

SECOND EDITION

Learning SQL

Alan Beaulieu

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Learning SQL, Second Edition
by Alan Beaulieu

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Loranah Dimant
Copyeditor: Audrey Doyle
Proofreader: Nancy Reinhardt

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2005: First Edition.
April 2009: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning SQL, the image of an Andean marsupial tree frog, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52083-0

[M]

1239115419

http://safari.oreilly.com

Table of Contents

Preface . ix

1. A Little Background . 1
Introduction to Databases 1

Nonrelational Database Systems 2
The Relational Model 4
Some Terminology 6

What Is SQL? 7
SQL Statement Classes 7
SQL: A Nonprocedural Language 9
SQL Examples 10

What Is MySQL? 12
What’s in Store 13

2. Creating and Populating a Database . 15
Creating a MySQL Database 15
Using the mysql Command-Line Tool 17
MySQL Data Types 18

Character Data 18
Numeric Data 21
Temporal Data 23

Table Creation 25
Step 1: Design 25
Step 2: Refinement 26
Step 3: Building SQL Schema Statements 27

Populating and Modifying Tables 30
Inserting Data 31
Updating Data 35
Deleting Data 35

When Good Statements Go Bad 36
Nonunique Primary Key 36
Nonexistent Foreign Key 36

iii

Column Value Violations 37
Invalid Date Conversions 37

The Bank Schema 38

3. Query Primer . 41
Query Mechanics 41
Query Clauses 43
The select Clause 43

Column Aliases 46
Removing Duplicates 47

The from Clause 48
Tables 49
Table Links 51
Defining Table Aliases 52

The where Clause 52
The group by and having Clauses 54
The order by Clause 55

Ascending Versus Descending Sort Order 57
Sorting via Expressions 58
Sorting via Numeric Placeholders 59

Test Your Knowledge 60

4. Filtering . 63
Condition Evaluation 63

Using Parentheses 64
Using the not Operator 65

Building a Condition 66
Condition Types 66

Equality Conditions 66
Range Conditions 68
Membership Conditions 71
Matching Conditions 73

Null: That Four-Letter Word 76
Test Your Knowledge 79

5. Querying Multiple Tables . 81
What Is a Join? 81

Cartesian Product 82
Inner Joins 83
The ANSI Join Syntax 86

Joining Three or More Tables 88
Using Subqueries As Tables 90
Using the Same Table Twice 92

iv | Table of Contents

Self-Joins 93
Equi-Joins Versus Non-Equi-Joins 94
Join Conditions Versus Filter Conditions 96
Test Your Knowledge 97

6. Working with Sets . 99
Set Theory Primer 99
Set Theory in Practice 101
Set Operators 103

The union Operator 103
The intersect Operator 106
The except Operator 107

Set Operation Rules 108
Sorting Compound Query Results 108
Set Operation Precedence 109

Test Your Knowledge 111

7. Data Generation, Conversion, and Manipulation . 113
Working with String Data 113

String Generation 114
String Manipulation 119

Working with Numeric Data 126
Performing Arithmetic Functions 126
Controlling Number Precision 128
Handling Signed Data 130

Working with Temporal Data 130
Dealing with Time Zones 131
Generating Temporal Data 132
Manipulating Temporal Data 137

Conversion Functions 141
Test Your Knowledge 142

8. Grouping and Aggregates . 143
Grouping Concepts 143
Aggregate Functions 145

Implicit Versus Explicit Groups 146
Counting Distinct Values 147
Using Expressions 149
How Nulls Are Handled 149

Generating Groups 150
Single-Column Grouping 151
Multicolumn Grouping 151
Grouping via Expressions 152

Table of Contents | v

Generating Rollups 152
Group Filter Conditions 155
Test Your Knowledge 156

9. Subqueries . 157
What Is a Subquery? 157
Subquery Types 158
Noncorrelated Subqueries 159

Multiple-Row, Single-Column Subqueries 160
Multicolumn Subqueries 165

Correlated Subqueries 167
The exists Operator 169
Data Manipulation Using Correlated Subqueries 170

When to Use Subqueries 171
Subqueries As Data Sources 172
Subqueries in Filter Conditions 177
Subqueries As Expression Generators 177

Subquery Wrap-up 181
Test Your Knowledge 181

10. Joins Revisited . 183
Outer Joins 183

Left Versus Right Outer Joins 187
Three-Way Outer Joins 188
Self Outer Joins 190

Cross Joins 192
Natural Joins 198
Test Your Knowledge 200

11. Conditional Logic . 203
What Is Conditional Logic? 203
The Case Expression 204

Searched Case Expressions 205
Simple Case Expressions 206

Case Expression Examples 207
Result Set Transformations 208
Selective Aggregation 209
Checking for Existence 211
Division-by-Zero Errors 212
Conditional Updates 213
Handling Null Values 214

Test Your Knowledge 215

vi | Table of Contents

12. Transactions . 217
Multiuser Databases 217

Locking 217
Lock Granularities 218

What Is a Transaction? 219
Starting a Transaction 220
Ending a Transaction 221
Transaction Savepoints 223

Test Your Knowledge 225

13. Indexes and Constraints . 227
Indexes 227

Index Creation 228
Types of Indexes 231
How Indexes Are Used 234
The Downside of Indexes 237

Constraints 238
Constraint Creation 238
Constraints and Indexes 239
Cascading Constraints 240

Test Your Knowledge 242

14. Views . 245
What Are Views? 245
Why Use Views? 248

Data Security 248
Data Aggregation 249
Hiding Complexity 250
Joining Partitioned Data 251

Updatable Views 251
Updating Simple Views 252
Updating Complex Views 253

Test Your Knowledge 255

15. Metadata . 257
Data About Data 257
Information_Schema 258
Working with Metadata 262

Schema Generation Scripts 263
Deployment Verification 265
Dynamic SQL Generation 266

Test Your Knowledge 270

Table of Contents | vii

A. ER Diagram for Example Database . 271

B. MySQL Extensions to the SQL Language . 273

C. Solutions to Exercises . 287

Index . 309

viii | Table of Contents

Preface

Programming languages come and go constantly, and very few languages in use today
have roots going back more than a decade or so. Some examples are Cobol, which is
still used quite heavily in mainframe environments, and C, which is still quite popular
for operating system and server development and for embedded systems. In the data-
base arena, we have SQL, whose roots go all the way back to the 1970s.

SQL is the language for generating, manipulating, and retrieving data from a relational
database. One of the reasons for the popularity of relational databases is that properly
designed relational databases can handle huge amounts of data. When working with
large data sets, SQL is akin to one of those snazzy digital cameras with the high-power
zoom lens in that you can use SQL to look at large sets of data, or you can zoom in on
individual rows (or anywhere in between). Other database management systems tend
to break down under heavy loads because their focus is too narrow (the zoom lens is
stuck on maximum), which is why attempts to dethrone relational databases and SQL
have largely failed. Therefore, even though SQL is an old language, it is going to be
around for a lot longer and has a bright future in store.

Why Learn SQL?
If you are going to work with a relational database, whether you are writing applica-
tions, performing administrative tasks, or generating reports, you will need to know
how to interact with the data in your database. Even if you are using a tool that generates
SQL for you, such as a reporting tool, there may be times when you need to bypass the
automatic generation feature and write your own SQL statements.

Learning SQL has the added benefit of forcing you to confront and understand the data
structures used to store information about your organization. As you become com-
fortable with the tables in your database, you may find yourself proposing modifica-
tions or additions to your database schema.

ix

Why Use This Book to Do It?
The SQL language is broken into several categories. Statements used to create database
objects (tables, indexes, constraints, etc.) are collectively known as SQL schema state-
ments. The statements used to create, manipulate, and retrieve the data stored in a
database are known as the SQL data statements. If you are an administrator, you will
be using both SQL schema and SQL data statements. If you are a programmer or report
writer, you may only need to use (or be allowed to use) SQL data statements. While
this book demonstrates many of the SQL schema statements, the main focus of this
book is on programming features.

With only a handful of commands, the SQL data statements look deceptively simple.
In my opinion, many of the available SQL books help to foster this notion by only
skimming the surface of what is possible with the language. However, if you are going
to work with SQL, it behooves you to understand fully the capabilities of the language
and how different features can be combined to produce powerful results. I feel that this
is the only book that provides detailed coverage of the SQL language without the added
benefit of doubling as a “door stop” (you know, those 1,250-page “complete referen-
ces” that tend to gather dust on people’s cubicle shelves).

While the examples in this book run on MySQL, Oracle Database, and SQL Server, I
had to pick one of those products to host my sample database and to format the result
sets returned by the example queries. Of the three, I chose MySQL because it is freely
obtainable, easy to install, and simple to administer. For those readers using a different
server, I ask that you download and install MySQL and load the sample database so
that you can run the examples and experiment with the data.

Structure of This Book
This book is divided into 15 chapters and 3 appendixes:

Chapter 1, A Little Background, explores the history of computerized databases,
including the rise of the relational model and the SQL language.

Chapter 2, Creating and Populating a Database, demonstrates how to create a
MySQL database, create the tables used for the examples in this book, and populate
the tables with data.

Chapter 3, Query Primer, introduces the select statement and further demon-
strates the most common clauses (select, from, where).

Chapter 4, Filtering, demonstrates the different types of conditions that can be used
in the where clause of a select, update, or delete statement.

Chapter 5, Querying Multiple Tables, shows how queries can utilize multiple tables
via table joins.

x | Preface

Chapter 6, Working with Sets, is all about data sets and how they can interact within
queries.

Chapter 7, Data Generation, Conversion, and Manipulation, demonstrates several
built-in functions used for manipulating or converting data.

Chapter 8, Grouping and Aggregates, shows how data can be aggregated.

Chapter 9, Subqueries, introduces the subquery (a personal favorite) and shows
how and where they can be utilized.

Chapter 10, Joins Revisited, further explores the various types of table joins.

Chapter 11, Conditional Logic, explores how conditional logic (i.e., if-then-else)
can be utilized in select, insert, update, and delete statements.

Chapter 12, Transactions, introduces transactions and shows how to use them.

Chapter 13, Indexes and Constraints, explores indexes and constraints.

Chapter 14, Views, shows how to build an interface to shield users from data
complexities.

Chapter 15, Metadata, demonstrates the utility of the data dictionary.

Appendix A, ER Diagram for Example Database, shows the database schema used
for all examples in the book.

Appendix B, MySQL Extensions to the SQL Language, demonstrates some of the
interesting non-ANSI features of MySQL’s SQL implementation.

Appendix C, Solutions to Exercises, shows solutions to the chapter exercises.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for filenames, directory names, and URLs. Also used for emphasis and to
indicate the first use of a technical term.

Constant width
Used for code examples and to indicate SQL keywords within text.

Constant width italic
Used to indicate user-defined terms.

UPPERCASE
Used to indicate SQL keywords within example code.

Constant width bold
Indicates user input in examples showing an interaction. Also indicates empha-
sized code elements to which you should pay particular attention.

Preface | xi

Indicates a tip, suggestion, or general note. For example, I use notes to
point you to useful new features in Oracle9i.

Indicates a warning or caution. For example, I’ll tell you if a certain SQL
clause might have unintended consequences if not used carefully.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

O’Reilly maintains a web page for this book, which lists errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596520830

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O’Reilly books, conferences, Resource Centers, and the
O’Reilly Network, see the website at:

http://www.oreilly.com

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example, “Learning SQL, Second Edition, by Alan
Beaulieu. Copyright 2009 O’Reilly Media, Inc., 978-0-596-52083-0.”

xii | Preface

http://www.oreilly.com/catalog/9780596520830
http://www.oreilly.com

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

Acknowledgments
I would like to thank my editor, Mary Treseler, for helping to make this second edition
a reality, and many thanks to Kevin Kline, Roy Owens, Richard Sonen, and Matthew
Russell, who were kind enough to review the book for me over the Christmas/New
Year holidays. I would also like to thank the many readers of my first edition who were
kind enough to send questions, comments, and corrections. Lastly, I thank my wife,
Nancy, and my daughters, Michelle and Nicole, for their encouragement and
inspiration.

Preface | xiii

http://my.safaribooksonline.com/?portal=oreilly

CHAPTER 1

A Little Background

Before we roll up our sleeves and get to work, it might be beneficial to introduce some
basic database concepts and look at the history of computerized data storage and
retrieval.

Introduction to Databases
A database is nothing more than a set of related information. A telephone book, for
example, is a database of the names, phone numbers, and addresses of all people living
in a particular region. While a telephone book is certainly a ubiquitous and frequently
used database, it suffers from the following:

• Finding a person’s telephone number can be time-consuming, especially if the
telephone book contains a large number of entries.

• A telephone book is indexed only by last/first names, so finding the names of the
people living at a particular address, while possible in theory, is not a practical use
for this database.

• From the moment the telephone book is printed, the information becomes less and
less accurate as people move into or out of a region, change their telephone num-
bers, or move to another location within the same region.

The same drawbacks attributed to telephone books can also apply to any manual data
storage system, such as patient records stored in a filing cabinet. Because of the cum-
bersome nature of paper databases, some of the first computer applications developed
were database systems, which are computerized data storage and retrieval mechanisms.
Because a database system stores data electronically rather than on paper, a database
system is able to retrieve data more quickly, index data in multiple ways, and deliver
up-to-the-minute information to its user community.

Early database systems managed data stored on magnetic tapes. Because there were
generally far more tapes than tape readers, technicians were tasked with loading and
unloading tapes as specific data was requested. Because the computers of that era had
very little memory, multiple requests for the same data generally required the data to

1

be read from the tape multiple times. While these database systems were a significant
improvement over paper databases, they are a far cry from what is possible with today’s
technology. (Modern database systems can manage terabytes of data spread across
many fast-access disk drives, holding tens of gigabytes of that data in high-speed mem-
ory, but I’m getting a bit ahead of myself.)

Nonrelational Database Systems

This section contains some background information about pre-
relational database systems. For those readers eager to dive into SQL,
feel free to skip ahead a couple of pages to the next section.

Over the first several decades of computerized database systems, data was stored and
represented to users in various ways. In a hierarchical database system, for example,
data is represented as one or more tree structures. Figure 1-1 shows how data relating
to George Blake’s and Sue Smith’s bank accounts might be represented via tree
structures.

George Blake

Checking Savings

Debit of $100.00
on 2004-01-22

Debit of $250.00
on 2004-03-09

Credit of $25.00
on 2004-02-05

Sue Smith

Checking MoneyMkt

Debit of $1000.00
on 2004-03-25

Debit of $500.00
on 2004-03-27

Credit of $138.50
on 2004-04-02

Line of credit

Credit of $77.86
on 2004-04-04

Customers

Accounts

Transactions

Figure 1-1. Hierarchical view of account data

George and Sue each have their own tree containing their accounts and the transactions
on those accounts. The hierarchical database system provides tools for locating a par-
ticular customer’s tree and then traversing the tree to find the desired accounts and/or

2 | Chapter 1: A Little Background

transactions. Each node in the tree may have either zero or one parent and zero, one,
or many children. This configuration is known as a single-parent hierarchy.

Another common approach, called the network database system, exposes sets of records
and sets of links that define relationships between different records. Figure 1-2 shows
how George’s and Sue’s same accounts might look in such a system.

George Blake

Checking

Savings

Debit of $100.00
on 2004-01-22

Debit of $250.00
on 2004-03-09

Credit of $25.00
on 2004-02-05

MoneyMkt

Debit of $1000.00
on 2004-03-25

Debit of $500.00
on 2004-03-27

Credit of $138.50
on 2004-04-02

Line of credit

Credit of $77.86
on 2004-04-04

Customers

Sue Smith

Accounts

Checking

Transactions

Checking

Savings

MoneyMkt

Line of credit

Products

Figure 1-2. Network view of account data

In order to find the transactions posted to Sue’s money market account, you would
need to perform the following steps:

1. Find the customer record for Sue Smith.

2. Follow the link from Sue Smith’s customer record to her list of accounts.

3. Traverse the chain of accounts until you find the money market account.

4. Follow the link from the money market record to its list of transactions.

One interesting feature of network database systems is demonstrated by the set of
product records on the far right of Figure 1-2. Notice that each product record (Check-
ing, Savings, etc.) points to a list of account records that are of that product type.
Account records, therefore, can be accessed from multiple places (both customer records
and product records), allowing a network database to act as a multiparent hierarchy.

Introduction to Databases | 3

Both hierarchical and network database systems are alive and well today, although
generally in the mainframe world. Additionally, hierarchical database systems have
enjoyed a rebirth in the directory services realm, such as Microsoft’s Active Directory
and the Red Hat Directory Server, as well as with Extensible Markup Language (XML).
Beginning in the 1970s, however, a new way of representing data began to take root,
one that was more rigorous yet easy to understand and implement.

The Relational Model
In 1970, Dr. E. F. Codd of IBM’s research laboratory published a paper titled “A
Relational Model of Data for Large Shared Data Banks” that proposed that data be
represented as sets of tables. Rather than using pointers to navigate between related
entities, redundant data is used to link records in different tables. Figure 1-3 shows how
George’s and Sue’s account information would appear in this context.

2004-01-22$100.00103DBT978

dateamountaccount_idtxn_type_cdtxn_id

2004-02-05$25.00103CDT979

2004-03-09$250.00104DBT980

2004-03-25$1000.00105DBT981

2004-04-02$138.50105CDT982

2004-04-04$77.86105CDT983

2004-03-27$500.00106DBT984

Transaction

$75.001CHK103

balancecust_idproduct_cdaccount_id

$250.001SAV104

$783.642CHK105

$500.002MM106

02LOC107

Account

BlakeGeorge1

lnamefnamecust_id

SmithSue2

Customer

CheckingCHK

nameproduct_cd

SavingsSAV

Money marketMM

Line of creditLOC

Product

Figure 1-3. Relational view of account data

There are four tables in Figure 1-3 representing the four entities discussed so far:
customer, product, account, and transaction. Looking across the top of the customer

4 | Chapter 1: A Little Background

table in Figure 1-3, you can see three columns: cust_id (which contains the customer’s
ID number), fname (which contains the customer’s first name), and lname (which con-
tains the customer’s last name). Looking down the side of the customer table, you can
see two rows, one containing George Blake’s data and the other containing Sue Smith’s
data. The number of columns that a table may contain differs from server to server, but
it is generally large enough not to be an issue (Microsoft SQL Server, for example, allows
up to 1,024 columns per table). The number of rows that a table may contain is more
a matter of physical limits (i.e., how much disk drive space is available) and maintain-
ability (i.e., how large a table can get before it becomes difficult to work with) than of
database server limitations.

Each table in a relational database includes information that uniquely identifies a row
in that table (known as the primary key), along with additional information needed to
describe the entity completely. Looking again at the customer table, the cust_id column
holds a different number for each customer; George Blake, for example, can be uniquely
identified by customer ID #1. No other customer will ever be assigned that identifier,
and no other information is needed to locate George Blake’s data in the customer table.

Every database server provides a mechanism for generating unique sets
of numbers to use as primary key values, so you won’t need to worry
about keeping track of what numbers have been assigned.

While I might have chosen to use the combination of the fname and lname columns as
the primary key (a primary key consisting of two or more columns is known as a
compound key), there could easily be two or more people with the same first and last
names that have accounts at the bank. Therefore, I chose to include the cust_id column
in the customer table specifically for use as a primary key column.

In this example, choosing fname/lname as the primary key would be
referred to as a natural key, whereas the choice of cust_id would be
referred to as a surrogate key. The decision whether to employ natural
or surrogate keys is a topic of widespread debate, but in this particular
case the choice is clear, since a person’s last name may change (such as
when a person adopts a spouse’s last name), and primary key columns
should never be allowed to change once a value has been assigned.

Some of the tables also include information used to navigate to another table; this is
where the “redundant data” mentioned earlier comes in. For example, the account table
includes a column called cust_id, which contains the unique identifier of the customer
who opened the account, along with a column called product_cd, which contains the
unique identifier of the product to which the account will conform. These columns are
known as foreign keys, and they serve the same purpose as the lines that connect the
entities in the hierarchical and network versions of the account information. If you are

Introduction to Databases | 5

looking at a particular account record and want to know more information about the
customer who opened the account, you would take the value of the cust_id column
and use it to find the appropriate row in the customer table (this process is known, in
relational database lingo, as a join; joins are introduced in Chapter 3 and probed deeply
in Chapters 5 and 10).

It might seem wasteful to store the same data many times, but the relational model is
quite clear on what redundant data may be stored. For example, it is proper for the
account table to include a column for the unique identifier of the customer who opened
the account, but it is not proper to include the customer’s first and last names in the
account table as well. If a customer were to change her name, for example, you want
to make sure that there is only one place in the database that holds the customer’s
name; otherwise, the data might be changed in one place but not another, causing the
data in the database to be unreliable. The proper place for this data is the customer
table, and only the cust_id values should be included in other tables. It is also not
proper for a single column to contain multiple pieces of information, such as a name
column that contains both a person’s first and last names, or an address column that
contains street, city, state, and zip code information. The process of refining a database
design to ensure that each independent piece of information is in only one place (except
for foreign keys) is known as normalization.

Getting back to the four tables in Figure 1-3, you may wonder how you would use these
tables to find George Blake’s transactions against his checking account. First, you
would find George Blake’s unique identifier in the customer table. Then, you would
find the row in the account table whose cust_id column contains George’s unique
identifier and whose product_cd column matches the row in the product table whose
name column equals “Checking.” Finally, you would locate the rows in the
transaction table whose account_id column matches the unique identifier from the
account table. This might sound complicated, but you can do it in a single command,
using the SQL language, as you will see shortly.

Some Terminology
I introduced some new terminology in the previous sections, so maybe it’s time for
some formal definitions. Table 1-1 shows the terms we use for the remainder of the
book along with their definitions.

Table 1-1. Terms and definitions

Term Definition

Entity Something of interest to the database user community. Examples include customers, parts, geographic locations,
etc.

Column An individual piece of data stored in a table.

Row A set of columns that together completely describe an entity or some action on an entity. Also called a record.

Table A set of rows, held either in memory (nonpersistent) or on permanent storage (persistent).

6 | Chapter 1: A Little Background

Term Definition

Result set Another name for a nonpersistent table, generally the result of an SQL query.

Primary key One or more columns that can be used as a unique identifier for each row in a table.

Foreign key One or more columns that can be used together to identify a single row in another table.

What Is SQL?
Along with Codd’s definition of the relational model, he proposed a language called
DSL/Alpha for manipulating the data in relational tables. Shortly after Codd’s paper
was released, IBM commissioned a group to build a prototype based on Codd’s ideas.
This group created a simplified version of DSL/Alpha that they called SQUARE. Re-
finements to SQUARE led to a language called SEQUEL, which was, finally, renamed
SQL.

SQL is now entering middle age (as is this author, alas), and it has undergone a great
deal of change along the way. In the mid-1980s, the American National Standards
Institute (ANSI) began working on the first standard for the SQL language, which was
published in 1986. Subsequent refinements led to new releases of the SQL standard in
1989, 1992, 1999, 2003, and 2006. Along with refinements to the core language, new
features have been added to the SQL language to incorporate object-oriented func-
tionality, among other things. The latest standard, SQL:2006, focuses on the integra-
tion of SQL and XML and defines a language called XQuery which is used to query
data in XML documents.

SQL goes hand in hand with the relational model because the result of an SQL query
is a table (also called, in this context, a result set). Thus, a new permanent table can be
created in a relational database simply by storing the result set of a query. Similarly, a
query can use both permanent tables and the result sets from other queries as inputs
(we explore this in detail in Chapter 9).

One final note: SQL is not an acronym for anything (although many people will insist
it stands for “Structured Query Language”). When referring to the language, it is equally
acceptable to say the letters individually (i.e., S. Q. L.) or to use the word sequel.

SQL Statement Classes
The SQL language is divided into several distinct parts: the parts that we explore in this
book include SQL schema statements, which are used to define the data structures
stored in the database; SQL data statements, which are used to manipulate the data
structures previously defined using SQL schema statements; and SQL transaction state-
ments, which are used to begin, end, and roll back transactions (covered in Chap-
ter 12). For example, to create a new table in your database, you would use the SQL
schema statement create table, whereas the process of populating your new table with
data would require the SQL data statement insert.

What Is SQL? | 7

To give you a taste of what these statements look like, here’s an SQL schema statement
that creates a table called corporation:

CREATE TABLE corporation
 (corp_id SMALLINT,
 name VARCHAR(30),
 CONSTRAINT pk_corporation PRIMARY KEY (corp_id)
);

This statement creates a table with two columns, corp_id and name, with the corp_id
column identified as the primary key for the table. We probe the finer details of this
statement, such as the different data types available with MySQL, in Chapter 2. Next,
here’s an SQL data statement that inserts a row into the corporation table for Acme
Paper Corporation:

INSERT INTO corporation (corp_id, name)
VALUES (27, 'Acme Paper Corporation');

This statement adds a row to the corporation table with a value of 27 for the corp_id
column and a value of Acme Paper Corporation for the name column.

Finally, here’s a simple select statement to retrieve the data that was just created:

mysql< SELECT name
 -> FROM corporation
 -> WHERE corp_id = 27;
+------------------------+
| name |
+------------------------+
| Acme Paper Corporation |
+------------------------+

All database elements created via SQL schema statements are stored in a special set of
tables called the data dictionary. This “data about the database” is known collectively
as metadata and is explored in Chapter 15. Just like tables that you create yourself, data
dictionary tables can be queried via a select statement, thereby allowing you to discover
the current data structures deployed in the database at runtime. For example, if you
are asked to write a report showing the new accounts created last month, you could
either hardcode the names of the columns in the account table that were known to you
when you wrote the report, or query the data dictionary to determine the current set
of columns and dynamically generate the report each time it is executed.

Most of this book is concerned with the data portion of the SQL language, which
consists of the select, update, insert, and delete commands. SQL schema statements
is demonstrated in Chapter 2, where the sample database used throughout this book
is generated. In general, SQL schema statements do not require much discussion apart
from their syntax, whereas SQL data statements, while few in number, offer numerous
opportunities for detailed study. Therefore, while I try to introduce you to many of the
SQL schema statements, most chapters in this book concentrate on the SQL data
statements.

8 | Chapter 1: A Little Background

SQL: A Nonprocedural Language
If you have worked with programming languages in the past, you are used to defining
variables and data structures, using conditional logic (i.e., if-then-else) and looping
constructs (i.e., do while ... end), and breaking your code into small, reusable pieces
(i.e., objects, functions, procedures). Your code is handed to a compiler, and the exe-
cutable that results does exactly (well, not always exactly) what you programmed it to
do. Whether you work with Java, C#, C, Visual Basic, or some other procedural lan-
guage, you are in complete control of what the program does.

A procedural language defines both the desired results and the mecha-
nism, or process, by which the results are generated. Nonprocedural
languages also define the desired results, but the process by which the
results are generated is left to an external agent.

With SQL, however, you will need to give up some of the control you are used to,
because SQL statements define the necessary inputs and outputs, but the manner in
which a statement is executed is left to a component of your database engine known
as the optimizer. The optimizer’s job is to look at your SQL statements and, taking into
account how your tables are configured and what indexes are available, decide the most
efficient execution path (well, not always the most efficient). Most database engines
will allow you to influence the optimizer’s decisions by specifying optimizer hints, such
as suggesting that a particular index be used; most SQL users, however, will never get
to this level of sophistication and will leave such tweaking to their database adminis-
trator or performance expert.

With SQL, therefore, you will not be able to write complete applications. Unless you
are writing a simple script to manipulate certain data, you will need to integrate SQL
with your favorite programming language. Some database vendors have done this for
you, such as Oracle’s PL/SQL language, MySQL’s stored procedure language, and
Microsoft’s Transact-SQL language. With these languages, the SQL data statements
are part of the language’s grammar, allowing you to seamlessly integrate database
queries with procedural commands. If you are using a non-database-specific language
such as Java, however, you will need to use a toolkit/API to execute SQL statements
from your code. Some of these toolkits are provided by your database vendor, whereas
others are created by third-party vendors or by open source providers. Table 1-2 shows
some of the available options for integrating SQL into a specific language.

What Is SQL? | 9

Table 1-2. SQL integration toolkits

Language Toolkit

Java JDBC (Java Database Connectivity; JavaSoft)

C++ Rogue Wave SourcePro DB (third-party tool to connect to Oracle, SQL Server, MySQL, Informix, DB2, Sybase, and
PostgreSQL databases)

C/C++ Pro*C (Oracle), MySQL C API (open source), and DB2 Call Level Interface (IBM)

C# ADO.NET (Microsoft)

Perl Perl DBI

Python Python DB

Visual Basic ADO.NET (Microsoft)

If you only need to execute SQL commands interactively, every database vendor pro-
vides at least a simple command-line tool for submitting SQL commands to the data-
base engine and inspecting the results. Most vendors provide a graphical tool as well
that includes one window showing your SQL commands and another window showing
the results from your SQL commands. Since the examples in this book are executed
against a MySQL database, I use the mysql command-line tool that is included as part
of the MySQL installation to run the examples and format the results.

SQL Examples
Earlier in this chapter, I promised to show you an SQL statement that would return all
the transactions against George Blake’s checking account. Without further ado, here
it is:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM individual i
 INNER JOIN account a ON i.cust_id = a.cust_id
 INNER JOIN product p ON p.product_cd = a.product_cd
 INNER JOIN transaction t ON t.account_id = a.account_id
WHERE i.fname = 'George' AND i.lname = 'Blake'
 AND p.name = 'checking account';

+--------+-------------+---------------------+--------+
| txn_id | txn_type_cd | txn_date | amount |
+--------+-------------+---------------------+--------+
| 11 | DBT | 2008-01-05 00:00:00 | 100.00 |
+--------+-------------+---------------------+--------+
1 row in set (0.00 sec)

Without going into too much detail at this point, this query identifies the row in the
individual table for George Blake and the row in the product table for the “checking”
product, finds the row in the account table for this individual/product combination,
and returns four columns from the transaction table for all transactions posted to this
account. If you happen to know that George Blake’s customer ID is 8 and that checking
accounts are designated by the code 'CHK', then you can simply find George Blake’s

10 | Chapter 1: A Little Background

checking account in the account table based on the customer ID and use the account
ID to find the appropriate transactions:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM account a
 INNER JOIN transaction t ON t.account_id = a.account_id
WHERE a.cust_id = 8 AND a.product_cd = 'CHK';

I cover all of the concepts in these queries (plus a lot more) in the following chapters,
but I wanted to at least show what they would look like.

The previous queries contain three different clauses: select, from, and where. Almost
every query that you encounter will include at least these three clauses, although there
are several more that can be used for more specialized purposes. The role of each of
these three clauses is demonstrated by the following:

SELECT /* one or more things */ ...
FROM /* one or more places */ ...
WHERE /* one or more conditions apply */ ...

Most SQL implementations treat any text between the /* and */ tags as
comments.

When constructing your query, your first task is generally to determine which table or
tables will be needed and then add them to your from clause. Next, you will need to
add conditions to your where clause to filter out the data from these tables that you
aren’t interested in. Finally, you will decide which columns from the different tables
need to be retrieved and add them to your select clause. Here’s a simple example that
shows how you would find all customers with the last name “Smith”:

SELECT cust_id, fname
FROM individual
WHERE lname = 'Smith';

This query searches the individual table for all rows whose lname column matches the
string 'Smith' and returns the cust_id and fname columns from those rows.

Along with querying your database, you will most likely be involved with populating
and modifying the data in your database. Here’s a simple example of how you would
insert a new row into the product table:

INSERT INTO product (product_cd, name)
VALUES ('CD', 'Certificate of Depysit')

Whoops, looks like you misspelled “Deposit.” No problem. You can clean that up with
an update statement:

UPDATE product
SET name = 'Certificate of Deposit'
WHERE product_cd = 'CD';

What Is SQL? | 11

Notice that the update statement also contains a where clause, just like the select state-
ment. This is because an update statement must identify the rows to be modified; in
this case, you are specifying that only those rows whose product_cd column matches
the string 'CD' should be modified. Since the product_cd column is the primary key for
the product table, you should expect your update statement to modify exactly one row
(or zero, if the value doesn’t exist in the table). Whenever you execute an SQL data
statement, you will receive feedback from the database engine as to how many rows
were affected by your statement. If you are using an interactive tool such as the mysql
command-line tool mentioned earlier, then you will receive feedback concerning how
many rows were either:

• Returned by your select statement

• Created by your insert statement

• Modified by your update statement

• Removed by your delete statement

If you are using a procedural language with one of the toolkits mentioned earlier, the
toolkit will include a call to ask for this information after your SQL data statement has
executed. In general, it’s a good idea to check this info to make sure your statement
didn’t do something unexpected (like when you forget to put a where clause on your
delete statement and delete every row in the table!).

What Is MySQL?
Relational databases have been available commercially for over two decades. Some of
the most mature and popular commercial products include:

• Oracle Database from Oracle Corporation

• SQL Server from Microsoft

• DB2 Universal Database from IBM

• Sybase Adaptive Server from Sybase

All these database servers do approximately the same thing, although some are better
equipped to run very large or very-high-throughput databases. Others are better at
handling objects or very large files or XML documents, and so on. Additionally, all
these servers do a pretty good job of complying with the latest ANSI SQL standard.
This is a good thing, and I make it a point to show you how to write SQL statements
that will run on any of these platforms with little or no modification.

Along with the commercial database servers, there has been quite a bit of activity in the
open source community in the past five years with the goal of creating a viable alter-
native to the commercial database servers. Two of the most commonly used open
source database servers are PostgreSQL and MySQL. The MySQL website (http://www
.mysql.com) currently claims over 10 million installations, its server is available for free,

12 | Chapter 1: A Little Background

http://www.mysql.com
http://www.mysql.com

and I have found its server to be extremely simple to download and install. For these
reasons, I have decided that all examples for this book be run against a MySQL (version
6.0) database, and that the mysql command-line tool be used to format query results.
Even if you are already using another server and never plan to use MySQL, I urge you
to install the latest MySQL server, load the sample schema and data, and experiment
with the data and examples in this book.

However, keep in mind the following caveat:

This is not a book about MySQL’s SQL implementation.

Rather, this book is designed to teach you how to craft SQL statements that will run
on MySQL with no modifications, and will run on recent releases of Oracle Database,
Sybase Adaptive Server, and SQL Server with few or no modifications.

To keep the code in this book as vendor-independent as possible, I will refrain from
demonstrating some of the interesting things that the MySQL SQL language imple-
menters have decided to do that can’t be done on other database implementations.
Instead, Appendix B covers some of these features for readers who are planning to
continue using MySQL.

What’s in Store
The overall goal of the next four chapters is to introduce the SQL data statements, with
a special emphasis on the three main clauses of the select statement. Additionally, you
will see many examples that use the bank schema (introduced in the next chapter),
which will be used for all examples in the book. It is my hope that familiarity with a
single database will allow you to get to the crux of an example without your having to
stop and examine the tables being used each time. If it becomes a bit tedious working
with the same set of tables, feel free to augment the sample database with additional
tables, or invent your own database with which to experiment.

After you have a solid grasp on the basics, the remaining chapters will drill deep into
additional concepts, most of which are independent of each other. Thus, if you find
yourself getting confused, you can always move ahead and come back later to revisit a
chapter. When you have finished the book and worked through all of the examples,
you will be well on your way to becoming a seasoned SQL practitioner.

For readers interested in learning more about relational databases, the history of com-
puterized database systems, or the SQL language than was covered in this short intro-
duction, here are a few resources worth checking out:

• C.J. Date’s Database in Depth: Relational Theory for Practitioners (http://oreilly
.com/catalog/9780596100124/) (O’Reilly)

• C.J. Date’s An Introduction to Database Systems, Eighth Edition (Addison-Wesley)

What’s in Store | 13

http://oreilly.com/catalog/9780596100124/
http://oreilly.com/catalog/9780596100124/
http://oreilly.com/catalog/9780596100124/

• C.J. Date’s The Database Relational Model: A Retrospective Review and Analysis:
A Historical Account and Assessment of E. F. Codd’s Contribution to the Field of
Database Technology (Addison-Wesley)

• http://en.wikipedia.org/wiki/Database_management_system

• http://www.mcjones.org/System_R/

14 | Chapter 1: A Little Background

http://en.wikipedia.org/wiki/Database_management_system
http://www.mcjones.org/System_R/

CHAPTER 2

Creating and Populating a Database

This chapter provides you with the information you need to create your first database
and to create the tables and associated data used for the examples in this book. You
will also learn about various data types and see how to create tables using them. Because
the examples in this book are executed against a MySQL database, this chapter is
somewhat skewed toward MySQL’s features and syntax, but most concepts are appli-
cable to any server.

Creating a MySQL Database
If you already have a MySQL database server available for your use, you can skip the
installation instructions and start with the instructions in Table 2-1. Keep in mind,
however, that this book assumes that you are using MySQL version 6.0 or later, so you
may want to consider upgrading your server or installing another server if you are using
an earlier release.

The following instructions show you the minimum steps required to install a MySQL
6.0 server on a Windows computer:

1. Go to the download page for the MySQL Database Server at http://dev.mysql.com/
downloads. If you are loading version 6.0, the full URL is http://dev.mysql.com/
downloads/mysql/6.0.html.

2. Download the Windows Essentials (x86) package, which includes only the com-
monly used tools.

3. When asked “Do you want to run or save this file?” click Run.

4. The MySQL Server 6.0—Setup Wizard window appears. Click Next.

5. Activate the Typical Install radio button, and click Next.

6. Click Install.

7. A MySQL Enterprise window appears. Click Next twice.

15

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads/mysql/6.0.html
http://dev.mysql.com/downloads/mysql/6.0.html

8. When the installation is complete, make sure the box is checked next to “Configure
the MySQL Server now,” and then click Finish. This launches the Configuration
Wizard.

9. When the Configuration Wizard launches, activate the Standard Configuration
radio button, and then select both the “Install as Windows Service” and “Include
Bin Directory in Windows Path” checkboxes. Click Next.

10. Select the Modify Security Settings checkbox and enter a password for the root
user (make sure you write down the password, because you will need it shortly!),
and click Next.

11. Click Execute.

At this point, if all went well, the MySQL server is installed and running. If not, I suggest
you uninstall the server and read the “Troubleshooting a MySQL Installation Under
Windows” guide (which you can find at http://dev.mysql.com/doc/refman/6.0/en/win
dows-troubleshooting.html).

If you uninstalled an older version of MySQL before loading version 6.0,
you may have some further cleanup to do (I had to clean out some old
Registry entries) before you can get the Configuration Wizard to run
successfully.

Next, you will need to open a Windows command window, launch the mysql tool, and
create your database and database user. Table 2-1 describes the necessary steps. In step
5, feel free to choose your own password for the lrngsql user rather than “xyz” (but
don’t forget to write it down!).

Table 2-1. Creating the sample database

Step Description Action

1 Open the Run dialog box from the Start menu Choose Start and then Run

2 Launch a command window Type cmd and click OK

3 Log in to MySQL as root mysql -u root -p

4 Create a database for the sample data create database bank;

5 Create the lrngsql database user with full privileges on the
bank database

grant all privileges on bank.* to
'lrngsql'@'localhost' identified
by 'xyz';

6 Exit the mysql tool quit;

7 Log in to MySQL as lrngsql mysql -u lrngsql -p;

8 Attach to the bank database use bank;

16 | Chapter 2: Creating and Populating a Database

http://dev.mysql.com/doc/refman/6.0/en/windows-troubleshooting.html
http://dev.mysql.com/doc/refman/6.0/en/windows-troubleshooting.html

You now have a MySQL server, a database, and a database user; the only thing left to
do is create the database tables and populate them with sample data. To do so, down-
load the script at http://examples.oreilly.com/learningsql/ and run it from the mysql
utility. If you saved the file as c:\temp\LearningSQLExample.sql, you would need to do
the following:

1. If you have logged out of the mysql tool, repeat steps 7 and 8 from Table 2-1.

2. Type source c:\temp\LearningSQLExample.sql; and press Enter.

You should now have a working database populated with all the data needed for the
examples in this book.

Using the mysql Command-Line Tool
Whenever you invoke the mysql command-line tool, you can specify the username and
database to use, as in the following:

mysql -u lrngsql -p bank

This will save you from having to type use bank; every time you start up the tool. You
will be asked for your password, and then the mysql> prompt will appear, via which
you will be able to issue SQL statements and view the results. For example, if you want
to know the current date and time, you could issue the following query:

mysql> SELECT now();
+---------------------+
| now() |
+---------------------+
| 2008-02-19 16:48:46 |
+---------------------+
1 row in set (0.01 sec)

The now() function is a built-in MySQL function that returns the current date and time.
As you can see, the mysql command-line tool formats the results of your queries within
a rectangle bounded by +, -, and | characters. After the results have been exhausted (in
this case, there is only a single row of results), the mysql command-line tool shows how
many rows were returned and how long the SQL statement took to execute.

Using the mysql Command-Line Tool | 17

http://examples.oreilly.com/learningsql/

About Missing from Clauses
With some database servers, you won’t be able to issue a query without a from clause
that names at least one table. Oracle Database is a commonly used server for which
this is true. For cases when you only need to call a function, Oracle provides a table
called dual, which consists of a single column called dummy that contains a single row
of data. In order to be compatible with Oracle Database, MySQL also provides a
dual table. The previous query to determine the current date and time could therefore
be written as:

mysql> SELECT now()
 FROM dual;
+---------------------+
| now() |
+---------------------+
| 2005-05-06 16:48:46 |
+---------------------+
1 row in set (0.01 sec)

If you are not using Oracle and have no need to be compatible with Oracle, you can
ignore the dual table altogether and use just a select clause without a from clause.

When you are done with the mysql command-line tool, simply type quit; or exit; to
return to the Windows command shell.

MySQL Data Types
In general, all the popular database servers have the capacity to store the same types of
data, such as strings, dates, and numbers. Where they typically differ is in the specialty
data types, such as XML documents or very large text or binary documents. Since this
is an introductory book on SQL, and since 98% of the columns you encounter will be
simple data types, this book covers only the character, date, and numeric data types.

Character Data
Character data can be stored as either fixed-length or variable-length strings; the dif-
ference is that fixed-length strings are right-padded with spaces and always consume
the same number of bytes, and variable-length strings are not right-padded with spaces
and don’t always consume the same number of bytes. When defining a character col-
umn, you must specify the maximum size of any string to be stored in the column. For
example, if you want to store strings up to 20 characters in length, you could use either
of the following definitions:

char(20) /* fixed-length */
varchar(20) /* variable-length */

The maximum length for char columns is currently 255 bytes, whereas varchar columns
can be up to 65,535 bytes. If you need to store longer strings (such as emails, XML

18 | Chapter 2: Creating and Populating a Database

documents, etc.), then you will want to use one of the text types (mediumtext and
longtext), which I cover later in this section. In general, you should use the char type
when all strings to be stored in the column are of the same length, such as state abbre-
viations, and the varchar type when strings to be stored in the column are of varying
lengths. Both char and varchar are used in a similar fashion in all the major database
servers.

Oracle Database is an exception when it comes to the use of varchar.
Oracle users should use the varchar2 type when defining variable-length
character columns.

Character sets

For languages that use the Latin alphabet, such as English, there is a sufficiently small
number of characters such that only a single byte is needed to store each character.
Other languages, such as Japanese and Korean, contain large numbers of characters,
thus requiring multiple bytes of storage for each character. Such character sets are
therefore called multibyte character sets.

MySQL can store data using various character sets, both single- and multibyte. To view
the supported character sets in your server, you can use the show command, as in:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1

MySQL Data Types | 19

keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
binary	Binary pseudo charset	binary	1
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+----------+-----------------------------+---------------------+--------+
36 rows in set (0.11 sec)

If the value in the fourth column, maxlen, is greater than 1, then the character set is a
multibyte character set.

When I installed the MySQL server, the latin1 character set was automatically chosen
as the default character set. However, you may choose to use a different character set
for each character column in your database, and you can even store different character
sets within the same table. To choose a character set other than the default when de-
fining a column, simply name one of the supported character sets after the type defi-
nition, as in:

varchar(20) character set utf8

With MySQL, you may also set the default character set for your entire database:

create database foreign_sales character set utf8;

While this is as much information regarding character sets as I’m willing to discuss in
an introductory book, there is a great deal more to the topic of internationalization
than what is shown here. If you plan to deal with multiple or unfamiliar character sets,
you may want to pick up a book such as Andy Deitsch and David Czarnecki’s Java
Internationalization (http://oreilly.com/catalog/9780596000196/) (O’Reilly) or Richard
Gillam’s Unicode Demystified: A Practical Programmer’s Guide to the Encoding Stand-
ard (Addison-Wesley).

Text data

If you need to store data that might exceed the 64 KB limit for varchar columns, you
will need to use one of the text types.

Table 2-2 shows the available text types and their maximum sizes.

20 | Chapter 2: Creating and Populating a Database

http://oreilly.com/catalog/9780596000196/
http://oreilly.com/catalog/9780596000196/
http://oreilly.com/catalog/9780596000196/

Table 2-2. MySQL text types

Text type Maximum number of bytes

Tinytext 255

Text 65,535

Mediumtext 16,777,215

Longtext 4,294,967,295

When choosing to use one of the text types, you should be aware of the following:

• If the data being loaded into a text column exceeds the maximum size for that type,
the data will be truncated.

• Trailing spaces will not be removed when data is loaded into the column.

• When using text columns for sorting or grouping, only the first 1,024 bytes are
used, although this limit may be increased if necessary.

• The different text types are unique to MySQL. SQL Server has a single text type
for large character data, whereas DB2 and Oracle use a data type called clob, for
Character Large Object.

• Now that MySQL allows up to 65,535 bytes for varchar columns (it was limited
to 255 bytes in version 4), there isn’t any particular need to use the tinytext or
text type.

If you are creating a column for free-form data entry, such as a notes column to hold
data about customer interactions with your company’s customer service department,
then varchar will probably be adequate. If you are storing documents, however, you
should choose either the mediumtext or longtext type.

Oracle Database allows up to 2,000 bytes for char columns and 4,000
bytes for varchar2 columns. SQL Server can handle up to 8,000 bytes
for both char and varchar data.

Numeric Data
Although it might seem reasonable to have a single numeric data type called “numeric,”
there are actually several different numeric data types that reflect the various ways in
which numbers are used, as illustrated here:

A column indicating whether a customer order has been shipped
This type of column, referred to as a Boolean, would contain a 0 to indicate
false and a 1 to indicate true.

A system-generated primary key for a transaction table
This data would generally start at 1 and increase in increments of one up to a
potentially very large number.

MySQL Data Types | 21

An item number for a customer’s electronic shopping basket
The values for this type of column would be positive whole numbers between 1
and, at most, 200 (for shopaholics).

Positional data for a circuit board drill machine
High-precision scientific or manufacturing data often requires accuracy to eight
decimal points.

To handle these types of data (and more), MySQL has several different numeric data
types. The most commonly used numeric types are those used to store whole numbers.
When specifying one of these types, you may also specify that the data is unsigned,
which tells the server that all data stored in the column will be greater than or equal to
zero. Table 2-3 shows the five different data types used to store whole-number integers.

Table 2-3. MySQL integer types

Type Signed range Unsigned range

Tinyint −128 to 127 0 to 255

Smallint −32,768 to 32,767 0 to 65,535

Mediumint −8,388,608 to 8,388,607 0 to 16,777,215

Int −2,147,483,648 to 2,147,483,647 0 to 4,294,967,295

Bigint −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 0 to 18,446,744,073,709,551,615

When you create a column using one of the integer types, MySQL will allocate an
appropriate amount of space to store the data, which ranges from one byte for a
tinyint to eight bytes for a bigint. Therefore, you should try to choose a type that will
be large enough to hold the biggest number you can envision being stored in the column
without needlessly wasting storage space.

For floating-point numbers (such as 3.1415927), you may choose from the numeric
types shown in Table 2-4.

Table 2-4. MySQL floating-point types

Type Numeric range

Float(p,s) −3.402823466E+38 to −1.175494351E-38

and 1.175494351E-38 to 3.402823466E+38

Double(p,s) −1.7976931348623157E+308 to −2.2250738585072014E-308

and 2.2250738585072014E-308 to 1.7976931348623157E+308

When using a floating-point type, you can specify a precision (the total number of
allowable digits both to the left and to the right of the decimal point) and a scale (the
number of allowable digits to the right of the decimal point), but they are not required.
These values are represented in Table 2-4 as p and s. If you specify a precision and scale
for your floating-point column, remember that the data stored in the column will be

22 | Chapter 2: Creating and Populating a Database

rounded if the number of digits exceeds the scale and/or precision of the column. For
example, a column defined as float(4,2) will store a total of four digits, two to the left
of the decimal and two to the right of the decimal. Therefore, such a column would
handle the numbers 27.44 and 8.19 just fine, but the number 17.8675 would be roun-
ded to 17.87, and attempting to store the number 178.375 in your float(4,2) column
would generate an error.

Like the integer types, floating-point columns can be defined as unsigned, but this des-
ignation only prevents negative numbers from being stored in the column rather than
altering the range of data that may be stored in the column.

Temporal Data
Along with strings and numbers, you will almost certainly be working with information
about dates and/or times. This type of data is referred to as temporal, and some exam-
ples of temporal data in a database include:

• The future date that a particular event is expected to happen, such as shipping a
customer’s order

• The date that a customer’s order was shipped

• The date and time that a user modified a particular row in a table

• An employee’s birth date

• The year corresponding to a row in a yearly_sales fact table in a data warehouse

• The elapsed time needed to complete a wiring harness on an automobile assembly
line

MySQL includes data types to handle all of these situations. Table 2-5 shows the tem-
poral data types supported by MySQL.

Table 2-5. MySQL temporal types

Type Default format Allowable values

Date YYYY-MM-DD 1000-01-01 to 9999-12-31

Datetime YYYY-MM-DD HH:MI:SS 1000-01-01 00:00:00 to 9999-12-31 23:59:59

Timestamp YYYY-MM-DD HH:MI:SS 1970-01-01 00:00:00 to 2037-12-31 23:59:59

Year YYYY 1901 to 2155

Time HHH:MI:SS −838:59:59 to 838:59:59

While database servers store temporal data in various ways, the purpose of a format
string (second column of Table 2-5) is to show how the data will be represented when
retrieved, along with how a date string should be constructed when inserting or up-
dating a temporal column. Thus, if you wanted to insert the date March 23, 2005 into
a date column using the default format YYYY-MM-DD, you would use the string

MySQL Data Types | 23

'2005-03-23'. Chapter 7 fully explores how temporal data is constructed and
displayed.

Each database server allows a different range of dates for temporal col-
umns. Oracle Database accepts dates ranging from 4712 BC to 9999
AD, while SQL Server only handles dates ranging from 1753 AD to 9999
AD (unless you are using SQL Server 2008’s new datetime2 data type,
which allows for dates ranging from 1 AD to 9999 AD). MySQL falls in
between Oracle and SQL Server and can store dates from 1000 AD to
9999 AD. Although this might not make any difference for most systems
that track current and future events, it is important to keep in mind if
you are storing historical dates.

Table 2-6 describes the various components of the date formats shown in Table 2-5.

Table 2-6. Date format components

Component Definition Range

YYYY Year, including century 1000 to 9999

MM Month 01 (January) to 12 (December)

DD Day 01 to 31

HH Hour 00 to 23

HHH Hours (elapsed) −838 to 838

MI Minute 00 to 59

SS Second 00 to 59

Here’s how the various temporal types would be used to implement the examples
shown earlier:

• Columns to hold the expected future shipping date of a customer order and an
employee’s birth date would use the date type, since it is unnecessary to know at
what time a person was born and unrealistic to schedule a future shipment down
to the second.

• A column to hold information about when a customer order was actually shipped
would use the datetime type, since it is important to track not only the date that
the shipment occurred but the time as well.

• A column that tracks when a user last modified a particular row in a table would
use the timestamp type. The timestamp type holds the same information as the
datetime type (year, month, day, hour, minute, second), but a timestamp column
will automatically be populated with the current date/time by the MySQL server
when a row is added to a table or when a row is later modified.

• A column holding just year data would use the year type.

24 | Chapter 2: Creating and Populating a Database

• Columns that hold data regarding the length of time needed to complete a task
would use the time type. For this type of data, it would be unnecessary and con-
fusing to store a date component, since you are interested only in the number of
hours/minutes/seconds needed to complete the task. This information could be
derived using two datetime columns (one for the task start date/time and the other
for the task completion date/time) and subtracting one from the other, but it is
simpler to use a single time column.

Chapter 7 explores how to work with each of these temporal data types.

Table Creation
Now that you have a firm grasp on what data types may be stored in a MySQL database,
it’s time to see how to use these types in table definitions. Let’s start by defining a table
to hold information about a person.

Step 1: Design
A good way to start designing a table is to do a bit of brainstorming to see what kind
of information would be helpful to include. Here’s what I came up with after thinking
for a short time about the types of information that describe a person:

• Name

• Gender

• Birth date

• Address

• Favorite foods

This is certainly not an exhaustive list, but it’s good enough for now. The next step is
to assign column names and data types. Table 2-7 shows my initial attempt.

Table 2-7. Person table, first pass

Column Type Allowable values

Name Varchar(40)

Gender Char(1) M, F

Birth_date Date

Address Varchar(100)

Favorite_foods Varchar(200)

The name, address, and favorite_foods columns are of type varchar and allow for free-
form data entry. The gender column allows a single character which should equal only
M or F. The birth_date column is of type date, since a time component is not needed.

Table Creation | 25

Step 2: Refinement
In Chapter 1, you were introduced to the concept of normalization, which is the process
of ensuring that there are no duplicate (other than foreign keys) or compound columns
in your database design. In looking at the columns in the person table a second time,
the following issues arise:

• The name column is actually a compound object consisting of a first name and a
last name.

• Since multiple people can have the same name, gender, birth date, and so forth,
there are no columns in the person table that guarantee uniqueness.

• The address column is also a compound object consisting of street, city, state/
province, country, and postal code.

• The favorite_foods column is a list containing 0, 1, or more independent items. It
would be best to create a separate table for this data that includes a foreign key to
the person table so that you know to which person a particular food may be
attributed.

After taking these issues into consideration, Table 2-8 gives a normalized version of the
person table.

Table 2-8. Person table, second pass

Column Type Allowable values

Person_id Smallint (unsigned)

First_name Varchar(20)

Last_name Varchar(20)

Gender Char(1) M, F

Birth_date Date

Street Varchar(30)

City Varchar(20)

State Varchar(20)

Country Varchar(20)

Postal_code Varchar(20)

Now that the person table has a primary key (person_id) to guarantee uniqueness, the
next step is to build a favorite_food table that includes a foreign key to the person table.
Table 2-9 shows the result.

26 | Chapter 2: Creating and Populating a Database

Table 2-9. Favorite_food table

Column Type

Person_id Smallint (unsigned)

Food Varchar(20)

The person_id and food columns comprise the primary key of the favorite_food table,
and the person_id column is also a foreign key to the person table.

How Much Is Enough?
Moving the favorite_foods column out of the person table was definitely a good idea,
but are we done yet? What happens, for example, if one person lists “pasta” as a favorite
food while another person lists “spaghetti”? Are they the same thing? In order to prevent
this problem, you might decide that you want people to choose their favorite foods
from a list of options, in which case you should create a food table with food_id and
food_name columns, and then change the favorite_food table to contain a foreign key
to the food table. While this design would be fully normalized, you might decide that
you simply want to store the values that the user has entered, in which case you may
leave the table as is.

