Back in Chapter 6, “Filtering Data,” you learned that NULL values are no val-
ues or the lack of a value. A column that allows NULL values also allows rows
to be inserted with no value at all in that column. A column that does not
allow NULL values does not accept rows with no value—in other words, that
column will always be required when rows are inserted or updated.

Every table column is either a NULL column or a NOT NULL column, and that
state is specified in the table definition at creation time. Take a look at the fol-
lowing example:

ptg7041395

178 Chapter 21 Creating and Manipulating Tables

▼ Input
CREATE TABLE orders

(

 order_num int NOT NULL AUTO_INCREMENT,

 order_date datetime NOT NULL ,

 cust_id int NOT NULL ,

 PRIMARY KEY (order_num)

) ENGINE=Aria;

▼ Analysis
This statement creates the orders table used throughout this book. orders
contains three columns: order number, order date, and the customer ID. All
three columns are required, and so each contains the keyword NOT NULL. This
prevents the insertion of columns with no value. If someone tries to insert no
value, an error will be returned, and the insertion will fail.

This next example creates a table with a mixture of NULL and NOT NULL
columns:

▼ Input
CREATE TABLE vendors

(

 vend_id int NOT NULL AUTO_INCREMENT,

 vend_name char(50) NOT NULL ,

 vend_address char(50) NULL ,

 vend_city char(50) NULL ,

 vend_state char(5) NULL ,

 vend_zip char(10) NULL ,

 vend_country char(50) NULL ,

 PRIMARY KEY (vend_id)

) ENGINE=Aria;

▼ Analysis
This statement creates the vendors table used throughout this book. The ven-
dor ID and vendor name columns are both required, and are, therefore, speci-
fied as NOT NULL. The five remaining columns all allow NULL values, and so
NOT NULL is not specified. NULL is the default setting, so if NOT NULL is not
specified, NULL is assumed.

ptg7041395

179Creating Tables

Caution

Understanding NULL Don’t confuse NULL values with empty strings. A NULL value
is the lack of a value; it is not an empty string. If you were to specify '' (two single
quotes with nothing in between them), that would be allowed in a NOT NULL column.
An empty string is a valid value; it is not no value. NULL values are specified with the
keyword NULL, not with an empty string.

Primary Keys Revisited
As already explained, primary key values must be unique. That is, every row in
a table must have a unique primary key value. If a single column is used for the
primary key, it must be unique; if multiple columns are used, the combination
of them must be unique.

The CREATE TABLE examples seen thus far use a single column as the primary
key. The primary key is thus defined using a statement such as

PRIMARY KEY (vend_id)

To create a primary key made up of multiple columns, simply specify the col-
umn names as a comma-delimited list, as seen in this example:

CREATE TABLE orderitems

(

 order_num int NOT NULL ,

 order_item int NOT NULL ,

 prod_id char(10) NOT NULL ,

 quantity int NOT NULL ,

 item_price decimal(8,2) NOT NULL ,

 PRIMARY KEY (order_num, order_item)

) ENGINE=Aria;

The orderitems table contains the order specifics for each order in the
orders table. There may be multiple items per order, but each order will only
ever have one first item, one second item, and so on. As such, the combination
of order number (column order_num) and order item (column order_item)
is unique, and thus suitable to be the primary key, which is defined as

PRIMARY KEY (order_num, order_item)

Primary keys may be defined at table creation time (as seen here) or after table
creation (as discussed later in this chapter).

ptg7041395

180 Chapter 21 Creating and Manipulating Tables

Tip

Primary Keys and NULL Values Back in Chapter 1, you learned that primary keys are
columns whose values uniquely identify every row in a table. Only columns that do not
allow NULL values can be used in primary keys. Columns that allow no value at all can-
not be used as unique identifiers.

Using AUTO_INCREMENT
Let’s take a look at the customers and orders tables again. Customers in the
customers table are uniquely identified by column cust_id, a unique num-
ber for each and every customer. Similarly, orders in the orders table each
have a unique order number that is stored in column order_num.

These numbers have no special significance, other than the fact that they are
unique. When a new customer or order is added, a new customer ID or order
number is needed. The numbers can be anything, so long as they are unique.

Obviously, the simplest number to use would be whatever comes next, what-
ever is one higher than the current highest number. For example, if the high-
est cust_id is 10005, the next customer inserted into the table could have a
cust_id of 10006.

Simple, right? Well, not really. How would you determine the next number
to be used? You could, of course, use a SELECT statement to get the highest
number (using the Max() function introduced in Chapter 12, “Summarizing
Data”) and then add 1 to it. But that would not be safe (you’d need to find a
way to ensure that no one else inserted a row in between the time that you
performed the SELECT and the INSERT, a legitimate possibility in multiuser
applications). Nor would it be efficient (performing additional SQL operations
is never ideal).

And that’s where AUTO_INCREMENT comes in. Look at the following line (part
of the CREATE TABLE statement used to create the customers table):

cust_id int NOT NULL AUTO_INCREMENT,

AUTO_INCREMENT tells MariaDB that this column is to be automatically
incremented each time a row is added. Each time an INSERT operation is per-
formed MariaDB automatically increments (and thus AUTO_INCREMENT) the
column, assigning it the next available value. This way each row is assigned a
unique cust_id that is then used as the primary key value.

Only one AUTO_INCREMENT column is allowed per table, and it must be
indexed (for example, by making it a primary key).

ptg7041395

181Creating Tables

Note

Overriding AUTO_INCREMENT Need to use a specific value if a column is designated
as AUTO_INCREMENT? You can—simply specify a value in the INSERT statement,
and as long as it is unique (has not been used yet) that value will be used instead of an
automatically generated one. Subsequent incrementing will start using the value manu-
ally inserted. (See the table population scripts in Appendix B, “The Example Tables” for
examples of this.)

Tip

Determining the AUTO_INCREMENT Value One downside of having MariaDB
generate (via auto increment) primary keys for you is that you don’t know what those
values are.

Consider this scenario: You are adding a new order. This requires creating a single row
in the orders table and then a row for each item ordered in the orderitems table.
The order_num is stored along with the order details in orderitems. This is how
the orders and orderitems table are related to each other. And that obviously
requires that you know the generated order_num after the orders row was inserted
and before the orderitems rows are inserted.

So how could you obtain this value when an AUTO_INCREMENT column is used? By
using the last_insert_id() function, like this:

SELECT last_insert_id();

This returns the last AUTO_INCREMENT value, which you can then use in subsequent
SQL statements .

Specifying Default Values
MariaDB enables you to specify default values to be used if no value is specified
when a row is inserted. Default values are specified using the DEFAULT key-
word in the column definitions in the CREATE TABLE statement.

Look at the following example:

▼ Input
CREATE TABLE orderitems

(

 order_num int NOT NULL ,

 order_item int NOT NULL ,

 prod_id char(10) NOT NULL ,

 quantity int NOT NULL DEFAULT 1,

 item_price decimal(8,2) NOT NULL ,

 PRIMARY KEY (order_num, order_item)

) ENGINE=Aria;

ptg7041395

182 Chapter 21 Creating and Manipulating Tables

▼ Analysis
This statement creates the orderitems table that contains the individual
items that make up an order. (The order itself is stored in the orders table.)
The quantity column contains the quantity for each item in an order. In
this example, adding the text DEFAULT 1 to the column description instructs
MariaDB to use a quantity of 1 if no quantity is specified.

Caution

Functions Are Not Allowed Unlike most DBMSs, MariaDB (like MySQL) does not allow
the use of functions as DEFAULT values; only constants are supported.

Tip

Using DEFAULT Instead of NULL Values Many database developers use DEFAULT
values instead of NULL columns, especially in columns that will be used in calculations
or data groupings.

Engine Types
You may have noticed that the CREATE TABLE statements used thus far all
ended with a ENGINE=Aria statement.

Like every other DBMS, MariaDB has an internal engine that actually man-
ages and manipulates data. When you CREATE TABLE that engine is used to
actually create the tables, and when you SELECT or perform any other database
processing, the engine is used internally to process your request. And for the
most part, the engine is buried within the DBMS and you need not pay much
attention to it.

But unlike most other DBMSs, MariaDB does not come with a single engine.
Rather, it ships with several different engines (the ones that come with MySQL
as well as additional ones), all buried within the server, and all capable of exe-
cuting commands like CREATE TABLE and SELECT.

So why bother shipping multiple engines? Because each has different capabili-
ties and features, and being able to pick the right engine for a job gives you
unprecedented power and flexibility.

Of course, you are free to totally ignore database engines. If you omit the
ENGINE= statement, the default engine will be used, and most of your SQL
statements will work as is. But not all, and that is why this is important (and
why two different engines are used in the sample tables use d in this book).

ptg7041395

183Updating Tables

Here are several engines to be aware of:

 ■ InnoDB is a transaction-safe engine (see Chapter 26, “Managing
Transaction Processing”). It does not support full-text searching.

 ■ MEMORY is functionally equivalent to MyISAM, but as data is stored in
memory (instead of on disk) it is extremely fast (and ideally suited for
temporary tables).

 ■ MyISAM is a high-performance engine. It supports full-text searching
(see Chapter 18, “Full-Text Searching”), but does not support transac-
tional processing.

 ■ ARIA (specified as ENGINE=Aria) is a new transaction-safe engine that
also supports full-text searching and vital crash recovery features.

Engine types may be mixed, so within a single database you can have different
tables using different engines if required .

Caution

Foreign Keys Can’t Span Engines There is one big downside to mixing engine types.
Foreign keys (used to enforce referential integrity, as explained in Chapter 1) cannot
span engines. That is, a table using one engine cannot have a foreign key referring to a
table that uses another engine.

So, which should you use? Well, that depends on what features you need.
ARIA is new to MariaDB and provides the ideal combination of performance
and features. But, if you do need to use features in other engines, know that
the option of doing so is available to you .

Updating Tables
To update table definitions, the ALTER TABLE statement is used. But, ideally,
tables should never be altered after they contain data. You should spend suffi-
cient time anticipating future needs during the table design process so extensive
changes are not required later on.

To change a table using ALTER TABLE, you must specify the following infor-
mation:

 ■ The name of the table to be altered after the keywords ALTER TABLE.
(The table must exist or an error will be generated.)

 ■ The list of changes to be made.

ptg7041395

184 Chapter 21 Creating and Manipulating Tables

The following example adds a column to a table:

▼ Input
ALTER TABLE vendors

ADD vend_phone CHAR(20);

▼ Analysis
This statement adds a column named vend_phone to the vendors table. The
datatype must be specified.

To remove this newly added column, you can do the following:

▼ Input
ALTER TABLE Vendors

DROP COLUMN vend_phone;

One common use for ALTER TABLE is to define foreign keys. The following is
the code used to define the foreign keys used by the tables in this book:

ALTER TABLE orderitems

ADD CONSTRAINT fk_orderitems_orders

FOREIGN KEY (order_num) REFERENCES orders (order_num);

ALTER TABLE orderitems

ADD CONSTRAINT fk_orderitems_products FOREIGN KEY (prod_id)

REFERENCES products (prod_id);

ALTER TABLE orders

ADD CONSTRAINT fk_orders_customers FOREIGN KEY (cust_id)

REFERENCES customers (cust_id);

ALTER TABLE products

ADD CONSTRAINT fk_products_vendors

FOREIGN KEY (vend_id) REFERENCES vendors (vend_id);

Here four ALTER TABLE statements are used, as four different tables are being
altered. To make multiple alterations to a single table, a single ALTER TABLE
statement could be used with each of the alterations specified comma delimited.

Complex table structure changes usually require a manual move process involv-
ing these steps:

1. Create a new table with the new column layout.

2. Use the INSERT SELECT statement (see Chapter 19, “Inserting Data,”
for details of this statement) to copy the data from the old table to the
new table. Use conversion functions and calculated fields, if needed.

ptg7041395

185Renaming Tables

3. Verify that the new table contains the desired data.

4. Rename the old table (or delete it, if you are really brave).

5. Rename the new table with the name previously used by the old table.

6. Re-create any triggers, stored procedures, indexes, and foreign keys as
needed.

Caution

Use ALTER TABLE Carefully Use ALTER TABLE with extreme caution, and be
sure you have a complete set of backups (both schema and data) before proceeding.
Database table changes cannot be undone—and if you add columns you don’t need, you
might not be able to remove them. Similarly, if you drop a column that you do need, you
might lose all the data in that column.

Deleting Tables
Deleting tables (actually removing the entire table, not just the contents) is
easy—arguably too easy. Tables are deleted using the DROP TABLE statement:

▼ Input
DROP TABLE customers2;

▼ Analysis
This statement deletes the customers2 table (assuming it exists). There is
no confirmation, nor is there an undo—executing the statement permanently
removes the table.

Renaming Tables
To rename a table, use the RENAME TABLE statement as follows:

▼ Input
RENAME TABLE customers2 TO customers;

▼ Analysis
RENAME TABLE does just that, it renames a table. Multiple tables may be
renamed in one operation using the syntax :

RENAME TABLE backup_customers TO customers,

 backup_vendors TO vendors,

 backup_products TO products;

ptg7041395

186 Chapter 21 Creating and Manipulating Tables

Summary
In this chapter, you learned several new SQL statements. CREATE TABLE
is used to create new tables, ALTER TABLE is used to change table columns
(or other objects like constraints or indexes), and DROP TABLE is used to
completely delete a table. These statements should be used with extreme cau-
tion, and only after backups have been made. You also learned about database
engines, defining primary and foreign keys, and other important table and col-
umn options.

ptg7041395

22
Using Views

In this chapter you learn exactly what views are, how they work, and when they
should be used. You also see how views can be used to simplify some of the SQL
operations performed in earlier chapters.

Understanding Views
Views are virtual tables. Unlike tables that contain data, views simply contain
queries that dynamically retrieve data when used.

The best way to understand views is to look at an example. Back in Chapter
15, “Joining Tables,” you used the following SELECT statement to retrieve
data from three tables:

▼ Input
SELECT cust_name, cust_contact

FROM customers, orders, orderitems

WHERE customers.cust_id = orders.cust_id

 AND orderitems.order_num = orders.order_num

 AND prod_id = 'TNT2';

That query was used to retrieve the customers who had ordered a specific
product. Anyone needing this data would have to understand the table struc-
ture, as well as how to create the query and join the tables. To retrieve the
same data for another product (or for multiple products), the last WHERE clause
would have to be modified.

Now imagine that you could wrap that entire query in a virtual table called
productcustomers. You could then simply do the following to retrieve the
same data:

▼ Input
SELECT cust_name, cust_contact

FROM productcustomers

WHERE prod_id = 'TNT2';

ptg7041395

188 Chapter 22 Using Views

This is where views come into play. productcustomers is a view, and as a
view, it does not contain any actual columns or data as a table would. Instead,
it contains a SQL query—the same query used previously to join the tables
properly.

Why Use Views
You've already seen one use for views. Here are some other common uses:

 ■ To reuse SQL statements.

 ■ To simplify complex SQL operations. After the query is written, it can
be reused easily, without having to know the details of the underlying
query itself.

 ■ To expose parts of a table instead of complete tables.

 ■ To secure data. Users can be given access to specific subsets of tables
instead of to entire tables.

 ■ To change data formatting and representation. Views can return data
formatted and presented differently from their underlying tables.

For the most part, after views are created, they can be used in the same way as
tables. You can perform SELECT operations, filter and sort data, join views to
other views or tables, and possibly even add and update data. (There are some
restrictions on this last item. More on that in a moment.)

The important thing to remember is views are just that, views into data
stored elsewhere. Views contain no data themselves, so the data they return is
retrieved from other tables. When data is added or changed in those tables, the
views will return that changed data.

Caution

Performance Issues Because views contain no data, any retrieval needed to execute a
query must be processed every time the view is used. If you create complex views with
multiple joins and filters, or if you nest views, you may find that performance is dramati-
cally degraded. Be sure you test execution before deploying applications that use views
extensively.

View Rules and Restrictions
Here are some of the most common rules and restrictions governing view cre-
ation and usage:

 ■ Like tables, views must be uniquely named. (They cannot be named
with the name of any other table or view.)

ptg7041395

189Using Views

 ■ There is no limit to the number of views that can be created.

 ■ To create views, you must have security access. This is usually granted
by the database administrator.

 ■ Views can be nested; that is, a view may be built using a query that
retrieves data from another view.

 ■ ORDER BY may be used in a view, but it will be overridden if ORDER
BY is also used in the SELECT that retrieves data from the view.

 ■ Views cannot be indexed, nor can they have triggers or default values
associated with them.

 ■ Views can be used in conjunction with tables, for example, to create a
SELECT statement, which joins a table and a view .

Using Views
So now that you know what views are (and the rules and restrictions that gov-
ern them), let's look at view creation:

 ■ Views are created using the CREATE VIEW statement.

 ■ To view the statement used to create a view, use SHOW CREATE
VIEW viewname;.

 ■ To remove a view, the DROP statement is used. The syntax is simply
DROP VIEW viewname;.

 ■ To update a view you may use the DROP statement and then the
CREATE statement again, or just use CREATE OR REPLACE VIEW,
which creates the view if it does not exist and replaces it if it does.

Using Views to Simplify Complex Joins
One of the most common uses of views is to hide complex SQL, and this often
involves joins. Look at the following statement:

▼ Input
CREATE VIEW productcustomers AS

SELECT cust_name, cust_contact, prod_id

FROM customers, orders, orderitems

WHERE customers.cust_id = orders.cust_id

 AND orderitems.order_num = orders.order_num;

ptg7041395

190 Chapter 22 Using Views

▼ Analysis
This statement creates a view named productcustomers, which joins three
tables to return a list of all customers who have ordered any product. If you
were to SELECT * FROM productcustomers, you'd list every customer
who ordered anything.

To retrieve a list of customers who ordered product TNT2, you can do the
following:

▼ Input
SELECT cust_name, cust_contact

FROM productcustomers

WHERE prod_id = 'TNT2';

▼ Output
+----------------+--------------+

| cust_name | cust_contact |

+----------------+--------------+

| Coyote Inc. | Y Lee |

| Yosemite Place | Y Sam |

+----------------+--------------+

▼ Analysis
This statement retrieves specific data from the view by issuing a WHERE clause.
When MariaDB processes the request, it adds the specified WHERE clause to any
existing WHERE clauses in the view query so the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements.
Using views, you can write the underlying SQL once and then reuse it as
needed.

