
www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MariaDB
Second Edition

Explore the powerful features of MariaDB with
practical examples

Daniel Bartholomew

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MariaDB
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1120615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-412-0

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Daniel Bartholomew

Reviewers
David Chanial

Emilien Kenler

Giacomo Picchiarelli

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Usha Iyer

Content Development Editor
Siddhesh Salvi

Technical Editor
Shashank Desai

Copy Editors
Sarang Chari

Sonia Mathur

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Daniel Bartholomew has been using Linux since 1997 and databases since 1998.
In addition to this book, he has also written MariaDB Cookbook, Packt Publishing,
and dozens of articles for various magazines, including The Linux Journal, Linux
Pro, Ubuntu User, and Tux. He became involved with the MariaDB project shortly
after it began in early 2009 and continues to be involved to this day. He currently
works for MariaDB, Inc. and splits his time between managing MariaDB releases,
documentation, and maintaining various bits and pieces that keep the MariaDB
project running smoothly.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

David Chanial is a French autodidactic system administrator and programmer.
He has been setting up high-availability hosting solutions for years, especially using
Gentoo Linux, Apache/Nginx, PHP, MariaDB/MySQL, and Python/Perl/C.

Having sold the French company Euro Web (hosting, dedicated servers, managed
services, and consulting) in 2011, which he cofounded and managed on a technical
level from 2003, he spent some time working as a consultant and a system/API
developer through his company, DaviXX.

Since 2013–2014, in addition to working independently through his company on
projects using Ansible, MariaDB, Django, and embedded electronics and reviewing
books such as MariaDB High Performance, Packt Publishing, David held the position
of a system administrator and network director at Believe Digital Group, managing
database issues (big data), network infrastructure, and homemade storage solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Emilien Kenler, after working on small web projects, began focusing on game
development in 2008 while he was in high school. Until 2011, he worked for different
groups and specialized in system administration.

In 2011, while studying computer science engineering, he founded a company
that sold Minecraft servers. He created a lightweight IaaS (https://github.com/
HostYourCreeper/) based on new technologies, such as Node.js and RabbitMQ.

Thereafter, he worked at TaDaweb as a system administrator, building its
infrastructure and creating tools to manage deployments and monitoring.

In 2014, he began a new adventure at Wizcorp, Tokyo. In 2014, Emilien graduated
from the University of Technology of Compiègne, France.

Emilien has also contributed as a reviewer on Learning Nagios 4, MariaDB High
Performance, OpenVZ Essentials, and Vagrant Virtual Development Environment
Cookbook, all books by Packt Publishing.

Giacomo Picchiarelli is a test and software engineer with 6 years of experience
in designing data-driven applications and MySQL administration. He has a strong
background in Linux systems and test-driven development.

www.it-ebooks.info

https://github.com/HostYourCreeper/
https://github.com/HostYourCreeper/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Installing MariaDB	 1

Choosing a MariaDB series	 3
The development series	 3
The stable series	 3
The maintenance series	 4

Installing MariaDB on Windows	 4
Installing MariaDB on Mac OS X	 8
Installing MariaDB on Debian, Ubuntu, and Linux Mint	 9
Installing MariaDB on Fedora, Red Hat, and CentOS	 11
Installing MariaDB on other Linux distributions	 14
MariaDB package security	 14
After the installation	 15
Troubleshooting installation issues	 16
Summary	 17

Chapter 2: Configuring MariaDB	 19
The MariaDB filesystem layout	 19

The MariaDB filesystem layout on Windows	 19
The MariaDB filesystem layout on Linux	 20

Modular configuration on Linux	 22
The anatomy of the MariaDB configuration file	 23

Where is my configuration file?	 23
Comments	 24
Groups	 24
Options that do not require values	 25
Options that require values	 26
Option formatting	 26
Options, options everywhere	 27

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Activating configuration changes	 28
Summary	 29

Chapter 3: Securing MariaDB	 31
Security layers	 32
Securing MariaDB in 10 seconds	 33
Connecting safely	 36

Connecting safely on the command line	 36
Connecting safely in scripts	 36

Server security	 38
Building security	 38
Internal network security	 39
Internet security	 40
Summary	 41

Chapter 4: Administering MariaDB	 43
User privileges	 43

Global administrative user privileges	 44
Database, table, and column user privileges	 44
Miscellaneous user privileges and limits	 45

Creating users	 46
Granting, revoking, and showing permissions	 48

Granting permissions	 48
Revoking permissions	 49
Showing permissions	 50

Setting and changing passwords	 51
Removing users	 51
Summary	 52

Chapter 5: Using MariaDB – Databases and Tables	 53
The mysql command-line client application	 53
Connecting to MariaDB	 54
Using USE to select a database	 55
Using SHOW to list all databases on a server	 56
Creating and deleting databases	 57

Using CREATE DATABASE to create a database	 58
Using DROP DATABASE to delete a database	 58

Data, tables, and normalization	 59
Creating, altering, and dropping tables	 61

Using CREATE TABLE	 61
Using CREATE TABLE – datatypes	 62
Using CREATE TABLE– other options	 63
Using CREATE TABLE – an example	 63

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Using SHOW to display the command used to create a table	 64
Using DESCRIBE to explore the structure of a table	 65

Using ALTER TABLE	 66
Using ALTER TABLE – basic syntax	 66
Using ALTER TABLE – adding a column	 67
Using ALTER TABLE – modifying a column	 67
Using ALTER TABLE – dropping a column	 67

Using DROP TABLE	 68
Summary	 69

Chapter 6: Using MariaDB – Inserting, Updating, and Deleting	 71
Using INSERT	 71

Inserting complete rows	 72
Inserting partial rows	 73
Inserting from another table	 74
Inserting from a file	 74

Using UPDATE	 75
Using DELETE	 77
Summary	 78

Chapter 7: Using MariaDB – Retrieving Data	 79
Retrieving data	 79

Retrieving everything	 80
Retrieving selected columns	 81

Filtering and searching data	 81
Filtering by exact values	 82
Using logical operators	 83

Using the AND operator	 83
Using the OR operator	 83
Evaluation order	 84
Using the IN operator	 85
Using the NOT operator	 86

Searching with LIKE	 86
Sorting data	 87
Joining data	 88

Summarizing data	 90
The AVG function	 90
The COUNT function	 91
The MIN and MAX functions	 91
The SUM function	 92
Using GROUP BY with summarized data	 93
Using HAVING to filter GROUP BY	 94

Summary	 95

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Maintaining MariaDB	 97
MariaDB log files	 97

The binary log	 97
The error log	 98
The general query log	 99
The slow query log	 100

Optimizing and tuning MariaDB	 101
Backing up, importing, and restoring data	 102

Basic backups with mysqldump	 102
Restoring backups made with mysqldump	 102
Making tab-delimited backups with mysqldump	 103
Restoring and importing data with mysqlimport	 104
Making backups of MyISAM tables with mysqlhotcopy	 104
Making backups of XtraDB and InnoDB tables with xtrabackup	 105
Restoring backups made with xtrabackup	 106
Making cold backups	 107

Repairing MariaDB	 107
Checking and optimizing tables with mysqlcheck	 107
Repairing tables	 108

Summary	 109
Appendix: MariaDB Next Steps	 111
Index	 113

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Databases are all around us. Almost every website we visit and nearly every store we
shop at has a database (or several) working quietly behind the scenes. The same goes
for banks, hospitals, government agencies, theaters, doctors, hospitals, amusement
parks, and police departments. All use databases to store, sort, and analyze their own
particular information.

This information comes in many forms and can be anything that can be stored
electronically inside a computer. This includes books, catalogs, addresses, names,
dates, finances, pictures, money, passwords, documents, preferences, tweets, posts,
likes, blogs, articles, and much more. Databases are one of the foundational pillars
of the modern electronic world.

Your posts on Facebook and tweets on Twitter are stored in a database. All your
financial information in your bank is stored in a database. Your purchase history at
your favorite online retailer is too. How about your progress in your favorite online
game? You guessed it. What about the record of when you last paid your water bill?
That too! You just can't get away from databases. They are, quite literally, everywhere.

There is a new database that has caught the attention of the database community over
the past few years like few others have. First released in 2009, its name is MariaDB—
named after the youngest daughter of its creator, Michael "Monty" Widenius.

MariaDB may be younger than the databases it is often compared with, but it has a
stellar parentage. It's a next-generation evolution of the popular MySQL database,
also created by Monty (you may have heard of it, but don't worry if you haven't).

MariaDB is open source. This means that the source code is freely downloadable
and is governed by a license that helps ensure the source code stays free and open
to all. The MariaDB developers have also kindly provided installers for various
operating systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Since its first release, MariaDB has gained a large, loyal following faster than almost
any other database. Today, it powers tens of thousands of websites, big and small,
and is the database of choice for many companies in a wide variety of industries
around the world with hundreds of thousands of users.

The great news is that we can install and use it ourselves, right now, on our personal
laptop and desktop computers. For all of its power—and MariaDB is a very powerful
and capable database, make no mistake—it is very easy to install and use.

This book provides an introduction to MariaDB that is enough to get us started.
Don't worry if you've never used a database before - this book covers everything you
need to know, and before you know it, you'll be on your way to becoming an expert
database administrator (DBA). But even if you never move beyond just tinkering
or playing around with MariaDB, you'll learn about one of the fundamental
technologies of our times.

Not a bad accomplishment over a weekend or two.

What this book covers
Chapter 1, Installing MariaDB, explains how to install MariaDB on Windows, Linux,
and Mac OS X.

Chapter 2, Configuring MariaDB, explains the basics of configuring MariaDB, including
the location of the configuration files and how to set common configuration options.

Chapter 3, Securing MariaDB, provides an overview of the best practices for MariaDB
security, including how to easily secure a new MariaDB installation.

Chapter 4, Administering MariaDB, explains how to add and administer MariaDB
user accounts.

Chapter 5, Using MariaDB – Databases and Tables, covers the commands used to create,
update, and delete databases and tables.

Chapter 6, Using MariaDB – Inserting, Updating, and Deleting, covers the commands
used to add, update, and delete data from our database tables.

Chapter 7, Using MariaDB – Retrieving Data, covers the commands used to retrieve
data from our database tables, including filtering, searching, sorting, joining, and
summarizing the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

Chapter 8, Maintaining MariaDB, explains how to maintain your MariaDB database
and keep it running smoothly.

Appendix, MariaDB Next Steps, provides you with a list of various online resources
available to help you on your way to becoming a MariaDB expert.

What you need for this book
To get the most out of this book, you will need a computer with Windows,
any version from XP to Windows 8 would do; Mac OS X; or one of the Linux
distributions: Ubuntu, Debian, Fedora, CentOS, or Red Hat. MariaDB runs on
many more operating systems and distributions, but these are the ones that are
specifically mentioned and discussed in this book.

To install MariaDB, you will need an Internet connection and the necessary
administrative rights to install software.

To edit MariaDB configuration files, you will need a text editor. Notepad is a good
universal choice on Windows. TextEdit and TextWrangler work well on Mac OS X.
There are many excellent text editors on Linux, just pick a favorite: Vim, gedit, nano,
pluma, and emacs are all good choices. A word processor, such as Word, Wordpad,
OpenOffice, Pages, or LibreOffice, will not work.

No other software is required.

Who this book is for
This book is for anyone who wants to learn more about databases in general,
and/or MariaDB in particular. To get the most out of this book, you only need to
be comfortable installing software on your computer, editing files with a text editor,
and using the command line and terminal. Prior database experience is not required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "As
mentioned previously, the ZIP files are similar to the Linux binary .tar.gz files and
they are only recommended for those who know that they want it."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

A block of code is set as follows:

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 surname VARCHAR(100),
 givenname VARCHAR(100),
 pref_name VARCHAR(50),
 birthday DATE COMMENT 'approximate birthday OK'
);

Any command-line input or output is written as follows:

brew doctor

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
Install as service box is checked by default, and it is recommended to keep it that
way so that MariaDB starts up when the computer is booted."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[ix]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Installing MariaDB
Before we can start using MariaDB, we have to install it. The MariaDB source
code can be compiled to run on a wide variety of different platforms and system
architectures, but there are pre-compiled packages available for Windows and Linux,
which make the process easier.

In addition to the source code, there are several other package types, such as:

•	 Windows MSI packages
•	 Linux YUM packages
•	 Linux APT packages
•	 Linux and Windows binaries

The Windows MSI packages are for computers and servers running from Windows
XP to Windows 8. The Linux .rpm packages are used with distributions such as
Fedora, CentOS, and Red Hat that use the Yellow Dog Updater modified (YUM)
package manager. Linux .deb packages are used with distributions such as Debian
and Ubuntu, which use the Advanced Packaging Tool (APT) package manager. We
will cover how to install all these types in this chapter.

We will cover the fourth type, the Linux and Windows binaries, only briefly. These
packages are mainly useful to experienced users of MariaDB who have non-standard
custom setups on their database servers. The Windows binaries come in a ZIP file
(.zip) and the Linux binaries in a gzipped tar file (.tar.gz), sometimes called a
binary tarball.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing MariaDB

[2]

Even though the MariaDB binaries are recommended for more experienced users,
installing them is not especially difficult. Check the following links for the official
instructions to install the Linux and Windows binary packages, respectively:

•	 https://mariadb.com/kb/en/installing-mariadb-binary-tarballs

•	 https://mariadb.com/kb/en/installing-mariadb-windows-zip-
packages

We will also cover how to install MariaDB on Mac OS X. Packages for this operating
system supplied by a third party, not by the MariaDB developers.

The choice of which MariaDB package to install is an easy one—just use whichever
one is appropriate for your system. If you are using Windows, use the MSI package,
for Ubuntu or Debian, use the APT packages, and for Red Hat, Fedora, or CentOS,
use the YUM packages.

The rest of this chapter contains instructions for each type but before we get to that,
we need to talk about series. And no, it has nothing to do with baseball, but it does
lend itself to a baseball analogy.

So in short, the topics of the remaining sections in this chapter are as follows:

•	 Choosing a MariaDB series
•	 Installing MariaDB on Windows
•	 Installing MariaDB on Mac OS X
•	 Installing MariaDB on Debian, Ubuntu, and Linux Mint
•	 Installing MariaDB on Fedora, Red Hat, and CentOS
•	 Installing MariaDB on other Linux distributions
•	 MariaDB package security
•	 After the installation
•	 Troubleshooting installation issues

Feel free to jump around and only read the sections that directly pertain to you and
your chosen operating system.

www.it-ebooks.info

https://mariadb.com/kb/en/installing-mariadb-binary-tarballs
https://mariadb.com/kb/en/installing-mariadb-windows-zip-packages
https://mariadb.com/kb/en/installing-mariadb-windows-zip-packages
http://www.it-ebooks.info/

Chapter 1

[3]

Choosing a MariaDB series
The development of MariaDB proceeds along multiple development tracks, called
series. There is a stable series and several maintenance series. Often, there is also
a development series. This is similar to the Debian GNU/Linux practice of having
stable, testing, and unstable versions.

The development series
The development series of MariaDB is where the major new features and capabilities
are introduced. Think of this like minor league baseball where the upcoming future
stars are introduced and are improved and honed to perfection. At any given time,
the quality of the current development release could range from Alpha (which has
no guarantees that it will even work reliably) to Beta (which is feature-complete but
generally needs a lot of bug fixing and testing) to Release Candidate (which is ready
for general use except for some additional testing and minor bug fixing).

During the development cycle, there will generally be several Alpha releases, where
new features are introduced, followed by a couple of Beta releases where the code is
refined and polished, followed by one or two Release Candidate releases where the
final fixes and polishing take place. The final step for any development series is when
it is declared stable and moves into the major league stable series.

If the current development series release of MariaDB is a
Release Candidate, we may want to choose that over the
current stable release. Otherwise, it is generally best to stick
with whatever the current stable release is.

The stable series
For most users just starting out, whatever series is marked stable is the one to
use. This is the major league series, the best and most complete version currently
available. After a development series has reached a sufficient level of quality to
be considered stable, it is promoted to this series and becomes the recommended
version of MariaDB.

After being marked as stable, the MariaDB Foundation has a policy that the series
will be well supported with bug and security fixes for a period of at least 5 years.
This is regardless of whether it is the current stable series or if it is one of the
maintenance series. It all depends on when it first becomes stable.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing MariaDB

[4]

The maintenance series
When a series moves from development to stable, the series that was the current
stable one is moved to become a maintenance series. This means that it will still
receive bug fixes for the rest of its 5-year maintenance period but it is no longer the
recommended or preferred release of MariaDB. Think of it as the hall of fame—full
of great previous releases of MariaDB, which while still excellent, have been replaced
by a new generation. At any given time, there may be three, four, or more MariaDB
major versions in the maintenance series.

Most Linux distributions include MariaDB in their package repositories,
either as the default MySQL-compatible database, or as an alternative
choice. The version of MariaDB that they include is up to them, and
while it is sometimes the most recent stable version of MariaDB, it is
often one of the more recent major versions in the maintenance series.

We'll now go through the installation of MariaDB for each of the major operating
systems. First Windows, then Mac OS X, then Debian GNU/Linux and Ubuntu Linux,
followed by Fedora, Red Hat, and CentOS Linux, and lastly, other Linux distributions.

Installing MariaDB on Windows
There are two types of MariaDB downloads for Windows: ZIP files and MSI
packages. As mentioned previously, the ZIP files are similar to the Linux binary
.tar.gz files and they are only recommended for those who know that they want it.

If we are starting out with MariaDB for Windows, it is recommended to use the MSI
packages. The following are the steps to do just that:

1.	 Download the MSI package from https://downloads.mariadb.org/
location. First click on the series that we want (whatever is the current stable
version, most likely), then locate the Windows 64-bit or Windows 32-bit MSI
package. For most Windows PCs, the 64-bit MSI package is probably the one
that we want, especially if we have more than 4 GB of RAM. If you're unsure,
the 32-bit package will work on both 32-bit and 64-bit Windows computers.

www.it-ebooks.info

https://downloads.mariadb.org/
http://www.it-ebooks.info/

Chapter 1

[5]

2.	 Once the download has finished, launch the MSI installer by double-clicking
on it. Depending on the local Windows settings, you may be promoted
to launch the installer automatically. The installer will walk us through
installing MariaDB.

3.	 If we are installing MariaDB for the first time, we must be sure to set the
MariaDB root user password when prompted. This is done by checking the
Modify password for database user 'root' checkbox and then filling in our
chosen password two times in the provided textboxes.

4.	 Unless you need to, don't check the Enable access from remote machines for
'root' user or the Create An Anonymous Account checkboxes. We'll cover
creating regular user accounts in Chapter 4, Administering MariaDB.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing MariaDB

[6]

5.	 The Use UTF8 as the default server's character set checkbox is unchecked by
default, but it's a good idea to check it, as shown in the following screenshot:

6.	 The Install as service box is checked by default, and it is recommended to
keep it that way so that MariaDB starts up when the computer is booted.

7.	 The Service Name textbox has the default value MySQL for compatibility
reasons, but we can rename it if we like. This name is what Windows uses to
identify the running service, and it does not affect MariaDB so, it is okay to
rename or keep it as the default name.

8.	 Check the Enable networking option if you need to access your databases
from a different computer. If you don't need remote access, it's best to
uncheck this box. As with the service name, there is a default TCP port,
number 3306, which we can change if we want to, but it is usually best to
stick with the default unless there is a specific reason not to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

9.	 The Optimize for transactions checkbox is also checked by default. This is
the recommended setting, as shown here:

10.	 One easy way to help the MariaDB developers is to check the Enable the
Feedback plugin checkbox, as shown in the following screenshot. When
enabled, the feedback plugin submits anonymous usage information to
the MariaDB Foundation. This information includes things such as what
plugins are enabled, how much memory MariaDB uses, and the operating
system that we are using. MariaDB developers use this information to guide
MariaDB development.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing MariaDB

[8]

11.	 There are other settings that we can make through the installer. All of
them can be changed later by editing the my.ini file. We will be covering
this in Chapter 2, Configuring MariaDB, so we don't need to worry about
them right away.

12.	 If our version of Windows has user account control enabled, a pop-up
window will appear during the installation asking if we want to allow
the installer to install MariaDB. For obvious reasons, we will need to
click on Yes.

13.	 Once the installation is complete, there will be a MariaDB folder added to the
start or the programs menu. There will be various links under this, including
one to the mysql command-line client application. We will be using this
application in Chapters 5-7.

If we already have an older version of MariaDB or MySQL
running on our machine, we will be prompted to upgrade
the data files to the correct format for the version we are
installing. It is highly recommended to do that.

14.	 Eventually, we will be presented with a dialog box containing an installation
complete message and a Finish button. At this point, MariaDB is installed
and running on our Windows-based computer. Congratulations! Click on
Finish to quit the installer.

To install MariaDB on Mac OS X or Linux, read on; otherwise, feel free to skip
those sections.

Installing MariaDB on Mac OS X
One of the easiest ways to install MariaDB on Mac OS X is to use Homebrew,
which is an open source package manager for that platform. Before you can install it,
however, you need to prepare your system. The first thing you need to do is install
Xcode—Apple's integrated development environment. It's available for free from the
Mac App Store.