Step 3: Building SQL Schema Statements
Now that the design is complete for the two tables holding information about people
and their favorite foods, the next step is to generate SQL statements to create the tables
in the database. Here is the statement to create the person table:

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
 fname VARCHAR(20),
 lname VARCHAR(20),
 gender CHAR(1),
 birth_date DATE,
 street VARCHAR(30),
 city VARCHAR(20),
 state VARCHAR(20),
 country VARCHAR(20),
 postal_code VARCHAR(20),
 CONSTRAINT pk_person PRIMARY KEY (person_id)
);

Everything in this statement should be fairly self-explanatory except for the last item;
when you define your table, you need to tell the database server what column or col-
umns will serve as the primary key for the table. You do this by creating a constraint
on the table. You can add several types of constraints to a table definition. This con-
straint is a primary key constraint. It is created on the person_id column and given the
name pk_person.

Table Creation | 27

While on the topic of constraints, there is another type of constraint that would be
useful for the person table. In Table 2-7, I added a third column to show the allowable
values for certain columns (such as 'M' and 'F' for the gender column). Another type
of constraint called a check constraint constrains the allowable values for a particular
column. MySQL allows a check constraint to be attached to a column definition, as in
the following:

gender CHAR(1) CHECK (gender IN ('M','F')),

While check constraints operate as expected on most database servers, the MySQL
server allows check constraints to be defined but does not enforce them. However,
MySQL does provide another character data type called enum that merges the check
constraint into the data type definition. Here’s what it would look like for the gender
column definition:

gender ENUM('M','F'),

Here’s how the person table definition looks with an enum data type for the gender
column:

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
 fname VARCHAR(20),
 lname VARCHAR(20),
 gender ENUM('M','F'),
 birth_date DATE,
 street VARCHAR(30),
 city VARCHAR(20),
 state VARCHAR(20),
 country VARCHAR(20),
 postal_code VARCHAR(20),
 CONSTRAINT pk_person PRIMARY KEY (person_id)
);

Later in this chapter, you will see what happens if you try to add data to a column that
violates its check constraint (or, in the case of MySQL, its enumeration values).

You are now ready to run the create table statement using the mysql command-line
tool. Here’s what it looks like:

mysql> CREATE TABLE person
 -> (person_id SMALLINT UNSIGNED,
 -> fname VARCHAR(20),
 -> lname VARCHAR(20),
 -> gender ENUM('M','F'),
 -> birth_date DATE,
 -> street VARCHAR(30),
 -> city VARCHAR(20),
 -> state VARCHAR(20),
 -> country VARCHAR(20),
 -> postal_code VARCHAR(20),
 -> CONSTRAINT pk_person PRIMARY KEY (person_id)
 ->);
 Query OK, 0 rows affected (0.27 sec)

28 | Chapter 2: Creating and Populating a Database

After processing the create table statement, the MySQL server returns the message
“Query OK, 0 rows affected,” which tells me that the statement had no syntax errors.
If you want to make sure that the person table does, in fact, exist, you can use the
describe command (or desc for short) to look at the table definition:

mysql> DESC person;
+-------------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------------------+------+-----+---------+-------+
person_id	smallint(5) unsigned		PRI	0	
fname	varchar(20)	YES		NULL	
lname	varchar(20)	YES		NULL	
gender	enum('M','F')	YES		NULL	
birth_date	date	YES		NULL	
street	varchar(30)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
country	varchar(20)	YES		NULL	
postal_code	varchar(20)	YES		NULL	
+-------------+----------------------+------+-----+---------+-------+
10 rows in set (0.06 sec)

Columns 1 and 2 of the describe output are self-explanatory. Column 3 shows whether
a particular column can be omitted when data is inserted into the table. I purposefully
left this topic out of the discussion for now (see the sidebar “What Is
Null?” on page 29 for a short discourse), but we explore it fully in Chapter 4. The
fourth column shows whether a column takes part in any keys (primary or foreign); in
this case, the person_id column is marked as the primary key. Column 5 shows whether
a particular column will be populated with a default value if you omit the column when
inserting data into the table. The person_id column shows a default value of 0, although
this would work only once, since each row in the person table must contain a unique
value for this column (since it is the primary key). The sixth column (called “Extra”)
shows any other pertinent information that might apply to a column.

What Is Null?
In some cases, it is not possible or applicable to provide a value for a particular column
in your table. For example, when adding data about a new customer order, the
ship_date column cannot yet be determined. In this case, the column is said to be
null (note that I do not say that it equals null), which indicates the absence of a value.
Null is used for various cases where a value cannot be supplied, such as:

• Not applicable

• Unknown

• Empty set

When designing a table, you may specify which columns are allowed to be null (the
default), and which columns are not allowed to be null (designated by adding the key-
words not null after the type definition).

Table Creation | 29

Now that you’ve created the person table, your next step is to create the
favorite_food table:

mysql> CREATE TABLE favorite_food
 -> (person_id SMALLINT UNSIGNED,
 -> food VARCHAR(20),
 -> CONSTRAINT pk_favorite_food PRIMARY KEY (person_id, food),
 -> CONSTRAINT fk_fav_food_person_id FOREIGN KEY (person_id)
 -> REFERENCES person (person_id)
 ->);
Query OK, 0 rows affected (0.10 sec)

This should look very similar to the create table statement for the person table, with
the following exceptions:

• Since a person can have more than one favorite food (which is the reason this table
was created in the first place), it takes more than just the person_id column to
guarantee uniqueness in the table. This table, therefore, has a two-column primary
key: person_id and food.

• The favorite_food table contains another type of constraint called a foreign key
constraint. This constrains the values of the person_id column in the
favorite_food table to include only values found in the person table. With this
constraint in place, I will not be able to add a row to the favorite_food table indi-
cating that person_id 27 likes pizza if there isn’t already a row in the person table
having a person_id of 27.

If you forget to create the foreign key constraint when you first create
the table, you can add it later via the alter table statement.

Describe shows the following after executing the create table statement:

mysql> DESC favorite_food;
+--------------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+----------------------+------+-----+---------+-------+
| person_id | smallint(5) unsigned | | PRI | 0 | |
| food | varchar(20) | | PRI | | |
+--------------+----------------------+------+-----+---------+-------+

Now that the tables are in place, the next logical step is to add some data.

Populating and Modifying Tables
With the person and favorite_food tables in place, you can now begin to explore the
four SQL data statements: insert, update, delete, and select.

30 | Chapter 2: Creating and Populating a Database

Inserting Data
Since there is not yet any data in the person and favorite_food tables, the first of the
four SQL data statements to be explored will be the insert statement. There are three
main components to an insert statement:

• The name of the table into which to add the data

• The names of the columns in the table to be populated

• The values with which to populate the columns

You are not required to provide data for every column in the table (unless all the col-
umns in the table have been defined as not null). In some cases, those columns that
are not included in the initial insert statement will be given a value later via an
update statement. In other cases, a column may never receive a value for a particular
row of data (such as a customer order that is canceled before being shipped, thus ren-
dering the ship_date column inapplicable).

Generating numeric key data

Before inserting data into the person table, it would be useful to discuss how values are
generated for numeric primary keys. Other than picking a number out of thin air, you
have a couple of options:

• Look at the largest value currently in the table and add one.

• Let the database server provide the value for you.

Although the first option may seem valid, it proves problematic in a multiuser envi-
ronment, since two users might look at the table at the same time and generate the
same value for the primary key. Instead, all database servers on the market today pro-
vide a safe, robust method for generating numeric keys. In some servers, such as the
Oracle Database, a separate schema object is used (called a sequence); in the case of
MySQL, however, you simply need to turn on the auto-increment feature for your pri-
mary key column. Normally, you would do this at table creation, but doing it now
provides the opportunity to learn another SQL schema statement, alter table, which
is used to modify the definition of an existing table:

ALTER TABLE person MODIFY person_id SMALLINT UNSIGNED AUTO_INCREMENT;

This statement essentially redefines the person_id column in the person table. If you
describe the table, you will now see the auto-increment feature listed under the “Extra”
column for person_id:

Populating and Modifying Tables | 31

mysql> DESC person;
+-------------+----------------------------+------+-----+---------+-----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------------------------+------+-----+---------+-----------------+
person_id	smallint(5) unsigned		PRI	NULL	auto_increment
.					
.					
.					

When you insert data into the person table, simply provide a null value for the per
son_id column, and MySQL will populate the column with the next available number
(by default, MySQL starts at 1 for auto-increment columns).

The insert statement

Now that all the pieces are in place, it’s time to add some data. The following statement
creates a row in the person table for William Turner:

mysql> INSERT INTO person
 -> (person_id, fname, lname, gender, birth_date)
 -> VALUES (null, 'William','Turner', 'M', '1972-05-27');
Query OK, 1 row affected (0.01 sec)

The feedback (“Query OK, 1 row affected”) tells you that your statement syntax was
proper, and that one row was added to the database (since it was an insert statement).
You can look at the data just added to the table by issuing a select statement:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.06 sec)

As you can see, the MySQL server generated a value of 1 for the primary key. Since
there is only a single row in the person table, I neglected to specify which row I am
interested in and simply retrieved all the rows in the table. If there were more than one
row in the table, however, I could add a where clause to specify that I want to retrieve
data only for the row having a value of 1 for the person_id column:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person
 -> WHERE person_id = 1;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

32 | Chapter 2: Creating and Populating a Database

While this query specifies a particular primary key value, you can use any column in
the table to search for rows, as shown by the following query, which finds all rows with
a value of 'Turner' for the lname column:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person
 -> WHERE lname = 'Turner';
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

Before moving on, a couple of things about the earlier insert statement are worth
mentioning:

• Values were not provided for any of the address columns. This is fine, since nulls
are allowed for those columns.

• The value provided for the birth_date column was a string. As long as you match
the required format shown in Table 2-5, MySQL will convert the string to a date
for you.

• The column names and the values provided must correspond in number and type.
If you name seven columns and provide only six values, or if you provide values
that cannot be converted to the appropriate data type for the corresponding col-
umn, you will receive an error.

William has also provided information about his favorite three foods, so here are three
insert statements to store his food preferences:

mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'pizza');
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'cookies');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'nachos');
Query OK, 1 row affected (0.01 sec)

Here’s a query that retrieves William’s favorite foods in alphabetical order using an
order by clause:

mysql> SELECT food
 -> FROM favorite_food
 -> WHERE person_id = 1
 -> ORDER BY food;
+---------+
| food |
+---------+
| cookies |
| nachos |
| pizza |

Populating and Modifying Tables | 33

+---------+
3 rows in set (0.02 sec)

The order by clause tells the server how to sort the data returned by the query. Without
the order by clause, there is no guarantee that the data in the table will be retrieved in
any particular order.

So that William doesn’t get lonely, you can execute another insert statement to add
Susan Smith to the person table:

mysql> INSERT INTO person
 -> (person_id, fname, lname, gender, birth_date,
 -> street, city, state, country, postal_code)
 -> VALUES (null, 'Susan','Smith', 'F', '1975-11-02',
 -> '23 Maple St.', 'Arlington', 'VA', 'USA', '20220');
 Query OK, 1 row affected (0.01 sec)

Since Susan was kind enough to provide her address, we included five more columns
than when William’s data was inserted. If you query the table again, you will see that
Susan’s row has been assigned the value 2 for its primary key value:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
| 2 | Susan | Smith | 1975-11-02 |
+-----------+---------+--------+------------+
2 rows in set (0.00 sec)

Can I Get That in XML?
If you will be working with XML data, you will be happy to know that most database
servers provide a simple way to generate XML output from a query. With MySQL, for
example, you can use the --xml option when invoking the mysql tool, and all your output
will automatically be formatted using XML. Here’s what the favorite-food data looks
like as an XML document:

C:\database> mysql -u lrngsql -p --xml bank
Enter password: xxxxxx
Welcome to the MySQL Monitor...

Mysql> SELECT * FROM favorite_food;
<?xml version="1.0"?>

<resultset statement="select * from favorite_food"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="food">cookies</field>
 </row>
 <row>
 <field name="person_id">1</field>
 <field name="food">nachos</field>
 </row>

34 | Chapter 2: Creating and Populating a Database

 <row>
 <field name="person_id">1</field>
 <field name="food">pizza</field>
 </row>
</resultset>
3 rows in set (0.00 sec)

With SQL Server, you don’t need to configure your command-line tool; you just need
to add the for xml clause to the end of your query, as in:

SELECT * FROM favorite_food
FOR XML AUTO, ELEMENTS

Updating Data
When the data for William Turner was initially added to the table, data for the various
address columns was omitted from the insert statement. The next statement shows
how these columns can be populated via an update statement:

mysql> UPDATE person
 -> SET street = '1225 Tremont St.',
 -> city = 'Boston',
 -> state = 'MA',
 -> country = 'USA',
 -> postal_code = '02138'
 -> WHERE person_id = 1;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The server responded with a two-line message: the “Rows matched: 1” item tells you
that the condition in the where clause matched a single row in the table, and the
“Changed: 1” item tells you that a single row in the table has been modified. Since the
where clause specifies the primary key of William’s row, this is exactly what you would
expect to have happen.

Depending on the conditions in your where clause, it is also possible to modify more
than one row using a single statement. Consider, for example, what would happen if
your where clause looked as follows:

WHERE person_id < 10

Since both William and Susan have a person_id value less than 10, both of their rows
would be modified. If you leave off the where clause altogether, your update statement
will modify every row in the table.

Deleting Data
It seems that William and Susan aren’t getting along very well together, so one of them
has got to go. Since William was there first, Susan will get the boot courtesy of the
delete statement:

Populating and Modifying Tables | 35

mysql> DELETE FROM person
 -> WHERE person_id = 2;
Query OK, 1 row affected (0.01 sec)

Again, the primary key is being used to isolate the row of interest, so a single row is
deleted from the table. Similar to the update statement, more than one row can be
deleted depending on the conditions in your where clause, and all rows will be deleted
if the where clause is omitted.

When Good Statements Go Bad
So far, all of the SQL data statements shown in this chapter have been well formed and
have played by the rules. Based on the table definitions for the person and favor
ite_food tables, however, there are lots of ways that you can run afoul when inserting
or modifying data. This section shows you some of the common mistakes that you
might come across and how the MySQL server will respond.

Nonunique Primary Key
Because the table definitions include the creation of primary key constraints, MySQL
will make sure that duplicate key values are not inserted into the tables. The next state-
ment attempts to bypass the auto-increment feature of the person_id column and create
another row in the person table with a person_id of 1:

mysql> INSERT INTO person
 -> (person_id, fname, lname, gender, birth_date)
 -> VALUES (1, 'Charles','Fulton', 'M', '1968-01-15');
ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

There is nothing stopping you (with the current schema objects, at least) from creating
two rows with identical names, addresses, birth dates, and so on, as long as they have
different values for the person_id column.

Nonexistent Foreign Key
The table definition for the favorite_food table includes the creation of a foreign key
constraint on the person_id column. This constraint ensures that all values of
person_id entered into the favorite_food table exist in the person table. Here’s what
would happen if you tried to create a row that violates this constraint:

mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (999, 'lasagna');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails ('bank'.'favorite_food', CONSTRAINT 'fk_fav_food_person_id' FOREIGN KEY
('person_id') REFERENCES 'person' ('person_id'))

In this case, the favorite_food table is considered the child and the person table is
considered the parent, since the favorite_food table is dependent on the person table

36 | Chapter 2: Creating and Populating a Database

for some of its data. If you plan to enter data into both tables, you will need to create
a row in parent before you can enter data into favorite_food.

Foreign key constraints are enforced only if your tables are created using
the InnoDB storage engine. We discuss MySQL’s storage engines in
Chapter 12.

Column Value Violations
The gender column in the person table is restricted to the values 'M' for male and 'F'
for female. If you mistakenly attempt to set the value of the column to any other value,
you will receive the following response:

mysql> UPDATE person
 -> SET gender = 'Z'
 -> WHERE person_id = 1;
ERROR 1265 (01000): Data truncated for column 'gender' at row 1

The error message is a bit confusing, but it gives you the general idea that the server is
unhappy about the value provided for the gender column.

Invalid Date Conversions
If you construct a string with which to populate a date column, and that string does
not match the expected format, you will receive another error. Here’s an example that
uses a date format that does not match the default date format of “YYYY-MM-DD”:

mysql> UPDATE person
 -> SET birth_date = 'DEC-21-1980'
 -> WHERE person_id = 1;
ERROR 1292 (22007): Incorrect date value: 'DEC-21-1980' for column 'birth_date'
at row 1

In general, it is always a good idea to explicitly specify the format string rather than
relying on the default format. Here’s another version of the statement that uses the
str_to_date function to specify which format string to use:

mysql> UPDATE person
 -> SET birth_date = str_to_date('DEC-21-1980' , '%b-%d-%Y')
 -> WHERE person_id = 1;
Query OK, 1 row affected (0.12 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Not only is the database server happy, but William is happy as well (we just made him
eight years younger, without the need for expensive cosmetic surgery!).

When Good Statements Go Bad | 37

Earlier in the chapter, when I discussed the various temporal data types,
I showed date-formatting strings such as “YYYY-MM-DD”. While
many database servers use this style of formatting, MySQL uses %Y to
indicate a four-character year. Here are a few more formatters that you
might need when converting strings to datetimes in MySQL:

%a The short weekday name, such as Sun, Mon, ...
%b The short month name, such as Jan, Feb, ...
%c The numeric month (0..12)
%d The numeric day of the month (00..31)
%f The number of microseconds (000000..999999)
%H The hour of the day, in 24-hour format (00..23)
%h The hour of the day, in 12-hour format (01..12)
%i The minutes within the hour (00..59)
%j The day of year (001..366)
%M The full month name (January..December)
%m The numeric month
%p AM or PM
%s The number of seconds (00..59)
%W The full weekday name (Sunday..Saturday)
%w The numeric day of the week (0=Sunday..6=Saturday)
%Y The four-digit year

The Bank Schema
For the remainder of the book, you use a group of tables that model a community bank.
Some of the tables include Employee, Branch, Account, Customer, Product, and Transac
tion. The entire schema and example data should have been created when you followed
the final steps at the beginning of the chapter for loading the MySQL server and gen-
erating the sample data. To see a diagram of the tables and their columns and rela-
tionships, see Appendix A.

Table 2-10 shows all the tables used in the bank schema along with short definitions.

Table 2-10. Bank schema definitions

Table name Definition

Account A particular product opened for a particular customer

Branch A location at which banking transactions are conducted

Business A corporate customer (subtype of the Customer table)

Customer A person or corporation known to the bank

Department A group of bank employees implementing a particular banking function

Employee A person working for the bank

Individual A noncorporate customer (subtype of the Customer table)

Officer A person allowed to transact business for a corporate customer

Product A banking service offered to customers

Product_type A group of products having a similar function

Transaction A change made to an account balance

38 | Chapter 2: Creating and Populating a Database

Feel free to experiment with the tables as much as you want, including adding your
own tables to expand the bank’s business functions. You can always drop the database
and re-create it from the downloaded file if you want to make sure your sample data is
intact.

If you want to see the tables available in your database, you can use the show tables
command, as in:

mysql> SHOW TABLES;
+----------------+
| Tables_in_bank |
+----------------+
| account |
| branch |
| business |
| customer |
| department |
| employee |
| favorite_food |
| individual |
| officer |
| person |
| product |
| product_type |
| transaction |
+----------------+
13 rows in set (0.10 sec)

Along with the 11 tables in the bank schema, the table listing also includes the two
tables created in this chapter: person and favorite_food. These tables will not be used
in later chapters, so feel free to drop them by issuing the following commands:

mysql> DROP TABLE favorite_food;
Query OK, 0 rows affected (0.56 sec)
mysql> DROP TABLE person;
Query OK, 0 rows affected (0.05 sec)

If you want to look at the columns in a table, you can use the describe command. Here’s
an example of the describe output for the customer table:

mysql> DESC customer;
+--------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+------------------+------+-----+---------+----------------+
cust_id	int(10) unsigned	NO	PRI	NULL	auto_increment
fed_id	varchar(12)	NO		NULL	
cust_type_cd	enum('I','B')	NO		NULL	
address	varchar(30)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
postal_code	varchar(10)	YES		NULL	
+--------------+------------------+------+-----+---------+----------------+
7 rows in set (0.03 sec)

The Bank Schema | 39

The more comfortable you are with the example database, the better you will under-
stand the examples and, consequently, the concepts in the following chapters.

40 | Chapter 2: Creating and Populating a Database

CHAPTER 3

Query Primer

So far, you have seen a few examples of database queries (a.k.a. select statements)
sprinkled throughout the first two chapters. Now it’s time to take a closer look at the
different parts of the select statement and how they interact.

Query Mechanics
Before dissecting the select statement, it might be interesting to look at how queries
are executed by the MySQL server (or, for that matter, any database server). If you are
using the mysql command-line tool (which I assume you are), then you have already
logged in to the MySQL server by providing your username and password (and possibly
a hostname if the MySQL server is running on a different computer). Once the server
has verified that your username and password are correct, a database connection is
generated for you to use. This connection is held by the application that requested it
(which, in this case, is the mysql tool) until the application releases the connection (i.e.,
as a result of your typing quit) or the server closes the connection (i.e., when the server
is shut down). Each connection to the MySQL server is assigned an identifier, which
is shown to you when you first log in:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 11
Server version: 6.0.3-alpha-community MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

In this case, my connection ID is 11. This information might be useful to your database
administrator if something goes awry, such as a malformed query that runs for hours,
so you might want to jot it down.

Once the server has verified your username and password and issued you a connection,
you are ready to execute queries (along with other SQL statements). Each time a query
is sent to the server, the server checks the following things prior to statement execution:

41

• Do you have permission to execute the statement?

• Do you have permission to access the desired data?

• Is your statement syntax correct?

If your statement passes these three tests, then your query is handed to the query op-
timizer, whose job it is to determine the most efficient way to execute your query. The
optimizer will look at such things as the order in which to join the tables named in your
from clause and what indexes are available, and then picks an execution plan, which the
server uses to execute your query.

Understanding and influencing how your database server chooses exe-
cution plans is a fascinating topic that many of you will wish to explore.
For those readers using MySQL, you might consider reading Baron
Schwartz et al.’s High Performance MySQL (http://oreilly.com/catalog/
9780596101718/) (O’Reilly). Among other things, you will learn how
to generate indexes, analyze execution plans, influence the optimizer
via query hints, and tune your server’s startup parameters. If you are
using Oracle Database or SQL Server, dozens of tuning books are
available.

Once the server has finished executing your query, the result set is returned to the calling
application (which is, once again, the mysql tool). As I mentioned in Chapter 1, a result
set is just another table containing rows and columns. If your query fails to yield any
results, the mysql tool will show you the message found at the end of the following
example:

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> WHERE lname = 'Bkadfl';
Empty set(0.00 sec)

If the query returns one or more rows, the mysql tool will format the results by adding
column headers and by constructing boxes around the columns using the -, |, and +
symbols, as shown in the next example:

mysql> SELECT fname, lname
 -> FROM employee;
+----------+-----------+
| fname | lname |
+----------+-----------+
Michael	Smith
Susan	Barker
Robert	Tyler
Susan	Hawthorne
John	Gooding
Helen	Fleming
Chris	Tucker
Sarah	Parker
Jane	Grossman

42 | Chapter 3: Query Primer

http://oreilly.com/catalog/9780596101718/
http://oreilly.com/catalog/9780596101718/
http://oreilly.com/catalog/9780596101718/

Paula	Roberts
Thomas	Ziegler
Samantha	Jameson
John	Blake
Cindy	Mason
Frank	Portman
Theresa	Markham
Beth	Fowler
Rick	Tulman
+----------+-----------+
18 rows in set (0.00 sec)

This query returns the first and last names of all the employees in the employee table.
After the last row of data is displayed, the mysql tool displays a message telling you how
many rows were returned, which, in this case, is 18.

Query Clauses
Several components or clauses make up the select statement. While only one of them
is mandatory when using MySQL (the select clause), you will usually include at least
two or three of the six available clauses. Table 3-1 shows the different clauses and their
purposes.

Table 3-1. Query clauses

Clause name Purpose

Select Determines which columns to include in the query’s result set

From Identifies the tables from which to draw data and how the tables should be joined

Where Filters out unwanted data

Group by Used to group rows together by common column values

Having Filters out unwanted groups

Order by Sorts the rows of the final result set by one or more columns

All of the clauses shown in Table 3-1 are included in the ANSI specification; addition-
ally, several other clauses are unique to MySQL that we explore in Appendix B. The
following sections delve into the uses of the six major query clauses.

The select Clause
Even though the select clause is the first clause of a select statement, it is one of the
last clauses that the database server evaluates. The reason for this is that before you can
determine what to include in the final result set, you need to know all of the possible
columns that could be included in the final result set. In order to fully understand the
role of the select clause, therefore, you will need to understand a bit about the from
clause. Here’s a query to get started:

The select Clause | 43

mysql> SELECT *
 -> FROM department;
+---------+----------------+
| dept_id | name |
+---------+----------------+
1	Operations
2	Loans
3	Administration
+---------+----------------+
3 rows in set (0.04 sec)

In this query, the from clause lists a single table (department), and the select clause
indicates that all columns (designated by *) in the department table should be included
in the result set. This query could be described in English as follows:

Show me all the columns and all the rows in the department table.

In addition to specifying all the columns via the asterisk character, you can explicitly
name the columns you are interested in, such as:

mysql> SELECT dept_id, name
 -> FROM department;
+---------+----------------+
| dept_id | name |
+---------+----------------+
1	Operations
2	Loans
3	Administration
+---------+----------------+
3 rows in set (0.01 sec)

The results are identical to the first query, since all the columns in the department table
(dept_id and name) are named in the select clause. You can choose to include only a
subset of the columns in the department table as well:

mysql> SELECT name
 -> FROM department;
+----------------+
| name |
+----------------+
| Operations |
| Loans |
| Administration |
+----------------+
3 rows in set (0.00 sec)

The job of the select clause, therefore, is the following:

The select clause determines which of all possible columns should be included in the
query’s result set.

If you were limited to including only columns from the table or tables named in the
from clause, things would be rather dull. However, you can spice things up by including
in your select clause such things as:

44 | Chapter 3: Query Primer

• Literals, such as numbers or strings

• Expressions, such as transaction.amount * −1

• Built-in function calls, such as ROUND(transaction.amount, 2)

• User-defined function calls

The next query demonstrates the use of a table column, a literal, an expression, and a
built-in function call in a single query against the employee table:

mysql> SELECT emp_id,
 -> 'ACTIVE',
 -> emp_id * 3.14159,
 -> UPPER(lname)
 -> FROM employee;
+--------+--------+------------------+--------------+
| emp_id | ACTIVE | emp_id * 3.14159 | UPPER(lname) |
+--------+--------+------------------+--------------+
1	ACTIVE	3.14159	SMITH
2	ACTIVE	6.28318	BARKER
3	ACTIVE	9.42477	TYLER
4	ACTIVE	12.56636	HAWTHORNE
5	ACTIVE	15.70795	GOODING
6	ACTIVE	18.84954	FLEMING
7	ACTIVE	21.99113	TUCKER
8	ACTIVE	25.13272	PARKER
9	ACTIVE	28.27431	GROSSMAN
10	ACTIVE	31.41590	ROBERTS
11	ACTIVE	34.55749	ZIEGLER
12	ACTIVE	37.69908	JAMESON
13	ACTIVE	40.84067	BLAKE
14	ACTIVE	43.98226	MASON
15	ACTIVE	47.12385	PORTMAN
16	ACTIVE	50.26544	MARKHAM
17	ACTIVE	53.40703	FOWLER
18	ACTIVE	56.54862	TULMAN
+--------+--------+------------------+--------------+
18 rows in set (0.05 sec)

We cover expressions and built-in functions in detail later, but I wanted to give you a
feel for what kinds of things can be included in the select clause. If you only need to
execute a built-in function or evaluate a simple expression, you can skip the from clause
entirely. Here’s an example:

mysql> SELECT VERSION(),
 -> USER(),
 -> DATABASE();
+-----------------------+-------------------+------------+
| version() | user() | database() |
+-----------------------+-------------------+------------+
| 6.0.3-alpha-community | lrngsql@localhost | bank |
+-----------------------+-------------------+------------+
1 row in set (0.05 sec)

The select Clause | 45

Since this query simply calls three built-in functions and doesn’t retrieve data from any
tables, there is no need for a from clause.

Column Aliases
Although the mysql tool will generate labels for the columns returned by your queries,
you may want to assign your own labels. While you might want to assign a new label
to a column from a table (if it is poorly or ambiguously named), you will almost certainly
want to assign your own labels to those columns in your result set that are generated
by expressions or built-in function calls. You can do so by adding a column alias after
each element of your select clause. Here’s the previous query against the employee table
with column aliases applied to three of the columns:

mysql> SELECT emp_id,
 -> 'ACTIVE' status,
 -> emp_id * 3.14159 empid_x_pi,
 -> UPPER(lname) last_name_upper
 -> FROM employee;
+--------+--------+------------+-----------------+
| emp_id | status | empid_x_pi | last_name_upper |
+--------+--------+------------+-----------------+
1	ACTIVE	3.14159	SMITH
2	ACTIVE	6.28318	BARKER
3	ACTIVE	9.42477	TYLER
4	ACTIVE	12.56636	HAWTHORNE
5	ACTIVE	15.70795	GOODING
6	ACTIVE	18.84954	FLEMING
7	ACTIVE	21.99113	TUCKER
8	ACTIVE	25.13272	PARKER
9	ACTIVE	28.27431	GROSSMAN
10	ACTIVE	31.41590	ROBERTS
11	ACTIVE	34.55749	ZIEGLER
12	ACTIVE	37.69908	JAMESON
13	ACTIVE	40.84067	BLAKE
14	ACTIVE	43.98226	MASON
15	ACTIVE	47.12385	PORTMAN
16	ACTIVE	50.26544	MARKHAM
17	ACTIVE	53.40703	FOWLER
18	ACTIVE	56.54862	TULMAN
+--------+--------+------------+-----------------+
18 rows in set (0.00 sec)

If you look at the column headers, you can see that the second, third, and fourth col-
umns now have reasonable names instead of simply being labeled with the function or
expression that generated the column. If you look at the select clause, you can see how
the column aliases status, empid_x_pi, and last_name_upper are added after the second,
third, and fourth columns. I think you will agree that the output is easier to understand
with column aliases in place, and it would be easier to work with programmatically if
you were issuing the query from within Java or C# rather than interactively via the

46 | Chapter 3: Query Primer

mysql tool. In order to make your column aliases stand out even more, you also have
the option of using the as keyword before the alias name, as in:

mysql> SELECT emp_id,
 -> 'ACTIVE' AS status,
 -> emp_id * 3.14159 AS empid_x_pi,
 -> UPPER(lname) AS last_name_upper
 -> FROM employee;

Many people feel that including the optional as keyword improves readability, although
I have chosen not to use it for the examples in this book.

Removing Duplicates
In some cases, a query might return duplicate rows of data. For example, if you were
to retrieve the IDs of all customers that have accounts, you would see the following:

mysql> SELECT cust_id
 -> FROM account;
+---------+
| cust_id |
+---------+
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 4 |
| 5 |
| 6 |
| 6 |
| 7 |
| 8 |
| 8 |
| 9 |
| 9 |
| 9 |
| 10 |
| 10 |
| 11 |
| 12 |
| 13 |
+---------+
24 rows in set (0.00 sec)

Since some customers have more than one account, you will see the same customer ID
once for each account owned by that customer. What you probably want in this case
is the distinct set of customers that have accounts, instead of seeing the customer ID

The select Clause | 47

for each row in the account table. You can achieve this by adding the keyword
distinct directly after the select keyword, as demonstrated by the following:

mysql> SELECT DISTINCT cust_id
 -> FROM account;
+---------+
| cust_id |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
| 13 |
+---------+
13 rows in set (0.01 sec)

The result set now contains 13 rows, one for each distinct customer, rather than 24
rows, one for each account.

If you do not want the server to remove duplicate data, or you are sure there will be no
duplicates in your result set, you can specify the ALL keyword instead of specifying
DISTINCT. However, the ALL keyword is the default and never needs to be explicitly
named, so most programmers do not include ALL in their queries.

Keep in mind that generating a distinct set of results requires the data
to be sorted, which can be time-consuming for large result sets. Don’t
fall into the trap of using DISTINCT just to be sure there are no duplicates;
instead, take the time to understand the data you are working with so
that you will know whether duplicates are possible.

The from Clause
Thus far, you have seen queries whose from clauses contain a single table. Although
most SQL books will define the from clause as simply a list of one or more tables, I
would like to broaden the definition as follows:

The from clause defines the tables used by a query, along with the means of linking the
tables together.

This definition is composed of two separate but related concepts, which we explore in
the following sections.

48 | Chapter 3: Query Primer

Tables
When confronted with the term table, most people think of a set of related rows stored
in a database. While this does describe one type of table, I would like to use the word
in a more general way by removing any notion of how the data might be stored and
concentrating on just the set of related rows. Three different types of tables meet this
relaxed definition:

• Permanent tables (i.e., created using the create table statement)

• Temporary tables (i.e., rows returned by a subquery)

• Virtual tables (i.e., created using the create view statement)

Each of these table types may be included in a query’s from clause. By now, you should
be comfortable with including a permanent table in a from clause, so I briefly describe
the other types of tables that can be referenced in a from clause.

Subquery-generated tables

A subquery is a query contained within another query. Subqueries are surrounded by
parentheses and can be found in various parts of a select statement; within the from
clause, however, a subquery serves the role of generating a temporary table that is visible
from all other query clauses and can interact with other tables named in the from clause.
Here’s a simple example:

mysql> SELECT e.emp_id, e.fname, e.lname
 -> FROM (SELECT emp_id, fname, lname, start_date, title
 -> FROM employee) e;
+--------+----------+-----------+
| emp_id | fname | lname |
+--------+----------+-----------+
1	Michael	Smith
2	Susan	Barker
3	Robert	Tyler
4	Susan	Hawthorne
5	John	Gooding
6	Helen	Fleming
7	Chris	Tucker
8	Sarah	Parker
9	Jane	Grossman
10	Paula	Roberts
11	Thomas	Ziegler
12	Samantha	Jameson
13	John	Blake
14	Cindy	Mason
15	Frank	Portman
16	Theresa	Markham
17	Beth	Fowler
18	Rick	Tulman
+--------+----------+-----------+
18 rows in set (0.00 sec)

The from Clause | 49

In this example, a subquery against the employee table returns five columns, and the
containing query references three of the five available columns. The subquery is refer-
enced by the containing query via its alias, which, in this case, is e. This is a simplistic
and not particularly useful example of a subquery in a from clause; you will find detailed
coverage of subqueries in Chapter 9.

Views

A view is a query that is stored in the data dictionary. It looks and acts like a table, but
there is no data associated with a view (this is why I call it a virtual table). When you
issue a query against a view, your query is merged with the view definition to create a
final query to be executed.

To demonstrate, here’s a view definition that queries the employee table and includes
a call to a built-in function:

mysql> CREATE VIEW employee_vw AS
 -> SELECT emp_id, fname, lname,
 -> YEAR(start_date) start_year
 -> FROM employee;
Query OK, 0 rows affected (0.10 sec)

When the view is created, no additional data is generated or stored: the server simply
tucks away the select statement for future use. Now that the view exists, you can issue
queries against it, as in:

mysql> SELECT emp_id, start_year
 -> FROM employee_vw;
+--------+------------+
| emp_id | start_year |
+--------+------------+
1	2005
2	2006
3	2005
4	2006
5	2007
6	2008
7	2008
8	2006
9	2006
10	2006
11	2004
12	2007
13	2004
14	2006
15	2007
16	2005
17	2006
18	2006
+--------+------------+
18 rows in set (0.07 sec)

50 | Chapter 3: Query Primer

Views are created for various reasons, including to hide columns from users and to
simplify complex database designs.

Table Links
The second deviation from the simple from clause definition is the mandate that if more
than one table appears in the from clause, the conditions used to link the tables must
be included as well. This is not a requirement of MySQL or any other database server,
but it is the ANSI-approved method of joining multiple tables, and it is the most port-
able across the various database servers. We explore joining multiple tables in depth
in Chapters 5 and 10, but here’s a simple example in case I have piqued your curiosity:

mysql> SELECT employee.emp_id, employee.fname,
 -> employee.lname, department.name dept_name
 -> FROM employee INNER JOIN department
 -> ON employee.dept_id = department.dept_id;
+--------+----------+-----------+----------------+
| emp_id | fname | lname | dept_name |
+--------+----------+-----------+----------------+
1	Michael	Smith	Administration
2	Susan	Barker	Administration
3	Robert	Tyler	Administration
4	Susan	Hawthorne	Operations
5	John	Gooding	Loans
6	Helen	Fleming	Operations
7	Chris	Tucker	Operations
8	Sarah	Parker	Operations
9	Jane	Grossman	Operations
10	Paula	Roberts	Operations
11	Thomas	Ziegler	Operations
12	Samantha	Jameson	Operations
13	John	Blake	Operations
14	Cindy	Mason	Operations
15	Frank	Portman	Operations
16	Theresa	Markham	Operations
17	Beth	Fowler	Operations
18	Rick	Tulman	Operations
+--------+----------+-----------+----------------+
18 rows in set (0.05 sec)

The previous query displays data from both the employee table (emp_id, fname, lname)
and the department table (name), so both tables are included in the from clause. The
mechanism for linking the two tables (referred to as a join) is the employee’s department
affiliation stored in the employee table. Thus, the database server is instructed to use
the value of the dept_id column in the employee table to look up the associated depart-
ment name in the department table. Join conditions for two tables are found in the on
subclause of the from clause; in this case, the join condition is ON employee.dept_id =
department.dept_id. Again, please refer to Chapter 5 for a thorough discussion of join-
ing multiple tables.

The from Clause | 51

Defining Table Aliases
When multiple tables are joined in a single query, you need a way to identify which
table you are referring to when you reference columns in the select, where, group by,
having, and order by clauses. You have two choices when referencing a table outside
the from clause:

• Use the entire table name, such as employee.emp_id.

• Assign each table an alias and use the alias throughout the query.

In the previous query, I chose to use the entire table name in the select and on clauses.
Here’s what the same query looks like using table aliases:

SELECT e.emp_id, e.fname, e.lname,
 d.name dept_name
FROM employee e INNER JOIN department d
 ON e.dept_id = d.dept_id;

If you look closely at the from clause, you will see that the employee table is assigned
the alias e, and the department table is assigned the alias d. These aliases are then used
in the on clause when defining the join condition as well as in the select clause when
specifying the columns to include in the result set. I hope you will agree that using
aliases makes for a more compact statement without causing confusion (as long as your
choices for alias names are reasonable). Additionally, you may use the as keyword with
your table aliases, similar to what was demonstrated earlier for column aliases:

SELECT e.emp_id, e.fname, e.lname,
 d.name dept_name
FROM employee AS e INNER JOIN department AS d
 ON e.dept_id = d.dept_id;

I have found that roughly half of the database developers I have worked with use the
as keyword with their column and table aliases, and half do not.

The where Clause
The queries shown thus far in the chapter have selected every row from the employee,
department, or account table (except for the demonstration of distinct earlier in the
chapter). Most of the time, however, you will not wish to retrieve every row from a
table but will want a way to filter out those rows that are not of interest. This is a job
for the where clause.

The where clause is the mechanism for filtering out unwanted rows from your result set.

For example, perhaps you are interested in retrieving data from the employee table, but
only for those employees who are employed as head tellers. The following query em-
ploys a where clause to retrieve only the four head tellers:

52 | Chapter 3: Query Primer

mysql> SELECT emp_id, fname, lname, start_date, title
 -> FROM employee
 -> WHERE title = 'Head Teller';
+--------+---------+---------+------------+-------------+
| emp_id | fname | lname | start_date | title |
+--------+---------+---------+------------+-------------+
6	Helen	Fleming	2008-03-17	Head Teller
10	Paula	Roberts	2006-07-27	Head Teller
13	John	Blake	2004-05-11	Head Teller
16	Theresa	Markham	2005-03-15	Head Teller
+--------+---------+---------+------------+-------------+
4 rows in set (1.17 sec)

In this case the where clause filtered out 14 of the 18 employee rows. This where clause
contains a single filter condition, but you can include as many conditions as required;
individual conditions are separated using operators such as and, or, and not (see Chap-
ter 4 for a complete discussion of the where clause and filter conditions). Here’s an
extension of the previous query that includes a second condition stating that only those
employees with a start date later than January 1, 2006 should be included:

mysql> SELECT emp_id, fname, lname, start_date, title
 -> FROM employee
 -> WHERE title = 'Head Teller'
 -> AND start_date > '2006-01-01';
+--------+-------+---------+------------+-------------+
| emp_id | fname | lname | start_date | title |
+--------+-------+---------+------------+-------------+
| 6 | Helen | Fleming | 2008-03-17 | Head Teller |
| 10 | Paula | Roberts | 2006-07-27 | Head Teller |
+--------+-------+---------+------------+-------------+
2 rows in set (0.01 sec)

The first condition (title = 'Head Teller') filtered out 14 of 18 employee rows, and
the second condition (start_date > '2006-01-01') filtered out an additional 2 rows,
leaving 2 rows in the final result set. Let’s see what would happen if you change the
operator separating the two conditions from and to or:

mysql> SELECT emp_id, fname, lname, start_date, title
 -> FROM employee
 -> WHERE title = 'Head Teller'
 -> OR start_date > '2006-01-01';
+--------+----------+-----------+------------+--------------------+
| emp_id | fname | lname | start_date | title |
+--------+----------+-----------+------------+--------------------+
2	Susan	Barker	2006-09-12	Vice President
4	Susan	Hawthorne	2006-04-24	Operations Manager
5	John	Gooding	2007-11-14	Loan Manager
6	Helen	Fleming	2008-03-17	Head Teller
7	Chris	Tucker	2008-09-15	Teller
8	Sarah	Parker	2006-12-02	Teller
9	Jane	Grossman	2006-05-03	Teller
10	Paula	Roberts	2006-07-27	Head Teller
12	Samantha	Jameson	2007-01-08	Teller
13	John	Blake	2004-05-11	Head Teller

The where Clause | 53

14	Cindy	Mason	2006-08-09	Teller
15	Frank	Portman	2007-04-01	Teller
16	Theresa	Markham	2005-03-15	Head Teller
17	Beth	Fowler	2006-06-29	Teller
18	Rick	Tulman	2006-12-12	Teller
+--------+----------+-----------+------------+--------------------+
15 rows in set (0.00 sec)

Looking at the output, you can see that all four head tellers are included in the result
set, along with any other employee who started working for the bank after January 1,
2006. At least one of the two conditions is true for 15 of the 18 employees in the
employee table. Thus, when you separate conditions using the and operator, all condi-
tions must evaluate to true to be included in the result set; when you use or, however,
only one of the conditions needs to evaluate to true for a row to be included.

So, what should you do if you need to use both and and or operators in your where
clause? Glad you asked. You should use parentheses to group conditions together. The
next query specifies that only those employees who are head tellers and began working
for the company after January 1, 2006 or those employees who are tellers and began
working after January 1, 2007 be included in the result set:

mysql> SELECT emp_id, fname, lname, start_date, title
 -> FROM employee
 -> WHERE (title = 'Head Teller' AND start_date > '2006-01-01')
 -> OR (title = 'Teller' AND start_date > '2007-01-01');
+--------+----------+---------+------------+-------------+
| emp_id | fname | lname | start_date | title |
+--------+----------+---------+------------+-------------+
6	Helen	Fleming	2008-03-17	Head Teller
7	Chris	Tucker	2008-09-15	Teller
10	Paula	Roberts	2006-07-27	Head Teller
12	Samantha	Jameson	2007-01-08	Teller
15	Frank	Portman	2007-04-01	Teller
+--------+----------+---------+------------+-------------+
5 rows in set (0.00 sec)

You should always use parentheses to separate groups of conditions when mixing dif-
ferent operators so that you, the database server, and anyone who comes along later to
modify your code will be on the same page.

The group by and having Clauses
All the queries thus far have retrieved raw data without any manipulation. Sometimes,
however, you will want to find trends in your data that will require the database server
to cook the data a bit before you retrieve your result set. One such mechanism is the
group by clause, which is used to group data by column values. For example, rather
than looking at a list of employees and the departments to which they are assigned, you
might want to look at a list of departments along with the number of employees assigned
to each department. When using the group by clause, you may also use the having

54 | Chapter 3: Query Primer

clause, which allows you to filter group data in the same way the where clause lets you
filter raw data.

Here’s a quick look at a query that counts all the employees in each department and
returns the names of those departments having more than two employees:

mysql> SELECT d.name, count(e.emp_id) num_employees
 -> FROM department d INNER JOIN employee e
 -> ON d.dept_id = e.dept_id
 -> GROUP BY d.name
 -> HAVING count(e.emp_id) > 2;
+----------------+---------------+
| name | num_employees |
+----------------+---------------+
| Administration | 3 |
| Operations | 14 |
+----------------+---------------+
2 rows in set (0.00 sec)

I wanted to briefly mention these two clauses so that they don’t catch you by surprise
later in the book, but they are a bit more advanced than the other four select clauses.
Therefore, I ask that you wait until Chapter 8 for a full description of how and when
to use group by and having.

The order by Clause
In general, the rows in a result set returned from a query are not in any particular order.
If you want your result set in a particular order, you will need to instruct the server to
sort the results using the order by clause:

The order by clause is the mechanism for sorting your result set using either raw column
data or expressions based on column data.

For example, here’s another look at an earlier query against the account table:

mysql> SELECT open_emp_id, product_cd
 -> FROM account;
+-------------+------------+
| open_emp_id | product_cd |
+-------------+------------+
10	CHK
10	SAV
10	CD
10	CHK
10	SAV
13	CHK
13	MM
1	CHK
1	SAV
1	MM
16	CHK
1	CHK
1	CD

The order by Clause | 55

10	CD
16	CHK
16	SAV
1	CHK
1	MM
1	CD
16	CHK
16	BUS
10	BUS
16	CHK
13	SBL
+-------------+------------+
24 rows in set (0.00 sec)

If you are trying to analyze data for each employee, it would be helpful to sort the results
by the open_emp_id column; to do so, simply add this column to the order by clause:

mysql> SELECT open_emp_id, product_cd
 -> FROM account
 -> ORDER BY open_emp_id;
+-------------+------------+
| open_emp_id | product_cd |
+-------------+------------+
1	CHK
1	SAV
1	MM
1	CHK
1	CD
1	CHK
1	MM
1	CD
10	CHK
10	SAV
10	CD
10	CHK
10	SAV
10	CD
10	BUS
13	CHK
13	MM
13	SBL
16	CHK
16	CHK
16	SAV
16	CHK
16	BUS
16	CHK
+-------------+------------+
24 rows in set (0.00 sec)

It is now easier to see what types of accounts each employee opened. However, it might
be even better if you could ensure that the account types were shown in the same order
for each distinct employee; you can accomplish this by adding the product_cd column
after the open_emp_id column in the order by clause:

56 | Chapter 3: Query Primer

mysql> SELECT open_emp_id, product_cd
 -> FROM account
 -> ORDER BY open_emp_id, product_cd;
+-------------+------------+
| open_emp_id | product_cd |
+-------------+------------+
1	CD
1	CD
1	CHK
1	CHK
1	CHK
1	MM
1	MM
1	SAV
10	BUS
10	CD
10	CD
10	CHK
10	CHK
10	SAV
10	SAV
13	CHK
13	MM
13	SBL
16	BUS
16	CHK
16	CHK
16	CHK
16	CHK
16	SAV
+-------------+------------+
24 rows in set (0.00 sec)

The result set has now been sorted first by employee ID and then by account type. The
order in which columns appear in your order by clause does make a difference.

Ascending Versus Descending Sort Order
When sorting, you have the option of specifying ascending or descending order via the
asc and desc keywords. The default is ascending, so you will need to add the desc
keyword, only if you want to use a descending sort. For example, the following query
lists all accounts sorted by available balance with the highest balance listed at the top:

mysql> SELECT account_id, product_cd, open_date, avail_balance
 -> FROM account
 -> ORDER BY avail_balance DESC;
+------------+------------+------------+---------------+
| account_id | product_cd | open_date | avail_balance |
+------------+------------+------------+---------------+
29	SBL	2004-02-22	50000.00
28	CHK	2003-07-30	38552.05
24	CHK	2002-09-30	23575.12
15	CD	2004-12-28	10000.00
27	BUS	2004-03-22	9345.55

The order by Clause | 57

22	MM	2004-10-28	9345.55
12	MM	2004-09-30	5487.09
17	CD	2004-01-12	5000.00
18	CHK	2001-05-23	3487.19
3	CD	2004-06-30	3000.00
4	CHK	2001-03-12	2258.02
13	CHK	2004-01-27	2237.97
8	MM	2002-12-15	2212.50
23	CD	2004-06-30	1500.00
1	CHK	2000-01-15	1057.75
7	CHK	2002-11-23	1057.75
11	SAV	2000-01-15	767.77
10	CHK	2003-09-12	534.12
2	SAV	2000-01-15	500.00
19	SAV	2001-05-23	387.99
5	SAV	2001-03-12	200.00
21	CHK	2003-07-30	125.67
14	CHK	2002-08-24	122.37
25	BUS	2002-10-01	0.00
+------------+------------+------------+---------------+
24 rows in set (0.05 sec)

Descending sorts are commonly used for ranking queries, such as “show me the top
five account balances.” MySQL includes a limit clause that allows you to sort your
data and then discard all but the first X rows; see Appendix B for a discussion of the
limit clause, along with other non-ANSI extensions.

Sorting via Expressions
Sorting your results using column data is all well and good, but sometimes you might
need to sort by something that is not stored in the database, and possibly doesn’t appear
anywhere in your query. You can add an expression to your order by clause to handle
such situations. For example, perhaps you would like to sort your customer data by
the last three digits of the customer’s federal ID number (which is either a Social Security
number for individuals or a corporate ID for businesses):

mysql> SELECT cust_id, cust_type_cd, city, state, fed_id
 -> FROM customer
 -> ORDER BY RIGHT(fed_id, 3);
+---------+--------------+------------+-------+-------------+
| cust_id | cust_type_cd | city | state | fed_id |
+---------+--------------+------------+-------+-------------+
1	I	Lynnfield	MA	111-11-1111
10	B	Salem	NH	04-1111111
2	I	Woburn	MA	222-22-2222
11	B	Wilmington	MA	04-2222222
3	I	Quincy	MA	333-33-3333
12	B	Salem	NH	04-3333333
13	B	Quincy	MA	04-4444444
4	I	Waltham	MA	444-44-4444
5	I	Salem	NH	555-55-5555
6	I	Waltham	MA	666-66-6666
7	I	Wilmington	MA	777-77-7777

58 | Chapter 3: Query Primer

| 8 | I | Salem | NH | 888-88-8888 |
| 9 | I | Newton | MA | 999-99-9999 |
+---------+--------------+------------+-------+-------------+
13 rows in set (0.24 sec)

This query uses the built-in function right() to extract the last three characters of the
fed_id column and then sorts the rows based on this value.

Sorting via Numeric Placeholders
If you are sorting using the columns in your select clause, you can opt to reference the
columns by their position in the select clause rather than by name. For example, if you
want to sort using the second and fifth columns returned by a query, you could do the
following:

mysql> SELECT emp_id, title, start_date, fname, lname
 -> FROM employee
 -> ORDER BY 2, 5;
+--------+--------------------+------------+----------+-----------+
| emp_id | title | start_date | fname | lname |
+--------+--------------------+------------+----------+-----------+
13	Head Teller	2004-05-11	John	Blake
6	Head Teller	2008-03-17	Helen	Fleming
16	Head Teller	2005-03-15	Theresa	Markham
10	Head Teller	2006-07-27	Paula	Roberts
5	Loan Manager	2007-11-14	John	Gooding
4	Operations Manager	2006-04-24	Susan	Hawthorne
1	President	2005-06-22	Michael	Smith
17	Teller	2006-06-29	Beth	Fowler
9	Teller	2006-05-03	Jane	Grossman
12	Teller	2007-01-08	Samantha	Jameson
14	Teller	2006-08-09	Cindy	Mason
8	Teller	2006-12-02	Sarah	Parker
15	Teller	2007-04-01	Frank	Portman
7	Teller	2008-09-15	Chris	Tucker
18	Teller	2006-12-12	Rick	Tulman
11	Teller	2004-10-23	Thomas	Ziegler
3	Treasurer	2005-02-09	Robert	Tyler
2	Vice President	2006-09-12	Susan	Barker
+--------+--------------------+------------+----------+-----------+
18 rows in set (0.00 sec)

You might want to use this feature sparingly, since adding a column to the select clause
without changing the numbers in the order by clause can lead to unexpected results.
Personally, I may reference columns positionally when writing ad hoc queries, but I
always reference columns by name when writing code.

The order by Clause | 59

Test Your Knowledge
The following exercises are designed to strengthen your understanding of the select
statement and its various clauses. Please see Appendix C for solutions.

Exercise 3-1
Retrieve the employee ID, first name, and last name for all bank employees. Sort by last
name and then by first name.

Exercise 3-2
Retrieve the account ID, customer ID, and available balance for all accounts whose
status equals 'ACTIVE' and whose available balance is greater than $2,500.

Exercise 3-3
Write a query against the account table that returns the IDs of the employees who
opened the accounts (use the account.open_emp_id column). Include a single row for
each distinct employee.

Exercise 3-4
Fill in the blanks (denoted by <#>) for this multi-data-set query to achieve the results
shown here:

mysql> SELECT p.product_cd, a.cust_id, a.avail_balance
 -> FROM product p INNER JOIN account <1>
 -> ON p.product_cd = <2>
 -> WHERE p.<3> = 'ACCOUNT'
 -> ORDER BY <4>, <5>;
+------------+---------+---------------+
| product_cd | cust_id | avail_balance |
+------------+---------+---------------+
CD	1	3000.00
CD	6	10000.00
CD	7	5000.00
CD	9	1500.00
CHK	1	1057.75
CHK	2	2258.02
CHK	3	1057.75
CHK	4	534.12
CHK	5	2237.97
CHK	6	122.37
CHK	8	3487.19
CHK	9	125.67
CHK	10	23575.12
CHK	12	38552.05
MM	3	2212.50

60 | Chapter 3: Query Primer

MM	4	5487.09
MM	9	9345.55
SAV	1	500.00
SAV	2	200.00
SAV	4	767.77
SAV	8	387.99
+------------+---------+---------------+
21 rows in set (0.09 sec)

Test Your Knowledge | 61

CHAPTER 4

Filtering

Sometimes you will want to work with every row in a table, such as:

• Purging all data from a table used to stage new data warehouse feeds

• Modifying all rows in a table after a new column has been added

• Retrieving all rows from a message queue table

In cases like these, your SQL statements won’t need to have a where clause, since you
don’t need to exclude any rows from consideration. Most of the time, however, you
will want to narrow your focus to a subset of a table’s rows. Therefore, all the SQL data
statements (except the insert statement) include an optional where clause to house
filter conditions used to restrict the number of rows acted on by the SQL statement.
Additionally, the select statement includes a having clause in which filter conditions
pertaining to grouped data may be included. This chapter explores the various types
of filter conditions that you can employ in the where clauses of select, update, and
delete statements; we explore the use of filter conditions in the having clause of a
select statement in Chapter 8.

Condition Evaluation
A where clause may contain one or more conditions, separated by the operators and and
or. If multiple conditions are separated only by the and operator, then all the conditions
must evaluate to true for the row to be included in the result set. Consider the following
where clause:

WHERE title = 'Teller' AND start_date < '2007-01-01'

Given these two conditions, only tellers who began working for the bank prior to 2007
will be included (or, to look at it another way, any employee who is either not a teller
or began working for the bank in 2007 or later will be removed from consideration).
Although this example uses only two conditions, no matter how many conditions are
in your where clause, if they are separated by the and operator they must all evaluate to
true for the row to be included in the result set.