Tip

Creating Reusable Views It is a good idea to create views that are not tied to specific
data. For example, the view created in this example returns customers for all products,
not just product TNT2 (for which the view was first created). Expanding the scope of the
view enables it to be reused, making it even more useful. It also eliminates the need for
you to create and maintain multiple similar views.

ptg7041395

191Using Views

Using Views to Reformat Retrieved Data
As mentioned previously, another common use of views is for reformatting
retrieved data. The following SELECT statement (from Chapter 10, “Creating
Calculated Fields”) returns vendor name and location in a single combined cal-
culated column:

▼ Input
SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')

 AS vend_title

FROM vendors

ORDER BY vend_name;

▼ Output
+-------------------------+

| vend_title |

+-------------------------+

| ACME (USA) |

| Anvils R Us (USA) |

| Furball Inc. (USA) |

| Jet Set (England) |

| Jouets Et Ours (France) |

| LT Supplies (USA) |

+-------------------------+

Now suppose that you regularly needed results in this format. Rather than per-
form the concatenation each time it was needed, you could create a view and
use that instead. To turn this statement into a view, you can do the following:

▼ Input
CREATE VIEW vendorlocations AS

SELECT Concat(RTrim(vend_name), ' (', RTrim(vend_country), ')')

 AS vend_title

FROM vendors

ORDER BY vend_name;

▼ Analysis
This statement creates a view using the exact same query as the previous
SELECT statement. To retrieve the data to create all mailing labels, simply do
the following:

▼ Input
SELECT *

FROM vendorlocations;

ptg7041395

192 Chapter 22 Using Views

▼ Output
+-------------------------+

| vend_title |

+-------------------------+

| ACME (USA) |

| Anvils R Us (USA) |

| Furball Inc. (USA) |

| Jet Set (England) |

| Jouets Et Ours (France) |

| LT Supplies (USA) |

+-------------------------+

Using Views to Filter Unwanted Data
Views are also useful for applying common WHERE clauses. For example, you
might want to define a customeremaillist view so it filters out customers
without e-mail addresses. To do this, you can use the following statement:

▼ Input
CREATE VIEW customeremaillist AS

SELECT cust_id, cust_name, cust_email

FROM customers

WHERE cust_email IS NOT NULL;

▼ Analysis
Obviously, when sending e-mail to a mailing list you want to ignore users who
have no e-mail address. The WHERE clause here filters out those rows that have
NULL values in the cust_email columns so they are not retrieved.

View customeremaillist can now be used for data retrieval just like any
table.

▼ Input
SELECT *

FROM customeremaillist;

▼ Output
+---------+----------------+---------------------+

| cust_id | cust_name | cust_email |

+---------+----------------+---------------------+

| 10001 | Coyote Inc. | ylee@coyote.com |

| 10003 | Wascals | rabbit@wascally.com |

| 10004 | Yosemite Place | sam@yosemite.com |

+---------+----------------+---------------------+

ptg7041395

193Using Views

Note

WHERE Clauses and WHERE Clauses If a WHERE clause is used when retrieving data
from the view, the two sets of clauses (the one in the view and the one passed to it) are
combined automatically.

Using Views with Calculated Fields
Views are exceptionally useful for simplifying the use of calculated fields. The
following is a SELECT statement introduced in Chapter 10. It retrieves the
order items for a specific order, calculating the expanded price for each item:

▼ Input
SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM orderitems

WHERE order_num = 20005;

▼ Output
+---------+----------+------------+----------------+

| prod_id | quantity | item_price | expanded_price |

+---------+----------+------------+----------------+

| ANV01 | 10 | 5.99 | 59.90 |

| ANV02 | 3 | 9.99 | 29.97 |

| TNT2 | 5 | 10.00 | 50.00 |

| FB | 1 | 10.00 | 10.00 |

+---------+----------+------------+----------------+

To turn this into a view, do the following:

▼ Input
CREATE VIEW orderitemsexpanded AS

SELECT order_num,

 prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM orderitems;

To retrieve the details for order 20005 (the previous output), do the following:

▼ Input
SELECT *

FROM orderitemsexpanded

WHERE order_num = 20005;

ptg7041395

194 Chapter 22 Using Views

▼ Output
+-----------+---------+----------+------------+----------------+

| order_num | prod_id | quantity | item_price | expanded_price |

+-----------+---------+----------+------------+----------------+

| 20005 | ANV01 | 10 | 5.99 | 59.90 |

| 20005 | ANV02 | 3 | 9.99 | 29.97 |

| 20005 | TNT2 | 5 | 10.00 | 50.00 |

| 20005 | FB | 1 | 10.00 | 10.00 |

+-----------+---------+----------+------------+----------------+

As you can see, views are easy to create and even easier to use. Used correctly,
views can greatly simplify complex data manipulation.

Updating Views
All the views thus far have been used with SELECT statements. But can view
data be updated? It depends.

As a rule, yes, views are updateable (that is, you can use INSERT, UPDATE, and
DELETE on them). Updating a view updates the underlying table (the view,
you will recall, has no data of its own); if you add or remove rows from a view
you are actually removing them from the underlying table.

But not all views are updateable. Basically, if MariaDB cannot correctly ascer-
tain the underlying data to be updated, updates (this includes inserts and
deletes) are not allowed. In practice, this means that if any of the following are
used you'll not be able to update the view:

■ Grouping (using GROUP BY and HAVING)

■ Joins

■ Subqueries

■ Unions

■ Aggregate functions (Min(), Count(), Sum(), and so forth)

■ DISTINCT

■ Derived (calculated) columns

In other words, many of the examples used in this chapter would not be
updateable. This might sound like a serious restriction, but in reality it isn't
because views are primarily used for data retrieval anyway .

ptg7041395

195Summary

Tip

Use Views for Retrieval As a rule, use views for data retrieval (SELECT statements)
and not for updates (INSERT, UPDATE, and DELETE).

Summary
Views are virtual tables. They do not contain data, but they contain queries that
retrieve data as needed, instead. Views provide a level of encapsulation around
MariaDB SELECT statements and can be used to simplify data manipulation, as
well as to reformat or secure underlying data.

ptg7041395

This page intentionally left blank

ptg7041395

23
Working with Stored

Procedures

In this chapter, you learn what stored procedures are, why they are used, and how
they are used. You also look at the basic syntax for creating and using them.

Understanding Stored Procedures
Most of the SQL statements that we’ve used thus far are simple in that they
use a single statement against one or more tables. Not all operations are that
simple—often, multiple statements are needed to perform a complete opera-
tion. For example, consider the following scenario:

 ■ To process an order, checks must be made to ensure that items are
in stock.

 ■ If items are in stock, they need to be reserved so they are not sold to
anyone else, and the available quantity must be reduced to reflect the
correct amount in stock.

 ■ Any items not in stock need to be ordered; this requires some interac-
tion with the vendor.

 ■ The customer needs to be notified as to which items are in stock (and
can be shipped immediately) and which are back ordered.

This is obviously not a complete example, and it is even beyond the scope
of the example tables that we have been using in this book, but it will suffice
to help make a point. Performing this process requires many MariaDB state-
ments against many tables. In addition, the exact statements that need to be
performed and their order are not fixed; they can (and will) vary according to
which items are in stock and which are not.

How would you write this code? You could write each of the statements indi-
vidually and execute other statements conditionally, based on the result. You’d
have to do this every time this processing was needed (and in every application
that needed it).

ptg7041395

198 Chapter 23 Working with Stored Procedures

Or you could create a stored procedure. Stored procedures are simply collec-
tions of one or more MariaDB statements saved for future use. You can think
of them as batch files, although in truth they are more than that.

Why Use Stored Procedures
Now that you know what stored procedures are, why use them? There are
many reasons, but here are the primary ones:

 ■ To simplify complex operations (as seen in the previous example) by
encapsulating processes into a single easy-to-use unit.

 ■ To ensure data integrity by not requiring that a series of steps be cre-
ated over and over. If all developers and applications use the same
(tried and tested) stored procedure, the same code will be used by all.

An extension of this is to prevent errors. The more steps that need
to be performed, the more likely it is that errors will be introduced.
Preventing errors ensures data consistency.

 ■ To simplify change management. If tables, column names, or busi-
ness logic (or just about anything) changes, only the stored procedure
code needs to be updated, and no one else needs even to be aware that
changes were made.

An extension of this is security. Restricting access to underlying data
via stored procedures reduces the chance of data corruption (uninten-
tional or otherwise).

 ■ To improve performance, as stored procedures typically execute
quicker than do individual SQL statements.

 ■ There are MariaDB language elements and features available only
within single requests. Stored procedures can use these to write code
that is more powerful and flexible. (We see an example of this in the
next chapter.)

In other words, there are three primary benefits—simplicity, security, and per-
formance. Obviously all are important. Before you run off to turn all your SQL
code into stored procedures, here’s the downside:

 ■ Stored procedures tend to be more complex to write than basic SQL
statements, and writing them requires a greater degree of skill and
experience.

ptg7041395

199Using Stored Procedures

 ■ You might not have the security access needed to create stored proce-
dures. Many database administrators restrict stored procedure creation
rights, allowing users to execute them but not necessarily create them.

Nonetheless, stored procedures are useful and should be used whenever
possible.

Note

Can’t Write Them? You Can Still Use Them MariaDB distinguishes the security and
access needed to write stored procedures from the security and access needed to
execute them. This is a good thing; even if you can’t (or don’t want to) write your own
stored procedures, you can still execute them when appropriate.

Using Stored Procedures
Using stored procedures requires knowing how to execute (run) them. Stored
procedures are executed far more often than they are written, so we start there.
And then we look at creating and working with stored procedures.

Executing Sto red Procedures
MariaDB refers to stored procedure execution as calling, and so the MariaDB
statement to execute a stored procedure is simply CALL. CALL takes the name
of the stored procedure and any parameters that need to be passed to it. Take a
look at this example:

▼ Input
CALL productpricing(@pricelow,

 @pricehigh,

 @priceaverage);

▼ Analysis
Here a stored procedure named productpricing is executed; it calculates
and returns the lowest, highest, and average product prices. Of course, you
can’t run this example yet, as stored procedure productpricing does not
exist. (Well, you could try to run it, but you’ll just see a MariaDB error
message.)

Stored procedures might or might not display results, as you see shortly .

ptg7041395

200 Chapter 23 Working with Stored Procedures

Creating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you a
taste for what is involved, let’s look at a simple example—a stored procedure
that returns the average product price. Here is the code:

▼ Input
CREATE PROCEDURE productpricing()

BEGIN

 SELECT Avg(prod_price) AS priceaverage

 FROM products;

END;

▼ Analysis
The stored procedure is named productpricing and is thus defined with the
statement CREATE PROCEDURE productpricing(). Had the stored pro-
cedure accepted parameters, these would have been enumerated between the
(and). This stored procuedure has no parameters, but the trailing () is still
required. BEGIN and END statements are used to delimit the stored procedure
body, and the body itself is just a simple SELECT statement (using the Avg()
function learned back in Chapter 12, “Summarizing Data”).

When MariaDB processes this code it creates a new stored procedure named
productpricing. No data is returned because the code does not call the
stored procedure, it simply creates it for future use .

Note

mysql Command Line Client Delimiters If you are using the mysql command line
utility, pay careful attention to this note.

The default MariaDB statement delimiter is ; (as you have seen in all the SQL state-
ments used thus far). However, the mysql command line utility also uses ; as a delim-
iter. If the command line utility were to interpret the ; characters inside of the stored
procedure itself, those would not end up becoming part of the stored procedure, and
that would make the SQL in the stored procedure syntactically invalid.

The solution is to temporarily change the command line utility delimiter, as seen here:

DELIMITER //

CREATE PROCEDURE productpricing()
BEGIN
 SELECT Avg(prod_price) AS priceaverage
 FROM products;
END //

DELIMITER ;

ptg7041395

201Using Stored Procedures

Here, DELIMITER // tells the command line utility to use // as the new end of
statement delimiter, and you will notice that the END that closes the stored proce-
dure is defined as END // instead of the expected END;. This way the ; within the
stored procedure body remains intact and is correctly passed to the database engine.
And then, to restore things back to how they were initially, the statement closes with a
DELIMITER ;.

Any character may be used as the delimiter except for \.

If you are using the mysql command line utility, keep this in mind as you work through
this chapter.

So how would you use this stored procedure? Like this:

▼ Input
CALL productpricing();

▼ Output
+--------------+

| priceaverage |

+--------------+

| 16.133571 |

+--------------+

▼ Analysis
CALL productpricing(); executes the just created stored procedure and
displays the returned result. As a stored procedure is actually a type of func-
tion, () characters are required after the stored procedure name (even when no
parameters are being passed) .

Dropping Stored Procedures
After they are created, stored procedures remain on the server, ready for use,
until dropped. The drop command (similar to the statement seen Chapter 21,
“Creating and Manipulating Tables”) removes the stored procedure from the
server.

To remove the stored procedure we just created, use the following statement:

▼ Input
DROP PROCEDURE productpricing;

▼ Analysis
This removes the just-created stored procedure. Notice that the trailing () is
not used; here just the stored procedure name is specified .

ptg7041395

202 Chapter 23 Working with Stored Procedures

Tip

Drop Only If It Exists DROP PROCEDURE throws an error if the named procedure
does not actually exist. To delete a procedure if it exists (and not throw an error if it
does not), use DROP PROCEDURE IF EXISTS.

Working with Parameters
productpricing is a really simple stored procedure—it simply displays the
results of a SELECT statement. Typically stored procedures do not display
results; rather, they return them into variables that you specify.

New Term

Variable A named location in memory, used for temporary storage of data.

Here is an updated version of productpricing (you’ll not be able to create
the stored procedure again if you did not previously drop it):

▼ Input
CREATE PROCEDURE productpricing(

 OUT pl DECIMAL(8,2),

 OUT ph DECIMAL(8,2),

 OUT pa DECIMAL(8,2)

)

BEGIN

 SELECT Min(prod_price)

 INTO pl

 FROM products;

 SELECT Max(prod_price)

 INTO ph

 FROM products;

 SELECT Avg(prod_price)

 INTO pa

 FROM products;

END;

▼ Analysis
This stored procedure accepts three parameters named pl to store the lowest
product price, ph to store the highest product price, and pa to store the aver-
age product price (and thus the variable names). Each parameter must have
its type specified; here a decimal value is used. The keyword OUT is used to
specify that this parameter is used to send a value out of the stored procedure
(back to the caller). MariaDB supports parameters of types IN (those passed to
stored procedures), OUT (those passed from stored procedures, as used here),
and INOUT (those used to pass parameters to and from stored procedures). The

ptg7041395

203Using Stored Procedures

stored procedure code itself is enclosed within BEGIN and END statements as
seen before, and a series of SELECT statements are performed to retrieve the
values that are then saved into the appropriate variables (by specifying the INTO
keyword).

Note

Parameter Datatypes The datatypes allowed in stored procedure parameters are the
same as those used in tables. Appendix C, “MariaDB Datatypes,” lists these types.

Note that a recordset is not an allowed type, and so multiple rows and columns could
not be returned via a parameter. This is why three parameters (and three SELECT
statements) are used in the previous example.

To call this updated stored procedure, three variable names must be specified,
as seen here:

▼ Input
CALL productpricing(@pricelow,

 @pricehigh,

 @priceaverage);

▼ Analysis
As the stored procedure expects three parameters, exactly three parameters must
be passed, no more and no less. Therefore, three parameters are passed to this
CALL statement. These are the names of the three variables that the stored pro-
cedure will store the results in .

Note

Variable Names All MariaDB variable names must begin with @.

When called, this statement does not actually display any data. Rather, it
returns variables that can then be displayed (or used in other processing).

To display the retrieved average product price you could do the following:

▼ Input
SELECT @priceaverage;

▼ Output
+---------------+

| @priceaverage |

+---------------+

| 16.133571428 |

+---------------+

ptg7041395

204 Chapter 23 Working with Stored Procedures

To obtain all three values, you can use the following :

▼ Input
SELECT @pricehigh, @pricelow, @priceaverage;

▼ Output
+------------+-----------+---------------+

| @pricehigh | @pricelow | @priceaverage |

+------------+-----------+---------------+

| 55.00 | 2.50 | 16.133571428 |

+------------+-----------+---------------+

Here is another example, this time using both IN and OUT parameters.
ordertotal accepts an order number and returns the total for that order :

▼ Input
CREATE PROCEDURE ordertotal(

 IN onumber INT,

 OUT ototal DECIMAL(8,2)

)

BEGIN

 SELECT Sum(item_price*quantity)

 FROM orderitems

 WHERE order_num = onumber

 INTO ototal;

END;

▼ Analysis
onumber is defined as IN because the order number is passed in to the stored
procedure. ototal is defined as OUT because the total is to be returned from
the stored procedure. The SELECT statement uses both of these parameters, the
WHERE clause uses onumber to select the right rows, and INTO uses ototal to
store the calculated total.

To invoke this new stored procedure you can use the following:

▼ Input
CALL ordertotal(20005, @total);

▼ Analysis
Two parameters must be passed to ordertotal; the first is the order number
and the second is the name of the variable that will contain the calculated total.

ptg7041395

205Using Stored Procedures

To display the total you can then do the following :

▼ Input
SELECT @total;

▼ Output
+--------+

| @total |

+--------+

| 149.87 |

+--------+

▼ Analysis
@total has already been populated by the CALL statement to ordertotal,
and SELECT displays the value it contains.

To obtain a display for the total of another order, you would need to call the
stored procedure again, and then redisplay the variable :

▼ Input
CALL ordertotal(20009, @total);

SELECT @total;

Building Intelligent Stored Procedures
All the stored procedures used thus far have basically encapsulated simple
MariaDB SELECT statements. And while they are all valid examples of stored
procedures, they really don’t do anything more than what you could do with
those statements directly (if anything, they just make things a little more com-
plex). The real power of stored procedures is realized when business rules and
intelligent processing are included within them.

Consider this scenario. You need to obtain order totals as before, but also need
to add sales tax to the total, but only for some customers (perhaps the ones in
your own state). Now you need to do several things:

■ Obtain the total (as before).

■ Conditionally add tax to the total.

■ Return the total (with or without tax).

That’s a perfect job for a stored procedure:

ptg7041395

206 Chapter 23 Working with Stored Procedures

▼ Input
-- Name: ordertotal

-- Parameters: onumber = order number

-- taxable = 0 if not taxable, 1 if taxable

-- ototal = order total variable

CREATE PROCEDURE ordertotal(

 IN onumber INT,

 IN taxable BOOLEAN,

 OUT ototal DECIMAL(8,2)

) COMMENT ‘Obtain order total, optionally adding tax’

BEGIN

 -- Declare variable for total

 DECLARE total DECIMAL(8,2);

 -- Declare tax percentage

 DECLARE taxrate INT DEFAULT 6;

 -- Get the order total

 SELECT Sum(item_price*quantity)

 FROM orderitems

 WHERE order_num = onumber

 INTO total;

 -- Is this taxable?