Once Xcode is installed, you can install brew. Full instructions are available on the
Homebrew Project website at http://brew.sh but the basic procedure is to open a
terminal and run the following command:

ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

www.it-ebooks.info

http://brew.sh
http://www.it-ebooks.info/

Chapter 1

[9]

The preceding command downloads the installer and runs it. Once the initial
installation is complete, we run the following command to make sure everything
is set up properly:

brew doctor

The output of the preceding command will tell us about any potential issues, along
with suggestions to fix them. Once brew is working properly, we can install MariaDB
with the following commands:

brew update

brew install mariadb

There is no option to choose a specific MariaDB series; whatever is
the current version in brew is the one that will be installed. Also,
brew will not prompt you to set a database user password during
installation, this is dangerous, so be sure to set one immediately
afterwards, following the instructions in Chapter 3, Securing MariaDB.

MariaDB will not automatically be started after installation. To do so, we run the
following commands:

ln -sfv /usr/local/opt/mariadb/*.plist ~/Library/LaunchAgents

launchctl load ~/Library/LaunchAgents/homebrew.mxcl.mariadb.plist

To stop MariaDB, we use the unload command, as follows:

launchctl unload ~/Library/LaunchAgents/homebrew.mxcl.mariadb.plist

To learn about installing MariaDB on Linux, read on. Otherwise, skip to the After the
installation section at the end of this chapter.

Installing MariaDB on Debian, Ubuntu,
and Linux Mint
The procedure to install MariaDB on Debian GNU/Linux, Ubuntu, and Linux Mint is
easy and starts with a visit to the repository configuration tool from:

https://downloads.mariadb.org/mariadb/repositories

This tool is used for APT-based Linux distributions, such as Debian, Ubuntu, and
Mint; Yum-based Linux distributions, such as Fedora, CentOS, and Red Hat; and
other distributions that have support for MariaDB built-in, such as Mageia, Arch
Linux, Suse, openSUSE, and others.

www.it-ebooks.info

https://downloads.mariadb.org/mariadb/repositories
http://www.it-ebooks.info/

Installing MariaDB

[10]

Many Linux distributions offer MariaDB in their repositories either as
the default MySQL-compatible database or as an alternative choice.
The instructions here will install MariaDB directly from the MariaDB
repositories instead of from your Linux distribution's repositories.

Before using the tool, we need to know which version of Ubuntu, Debian, or
Mint we are currently using. If you do not know, an easy way to find out is
with the following command:

cat /etc/lsb-release

The output will be similar to the following:

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"

This example output shows that the computer is running Ubuntu 14.04.1 LTS "Trusty".
So, using the repository configuration tool, we will click on Ubuntu, then 14.04 LTS
"trusty", and then on the MariaDB series we want to install. Lastly, we will click on the
mirror we want to use. The tool will then output three pieces of text. The first contains
the commands to add the MariaDB repository to our system. The second contains the
commands to actually install MariaDB. The third block of text contains alternative
instructions in case adding the repository using the first set did not work.

For example, the generated commands for adding a repository for MariaDB 10.1 for
Ubuntu 14.04 LTS "trusty" and using the osuosl mirror are as follows:

sudo apt-get install software-properties-common

sudo apt-key adv --recv-keys \

--keyserver hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

sudo add-apt-repository \

'deb http://ftp.osuosl.org/pub/mariadb/repo/10.0/ubuntu trusty main'

The first command installs the software-properties-common package if it is not
already installed. This package contains the add-apt-repository command we use
to install the repository. The second command imports the GPG encryption key that is
used to sign MariaDB packages. For more information about this key, see the MariaDB
package security section later in this chapter. The third command adds the repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Now that the repository is configured, we can install MariaDB using the following
installation commands:

sudo apt-get update

sudo apt-get install mariadb-server

The mariadb-server package depends on the other MariaDB packages, so these two
commands are all we need to install MariaDB. Once the second apt-get command
finishes, MariaDB will be installed and running.

To learn about installing MariaDB on Fedora, Red Hat, and CentOS, read on.
Otherwise, jump ahead to the MariaDB package security section if you're interested in
the MariaDB GPG signing keys, or skip to the After the installation section if you want
to start using MariaDB right away.

Installing MariaDB on Fedora, Red Hat,
and CentOS
The procedure to install MariaDB on Fedora, Red Hat, and CentOS makes use of the
Yellowdog Updater, Modified (YUM) package manager. There are two steps: first,
create a repo file for MariaDB and second, install MariaDB.

To generate the required text for the repo file, we will visit the MariaDB repository
configuration tool from:

https://downloads.mariadb.org/mariadb/repositories/

This tool is used for APT-based Linux distributions, such as
Debian, Ubuntu, and Mint; Yum-based Linux distributions,
such as Fedora, CentOS, and Red Hat; and other distributions
that have support for MariaDB built-in, such as Mageia, Arch
Linux, Suse, openSUSE, and others.

To generate the text, we simply click on the distribution we are using, the
distribution release we are using, and the version of MariaDB we want to install.
After doing so, the contents of the appropriate repo file will be displayed.

www.it-ebooks.info

https://downloads.mariadb.org/mariadb/repositories/
http://www.it-ebooks.info/

Installing MariaDB

[12]

For example, the text generated for MariaDB 10.1 on the 64-bit version of CentOS 7 is
as follows:

MariaDB 10.1 CentOS repository list

http://mariadb.org/mariadb/repositories/

[mariadb]

name = MariaDB

baseurl = http://yum.mariadb.org/10.1/centos7-amd64

gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB

gpgcheck=1

The gpgkey line tells YUM where the GPG signing key is located. The gpgcheck=1
line directs YUM to always use the signing key to verify the MariaDB packages.

The first time we install MariaDB, our system will not have the key, so YUM will
have to download and install it. Since YUM has never used the key before, it will ask
for confirmation whether it is OK to import the key. See the MariaDB package security
section for more information on the MariaDB GPG signing key.

We copy and paste the generated text into a file using our favorite text editor.
Naming the file descriptively, such as MariaDB.repo, is recommended. Once the
file is created, we then move it to the /etc/yum.repos.d/ folder using a command
similar to the following one:

sudo mv -vi MariaDB.repo /etc/yum.repos.d/

Once the file is in place, we are ready to install MariaDB. This is as simple as
the following:

sudo yum install MariaDB-server MariaDB-client

The capitalization of the package names is important because if we type mariadb-
server instead of MariaDB-server, we will either get a package cannot be found
error or, if we are using a distribution that includes MariaDB, we will get the
distribution version of MariaDB instead of the version from the MariaDB project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

YUM will gather in all of the dependencies for MariaDB and present us with a list
of everything that needs to be installed to install MariaDB. The following screenshot
shows this:

After answering y, the installation will get going and we will be prompted to accept
the GPG signing key. We will verify the fingerprint with y. YUM will then continue
downloading and installing MariaDB and will end with a Complete! message.

As a final step of the installation, we start MariaDB with the following command:

sudo /etc/init.d/mysql start

www.it-ebooks.info

http://www.it-ebooks.info/

Installing MariaDB

[14]

If everything has gone well, we will see output similar to the following:

[dbart@centos70-x86-64 ~]$ sudo /etc/init.d/mysql start

Starting MySQL.. SUCCESS!

MariaDB is now installed and running.

Jump ahead to the MariaDB package security section if you're interested in the MariaDB
GPG signing key, or skip to the After the installation section if you want to start using
MariaDB right away.

Installing MariaDB on other Linux
distributions
MariaDB is available on more Linux distributions than just the ones listed previously
in this chapter, and even if no formal packages are provided, the MariaDB developers
provide generic Linux binaries that work with many versions of Linux. Instructions on
how to install and use the generic binaries are available from:

https://mariadb.com/kb/en/mariadb/installing-mariadb-binary-tarballs/

Before installing these generic packages, however, it is worth your while to look in
your distribution's package manager to see if MariaDB is already there.

MariaDB package security
The packages provided by the MariaDB developers are signed with a security key so
that they can be verified by package managers such as yum and apt. The key signing
and verification infrastructure on Linux is called Gnu Privacy Guard (GPG). It is a
compatible open source version of Pretty Good Privacy (PGP), which is an industry
standard data encryption, decryption, and verification system.

www.it-ebooks.info

https://mariadb.com/kb/en/mariadb/installing-mariadb-binary-tarballs/
http://www.it-ebooks.info/

Chapter 1

[15]

The identification number (GPG ID) of the MariaDB signing key is
0xcbcb082a1bb943db. For longtime users of GPG, this ID may seem a little long.
That's because, until recently, it was common to share a short form of the GPG ID.
This is discouraged now because of a GPG vulnerability discovered a couple years
ago; however, many utilities will still display the short form by default. The long
form of the ID is more secure, so this is what the MariaDB developers share when
talking about the key. But, in case we want it, the short form of the ID is 1BB943DB
(it's just the last eight characters of the long form ID). For the extra cautious, the full
key fingerprint is:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

The key IDs and fingerprint are also posted in the MariaDB Knowledge Base, which
is the official location of the MariaDB documentation and is available from:

https://mariadb.com/kb/en/mariadb/gpg/

By checking the signature of the packages, Linux package managers, and more
importantly, WE can verify whether the package that comes from the MariaDB
developers and hasn't been tampered with since they created it.

When configuring the MariaDB repository on Debian and Ubuntu and during the
initial MariaDB install on Fedora, Red Hat, and CentOS, an important task is to
import the signing key. It's a good idea to verify the key by comparing it to the IDs
and the fingerprint when doing so. Thankfully, this is a one-time operation. Once
the key is imported, the process is fully automatic. We will only be notified if the
signature check fails.

For MariaDB Windows, binary Linux, and the MariaDB source code files, we can
verify them in two ways, first is by comparing the md5sum of the file we downloaded
with the md5sum posted on the MariaDB downloads page next to the file. The second
way is to use PGP or GPG to verify the cryptographic signature of the file. These
signatures are also posted on the MariaDB downloads page.

After the installation
After installing MariaDB, we can quickly verify that MariaDB is up and running by
opening a terminal or command-line window and running the following command
(on Windows, we can also open the mysql.exe client in the MariaDB folder):

mysql -u root -p

www.it-ebooks.info

https://mariadb.com/kb/en/mariadb/gpg/
http://www.it-ebooks.info/

Installing MariaDB

[16]

This command connects to MariaDB as the root user (-u root) and prompts for
the password of that user (-p). When prompted, we will type in the password
we configured during installation. If no password was set during installation, we
simply remove the -p from the command. Until a password is set, we can connect
without a password.

Not having a password for the root user is dangerous! If
you did not set one during the installation, be sure to set one
immediately after the install, following the instructions in
Chapter 3, Securing MariaDB.

If MariaDB has been successfully installed and started, we should see something
similar to the following screenshot when connecting using the previous command
to launch the mysql command-line client:

If you get the MariaDB command-line prompt, as illustrated in the preceding
screenshot, congratulations! You've just installed MariaDB and can successfully
connect to the server using the command-line client. You can quit the command-line
client for now. Don't worry; we'll come back to it soon.

Troubleshooting installation issues
The MariaDB installers work very well, and they are tested and retested constantly.
Occasionally, issues with either installing MariaDB or running it for the first time are
discovered, but they are almost always fixed promptly so that users are not affected.

If we do happen to run into an issue when trying to start MariaDB, what should
we do?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The first thing we should do is look in the error log. The MariaDB error log is either
stored with the system log files (for example, under /var/log/ on Linux) or in the
MariaDB data directory. Common locations for the MariaDB data directory include
/var/lib/mysql/ on Linux, C:\Program Files\MariaDB <version>\data\ on
Windows (<version> is the version number of MariaDB we are using), and /usr/
local/var/mysql/ on Mac OS X. The error log file itself will either be called mysql.
err or hostname.err where "hostname" is the name that we've given our computer.
It is also worth noting that the name and location of the log file can be customized by
either the my.cnf file or the my.ini file. Chapter 2, Configuring MariaDB, will delve
further into this file and its location.

Each entry inside the error log file consists of a timestamp and a description of what
went wrong at that timestamp. Sometimes, the information given is enough for us to
figure it out ourselves, but at other times, we may need to ask for help. We shouldn't
feel bad if we can't figure out an error; even experts are sometimes stumped! If we do
need to ask for help, the resources listed on the following link, especially the Maria
discuss mailing list and the official IRC channel can help greatly:

https://mariadb.com/kb/en/mariadb/where-are-other-users-and-
developers-of-mariadb/

Summary
In this chapter, we installed MariaDB on various operating systems. Our next task is
to configure it, which also happens to be the subject and the title of the next chapter.

www.it-ebooks.info

https://mariadb.com/kb/en/mariadb/where-are-other-users-and-developers-of-mariadb/
https://mariadb.com/kb/en/mariadb/where-are-other-users-and-developers-of-mariadb/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

Configuring MariaDB
MariaDB is installed with a generic configuration that is suitable for general use.
This is perfect for giving MariaDB a try but might not be suitable for a production
database application under a heavy load. There are thousands of ways to tweak the
settings to get MariaDB to perform just the way we need it to. Many books have
been written on this subject. In this chapter, we'll cover enough of the basics so that
we can comfortably edit the MariaDB configuration files and know our way around.
Think of this chapter as a MariaDB configuration highlights tour.

The topics that we will cover in this chapter include the following:

•	 The MariaDB filesystem layout
•	 Modular configuration on Linux
•	 The anatomy of the MariaDB configuration file
•	 Activating configuration changes

The MariaDB filesystem layout
A MariaDB installation is not a single file or even a single directory, so the first
stop on our tour is a high-level overview of the filesystem layout. We'll start with
Windows and then move on to Linux.

The MariaDB filesystem layout on Windows
On Windows, MariaDB is installed under a directory named with the
following pattern:

C:\Program Files\MariaDB <major>.<minor>\

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring MariaDB

[20]

In the preceding command, <major> and <minor> refer to the first and second
number in the MariaDB version string. So for MariaDB 10.1, the location would be:

C:\Program Files\MariaDB 10.1\

The only alteration to this location, unless we change it during the installation,
is when the 32-bit version of MariaDB is installed on a 64-bit version of Windows.
In that case, the default MariaDB directory is at the following location:

C:\Program Files x86\MariaDB <major>.<minor>\

Under the MariaDB directory on Windows, there are four primary directories: bin\,
data\, lib\, and include\. There are also several configuration examples and other
files under the MariaDB directory and a couple of additional directories (docs\ and
Share\), but we won't go into their details here.

The bin\ directory is where the executable files of MariaDB are located.

The data\ directory is where databases are stored; it is also where the primary
MariaDB configuration file, my.ini, is stored. We'll talk about this file later in the
section The anatomy of the MariaDB configuration file.

The lib\ directory contains various library and plugin files.

Lastly, the include\ directory contains files that are useful for application developers.

We don't generally need to worry about the bin\, lib\, and include\ directories;
it's enough for us to be aware that they exist and know what they contain. The
data\ directory is where we'll spend most of our time in this chapter, and when
using MariaDB.

Feel free to read the next two sections, which explain the location of MariaDB
files on Linux systems, or jump ahead to the section The anatomy of the MariaDB
configuration file.

The MariaDB filesystem layout on Linux
On Linux distributions, MariaDB follows the default filesystem layout. Feel free to
skip this section if you are working with Windows.

For example, the MariaDB binaries are placed under /usr/bin/, libraries are placed
under /usr/lib/, manual pages are placed under /usr/share/man/, and so on.

However, there are some key MariaDB-specific directories and file locations that we
should know about. Two of them are locations that are the same across most Linux
distributions. These locations are the /usr/share/mysql/ and /var/lib/mysql/
directories.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

The /usr/share/mysql/ directory contains helper scripts that are used during
the initial installation of MariaDB, translations (so we can have error and system
messages in different languages), and character set information. We don't need to
worry about these files and scripts; it's enough to know that this directory exists
and contains important files.

The /var/lib/mysql/ directory is the default location for our actual database
data and the related files such as logs. There is not much need to worry about this
directory as MariaDB will handle its contents automatically; for now, it's enough to
know that it exists.

The next directory we should know about is the one where the MariaDB plugins are
stored. Unlike the previous two, the location of this directory varies. On Debian and
Ubuntu systems, this directory is at the following location:

/usr/lib/mysql/plugin/

In distributions such as Fedora, Red Hat, and CentOS, the location of the plugin
directory varies depending on whether our system is 32 bit or 64 bit. If unsure,
we can just look in both. The possible locations are:

/lib64/mysql/plugin/

/lib/mysql/plugin/

The basic rule of thumb is that if we don't have a /lib64/ directory, we have a 32-bit
version of Fedora, Red Hat, or CentOS installed.

As with /usr/share/mysql/, we don't need to worry about the contents of the
MariaDB plugin directory. It's enough to know that it exists and contains important
files. Also, if in the future we install a new MariaDB plugin, this directory is where it
will go.

The last directory that we should know about is only found on Debian and the
distributions based on Debian such as Ubuntu. Its location is as follows:

/etc/mysql/

The /etc/mysql/ directory is where the configuration information for MariaDB is
stored; specifically, it is stored in the following two locations:

/etc/mysql/my.cnf

/etc/mysql/conf.d/

There are additional files in the directory, but we can safely ignore them for now.
We'll look into the contents of the my.cnf file in the section The anatomy of the
MariaDB configuration file, and we'll talk about the special /etc/mysql/conf.d/
directory in the Modular configuration on Linux section.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring MariaDB

[22]

Fedora, Red Hat, CentOS, and related systems don't have an /etc/mysql/ directory
by default, but they do have a my.cnf file and a directory that serves the same
purpose that the /etc/mysql/conf.d/ directory does on Debian and Ubuntu.
They are at the following two locations:

/etc/my.cnf

/etc/my.cnf.d/

The my.cnf files, regardless of location, function the same on all Linux versions
and on Windows, where it is often named my.ini. The /etc/my.cnf.d/ and /etc/
mysql/conf.d/ directories, as mentioned, serve the same purpose. We'll spend the
next section going over these two directories.

Modular configuration on Linux
The /etc/my.cnf.d/ and /etc/mysql/conf.d/ directories are special locations for
the MariaDB configuration files. They are found on the MariaDB releases for Linux
such as Debian, Ubuntu, Fedora, Red Hat, and CentOS.

We will only have one or the other of them, never both, and regardless of which one
we have, their function is the same. The basic idea behind these directories is to allow
the package manager (APT or YUM) to be able to install packages for MariaDB,
which include additions to MariaDB's configuration without needing to edit or
change the main my.cnf configuration file. It's easy to imagine the harm that would
be caused if we installed a new plugin package and it overwrote a carefully crafted
and tuned configuration file. With these special directories, the package manager can
simply add a file to the appropriate directory and be done.

When the MariaDB server and the clients and utilities included with MariaDB start
up, they first read the main my.cnf file and then any files that they find under the
/etc/my.cnf.d/ or /etc/mysql/conf.d/ directories that have the extension .cnf
because of a line at the end of the default configuration files. For example, MariaDB
includes a plugin called feedback whose sole purpose is to send back anonymous
statistical information to the MariaDB developers. They use this information to help
guide future development efforts. It is disabled by default but can easily be enabled
by adding feedback=on to a [mysqld] group of the MariaDB configuration file (we'll
talk about configuration groups in the following section). We could add the required
lines to our main my.cnf file or, better yet, we can create a file called feedback.cnf
(MariaDB doesn't care what the actual filename is, apart from the .cnf extension)
with the following content:

[mysqld]

feedback=on

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

All we have to do is put our feedback.cnf file in the /etc/my.cnf.d/ or /etc/
mysql/conf.d/ directory and when we start or restart the server, the feedback.cnf
file will be read and the plugin will be turned on. Doing this for a single plugin
on a solitary MariaDB server may seem like too much work, but suppose we have
100 servers, and if we further assume that since the servers are doing different
things, each of them has a slightly different my.cnf configuration file. Without
using our small feedback.cnf file to turn on the feedback plugin on all of them, we
would have to connect to each server in turn and manually add feedback=on to the
[mysqld] group of the file. This would get tiresome and there is also a chance that
we might make a mistake with one or several of the files that we edit, even if we try
to automate the editing in some way. Copying a single file to each server that only
does one thing (turning on the feedback plugin in our example) is much faster and
much safer. And, if we have an automated deployment system in place, copying the
file to every server can be almost instant.

Caution! Because the configuration settings in the /etc/my.cnf.d/
or /etc/mysql/conf.d/ directory are read after the settings in
the my.cnf file, they can override or change the settings in our main
my.cnf file. This can be a good thing if that is what we want and expect.
Conversely, it can be a bad thing if we are not expecting that behavior.

The anatomy of the MariaDB
configuration file
Looking at the contents of the MariaDB configuration file for the first time can be
a scary experience, but it doesn't have to be. It's actually laid out quite logically.
Sometimes, the hardest part is just knowing where it is. We'll review that first,
and then go into the various parts that make up the file.

The configuration file is just a text file and we can edit it with our favorite text
editor. Even though the extensions may be different (.ini or .cnf), the contents of
the files are the same. Apart from empty lines, which can be ignored, there are four
main types of entries in a MariaDB configuration file. These are: comments, groups,
options with no values, and options with values. We'll discuss each of them in turn.