63

If all conditions in the where clause are separated by the or operator, however, only
one of the conditions must evaluate to true for the row to be included in the result set.
Consider the following two conditions:

WHERE title = 'Teller' OR start_date < '2007-01-01'

There are now various ways for a given employee row to be included in the result set:

• The employee is a teller and was employed prior to 2007.

• The employee is a teller and was employed after January 1, 2007.

• The employee is something other than a teller but was employed prior to 2007.

Table 4-1 shows the possible outcomes for a where clause containing two conditions
separated by the or operator.

Table 4-1. Two-condition evaluation using or

Intermediate result Final result

WHERE true OR true True

WHERE true OR false True

WHERE false OR true True

WHERE false OR false False

In the case of the preceding example, the only way for a row to be excluded from the
result set is if the employee is not a teller and was employed on or after January 1, 2007.

Using Parentheses
If your where clause includes three or more conditions using both the and and or oper-
ators, you should use parentheses to make your intent clear, both to the database server
and to anyone else reading your code. Here’s a where clause that extends the previous
example by checking to make sure that the employee is still employed by the bank:

WHERE end_date IS NULL
 AND (title = 'Teller' OR start_date < '2007-01-01')

There are now three conditions; for a row to make it to the final result set, the first
condition must evaluate to true, and either the second or third condition (or both)
must evaluate to true. Table 4-2 shows the possible outcomes for this where clause.

Table 4-2. Three-condition evaluation using and, or

Intermediate result Final result

WHERE true AND (true OR true) True

WHERE true AND (true OR false) True

WHERE true AND (false OR true) True

WHERE true AND (false OR false) False

64 | Chapter 4: Filtering

Intermediate result Final result

WHERE false AND (true OR true) False

WHERE false AND (true OR false) False

WHERE false AND (false OR true) False

WHERE false AND (false OR false) False

As you can see, the more conditions you have in your where clause, the more combi-
nations there are for the server to evaluate. In this case, only three of the eight combi-
nations yield a final result of true.

Using the not Operator
Hopefully, the previous three-condition example is fairly easy to understand. Consider
the following modification, however:

WHERE end_date IS NULL
 AND NOT (title = 'Teller' OR start_date < '2007-01-01')

Did you spot the change from the previous example? I added the not operator after the
and operator on the second line. Now, instead of looking for nonterminated employees
who either are tellers or began working for the bank prior to 2007, I am looking for
nonterminated employees who both are nontellers and began working for the bank in
2007 or later. Table 4-3 shows the possible outcomes for this example.

Table 4-3. Three-condition evaluation using and, or, and not

Intermediate result Final result

WHERE true AND NOT (true OR true) False

WHERE true AND NOT (true OR false) False

WHERE true AND NOT (false OR true) False

WHERE true AND NOT (false OR false) True

WHERE false AND NOT (true OR true) False

WHERE false AND NOT (true OR false) False

WHERE false AND NOT (false OR true) False

WHERE false AND NOT (false OR false) False

While it is easy for the database server to handle, it is typically difficult for a person to
evaluate a where clause that includes the not operator, which is why you won’t en-
counter it very often. In this case, you can rewrite the where clause to avoid using the
not operator:

WHERE end_date IS NULL
 AND title != 'Teller' AND start_date >= '2007-01-01'

Condition Evaluation | 65

While I’m sure that the server doesn’t have a preference, you probably have an easier
time understanding this version of the where clause.

Building a Condition
Now that you have seen how the server evaluates multiple conditions, let’s take a step
back and look at what comprises a single condition. A condition is made up of one or
more expressions coupled with one or more operators. An expression can be any of the
following:

• A number

• A column in a table or view

• A string literal, such as 'Teller'

• A built-in function, such as concat('Learning', ' ', 'SQL')

• A subquery

• A list of expressions, such as ('Teller', 'Head Teller', 'Operations Manager')

The operators used within conditions include:

• Comparison operators, such as =, !=, <, >, <>, LIKE, IN, and BETWEEN

• Arithmetic operators, such as +, −, *, and /

The following section demonstrates how you can combine these expressions and op-
erators to manufacture the various types of conditions.

Condition Types
There are many different ways to filter out unwanted data. You can look for specific
values, sets of values, or ranges of values to include or exclude, or you can use various
pattern-searching techniques to look for partial matches when dealing with string data.
The next four subsections explore each of these condition types in detail.

Equality Conditions
A large percentage of the filter conditions that you write or come across will be of the
form 'column = expression' as in:

title = 'Teller'
fed_id = '111-11-1111'
amount = 375.25
dept_id = (SELECT dept_id FROM department WHERE name = 'Loans')

Conditions such as these are called equality conditions because they equate one ex-
pression to another. The first three examples equate a column to a literal (two strings
and a number), and the fourth example equates a column to the value returned from

66 | Chapter 4: Filtering

a subquery. The following query uses two equality conditions; one in the on clause (a
join condition), and the other in the where clause (a filter condition):

mysql> SELECT pt.name product_type, p.name product
 -> FROM product p INNER JOIN product_type pt
 -> ON p.product_type_cd = pt.product_type_cd
 -> WHERE pt.name = 'Customer Accounts';
+-------------------+------------------------+
| product_type | product |
+-------------------+------------------------+
Customer Accounts	certificate of deposit
Customer Accounts	checking account
Customer Accounts	money market account
Customer Accounts	savings account
+-------------------+------------------------+
4 rows in set (0.08 sec)

This query shows all products that are customer account types.

Inequality conditions

Another fairly common type of condition is the inequality condition, which asserts that
two expressions are not equal. Here’s the previous query with the filter condition in the
where clause changed to an inequality condition:

mysql> SELECT pt.name product_type, p.name product
 -> FROM product p INNER JOIN product_type pt
 -> ON p.product_type_cd = pt.product_type_cd
 -> WHERE pt.name <> 'Customer Accounts';
+-------------------------------+-------------------------+
| product_type | product |
+-------------------------------+-------------------------+
Individual and Business Loans	auto loan
Individual and Business Loans	business line of credit
Individual and Business Loans	home mortgage
Individual and Business Loans	small business loan
+-------------------------------+-------------------------+
4 rows in set (0.00 sec)

This query shows all products that are not customer account types. When building
inequality conditions, you may choose to use either the != or <> operator.

Data modification using equality conditions

Equality/inequality conditions are commonly used when modifying data. For example,
let’s say that the bank has a policy of removing old account rows once per year. Your
task is to remove rows from the account table that were closed in 2002. Here’s one way
to tackle it:

DELETE FROM account
WHERE status = 'CLOSED' AND YEAR(close_date) = 2002;

This statement includes two equality conditions: one to find only closed accounts, and
another to check for those accounts closed in 2002.

Condition Types | 67

When crafting examples of delete and update statements, I try to write
each statement such that no rows are modified. That way, when you
execute the statements, your data will remain unchanged, and your
output from select statements will always match that shown in this
book.

Since MySQL sessions are in auto-commit mode by default (see Chap-
ter 12), you would not be able to roll back (undo) any changes made to
the example data if one of my statements modified the data. You may,
of course, do whatever you want with the example data, including wip-
ing it clean and rerunning the scripts I have provided, but I try to leave
it intact.

Range Conditions
Along with checking that an expression is equal to (or not equal to) another expression,
you can build conditions that check whether an expression falls within a certain range.
This type of condition is common when working with numeric or temporal data. Con-
sider the following query:

mysql> SELECT emp_id, fname, lname, start_date
 -> FROM employee
 -> WHERE start_date < '2007-01-01';
+--------+---------+-----------+------------+
| emp_id | fname | lname | start_date |
+--------+---------+-----------+------------+
1	Michael	Smith	2005-06-22
2	Susan	Barker	2006-09-12
3	Robert	Tyler	2005-02-09
4	Susan	Hawthorne	2006-04-24
8	Sarah	Parker	2006-12-02
9	Jane	Grossman	2006-05-03
10	Paula	Roberts	2006-07-27
11	Thomas	Ziegler	2004-10-23
13	John	Blake	2004-05-11
14	Cindy	Mason	2006-08-09
16	Theresa	Markham	2005-03-15
17	Beth	Fowler	2006-06-29
18	Rick	Tulman	2006-12-12
+--------+---------+-----------+------------+
13 rows in set (0.15 sec)

This query finds all employees hired prior to 2007. Along with specifying an upper limit
for the start date, you may also want to specify a lower range for the start date:

mysql> SELECT emp_id, fname, lname, start_date
 -> FROM employee
 -> WHERE start_date < '2007-01-01'
 -> AND start_date >= '2005-01-01';
+--------+---------+-----------+------------+
| emp_id | fname | lname | start_date |
+--------+---------+-----------+------------+

68 | Chapter 4: Filtering

1	Michael	Smith	2005-06-22
2	Susan	Barker	2006-09-12
3	Robert	Tyler	2005-02-09
4	Susan	Hawthorne	2006-04-24
8	Sarah	Parker	2006-12-02
9	Jane	Grossman	2006-05-03
10	Paula	Roberts	2006-07-27
14	Cindy	Mason	2006-08-09
16	Theresa	Markham	2005-03-15
17	Beth	Fowler	2006-06-29
18	Rick	Tulman	2006-12-12
+--------+---------+-----------+------------+
11 rows in set (0.00 sec)

This version of the query retrieves all employees hired in 2005 or 2006.

The between operator

When you have both an upper and lower limit for your range, you may choose to use
a single condition that utilizes the between operator rather than using two separate
conditions, as in:

mysql> SELECT emp_id, fname, lname, start_date
 -> FROM employee
 -> WHERE start_date BETWEEN '2005-01-01' AND '2007-01-01';
+--------+---------+-----------+------------+
| emp_id | fname | lname | start_date |
+--------+---------+-----------+------------+
1	Michael	Smith	2005-06-22
2	Susan	Barker	2006-09-12
3	Robert	Tyler	2005-02-09
4	Susan	Hawthorne	2006-04-24
8	Sarah	Parker	2006-12-02
9	Jane	Grossman	2006-05-03
10	Paula	Roberts	2006-07-27
14	Cindy	Mason	2006-08-09
16	Theresa	Markham	2005-03-15
17	Beth	Fowler	2006-06-29
18	Rick	Tulman	2006-12-12
+--------+---------+-----------+------------+
11 rows in set (0.03 sec)

When using the between operator, there are a couple of things to keep in mind. You
should always specify the lower limit of the range first (after between) and the upper
limit of the range second (after and). Here’s what happens if you mistakenly specify the
upper limit first:

mysql> SELECT emp_id, fname, lname, start_date
 -> FROM employee
 -> WHERE start_date BETWEEN '2007-01-01' AND '2005-01-01';
Empty set (0.00 sec)

As you can see, no data is returned. This is because the server is, in effect, generating
two conditions from your single condition using the <= and >= operators, as in:

Condition Types | 69

mysql> SELECT emp_id, fname, lname, start_date
 -> FROM employee
 -> WHERE start_date >= '2007-01-01'
 -> AND start_date <= '2005-01-01';
Empty set (0.00 sec)

Since it is impossible to have a date that is both greater than January 1, 2007 and less
than January 1, 2005, the query returns an empty set. This brings me to the second
pitfall when using between, which is to remember that your upper and lower limits are
inclusive, meaning that the values you provide are included in the range limits. In this
case, I want to specify 2005-01-01 as the lower end of the range and 2006-12-31 as the
upper end, rather than 2007-01-01. Even though there probably weren’t any employees
who started working for the bank on New Year’s Day 2007, it is best to specify exactly
what you want.

Along with dates, you can also build conditions to specify ranges of numbers. Numeric
ranges are fairly easy to grasp, as demonstrated by the following:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE avail_balance BETWEEN 3000 AND 5000;
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
3	CD	1	3000.00
17	CD	7	5000.00
18	CHK	8	3487.19
+------------+------------+---------+---------------+
3 rows in set (0.10 sec)

All accounts with between $3,000 and $5,000 of an available balance are returned.
Again, make sure that you specify the lower amount first.

String ranges

While ranges of dates and numbers are easy to understand, you can also build condi-
tions that search for ranges of strings, which are a bit harder to visualize. Say, for ex-
ample, you are searching for customers having a Social Security number that falls within
a certain range. The format for a Social Security number is “XXX-XX-XXXX,” where X
is a number from 0 to 9, and you want to find every customer whose Social Security
number lies between “500-00-0000” and “999-99-9999.” Here’s what the statement
would look like:

mysql> SELECT cust_id, fed_id
 -> FROM customer
 -> WHERE cust_type_cd = 'I'
 -> AND fed_id BETWEEN '500-00-0000' AND '999-99-9999';
+---------+-------------+
| cust_id | fed_id |
+---------+-------------+
| 5 | 555-55-5555 |
| 6 | 666-66-6666 |

70 | Chapter 4: Filtering

7	777-77-7777
8	888-88-8888
9	999-99-9999
+---------+-------------+
5 rows in set (0.01 sec)

To work with string ranges, you need to know the order of the characters within your
character set (the order in which the characters within a character set are sorted is called
a collation).

Membership Conditions
In some cases, you will not be restricting an expression to a single value or range of
values, but rather to a finite set of values. For example, you might want to locate all
accounts whose product code is either 'CHK', 'SAV', 'CD', or 'MM':

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE product_cd = 'CHK' OR product_cd = 'SAV'
 -> OR product_cd = 'CD' OR product_cd = 'MM';
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
1	CHK	1	1057.75
2	SAV	1	500.00
3	CD	1	3000.00
4	CHK	2	2258.02
5	SAV	2	200.00
7	CHK	3	1057.75
8	MM	3	2212.50
10	CHK	4	534.12
11	SAV	4	767.77
12	MM	4	5487.09
13	CHK	5	2237.97
14	CHK	6	122.37
15	CD	6	10000.00
17	CD	7	5000.00
18	CHK	8	3487.19
19	SAV	8	387.99
21	CHK	9	125.67
22	MM	9	9345.55
23	CD	9	1500.00
24	CHK	10	23575.12
28	CHK	12	38552.05
+------------+------------+---------+---------------+
21 rows in set (0.28 sec)

While this where clause (four conditions or‘d together) wasn’t too tedious to generate,
imagine if the set of expressions contained 10 or 20 members. For these situations, you
can use the in operator instead:

SELECT account_id, product_cd, cust_id, avail_balance
FROM account
WHERE product_cd IN ('CHK','SAV','CD','MM');

Condition Types | 71

With the in operator, you can write a single condition no matter how many expressions
are in the set.

Using subqueries

Along with writing your own set of expressions, such as ('CHK','SAV','CD','MM'), you
can use a subquery to generate a set for you on the fly. For example, all four product
types used in the previous query have a product_type_cd of 'ACCOUNT', so why not use
a subquery against the product table to retrieve the four product codes instead of ex-
plicitly naming them:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE product_cd IN (SELECT product_cd FROM product
 -> WHERE product_type_cd = 'ACCOUNT');
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
3	CD	1	3000.00
15	CD	6	10000.00
17	CD	7	5000.00
23	CD	9	1500.00
1	CHK	1	1057.75
4	CHK	2	2258.02
7	CHK	3	1057.75
10	CHK	4	534.12
13	CHK	5	2237.97
14	CHK	6	122.37
18	CHK	8	3487.19
21	CHK	9	125.67
24	CHK	10	23575.12
28	CHK	12	38552.05
8	MM	3	2212.50
12	MM	4	5487.09
22	MM	9	9345.55
2	SAV	1	500.00
5	SAV	2	200.00
11	SAV	4	767.77
19	SAV	8	387.99
+------------+------------+---------+---------------+
21 rows in set (0.11 sec)

The subquery returns a set of four values, and the main query checks to see whether
the value of the product_cd column can be found in the set that the subquery returned.

Using not in

Sometimes you want to see whether a particular expression exists within a set of ex-
pressions, and sometimes you want to see whether the expression does not exist. For
these situations, you can use the not in operator:

72 | Chapter 4: Filtering

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE product_cd NOT IN ('CHK','SAV','CD','MM');
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
25	BUS	10	0.00
27	BUS	11	9345.55
29	SBL	13	50000.00
+------------+------------+---------+---------------+
3 rows in set (0.09 sec)

This query finds all accounts that are not checking, savings, certificate of deposit, or
money market accounts.

Matching Conditions
So far, you have been introduced to conditions that identify an exact string, a range of
strings, or a set of strings; the final condition type deals with partial string matches.
You may, for example, want to find all employees whose last name begins with T. You
could use a built-in function to strip off the first letter of the lname column, as in:

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> WHERE LEFT(lname, 1) = 'T';
+--------+--------+--------+
| emp_id | fname | lname |
+--------+--------+--------+
3	Robert	Tyler
7	Chris	Tucker
18	Rick	Tulman
+--------+--------+--------+
3 rows in set (0.01 sec)

While the built-in function left() does the job, it doesn’t give you much flexibility.
Instead, you can use wildcard characters to build search expressions, as demonstrated
in the next section.

Using wildcards

When searching for partial string matches, you might be interested in:

• Strings beginning/ending with a certain character

• Strings beginning/ending with a substring

• Strings containing a certain character anywhere within the string

• Strings containing a substring anywhere within the string

• Strings with a specific format, regardless of individual characters

You can build search expressions to identify these and many other partial string
matches by using the wildcard characters shown in Table 4-4.

Condition Types | 73

Table 4-4. Wildcard characters

Wildcard character Matches

_ Exactly one character

% Any number of characters (including 0)

The underscore character takes the place of a single character, while the percent sign
can take the place of a variable number of characters. When building conditions that
utilize search expressions, you use the like operator, as in:

mysql> SELECT lname
 -> FROM employee
 -> WHERE lname LIKE '_a%e%';
+-----------+
| lname |
+-----------+
| Barker |
| Hawthorne |
| Parker |
| Jameson |
+-----------+
4 rows in set (0.00 sec)

The search expression in the previous example specifies strings containing an a in the
second position and followed by an e at any other position in the string (including the
last position). Table 4-5 shows some more search expressions and their interpretations.

Table 4-5. Sample search expressions

Search expression Interpretation

F% Strings beginning with F

%t Strings ending with t

%bas% Strings containing the substring 'bas'

_ _t_ Four-character strings with a t in the third position

_ _ _-_ _-_ _ _ _ 11-character strings with dashes in the fourth and seventh positions

You could use the last example in Table 4-5 to find customers whose federal ID matches
the format used for Social Security numbers, as in:

mysql> SELECT cust_id, fed_id
 -> FROM customer
 -> WHERE fed_id LIKE '___-__-____';
+---------+-------------+
| cust_id | fed_id |
+---------+-------------+
1	111-11-1111
2	222-22-2222
3	333-33-3333
4	444-44-4444
5	555-55-5555

74 | Chapter 4: Filtering

6	666-66-6666
7	777-77-7777
8	888-88-8888
9	999-99-9999
+---------+-------------+
9 rows in set (0.02 sec)

The wildcard characters work fine for building simple search expressions; if your needs
are a bit more sophisticated, however, you can use multiple search expressions, as
demonstrated by the following:

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> WHERE lname LIKE 'F%' OR lname LIKE 'G%';
+--------+-------+----------+
| emp_id | fname | lname |
+--------+-------+----------+
5	John	Gooding
6	Helen	Fleming
9	Jane	Grossman
17	Beth	Fowler
+--------+-------+----------+
4 rows in set (0.00 sec)

This query finds all employees whose last name begins with F or G.

Using regular expressions

If you find that the wildcard characters don’t provide enough flexibility, you can use
regular expressions to build search expressions. A regular expression is, in essence, a
search expression on steroids. If you are new to SQL but have coded using programming
languages such as Perl, then you might already be intimately familiar with regular ex-
pressions. If you have never used regular expressions, then you may want to consult
Jeffrey E.F. Friedl’s Mastering Regular Expressions (http://oreilly.com/catalog/
9780596528126/) (O’Reilly), since it is far too large a topic to try to cover in this book.

Here’s what the previous query (find all employees whose last name starts with F or
G) would look like using the MySQL implementation of regular expressions:

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> WHERE lname REGEXP '^[FG]';
+--------+-------+----------+
| emp_id | fname | lname |
+--------+-------+----------+
5	John	Gooding
6	Helen	Fleming
9	Jane	Grossman
17	Beth	Fowler
+--------+-------+----------+
4 rows in set (0.00 sec)

The regexp operator takes a regular expression ('^[FG]' in this example) and applies it
to the expression on the lefthand side of the condition (the column lname). The query

Condition Types | 75

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

now contains a single condition using a regular expression rather than two conditions
using wildcard characters.

Oracle Database and Microsoft SQL Server also support regular expressions. With
Oracle Database, you would use the regexp_like function instead of the regexp operator
shown in the previous example, whereas SQL Server allows regular expressions to be
used with the like operator.

Null: That Four-Letter Word
I put it off as long as I could, but it’s time to broach a topic that tends to be met with
fear, uncertainty, and dread: the null value. Null is the absence of a value; before an
employee is terminated, for example, her end_date column in the employee table should
be null. There is no value that can be assigned to the end_date column that would make
sense in this situation. Null is a bit slippery, however, as there are various flavors of null:

Not applicable
Such as the employee ID column for a transaction that took place at an ATM
machine

Value not yet known
Such as when the federal ID is not known at the time a customer row is created

Value undefined
Such as when an account is created for a product that has not yet been added to
the database

Some theorists argue that there should be a different expression to cover
each of these (and more) situations, but most practitioners would agree
that having multiple null values would be far too confusing.

When working with null, you should remember:

• An expression can be null, but it can never equal null.

• Two nulls are never equal to each other.

To test whether an expression is null, you need to use the is null operator, as dem-
onstrated by the following:

mysql> SELECT emp_id, fname, lname, superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id IS NULL;
+--------+---------+-------+-----------------+
| emp_id | fname | lname | superior_emp_id |
+--------+---------+-------+-----------------+
| 1 | Michael | Smith | NULL |
+--------+---------+-------+-----------------+
1 row in set (0.00 sec)

76 | Chapter 4: Filtering

This query returns all employees who do not have a boss (wouldn’t that be nice?).
Here’s the same query using = null instead of is null:

mysql> SELECT emp_id, fname, lname, superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id = NULL;
Empty set (0.01 sec)

As you can see, the query parses and executes but does not return any rows. This is a
common mistake made by inexperienced SQL programmers, and the database server
will not alert you to your error, so be careful when constructing conditions that test for
null.

If you want to see whether a value has been assigned to a column, you can use the is
not null operator, as in:

mysql> SELECT emp_id, fname, lname, superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id IS NOT NULL;
+--------+----------+-----------+-----------------+
| emp_id | fname | lname | superior_emp_id |
+--------+----------+-----------+-----------------+
2	Susan	Barker	1
3	Robert	Tyler	1
4	Susan	Hawthorne	3
5	John	Gooding	4
6	Helen	Fleming	4
7	Chris	Tucker	6
8	Sarah	Parker	6
9	Jane	Grossman	6
10	Paula	Roberts	4
11	Thomas	Ziegler	10
12	Samantha	Jameson	10
13	John	Blake	4
14	Cindy	Mason	13
15	Frank	Portman	13
16	Theresa	Markham	4
17	Beth	Fowler	16
18	Rick	Tulman	16
+--------+----------+-----------+-----------------+
17 rows in set (0.00 sec)

This version of the query returns the other 17 employees who, unlike Michael Smith,
have a boss.

Before putting null aside for a while, it would be helpful to investigate one more po-
tential pitfall. Suppose that you have been asked to identify all employees who are
not managed by Helen Fleming (whose employee ID is 6). Your first instinct might be
to do the following:

mysql> SELECT emp_id, fname, lname, superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id != 6;

Null: That Four-Letter Word | 77

+--------+----------+-----------+-----------------+
| emp_id | fname | lname | superior_emp_id |
+--------+----------+-----------+-----------------+
2	Susan	Barker	1
3	Robert	Tyler	1
4	Susan	Hawthorne	3
5	John	Gooding	4
6	Helen	Fleming	4
10	Paula	Roberts	4
11	Thomas	Ziegler	10
12	Samantha	Jameson	10
13	John	Blake	4
14	Cindy	Mason	13
15	Frank	Portman	13
16	Theresa	Markham	4
17	Beth	Fowler	16
18	Rick	Tulman	16
+--------+----------+-----------+-----------------+
14 rows in set (0.00 sec)

While it is true that these 14 employees do not work for Helen Fleming, if you look
carefully at the data, you will see that there is one more employee who doesn’t work
for Helen who is not listed here. That employee is Michael Smith, and his
superior_emp_id column is null (because he’s the big cheese). To answer the question
correctly, therefore, you need to account for the possibility that some rows might con-
tain a null in the superior_emp_id column:

mysql> SELECT emp_id, fname, lname, superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id != 6 OR superior_emp_id IS NULL;
+--------+----------+-----------+-----------------+
| emp_id | fname | lname | superior_emp_id |
+--------+----------+-----------+-----------------+
1	Michael	Smith	NULL
2	Susan	Barker	1
3	Robert	Tyler	1
4	Susan	Hawthorne	3
5	John	Gooding	4
6	Helen	Fleming	4
10	Paula	Roberts	4
11	Thomas	Ziegler	10
12	Samantha	Jameson	10
13	John	Blake	4
14	Cindy	Mason	13
15	Frank	Portman	13
16	Theresa	Markham	4
17	Beth	Fowler	16
18	Rick	Tulman	16
+--------+----------+-----------+-----------------+
15 rows in set (0.00 sec)

The result set now includes all 15 employees who don’t work for Helen. When working
with a database that you are not familiar with, it is a good idea to find out which columns

78 | Chapter 4: Filtering

in a table allow nulls so that you can take appropriate measures with your filter con-
ditions to keep data from slipping through the cracks.

Test Your Knowledge
The following exercises test your understanding of filter conditions. Please see Appen-
dix C for solutions.

The following transaction data is used for the first two exercises:

Txn_id Txn_date Account_id Txn_type_cd Amount

1 2005-02-22 101 CDT 1000.00

2 2005-02-23 102 CDT 525.75

3 2005-02-24 101 DBT 100.00

4 2005-02-24 103 CDT 55

5 2005-02-25 101 DBT 50

6 2005-02-25 103 DBT 25

7 2005-02-25 102 CDT 125.37

8 2005-02-26 103 DBT 10

9 2005-02-27 101 CDT 75

Exercise 4-1
Which of the transaction IDs would be returned by the following filter conditions?

txn_date < '2005-02-26' AND (txn_type_cd = 'DBT' OR amount > 100)

Exercise 4-2
Which of the transaction IDs would be returned by the following filter conditions?

account_id IN (101,103) AND NOT (txn_type_cd = 'DBT' OR amount > 100)

Exercise 4-3
Construct a query that retrieves all accounts opened in 2002.

Exercise 4-4
Construct a query that finds all nonbusiness customers whose last name contains an
a in the second position and an e anywhere after the a.

Test Your Knowledge | 79

CHAPTER 5

Querying Multiple Tables

Back in Chapter 2, I demonstrated how related concepts are broken into separate pieces
through a process known as normalization. The end result of this exercise was two
tables: person and favorite_food. If, however, you want to generate a single report
showing a person’s name, address, and favorite foods, you will need a mechanism to
bring the data from these two tables back together again; this mechanism is known as
a join, and this chapter concentrates on the simplest and most common join, the inner
join. Chapter 10 demonstrates all of the different join types.

What Is a Join?
Queries against a single table are certainly not rare, but you will find that most of your
queries will require two, three, or even more tables. To illustrate, let’s look at the def-
initions for the employee and department tables and then define a query that retrieves
data from both tables:

mysql> DESC employee;
+--------------------+----------------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+--------------------+----------------------+------+-----+---------+
emp_id	smallint(5) unsigned	NO	PRI	NULL
fname	varchar(20)	NO		NULL
lname	varchar(20)	NO		NULL
start_date	date	NO		NULL
end_date	date	YES		NULL
superior_emp_id	smallint(5) unsigned	YES	MUL	NULL
dept_id	smallint(5) unsigned	YES	MUL	NULL
title	varchar(20)	YES		NULL
assigned_branch_id	smallint(5) unsigned	YES	MUL	NULL
+--------------------+----------------------+------+-----+---------+
9 rows in set (0.11 sec)

 mysql> DESC department;
+---------+----------------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+---------+----------------------+------+-----+---------+
| dept_id | smallint(5) unsigned | No | PRI | NULL |

81

| name | varchar(20) | No | | NULL |
+---------+----------------------+------+-----+---------+
2 rows in set (0.03 sec)

Let’s say you want to retrieve the first and last names of each employee along with the
name of the department to which each employee is assigned. Your query will therefore
need to retrieve the employee.fname, employee.lname, and department.name columns.
But how can you retrieve data from both tables in the same query? The answer lies in
the employee.dept_id column, which holds the ID of the department to which each
employee is assigned (in more formal terms, the employee.dept_id column is the foreign
key to the department table). The query, which you will see shortly, instructs the server
to use the employee.dept_id column as the bridge between the employee and
department tables, thereby allowing columns from both tables to be included in the
query’s result set. This type of operation is known as a join.

Cartesian Product
The easiest way to start is to put the employee and department tables into the from clause
of a query and see what happens. Here’s a query that retrieves the employee’s first and
last names along with the department name, with a from clause naming both tables
separated by the join keyword:

mysql> SELECT e.fname, e.lname, d.name
 -> FROM employee e JOIN department d;
+----------+-----------+----------------+
| fname | lname | name |
+----------+-----------+----------------+
Michael	Smith	Operations
Michael	Smith	Loans
Michael	Smith	Administration
Susan	Barker	Operations
Susan	Barker	Loans
Susan	Barker	Administration
Robert	Tyler	Operations
Robert	Tyler	Loans
Robert	Tyler	Administration
Susan	Hawthorne	Operations
Susan	Hawthorne	Loans
Susan	Hawthorne	Administration
John	Gooding	Operations
John	Gooding	Loans
John	Gooding	Administration
Helen	Fleming	Operations
Helen	Fleming	Loans
Helen	Fleming	Administration
Chris	Tucker	Operations
Chris	Tucker	Loans
Chris	Tucker	Administration
Sarah	Parker	Operations
Sarah	Parker	Loans
Sarah	Parker	Administration
Jane	Grossman	Operations

82 | Chapter 5: Querying Multiple Tables

Jane	Grossman	Loans
Jane	Grossman	Administration
Paula	Roberts	Operations
Paula	Roberts	Loans
Paula	Roberts	Administration
Thomas	Ziegler	Operations
Thomas	Ziegler	Loans
Thomas	Ziegler	Administration
Samantha	Jameson	Operations
Samantha	Jameson	Loans
Samantha	Jameson	Administration
John	Blake	Operations
John	Blake	Loans
John	Blake	Administration
Cindy	Mason	Operations
Cindy	Mason	Loans
Cindy	Mason	Administration
Frank	Portman	Operations
Frank	Portman	Loans
Frank	Portman	Administration
Theresa	Markham	Operations
Theresa	Markham	Loans
Theresa	Markham	Administration
Beth	Fowler	Operations
Beth	Fowler	Loans
Beth	Fowler	Administration
Rick	Tulman	Operations
Rick	Tulman	Loans
Rick	Tulman	Administration
+----------+-----------+----------------+
54 rows in set (0.23 sec)

Hmmm…there are only 18 employees and 3 different departments, so how did the result
set end up with 54 rows? Looking more closely, you can see that the set of 18 employees
is repeated three times, with all the data identical except for the department name.
Because the query didn’t specify how the two tables should be joined, the database
server generated the Cartesian product, which is every permutation of the two tables
(18 employees × 3 departments = 54 permutations). This type of join is known as a
cross join, and it is rarely used (on purpose, at least). Cross joins are one of the join
types that we study in Chapter 10.

Inner Joins
To modify the previous query so that only 18 rows are included in the result set (one
for each employee), you need to describe how the two tables are related. Earlier, I
showed that the employee.dept_id column serves as the link between the two tables,
so this information needs to be added to the on subclause of the from clause:

mysql> SELECT e.fname, e.lname, d.name
 -> FROM employee e JOIN department d
 -> ON e.dept_id = d.dept_id;

What Is a Join? | 83

+----------+-----------+----------------+
| fname | lname | name |
+----------+-----------+----------------+
Michael	Smith	Administration
Susan	Barker	Administration
Robert	Tyler	Administration
Susan	Hawthorne	Operations
John	Gooding	Loans
Helen	Fleming	Operations
Chris	Tucker	Operations
Sarah	Parker	Operations
Jane	Grossman	Operations
Paula	Roberts	Operations
Thomas	Ziegler	Operations
Samantha	Jameson	Operations
John	Blake	Operations
Cindy	Mason	Operations
Frank	Portman	Operations
Theresa	Markham	Operations
Beth	Fowler	Operations
Rick	Tulman	Operations
+----------+-----------+----------------+
18 rows in set (0.00 sec)

Instead of 54 rows, you now have the expected 18 rows due to the addition of the on
subclause, which instructs the server to join the employee and department tables by using
the dept_id column to traverse from one table to the other. For example, Susan Haw-
thorne’s row in the employee table contains a value of 1 in the dept_id column (not
shown in the example). The server uses this value to look up the row in the
department table having a value of 1 in its dept_id column and then retrieves the value
'Operations' from the name column in that row.

If a value exists for the dept_id column in one table but not the other, then the join fails
for the rows containing that value and those rows are excluded from the result set. This
type of join is known as an inner join, and it is the most commonly used type of join.
To clarify, if the department table contains a fourth row for the marketing department,
but no employees have been assigned to that department, then the marketing depart-
ment would not be included in the result set. Likewise, if some of the employees had
been assigned to department ID 99, which doesn’t exist in the department table, then
these employees would be left out of the result set. If you want to include all rows from
one table or the other regardless of whether a match exists, you need to specify an outer
join, but we cover this later in the book.

In the previous example, I did not specify in the from clause which type of join to use.
However, when you wish to join two tables using an inner join, you should explicitly
specify this in your from clause; here’s the same example, with the addition of the join
type (note the keyword INNER):

mysql> SELECT e.fname, e.lname, d.name
 -> FROM employee e INNER JOIN department d

84 | Chapter 5: Querying Multiple Tables

 -> ON e.dept_id = d.dept_id;
+----------+-----------+----------------+
| fname | lname | name |
+----------+-----------+----------------+
Michael	Smith	Administration
Susan	Barker	Administration
Robert	Tyler	Administration
Susan	Hawthorne	Operations
John	Gooding	Loans
Helen	Fleming	Operations
Chris	Tucker	Operations
Sarah	Parker	Operations
Jane	Grossman	Operations
Paula	Roberts	Operations
Thomas	Ziegler	Operations
Samantha	Jameson	Operations
John	Blake	Operations
Cindy	Mason	Operations
Frank	Portman	Operations
Theresa	Markham	Operations
Beth	Fowler	Operations
Rick	Tulman	Operations
+----------+-----------+----------------+
18 rows in set (0.00 sec)

If you do not specify the type of join, then the server will do an inner join by default.
As you will see later in the book, however, there are several types of joins, so you should
get in the habit of specifying the exact type of join that you require.

If the names of the columns used to join the two tables are identical, which is true in
the previous query, you can use the using subclause instead of the on subclause, as in:

mysql> SELECT e.fname, e.lname, d.name
 -> FROM employee e INNER JOIN department d
 -> USING (dept_id);
+----------+-----------+----------------+
| fname | lname | name |
+----------+-----------+----------------+
Michael	Smith	Administration
Susan	Barker	Administration
Robert	Tyler	Administration
Susan	Hawthorne	Operations
John	Gooding	Loans
Helen	Fleming	Operations
Chris	Tucker	Operations
Sarah	Parker	Operations
Jane	Grossman	Operations
Paula	Roberts	Operations
Thomas	Ziegler	Operations
Samantha	Jameson	Operations
John	Blake	Operations
Cindy	Mason	Operations
Frank	Portman	Operations
Theresa	Markham	Operations
Beth	Fowler	Operations

What Is a Join? | 85

| Rick | Tulman | Operations |
+----------+-----------+----------------+
18 rows in set (0.01 sec)

Since using is a shorthand notation that you can use in only a specific situation, I prefer
always to use the on subclause to avoid confusion.

The ANSI Join Syntax
The notation used throughout this book for joining tables was introduced in the SQL92
version of the ANSI SQL standard. All the major databases (Oracle Database,
Microsoft SQL Server, MySQL, IBM DB2 Universal Database, and Sybase Adaptive
Server) have adopted the SQL92 join syntax. Because most of these servers have been
around since before the release of the SQL92 specification, they all include an older
join syntax as well. For example, all these servers would understand the following
variation of the previous query:

mysql> SELECT e.fname, e.lname, d.name
 -> FROM employee e, department d
 -> WHERE e.dept_id = d.dept_id;
+----------+-----------+----------------+
| fname | lname | name |
+----------+-----------+----------------+
Michael	Smith	Administration
Susan	Barker	Administration
Robert	Tyler	Administration
Susan	Hawthorne	Operations
John	Gooding	Loans
Helen	Fleming	Operations
Chris	Tucker	Operations
Sarah	Parker	Operations
Jane	Grossman	Operations
Paula	Roberts	Operations
Thomas	Ziegler	Operations
Samantha	Jameson	Operations
John	Blake	Operations
Cindy	Mason	Operations
Frank	Portman	Operations
Theresa	Markham	Operations
Beth	Fowler	Operations
Rick	Tulman	Operations
+----------+-----------+----------------+
18 rows in set (0.01 sec)

This older method of specifying joins does not include the on subclause; instead, tables
are named in the from clause separated by commas, and join conditions are included
in the where clause. While you may decide to ignore the SQL92 syntax in favor of the
older join syntax, the ANSI join syntax has the following advantages:

• Join conditions and filter conditions are separated into two different clauses (the
on subclause and the where clause, respectively), making a query easier to
understand.

86 | Chapter 5: Querying Multiple Tables

• The join conditions for each pair of tables are contained in their own on clause,
making it less likely that part of a join will be mistakenly omitted.

• Queries that use the SQL92 join syntax are portable across database servers,
whereas the older syntax is slightly different across the different servers.

The benefits of the SQL92 join syntax are easier to identify for complex queries that
include both join and filter conditions. Consider the following query, which returns all
accounts opened by experienced tellers (hired prior to 2007) currently assigned to the
Woburn branch:

mysql> SELECT a.account_id, a.cust_id, a.open_date, a.product_cd
 -> FROM account a, branch b, employee e
 -> WHERE a.open_emp_id = e.emp_id
 -> AND e.start_date < '2007-01-01'
 -> AND e.assigned_branch_id = b.branch_id
 -> AND (e.title = 'Teller' OR e.title = 'Head Teller')
 -> AND b.name = 'Woburn Branch';
+------------+---------+------------+------------+
| account_id | cust_id | open_date | product_cd |
+------------+---------+------------+------------+
1	1	2000-01-15	CHK
2	1	2000-01-15	SAV
3	1	2004-06-30	CD
4	2	2001-03-12	CHK
5	2	2001-03-12	SAV
17	7	2004-01-12	CD
27	11	2004-03-22	BUS
+------------+---------+------------+------------+
7 rows in set (0.00 sec)

With this query, it is not so easy to determine which conditions in the where clause are
join conditions and which are filter conditions. It is also not readily apparent which
type of join is being employed (to identify the type of join, you would need to look
closely at the join conditions in the where clause to see whether any special characters
are employed), nor is it easy to determine whether any join conditions have been mis-
takenly left out. Here’s the same query using the SQL92 join syntax:

mysql> SELECT a.account_id, a.cust_id, a.open_date, a.product_cd
 -> FROM account a INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> INNER JOIN branch b
 -> ON e.assigned_branch_id = b.branch_id
 -> WHERE e.start_date < '2007-01-01'
 -> AND (e.title = 'Teller' OR e.title = 'Head Teller')
 -> AND b.name = 'Woburn Branch';
+------------+---------+------------+------------+
| account_id | cust_id | open_date | product_cd |
+------------+---------+------------+------------+
1	1	2000-01-15	CHK
2	1	2000-01-15	SAV
3	1	2004-06-30	CD
4	2	2001-03-12	CHK
5	2	2001-03-12	SAV

What Is a Join? | 87

| 17 | 7 | 2004-01-12 | CD |
| 27 | 11 | 2004-03-22 | BUS |
+------------+---------+------------+------------+
7 rows in set (0.05 sec)

Hopefully, you will agree that the version using SQL92 join syntax is easier to
understand.

Joining Three or More Tables
Joining three tables is similar to joining two tables, but with one slight wrinkle. With
a two-table join, there are two tables and one join type in the from clause, and a single
on subclause to define how the tables are joined. With a three-table join, there are three
tables and two join types in the from clause, and two on subclauses. Here’s another
example of a query with a two-table join:

mysql> SELECT a.account_id, c.fed_id
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> WHERE c.cust_type_cd = 'B';
+------------+------------+
| account_id | fed_id |
+------------+------------+
24	04-1111111
25	04-1111111
27	04-2222222
28	04-3333333
29	04-4444444
+------------+------------+
5 rows in set (0.15 sec)

This query, which returns the account ID and federal tax number for all business ac-
counts, should look fairly straightforward by now. If, however, you add the employee
table to the query to also retrieve the name of the teller who opened each account, it
looks as follows:

mysql> SELECT a.account_id, c.fed_id, e.fname, e.lname
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> WHERE c.cust_type_cd = 'B';
+------------+------------+---------+---------+
| account_id | fed_id | fname | lname |
+------------+------------+---------+---------+
24	04-1111111	Theresa	Markham
25	04-1111111	Theresa	Markham
27	04-2222222	Paula	Roberts
28	04-3333333	Theresa	Markham
29	04-4444444	John	Blake
+------------+------------+---------+---------+
5 rows in set (0.00 sec)

88 | Chapter 5: Querying Multiple Tables

Now three tables, two join types, and two on subclauses are listed in the from clause,
so things have gotten quite a bit busier. At first glance, the order in which the tables
are named might cause you to think that the employee table is being joined to the
customer table, since the account table is named first, followed by the customer table,
and then the employee table. If you switch the order in which the first two tables appear,
however, you will get the exact same results:

mysql> SELECT a.account_id, c.fed_id, e.fname, e.lname
 -> FROM customer c INNER JOIN account a
 -> ON a.cust_id = c.cust_id
 -> INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> WHERE c.cust_type_cd = 'B';
+------------+------------+---------+---------+
| account_id | fed_id | fname | lname |
+------------+------------+---------+---------+
24	04-1111111	Theresa	Markham
25	04-1111111	Theresa	Markham
27	04-2222222	Paula	Roberts
28	04-3333333	Theresa	Markham
29	04-4444444	John	Blake
+------------+------------+---------+---------+
5 rows in set (0.09 sec)

The customer table is now listed first, followed by the account table and then the
employee table. Since the on subclauses haven’t changed, the results are the same. For
the sake of completeness, here’s the same query one last time, but with the table order
completely reversed (employee to account to customer):

mysql> SELECT a.account_id, c.fed_id, e.fname, e.lname
 -> FROM employee e INNER JOIN account a
 -> ON e.emp_id = a.open_emp_id
 -> INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> WHERE c.cust_type_cd = 'B';
+------------+------------+---------+---------+
| account_id | fed_id | fname | lname |
+------------+------------+---------+---------+
24	04-1111111	Theresa	Markham
25	04-1111111	Theresa	Markham
27	04-2222222	Paula	Roberts
28	04-3333333	Theresa	Markham
29	04-4444444	John	Blake
+------------+------------+---------+---------+
5 rows in set (0.00 sec)

Joining Three or More Tables | 89

Does Join Order Matter?
If you are confused about why all three versions of the account/employee/customer query
yield the same results, keep in mind that SQL is a nonprocedural language, meaning
that you describe what you want to retrieve and which database objects need to be
involved, but it is up to the database server to determine how best to execute your
query. Using statistics gathered from your database objects, the server must pick one
of three tables as a starting point (the chosen table is thereafter known as the driving
table), and then decide in which order to join the remaining tables. Therefore, the order
in which tables appear in your from clause is not significant.

If, however, you believe that the tables in your query should always be joined in a
particular order, you can place the tables in the desired order and then specify the
keyword STRAIGHT_JOIN in MySQL, request the FORCE ORDER option in SQL Server, or
use either the ORDERED or the LEADING optimizer hint in Oracle Database. For example,
to tell the MySQL server to use the customer table as the driving table and to then join
the account and employee tables, you could do the following:

mysql> SELECT STRAIGHT_JOIN a.account_id, c.fed_id, e.fname, e.lname
 -> FROM customer c INNER JOIN account a
 -> ON a.cust_id = c.cust_id
 -> INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> WHERE c.cust_type_cd = 'B';

One way to think of a query that uses three or more tables is as a snowball rolling down
a hill. The first two tables get the ball rolling, and each subsequent table gets tacked on
to the snowball as it heads downhill. You can think of the snowball as the intermediate
result set, which is picking up more and more columns as subsequent tables are joined.
Therefore, the employee table is not really being joined to the account table, but rather
the intermediate result set created when the customer and account tables were joined.
(In case you were wondering why I chose a snowball analogy, I wrote this chapter in
the midst of a New England winter: 110 inches so far, and more coming tomorrow. Oh
joy.)

Using Subqueries As Tables
You have already seen several examples of queries that use three tables, but there is one
variation worth mentioning: what to do if some of the data sets are generated by sub-
queries. Subqueries is the focus of Chapter 9, but I already introduced the concept of
a subquery in the from clause in the previous chapter. Here’s another version of an
earlier query (find all accounts opened by experienced tellers currently assigned to the
Woburn branch) that joins the account table to subqueries against the branch and
employee tables:

1 SELECT a.account_id, a.cust_id, a.open_date, a.product_cd
2 FROM account a INNER JOIN
3 (SELECT emp_id, assigned_branch_id

90 | Chapter 5: Querying Multiple Tables

4 FROM employee
5 WHERE start_date < '2007-01-01'
6 AND (title = 'Teller' OR title = 'Head Teller')) e
7 ON a.open_emp_id = e.emp_id
8 INNER JOIN
9 (SELECT branch_id
10 FROM branch
11 WHERE name = 'Woburn Branch') b
12 ON e.assigned_branch_id = b.branch_id;

The first subquery, which starts on line 3 and is given the alias e, finds all experienced
tellers. The second subquery, which starts on line 9 and is given the alias b, finds the
ID of the Woburn branch. First, the account table is joined to the experienced-teller
subquery using the employee ID and then the table that results is joined to the Woburn
branch subquery using the branch ID. The results are the same as those of the previous
version of the query (try it and see for yourself), but the queries look very different from
one another.

There isn’t really anything shocking here, but it might take a minute to figure out what’s
going on. Notice, for example, the lack of a where clause in the main query; since all
the filter conditions are against the employee and branch tables, the filter conditions are
all inside the subqueries, so there is no need for any filter conditions in the main query.
One way to visualize what is going on is to run the subqueries and look at the result
sets. Here are the results of the first subquery against the employee table:

mysql> SELECT emp_id, assigned_branch_id
 -> FROM employee
 -> WHERE start_date < '2007-01-01'
 -> AND (title = 'Teller' OR title = 'Head Teller');
+--------+--------------------+
| emp_id | assigned_branch_id |
+--------+--------------------+
8	1
9	1
10	2
11	2
13	3
14	3
16	4
17	4
18	4
+--------+--------------------+
9 rows in set (0.03 sec)

Thus, this result set consists of a set of employee IDs and their corresponding branch
IDs. When they are joined to the account table via the emp_id column, you now have
an intermediate result set consisting of all rows from the account table with the addi-
tional column holding the branch ID of the employee that opened each account. Here
are the results of the second subquery against the branch table:

mysql> SELECT branch_id
 -> FROM branch
 -> WHERE name = 'Woburn Branch';

Joining Three or More Tables | 91

+-----------+
| branch_id |
+-----------+
| 2 |
+-----------+
1 row in set (0.02 sec)

This query returns a single row containing a single column: the ID of the Woburn
branch. This table is joined to the assigned_branch_id column of the intermediate result
set, causing all accounts opened by non-Woburn-based employees to be filtered out of
the final result set.

Using the Same Table Twice
If you are joining multiple tables, you might find that you need to join the same table
more than once. In the sample database, for example, there are foreign keys to the
branch table from both the account table (the branch at which the account was opened)
and the employee table (the branch at which the employee works). If you want to include
both branches in your result set, you can include the branch table twice in the from
clause, joined once to the employee table and once to the account table. For this to work,
you will need to give each instance of the branch table a different alias so that the server
knows which one you are referring to in the various clauses, as in:

mysql> SELECT a.account_id, e.emp_id,
 -> b_a.name open_branch, b_e.name emp_branch
 -> FROM account a INNER JOIN branch b_a
 -> ON a.open_branch_id = b_a.branch_id
 -> INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> INNER JOIN branch b_e
 -> ON e.assigned_branch_id = b_e.branch_id
 -> WHERE a.product_cd = 'CHK';
+------------+--------+---------------+---------------+
| account_id | emp_id | open_branch | emp_branch |
+------------+--------+---------------+---------------+
10	1	Headquarters	Headquarters
14	1	Headquarters	Headquarters
21	1	Headquarters	Headquarters
1	10	Woburn Branch	Woburn Branch
4	10	Woburn Branch	Woburn Branch
7	13	Quincy Branch	Quincy Branch
13	16	So. NH Branch	So. NH Branch
18	16	So. NH Branch	So. NH Branch
24	16	So. NH Branch	So. NH Branch
28	16	So. NH Branch	So. NH Branch
+------------+--------+---------------+---------------+
10 rows in set (0.16 sec)

This query shows who opened each checking account, what branch it was opened at,
and to which branch the employee who opened the account is currently assigned. The
branch table is included twice, with aliases b_a and b_e. By assigning different aliases

92 | Chapter 5: Querying Multiple Tables

to each instance of the branch table, the server is able to understand which instance you
are referring to: the one joined to the account table, or the one joined to the employee
table. Therefore, this is one example of a query that requires the use of table aliases.

Self-Joins
Not only can you include the same table more than once in the same query, but you
can actually join a table to itself. This might seem like a strange thing to do at first, but
there are valid reasons for doing so. The employee table, for example, includes a self-
referencing foreign key, which means that it includes a column (superior_emp_id) that
points to the primary key within the same table. This column points to the employee’s
manager (unless the employee is the head honcho, in which case the column is null).
Using a self-join, you can write a query that lists every employee’s name along with the
name of his or her manager:

mysql> SELECT e.fname, e.lname,
 -> e_mgr.fname mgr_fname, e_mgr.lname mgr_lname
 -> FROM employee e INNER JOIN employee e_mgr
 -> ON e.superior_emp_id = e_mgr.emp_id;
+----------+-----------+-----------+-----------+
| fname | lname | mgr_fname | mgr_lname |
+----------+-----------+-----------+-----------+
Susan	Barker	Michael	Smith
Robert	Tyler	Michael	Smith
Susan	Hawthorne	Robert	Tyler
John	Gooding	Susan	Hawthorne
Helen	Fleming	Susan	Hawthorne
Chris	Tucker	Helen	Fleming
Sarah	Parker	Helen	Fleming
Jane	Grossman	Helen	Fleming
Paula	Roberts	Susan	Hawthorne
Thomas	Ziegler	Paula	Roberts
Samantha	Jameson	Paula	Roberts
John	Blake	Susan	Hawthorne
Cindy	Mason	John	Blake
Frank	Portman	John	Blake
Theresa	Markham	Susan	Hawthorne
Beth	Fowler	Theresa	Markham
Rick	Tulman	Theresa	Markham
+----------+-----------+-----------+-----------+
17 rows in set (0.00 sec)

This query includes two instances of the employee table: one to provide employee names
(with the table alias e), and the other to provide manager names (with the table alias
e_mgr). The on subclause uses these aliases to join the employee table to itself via the
superior_emp_id foreign key. This is another example of a query for which table aliases
are required; otherwise, the server wouldn’t know whether you are referring to an em-
ployee or an employee’s manager.

Self-Joins | 93

While there are 18 rows in the employee table, the query returned only 17 rows; the
president of the bank, Michael Smith, has no superior (his superior_emp_id column is
null), so the join failed for his row. To include Michael Smith in the result set, you
would need to use an outer join, which we cover in Chapter 10.

Equi-Joins Versus Non-Equi-Joins
All of the multitable queries shown thus far have employed equi-joins, meaning that
values from the two tables must match for the join to succeed. An equi-join always
employs an equals sign, as in:

ON e.assigned_branch_id = b.branch_id

While the majority of your queries will employ equi-joins, you can also join your tables
via ranges of values, which are referred to as non-equi-joins. Here’s an example of a
query that joins by a range of values:

SELECT e.emp_id, e.fname, e.lname, e.start_date
FROM employee e INNER JOIN product p
 ON e.start_date >= p.date_offered
 AND e.start_date <= p.date_retired
WHERE p.name = 'no-fee checking';

This query joins two tables that have no foreign key relationships. The intent is to find
all employees who began working for the bank while the No-Fee Checking product
was being offered. Thus, an employee’s start date must be between the date the product
was offered and the date the product was retired.

You may also find a need for a self-non-equi-join, meaning that a table is joined to itself
using a non-equi-join. For example, let’s say that the operations manager has decided
to have a chess tournament for all bank tellers. You have been asked to create a list of
all the pairings. You might try joining the employee table to itself for all tellers (title =
'Teller') and return all rows where the emp_ids don’t match (since a person can’t play
chess against himself):

mysql> SELECT e1.fname, e1.lname, 'VS' vs, e2.fname, e2.lname
 -> FROM employee e1 INNER JOIN employee e2
 -> ON e1.emp_id != e2.emp_id
 -> WHERE e1.title = 'Teller' AND e2.title = 'Teller';
+----------+----------+----+----------+----------+
| fname | lname | vs | fname | lname |
+----------+----------+----+----------+----------+
Sarah	Parker	VS	Chris	Tucker
Jane	Grossman	VS	Chris	Tucker
Thomas	Ziegler	VS	Chris	Tucker
Samantha	Jameson	VS	Chris	Tucker
Cindy	Mason	VS	Chris	Tucker
Frank	Portman	VS	Chris	Tucker
Beth	Fowler	VS	Chris	Tucker
Rick	Tulman	VS	Chris	Tucker
Chris	Tucker	VS	Sarah	Parker

94 | Chapter 5: Querying Multiple Tables

Jane	Grossman	VS	Sarah	Parker
Thomas	Ziegler	VS	Sarah	Parker
Samantha	Jameson	VS	Sarah	Parker
Cindy	Mason	VS	Sarah	Parker
Frank	Portman	VS	Sarah	Parker
Beth	Fowler	VS	Sarah	Parker
Rick	Tulman	VS	Sarah	Parker
...				
Chris	Tucker	VS	Rick	Tulman
Sarah	Parker	VS	Rick	Tulman
Jane	Grossman	VS	Rick	Tulman
Thomas	Ziegler	VS	Rick	Tulman
Samantha	Jameson	VS	Rick	Tulman
Cindy	Mason	VS	Rick	Tulman
Frank	Portman	VS	Rick	Tulman
Beth	Fowler	VS	Rick	Tulman
+----------+----------+----+----------+----------+
72 rows in set (0.01 sec)

You’re on the right track, but the problem here is that for each pairing (e.g., Sarah
Parker versus Chris Tucker), there is also a reverse pairing (e.g., Chris Tucker versus
Sarah Parker). One way to achieve the desired results is to use the join condition
e1.emp_id < e2.emp_id so that each teller is paired only with those tellers having a higher
employee ID (you can also use e1.emp_id > e2.emp_id if you wish):

mysql> SELECT e1.fname, e1.lname, 'VS' vs, e2.fname, e2.lname
 -> FROM employee e1 INNER JOIN employee e2
 -> ON e1.emp_id < e2.emp_id
 -> WHERE e1.title = 'Teller' AND e2.title = 'Teller';
+----------+----------+----+----------+----------+
| fname | lname | vs | fname | lname |
+----------+----------+----+----------+----------+
Chris	Tucker	VS	Sarah	Parker
Chris	Tucker	VS	Jane	Grossman
Sarah	Parker	VS	Jane	Grossman
Chris	Tucker	VS	Thomas	Ziegler
Sarah	Parker	VS	Thomas	Ziegler
Jane	Grossman	VS	Thomas	Ziegler
Chris	Tucker	VS	Samantha	Jameson
Sarah	Parker	VS	Samantha	Jameson
Jane	Grossman	VS	Samantha	Jameson
Thomas	Ziegler	VS	Samantha	Jameson
Chris	Tucker	VS	Cindy	Mason
Sarah	Parker	VS	Cindy	Mason
Jane	Grossman	VS	Cindy	Mason
Thomas	Ziegler	VS	Cindy	Mason
Samantha	Jameson	VS	Cindy	Mason
Chris	Tucker	VS	Frank	Portman
Sarah	Parker	VS	Frank	Portman
Jane	Grossman	VS	Frank	Portman
Thomas	Ziegler	VS	Frank	Portman
Samantha	Jameson	VS	Frank	Portman
Cindy	Mason	VS	Frank	Portman
Chris	Tucker	VS	Beth	Fowler
Sarah	Parker	VS	Beth	Fowler

Equi-Joins Versus Non-Equi-Joins | 95

Jane	Grossman	VS	Beth	Fowler
Thomas	Ziegler	VS	Beth	Fowler
Samantha	Jameson	VS	Beth	Fowler
Cindy	Mason	VS	Beth	Fowler
Frank	Portman	VS	Beth	Fowler
Chris	Tucker	VS	Rick	Tulman
Sarah	Parker	VS	Rick	Tulman
Jane	Grossman	VS	Rick	Tulman
Thomas	Ziegler	VS	Rick	Tulman
Samantha	Jameson	VS	Rick	Tulman
Cindy	Mason	VS	Rick	Tulman
Frank	Portman	VS	Rick	Tulman
Beth	Fowler	VS	Rick	Tulman
+----------+----------+----+----------+----------+
36 rows in set (0.00 sec)

You now have a list of 36 pairings, which is the correct number when choosing pairs
of 9 distinct things.