 IF taxable THEN

 -- Yes, so add taxrate to the total

 SELECT total+(total/100*taxrate) INTO total;

 END IF;

 -- And finally, save to out variable

 SELECT total INTO ototal;

END;

▼ Analysis
The stored procedure has changed dramatically. First of all, comments were
added throughout (preceded by --). This is important as stored procedures
increase in complexity. An additional parameter was added—taxable is a
BOOLEAN (specify true if taxable, false if not). Within the stored procedure
body, two local variables are defined using DECLARE statements. DECLARE
requires that a variable name and a datatype be specified, and also supports
optional default values (taxrate in this example is set to 6%). The SELECT

ptg7041395

207Using Stored Procedures

has changed so the result is stored in total (the local variable) instead of oto-
tal. Then an IF statement checks to see whether taxable is true, and if it is,
another SELECT statement is used to add the tax to local variable total. And
finally, total (which might or might not have had tax added) is saved to oto-
tal using another SELECT statement.

Tip

The COMMENT Keyword The stored procedure for this example included a COMMENT
value in the CREATE PROCEDURE statement. This is not required, but if specified, is
displayed in SHOW PROCEDURE STATUS results.

This is obviously a more sophisticated and powerful stored procedure. To try it
out, use the following two statements :

▼ Input
CALL ordertotal(20005, 0, @total);

SELECT @total;

▼ Output
+--------+

| @total |

+--------+

| 149.87 |

+--------+

▼ Input
CALL ordertotal(20005, 1, @total);

SELECT @total;

▼ Output
+---------------+

| @total |

+---------------+

| 158.862200000 |

+---------------+

▼ Analysis
BOOLEAN values may be specified as 1 for true and 0 for false (actually, any
nonzero value is considered true and only 0 is considered false). By specifying 0
or 1 in the middle parameter you can conditionally add tax to the order total .

ptg7041395

208 Chapter 23 Working with Stored Procedures

Note

The IF Statement This example showed the basic use of the MariaDB IF statement.
IF also supports ELSEIF and ELSE clauses (the former also uses a THEN clause;
the latter does not). We see additional uses of IF (as well as other flow control state-
ments) in future chapters.

Inspecting Stored Procedures
To display the CREATE statement used to create a stored procedure, use the
SHOW CREATE PROCEDURE statement:

▼ Input
SHOW CREATE PROCEDURE ordertotal;

To obtain a list of stored procedures including details on when and who cre-
ated them, use SHOW PROCEDURE STATUS.

Tip

Limiting Procedure Status Results SHOW PROCEDURE STATUS lists all stored pro-
cedures. To restrict the output you can use LIKE to specify a filter pattern, for example:
SHOW PROCEDURE STATUS LIKE 'ordertotal' ;

Summary
In this chapter, you learned what stored procedures are and why they are used.
You also learned the basics of stored procedure execution and creation syntax,
and you saw some of the ways these can be used. We continue this subject in
the next chapter.

ptg7041395

24
Using Cursors

In this chapter, you learn what cursors are and how to use them.

Understanding Cursors
As you have seen in previous chapters, MariaDB retrieval operations work
with sets of rows known as result sets. The rows returned are all the rows that
match a SQL statement—zero or more of them. Using simple SELECT state-
ments, there is no way to get the first row, the next row, or the previous ten
rows, for example. Nor is there an easy way to process all rows, one at a time
(as opposed to all of them in a batch).

Sometimes there is a need to step through rows forward or backward and one
or more at a time. This is what cursors are used for. A cursor is a database
query stored on the MariaDB server—not a SELECT statement, but the result
set retrieved by that statement. Once the cursor is stored, applications can scroll
or browse up and down through the data as needed.

Cursors are used primarily by interactive applications in which users need to
scroll up and down through screens of data, browsing or making changes.

Note

Only in Stored Procedures Unlike most DBMSs, MariaDB cursors (like those in
MySQL) may only be used within stored procedures (and functions).

Working with Cursors
Using cursors involves several distinct steps:

1. Before a cursor can be used it must be declared (defined). This process
does not actually retrieve any data; it merely defines the SELECT state-
ment to be used.

ptg7041395

210 Chapter 24 Using Cursors

2. After it is declared, the cursor must be opened for use. This process
actually retrieves the data using the previously defined SELECT state-
ment.

3. With the cursor populated with data, individual rows can be fetched
(retrieved) as needed.

4. When it is done, the cursor must be closed.

After a cursor is declared, it may be opened and closed as often as needed. After
it is open, fetch operations can be performed as often as need ed.

Creating Cursors
Cursors are created usi ng the DECLARE statement (seen in Chapter 23,
“Working with Stored Procedures”). DECLARE names the cursor and takes
a SELECT statement, complete with WHERE and other clauses if needed.
For example, this statement defines a cursor named ordernumbers using a
SELECT statement that retrieves all orders:

▼ Input
CREATE PROCEDURE processorders()

BEGIN

 DECLARE ordernumbers CURSOR

 FOR

 SELECT order_num FROM orders;

END;

▼ Analysis
This stored procedure does not do a whole lot. A DECLARE statement is used
to define and name the cursor—in this case ordernumbers. Nothing is done
with the cursor, and as soon as the stored procedure finishes processing it ceases
to exist (as it is local to the stored procedure itself).

Now that the cursor is defined, it is ready to be opened.

Opening and Closing Cursors
Cursors are opened using the OPEN CURSOR statement, like this:

▼ Input
OPEN ordernumbers;

ptg7041395

211Working with Cursors

▼ Analysis
When the OPEN statement is processed, the query is executed, and the retrieved
data is stored for subsequent browsing and scrollin g.

After cursor processing is complete, the cursor should be closed using the
CLOSE statement, as follows:

▼ Input
CLOSE ordernumbers;

▼ Analysis
CLOSE frees up any internal memory and resources used by the cursor, and so
every cursor should be closed when it is no longer needed.

After a cursor is closed, it cannot be reused without being opened again.
However, a cursor does not need to be declared again to be used; an OPEN
statement is sufficient.

Note

Implicit Closing If you do not explicitly close a cursor, MariaDB closes it automatically
when the END statement is reached.

Here is an updated version of the previous example:

▼ Input
CREATE PROCEDURE processorders()

BEGIN

 -- Declare the cursor

 DECLARE ordernumbers CURSOR

 FOR

 SELECT order_num FROM orders;

 -- Open the cursor

 OPEN ordernumbers;

 -- Close the cursor

 CLOSE ordernumbers;

END;

▼ Analysis
This stored procedure declares, opens, and closes a cursor. However, nothing is
done with the retrieved data .

ptg7041395

212 Chapter 24 Using Cursors

Using Cursor Data
After a cursor is opened, each row can be accessed individually using a FETCH
statement. FETCH specifies what is to be retrieved (the desired columns) and
where retrieved data should be stored. It also advances the internal row pointer
within the cursor so the next FETCH statement will retrieve the next row (and
not the same one over and over).

The first example retrieves a single row from the cursor (the first row):

▼ Input
CREATE PROCEDURE processorders()

BEGIN

 -- Declare local variables

 DECLARE o INT;

 -- Declare the cursor

 DECLARE ordernumbers CURSOR

 FOR

 SELECT order_num FROM orders;

 -- Open the cursor

 OPEN ordernumbers;

 -- Get order number

 FETCH ordernumbers INTO o;

 -- Close the cursor

 CLOSE ordernumbers;

END;

▼ Analysis
Here FETCH is used to retrieve the order_num column of the current row
(it'll start at the first row automatically) into a local declared variable named o.
Nothing is done with the retrieved data.

In the next example, the retrieved data is looped through from the first row to
the last:

ptg7041395

213Working with Cursors

▼ Input
CREATE PROCEDURE processorders()

BEGIN

 -- Declare local variables

 DECLARE done BOOLEAN DEFAULT 0;

 DECLARE o INT;

 -- Declare the cursor

 DECLARE ordernumbers CURSOR

 FOR

 SELECT order_num FROM orders;

 -- Declare continue handler

 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

 -- Open the cursor

 OPEN ordernumbers;

 -- Loop through all rows

 REPEAT

 -- Get order number

 FETCH ordernumbers INTO o;

 -- End of loop

 UNTIL done END REPEAT;

 -- Close the cursor

 CLOSE ordernumbers;

END;

▼ Analysis
Like the previous example, this example uses FETCH to retrieve the current
order_num into a declared variable named o. Unlike the previous example,
the FETCH here is within a REPEAT, so it is repeated over and over until done
is true (as specified by UNTIL done END REPEAT;). To make this work,
variable done is defined with a DEFAULT 0 (false, not done). So how does
done get set to true when done? The answer is this statement :

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

This statement defines a CONTINUE HANDLER, code that will be executed
when a condition occurs. Here it specifies that when SQLSTATE '02000'
occurs, then SET done=1. And SQLSTATE '02000' is a not found condition
and so it occurs when REPEAT cannot continue because there are no more
rows to loop through.

ptg7041395

214 Chapter 24 Using Cursors

Caution

DECLARE Statement Sequence DECLARE statements, if used, must be issued in a
specific order. Local variables defined with DECLARE must be defined before any cur-
sors or handlers are defined, and handlers must be defined after any cursors. Failure to
follow this sequencing generates an error message.

If you were to call this stored procedure it would define variables and a
CONTINUE HANDLER, define and open a cursor, repeat through all rows,
and then close the cursor.

With this functionality in place you can now place any needed processing
inside the loop (after the FETCH statement and before the end of the loop).

Note

REPEAT or LOOP? In addition to the REPEAT statement used here, MariaDB also
supports a LOOP statement that can be used to repeat code until the LOOP is manu-
ally exited using a LEAVE statement. In general, the syntax of the REPEAT statement
makes it better suited for looping through cursors.

To put this all together, here is one further revision of our example stored pro-
cedure with cursor, this time with some actual processing of fetched data :

▼ Input
CREATE PROCEDURE processorders()

BEGIN

 -- Declare local variables

 DECLARE done BOOLEAN DEFAULT 0;

 DECLARE o INT;

 DECLARE t DECIMAL(8,2);

 -- Declare the cursor

 DECLARE ordernumbers CURSOR

 FOR

 SELECT order_num FROM orders;

 -- Declare continue handler

 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done=1;

 -- Create a table to store the results

 CREATE TABLE IF NOT EXISTS ordertotals

 (order_num INT, total DECIMAL(8,2));

 -- Open the cursor

 OPEN ordernumbers;

ptg7041395

215Working with Cursors

 -- Loop through all rows

 REPEAT

 -- Get order number

 FETCH ordernumbers INTO o;

 -- Get the total for this order

 CALL ordertotal(o, 1, t);

 -- Insert order and total into ordertotals

 INSERT INTO ordertotals(order_num, total)

 VALUES(o, t);

 -- End of loop

 UNTIL done END REPEAT;

 -- Close the cursor

 CLOSE ordernumbers;

END;

▼ Analysis
In this example, we added another variable named t (this stores the total for
each order). The stored procedure also creates a new table on the fly (if it does
not exist) named ordertotals. This table stores the results generated by the
stored procedure. FETCH fetches each order_num as it did before, and then
uses CALL to execute another stored procedure (the one we created in the pre-
vious chapter) to calculate the total with tax for each order (the result of which
is stored in t). And then finally, INSERT is used to save the order number and
total for each order .

To try this example, simple CALL it:

▼ Input
CALL processorders();

This stored procedure returns no data, but it does create and populate another
table that can then be viewed using a simple SELECT statement:

▼ Input
SELECT *

FROM ordertotals;

ptg7041395

216 Chapter 24 Using Cursors

▼ Output
+-----------+---------+

| order_num | total |

+-----------+---------+

| 20005 | 158.86 |

| 20006 | 58.30 |

| 20007 | 1060.00 |

| 20008 | 132.50 |

| 20009 | 40.78 |

+-----------+---------+

And then you have it, a complete working example of stored procedures, cur-
sors, row-by-row processing, and even stored procedures calling other stored
procedures.

Summary
In this chapter, you learned what cursors are and why they are used. You also
saw examples demonstrating basic cursor use, as well as techniques for looping
through cursor results and for row-by-row processing.

ptg7041395

25
Using Triggers

In this chapter, you learn what triggers are, why they are used, and how. You also
look at the syntax for creating and using them.

Understanding Triggers
MariaDB statements are executed when needed, as are stored procedures. But
what if you want a statement (or statements) to be executed automatically
when events occur? For example:

 ■ Every time a customer is added to a database table, check that the
phone number is formatted correctly and that the state abbreviation is
in uppercase.

 ■ Every time a product is ordered, subtract the ordered quantity from
the number in stock.

 ■ Whenever a row is deleted, save a copy in an archive table.

All these examples need to be processed automatically whenever a table change
occurs. And that is exactly what triggers are. A trigger is a MariaDB statement
(or a group of statements enclosed within BEGIN and END statements) that are
automatically executed by MariaDB in response to any of these statements:

■ DELETE

■ INSERT

■ UPDATE

No other MariaDB SQL statements support triggers .

Note

Only Tables Triggers are supported only on tables, not on views (and not on temporary
tables).

ptg7041395

218 Chapter 25 Using Triggers

Creating Trigger s
When creating a trigger you need to specify four pieces of information:

 ■ The unique trigger name

 ■ The table to which the trigger is to be associated

 ■ The action that the trigger should respond to (DELETE, INSERT, or
UPDATE)

 ■ When the trigger should be executed (before or after processing)

Triggers are created using the CREATE TRIGGER statement. Here is a really
simple example (which doesn't actually do anything useful, but helps explain
the syntax needed):

▼ Input
CREATE TRIGGER newproduct AFTER INSERT ON products

FOR EACH ROW

BEGIN

END;

▼ Analysis
CREATE TRIGGER is used to create the new trigger named newproduct.
Triggers can be executed before or after an operation occurs, and here AFTER
INSERT ON is specified so the trigger will execute after a successful INSERT
statement has been executed. The trigger then specifies FOR EACH ROW and
the code to be executed for each inserted row. So, whenever a product is
added to the products table, this trigger will run, and any code between
BEGIN and END will be executed. And as there is nothing between BEGIN and
END, well, the trigger will run, but it doesn't actually do anything .

Triggers are defined per time per event per table, and only one trigger per time
per event per table is allowed. As such, up to six triggers are supported per
table (BEFORE and AFTER each INSERT, UPDATE, and DELETE). A single trig-
ger cannot be associated with multiple events or multiple tables, so if you need
a trigger to be executed for both INSERT and UPDATE operations, you need to
define two triggers .

Note

When Triggers Fail If a BEFORE trigger fails, MariaDB will not perform the requested
operation. In addition, if either a BEFORE trigger or the statement itself fail, MariaDB
will not exdcute an AFTER trigger (if one exists) .

ptg7041395

219Using Triggers

Dropping Triggers

By now the syntax for dropping a trigger should be self-apparent. To drop a
trigger, use the DROP TRIGGER statement, as seen here:

▼ Input
DROP TRIGGER newproduct;

▼ Analysis
Triggers cannot be updated or overwritten. To modify a trigger it must be
dropped and recreated .

Using Triggers
With the basics covered, we now look at each of the supported trigger types,
and the differences between them.

INSERT Triggers
INSERT triggers are executed BEFORE or AFTER an INSERT statement is exe-
cuted. Be aware of the following:

 ■ Within INSERT trigger code, you can refer to a virtual table named
NEW to access the rows being inserted.

 ■ In a BEFORE INSERT trigger, the values in NEW may also be updated
(allowing you to change values about to be inserted).

 ■ For AUTO_INCREMENT columns, NEW contains 0 before and the new
automatically generated value after.

A common use for triggers is to track table changes (audit trails or logs). To try
an example, you first need a table to store this information. This next MariaDB
SQL statement creates a table to store a log of all changes to the orders table :

▼ Input
CREATE TABLE orders_log

(

 change_id int NOT NULL AUTO_INCREMENT,

 changed_on datetime NOT NULL ,

 change_type char(1) NOT NULL ,

 order_num int NOT NULL ,

 PRIMARY KEY (change_id)

) ENGINE=Maria;

ptg7041395

220 Chapter 25 Using Triggers

▼ Analysis
This table has columns to store the change date and time, the type of change
(A for added, U for updated, D for deleted), and the order_num of the order
changed.

Now that you have a table to store the change log, you need to create the trig-
ger that updates this new table. Here is the code :

▼ Input
CREATE TRIGGER neworder AFTER INSERT ON orders

FOR EACH ROW

BEGIN

 INSERT INTO orders_log(changed_on, change_type, order_num)

 VALUES(Now(),'A', NEW.order_num);

END;

▼ Analysis
CREATE TRIGGER is used to create the new trigger named neworder.
Triggers can be executed before or after an operation occurs, and here AFTER
INSERT ON is specified so the trigger will execute after a successful INSERT
statement has been executed. The trigger then specifies FOR EACH ROW and
the code to be executed for each inserted row. When a new order is saved
in orders, MariaDB generates a new order number and saves it in order_
num. The trigger code obtains this value from NEW.order_num. This is why
this trigger must be executed AFTER INSERT, because before the BEFORE
INSERT statement is executed the new order_num has not been generated
yet. In this example, an INSERT statement is used to add a record of every
inserted order into orders_log.

To test this trigger, try inserting a new order, like this:

▼ Input
INSERT INTO orders(order_date, cust_id)

VALUES(Now(), 10001);

The INSERT statement itself does not return anything useful, but it does cause
our trigger to be executed. To verify this, let's see what is in the orders_log
table:

▼ Input
SELECT * FROM orders_log;

ptg7041395

221Using Triggers

▼ Output
+-----------+---------------------+-------------+-----------+

| change_id | changed_on | change_type | order_num |

+-----------+---------------------+-------------+-----------+

| 1 | 2011-04-12 10:49:59 | A | 20010 |

+-----------+---------------------+-------------+-----------+

▼ Analysis
orders_logs contains four columns. change_id is the auto incremented
table primary key, changed_on contains the date and time that the change
occurred (generated by the Now() function in the trigger), change_type is A
(order added), and order_num contains the new order number (generated by
MariaDB for the orders table).