Where is my configuration file?
This may seem like a question that should have only one answer, but in an effort to
be flexible, MariaDB looks for the my.cnf or the my.ini configuration file in several
different locations.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring MariaDB

[24]

As mentioned previously, on Windows, the MariaDB configuration file is named
my.ini by default and is found in the data directory (see the section The MariaDB
filesystem layout on Windows to learn where the data directory is located on Windows).
The file can also be named my.cnf, just as it is in Linux, and MariaDB will also look in
the following additional locations for it:

C:\WINDOWS\my.ini

C:\WINDOWS\my.cnf

C:\my.ini

C:\my.cnf

On Linux, the MariaDB configuration file is always named my.cnf and is almost
always found at one of the following two locations:

/etc/my.cnf

/etc/mysql/my.cnf

MariaDB will look for the file at both locations, but if the files exist at both locations,
the options in the file that MariaDB reads last will override the options that it read in
the first file. So, to avoid confusion, we should only have one or the other and if we
discover we have both for some reason, we should combine them into one file.

Comments
Comment lines are lines that begin with # (the hash character) or ; (a semicolon).
Comments are ignored by MariaDB. They often contain useful information and are a
great place to keep notes when we make changes to the file. Comments can also start
in the middle of the line. Just think of anything from the initial comment character to
the end of a line as a comment. Here are some examples:

Here is a comment

; This is also a comment

port = 3306 # This is a comment about the 'port' option

Groups
Groups are sections or parts in a configuration file. A typical MariaDB installation
is composed of a server program, one or more client programs, and several utility
programs. Each of these have their own individual configuration options and they
can all be set in our my.cnf or my.ini file. Even the individual series of MariaDB
have their own group identifiers (these are useful if we are testing a development
version and want to enable a new feature without affecting older servers that use
the same configuration file).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

A group begins with a name enclosed in square brackets ([]) on a line, by itself.
The group continues to the end of the file or to the beginning of the next group,
whichever comes first. The following is an example of the often used mysqld group:

[mysqld]

Configuration options for the mysqld program go here

Incidentally, mysqld is the name of the MariaDB server program binary. The group
is named after the binary's file name. In addition to [mysqld], other common groups
include the following:

[server]

 # the same as [mysqld]

[mysql]

 # configuration options for the mysql command-line client

[client]

 # the same as [mysql]

[client-server]

 # configuration options for both clients and the server

[mysqladmin]

 # configuration options for the mysqladmin program

[mysqlcheck]

 # configuration options for the mysqlcheck utility

[mariadb-10.1]

 # configuration options just for MariaDB 10.1 series servers

There are many other possible groups, but these are enough to get the idea. We just
use the ones we want and can ignore the others.

In each group, we set options. There are two types, those which don't require a
corresponding value and those that do.

Options that do not require values
Configuration options either take a value or not. Those that do not need a value
appear on a line by themselves with no equals sign (=). They are used for options that
are either on or off, so there is no need for arguments. If it exists in the configuration
file (and isn't commented out), the feature is considered on. If it doesn't exist (or it is
commented out), the feature is set to whatever the default is (ON or OFF). An example
would be as follows:

no-auto-rehash

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring MariaDB

[26]

To turn OFF a feature that is ON by default, just add =OFF to it as follows:

no-auto-rehash=OFF

We can also be more explicit about turning a feature on by appending =ON to an
option. It's not necessary, though.

Options that require values
As mentioned in the previous section, some configuration options require a value of
some sort to be set. For example, the default [client] section in the Ubuntu version
of the MariaDB my.cnf file contains the following two options:

port = 3306

socket = /var/run/mysqld/mysqld.sock

Setting options such as port or socket, or any other settings that require a value,
without giving a value, will cause an error and MariaDB may refuse to start.

There is a special line at the end of Linux my.cnf files. It begins
with an exclamation mark (!) and its purpose is to include the
special /etc/mysql/conf.d/ or /etc/my.cnf.d/ directory.
Don't change or remove this line!

Option formatting
Option names are not case sensitive and we can vary the number of spaces around
the equals (=) sign. We can also choose to use dashes (-) or underscores (_) in the
names. For example, the following two options are the same:

max_allowed_packet = 1M

MAX-Allowed-Packet = 1M

One exception to this is with options that have values (described in the Options that
require values section). If the value is a file or location on a case-sensitive filesystem,
like those used on Linux, that value will be case sensitive. The option name itself is
not case-sensitive, but the value is. For example, the first two of the following three
examples work the same but the third one does not (and on Linux, it will almost
assuredly not work):

socket = /var/run/mysqld/mysqld.sock

SOCKET = /var/run/mysqld/mysqld.sock

socket = /VAR/run/MySQLd/mysqld.sock

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Even though MariaDB will accept UPPER or mIxEd case, to keep our my.cnf or
my.ini file readable, it is best to keep option names lowercase.

Options, options everywhere
Each individual program and utility included with MariaDB has its own set of
configuration options. Run one from the command line with --help and we'll
get a list of all the options that the program has and what they are currently set to.

Run the command with --print-defaults and we'll see the values that we've set.

For example, here's the output of mysql --print-defaults on my local machine:

shell> mysql --print-defaults

mysql would have been started with the following arguments:

--port=3306 --socket=/var/run/mysqld/mysqld.sock

Another method to view what the variables are set to is to use the SHOW VARIABLES
and SHOW STATUS commands when connected to MariaDB using the mysql client
program. More information on these two commands is available in the MariaDB
Knowledge Base at the following links:

•	 https://mariadb.com/kb/en/mariadb/show-status/

•	 https://mariadb.com/kb/en/mariadb/show-variables/

If we want to see all the default values for a command (what they would be if we
didn't have a config file), use --no-defaults --help –verbose, as follows:

shell> mysqld --no-defaults --help –verbose

The list that gets printed by the preceding command is quite long, so we won't show
it here. And it shows more information than just the default values of the options.
The actual variables and options we're interested in are in a table towards the end of
the output that begins with the following:

Variables (--variable-name=value)

and boolean options {FALSE|TRUE}

Putting all of the above information into practice, I've created a fairly generic and
heavily commented example my.cnf file. It is available in the code bundle given
away with this book.

www.it-ebooks.info

https://mariadb.com/kb/en/mariadb/show-status/
https://mariadb.com/kb/en/mariadb/show-variables/
http://www.it-ebooks.info/

Configuring MariaDB

[28]

There isn't space here to go into detail on the many options available for configuring
MariaDB. If you want to learn more, a good place to start is in the Optimization
and Tuning section of the MariaDB Knowledge Base, which is available from:

https://mariadb.com/kb/en/optimization-and-tuning/

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Activating configuration changes
The last stop on our highlights tour of MariaDB configuration is how to activate the
changes, once we've made them. To do so, we need to reload or restart MariaDB.

In Windows, we perform the following commands to stop and start MariaDB,
respectively:

sc stop mysql

sc start mysql

The preceding two commands assume that we set the service name to mysql
(the default) during installation. If we set it to a different name, such as mariadb,
we would specify that instead.

On Linux systems, the way to activate configuration changes is to reload MariaDB.
Traditionally, this is done by doing the following (and we may need to preface it
with sudo):

/etc/init.d/mysql reload

However, on some systems, the preferred way to reload MariaDB is as follows:

service mysql reload

One or the other, and possibly both, will work.

We can also use the SET command to temporarily set the options. See the MariaDB
Knowledge Base for more information on using this command from:

https://mariadb.com/kb/en/mariadb/set/

www.it-ebooks.info

https://mariadb.com/kb/en/optimization-and-tuning/
http://www.packtpub.com
http://www.packtpub.com/support
https://mariadb.com/kb/en/mariadb/set/
http://www.it-ebooks.info/

Chapter 2

[29]

Example my.cnf file
There's an awful lot of information in this chapter about file locations,
comments, options, groups, and so on. If you're anything like me, your
head is probably swimming, wondering how you're ever going to make
sense of it all. To see the big picture view of how everything works
together, I've created an example my.cnf file with lots of comments
to explain the different parts and settings of a typical my.cnf file. You
can download it from the book's website.

Summary
That's it for our configuration highlights tour! We've learned where the various bits
and pieces of MariaDB are installed and about the different parts that make up a
typical MariaDB configuration file.

The next chapter is on securing MariaDB. After all, now that we know how MariaDB
is configured, we wouldn't want some nefarious character to mess things up, would
we? We'll cover an easy way to secure our new installation of MariaDB, and go over
the basic things that we can do to keep our database secure.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[31]

Securing MariaDB
Bad things happen, whether accidentally or on purpose, and we want to protect
our MariaDB database against both. Threats come in many different forms and
come from many different places, including—but not limited to—physical threats,
filesystem threats, network threats, and user threats.

The topics that we will cover in this chapter include the following:

•	 Security layers
•	 Securing MariaDB in 10 seconds
•	 Connecting safely
•	 Server security
•	 Building security
•	 Internal network security
•	 Internet security

www.it-ebooks.info

http://www.it-ebooks.info/

Securing MariaDB

[32]

Security layers
You can think of the data in your database as being at the center of a set of rings,
as illustrated by the following figure:

The outermost ring is the Internet. This is the outside world. If we are running a
business, this is where our customers are. It's also where many attacks originate.

The next two rings are our Internal Network and the Building where our MariaDB
database server is located. Internal corporate networks can span several buildings, but
if we're a small business or a hobbyist, the network might just be a single building or
even a room or two inside a building or a house. We need to be as careful regarding
the security on our internal network as we are on the external Internet, especially
seeing as more attacks come from inside networks than from the outside world.

Physical security is also important. If an attacker can simply walk in and take the
server or computer where our MariaDB database is present and walk out with it,
none of our network and other security measures will mean anything. It's trivial for
an attacker to gain access to our data if they have physical access to the machine.

The next ring is the Server on which MariaDB is running. Questions that we should
ask about security on the server include things like, "who can log in?", "where can
they log in from?", "who has the administrative rights?", "does it have monitoring
and backup systems in place so that we can keep an eye on it?" The answers to all
of these questions depend on factors that are beyond the scope of this book, but we
should try to find out the answers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

For example, if you know that only three other people have login access to the server,
we could tighten up security to a level—such as requiring SSH keys to login—that
might be unacceptable on a server that has hundreds of users or is shared with other
departments. Knowing who the administrators of the server are is useful because
we want to know who to call if something goes wrong. It's the same for the backup
and monitoring systems; we need to know where they are and how to access them
because if we don't, they won't be of much use to us when a problem occurs.

Now we're inside the server and have come to the center of the rings—the MariaDB
database itself. If it looks like MariaDB is sitting right at the center of a bullseye,
that's because it is. Security starts here and there's no better time to secure our
MariaDB installation than right now. We'll begin by working our way from the
inside out.

Securing MariaDB in 10 seconds
The first thing that we need to do after installing MariaDB is to run the mysql_
secure_installation script. This useful tool is included with MariaDB, and it's
found among the other tools and binaries that ship with MariaDB. Its sole purpose is
to quickly and easily set up some basic security. To run it, open a command line and
enter the following command:

mysql_secure_installation

The script will ask several questions. For nearly all of them, it's best to answer yes
(y). The only question that we might want to answer no (n) to is when the script asks
us to set a root user password. If we've already set a root password, we can safely
skip this question (the script is helpful enough to tell us when it is safe to say no).

The other questions include removing the test database, removing the default
anonymous user, and disallowing remote root user logins. The anonymous user and
test database are included in the default MariaDB installation for testing purposes,
but there's almost never a reason to keep them. We can always create a new test user
and database, or several, for our testing needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing MariaDB

[34]

The following is the output of a complete run of the script on a server running
Ubuntu 14.04:

shell> mysql_secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL

 MariaDB SERVERS IN PRODUCTION USE! PLEASE READ EACH

 STEP CAREFULLY!

In order to log into MariaDB to secure it, we'll need the
current password for the root user. If you've just
installed MariaDB, and you haven't set the root password
yet, the password will be blank, so you should just press
enter here.

Enter current password for root (enter for none):

OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into
the MariaDB root user without proper authorization.

Set root password? [Y/n] y

New password:

Re-enter new password:

Password updated successfully!

Reloading privilege tables.

 ... Success!

By default, a MariaDB installation has an anonymous user,
allowing anyone to log into MariaDB without the need to have
a user account created for them. This is intended only for
testing, and to make the installation go a bit smoother.

You should remove them before moving into a production
environment.

Remove anonymous users? [Y/n] y

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

 ... Success!

Normally, root should only be allowed to connect from the
'localhost'. This ensures that nobody is able to guess the root
password from the network.

Disallow root login remotely? [Y/n] y

 ... Success!

By default, MariaDB comes with a database named 'test' that
anyone can access. This is also intended only for testing,
and should be removed before moving into a production environment.

Remove test database and access to it? [Y/n] y

 - Dropping test database...

 ... Success!

 - Removing privileges on test database...

 ... Success!

Reloading the privilege tables will ensure that all changes
made so far will take effect immediately.

Reload privilege tables now? [Y/n] y

 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your
MariaDB installation should now be secure.

Thanks for using MariaDB!

As the output of the script says, after running it, our MariaDB installation is now
secure. In fact, if we run it immediately after installing MariaDB, the only user that
will now be able to connect is the root user, and it will only be able to do so while
logged in to or sitting in front of the actual computer that MariaDB is running on.
This isn't very convenient and we don't want to give other users or applications the
root user password, so we'll eventually have to add users and open things up at least
a little; Chapter 4, Administering MariaDB, goes into this subject.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing MariaDB

[36]

Connecting safely
Now that the root user has a password, it's up to us to make sure that password, and
the passwords of all the other users we will inevitably create, stay secure and not get
revealed by mistake. One of the most important ways to do that is to always follow
good practice when connecting.

Connecting safely on the command line
When connecting to MariaDB as the root, or any other user from the command line,
we tell the mysql command-line client that we are connecting with a password by
using the -p flag. When we do so, we can either specify the password right after the
-p flag with no space in between, as shown in the following example:

mysql -u root -pmypassword

Or, even better, we can just leave the -p flag by itself and the client will prompt us
for the password, as shown in the following example:

mysql -u root -p

Enter password:

It is almost never a good idea to have our password visible on the command line
as in the first example. The reason is that the status and system logs may record the
command. This is very useful in determining who is connecting and when, but it is
very dangerous as it exposes the password to anyone who can access the logs. By
using just -p and then entering the password when prompted, the password is not
echoed to the screen and is not logged or displayed.

Connecting safely in scripts
A situation might arise where we want to create a script that connects to our
MariaDB database at certain times, in order to do housekeeping or other useful tasks.
Our script will connect to MariaDB using a database user and, naturally, we want
this user to have rights to only do the things that he/she needs to do, and to have a
good password as well. Using the password prompt method will work if we use a
tool such as expect on Linux or Mac OS, but that may not be available or work in all
cases, such as if we are on Windows or cannot install expect. So how do we connect
without exposing the password? The answer is option files.

Option files are just text files, and technically we can create one anywhere, but it
should preferably be in a logical location, such as in the same folder that the script is
in or in a hidden directory in our home directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

The contents of the option file can be any of the options that we can put into a
my.cnf file, but for the preceding example of supplying a script with a username
and password, the contents are very simple, and only three lines—the first starting
a client section and the other two specifying the username and the password to use
(scriptuser and scriptpassword in this example):

[client]

user = scriptuser

password=scriptpassword

Notice that the preceding example uses spaces around the equals sign on the user
line, but not on the password line. This is because passwords can have spaces in
them, so the MariaDB mysql command-line client starts reading the password
immediately after the equals sign. So, unless the first character of our password
is a space, we start the password immediately after the equals sign.

In our script, all we need to do is tell the client to read the file by using the
--defaults-file option, as follows:

mysql --defaults-file=/path/to/my-file

With the preceding command in place, the client will read the file as it connects
and use the username and password that we supplied (along with any other client
options that we add in the file).

To be safe while using this method, we should set the file such that it is readable only
by the user who runs the script. We can consult our operating system documentation
for the specifics on how to do this. On Linux and Mac OS systems, a good command
to use is the following one:

chmod 600 my-file

The preceding command sets the file as readable and writable by the user who
owns the file (6) and no access for everyone else (the two zeroes). Consult the
chmod documentation for full details regarding this.

On Windows, we can accomplish the same thing by right-clicking on the file in the
file manager, selecting Properties and then adjusting the access permissions. Consult
the Windows documentation for full instructions.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing MariaDB

[38]

Server security
With MariaDB itself locked down nice and tight, and by using good password
practices, we now need to look at the computer that MariaDB is running on.

If we are running MariaDB on our own desktop or laptop, and we are the only one
who can log into it, then there's not much to worry about apart from the normal
things we do to keep our computer secure, such as virus and malware protection,
system updates, keeping it in a secure location, and so on. It is also useful to encrypt
our hard drives, or at least our home folders, using an operation supported by most
modern operating systems.

When we install MariaDB on a dedicated server then there is more that we have to
worry about. Servers are almost always multiuser, so as part of server security, we
need to know who can log in and most importantly, who has root or administrator
access. If we are the administrator of the machine, we can ensure that only those we
want to have access to the administrator or root have access. If we're using MariaDB
on a machine that our IT department gave us access to, then we need to find out who
has access and what their rights are, so that we know who has sufficient rights on the
server to make any changes, including those that could be harmful.

Building security
We come to building security by continuing out to the next ring. All the protection
inside the server won't do us any good if the server decides to take a walk at three
in the morning. Just as we secure the inside of the server, we need to secure the
outside too.

Firstly, where is the server located? Is it in a common area where anyone in the
office could get to it? This could be bad on a number of levels, the first being that
someone could accidentally or on purpose disconnect the power supply to it. We can
mitigate external power outages to some extent by installing battery backup units
and such, but someone with physical access to the machine can easily get around
that and cut the power supply to our servers. To its credit, MariaDB — when we use
a transactional or crash safe storage engine—guards against losing or corrupting
data in such cases, but at the very least, a surprise power outage will disrupt every
application that needs to talk to that database server. If the server is in a locked room,
we should find out who has access to the room.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Also consider the building. Most businesses and offices close at night—the building or
office is locked at closing time and opens again in the morning—however, this is not
true for all businesses. For example, what if the server is located in the manager's office
of a 24-hour supermarket and the door to that office is always open or unlocked? If so,
then we need to think about locking that door (automatically if people keep forgetting
to lock it), or getting a small lockable server cage installed which is bolted to the wall
or floor, or come up with some other way of securing the server.

An easy analogy is to treat a server like money. We use database servers to either
save money, generate income, or both. If we would feel comfortable leaving a large
stack of money in the location our server is in, then it is probably a pretty good place
for our server (assuming there is power and adequate cooling).

The best place for a server is usually with other servers in a dedicated server room.
Preferably, this should be a room that is secure and where access is controlled with
well-defined security policies and procedures. These could range from a locked
closet (that only a few chosen people can access and which has a server sitting on
a shelf) to a locked server cage at a large data center (that has raised floor cooling,
24 x 7 on-site security, and everything in surplus). There is no one particular location
that is right for every situation, but we need to evaluate ours and make sure that our
server is physically protected.

Internal network security
The security of the internal network is related to building security. If our
MariaDB server is located in a locked server closet, then we will likely be
accessing it remotely from our desk. If so, then we need to at least be aware
of the security of our internal network. Some key questions to ask our local
network administrator include the following:

•	 Is there a firewall in place to prevent outside access to our network?
°° If there is, great! If not, suggest that one be added.

•	 Is there a Wi-Fi network that is directly connected to our internal network, or
is the Wi-Fi sectioned off into its own network?

°° If the Wi-Fi network is connected directly to the internal network, see
if that can be changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing MariaDB

[40]

•	 What type of access, if any, do telecommuting employees have—VPN, SSH,
or something else?

°° If telecommuting employees are forced into using VPN or SSH to
connect, that is good, as both of those access methods are encrypted.
If the answer is something else, we need to find out if it is secure and
encrypted (if it isn't, we need to complain).

•	 Are our database users defined with % for the network part or are they
all restricted to localhost or known valid locations and networks? The %
character is the wildcard character and its presence in the network part of
a username means that the user can connect from anywhere, which may be
convenient, but is not good from a security standpoint. We'll go into this in
more detail in Chapter 4, Administering MariaDB.

•	 If we are in a large company, do different departments have their own
segregated networks, and if so, do they have access to the network the
server is on?

•	 If our database is a part of a project inside the company for a product in
the early stages of development, we might not want the salespeople, for
example, finding out about it until it is ready.

•	 At the very least, when we connect to the server remotely, we must always
do so securely using SSH or an encrypted tunnel. And if we don't know how
to do so, we need to learn right away.

Internet security
The last ring is the outside world, that is, the Internet. Generally speaking, we don't
want to expose our MariaDB database server directly to the Internet ever. It's not
that MariaDB is especially vulnerable, any more than any other piece of software,
it's just that it's never necessary to expose it to the Internet and part of good security
is to not expose something unless we have to (in the same way that a poker player
doesn't want to reveal his hand to the other players). When MariaDB is running on a
web server, the web server software can connect directly with no need for a network
connection. If our MariaDB server is separate from our web server, then we can
almost always connect the two of them together over our internal network and, if
not, we can set up some sort of secure tunnel between the two.

If you do think you've found a legitimate reason to expose your
MariaDB server to the entire Internet, I strongly encourage you
to talk with one of the many fine MariaDB consulting companies
and have them help you work out an alternative solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Summary
In this chapter, we learned a bit about securing our MariaDB server. Security is a big
topic and cannot possibly be covered completely in a single chapter, and there are
many resources, both online and offline, to help you learn more about this important
topic. But don't limit yourself to books or articles about securing MariaDB or other
databases; also take the time to learn about system, network, and physical security.