Join Conditions Versus Filter Conditions
You are now familiar with the concept that join conditions belong in the on subclause,
while filter conditions belong in the where clause. However, SQL is flexible as to where
you place your conditions, so you will need to take care when constructing your queries.
For example, the following query joins two tables using a single join condition, and
also includes a single filter condition in the where clause:

mysql> SELECT a.account_id, a.product_cd, c.fed_id
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> WHERE c.cust_type_cd = 'B';
+------------+------------+------------+
| account_id | product_cd | fed_id |
+------------+------------+------------+
24	CHK	04-1111111
25	BUS	04-1111111
27	BUS	04-2222222
28	CHK	04-3333333
29	SBL	04-4444444
+------------+------------+------------+
5 rows in set (0.01 sec)

That was pretty straightforward, but what happens if you mistakenly put the filter
condition in the on subclause instead of in the where clause?

mysql> SELECT a.account_id, a.product_cd, c.fed_id
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> AND c.cust_type_cd = 'B';
+------------+------------+------------+
| account_id | product_cd | fed_id |
+------------+------------+------------+
| 24 | CHK | 04-1111111 |

96 | Chapter 5: Querying Multiple Tables

25	BUS	04-1111111
27	BUS	04-2222222
28	CHK	04-3333333
29	SBL	04-4444444
+------------+------------+------------+
5 rows in set (0.01 sec)

As you can see, the second version, which has both conditions in the on subclause and
has no where clause, generates the same results. What if both conditions are placed in
the where clause but the from clause still uses the ANSI join syntax?

mysql> SELECT a.account_id, a.product_cd, c.fed_id
 -> FROM account a INNER JOIN customer c
 -> WHERE a.cust_id = c.cust_id
 -> AND c.cust_type_cd = 'B';
+------------+------------+------------+
| account_id | product_cd | fed_id |
+------------+------------+------------+
24	CHK	04-1111111
25	BUS	04-1111111
27	BUS	04-2222222
28	CHK	04-3333333
29	SBL	04-4444444
+------------+------------+------------+
5 rows in set (0.01 sec)

Once again, the MySQL server has generated the same result set. It will be up to you
to put your conditions in the proper place so that your queries are easy to understand
and maintain.

Test Your Knowledge
The following exercises are designed to test your understanding of inner joins. Please
see Appendix C for the solutions to these exercises.

Exercise 5-1
Fill in the blanks (denoted by <#>) for the following query to obtain the results that
follow:

mysql> SELECT e.emp_id, e.fname, e.lname, b.name
 -> FROM employee e INNER JOIN <1> b
 -> ON e.assigned_branch_id = b.<2>;
+--------+----------+-----------+---------------+
| emp_id | fname | lname | name |
+--------+----------+-----------+---------------+
1	Michael	Smith	Headquarters
2	Susan	Barker	Headquarters
3	Robert	Tyler	Headquarters
4	Susan	Hawthorne	Headquarters

Test Your Knowledge | 97

5	John	Gooding	Headquarters
6	Helen	Fleming	Headquarters
7	Chris	Tucker	Headquarters
8	Sarah	Parker	Headquarters
9	Jane	Grossman	Headquarters
10	Paula	Roberts	Woburn Branch
11	Thomas	Ziegler	Woburn Branch
12	Samantha	Jameson	Woburn Branch
13	John	Blake	Quincy Branch
14	Cindy	Mason	Quincy Branch
15	Frank	Portman	Quincy Branch
16	Theresa	Markham	So. NH Branch
17	Beth	Fowler	So. NH Branch
18	Rick	Tulman	So. NH Branch
+--------+----------+-----------+---------------+
18 rows in set (0.03 sec)

Exercise 5-2
Write a query that returns the account ID for each nonbusiness customer
(customer.cust_type_cd = 'I') with the customer’s federal ID (customer.fed_id) and
the name of the product on which the account is based (product.name).

Exercise 5-3
Construct a query that finds all employees whose supervisor is assigned to a different
department. Retrieve the employees’ ID, first name, and last name.

98 | Chapter 5: Querying Multiple Tables

CHAPTER 6

Working with Sets

Although you can interact with the data in a database one row at a time, relational
databases are really all about sets. You have seen how you can create tables via queries
or subqueries, make them persistent via insert statements, and bring them together
via joins; this chapter explores how you can combine multiple tables using various set
operators.

Set Theory Primer
In many parts of the world, basic set theory is included in elementary-level math cur-
riculums. Perhaps you recall looking at something like what is shown in Figure 6-1.

BA

= A union B

Figure 6-1. The union operation

The shaded area in Figure 6-1 represents the union of sets A and B, which is the com-
bination of the two sets (with any overlapping regions included only once). Is this
starting to look familiar? If so, then you’ll finally get a chance to put that knowledge to
use; if not, don’t worry, because it’s easy to visualize using a couple of diagrams.

99

Using circles to represent two data sets (A and B), imagine a subset of data that is
common to both sets; this common data is represented by the overlapping area shown
in Figure 6-1. Since set theory is rather uninteresting without an overlap between data
sets, I use the same diagram to illustrate each set operation. There is another set oper-
ation that is concerned only with the overlap between two data sets; this operation is
known as the intersection and is demonstrated in Figure 6-2.

BA

= A intersect B

Figure 6-2. The intersection operation

The data set generated by the intersection of sets A and B is just the area of overlap
between the two sets. If the two sets have no overlap, then the intersection operation
yields the empty set.

The third and final set operation, which is demonstrated in Figure 6-3, is known as the
except operation.

BA

= A except B

Figure 6-3. The except operation

100 | Chapter 6: Working with Sets

Figure 6-3 shows the results of A except B, which is the whole of set A minus any overlap
with set B. If the two sets have no overlap, then the operation A except B yields the
whole of set A.

Using these three operations, or by combining different operations together, you can
generate whatever results you need. For example, imagine that you want to build a set
demonstrated by Figure 6-4.

BA

= ????

Figure 6-4. Mystery data set

The data set you are looking for includes all of sets A and B without the overlapping
region. You can’t achieve this outcome with just one of the three operations shown
earlier; instead, you will need to first build a data set that encompasses all of sets A and
B, and then utilize a second operation to remove the overlapping region. If the combined
set is described as A union B, and the overlapping region is described as A intersect
B, then the operation needed to generate the data set represented by Figure 6-4 would
look as follows:

(A union B) except (A intersect B)

Of course, there are often multiple ways to achieve the same results; you could reach
a similar outcome using the following operation:

(A except B) union (B except A)

While these concepts are fairly easy to understand using diagrams, the next sections
show you how these concepts are applied to a relational database using the SQL set
operators.

Set Theory in Practice
The circles used in the previous section’s diagrams to represent data sets don’t convey
anything about what the data sets comprise. When dealing with actual data, however,

Set Theory in Practice | 101

there is a need to describe the composition of the data sets involved if they are to be
combined. Imagine, for example, what would happen if you tried to generate the union
of the product table and the customer table, whose table definitions are as follows:

mysql> DESC product;
+-----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+-------------+------+-----+---------+-------+
product_cd	varchar(10)	NO	PRI	NULL	
name	varchar(50)	NO		NULL	
product_type_cd	varchar(10)	NO	MUL	NULL	
date_offered	date	YES		NULL	
date_retired	date	YES		NULL	
+-----------------+-------------+------+-----+---------+-------+					
5 rows in set (0.23 sec)					
mysql> DESC customer;					
+--------------+------------------+------+-----+---------+----------------+					
Field	Type	Null	Key	Default	Extra
+--------------+------------------+------+-----+---------+----------------+					
cust_id	int(10) unsigned	NO	PRI	NULL	auto_increment
fed_id	varchar(12)	NO		NULL	
cust_type_cd	enum('I','B')	NO		NULL	
address	varchar(30)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
postal_code	varchar(10)	YES		NULL	
+--------------+------------------+------+-----+---------+----------------+
7 rows in set (0.04 sec)

When combined, the first column in the table that results would be the combination
of the product.product_cd and customer.cust_id columns, the second column would
be the combination of the product.name and customer.fed_id columns, and so forth.
While some of the column pairs are easy to combine (e.g., two numeric columns), it is
unclear how other column pairs should be combined, such as a numeric column with
a string column or a string column with a date column. Additionally, the sixth and
seventh columns of the combined tables would include data from only the customer
table’s sixth and seventh columns, since the product table has only five columns.
Clearly, there needs to be some commonality between two tables that you wish to
combine.

Therefore, when performing set operations on two data sets, the following guidelines
must apply:

• Both data sets must have the same number of columns.

• The data types of each column across the two data sets must be the same (or the
server must be able to convert one to the other).

With these rules in place, it is easier to envision what “overlapping data” means in
practice; each column pair from the two sets being combined must contain the same
string, number, or date for rows in the two tables to be considered the same.

102 | Chapter 6: Working with Sets

You perform a set operation by placing a set operator between two select statements,
as demonstrated by the following:

mysql> SELECT 1 num, 'abc' str
 -> UNION
 -> SELECT 9 num, 'xyz' str;
+-----+-----+
| num | str |
+-----+-----+
| 1 | abc |
| 9 | xyz |
+-----+-----+
2 rows in set (0.02 sec)

Each of the individual queries yields a data set consisting of a single row having a
numeric column and a string column. The set operator, which in this case is union, tells
the database server to combine all rows from the two sets. Thus, the final set includes
two rows of two columns. This query is known as a compound query because it com-
prises multiple, otherwise-independent queries. As you will see later, compound quer-
ies may include more than two queries if multiple set operations are needed to attain
the final results.

Set Operators
The SQL language includes three set operators that allow you to perform each of the
various set operations described earlier in the chapter. Additionally, each set operator
has two flavors, one that includes duplicates and another that removes duplicates (but
not necessarily all of the duplicates). The following subsections define each operator
and demonstrate how they are used.

The union Operator
The union and union all operators allow you to combine multiple data sets. The dif-
ference between the two is that union sorts the combined set and removes duplicates,
whereas union all does not. With union all, the number of rows in the final data set
will always equal the sum of the number of rows in the sets being combined. This
operation is the simplest set operation to perform (from the server’s point of view),
since there is no need for the server to check for overlapping data. The following ex-
ample demonstrates how you can use the union all operator to generate a full set of
customer data from the two customer subtype tables:

mysql> SELECT 'IND' type_cd, cust_id, lname name
 -> FROM individual
 -> UNION ALL
 -> SELECT 'BUS' type_cd, cust_id, name
 -> FROM business;
+---------+---------+------------------------+
| type_cd | cust_id | name |
+---------+---------+------------------------+

Set Operators | 103

IND	1	Hadley
IND	2	Tingley
IND	3	Tucker
IND	4	Hayward
IND	5	Frasier
IND	6	Spencer
IND	7	Young
IND	8	Blake
IND	9	Farley
BUS	10	Chilton Engineering
BUS	11	Northeast Cooling Inc.
BUS	12	Superior Auto Body
BUS	13	AAA Insurance Inc.
+---------+---------+------------------------+
13 rows in set (0.04 sec)

The query returns all 13 customers, with nine rows coming from the individual table
and the other four coming from the business table. While the business table includes
a single column to hold the company name, the individual table includes two name
columns, one each for the person’s first and last names. In this case, I chose to include
only the last name from the individual table.

Just to drive home the point that the union all operator doesn’t remove duplicates,
here’s the same query as the previous example but with an additional query against the
business table:

mysql> SELECT 'IND' type_cd, cust_id, lname name
 -> FROM individual
 -> UNION ALL
 -> SELECT 'BUS' type_cd, cust_id, name
 -> FROM business
 -> UNION ALL
 -> SELECT 'BUS' type_cd, cust_id, name
 -> FROM business;
+---------+---------+------------------------+
| type_cd | cust_id | name |
+---------+---------+------------------------+
IND	1	Hadley
IND	2	Tingley
IND	3	Tucker
IND	4	Hayward
IND	5	Frasier
IND	6	Spencer
IND	7	Young
IND	8	Blake
IND	9	Farley
BUS	10	Chilton Engineering
BUS	11	Northeast Cooling Inc.
BUS	12	Superior Auto Body
BUS	13	AAA Insurance Inc.
BUS	10	Chilton Engineering
BUS	11	Northeast Cooling Inc.
BUS	12	Superior Auto Body
BUS	13	AAA Insurance Inc.

104 | Chapter 6: Working with Sets

+---------+---------+------------------------+
17 rows in set (0.01 sec)

This compound query includes three select statements, two of which are identical. As
you can see by the results, the four rows from the business table are included twice
(customer IDs 10, 11, 12, and 13).

While you are unlikely to repeat the same query twice in a compound query, here is
another compound query that returns duplicate data:

mysql> SELECT emp_id
 -> FROM employee
 -> WHERE assigned_branch_id = 2
 -> AND (title = 'Teller' OR title = 'Head Teller')
 -> UNION ALL
 -> SELECT DISTINCT open_emp_id
 -> FROM account
 -> WHERE open_branch_id = 2;
+--------+
| emp_id |
+--------+
| 10 |
| 11 |
| 12 |
| 10 |
+--------+
4 rows in set (0.01 sec)

The first query in the compound statement retrieves all tellers assigned to the Woburn
branch, whereas the second query returns the distinct set of tellers who opened ac-
counts at the Woburn branch. Of the four rows in the result set, one of them is a
duplicate (employee ID 10). If you would like your combined table to exclude duplicate
rows, you need to use the union operator instead of union all:

mysql> SELECT emp_id
 -> FROM employee
 -> WHERE assigned_branch_id = 2
 -> AND (title = 'Teller' OR title = 'Head Teller')
 -> UNION
 -> SELECT DISTINCT open_emp_id
 -> FROM account
 -> WHERE open_branch_id = 2;
+--------+
| emp_id |
+--------+
| 10 |
| 11 |
| 12 |
+--------+
3 rows in set (0.01 sec)

For this version of the query, only the three distinct rows are included in the result set,
rather than the four rows (three distinct, one duplicate) returned when using union all.

Set Operators | 105

The intersect Operator
The ANSI SQL specification includes the intersect operator for performing intersec-
tions. Unfortunately, version 6.0 of MySQL does not implement the intersect opera-
tor. If you are using Oracle or SQL Server 2008, you will be able to use intersect; since
I am using MySQL for all examples in this book, however, the result sets for the example
queries in this section are fabricated and cannot be executed with any versions up to
and including version 6.0. I also refrain from showing the MySQL prompt (mysql>),
since the statements are not being executed by the MySQL server.

If the two queries in a compound query return nonoverlapping data sets, then the
intersection will be an empty set. Consider the following query:

SELECT emp_id, fname, lname
FROM employee
INTERSECT
SELECT cust_id, fname, lname
FROM individual;
Empty set (0.04 sec)

The first query returns the ID and name of each employee, while the second query
returns the ID and name of each customer. These sets are completely nonoverlapping,
so the intersection of the two sets yields the empty set.

The next step is to identify two queries that do have overlapping data and then apply
the intersect operator. For this purpose, I use the same query used to demonstrate the
difference between union and union all, except this time using intersect:

SELECT emp_id
FROM employee
WHERE assigned_branch_id = 2
 AND (title = 'Teller' OR title = 'Head Teller')
INTERSECT
SELECT DISTINCT open_emp_id
FROM account
WHERE open_branch_id = 2;
+--------+
| emp_id |
+--------+
| 10 |
+--------+
1 row in set (0.01 sec)

The intersection of these two queries yields employee ID 10, which is the only value
found in both queries’ result sets.

Along with the intersect operator, which removes any duplicate rows found in the
overlapping region, the ANSI SQL specification calls for an intersect all operator,
which does not remove duplicates. The only database server that currently implements
the intersect all operator is IBM’s DB2 Universal Server.

106 | Chapter 6: Working with Sets

The except Operator
The ANSI SQL specification includes the except operator for performing the except
operation. Once again, unfortunately, version 6.0 of MySQL does not implement the
except operator, so the same rules apply for this section as for the previous section.

If you are using Oracle Database, you will need to use the non-ANSI-
compliant minus operator instead.

The except operator returns the first table minus any overlap with the second table.
Here’s the example from the previous section, but using except instead of intersect:

SELECT emp_id
FROM employee
WHERE assigned_branch_id = 2
 AND (title = 'Teller' OR title = 'Head Teller')
EXCEPT
SELECT DISTINCT open_emp_id
FROM account
WHERE open_branch_id = 2;
+--------+
| emp_id |
+--------+
| 11 |
| 12 |
+--------+
2 rows in set (0.01 sec)

In this version of the query, the result set consists of the three rows from the first query
minus employee ID 10, which is found in the result sets from both queries. There is
also an except all operator specified in the ANSI SQL specification, but once again,
only IBM’s DB2 Universal Server has implemented the except all operator.

The except all operator is a bit tricky, so here’s an example to demonstrate how du-
plicate data is handled. Let’s say you have two data sets that look as follows:

Set A

+--------+
| emp_id |
+--------+
| 10 |
| 11 |
| 12 |
| 10 |
| 10 |
+--------+

Set Operators | 107

Set B

+--------+
| emp_id |
+--------+
| 10 |
| 10 |
+--------+

The operation A except B yields the following:

+--------+
| emp_id |
+--------+
| 11 |
| 12 |
+--------+

If you change the operation to A except all B, you will see the following:

+--------+
| emp_id |
+--------+
| 10 |
| 11 |
| 12 |
+--------+

Therefore, the difference between the two operations is that except removes all occur-
rences of duplicate data from set A, whereas except all only removes one occurrence
of duplicate data from set A for every occurrence in set B.

Set Operation Rules
The following sections outline some rules that you must follow when working with
compound queries.

Sorting Compound Query Results
If you want the results of your compound query to be sorted, you can add an order
by clause after the last query. When specifying column names in the order by clause,
you will need to choose from the column names in the first query of the compound
query. Frequently, the column names are the same for both queries in a compound
query, but this does not need to be the case, as demonstrated by the following:

mysql> SELECT emp_id, assigned_branch_id
 -> FROM employee
 -> WHERE title = 'Teller'
 -> UNION
 -> SELECT open_emp_id, open_branch_id
 -> FROM account
 -> WHERE product_cd = 'SAV'
 -> ORDER BY emp_id;

108 | Chapter 6: Working with Sets

+--------+--------------------+
| emp_id | assigned_branch_id |
+--------+--------------------+
1	1
7	1
8	1
9	1
10	2
11	2
12	2
14	3
15	3
16	4
17	4
18	4
+--------+--------------------+
12 rows in set (0.04 sec)

The column names specified in the two queries are different in this example. If you
specify a column name from the second query in your order by clause, you will see the
following error:

mysql> SELECT emp_id, assigned_branch_id
 -> FROM employee
 -> WHERE title = 'Teller'
 -> UNION
 -> SELECT open_emp_id, open_branch_id
 -> FROM account
 -> WHERE product_cd = 'SAV'
 -> ORDER BY open_emp_id;
ERROR 1054 (42S22): Unknown column 'open_emp_id' in 'order clause'

I recommend giving the columns in both queries identical column aliases in order to
avoid this issue.

Set Operation Precedence
If your compound query contains more than two queries using different set operators,
you need to think about the order in which to place the queries in your compound
statement to achieve the desired results. Consider the following three-query compound
statement:

mysql> SELECT cust_id
 -> FROM account
 -> WHERE product_cd IN ('SAV', 'MM')
 -> UNION ALL
 -> SELECT a.cust_id
 -> FROM account a INNER JOIN branch b
 -> ON a.open_branch_id = b.branch_id
 -> WHERE b.name = 'Woburn Branch'
 -> UNION
 -> SELECT cust_id
 -> FROM account
 -> WHERE avail_balance BETWEEN 500 AND 2500;

Set Operation Rules | 109

+---------+
| cust_id |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 8 |
| 9 |
| 7 |
| 11 |
| 5 |
+---------+
9 rows in set (0.00 sec)

This compound query includes three queries that return sets of nonunique customer
IDs; the first and second queries are separated with the union all operator, while the
second and third queries are separated with the union operator. While it might not seem
to make much difference where the union and union all operators are placed, it does,
in fact, make a difference. Here’s the same compound query with the set operators
reversed:

mysql> SELECT cust_id
 -> FROM account
 -> WHERE product_cd IN ('SAV', 'MM')
 -> UNION
 -> SELECT a.cust_id
 -> FROM account a INNER JOIN branch b
 -> ON a.open_branch_id = b.branch_id
 -> WHERE b.name = 'Woburn Branch'
 -> UNION ALL
 -> SELECT cust_id
 -> FROM account
 -> WHERE avail_balance BETWEEN 500 AND 2500;
+---------+
| cust_id |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 8 |
| 9 |
| 7 |
| 11 |
| 1 |
| 1 |
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
| 9 |

110 | Chapter 6: Working with Sets

+---------+
17 rows in set (0.00 sec)

Looking at the results, it’s obvious that it does make a difference how the compound
query is arranged when using different set operators. In general, compound queries
containing three or more queries are evaluated in order from top to bottom, but with
the following caveats:

• The ANSI SQL specification calls for the intersect operator to have precedence
over the other set operators.

• You may dictate the order in which queries are combined by enclosing multiple
queries in parentheses.

However, since MySQL does not yet implement intersect or allow parentheses in
compound queries, you will need to carefully arrange the queries in your compound
query so that you achieve the desired results. If you are using a different database server,
you can wrap adjoining queries in parentheses to override the default top-to-bottom
processing of compound queries, as in:

(SELECT cust_id
 FROM account
 WHERE product_cd IN ('SAV', 'MM')
 UNION ALL
 SELECT a.cust_id
 FROM account a INNER JOIN branch b
 ON a.open_branch_id = b.branch_id
 WHERE b.name = 'Woburn Branch')
INTERSECT
(SELECT cust_id
 FROM account
 WHERE avail_balance BETWEEN 500 AND 2500
 EXCEPT
 SELECT cust_id
 FROM account
 WHERE product_cd = 'CD'
 AND avail_balance < 1000);

For this compound query, the first and second queries would be combined using the
union all operator, then the third and fourth queries would be combined using the
except operator, and finally, the results from these two operations would be combined
using the intersect operator to generate the final result set.

Test Your Knowledge
The following exercises are designed to test your understanding of set operations. See
Appendix C for answers to these exercises.

Test Your Knowledge | 111

Exercise 6-1
If set A = {L M N O P} and set B = {P Q R S T}, what sets are generated by the following
operations?

• A union B

• A union all B

• A intersect B

• A except B

Exercise 6-2
Write a compound query that finds the first and last names of all individual customers
along with the first and last names of all employees.

Exercise 6-3
Sort the results from Exercise 6-2 by the lname column.

112 | Chapter 6: Working with Sets

CHAPTER 7

Data Generation, Conversion,
and Manipulation

As I mentioned in the Preface, this book strives to teach generic SQL techniques that
can be applied across multiple database servers. This chapter, however, deals with the
generation, conversion, and manipulation of string, numeric, and temporal data, and
the SQL language does not include commands covering this functionality. Rather, built-
in functions are used to facilitate data generation, conversion, and manipulation, and
while the SQL standard does specify some functions, the database vendors often do
not comply with the function specifications.

Therefore, my approach for this chapter is to show you some of the common ways in
which data is manipulated within SQL statements, and then demonstrate some of the
built-in functions implemented by Microsoft SQL Server, Oracle Database, and
MySQL. Along with reading this chapter, I strongly recommend you purchase a refer-
ence guide covering all the functions implemented by your server. If you work with
more than one database server, there are several reference guides that cover multiple
servers, such as Kevin Kline et al.’s SQL in a Nutshell (http://oreilly.com/catalog/
9780596518844/) and Jonathan Gennick’s SQL Pocket Guide (http://oreilly.com/cata
log/9780596526887/), both from O’Reilly.

Working with String Data
When working with string data, you will be using one of the following character data
types:

CHAR
Holds fixed-length, blank-padded strings. MySQL allows CHAR values up to 255
characters in length, Oracle Database permits up to 2,000 characters, and SQL
Server allows up to 8,000 characters.

113

http://oreilly.com/catalog/9780596518844/
http://oreilly.com/catalog/9780596518844/
http://oreilly.com/catalog/9780596518844/
http://oreilly.com/catalog/9780596526887/
http://oreilly.com/catalog/9780596526887/
http://oreilly.com/catalog/9780596526887/

varchar
Holds variable-length strings. MySQL permits up to 65,535 characters in a
varchar column, Oracle Database (via the varchar2 type) allows up to 4,000 char-
acters, and SQL Server allows up to 8,000 characters.

text (MySQL and SQL Server) or CLOB (Character Large Object; Oracle Database)
Holds very large variable-length strings (generally referred to as documents in this
context). MySQL has multiple text types (tinytext, text, mediumtext, and long
text) for documents up to 4 GB in size. SQL Server has a single text type for
documents up to 2 GB in size, and Oracle Database includes the CLOB data type,
which can hold documents up to a whopping 128 TB. SQL Server 2005 also in-
cludes the varchar(max) data type and recommends its use instead of the text type,
which will be removed from the server in some future release.

To demonstrate how you can use these various types, I use the following table for some
of the examples in this section:

CREATE TABLE string_tbl
 (char_fld CHAR(30),
 vchar_fld VARCHAR(30),
 text_fld TEXT
);

The next two subsections show how you can generate and manipulate string data.

String Generation
The simplest way to populate a character column is to enclose a string in quotes, as in:

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
 -> VALUES ('This is char data',
 -> 'This is varchar data',
 -> 'This is text data');
Query OK, 1 row affected (0.00 sec)

When inserting string data into a table, remember that if the length of the string exceeds
the maximum size for the character column (either the designated maximum or the
maximum allowed for the data type), the server will throw an exception. Although this
is the default behavior for all three servers, you can configure MySQL and SQL Server
to silently truncate the string instead of throwing an exception. To demonstrate how
MySQL handles this situation, the following update statement attempts to modify the
vchar_fld column, whose maximum length is defined as 30, with a string that is 46
characters in length:

mysql> UPDATE string_tbl
 -> SET vchar_fld = 'This is a piece of extremely long varchar data';
ERROR 1406 (22001): Data too long for column 'vchar_fld' at row 1

With MySQL 6.0, the default behavior is now “strict” mode, which means that excep-
tions are thrown when problems arise, whereas in older versions of the server the string
would have been truncated and a warning issued. If you would rather have the engine

114 | Chapter 7: Data Generation, Conversion, and Manipulation

truncate the string and issue a warning instead of raising an exception, you can opt to
be in ANSI mode. The following example shows how to check which mode you are in,
and then how to change the mode using the SET command:

mysql> SELECT @@session.sql_mode;
+--+
| @@session.sql_mode |
+--+
| STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |
+--+
1 row in set (0.00 sec)

mysql> SET sql_mode='ansi';
Query OK, 0 rows affected (0.08 sec)

mysql> SELECT @@session.sql_mode;
+---+
| @@session.sql_mode |
+---+
| REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI |
+---+
1 row in set (0.00 sec)

If you rerun the previous UPDATE statement, you will find that the column has been
modified, but the following warning is generated:

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'vchar_fld' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

If you retrieve the vchar_fld column, you will see that the string has indeed been
truncated:

mysql> SELECT vchar_fld
 -> FROM string_tbl;
+--------------------------------+
| vchar_fld |
+--------------------------------+
| This is a piece of extremely l |
+--------------------------------+
1 row in set (0.05 sec)

As you can see, only the first 30 characters of the 46-character string made it into the
vchar_fld column. The best way to avoid string truncation (or exceptions, in the case
of Oracle Database or MySQL in strict mode) when working with varchar columns is
to set the upper limit of a column to a high enough value to handle the longest strings
that might be stored in the column (keeping in mind that the server allocates only
enough space to store the string, so it is not wasteful to set a high upper limit for
varchar columns).

Working with String Data | 115

Including single quotes

Since strings are demarcated by single quotes, you will need to be alert for strings that
include single quotes or apostrophes. For example, you won’t be able to insert the
following string because the server will think that the apostrophe in the word doesn’t
marks the end of the string:

UPDATE string_tbl
SET text_fld = 'This string doesn't work';

To make the server ignore the apostrophe in the word doesn’t, you will need to add an
escape to the string so that the server treats the apostrophe like any other character in
the string. All three servers allow you to escape a single quote by adding another single
quote directly before, as in:

mysql> UPDATE string_tbl
 -> SET text_fld = 'This string didn''t work, but it does now';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Oracle Database and MySQL users may also choose to escape a single
quote by adding a backslash character immediately before, as in:

UPDATE string_tbl SET text_fld =
 'This string didn\'t work, but it does now'

If you retrieve a string for use in a screen or report field, you don’t need to do anything
special to handle embedded quotes:

mysql> SELECT text_fld
 -> FROM string_tbl;
+--+
| text_fld |
+--+
| This string didn't work, but it does now |
+--+
1 row in set (0.00 sec)

However, if you are retrieving the string to add to a file that another program will read,
you may want to include the escape as part of the retrieved string. If you are using
MySQL, you can use the built-in function quote(), which places quotes around the
entire string and adds escapes to any single quotes/apostrophes within the string. Here’s
what our string looks like when retrieved via the quote() function:

mysql> SELECT quote(text_fld)
 -> FROM string_tbl;
+---+
| QUOTE(text_fld) |
+---+
| 'This string didn\'t work, but it does now' |
+---+
1 row in set (0.04 sec)

116 | Chapter 7: Data Generation, Conversion, and Manipulation

When retrieving data for data export, you may want to use the quote() function for all
non-system-generated character columns, such as a customer_notes column.

Including special characters

If your application is multinational in scope, you might find yourself working with
strings that include characters that do not appear on your keyboard. When working
with the French and German languages, for example, you might need to include ac-
cented characters such as é and ö. The SQL Server and MySQL servers include the built-
in function char() so that you can build strings from any of the 255 characters in the
ASCII character set (Oracle Database users can use the chr() function). To demon-
strate, the next example retrieves a typed string and its equivalent built via individual
characters:

mysql> SELECT 'abcdefg', CHAR(97,98,99,100,101,102,103);
+---------+--------------------------------+
| abcdefg | CHAR(97,98,99,100,101,102,103) |
+---------+--------------------------------+
| abcdefg | abcdefg |
+---------+--------------------------------+
1 row in set (0.01 sec)

Thus, the 97th character in the ASCII character set is the letter a. While the characters
shown in the preceding example are not special, the following examples show the lo-
cation of the accented characters along with other special characters, such as currency
symbols:

mysql> SELECT CHAR(128,129,130,131,132,133,134,135,136,137);
+---+
| CHAR(128,129,130,131,132,133,134,135,136,137) |
+---+
| Çüéâäàåçêë |
+---+
1 row in set (0.01 sec)

mysql> SELECT CHAR(138,139,140,141,142,143,144,145,146,147);
+---+
| CHAR(138,139,140,141,142,143,144,145,146,147) |
+---+
| èïîìÄÅÉæÆô |
+---+
1 row in set (0.01 sec)

mysql> SELECT CHAR(148,149,150,151,152,153,154,155,156,157);
+---+
| CHAR(148,149,150,151,152,153,154,155,156,157) |
+---+
| öòÛùÿ...Ü¢£¥ |
+---+
1 row in set (0.00 sec)

mysql> SELECT CHAR(158,159,160,161,162,163,164,165);
+---------------------------------------+

Working with String Data | 117

| CHAR(158,159,160,161,162,163,164,165) |
+---------------------------------------+
| fáíóúñÑ |
+---------------------------------------+
1 row in set (0.01 sec)

I am using the latin1 character set for the examples in this section. If
your session is configured for a different character set, you will see a
different set of characters than what is shown here. The same concepts
apply, but you will need to familiarize yourself with the layout of your
character set to locate specific characters.

Building strings character by character can be quite tedious, especially if only a few of
the characters in the string are accented. Fortunately, you can use the concat() function
to concatenate individual strings, some of which you can type while others you can
generate via the char() function. For example, the following shows how to build the
phrase danke schön using the concat() and char() functions:

mysql> SELECT CONCAT('danke sch', CHAR(148), 'n');
+-------------------------------------+
| CONCAT('danke sch', CHAR(148), 'n') |
+-------------------------------------+
| danke schön |
+-------------------------------------+
1 row in set (0.00 sec)

Oracle Database users can use the concatenation operator (||) instead
of the concat() function, as in:

SELECT 'danke sch' || CHR(148) || 'n'
FROM dual;

SQL Server does not include a concat() function, so you will need to
use the concatenation operator (+), as in:

SELECT 'danke sch' + CHAR(148) + 'n'

If you have a character and need to find its ASCII equivalent, you can use the ascii()
function, which takes the leftmost character in the string and returns a number:

mysql> SELECT ASCII('ö');
+------------+
| ASCII('ö') |
+------------+
| 148 |
+------------+
1 row in set (0.00 sec)

Using the char(), ascii(), and concat() functions (or concatenation operators), you
should be able to work with any Roman language even if you are using a keyboard that
does not include accented or special characters.

118 | Chapter 7: Data Generation, Conversion, and Manipulation

String Manipulation
Each database server includes many built-in functions for manipulating strings. This
section explores two types of string functions: those that return numbers and those
that return strings. Before I begin, however, I reset the data in the string_tbl table to
the following:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
 -> VALUES ('This string is 28 characters',
 -> 'This string is 28 characters',
 -> 'This string is 28 characters');
Query OK, 1 row affected (0.00 sec)

String functions that return numbers

Of the string functions that return numbers, one of the most commonly used is the
length() function, which returns the number of characters in the string (SQL Server
users will need to use the len() function). The following query applies the length()
function to each column in the string_tbl table:

mysql> SELECT LENGTH(char_fld) char_length,
 -> LENGTH(vchar_fld) varchar_length,
 -> LENGTH(text_fld) text_length
 -> FROM string_tbl;
+-------------+----------------+-------------+
| char_length | varchar_length | text_length |
+-------------+----------------+-------------+
| 28 | 28 | 28 |
+-------------+----------------+-------------+
1 row in set (0.00 sec)

While the lengths of the varchar and text columns are as expected, you might have
expected the length of the char column to be 30, since I told you that strings stored in
char columns are right-padded with spaces. The MySQL server removes trailing spaces
from char data when it is retrieved, however, so you will see the same results from all
string functions regardless of the type of column in which the strings are stored.

Along with finding the length of a string, you might want to find the location of a
substring within a string. For example, if you want to find the position at which the
string 'characters' appears in the vchar_fld column, you could use the position()
function, as demonstrated by the following:

mysql> SELECT POSITION('characters' IN vchar_fld)
 -> FROM string_tbl;
+-------------------------------------+
| POSITION('characters' IN vchar_fld) |
+-------------------------------------+
| 19 |
+-------------------------------------+
1 row in set (0.12 sec)

Working with String Data | 119

If the substring cannot be found, the position() function returns 0.

For those of you who program in a language such as C or C++, where
the first element of an array is at position 0, remember when working
with databases that the first character in a string is at position 1. A return
value of 0 from position() indicates that the substring could not be
found, not that the substring was found at the first position in the string.

If you want to start your search at something other than the first character of your target
string, you will need to use the locate() function, which is similar to the position()
function except that it allows an optional third parameter, which is used to define the
search’s start position. The locate() function is also proprietary, whereas the
position() function is part of the SQL:2003 standard. Here’s an example asking for
the position of the string 'is' starting at the fifth character in the vchar_fld column:

mysql> SELECT LOCATE('is', vchar_fld, 5)
 -> FROM string_tbl;
+----------------------------+
| LOCATE('is', vchar_fld, 5) |
+----------------------------+
| 13 |
+----------------------------+
1 row in set (0.02 sec)

Oracle Database does not include the position() or locate() function,
but it does include the instr() function, which mimics the position()
function when provided with two arguments and mimics the locate()
function when provided with three arguments. SQL Server also doesn’t
include a position() or locate() function, but it does include the
charindx() function, which also accepts either two or three arguments
similar to Oracle’s instr() function.

Another function that takes strings as arguments and returns numbers is the string
comparison function strcmp(). Strcmp(), which is implemented only by MySQL and
has no analog in Oracle Database or SQL Server, takes two strings as arguments, and
returns one of the following:

• −1 if the first string comes before the second string in sort order

• 0 if the strings are identical

• 1 if the first string comes after the second string in sort order

To illustrate how the function works, I first show the sort order of five strings using a
query, and then show how the strings compare to one another using strcmp(). Here
are the five strings that I insert into the string_tbl table:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.00 sec)

120 | Chapter 7: Data Generation, Conversion, and Manipulation

mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('abcd');
Query OK, 1 row affected (0.03 sec)

mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('xyz');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('QRSTUV');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('qrstuv');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO string_tbl(vchar_fld) VALUES ('12345');
Query OK, 1 row affected (0.00 sec)

Here are the five strings in their sort order:

mysql> SELECT vchar_fld
 -> FROM string_tbl
 -> ORDER BY vchar_fld;
+-----------+
| vchar_fld |
+-----------+
| 12345 |
| abcd |
| QRSTUV |
| qrstuv |
| xyz |
+-----------+
5 rows in set (0.00 sec)

The next query makes six comparisons among the five different strings:

mysql> SELECT STRCMP('12345','12345') 12345_12345,
 -> STRCMP('abcd','xyz') abcd_xyz,
 -> STRCMP('abcd','QRSTUV') abcd_QRSTUV,
 -> STRCMP('qrstuv','QRSTUV') qrstuv_QRSTUV,
 -> STRCMP('12345','xyz') 12345_xyz,
 -> STRCMP('xyz','qrstuv') xyz_qrstuv;
+-------------+----------+-------------+---------------+-----------+------------+
| 12345_12345 | abcd_xyz | abcd_QRSTUV | qrstuv_QRSTUV | 12345_xyz | xyz_qrstuv |
+-------------+----------+-------------+---------------+-----------+------------+
| 0 | −1 | −1 | 0 | −1 | 1 |
+-------------+----------+-------------+---------------+-----------+------------+
1 row in set (0.00 sec)

The first comparison yields 0, which is to be expected since I compared a string to itself.
The fourth comparison also yields 0, which is a bit surprising, since the strings are
composed of the same letters, with one string all uppercase and the other all lowercase.
The reason for this result is that MySQL’s strcmp() function is case-insensitive, which
is something to remember when using the function. The other four comparisons yield
either −1 or 1 depending on whether the first string comes before or after the second
string in sort order. For example, strcmp('abcd','xyz') yields −1, since the string
'abcd' comes before the string 'xyz'.

Working with String Data | 121

Along with the strcmp() function, MySQL also allows you to use the like and regexp
operators to compare strings in the select clause. Such comparisons will yield 1 (for
true) or 0 (for false). Therefore, these operators allow you to build expressions that
return a number, much like the functions described in this section. Here’s an example
using like:

mysql> SELECT name, name LIKE '%ns' ends_in_ns
 -> FROM department;
+----------------+------------+
| name | ends_in_ns |
+----------------+------------+
Operations	1
Loans	1
Administration	0
+----------------+------------+
3 rows in set (0.25 sec)

This example retrieves all the department names, along with an expression that returns
1 if the department name ends in “ns” or 0 otherwise. If you want to perform more
complex pattern matches, you can use the regexp operator, as demonstrated by the
following:

mysql> SELECT cust_id, cust_type_cd, fed_id,
 -> fed_id REGEXP '.{3}-.{2}-.{4}' is_ss_no_format
 -> FROM customer;
+---------+--------------+-------------+-----------------+
| cust_id | cust_type_cd | fed_id | is_ss_no_format |
+---------+--------------+-------------+-----------------+
1	I	111-11-1111	1
2	I	222-22-2222	1
3	I	333-33-3333	1
4	I	444-44-4444	1
5	I	555-55-5555	1
6	I	666-66-6666	1
7	I	777-77-7777	1
8	I	888-88-8888	1
9	I	999-99-9999	1
10	B	04-1111111	0
11	B	04-2222222	0
12	B	04-3333333	0
13	B	04-4444444	0
+---------+--------------+-------------+-----------------+
13 rows in set (0.00 sec)

The fourth column of this query returns 1 if the value stored in the fed_id column
matches the format for a Social Security number.

SQL Server and Oracle Database users can achieve similar results by
building case expressions, which I describe in detail in Chapter 11.

122 | Chapter 7: Data Generation, Conversion, and Manipulation

String functions that return strings

In some cases, you will need to modify existing strings, either by extracting part of the
string or by adding additional text to the string. Every database server includes multiple
functions to help with these tasks. Before I begin, I once again reset the data in the
string_tbl table:

mysql> DELETE FROM string_tbl;
Query OK, 5 rows affected (0.00 sec)

mysql> INSERT INTO string_tbl (text_fld)
 -> VALUES ('This string was 29 characters');
Query OK, 1 row affected (0.01 sec)

Earlier in the chapter, I demonstrated the use of the concat() function to help build
words that include accented characters. The concat() function is useful in many other
situations, including when you need to append additional characters to a stored string.
For instance, the following example modifies the string stored in the text_fld column
by tacking an additional phrase on the end:

mysql> UPDATE string_tbl
 -> SET text_fld = CONCAT(text_fld, ', but now it is longer');
Query OK, 1 row affected (0.03 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The contents of the text_fld column are now as follows:

mysql> SELECT text_fld
 -> FROM string_tbl;
+---+
| text_fld |
+---+
| This string was 29 characters, but now it is longer |
+---+
1 row in set (0.00 sec)

Thus, like all functions that return a string, you can use concat() to replace the data
stored in a character column.

Another common use for the concat() function is to build a string from individual
pieces of data. For example, the following query generates a narrative string for each
bank teller:

mysql> SELECT CONCAT(fname, ' ', lname, ' has been a ',
 -> title, ' since ', start_date) emp_narrative
 -> FROM employee
 -> WHERE title = 'Teller' OR title = 'Head Teller';
+---+
| emp_narrative |
+---+
| Helen Fleming has been a Head Teller since 2008-03-17 |
| Chris Tucker has been a Teller since 2008-09-15 |
| Sarah Parker has been a Teller since 2006-12-02 |
| Jane Grossman has been a Teller since 2006-05-03 |
| Paula Roberts has been a Head Teller since 2006-07-27 |

Working with String Data | 123

| Thomas Ziegler has been a Teller since 2004-10-23 |
| Samantha Jameson has been a Teller since 2007-01-08 |
| John Blake has been a Head Teller since 2004-05-11 |
| Cindy Mason has been a Teller since 2006-08-09 |
| Frank Portman has been a Teller since 2007-04-01 |
| Theresa Markham has been a Head Teller since 2005-03-15 |
| Beth Fowler has been a Teller since 2006-06-29 |
| Rick Tulman has been a Teller since 2006-12-12 |
+---+
13 rows in set (0.30 sec)

The concat() function can handle any expression that returns a string, and will even
convert numbers and dates to string format, as evidenced by the date column
(start_date) used as an argument. Although Oracle Database includes the concat()
function, it will accept only two string arguments, so the previous query will not work
on Oracle. Instead, you would need to use the concatenation operator (||) rather than
a function call, as in:

SELECT fname || ' ' || lname || ' has been a ' ||
 title || ' since ' || start_date emp_narrative
FROM employee
WHERE title = 'Teller' OR title = 'Head Teller';

SQL Server does not include a concat() function, so you would need to use the same
approach as the previous query, except that you would use SQL Server’s concatenation
operator (+) instead of ||.

While concat() is useful for adding characters to the beginning or end of a string, you
may also have a need to add or replace characters in the middle of a string. All three
database servers provide functions for this purpose, but all of them are different, so I
demonstrate the MySQL function and then show the functions from the other two
servers.

MySQL includes the insert() function, which takes four arguments: the original string,
the position at which to start, the number of characters to replace, and the replacement
string. Depending on the value of the third argument, the function may be used to either
insert or replace characters in a string. With a value of 0 for the third argument, the
replacement string is inserted and any trailing characters are pushed to the right, as in:

mysql> SELECT INSERT('goodbye world', 9, 0, 'cruel ') string;
+---------------------+
| string |
+---------------------+
| goodbye cruel world |
+---------------------+
1 row in set (0.00 sec)

In this example, all characters starting from position 9 are pushed to the right and the
string 'cruel' is inserted. If the third argument is greater than zero, then that number
of characters is replaced with the replacement string, as in:

124 | Chapter 7: Data Generation, Conversion, and Manipulation

mysql> SELECT INSERT('goodbye world', 1, 7, 'hello') string;
+-------------+
| string |
+-------------+
| hello world |
+-------------+
1 row in set (0.00 sec)

For this example, the first seven characters are replaced with the string 'hello'. Oracle
Database does not provide a single function with the flexibility of MySQL’s insert()
function, but Oracle does provide the replace() function, which is useful for replacing
one substring with another. Here’s the previous example reworked to use replace():

SELECT REPLACE('goodbye world', 'goodbye', 'hello')
FROM dual;

All instances of the string 'goodbye' will be replaced with the string 'hello', resulting
in the string 'hello world'. The replace() function will replace every instance of the
search string with the replacement string, so you need to be careful that you don’t end
up with more replacements than you anticipated.

SQL Server also includes a replace() function with the same functionality as Oracle’s,
but SQL Server also includes a function called stuff() with similar functionality to
MySQL’s insert() function. Here’s an example:

SELECT STUFF('hello world', 1, 5, 'goodbye cruel')

When executed, five characters are removed starting at position 1, and then the string
'goodbye cruel' is inserted at the starting position, resulting in the string 'goodbye
cruel world'.

Along with inserting characters into a string, you may have a need to extract a substring
from a string. For this purpose, all three servers include the substring() function (al-
though Oracle Database’s version is called substr()), which extracts a specified number
of characters starting at a specified position. The following example extracts five char-
acters from a string starting at the ninth position:

mysql> SELECT SUBSTRING('goodbye cruel world', 9, 5);
+--+
| SUBSTRING('goodbye cruel world', 9, 5) |
+--+
| cruel |
+--+
1 row in set (0.00 sec)

Along with the functions demonstrated here, all three servers include many more built-
in functions for manipulating string data. While many of them are designed for very
specific purposes, such as generating the string equivalent of octal or hexadecimal
numbers, there are many other general-purpose functions as well, such as functions
that remove or add trailing spaces. For more information, consult your server’s SQL
reference guide, or a general-purpose SQL reference guide such as SQL in a Nutshell
(O’Reilly).

Working with String Data | 125

Working with Numeric Data
Unlike string data (and temporal data, as you will see shortly), numeric data generation
is quite straightforward. You can type a number, retrieve it from another column, or
generate it via a calculation. All the usual arithmetic operators (+, -, *, /) are available
for performing calculations, and parentheses may be used to dictate precedence, as in:

mysql> SELECT (37 * 59) / (78 - (8 * 6));
+----------------------------+
| (37 * 59) / (78 - (8 * 6)) |
+----------------------------+
| 72.77 |
+----------------------------+
1 row in set (0.00 sec)

As I mentioned in Chapter 2, the main concern when storing numeric data is that
numbers might be rounded if they are larger than the specified size for a numeric col-
umn. For example, the number 9.96 will be rounded to 10.0 if stored in a column
defined as float(3,1).

Performing Arithmetic Functions
Most of the built-in numeric functions are used for specific arithmetic purposes, such
as determining the square root of a number. Table 7-1 lists some of the common nu-
meric functions that take a single numeric argument and return a number.

Table 7-1. Single-argument numeric functions

Function name Description

Acos(x) Calculates the arc cosine of x

Asin(x) Calculates the arc sine of x

Atan(x) Calculates the arc tangent of x

Cos(x) Calculates the cosine of x

Cot(x) Calculates the cotangent of x

Exp(x) Calculates ex

Ln(x) Calculates the natural log of x

Sin(x) Calculates the sine of x

Sqrt(x) Calculates the square root of x

Tan(x) Calculates the tangent of x

These functions perform very specific tasks, and I refrain from showing examples for
these functions (if you don’t recognize a function by name or description, then you
probably don’t need it). Other numeric functions used for calculations, however, are
a bit more flexible and deserve some explanation.

126 | Chapter 7: Data Generation, Conversion, and Manipulation

For example, the modulo operator, which calculates the remainder when one number
is divided into another number, is implemented in MySQL and Oracle Database via
the mod() function. The following example calculates the remainder when 4 is divided
into 10:

mysql> SELECT MOD(10,4);
+-----------+
| MOD(10,4) |
+-----------+
| 2 |
+-----------+
1 row in set (0.02 sec)

While the mod() function is typically used with integer arguments, with MySQL you
can also use real numbers, as in:

mysql> SELECT MOD(22.75, 5);
+---------------+
| MOD(22.75, 5) |
+---------------+
| 2.75 |
+---------------+
1 row in set (0.02 sec)

SQL Server does not have a mod() function. Instead, the operator % is
used for finding remainders. The expression 10 % 4 will therefore yield
the value 2.

Another numeric function that takes two numeric arguments is the pow() function (or
power() if you are using Oracle Database or SQL Server), which returns one number
raised to the power of a second number, as in:

mysql> SELECT POW(2,8);
+----------+
| POW(2,8) |
+----------+
| 256 |
+----------+
1 row in set (0.03 sec)

Thus, pow(2,8) is the MySQL equivalent of specifying 28. Since computer memory is
allocated in chunks of 2x bytes, the pow() function can be a handy way to determine
the exact number of bytes in a certain amount of memory:

mysql> SELECT POW(2,10) kilobyte, POW(2,20) megabyte,
 -> POW(2,30) gigabyte, POW(2,40) terabyte;
+----------+----------+------------+---------------+
| kilobyte | megabyte | gigabyte | terabyte |
+----------+----------+------------+---------------+
| 1024 | 1048576 | 1073741824 | 1099511627776 |
+----------+----------+------------+---------------+
1 row in set (0.00 sec)

Working with Numeric Data | 127

I don’t know about you, but I find it easier to remember that a gigabyte is 230 bytes
than to remember the number 1,073,741,824.

Controlling Number Precision
When working with floating-point numbers, you may not always want to interact with
or display a number with its full precision. For example, you may store monetary
transaction data with a precision to six decimal places, but you might want to round
to the nearest hundredth for display purposes. Four functions are useful when limiting
the precision of floating-point numbers: ceil(), floor(), round(), and truncate(). All
three servers include these functions, although Oracle Database includes trunc() in-
stead of truncate(), and SQL Server includes ceiling() instead of ceil().

The ceil() and floor() functions are used to round either up or down to the closest
integer, as demonstrated by the following:

mysql> SELECT CEIL(72.445), FLOOR(72.445);
+--------------+---------------+
| CEIL(72.445) | FLOOR(72.445) |
+--------------+---------------+
| 73 | 72 |
+--------------+---------------+
1 row in set (0.06 sec)

Thus, any number between 72 and 73 will be evaluated as 73 by the ceil() function
and 72 by the floor() function. Remember that ceil() will round up even if the decimal
portion of a number is very small, and floor() will round down even if the decimal
portion is quite significant, as in:

mysql> SELECT CEIL(72.000000001), FLOOR(72.999999999);
+--------------------+---------------------+
| CEIL(72.000000001) | FLOOR(72.999999999) |
+--------------------+---------------------+
| 73 | 72 |
+--------------------+---------------------+
1 row in set (0.00 sec)

If this is a bit too severe for your application, you can use the round() function to round
up or down from the midpoint between two integers, as in:

mysql> SELECT ROUND(72.49999), ROUND(72.5), ROUND(72.50001);
+-----------------+-------------+-----------------+
| ROUND(72.49999) | ROUND(72.5) | ROUND(72.50001) |
+-----------------+-------------+-----------------+
| 72 | 73 | 73 |
+-----------------+-------------+-----------------+
1 row in set (0.00 sec)

Using round(), any number whose decimal portion is halfway or more between two
integers will be rounded up, whereas the number will be rounded down if the decimal
portion is anything less than halfway between the two integers.

128 | Chapter 7: Data Generation, Conversion, and Manipulation

Most of the time, you will want to keep at least some part of the decimal portion of a
number rather than rounding to the nearest integer; the round() function allows an
optional second argument to specify how many digits to the right of the decimal place
to round to. The next example shows how you can use the second argument to round
the number 72.0909 to one, two, and three decimal places:

mysql> SELECT ROUND(72.0909, 1), ROUND(72.0909, 2), ROUND(72.0909, 3);
+-------------------+-------------------+-------------------+
| ROUND(72.0909, 1) | ROUND(72.0909, 2) | ROUND(72.0909, 3) |
+-------------------+-------------------+-------------------+
| 72.1 | 72.09 | 72.091 |
+-------------------+-------------------+-------------------+
1 row in set (0.00 sec)

Like the round() function, the truncate() function allows an optional second argument
to specify the number of digits to the right of the decimal, but truncate() simply dis-
cards the unwanted digits without rounding. The next example shows how the number
72.0909 would be truncated to one, two, and three decimal places:

mysql> SELECT TRUNCATE(72.0909, 1), TRUNCATE(72.0909, 2),
 -> TRUNCATE(72.0909, 3);
+----------------------+----------------------+----------------------+
| TRUNCATE(72.0909, 1) | TRUNCATE(72.0909, 2) | TRUNCATE(72.0909, 3) |
+----------------------+----------------------+----------------------+
| 72.0 | 72.09 | 72.090 |
+----------------------+----------------------+----------------------+
1 row in set (0.00 sec)

SQL Server does not include a truncate() function. Instead, the
round() function allows for an optional third argument which, if present
and nonzero, calls for the number to be truncated rather than rounded.

Both truncate() and round() also allow a negative value for the second argument,
meaning that numbers to the left of the decimal place are truncated or rounded. This
might seem like a strange thing to do at first, but there are valid applications. For
example, you might sell a product that can be purchased only in units of 10. If a cus-
tomer were to order 17 units, you could choose from one of the following methods to
modify the customer’s order quantity:

mysql> SELECT ROUND(17, −1), TRUNCATE(17, −1);
+---------------+------------------+
| ROUND(17, −1) | TRUNCATE(17, −1) |
+---------------+------------------+
| 20 | 10 |
+---------------+------------------+
1 row in set (0.00 sec)

If the product in question is thumbtacks, then it might not make much difference to
your bottom line whether you sold the customer 10 or 20 thumbtacks when only 17

Working with Numeric Data | 129

were requested; if you are selling Rolex watches, however, your business may fare better
by rounding.