Tip

BEFORE or AFTER? This example used AFTER to execute the trigger after the new
order was created. As a rule, use AFTER if you need to access data that won't exist
until a statement has been processed (for example, to obtain a newly generated order
number). Use BEFORE for any data validation and cleanup (for example, if you want to
make sure that the data inserted into the table was exactly as needed).

DELETE Triggers
DELETE triggers are executed before or after a DELETE statement is executed.
Be aware of the following:

 ■ Within DELETE trigger code, you can refer to a virtual table named
OLD to access the rows being deleted.

 ■ The values in OLD are all read-only and cannot be updated.

The following example demonstrates the use of OLD to save rows about to be
deleted into the log table:

▼ Input
CREATE TRIGGER deleteorder BEFORE DELETE ON orders

FOR EACH ROW

BEGIN

 INSERT INTO orders_log(changed_on, change_type, order_num)

 VALUES(Now(),'D', OLD.order_num);

END;

ptg7041395

222 Chapter 25 Using Triggers

▼ Analysis
This trigger is similar to the neworder trigger; it logs order deletions. This
trigger is executed BEFORE DELETE (or you'd not have access to the
order_num).

If you were to delete the order you just inserted, you'd see a second row in the
orders_log table reflecting the deletion.

Note

Multistatement Triggers Notice that the triggers shown here all use BEGIN and END
statements to mark the trigger body. This is actually not necessary in the examples
used thus far, although it does no harm. The advantage of using a BEGIN END block
is that the trigger would then be able to accommodate multiple SQL statements (one
after the other within the BEGIN END block) as you see in the next example.

Another good use for DELETE triggers is to archive deletions (rows deleted
from a table are automatically saved in their entirety to an archive table). This
updated version of the deleteorder trigger logs the deletion and also saves
it to a table named orders_archive (you obviously need to create that table
for this trigger to work; orders_archive will use the same CREATE TABLE
statement as the one used to create orders, although you'll want to drop the
AUTO INCREMENT):

▼ Input
CREATE TRIGGER deleteorder BEFORE DELETE ON orders

FOR EACH ROW

BEGIN

 INSERT INTO orders_log(changed_on, change_type, order_num)

 VALUES(Now(),'D', OLD.order_num);

 INSERT INTO orders_archive(order_num, order_date, cust_id)

 VALUES(OLD.order_num, OLD.order_date, OLD.cust_id);

END;

▼ Analysis
Before any order is deleted this trigger is executed. In addition to the logging
seen previously, this trigger uses an INSERT statement to save the values in OLD
(the order about to be deleted) into an archive table named archive_orders.

Tip

An Extra Level of Protection The advantage of using a BEFORE DELETE trigger (as
opposed to an AFTER DELETE trigger) is that if, for some reason, the order could not
be archived, the DELETE itself will be aborted.

ptg7041395

223Using Triggers

UPDATE Triggers
UPDATE triggers are executed before or after an UPDATE statement is executed.
Be aware of the following:

 ■ Within UPDATE trigger code, you can refer to a virtual table named
OLD to access the previous (pre-UPDATE statement) values and NEW to
access the new updated values.

 ■ In a BEFORE UPDATE trigger, the values in NEW may also be updated
(allowing you to change values about to be used in the UPDATE state-
ment).

 ■ The values in OLD are all read-only and cannot be updated.

The following example ensures that state abbreviations are always in uppercase
(regardless of how they were actually specified in the UPDATE statement):

▼ Input
CREATE TRIGGER updatevendor BEFORE UPDATE ON vendors

FOR EACH ROW SET NEW.vend_state = Upper(NEW.vend_state);

▼ Analysis
Obviously, any data cleanup needs to occur in the BEFORE UPDATE state-
ment as it does in this example. Each time a row is updated, the value in NEW.
vend_state (the value that is used to update table rows) is replaced with
Upper(NEW.vend_state).

What about logging updates to the orders table? With what you have learned
here you should be able to create a updateorder trigger that inserts a row
into the orders_log table (make sure to insert a U for change_type).

More on Triggers
Before wrapping up this chapter, here are some important points to keep in
mind when using triggers:

 ■ Trigger support in MariaDB is rather rudimentary at best when com-
pared to other DBMSs. There are plans to improve and enhance trig-
ger support in future versions.

 ■ Creating triggers might require special security access. However, trig-
ger execution is automatic. If an INSERT, UPDATE, or DELETE state-
ment may be executed, any associated triggers are executed, too.

ptg7041395

224 Chapter 25 Using Triggers

 ■ Triggers should be used to ensure data consistency (case, formatting,
and so on). The advantage of performing this type of processing in a
trigger is that it always happens, and happens transparently, regardless
of client application.

 ■ One interesting use for triggers is in creating an audit trail, as seen
in this chapter. Using triggers it would be easy to log changes (even
before and after states if needed) to another table.

 ■ Unfortunately the CALL statement is not supported in MariaDB trig-
gers. This means that stored procedures cannot be invoked from
within triggers. Any needed stored procedure code would need to be
replicated within the trigger itself .

Summary
In this chapter, you learned what triggers are and why they are used. You
learned the trigger types and the times that they can be executed. You also saw
examples of triggers used for INSERT, DELETE, and UPDATE operations.

ptg7041395

26
Managing Transaction

Processing

In this chapter you learn what transactions are and how to use COMMIT and
ROLLBACK statements to manage transaction processing.

Understanding Transaction Processing
Note

Not All Engines Support Transactions As explained in Chapter 21, “Creating and
Manipulating Tables,” MariaDB supports the use of several underlying database
engines. Not all engines support explicit management of transaction processing, as
explained in this chapter. One of the most commonly used engines is MyISAM, which
does not support explicit transaction management, while InnoDB and ARIA do. This is
why the sample tables used in this book were created to use ARIA. If you need transac-
tion processing functionality in your applications, be sure to use the correct engine type.

Transaction processing is used to maintain database integrity by ensuring that
batches of MariaDB SQL operations execute completely or not at all.

As explained back in Chapter 15, “Joining Tables,” relational databases are
designed so data is stored in multiple tables to facilitate easier data manipula-
tion, management, and reuse. Without going into the hows and whys of rela-
tional database design, take it as a given that well-designed database schemas
are relational to some degree.

The orders tables you’ve been using in prior chapters are a good example
of this. Orders are stored in two tables: orders stores actual orders, and
orderitems stores the individual items ordered. These two tables are related
to each other using unique IDs called primary keys (as discussed in Chapter 1,
“Understanding SQL”). These tables, in turn, are related to other tables con-
taining customer and product information.

The process of adding an order to the system is as follows:

ptg7041395

226 Chapter 26 Managing Transaction Processing

1. Check whether the customer is already in the database (present in the
customers table). If not, add him or her.

 2. Retrieve the customer’s ID.

3. Add a row to the orders table associating it with the customer ID.

4. Retrieve the new order ID assigned in the orders table.

5. Add one row to the orderitems table for each item ordered, asso-
ciating it with the orders table by the retrieved ID (and with the
products table by product ID).

Now imagine that some database failure (for example, out of disk space, secu-
rity restrictions, table locks) prevents this entire sequence from completing.
What would happen to your data?

Well, if the failure occurred after the customer was added and before the
orders table was added, there is no real problem. It is perfectly valid to have
customers without orders. When you run the sequence again, the inserted cus-
tomer record will be retrieved and used. You can effectively pick up where
you left off.

But what if the failure occurred after the orders row was added, but before
the orderitems rows were added? Now you’d have an empty order sitting in
your database.

Worse, what if the system failed during adding the orderitems rows? Now
you’d end up with a partial order in your database, but you wouldn’t know it.

How do you solve this problem? That’s where transaction processing comes in.
Transaction processing is a mechanism used to manage sets of SQL operations
that must be executed in batches to ensure that databases never contain the
results of partial operations. With transaction processing, you can ensure that
sets of operations are not aborted mid-processing—they either execute in their
entirety or not at all (unless explicitly instructed otherwise). If no error occurs,
the entire set of statements is committed (written) to the database tables. If
an error does occur, a rollback (undo) can occur to restore the database to a
known and safe state.

So, looking at the same example, this is how the process would work:

1. Check whether the customer is already in the database; if not, add him
or her.

 2. Commit the customer information.

ptg7041395

227Controlling Transactions

3. Retrieve the customer’s ID.

4. Add a row to the orders table.

5. If a failure occurs while adding the row to orders, roll back.

6. Retrieve the new order ID assigned in the orders table.

7. Add one row to the orderitems table for each item ordered.

8. If a failure occurs while adding rows to orderitems, roll back all the
orderitems rows added and the orders row.

9. Commit the order information.

When working with transactions and transaction processing, a few keywords
keep reappearing. Here are the terms you need to know:

 ■ Transaction—A block of SQL statements

 ■ Rollback—The process of undoing specified SQL statements

 ■ Commit—Writing unsaved SQL statements to the database tables

 ■ Savepoint—A temporary placeholder in a transaction set to which
you can issue a rollback (as opposed to rolling back an entire
transaction)

Controlling Transactions
Now that you know what transaction processing is, let’s look at what is
involved in managing transactions.

The key to managing transactions involves breaking your SQL statements into
logical chunks and explicitly stating when data should be rolled back and when
it should not.

The MariaDB statement used to mark the start of a transaction is

▼ Input
START TRANSACTION

Using ROLLBACK
The MariaDB ROLLBACK command is used to roll back (undo) MariaDB state-
ments, as seen in this next statement:

ptg7041395

228 Chapter 26 Managing Transaction Processing

▼ Input
SELECT * FROM ordertotals;

START TRANSACTION;

DELETE FROM ordertotals;

SELECT * FROM ordertotals;

ROLLBACK;

SELECT * FROM ordertotals;

▼ Analysis
This example starts by displaying the contents of the ordertotals table (this
table was populated in Chapter 24, “Using Cursors”). First a SELECT is per-
formed to show that the table is not empty. Then a transaction is started, and
all the rows in ordertables are deleted with a DELETE statement. Another
SELECT verifies that, indeed, ordertotals is empty. Then a ROLLBACK
statement is used to roll back all statements until the START TRANSACTION,
and the final SELECT shows that the table is no longer empty.

Obviously, ROLLBACK can only be used within a transaction (after a START
TRANSACTION command has been issued) .

Tip

Which Statements Can You Roll Back? Transaction processing is used to manage
INSERT, UPDATE, and DELETE statements. You cannot roll back SELECT state-
ments. (There would not be much point in doing so anyway.) You cannot roll back
CREATE or DROP operations. These statements may be used in a transaction block,
but if you perform a rollback they will not be undone.

Using COMMIT
MariaDB SQL statements are usually executed and written directly to the data-
base tables. This is known as an implicit commit—the commit (write or save)
operation happens automatically.

Within a transaction block, however, commits do not occur implicitly. To
force an explicit commit, the COMMIT statement is used, as seen here:

▼ Input
START TRANSACTION;

DELETE FROM orderitems WHERE order_num = 20010;

DELETE FROM orders WHERE order_num = 20010;

COMMIT;

ptg7041395

229Controlling Transactions

▼ Analysis
In this example, order number 20010 is deleted entirely from the system.
Because this involves updating two database tables, orders and orderitems,
a transaction block is used to ensure that the order is not partially deleted. The
final COMMIT statement writes the change only if no error occurred. If the first
DELETE worked, but the second failed, the DELETE would not be committed
(it would effectively be automatically undone) .

Note

Implicit Transaction Closes After a COMMIT or ROLLBACK statement has been exe-
cuted, the transaction is automatically closed (and future changes will implicitly commit).

Using Savepoints
Simple ROLLBACK and COMMIT statements enable you to write or undo an
entire transaction. Although this works for simple transactions, more complex
transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a single
transaction. If an error occurs, you want to roll back only to the point before
the orders row was added. You do not want to roll back the addition to the
customers table (if there was one).

To support the rollback of partial transactions, you must be able to put place-
holders at strategic locations in the transaction block. Then, if a rollback is
required, you can roll back to one of the placeholders.

These placeholders are called savepoints, and to create one use the SAVEPOINT
statement, as follows:

▼ Input
SAVEPOINT delete1;

Each savepoint takes a unique name that identifies it so that, when you roll
back, MariaDB knows where you are rolling back to. To roll back to this save-
point, do the following:

▼ Input
ROLLBACK TO delete1;

ptg7041395

230 Chapter 26 Managing Transaction Processing

Tip

The More Savepoints the Better You can have as many savepoints as you want within
your MariaDB SQL code, and the more the better. Why? Because the more savepoints
you have the more flexibility you have in managing rollbacks exactly as you need them.

Note

Releasing Savepoints Savepoints are automatically released after a transaction
completes (a ROLLBACK or COMMIT is issued). Savepoints can also be explicitly
released using RELEASE SAVEPOINT.

Changing the Default Commit Behavior
As already explained, the default MariaDB behavior is to automatically com-
mit any and all changes. In other words, anytime you execute a MariaDB SQL
statement, that statement is actually being performed against the tables, and the
changes made occur immediately. To instruct MariaDB to not automatically
commit changes, you need to use the following statement:

▼ Input
SET autocommit=0;

▼ Analysis
The autocommit flag determines whether changes are committed automati-
cally without requiring a manual COMMIT statement. Setting autocommit to 0
(false) instructs MariaDB to not automatically commit changes (until the flag is
set back to true).

Note

Flag Is Connection Specific The autocommit flag is per connection, not serverwide.

Summary
In this chapter, you learned that transactions are blocks of SQL statements
that must be executed as a batch. You learned how to use the COMMIT and
ROLLBACK statements to explicitly manage when data is written and when it is
undone. You also learned how to use savepoints to provide a greater level of
control over rollback operations.

ptg7041395

27
Globalization and

Localization

In this chapter, you learn the basics of how MariaDB handles different character
sets and languages.

Understanding Character Sets and
Collation Sequences
Database tables are used to store and retrieve data. Different languages and
character sets need to be stored and retrieved differently. As such, MariaDB
needs to accommodate different character sets (different alphabets and charac-
ters) as well as different ways to sort and retrieve data.

When discussing multiple languages and characters sets, you will run into the
following important terms:

 ■ Character sets are collections of letters and symbols.

 ■ Encodings are the internal representations of the members of a character
set.

 ■ Collations are the instructions that dictate how characters are to be
compared.

Note

Why Collations Are Important Sorting text in English is easy, right? Well, maybe not.
Consider the words APE, apex, and Apple. Are they in the correct sorted order? That
would depend on whether you wanted a case-sensitive or a not case-sensitive sorting.
The words would be sorted one way using a case-sensitive collation, and another way
using a not case-sensitive collation. And this affects more than just sorting (as in data
sorted using ORDER BY); it also affects searches (whether or not a WHERE clause
looking for apple finds APPLE, for example). The situation becomes more complex when
characters such as the French è or German ö are used, and even more complex when
non-Latin-based character sets are used (Japanese, Hebrew, Russian, and so on).

ptg7041395

232 Chapter 27 Globalization and Localization

In MariaDB there is not much to worry about during regular database activity
(SELECT, INSERT, and so forth). Rather, the decision as to which character set
and collation to use occurs at the server, database, and table level.

Working with Character Set and
Collation Sequences
MariaDB supports a vast number of character sets. To see the complete list of
supported character sets, use this statement:

▼ Input
SHOW CHARACTER SET;

▼ Analysis
This statement displays all available character sets, along with the description
and default collation for each.

To see the complete list of supported collations, use this statement:

▼ Input
SHOW COLLATION;

▼ Analysis
This statement displays all available collations, along with the character sets to
which they apply. Notice that several character sets have more than one col-
lation. latin1, for example, has several for different European languages, and
many appear twice, once case sensitive (designated by _cs) and once not case
sensitive (designated by _ci).

A default character set and collation are defined (usually by the system admin-
istration at installation time). In addition, when databases are created, default
character sets and collations may be specified too. To determine the character
sets and collations in use, use these statements:

▼ Input
SHOW VARIABLES LIKE 'character%';

SHOW VARIABLES LIKE 'collation%';

In practice, character sets can seldom be serverwide (or even databasewide) set-
tings. Different tables, and even different columns, may require different char-
acter sets, and so both may be specified when a table is created.

ptg7041395

233Working with Character Set and Collation Sequences

To specify a character set and collation for a table, CREATE TABLE (seen
in Chapter 21, “Creating and Manipulating Tables”) is used with additional
clauses:

▼ Input
CREATE TABLE mytable

(

 columnn1 INT,

 columnn2 VARCHAR(10)

) DEFAULT CHARACTER SET hebrew

 COLLATE hebrew_general_ci;

▼ Analysis
This statement creates a two column table, and specifies both a character set
and a collate sequence.

In this example both CHARACTER SET and COLLATE were specified, but if
only one (or neither) is specified, this is how MariaDB determine s what to use:

 ■ If both CHARACTER SET and COLLATE are specified, those values are
used.

 ■ If only CHARACTER SET is specified, it is used along with the default
collation for that character set (as specified in the SHOW CHARACTER
SET results).

 ■ If neither CHARACTER SET nor COLLATE is specified, the database
default is used.

In addition to being able to specify character set and collation tablewide,
MariaDB also allows these to be set per column, as seen here :

▼ Input
CREATE TABLE mytable

(

 columnn1 INT,

 columnn2 VARCHAR(10),

 column3 VARCHAR(10) CHARACTER SET latin1 COLLATE latin1_general_ci

) DEFAULT CHARACTER SET hebrew

 COLLATE hebrew_general_ci;

▼ Analysis
Here CHARACTER SET and COLLATE are specified for the entire table as well
as for a specific column.

ptg7041395

234 Chapter 27 Globalization and Localization

As mentioned previously, the collation plays a key role in sorting data that is
retrieved with an ORDER BY clause. If you need to sort specific SELECT state-
ments using a collation sequence other than the one used at table creation time,
you may do so in the SELECT statement itself:

▼ Input
SELECT * FROM customers

ORDER BY lastname, firstname COLLATE latin1_general_cs;

▼ Analysis
This SELECT uses COLLATE to specify an alternate collation sequence (in this
example, a case-sensitive one). This obviously affects the order in which results
are sorted .

Tip

Occasional Case Sensitivity The SELECT statement just seen demonstrates a useful
technique for performing case-sensitive searches on a table that is usually not case sen-
sitive. And of course, the reverse works just as well.

Note

Other SELECT COLLATE Clauses In addition to being used in ORDER BY claus-
es, as seen here, COLLATE can be used with GROUP BY, HAVING, aggregate func-
tions, aliases, and more.

One final point worth noting is that strings may be converted between
character sets if absolutely needed. To do this, use the Cast() or Convert()
functions.