That said, the most secure safe in the world may be one with no doors, windows, or
other openings of any kind, but it's not very useful or safe if we can't access it when
we need to. So in Chapter 4, Administering MariaDB, we'll make our currently secure
MariaDB server a bit more useful by adding user accounts and learning how to
manage them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[43]

Administering MariaDB
The root user in our MariaDB database server will have rights to every database
and table. We don't want to use the MariaDB root user for day-to-day operations
or hand out the password to anyone who doesn't absolutely need to have it. Instead,
we want to create users that have specific rights to the specific databases they need to
work with.

In this chapter, we will cover the following topics:

•	 User privileges
•	 Creating users
•	 Granting, revoking, and showing permissions
•	 Setting and changing passwords
•	 Removing users

User privileges
The privileges or rights that we can grant to users are many and varied. They break
down into three main categories:

•	 Global administrative user privileges
•	 Database, table, and column user privileges
•	 Miscellaneous user privileges and limits

when you look through the following tables of privileges, don't worry if you do not
understand every privilege and what it means. For now, it's enough to just be aware
of them and of the fact that privileges are how MariaDB controls what a user can do.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering MariaDB

[44]

Global administrative user privileges
The following table lists the global administrative user privileges. Global privileges
apply to all databases, and tables within those databases, which belong to an entire
MariaDB database server or server cluster:

Privilege Description
CREATE USER The ability to create a user using the CREATE USER statement.
FILE The ability to use the LOAD DATA INFILE statement and the

LOAD_FILE() function.
PROCESS The ability to use the SHOW PROCESSLIST command.
RELOAD The ability to use the FLUSH statement.
REPLICATION CLIENT The ability to use the SHOW MASTER STATUS and SHOW

SLAVE STATUS commands.
REPLICATION SLAVE The ability to get updates made on the replication master

server.
SHOW DATABASES The ability to list all the databases on the server.
SHUTDOWN The ability to shut down the server using the mysqladmin

shutdown command.
SUPER The ability to use superuser statements such as CHANGE

MASTER TO..., PURGE LOGS; to SET global variables; and
to KILL other users' threads. This privilege also lets a user
connect to the database server even when the maximum
configured number of allowed connections (set using the max_
connections variable) are being used.

Database, table, and column user privileges
The following table lists the database and table privileges. These privileges apply
only to a specific database or a table within a database:

Privilege Description
ALTER The ability to change indexes and tables
ALTER ROUTINE The ability to change or delete procedures and stored

functions
CREATE The ability to create databases and tables
CREATE ROUTINE The ability to create procedures and stored functions
CREATE TEMPORARY TABLES The ability to create temporary tables

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[45]

Privilege Description
CREATE VIEW The ability to create views
DELETE The ability to delete entries (rows) from tables
DROP The ability to delete entire databases and tables
EVENT The ability to alter, create, and drop events from the

event scheduler
EXECUTE The ability to execute stored functions and procedures
INDEX The ability to create or delete indexes
INSERT The ability to insert new rows of data into a table
LOCK TABLES The ability to lock and unlock tables
SELECT The ability to read data from a table
SHOW VIEW The ability to use the SHOW CREATE VIEW statement
TRIGGER The ability to use the CREATE TRIGGER and DROP

TRIGGER statements
UPDATE The ability to modify rows in a table

Miscellaneous user privileges and limits
The following table lists the miscellaneous privileges that don't quite fit into either of
the two previous categories:

Privilege Description
ALL PRIVILEGES This can be used to grant all available privileges to a

user. It does not grant the GRANT OPTION privilege,
and can be shortened to ALL.

GRANT OPTION This gives a user the ability to grant other users the
privileges they have. This is given at the end of the
GRANT statement. See the Granting Permissions section
of this chapter from some examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering MariaDB

[46]

There are also several limits that we can place on user accounts. These are given in
the following table:

Limit Description
MAX_QUERIES_PER_HOUR This is the number of SQL statements or queries that

the user account can issue per hour. This includes
updates.

MAX_UPDATES_PER_HOUR This is the number of SQL update statements (not
queries) that the user account can issue per hour.

MAX_CONNECTIONS_PER_HOUR This is the number of connections that the user account
can start per hour.

MAX_USER_CONNECTIONS This is the number of simultaneous connections to
the database server that the user account can have.
If set to zero, the number will be equal to the max_
connections setting. If the max_connections
setting is also zero, then there is no limit to the number
of simultaneous connections the user account can have.

Full documentation of the various privileges can be found at
the following location:
https://mariadb.com/kb/en/grant/

Creating users
Creating a user in MariaDB involves a two-step process. First, we create the user
using the CREATE USER statement, and then we give or GRANT the user the privileges
that we want them to have. We'll go over the CREATE USER statement in this section
and the GRANT statement in the granting, revoking, and showing permissions section.

A CREATE USER statement has the following pattern:

CREATE USER 'username'@'host' IDENTIFIED BY 'password';

We customize the username, host, and password parts to the appropriate values. If
we don't want to specify a password (though this is not recommended!) then we can
drop the IDENTIFIED BY 'password' part. This, and all the other SQL statements
that we input into MariaDB, need to end with a semicolon (;).

The host part can be several things. It can be the hostname of the computer which
the user connects from, the IP address of the computer that the user connects from,
the network that the user connects from, or it can be the wildcard symbol %, which
means any host.

www.it-ebooks.info

https://mariadb.com/kb/en/grant/
http://www.it-ebooks.info/

Chapter 4

[47]

Let's take a look at some examples. In the first example, the user can login from
anywhere because of the wildcard character, %, in the host part. The user's password
is bomber.

CREATE USER 'boyd'@'%' IDENTIFIED BY 'bomber';

The following three examples demonstrate the use of various host names. The first
specifies the localhost, which means the local server on which MariaDB is running.
The next example specifies a single specific host, and the third uses % to specify any
subdomain of the example.net domain.

CREATE USER 'tom'@'localhost' IDENTIFIED BY 'retail';

CREATE USER 'richard'@'powr.example.net' IDENTIFIED BY 'nuclear';

CREATE USER 'robert'@'%.example.net' IDENTIFIED BY 'pilot';

Instead of hostnames, we can also use IP addresses as shown in the following three
examples. The first has an exact IP address identifying a single computer, and the
second uses a % sign in the last quad of the IP address so that any computer where
the first three sets of numbers in the IP address match will be able to connect. The
third uses a subnet mask, but the end result (in this example at least) is the same as
the second.

CREATE USER 'dallin'@'192.168.1.1' IDENTIFIED BY 'judge';

CREATE USER 'russell'@'192.168.1.%' IDENTIFIED BY 'surgeon';

CREATE USER 'russell'@'192.168.1.0/255.255.255.0' IDENTIFIED BY
'business';

One benefit of using IP addresses instead of domain names is that
no name resolution or domain validation needs to be made. Such
system calls used to look up and check the validity of domains
can be costly if they are happening many times per second and
might take time and resources better spent on other things. To
enforce a no-domain-names policy, add skip-name-resolv=1
to the [mysqld] section of the my.cnf or my.ini file.

Complete documentation of the CREATE USER statement is
available at the following location:
https://mariadb.com/kb/en/create-user/

www.it-ebooks.info

https://mariadb.com/kb/en/create-user/
http://www.it-ebooks.info/

Administering MariaDB

[48]

Granting, revoking, and showing
permissions
By default, new users do not have the permission to do anything except logging
in, which is not very useful. So the next thing we need to do is give them the
permissions that they need. Over time, we may need to remove or revoke the
privileges we gave them earlier, and from time to time we'll want to look up a
user to see what privileges they have.

Granting permissions
This is done using the GRANT statement. Using this statement, we will be able to
GRANT users the appropriate permissions. GRANT statements have the following
basic pattern:

GRANT <privileges> ON <database> TO <user>;

We customize the <privileges>, <database>, and <user> parts as needed. The
<user> section should match the 'username'@'host' part of the CREATE statement.
Otherwise, we'll be creating a new user. We can also add an IDENTIFIED BY
'password' section to the end of the GRANT statement if we want to change the
password of the user (or add a password to a user that doesn't have one).

The following are some examples. The first one grants all privileges, including
the ability to GRANT privileges to other users, on all databases and the user can log
in from anywhere. We should not often set up users with such broad authority,
but when we do, we need to make sure that we use an appropriate CREATE USER
statement first and assign the user a password (or assign the password here).

If a user doesn't exist before we use the GRANT statement, the
user will be created, but if the user doesn't exist and our GRANT
statement doesn't include an IDENTIFIED BY 'password'
section, then the user will be created without a password. So, it's
a good habit to first create the user with a password, and then
grant the user the rights that they need.

GRANT ALL ON *.* TO 'robert'@'%' WITH GRANT OPTION;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[49]

The following example is for a standard set of permissions for a regular user who
needs read and write access to a database called serv. If a user just needs read access,
we can assign the user the SELECT privilege. By specifying serv.* as the database,
the user only has these rights on the tables in the serv database. Multiple privileges
are separated by commas.

GRANT SELECT,INSERT,UPDATE,DELETE ON serv.* TO 'jeffrey'@'localhost';

The following user has read access (SELECT) to just the staff table in the edu
database, and the user has the GRANT OPTION privilege so that they can grant
that same right to other users.

GRANT SELECT ON edu.staff TO 'david'@'localhost' WITH GRANT OPTION;

The following example gives a user all rights on the logan database. We'll also limit
this user to 100 queries per hour, just because we can. The limit will apply to every
database that can be accessed by the quentin user and not just to queries that the
user runs on the logan database.

GRANT ALL ON logan.* TO 'quentin'@'localhost' WITH
MAX_QUERIES_PER_HOUR 100;

Complete documentation of the GRANT statement is available at
the following location:
https://mariadb.com/kb/en/grant/

Revoking permissions
Sometimes it becomes necessary to remove a privilege or two from a user, or
to give them more privileges. Giving additional privileges is easy; just run an
additional GRANT statement with the new rights and they will be added to the
user's set of permissions. To remove privileges, we use the REVOKE statement.
It has the following pattern:

REVOKE <privileges> ON <database> FROM <user>;

To remove a GRANT OPTION privilege, specify it in the <privileges> section along
with any other privileges being revoked. Each permission being removed should
be separated from the others with a comma (,). The following example removes the
DELETE and GRANT OPTION permissions from the todd user:

REVOKE DELETE,GRANT OPTION ON cust.* FROM 'todd'@'%';

www.it-ebooks.info

https://mariadb.com/kb/en/grant/
http://www.it-ebooks.info/

Administering MariaDB

[50]

To remove all privileges from a user ('neil'@'%.example.com' in this example), we
use the following special command:

REVOKE ALL,GRANT OPTION FROM 'neil'@'%.example.com';

Generally, it is preferred to use the DROP USER statement, described in the Removing
users section later on in this chapter, instead of removing all privileges from a user as
we are doing here. Of course, we need to customize the user part to match the user
for whom we are removing privileges. The statement is also special in that it must
be used as written even if the user doesn't have the GRANT OPTION privilege. If we
remove the GRANT OPTION privilege from it, the statement won't run.

Complete documentation of the REVOKE statement is available
at the following location:
 https://mariadb.com/kb/en/revoke/

Showing permissions
To show the permissions granted to a user, we use the SHOW GRANTS command.
It has the following pattern:

SHOW GRANTS FOR <user>;

All we have to do is customize the <user> part with the information of the user we
want to look at. The following is an example of this:

SHOW GRANTS FOR 'dieter'@'10.2.200.4';

The output of the SHOW GRANTS command is a GRANT statement that encapsulates
all of the user's privileges. This is useful if you want to give another user exactly the
same privileges. For example, the output of the preceding SHOW GRANTS command
might be as follows:

+--+

| Grants for dieter@10.2.200.4 |

+--+

| GRANT ALL PRIVILEGES ON *.* TO 'dieter'@'10.2.200.4' |

+--+

We can simply copy the GRANT statement in the output and change the <user> part
to create a user with the exactly same privileges.

www.it-ebooks.info

https://mariadb.com/kb/en/revoke/
http://www.it-ebooks.info/

Chapter 4

[51]

Setting and changing passwords
To change the password of a user or to set a password for a user that doesn't have
one, we can use the GRANT statement, but that implies that we are adding permissions
to a user. To change or set a password without changing any permissions; it's much
easier to use the SET PASSWORD statement. It has the following pattern:

SET PASSWORD FOR <user> = PASSWORD('<password>');

The following is an example of this:

SET PASSWORD FOR 'henry'@'%' = PASSWORD('niftypassword');

Complete documentation of the SET PASSWORD statement is
available at the following location:
https://mariadb.com/kb/en/set-password/

Removing users
In the Revoking permissions section given previously in this chapter, there is an
example for removing all the privileges of a user, but this doesn't actually remove
the user. To remove a user completely, we use the DROP USER statement. It has the
following pattern:

DROP USER <user>;

The following is an example of this:

DROP USER 'tom'@'%';

When a user is dropped, all permissions are automatically removed as well.

Complete documentation of the DROP USER statement is
available at the following location:
https://mariadb.com/kb/en/drop-user/

www.it-ebooks.info

https://mariadb.com/kb/en/set-password/
https://mariadb.com/kb/en/drop-user/
http://www.it-ebooks.info/

Administering MariaDB

[52]

Summary
In this chapter, we learned about adding and removing users and giving those users
the permissions that they need or taking them away as needed.

Up until now, we've only talked about things related to our databases (securing them,
managing users, and so on). We haven't actually done anything with any real data—the
stuff that databases are good at storing, manipulating, and retrieving. Well, it is now
time to look at this. The next three chapters are all about using MariaDB. We'll learn the
basic SQL commands that we can use with the mysql command-line client program to
create databases, insert data, read data, and so on in the next three chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

[53]

Using MariaDB – Databases
and Tables

From this chapter onwards, we will focus on using the command-line mysql client to
perform common tasks. In this chapter, you'll learn about the following:

•	 The mysql command-line client application
•	 Connecting to MariaDB
•	 Using USE to select a database
•	 Using SHOW to list all databases on a server
•	 Creating and deleting databases
•	 Data, tables, and normalization
•	 Creating, altering, and dropping tables

The mysql command-line client
application
A big part of becoming a MariaDB expert is learning how to effectively and
efficiently use the command-line mysql client program. Often we will interact
with MariaDB using custom programs that have been developed for specific needs.
At a lower level though, every interaction that these programs have with MariaDB
can be done with the command-line client.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[54]

MariaDB has a client-server architecture, which means there are two parts to it—the
server, which is the part that does the heavy, behind-the-scenes stuff, and a client,
which is the part that we use to access and interact with the server. We hardly ever
interact directly with the server part. There are many different clients for MariaDB,
but only one is maintained by the MariaDB developers and included with every copy
of MariaDB—the mysql command-line client.

Connecting to MariaDB
To start the client and connect to MariaDB, we open up a command-line or
terminal window and type mysql with some options and press Enter. The
basic syntax is as follows:

mysql [-u <username>] [-p] [-h <host>] [<database>]

All the options in the previous syntax example are in square brackets ([]) to show
that they are all optional. The parts in angle brackets (<>) are bits that we must
supply if we choose to use that option. For example, if we use the -u option, we must
supply a username.

Most of the time, we will use the username (-u) and password (-p) options. We will
also often specify the database that we want to connect to when the client launches.
When we connect remotely to a MariaDB server on another computer, we will use
the host (-h) option.

It is possible to add the password after -p on the command line, with
a couple of caveats. First, there can't be a space between the -p and the
password. For example if our username is tom and our password is
correcthorse we can use the following command line to log in to
MariaDB:
mysql -u tom -pcorrecthorse

The second caveat is that doing this is very insecure and should not, in
fact, be done. Command-line interpreters and shells are almost always
configured to save the commands we run in a history file that could
have insecure permissions, meaning that if we make a habit of typing
out our password on the command line like this, an attacker only has to
gain access to the history file to find out our MariaDB user password.

A successful connection will look similar to the following:

daniel@pippin:~$ mysql -u root -p

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[55]

Your MariaDB connection id is 209

Server version: 10.1.2-MariaDB-1~trusty-wsrep-log mariadb.org binary
distribution, wsrep_25.10.r4123

Copyright (c) 2000, 2014, Oracle, SkySQL Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]>

The last line of the output, MariaDB [(none)]>, is the MariaDB prompt. It appears
whenever MariaDB is waiting for us to give it a command. Apart from its primary
purpose, the prompt gives us two pieces of very useful information. First, the prompt
says MariaDB which tells us that we are connecting to an actual MariaDB database
server (as opposed to a compatible database server that isn't actually MariaDB).
Second, the part in the brackets tells us which database on the server we are currently
using by default; in this case, we aren't using any database, so it says (none).

Using USE to select a database
We generally want to be connected to a specific database when we use the
command-line client. To use a database, we either specify it on the command line
when launching the client as shown in the previous section, or we use the USE
command to tell the client which database we want to talk to. The following example
illustrates connecting to a database named test. Notice that the prompt changes to
let us know the name of the database it is currently connected to.

MariaDB [(none)]> USE test;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

MariaDB [test]>

If the database does not exist when we try to USE it, we will see the following error:

MariaDB [(none)]> USE test1;

ERROR 1049 (42000): Unknown database 'test1'

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[56]

Using SHOW to list all databases on a
server
To show a list of all of the databases on a server that the current user is allowed to
see, use the SHOW DATABASES command as in the following example:

MariaDB [(none)]> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| dbt3_s001 |

| flightstats |

| ham |

| information_schema |

| isfdb |

| lds_scriptures |

| library |

| mysql |

| performance_schema |

| test |

| wikidb |

+--------------------+

11 rows in set (0.00 sec)

MariaDB [(none)]>

The preceding example is from my personal install of MariaDB; the databases listed
when you run the command will almost assuredly be different. This command is
useful especially if you're given access to an existing MariaDB database server and
want to see what databases are available to you, or if you can't quite remember what
a specific database was named.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[57]

You may have noticed in the previous examples that all the commands
ended with a semi-colon (;). This is called the delimiter and it is a
characteristic feature of Structured Query Language (SQL). We can
interact with the command-line client using this language. In basic terms,
SQL is a computer language optimized for interacting with a database.
MariaDB uses its own variant of SQL which is similar to, but not exactly
the same as, the SQL variants used by other databases. When we learn
how to write the SQL statements for MariaDB, we also learn a good deal
about writing SQL for other databases, but there are some differences.
For instance, USE and SHOW are commands which exist in MariaDB, but
not in some other database servers that use their own variant of SQL.

Creating and deleting databases
When we install MariaDB, we're installing a database server, not a specific database,
and a single MariaDB database server can have several databases inside it. Here's
an analogy that can help us understand this arrangement: a database can be thought
of as a large filing cabinet. The filing cabinet contains a number of drawers and
inside each drawer are files with information. In this analogy, the filing cabinet is a
database, the drawers are tables within the database, and the files are rows of data
within the tables. So what is MariaDB? It's the room the filing cabinet is located in,
and it's a large room so we can put many filing cabinets inside it.

When MariaDB is installed, the installer creates a system database that MariaDB
uses to keep track of users, databases, and other housekeeping information. The
installer also creates a test database for experimentation and learning, and a couple
of read-only, semi-virtual databases where MariaDB stores performance and other
statistics. We don't want to use the system database as this could mess up the entire
server if we made a mistake. We can't put data into the statistics databases, called
information_schema and performance_schema, because they are semi-virtual and
read only. We can use the test database, but we probably don't want to use it for
anything permanent. So one of our first tasks, when we start using MariaDB, is to
create at least one database for us to use.

Another word for a database is schema. In some database servers,
a schema and a database are not quite the same thing, but in
MariaDB they are. So when we see information_schema, this
means the information database. We can even use SCHEMA instead
of DATABASE when we are using the command-line client. For
example: SHOW SCHEMAS instead of SHOW DATABASES. In this
book, we'll stick to the name databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[58]

Generally, databases are created for specific things or specific applications. For
example, we could have an accounting database for the finance department, a human
resources database for the HR department, and a parts database for the warehouse.

Creating and dropping (deleting) databases are two things that we will do less often
than just about anything else when working with MariaDB. There just isn't much
call for it in day-to-day work. We generally create a database and then use it as long
as it is needed (which could be for years or decades) and then we delete (drop) it.
Thankfully, the commands for creating and dropping a database are very simple, so
they're easy to remember.

Using CREATE DATABASE to create a
database
As mentioned previously, creating a database is not something we will do often.
To create a database in MariaDB, we use the CREATE DATABASE command. The basic
syntax is as follows:

CREATE DATABASE <databasename>;

If the database already exists when we try to create it, we will receive an error. We
can suppress the error with IF NOT EXISTS.

The following are some examples:

CREATE DATABASE my_database;

CREATE DATABASE IF NOT EXISTS my_database;

The preceding two commands are equivalent if the database does not exist. If
the database does exist, the first command will exit with an error and the second
command will do nothing.

Full documentation of the CREATE DATABASE command is
available at the following location:
https://mariadb.com/kb/en/create-database/

Using DROP DATABASE to delete a database
As mentioned before, it isn't often that we need to remove or delete a database, but
when we do, we use the DROP DATABASE command. Out of the database commands,
this one is by far the easiest, but it is potentially the most dangerous. The basic
syntax is as follows:

DROP DATABASE <databasename>;

www.it-ebooks.info

https://mariadb.com/kb/en/create-database/
http://www.it-ebooks.info/

Chapter 5

[59]

If the named database doesn't exist when we try to drop it, we will receive an error.
We can suppress the error with IF EXISTS.