Handling Signed Data
If you are working with numeric columns that allow negative values (in Chapter 2, I
showed how a numeric column may be labeled unsigned, meaning that only positive
numbers are allowed), several numeric functions might be of use. Let’s say, for example,
that you are asked to generate a report showing the current status of each bank account.
The following query returns three columns useful for generating the report:

mysql> SELECT account_id, SIGN(avail_balance), ABS(avail_balance)
 -> FROM account;
+------------+---------------------+--------------------+
| account_id | SIGN(avail_balance) | ABS(avail_balance) |
+------------+---------------------+--------------------+
1	1	1057.75
2	1	500.00
3	1	3000.00
4	1	2258.02
5	1	200.00
...		
19	1	1500.00
20	1	23575.12
21	0	0.00
22	1	9345.55
23	1	38552.05
24	1	50000.00
+------------+---------------------+--------------------+
24 rows in set (0.00 sec)

The second column uses the sign() function to return −1 if the account balance is
negative, 0 if the account balance is zero, and 1 if the account balance is positive. The
third column returns the absolute value of the account balance via the abs() function.

Working with Temporal Data
Of the three types of data discussed in this chapter (character, numeric, and temporal),
temporal data is the most involved when it comes to data generation and manipulation.
Some of the complexity of temporal data is caused by the myriad ways in which a single
date and time can be described. For example, the date on which I wrote this paragraph
can be described in all the following ways:

• Wednesday, September 17, 2008

• 9/17/2008 2:14:56 P.M. EST

• 9/17/2008 19:14:56 GMT

• 2612008 (Julian format)

• Star date [−4] 85712.03 14:14:56 (Star Trek format)

130 | Chapter 7: Data Generation, Conversion, and Manipulation

While some of these differences are purely a matter of formatting, most of the com-
plexity has to do with your frame of reference, which we explore in the next section.

Dealing with Time Zones
Because people around the world prefer that noon coincides roughly with the sun’s
peak at their location, there has never been a serious attempt to coerce everyone to use
a universal clock. Instead, the world has been sliced into 24 imaginary sections, called
time zones; within a particular time zone, everyone agrees on the current time, whereas
people in different time zones do not. While this seems simple enough, some geographic
regions shift their time by one hour twice a year (implementing what is known as
daylight saving time) and some do not, so the time difference between two points on
Earth might be four hours for one half of the year and five hours for the other half of
the year. Even within a single time zone, different regions may or may not adhere to
daylight saving time, causing different clocks in the same time zone to agree for one
half of the year but be one hour different for the rest of the year.

While the computer age has exacerbated the issue, people have been dealing with time
zone differences since the early days of naval exploration. To ensure a common point
of reference for timekeeping, fifteenth-century navigators set their clocks to the time of
day in Greenwich, England. This became known as Greenwich Mean Time, or GMT.
All other time zones can be described by the number of hours’ difference from GMT;
for example, the time zone for the Eastern United States, known as Eastern Standard
Time, can be described as GMT −5:00, or five hours earlier than GMT.

Today, we use a variation of GMT called Coordinated Universal Time, or UTC, which
is based on an atomic clock (or, to be more precise, the average time of 200 atomic
clocks in 50 locations worldwide, which is referred to as Universal Time). Both SQL
Server and MySQL provide functions that will return the current UTC timestamp
(getutcdate() for SQL Server and utc_timestamp() for MySQL).

Most database servers default to the time zone setting of the server on which it resides
and provide tools for modifying the time zone if needed. For example, a database used
to store stock exchange transactions from around the world would generally be con-
figured to use UTC time, whereas a database used to store transactions at a particular
retail establishment might use the server’s time zone.

MySQL keeps two different time zone settings: a global time zone, and a session time
zone, which may be different for each user logged in to a database. You can see both
settings via the following query:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | SYSTEM |
+--------------------+---------------------+
1 row in set (0.00 sec)

Working with Temporal Data | 131

A value of system tells you that the server is using the time zone setting from the server
on which the database resides.

If you are sitting at a computer in Zurich, Switzerland, and you open a session across
the network to a MySQL server situated in New York, you may want to change the
time zone setting for your session, which you can do via the following command:

mysql> SET time_zone = 'Europe/Zurich';
Query OK, 0 rows affected (0.18 sec)

If you check the time zone settings again, you will see the following:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | Europe/Zurich |
+--------------------+---------------------+
1 row in set (0.00 sec)

All dates displayed in your session will now conform to Zurich time.

Oracle Database users can change the time zone setting for a session via
the following command:

ALTER SESSION TIMEZONE = 'Europe/Zurich'

Generating Temporal Data
You can generate temporal data via any of the following means:

• Copying data from an existing date, datetime, or time column

• Executing a built-in function that returns a date, datetime, or time

• Building a string representation of the temporal data to be evaluated by the server

To use the last method, you will need to understand the various components used in
formatting dates.

String representations of temporal data

Table 2-5 in Chapter 2 presented the more popular date components; to refresh your
memory, Table 7-2 shows these same components.

Loading MySQL Time Zone Data
If you are running the MySQL server on a Windows platform, you will need to load
time zone data manually before you can set global or session time zones. To do so, you
need to follow these steps:

132 | Chapter 7: Data Generation, Conversion, and Manipulation

1. Download the time zone data from http://dev.mysql.com/downloads/timezones
.html.

2. Shut down your MySQL server.

3. Extract the files from the downloaded ZIP file (in my case, the file was called
timezone-2006p.zip) and place them in your MySQL installation directory un-
der /data/mysql (the full path for my installation was /Program Files/MySQL/
MySQL Server 6.0/data/mysql).

4. Restart your MySQL server.

To look at the time zone data, change to the mysql database via the use mysql
command, and execute the following query:

mysql> SELECT name FROM time_zone_name;
+----------------------------------+
| name |
+----------------------------------+
| Africa/Abidjan |
| Africa/Accra |
| Africa/Addis_Ababa |
| Africa/Algiers |
| Africa/Asmera |
| Africa/Bamako |
| Africa/Bangui |
| Africa/Banjul |
| Africa/Bissau |
| Africa/Blantyre |
| Africa/Brazzaville |
| Africa/Bujumbura |
...
| US/Alaska |
| US/Aleutian |
| US/Arizona |
| US/Central |
| US/East-Indiana |
| US/Eastern |
| US/Hawaii |
| US/Indiana-Starke |
| US/Michigan |
| US/Mountain |
| US/Pacific |
| US/Pacific-New |
| US/Samoa |
| UTC |
| W-SU |
| WET |
| Zulu |
+----------------------------------+
546 rows in set (0.01 sec)

To change your time zone setting, choose one of the names from the previous query
that best matches your location.

Working with Temporal Data | 133

http://dev.mysql.com/downloads/timezones.html
http://dev.mysql.com/downloads/timezones.html

Table 7-2. Date format components

Component Definition Range

YYYY Year, including century 1000 to 9999

MM Month 01 (January) to 12 (December)

DD Day 01 to 31

HH Hour 00 to 23

HHH Hours (elapsed) −838 to 838

MI Minute 00 to 59

SS Second 00 to 59

To build a string that the server can interpret as a date, datetime, or time, you need to
put the various components together in the order shown in Table 7-3.

Table 7-3. Required date components

Type Default format

Date YYYY-MM-DD

Datetime YYYY-MM-DD HH:MI:SS

Timestamp YYYY-MM-DD HH:MI:SS

Time HHH:MI:SS

Thus, to populate a datetime column with 3:30 P.M. on September 17, 2008, you will
need to build the following string:

'2008-09-17 15:30:00'

If the server is expecting a datetime value, such as when updating a datetime column
or when calling a built-in function that takes a datetime argument, you can provide a
properly formatted string with the required date components, and the server will do
the conversion for you. For example, here’s a statement used to modify the date of a
bank transaction:

UPDATE transaction
SET txn_date = '2008-09-17 15:30:00'
WHERE txn_id = 99999;

The server determines that the string provided in the set clause must be a datetime
value, since the string is being used to populate a datetime column. Therefore, the server
will attempt to convert the string for you by parsing the string into the six components
(year, month, day, hour, minute, second) included in the default datetime format.

String-to-date conversions

If the server is not expecting a datetime value, or if you would like to represent the
datetime using a nondefault format, you will need to tell the server to convert the string

134 | Chapter 7: Data Generation, Conversion, and Manipulation

to a datetime. For example, here is a simple query that returns a datetime value using
the cast() function:

mysql> SELECT CAST('2008-09-17 15:30:00' AS DATETIME);
+---+
| CAST('2008-09-17 15:30:00' AS DATETIME) |
+---+
| 2008-09-17 15:30:00 |
+---+
1 row in set (0.00 sec)

We cover the cast() function at the end of this chapter. While this example demon-
strates how to build datetime values, the same logic applies to the date and time types
as well. The following query uses the cast() function to generate a date value and a
time value:

mysql> SELECT CAST('2008-09-17' AS DATE) date_field,
 -> CAST('108:17:57' AS TIME) time_field;
+------------+------------+
| date_field | time_field |
+------------+------------+
| 2008-09-17 | 108:17:57 |
+------------+------------+
1 row in set (0.00 sec)

You may, of course, explicitly convert your strings even when the server is expecting a
date, datetime, or time value, rather than letting the server do an implicit conversion.

When strings are converted to temporal values—whether explicitly or implicitly—you
must provide all the date components in the required order. While some servers are
quite strict regarding the date format, the MySQL server is quite lenient about the
separators used between the components. For example, MySQL will accept all of the
following strings as valid representations of 3:30 P.M. on September 17, 2008:

'2008-09-17 15:30:00'
'2008/09/17 15:30:00'
'2008,09,17,15,30,00'
'20080917153000'

Although this gives you a bit more flexibility, you may find yourself trying to generate
a temporal value without the default date components; the next section demonstrates
a built-in function that is far more flexible than the cast() function.

Functions for generating dates

If you need to generate temporal data from a string, and the string is not in the proper
form to use the cast() function, you can use a built-in function that allows you to
provide a format string along with the date string. MySQL includes the
str_to_date() function for this purpose. Say, for example, that you pull the string
'September 17, 2008' from a file and need to use it to update a date column. Since the
string is not in the required YYYY-MM-DD format, you can use str_to_date() instead
of reformatting the string so that you can use the cast() function, as in:

Working with Temporal Data | 135

UPDATE individual
SET birth_date = STR_TO_DATE('September 17, 2008', '%M %d, %Y')
WHERE cust_id = 9999;

The second argument in the call to str_to_date() defines the format of the date string,
with, in this case, a month name (%M), a numeric day (%d), and a four-digit numeric year
(%Y). While there are over 30 recognized format components, Table 7-4 defines the
dozen or so most commonly used components.

Table 7-4. Date format components

Format component Description

%M Month name (January to December)

%m Month numeric (01 to 12)

%d Day numeric (01 to 31)

%j Day of year (001 to 366)

%W Weekday name (Sunday to Saturday)

%Y Year, four-digit numeric

%y Year, two-digit numeric

%H Hour (00 to 23)

%h Hour (01 to 12)

%i Minutes (00 to 59)

%s Seconds (00 to 59)

%f Microseconds (000000 to 999999)

%p A.M. or P.M.

The str_to_date() function returns a datetime, date, or time value depending on the
contents of the format string. For example, if the format string includes only %H, %i, and
%s, then a time value will be returned.

Oracle Database users can use the to_date() function in the same man-
ner as MySQL’s str_to_date() function. SQL Server includes a
convert() function that is not quite as flexible as MySQL and Oracle
Database; rather than supplying a custom format string, your date string
must conform to one of 21 predefined formats.

If you are trying to generate the current date/time, then you won’t need to build a string,
because the following built-in functions will access the system clock and return the
current date and/or time as a string for you:

136 | Chapter 7: Data Generation, Conversion, and Manipulation

mysql> SELECT CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP();
+----------------+----------------+---------------------+
| CURRENT_DATE() | CURRENT_TIME() | CURRENT_TIMESTAMP() |
+----------------+----------------+---------------------+
| 2008-09-18 | 19:53:12 | 2008-09-18 19:53:12 |
+----------------+----------------+---------------------+
1 row in set (0.12 sec)

The values returned by these functions are in the default format for the temporal type
being returned. Oracle Database includes current_date() and current_timestamp() but
not current_time(), and SQL Server includes only the current_timestamp() function.

Manipulating Temporal Data
This section explores the built-in functions that take date arguments and return dates,
strings, or numbers.

Temporal functions that return dates

Many of the built-in temporal functions take one date as an argument and return an-
other date. MySQL’s date_add() function, for example, allows you to add any kind of
interval (e.g., days, months, years) to a specified date to generate another date. Here’s
an example that demonstrates how to add five days to the current date:

mysql> SELECT DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY);
+--+
| DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY) |
+--+
| 2008-09-22 |
+--+
1 row in set (0.06 sec)

The second argument is composed of three elements: the interval keyword, the desired
quantity, and the type of interval. Table 7-5 shows some of the commonly used interval
types.

Table 7-5. Common interval types

Interval name Description

Second Number of seconds

Minute Number of minutes

Hour Number of hours

Day Number of days

Month Number of months

Year Number of years

Minute_second Number of minutes and seconds, separated by “:”

Hour_second Number of hours, minutes, and seconds, separated by “:”

Year_month Number of years and months, separated by “-”

Working with Temporal Data | 137

While the first six types listed in Table 7-5 are pretty straightforward, the last three
types require a bit more explanation since they have multiple elements. For example,
if you are told that transaction ID 9999 actually occurred 3 hours, 27 minutes, and 11
seconds later than what was posted to the transaction table, you can fix it via the
following:

UPDATE transaction
SET txn_date = DATE_ADD(txn_date, INTERVAL '3:27:11' HOUR_SECOND)
WHERE txn_id = 9999;

In this example, the date_add() function takes the value in the txn_date column, adds
3 hours, 27 minutes, and 11 seconds to it, and uses the value that results to modify the
txn_date column.

Or, if you work in HR and found out that employee ID 4789 claimed to be younger
than he actually is, you could add 9 years and 11 months to his birth date, as in:

UPDATE employee
SET birth_date = DATE_ADD(birth_date, INTERVAL '9-11' YEAR_MONTH)
WHERE emp_id = 4789;

SQL Server users can accomplish the previous example using the
dateadd() function:

UPDATE employee
SET birth_date =
 DATEADD(MONTH, 119, birth_date)
WHERE emp_id = 4789

SQL Server doesn’t have combined intervals (i.e., year_month), so I con-
verted 9 years, 11 months to 119 months.

Oracle Database users can use the add_months() function for this exam-
ple, as in:

UPDATE employee
SET birth_date = ADD_MONTHS(birth_date, 119)
WHERE emp_id = 4789;

There are some cases where you want to add an interval to a date, and you know where
you want to arrive but not how many days it takes to get there. For example, let’s say
that a bank customer logs on to the online banking system and schedules a transfer for
the end of the month. Rather than writing some code that figures out what month you
are currently in and looks up the number of days in that month, you can call the
last_day() function, which does the work for you (both MySQL and Oracle Database
include the last_day() function; SQL Server has no comparable function). If the cus-
tomer asks for the transfer on September 17, 2008, you could find the last day of Sep-
tember via the following:

138 | Chapter 7: Data Generation, Conversion, and Manipulation

mysql> SELECT LAST_DAY('2008-09-17');
+------------------------+
| LAST_DAY('2008-09-17') |
+------------------------+
| 2008-09-30 |
+------------------------+
1 row in set (0.10 sec)

Whether you provide a date or datetime value, the last_day() function always returns
a date. Although this function may not seem like an enormous timesaver, the underlying
logic can be tricky if you’re trying to find the last day of February and need to figure
out whether the current year is a leap year.

Another temporal function that returns a date is one that converts a datetime value
from one time zone to another. For this purpose, MySQL includes the convert_tz()
function and Oracle Database includes the new_time() function. If I want to convert
my current local time to UTC, for example, I could do the following:

mysql> SELECT CURRENT_TIMESTAMP() current_est,
 -> CONVERT_TZ(CURRENT_TIMESTAMP(), 'US/Eastern', 'UTC') current_utc;
+---------------------+---------------------+
| current_est | current_utc |
+---------------------+---------------------+
| 2008-09-18 20:01:25 | 2008-09-19 00:01:25 |
+---------------------+---------------------+
1 row in set (0.76 sec)

This function comes in handy when receiving dates in a different time zone than what
is stored in your database.

Temporal functions that return strings

Most of the temporal functions that return string values are used to extract a portion
of a date or time. For example, MySQL includes the dayname() function to determine
which day of the week a certain date falls on, as in:

mysql> SELECT DAYNAME('2008-09-18');
+-----------------------+
| DAYNAME('2008-09-18') |
+-----------------------+
| Thursday |
+-----------------------+
1 row in set (0.08 sec)

Many such functions are included with MySQL for extracting information from date
values, but I recommend that you use the extract() function instead, since it’s easier
to remember a few variations of one function than to remember a dozen different func-
tions. Additionally, the extract() function is part of the SQL:2003 standard and has
been implemented by Oracle Database as well as MySQL.

Working with Temporal Data | 139

The extract() function uses the same interval types as the date_add() function (see
Table 7-5) to define which element of the date interests you. For example, if you want
to extract just the year portion of a datetime value, you can do the following:

mysql> SELECT EXTRACT(YEAR FROM '2008-09-18 22:19:05');
+--+
| EXTRACT(YEAR FROM '2008-09-18 22:19:05') |
+--+
| 2008 |
+--+
1 row in set (0.00 sec)

SQL Server doesn’t include an implementation of extract(), but it does
include the datepart() function. Here’s how you would extract the year
from a datetime value using datepart():

SELECT DATEPART(YEAR, GETDATE())

Temporal functions that return numbers

Earlier in this chapter, I showed you a function used to add a given interval to a date
value, thus generating another date value. Another common activity when working
with dates is to take two date values and determine the number of intervals (days, weeks,
years) between the two dates. For this purpose, MySQL includes the function
datediff(), which returns the number of full days between two dates. For example, if
I want to know the number of days that my kids will be out of school this summer, I
can do the following:

mysql> SELECT DATEDIFF('2009-09-03', '2009-06-24');
+--------------------------------------+
| DATEDIFF('2009-09-03', '2009-06-24') |
+--------------------------------------+
| 71 |
+--------------------------------------+
1 row in set (0.05 sec)

Thus, I will have to endure 71 days of poison ivy, mosquito bites, and scraped knees
before the kids are safely back at school. The datediff() function ignores the time of
day in its arguments. Even if I include a time-of-day, setting it to one second until
midnight for the first date and to one second after midnight for the second date, those
times will have no effect on the calculation:

mysql> SELECT DATEDIFF('2009-09-03 23:59:59', '2009-06-24 00:00:01');
+--+
| DATEDIFF('2009-09-03 23:59:59', '2009-06-24 00:00:01') |
+--+
| 71 |
+--+
1 row in set (0.00 sec)

140 | Chapter 7: Data Generation, Conversion, and Manipulation

If I switch the arguments and have the earlier date first, datediff() will return a negative
number, as in:

mysql> SELECT DATEDIFF('2009-06-24', '2009-09-03');
+--------------------------------------+
| DATEDIFF('2009-06-24', '2009-09-03') |
+--------------------------------------+
| −71 |
+--------------------------------------+
1 row in set (0.01 sec)

SQL Server also includes the datediff() function, but it is more flexible
than the MySQL implementation in that you can specify the interval
type (i.e., year, month, day, hour) instead of counting only the number
of days between two dates. Here’s how SQL Server would accomplish
the previous example:

SELECT DATEDIFF(DAY, '2009-06-24', '2009-09-03')

Oracle Database allows you to determine the number of days between
two dates simply by subtracting one date from another.

Conversion Functions
Earlier in this chapter, I showed you how to use the cast() function to convert a string
to a datetime value. While every database server includes a number of proprietary
functions used to convert data from one type to another, I recommend using the
cast() function, which is included in the SQL:2003 standard and has been implemen-
ted by MySQL, Oracle Database, and Microsoft SQL Server.

To use cast(), you provide a value or expression, the as keyword, and the type to which
you want the value converted. Here’s an example that converts a string to an integer:

mysql> SELECT CAST('1456328' AS SIGNED INTEGER);
+-----------------------------------+
| CAST('1456328' AS SIGNED INTEGER) |
+-----------------------------------+
| 1456328 |
+-----------------------------------+
1 row in set (0.01 sec)

When converting a string to a number, the cast() function will attempt to convert the
entire string from left to right; if any non-numeric characters are found in the string,
the conversion halts without an error. Consider the following example:

mysql> SELECT CAST('999ABC111' AS UNSIGNED INTEGER);
+---------------------------------------+
| CAST('999ABC111' AS UNSIGNED INTEGER) |
+---------------------------------------+
| 999 |
+---------------------------------------+
1 row in set, 1 warning (0.08 sec)

Conversion Functions | 141

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect INTEGER value: '999ABC111' |
+---------+------+--+
1 row in set (0.07 sec)

In this case, the first three digits of the string are converted, whereas the rest of the
string is discarded, resulting in a value of 999. The server did, however, issue a warning
to let you know that not all the string was converted.

If you are converting a string to a date, time, or datetime value, then you will need to
stick with the default formats for each type, since you can’t provide the cast() function
with a format string. If your date string is not in the default format (i.e., YYYY-MM-
DD HH:MI:SS for datetime types), then you will need to resort to using another func-
tion, such as MySQL’s str_to_date() function described earlier in the chapter.

Test Your Knowledge
These exercises are designed to test your understanding of some of the built-in functions
shown in this chapter. See Appendix C for the answers.

Exercise 7-1
Write a query that returns the 17th through 25th characters of the string 'Please find
the substring in this string'.

Exercise 7-2
Write a query that returns the absolute value and sign (−1, 0, or 1) of the number −25.
76823. Also return the number rounded to the nearest hundredth.

Exercise 7-3
Write a query to return just the month portion of the current date.

142 | Chapter 7: Data Generation, Conversion, and Manipulation

CHAPTER 8

Grouping and Aggregates

Data is generally stored at the lowest level of granularity needed by any of a database’s
users; if Chuck in accounting needs to look at individual customer transactions, then
there needs to be a table in the database that stores individual transactions. That doesn’t
mean, however, that all users must deal with the data as it is stored in the database.
The focus of this chapter is on how data can be grouped and aggregated to allow users
to interact with it at some higher level of granularity than what is stored in the database.

Grouping Concepts
Sometimes you will want to find trends in your data that will require the database server
to cook the data a bit before you can generate the results you are looking for. For
example, let’s say that you are in charge of operations at the bank, and you would like
to find out how many accounts are being opened by each bank teller. You could issue
a simple query to look at the raw data:

mysql> SELECT open_emp_id
 -> FROM account;
+-------------+
| open_emp_id |
+-------------+
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 10 |
| 13 |

143

| 13 |
| 13 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
| 16 |
+-------------+
24 rows in set (0.01 sec)

With only 24 rows in the account table, it is relatively easy to see that four different
employees opened accounts and that employee ID 16 has opened six accounts; how-
ever, if the bank has dozens of employees and thousands of accounts, this approach
would prove tedious and error-prone.

Instead, you can ask the database server to group the data for you by using the group
by clause. Here’s the same query but employing a group by clause to group the account
data by employee ID:

mysql> SELECT open_emp_id
 -> FROM account
 -> GROUP BY open_emp_id;
+-------------+
| open_emp_id |
+-------------+
| 1 |
| 10 |
| 13 |
| 16 |
+-------------+
4 rows in set (0.00 sec)

The result set contains one row for each distinct value in the open_emp_id column,
resulting in four rows instead of the full 24 rows. The reason for the smaller result set
is that each of the four employees opened more than one account. To see how many
accounts each teller opened, you can use an aggregate function in the select clause to
count the number of rows in each group:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
1	8
10	7
13	3
16	6
+-------------+----------+
4 rows in set (0.00 sec)

The aggregate function count() counts the number of rows in each group, and the
asterisk tells the server to count everything in the group. Using the combination of a

144 | Chapter 8: Grouping and Aggregates

group by clause and the count() aggregate function, you are able to generate exactly
the data needed to answer the business question without having to look at the raw data.

When grouping data, you may need to filter out undesired data from your result set
based on groups of data rather than based on the raw data. Since the group by clause
runs after the where clause has been evaluated, you cannot add filter conditions to your
where clause for this purpose. For example, here’s an attempt to filter out any cases
where an employee has opened fewer than five accounts:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> WHERE COUNT(*) > 4
 -> GROUP BY open_emp_id;
ERROR 1111 (HY000): Invalid use of group function

You cannot refer to the aggregate function count(*) in your where clause, because the
groups have not yet been generated at the time the where clause is evaluated. Instead,
you must put your group filter conditions in the having clause. Here’s what the query
would look like using having:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> HAVING COUNT(*) > 4;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
1	8
10	7
16	6
+-------------+----------+
3 rows in set (0.00 sec)

Because those groups containing fewer than five members have been filtered out via
the having clause, the result set now contains only those employees who have opened
five or more accounts, thus eliminating employee ID 13 from the results.

Aggregate Functions
Aggregate functions perform a specific operation over all rows in a group. Although
every database server has its own set of specialty aggregate functions, the common
aggregate functions implemented by all major servers include:

Max()
Returns the maximum value within a set

Min()
Returns the minimum value within a set

Avg()
Returns the average value across a set

Aggregate Functions | 145

Sum()
Returns the sum of the values across a set

Count()
Returns the number of values in a set

Here’s a query that uses all of the common aggregate functions to analyze the available
balances for all checking accounts:

mysql> SELECT MAX(avail_balance) max_balance,
 -> MIN(avail_balance) min_balance,
 -> AVG(avail_balance) avg_balance,
 -> SUM(avail_balance) tot_balance,
 -> COUNT(*) num_accounts
 -> FROM account
 -> WHERE product_cd = 'CHK';
+-------------+-------------+-------------+-------------+--------------+
| max_balance | min_balance | avg_balance | tot_balance | num_accounts |
+-------------+-------------+-------------+-------------+--------------+
| 38552.05 | 122.37 | 7300.800985 | 73008.01 | 10 |
+-------------+-------------+-------------+-------------+--------------+
1 row in set (0.09 sec)

The results from this query tell you that, across the 10 checking accounts in the
account table, there is a maximum balance of $38,552.05, a minimum balance of
$122.37, an average balance of $7,300.80, and a total balance across all 10 accounts of
$73,008.01. Hopefully, this gives you an appreciation for the role of these aggregate
functions; the next subsections further clarify how you can utilize these functions.

Implicit Versus Explicit Groups
In the previous example, every value returned by the query is generated by an aggregate
function, and the aggregate functions are applied across the group of rows specified by
the filter condition product_cd = 'CHK'. Since there is no group by clause, there is a
single, implicit group (all rows returned by the query).

In most cases, however, you will want to retrieve additional columns along with col-
umns generated by aggregate functions. What if, for example, you wanted to extend
the previous query to execute the same five aggregate functions for each product type,
instead of just for checking accounts? For this query, you would want to retrieve the
product_cd column along with the five aggregate functions, as in:

SELECT product_cd,
 MAX(avail_balance) max_balance,
 MIN(avail_balance) min_balance,
 AVG(avail_balance) avg_balance,
 SUM(avail_balance) tot_balance,
 COUNT(*) num_accounts
FROM account;

However, if you try to execute the query, you will receive the following error:

146 | Chapter 8: Grouping and Aggregates

ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP
columns is illegal if there is no GROUP BY clause

While it may be obvious to you that you want the aggregate functions applied to each
set of products found in the account table, this query fails because you have not ex-
plicitly specified how the data should be grouped. Therefore, you will need to add a
group by clause to specify over which group of rows the aggregate functions should be
applied:

mysql> SELECT product_cd,
 -> MAX(avail_balance) max_balance,
 -> MIN(avail_balance) min_balance,
 -> AVG(avail_balance) avg_balance,
 -> SUM(avail_balance) tot_balance,
 -> COUNT(*) num_accts
 -> FROM account
 -> GROUP BY product_cd;
+------------+-------------+-------------+--------------+-------------+-----------+
| product_cd | max_balance | min_balance | avg_balance | tot_balance | num_accts |
+------------+-------------+-------------+--------------+-------------+-----------+
BUS	9345.55	0.00	4672.774902	9345.55	2
CD	10000.00	1500.00	4875.000000	19500.00	4
CHK	38552.05	122.37	7300.800985	73008.01	10
MM	9345.55	2212.50	5681.713216	17045.14	3
SAV	767.77	200.00	463.940002	1855.76	4
SBL	50000.00	50000.00	50000.000000	50000.00	1
+------------+-------------+-------------+--------------+-------------+-----------+
6 rows in set (0.00 sec)

With the inclusion of the group by clause, the server knows to group together rows
having the same value in the product_cd column first and then to apply the five aggregate
functions to each of the six groups.

Counting Distinct Values
When using the count() function to determine the number of members in each group,
you have your choice of counting all members in the group, or counting only the
distinct values for a column across all members of the group. For example, consider the
following data, which shows the employee responsible for opening each account:

mysql> SELECT account_id, open_emp_id
 -> FROM account
 -> ORDER BY open_emp_id;
+------------+-------------+
| account_id | open_emp_id |
+------------+-------------+
8	1
9	1
10	1
12	1
13	1
17	1
18	1

Aggregate Functions | 147

19	1
1	10
2	10
3	10
4	10
5	10
14	10
22	10
6	13
7	13
24	13
11	16
15	16
16	16
20	16
21	16
23	16
+------------+-------------+
24 rows in set (0.00 sec)

As you can see, multiple accounts were opened by four different employees (employee
IDs 1, 10, 13, and 16). Let’s say that, instead of performing a manual count, you want
to create a query that counts the number of employees who have opened accounts. If
you apply the count() function to the open_emp_id column, you will see the following
results:

mysql> SELECT COUNT(open_emp_id)
 -> FROM account;
+--------------------+
| COUNT(open_emp_id) |
+--------------------+
| 24 |
+--------------------+
1 row in set (0.00 sec)

In this case, specifying the open_emp_id column as the column to be counted generates
the same results as specifying count(*). If you want to count distinct values in the group
rather than just counting the number of rows in the group, you need to specify the
distinct keyword, as in:

mysql> SELECT COUNT(DISTINCT open_emp_id)
 -> FROM account;
+-----------------------------+
| COUNT(DISTINCT open_emp_id) |
+-----------------------------+
| 4 |
+-----------------------------+
1 row in set (0.00 sec)

By specifying distinct, therefore, the count() function examines the values of a column
for each member of the group in order to find and remove duplicates, rather than simply
counting the number of values in the group.

148 | Chapter 8: Grouping and Aggregates

Using Expressions
Along with using columns as arguments to aggregate functions, you can build expres-
sions to use as arguments. For example, you may want to find the maximum value of
pending deposits across all accounts, which is calculated by subtracting the available
balance from the pending balance. You can achieve this via the following query:

mysql> SELECT MAX(pending_balance - avail_balance) max_uncleared
 -> FROM account;
+---------------+
| max_uncleared |
+---------------+
| 660.00 |
+---------------+
1 row in set (0.00 sec)

While this example uses a fairly simple expression, expressions used as arguments to
aggregate functions can be as complex as needed, as long as they return a number,
string, or date. In Chapter 11, I show you how you can use case expressions with
aggregate functions to determine whether a particular row should or should not be
included in an aggregation.

How Nulls Are Handled
When performing aggregations, or, indeed, any type of numeric calculation, you should
always consider how null values might affect the outcome of your calculation. To
illustrate, I will build a simple table to hold numeric data and populate it with the set
{1, 3, 5}:

mysql> CREATE TABLE number_tbl
 -> (val SMALLINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO number_tbl VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (3);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (5);
Query OK, 1 row affected (0.00 sec)

Consider the following query, which performs five aggregate functions on the set of
numbers:

mysql> SELECT COUNT(*) num_rows,
 -> COUNT(val) num_vals,
 -> SUM(val) total,
 -> MAX(val) max_val,
 -> AVG(val) avg_val
 -> FROM number_tbl;
+----------+----------+-------+---------+---------+

Aggregate Functions | 149

| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
| 3 | 3 | 9 | 5 | 3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.08 sec)

The results are as you would expect: both count(*) and count(val) return the value 3,
sum(val) returns the value 9, max(val) returns 5, and avg(val) returns 3. Next, I will
add a null value to the number_tbl table and run the query again:

mysql> INSERT INTO number_tbl VALUES (NULL);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT COUNT(*) num_rows,
 -> COUNT(val) num_vals,
 -> SUM(val) total,
 -> MAX(val) max_val,
 -> AVG(val) avg_val
 -> FROM number_tbl;
+----------+----------+-------+---------+---------+
| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
| 4 | 3 | 9 | 5 | 3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.00 sec)

Even with the addition of the null value to the table, the sum(), max(), and avg() func-
tions all return the same values, indicating that they ignore any null values encountered.
The count(*) function now returns the value 4, which is valid since the number_tbl table
contains four rows, while the count(val) function still returns the value 3. The differ-
ence is that count(*) counts the number of rows, whereas count(val) counts the num-
ber of values contained in the val column and ignores any null values encountered.

Generating Groups
People are rarely interested in looking at raw data; instead, people engaging in data
analysis will want to manipulate the raw data to better suit their needs. Examples of
common data manipulations include:

• Generating totals for a geographic region, such as total European sales

• Finding outliers, such as the top salesperson for 2005

• Determining frequencies, such as the number of new accounts opened for each
branch

To answer these types of queries, you will need to ask the database server to group rows
together by one or more columns or expressions. As you have seen already in several
examples, the group by clause is the mechanism for grouping data within a query. In
this section, you will see how to group data by one or more columns, how to group
data using expressions, and how to generate rollups within groups.

150 | Chapter 8: Grouping and Aggregates

Single-Column Grouping
Single-column groups are the simplest and most-often-used type of grouping. If you
want to find the total balances for each product, for example, you need only group on
the account.product_cd column, as in:

mysql> SELECT product_cd, SUM(avail_balance) prod_balance
 -> FROM account
 -> GROUP BY product_cd;
+------------+--------------+
| product_cd | prod_balance |
+------------+--------------+
BUS	9345.55
CD	19500.00
CHK	73008.01
MM	17045.14
SAV	1855.76
SBL	50000.00
+------------+--------------+
6 rows in set (0.00 sec)

This query generates six groups, one for each product, and then sums the available
balances for each member of the group.

Multicolumn Grouping
In some cases, you may want to generate groups that span more than one column.
Expanding on the previous example, imagine that you want to find the total balances
not just for each product, but for both products and branches (e.g., what’s the total
balance for all checking accounts opened at the Woburn branch?). The following ex-
ample shows how you can accomplish this:

mysql> SELECT product_cd, open_branch_id,
 -> SUM(avail_balance) tot_balance
 -> FROM account
 -> GROUP BY product_cd, open_branch_id;
+------------+----------------+-------------+
| product_cd | open_branch_id | tot_balance |
+------------+----------------+-------------+
BUS	2	9345.55
BUS	4	0.00
CD	1	11500.00
CD	2	8000.00
CHK	1	782.16
CHK	2	3315.77
CHK	3	1057.75
CHK	4	67852.33
MM	1	14832.64
MM	3	2212.50
SAV	1	767.77
SAV	2	700.00
SAV	4	387.99
SBL	3	50000.00

Generating Groups | 151

+------------+----------------+-------------+
14 rows in set (0.00 sec)

This version of the query generates 14 groups, one for each combination of product
and branch found in the account table. Along with adding the open_branch_id column
to the select clause, I also added it to the group by clause, since open_branch_id is
retrieved from a table and is not generated via an aggregate function.

Grouping via Expressions
Along with using columns to group data, you can build groups based on the values
generated by expressions. Consider the following query, which groups employees by
the year they began working for the bank:

mysql> SELECT EXTRACT(YEAR FROM start_date) year,
 -> COUNT(*) how_many
 -> FROM employee
 -> GROUP BY EXTRACT(YEAR FROM start_date);
+------+----------+
| year | how_many |
+------+----------+
2004	2
2005	3
2006	8
2007	3
2008	2
+------+----------+
5 rows in set (0.15 sec)

This query employs a fairly simple expression, which uses the extract() function to
return only the year portion of a date, to group the rows in the employee table.

Generating Rollups
In “Multicolumn Grouping” on page 151, I showed an example that generates total
account balances for each product and branch. Let’s say, however, that along with the
total balances for each product/branch combination, you also want total balances for
each distinct product. You could run an additional query and merge the results, you
could load the results of the query into a spreadsheet, or you could build a Perl script,
Java program, or some other mechanism to take that data and perform the additional
calculations. Better yet, you could use the with rollup option to have the database
server do the work for you. Here’s the revised query using with rollup in the group
by clause:

mysql> SELECT product_cd, open_branch_id,
 -> SUM(avail_balance) tot_balance
 -> FROM account
 -> GROUP BY product_cd, open_branch_id WITH ROLLUP;

+------------+----------------+-------------+
| product_cd | open_branch_id | tot_balance |

152 | Chapter 8: Grouping and Aggregates

+------------+----------------+-------------+
BUS	2	9345.55
BUS	4	0.00
BUS	NULL	9345.55
CD	1	11500.00
CD	2	8000.00
CD	NULL	19500.00
CHK	1	782.16
CHK	2	3315.77
CHK	3	1057.75
CHK	4	67852.33
CHK	NULL	73008.01
MM	1	14832.64
MM	3	2212.50
MM	NULL	17045.14
SAV	1	767.77
SAV	2	700.00
SAV	4	387.99
SAV	NULL	1855.76
SBL	3	50000.00
SBL	NULL	50000.00
NULL	NULL	170754.46
+------------+----------------+-------------+
21 rows in set (0.02 sec)

There are now seven additional rows in the result set, one for each of the six distinct
products and one for the grand total (all products combined). For the six product
rollups, a null value is provided for the open_branch_id column, since the rollup is being
performed across all branches. Looking at the third line of the output, for example, you
will see that a total of $9,345.55 was deposited in BUS accounts across all branches.
For the grand total row, a null value is provided for both the product_cd and
open_branch_id columns; the last line of output shows a total of $170,754.46 across all
products and branches.

If you are using Oracle Database, you need to use a slightly different
syntax to indicate that you want a rollup performed. The group by clause
for the previous query would look as follows when using Oracle:

GROUP BY ROLLUP(product_cd, open_branch_id)

The advantage of this syntax is that it allows you to perform rollups on
a subset of the columns in the group by clause. If you are grouping by
columns a, b, and c, for example, you could indicate that the server
should perform rollups on only b and c via the following:

GROUP BY a, ROLLUP(b, c)

If, along with totals by product, you also want to calculate totals per branch, then you
can use the with cube option, which generates summary rows for all possible combi-
nations of the grouping columns. Unfortunately, with cube is not available in version
6.0 of MySQL, but it is available with SQL Server and Oracle Database. Here’s an

Generating Groups | 153

example using with cube, but I have removed the mysql> prompt to show that the query
cannot yet be performed with MySQL:

SELECT product_cd, open_branch_id,
 SUM(avail_balance) tot_balance
FROM account
GROUP BY product_cd, open_branch_id WITH CUBE;
+------------+----------------+-------------+
| product_cd | open_branch_id | tot_balance |
+------------+----------------+-------------+
NULL	NULL	170754.46
NULL	1	27882.57
NULL	2	21361.32
NULL	3	53270.25
NULL	4	68240.32
BUS	2	9345.55
BUS	4	0.00
BUS	NULL	9345.55
CD	1	11500.00
CD	2	8000.00
CD	NULL	19500.00
CHK	1	782.16
CHK	2	3315.77
CHK	3	1057.75
CHK	4	67852.33
CHK	NULL	73008.01
MM	1	14832.64
MM	3	2212.50
MM	NULL	17045.14
SAV	1	767.77
SAV	2	700.00
SAV	4	387.99
SAV	NULL	1855.76
SBL	3	50000.00
SBL	NULL	50000.00
+------------+----------------+-------------+
25 rows in set (0.02 sec)

Using with cube generates four more rows than the with rollup version of the query,
one for each of the four branch IDs. Similar to with rollup, null values are placed in
the product_cd column to indicate that a branch summary is being performed.

Once again, if you are using Oracle Database, you need to use a slightly
different syntax to indicate that you want a cube operation performed.
The group by clause for the previous query would look as follows when
using Oracle:

GROUP BY CUBE(product_cd, open_branch_id)

154 | Chapter 8: Grouping and Aggregates

Group Filter Conditions
In Chapter 4, I introduced you to various types of filter conditions and showed how
you can use them in the where clause. When grouping data, you also can apply filter
conditions to the data after the groups have been generated. The having clause is where
you should place these types of filter conditions. Consider the following example:

mysql> SELECT product_cd, SUM(avail_balance) prod_balance
 -> FROM account
 -> WHERE status = 'ACTIVE'
 -> GROUP BY product_cd
 -> HAVING SUM(avail_balance) >= 10000;
+------------+--------------+
| product_cd | prod_balance |
+------------+--------------+
CD	19500.00
CHK	73008.01
MM	17045.14
SBL	50000.00
+------------+--------------+
4 rows in set (0.00 sec)

This query has two filter conditions: one in the where clause, which filters out inactive
accounts, and the other in the having clause, which filters out any product whose total
available balance is less than $10,000. Thus, one of the filters acts on data before it is
grouped, and the other filter acts on data after the groups have been created. If you
mistakenly put both filters in the where clause, you will see the following error:

mysql> SELECT product_cd, SUM(avail_balance) prod_balance
 -> FROM account
 -> WHERE status = 'ACTIVE'
 -> AND SUM(avail_balance) > 10000
 -> GROUP BY product_cd;
ERROR 1111 (HY000): Invalid use of group function

This query fails because you cannot include an aggregate function in a query’s where
clause. This is because the filters in the where clause are evaluated before the grouping
occurs, so the server can’t yet perform any functions on groups.

When adding filters to a query that includes a group by clause, think
carefully about whether the filter acts on raw data, in which case it be-
longs in the where clause, or on grouped data, in which case it belongs
in the having clause.

You may, however, include aggregate functions in the having clause, that do not appear
in the select clause, as demonstrated by the following:

mysql> SELECT product_cd, SUM(avail_balance) prod_balance
 -> FROM account
 -> WHERE status = 'ACTIVE'
 -> GROUP BY product_cd
 -> HAVING MIN(avail_balance) >= 1000

Group Filter Conditions | 155

 -> AND MAX(avail_balance) <= 10000;
+------------+--------------+
| product_cd | prod_balance |
+------------+--------------+
| CD | 19500.00 |
| MM | 17045.14 |
+------------+--------------+
2 rows in set (0.00 sec)

This query generates total balances for each active product, but then the filter condition
in the having clause excludes all products for which the minimum balance is less than
$1,000 or the maximum balance is greater than $10,000.

Test Your Knowledge
Work through the following exercises to test your grasp of SQL’s grouping and aggre-
gating features. Check your work with the answers in Appendix C.

Exercise 8-1
Construct a query that counts the number of rows in the account table.

Exercise 8-2
Modify your query from Exercise 8-1 to count the number of accounts held by each
customer. Show the customer ID and the number of accounts for each customer.

Exercise 8-3
Modify your query from Exercise 8-2 to include only those customers having at least
two accounts.

Exercise 8-4 (Extra Credit)
Find the total available balance by product and branch where there is more than one
account per product and branch. Order the results by total balance (highest to lowest).

156 | Chapter 8: Grouping and Aggregates

CHAPTER 9

Subqueries

Subqueries are a powerful tool that you can use in all four SQL data statements. This
chapter explores in great detail the many uses of the subquery.

What Is a Subquery?
A subquery is a query contained within another SQL statement (which I refer to as the
containing statement for the rest of this discussion). A subquery is always enclosed
within parentheses, and it is usually executed prior to the containing statement. Like
any query, a subquery returns a result set that may consist of:

• A single row with a single column

• Multiple rows with a single column

• Multiple rows and columns

The type of result set the subquery returns determines how it may be used and which
operators the containing statement may use to interact with the data the subquery
returns. When the containing statement has finished executing, the data returned by
any subqueries is discarded, making a subquery act like a temporary table with state-
ment scope (meaning that the server frees up any memory allocated to the subquery
results after the SQL statement has finished execution).

You already saw several examples of subqueries in earlier chapters, but here’s a simple
example to get started:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE account_id = (SELECT MAX(account_id) FROM account);
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
| 29 | SBL | 13 | 50000.00 |
+------------+------------+---------+---------------+
1 row in set (0.65 sec)

157

In this example, the subquery returns the maximum value found in the account_id
column in the account table, and the containing statement then returns data about that
account. If you are ever confused about what a subquery is doing, you can run the
subquery by itself (without the parentheses) to see what it returns. Here’s the subquery
from the previous example:

mysql> SELECT MAX(account_id) FROM account;
+-----------------+
| MAX(account_id) |
+-----------------+
| 29 |
+-----------------+
1 row in set (0.00 sec)

So, the subquery returns a single row with a single column, which allows it to be used
as one of the expressions in an equality condition (if the subquery returned two or more
rows, it could be compared to something but could not be equal to anything, but more
on this later). In this case, you can take the value the subquery returned and substitute
it into the righthand expression of the filter condition in the containing query, as in:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE account_id = 29;
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
| 29 | SBL | 13 | 50000.00 |
+------------+------------+---------+---------------+
1 row in set (0.02 sec)

The subquery is useful in this case because it allows you to retrieve information about
the highest numbered account in a single query, rather than retrieving the maximum
account_id using one query and then writing a second query to retrieve the desired data
from the account table. As you will see, subqueries are useful in many other situations
as well, and may become one of the most powerful tools in your SQL toolkit.

Subquery Types
Along with the differences noted previously regarding the type of result set a subquery
returns (single row/column, single row/multicolumn, or multiple columns), you can
use another factor to differentiate subqueries; some subqueries are completely self-
contained (called noncorrelated subqueries), while others reference columns from the
containing statement (called correlated subqueries). The next several sections explore
these two subquery types and show the different operators that you can employ to
interact with them.

158 | Chapter 9: Subqueries

Noncorrelated Subqueries
The example from earlier in the chapter is a noncorrelated subquery; it may be executed
alone and does not reference anything from the containing statement. Most subqueries
that you encounter will be of this type unless you are writing update or delete state-
ments, which frequently make use of correlated subqueries (more on this later). Along
with being noncorrelated, the example from earlier in the chapter also returns a table
comprising a single row and column. This type of subquery is known as a scalar sub-
query and can appear on either side of a condition using the usual operators (=, <>, <,
>, <=, >=). The next example shows how you can use a scalar subquery in an inequality
condition:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE open_emp_id <> (SELECT e.emp_id
 -> FROM employee e INNER JOIN branch b
 -> ON e.assigned_branch_id = b.branch_id
 -> WHERE e.title = 'Head Teller' AND b.city = 'Woburn');
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
7	CHK	3	1057.75
8	MM	3	2212.50
10	CHK	4	534.12
11	SAV	4	767.77
12	MM	4	5487.09
13	CHK	5	2237.97
14	CHK	6	122.37
15	CD	6	10000.00
18	CHK	8	3487.19
19	SAV	8	387.99
21	CHK	9	125.67
22	MM	9	9345.55
23	CD	9	1500.00
24	CHK	10	23575.12
25	BUS	10	0.00
28	CHK	12	38552.05
29	SBL	13	50000.00
+------------+------------+---------+---------------+
17 rows in set (0.86 sec)

This query returns data concerning all accounts that were not opened by the head teller
at the Woburn branch (the subquery is written using the assumption that there is only
a single head teller at each branch). The subquery in this example is a bit more complex
than in the previous example, in that it joins two tables and includes two filter condi-
tions. Subqueries may be as simple or as complex as you need them to be, and they
may utilize any and all the available query clauses (select, from, where, group by,
having, and order by).

If you use a subquery in an equality condition, but the subquery returns more than one
row, you will receive an error. For example, if you modify the previous query such that

Noncorrelated Subqueries | 159

the subquery returns all tellers at the Woburn branch instead of the single head teller,
you will receive the following error:

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE open_emp_id <> (SELECT e.emp_id
 -> FROM employee e INNER JOIN branch b
 -> ON e.assigned_branch_id = b.branch_id
 -> WHERE e.title = 'Teller' AND b.city = 'Woburn');
ERROR 1242 (21000): Subquery returns more than 1 row

If you run the subquery by itself, you will see the following results:

mysql> SELECT e.emp_id
 -> FROM employee e INNER JOIN branch b
 -> ON e.assigned_branch_id = b.branch_id
 -> WHERE e.title = 'Teller' AND b.city = 'Woburn';
+--------+
| emp_id |
+--------+
| 11 |
| 12 |
+--------+
2 rows in set (0.02 sec)

The containing query fails because an expression (open_emp_id) cannot be equated to
a set of expressions (emp_ids 11 and 12). In other words, a single thing cannot be equated
to a set of things. In the next section, you will see how to fix the problem by using a
different operator.

Multiple-Row, Single-Column Subqueries
If your subquery returns more than one row, you will not be able to use it on one side
of an equality condition, as the previous example demonstrated. However, there are
four additional operators that you can use to build conditions with these types of
subqueries.

The in and not in operators

While you can’t equate a single value to a set of values, you can check to see whether
a single value can be found within a set of values. The next example, while it doesn’t
use a subquery, demonstrates how to build a condition that uses the in operator to
search for a value within a set of values:

mysql> SELECT branch_id, name, city
 -> FROM branch
 -> WHERE name IN ('Headquarters', 'Quincy Branch');
+-----------+---------------+---------+
| branch_id | name | city |
+-----------+---------------+---------+
| 1 | Headquarters | Waltham |
| 3 | Quincy Branch | Quincy |

160 | Chapter 9: Subqueries

+-----------+---------------+---------+
2 rows in set (0.03 sec)

The expression on the lefthand side of the condition is the name column, while the
righthand side of the condition is a set of strings. The in operator checks to see whether
either of the strings can be found in the name column; if so, the condition is met and
the row is added to the result set. You could achieve the same results using two equality
conditions, as in:

mysql> SELECT branch_id, name, city
 -> FROM branch
 -> WHERE name = 'Headquarters' OR name = 'Quincy Branch';
+-----------+---------------+---------+
| branch_id | name | city |
+-----------+---------------+---------+
| 1 | Headquarters | Waltham |
| 3 | Quincy Branch | Quincy |
+-----------+---------------+---------+
2 rows in set (0.01 sec)

While this approach seems reasonable when the set contains only two expressions, it
is easy to see why a single condition using the in operator would be preferable if the
set contained dozens (or hundreds, thousands, etc.) of values.

Although you will occasionally create a set of strings, dates, or numbers to use on one
side of a condition, you are more likely to generate the set at query execution via a
subquery that returns one or more rows. The following query uses the in operator with
a subquery on the righthand side of the filter condition to see which employees super-
vise other employees:

mysql> SELECT emp_id, fname, lname, title
 -> FROM employee
 -> WHERE emp_id IN (SELECT superior_emp_id
 -> FROM employee);
+--------+---------+-----------+--------------------+
| emp_id | fname | lname | title |
+--------+---------+-----------+--------------------+
1	Michael	Smith	President
3	Robert	Tyler	Treasurer
4	Susan	Hawthorne	Operations Manager
6	Helen	Fleming	Head Teller
10	Paula	Roberts	Head Teller
13	John	Blake	Head Teller
16	Theresa	Markham	Head Teller
+--------+---------+-----------+--------------------+
7 rows in set (0.01 sec)

The subquery returns the IDs of all employees who supervise other employees, and the
containing query retrieves four columns from the employee table for these employees.
Here are the results of the subquery:

mysql> SELECT superior_emp_id
 -> FROM employee;
+-----------------+

Noncorrelated Subqueries | 161

| superior_emp_id |
+-----------------+
| NULL |
| 1 |
| 1 |
| 3 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 6 |
| 6 |
| 6 |
| 10 |
| 10 |
| 13 |
| 13 |
| 16 |
| 16 |
+-----------------+
18 rows in set (0.00 sec)

As you can see, some employee IDs are listed more than once, since some employees
supervise multiple people. This doesn’t adversely affect the results of the containing
query, since it doesn’t matter whether an employee ID can be found in the result set of
the subquery once or more than once. Of course, you could add the distinct keyword
to the subquery’s select clause if it bothers you to have duplicates in the table returned
by the subquery, but it won’t change the containing query’s result set.

Along with seeing whether a value exists within a set of values, you can check the
converse using the not in operator. Here’s another version of the previous query using
not in instead of in:

mysql> SELECT emp_id, fname, lname, title
 -> FROM employee
 -> WHERE emp_id NOT IN (SELECT superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id IS NOT NULL);
+--------+----------+----------+----------------+
| emp_id | fname | lname | title |
+--------+----------+----------+----------------+
2	Susan	Barker	Vice President
5	John	Gooding	Loan Manager
7	Chris	Tucker	Teller
8	Sarah	Parker	Teller
9	Jane	Grossman	Teller
11	Thomas	Ziegler	Teller
12	Samantha	Jameson	Teller
14	Cindy	Mason	Teller
15	Frank	Portman	Teller
17	Beth	Fowler	Teller
18	Rick	Tulman	Teller

162 | Chapter 9: Subqueries

+--------+----------+----------+----------------+
11 rows in set (0.00 sec)

This query finds all employees who do not supervise other people. For this query, I
needed to add a filter condition to the subquery to ensure that null values do not appear
in the table returned by the subquery; see the next section for an explanation of why
this filter is needed in this case.

The all operator

While the in operator is used to see whether an expression can be found within a set
of expressions, the all operator allows you to make comparisons between a single value
and every value in a set. To build such a condition, you will need to use one of the
comparison operators (=, <>, <, >, etc.) in conjunction with the all operator. For ex-
ample, the next query finds all employees whose employee IDs are not equal to any of
the supervisor employee IDs:

mysql> SELECT emp_id, fname, lname, title
 -> FROM employee
 -> WHERE emp_id <> ALL (SELECT superior_emp_id
 -> FROM employee
 -> WHERE superior_emp_id IS NOT NULL);
+--------+----------+----------+----------------+
| emp_id | fname | lname | title |
+--------+----------+----------+----------------+
2	Susan	Barker	Vice President
5	John	Gooding	Loan Manager
7	Chris	Tucker	Teller
8	Sarah	Parker	Teller
9	Jane	Grossman	Teller
11	Thomas	Ziegler	Teller
12	Samantha	Jameson	Teller
14	Cindy	Mason	Teller
15	Frank	Portman	Teller
17	Beth	Fowler	Teller
18	Rick	Tulman	Teller
+--------+----------+----------+----------------+
11 rows in set (0.05 sec)

Once again, the subquery returns the set of IDs for those employees who supervise
other people, and the containing query returns data for each employee whose ID is not
equal to all of the IDs returned by the subquery. In other words, the query finds all
employees who are not supervisors. If this approach seems a bit clumsy to you, you are
in good company; most people would prefer to phrase the query differently and avoid
using the all operator. For example, this query generates the same results as the last
example in the previous section, which used the not in operator. It’s a matter of pref-
erence, but I think that most people would find the version that uses not in to be easier
to understand.