Summary
In this chapter, you learned the basics of character sets and collations. You also
learned how to define the character sets and collations for specific tables and
columns, and how to use alternate collations when needed.

ptg7041395

28
Managing Security

Database servers usually contain critical data, and ensuring the safety and integrity
of that data requires that access control be used. In this chapter you learn about
MariaDB access control and user management.

Understanding Access Control
The basis of security for your MariaDB server is this: Users should have appropri-
ate access to the data they need, no more and no less. In other words, users should
not have too much access to too much data.

Consider the following:

 ■ Most users need to read and write data from tables, but few users will
ever need to be able to create and drop tables.

 ■ Some users might need to read tables but might not need to update
them.

 ■ You might want to allow users to add data but not delete data.

 ■ Some users (managers or administrators) might need rights to manipu-
late user accounts, but most should not.

 ■ You might want users to access data via stored procedures but never
directly.

 ■ You might want to restrict access to some functionality based on from
where the user is logging in.

These are just examples, but they help demonstrate an important point. You
need to provide users with the access they need and just the access they need.
This is known as access control, and managing access control requires creating
and managing user accounts.

Back in Chapter 3, “Working with MariaDB,” you learned that you need to
log in to MariaDB to perform any operations. When first installed, MariaDB
creates a user account named root that has complete and total control over

ptg7041395

236 Chapter 28 Managing Security

the entire MariaDB server. You might have been using the root login
throughout the chapters in this book, and that is fine when experimenting with
MariaDB on nonlive servers. But in the real world you’d never use root on a
day-to-day basis. Instead, you’d create a series of accounts, some for administra-
tion, some for users, some for developers, and so on .

Note

Preventing Innocent Mistakes It is important to note that access control is not just
intended to keep out users with malicious intent. More often than not, data nightmares
are the result of an inadvertent mistake, a mistyped MariaDB statement, being in the
wrong database, or some other user error. Access control helps avoid these situations
by ensuring that users are unable to execute statements they should not be executing.

Caution

Don’t Use root The root login should be considered sacred. Use it only when
absolutely needed (perhaps if you cannot get in to other administrative accounts). root
should never be used in day-to-day MariaDB operations.

Managing Users
MariaDB user accounts and information are stored in a MariaDB database
named mysql. You usually do not need to access the mysql database and
tables directly (as you will soon see), but sometimes you might. One of those
times is when you want to obtain a list of all user accounts. To do that, use the
following code:

▼ Input
USE mysql;

SELECT user FROM user;

▼ Output
+------+

| user |

+------+

| root |

+------+

ptg7041395

237Managing Users

▼ Analysis
The mysql database contains a table named user that contains all user
accounts. user contains a column named user that contains the user login
name. A newly installed server might have a single user listed (as seen here);
established servers will likely have far more .

Tip

Test Using Multiple Clients The easiest way to test changes made to user accounts
and rights is to open multiple database clients (multiple copies of the mysql command
line utility, for example), one logged in with the administrative login and the others
logged in as the users being tested.

Creating User Accounts
To create a new user account, use the CREATE USER statement, as seen here:

▼ Input
CREATE USER ben IDENTIFIED BY 'p@$$w0rd';

▼ Analysis
CREATE USER creates a new user account. A password need not be specified
at user account creation time, but this example does specify a password using
IDENTIFIED BY 'p@$$w0rd'.

If you were to list the user accounts again, you’d see the new account listed in
the output .

Tip

Specifying a Hashed Password The password specified by IDENTIFIED BY is plain
text that MariaDB will encrypt before saving it in the user table. To specify the pass-
word as a hashed value, use IDENTIFIED BY PASSWORD instead.

Note

Using GRANT or INSERT The GRANT statement (which we will get to shortly) can
also create user accounts, but generally CREATE USER is the cleanest and simplest
syntax. In addition, it is possible to add users by inserting rows into user directly, but
to be safe this is generally not recommended. The tables used by MariaDB to store user
account information (as well as table schemas and more) are extremely important, and
any damage to them could seriously harm the MariaDB server. As such, it is always bet-
ter to use tags and functions to manipulate these tables as opposed to manipulating
them directly.

ptg7041395

238 Chapter 28 Managing Security

To rename a user account, use the RENAME USER statement like this:

▼ Input
RENAME USER ben TO bforta;

Deleting User Accounts
To delete a user account (along with any associated rights and privileges), use
the DROP USER statement as seen here:

▼ Input
DROP USER bforta;

Setting Access Rights
With user accounts created, you must next assign access rights and privileges.
Newly created user accounts have no access at all. They can log in to MariaDB,
but they see no data and cannot perform any database operations.

To see the rights granted to a user account, use SHOW GRANTS FOR as seen in
this example:

▼ Input
SHOW GRANTS FOR bforta;

▼ Output
+---+

| Grants for bforta@% |

+---+

| GRANT USAGE ON *.* TO 'bforta'@'%' |

+---+

▼ Analysis
The output shows that user bforta has a single right granted, USAGE ON
.. USAGE means no rights at all (not overly intuitive, I know), so the results
mean no rights to anything on any database and any table .

Note

Users Are Defined As user@host MariaDB privileges are defined using a combination
of user name and hostname. If no hostname is specified then a default hostname of %
will be used (effectively granting access to the user regardless of the hostname).

ptg7041395

239Managing Users

To set rights the GRANT statement is used. At a minimum, GRANT requires that
you specify

■ The privilege being granted

■ The database or table being granted access to

■ The user name

The following example demonstrates the use of GRANT:

▼ Input
GRANT SELECT ON crashcourse.* TO bforta;

▼ Analysis
This GRANT allows the use of SELECT on crashcourse.* (crashcourse
database, all tables). By granting SELECT access only, user bforta has read-
only access to all data in the crashcourse database .

SHOW GRANTS reflects this change:

▼ Input
SHOW GRANTS FOR bforta;

▼ Output
+---+

| Grants for bforta@% |

+---+

| GRANT USAGE ON *.* TO 'bforta'@'%' |

| GRANT SELECT ON 'crashcourse'.* TO 'bforta'@'%' |

+---+

▼ Analysis
Each GRANT adds (or updates) a permission statement for the user. MariaDB
reads all the grants and determines the rights and permissions based on them .

The opposite of GRANT is REVOKE, which is used to revoke specific rights and
permissions. Here is an example :

▼ Input
REVOKE SELECT ON crashcourse.* FROM bforta;

ptg7041395

240 Chapter 28 Managing Security

▼ Analysis
This REVOKE statement takes away the SELECT access just granted to user
bforta. The access being revoked must exist or an error will be throw n.

GRANT and REVOKE can be used to control access at several levels:

■ Entire server, using GRANT ALL and REVOKE ALL

■ Entire database, using ON database.*

■ Specific tables, using ON database.table

■ Specific columns

■ Specific stored procedures

Table 28.1 lists each of the rights and privileges that may be granted or
revoked.

Table 28.1 Rights and Privileges

Privilege Description

ALL All privileges except GRANT OPTION.

ALTER Use of ALTER TABLE.

ALTER ROUTINE Use of ALTER PROCEDURE and DROP
 PROCEDURE.

CREATE Use of CREATE TABLE.

CREATE ROUTINE Use of CREATE PROCEDURE.

CREATE TEMPORARY TABLES Use of CREATE TEMPORARY TABLE.

CREATE USER Use of CREATE USER, DROP USER, RENAME
USER, and REVOKE ALL PRIVILEGES.

CREATE VIEW Use of CREATE VIEW.

DELETE Use of DELETE.

DROP Use of DROP TABLE.

EXECUTE Use of CALL and stored procedures.

FILE Use of SELECT INTO OUTFILE and LOAD
DATA INFILE.

GRANT OPTION Use of GRANT and REVOKE.

INDEX Use of CREATE INDEX and DROP INDEX.

INSERT Use of INSERT.

LOCK TABLES Use of LOCK TABLES.

PROCESS Use of SHOW FULL PROCESSLIST.

RELOAD Use of FLUSH.

REPLICATION CLIENT Access to location of servers.

REPLICATION SLAVE Used by replication slaves.

SELECT Use of SELECT.

ptg7041395

241Managing Users

SHOW DATABASES Use of SHOW DATABASES.

SHOW VIEW Use of SHOW CREATE VIEW.

SHUTDOWN Use of mysqladmin shutdown (used to shut
down MariaDB).

SUPER Use of CHANGE MASTER, KILL, LOGS, PURGE
MASTER, and SET GLOBAL. Also allows mysql-
admin debug login.

UPDATE Use of UPDATE.

USAGE No access.

Using GRANT and REVOKE in conjunction with the privileges listed in Table
28.1, you have complete control over what users can and cannot do with your
precious data .

Note

Granting for the Future When using GRANT and REVOKE, the user account must
exist, but the objects being referred to need not. This allows administrators to design
and implement security before databases and tables are even created.

A side effect of this is that if a database or table is removed (with a DROP statement)
any associated access rights will still exist. And if the database or table is re-created in
the future, those rights will apply to them.

Tip

Simplifying Multiple Grants Multiple GRANT statements may be strung together by
listing the privileges comma delimited, as seen in this example:

GRANT SELECT, INSERT ON crashcourse.* TO bforta;

Changing Passwords
To change user passwords use the SET PASSWORD statement. New passwords
must be encrypted as seen here:

▼ Input
SET PASSWORD FOR bforta = Password('n3w p@$$w0rd');

▼ Analysis
SET PASSWORD updates a user password. The new password must be
encrypted by being passed to the Password() function.

SET PASSWORD can also be used to set your own password:

ptg7041395

242 Chapter 28 Managing Security

▼ Input
SET PASSWORD = Password('n3w p@$$w0rd');

▼ Analysis
When no user name is specified, SET PASSWORD updates the password for the
currently logged in user .

Summary
In this chapter, you learned about access control and how to secure your
MariaDB server by assigning specific rights to users. As you can imagine, there
is a lot more to this advanced topic, and MariaDB administrators should dedi-
cate the time to fully understand managing DBMS security.

ptg7041395

29
Database Maintenance

In this chapter, you learn how to perform common database maintenance tasks.

Backing Up Data

Like all data , MariaDB data must be backed up regularly. As MariaDB data-
bases are disk-based files, normal backup systems and routines can back up
MariaDB data. However, as those files are always open and in use, normal file
copy backup may not always work as is not recommended.

Here are possible solutions to this problem:

■ Use the command line mysqldump utility to dump all database contents
to an external file. This utility should ideally be run before regular
backups occur so the dumped file will be backed up properly.

■ The command line mysqlhotcopy utility can be used to copy all data
from a database (this one is not supported by all database engines).

■ You can also use MariaDB to dump all data to an external file using
BACKUP TABLE or SELECT INTO OUTFILE . Both statements take the
name of a system file to be created, and that file must not already exist
or an error will be generated. Data can be restored using RESTORE

TABLE.

Tip

Flush Unwritten Data First To ensure that all data is written to disk (including any
index data) you might need to use a FLUSH TABLES statement before performing
your backup .

Performing Database Maintenance
MariaDB features a series of statements that can (and should) be used to ensure
that databases are correct and functioning properly.

ptg7041395

244 Chapter 29 Database Maintenance

Here are some statements you should be aware of:

 ■ ANALYZE TABLE is used to check that table keys are correct. ANALYZE
TABLE returns status information, as seen here:

▼ Input
ANALYZE TABLE orders;

▼ Output
+--------------------+---------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------------------+---------+----------+----------+

| crashcourse.orders | analyze | status | OK |

+--------------------+---------+----------+----------+

■ CHECK TABLE is used to check tables for a variety of problems. Indexes
are also checked on an ARIA or MyISAM table. CHECK TABLE sup-
ports a series of modes for use with ARIA or MyISAM tables. CHANGED
checks tables that have changed since the last check, EXTENDED performs
the most thorough check, FAST only checks tables that were not closed
properly, MEDIUM checks all deleted links and performs key verification,
and QUICK perform a quick scan only. As seen here, CHECK TABLE found
and repaired a problem :

▼ Input
CHECK TABLE orders, orderitems;

▼ Output
+------------------------+-------+----------+----------------------------+

| Table | Op | Msg_type | Msg_text |

+------------------------+-------+----------+----------------------------+

| crashcourse.orders | check | status | OK |

| crashcourse.orderitems | check | warning | Table is marked as crashed |

| crashcourse.orderitems | check | status | OK |

+------------------------+-------+----------+----------------------------+

■ If ARIA or MyISAM table access produces incorrect and inconsistent
results, you might need to repair the table using REPAIR TABLE. This
statement should not be used frequently, and if regular use is required,
there is likely a far bigger problem that needs addressing.

■ If you delete large amounts of data from a table, OPTIMIZE TABLE
should be used to reclaim previously used space, thus optimizing the
performance of the table .

ptg7041395

245Review Log Files

Diagnosing Startup Problems
Server startup problems usually occur when a change has been made to
MariaDB configuration or the server itself. MariaDB reports errors when this
occurs, but because most MariaDB servers are started automatically as system
processes or services, these messages might not be seen.

When troubleshooting system startup problems, try to manually start the server
first. The MariaDB server itself is started by executing mysqld on the command
line. Here are several important command mysqld line options:

■ --help displays help, a list of options.

■ --safe-mode loads the server minus some optimizations.

■ --verbose displays full text messages (use in conjunction with --help
for more detailed help messages).

■ --version displays version information and then quits.

Several additional command line options (pertaining to the use of log files) are
listed in the next section .

Review Log Files
MariaDB maintains a series of log files that administrators rely on extensively.
The primary log files are

■ The error log contains details about startup and shutdown problems
and any critical errors. The log is usually named hostname.err in the
data directory. This name can be changed using the --log-error
command line option.

■ The query log logs all MariaDB activity and can be useful in diagnos-
ing problems. This log file can get large quickly, so it should not be
used for extended periods of time. The log is usually named hostname.
log in the data directory. This name can be changed using the --log
command line option.

■ The binary log logs all statements that updated (or could have updated)
data. The log is usually named hostname-bin in the data directory.
This name can be changed using the –-log-bin command line option.

ptg7041395

246 Chapter 29 Database Maintenance

■ As its name suggests, the slow query log logs any queries that execute
slowly. This log can be useful in determining where database optimiza-
tions are needed. The log is usually named hostname-slow.log in the
data directory. This name can be changed using the --log-slow-
queries command line option.

When logging is being used, the FLUSH LOGS statement can be used to flush and
restart all log files .

Summary
In this chapter, you learned some basic MariaDB da tabase maintenance tools
and techniques.

ptg7041395

30
Improving Performance

In this chapter, you review some important points pertaining to the performance of
MariaDB.

Improving Performance
Database administrators spend a significant portion of their lives tweaking and
experimenting to improve DBMS performance. Poorly performing databases
(and database queries, for that matter) tend to be the most frequent culprits
when diagnosing application sluggishness and performance problems.

What follows is not, by any stretch of the imagination, the last word on
MariaDB performance. This is intended to review key points made in the pre-
vious 29 chapters, as well as to provide a springboard from which to launch
performance optimization discussion and analysis.

So, here goes:

■ First and foremost, MariaDB (like all DBMSs) has specific hardware
recommendations. Using any old computer as a database server is fine
when learning and playing with MariaDB. But production servers
should adhere to all recommendations.

■ As a rule, critical production DBMSs should run on their own dedi-
cated servers.

■ MariaDB is preconfigured with a series of default settings that are usu-
ally a good place to start. But after a while you might need to tweak
memory allocation, buffer sizes, and more. (To see the current settings
use SHOW VARIABLES; and SHOW STATUS;.)

ptg7041395

248

■ MariaDB is a multiuser multithreaded DBMS; in other words, it often
performs multiple tasks at the same time. And if one of those tasks
is executing slowly, all requests will suffer. If you are experiencing
unusually poor performance, use SHOW PROCESSLIST to display all
active processes (along with their thread IDs and execution time). You
can also use the KILL command to terminate a specific process (you
need to be logged in as an administrator to use that one).

■ There is almost always more than one way to write a SELECT state-
ment. Experiment with joins, unions, subqueries, and more to find
what is optimum for you and your data .

■ Use the EXPLAIN statement to have MariaDB explain how it will
execute a SELECT statement.

■ As a general rule, stored procedures execute quicker than individual
MariaDB statements.

■ Use the right data types, always.

■ Never retrieve more data than you need. In other words, no
SELECT * (unless you truly do need each and every column).

■ Some operations (including INSERT) support an optional DELAYED
keyword that, if used, returns control to the calling application imme-
diately and actually performs the operation when there are no more
pending operations. While this improves client performance (as control
is returned immediately), this option does introduce a risk—if a server
were to crash those queries would be lost.

■ When importing data, turn off autocommit. You may also want to
drop indexes (including FULLTEXT indexes) and then re- create them
after the import has completed. Alternatively, you can use ALTER
TABLE to temporarily DISABLE KEYS (remember to ENABLE KEYS
when you are done).

■ Database tables must be indexed to improve the performance of data
retrieval. Determining what to index is not a trivial task, and involves
analyzing used SELECT statements to find recurring WHERE and ORDER
BY clauses. If a simple WHERE clause is taking too long to return results,
you can bet that the column (or columns) being used is a good candi-
date for indexing .

■ Have a series of complex OR conditions in your SELECT? You may
see a significant performance improvement by using multiple SELECT
statements and UNION to connect them.

Chapter 30 Improving Performance

ptg7041395

249Summary

■ Indexes improve the performance of data retrieval but hurt the perfor-
mance of data insertion, deletion, and updating. If you have tables that
collect data and are not often searched, don’t index them until needed.
(Indexes can be added and dropped as needed.)

■ LIKE is slow. As a general rule, you are better off using FULLTEXT
over LIKE.

■ Databases are living entities. A well-optimized set of tables might not
be so after a while. As table usage and contents change, so might the
ideal optimization and configuration.

■ And the most important rule is simply this—every rule is meant to be
broken at some point .

Summary
In this chapter, you reviewed some important tips and notes pertaining to
MariaDB performance. Of course, this is just the tip of the iceberg, but now
that you have completed the MariaDB Crash Course you are free to experiment
and learn as you best see fit.

ptg7041395

This page intentionally left blank

ptg7041395

Appendix A
Getting Started with

MariaDB

If you are new to MariaDB, here is what you need to know to get started.

What You Need
To start using MariaDB and to follow along with the chapters in this book,
you need access to a MariaDB server and copies of client applications (software
used to access the server).