The following are a couple of examples that drop the database that we just created:

DROP DATABASE my_database;

DROP DATABASE IF EXISTS my_database;

The preceding two commands are equivalent if the database my_database exists. If
the database does not exist, the first command will exit with an error and the second
command will do nothing.

As mentioned previously, the DROP DATABASE command can be very dangerous.
Why is this, you might ask? This is because if you have the appropriate permission
to drop a database, MariaDB trusts you and will delete the database and everything
in it when you tell it to, no questions asked. So when setting up users, it is important
to give only trusted users, who actually need it, the ability to use the DROP DATABASE
command. More on setting up users and giving them permissions is given in Chapter 4,
Administering MariaDB.

Warning: When dropping a database, user privileges for the database
are not removed. We need to revoke them manually, or drop the user
entirely; otherwise, if or when the database is recreated, the user will
still have the privileges. See Chapter 4, Administering MariaDB, for
information on managing users and their privileges.

Complete documentation of the DROP DATABASE command
is available at the following location:
https://mariadb.com/kb/en/drop-database/

Data, tables, and normalization
The primary purpose of a database is to store data. Data is information, usually
text-based, but not always, and this data could be anything from a company phone
directory, to patient medical information, to an auto parts list, or even reviews of
gourmet hot sauces complete with pictures of the bottles.

Database servers such as MariaDB store information, no matter what it is, in a
structure called a table. Tables are two-dimensional data structures containing rows
and columns. A row corresponds to a single record in a database and records are
divided into columns. Think of database tables like a specialized spreadsheet.

www.it-ebooks.info

https://mariadb.com/kb/en/drop-database/
http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[60]

The columns in a database can have relationships defined in one way or another. For
example, the id column in an employee table may relate to the employee_id column
in an address table. These relationships (also called foreign keys) are why we call
MariaDB a relational database server.

A database without tables of data is nothing more than an entry in the MariaDB
system database (this database is called mysql) and a directory in the file system
under the datadir directory. Until we create some tables and start adding data to
those tables, our new database is useless.

There are few things in MariaDB that we will spend more time on, at least in the
beginning, than when we create the tables in our database.

When we create a table, we are defining its structure. This structure includes such
things as the number of columns and the type of data that we want to store in each
column. Data types include things such as numbers, text, and dates. For example, if
we are creating an employee table, we might decide that each row will contain an
employee identification number (number), a surname (text), any given names (text),
a preferred name (text), a birthdate (date), and so on.

We might also want to store the e-mail addresses, phone numbers, and home
addresses of the employees, but we don't necessarily want to store that kind of data
in the same table. Why? Because they are things people often have more than one
of. For example, many people have both personal and work e-mail addresses. The
same holds true for phone numbers and, for some people, even houses. If we try to
design a table that has enough fields for the multiples of phone numbers and e-mail
addresses that people have, it will quickly become unwieldy with too many columns,
and with possibly no single row that uses all of them. Instead, we break apart the
data into multiple tables, and define the relationships between the tables.

A good rule of thumb is to break the information apart into a separate table when it
is clear there could be multiples of it. For example, it wouldn't make sense to have
a single orders table in a company database that contains everything. Instead, we
would have a customers table for the core customer information, an addresses
table to hold the multiple addresses that the customers might want us to ship items
to, an items table for the various things we might ship to a customer, and lastly, an
orders table to actually track the orders made by customers. Of course, this is only
one way to split the information apart and we might also need to store payment,
supplier, and other information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[61]

The process by which we refine our table definitions and split our data off into
multiple tables is called normalization. There isn't space here for a complete
discussion of this process, but the MariaDB Knowledge Base has a page which
discusses it in depth and you can refer to the following location:

https://mariadb.com/kb/en/recap-the-relational-model

Creating, altering, and dropping tables
Now that we know a little about how data is structured in a database, we can
learn more about creating our own tables, making changes to them, and even
how to delete them.

Using CREATE TABLE
We use the CREATE TABLE command to create tables. For a basic database for an
online store, we might have tables for customers, products, orders, product reviews,
customer addresses, and more. We can create as many tables as we need, but as
mentioned previously, we should give the design some thought so that we don't
store duplicate or unused data. That said, don't worry about this too much, as we can
always make changes later with the ALTER TABLE command (see the Using ALTER
TABLE section later in this chapter).

Using CREATE TABLE – basic syntax
The basic syntax of the CREATE TABLE command is as follows:

CREATE TABLE table_name (<column_definitions>);

As with creating a database, we can add an IF NOT EXISTS command before the
table name to suppress the error that would appear if the table exists when we try
to create it.

The <column_definitions> part has the following basic syntax:

 <column_name> <data_type>
 [NOT NULL | NULL]
 [DEFAULT <default_value>]
 [AUTO_INCREMENT]
 [UNIQUE [KEY] | [PRIMARY] KEY]
 [COMMENT '<string>']

www.it-ebooks.info

https://mariadb.com/kb/en/recap-the-relational-model
http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[62]

The parts in angle brackets (<>) are the bits that we fill in. The parts in square
brackets ([]) are optional and the pipe character (|) means "or". For example, we can
(but do not have to) specify NULL or NOT NULL in a single column definition but we
cannot specify both. Columns are allowed to be NULL, or have no value, by default.
Marking a column as NOT NULL means it can never be undefined; some value has
to be assigned to it, even if the value assigned is an empty value. Multiple column
definitions are separated by commas.

Using CREATE TABLE – datatypes
There are many different datatypes (given by <data_type> in the column_
definitions syntax example shown previously) to choose from. A datatype is the
type of data being stored. Different datatypes exist because various types of data are
most efficiently stored in different ways. Plain numbers can be treated differently
than dates and vice versa. Common datatypes include numeric (numbers), strings
(text), and dates.

Numeric datatypes include INTEGER (basic numbers, commonly written as INT), and
FLOAT (for floating point numbers). A good article on floating point numbers can be
found at the following location:

http://en.wikipedia.org/wiki/Floating_point

String (or text-based) datatypes include CHAR, TEXT, and VARCHAR, which are
optimized for different lengths of text. The CHAR datatype is for fixed-length strings,
for example, a product identifier that contains both numbers and letters can't be
stored as a number, but if it is a fixed length such as 8 characters, we can store it
efficiently as CHAR(8).

The VARCHAR datatype is for text that isn't more than a sentence or so long. Text such
as names and addresses are commonly stored as VARCHAR.

Lastly, date and time datatypes include DATE, TIME, and DATETIME. As you might
guess, the DATE datatype is for storing dates. Dates are always stored and displayed
in the form YYYY-MM-DD (a four digit year, a two digit month, and a two digit day),
for example 1998-02-14, and while it is recommended to input them that way, they
can be entered in a variety of ways. For example: 2015-5-28, 15528, and 15*05*28
are all ways to enter the date 2015-05-28.

The TIME datatype is for time in the format HH:MM:SS.ssssss
(hours:minutes:seconds.microseconds). As with the DATE datatype, while
MariaDB will store and display values in those formats, it is less picky about how
they are entered.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Floating_point
http://www.it-ebooks.info/

Chapter 5

[63]

The DATETIME datatype is a combination of both the DATE and TIME datatypes. It
stores and displays values in the following form: YYYY-MM-DD HH:MM:SS.ssssss
and unlike the TIME datatype, the hours, minutes, and seconds should conform to
real-world values (no 26 hour days, for example).

There are other specialized datatypes that can be used with MariaDB, but
these are enough to get us started. See a complete list of supported datatypes
at the following location:

https://mariadb.com/kb/en/data-types/

Don't worry about trying to memorize all of the different
datatypes now. They'll become second nature as we gain
experience using MariaDB.

Using CREATE TABLE– other options
After specifying the type, length, and precision (which are only required for some
datatypes), we can specify other options. We can specify whether or not a column
is allowed to be undefined (or NULL), what the default value (<default_value> in
the syntax example) is, if anything, whether the column auto-increments (only for
numeric datatypes such as INT and FLOAT), whether the value in the column should
be UNIQUE (meaning whether or not it is allowed to have the same value as the same
column in a different row), whether the column is a primary key, and a comment
describing the table, if desired.

A primary key is a column, or a group of columns, which uniquely identifies a
specific row in the table. No other row in a given table is allowed to have the same
primary key. If we try to input a row with a primary key that matches another
primary key in the table, we will get an error.

Using CREATE TABLE – an example
For our preceding employees' example, we might use the following CREATE
statement to create the table (use the test database or CREATE a new database
and then USE it if you want to follow along):

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 surname VARCHAR(100),
 givenname VARCHAR(100),
 pref_name VARCHAR(50),
 birthday DATE COMMENT 'approximate birthday OK'
);

www.it-ebooks.info

https://mariadb.com/kb/en/data-types/
http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[64]

When we run the preceding code, the output looks as follows:

Query OK, 0 rows affected (0.00 sec)

A result of Query OK means that the table was created successfully. Zero rows were
affected because this is a brand new table and thus has no data in it yet. Unless we
are on a very slow, or a very busy server, the command should complete instantly
(0.00 seconds) or near instantly (such as 0.05 seconds).

Full documentation of the CREATE TABLE command can be
found at the following location:
https://mariadb.com/kb/en/create-table/

Using SHOW to display the command used to
create a table
At any time, for example, if we want to create a similar table in a different database,
we can use the SHOW CREATE TABLE command to show a command that will recreate
the table exactly. Take a look at the following example:

MariaDB [test]> SHOW CREATE TABLE employees \G

*************************** 1. row ***************************

 Table: employees

Create Table: CREATE TABLE `employees` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `surname` varchar(100) DEFAULT NULL,

 `givenname` varchar(100) DEFAULT NULL,

 `pref_name` varchar(50) DEFAULT NULL,

 `birthday` date DEFAULT NULL COMMENT 'approximate birthday is OK',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

The \G at the end of the first line in this example is an alternative
to using a semicolon (;) and when used it presents the output in
a slightly different way, which works well for this example.

www.it-ebooks.info

https://mariadb.com/kb/en/create-table/
http://www.it-ebooks.info/

Chapter 5

[65]

The actual CREATE TABLE command that is displayed is slightly different from the
CREATE TABLE command that we used to create it, but the table created is exactly
the same. The differences exist because MariaDB is giving us enough information
to recreate the table exactly, even if we're creating it on a different server with
different settings.

For example, the ENGINE and DEFAULT CHARSET parts after the column definitions
are default table options on my local MariaDB server. They are specified because on
a different MariaDB server, the defaults may be different.

Full documentation of the SHOW CREATE TABLE command
can be found at the following location:
https://mariadb.com/kb/en/show-create-table/

Using DESCRIBE to explore the structure of a table
If we don't necessarily want to look at the commands used to create a table but we
want to know the structure of a table, we can use the DESCRIBE command as follows:

MariaDB [test]> DESCRIBE employees;

+-----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| surname | varchar(100) | YES | | NULL | |

| givenname | varchar(100) | YES | | NULL | |

| pref_name | varchar(50) | YES | | NULL | |

| birthday | date | YES | | NULL | |

+-----------+--------------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

This basic information comes in handy especially when we want to look up
information in a table that we are unfamiliar with, or if we can't remember all the
fields. (Looking up information is covered in Chapter 7, Using MariaDB – Selecting,
Sorting, and Searching).

Another thing to note about the DESCRIBE command is that COMMENT is not displayed.

www.it-ebooks.info

https://mariadb.com/kb/en/show-create-table/
http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[66]

If we are just interested in a specific column, we can specify it as follows:

MariaDB [test]> DESCRIBE employees birthday;

+----------+------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+------+------+-----+---------+-------+

| birthday | date | YES | | NULL | |

+----------+------+------+-----+---------+-------+

1 row in set (0.00 sec)

Full documentation of the DESCRIBE command can be found at
the following location:
https://mariadb.com/kb/en/describe/

Using ALTER TABLE
We can spend hours, days, and even weeks getting our tables defined just the way
we want them, but chances are that at some point, we'll need to make some changes.
This is where the ALTER TABLE command comes into play.

Using ALTER TABLE – basic syntax
The basic syntax for the ALTER TABLE command is as follows:

ALTER TABLE table_name <alter_definition>[, alter_definition] ...;

The <alter_definition> part of the command can ADD, MODIFY, and DROP (delete)
columns from tables, among other things. Multiple alter definitions in a single ALTER
TABLE command are separated by commas.

Because we can have multiple alter definitions in one ALTER TABLE command,
the syntax examples in the next four sections will not contain the beginning ALTER
TABLE table_name part that must begin an ALTER TABLE command. The examples
that show actual usage will contain the full command.

When using the ALTER TABLE command, the data in our table is preserved and
converted when necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

Using ALTER TABLE – adding a column
An alter definition of an ALTER TABLE command to add a column has the
following pattern:

ADD <column_name> <column_definition> [FIRST|AFTER <column_name>]

The FIRST and AFTER parts are optional. We can use one, but not both. The FIRST
option puts the new column as the first column of a row. The AFTER option lets us
specify which column the new column appears after. If we don't use FIRST or AFTER,
the column will be added after the current last column. For example, the following
will create a new username column and place it after the pref_name column:

ALTER TABLE employees ADD username varchar(20) AFTER pref_name;

Using ALTER TABLE – modifying a column
An alter definition of an ALTER TABLE command to modify a column has the
following pattern:

MODIFY <column_name> <column_definition>

For example, the following ALTER TABLE command will change the pref_name
column to varchar(25) from its original setting of varchar(50):

ALTER TABLE employees MODIFY pref_name varchar(25);

Using ALTER TABLE – dropping a column
An alter definition of an ALTER TABLE command to drop (delete) a column has the
following pattern:

DROP <column_name>

For example, the following ALTER TABLE command will delete the username column
that we created earlier:

ALTER TABLE employees DROP username;

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Databases and Tables

[68]

If you've been following along with these ALTER TABLE commands, your employees
table should now look as follows:

MariaDB [test]> DESCRIBE employees;

+-----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| surname | varchar(100) | YES | | NULL | |

| givenname | varchar(100) | YES | | NULL | |

| pref_name | varchar(25) | YES | | NULL | |

| birthday | date | YES | | NULL | |

+-----------+--------------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

Full documentation of the ALTER TABLE command is found at
the following location:
https://mariadb.com/kb/en/alter-table

Using DROP TABLE
When we no longer need a table, just as when we no longer need a database, we use
the DROP TABLE command to delete it. Out of the table commands, this one is by far
the easiest, but it is potentially the most dangerous. The basic syntax of the command
is as follows:

DROP TABLE <table_name>

If we try issuing a DROP TABLE on a table that doesn't exist, we will receive an error.
We can suppress the error with IF EXISTS. The following are a couple of examples
of this:

DROP TABLE mytable;

DROP TABLE IF EXISTS mytable;

If the table exists, the preceding two commands have the same result, the mytable
table is deleted. If the table doesn't exist, the first command will exit with an error
and the second command will do nothing.

www.it-ebooks.info

https://mariadb.com/kb/en/alter-table
http://www.it-ebooks.info/

Chapter 5

[69]

As mentioned previously, the DROP TABLE command can be very dangerous, because
if you have the appropriate permission to drop a table, MariaDB trusts you and will
delete the table and everything in it when you tell it to, no questions asked. So when
setting up users, it is important to give only a few trusted users, who actually need it,
the ability to use the DROP TABLE command. For more on setting up users and giving
them permissions, refer Chapter 4, Administering MariaDB.

Full documentation of the DROP TABLE command can be found
at the following location:
https://mariadb.com/kb/en/drop-table

Summary
In this chapter, we covered a lot of ground. We learned about the mysql
command-line client application and how to use it to connect to MariaDB, how
to use the USE command to switch to an existing database, how to use the SHOW
command to list all the databases in MariaDB, and how to create our own databases.
We also explored a little of the information regarding datatypes and normalization,
and learned how to use that information in order to create and modify our own
tables. Lastly, we learned how to delete (DROP) both, databases and tables. In the next
chapter, we'll start storing and modifying the data in the tables of our database.

www.it-ebooks.info

https://mariadb.com/kb/en/drop-table
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[71]

Using MariaDB – Inserting,
Updating, and Deleting

Getting data into the tables in our databases, and updating and deleting that data
when necessary, is where we will spend a good portion of our time when working
with MariaDB. To learn how to do this, we will be covering the following commands
in this chapter:

•	 Using INSERT
•	 Using UPDATE
•	 Using DELETE

Using INSERT
To put data into our database, we use the INSERT command. The basic syntax is
as follows:

INSERT [INTO] <table_name> [(<column_name>[, <column_name>,...])]

{VALUES | VALUE}

({<expression>|DEFAULT},...)[,(...),...];

As with the CREATE TABLE command in the previous chapter, the parts of the syntax
example within the angle brackets (<>) are what we'll replace with our own values.
The parts between the square brackets ([]) are optional and the pipe character (|)
means or. The curly brackets ({}) specify a mandatory section where there is a choice
of the key word which you can use. For example, the INTO keyword is optional but
makes the INSERT line more readable and we can use the keyword VALUE or VALUES
depending on whether we are inserting a single column of information or multiple
columns, but we must use one of them. Three dots (...) represent the part where the
previous part can be repeated.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Inserting, Updating, and Deleting

[72]

The expression part is the value that we want to put in a column. It could be a
calculated value (such as today's date + four days), a static value (such as John) or it
could be the default value assigned to the column (if it has one). Default values are
assigned using the key word DEFAULT, without any quotes.

Inserting complete rows
As shown in the syntax example, specifying the columns we want to put the data
into is optional. For example, to insert a single row into the employees table that we
created in the previous chapter, without specifying any column names, we would do
the following:

INSERT INTO employees VALUES

 (NULL, "Perry", "Lowell Tom", "Tom", "1988-08-05");

The downside to not specifying the columns is that we must specify a value for every
column in our table, in the order in which they are in the table definition.

For auto-incremented columns, such as the id column in our employees table, we
have to put something but we can't put in our own value because MariaDB handles
that. So, we use NULL as a placeholder to let MariaDB know that we are not providing
a value and then MariaDB provides its own value. The keyword NULL, means no
value. Some columns, based on their definition, may not allow us to use NULL.

We can use NULL for any other column we don't want to insert values into, as long
as the column definition allows it. For example, if all we wanted to enter were the
surname and given names for a couple of employees, we could do the following:

INSERT INTO employees VALUES

 (NULL, "Pratt","Parley", NULL, NULL),

 (NULL, "Snow","Eliza", NULL, NULL);

Each row is wrapped in parentheses and multiple rows are separated by commas.

As mentioned previously, the downside to not specifying the columns as a part of an
insert statement is that we need to provide something for each column in each row
that we are inserting. This can get cumbersome, especially if we have many columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[73]

More importantly though, in addition to providing something for each column,
we also need to list the columns in the exact order that they appear in the database.
This presents a safety concern because the order in which the columns appear in
our table could change, and if it does, then the values we enter will be put into the
wrong columns. For example, our inserts might fail because we're doing something
like putting names into our birthday column. A worse error would be if the order of
the surname and the givenname columns were switched. Because the data types for
those two are the same, no failure will happen if they are in the wrong order in our
INSERT statement, but will lead to invisible errors and names in the wrong place.

A better and safer method is to always specify the columns that we are inserting data
into, even if it is every column in the table.

Inserting partial rows
Often when we are inserting data into a table we only want to insert a few columns,
for example, the surname and givenname columns in our employees database. To
insert a partial row like this, we specify the columns we want to
provide values for, as follows:

INSERT INTO employees (surname,givenname) VALUES

 ("Taylor","John"),

 ("Woodruff","Wilford"),

 ("Snow","Lorenzo");

Another benefit that we get from specifying specific columns is that we can
change the order in which we provide our data (the order in the database will
be unchanged). For example, we could list the pref_name column as follows:

INSERT INTO employees (pref_name,givenname,surname,birthday)

 VALUES ("George","George Albert","Smith","1970-04-04");

We can even just specify a single column (in which case we use VALUE instead
of VALUES):

INSERT employees (surname) VALUE ("McKay");

Full documentation of the INSERT command is found at
the following location:
https://mariadb.com/kb/en/insert

www.it-ebooks.info

https://mariadb.com/kb/en/insert
http://www.it-ebooks.info/

Using MariaDB – Inserting, Updating, and Deleting

[74]

Inserting from another table
Sometimes, the data we want to insert into a table already exists in another table in
our database. To handle this kind of a situation, there is a special form of the INSERT
command that we can use. The syntax is as follows:

INSERT [INTO] <table_1> [(<column_name>[, <column_name>,...])]

SELECT <column_name>[, <column_name>,...]

FROM <table_2>;

For example, suppose we have a table called names in our database, containing
employee information from a different company that our company just merged
with. Assuming that the data types are compatible with our employees database; the
birthdays are stored as dates, the names are compatible with the varchar datatype
that our table uses, and so on; we can add the data in that table to our employee table
using something similar to the following:

INSERT INTO employees (surname, givenname, birthday)

SELECT lastname, firstname, bday

FROM names;

When doing an insert like this using the data from another table, we should be careful
about trying to insert any auto-incremented columns, such as the id column in the
employees database. If the table we are reading from has one of these columns, we
either need to verify that there are no values which overlap, or omit it from the data
we read as we did in the example.

Don't worry about the SELECT part of the example. The next chapter is all about
that command.