Noncorrelated Subqueries | 163

When using not in or <> all to compare a value to a set of values, you
must be careful to ensure that the set of values does not contain a null
value, because the server equates the value on the lefthand side of the
expression to each member of the set, and any attempt to equate a value
to null yields unknown. Thus, the following query returns an empty set:

mysql> SELECT emp_id, fname, lname, title
 -> FROM employee
 -> WHERE emp_id NOT IN (1, 2, NULL);
Empty set (0.00 sec)

In some cases, the all operator is a bit more natural. The next example uses all to find
accounts having an available balance smaller than all of Frank Tucker’s accounts:

mysql> SELECT account_id, cust_id, product_cd, avail_balance
 -> FROM account
 -> WHERE avail_balance < ALL (SELECT a.avail_balance
 -> FROM account a INNER JOIN individual i
 -> ON a.cust_id = i.cust_id
 -> WHERE i.fname = 'Frank' AND i.lname = 'Tucker');
+------------+---------+------------+---------------+
| account_id | cust_id | product_cd | avail_balance |
+------------+---------+------------+---------------+
2	1	SAV	500.00
5	2	SAV	200.00
10	4	CHK	534.12
11	4	SAV	767.77
14	6	CHK	122.37
19	8	SAV	387.99
21	9	CHK	125.67
25	10	BUS	0.00
+------------+---------+------------+---------------+
8 rows in set (0.17 sec)

Here’s the data returned by the subquery, which consists of the available balance from
each of Frank’s accounts:

mysql> SELECT a.avail_balance
 -> FROM account a INNER JOIN individual i
 -> ON a.cust_id = i.cust_id
 -> WHERE i.fname = 'Frank' AND i.lname = 'Tucker';
+---------------+
| avail_balance |
+---------------+
| 1057.75 |
| 2212.50 |
+---------------+
2 rows in set (0.01 sec)

Frank has two accounts, with the lowest balance being $1,057.75. The containing query
finds all accounts having a balance smaller than any of Frank’s accounts, so the result
set includes all accounts having a balance less than $1,057.75.

164 | Chapter 9: Subqueries

The any operator

Like the all operator, the any operator allows a value to be compared to the members
of a set of values; unlike all, however, a condition using the any operator evaluates to
true as soon as a single comparison is favorable. This is different from the previous
example using the all operator, which evaluates to true only if comparisons against
all members of the set are favorable. For example, you might want to find all accounts
having an available balance greater than any of Frank Tucker’s accounts:

mysql> SELECT account_id, cust_id, product_cd, avail_balance
 -> FROM account
 -> WHERE avail_balance > ANY (SELECT a.avail_balance
 -> FROM account a INNER JOIN individual i
 -> ON a.cust_id = i.cust_id
 -> WHERE i.fname = 'Frank' AND i.lname = 'Tucker');
+------------+---------+------------+---------------+
| account_id | cust_id | product_cd | avail_balance |
+------------+---------+------------+---------------+
3	1	CD	3000.00
4	2	CHK	2258.02
8	3	MM	2212.50
12	4	MM	5487.09
13	5	CHK	2237.97
15	6	CD	10000.00
17	7	CD	5000.00
18	8	CHK	3487.19
22	9	MM	9345.55
23	9	CD	1500.00
24	10	CHK	23575.12
27	11	BUS	9345.55
28	12	CHK	38552.05
29	13	SBL	50000.00
+------------+---------+------------+---------------+
14 rows in set (0.00 sec)

Frank has two accounts with balances of $1,057.75 and $2,212.50; to have a balance
greater than any of these two accounts, an account must have a balance of at least
$1,057.75.

Although most people prefer to use in, using = any is equivalent to using
the in operator.

Multicolumn Subqueries
So far, all of the subquery examples in this chapter have returned a single column and
one or more rows. In certain situations, however, you can use subqueries that return
two or more columns. To show the utility of multiple-column subqueries, it might help
to look first at an example that uses multiple, single-column subqueries:

Noncorrelated Subqueries | 165

mysql> SELECT account_id, product_cd, cust_id
 -> FROM account
 -> WHERE open_branch_id = (SELECT branch_id
 -> FROM branch
 -> WHERE name = 'Woburn Branch')
 -> AND open_emp_id IN (SELECT emp_id
 -> FROM employee
 -> WHERE title = 'Teller' OR title = 'Head Teller');
+------------+------------+---------+
| account_id | product_cd | cust_id |
+------------+------------+---------+
1	CHK	1
2	SAV	1
3	CD	1
4	CHK	2
5	SAV	2
17	CD	7
27	BUS	11
+------------+------------+---------+
7 rows in set (0.09 sec)

This query uses two subqueries to identify the ID of the Woburn branch and the IDs
of all bank tellers, and the containing query then uses this information to retrieve all
checking accounts opened by a teller at the Woburn branch. However, since the
employee table includes information about which branch each employee is assigned to,
you can achieve the same results by comparing both the account.open_branch_id and
account.open_emp_id columns to a single subquery against the employee and branch
tables. To do so, your filter condition must name both columns from the account table
surrounded by parentheses and in the same order as returned by the subquery, as in:

mysql> SELECT account_id, product_cd, cust_id
 -> FROM account
 -> WHERE (open_branch_id, open_emp_id) IN
 -> (SELECT b.branch_id, e.emp_id
 -> FROM branch b INNER JOIN employee e
 -> ON b.branch_id = e.assigned_branch_id
 -> WHERE b.name = 'Woburn Branch'
 -> AND (e.title = 'Teller' OR e.title = 'Head Teller'));
+------------+------------+---------+
| account_id | product_cd | cust_id |
+------------+------------+---------+
1	CHK	1
2	SAV	1
3	CD	1
4	CHK	2
5	SAV	2
17	CD	7
27	BUS	11
+------------+------------+---------+
7 rows in set (0.00 sec)

This version of the query performs the same function as the previous example, but with
a single subquery that returns two columns instead of two subqueries that each return
a single column.

166 | Chapter 9: Subqueries

Of course, you could rewrite the previous example simply to join the three tables instead
of using a subquery, but it’s helpful when learning SQL to see multiple ways of achieving
the same results. Here’s another example, however, that requires a subquery. Let’s say
that there have been some customer complaints regarding incorrect values in the avail-
able/pending balance columns in the account table. Your job is to find all accounts
whose balances don’t match the sum of the transaction amounts for that account.
Here’s a partial solution to the problem:

SELECT 'ALERT! : Account #1 Has Incorrect Balance!'
FROM account
WHERE (avail_balance, pending_balance) <>
 (SELECT SUM(<expression to generate available balance>),
 SUM(<expression to generate pending balance>)
 FROM transaction
 WHERE account_id = 1)
 AND account_id = 1;

As you can see, I have neglected to fill in the expressions used to sum the transaction
amounts for the available and pending balance calculations, but I promise to finish the
job in Chapter 11 after you learn how to build case expressions. Even so, the query is
complete enough to see that the subquery is generating two sums from the
transaction table that are then compared to the avail_balance and pending_balance
columns in the account table. Both the subquery and the containing query include the
filter condition account_id = 1, so the query in its present form will check only a single
account at a time. In the next section, you will learn how to write a more general form
of the query that will check all accounts with a single execution.

Correlated Subqueries
All of the subqueries shown thus far have been independent of their containing state-
ments, meaning that you can execute them by themselves and inspect the results. A
correlated subquery, on the other hand, is dependent on its containing statement from
which it references one or more columns. Unlike a noncorrelated subquery, a correlated
subquery is not executed once prior to execution of the containing statement; instead,
the correlated subquery is executed once for each candidate row (rows that might be
included in the final results). For example, the following query uses a correlated sub-
query to count the number of accounts for each customer, and the containing query
then retrieves those customers having exactly two accounts:

mysql> SELECT c.cust_id, c.cust_type_cd, c.city
 -> FROM customer c
 -> WHERE 2 = (SELECT COUNT(*)
 -> FROM account a
 -> WHERE a.cust_id = c.cust_id);
+---------+--------------+---------+
| cust_id | cust_type_cd | city |
+---------+--------------+---------+
| 2 | I | Woburn |
| 3 | I | Quincy |

Correlated Subqueries | 167

6	I	Waltham
8	I	Salem
10	B	Salem
+---------+--------------+---------+
5 rows in set (0.01 sec)

The reference to c.cust_id at the very end of the subquery is what makes the subquery
correlated; the containing query must supply values for c.cust_id for the subquery to
execute. In this case, the containing query retrieves all 13 rows from the customer table
and executes the subquery once for each customer, passing in the appropriate customer
ID for each execution. If the subquery returns the value 2, then the filter condition is
met and the row is added to the result set.

Along with equality conditions, you can use correlated subqueries in other types of
conditions, such as the range condition illustrated here:

mysql> SELECT c.cust_id, c.cust_type_cd, c.city
 -> FROM customer c
 -> WHERE (SELECT SUM(a.avail_balance)
 -> FROM account a
 -> WHERE a.cust_id = c.cust_id)
 -> BETWEEN 5000 AND 10000;
+---------+--------------+------------+
| cust_id | cust_type_cd | city |
+---------+--------------+------------+
4	I	Waltham
7	I	Wilmington
11	B	Wilmington
+---------+--------------+------------+
3 rows in set (0.02 sec)

This variation on the previous query finds all customers whose total available balance
across all accounts lies between $5,000 and $10,000. Once again, the correlated sub-
query is executed 13 times (once for each customer row), and each execution of the
subquery returns the total account balance for the given customer.

Another subtle difference in the previous query is that the subquery is
on the lefthand side of the condition, which may look a bit odd but is
perfectly valid.

At the end of the previous section, I demonstrated how to check the available and
pending balances of an account against the transactions logged against the account,
and I promised to show you how to modify the example to run all accounts in a single
execution. Here’s the example again:

SELECT 'ALERT! : Account #1 Has Incorrect Balance!'
FROM account
WHERE (avail_balance, pending_balance) <>
 (SELECT SUM(<expression to generate available balance>),
 SUM(<expression to generate pending balance>)
 FROM transaction

168 | Chapter 9: Subqueries

 WHERE account_id = 1)
 AND account_id = 1;

Using a correlated subquery instead of a noncorrelated subquery, you can execute the
containing query once, and the subquery will be run for each account. Here’s the up-
dated version:

SELECT CONCAT('ALERT! : Account #', a.account_id,
 ' Has Incorrect Balance!')
FROM account a
WHERE (a.avail_balance, a.pending_balance) <>
 (SELECT SUM(<expression to generate available balance>),
 SUM(<expression to generate pending balance>)
 FROM transaction t
 WHERE t.account_id = a.account_id);

The subquery now includes a filter condition linking the transaction’s account ID to
the account ID from the containing query. The select clause has also been modified
to concatenate an alert message that includes the account ID rather than the hardcoded
value 1.

The exists Operator
While you will often see correlated subqueries used in equality and range conditions,
the most common operator used to build conditions that utilize correlated subqueries
is the exists operator. You use the exists operator when you want to identify that a
relationship exists without regard for the quantity; for example, the following query
finds all the accounts for which a transaction was posted on a particular day, without
regard for how many transactions were posted:

SELECT a.account_id, a.product_cd, a.cust_id, a.avail_balance
FROM account a
WHERE EXISTS (SELECT 1
 FROM transaction t
 WHERE t.account_id = a.account_id
 AND t.txn_date = '2008-09-22');

Using the exists operator, your subquery can return zero, one, or many rows, and the
condition simply checks whether the subquery returned any rows. If you look at the
select clause of the subquery, you will see that it consists of a single literal (1); since
the condition in the containing query only needs to know how many rows have been
returned, the actual data the subquery returned is irrelevant. Your subquery can return
whatever strikes your fancy, as demonstrated next:

SELECT a.account_id, a.product_cd, a.cust_id, a.avail_balance
FROM account a
WHERE EXISTS (SELECT t.txn_id, 'hello', 3.1415927
 FROM transaction t
 WHERE t.account_id = a.account_id
 AND t.txn_date = '2008-09-22');

However, the convention is to specify either select 1 or select * when using exists.

Correlated Subqueries | 169

You may also use not exists to check for subqueries that return no rows, as demon-
strated by the following:

mysql> SELECT a.account_id, a.product_cd, a.cust_id
 -> FROM account a
 -> WHERE NOT EXISTS (SELECT 1
 -> FROM business b
 -> WHERE b.cust_id = a.cust_id);
+------------+------------+---------+
| account_id | product_cd | cust_id |
+------------+------------+---------+
1	CHK	1
2	SAV	1
3	CD	1
4	CHK	2
5	SAV	2
7	CHK	3
8	MM	3
10	CHK	4
11	SAV	4
12	MM	4
13	CHK	5
14	CHK	6
15	CD	6
17	CD	7
18	CHK	8
19	SAV	8
21	CHK	9
22	MM	9
23	CD	9
+------------+------------+---------+
19 rows in set (0.99 sec)

This query finds all customers whose customer ID does not appear in the business
table, which is a roundabout way of finding all nonbusiness customers.

Data Manipulation Using Correlated Subqueries
All of the examples thus far in the chapter have been select statements, but don’t think
that means that subqueries aren’t useful in other SQL statements. Subqueries are used
heavily in update, delete, and insert statements as well, with correlated subqueries
appearing frequently in update and delete statements. Here’s an example of a correlated
subquery used to modify the last_activity_date column in the account table:

UPDATE account a
SET a.last_activity_date =
 (SELECT MAX(t.txn_date)
 FROM transaction t
 WHERE t.account_id = a.account_id);

This statement modifies every row in the account table (since there is no where clause)
by finding the latest transaction date for each account. While it seems reasonable to
expect that every account will have at least one transaction linked to it, it would be best

170 | Chapter 9: Subqueries

to check whether an account has any transactions before attempting to update the
last_activity_date column; otherwise, the column will be set to null, since the sub-
query would return no rows. Here’s another version of the update statement, this time
employing a where clause with a second correlated subquery:

UPDATE account a
SET a.last_activity_date =
 (SELECT MAX(t.txn_date)
 FROM transaction t
 WHERE t.account_id = a.account_id)
WHERE EXISTS (SELECT 1
 FROM transaction t
 WHERE t.account_id = a.account_id);

The two correlated subqueries are identical except for the select clauses. The subquery
in the set clause, however, executes only if the condition in the update statement’s
where clause evaluates to true (meaning that at least one transaction was found for the
account), thus protecting the data in the last_activity_date column from being over-
written with a null.

Correlated subqueries are also common in delete statements. For example, you may
run a data maintenance script at the end of each month that removes unnecessary data.
The script might include the following statement, which removes data from the
department table that has no child rows in the employee table:

DELETE FROM department
WHERE NOT EXISTS (SELECT 1
 FROM employee
 WHERE employee.dept_id = department.dept_id);

When using correlated subqueries with delete statements in MySQL, keep in mind
that, for whatever reason, table aliases are not allowed when using delete, which is
why I had to use the entire table name in the subquery. With most other database
servers, you could provide aliases for the department and employee tables, such as:

DELETE FROM department d
WHERE NOT EXISTS (SELECT 1
 FROM employee e
 WHERE e.dept_id = d.dept_id);

When to Use Subqueries
Now that you have learned about the different types of subqueries and the different
operators that you can employ to interact with the data returned by subqueries, it’s
time to explore the many ways in which you can use subqueries to build powerful SQL
statements. The next three sections demonstrate how you may use subqueries to con-
struct custom tables, to build conditions, and to generate column values in result sets.

When to Use Subqueries | 171

Subqueries As Data Sources
Back in Chapter 3, I stated that the from clause of a select statement names the ta-
bles to be used by the query. Since a subquery generates a result set containing rows
and columns of data, it is perfectly valid to include subqueries in your from clause along
with tables. Although it might, at first glance, seem like an interesting feature without
much practical merit, using subqueries alongside tables is one of the most powerful
tools available when writing queries. Here’s a simple example:

mysql> SELECT d.dept_id, d.name, e_cnt.how_many num_employees
 -> FROM department d INNER JOIN
 -> (SELECT dept_id, COUNT(*) how_many
 -> FROM employee
 -> GROUP BY dept_id) e_cnt
 -> ON d.dept_id = e_cnt.dept_id;
+---------+----------------+---------------+
| dept_id | name | num_employees |
+---------+----------------+---------------+
1	Operations	14
2	Loans	1
3	Administration	3
+---------+----------------+---------------+
3 rows in set (0.04 sec)

In this example, a subquery generates a list of department IDs along with the number
of employees assigned to each department. Here’s the result set generated by the
subquery:

mysql> SELECT dept_id, COUNT(*) how_many
 -> FROM employee
 -> GROUP BY dept_id;
+---------+----------+
| dept_id | how_many |
+---------+----------+
1	14
2	1
3	3
+---------+----------+
3 rows in set (0.00 sec)

The subquery is given the name e_cnt and is joined to the department table via the
dept_id column. The containing query then retrieves the department ID and name from
the department table, along with the employee count from the e_cnt subquery.

Subqueries used in the from clause must be noncorrelated; they are executed first, and
the data is held in memory until the containing query finishes execution. Subqueries
offer immense flexibility when writing queries, because you can go far beyond the set
of available tables to create virtually any view of the data that you desire, and then join
the results to other tables or subqueries. If you are writing reports or generating data
feeds to external systems, you may be able to do things with a single query that used
to demand multiple queries or a procedural language to accomplish.

172 | Chapter 9: Subqueries

Data fabrication

Along with using subqueries to summarize existing data, you can use subqueries to
generate data that doesn’t exist in any form within your database. For example, you
may wish to group your customers by the amount of money held in deposit accounts,
but you want to use group definitions that are not stored in your database. For example,
let’s say you want to sort your customers into the groups shown in Table 9-1.

Table 9-1. Customer balance groups

Group name Lower limit Upper limit

Small Fry 0 $4,999.99

Average Joes $5,000 $9,999.99

Heavy Hitters $10,000 $9,999,999.99

To generate these groups within a single query, you will need a way to define these
three groups. The first step is to define a query that generates the group definitions:

mysql> SELECT 'Small Fry' name, 0 low_limit, 4999.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 5000 low_limit, 9999.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 10000 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name | low_limit | high_limit |
+---------------+-----------+------------+
Small Fry	0	4999.99
Average Joes	5000	9999.99
Heavy Hitters	10000	9999999.99
+---------------+-----------+------------+
3 rows in set (0.00 sec)

I have used the set operator union all to merge the results from three separate queries
into a single result set. Each query retrieves three literals, and the results from the three
queries are put together to generate a result set with three rows and three columns. You
now have a query to generate the desired groups, and you can place it into the from
clause of another query to generate your customer groups:

mysql> SELECT groups.name, COUNT(*) num_customers
 -> FROM
 -> (SELECT SUM(a.avail_balance) cust_balance
 -> FROM account a INNER JOIN product p
 -> ON a.product_cd = p.product_cd
 -> WHERE p.product_type_cd = 'ACCOUNT'
 -> GROUP BY a.cust_id) cust_rollup
 -> INNER JOIN
 -> (SELECT 'Small Fry' name, 0 low_limit, 4999.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 5000 low_limit,
 -> 9999.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 10000 low_limit,

When to Use Subqueries | 173

 -> 9999999.99 high_limit) groups
 -> ON cust_rollup.cust_balance
 -> BETWEEN groups.low_limit AND groups.high_limit
 -> GROUP BY groups.name;
+---------------+---------------+
| name | num_customers |
+---------------+---------------+
Average Joes	2
Heavy Hitters	4
Small Fry	5
+---------------+---------------+
3 rows in set (0.01 sec)

The from clause contains two subqueries; the first subquery, named cust_rollup, re-
turns the total deposit balances for each customer, while the second subquery, named
groups, generates the three customer groupings. Here’s the data generated by
cust_rollup:

mysql> SELECT SUM(a.avail_balance) cust_balance
 -> FROM account a INNER JOIN product p
 -> ON a.product_cd = p.product_cd
 -> WHERE p.product_type_cd = 'ACCOUNT'
 -> GROUP BY a.cust_id;
+--------------+
| cust_balance |
+--------------+
| 4557.75 |
| 2458.02 |
| 3270.25 |
| 6788.98 |
| 2237.97 |
| 10122.37 |
| 5000.00 |
| 3875.18 |
| 10971.22 |
| 23575.12 |
| 38552.05 |
+--------------+
11 rows in set (0.05 sec)

The data generated by cust_rollup is then joined to the groups table via a range con-
dition (cust_rollup.cust_balance BETWEEN groups.low_limit AND groups.high_limit).
Finally, the joined data is grouped and the number of customers in each group is coun-
ted to generate the final result set.

Of course, you could simply decide to build a permanent table to hold the group def-
initions instead of using a subquery. Using that approach, you would find your database
to be littered with small special-purpose tables after awhile, and you wouldn’t remem-
ber the reason for which most of them were created. I’ve worked in environments where
the database users were allowed to create their own tables for special purposes, and the
results were disastrous (tables not included in backups, tables lost during server up-
grades, server downtime due to space allocation issues, etc.). Armed with subqueries,

174 | Chapter 9: Subqueries

however, you will be able to adhere to a policy where tables are added to a database
only when there is a clear business need to store new data.

Task-oriented subqueries

In systems used for reporting or data-feed generation, you will often come across quer-
ies such as the following:

mysql> SELECT p.name product, b.name branch,
 -> CONCAT(e.fname, ' ', e.lname) name,
 -> SUM(a.avail_balance) tot_deposits
 -> FROM account a INNER JOIN employee e
 -> ON a.open_emp_id = e.emp_id
 -> INNER JOIN branch b
 -> ON a.open_branch_id = b.branch_id
 -> INNER JOIN product p
 -> ON a.product_cd = p.product_cd
 -> WHERE p.product_type_cd = 'ACCOUNT'
 -> GROUP BY p.name, b.name, e.fname, e.lname
 -> ORDER BY 1,2;
+------------------------+---------------+-----------------+--------------+
| product | branch | name | tot_deposits |
+------------------------+---------------+-----------------+--------------+
certificate of deposit	Headquarters	Michael Smith	11500.00
certificate of deposit	Woburn Branch	Paula Roberts	8000.00
checking account	Headquarters	Michael Smith	782.16
checking account	Quincy Branch	John Blake	1057.75
checking account	So. NH Branch	Theresa Markham	67852.33
checking account	Woburn Branch	Paula Roberts	3315.77
money market account	Headquarters	Michael Smith	14832.64
money market account	Quincy Branch	John Blake	2212.50
savings account	Headquarters	Michael Smith	767.77
savings account	So. NH Branch	Theresa Markham	387.99
savings account	Woburn Branch	Paula Roberts	700.00
+------------------------+---------------+-----------------+--------------+
11 rows in set (0.00 sec)

This query sums all deposit account balances by account type, the employee that
opened the accounts, and the branches at which the accounts were opened. If you look
at the query closely, you will see that the product, branch, and employee tables are needed
only for display purposes, and that the account table has everything needed to generate
the groupings (product_cd, open_branch_id, open_emp_id, and avail_balance). There-
fore, you could separate out the task of generating the groups into a subquery, and then
join the other three tables to the table generated by the subquery to achieve the desired
end result. Here’s the grouping subquery:

mysql> SELECT product_cd, open_branch_id branch_id, open_emp_id emp_id,
 -> SUM(avail_balance) tot_deposits
 -> FROM account
 -> GROUP BY product_cd, open_branch_id, open_emp_id;
+------------+-----------+--------+--------------+
| product_cd | branch_id | emp_id | tot_deposits |
+------------+-----------+--------+--------------+

When to Use Subqueries | 175

BUS	2	10	9345.55
BUS	4	16	0.00
CD	1	1	11500.00
CD	2	10	8000.00
CHK	1	1	782.16
CHK	2	10	3315.77
CHK	3	13	1057.75
CHK	4	16	67852.33
MM	1	1	14832.64
MM	3	13	2212.50
SAV	1	1	767.77
SAV	2	10	700.00
SAV	4	16	387.99
SBL	3	13	50000.00
+------------+-----------+--------+--------------+
14 rows in set (0.02 sec)

This is the heart of the query; the other tables are needed only to provide meaningful
strings in place of the product_cd, open_branch_id, and open_emp_id foreign key col-
umns. The next query wraps the query against the account table in a subquery and joins
the table that results to the other three tables:

mysql> SELECT p.name product, b.name branch,
 -> CONCAT(e.fname, ' ', e.lname) name,
 -> account_groups.tot_deposits
 -> FROM
 -> (SELECT product_cd, open_branch_id branch_id,
 -> open_emp_id emp_id,
 -> SUM(avail_balance) tot_deposits
 -> FROM account
 -> GROUP BY product_cd, open_branch_id, open_emp_id) account_groups
 -> INNER JOIN employee e ON e.emp_id = account_groups.emp_id
 -> INNER JOIN branch b ON b.branch_id = account_groups.branch_id
 -> INNER JOIN product p ON p.product_cd = account_groups.product_cd
 -> WHERE p.product_type_cd = 'ACCOUNT';
+------------------------+---------------+-----------------+--------------+
| product | branch | name | tot_deposits |
+------------------------+---------------+-----------------+--------------+
certificate of deposit	Headquarters	Michael Smith	11500.00
certificate of deposit	Woburn Branch	Paula Roberts	8000.00
checking account	Headquarters	Michael Smith	782.16
checking account	Quincy Branch	John Blake	1057.75
checking account	So. NH Branch	Theresa Markham	67852.33
checking account	Woburn Branch	Paula Roberts	3315.77
money market account	Headquarters	Michael Smith	14832.64
money market account	Quincy Branch	John Blake	2212.50
savings account	Headquarters	Michael Smith	767.77
savings account	So. NH Branch	Theresa Markham	387.99
savings account	Woburn Branch	Paula Roberts	700.00
+------------------------+---------------+-----------------+--------------+
11 rows in set (0.01 sec)

I realize that beauty is in the eye of the beholder, but I find this version of the query to
be far more satisfying than the big, flat version. This version may execute faster, as well,
because the grouping is being done on small, numeric foreign key columns (product_cd,

176 | Chapter 9: Subqueries

open_branch_id, open_emp_id) instead of potentially lengthy string columns
(branch.name, product.name, employee.fname, employee.lname).

Subqueries in Filter Conditions
Many of the examples in this chapter used subqueries as expressions in filter conditions,
so it should not surprise you that this is one of the main uses for subqueries. However,
filter conditions using subqueries are not found only in the where clause. For example,
the next query uses a subquery in the having clause to find the employee responsible
for opening the most accounts:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> HAVING COUNT(*) = (SELECT MAX(emp_cnt.how_many)
 -> FROM (SELECT COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id) emp_cnt);
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
| 1 | 8 |
+-------------+----------+
1 row in set (0.01 sec)

The subquery in the having clause finds the maximum number of accounts opened by
any employee, and the containing query finds the employee that has opened that num-
ber of accounts. If multiple employees tie for the highest number of opened accounts,
then the query would return multiple rows.

Subqueries As Expression Generators
For this last section of the chapter, I finish where I began: with single-column, single-
row scalar subqueries. Along with being used in filter conditions, scalar subqueries may
be used wherever an expression can appear, including the select and order by clauses
of a query and the values clause of an insert statement.

In “Task-oriented subqueries” on page 175, I showed you how to use a subquery to
separate out the grouping mechanism from the rest of the query. Here’s another version
of the same query that uses subqueries for the same purpose, but in a different way:

mysql> SELECT
 -> (SELECT p.name FROM product p
 -> WHERE p.product_cd = a.product_cd
 -> AND p.product_type_cd = 'ACCOUNT') product,
 -> (SELECT b.name FROM branch b
 -> WHERE b.branch_id = a.open_branch_id) branch,
 -> (SELECT CONCAT(e.fname, ' ', e.lname) FROM employee e
 -> WHERE e.emp_id = a.open_emp_id) name,
 -> SUM(a.avail_balance) tot_deposits
 -> FROM account a

When to Use Subqueries | 177

 -> GROUP BY a.product_cd, a.open_branch_id, a.open_emp_id
 -> ORDER BY 1,2;
+------------------------+---------------+-----------------+--------------+
| product | branch | name | tot_deposits |
+------------------------+---------------+-----------------+--------------+
NULL	Quincy Branch	John Blake	50000.00
NULL	So. NH Branch	Theresa Markham	0.00
NULL	Woburn Branch	Paula Roberts	9345.55
certificate of deposit	Headquarters	Michael Smith	11500.00
certificate of deposit	Woburn Branch	Paula Roberts	8000.00
checking account	Headquarters	Michael Smith	782.16
checking account	Quincy Branch	John Blake	1057.75
checking account	So. NH Branch	Theresa Markham	67852.33
checking account	Woburn Branch	Paula Roberts	3315.77
money market account	Headquarters	Michael Smith	14832.64
money market account	Quincy Branch	John Blake	2212.50
savings account	Headquarters	Michael Smith	767.77
savings account	So. NH Branch	Theresa Markham	387.99
savings account	Woburn Branch	Paula Roberts	700.00
+------------------------+---------------+-----------------+--------------+
14 rows in set (0.01 sec)

There are two main differences between this query and the earlier version using a sub-
query in the from clause:

• Instead of joining the product, branch, and employee tables to the account data,
correlated scalar subqueries are used in the select clause to look up the product,
branch, and employee names.

• The result set has 14 rows instead of 11 rows, and three of the product names are
null.

The reason for the extra three rows in the result set is that the previous version of the
query included the filter condition p.product_type_cd = 'ACCOUNT'. That filter elimi-
nated rows with product types of INSURANCE and LOAN, such as small business loans.
Since this version of the query doesn’t include a join to the product table, there is no
way to include the filter condition in the main query. The correlated subquery against
the product table does include this filter, but the only effect is to leave the product name
null. If you want to get rid of the extra three rows, you could join the product table to
the account table and include the filter condition, or you could simply do the following:

mysql> SELECT all_prods.product, all_prods.branch,
 -> all_prods.name, all_prods.tot_deposits
 -> FROM
 -> (SELECT
 -> (SELECT p.name FROM product p
 -> WHERE p.product_cd = a.product_cd
 -> AND p.product_type_cd = 'ACCOUNT') product,
 -> (SELECT b.name FROM branch b
 -> WHERE b.branch_id = a.open_branch_id) branch,
 -> (SELECT CONCAT(e.fname, ' ', e.lname) FROM employee e
 -> WHERE e.emp_id = a.open_emp_id) name,
 -> SUM(a.avail_balance) tot_deposits
 -> FROM account a

178 | Chapter 9: Subqueries

 -> GROUP BY a.product_cd, a.open_branch_id, a.open_emp_id
 ->) all_prods
 -> WHERE all_prods.product IS NOT NULL
 -> ORDER BY 1,2;
+------------------------+---------------+-----------------+--------------+
| product | branch | name | tot_deposits |
+------------------------+---------------+-----------------+--------------+
certificate of deposit	Headquarters	Michael Smith	11500.00
certificate of deposit	Woburn Branch	Paula Roberts	8000.00
checking account	Headquarters	Michael Smith	782.16
checking account	Quincy Branch	John Blake	1057.75
checking account	So. NH Branch	Theresa Markham	67852.33
checking account	Woburn Branch	Paula Roberts	3315.77
money market account	Headquarters	Michael Smith	14832.64
money market account	Quincy Branch	John Blake	2212.50
savings account	Headquarters	Michael Smith	767.77
savings account	So. NH Branch	Theresa Markham	387.99
savings account	Woburn Branch	Paula Roberts	700.00
+------------------------+---------------+-----------------+--------------+
11 rows in set (0.01 sec)

Simply by wrapping the previous query in a subquery (called all_prods) and adding a
filter condition to exclude null values of the product column, the query now returns
the desired 11 rows. The end result is a query that performs all grouping against raw
data in the account table, and then embellishes the output using data in three other
tables, and without doing any joins.

As previously noted, scalar subqueries can also appear in the order by clause. The
following query retrieves employee data sorted by the last name of each employee’s
boss, and then by the employee’s last name:

mysql> SELECT emp.emp_id, CONCAT(emp.fname, ' ', emp.lname) emp_name,
 -> (SELECT CONCAT(boss.fname, ' ', boss.lname)
 -> FROM employee boss
 -> WHERE boss.emp_id = emp.superior_emp_id) boss_name
 -> FROM employee emp
 -> WHERE emp.superior_emp_id IS NOT NULL
 -> ORDER BY (SELECT boss.lname FROM employee boss
 -> WHERE boss.emp_id = emp.superior_emp_id), emp.lname;
+--------+------------------+-----------------+
| emp_id | emp_name | boss_name |
+--------+------------------+-----------------+
14	Cindy Mason	John Blake
15	Frank Portman	John Blake
9	Jane Grossman	Helen Fleming
8	Sarah Parker	Helen Fleming
7	Chris Tucker	Helen Fleming
13	John Blake	Susan Hawthorne
6	Helen Fleming	Susan Hawthorne
5	John Gooding	Susan Hawthorne
16	Theresa Markham	Susan Hawthorne
10	Paula Roberts	Susan Hawthorne
17	Beth Fowler	Theresa Markham
18	Rick Tulman	Theresa Markham

When to Use Subqueries | 179

12	Samantha Jameson	Paula Roberts
11	Thomas Ziegler	Paula Roberts
2	Susan Barker	Michael Smith
3	Robert Tyler	Michael Smith
4	Susan Hawthorne	Robert Tyler
+--------+------------------+-----------------+
17 rows in set (0.01 sec)

The query uses two correlated scalar subqueries: one in the select clause to retrieve
the full name of each employee’s boss, and another in the order by clause to return just
the last name of each employee’s boss for sorting purposes.

Along with using correlated scalar subqueries in select statements, you can use non-
correlated scalar subqueries to generate values for an insert statement. For example,
let’s say you are going to generate a new account row, and you’ve been given the fol-
lowing data:

• The product name (“savings account”)

• The customer’s federal ID (“555-55-5555”)

• The name of the branch where the account was opened (“Quincy Branch”)

• The first and last names of the teller who opened the account (“Frank Portman”)

Before you can create a row in the account table, you will need to look up the key values
for all of these pieces of data so that you can populate the foreign key columns in the
account table. You have two choices for how to go about it: execute four queries to
retrieve the primary key values and place those values into an insert statement, or use
subqueries to retrieve the four key values from within an insert statement. Here’s an
example of the latter approach:

INSERT INTO account
 (account_id, product_cd, cust_id, open_date, last_activity_date,
 status, open_branch_id, open_emp_id, avail_balance, pending_balance)
VALUES (NULL,
 (SELECT product_cd FROM product WHERE name = 'savings account'),
 (SELECT cust_id FROM customer WHERE fed_id = '555-55-5555'),
 '2008-09-25', '2008-09-25', 'ACTIVE',
 (SELECT branch_id FROM branch WHERE name = 'Quincy Branch'),
 (SELECT emp_id FROM employee WHERE lname = 'Portman' AND fname = 'Frank'),
 0, 0);

Using a single SQL statement, you can create a row in the account table and look up
four foreign key column values at the same time. There is one downside to this ap-
proach, however. When you use subqueries to generate data for columns that allow
null values, your insert statement will succeed even if one of your subqueries fails to
return a value. For example, if you mistyped Frank Portman’s name in the fourth sub-
query, a row will still be created in account, but the open_emp_id would be set to null.

180 | Chapter 9: Subqueries

Subquery Wrap-up
I covered a lot of ground in this chapter, so it might be a good idea to review it. The
examples I used in this chapter demonstrated subqueries that:

• Return a single column and row, a single column with multiple rows, and multiple
columns and rows

• Are independent of the containing statement (noncorrelated subqueries)

• Reference one or more columns from the containing statement (correlated
subqueries)

• Are used in conditions that utilize comparison operators as well as the special-
purpose operators in, not in, exists, and not exists

• Can be found in select, update, delete, and insert statements

• Generate result sets that can be joined to other tables (or subqueries) in a query

• Can be used to generate values to populate a table or to populate columns in a
query’s result set

• Are used in the select, from, where, having, and order by clauses of queries

Obviously, subqueries are a very versatile tool, so don’t feel bad if all these concepts
haven’t sunk in after reading this chapter for the first time. Keep experimenting with
the various uses for subqueries, and you will soon find yourself thinking about how
you might utilize a subquery every time you write a nontrivial SQL statement.

Test Your Knowledge
These exercises are designed to test your understanding of subqueries. Please see Ap-
pendix C for the solutions.

Exercise 9-1
Construct a query against the account table that uses a filter condition with a noncor-
related subquery against the product table to find all loan accounts (product.prod
uct_type_cd = 'LOAN'). Retrieve the account ID, product code, customer ID, and avail-
able balance.

Exercise 9-2
Rework the query from Exercise 9-1 using a correlated subquery against the product
table to achieve the same results.

Test Your Knowledge | 181

Exercise 9-3
Join the following query to the employee table to show the experience level of each
employee:

SELECT 'trainee' name, '2004-01-01' start_dt, '2005-12-31' end_dt
UNION ALL
SELECT 'worker' name, '2002-01-01' start_dt, '2003-12-31' end_dt
UNION ALL
SELECT 'mentor' name, '2000-01-01' start_dt, '2001-12-31' end_dt

Give the subquery the alias levels, and include the employee ID, first name, last name,
and experience level (levels.name). (Hint: build a join condition using an inequality
condition to determine into which level the employee.start_date column falls.)

Exercise 9-4
Construct a query against the employee table that retrieves the employee ID, first name,
and last name, along with the names of the department and branch to which the em-
ployee is assigned. Do not join any tables.

182 | Chapter 9: Subqueries

CHAPTER 10

Joins Revisited

By now, you should be comfortable with the concept of the inner join, which I intro-
duced in Chapter 5. This chapter focuses on other ways in which you can join tables,
including the outer join and the cross join.

Outer Joins
In all the examples thus far that have included multiple tables, we haven’t been con-
cerned that the join conditions might fail to find matches for all the rows in the tables.
For example, when joining the account table to the customer table, I did not mention
the possibility that a value in the cust_id column of the account table might not match
a value in the cust_id column of the customer table. If that were the case, then some of
the rows in one table or the other would be left out of the result set.

Just to be sure, let’s check the data in the tables. Here are the account_id and cust_id
columns from the account table:

mysql> SELECT account_id, cust_id
 -> FROM account;
+------------+---------+
| account_id | cust_id |
+------------+---------+
1	1
2	1
3	1
4	2
5	2
7	3
8	3
10	4
11	4
12	4
13	5
14	6
15	6
17	7
18	8

183

19	8
21	9
22	9
23	9
24	10
25	10
27	11
28	12
29	13
+------------+---------+
24 rows in set (1.50 sec)

There are 24 accounts spanning 13 different customers, with customer IDs 1 through
13 having at least one account. Here’s the set of customer IDs from the customer table:

mysql> SELECT cust_id
 -> FROM customer;

+---------+
| cust_id |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
| 13 |
+---------+
13 rows in set (0.02 sec)

There are 13 rows in the customer table with IDs 1 through 13, so every customer ID
is included at least once in the account table. When the two tables are joined on the
cust_id column, therefore, you would expect all 24 rows to be included in the result
set (barring any other filter conditions):

mysql> SELECT a.account_id, c.cust_id
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id;
+------------+---------+
| account_id | cust_id |
+------------+---------+
1	1
2	1
3	1
4	2
5	2
7	3
8	3

184 | Chapter 10: Joins Revisited

10	4
11	4
12	4
13	5
14	6
15	6
17	7
18	8
19	8
21	9
22	9
23	9
24	10
25	10
27	11
28	12
29	13
+------------+---------+
24 rows in set (0.06 sec)

As expected, all 24 accounts are present in the result set. But what happens if you join
the account table to one of the specialized customer tables, such as the business table?

mysql> SELECT a.account_id, b.cust_id, b.name
 -> FROM account a INNER JOIN business b
 -> ON a.cust_id = b.cust_id;
+------------+---------+------------------------+
| account_id | cust_id | name |
+------------+---------+------------------------+
24	10	Chilton Engineering
25	10	Chilton Engineering
27	11	Northeast Cooling Inc.
28	12	Superior Auto Body
29	13	AAA Insurance Inc.
+------------+---------+------------------------+
5 rows in set (0.10 sec)

Instead of 24 rows in the result set, there are now only five. Let’s look in the business
table to see why this is:

mysql> SELECT cust_id, name
 -> FROM business;
+---------+------------------------+
| cust_id | name |
+---------+------------------------+
10	Chilton Engineering
11	Northeast Cooling Inc.
12	Superior Auto Body
13	AAA Insurance Inc.
+---------+------------------------+
4 rows in set (0.01 sec)

Of the 13 rows in the customer table, only four are business customers, and since one
of the business customers has two accounts, a total of five rows in the account table are
linked to business customers.

Outer Joins | 185

But what if you want your query to return all the accounts, but to include the business
name only if the account is linked to a business customer? This is an example where
you would need an outer join between the account and business tables, as in:

mysql> SELECT a.account_id, a.cust_id, b.name
 -> FROM account a LEFT OUTER JOIN business b
 -> ON a.cust_id = b.cust_id;
+------------+---------+------------------------+
| account_id | cust_id | name |
+------------+---------+------------------------+
1	1	NULL
2	1	NULL
3	1	NULL
4	2	NULL
5	2	NULL
7	3	NULL
8	3	NULL
10	4	NULL
11	4	NULL
12	4	NULL
13	5	NULL
14	6	NULL
15	6	NULL
17	7	NULL
18	8	NULL
19	8	NULL
21	9	NULL
22	9	NULL
23	9	NULL
24	10	Chilton Engineering
25	10	Chilton Engineering
27	11	Northeast Cooling Inc.
28	12	Superior Auto Body
29	13	AAA Insurance Inc.
+------------+---------+------------------------+
24 rows in set (0.04 sec)

An outer join includes all of the rows from one table and includes data from the second
table only if matching rows are found. In this case, all rows from the account table are
included, since I specified left outer join and the account table is on the left side of
the join definition. The name column is null for all rows except for the four business
customers (cust_ids 10, 11, 12, and 13). Here’s a similar query with an outer join to
the individual table instead of the business table:

mysql> SELECT a.account_id, a.cust_id, i.fname, i.lname
 -> FROM account a LEFT OUTER JOIN individual i
 -> ON a.cust_id = i.cust_id;
+------------+---------+----------+---------+
| account_id | cust_id | fname | lname |
+------------+---------+----------+---------+
1	1	James	Hadley
2	1	James	Hadley
3	1	James	Hadley
4	2	Susan	Tingley

186 | Chapter 10: Joins Revisited

5	2	Susan	Tingley
7	3	Frank	Tucker
8	3	Frank	Tucker
10	4	John	Hayward
11	4	John	Hayward
12	4	John	Hayward
13	5	Charles	Frasier
14	6	John	Spencer
15	6	John	Spencer
17	7	Margaret	Young
18	8	George	Blake
19	8	George	Blake
21	9	Richard	Farley
22	9	Richard	Farley
23	9	Richard	Farley
24	10	NULL	NULL
25	10	NULL	NULL
27	11	NULL	NULL
28	12	NULL	NULL
29	13	NULL	NULL
+------------+---------+----------+---------+
24 rows in set (0.09 sec)

This query is essentially the reverse of the previous query: first and last names are
supplied for the individual customers, whereas the columns are null for the business
customers.

Left Versus Right Outer Joins
In each of the outer join examples in the previous section, I specified left outer
join. The keyword left indicates that the table on the left side of the join is responsible
for determining the number of rows in the result set, whereas the table on the right side
is used to provide column values whenever a match is found. Consider the following
query:

mysql> SELECT c.cust_id, b.name
 -> FROM customer c LEFT OUTER JOIN business b
 -> ON c.cust_id = b.cust_id;
+---------+------------------------+
| cust_id | name |
+---------+------------------------+
1	NULL
2	NULL
3	NULL
4	NULL
5	NULL
6	NULL
7	NULL
8	NULL
9	NULL
10	Chilton Engineering
11	Northeast Cooling Inc.
12	Superior Auto Body

Outer Joins | 187

| 13 | AAA Insurance Inc. |
+---------+------------------------+
13 rows in set (0.00 sec)

The from clause specifies a left outer join, so all 13 rows from the customer table are
included in the result set, with the business table contributing values to the second
column in the result set for the four business customers. If you execute the same query,
but indicate right outer join, you would see the following results:

mysql> SELECT c.cust_id, b.name
 -> FROM customer c RIGHT OUTER JOIN business b
 -> ON c.cust_id = b.cust_id;
+---------+------------------------+
| cust_id | name |
+---------+------------------------+
10	Chilton Engineering
11	Northeast Cooling Inc.
12	Superior Auto Body
13	AAA Insurance Inc.
+---------+------------------------+
4 rows in set (0.00 sec)

The number of rows in the result set is now determined by the number of rows in the
business table, which is why there are only four rows in the result set.

Keep in mind that both queries are performing outer joins; the keywords left and
right are there just to tell the server which table is allowed to have gaps in the data. If
you want to outer-join tables A and B and you want all rows from A with additional
columns from B whenever there is matching data, you can specify either A left outer
join B or B right outer join A.

Three-Way Outer Joins
In some cases, you may want to outer-join one table with two other tables. For example,
you may want a list of all accounts showing either the customer’s first and last names
for individuals or the business name for business customers, as in:

mysql> SELECT a.account_id, a.product_cd,
 -> CONCAT(i.fname, ' ', i.lname) person_name,
 -> b.name business_name
 -> FROM account a LEFT OUTER JOIN individual i
 -> ON a.cust_id = i.cust_id
 -> LEFT OUTER JOIN business b
 -> ON a.cust_id = b.cust_id;
+------------+------------+-----------------+------------------------+
| account_id | product_cd | person_name | business_name |
+------------+------------+-----------------+------------------------+
1	CHK	James Hadley	NULL
2	SAV	James Hadley	NULL
3	CD	James Hadley	NULL
4	CHK	Susan Tingley	NULL
5	SAV	Susan Tingley	NULL
7	CHK	Frank Tucker	NULL

188 | Chapter 10: Joins Revisited

8	MM	Frank Tucker	NULL
10	CHK	John Hayward	NULL
11	SAV	John Hayward	NULL
12	MM	John Hayward	NULL
13	CHK	Charles Frasier	NULL
14	CHK	John Spencer	NULL
15	CD	John Spencer	NULL
17	CD	Margaret Young	NULL
18	CHK	George Blake	NULL
19	SAV	George Blake	NULL
21	CHK	Richard Farley	NULL
22	MM	Richard Farley	NULL
23	CD	Richard Farley	NULL
24	CHK	NULL	Chilton Engineering
25	BUS	NULL	Chilton Engineering
27	BUS	NULL	Northeast Cooling Inc.
28	CHK	NULL	Superior Auto Body
29	SBL	NULL	AAA Insurance Inc.
+------------+------------+-----------------+------------------------+
24 rows in set (0.08 sec)

The results include all 24 rows from the account table, along with either a person’s
name or a business name coming from the two outer-joined tables.

I don’t know of any restrictions with MySQL regarding the number of tables that can
be outer-joined to the same table, but you can always use subqueries to limit the number
of joins in your query. For instance, you can rewrite the previous example as follows:

mysql> SELECT account_ind.account_id, account_ind.product_cd,
 -> account_ind.person_name,
 -> b.name business_name
 -> FROM
 -> (SELECT a.account_id, a.product_cd, a.cust_id,
 -> CONCAT(i.fname, ' ', i.lname) person_name
 -> FROM account a LEFT OUTER JOIN individual i
 -> ON a.cust_id = i.cust_id) account_ind
 -> LEFT OUTER JOIN business b
 -> ON account_ind.cust_id = b.cust_id;
+------------+------------+-----------------+------------------------+
| account_id | product_cd | person_name | business_name |
+------------+------------+-----------------+------------------------+
1	CHK	James Hadley	NULL
2	SAV	James Hadley	NULL
3	CD	James Hadley	NULL
4	CHK	Susan Tingley	NULL
5	SAV	Susan Tingley	NULL
7	CHK	Frank Tucker	NULL
8	MM	Frank Tucker	NULL
10	CHK	John Hayward	NULL
11	SAV	John Hayward	NULL
12	MM	John Hayward	NULL
13	CHK	Charles Frasier	NULL
14	CHK	John Spencer	NULL
15	CD	John Spencer	NULL
17	CD	Margaret Young	NULL

Outer Joins | 189

18	CHK	George Blake	NULL
19	SAV	George Blake	NULL
21	CHK	Richard Farley	NULL
22	MM	Richard Farley	NULL
23	CD	Richard Farley	NULL
24	CHK	NULL	Chilton Engineering
25	BUS	NULL	Chilton Engineering
27	BUS	NULL	Northeast Cooling Inc.
28	CHK	NULL	Superior Auto Body
29	SBL	NULL	AAA Insurance Inc.
+------------+------------+-----------------+------------------------+
24 rows in set (0.08 sec)

In this version of the query, the individual table is outer-joined to the account table
within a subquery named account_ind, the results of which are then outer-joined to the
business table. Thus, each query (the subquery and the containing query) uses only a
single outer join. If you are using a database other than MySQL, you may need to utilize
this strategy if you want to outer-join more than one table.

Self Outer Joins
In Chapter 5, I introduced you to the concept of the self-join, where a table is joined
to itself. Here’s a self-join example from Chapter 5, which joins the employee table to
itself to generate a list of employees and their supervisors:

mysql> SELECT e.fname, e.lname,
 -> e_mgr.fname mgr_fname, e_mgr.lname mgr_lname
 -> FROM employee e INNER JOIN employee e_mgr
 -> ON e.superior_emp_id = e_mgr.emp_id;
+----------+-----------+-----------+-----------+
| fname | lname | mgr_fname | mgr_lname |
+----------+-----------+-----------+-----------+
Susan	Barker	Michael	Smith
Robert	Tyler	Michael	Smith
Susan	Hawthorne	Robert	Tyler
John	Gooding	Susan	Hawthorne
Helen	Fleming	Susan	Hawthorne
Chris	Tucker	Helen	Fleming
Sarah	Parker	Helen	Fleming
Jane	Grossman	Helen	Fleming
Paula	Roberts	Susan	Hawthorne
Thomas	Ziegler	Paula	Roberts
Samantha	Jameson	Paula	Roberts
John	Blake	Susan	Hawthorne
Cindy	Mason	John	Blake
Frank	Portman	John	Blake
Theresa	Markham	Susan	Hawthorne
Beth	Fowler	Theresa	Markham
Rick	Tulman	Theresa	Markham
+----------+-----------+-----------+-----------+
17 rows in set (0.02 sec)

190 | Chapter 10: Joins Revisited

This query works fine except for one small issue: employees who don’t have a supervisor
are left out of the result set. By changing the join from an inner join to an outer join,
however, the result set will include all employees, including those without supervisors:

mysql> SELECT e.fname, e.lname,
 -> e_mgr.fname mgr_fname, e_mgr.lname mgr_lname
 -> FROM employee e LEFT OUTER JOIN employee e_mgr
 -> ON e.superior_emp_id = e_mgr.emp_id;
+----------+-----------+-----------+-----------+
| fname | lname | mgr_fname | mgr_lname |
+----------+-----------+-----------+-----------+
Michael	Smith	NULL	NULL
Susan	Barker	Michael	Smith
Robert	Tyler	Michael	Smith
Susan	Hawthorne	Robert	Tyler
John	Gooding	Susan	Hawthorne
Helen	Fleming	Susan	Hawthorne
Chris	Tucker	Helen	Fleming
Sarah	Parker	Helen	Fleming
Jane	Grossman	Helen	Fleming
Paula	Roberts	Susan	Hawthorne
Thomas	Ziegler	Paula	Roberts
Samantha	Jameson	Paula	Roberts
John	Blake	Susan	Hawthorne
Cindy	Mason	John	Blake
Frank	Portman	John	Blake
Theresa	Markham	Susan	Hawthorne
Beth	Fowler	Theresa	Markham
Rick	Tulman	Theresa	Markham
+----------+-----------+-----------+-----------+
18 rows in set (0.00 sec)

The result set now includes Michael Smith, who is the president of the bank and,
therefore, does not have a supervisor. The query utilizes a left outer join to generate a
list of all employees and, if applicable, their supervisor. If you change the join to be a
right outer join, you would see the following results:

mysql> SELECT e.fname, e.lname,
 -> e_mgr.fname mgr_fname, e_mgr.lname mgr_lname
 -> FROM employee e RIGHT OUTER JOIN employee e_mgr
 -> ON e.superior_emp_id = e_mgr.emp_id;
+----------+-----------+-----------+-----------+
| fname | lname | mgr_fname | mgr_lname |
+----------+-----------+-----------+-----------+
Susan	Barker	Michael	Smith
Robert	Tyler	Michael	Smith
NULL	NULL	Susan	Barker
Susan	Hawthorne	Robert	Tyler
John	Gooding	Susan	Hawthorne
Helen	Fleming	Susan	Hawthorne
Paula	Roberts	Susan	Hawthorne
John	Blake	Susan	Hawthorne
Theresa	Markham	Susan	Hawthorne
NULL	NULL	John	Gooding
Chris	Tucker	Helen	Fleming

Outer Joins | 191

Sarah	Parker	Helen	Fleming
Jane	Grossman	Helen	Fleming
NULL	NULL	Chris	Tucker
NULL	NULL	Sarah	Parker
NULL	NULL	Jane	Grossman
Thomas	Ziegler	Paula	Roberts
Samantha	Jameson	Paula	Roberts
NULL	NULL	Thomas	Ziegler
NULL	NULL	Samantha	Jameson
Cindy	Mason	John	Blake
Frank	Portman	John	Blake
NULL	NULL	Cindy	Mason
NULL	NULL	Frank	Portman
Beth	Fowler	Theresa	Markham
Rick	Tulman	Theresa	Markham
NULL	NULL	Beth	Fowler
NULL	NULL	Rick	Tulman
+----------+-----------+-----------+-----------+
28 rows in set (0.00 sec)

This query shows each supervisor (still the third and fourth columns) along with the
set of employees he or she supervises. Therefore, Michael Smith appears twice as su-
pervisor to Susan Barker and Robert Tyler; Susan Barker appears once as a supervisor
to nobody (null values in the first and second columns). All 18 employees appear at
least once in the third and fourth columns, with some appearing more than once if they
supervise more than one employee, making a total of 28 rows in the result set. This is
a very different outcome from the previous query, and it was prompted by changing
only a single keyword (left to right). Therefore, when using outer joins, make sure
you think carefully about whether to specify a left or right outer join.

Cross Joins
Back in Chapter 5, I introduced the concept of a Cartesian product, which is essentially
the result of joining multiple tables without specifying any join conditions. Cartesian
products are used fairly frequently by accident (e.g., forgetting to add the join condition
to the from clause) but are not so common otherwise. If, however, you do intend to
generate the Cartesian product of two tables, you should specify a cross join, as in:

mysql> SELECT pt.name, p.product_cd, p.name
 -> FROM product p CROSS JOIN product_type pt;
+-------------------------------+------------+-------------------------+
| name | product_cd | name |
+-------------------------------+------------+-------------------------+
Customer Accounts	AUT	auto loan
Customer Accounts	BUS	business line of credit
Customer Accounts	CD	certificate of deposit
Customer Accounts	CHK	checking account
Customer Accounts	MM	money market account
Customer Accounts	MRT	home mortgage
Customer Accounts	SAV	savings account
Customer Accounts	SBL	small business loan

192 | Chapter 10: Joins Revisited

Insurance Offerings	AUT	auto loan
Insurance Offerings	BUS	business line of credit
Insurance Offerings	CD	certificate of deposit
Insurance Offerings	CHK	checking account
Insurance Offerings	MM	money market account
Insurance Offerings	MRT	home mortgage
Insurance Offerings	SAV	savings account
Insurance Offerings	SBL	small business loan
Individual and Business Loans	AUT	auto loan
Individual and Business Loans	BUS	business line of credit
Individual and Business Loans	CD	certificate of deposit
Individual and Business Loans	CHK	checking account
Individual and Business Loans	MM	money market account
Individual and Business Loans	MRT	home mortgage
Individual and Business Loans	SAV	savings account
Individual and Business Loans	SBL	small business loan
+-------------------------------+------------+-------------------------+
24 rows in set (0.00 sec)

This query generates the Cartesian product of the product and product_type tables,
resulting in 24 rows (8 product rows × 3 product_type rows). But now that you know
what a cross join is and how to specify it, what is it used for? Most SQL books will
describe what a cross join is and then tell you that it is seldom useful, but I would like
to share with you a situation in which I find the cross join to be quite helpful.