You do not need your own installed copy of MariaDB, but you do need access
to a server. You basically have two options:

■ Access to an existing MariaDB server, perhaps one by your hosting
company or place of business or school. To use this server you will be
granted a server account (a login name and password).

■ You may download and install a free copy of the MariaDB server for
installation on your own computer (MariaDB runs on all major plat-
forms including Windows and Linux).

Tip

If You Can, Install a Local Server For complete control, including access to commands
and features that you will probably not be granted using someone else’s MariaDB serv-
er, install your own local server. Even if you don’t end up using your local server as your
final production DBMS, you’ll still benefit from having complete and unfettered access
to all the server has to offer.

Regardless of whether you use a local server, you need client software (the
program you use to actually run SQL commands). The most readily available
is the mysql command line utility (included with every MariaDB installation).
Another important utility is the MySQL Workbench .

ptg7041395

252 Appendix A Getting Started with MariaDB

Obtaining the Software
To learn more about MariaDB, go to http://mariadb.org/.

To download a copy of the server, go to
http://maraiadb.org/downloads/.

It is recommended that you download and install the newest version of
MariaDB (usually the first option listed). You are presented with a list of
download options for various computer platforms and operating systems.

Unlike the command line mysql utility, MySQL Workbench is not included
with MariaDB. Instead, it must be downloaded from
http://wb.mysql.com/.

Installing the Software
If you are installing a local MariaDB server, do so before installing any other
clients or utilities. The installation procedure varies from platform to platform,
but all installations prompt you for needed information, including

■ Installation location (the default is usually fine).

■ Password for root user. (If you are not prompted for a root password
then there will be no root password set.)

■ Ports, service or process names, and more. As a rule, use default values
if you are unsure of what to specify .

Tip

Multiple MariaDB Servers Multiple copies of MariaDB server may be installed on a
single machine, as long as each uses a different port.

Note

Important Note for Windows Users When running MariaDB on Windows you want the
MariaDB server to be running as a system service. If you are installing MariaDB 5.2.6
or later, the service will be created for you as part of the installation process. For earlier
versions of MariaDB, you need to do this manually. Fortunately, this is simple to do.
Open a command prompt window (you can do this by clicking Start, Run; typing cmd; and
then clicking OK) and then go to the bin folder under the MariaDB installation folder. In
that folder type mysqld --install and press Enter. You should see a message telling
you that the service was created .

http://mariadb.org/
http://maraiadb.org/downloads/
http://wb.mysql.com/

ptg7041395

253Preparing to Try It Yourself

Preparing to Try It Yourself
After you have installed MariaDB, Chapter 3, “Working with MariaDB,”
shows you how to log in and log out of the server, and how to execute
commands.

The chapters in this book all use real SQL statements and real data. Appendix
B, “The Example Tables,” describes the example tables used in this book, and
explains how to obtain and use the table creation and population scripts.

ptg7041395

This page intentionally left blank

ptg7041395

Appendix B
The Example Tables

Writing SQL statements requires a good understanding of the underlying data-
base design. Without knowing what information is stored in what table, how
tables are related to each other, and the actual breakup of data within a row, it
is impossible to write effective SQL.

You are strongly advised to actually try every example in every chapter in this
book. All the chapters use a common set of data files. To assist you in better
understanding the examples and to enable you to follow along with the chap-
ters, this appendix describes the tables used, their relationships, and how to
obtain them.

Understanding the Sample Tables
The tables used throughout this book are part of an order entry system used by
an imaginary distributor of paraphernalia that might be needed by your favorite
cartoon characters (yes, cartoon characters; no one said that learning MariaDB
needed to be boring). The tables are used to perform several tasks:

■ Manage vendors

■ Manage product catalogs

■ Manage customer lists

■ Enter customer orders

Making this all work requires six tables that are closely interconnected as part
of a relational database design. A description of each of the tables appears in the
following sections.

Note

Simplified Examples The tables used here are by no means complete. A real-world
order entry system would have to keep track of a lot of other data that has not been
included here (for example, payment and accounting information, shipment tracking, and
more). However, these tables do demonstrate the kinds of data organization and rela-
tionships you will encounter in most real installations. You can apply these techniques
and technologies to your own databases.

ptg7041395

256 Appendix B The Example Tables

Table Descriptions
What follows is a description of each of the six tables, along with the name of
the columns within each table and their descriptions.

Note

Why Out of Order? If you are wondering why the six tables are listed in the order they
are, it is due to their dependencies. As the products tables is dependent on the
vendors table, vendors is listed first, and so on.

The vendors Table
The vendors table (see Table B.1) stores the vendors whose products are sold.
Every vendor has a record in this table, and that vendor ID (the vend_id) col-
umn is used to match products with vendors.

Table B.1 vendors Table Columns

vend_id Unique numeric vendor ID

vend_name Vendor name

vend_address Vendor address

vend_city Vendor city

vend_state Vendor state

vend_zip Vendor Zip Code

vend_country Vendor country

■ All tables should have primary keys defined. This table should use
vend_id as its primary key. vend_id is an auto increment field .

The products Table
The products table (see Table B.2) contains the product catalog, one product
per row. Each product has a unique ID (the prod_id column) and is related to
its vendor by vend_id (the vendor’s unique ID).

ptg7041395

257Understanding the Sample Tables

Table B.2 products Table Columns

Column Description
prod_id Unique product ID

vend_id Product vendor ID (relates to vend_id in vendors table)

prod_name Product name

prod_price Product price

prod_desc Product description

■ All tables should have primary keys defined. This table should use
prod_id as its primary key.

■ To enforce referential integrity, a foreign key should be defined on
vend_id, relating it to vend_id in vendors.

The customers Table
The customers table (see Table B.3) stores all customer information. Each cus-
tomer has a unique ID (the cust_id column).

Table B.3 customers Table Columns

Column Description
cust_id Unique numeric customer ID

cust_name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

cust_zip Customer Zip Code

cust_country Customer country

cust_contact Customer contact name

cust_email Customer contact e-mail address

■ All tables should have primary keys defined. This table should use
cust_id as its primary key. cust_id is an auto increment field .

The orders Table
The orders table (see Table B.4) stores customer orders (but not order details).
Each order is uniquely numbered (the order_num column). Orders are associ-
ated with the appropriate customers by the cust_id column (which relates to
the customer’s unique ID in the customers table).

ptg7041395

258 Appendix B The Example Tables

Table B.4 orders Table Columns

Column Description
order_num Unique order number

order_date Order date

cust_id Order customer ID (relates to cust_id in customers table)

■ All tables should have primary keys defined. This table should use
order_num as its primary key. order_num is an auto increment field.

■ To enforce referential integrity, a foreign key should be defined on
cust_id, relating it to cust_id in customers.

The orderitems Table
The orderitems table (see Table B.5) stores the actual items in each order, one
row per item per order. For every row in orders there are one or more rows
in orderitems. Each order item is uniquely identified by the order number plus
the order item (first item in order, second item in order, and so on). Order
items are associated with their appropriate order by the order_num column
(which relates to the order’s unique ID in orders). In addition, each order item
contains the product ID of the item orders (which relates the item back to the
products table).

Table B.5 orderitems Table Columns

Column Description
order_num Order number (relates to order_num in orders table)

order_item Order item number (sequential within an order)

prod_id Product ID (relates to prod_id in products table)

quantity Item quantity

item_price Item price

■ All tables should have primary keys defined. This table should use
order_num and order_item as its primary keys.

■ To enforce referential integrity, foreign keys should be defined on
order_num, relating it to order_num in orders, and prod_id, relating it
to prod_id in products.

ptg7041395

259Creating the Sample Tables

The productnotes Table
The productnotes table (see Table B.6) stores notes associated with specific
products. Not all products may have associated notes, and some products may
have many associated notes.

Table B.6 productnotes Table Columns

Column Description
note_id Unique note ID

prod_id Product ID (corresponds to prod_id in products table)

note_date Date note added

note_text Note text

■ All tables should have primary keys defined. This table should use
note_id as its primary key.

■ Column note_text must be indexed for FULLTEXT search use .

Creating the Sample Tables
To follow along with the examples, you need a set of populated tables.
Everything you need to get up and running can be found on this book’s Web
page at http://forta.com/books/0321799941/.

The Web page contains two SQL script files that you may download:

■ create.sql contains the MariaDB SQL statements to create the six
database tables (including defining all primary keys and foreign key
constraints).

■ populate.sql contains the SQL INSERT statements used to populate
these tables.

Note

For MariaDB Only The SQL statements in the downloadable .sql files are DBMS
specific and are designed to be used only with MariaDB.

After you have downloaded the scripts, you can use them to create and popu-
late the tables needed to follow along with the chapters in this book. You can
do this using the mysql command line utility or MySQL Workbench.

http://forta.com/books/0321799941/

ptg7041395

260 Appendix B The Example Tables

Note

Create, Then Populate You must run the table creation scripts before the table popula-
tion scripts. Be sure to check for any error messages returned by these scripts. If the
creation scripts fail, you need to remedy whatever problem might exist before continuing
with table population.

Caution

One Or the Other, Not Both Both of the following sets of instructions do the exact
same thing, so pick one and use it, but don’t try to use both. (You’ll not be able to cre-
ate the same database and tables twice.)

Using mysql
To create the example data using the mysql command line utility, do the
following:

1. Make sure MariaDB is running.

2. Open a command prompt window, and go to the bin folder under the
MariaDB installation folder.

3. Connect to MariaDB as the root user (so that you have the security
access needed to create a new database). Type mysql –u root and
press Enter. If you specified a root password at installation time, use
mysql –u root –p and press Enter, and then type the password when
prompted to do so.

4. You should see a prompt like MariaDB [(none)]>. The name of the
currently selected database is displayed inside the square brackets, and
(none) simply means that no database has been selected.

5. To keep the tables used in this book separate from any other work or
data, we create a new database and use that exclusively for all chapters.
Type create database crashcourse; (don’t forget the ;) and press
Enter to create a new database named crashcourse. You should see a
message saying OK.

6. Next you need to select the new database (so that when you create
the tables they are created inside it). Type USE crashcourse; and press
Enter. The prompt should now indicate that the crashcourse database
has been selected.

ptg7041395

261Creating the Sample Tables

7. To create the tables, you need to run the create.sql script. Make sure
you know the full path to the file and type \. /path/create.sql and
press Enter, replacing path with the actual path. So, if create.sql is in
/downloads/, type \. /downloads/create.sql. You should see a series
of OK messages.

Caution

No ; When Using \. Unlike the CREATE and USE statements (and indeed just about
every MariaDB SQL statement), do not type a trailing ; when using the \. command to
execute an external script file.

8. Repeat step 7, this time using the populate.sql script. This populates
the newly created tables with the sample data. Again, you should see a
series of OK messages indicating success.

9. When you are done, type exit or quit to exit mysql.

You can now return to Chapter 3, “Working with MariaDB.”

Using MySQL Workbench
To create the example data using MySQL Workbench, do the following:

1. Make sure MariaDB is running.

2. Launch MySQL Workbench.

3. Click on Open Connection to Start Querying (it’s the top option in
the left column) to display the Connect to Database dialog.

4. Make sure the hostname is correct, the user name should be root, and
you should enter the root password if one was specified at installation
time. Click OK and you should see the SQL Editor window. Existing
databases are listed in the Overview tab at the top of the lower half of
the screen.

5. To keep the tables used in this book separate from any other work or
data, we create a new database and use that exclusively for all chapters.
Click the + button on the right above the listed databases to display
the new_schema dialog (schema is another name for a database). Type
crashcourse in the name field and click Apply. You are presented
with a confirmation dialog. Click Apply again to create the database.
When you receive confirmation click Finish and close the dialogs.

ptg7041395

262 Appendix B The Example Tables

6. Next you need to select the new database (so that when you create the
tables they are created inside it). Type USE crashcourse; at the top
of the screen and click the Execute button (the one with the yellow
lightning bolt). The output tab indicates success or failure with an icon
for each statement—red X for failure, blue exclamation mark for suc-
cess.

7. To create the tables, you need to run the create.sql script. Select
File, Open SQL Script, and locate the create.sql file. When you see
the contents in the editor window, click the Execute button. The out-
put tab below indicates success or failure with an icon for each state-
ment (multiple statements will be executed).

8. Repeat step 7, this time using the populate.sql script. This populates
the newly created tables with the sample data. Again, the output tab
below indicates success or failure with an icon for each statement.

9. When y ou are done, you can quit MySQL Workbench .

You can now return to Chapter 3.

ptg7041395

Appendix C
MariaDB D atatypes

As explained in Chapter 1, “Understanding SQL,” datatypes are basically rules
that define what data may be stored in a column and how that data is actually
stored.

Datatypes are used for several reasons:

■ Datatypes enable you to restrict the type of data that can be stored
in a column. For example, a numeric datatype column only accepts
numeric values.

■ Datatypes allow for more efficient storage, internally. Numbers and
date time values can be stored in a more condensed format than text
strings.

■ Datatypes allow for alternate sorting orders. If everything is treated as
strings, 1 comes before 10, which comes before 2. (Strings are sorted
in dictionary sequence, one character at a time starting from the left.)
As numeric datatypes, the numbers would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used.
Using the wrong datatype can seriously impact your application. Changing the
datatypes of existing populated columns is not a trivial task. (In addition, doing
so can result in data loss.)

Although this appendix is by no means a complete tutorial on datatypes and
how they are to be used, it explains the major MariaDB datatype types, and
what they are used for.

String Datatypes
The most commonly used datatypes are string datatypes. These store strings:
for example, names, addresses, phone numbers, and Zip Codes. As listed in
Table D.1, there are basically two types of string datatype that you can use—
fixed-length strings and variable-length strings.

ptg7041395

264 Appendix C MariaDB D atatypes

Fixed-length strings are datatypes that are defined to accept a fixed number of
characters, and that number is specified when the table is created. For example,
you might allow 30 characters in a first-name column or 11 characters in a
Social-Security-number column (the exact number needed allowing for the
two dashes). Fixed-length columns do not allow more than the specified num-
ber of characters. They also allocate storage space for as many characters as
specified. So, if the string Ben is stored in a 30-character first-name field, a full
30 bytes are stored. CHAR is an example of a fixed-length string type.

Variable-length strings store text of variable length. Some variable-length
datatypes have a defined maximum size. Others are entirely variable. Either
way, only the data specified is saved (and no extra data is stored). TEXT is an
example of a variable-length string type.

If variable-length datatypes are so flexible, why would you ever want to use
fixed-length datatypes? The answer is performance. MariaDB can sort and
manipulate fixed-length columns far more quickly than it can sort variable-
length columns. In addition, MariaDB does not allow you to index variable-
length columns (or the variable portion of a column). This also dramatically
affects performance.

Table D.1 String Datatypes

Datatype Description

CHAR Fixed-length string from 1 to 255 chars long. Its size
must be specified at create time, or MariaDB assumes
CHAR(1).

ENUM Accepts one of a predefined set of up to 64K strings.

LONGTEXT Same as TEXT, but with a maximum size of 4GB.

MEDIUMTEXT Same as TEXT, but with a maximum size of 16K.

SET Accepts zero or more of a predefined set of up to 64 strings.

TEXT Variable-length text with a maximum size of 64K.

TINYTEXT Same as TEXT, but with a maximum size of 255 bytes.

VARCHAR Same as CHAR, but stores just the text. The size is a maxi-
mum, not a minimum.

Tip

Using Quotes Regardless of the form of string datatype being used, string values must
always be surrounded by quotes (single quotes are often preferred) .

ptg7041395

265Numeric Datatypes

Caution

When Numeric Values Are Not Numeric Values You might think that phone numbers
and Zip Codes should be stored in numeric fields (after all, they store only numeric
data), but doing so would not be advisable. If you store the Zip Code 01234 in a numer-
ic field, the number 1234 would be saved. You’d actually lose a digit.

The basic rule to follow is: If the number is a number used in calculations (sums, aver-
ages, and so on), it belongs in a numeric datatype column. If it is used as a literal string
(that happens to contain only digits), it belongs in a string datatype column.

Numeric Datatypes
Numeric datatypes store numbers. MariaDB supports several numeric datatypes,
each with a different range of numbers that can be stored in it. Obviously, the
larger the supported range, the more storage space needed. In addition, some
numeric datatypes support the use of decimal points (and fractional numbers),
whereas others support only whole numbers. Table D.2 lists the frequently used
MariaDB numeric datatypes.

Note

Signed Or UNSIGNED? All numeric datatypes (with the exception of BIT and
BOOLEAN) can be signed or unsigned. Signed numeric columns can store both positive
and negative numbers; unsigned numeric columns store only positive numbers. Signed
is the default, but if you know that you’ll not need to store negative values you can use
the UNSIGNED keyword. Doing so allows you to store values twice as large.

Table D.2 Numeric Datatypes

Datatype Description
BIT A bit-field, from 1 to 64 bits wide

BIGINT Integer value, supports numbers from
-9223372036854775808 to 9223372036854775807
(or 0 to 18446744073709551615 if UNSIGNED)

BOOLEAN (or BOOL) Boolean flag, either 0 or 1, used primarily for on/off flags

DECIMAL (or DEC) Floating point values with varying levels of precision

DOUBLE Double-precision floating point values

FLOAT Single-precision floating point values

INT (or INTEGER) Integer value, supports numbers from -2147483648 to
2147483647 (or 0 to 4294967295 if UNSIGNED)

MEDIUMINT Integer value, supports numbers from -8388608 to
8388607 (or 0 to 16777215 if UNSIGNED)

REAL 4-byte floating point values

ptg7041395

266 Appendix C MariaDB D atatypes

Table D.2 Numeric Datatypes continued

Datatype Description
SMALLINT Integer value, supports numbers from -32768 to 32767 (or

0 to 65535 if UNSIGNED)

TINYINT Integer value, supports numbers from -128 to 127 (or 0 to
255 if UNSIGNED)

Tip

Not Using Quotes Unlike strings, numeric values should never be enclosed within
quotes.

Tip

Storing Currency There is no special MariaDB datatype for currency values, use

DECIMAL(8,2) instead.

Date and Time Datatypes
MariaDB uses special datatypes for the storage of date and time values as listed
in Table D.3.

Table D.3 Date and Time Datatypes

Datatype Description

DATE Date from 1000-01-01 to 9999-12-31 in the format
YYYY-MM-DD.

DATETIME A combination of DATE and TIME.

TIMESTAMP Functionally equivalent to DATETIME (but with a smaller
 range).

TIME Time in the format HH:MM:SS.