Full documentation of the INSERT...SELECT command is
found at the following location:
https://mariadb.com/kb/en/insert-select/

Inserting from a file
Another way to insert data into a table is to read it from a file. One of the most
common formats that such files come in is as tab delimited files, where a tab character
separates the columns of information. MariaDB has a built-in command that can read
these files and insert the data into a table. The basic format is as follows:

LOAD DATA [LOCAL] INFILE '<filename>'

 INTO TABLE <tablename>

 [(<column_name>[, <column_name>,...]];

www.it-ebooks.info

https://mariadb.com/kb/en/insert-select/
http://www.it-ebooks.info/

Chapter 6

[75]

If the LOCAL option is used, MariaDB will look for the file on the filesystem that
we are running our client on; otherwise it will look in its own filesystem. If we are
running the client on the same computer that is running MariaDB, then the LOCAL
option does nothing. In either case, it is recommended to give the full path to the file.

If the columns are not specified as part of the command, MariaDB will expect the
data in the file to contain every column that the table we are inserting into has, and
that they are in the same order. By specifying the columns, we are telling MariaDB
what each of the columns in the file are and where they go in our table.

As an example of loading a file, suppose we have a file named new_employees,
which has three columns which correspond to the birthday, surname, and
givenname columns in our employees table. Look at the following example:

1971-08-09 Anderson Neil

1985-01-24 Christofferson Todd

To load this file into our employees table, we would do something similar to
the following:

LOAD DATA INFILE '/tmp/new_employees'

 INTO TABLE employees

 (birthday, surname, givenname);

There are many more options for this command, including such things as skipping
the first few lines of a file, changing the separator for the columns from tab to
something else, and so on.

Full documentation of the LOAD DATA INFILE command is
found at the following location:
https://mariadb.com/kb/en/load-data-infile/

Using UPDATE
Once our data is in a table, we're not done with it. Addresses, names, and many
other types of data will change, and when data in a table needs to be updated,
we use the UPDATE command. The basic syntax is as follows:

UPDATE <table_name>

 SET column_name1={expression|DEFAULT}

 [, column_name2={expression|DEFAULT}] …

 [WHERE <where_conditions>];

www.it-ebooks.info

https://mariadb.com/kb/en/load-data-infile/
http://www.it-ebooks.info/

Using MariaDB – Inserting, Updating, and Deleting

[76]

Unlike the INSERT command, when we are updating data, we specify the data we
want to insert right after each column name.

Another difference is the inclusion of a WHERE section. The WHERE section is very
important because we use it to specify the exact column or columns of data in the
table that we want to change. If we omit the WHERE section, the UPDATE statements
will update every instance of that column. For example, we could accidentally
change every employee's phone number to the same number when all we wanted
to do was to update Gordon's.

Watch out! Not including the WHERE part in an update statement
will tell MariaDB that we want to update every row in our table.
We will hardly ever want to do this.

One thing that we should do in our example employees table is to add birthdays and
preferred names for some of our employees:

UPDATE employees SET

 pref_name = "John", birthday = "1958-11-01"

 WHERE surname = "Taylor" AND givenname = "John";

UPDATE employees SET

 pref_name = "Will", birthday = "1957-03-01"

 WHERE surname="Woodruff";

UPDATE employees SET

 birthday = "1964-04-03"

 WHERE surname = "Snow";

For each of the preceding commands, MariaDB should output something similar
to the following two lines (the amount of time, 0.03 seconds in the example, may
be different):

Query OK, 1 row affected (0.03 sec)

Rows matched: 1 Changed: 1 Warnings: 0

What these two lines are telling us is that one row matched our WHERE section and
that one row was changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[77]

Also, in these examples, I am looking up employees by surname, or by surname and
givenname. If our table contained many thousands of rows in it, representing many
thousands of people, there would likely be several people with the same name, so a
better WHERE section would be something that guaranteed that the person I want to
update is the only one that gets updated. This is the purpose and reason behind the
ID column in the employees table. This column is set up as the primary key for the
table. This means that no other row in the table is allowed to have the same value in
that column. It's worth mentioning that a primary key for a table may be defined as
multiple columns in a row that, when read together, cannot be the same as any other
row in the table.

To find the ID of a specific employee, we would first search for the employee using
the SELECT command. We'll go over how to do this in the next chapter. Once we
have the ID value, we would then use it in our UPDATE command. For example,
if the Parley Pratt entry had an id of 2, we would update his row to add a birthday
as follows:

UPDATE employees SET

 birthday = "1975-04-12"

 WHERE id = 2;

Full documentation of the UPDATE command is found at
the following location:
https://mariadb.com/kb/en/update/

Using DELETE
Just as data sometimes needs to be updated, sometimes it also needs to be removed
from a database table. People get new jobs, products are discontinued, and so on.
When the time comes to remove something from a table in our database, we use the
DELETE command. The basic syntax is as follows:

DELETE FROM <table_name> [WHERE <where_conditions>];

As with UPDATE statements, the WHERE part of a DELETE statement is optional, but if
we leave it off, the command will delete every row in the table, which is even more
catastrophic than leaving off the WHERE part in an UPDATE statement, if such a thing
is possible. Make it a habit to always include it.

As an example, let's delete the Spencer Kimball employee:

DELETE FROM employees

WHERE givenname="Spencer" AND surname="Kimball";

www.it-ebooks.info

https://mariadb.com/kb/en/update/
http://www.it-ebooks.info/

Using MariaDB – Inserting, Updating, and Deleting

[78]

As with the UPDATE examples, the WHERE clause is looking up the rows to delete by
givenname and surname. A more precise method is to first look up the record to
discover its primary key, and then to use that.

Be extremely careful with the DELETE command! It only takes
a few seconds to cause hours and even days or weeks of trouble
because of a badly written DELETE.

Full documentation of the DELETE command is found at
the following location:
https://mariadb.com/kb/en/delete/

Summary
In this chapter, you learned about inserting data into tables as both entire and partial
rows, from other tables, and from files, and you also learned about updating and
deleting data from our tables.

As mentioned at the beginning of this chapter, inserting, updating, and deleting data
is where we will spend a good portion of our time when working with MariaDB. The
only thing we will spend more time doing is reading our data, which just so happens
to be the focus of the next chapter.

www.it-ebooks.info

https://mariadb.com/kb/en/delete/
http://www.it-ebooks.info/

[79]

Using MariaDB –
Retrieving Data

Data is useful only if we can retrieve or read it. In this chapter, we'll learn the basics
of reading our data. We will cover the following topics:

•	 Retrieving data
•	 Filtering and searching data
•	 Sorting data
•	 Joining data
•	 Summarizing data

Retrieving data
The command for retrieving or reading data from our database is called SELECT.
Of all the SQL commands, this is the one which we will probably use most often.
The syntax is rather complex, or can be, if we choose to use all the various options.
However, the basic syntax is quite simple and is as follows:

SELECT <what> FROM <table_name>

 [WHERE <where-conditions>]

 [ORDER BY <column_name>];

In the <what> part, we specify the columns that we want to retrieve data from.
The WHERE and ORDER BY lines are how we filter and sort our data, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[80]

Complete documentation of the SELECT command, refer to
the following location:
https://mariadb.com/kb/en/select/

Retrieving everything
A common <what> condition is to specify every column. This is done using an
asterisk (*). For example, to retrieve everything from our employees table, we
could do the following:

SELECT * FROM employees;

Because we have not specified a WHERE clause, everything in the table will be
retrieved; and because we did not specify an ORDER BY clause, the data will be
retrieved and displayed in the order in which it is stored in the table. Depending
on which of the examples in the previous chapter we ran, the output will be similar
to the following:

MariaDB [test]> SELECT * FROM employees;

+----+----------------+---------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------------+---------------+-----------+------------+

| 1 | Perry | Lowell Tom | Tom | 1988-08-05 |

| 2 | Pratt | Parley | NULL | 1975-04-12 |

| 3 | Snow | Eliza | NULL | 1964-04-03 |

| 4 | Taylor | John | John | 1958-11-01 |

| 5 | Woodruff | Wilford | Will | 1957-03-01 |

| 6 | Snow | Lorenzo | NULL | 1964-04-03 |

| 7 | Smith | George Albert | George | 1970-04-04 |

| 8 | McKay | NULL | NULL | NULL |

| 9 | Anderson | Neil | NULL | 1971-08-09 |

| 10 | Christofferson | Todd | NULL | 1985-01-24 |

+----+----------------+---------------+-----------+------------+

10 rows in set (0.00 sec)

www.it-ebooks.info

https://mariadb.com/kb/en/select/
http://www.it-ebooks.info/

Chapter 7

[81]

Retrieving selected columns
When a table contains lots of columns, or if we are only interested in retrieving
some of the data, we might only want to select some of them. This can improve
performance a lot, so it's a good idea to use * sparingly and specify individual
columns as often as possible. To do so we list the columns, separated by commas,
in the <what> section. For example, we could select just the given names and
surnames as follows:

SELECT givenname,surname FROM employees;

The output of this statement will look similar to the following:

MariaDB [test]> SELECT givenname,surname FROM employees;

+---------------+----------------+

| givenname | surname |

+---------------+----------------+

| Lowell Tom | Perry |

| Parley | Pratt |

| Eliza | Snow |

| John | Taylor |

| Wilford | Woodruff |

| Lorenzo | Snow |

| George Albert | Smith |

| NULL | McKay |

| Neil | Anderson |

| Todd | Christofferson |

+---------------+----------------+

10 rows in set (0.00 sec)

Filtering and searching data
In a table with lots of rows, we will probably want to restrict the number of rows that
we retrieve. We can do this using one or more WHERE clauses. When filtering, we can
use either full and exact column values or partial values.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[82]

Filtering by exact values
When filtering by exact values, we use the full value of a column. For example,
a WHERE clause to retrieve data about everyone born on or after January 1, 1970
is given as follows:

WHERE birthday >= '1970-01-01'

The output will look similar to the following:

MariaDB [test]> SELECT * FROM employees

 -> WHERE birthday >= '1970-01-01';

+----+----------------+---------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------------+---------------+-----------+------------+

| 1 | Perry | Lowell Tom | Tom | 1988-08-05 |

| 2 | Pratt | Parley | NULL | 1975-04-12 |

| 7 | Smith | George Albert | George | 1970-04-04 |

| 9 | Anderson | Neil | NULL | 1971-08-09 |

| 10 | Christofferson | Todd | NULL | 1985-01-24 |

+----+----------------+---------------+-----------+------------+

5 rows in set (0.00 sec)

The >= sign is a comparison operator. Just like in math, it means greater than or
equal to. There are many other comparison operators, and the most common is =
(the equals sign) which matches the content of a column exactly. We used these
extensively in the previous chapter while updating the data to match specific rows.
You can find a complete list of comparison operators at the following location:

https://mariadb.com/kb/en/comparison-operators

The arrow (->) in the previous output example was not something
that we typed. The mysql command-line client program inserted
it to show that we pressed the Enter key before ending our
command with a semicolon (;), and so the command that we enter
continued on a second line. If we pressed Enter and just forgot to
end our command, we can just type a semicolon and press Enter
again. In the previous example, I did it on purpose to split the
command into two lines to make it easier to read.

www.it-ebooks.info

https://mariadb.com/kb/en/comparison-operators
http://www.it-ebooks.info/

Chapter 7

[83]

Using logical operators
As mentioned previously, we are not limited to using a single WHERE clause. We can
string several of them together, separated by the special AND, OR, IN, and NOT operators.

Using the AND operator
The AND operator adds conditions to our SELECT statement. Both conditions that are
separated by an AND operator must match for a row to be fetched. For example:

MariaDB [test]> SELECT * FROM employees

 -> WHERE surname = 'Snow'

 -> AND givenname LIKE 'Eli%';

+----+---------+-----------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+---------+-----------+-----------+------------+

| 3 | Snow | Eliza | NULL | 1964-04-03 |

+----+---------+-----------+-----------+------------+

1 row in set (0.00 sec)

There are two people in our employees table with the surname Snow, but with our
additional clause and the AND operator, only one is returned.

Using the OR operator
The OR operator is the opposite of the AND operator. If either of the conditions
separated by an OR operator match, the row will be fetched. For example:

MariaDB [test]> SELECT * FROM employees

 -> WHERE givenname = 'Neil'

 -> OR givenname = 'John';

+----+----------+-----------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------+-----------+-----------+------------+

| 4 | Taylor | John | John | 1958-11-01 |

| 9 | Anderson | Neil | NULL | 1971-08-09 |

+----+----------+-----------+-----------+------------+

2 rows in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[84]

In the preceding example, if the givenname of an employee is either John or Neil,
the row will be fetched.

Evaluation order
In mathematics, there is a concept called 'order of operations', where certain
mathematical operations are carried out before others: for example, multiplication
before addition. The same concept exists in computer languages, such as SQL.

In SQL, AND operators are evaluated first, followed by the OR operators. This can
cause unexpected behavior if we're not careful. For example:

SELECT * FROM employees

 WHERE

 givenname = 'John'

 OR givenname = 'Tom'

 AND surname = 'Snow';

Because of how it is written, we might expect the preceding query to select every row
where the givenname is either John or Tom and the surname is Snow, and because the
two Snows in our table are named Eliza and Lorenzo, we would naturally expect
there to be no results returned. But when we run the query, we get the following result:

MariaDB [test]> SELECT * FROM employees

 WHERE

 -> givenname = 'John'

 -> OR givenname = 'Tom'

 -> AND surname = 'Snow';

+----+---------+-----------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+---------+-----------+-----------+------------+

| 4 | Taylor | John | John | 1958-11-01 |

+----+---------+-----------+-----------+------------+

1 row in set (0.00 sec)

We get a result because of the way MariaDB interprets our query, evaluating AND
first and then OR, means that MariaDB reads our query like this: retrieve a row if
the givenname equals Tom and the surname equals Snow, or if the givenname equals
John. There's an employee where the givenname is John, so that row is matched
and retrieved.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[85]

A good way to avoid this sort of situation is to group the operations that we want to
be together using parentheses, just as we might do in math. If we do that with our
example query, grouping the operations on either side of the OR together, we get the
following expected result (with no rows returned):

MariaDB [test]> SELECT * FROM employees

 WHERE

 -> (givenname = 'John'

 -> OR givenname = 'Tom')

 -> AND surname = 'Snow';

Empty set (0.00 sec)

Using the IN operator
The IN operator is used to specify a list of values, enclosed in parentheses and
separated by commas, that are then compared all at once as if they were separate OR
conditions. For example the following two queries are equivalent, but the one using
the IN operator is much shorter:

SELECT * FROM employees WHERE

 surname = 'Snow'

 OR surname = 'Smith'

 OR surname = 'Pratt';

SELECT * FROM employees WHERE surname IN ('Snow','Smith','Pratt');

In both cases, the results retrieved are identical:

+----+---------+---------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+---------+---------------+-----------+------------+

| 2 | Pratt | Parley | NULL | 1975-04-12 |

| 3 | Snow | Eliza | NULL | 1964-04-03 |

| 6 | Snow | Lorenzo | NULL | 1964-04-03 |

| 7 | Smith | George Albert | George | 1970-04-04 |

+----+---------+---------------+-----------+------------+

The IN operator is not just useful for saving space: the values in the list can all be
separate SELECT statements, which can help us create powerful and useful queries
that change dynamically, based on the current data in our database.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[86]

Using the NOT operator
The NOT operator is easy to understand; it simply negates the meaning of the
condition that follows it. For example, by adding a NOT operator to our previous IN
example, we get a match on every row that does not have a surname of Pratt, Snow,
or Smith:

MariaDB [test]> SELECT * FROM employees WHERE

 -> surname NOT IN ('Snow','Smith','Pratt');

+----+----------------+------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------------+------------+-----------+------------+

| 1 | Perry | Lowell Tom | Tom | 1988-08-05 |

| 4 | Taylor | John | John | 1958-11-01 |

| 5 | Woodruff | Wilford | Will | 1957-03-01 |

| 8 | McKay | NULL | NULL | NULL |

| 9 | Anderson | Neil | NULL | 1971-08-09 |

| 10 | Christofferson | Todd | NULL | 1985-01-24 |

+----+----------------+------------+-----------+------------+

6 rows in set (0.00 sec)

Searching with LIKE
We can also use pattern matching and the LIKE keyword to select rows when
we only know some of the information. For example, suppose we want retrieve
the record of an employee whose name begins with the letters McK but we don't
remember the rest. We can search for this employee using a WHERE clause with the
LIKE key word as follows:

WHERE surname LIKE "McK%"

The output of this example with our employees database is:

MariaDB [test]> SELECT * FROM employees

 -> WHERE surname LIKE "McK%";

+----+---------+-----------+-----------+----------+

| id | surname | givenname | pref_name | birthday |

+----+---------+-----------+-----------+----------+

| 8 | McKay | NULL | NULL | NULL |

+----+---------+-----------+-----------+----------+

1 row in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[87]

The percent sign (%) in our example is what is known as a wildcard character. It
matches zero or more instances of any character or a group of characters. So by
specifying the surname pattern McK%, we are saying that we want any surnames that
begin with those letters and are followed by zero or more of other characters. This
pattern would match values such as McKay, McKinsey, McKool, and even McK.

Simple searching in this way works well for columns without a lot of text in them. If
we are storing large amounts of text in our database, full articles or books for example,
we will want to look into third-party search tools, such as Sphinx or Elasticsearch.

Sorting data
Our output, by default, is sorted based on the order in which it was inserted into the
database. For a list of employees we might want to sort on the surname column. To
do this we use an ORDER BY clause. For example:

ORDER BY surname

Adding this clause to our previous example of everyone born on or after January 1,
1970, our output changes to the following:

MariaDB [test]> SELECT * FROM employees

 -> WHERE birthday >= '1970-01-01'

 -> ORDER BY surname;

+----+----------------+---------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------------+---------------+-----------+------------+

| 9 | Anderson | Neil | NULL | 1971-08-09 |

| 10 | Christofferson | Todd | NULL | 1985-01-24 |

| 1 | Perry | Lowell Tom | Tom | 1988-08-05 |

| 2 | Pratt | Parley | NULL | 1975-04-12 |

| 7 | Smith | George Albert | George | 1970-04-04 |

+----+----------------+---------------+-----------+------------+

5 rows in set (0.00 sec)

We can also specify multiple columns, separating each column with a comma.
Having a space after the comma, or even before, is optional. For example, the
following will order by the surname, then the given name, and finally the birthday:

ORDER BY surname,givenname , birthday

As our example table is small, the output using this modified WHERE clause is
identical to the example where we ordered only by the surname column.

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[88]

Joining data
The SELECT command is even more powerful when we start using JOIN to gather
data from multiple tables. For example, we could do a look up of every employee
with their phone numbers for use in a company directory.

For this example, we need to set up an additional table and add some data to it. We'll
first create a simple table for the phone numbers, as follows:

CREATE TABLE phone (

 id serial PRIMARY KEY,

 emp_id int,

 type char(3),

 cc int(4),

 number bigint,

 ext int);

In this table, the emp_id column is where we'll enter a number to match the id
column in the employees table. This will relate that row in the phone table to a
specific employee.

With the table in place, we then insert some rows, as follows:

INSERT INTO phone (emp_id,type,cc,number,ext) VALUES

 (1,'wrk',1,1235551212,23),

 (1,'hom',1,1235559876,NULL),

 (1,'mob',1,1235553434,NULL),

 (2,'wrk',1,1235551212,32),

 (3,'wrk',1,1235551212,11),

 (4,'mob',1,3215559821,NULL),

 (4,'hom',1,3215551234,NULL);

With this new table in place, including some example data, we can JOIN data from
the employees table to the data in the phone table.

To join data, we specify the columns from both tables, and then list each table in the
FROM clause, separated by the type of join we are performing (just JOIN for a simple
join), and then an ON clause that defines the two columns we are using to identify
which phone records belong to which employees.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[89]

For example, the following is what a simple join of the two tables looks like:

MariaDB [test]> SELECT surname,givenname,type,cc,number,ext

 -> FROM employees JOIN phone

 -> ON employees.id = phone.emp_id;

+---------+------------+------+------+------------+------+

| surname | givenname | type | cc | number | ext |

+---------+------------+------+------+------------+------+

| Perry | Lowell Tom | wrk | 1 | 1235551212 | 23 |

| Perry | Lowell Tom | hom | 1 | 1235559876 | NULL |

| Perry | Lowell Tom | mob | 1 | 1235553434 | NULL |

| Pratt | Parley | wrk | 1 | 1235551212 | 32 |

| Snow | Eliza | wrk | 1 | 1235551212 | 11 |

| Taylor | John | mob | 1 | 3215559821 | NULL |

| Taylor | John | hom | 1 | 3215551234 | NULL |

+---------+------------+------+------+------------+------+

7 rows in set (0.00 sec)

In a simple join, any rows in the first table that do not match any rows in the second
table are ignored. The first table specified in the FROM clause is called the left table,
and the second is called the right table.