In Chapter 9, I discussed how to use subqueries to fabricate tables. The example I used
showed how to build a three-row table that could be joined to other tables. Here’s the
fabricated table from the example:

mysql> SELECT 'Small Fry' name, 0 low_limit, 4999.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 5000 low_limit, 9999.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 10000 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name | low_limit | high_limit |
+---------------+-----------+------------+
Small Fry	0	4999.99
Average Joes	5000	9999.99
Heavy Hitters	10000	9999999.99
+---------------+-----------+------------+
3 rows in set (0.00 sec)

While this table was exactly what was needed for placing customers into three groups
based on their aggregate account balance, this strategy of merging single-row tables
using the set operator union all doesn’t work very well if you need to fabricate a large
table.

Say, for example, that you want to create a query that generates a row for every day in
the year 2008, but you don’t have a table in your database that contains a row for every
day. Using the strategy from the example in Chapter 9, you could do something like
the following:

Cross Joins | 193

SELECT '2008-01-01' dt
UNION ALL
SELECT '2008-01-02' dt
UNION ALL
SELECT '2008-01-03' dt
UNION ALL
...
...
...
SELECT '2008-12-29' dt
UNION ALL
SELECT '2008-12-30' dt
UNION ALL
SELECT '2008-12-31' dt

Building a query that merges together the results of 366 queries is a bit tedious, so
maybe a different strategy is needed. What if you generate a table with 366 rows (2008
was a leap year) with a single column containing a number between 0 and 366, and
then add that number of days to January 1, 2008? Here’s one possible method to gen-
erate such a table:

mysql> SELECT ones.num + tens.num + hundreds.num
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL
 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL
 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds;
+------------------------------------+
| ones.num + tens.num + hundreds.num |
+------------------------------------+
| 0 |
| 1 |
| 2 |

194 | Chapter 10: Joins Revisited

| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
...
...
...
| 391 |
| 392 |
| 393 |
| 394 |
| 395 |
| 396 |
| 397 |
| 398 |
| 399 |
+------------------------------------+
400 rows in set (0.00 sec)

If you take the Cartesian product of the three sets {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 10,
20, 30, 40, 50, 60, 70, 80, 90}, and {0, 100, 200, 300} and add the values in the three
columns, you get a 400-row result set containing all numbers between 0 and 399. While
this is more than the 366 rows needed to generate the set of days in 2008, it’s easy
enough to get rid of the excess rows, and I’ll show you how shortly.

The next step is to convert the set of numbers to a set of dates. To do this, I will use
the date_add() function to add each number in the result set to January 1, 2008. Then
I’ll add a filter condition to throw away any dates that venture into 2009:

mysql> SELECT DATE_ADD('2008-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL

Cross Joins | 195

 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL
 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds
 -> WHERE DATE_ADD('2008-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) < '2009-01-01'
 -> ORDER BY 1;
+------------+
| dt |
+------------+
| 2008-01-01 |
| 2008-01-02 |
| 2008-01-03 |
| 2008-01-04 |
| 2008-01-05 |
| 2008-01-06 |
| 2008-01-07 |
| 2008-01-08 |
| 2008-01-09 |
| 2008-01-10 |
...
...
...
| 2008-02-20 |
| 2008-02-21 |
| 2008-02-22 |
| 2008-02-23 |
| 2008-02-24 |
| 2008-02-25 |
| 2008-02-26 |
| 2008-02-27 |
| 2008-02-28 |
| 2008-02-29 |
| 2008-03-01 |
...
...
...
| 2008-12-20 |
| 2008-12-21 |
| 2008-12-22 |
| 2008-12-23 |
| 2008-12-24 |
| 2008-12-25 |
| 2008-12-26 |
| 2008-12-27 |
| 2008-12-28 |
| 2008-12-29 |
| 2008-12-30 |
| 2008-12-31 |

196 | Chapter 10: Joins Revisited

+------------+
366 rows in set (0.01 sec)

The nice thing about this approach is that the result set automatically includes the extra
leap day (February 29) without your intervention, since the database server figures it
out when it adds 59 days to January 1, 2008.

Now that you have a mechanism for fabricating all the days in 2008, what should you
do with it? Well, you might be asked to generate a query that shows every day in 2008
along with the number of banking transactions conducted on that day, the number of
accounts opened on that day, and so forth. Here’s an example that answers the first
question:

mysql> SELECT days.dt, COUNT(t.txn_id)
 -> FROM transaction t RIGHT OUTER JOIN
 -> (SELECT DATE_ADD('2008-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL
 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL
 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds
 -> WHERE DATE_ADD('2008-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) <
 -> '2009-01-01') days
 -> ON days.dt = t.txn_date
 -> GROUP BY days.dt
 -> ORDER BY 1;
+------------+-----------------+
| dt | COUNT(t.txn_id) |
+------------+-----------------+
| 2008-01-01 | 0 |

Cross Joins | 197

2008-01-02	0
2008-01-03	0
2008-01-04	0
2008-01-05	21
2008-01-06	0
2008-01-07	0
2008-01-08	0
2008-01-09	0
2008-01-10	0
2008-01-11	0
2008-01-12	0
2008-01-13	0
2008-01-14	0
2008-01-15	0
...	
2008-12-31	0
+------------+-----------------+
366 rows in set (0.03 sec)

This is one of the more interesting queries thus far in the book, in that it includes cross
joins, outer joins, a date function, grouping, set operations (union all), and an aggre-
gate function (count()). It is also not the most elegant solution to the given problem,
but it should serve as an example of how, with a little creativity and a firm grasp on the
language, you can make even a seldom-used feature like cross joins a potent tool in
your SQL toolkit.

Natural Joins
If you are lazy (and aren’t we all), you can choose a join type that allows you to name
the tables to be joined but lets the database server determine what the join conditions
need to be. Known as the natural join, this join type relies on identical column names
across multiple tables to infer the proper join conditions. For example, the account
table includes a column named cust_id, which is the foreign key to the customer table,
whose primary key is also named cust_id. Thus, you can write a query that uses natural
join to join the two tables:

mysql> SELECT a.account_id, a.cust_id, c.cust_type_cd, c.fed_id
 -> FROM account a NATURAL JOIN customer c;
+------------+---------+--------------+-------------+
| account_id | cust_id | cust_type_cd | fed_id |
+------------+---------+--------------+-------------+
1	1	I	111-11-1111
2	1	I	111-11-1111
3	1	I	111-11-1111
4	2	I	222-22-2222
5	2	I	222-22-2222
6	3	I	333-33-3333
7	3	I	333-33-3333
8	4	I	444-44-4444
9	4	I	444-44-4444
10	4	I	444-44-4444

198 | Chapter 10: Joins Revisited

11	5	I	555-55-5555
12	6	I	666-66-6666
13	6	I	666-66-6666
14	7	I	777-77-7777
15	8	I	888-88-8888
16	8	I	888-88-8888
17	9	I	999-99-9999
18	9	I	999-99-9999
19	9	I	999-99-9999
20	10	B	04-1111111
21	10	B	04-1111111
22	11	B	04-2222222
23	12	B	04-3333333
24	13	B	04-4444444
+------------+---------+--------------+-------------+
24 rows in set (0.02 sec)

Because you specified a natural join, the server inspected the table definitions and added
the join condition a.cust_id = c.cust_id to join the two tables.

This is all well and good, but what if the columns don’t have the same name across the
tables? For example, the account table also has a foreign key to the branch table, but
the column in the account table is named open_branch_id instead of just branch_id. Let’s
see what happens if I use natural join between the account and branch tables:

mysql> SELECT a.account_id, a.cust_id, a.open_branch_id, b.name
 -> FROM account a NATURAL JOIN branch b;
+------------+---------+----------------+---------------+
| account_id | cust_id | open_branch_id | name |
+------------+---------+----------------+---------------+
1	1	2	Headquarters
1	1	2	Woburn Branch
1	1	2	Quincy Branch
1	1	2	So. NH Branch
2	1	2	Headquarters
2	1	2	Woburn Branch
2	1	2	Quincy Branch
2	1	2	So. NH Branch
3	1	2	Headquarters
3	1	2	Woburn Branch
3	1	2	Quincy Branch
3	1	2	So. NH Branch
4	2	2	Headquarters
4	2	2	Woburn Branch
4	2	2	Quincy Branch
4	2	2	So. NH Branch
5	2	2	Headquarters
5	2	2	Woburn Branch
5	2	2	Quincy Branch
5	2	2	So. NH Branch
7	3	3	Headquarters
7	3	3	Woburn Branch
7	3	3	Quincy Branch
7	3	3	So. NH Branch
8	3	3	Headquarters

Natural Joins | 199

8	3	3	Woburn Branch
8	3	3	Quincy Branch
8	3	3	So. NH Branch
10	4	1	Headquarters
10	4	1	Woburn Branch
10	4	1	Quincy Branch
10	4	1	So. NH Branch
...			
...			
...			
24	10	4	Headquarters
24	10	4	Woburn Branch
24	10	4	Quincy Branch
24	10	4	So. NH Branch
25	10	4	Headquarters
25	10	4	Woburn Branch
25	10	4	Quincy Branch
25	10	4	So. NH Branch
27	11	2	Headquarters
27	11	2	Woburn Branch
27	11	2	Quincy Branch
27	11	2	So. NH Branch
28	12	4	Headquarters
28	12	4	Woburn Branch
28	12	4	Quincy Branch
28	12	4	So. NH Branch
29	13	3	Headquarters
29	13	3	Woburn Branch
29	13	3	Quincy Branch
29	13	3	So. NH Branch
+------------+---------+----------------+---------------+
96 rows in set (0.07 sec)

It looks like something has gone wrong; the query should return no more than 24 rows,
since there are 24 rows in the account table. What has happened is that, since the server
couldn’t find two identically named columns in the two tables, no join condition was
generated and the two tables were cross-joined instead, resulting in 96 rows (24 ac-
counts × 4 branches).

So, is the reduced wear and tear on the old fingers from not having to type the join
condition worth the trouble? Absolutely not; you should avoid this join type and use
inner joins with explicit join conditions.

Test Your Knowledge
The following exercises test your understanding of outer and cross joins. Please see
Appendix C for solutions.

200 | Chapter 10: Joins Revisited

Exercise 10-1
Write a query that returns all product names along with the accounts based on that
product (use the product_cd column in the account table to link to the product table).
Include all products, even if no accounts have been opened for that product.

Exercise 10-2
Reformulate your query from Exercise 10-1 to use the other outer join type (e.g., if you
used a left outer join in Exercise 10-1, use a right outer join this time) such that the
results are identical to Exercise 10-1.

Exercise 10-3
Outer-join the account table to both the individual and business tables (via the
account.cust_id column) such that the result set contains one row per account. Col-
umns to include are account.account_id, account.product_cd, individual.fname,
individual.lname, and business.name.

Exercise 10-4 (Extra Credit)
Devise a query that will generate the set {1, 2, 3,..., 99, 100}. (Hint: use a cross join
with at least two from clause subqueries.)

Test Your Knowledge | 201

CHAPTER 11

Conditional Logic

In certain situations, you may want your SQL logic to branch in one direction or another
depending on the values of certain columns or expressions. This chapter focuses on
how to write statements that can behave differently depending on the data encountered
during statement execution.

What Is Conditional Logic?
Conditional logic is simply the ability to take one of several paths during program
execution. For example, when querying customer information, you might want to re-
trieve either the fname/lname columns from the individual table or the name column
from the business table depending on what type of customer is encountered. Using
outer joins, you could return both strings and let the caller figure out which one to use,
as in:

mysql> SELECT c.cust_id, c.fed_id, c.cust_type_cd,
 -> CONCAT(i.fname, ' ', i.lname) indiv_name,
 -> b.name business_name
 -> FROM customer c LEFT OUTER JOIN individual i
 -> ON c.cust_id = i.cust_id
 -> LEFT OUTER JOIN business b
 -> ON c.cust_id = b.cust_id;
+---------+-------------+--------------+-----------------+------------------------+
| cust_id | fed_id | cust_type_cd | indiv_name | business_name |
+---------+-------------+--------------+-----------------+------------------------+
1	111-11-1111	I	James Hadley	NULL
2	222-22-2222	I	Susan Tingley	NULL
3	333-33-3333	I	Frank Tucker	NULL
4	444-44-4444	I	John Hayward	NULL
5	555-55-5555	I	Charles Frasier	NULL
6	666-66-6666	I	John Spencer	NULL
7	777-77-7777	I	Margaret Young	NULL
8	888-88-8888	I	Louis Blake	NULL
9	999-99-9999	I	Richard Farley	NULL
10	04-1111111	B	NULL	Chilton Engineering
11	04-2222222	B	NULL	Northeast Cooling Inc.
12	04-3333333	B	NULL	Superior Auto Body

203

| 13 | 04-4444444 | B | NULL | AAA Insurance Inc. |
+---------+-------------+--------------+-----------------+------------------------+
13 rows in set (0.13 sec)

The caller can look at the value of the cust_type_cd column and decide whether to use
the indiv_name or business_name column. Instead, however, you could use conditional
logic via a case expression to determine the type of customer and return the appropriate
string, as in:

mysql> SELECT c.cust_id, c.fed_id,
 -> CASE
 -> WHEN c.cust_type_cd = 'I'
 -> THEN CONCAT(i.fname, ' ', i.lname)
 -> WHEN c.cust_type_cd = 'B'
 -> THEN b.name
 -> ELSE 'Unknown'
 -> END name
 -> FROM customer c LEFT OUTER JOIN individual i
 -> ON c.cust_id = i.cust_id
 -> LEFT OUTER JOIN business b
 -> ON c.cust_id = b.cust_id;
+---------+-------------+------------------------+
| cust_id | fed_id | name |
+---------+-------------+------------------------+
1	111-11-1111	James Hadley
2	222-22-2222	Susan Tingley
3	333-33-3333	Frank Tucker
4	444-44-4444	John Hayward
5	555-55-5555	Charles Frasier
6	666-66-6666	John Spencer
7	777-77-7777	Margaret Young
8	888-88-8888	Louis Blake
9	999-99-9999	Richard Farley
10	04-1111111	Chilton Engineering
11	04-2222222	Northeast Cooling Inc.
12	04-3333333	Superior Auto Body
13	04-4444444	AAA Insurance Inc.
+---------+-------------+------------------------+
13 rows in set (0.00 sec)

This version of the query returns a single name column that is generated by the case
expression starting on the second line of the query, which, in this example, checks the
value of the cust_type_cd column and returns either the individual’s first/last names
or the business name.

The Case Expression
All of the major database servers include built-in functions designed to mimic the if-
then-else statement found in most programming languages (examples include Oracle’s
decode() function, MySQL’s if() function, and SQL Server’s coalesce() function).
Case expressions are also designed to facilitate if-then-else logic but enjoy two advan-
tages over built-in functions:

204 | Chapter 11: Conditional Logic

• The case expression is part of the SQL standard (SQL92 release) and has been
implemented by Oracle Database, SQL Server, MySQL, Sybase, PostgreSQL, IBM
UDB, and others.

• Case expressions are built into the SQL grammar and can be included in select,
insert, update, and delete statements.

The next two subsections introduce the two different types of case expressions, and
then I show you some examples of case expressions in action.

Searched Case Expressions
The case expression demonstrated earlier in the chapter is an example of a searched
case expression, which has the following syntax:

CASE
 WHEN C1 THEN E1
 WHEN C2 THEN E2
 ...
 WHEN CN THEN EN
 [ELSE ED]
END

In the previous definition, the symbols C1, C2,..., CN represent conditions, and the sym-
bols E1, E2,..., EN represent expressions to be returned by the case expression. If the
condition in a when clause evaluates to true, then the case expression returns the cor-
responding expression. Additionally, the ED symbol represents the default expression,
which the case expression returns if none of the conditions C1, C2,..., CN evaluate to
true (the else clause is optional, which is why it is enclosed in square brackets). All the
expressions returned by the various when clauses must evaluate to the same type (e.g.,
date, number, varchar).

Here’s an example of a searched case expression:

CASE
 WHEN employee.title = 'Head Teller'
 THEN 'Head Teller'
 WHEN employee.title = 'Teller'
 AND YEAR(employee.start_date) > 2007
 THEN 'Teller Trainee'
 WHEN employee.title = 'Teller'
 AND YEAR(employee.start_date) < 2006
 THEN 'Experienced Teller'
 WHEN employee.title = 'Teller'
 THEN 'Teller'
 ELSE 'Non-Teller'
END

This case expression returns a string that can be used to determine hourly pay scales,
print name badges, and so forth. When the case expression is evaluated, the when clauses
are evaluated in order from top to bottom; as soon as one of the conditions in a when
clause evaluates to true, the corresponding expression is returned and any remaining

The Case Expression | 205

when clauses are ignored. If none of the when clause conditions evaluate to true, then
the expression in the else clause is returned.

Although the previous example returns string expressions, keep in mind that case
expressions may return any type of expression, including subqueries. Here’s another
version of the individual/business name query from earlier in the chapter that uses
subqueries instead of outer joins to retrieve data from the individual and business
tables:

mysql> SELECT c.cust_id, c.fed_id,
 -> CASE
 -> WHEN c.cust_type_cd = 'I' THEN
 -> (SELECT CONCAT(i.fname, ' ', i.lname)
 -> FROM individual i
 -> WHERE i.cust_id = c.cust_id)
 -> WHEN c.cust_type_cd = 'B' THEN
 -> (SELECT b.name
 -> FROM business b
 -> WHERE b.cust_id = c.cust_id)
 -> ELSE 'Unknown'
 -> END name
 -> FROM customer c;
+---------+-------------+------------------------+
| cust_id | fed_id | name |
+---------+-------------+------------------------+
1	111-11-1111	James Hadley
2	222-22-2222	Susan Tingley
3	333-33-3333	Frank Tucker
4	444-44-4444	John Hayward
5	555-55-5555	Charles Frasier
6	666-66-6666	John Spencer
7	777-77-7777	Margaret Young
8	888-88-8888	Louis Blake
9	999-99-9999	Richard Farley
10	04-1111111	Chilton Engineering
11	04-2222222	Northeast Cooling Inc.
12	04-3333333	Superior Auto Body
13	04-4444444	AAA Insurance Inc.
+---------+-------------+------------------------+
13 rows in set (0.01 sec)

This version of the query includes only the customer table in the from clause and uses
correlated subqueries to retrieve the appropriate name for each customer. I prefer this
version over the outer join version from earlier in the chapter, since the server reads
from the individual and business tables only as needed instead of always joining all
three tables.

Simple Case Expressions
The simple case expression is quite similar to the searched case expression but is a bit
less flexible. Here’s the syntax:

206 | Chapter 11: Conditional Logic

CASE V0
 WHEN V1 THEN E1
 WHEN V2 THEN E2
 ...
 WHEN VN THEN EN
 [ELSE ED]
END

In the preceding definition, V0 represents a value, and the symbols V1, V2,..., VN represent
values that are to be compared to V0. The symbols E1, E2,..., EN represent expressions
to be returned by the case expression, and ED represents the expression to be returned
if none of the values in the set V1, V2,..., VN match the V0 value.

Here’s an example of a simple case expression:

CASE customer.cust_type_cd
 WHEN 'I' THEN
 (SELECT CONCAT(i.fname, ' ', i.lname)
 FROM individual I
 WHERE i.cust_id = customer.cust_id)
 WHEN 'B' THEN
 (SELECT b.name
 FROM business b
 WHERE b.cust_id = customer.cust_id)
 ELSE 'Unknown Customer Type'
END

Simple case expressions are less powerful than searched case expressions because you
can’t specify your own conditions; instead, equality conditions are built for you. To
show you what I mean, here’s a searched case expression having the same logic as the
previous simple case expression:

CASE
 WHEN customer.cust_type_cd = 'I' THEN
 (SELECT CONCAT(i.fname, ' ', i.lname)
 FROM individual I
 WHERE i.cust_id = customer.cust_id)
 WHEN customer.cust_type_cd = 'B' THEN
 (SELECT b.name
 FROM business b
 WHERE b.cust_id = customer.cust_id)
 ELSE 'Unknown Customer Type'
END

With searched case expressions, you can build range conditions, inequality conditions,
and multipart conditions using and/or/not, so I would recommend using searched case
expressions for all but the simplest logic.

Case Expression Examples
The following sections present a variety of examples illustrating the utility of condi-
tional logic in SQL statements.

Case Expression Examples | 207

Result Set Transformations
You may have run into a situation where you are performing aggregations over a finite
set of values, such as days of the week, but you want the result set to contain a single
row with one column per value instead of one row per value. As an example, let’s say
you have been asked to write a query that shows the number of accounts opened in the
years 2000 through 2005:

mysql> SELECT YEAR(open_date) year, COUNT(*) how_many
 -> FROM account
 -> WHERE open_date > '1999-12-31'
 -> AND open_date < '2006-01-01'
 -> GROUP BY YEAR(open_date);
+------+----------+
| year | how_many |
+------+----------+
2000	3
2001	4
2002	5
2003	3
2004	9
+------+----------+
5 rows in set (0.00 sec)

However, you have also been instructed to return a single row of data with six columns
(one for each year in the data range). To transform this result set into a single row, you
will need to create six columns and, within each column, sum only those rows per-
taining to the year in question:

mysql> SELECT
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2000 THEN 1
 -> ELSE 0
 -> END) year_2000,
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2001 THEN 1
 -> ELSE 0
 -> END) year_2001,
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2002 THEN 1
 -> ELSE 0
 -> END) year_2002,
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2003 THEN 1
 -> ELSE 0
 -> END) year_2003,
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2004 THEN 1
 -> ELSE 0
 -> END) year_2004,
 -> SUM(CASE
 -> WHEN EXTRACT(YEAR FROM open_date) = 2005 THEN 1
 -> ELSE 0
 -> END) year_2005

208 | Chapter 11: Conditional Logic

 -> FROM account
 -> WHERE open_date > '1999-12-31' AND open_date < '2006-01-01';
+-----------+-----------+-----------+-----------+-----------+-----------+
| year_2000 | year_2001 | year_2002 | year_2003 | year_2004 | year_2005 |
+-----------+-----------+-----------+-----------+-----------+-----------+
| 3 | 4 | 5 | 3 | 9 | 0 |
+-----------+-----------+-----------+-----------+-----------+-----------+
1 row in set (0.01 sec)

Each of the six columns in the previous query are identical, except for the year value.
When the extract() function returns the desired year for that column, the case ex-
pression returns the value 1; otherwise, it returns a 0. When summed over all accounts
opened since 2000, each column returns the number of accounts opened for that year.
Obviously, such transformations are practical for only a small number of values; gen-
erating one column for each year since 1905 would quickly become tedious.

Although it is a bit advanced for this book, it is worth pointing out that
both SQL Server and Oracle Database 11g include PIVOT clauses specif-
ically for these types of queries.

Selective Aggregation
Back in Chapter 9, I showed a partial solution for an example that demonstrated how
to find accounts whose account balances don’t agree with the raw data in the
transaction table. The reason for the partial solution was that a full solution requires
the use of conditional logic, so all the pieces are now in place to finish the job. Here’s
where I left off in Chapter 9:

SELECT CONCAT('ALERT! : Account #', a.account_id,
 ' Has Incorrect Balance!')
FROM account a
WHERE (a.avail_balance, a.pending_balance) <>
 (SELECT SUM(<expression to generate available balance>),
 SUM(<expression to generate pending balance>)
 FROM transaction t
 WHERE t.account_id = a.account_id);

The query uses a correlated subquery on the transaction table to sum together the
individual transactions for a given account. When summing transactions, you need to
consider the following two issues:

• Transaction amounts are always positive, so you need to look at the transaction
type to see whether the transaction is a debit or a credit and flip the sign (multiply
by −1) for debit transactions.

• If the date in the funds_avail_date column is greater than the current day, the
transaction should be added to the pending balance total but not to the available
balance total.

Case Expression Examples | 209

While some transactions need to be excluded from the available balance, all transac-
tions are included in the pending balance, making it the simpler of the two calculations.
Here’s the case expression used to calculate the pending balance:

CASE
 WHEN transaction.txn_type_cd = 'DBT'
 THEN transaction.amount * −1
 ELSE transaction.amount
END

Thus, all transaction amounts are multiplied by −1 for debit transactions and are left
as is for credit transactions. This same logic applies to the available balance calculation
as well, but only transactions that have become available should be included. Therefore,
the case expression used to calculate available balance includes one additional when
clause:

CASE
 WHEN transaction.funds_avail_date > CURRENT_TIMESTAMP()
 THEN 0
 WHEN transaction.txn_type_cd = 'DBT'
 THEN transaction.amount * −1
 ELSE transaction.amount
END

With the first when clause in place, unavailable funds, such as checks that have not
cleared, will contribute $0 to the sum. Here’s the final query with the two case expres-
sions in place:

SELECT CONCAT('ALERT! : Account #', a.account_id,
 ' Has Incorrect Balance!')
FROM account a
WHERE (a.avail_balance, a.pending_balance) <>
 (SELECT
 SUM(CASE
 WHEN t.funds_avail_date > CURRENT_TIMESTAMP()
 THEN 0
 WHEN t.txn_type_cd = 'DBT'
 THEN t.amount * −1
 ELSE t.amount
 END),
 SUM(CASE
 WHEN t.txn_type_cd = 'DBT'
 THEN t.amount * −1
 ELSE t.amount
 END)
 FROM transaction t
 WHERE t.account_id = a.account_id);

By using conditional logic, the sum() aggregate functions are being fed manipulated
data by the two case expressions, allowing the appropriate amounts to be summed.

210 | Chapter 11: Conditional Logic

Checking for Existence
Sometimes you will want to determine whether a relationship exists between two en-
tities without regard for the quantity. For example, you might want to know whether
a customer has any checking or savings accounts, but you don’t care whether a cus-
tomer has more than one of each type of account. Here’s a query that uses multiple
case expressions to generate two output columns, one to show whether the customer
has any checking accounts and the other to show whether the customer has any savings
accounts:

mysql> SELECT c.cust_id, c.fed_id, c.cust_type_cd,
 -> CASE
 -> WHEN EXISTS (SELECT 1 FROM account a
 -> WHERE a.cust_id = c.cust_id
 -> AND a.product_cd = 'CHK') THEN 'Y'
 -> ELSE 'N'
 -> END has_checking,
 -> CASE
 -> WHEN EXISTS (SELECT 1 FROM account a
 -> WHERE a.cust_id = c.cust_id
 -> AND a.product_cd = 'SAV') THEN 'Y'
 -> ELSE 'N'
 -> END has_savings
 -> FROM customer c;
+---------+-------------+--------------+--------------+-------------+
| cust_id | fed_id | cust_type_cd | has_checking | has_savings |
+---------+-------------+--------------+--------------+-------------+
1	111-11-1111	I	Y	Y
2	222-22-2222	I	Y	Y
3	333-33-3333	I	Y	N
4	444-44-4444	I	Y	Y
5	555-55-5555	I	Y	N
6	666-66-6666	I	Y	N
7	777-77-7777	I	N	N
8	888-88-8888	I	Y	Y
9	999-99-9999	I	Y	N
10	04-1111111	B	Y	N
11	04-2222222	B	N	N
12	04-3333333	B	Y	N
13	04-4444444	B	N	N
+---------+-------------+--------------+--------------+-------------+
13 rows in set (0.00 sec)

Each case expression includes a correlated subquery against the account table; one looks
for checking accounts, the other for savings accounts. Since each when clause uses the
exists operator, the conditions evaluate to true as long as the customer has at least
one of the desired accounts.

In other cases, you may care how many rows are encountered, but only up to a point.
For example, the next query uses a simple case expression to count the number of
accounts for each customer, and then returns either 'None', '1', '2', or '3+':

Case Expression Examples | 211

mysql> SELECT c.cust_id, c.fed_id, c.cust_type_cd,
 -> CASE (SELECT COUNT(*) FROM account a
 -> WHERE a.cust_id = c.cust_id)
 -> WHEN 0 THEN 'None'
 -> WHEN 1 THEN '1'
 -> WHEN 2 THEN '2'
 -> ELSE '3+'
 -> END num_accounts
 -> FROM customer c;
+---------+-------------+--------------+--------------+
| cust_id | fed_id | cust_type_cd | num_accounts |
+---------+-------------+--------------+--------------+
1	111-11-1111	I	3+
2	222-22-2222	I	2
3	333-33-3333	I	2
4	444-44-4444	I	3+
5	555-55-5555	I	1
6	666-66-6666	I	2
7	777-77-7777	I	1
8	888-88-8888	I	2
9	999-99-9999	I	3+
10	04-1111111	B	2
11	04-2222222	B	1
12	04-3333333	B	1
13	04-4444444	B	1
+---------+-------------+--------------+--------------+
13 rows in set (0.01 sec)

For this query, I didn’t want to differentiate between customers having more than two
accounts, so the case expression simply creates a '3+' category. Such a query might be
useful if you were looking for customers to contact regarding opening a new account
with the bank.

Division-by-Zero Errors
When performing calculations that include division, you should always take care to
ensure that the denominators are never equal to zero. Whereas some database servers,
such as Oracle Database, will throw an error when a zero denominator is encountered,
MySQL simply sets the result of the calculation to null, as demonstrated by the
following:

mysql> SELECT 100 / 0;
+---------+
| 100 / 0 |
+---------+
| NULL |
+---------+
1 row in set (0.00 sec)

To safeguard your calculations from encountering errors or, even worse, from being
mysteriously set to null, you should wrap all denominators in conditional logic, as
demonstrated by the following:

212 | Chapter 11: Conditional Logic

mysql> SELECT a.cust_id, a.product_cd, a.avail_balance /
 -> CASE
 -> WHEN prod_tots.tot_balance = 0 THEN 1
 -> ELSE prod_tots.tot_balance
 -> END percent_of_total
 -> FROM account a INNER JOIN
 -> (SELECT a.product_cd, SUM(a.avail_balance) tot_balance
 -> FROM account a
 -> GROUP BY a.product_cd) prod_tots
 -> ON a.product_cd = prod_tots.product_cd;
+---------+------------+------------------+
| cust_id | product_cd | percent_of_total |
+---------+------------+------------------+
10	BUS	0.000000
11	BUS	1.000000
1	CD	0.153846
6	CD	0.512821
7	CD	0.256410
9	CD	0.076923
1	CHK	0.014488
2	CHK	0.030928
3	CHK	0.014488
4	CHK	0.007316
5	CHK	0.030654
6	CHK	0.001676
8	CHK	0.047764
9	CHK	0.001721
10	CHK	0.322911
12	CHK	0.528052
3	MM	0.129802
4	MM	0.321915
9	MM	0.548282
1	SAV	0.269431
2	SAV	0.107773
4	SAV	0.413723
8	SAV	0.209073
13	SBL	1.000000
+---------+------------+------------------+
24 rows in set (0.13 sec)

This query computes the ratio of each account balance to the total balance for all ac-
counts of the same product type. Since some product types, such as business loans,
could have a total balance of zero if all loans were currently paid in full, it is best to
include the case expression to ensure that the denominator is never zero.

Conditional Updates
When updating rows in a table, you sometimes need to decide what values to set certain
columns to. For example, after inserting a new transaction, you need to modify the
avail_balance, pending_balance, and last_activity_date columns in the account table.
Although the last two columns are easily updated, to correctly modify the
avail_balance column you need to know whether the funds from the transaction are

Case Expression Examples | 213

immediately available by checking the funds_avail_date column in the transaction
table. Given that transaction ID 999 has just been inserted, you can use the following
update statement to modify the three columns in the account table:

1 UPDATE account
2 SET last_activity_date = CURRENT_TIMESTAMP(),
3 pending_balance = pending_balance +
4 (SELECT t.amount *
5 CASE t.txn_type_cd WHEN 'DBT' THEN −1 ELSE 1 END
6 FROM transaction t
7 WHERE t.txn_id = 999),
8 avail_balance = avail_balance +
9 (SELECT
10 CASE
11 WHEN t.funds_avail_date > CURRENT_TIMESTAMP() THEN 0
12 ELSE t.amount *
13 CASE t.txn_type_cd WHEN 'DBT' THEN −1 ELSE 1 END
14 END
15 FROM transaction t
16 WHERE t.txn_id = 999)
17 WHERE account.account_id =
18 (SELECT t.account_id
19 FROM transaction t
20 WHERE t.txn_id = 999);

This statement contains a total of three case expressions : two of them (lines 5 and 13)
are used to flip the sign on the transaction amount for debit transactions, and the third
case expression (line 10) is used to check the funds availability date. If the date is in the
future, then zero is added to the available balance; otherwise, the transaction amount
is added.

Handling Null Values
While null values are the appropriate thing to store in a table if the value for a column
is unknown, it is not always appropriate to retrieve null values for display or to take
part in expressions. For example, you might want to display the word unknown on a
data entry screen rather than leaving a field blank. When retrieving the data, you can
use a case expression to substitute the string if the value is null, as in:

SELECT emp_id, fname, lname,
 CASE
 WHEN title IS NULL THEN 'Unknown'
 ELSE title
 END
FROM employee;

For calculations, null values often cause a null result, as demonstrated by the following:

mysql> SELECT (7 * 5) / ((3 + 14) * null);
+-----------------------------+
| (7 * 5) / ((3 + 14) * null) |
+-----------------------------+
| NULL |

214 | Chapter 11: Conditional Logic

+-----------------------------+
1 row in set (0.08 sec)

When performing calculations, case expressions are useful for translating a null value
into a number (usually 0 or 1) that will allow the calculation to yield a non-null value.
If you are performing a calculation that includes the account.avail_balance column,
for example, you could substitute a 0 (if doing addition or subtraction) or a 1 (if doing
multiplication or division) for those accounts that have been established but haven’t
yet been funded:

SELECT <some calculation> +
 CASE
 WHEN avail_balance IS NULL THEN 0
 ELSE avail_balance
 END
 + <rest of calculation>
...

If a numeric column is allowed to contain null values, it is generally a good idea to use
conditional logic in any calculations that include the column so that the results are
usable.

Test Your Knowledge
Challenge your ability to work through conditional logic problems with the examples
that follow. When you’re done, compare your solutions with those in Appendix C.

Exercise 11-1
Rewrite the following query, which uses a simple case expression, so that the same
results are achieved using a searched case expression. Try to use as few when clauses as
possible.

SELECT emp_id,
 CASE title
 WHEN 'President' THEN 'Management'
 WHEN 'Vice President' THEN 'Management'
 WHEN 'Treasurer' THEN 'Management'
 WHEN 'Loan Manager' THEN 'Management'
 WHEN 'Operations Manager' THEN 'Operations'
 WHEN 'Head Teller' THEN 'Operations'
 WHEN 'Teller' THEN 'Operations'
 ELSE 'Unknown'
 END
FROM employee;

Test Your Knowledge | 215

Exercise 11-2
Rewrite the following query so that the result set contains a single row with four col-
umns (one for each branch). Name the four columns branch_1 through branch_4.

mysql> SELECT open_branch_id, COUNT(*)
 -> FROM account
 -> GROUP BY open_branch_id;
+----------------+----------+
| open_branch_id | COUNT(*) |
+----------------+----------+
1	8
2	7
3	3
4	6
+----------------+----------+
4 rows in set (0.00 sec)

216 | Chapter 11: Conditional Logic

CHAPTER 12

Transactions

All of the examples thus far in this book have been individual, independent SQL state-
ments. While this may be the norm for ad hoc reporting or data maintenance scripts,
application logic will frequently include multiple SQL statements that need to execute
together as a logical unit of work. This chapter explores the need and the infrastructure
necessary to execute multiple SQL statements concurrently.

Multiuser Databases
Database management systems allow not only a single user to query and modify data,
but multiple people to do so simultaneously. If every user is only executing queries,
such as might be the case with a data warehouse during normal business hours, then
there are very few issues for the database server to deal with. If some of the users are
adding and/or modifying data, however, the server must handle quite a bit more
bookkeeping.

Let’s say, for example, that you are running a report that shows the available balance
for all the checking accounts opened at your branch. At the same time you are running
the report, however, the following activities are occurring:

• A teller at your branch is handling a deposit for one of your customers.

• A customer is finishing a withdrawal at the ATM in the front lobby.

• The bank’s month-end application is applying interest to the accounts.

While your report is running, therefore, multiple users are modifying the underlying
data, so what numbers should appear on the report? The answer depends somewhat
on how your server handles locking, which is described in the next section.

Locking
Locks are the mechanism the database server uses to control simultaneous use of data
resources. When some portion of the database is locked, any other users wishing to

217

modify (or possibly read) that data must wait until the lock has been released. Most
database servers use one of two locking strategies:

• Database writers must request and receive from the server a write lock to modify
data, and database readers must request and receive from the server a read lock to
query data. While multiple users can read data simultaneously, only one write lock
is given out at a time for each table (or portion thereof), and read requests are
blocked until the write lock is released.

• Database writers must request and receive from the server a write lock to modify
data, but readers do not need any type of lock to query data. Instead, the server
ensures that a reader sees a consistent view of the data (the data seems the same
even though other users may be making modifications) from the time her query
begins until her query has finished. This approach is known as versioning.

There are pros and cons to both approaches. The first approach can lead to long wait
times if there are many concurrent read and write requests, and the second approach
can be problematic if there are long-running queries while data is being modified. Of
the three servers discussed in this book, Microsoft SQL Server uses the first approach,
Oracle Database uses the second approach, and MySQL uses both approaches (de-
pending on your choice of storage engine, which we’ll discuss a bit later in the chapter).

Lock Granularities
There are also a number of different strategies that you may employ when deciding
how to lock a resource. The server may apply a lock at one of three different levels, or
granularities:

Table locks
Keep multiple users from modifying data in the same table simultaneously

Page locks
Keep multiple users from modifying data on the same page (a page is a segment of
memory generally in the range of 2 KB to 16 KB) of a table simultaneously

Row locks
Keep multiple users from modifying the same row in a table simultaneously

Again, there are pros and cons to these approaches. It takes very little bookkeeping to
lock entire tables, but this approach quickly yields unacceptable wait times as the
number of users increases. On the other hand, row locking takes quite a bit more
bookkeeping, but it allows many users to modify the same table as long as they are
interested in different rows. Of the three servers discussed in this book, Microsoft SQL
Server uses page, row, and table locking, Oracle Database uses only row locking, and
MySQL uses table, page, or row locking (depending, again, on your choice of storage
engine). SQL Server will, under certain circumstances, escalate locks from row to page,
and from page to table, whereas Oracle Database will never escalate locks.

218 | Chapter 12: Transactions

To get back to your report, the data that appears on the pages of the report will mirror
either the state of the database when your report started (if your server uses a versioning
approach) or the state of the database when the server issues the reporting application
a read lock (if your server uses both read and write locks).

What Is a Transaction?
If database servers enjoyed 100% uptime, if users always allowed programs to finish
executing, and if applications always completed without encountering fatal errors that
halt execution, then there would be nothing left to discuss regarding concurrent data-
base access. However, we can rely on none of these things, so one more element is
necessary to allow multiple users to access the same data.

This extra piece of the concurrency puzzle is the transaction, which is a device for
grouping together multiple SQL statements such that either all or none of the statements
succeed (a property known as atomicity). If you attempt to transfer $500 from your
savings account to your checking account, you would be a bit upset if the money were
successfully withdrawn from your savings account but never made it to your checking
account. Whatever the reason for the failure (the server was shut down for maintenance,
the request for a page lock on the account table timed out, etc.), you want your $500
back.

To protect against this kind of error, the program that handles your transfer request
would first begin a transaction, then issue the SQL statements needed to move the
money from your savings to your checking account, and, if everything succeeds, end
the transaction by issuing the commit command. If something unexpected happens,
however, the program would issue a rollback command, which instructs the server to
undo all changes made since the transaction began. The entire process might look
something like the following:

START TRANSACTION;

 /* withdraw money from first account, making sure balance is sufficient */
UPDATE account SET avail_balance = avail_balance - 500
WHERE account_id = 9988
 AND avail_balance > 500;

IF <exactly one row was updated by the previous statement> THEN
 /* deposit money into second account */
 UPDATE account SET avail_balance = avail_balance + 500
 WHERE account_id = 9989;

 IF <exactly one row was updated by the previous statement> THEN
 /* everything worked, make the changes permanent */
 COMMIT;
 ELSE
 /* something went wrong, undo all changes in this transaction */
 ROLLBACK;
 END IF;

What Is a Transaction? | 219

ELSE
 /* insufficient funds, or error encountered during update */
 ROLLBACK;
END IF;

While the previous code block may look similar to one of the procedural
languages provided by the major database companies, such as Oracle’s
PL/SQL or Microsoft’s Transact-SQL, it is written in pseudocode and
does not attempt to mimic any particular language.

The previous code block begins by starting a transaction and then attempts to remove
$500 from the checking account and add it to the savings account. If all goes well, the
transaction is committed; if anything goes awry, however, the transaction is rolled back,
meaning that all data changes since the beginning of the transaction are undone.

By using a transaction, the program ensures that your $500 either stays in your savings
account or moves to your checking account, without the possibility of it falling into a
crack. Regardless of whether the transaction was committed or was rolled back, all
resources acquired (e.g., write locks) during the execution of the transaction are re-
leased when the transaction completes.

Of course, if the program manages to complete both update statements but the server
shuts down before a commit or rollback can be executed, then the transaction will be
rolled back when the server comes back online. (One of the tasks that a database server
must complete before coming online is to find any incomplete transactions that were
underway when the server shut down and to roll them back.) Additionally, if your
program finishes a transaction and issues a commit, but the server shuts down before
the changes have been applied to permanent storage (i.e., the modified data is sitting
in memory but has not been flushed to disk), then the database server must reapply the
changes from your transaction when the server is restarted (a property known as
durability).

Starting a Transaction
Database servers handle transaction creation in one of two ways:

• An active transaction is always associated with a database session, so there is no
need or method to explicitly begin a transaction. When the current transaction
ends, the server automatically begins a new transaction for your session.

• Unless you explicitly begin a transaction, individual SQL statements are automat-
ically committed independently of one another. To begin a transaction, you must
first issue a command.

Of the three servers, Oracle Database takes the first approach, while Microsoft SQL
Server and MySQL take the second approach. One of the advantages of Oracle’s ap-
proach to transactions is that, even if you are issuing only a single SQL command, you

220 | Chapter 12: Transactions

have the ability to roll back the changes if you don’t like the outcome or if you change
your mind. Thus, if you forget to add a where clause to your delete statement, you will
have the opportunity to undo the damage (assuming you’ve had your morning coffee
and realize that you didn’t mean to delete all 125,000 rows in your table). With MySQL
and SQL Server, however, once you press the Enter key, the changes brought about by
your SQL statement will be permanent (unless your DBA can retrieve the original data
from a backup or from some other means).

The SQL:2003 standard includes a start transaction command to be used when you
want to explicitly begin a transaction. While MySQL conforms to the standard, SQL
Server users must instead issue the command begin transaction. With both servers,
until you explicitly begin a transaction, you are in what is known as auto-commit
mode, which means that individual statements are automatically committed by the
server. You can, therefore, decide that you want to be in a transaction and issue a start/
begin transaction command, or you can simply let the server commit individual
statements.

Both MySQL and SQL Server allow you to turn off auto-commit mode for individual
sessions, in which case, the servers will act just like Oracle Database regarding trans-
actions. With SQL Server, you issue the following command to disable auto-commit
mode:

SET IMPLICIT_TRANSACTIONS ON

MySQL allows you to disable auto-commit mode via the following:

SET AUTOCOMMIT=0

Once you have left auto-commit mode, all SQL commands take place within the scope
of a transaction and must be explicitly committed or rolled back.

A word of advice: shut off auto-commit mode each time you log in, and
get in the habit of running all of your SQL statements within a transac-
tion. If nothing else, it may save you the embarrassment of having to ask
your DBA to reconstruct data that you have inadvertently deleted.

Ending a Transaction
Once a transaction has begun, whether explicitly via the start transaction command
or implicitly by the database server, you must explicitly end your transaction for your
changes to become permanent. You do this by way of the commit command, which
instructs the server to mark the changes as permanent and release any resources (i.e.,
page or row locks) used during the transaction.

If you decide that you want to undo all the changes made since starting the transaction,
you must issue the rollback command, which instructs the server to return the data to
its pretransaction state. After the rollback has been completed, any resources used by
your session are released.

What Is a Transaction? | 221

Along with issuing either the commit or rollback command, there are several other
scenarios by which your transaction can end, either as an indirect result of your actions
or as a result of something outside your control:

• The server shuts down, in which case, your transaction will be rolled back auto-
matically when the server is restarted.

• You issue an SQL schema statement, such as alter table, which will cause the
current transaction to be committed and a new transaction to be started.

• You issue another start transaction command, which will cause the previous
transaction to be committed.

• The server prematurely ends your transaction because the server detects a dead-
lock and decides that your transaction is the culprit. In this case, the transaction
will be rolled back and you will receive an error message.

Of these four scenarios, the first and third are fairly straightforward, but the other two
merit some discussion. As far as the second scenario is concerned, alterations to a
database, whether it be the addition of a new table or index or the removal of a column
from a table, cannot be rolled back, so commands that alter your schema must take
place outside a transaction. If a transaction is currently underway, therefore, the server
will commit your current transaction, execute the SQL schema statement command(s),
and then automatically start a new transaction for your session. The server will not
inform you of what has happened, so you should be careful that the statements that
comprise a unit of work are not inadvertently broken up into multiple transactions by
the server.

The fourth scenario deals with deadlock detection. A deadlock occurs when two dif-
ferent transactions are waiting for resources that the other transaction currently holds.
For example, transaction A might have just updated the account table and is waiting
for a write lock on the transaction table, while transaction B has inserted a row into
the transaction table and is waiting for a write lock on the account table. If both trans-
actions happen to be modifying the same page or row (depending on the lock granu-
larity in use by the database server), then they will each wait forever for the other
transaction to finish and free up the needed resource. Database servers must always be
on the lookout for these situations so that throughput doesn’t grind to a halt; when a
deadlock is detected, one of the transactions is chosen (either arbitrarily or by some
criteria) to be rolled back so that the other transaction may proceed. Most of the time,
the terminated transaction can be restarted and will succeed without encountering
another deadlock situation.

Unlike the second scenario discussed earlier, the database server will raise an error to
inform you that your transaction has been rolled back due to deadlock detection. With
MySQL, for example, you will receive error #1213, which carries the following
message:

Message: Deadlock found when trying to get lock; try restarting transaction

222 | Chapter 12: Transactions

As the error message suggests, it is a reasonable practice to retry a transaction that has
been rolled back due to deadlock detection. However, if deadlocks become fairly com-
mon, then you may need to modify the applications that access the database to decrease
the probability of deadlocks (one common strategy is to ensure that data resources are
always accessed in the same order, such as always modifying account data before in-
serting transaction data).

Transaction Savepoints
In some cases, you may encounter an issue within a transaction that requires a rollback,
but you may not want to undo all of the work that has transpired. For these situations,
you can establish one or more savepoints within a transaction and use them to roll back
to a particular location within your transaction rather than rolling all the way back to
the start of the transaction.

Choosing a Storage Engine
When using Oracle Database or Microsoft SQL Server, a single set of code is responsible
for low-level database operations, such as retrieving a particular row from a table based
on primary key value. The MySQL server, however, has been designed so that multiple
storage engines may be utilized to provide low-level database functionality, including
resource locking and transaction management. As of version 6.0, MySQL includes the
following storage engines:

MyISAM
A nontransactional engine employing table locking

MEMORY
A nontransactional engine used for in-memory tables

BDB
A transactional engine employing page-level locking

InnoDB
A transactional engine employing row-level locking

Merge
A specialty engine used to make multiple identical MyISAM tables appear as a
single table (a.k.a. table partitioning)

Maria
A MyISAM replacement included in version 6.0.6 that adds full recovery
capabilities

Falcon
A new (as of 6.0.4) high-performance transactional engine employing row-level
locking

Archive
A specialty engine used to store large amounts of unindexed data, mainly for ar-
chival purposes

What Is a Transaction? | 223

Although you might think that you would be forced to choose a single storage engine
for your database, MySQL is flexible enough to allow you to choose a storage engine
on a table-by-table basis. For any tables that might take part in transactions, however,
you should choose the InnoDB or Falcon storage engine, which uses row-level locking
and versioning to provide the highest level of concurrency across the different storage
engines.

You may explicitly specify a storage engine when creating a table, or you can change
an existing table to use a different engine. If you do not know what engine is assigned
to a table, you can use the show table command, as demonstrated by the following:

mysql> SHOW TABLE STATUS LIKE 'transaction' \G
*************************** 1. row ***************************
 Name: transaction
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 21
 Avg_row_length: 780
 Data_length: 16384
Max_data_length: 0
 Index_length: 49152
 Data_free: 0
 Auto_increment: 22
 Create_time: 2008-02-19 23:24:36
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:
1 row in set (1.46 sec)

Looking at the second item, you can see that the transaction table is already using the
InnoDB engine. If it were not, you could assign the InnoDB engine to the transaction
table via the following command:

ALTER TABLE transaction ENGINE = INNODB;

All savepoints must be given a name, which allows you to have multiple savepoints
within a single transaction. To create a savepoint named my_savepoint, you can do the
following:

SAVEPOINT my_savepoint;

To roll back to a particular savepoint, you simply issue the rollback command followed
by the keywords to savepoint and the name of the savepoint, as in:

ROLLBACK TO SAVEPOINT my_savepoint;

Here’s an example of how savepoints may be used:

START TRANSACTION;

UPDATE product
SET date_retired = CURRENT_TIMESTAMP()

224 | Chapter 12: Transactions

WHERE product_cd = 'XYZ';

SAVEPOINT before_close_accounts;

UPDATE account
SET status = 'CLOSED', close_date = CURRENT_TIMESTAMP(),
 last_activity_date = CURRENT_TIMESTAMP()
WHERE product_cd = 'XYZ';

ROLLBACK TO SAVEPOINT before_close_accounts;
COMMIT;

The net effect of this transaction is that the mythical XYZ product is retired but none
of the accounts are closed.

When using savepoints, remember the following:

• Despite the name, nothing is saved when you create a savepoint. You must even-
tually issue a commit if you want your transaction to be made permanent.

• If you issue a rollback without naming a savepoint, all savepoints within the trans-
action will be ignored and the entire transaction will be undone.

If you are using SQL Server, you will need to use the proprietary command save
transaction to create a savepoint and rollback transaction to roll back to a savepoint,
with each command being followed by the savepoint name.

Test Your Knowledge
Test your understanding of transactions by working through the following exercise.
When you’re done, compare your solution with that in Appendix C.

Exercise 12-1
Generate a transaction to transfer $50 from Frank Tucker’s money market account to
his checking account. You will need to insert two rows into the transaction table and
update two rows in the account table.

Test Your Knowledge | 225

CHAPTER 13

Indexes and Constraints

Because the focus of this book is on programming techniques, the first 12 chapters
concentrated on elements of the SQL language that you can use to craft powerful
select, insert, update, and delete statements. However, other database features indi-
rectly affect the code you write. This chapter focuses on two of those features: indexes
and constraints.

Indexes
When you insert a row into a table, the database server does not attempt to put the
data in any particular location within the table. For example, if you add a row to the
department table, the server doesn’t place the row in numeric order via the dept_id
column or in alphabetical order via the name column. Instead, the server simply places
the data in the next available location within the file (the server maintains a list of free
space for each table). When you query the department table, therefore, the server will
need to inspect every row of the table to answer the query. For example, let’s say that
you issue the following query:

mysql> SELECT dept_id, name
 -> FROM department
 -> WHERE name LIKE 'A%';
+---------+----------------+
| dept_id | name |
+---------+----------------+
| 3 | Administration |
+---------+----------------+
1 row in set (0.03 sec)

To find all departments whose name begins with A, the server must visit each row in
the department table and inspect the contents of the name column; if the department
name begins with A, then the row is added to the result set. This type of access is known
as a table scan.

227

While this method works fine for a table with only three rows, imagine how long it
might take to answer the query if the table contains 3 million rows. At some number
of rows larger than three and smaller than 3 million, a line is crossed where the server
cannot answer the query within a reasonable amount of time without additional help.
This help comes in the form of one or more indexes on the department table.

Even if you have never heard of a database index, you are certainly aware of what an
index is (e.g., this book has one). An index is simply a mechanism for finding a specific
item within a resource. Each technical publication, for example, includes an index at
the end that allows you to locate a specific word or phrase within the publication. The
index lists these words and phrases in alphabetical order, allowing the reader to move
quickly to a particular letter within the index, find the desired entry, and then find the
page or pages on which the word or phrase may be found.

In the same way that a person uses an index to find words within a publication, a
database server uses indexes to locate rows in a table. Indexes are special tables that,
unlike normal data tables, are kept in a specific order. Instead of containing all of the
data about an entity, however, an index contains only the column (or columns) used
to locate rows in the data table, along with information describing where the rows are
physically located. Therefore, the role of indexes is to facilitate the retrieval of a subset
of a table’s rows and columns without the need to inspect every row in the table.

Index Creation
Returning to the department table, you might decide to add an index on the name column
to speed up any queries that specify a full or partial department name, as well as any
update or delete operations that specify a department name. Here’s how you can add
such an index to a MySQL database:

mysql> ALTER TABLE department
 -> ADD INDEX dept_name_idx (name);
Query OK, 3 rows affected (0.08 sec)
Records: 3 Duplicates: 0 Warnings: 0

This statement creates an index (a B-tree index to be precise, but more on this shortly)
on the department.name column; furthermore, the index is given the name
dept_name_idx. With the index in place, the query optimizer (which we discussed in
Chapter 3) can choose to use the index if it is deemed beneficial to do so (with only
three rows in the department table, for example, the optimizer might very well choose
to ignore the index and read the entire table). If there is more than one index on a table,
the optimizer must decide which index will be the most beneficial for a particular SQL
statement.

228 | Chapter 13: Indexes and Constraints

MySQL treats indexes as optional components of a table, which is why
you must use the alter table command to add or remove an index.
Other database servers, including SQL Server and Oracle Database,
treat indexes as independent schema objects. For both SQL Server and
Oracle, therefore, you would generate an index using the create
index command, as in:

CREATE INDEX dept_name_idx
ON department (name);

As of MySQL version 5.0, a create index command is available, al-
though it is mapped to the alter table command.

All database servers allow you to look at the available indexes. MySQL users can use
the show command to see all of the indexes on a specific table, as in:

mysql> SHOW INDEX FROM department \G *************************** 1. row
*************************** 1. row ***************************
 Table: department
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: dept_id
 Collation: A
 Cardinality: 3
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_Comment:
*************************** 2. row ***************************
 Table: department
 Non_unique: 1
 Key_name: dept_name_idx
 Seq_in_index: 1
 Column_name: name
 Collation: A
 Cardinality: 3
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_Comment:
2 rows in set (0.01 sec)

The output shows that there are two indexes on the department table: one on the
dept_id column called PRIMARY, and the other on the name column called
dept_name_idx. Since I have created only one index so far (dept_name_idx), you might
be wondering where the other came from; when the department table was created, the

Indexes | 229

create table statement included a constraint naming the dept_id column as the pri-
mary key for the table. Here’s the statement used to create the table:

CREATE TABLE department
 (dept_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 CONSTRAINT pk_department PRIMARY KEY (dept_id));

When the table was created, the MySQL server automatically generated an index on
the primary key column, which, in this case, is dept_id, and gave the index the name
PRIMARY. I cover constraints later in this chapter.

If, after creating an index, you decide that the index is not proving useful, you can
remove it via the following:

mysql> ALTER TABLE department
 -> DROP INDEX dept_name_idx;
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Warnings: 0

SQL Server and Oracle Database users must use the drop index com-
mand to remove an index, as in:

DROP INDEX dept_name_idx; (Oracle)

DROP INDEX dept_name_idx ON department (SQL Server)

MySQL now also supports a drop index command.