YEAR A 2- or 4-digit year, 2-digit years support a range of 70 (1970)
to 69 (2069); 4-digit years support a range of 1901 to 2155.

Binary Datatypes
Binary datatypes are used to store all sorts of data (even binary information),
such as graphic images, multimedia, and word processor documents (see
Table D.4).

ptg7041395

267Binary Datatypes

Table D.4 Binary Datatypes

Datatype Description

BLOB Blob with a maximum length of 64K

MEDIUMBLOB Blob with a maximum length of 16MB

LONGBLOB Blob with a maximum length of 4GB

TINYBLOB Blob with a maximum length of 255 bytes

Note

Datatypes in Use If you want to see a real-world example of how different databases
are used, see the sample table creation scripts (described in Appendix B, “The Example
Tables”).

ptg7041395

This page intentionally left blank

ptg7041395

Appendix D
MariaDB Reserved Words

The MariaDB implementation of SQL is made up of keywords—special words
used in performing SQL operations. Special care must be taken to not use
these keywords when naming databases, tables, columns, and any other data-
base objects. Thus, these keywords are considered reserved. This appendix lists
all of the MariaDB reserved words.

ABS

ABSOLUTE

ACTION

ADA

ADD

ADMIN

AFTER

AGGREGATE

ALIAS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

AS

ASC

ASENSITIVE

ASSERTION

ASSIGNMENT

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

BEFORE

BEGIN

BETWEEN

BINARY

BIT

BIT_LENGTH

BITVAR

BLOB

BLOCKED

BOOLEAN

BOTH

BREADTH

BY

C

CALL

CARDINALITY

CASCADE

CASCADED

CASE

CAST

CATALOG

CATALOG_NAME

CHAIN

CHAR

CHAR_LENGTH

ptg7041395

270 Appendix D MariaDB Reserved Words

CHARACTER

CHARACTER_LENGTH

CHARACTER_SET_

CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_

SCHEMA

CHECK

CHECKED

CLASS

CLASS_ORIGIN

CLOB

CLOSE

COALESCE

COBOL

COLLATE

COLLATION

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

COLUMN

COLUMN_NAME

COMMAND_FUNCTION

COMMAND_FUNCTION_

CODE

COMMIT

COMMITTED

COMPLETION

CONCATENATE

CONDITION

CONDITION_NUMBER

CONNECT

CONNECTION

CONNECTION_NAME

CONSTRAINT

CONSTRAINT_CATALOG

CONSTRAINT_NAME

CONSTRAINT_SCHEMA

CONSTRAINTS

CONSTRUCTOR

CONTAINS

CONTINUE

CONTROL

CONVERT

CORRESPONDING

COUNT

CREATE

CROSS

CUBE

CURRENT

CURRENT_DATE

CURRENT_PATH

CURRENT_ROLE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

CURSOR_NAME

CYCLE

DATA

DATALINK

DATE

DATETIME_INTERVAL_

CODE

DATETIME_INTERVAL_

PRECISION

DAY

DB

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DEFERRABLE

DEFERRED

DELETE

DEPTH

DEREF

DESC

DESCRIBE

DESCRIPTOR

DESTROY

DESTRUCTOR

DETERMINISTIC

DIAGNOSTICS

DICTIONARY

DISCONNECT

DISPATCH

ptg7041395

271MariaDB Reserved Words

EXEC

EXECUTE

EXISTING

EXISTS

EXIT

EXPAND

EXPANDING

EXTERNAL

EXTRACT

FALSE

FETCH

FILE

FINAL

FIRST

FLOAT

FOR

FOREIGN

FORTRAN

FOUND

FREE

FROM

FULL

FUNCTION

GENERAL

GENERATED

GET

GLOBAL

GO

GOTO

DISTINCT

DLCOMMENT

DLFILESIZE

DLFILESIZEEXACT

DLLINKTYPE

DLURLCOMPLETE

DLURLPATH

DLURLPATHONLY

DLURLSCHEMA

DLURLSERVER

DLVALUE

DO

DOMAIN

DOUBLE

DROP

DYNAMIC

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_

CODE

EACH

ELSE

ELSEIF

END

END-EXEC

EQUALS

ESCAPE

EVERY

EXCEPT

EXCEPTION

GRANT

GROUP

GROUPING

HANDLER

HASH

HAVING

HOLD

HOST

HOUR

IDENTITY

IF

IGNORE

IMMEDIATE

IN

INDICATOR

INFIX

INITIALIZE

INITIALLY

INNER

INOUT

INPUT

INSENSITIVE

INSERT

INSTANTIABLE

INT

INTEGER

INTEGRITY

INTERSECT

INTERVAL

ptg7041395

272 Appendix D MariaDB Reserved Words

INTO

IS

ISOLATION

ITERATE

JOIN

KEY

KEY_MEMBER

KEY_TYPE

LANGUAGE

LARGE

LAST

LATERAL

LEADING

LEAVE

LEFT

LENGTH

LESS

LEVEL

LIKE

LIMIT

LINK

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOCATOR

LOOP

LOWER

MATCH

MAX

MEETS

MESSAGE_LENGTH

MESSAGE_OCTET_

LENGTH

MESSAGE_TEXT

METHOD

MIN

MINUTE

MOD

MODIFIES

MODIFY

MODULE

MONTH

MORE

MUMPS

NAME

NAMES

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NEXT

NO

NONE

NORMALIZE

NOT

NULL

NULLABLE

NULLIF

NUMBER

NUMERIC

OBJECT

OCTET_LENGTH

OF

OFF

OLD

ON

ONLY

OPEN

OPERATION

OPTION

OPTIONS

OR

ORDER

ORDINALITY

OUT

OUTER

OUTPUT

OVERLAPS

OVERLAY

OVERRIDING

PAD

PARAMETER

PARAMETER_MODE

PARAMETER_ORDINAL_

POSITION

ptg7041395

273MariaDB Reserved Words

PARAMETER_SPECIFIC_

CATALOG

PARAMETER_SPECIFIC_

NAME

PARAMETER_SPECIFIC_

SCHEMA

PARAMETERS

PARTIAL

PASCAL

PATH

PERIOD

PERMISSION

PLI

POSITION

POSTFIX

PRECEDES

PRECISION

PREFIX

PREORDER

PREPARE

PRESERVE

PRIMARY

PRIOR

PRIVILEGES

PROCEDURE

PUBLIC

READ

READS

REAL

RECOVERY

RECURSIVE

REDO

REF

REFERENCES

REFERENCING

RELATIVE

REPEAT

REPEATABLE

RESIGNAL

RESTORE

RESTRICT

RESULT

RETURN

RETURNED_LENGTH

RETURNED_OCTET_

LENGTH

RETURNED_SQLSTATE

RETURNS

REVOKE

RIGHT

ROLE

ROLLBACK

ROLLUP

ROUTINE

ROUTINE_CATALOG

ROUTINE_NAME

ROUTINE_SCHEMA

ROW

ROW_COUNT

ROW_TYPE_CATALOG

ROW_TYPE_NAME

ROW_TYPE_SCHEMA

ROWS

SAVEPOINT

SCALE

SCHEMA

SCHEMA_NAME

SCROLL

SEARCH

SECOND

SECTION

SELECT

SELECTIVE

SELF

SENSITIVE

SEQUENCE

SERIALIZABLE

SERVER_NAME

SESSION

SESSION_USER

SET

SETS

SIGNAL

SIMILAR

SIMPLE

SIZE

SMALLINT

SOME

ptg7041395

274 Appendix D MariaDB Reserved Words

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TRAILING

TRANSACTION

TRANSACTION_ACTIVE

TRANSACTIONS_

COMMITTED

TRANSACTIONS_

ROLLED_BACK

TRANSFORM

TRANSLATE

TRANSLATION

TREAT

TRIGGER

TRIGGER_CATALOG

TRIGGER_NAME

TRIGGER_SCHEMA

TRIM

TRUE

TYPE

UNCOMMITTED

UNDER

UNDO

UNION

UNIQUE

UNKNOWN

UNLINK

UNNAMED

SOURCE

SPACE

SPECIFIC

SPECIFIC_NAME

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

START

STATE

STATIC

STRUCTURE

STYLE

SUBCLASS_ORIGIN

SUBLIST

SUBSTRING

SUCCEEDS

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

TABLE

TABLE_NAME

TEMPORARY

TERMINATE

THAN

THEN

TIME

UNTIL

UPDATE

UPPER

USAGE

USER

USER_DEFINED_TYPE_

CATALOG

USER_DEFINED_TYPE_

NAME

USER_DEFINED_TYPE_

SCHEMA

USING

VALUE

VALUES

VARCHAR

VARIABLE

VARYING

VIEW

WHEN

WHENEVER

WHERE

WHILE

WITH

WITHOUT

WORK

WRITE

YEAR

YES

ZONE

ptg7041395

Symbols

* (asterisk), 30

\ (backslash), 74

/* */ comment syntax, 36

% (percent sign) wildcard, 62-63

(pound sign), 36

; (semicolon), 28

--(two hyphens), 35

_ (underscore) wildcard, 64

A

Abs() function, 96

access control, 235-236

access rights, 238-241

accounts. See user accounts

advantages of MySQL, 13-14

Against() function, 149-152

aggregate functions

ALL argument, 103
AVG(), 98-99
combining, 104-105
COUNT(), 99-100
defined, 97
DISTINCT argument, 103-104
explained, 97
joins and, 139-140
MAX(), 100-101
MIN(), 101-102
naming aliases, 105
SUM(), 102-103

aliases, 84-85, 133-134

ALL argument, 103

alphabetical sort order, 40-43

ALTER TABLE statement, 183-185

ANALYZE TABLE statement, 244

anchor metacharacters, 77

anchors, 77-79

AND keyword, 50

AND operator, 53-54

application filtering, 46

AS keyword, 84-85

asterisk (*), 30

auto increment, 25

AUTO_INCREMENT, 180-181

AVG() function, 98-99

B

backing up data, 243

backslash (\), 74

BACKUP TABLE statement, 243

BETWEEN operator (WHERE clause), 49

BINARY datatype, 266-267

BIT datatype, 265

boolean text searches, 154-158

C

calculated fields

aliases, 84-85
concatenating fields, 82-83
explained, 81-82

Index

ptg7041395

276 calculated fields

mathematical calculations, 85-86
subqueries as, 119-121
views, 193-194

calculated values, totaling, 102

calling stored procedures, 199

Cartesian products, 127

case sensitivity, 28, 42

changing passwords, 241-242

character classes, matching, 75

character matching

anchors, 77-79
basic character matching, 68-70
character classes, 75
multiple instances, 75-77
one of several characters, 71-72
OR matches, 70
ranges, 72-73
special characters, 73-74

character sets, 232-234

checking

for nonmatches, 48-49
for NULL value, 50-51
for range of values, 49-50
against single value, 47

CHECK TABLE statement, 244

clauses. See also specific clauses

definition of, 38
positioning, 46, 51
SELECT clause ordering, 113-114

client-based results formatting, 82

client-server software, 14-15

CLOSE statement, 211

closing cursors, 211

collation sequences, 232-234

columns. See also fields

aliases, 84-85
derived, 85
explained, 7-8
fully qualified names, 126
GROUP BY clause, 109

multiple, sorting query results by,
39-40

NULL, 8, 177-178
omitting, 164
padded spaces

RTrim() function, 83-84
primary keys, 9-10
retrieving

all columns, 30
individual columns, 27-28
multiple columns, 29
unknown columns, 31

subquery result restrictions, 118
updating multiple, 170
values, deleting, 171
viewing, 24

combined queries

creating, 141-144
duplicate rows and, 144-145
explained, 141
sorting results, 145-146

combining

aggregate functions, 104-105
WHERE clauses

AND operator, 53-54
OR operator, 54-55
order of evaluation, 55-56

comments, 35-36

commits, 227

default commit behavior, 230
explicit commits, 228-229
implicit commits, 228

COMMIT statement, 228-229

compatibility with MySQL, 15

compound queries. See combined queries

concatenating fields, 82-83

Concat() function, 82

conditional operators, 46

correlated subqueries, 120

Cos() function, 96

ptg7041395

277date and time datatypes

COUNT() function, 98-100, 139

COUNT* subquery, 119-121

create.sql script, 262

CREATE FULLTEXT statement, 148-149

CREATE PROCEDURE statement, 200-201

CREATE TABLE statement, 175-177

DEFAULT keyword, 181-182
engine types, 182-183

CREATE TRIGGER statement, 218

CREATE USER statement, 237

CREATE VIEW statement, 189-191

currency datatypes, 266

cursors

closing, 211
creating, 210
explained, 209
opening, 210-211
retrieving data with, 212-216

customers table, 257

D

data

breaking correctly (columns), 7
deleting

guidelines, 172-173
TRUNCATE TABLE

statement, 172
filtering. See data filtering
grouping

explained, 107
filtering groups, 109-111
GROUP BY clause, 108-109
grouping and sorting, 112-113
nested groups, 108

updating, 172-173

databases. See also tables

explained, 5-6
maintenance

backing up data, 243
diagnosing startup problems, 245
performing, 243-244
reviewing log files, 245-246

schemas, 7
selecting, 22
viewing available databases, 23

database servers, 14

data filtering

groups, 109-111
by subqueries, 115-118
WHERE clause, 45-46

checking against single value, 47
checking for nonmatches, 48-49
checking for NULL value, 50-51
checking for range of values,

49-50
combining clauses, 53-56
conditional operators, 46
IN operator, 57-58
NOT operator, 58-59

wildcard filtering
LIKE operator, 61
% (percent sign) wildcard, 62-63
tips, 65
_ (underscore) wildcard, 64

with views, 192

datatypes, 8

binary, 266-267
currency, 266
date and time, 266
numeric, 265-266
string, 263-264
usefulness of, 263

date and time datatypes, 266

ptg7041395

278 date and time functions

E

empty strings, 179

enabling full-text searching, 148-149

encodings, 231

engine types, 182-183

equijoins. See inner joins

escaping, 74

evaluation, order of, 55-56

EXECUTE statement, 199

executing

scripts, 17
stored procedures, 199

Exp() function, 96

EXPLAIN statement, 248

explicit commits, 228-229

expressions. See regular expressions

F

FETCH statement, 212, 215-216

fields, calculated. See also columns

aliases, 84-85
concatenating, 82-83
explained, 81-82
mathematical calculations, 85-86
subqueries as, 119-121
views, 193-194

files, log

flushing, 246
reviewing, 245-246

filtering data

application filtering, 46
by subqueries, 115-118
groups, 109-111
WHERE clause, 45-46

checking against single value, 47
checking for nonmatches, 48-49
checking for NULL value, 50-51
checking for range of values,

49-50

date and time functions, 90-95

DATE dataype, 266

DATETIME datatype, 266

DBMS (Database Management System),
6, 61

DECIMAL datatype, 265

DECLARE statement, 210, 213-214

default commit behavior, 230

default values, 181-182

DELAYED keyword, 248

DELETE statement, 171-172

FROM clause, 172
guidelines, 172-173
triggers, 221-222
WHERE clause, 171

deleting

column values, 171
data

guidelines, 172-173
table data, 171-172
TRUNCATE TABLE

statement, 172
tables, 185
user accounts, 238

derived columns. See aliases

DESC keyword, 40-43

DESCRIBE statement, 24-25

diagnosing startup problems, 245

dictionary sort order, 42

DISTINCT keyword, 31-32, 103-104

downloading

MariaDB, 252
MySQL Workbench, 252

DROP PROCEDURE statement, 201

DROP TABLE statement, 185

DROP TRIGGER statement, 219

DROP USER statement, 238

dropping

stored procedures, 201
triggers, 219

ptg7041395

279HELP SHOW statement

combining clauses, 53-56
conditional operators, 46

wildcard filtering
LIKE operator, 61
tips, 65
% (percent sign) wildcard, 62-63
_ (underscore) wildcard, 64

with views, 192

fixed length strings, 264

FLOAT datatype, 265

flushing log files, 246

FLUSH LOGS statement, 246

FLUSH TABLES statement, 243

foreign keys, 124

formatting

retrieved data with views, 191
server-based compared to

client-based, 82
statements, 177
subqueries, 117

FROM keyword, 27

FULLTEXT clause, 148-149

full-text searching

boolean text searches, 154-158
enabling, 148-149
explained, 147-148
performing searches, 149-152
query expansion, 152-154
support for, 147
tips and guidelines, 158

fully qualified table names, 34-35

functions

Against(), 149-152
aggregate functions, 97

ALL argument, 103
AVG(), 98-99

combining, 104-105
COUNT(), 99-100
DISTINCT argument, 103-104
joins and, 139-140
MAX(), 100-101
MIN(), 101-102
SUM(), 102-103

Concat(), 82
date and time functions, 92-95
defined, 89
LTrim(), 84
Match(), 149-152
numeric functions, 96
portability, 89
RTrim(), 83-84
system, 90
text functions, 90-92
Trim(), 84

G

globalization, 232-234

granting access rights, 239

GRANT statement, 239

GROUP BY clause, 108-109

grouping data

explained, 107
filtering groups, 109-111
GROUP BY clause, 108-109
grouping and sorting, 112-113
nested groups, 108

groups, filtering, 109-111

H

HAVING clause, 109

help option (mysqld), 245

HELP SHOW statement, 25

ptg7041395

280 IGNORE keyword

natural joins, 136-137
outer joins, 137-138
self joins, 134-136
simplifying with views, 189-190

keys. See foreign keys; primary keys

keywords, 22, 269-274. See also specific
keywords

KILL statement, 248

L

Left() function, 91

Length() function, 91

less than operator (WHERE clause), 156

LIKE keyword, 147

LIKE operator, 61

LIMIT clause, 32-34

Locate() function, 91

log-bin command line option, 245

log command line option, 245

log-error command line option, 245

log files

flushing, 246
reviewing, 245-246

logging in, 21-22

logical operators. See operators

login names, 21-22

log-slow-queries command line option, 246

Lower() function, 91

LTrim() function, 84, 91

M

maintenance (database)

backing up data, 243
diagnosing startup problems, 245
performing, 243-244
reviewing log files, 245-246