To ensure that every employee is listed in our directory, even if they don't have any
phone numbers entered in the phone table, we do a LEFT JOIN. For example:

SELECT surname,givenname,type,cc,number,ext

 FROM employees LEFT JOIN phone

 ON employees.id = phone.emp_id;

The output of the preceding statement will be similar to the following:

MariaDB [test]> SELECT surname,givenname,type,cc,number,ext

 -> FROM employees LEFT JOIN phone

 -> ON employees.id = phone.emp_id;

+----------------+---------------+------+------+------------+------+

| surname | givenname | type | cc | number | ext |

+----------------+---------------+------+------+------------+------+

| Perry | Lowell Tom | wrk | 1 | 1235551212 | 23 |

| Perry | Lowell Tom | hom | 1 | 1235559876 | NULL |

| Perry | Lowell Tom | mob | 1 | 1235553434 | NULL |

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[90]

| Pratt | Parley | wrk | 1 | 1235551212 | 32 |

| Snow | Eliza | wrk | 1 | 1235551212 | 11 |

| Taylor | John | mob | 1 | 3215559821 | NULL |

| Taylor | John | hom | 1 | 3215551234 | NULL |

| Woodruff | Wilford | NULL | NULL | NULL | NULL |

| Snow | Lorenzo | NULL | NULL | NULL | NULL |

| Smith | George Albert | NULL | NULL | NULL | NULL |

| McKay | NULL | NULL | NULL | NULL | NULL |

| Anderson | Neil | NULL | NULL | NULL | NULL |

| Christofferson | Todd | NULL | NULL | NULL | NULL |

+----------------+---------------+------+------+------------+------+

13 rows in set (0.00 sec)

Whenever the id column in the employees table does not match any rows in the phone
table, the columns from the phone table are listed with NULL values in the output.

There are other types of joins available, each with their own uses. Full documentation
of JOIN syntax is found at the following location:

https://mariadb.com/kb/en/join/

Summarizing data
Sometimes, we are just looking for information about our data. For this, MariaDB has
several built-in functions: AVG, COUNT, MIN, MAX, and SUM.

The AVG function
The AVG function is used for obtaining the average of the data in a column. For
example, combined with the TIMESTAMPDIFF and CURDATE functions, we can use the
AVG function to calculate the average age of all of the people in the employees table.

The CURDATE function doesn't take any arguments and when called, it simply returns
the current date.

The TIMESTAMPDIFF function takes three arguments—the unit to count by and two
dates, and then outputs the difference between the two. The unit is one of several
time units, including MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, and YEAR.

www.it-ebooks.info

https://mariadb.com/kb/en/join/
http://www.it-ebooks.info/

Chapter 7

[91]

The TIMESTAMPDIFF and CURDATE functions are just two of several
functions that make working with dates and times easier. Find out
more about them at the following location:
https://mariadb.com/kb/en/date-and-time-functions/

Putting all three functions together we get the following:

SELECT AVG(TIMESTAMPDIFF(YEAR,birthday,CURDATE()))

FROM employees;

Depending on when you run this statement and the dates in the birthday column,
the average you get back will be different.

The COUNT function
The COUNT function is often used to count the number of rows returned by a query.
For example, to count the number of rows in the employees table, we would type
the following command:

SELECT COUNT(*) FROM employees;

Doing this is a little silly on a table like ours, which only has a few rows; after all, the
output of SELECT * FROM employees; includes a line at the very end telling us the
number of rows returned, and thus the number of rows in the table. But, for a table
with tens of thousands or even millions of rows, this function is a much better way
of finding out the number of rows.

Another use of COUNT is to discover how many rows have a value in a specific
column. For example, not every row in our table has a preferred name set; to count
how many do have a set preferred name, we can run the following command:

SELECT COUNT(pref_name) FROM employees;

The MIN and MAX functions
These two functions determine the minimum and maximum values. For example,
the oldest employee can be determined with a double SELECT statement, where
we look up an employee using the output of the function as follows:

SELECT * FROM employees

 WHERE birthday = (SELECT MIN(birthday) from employees);

www.it-ebooks.info

https://mariadb.com/kb/en/date-and-time-functions/
http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[92]

The output of the preceding command will look similar to the following:

MariaDB [test]> SELECT * FROM employees

 -> WHERE birthday = (SELECT MIN(birthday) FROM employees);

+----+----------+-----------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+----------+-----------+-----------+------------+

| 5 | Woodruff | Wilford | Will | 1957-03-01 |

+----+----------+-----------+-----------+------------+

1 row in set (0.00 sec)

And likewise, the youngest employee can be determined by using MAX instead of MIN
in the example as follows:

MariaDB [test]> SELECT * FROM employees

 -> WHERE birthday = (SELECT MAX(birthday) FROM employees);

+----+---------+------------+-----------+------------+

| id | surname | givenname | pref_name | birthday |

+----+---------+------------+-----------+------------+

| 1 | Perry | Lowell Tom | Tom | 1988-08-05 |

+----+---------+------------+-----------+------------+

1 row in set (0.00 sec)

In the two previous examples where there are two SELECT queries,
one inside the other, the inside query is called a subquery. We
will not be covering them in this book, but if you'd like to learn
more about them, check out the Subqueries section of the MariaDB
Knowledge Base by going to:
https://mariadb.com/kb/en/subqueries/

The SUM function
The SUM function is used to compute the total of a set of values. For example,
we could total up the combined ages of every employee with something like the
following using the TIMESTAMPDIFF and CURDATE functions. This is similar to what
we did with the AVG function to convert a birth date into an employee's age.

SELECT SUM(TIMESTAMPDIFF(YEAR,birthday,CURDATE()))

FROM employees;

www.it-ebooks.info

https://mariadb.com/kb/en/subqueries/
http://www.it-ebooks.info/

Chapter 7

[93]

Computing combined ages is not very useful. But for other tables, such as an orders
table, the SUM function would come in very handy for finding out, for example, how
many widgets a specific customer has ordered in the last year.

Using GROUP BY with summarized data
Sometimes, the rows in our database contain natural groups of data. For example,
the number of red or blue shirts ordered. The GROUP BY clause can be used with
summary functions to group like data together.

In our employees database, we can use GROUP BY with the COUNT function to find out
which surnames are the most popular as follows:

SELECT surname, COUNT(*)

 FROM employees

 GROUP BY surname;

The output of the preceding command will look similar to the following:

MariaDB [test]> SELECT surname, COUNT(*)

 -> FROM employees

 -> GROUP BY surname;

+----------------+----------+

| surname | COUNT(*) |

+----------------+----------+

| Anderson | 1 |

| Christofferson | 1 |

| McKay | 1 |

| Perry | 1 |

| Pratt | 1 |

| Smith | 1 |

| Snow | 2 |

| Taylor | 1 |

| Woodruff | 1 |

+----------------+----------+

9 rows in set (0.00 sec)

www.it-ebooks.info

http://www.it-ebooks.info/

Using MariaDB – Retrieving Data

[94]

Using HAVING to filter GROUP BY
The previous GROUP BY example outputs all the surnames with a count of how many
times each surname is used. Most of them are only used once, so since we are trying
to determine which surnames are used the most, it makes sense to filter out the ones
that are only used once. To do this, we add a HAVING clause after the GROUP BY clause
as follows:

SELECT surname, COUNT(*)

 FROM employees

 GROUP BY surname

 HAVING COUNT(*) > 1;

The HAVING clause eliminates most of the results, leading to a more readable output:

MariaDB [test]> SELECT surname, COUNT(*)

 -> FROM employees

 -> GROUP BY surname

 -> HAVING COUNT(*) > 1;

+---------+----------+

| surname | COUNT(*) |

+---------+----------+

| Snow | 2 |

+---------+----------+

1 row in set (0.00 sec)

In a larger table, we may want to filter out the names used only two to three times, to
keep the number of rows returned manageable.

The HAVING clause is a filter similar to WHERE, and so it can use any of the various
comparison operators.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[95]

Summary
In this chapter, you learned how to retrieve data, either all the data in a table or
just some of it. You also learned how to filter the data so that you only get the parts
you're looking for, by sorting, summarizing, grouping, and manipulating your
retrieved data, and by using operators to retrieve rows more selectively.

With this, and the previous two chapters, we are now familiar with the basic SQL
database Create, Read, Update, and Delete (CRUD) operations that will be part
of nearly all of our interactions in MariaDB.

In Chapter 8, Maintaining MariaDB, you will learn how to keep your database
running smoothly.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[97]

Maintaining MariaDB
Similar to houses and cars, databases need to be maintained if they are to run
smoothly. In this chapter, we'll cover the following maintenance-related topics:

•	 MariaDB log files
•	 Optimizing and tuning MariaDB
•	 Backing up, importing, and restoring data
•	 Repairing MariaDB

MariaDB log files
Depending on how we configure it, MariaDB will keep very detailed or very sparse
logs. The location of these logs is configured in our my.cnf (my.ini on Windows)
MariaDB configuration file. On Linux, the default location is /var/log/mysql/ and
on Windows, the default location is in the MariaDB data directory.

There are several different kinds of logs, each kind serving a different purpose.

The binary log
The MariaDB binary log is a series of files that contain events. An event is a
description of any modification to the contents of our database. As indicated by
the name, and unlike most other kinds of log files, MariaDB binary log files are in
a binary format. They are not readable by us unless we use a helper program such
as mysqlbinlog.

www.it-ebooks.info

http://www.it-ebooks.info/

Maintaining MariaDB

[98]

The binary log is controlled by the log_bin variable. The main purpose of the variable
is to turn binary logging on and off. Basically, if the variable is present in the [mysqld]
or [server] sections of our configuration file, binary logging will be turned on, and if
it isn't, binary logging will be turned off. An optional function of this variable is to set
the name and location of the binary log. The following is an example:

log_bin = /var/log/mysql/mariadb-bin

MariaDB will take the name and add numbers to the end of the actual files which it
writes to. The following is an example of using the mysqlbinlog program to display
the contents of a binary log in human readable text:

mysqlbinlog /var/log/mysql/mariadb-bin.000269

Each event in a binary log file is preceded with some comment lines that give the
date and time of the event, and its position in the log.

Apart from its informational value, the MariaDB binary log has some other uses.
First, it can be used for recovery after a server crash. It is also used when replicating
from one server to another. When used for replication, they are transferred to the
slave servers as relay logs, but they are basically the same as regular binary logs and
can be read with the mysqlbinlog program.

More information about the binary log can be found at
the following location:
https://mariadb.com/kb/en/binary-log/

The error log
The error log is where MariaDB logs information about critical errors. This is also
where MariaDB records startup and shutdown information. If MariaDB crashes or
fails to start, this is the log where we should look first.

We can control the location using the log_error variable, which, like other logging
variables, is placed in the [mysqld] or [server] sections of our configuration files.
The following is an example of this:

log_error = /var/log/mysql/error.log

The default configuration files shipped with MariaDB on Linux configure this file to
be at this location, but it can be placed elsewhere.

www.it-ebooks.info

https://mariadb.com/kb/en/binary-log/
http://www.it-ebooks.info/

Chapter 8

[99]

Unlike the binary log, the absence of this variable does not turn error logging off.
If the location is not configured in our my.cnf or my.ini file, error logging is still
enabled and the default location is the data directory. Also, the default name will
be hostname.err, where the hostname is the name of the computer that MariaDB
is running on.

More information about the error log can be found at the following location:

https://mariadb.com/kb/en/error-log/

The general query log
The general query log is disabled by default. This is because the general query log,
when enabled, stores a record of every query that MariaDB receives, including
queries that don't change any data. This is in contrast to the binary log, which only
stores queries that change data. On a busy server with lots of users, storing all
queries can lead to lots of huge log files very quickly, so it is usually not necessary
nor recommended to enable this log.

However, if we are trying to discover a hidden performance bottleneck or absolutely
need a record of everything that the server is doing, this log can be enabled with the
general_log and general_log_file variables. The first is used to explicitly turn
the general log on (=1) or off (=0). The second configures where we want the log to
be and what we want it to be called. The following example turns the general query
log on and stores it at /var/log/mysql/mysql.log:

general_log = 1

general_log_file = /var/log/mysql/mysql.log

If we are only interested in queries that change data, the only log we need to look
at is the binary log and we do not need to enable the general query log. As it says
in a comment in the default my.cnf file shipped with MariaDB, the general log is
a performance killer, so we should only enable it if we need to, and only for short
periods of time.

More information about the general query log can be found at the following location:

https://mariadb.com/kb/en/general-query-log/

www.it-ebooks.info

https://mariadb.com/kb/en/error-log/
https://mariadb.com/kb/en/general-query-log/
http://www.it-ebooks.info/

Maintaining MariaDB

[100]

The slow query log
The MariaDB slow query log, when enabled, contains a record of queries that take
longer than a configured amount of time to run. This log is very useful when tuning
and optimizing MariaDB as it stores a lot of useful information, such as the time it
took to execute a long query, the user who executed the query, the hostname the user
came from, and other details.

This log is disabled by default. To enable it, we add the following to the [mysqld] or
[server] sections of our my.cnf or my.ini config file:

slow_query_log = 1

There are four other variables that we use to control the behavior of the slow query
log. We use the slow_query_log_file variable to set the location of the log file.

The long_query_time variable sets the amount of time a query has to run before
MariaDB considers it to be slow. Time can be expressed in whole seconds down to
microsecond precision (0.000001).

The log_slow_rate_limit variable is used to control how often long queries are
actually logged. For example, a setting of 20 would log every twentieth slow query,
or 5 percent of the slow queries. This is useful if our slow query log is growing too
fast. If this variable is not present, the default is for the slow query log to log every
slow query.

Lastly, the log_slow_verbosity variable controls what information is logged,
with multiple values separated by commas (,). Possible values for this variable
are as follows:

•	 microtime: This logs queries in microseconds
•	 query_plan: This logs query execution plan information
•	 innodb: This adds additional statistical information about queries that touch

the XtraDB and InnoDB tables
•	 standard: This turns on both the microtime and innodb variables
•	 full: This turns on all values
•	 profiling: This allows the logged queries to be profiled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[101]

The following example turns on the slow query log and sets some common options:

slow_query_log = 1

slow_query_log_file = /var/log/mysql/mariadb-slow.log

long_query_time = 0.05

log_slow_rate_limit = 30

log_slow_verbosity = query_plan,standard

More information about the slow query log can be found at the following location:

https://mariadb.com/kb/en/slow-query-log/

Optimizing and tuning MariaDB
Tuning and optimizing MariaDB, and the applications that connect to it, for
maximum performance is a subject worthy of a book in itself. We won't go into the
details of specific strategies here because it's generally not necessary when we're just
getting started with MariaDB. But it is useful to know a little about the subject, which
is the purpose of this section.

The basic process of tuning and optimizing MariaDB starts with identifying the
choke points: that is, the places that are causing unnecessary slowdowns. Using the
slow query log discussed previously in this chapter, to identify these choke points
is a good place to start.

Once a problem query, or set of queries, has been identified, the next step is to
implement a fix of some sort. This could be as simple as rewriting the query to be
more efficient, or the query could be sped up by adding an index to the table.

We can also gather and examine user and table statistics to identify patterns of usage
that we can potentially optimize. Or we can examine our table definitions to see if
there are any tweaks that can be made there to make things faster or more efficient.
The list of ways to squeeze more performance out of MariaDB is nearly endless.

If the query and our database are as optimized as we can make them, there are still
things that we can do. Hardware, for example, can be a limitation. A busy database
that needs to respond quickly needs to be on fast hardware. Fast disks, lots of
memory, and a fast processor are all important ways we can improve MariaDB's
performance without changing anything in the database itself.

More information on optimizing and tuning MariaDB can be found at the
following location:

https://mariadb.com/kb/en/optimization-and-tuning/

www.it-ebooks.info

https://mariadb.com/kb/en/slow-query-log/
https://mariadb.com/kb/en/optimization-and-tuning/
http://www.it-ebooks.info/

Maintaining MariaDB

[102]

Backing up, importing, and restoring
data
MariaDB ships with a couple of utilities that can be used to back up our databases.
Data in MariaDB is written to special files on disk, so it may be tempting to think
that we can just make a copy of the MariaDB data directory and be done with it. The
problem with this is that the data files are always open and in use while MariaDB is
running and problems can arise if we try to back up the files directly. At the end of
this section, we will describe a method for taking backups of the data directory, but
first, we'll go over conventional backup techniques.

Basic backups with mysqldump
By default, the mysqldump client backup utility generates SQL backups. These
backups are in a text format and contain all the necessary SQL commands to
recreate tables and restore the data in those tables.

There are many options, but the basic syntax is as follows:

mysqldump [-u username] [-p] database_name [table_name]

If table_name is not given, mysqldump will back up all the tables in the named
database. For example, the following command will back up the entire test database:

mysqldump -u root -p test > test.sql

The output of mysqldump goes to standard out. When running the command from
a terminal, it will be echoed directly to the screen. So in the preceding example
command, we use the > redirect character to direct the output into a file named
test.sql (overwriting the file if it already exists).

Restoring backups made with mysqldump
To restore the preceding backup, we can use the mysql command-line client
as follows:

mysql -u root -p test < test.sql

As with the mysqldump example, we use a redirect character, but this time it is
redirecting in the opposite direction (<), that is, from the test.sql file to the mysql
client. The mysql client reads the file and executes all of the SQL commands in turn,
restoring the backed up tables and their data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[103]

Making tab-delimited backups with
mysqldump
We can also use mysqldump to create tab-delimited files. This is done using the --tab
option. When using this option, mysqldump will create two files. A tablename.sql
file with the SQL commands to recreate the table, and a tablename.txt file with the
actual data in tab-delimited format. The following is an example of using mysqldump
and --tab to backup up the employees table in our test database:

mysqldump --tab /tmp/ -u root -p test employees

The --tab option needs a directory after it where it can write the files. The SQL file is
owned by whichever user we used to run the mysqldump command. The TXT file, on
the other hand, is owned by the mysql user, so whatever directory we specify needs
to have permissions so that both users can write to it. The /tmp/ directory in Linux is
used in the example because, by default, this directory can be written to by anyone.

So why would a tab-delimited file of our data be useful? Well, for starters, the
mysqlimport program reads tab-delimited files. Popular spreadsheets also read
and write to tab-delimited files. So, for example, if we've been keeping our data in
a spreadsheet, and have decided to move it to a MariaDB database, we can export
our spreadsheet data as a tab-delimited file, create the tables in MariaDB, and then
use mysqlimport to import our data. At a later point, we could use mysqldump to
dump the data or a subset of the data to a file and then open it with our spreadsheet
program, and create some nice pie charts or other graphs.

There are scores of other options that we can use to tweak and customize what
and how mysqldump backs up our data. It's well worth your time to learn all of
these many options.

Full documentation of the mysqldump utility is found at the
following location:
https://mariadb.com/kb/en/mysqldump/

www.it-ebooks.info

https://mariadb.com/kb/en/mysqldump/
http://www.it-ebooks.info/

Maintaining MariaDB

[104]

Restoring and importing data with
mysqlimport
We talked briefly about mysqlimport in the previous section. In short, this command
is used to import data into MariaDB. This data could be a backup that we made
previously or completely new data. There are several options for this, but the basic
syntax is as follows:

mysqlimport [--local] [-u username] [-p] database_name filename

The filename attribute must be the name of the table we want to import into. The
--local option tells mysqlimport to read from the local filesystem instead of from
the data directory of the server.

The following example imports the employees.txt file that we generated earlier:

mysqlimport --local -u root -p test /tmp/employees.txt

Any records that cannot be imported will be skipped, and mysqlimport will report
this and generate a warning. An example would be a situation where our file has a
column in it that contains values that must be unique in our table, but some of them
match existing records in the table.

Full documentation of the mysqlimport utility is found at the
following location:
https://mariadb.com/kb/en/mysqlimport

Making backups of MyISAM tables with
mysqlhotcopy
The mysqlhotcopy backup program is actually a Perl script. It can take backups
quickly, but only if our tables use the MyISAM or ARCHIVE storage engines.

An easy way to show the storage engines being used by the tables in our database is
with the following SELECT statement:

SELECT TABLE_NAME,ENGINE

 FROM information_schema.tables

 WHERE TABLE_SCHEMA="test";

We can change test to the name of whichever database we want to check.

www.it-ebooks.info

https://mariadb.com/kb/en/mysqlimport
http://www.it-ebooks.info/

Chapter 8

[105]

The default storage engine for MariaDB is InnoDB, so this script is less useful than it
used to be several years ago when MyISAM was the default storage engine. If we do
have MyISAM tables, however, it remains a useful tool.

The basic syntax of the mysqlhotcopy command is as follows:

mysqlhotcopy db_name [/path/to/new_directory]

If the path to a new directory is not given, mysqlhotcopy will write the backup to the
MariaDB data directory. Writing a backup to the data directory is not recommended,
so be sure to always specify a path.

Other limitations are that the command must be run by a user who can read the data
files in the data directory, and if we use a password when connecting to MariaDB,
we must specify it on the command line or in a my.cnf file as mysqlhotcopy does
not prompt us for the password.

Full documentation of the mysqlhotcopy program is found at
the following location:
https://mariadb.com/kb/en/mysqlhotcopy/

Making backups of XtraDB and InnoDB tables
with xtrabackup
The xtrabackup backup program is made specifically for use with XtraDB and InnoDB
tables. It can take quick, full backups of our databases while MariaDB is running.

Creating a backup with xtrabackup is a multi-step process. First we take a backup
and then we prepare the backup so that it is ready to be restored when necessary.
To take a backup, we do the following:

xtrabackup --backup \

 --datadir=/var/lib/mysql/ --target-dir=/path/to/backup/

The --datadir option should point at the location of our MariaDB data files; on
Linux the default data directory location is /var/lib/mysql/. On Linux, we will
also need to preface the command with sudo.

InnoDB and XtraDB tables are stored across several files, and backups made with
xtrabackup are the same. This is why while taking a backup with xtrabackup,
we specify a directory and not a file name with the --target-dir option.

www.it-ebooks.info

https://mariadb.com/kb/en/mysqlhotcopy/
http://www.it-ebooks.info/

Maintaining MariaDB

[106]

While a backup is being made, xtrabackup will print various bits of information to
let us know how the backup is progressing. Backups may take a long time if we have
a lot of data and/or if our server is very busy.

After making a raw backup, we need to prepare the backup so that it can be restored
if necessary. The reason we need to do this is because of the way that xtrabackup
and InnoDB and XtraDB tables work. If we try to restore using a raw backup that
hasn't been prepared, it is very likely that MariaDB will refuse to start.

To prepare the backup we just made so that it is ready for restoring, we run the
following command twice:

xtrabackup --prepare --target-dir=/path/to/backup/

The first time that we run xtrabackup with the --prepare option, our backed
up data will be cleaned up and put into a logical order. The second time that the
--prepare option is used, xtrabackup will create some log files that help speed up
restoring our data, if it turns out that we need to do that. Running --prepare a third,
fourth, or any more number of times won't do anything, but is safe to do so in case
we can't remember if we've run it for the second time.

Full documentation of xtrabackup, including installation instructions,
is available at the following location:
http://www.percona.com/doc/percona-xtrabackup/

Restoring backups made with xtrabackup
The easiest way to restore from a backup made with xtrabackup is to use a utility,
such as rsync or the cp command, to copy all the files in the backup directory to our
MariaDB data directory. Before doing so, we must stop MariaDB and then run the
rsync or cp command. Here's an example rsync command:

rsync -avP /path/to/backup/ /var/lib/mysql/

After the files are copied back to the MariaDB data directory, and before we start
MariaDB, it's a good idea to make sure that the ownership of the files is correct. By
default in most Linux distributions, the default user and group are called mysql,
so this can be done with something similar to the following:

chown -R mysql:mysql /var/lib/mysql/

www.it-ebooks.info

http://www.percona.com/doc/percona-xtrabackup/
http://www.it-ebooks.info/

Chapter 8

[107]

Making cold backups
Another option for backing up MariaDB is to just copy the entire data directory. This
is called a cold backup. As mentioned at the beginning of this section, problems can
arise if we try to do this while MariaDB is running. But if we stop MariaDB briefly,
and are using a filesystem that supports snapshots (called shadow volume copies on
Windows), we can stop MariaDB briefly, make a snapshot, and then restart MariaDB.
Total downtime for an operation such as this, depending on various factors, might
be only a few seconds. The snapshotted directory may then be backed up in a simialr
way to any other filesystem directory backup.

This is obviously not an ideal way to take backups in all situations, especially when
stopping the database server, even for a few seconds, is not an option. But it can
work very well in some cases.

Repairing MariaDB
After a hardware failure, a power outage, or even after an upgrade, it is a good
idea to check the tables in our MariaDB databases to make sure they are all right.
MariaDB includes several utilities for doing this.

Checking and optimizing tables with
mysqlcheck
The mysqlcheck program can check, analyze, optimize, and repair the MariaDB
database tables. Basic syntax for the command is as follows:

mysqlcheck [options] [-u username] [-p] database_name [table_name]

Here is an example of running the command to check our test database, and
its output:

daniel@gandalf:~$ mysqlcheck -u root -p test

Enter password:

test.employees OK

We can specify multiple databases using the --databases option as follows:

mysqlcheck -u root -p --databases db_name1 db_name2 db_name3

We can also tell the program to check all our databases with the --all-databases
option, as follows:

mysqlcheck -u root -p --all-databases

www.it-ebooks.info

http://www.it-ebooks.info/

Maintaining MariaDB

[108]

By default, mysqlcheck will only perform basic checks when it is run. To get it to
optimize, analyze, or repair tables, we use one of the following options:

--optimize

--analyze

--repair

Not all of the options work on all tables. For example, InnoDB tables cannot be
repaired with mysqlcheck. The program displays an error message if it cannot
perform a requested action.

Full documentation of the mysqlcheck utility is found at the
following location:
https://mariadb.com/kb/en/mysqlcheck/

Repairing tables
Thankfully, MariaDB is a very mature and stable program, and problems are
few and very far between. However, power does sometimes go out and hardware
sometimes fails catastrophically or gradually, so there may come a time when a table
in our database has problems and needs to be repaired.

MyISAM and Aria tables can often be repaired with the mysqlcheck program,
so if mysqlcheck reports that a table needs repairing then we can usually simply
re-run the program with the --repair option as described previously in this section.
Unfortunately, mysqlcheck cannot repair InnoDB tables.

However, InnoDB and XtraDB are crash safe, which means that they are protected
to a certain extent when failures do occur. This protection means that the chances
of a hardware failure causing corruption are very low. InnoDB and XtraDB also
have a built-in crash recovery mechanism. The way to use it is to add the innodb_
force_recovery option to the [mysqld] section of our my.cnf or my.ini file set to
a number between 1 and 6. Setting this variable to 0, or removing it entirely, disables
it. While this option is set, MariaDB will not allow any InnoDB tables to be changed.
The higher the number, the more aggressively MariaDB will try to repair the tables.
Full documentation of this feature is available at the following location:

https://mariadb.com/kb/en/xtradbinnodb-recovery-modes/

www.it-ebooks.info

https://mariadb.com/kb/en/mysqlcheck/
https://mariadb.com/kb/en/xtradbinnodb-recovery-modes/
http://www.it-ebooks.info/

Chapter 8

[109]

If innodb_force_recovery does not work, we may need to dump and reload our
affected tables. This procedure can take a long time on a large server, so it should
only be used as a last resort. The basic procedure to dump and reload a database is
the same as we went over in the mysqldump section previously, but here it is again:

mysqldump [options] database_name > dump.sql

mysql database_name < dump.sql

So to dump and reload our test database, we might do the following:

mysqldump -u root -p test > dump.sql

mysql -u root -p test < dump.sql

This reload process is more likely to succeed if it is used in conjunction with the
innodb_force_recovery variable. For example, a setting of 1 tells InnoDB and
XtraDB to skip the corrupt indexes and records instead of attempting to read them.
Refer to the XtraDB/InnoDB recovery modes page in the MariaDB Knowledge Base
found previously in this section for more information.

If the preceding reload process doesn't fix the error, we might want to call in
some experts. There are various other recovery strategies out there, but they are
beyond the scope of this book. We could also try reloading from a backup; we may
lose some data depending on how old the backup is, but losing some data is better
than losing everything.

Summary
In this chapter, you learned about the various MariaDB log files, what they are, and
how to use them. We looked at how to take different kinds of backups and how to
restore our data from those backups, and we briefly discussed optimization. Lastly,
we wrapped up this chapter with a discussion of the various things we can do if
something goes wrong and we need to repair or dump and reload the tables in
our database.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[111]

MariaDB Next Steps
This book provides an introduction to MariaDB with enough information to get us
started. MariaDB is a large system with many parts, options, and capabilities.

So where do we go from here? If we have a question, where do we go for help?

Here is a list of the various online resources available to help us on our way to
becoming a MariaDB expert.

Let's begin with the official MariaDB website. MariaDB downloads, the
MariaDB Foundation blog, and other official MariaDB information can
be found at the following location:

http://mariadb.org

Next is the MariaDB Knowledge Base found at the following location:

https://mariadb.com/kb

The MariaDB Knowledge Base is the official location of the MariaDB documentation.
New information is added here on a daily basis. Whenever something is added to
or changed in MariaDB, it is documented here. Release notes and change logs for
MariaDB releases are also posted here.

There is also an Ask a Question feature that can be used if we have a question about
something in MariaDB. We just navigate to the section or the item that we are
interested in, click on the button and ask away. We can also provide our own tips
and tricks by leaving comments on the page. Registration is required (to cut down on
spam), but it is free and all content is released under a Creative Commons, GFDL, or
GPL license.

www.it-ebooks.info

http://www.it-ebooks.info/

MariaDB Next Steps

[112]

If we need to talk to someone immediately there are, again, a few options.
First is IRC, where we can engage in real-time chat conversations with other
users and with the developers of MariaDB. The official MariaDB channel is
#maria on the Freenode IRC network. See the knowledge base entry on IRC
(https://mariadb.com/kb/en/irc) for more information.

There are also three official MariaDB e-mail lists: a developers list for technical
discussions about MariaDB development, a discuss list for general discussions about
using MariaDB, and a docs list for discussion and planning related to the MariaDB
documentation. All three lists are hosted on launchpad.net. The most useful list for
end users is the discuss list. Following are the links to these lists:

•	 MariaDB developers list (https://launchpad.net/~maria-developers)
•	 MariaDB discuss list (https://launchpad.net/~maria-discuss)
•	 MariaDB docs list (https://launchpad.net/~maria-docs)

Lastly, MariaDB is active on the major social media platforms. Following are the
locations of the official MariaDB accounts on Twitter, Google+, and Facebook:

•	 Twitter (http://twitter.com/mariadb)
•	 Google+ (http://google.com/+mariadb)
•	 Facebook (http://fb.com/MariaDB.dbms)

I hope you enjoy working with MariaDB!

www.it-ebooks.info

http://www.it-ebooks.info/

[113]

Index
A
Advanced Packaging Tool (APT) 1
ALTER TABLE command

column, adding 67
column, modifying 67, 68
syntax 66
using 66

AND operator
using 83

AVG function 90

B
backups

creating, mysqldump used 102
restoring, mysqldump used 102
with xtrabackup, restoring 106

binary log
about 97, 98
URL 98

brew
URL 8

C
Centos

MariaDB, installing on 11-14
column user privileges 44, 45
comment lines 24
configuration file, MariaDB

about 23, 24
anatomy 23
comment lines 24
groups 24, 25
modifications 28

options 27
options, formatting 26
options, values not required 25
options, values required 26

COUNT function 91
CREATE DATABASE command

URL 58
used, for creating database 58

CREATE TABLE command
datatypes 62, 63
example 63, 64
other options 63
syntax 61, 62
URL 64
used, for creating tables 61

D
data

about 59
filtering 81
filtering, by exact values 82
joining 88-90
logical operators, using 83
retrieving 79, 80
searching 81
selected columns, retrieving 81
sorting 87
summarizing 90

database
creating 57, 58
creating, CREATE DATABASE command

used 58
deleting 57, 58
deleting, DROP DATABASE command

used 58

www.it-ebooks.info

http://www.it-ebooks.info/

[114]

listing on server, SHOW command
used 56, 57

selecting, USE command used 55
user privileges 44, 45

data, summarizing
about 90
AVG function 90
COUNT function 91
GROUP BY filtering,

HAVING clause used 94
GROUP BY used 93
MAX function 91, 92
MIN function 91, 92
SUM function 92

datatypes
URL 63

Debian
MariaDB, installing on 9-11

DELETE command
about 77, 78
URL 78

DESCRIBE command
URL 66
used, for exploring table structure 65, 66

developers list
URL 112

development series 3
discuss list

URL 112
docs list

URL 112
DROP DATABASE command

used, for deleting database 58
DROP TABLE command

URL 69
using 68, 69

DROP USER statement
URL 51

E
error log

about 98
URL 99

F
Facebook

URL 112
Fedora

MariaDB, installing on 11-14
filesystem, MariaDB

layout 19
layout, on Windows 19-22

floating point numbers
URL 62

G
general query log

about 99
URL 99

global administrative user privileges 44
Gnu Privacy Guard (GPG) 14
Google+

URL 112
GRANT statement

URL 49
GROUP BY

filtering, HAVING clause used 94
used, for data summarizing 93

groups 25

I
InnoDB tables backups

creating, xtrabackup used 105, 106
IN operator

using 85
INSERT command

another table, inserting from 74
complete rows, inserting 72, 73
inserting, from file 74, 75
partial rows, inserting 73
URL 73
using 71, 72

INSERT. . .SELECT command
URL 74

internal network security 39, 40

www.it-ebooks.info

http://www.it-ebooks.info/

[115]

Internet security 40
IRC channel

URL 17

K
Knowledge Base

on IRC, URL 112
URL 111

L
LIKE

searching with 86, 87
limit user privileges 46
Linux

modular configuration 22, 23
Linux binary packages

URL 2
Linux Mint

MariaDB, installing on 9-11
LOAD DATA INFILE command

URL 75
log files

binary log 97, 98
error log 98
general query log 99
slow query log 100, 101

logical operators
AND operator, using 83
evaluation order 84
IN operator, using 85
NOT operator, using 86
OR operator, using 83

M
Mac OS X

MariaDB, installing on 8
maintenance series 4
MariaDB

about 111
connecting to 54, 55
data, backing up 102
data, importing 102

data, restoring 102
documentation, URL 15
downloads, URL 4
filesystem, layout 20-22
installation, issues 16
installing, on Centos 11-14
installing, on Debian 10, 11
installing, on Fedora 11-14
installing, on Linux Mint 10, 11
installing, on Mac OS X 8
installing, on other Linux distributions 14
installing, on Red Hat 11-14
installing, on Ubuntu 10, 11
installing, on Windows 4-8
log files 97
optimizing 101
package security 14
post installation 15, 16
repairing 107
safe connection 36
safe connection, in scripts 36, 37
safe connection, on command line 36
securing 33-35
security 32, 33
series 3
tuning 101
URL 111
user privileges 43

MAX function 92
MIN function 92
miscellaneous user privileges 45
MyISAM tables

backup creating, mysqlhotcopy
used 104, 105

mysqlcheck
URL 108
used, for checking tables 107
used, for optimizing tables 107

mysql command-line client application
running 53

mysqldump
URL 103
used, for creating backup 102
used, for creating tab-delimited

backups 103

www.it-ebooks.info

http://www.it-ebooks.info/

[116]

mysqlhotcopy
URL 105
used, for creating MyISAM tables

backup 104, 105
mysqlimport

data, importing with 104
data, restoring with 104
URL 104
used, for restoring backups 102

N
normalization 61
NOT operator

using 86

O
OR operator

using 83

P
passwords

changing 51
setting 51

permissions
granting 48, 49
revoking 49, 50
showing 50

Pretty Good Privacy (PGP) 14

R
Red Hat

MariaDB, installing on 11-14
repository configuration tool

URL 9, 11
REVOKE statement

URL 50

S
security

building 32, 38, 39
internal network security 32, 39, 40
Internet security 32, 40
layers 32, 33

server 32, 38
SELECT command

URL 80
series

about 3
development series 3
maintenance series 4
selecting 3
stable series 3

SET PASSWORD statement
URL 51

SHOW command
used, for displaying command 64, 65
used, for listing databases on server 56, 57

SHOW CREATE TABLE command
URL 65

slow query log
about 100, 101
URL 101

stable series 3
Structured Query Language (SQL) 57
SUM function 93

T
tab-delimited backups

creating, mysqldump used 103
tables

about 59
ALTER TABLE command, syntax 66
ALTER TABLE command, used for adding

column 67
ALTER TABLE command, used for

dropping column 67, 68
ALTER TABLE command, used for

modifying column 67
ALTER TABLE command, using 66
CREATE TABLE command,

basic syntax 61, 62
CREATE TABLE command,

datatypes 62, 63
CREATE TABLE command, example 63, 64
CREATE TABLE command,

other options 63
CREATE TABLE command, using 61
creating 61

www.it-ebooks.info

http://www.it-ebooks.info/

[117]

DROP TABLE command, using 68
optimizing, mysqlcheck used 107
repairing 108
SHOW command, used for displaying

command 64, 65
structure exploring, DESCRIBE command

used 65, 66
table user privileges 44, 45
Twitter

URL 112

U
Ubuntu

MariaDB, installing on 9-11
UPDATE command

about 75-77
URL 77

USE command
used, for selecting database 55

user privileges
column user privileges 45
database privileges 45
database user privileges 44
global administrative user privileges 44
limits privileges 46
miscellaneous user privileges 45
table privileges 45
table user privileges 44
URL 46

users
creating 46, 47

creating, URL 47
removing 51

W
Windows

MariaDB filesystem layout 19-22
MariaDB, installing on 4-8
URL 4

Windows binary packages
URL 2

Windows MSI packages 1

X
xtrabackup

backups, restoring 106
cold backups, creating 107
URL 106
used, for creating InnoDB tables

backup 105, 106
used, for creating XtraDB backups 105

XtraDB backups
creating, xtrabackup used 105, 106
URL 109

Y
Yellowdog Updater, Modified (YUM)

package 11

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Getting Started with MariaDB

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering MariaDB
ISBN: 978-1-78398-154-0 Paperback: 384 pages

Debug, secure, and back up your data for optimum
server performance with MariaDB

1.	 Monitor database activity and the
major operating system parameters
to improve performance.

2.	 Tweak the behavior of a large number of
servers to achieve the desired level of stability
and reliability.

3.	 Solve the typical problems related to running
a server, such as slow queries, long locks,
and so on.

MariaDB Cookbook
ISBN: 978-1-78328-439-9 Paperback: 282 pages

Over 95 recipes to unlock the power of MariaDB

1.	 Enable performance-enhancing optimizations.

2.	 Connect to different databases and file formats.

3.	 Filled with clear step-by-step instructions that
can be run on a live database.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MariaDB
ISBN: 978-1-78216-809-6 Paperback: 100 pages

Learn how to use MariaDB to store your data easily
and hassle-free

1.	 A step-by-step guide to installing and
configuring MariaDB.

2.	 Includes real-world examples that help
you learn how to store and maintain data
on MariaDB.

3.	 Written by someone who has been involved
with the project since its inception.

MariaDB High Performance
ISBN: 978-1-78398-160-1 Paperback: 298 pages

Familiarize yourself with the MariaDB system and
build high-performance applications

1.	 Build multiple slaves and load balance
with HA-Proxy.

2.	 Explore MariaDB 10 features like GTID
replication or Sharding using Spider.

3.	 This is a step-by-step tutorial guide to help you
build high-performance applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing MariaDB
	Choosing a MariaDB series
	The development series
	The stable series
	The maintenance series

	Installing MariaDB on Windows
	Installing MariaDB on Mac OS X
	Installing MariaDB on Debian, Ubuntu, and Linux Mint
	Installing MariaDB on Fedora, Red Hat, and CentOS
	Installing MariaDB on other Linux distributions
	MariaDB package security
	After the installation
	Troubleshooting installation issues
	Summary

	Chapter 2: Configuring MariaDB
	The MariaDB filesystem layout
	The MariaDB filesystem layout on Windows
	The MariaDB filesystem layout on Linux

	Modular configuration on Linux
	The anatomy of the MariaDB configuration file
	Where is my configuration file?
	Comments
	Groups
	Options that do not require values
	Options that require values
	Option formatting
	Options, options everywhere

	Activating configuration changes
	Summary

	Chapter 3: Securing MariaDB
	Security layers
	Securing MariaDB in 10 seconds
	Connecting safely
	Connecting safely on the command line
	Connecting safely in scripts

	Server security
	Building security
	Internal network security
	Internet security
	Summary

	Chapter 4: Administering MariaDB
	User privileges
	Global administrative user privileges
	Database, table, and column user privileges
	Miscellaneous user privileges and limits

	Creating users
	Granting, revoking, and showing permissions
	Granting permissions
	Revoking permissions
	Showing permissions

	Setting and changing passwords
	Removing users
	Summary

	Chapter 5: Using MariaDB – Databases and Tables
	The mysql command-line client application
	Connecting to MariaDB
	Using USE to select a database
	Using SHOW to list all databases on a server
	Creating and deleting databases
	Using CREATE DATABASE to create a database
	Using DROP DATABASE to delete a database

	Data, tables, and normalization
	Creating, altering, and dropping tables
	Using CREATE TABLE
	Using CREATE TABLE – datatypes
	Using CREATE TABLE– other options
	Using CREATE TABLE – an example
	Using SHOW to display the command used to create a table
	Using DESCRIBE to explore the structure of a table

	Using ALTER TABLE
	Using ALTER TABLE – basic syntax
	Using ALTER TABLE – adding a column
	Using ALTER TABLE – modifying a column
	Using ALTER TABLE – dropping a column

	Using DROP TABLE

	Summary

	Chapter 6: Using MariaDB – Inserting, Updating, and Deleting
	Using INSERT
	Inserting complete rows
	Inserting partial rows
	Inserting from another table
	Inserting from a file

	Using UPDATE
	Using DELETE
	Summary

	Chapter 7: Using MariaDB –
Retrieving Data
	Retrieving data
	Retrieving everything
	Retrieving selected columns

	Filtering and searching data
	Filtering by exact values
	Using logical operators
	Using the AND operator
	Using the OR operator
	Evaluation order
	Using the IN operator
	Using the NOT operator

	Searching with LIKE
	Sorting data
	Joining data

	Summarizing data
	The AVG function
	The COUNT function
	The MIN and MAX functions
	The SUM function
	Using GROUP BY with summarized data
	Using HAVING to filter GROUP BY

	Summary

	Chapter 8: Maintaining MariaDB
	MariaDB log files
	The binary log
	The error log
	The general query log
	The slow query log

	Optimizing and tuning MariaDB
	Backing up, importing, and restoring data
	Basic backups with mysqldump
	Restoring backups made with mysqldump
	Making tab-delimited backups with mysqldump
	Restoring and importing data with mysqlimport
	Making backups of MyISAM tables with mysqlhotcopy
	Making backups of XtraDB and InnoDB tables with xtrabackup
	Restoring backups made with xtrabackup
	Making cold backups

	Repairing MariaDB
	Checking and optimizing tables with mysqlcheck
	Repairing tables

	Summary

	Appendix: MariaDB Next Steps
	Index