I

IGNORE keyword, 171

implicit commits, 228

improving performance, 247-249

IN BOOLEAN MODE keywords, 155-156

IN operator, 57-58

INFORMATION_SCHEMA statement, 25

inline comments, 35

inner joins, 129-130

INSERT statement

explained, 161
inserting multiple rows, 165-166
inserting retrieved data, 166-168
inserting single rows, 161-164
INSERT SELECT, 166-168
omitting columns, 164
performance, 164
security privileges, 161
triggers, 219-221
VALUES, 164

inserting

retrieved data, 166-168
rows

multiple rows, 165-166
single rows, 161-164

inspecting stored procedures, 208

installing MariaDB, 252

INT datatype, 265

J-K

joins

advantages of, 125
aggregate functions, 139-140
creating, 125-129
cross joins, 129
explained, 123
inner joins, 129-130
join conditions, 140
joining multiple tables, 130-132

ptg7041395

281overwriting tables

NULL values

checking for, 50-51
compared to empty strings, 179
COUNT() function, 100
NULL columns, 8
primary keys, 180
table columns, 177-178

numeric datatypes, 265-266

numeric functions, 90, 96

numeric values, storing, 265

O

OPEN CURSOR statement, 210-211

opening cursors, 210-211

operators

AND, 53-54
boolean operators, 156
conditional operators, 46
definition of, 53
IN, 57-58
LIKE, 61
mathematical, 86
NOT, 58-59
OR, 54-55

OPTIMIZE TABLE statement, 244

optimizing performance, 24-29

OR operator, 54-55, 70

ORDER BY clause, 38-43, 54, 112-113

positioning, 43
sorting by multiple columns, 40

orderitems table, 258

order of evaluation, 55-56

orders table, 257-258

outer joins, 137-138

overriding AUTO_INCREMENT, 181

overwriting tables, 177

MariaDB

downloading, 252
installing, 252
requirements, 251

Match() function, 149-152

matching. See character matching

mathematical calculations, 85-86

mathematical operators, 86

MAX() functions, 98-101

metacharacters

anchor metacharacters, 77
repetition metacharacters, 76
whitespace metacharacters, 74

MIN() functions, 98-102

Mod() function, 96

multiple columns, retrieving, 29

multiple instances, matching, 75-77

multiple rows, inserting, 165-166

multiple tables, joining, 130-132

MySQL

advantages of, 13-14
MariaDB compatibility, 15

mysql utility, 16-17, 252, 260-261

MySQL Workbench, 17-19

creating tables with, 261-262
downloading, 252

mysqld utility, 245

mysqldump utility, 243

mysqlhotcopy utility, 243

N

names, login, 21-22

natural joins, 136-137

navigating tables, 209

nonmatches, checking for, 48-49

NOT operator, 58-59

NULL keyword, 171

ptg7041395

282 parameters for stored procedures

explained, 81-82
mathematical calculations, 85-86

data formatting, 30
defined, 115
sorting results, 37-38

ascending/desccending order,
40-43

by multiple columns, 39-40
case sensitivity, 42
nonselected columns and, 39

views, 187

query expansion, 152-154

quotes

numeric values, 266
string values, 264

R

Rand() function, 96

range of values, checking for, 49-50

ranges, matching, 72-73

REAL datatype, 265

records, 8

referential integrity, 125

REGEXP keyword, 69-70

regular expressions, 67-68

anchors, 77-79
basic character matching, 68-70
matching

character classes, 75
multiple instances, 75-77
one of several characters, 71-72
ranges, 72-73
special characters, 73-74

OR matches, 70

relational tables, 123-124

RENAME TABLE statement, 185

renaming tables, 185

REPAIR TABLE statement, 244

repetition metacharacters, 76

P

parameters for stored procedures, 202-205

passwords, 241-242

percent sign (%) wildcard, 62-63

performance

deleting data, 172
improving, 247-249
subqueries, 119
views, 188

phone numbers, 265

Pi() function, 96

placeholders. See savepoints

populate.sql script, 261-262

portability, 89

pound sign (#), 36

predicates, 62

primary keys, 124, 179-180

customer table, 257
explained, 9-10
importance, 9
orders table, 258
products, 259
products table, 257
vendors table, 256

privileges. See access rights

procedures, stored. See stored procedures

processing transactions. See
transaction processing

productnotes table, 259

productpricing() stored procedure, 200-201

products table, 256-257

proximity searching, 159

Q

queries

calculated fields
aliases, 84-85
concatenating fields, 82-83

ptg7041395

283SELECT statement

scalability, 124

scripts

create.sql, 262
executing, 17
populate.sql, 261-262

search criteria. See filtering data

searching

full-text searching
boolean text searches, 154-158
enabling, 148-149
explained, 147-148
performing searches, 149-152
query expansion, 152-154
support for, 147
tips and guidelines, 158

proximity searching, 159
with regular expressions. See regular

expressions

search pattern, 61

security

access control, 235-236
user accounts

access rights, 238-241
creating, 237-238
deleting, 238
obtaining list of, 236-237
passwords, 241-242

SELECT statement, 27

AS keyword, 84-85
clause ordering, 113-114
concatenating fields, 83
DISTINCT keyword, 31-32
FROM keyword, 27
fully qualified table names, 34-35
GROUP BY clause, 108-109
IN operator, 57-58
INSERT SELECT, 166-168
IS NULL clause, 50
LIMIT clause, 32-34

replacing tables, 177

reserved words, 22, 269-274

RESTORE TABLE statement, 243

retrieved data, inserting, 166-168

retrieving

columns
all columns, 30
individual columns, 27-28
multiple columns, 29
unknown columns, 31

rows, 31-32

reusable views, creating, 190

reviewing log files, 245-246

REVOKE statement, 239-240

revoking access rights, 239-240

Right() function, 91

RIGHT keyword (outer joins), 138

rights. See access rights

rollbacks

COMMIT statement, 228-229
ROLLBACK statement, 227-228

ROLLBACK statement, 227-228

rows

cursors, 209
explained, 8
inserting

multiple rows, 165-166
single rows, 161-164

NULL, 8
retrieving, 31-32

RTrim() function, 83-84, 91

S

safe-mode option (mysqld), 245

Sams Teach Yourself Regular Expressions
in 10 Minutes, 68

savepoints, 227-230

SAVEPOINT statement, 229

ptg7041395

284 SELECT statement

single value, checking against, 47

SMALLINT datatype, 265-266

sorting query results, 37-38, 112-113

ascending/desccending order, 40-43
case sensitivity, 42
by multiple columns, 39-40
nonselected columns and, 39

Soundex() function, 91

spaces, removing, 83-84

special characters, matching, 73-74

SQL statements. See specific statements

Sqrt() function, 96

standard deviation aggregate functions, 98

startup problems, diagnosing, 245

statements. See specific statements

stopwords, 158

stored procedures

advantages of, 198
building intelligent stored procedures,

205-207
creating, 200-201
disadvantages of, 198
dropping, 201
executing, 199
explained, 197-198
inspecting, 208
parameters, 202-205
productpricing(), 200-201

storing

date and time values, 266
numeric values, 265
strings, 263

string datatypes, 263-264

strings. See text functions

empty, 179
fixed length, 264
quotes, 264
variable-length, 264
wildcard searching and, 62

limiting results, 32-34
NOT operator, 58-59
ORDER BY clause, 38-43, 112-113
retrieving, 31-32
retrieving all columns, 30
retrieving individual columns, 27-28
retrieving multiple columns, 29
retrieving unknown columns, 31
SELECT INTO OUTFILE, 243
WHERE clause, 45-46

checking against single value, 47
checking for nonmatches, 48-49
checking for NULL value, 50-51
checking for range of values,

49-50
combining clauses, 53-56
conditional operators, 46

selecting databases, 22

self joins, 134-136

semicolons (;), 28

server-based results fomatting, 82

servers, database servers, 14

SET PASSWORD statement, 241-242

SET statement, 170

SHOW CHARACTER SET statement, 232

SHOW COLLATION statement, 232

SHOW COLUMNS FROM statement, 25

SHOW CREATE DATABASE statement, 25

SHOW CREATE TABLE statement, 25

SHOW DATABASES statement, 23

SHOW ERRORS statement, 25

SHOW GRANTS statement, 25, 238

SHOW PROCESSLIST statement, 248

SHOW STATUS statement, 25

SHOW TABLES statement, 23-24

showing

columns, 24
databases, 23
tables, 23-24

Sin() function, 96

ptg7041395

285tables

with mysql, 260-261
with MySQL Workbench,

261-262
customers, 257
default values, 181-182
deleting, 185
deleting data from, 171-172
explained, 6-7
foreign keys, 124
fully qualified table names, 34-35
functions of, 255
inserting retrieved data, 166-168
joins

advantages of, 125
with aggregate functions, 139-140
creating, 125-129
explained, 123
inner joins, 129-130
join conditions, 140
joining multiple tables, 130-132
natural joins, 136-137
outer joins, 137-138
self joins, 134-136

naming, 7
NULL values, 50, 177-178
orderitems, 258
orders, 257-258
overwriting, 177
performance considerations, 131
primary keys, 124, 179-180
productnotes, 259
products, 256-257
relational tables, 123-124
renaming, 185
replacing, 177
rows

explained, 8
inserting multiple rows, 165-166
inserting single rows, 161-164

subqueries

as calculated fields, 119-121
combining, 117
correlated subqueries, 120
defined, 115
explained, 115
filtering by, 115-118
formatting, 117
performance and, 119
UPDATE statement, 170
WHERE clause, 118

SubString() function, 91

SUM() functions, 98, 102-103

T

tables

aliases, 133-134
AUTO_INCREMENT, 180-181
calculated fields

aliases, 84-85
concatenating fields, 82-83
explained, 81-82
mathematical calculations, 85-86

Cartesian products, 127
columns

aliases, 84-85
explained, 7-8
NULL, 8
primary keys, 9-10
retrieving all columns, 30
retrieving individual columns,

27-28
retrieving multiple columns, 29
retrieving unknown columns, 31

creating, 259
CREATE TABLE statement, 176-

177
explained, 175

ptg7041395

286 tables

U

underscore (_) wildcard, 64

UNION keyword, 142-145

unions. See combined queries

UPDATE statement, 169-171

guidelines, 172-173
subqueries, 170

UPDATE triggers, 223

updating data, 172-173

tables, 169-171, 183-185
views, 194

Upper() function, 91

USE statement, 22

user accounts

access rights, 238-241
creating, 237-238
deleting, 238
obtaining list of, 236-237
passwords, 241-242

utilities. See specific utilities

V

VARBINARY datatype, 264, 267

variable-length strings, 264

vendors table, 256

verbose option (mysqld), 245

version option (mysqld), 245

viewing

available databases, 23
available tables, 23
columns, 24

views

advantages of, 188
calculated fields, 193-194
creating, 189
explained, 187
filtering data, 192

NULL, 8
retrieving, 31-32

updating, 169-171, 183-185
vendors, 256
viewing list of, 23
virtual. See views

Tan() function, 96

terminating statements, 28

text functions, 90-92

text searches. See full-text searching

time functions, 92-95

TINYINT datatype, 266

transaction processing

COMMIT statement, 228-229
default commit behavior, 230
explained, 225-226
explicit commits, 228-229
implicit commits, 228
managing, 227
ROLLBACK statement, 227-228
SAVEPOINT statement, 229
savepoints, 229-230
support for, 225
terminology, 227

transactions, 227

triggers

creating, 218
DELETE, 221-222
dropping, 219
explained, 217
INSERT, 219-221
tips and guidelines, 223-224
UPDATE, 223

Trim() function, 84

trimming padded spaces, 83-84

TRUNCATE TABLE statement, 172

ptg7041395

287zip codes

wildcards, 30, 61

writing stored procedures, 198

zip codes, 265

performance concerns, 188
reformatting retrieved data, 191
reusable views, 190
rules and restrictions, 188-189
simplifying joins with, 189-190
updating, 194

virtual tables. See views

W-X-Y-Z

WHERE clause, 45-46, 109-110, 145

checking against single value, 47
checking for nonmatches, 48-49
checking for NULL value, 50-51
checking for range of values, 49-50
combined queries, 141
combining clauses

AND operator, 53-54
OR operator, 54-55
order of evaluation, 55-56

conditional operators, 46
DELETE statements, 171
IN operator, 57-58
joins, 129
NOT operator, 58-59
parentheses and, 56
subqueries, 118
UPDATE statements, 169-170
wildcards, 61

white space in SQL statements, 29

whitespace metacharacters, 74

Widenius, Michael, 14

wildcard filtering

LIKE operator, 61
% (percent sign) wildcard, 62-63
tips, 65
_ (underscore) wildcard, 64

	Table of Contents
	Introduction
	What Is MariaDB Crash Course?
	Who Is This Book For?
	Companion Web Site
	Conventions Used in This Book

	1: Understanding SQL
	Database Basics
	What Is a Database?
	Tables
	Columns and Datatypes
	Rows
	NULL
	Primary Keys

	What Is SQL?
	Try It Yourself
	Summary

	2: Introducing MariaDB
	What Is MariaDB?
	Client-Server Software
	MySQL Compatibility

	MariaDB Tools
	mysql Command Line
	MySQL Workbench

	Summary

	3: Working with MariaDB
	Making the Connection
	Selecting a Database
	Learning About Databases and Tables
	Summary

	4: Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Limiting Results
	Using Fully Qualified Table Names
	Using Comments
	Summary

	5: Sorting Retrieved Data
	Sorting Data
	Sorting by Multiple Columns
	Specifying Sort Direction
	Summary

	6: Filtering Data
	Using the WHERE Clause
	The WHERE Clause Operators
	Checking Against a Single Value
	Checking for Nonmatches
	Checking for a Range of Values
	Checking for No Value

	Summary

	7: Advanced Data Filtering
	Combining WHERE Clauses
	Using the AND Operator
	Using the OR Operator
	Understanding Order of Evaluation

	Using the IN Operator
	Using the NOT Operator
	Summary

	8: Using Wildcard Filtering
	Using the LIKE Operator
	The Percent Sign (%) Wildcard
	The Underscore (_) Wildcard

	Tips for Using Wildcards
	Summary

	9: Searching Using Regular Expressions
	Understanding Regular Expressions
	Using Regular Expressions
	Basic Character Matching
	Performing OR Matches
	Matching One of Several Characters
	Matching Ranges
	Matching Special Characters
	Matching Character Classes
	Matching Multiple Instances
	Anchors

	Summary

	10: Creating Calculated Fields
	Understanding Calculated Fields
	Concatenating Fields
	Using Aliases

	Performing Mathematical Calculations
	Summary

	11: Using Data Manipulation Functions
	Understanding Functions
	Using Functions
	Text Manipulation Functions
	Date and Time Manipulation Functions
	Numeric Manipulation Functions

	Summary

	12: Summarizing Data
	Using Aggregate Functions
	The AVG() Function
	The COUNT() Function
	The MAX() Function
	The MIN() Function
	The SUM() Function

	Aggregates on Distinct Values
	Combining Aggregate Functions
	Summary

	13: Grouping Data
	Understanding Data Grouping
	Creating Groups
	Filtering Groups
	Grouping and Sorting
	SELECT Clause Ordering
	Summary

	14: Working with Subqueries
	Understanding Subqueries
	Filtering by Subquery
	Using Subqueries as Calculated Fields
	Summary

	15: Joining Tables
	Understanding Joins
	Understanding Relational Tables
	Why Use Joins?

	Creating a Join
	The Importance of the WHERE Clause
	Inner Joins
	Joining Multiple Tables

	Summary

	16: Creating Advanced Joins
	Using Table Aliases
	Using Different Join Types
	Self Joins
	Natural Joins
	Outer Joins

	Using Joins with Aggregate Functions
	Using Joins and Join Conditions
	Summary

	17: Combining Queries
	Understanding Combined Queries
	Creating Combined Queries
	Using UNION
	UNION Rules
	Including or Eliminating Duplicate Rows
	Sorting Combined Query Results

	Summary

	18: Full-Text Searching
	Understanding Full-Text Searching
	Using Full-Text Searching
	Enabling Full-Text Searching Support
	Performing Full-Text Searches
	Using Query Expansion
	Boolean Text Searches
	Full-Text Search Usage Notes

	Summary

	19: Inserting Data
	Understanding Data Insertion
	Inserting Complete Rows
	Inserting Multiple Rows
	Inserting Retrieved Data
	Summary

	20: Updating and Deleting Data
	Updating Data
	Deleting Data
	Guidelines for Updating and Deleting Data
	Summary

	21: Creating and Manipulating Tables
	Creating Tables
	Basic Table Creation
	Working with NULL Values
	Primary Keys Revisited
	Using AUTO_INCREMENT
	Specifying Default Values
	Engine Types

	Updating Tables
	Deleting Tables
	Renaming Tables
	Summary

	22: Using Views
	Understanding Views
	Why Use Views
	View Rules and Restrictions

	Using Views
	Using Views to Simplify Complex Joins
	Using Views to Reformat Retrieved Data
	Using Views to Filter Unwanted Data
	Using Views with Calculated Fields
	Updating Views

	Summary

	23: Working with Stored Procedures
	Understanding Stored Procedures
	Why Use Stored Procedures
	Using Stored Procedures
	Executing Stored Procedures
	Creating Stored Procedures
	Dropping Stored Procedures
	Working with Parameters
	Building Intelligent Stored Procedures
	Inspecting Stored Procedures

	Summary

	24: Using Cursors
	Understanding Cursors
	Working with Cursors
	Creating Cursors
	Opening and Closing Cursors
	Using Cursor Data

	Summary

	25: Using Triggers
	Understanding Triggers
	Creating Triggers
	Dropping Triggers
	Using Triggers
	INSERT Triggers
	DELETE Triggers
	UPDATE Triggers
	More on Triggers

	Summary

	26: Managing Transaction Processing
	Understanding Transaction Processing
	Controlling Transactions
	Using ROLLBACK
	Using COMMIT
	Using Savepoints
	Changing the Default Commit Behavior

	Summary

	27: Globalization and Localization
	Understanding Character Sets and Collation Sequences
	Working with Character Set and Collation Sequences
	Summary

	28: Managing Security
	Understanding Access Control
	Managing Users
	Creating User Accounts
	Deleting User Accounts
	Setting Access Rights
	Changing Passwords

	Summary

	29: Database Maintenance
	Backing Up Data
	Performing Database Maintenance
	Diagnosing Startup Problems
	Review Log Files
	Summary

	30: Improving Performance
	Improving Performance
	Summary

	A: Getting Started with MariaDB
	What You Need
	Obtaining the Software
	Installing the Software
	Preparing to Try It Yourself

	B: The Example Tables
	Understanding the Sample Tables
	Table Descriptions

	Creating the Sample Tables
	Using mysql
	Using MySQL Workbench

	C: MariaDB Datatypes
	String Datatypes
	Numeric Datatypes
	Date and Time Datatypes
	Binary Datatypes

	D: MariaDB Reserved Words
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