Unique indexes

When designing a database, it is important to consider which columns are allowed to
contain duplicate data and which are not. For example, it is allowable to have two
customers named John Smith in the individual table since each row will have a different
identifier (cust_id), birth date, and tax number (customer.fed_id) to help tell them
apart. You would not, however, want to allow two departments with the same name
in the department table. You can enforce a rule against duplicate department names by
creating a unique index on the department.name column.

A unique index plays multiple roles in that, along with providing all the benefits of a
regular index, it also serves as a mechanism for disallowing duplicate values in the
indexed column. Whenever a row is inserted or when the indexed column is modified,
the database server checks the unique index to see whether the value already exists in
another row in the table. Here’s how you would create a unique index on the
department.name column:

mysql> ALTER TABLE department
 -> ADD UNIQUE dept_name_idx (name);
Query OK, 3 rows affected (0.04 sec)
Records: 3 Duplicates: 0 Warnings: 0

230 | Chapter 13: Indexes and Constraints

SQL Server and Oracle Database users need only add the unique key-
word when creating an index, as in:

CREATE UNIQUE INDEX dept_name_idx
ON department (name);

With the index in place, you will receive an error if you try to add another department
with the name 'Operations':

mysql> INSERT INTO department (dept_id, name)
 -> VALUES (999, 'Operations');
ERROR 1062 (23000): Duplicate entry 'Operations' for key 'dept_name_idx'

You should not build unique indexes on your primary key column(s), since the server
already checks uniqueness for primary key values. You may, however, create more than
one unique index on the same table if you feel that it is warranted.

Multicolumn indexes

Along with the single-column indexes demonstrated thus far, you may build indexes
that span multiple columns. If, for example, you find yourself searching for employees
by first and last names, you can build an index on both columns together, as in:

mysql> ALTER TABLE employee
 -> ADD INDEX emp_names_idx (lname, fname);
Query OK, 18 rows affected (0.10 sec)
Records: 18 Duplicates: 0 Warnings: 0

This index will be useful for queries that specify the first and last names or just the last
name, but you cannot use it for queries that specify only the employee’s first name. To
understand why, consider how you would find a person’s phone number; if you know
the person’s first and last names, you can use a phone book to find the number quickly,
since a phone book is organized by last name and then by first name. If you know only
the person’s first name, you would need to scan every entry in the phone book to find
all the entries with the specified first name.

When building multiple-column indexes, therefore, you should think carefully about
which column to list first, which column to list second, and so on so that the index is
as useful as possible. Keep in mind, however, that there is nothing stopping you from
building multiple indexes using the same set of columns but in a different order if you
feel that it is needed to ensure adequate response time.

Types of Indexes
Indexing is a powerful tool, but since there are many different types of data, a single
indexing strategy doesn’t always do the job. The following sections illustrate the dif-
ferent types of indexing available from various servers.

Indexes | 231

B-tree indexes

All the indexes shown thus far are balanced-tree indexes, which are more commonly
known as B-tree indexes. MySQL, Oracle Database, and SQL Server all default to B-
tree indexing, so you will get a B-tree index unless you explicitly ask for another type.
As you might expect, B-tree indexes are organized as trees, with one or more levels of
branch nodes leading to a single level of leaf nodes. Branch nodes are used for navigating
the tree, while leaf nodes hold the actual values and location information. For example,
a B-tree index built on the employee.lname column might look something like Fig-
ure 13-1.

A - M

N - Z

A - C
D - F
G - I
J - M

N - P
Q - S
T - V
W - Z

Barker
Blake

Fleming
Fowler

Gooding
Grossman

Hawthorne

Jameson
Markham

Mason

Parker
Portman

Roberts
Smith

Tucker
Tulman

Tyler
Ziegler

Figure 13-1. B-tree example

If you were to issue a query to retrieve all employees whose last name starts with G, the
server would look at the top branch node (called the root node) and follow the link to
the branch node that handles last names beginning with A through M. This branch
node would, in turn, direct the server to a leaf node containing last names beginning
with G through I. The server then starts reading the values in the leaf node until it
encounters a value that doesn’t begin with G (which, in this case, is 'Hawthorne').

As rows are inserted, updated, and deleted from the employee table, the server will
attempt to keep the tree balanced so that there aren’t far more branch/leaf nodes on
one side of the root node than the other. The server can add or remove branch nodes
to redistribute the values more evenly and can even add or remove an entire level of
branch nodes. By keeping the tree balanced, the server is able to traverse quickly to the
leaf nodes to find the desired values without having to navigate through many levels of
branch nodes.

232 | Chapter 13: Indexes and Constraints

Bitmap indexes

Although B-tree indexes are great at handling columns that contain many different
values, such as a customer’s first/last names, they can become unwieldy when built on
a column that allows only a small number of values. For example, you may decide to
generate an index on the account.product_cd column so that you can quickly retrieve
all accounts of a specific type (e.g., checking, savings). Because there are only eight
different products, however, and because some products are far more popular than
others, it can be difficult to maintain a balanced B-tree index as the number of accounts
grows.

For columns that contain only a small number of values across a large number of rows
(known as low-cardinality data), a different indexing strategy is needed. To handle this
situation more efficiently, Oracle Database includes bitmap indexes, which generate a
bitmap for each value stored in the column. Figure 13-2 shows what a bitmap index
might look like for data in the account.product_cd column.

Value/row

BUS

CD

CHK

MM

SAV

SBL

1

0

0

1

0

0

0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 13-2. Bitmap example

The index contains six bitmaps, one for each value in the product_cd column (two of
the eight available products are not being used), and each bitmap includes a 0/1 value
for each of the 24 rows in the account table. Thus, if you ask the server to retrieve all
money market accounts (product_cd = 'MM'), the server simply finds all the 1 values in
the MM bitmap and returns rows 7, 10, and 18. The server can also combine bitmaps if
you are looking for multiple values; for example, if you want to retrieve all money
market and savings accounts (product_cd = 'MM' or product_cd = 'SAV'), the server can
perform an OR operation on the MM and SAV bitmaps and return rows 2, 5, 7, 9, 10, 16,
and 18.

Bitmap indexes are a nice, compact indexing solution for low-cardinality data, but this
indexing strategy breaks down if the number of values stored in the column climbs too
high in relation to the number of rows (known as high-cardinality data), since the server
would need to maintain too many bitmaps. For example, you would never build a

Indexes | 233

bitmap index on your primary key column, since this represents the highest possible
cardinality (a different value for every row).

Oracle users can generate bitmap indexes by simply adding the bitmap keyword to the
create index statement, as in:

CREATE BITMAP INDEX acc_prod_idx ON account (product_cd);

Bitmap indexes are commonly used in data warehousing environments, where large
amounts of data are generally indexed on columns containing relatively few values (e.g.,
sales quarters, geographic regions, products, salespeople).

Text indexes

If your database stores documents, you may need to allow users to search for words or
phrases in the documents. You certainly don’t want the server to open each document
and scan for the desired text each time a search is requested, but traditional indexing
strategies don’t work for this situation. To handle this situation, MySQL, SQL Server,
and Oracle Database include specialized indexing and search mechanisms for docu-
ments; both SQL Server and MySQL include what they call full-text indexes (for
MySQL, full-text indexes are available only with its MyISAM storage engine), and
Oracle Database includes a powerful set of tools known as Oracle Text. Document
searches are specialized enough that I refrain from showing an example, but I wanted
you to at least know what is available.

How Indexes Are Used
Indexes are generally used by the server to quickly locate rows in a particular table,
after which the server visits the associated table to extract the additional information
requested by the user. Consider the following query:

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> WHERE emp_id IN (1, 3, 9, 15);
+--------+---------+----------+
| emp_id | fname | lname |
+--------+---------+----------+
1	Michael	Smith
3	Robert	Tyler
9	Jane	Grossman
15	Frank	Portman
+--------+---------+----------+
4 rows in set (0.00 sec)

For this query, the server can use the primary key index on the emp_id column to locate
employee IDs 1, 3, 9, and 15 in the employee table, and then visit each of the four rows
to retrieve the first and last name columns.

234 | Chapter 13: Indexes and Constraints

If the index contains everything needed to satisfy the query, however, the server doesn’t
need to visit the associated table. To illustrate, let’s look at how the query optimizer
approaches the same query with different indexes in place.

The query, which aggregates account balances for specific customers, looks as follows:

mysql> SELECT cust_id, SUM(avail_balance) tot_bal
 -> FROM account
 -> WHERE cust_id IN (1, 5, 9, 11)
 -> GROUP BY cust_id;
+---------+----------+
| cust_id | tot_bal |
+---------+----------+
1	4557.75
5	2237.97
9	10971.22
11	9345.55
+---------+----------+
4 rows in set (0.00 sec)

To see how MySQL’s query optimizer decides to execute the query, I use the explain
statement to ask the server to show the execution plan for the query rather than exe-
cuting the query:

mysql> EXPLAIN SELECT cust_id, SUM(avail_balance) tot_bal
 -> FROM account
 -> WHERE cust_id IN (1, 5, 9, 11)
 -> GROUP BY cust_id \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: account
 type: index
possible_keys: fk_a_cust_id
 key: fk_a_cust_id
 key_len: 4
 ref: NULL
 rows: 24
 Extra: Using where
1 row in set (0.00 sec)

Each database server includes tools to allow you to see how the query
optimizer handles your SQL statement. SQL Server allows you to see an
execution plan by issuing the statement set showplan_text on before
running your SQL statement. Oracle Database includes the explain
plan statement, which writes the execution plan to a special table called
plan_table.

Without going into too much detail, here’s what the execution plan tells you:

Indexes | 235

• The fk_a_cust_id index is used to find the rows in the account table that satisfy the
where clause.

• After reading the index, the server expects to read all 24 rows of the account table
to gather the available balance data, since it doesn’t know that there might be other
customers besides IDs 1, 5, 9, and 11.

The fk_a_cust_id index is another index generated automatically by the server, but this
time it is because of a foreign key constraint rather than a primary key constraint (more
on this later in the chapter). The fk_a_cust_id index is built on the account.cust_id
column, so the server is using the index to locate customer IDs 1, 5, 9, and 11 in the
account table and is then visiting those rows to retrieve and aggregate the available
balance data.

Next, I will add a new index called acc_bal_idx on both the cust_id and
avail_balance columns:

mysql> ALTER TABLE account
 -> ADD INDEX acc_bal_idx (cust_id, avail_balance);
Query OK, 24 rows affected (0.03 sec)
Records: 24 Duplicates: 0 Warnings: 0

With this index in place, let’s see how the query optimizer approaches the same query:

mysql> EXPLAIN SELECT cust_id, SUM(avail_balance) tot_bal
 -> FROM account
 -> WHERE cust_id IN (1, 5, 9, 11)
 -> GROUP BY cust_id \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: account
 type: range
possible_keys: acc_bal_idx
 key: acc_bal_idx
 key_len: 4
 ref: NULL
 rows: 8
 Extra: Using where; Using index
1 row in set (0.01 sec)

Comparing the two execution plans yields the following differences:

• The optimizer is using the new acc_bal_idx index instead of the fk_a_cust_id
index.

• The optimizer anticipates needing only eight rows instead of 24.

• The account table is not needed (designated by Using index in the Extra column)
to satisfy the query results.

Therefore, the server can use indexes to help locate rows in the associated table, or the
server can use an index as though it were a table as long as the index contains all the
columns needed by the query.

236 | Chapter 13: Indexes and Constraints

The process that I just led you through is an example of query tuning.
Tuning involves looking at an SQL statement and determining the re-
sources available to the server to execute the statement. You can decide
to modify the SQL statement, to adjust the database resources, or to do
both in order to make a statement run more efficiently. Tuning is a
detailed topic, and I strongly urge you to either read your server’s tuning
guide or pick up a good tuning book so that you can see all the different
approaches available for your server.

The Downside of Indexes
If indexes are so great, why not index everything? Well, the key to understanding why
more indexes are not necessarily a good thing is to keep in mind that every index is a
table (a special type of table, but still a table). Therefore, every time a row is added to
or removed from a table, all indexes on that table must be modified. When a row is
updated, any indexes on the column or columns that were affected need to be modified
as well. Therefore, the more indexes you have, the more work the server needs to do
to keep all schema objects up-to-date, which tends to slow things down.

Indexes also require disk space as well as some amount of care from your administra-
tors, so the best strategy is to add an index when a clear need arises. If you need an
index for only special purposes, such as a monthly maintenance routine, you can always
add the index, run the routine, and then drop the index until you need it again. In the
case of data warehouses, where indexes are crucial during business hours as users run
reports and ad hoc queries but are problematic when data is being loaded into the
warehouse overnight, it is a common practice to drop the indexes before data is loaded
and then re-create them before the warehouse opens for business.

In general, you should strive to have neither too many indexes nor too few. If you aren’t
sure how many indexes you should have, you can use this strategy as a default:

• Make sure all primary key columns are indexed (most servers automatically create
unique indexes when you create primary key constraints). For multicolumn pri-
mary keys, consider building additional indexes on a subset of the primary key
columns, or on all the primary key columns but in a different order than the primary
key constraint definition.

• Build indexes on all columns that are referenced in foreign key constraints. Keep
in mind that the server checks to make sure there are no child rows when a parent
is deleted, so it must issue a query to search for a particular value in the column.
If there’s no index on the column, the entire table must be scanned.

• Index any columns that will frequently be used to retrieve data. Most date columns
are good candidates, along with short (3- to 50-character) string columns.

After you have built your initial set of indexes, try to capture actual queries against your
tables, and modify your indexing strategy to fit the most-common access paths.

Indexes | 237

Constraints
A constraint is simply a restriction placed on one or more columns of a table. There are
several different types of constraints, including:

Primary key constraints
Identify the column or columns that guarantee uniqueness within a table

Foreign key constraints
Restrict one or more columns to contain only values found in another table’s pri-
mary key columns, and may also restrict the allowable values in other tables if
update cascade or delete cascade rules are established

Unique constraints
Restrict one or more columns to contain unique values within a table (primary key
constraints are a special type of unique constraint)

Check constraints
Restrict the allowable values for a column

Without constraints, a database’s consistency is suspect. For example, if the server
allows you to change a customer’s ID in the customer table without changing the same
customer ID in the account table, then you will end up with accounts that no longer
point to valid customer records (known as orphaned rows). With primary and foreign
key constraints in place, however, the server will either raise an error if an attempt is
made to modify or delete data that is referenced by other tables, or propagate the
changes to other tables for you (more on this shortly).

If you want to use foreign key constraints with the MySQL server, you
must use the InnoDB storage engine for your tables. Foreign key con-
straints are not supported in the Falcon engine as of version 6.0.4, but
they will be supported in later versions.

Constraint Creation
Constraints are generally created at the same time as the associated table via the create
table statement. To illustrate, here’s an example from the schema generation script for
this book’s example database:

CREATE TABLE product
 (product_cd VARCHAR(10) NOT NULL,
 name VARCHAR(50) NOT NULL,
 product_type_cd VARCHAR (10) NOT NULL,
 date_offered DATE,
 date_retired DATE,
 CONSTRAINT fk_product_type_cd FOREIGN KEY (product_type_cd)
 REFERENCES product_type (product_type_cd),
 CONSTRAINT pk_product PRIMARY KEY (product_cd)
);

238 | Chapter 13: Indexes and Constraints

The product table includes two constraints: one to specify that the product_cd column
serves as the primary key for the table, and another to specify that the
product_type_cd column serves as a foreign key to the product_type table. Alternatively,
you can create the product table without constraints, and add the primary and foreign
key constraints later via alter table statements:

ALTER TABLE product
ADD CONSTRAINT pk_product PRIMARY KEY (product_cd);

ALTER TABLE product
ADD CONSTRAINT fk_product_type_cd FOREIGN KEY (product_type_cd)
 REFERENCES product_type (product_type_cd);

If you want to remove a primary or foreign key constraint, you can use the alter
table statement again, except that you specify drop instead of add, as in:

ALTER TABLE product
DROP PRIMARY KEY;

ALTER TABLE product
DROP FOREIGN KEY fk_product_type_cd;

While it is unusual to drop a primary key constraint, foreign key constraints are some-
times dropped during certain maintenance operations and then reestablished.

Constraints and Indexes
As you saw earlier in the chapter, constraint creation sometimes involves the automatic
generation of an index. However, database servers behave differently regarding the
relationship between constraints and indexes. Table 13-1 shows how MySQL, SQL
Server, and Oracle Database handle the relationship between constraints and indexes.

Table 13-1. Constraint generation

Constraint type MySQL SQL Server Oracle Database

Primary key constraints Generates unique index Generates unique index Uses existing index or creates new index

Foreign key constraints Generates index Does not generate index Does not generate index

Unique constraints Generates unique index Generates unique index Uses existing index or creates new index

MySQL, therefore, generates a new index to enforce primary key, foreign key, and
unique constraints, SQL Server generates a new index for primary key and unique
constraints but not for foreign key constraints, and Oracle Database takes the same
approach as SQL Server except that Oracle will use an existing index (if an appropriate
one exists) to enforce primary key and unique constraints. Although neither SQL Server
nor Oracle Database generates an index for a foreign key constraint, both servers’ doc-
umentation advises that indexes be created for every foreign key.

Constraints | 239

Cascading Constraints
With foreign key constraints in place, if a user attempts to insert a new row or change
an existing row such that a foreign key column doesn’t have a matching value in the
parent table, the server raises an error. To illustrate, here’s a look at the data in the
product and product_type tables:

mysql> SELECT product_type_cd, name
 -> FROM product_type;
+-----------------+-------------------------------+
| product_type_cd | name |
+-----------------+-------------------------------+
ACCOUNT	Customer Accounts
INSURANCE	Insurance Offerings
LOAN	Individual and Business Loans
+-----------------+-------------------------------+
3 rows in set (0.00 sec)

mysql> SELECT product_type_cd, product_cd, name
 -> FROM product
 -> ORDER BY product_type_cd;
+-----------------+------------+-------------------------+
| product_type_cd | product_cd | name |
+-----------------+------------+-------------------------+
ACCOUNT	CD	certificate of deposit
ACCOUNT	CHK	checking account
ACCOUNT	MM	money market account
ACCOUNT	SAV	savings account
LOAN	AUT	auto loan
LOAN	BUS	business line of credit
LOAN	MRT	home mortgage
LOAN	SBL	small business loan
+-----------------+------------+-------------------------+
8 rows in set (0.01 sec)

There are three different values for the product_type_cd column in the product_type
table (ACCOUNT, INSURANCE, and LOAN). Of the three values, two of them (ACCOUNT and
LOAN) are referenced in the product table’s product_type_cd column.

The following statement attempts to change the product_type_cd column in the
product table to a value that doesn’t exist in the product_type table:

mysql> UPDATE product
 -> SET product_type_cd = 'XYZ'
 -> WHERE product_type_cd = 'LOAN';
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails ('bank'.'product', CONSTRAINT 'fk_product_type_cd' FOREIGN KEY
('product_type_cd') REFERENCES 'product_type' ('product_type_cd'))

Because of the foreign key constraint on the product.product_type_cd column, the
server does not allow the update to succeed, since there is no row in the
product_type table with a value of XYZ in the product_type_cd column. Thus, the foreign

240 | Chapter 13: Indexes and Constraints

key constraint doesn’t let you change a child row if there is no corresponding value in
the parent.

What would happen, however, if you tried to change the parent row in the
product_type table to XYZ? Here’s an update statement that attempts to change the
LOAN product type to XYZ:

mysql> UPDATE product_type
 -> SET product_type_cd = 'XYZ'
 -> WHERE product_type_cd = 'LOAN';
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key
constraint fails ('bank'.'product', CONSTRAINT 'fk_product_type_cd' FOREIGN KEY
('product_type_cd') REFERENCES 'product_type' ('product_type_cd'))

Once again, an error is raised; this time because there are child rows in the product
table whose product_type_cd column contains the value LOAN. This is the default be-
havior for foreign key constraints, but it is not the only possible behavior; instead, you
can instruct the server to propagate the change to all child rows for you, thus preserving
the integrity of the data. Known as a cascading update, this variation of the foreign key
constraint can be installed by removing the existing foreign key and adding a new one
that includes the on update cascade clause:

mysql> ALTER TABLE product
 -> DROP FOREIGN KEY fk_product_type_cd;
Query OK, 8 rows affected (0.02 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE product
 -> ADD CONSTRAINT fk_product_type_cd FOREIGN KEY (product_type_cd)
 -> REFERENCES product_type (product_type_cd)
 -> ON UPDATE CASCADE;
Query OK, 8 rows affected (0.03 sec)
Records: 8 Duplicates: 0 Warnings: 0

With this modified constraint in place, let’s see what happens when the previous
update statement is attempted again:

mysql> UPDATE product_type
 -> SET product_type_cd = 'XYZ'
 -> WHERE product_type_cd = 'LOAN';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

This time, the statement succeeds. To verify that the change was propagated to the
product table, here’s another look at the data in both tables:

mysql> SELECT product_type_cd, name
 -> FROM product_type;
+-----------------+-------------------------------+
| product_type_cd | name |
+-----------------+-------------------------------+
ACCOUNT	Customer Accounts
INSURANCE	Insurance Offerings
XYZ	Individual and Business Loans

Constraints | 241

+-----------------+-------------------------------+
3 rows in set (0.02 sec)

mysql> SELECT product_type_cd, product_cd, name
 -> FROM product
 -> ORDER BY product_type_cd;
+-----------------+------------+-------------------------+
| product_type_cd | product_cd | name |
+-----------------+------------+-------------------------+
ACCOUNT	CD	certificate of deposit
ACCOUNT	CHK	checking account
ACCOUNT	MM	money market account
ACCOUNT	SAV	savings account
XYZ	AUT	auto loan
XYZ	BUS	business line of credit
XYZ	MRT	home mortgage
XYZ	SBL	small business loan
+-----------------+------------+-------------------------+
8 rows in set (0.01 sec)

As you can see, the change to the product_type table has been propagated to the
product table as well. Along with cascading updates, you can specify cascading dele-
tes as well. A cascading delete removes rows from the child table when a row is deleted
from the parent table. To specify cascading deletes, use the on delete cascade clause,
as in:

ALTER TABLE product
ADD CONSTRAINT fk_product_type_cd FOREIGN KEY (product_type_cd)
 REFERENCES product_type (product_type_cd)
 ON UPDATE CASCADE
 ON DELETE CASCADE;

With this version of the constraint in place, the server will now update child rows in
the product table when a row in the product_type table is updated, as well as delete
child rows in the product table when a row in the product_type table is deleted.

Cascading constraints are one case in which constraints do directly affect the code that
you write. You need to know which constraints in your database specify cascading
updates and/or deletes so that you know the full effect of your update and delete
statements.

Test Your Knowledge
Work through the following exercises to test your knowledge of indexes and con-
straints. When you’re done, compare your solutions with those in Appendix C.

242 | Chapter 13: Indexes and Constraints

Exercise 13-1
Modify the account table so that customers may not have more than one account for
each product.

Exercise 13-2
Generate a multicolumn index on the transaction table that could be used by both of
the following queries:

SELECT txn_date, account_id, txn_type_cd, amount
FROM transaction
WHERE txn_date > cast('2008-12-31 23:59:59' as datetime);

SELECT txn_date, account_id, txn_type_cd, amount
FROM transaction
WHERE txn_date > cast('2008-12-31 23:59:59' as datetime)
 AND amount < 1000;

Test Your Knowledge | 243

CHAPTER 14

Views

Well-designed applications generally expose a public interface while keeping imple-
mentation details private, thereby enabling future design changes without impacting
end users. When designing your database, you can achieve a similar result by keeping
your tables private and allowing your users to access data only through a set of views.
This chapter strives to define what views are, how they are created, and when and how
you might want to use them.

What Are Views?
A view is simply a mechanism for querying data. Unlike tables, views do not involve
data storage; you won’t need to worry about views filling up your disk space. You create
a view by assigning a name to a select statement, and then storing the query for others
to use. Other users can then use your view to access data just as though they were
querying tables directly (in fact, they may not even know they are using a view).

As a simple example, let’s say that you want to partially obscure the federal IDs (Social
Security numbers and corporate identifiers) in the customer table. The customer service
department, for example, may need access to just the last portion of the federal ID in
order to verify the identity of a caller, but exposing the entire number would violate
the company’s privacy policy. Therefore, instead of allowing direct access to the
customer table, you define a view called customer_vw and mandate that all bank per-
sonnel use it to access customer data. Here’s the view definition:

CREATE VIEW customer_vw
 (cust_id,
 fed_id,
 cust_type_cd,
 address,
 city,
 state,
 zipcode
)
AS
SELECT cust_id,

245

 concat('ends in ', substr(fed_id, 8, 4)) fed_id,
 cust_type_cd,
 address,
 city,
 state,
 postal_code
FROM customer;

The first part of the statement lists the view’s column names, which may be different
from those of the underlying table (e.g., the customer_vw view has a column named
zipcode which maps to the customer.postal_code column). The second part of the
statement is a select statement, which must contain one expression for each column
in the view.

When the create view statement is executed, the database server simply stores the view
definition for future use; the query is not executed, and no data is retrieved or stored.
Once the view has been created, users can query it just like they would a table, as in:

mysql> SELECT cust_id, fed_id, cust_type_cd
 -> FROM customer_vw;
+---------+--------------+--------------+
| cust_id | fed_id | cust_type_cd |
+---------+--------------+--------------+
1	ends in 1111	I
2	ends in 2222	I
3	ends in 3333	I
4	ends in 4444	I
5	ends in 5555	I
6	ends in 6666	I
7	ends in 7777	I
8	ends in 8888	I
9	ends in 9999	I
10	ends in 111	B
11	ends in 222	B
12	ends in 333	B
13	ends in 444	B
+---------+--------------+--------------+
13 rows in set (0.02 sec)

The actual query that the server executes is neither the one submitted by the user nor
the query attached to the view definition. Instead, the server merges the two together
to create another statement, which in this case looks as follows:

SELECT cust_id,
 concat('ends in ', substr(fed_id, 8, 4)) fed_id,
 cust_type_cd
FROM customer;

Even though the customer_vw view definition includes seven columns of the customer
table, the query executed by the server retrieves only three of the seven. As you’ll see
later in the chapter, this is an important distinction if some of the columns in your view
are attached to functions or subqueries.

246 | Chapter 14: Views

From the user’s standpoint, a view looks exactly like a table. If you want to know what
columns are available in a view, you can use MySQL’s (or Oracle’s) describe command
to examine it:

mysql> describe customer_vw;
+--------------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+------------------+------+-----+---------+-------+
cust_id	int(10) unsigned	NO		0	
fed_id	varchar(12)	YES		NULL	
cust_type_cd	enum('I','B')	NO		NULL	
address	varchar(30)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	
postal_code	varchar(10)	YES		NULL	
+--------------+------------------+------+-----+---------+-------+
7 rows in set (1.40 sec)

You are free to use any clauses of the select statement when querying through a view,
including group by, having, and order by. Here’s an example:

mysql> SELECT cust_type_cd, count(*)
 -> FROM customer_vw
 -> WHERE state = 'MA'
 -> GROUP BY cust_type_cd
 -> ORDER BY 1;
+--------------+----------+
| cust_type_cd | count(*) |
+--------------+----------+
| I | 7 |
| B | 2 |
+--------------+----------+
2 rows in set (0.22 sec)

In addition, you can join views to other tables (or even to other views) within a query,
as in:

mysql> SELECT cst.cust_id, cst.fed_id, bus.name
 -> FROM customer_vw cst INNER JOIN business bus
 -> ON cst.cust_id = bus.cust_id;
+---------+-------------+------------------------+
| cust_id | fed_id | name |
+---------+-------------+------------------------+
10	ends in 111	Chilton Engineering
11	ends in 222	Northeast Cooling Inc.
12	ends in 333	Superior Auto Body
13	ends in 444	AAA Insurance Inc.
+---------+-------------+------------------------+
4 rows in set (0.24 sec)

This query joins the customer_vw view to the business table in order to retrieve only
business customers.

What Are Views? | 247

Why Use Views?
In the previous section, I demonstrated a simple view whose sole purpose was to mask
the contents of the customer.fed_id column. While views are often employed for this
purpose, there are many reasons for using views, as I demonstrate in the following
subsections.

Data Security
If you create a table and allow users to query it, they will be able to access every column
and every row in the table. As I pointed out earlier, however, your table may include
some columns that contain sensitive data, such as identification numbers or credit card
numbers; not only is it a bad idea to expose such data to all users, but also it might
violate your company’s privacy policies, or even state or federal laws, to do so.

The best approach for these situations is to keep the table private (i.e., don’t grant
select permission to any users) and then to create one or more views that either omit
or obscure (such as the 'ends in ####' approach taken with the customer_vw.fed_id
column) the sensitive columns. You may also constrain which rows a set of users may
access by adding a where clause to your view definition. For example, the next view
definition allows only business customers to be queried:

CREATE VIEW business_customer_vw
 (cust_id,
 fed_id,
 cust_type_cd,
 address,
 city,
 state,
 zipcode
)
AS
SELECT cust_id,
 concat('ends in ', substr(fed_id, 8, 4)) fed_id,
 cust_type_cd,
 address,
 city,
 state,
 postal_code
FROM customer
WHERE cust_type_cd = 'B'

If you provide this view to your corporate banking department, they will be able to
access only business accounts because the condition in the view’s where clause will
always be included in their queries.

248 | Chapter 14: Views

Oracle Database users have another option for securing both rows and
columns of a table: Virtual Private Database (VPD). VPD allows you to
attach policies to your tables, after which the server will modify a user’s
query as necessary to enforce the policies. For example, if you enact a
policy that members of the corporate banking department can see only
business accounts, then the condition cust_type_cd = 'B' will be added
to all of their queries against the customer table.

Data Aggregation
Reporting applications generally require aggregated data, and views are a great way to
make it appear as though data is being pre-aggregated and stored in the database. As
an example, let’s say that an application generates a report each month showing the
number of accounts and total deposits for every customer. Rather than allowing the
application developers to write queries against the base tables, you could provide them
with the following view:

CREATE VIEW customer_totals_vw
 (cust_id,
 cust_type_cd,
 cust_name,
 num_accounts,
 tot_deposits
)
AS
SELECT cst.cust_id, cst.cust_type_cd,
 CASE
 WHEN cst.cust_type_cd = 'B' THEN
 (SELECT bus.name FROM business bus WHERE bus.cust_id = cst.cust_id)
 ELSE
 (SELECT concat(ind.fname, ' ', ind.lname)
 FROM individual ind
 WHERE ind.cust_id = cst.cust_id)
 END cust_name,
 sum(CASE WHEN act.status = 'ACTIVE' THEN 1 ELSE 0 END) tot_active_accounts,
 sum(CASE WHEN act.status = 'ACTIVE' THEN act.avail_balance ELSE 0 END) tot_balance
FROM customer cst INNER JOIN account act
 ON act.cust_id = cst.cust_id
GROUP BY cst.cust_id, cst.cust_type_cd;

Using this approach gives you a great deal of flexibility as a database designer. If you
decide at some point in the future that query performance would improve dramatically
if the data were preaggregated in a table rather than summed using a view, you can
create a customer_totals table and modify the customer_totals_vw view definition to
retrieve data from this table. Before modifying the view definition, you can use it to
populate the new table. Here are the necessary SQL statements for this scenario:

mysql> CREATE TABLE customer_totals
 -> AS
 -> SELECT * FROM customer_totals_vw;
Query OK, 13 rows affected (3.33 sec)

Why Use Views? | 249

Records: 13 Duplicates: 0 Warnings: 0

mysql> CREATE OR REPLACE VIEW customer_totals_vw
 -> (cust_id,
 -> cust_type_cd,
 -> cust_name,
 -> num_accounts,
 -> tot_deposits
 ->)
 -> AS
 -> SELECT cust_id, cust_type_cd, cust_name, num_accounts, tot_deposits
 -> FROM customer_totals;
Query OK, 0 rows affected (0.02 sec)

From now on, all queries that use the customer_totals_vw view will pull data from the
new customer_totals table, meaning that users will see a performance improvement
without needing to modify their queries.

Hiding Complexity
One of the most common reasons for deploying views is to shield end users from com-
plexity. For example, let’s say that a report is created each month showing the number
of employees, the total number of active accounts, and the total number of transactions
for each branch. Rather than expecting the report designer to navigate four different
tables to gather the necessary data, you could provide a view that looks as follows:

CREATE VIEW branch_activity_vw
 (branch_name,
 city,
 state,
 num_employees,
 num_active_accounts,
 tot_transactions
)
AS
SELECT br.name, br.city, br.state,
 (SELECT count(*)
 FROM employee emp
 WHERE emp.assigned_branch_id = br.branch_id) num_emps,
 (SELECT count(*)
 FROM account acnt
 WHERE acnt.status = 'ACTIVE' AND acnt.open_branch_id = br.branch_id) num_accounts,
 (SELECT count(*)
 FROM transaction txn
 WHERE txn.execution_branch_id = br.branch_id) num_txns
FROM branch br;

This view definition is interesting because three of the six column values are generated
using scalar subqueries. If someone uses this view but does not reference the
num_employees, num_active_accounts, or tot_transactions column, then none of the
subqueries will be executed.

250 | Chapter 14: Views

Joining Partitioned Data
Some database designs break large tables into multiple pieces in order to improve per-
formance. For example, if the transaction table became large, the designers may decide
to break it into two tables: transaction_current, which holds the latest six months’ of
data, and transaction_historic, which holds all data up to six months ago. If a cus-
tomer wants to see all the transactions for a particular account, you would need to
query both tables. By creating a view that queries both tables and combines the results
together, however, you can make it look like all transaction data is stored in a single
table. Here’s the view definition:

CREATE VIEW transaction_vw
 (txn_date,
 account_id,
 txn_type_cd,
 amount,
 teller_emp_id,
 execution_branch_id,
 funds_avail_date
)
AS
SELECT txn_date, account_id, txn_type_cd, amount, teller_emp_id,
 execution_branch_id, funds_avail_date
FROM transaction_historic
UNION ALL
SELECT txn_date, account_id, txn_type_cd, amount, teller_emp_id,
 execution_branch_id, funds_avail_date
FROM transaction_current;

Using a view in this case is a good idea because it allows the designers to change the
structure of the underlying data without the need to force all database users to modify
their queries.

Updatable Views
If you provide users with a set of views to use for data retrieval, what should you do if
the users also need to modify the same data? It might seem a bit strange, for example,
to force the users to retrieve data using a view, but then allow them to directly modify
the underlying table using update or insert statements. For this purpose, MySQL,
Oracle Database, and SQL Server all allow you to modify data through a view, as long
as you abide by certain restrictions. In the case of MySQL, a view is updatable if the
following conditions are met:

• No aggregate functions are used (max(), min(), avg(), etc.).

• The view does not employ group by or having clauses.

• No subqueries exist in the select or from clause, and any subqueries in the where
clause do not refer to tables in the from clause.

• The view does not utilize union, union all, or distinct.

Updatable Views | 251

• The from clause includes at least one table or updatable view.

• The from clause uses only inner joins if there is more than one table or view.

To demonstrate the utility of updatable views, it might be best to start with a simple
view definition and then to move to a more complex view.

Updating Simple Views
The view at the beginning of the chapter is about as simple as it gets, so let’s start there:

CREATE VIEW customer_vw
 (cust_id,
 fed_id,
 cust_type_cd,
 address,
 city,
 state,
 zipcode
)
AS
SELECT cust_id,
 concat('ends in ', substr(fed_id, 8, 4)) fed_id,
 cust_type_cd,
 address,
 city,
 state,
 postal_code
FROM customer;

The customer_vw view queries a single table, and only one of the seven columns is
derived via an expression. This view definition doesn’t violate any of the restrictions
listed earlier, so you can use it to modify data in the customer table, as in:

mysql> UPDATE customer_vw
 -> SET city = 'Woooburn'
 -> WHERE city = 'Woburn';
Query OK, 1 row affected (0.34 sec)
Rows matched: 1 Changed: 1 Warnings: 0

As you can see, the statement claims to have modified one row, but let’s check the
underlying customer table just to be sure:

mysql> SELECT DISTINCT city FROM customer;
+------------+
| city |
+------------+
| Lynnfield |
| Woooburn |
| Quincy |
| Waltham |
| Salem |
| Wilmington |
| Newton |

252 | Chapter 14: Views

+------------+
7 rows in set (0.12 sec)

While you can modify most of the columns in the view in this fashion, you will not be
able to modify the fed_id column, since it is derived from an expression:

mysql> UPDATE customer_vw
 -> SET city = 'Woburn', fed_id = '999999999'
 -> WHERE city = 'Woooburn';
ERROR 1348 (HY000): Column 'fed_id' is not updatable

In this case, it may not be a bad thing, since the whole point of the view is to obscure
the federal identifiers.

If you want to insert data using the customer_vw view, you are out of luck; views that
contain derived columns cannot be used for inserting data, even if the derived columns
are not included in the statement. For example, the next statement attempts to populate
only the cust_id, cust_type_cd, and city columns using the customer_vw view:

mysql> INSERT INTO customer_vw(cust_id, cust_type_cd, city)
 -> VALUES (9999, 'I', 'Worcester');
ERROR 1471 (HY000): The target table customer_vw of the INSERT is not insertable
-into

Now that you have seen the limitations of simple views, the next section will demon-
strate the use of a view that joins multiple tables.

Updating Complex Views
While single-table views are certainly common, many of the views that you come across
will include multiple tables in the from clause of the underlying query. The next view,
for example, joins the business and customer tables so that all the data for business
customers can be easily queried:

CREATE VIEW business_customer_vw
 (cust_id,
 fed_id,
 address,
 city,
 state,
 postal_code,
 business_name,
 state_id,
 incorp_date
)
AS
SELECT cst.cust_id,
 cst.fed_id,
 cst.address,
 cst.city,
 cst.state,
 cst.postal_code,
 bsn.name,
 bsn.state_id,

Updatable Views | 253

 bsn.incorp_date
FROM customer cst INNER JOIN business bsn
 ON cst.cust_id = bsn.cust_id
WHERE cust_type_cd = 'B';

You may use this view to update data in either the customer or the business table, as
the following statements demonstrate:

mysql> UPDATE business_customer_vw
 -> SET postal_code = '99999'
 -> WHERE cust_id = 10;
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE business_customer_vw
 -> SET incorp_date = '2008-11-17'
 -> WHERE cust_id = 10;
Query OK, 1 row affected (0.11 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The first statement modifies the customer.postal_code column, whereas the second
statement modifies the business.incorp_date column. You might be wondering what
happens if you try to update columns from both tables in a single statement, so let’s
find out:

mysql> UPDATE business_customer_vw
 -> SET postal_code = '88888', incorp_date = '2008-10-31'
 -> WHERE cust_id = 10;
ERROR 1393 (HY000): Can not modify more than one base table through a join view
'bank.business_customer_vw'

As you can see, you are allowed to modify both of the underlying tables, as long as you
don’t try to do it with a single statement. Now let’s try to insert data into both tables
for a new customer (cust_id = 99):

mysql> INSERT INTO business_customer_vw
 -> (cust_id, fed_id, address, city, state, postal_code)
 -> VALUES (99, '04-9999999', '99 Main St.', 'Peabody', 'MA', '01975');
Query OK, 1 row affected (0.07 sec)

mysql> INSERT INTO business_customer_vw
 -> (cust_id, business_name, state_id, incorp_date)
 -> VALUES (99, 'Ninety-Nine Restaurant', '99-999-999', '1999-01-01');
ERROR 1393 (HY000): Can not modify more than one base table through a join view
'bank.business_customer_vw'

The first statement, which attempts to insert data into the customer table, works fine,
but the second statement, which attempts to insert a row into the business table, raises
an exception. The second statement fails because both tables include a cust_id column,
but the cust_id column in the view definition is mapped to the customer.cust_id col-
umn. Therefore, it is not possible to insert data into the business table using the pre-
ceding view definition.

254 | Chapter 14: Views

Oracle Database and SQL Server also allow data to be inserted and up-
dated through views, but, like MySQL, there are many restrictions. If
you are willing to write some PL/SQL or Transact-SQL, however, you
can use a feature called instead-of triggers, which allows you to essen-
tially intercept insert, update, and delete statements against a view, and
write custom code to incorporate the changes. Without this type of fea-
ture, there are simply too many restrictions to make updating through
views a feasible strategy for nontrivial applications.

Test Your Knowledge
Test your understanding of views by working through the following exercises. When
you’re done, compare your solutions with those in Appendix C.

Exercise 14-1
Create a view that queries the employee table and generates the following output when
queried with no where clause:

+-----------------+------------------+
| supervisor_name | employee_name |
+-----------------+------------------+
NULL	Michael Smith
Michael Smith	Susan Barker
Michael Smith	Robert Tyler
Robert Tyler	Susan Hawthorne
Susan Hawthorne	John Gooding
Susan Hawthorne	Helen Fleming
Helen Fleming	Chris Tucker
Helen Fleming	Sarah Parker
Helen Fleming	Jane Grossman
Susan Hawthorne	Paula Roberts
Paula Roberts	Thomas Ziegler
Paula Roberts	Samantha Jameson
Susan Hawthorne	John Blake
John Blake	Cindy Mason
John Blake	Frank Portman
Susan Hawthorne	Theresa Markham
Theresa Markham	Beth Fowler
Theresa Markham	Rick Tulman
+-----------------+------------------+
18 rows in set (1.47 sec)

Test Your Knowledge | 255

Exercise 14-2
The bank president would like to have a report showing the name and city of each
branch, along with the total balances of all accounts opened at the branch. Create a
view to generate the data.

256 | Chapter 14: Views

CHAPTER 15

Metadata

Along with storing all of the data that various users insert into a database, a database
server also needs to store information about all of the database objects (tables, views,
indexes, etc.) that were created to store this data. The database server stores this in-
formation, not surprisingly, in a database. This chapter discusses how and where this
information, known as metadata, is stored, how you can access it, and how you can
use it to build flexible systems.

Data About Data
Metadata is essentially data about data. Every time you create a database object, the
database server needs to record various pieces of information. For example, if you were
to create a table with multiple columns, a primary key constraint, three indexes, and a
foreign key constraint, the database server would need to store all the following
information:

• Table name

• Table storage information (tablespace, initial size, etc.)

• Storage engine

• Column names

• Column data types

• Default column values

• NOT NULL column constraints

• Primary key columns

• Primary key name

• Name of primary key index

• Index names

• Index types (B-tree, bitmap)

• Indexed columns

257

• Index column sort order (ascending or descending)

• Index storage information

• Foreign key name

• Foreign key columns

• Associated table/columns for foreign keys

This data is collectively known as the data dictionary or system catalog. The database
server needs to store this data persistently, and it needs to be able to quickly retrieve
this data in order to verify and execute SQL statements. Additionally, the database
server must safeguard this data so that it can be modified only via an appropriate
mechanism, such as the alter table statement.

While standards exist for the exchange of metadata between different servers, every
database server uses a different mechanism to publish metadata, such as:

• A set of views, such as Oracle Database’s user_tables and all_constraints views

• A set of system-stored procedures, such as SQL Server’s sp_tables procedure or
Oracle Database’s dbms_metadata package

• A special database, such as MySQL’s information_schema database

Along with SQL Server’s system-stored procedures, which are a vestige of its Sybase
lineage, SQL Server also includes a special schema called information_schema that is
provided automatically within each database. Both MySQL and SQL Server provide
this interface to conform with the ANSI SQL:2003 standard. The remainder of this
chapter discusses the information_schema objects that are available in MySQL and SQL
Server.

Information_Schema
All of the objects available within the information_schema database (or schema, in the
case of SQL Server) are views. Unlike the describe utility, which I used in several chap-
ters of this book as a way to show the structure of various tables and views, the views
within information_schema can be queried, and, thus, used programmatically (more on
this later in the chapter). Here’s an example that demonstrates how to retrieve the
names of all of the tables in the bank database:

mysql> SELECT table_name, table_type
 -> FROM information_schema.tables
 -> WHERE table_schema = 'bank'
 -> ORDER BY 1;
+----------------------+------------+
| table_name | table_type |
+----------------------+------------+
account	BASE TABLE
branch	BASE TABLE
branch_activity_vw	VIEW
business	BASE TABLE

258 | Chapter 15: Metadata

business_customer_vw	VIEW
customer	BASE TABLE
customer_vw	VIEW
department	BASE TABLE
employee	BASE TABLE
employee_vw	VIEW
individual	BASE TABLE
nh_customer_vw	VIEW
officer	BASE TABLE
product	BASE TABLE
product_type	BASE TABLE
transaction	BASE TABLE
+----------------------+------------+
16 rows in set (0.02 sec)

Along with the various tables we created back in Chapter 2, the results show several of
the views that I demonstrated in Chapter 14. If you want to exclude the views, simply
add another condition to the where clause:

mysql> SELECT table_name, table_type
 -> FROM information_schema.tables
 -> WHERE table_schema = 'bank' AND table_type = 'BASE TABLE'
 -> ORDER BY 1;
+--------------+------------+
| table_name | table_type |
+--------------+------------+
account	BASE TABLE
branch	BASE TABLE
business	BASE TABLE
customer	BASE TABLE
department	BASE TABLE
employee	BASE TABLE
individual	BASE TABLE
officer	BASE TABLE
product	BASE TABLE
product_type	BASE TABLE
transaction	BASE TABLE
+--------------+------------+
11 rows in set (0.01 sec)

If you are only interested in information about views, you can query
information_schema.views. Along with the view names, you can retrieve additional in-
formation, such as a flag that shows whether a view is updatable:

mysql> SELECT table_name, is_updatable
 -> FROM information_schema.views
 -> WHERE table_schema = 'bank'
 -> ORDER BY 1;
+----------------------+--------------+
| table_name | is_updatable |
+----------------------+--------------+
branch_activity_vw	NO
business_customer_vw	YES
customer_vw	YES
employee_vw	YES

Information_Schema | 259

| nh_customer_vw | YES |
+----------------------+--------------+
5 rows in set (1.83 sec)

Additionally, you can retrieve the view’s underlying query using the view_definition
column, as long as the query is small enough (4,000 characters or fewer for MySQL).

Column information for both tables and views is available via the columns view. The
following query shows column information for the account table:

mysql> SELECT column_name, data_type, character_maximum_length char_max_len,
 -> numeric_precision num_prcsn, numeric_scale num_scale
 -> FROM information_schema.columns
 -> WHERE table_schema = 'bank' AND table_name = 'account'
 -> ORDER BY ordinal_position;
+--------------------+-----------+--------------+-----------+-----------+
| column_name | data_type | char_max_len | num_prcsn | num_scale |
+--------------------+-----------+--------------+-----------+-----------+
account_id	int	NULL	10	0
product_cd	varchar	10	NULL	NULL
cust_id	int	NULL	10	0
open_date	date	NULL	NULL	NULL
close_date	date	NULL	NULL	NULL
last_activity_date	date	NULL	NULL	NULL
status	enum	6	NULL	NULL
open_branch_id	smallint	NULL	5	0
open_emp_id	smallint	NULL	5	0
avail_balance	float	NULL	10	2
pending_balance	float	NULL	10	2
+--------------------+-----------+--------------+-----------+-----------+
11 rows in set (0.02 sec)

The ordinal_position column is included merely as a means to retrieve the columns in
the order in which they were added to the table.

You can retrieve information about a table’s indexes via the information_schema.sta
tistics view as demonstrated by the following query, which retrieves information for
the indexes built on the account table:

mysql> SELECT index_name, non_unique, seq_in_index, column_name
 -> FROM information_schema.statistics
 -> WHERE table_schema = 'bank' AND table_name = 'account'
 -> ORDER BY 1, 3;
+----------------+------------+--------------+----------------+
| index_name | non_unique | seq_in_index | column_name |
+----------------+------------+--------------+----------------+
acc_bal_idx	1	1	cust_id
acc_bal_idx	1	2	avail_balance
fk_a_branch_id	1	1	open_branch_id
fk_a_emp_id	1	1	open_emp_id
fk_product_cd	1	1	product_cd
PRIMARY	0	1	account_id
+----------------+------------+--------------+----------------+
6 rows in set (0.09 sec)

260 | Chapter 15: Metadata

The account table has a total of five indexes, one of which has two columns
(acc_bal_idx) and one of which is a unique index (PRIMARY).

You can retrieve the different types of constraints (foreign key, primary key, unique)
that have been created via the information_schema.table_constraints view. Here’s a
query that retrieves all of the constraints in the bank schema:

mysql> SELECT constraint_name, table_name, constraint_type
 -> FROM information_schema.table_constraints
 -> WHERE table_schema = 'bank'
 -> ORDER BY 3,1;
+--------------------+--------------+-----------------+
| constraint_name | table_name | constraint_type |
+--------------------+--------------+-----------------+
fk_a_branch_id	account	FOREIGN KEY
fk_a_cust_id	account	FOREIGN KEY
fk_a_emp_id	account	FOREIGN KEY
fk_b_cust_id	business	FOREIGN KEY
fk_dept_id	employee	FOREIGN KEY
fk_exec_branch_id	transaction	FOREIGN KEY
fk_e_branch_id	employee	FOREIGN KEY
fk_e_emp_id	employee	FOREIGN KEY
fk_i_cust_id	individual	FOREIGN KEY
fk_o_cust_id	officer	FOREIGN KEY
fk_product_cd	account	FOREIGN KEY
fk_product_type_cd	product	FOREIGN KEY
fk_teller_emp_id	transaction	FOREIGN KEY
fk_t_account_id	transaction	FOREIGN KEY
PRIMARY	branch	PRIMARY KEY
PRIMARY	account	PRIMARY KEY
PRIMARY	product	PRIMARY KEY
PRIMARY	department	PRIMARY KEY
PRIMARY	customer	PRIMARY KEY
PRIMARY	transaction	PRIMARY KEY
PRIMARY	officer	PRIMARY KEY
PRIMARY	product_type	PRIMARY KEY
PRIMARY	employee	PRIMARY KEY
PRIMARY	business	PRIMARY KEY
PRIMARY	individual	PRIMARY KEY
dept_name_idx	department	UNIQUE
+--------------------+--------------+-----------------+
26 rows in set (2.28 sec)

Table 15-1 shows the entire set of information_schema views that are available in
MySQL version 6.0.

Table 15-1. Information_schema views

View name Provides information about…

Schemata Databases

Tables Tables and views

Columns Columns of tables and views

Statistics Indexes

Information_Schema | 261

View name Provides information about…

User_Privileges Who has privileges on which schema objects

Schema_Privileges Who has privileges on which databases

Table_Privileges Who has privileges on which tables

Column_Privileges Who has privileges on which columns of which tables

Character_Sets What character sets are available

Collations What collations are available for which character sets

Collation_Character_Set_Applicability Which character sets are available for which collation

Table_Constraints The unique, foreign key, and primary key constraints

Key_Column_Usage The constraints associated with each key column

Routines Stored routines (procedures and functions)

Views Views

Triggers Table triggers

Plugins Server plug-ins

Engines Available storage engines

Partitions Table partitions

Events Scheduled events

Process_List Running processes

Referential_Constraints Foreign keys

Global_Status Server status information

Session_Status Session status information

Global_Variables Server status variables

Session_Variables Session status variables

Parameters Stored procedure and function parameters

Profiling User profiling information

While some of these views, such as engines, events, and plugins, are specific to MySQL,
many of these views are available in SQL Server as well. If you are using Oracle Data-
base, please consult the online Oracle Database Reference Guide (http://www.oracle
.com/pls/db111/portal.all_books) for information about the user_, all_, and dba_ views.

Working with Metadata
As I mentioned earlier, having the ability to retrieve information about your schema
objects via SQL queries opens up some interesting possibilities. This section shows
several ways in which you can make use of metadata in your applications.

262 | Chapter 15: Metadata

http://www.oracle.com/pls/db111/portal.all_books
http://www.oracle.com/pls/db111/portal.all_books
http://www.oracle.com/pls/db111/portal.all_books

Schema Generation Scripts
While some project teams include a full-time database designer who oversees the design
and implementation of the database, many projects take the “design-by-committee”
approach, allowing multiple people to create database objects. After several weeks or
months of development, you may need to generate a script that will create the various
tables, indexes, views, and so on that the team has deployed. Although a variety of tools
and utilities will generate these types of scripts for you, you can also query the
information_schema views and generate the script yourself.

As an example, let’s build a script that will create the bank.customer table. Here’s the
command used to build the table, which I extracted from the script used to build the
example database:

create table customer
 (cust_id integer unsigned not null auto_increment,
 fed_id varchar(12) not null,
 cust_type_cd enum('I','B') not null,
 address varchar(30),
 city varchar(20),
 state varchar(20),
 postal_code varchar(10),
 constraint pk_customer primary key (cust_id)
);

Although it would certainly be easier to generate the script with the use of a procedural
language (e.g., Transact-SQL or Java), since this is a book about SQL I’m going to write
a single query that will generate the create table statement. The first step is to query
the information_schema.columns table to retrieve information about the columns in the
table:

mysql> SELECT 'CREATE TABLE customer (' create_table_statement
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(' ',column_name, ' ', column_type,
 -> CASE
 -> WHEN is_nullable = 'NO' THEN ' not null'
 -> ELSE ''
 -> END,
 -> CASE
 -> WHEN extra IS NOT NULL THEN concat(' ', extra)
 -> ELSE ''
 -> END,
 -> ',') txt
 -> FROM information_schema.columns
 -> WHERE table_schema = 'bank' AND table_name = 'customer'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT ')';
+---+
| create_table_statement |

Working with Metadata | 263

+---+
| CREATE TABLE customer (|
| cust_id int(10) unsigned not null auto_increment, |
| fed_id varchar(12) not null , |
| cust_type_cd enum('I','B') not null , |
| address varchar(30) , |
| city varchar(20) , |
| state varchar(20) , |
| postal_code varchar(10) , |
|) |
+---+
9 rows in set (0.04 sec)

Well, that got us pretty close; we just need to add queries against the
table_constraints and key_column_usage views to retrieve information about the pri-
mary key constraint:

mysql> SELECT 'CREATE TABLE customer (' create_table_statement
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(' ',column_name, ' ', column_type,
 -> CASE
 -> WHEN is_nullable = 'NO' THEN ' not null'
 -> ELSE ''
 -> END,
 -> CASE
 -> WHEN extra IS NOT NULL THEN concat(' ', extra)
 -> ELSE ''
 -> END,
 -> ',') txt
 -> FROM information_schema.columns
 -> WHERE table_schema = 'bank' AND table_name = 'customer'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT concat(' constraint primary key (')
 -> FROM information_schema.table_constraints
 -> WHERE table_schema = 'bank' AND table_name = 'customer'
 -> AND constraint_type = 'PRIMARY KEY'
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(CASE WHEN ordinal_position > 1 THEN ' ,'
 -> ELSE ' ' END, column_name) txt
 -> FROM information_schema.key_column_usage
 -> WHERE table_schema = 'bank' AND table_name = 'customer'
 -> AND constraint_name = 'PRIMARY'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT ')'
 -> UNION ALL
 -> SELECT ')';
+---+

264 | Chapter 15: Metadata

| create_table_statement |
+---+
| CREATE TABLE customer (|
| cust_id int(10) unsigned not null auto_increment, |
| fed_id varchar(12) not null , |
| cust_type_cd enum('I','B') not null , |
| address varchar(30) , |
| city varchar(20) , |
| state varchar(20) , |
| postal_code varchar(10) , |
| constraint primary key (|
| cust_id |
|) |
|) |
+---+
12 rows in set (0.02 sec)

To see whether the statement is properly formed, I’ll paste the query output into the
mysql tool (I’ve changed the table name to customer2 so that it won’t step on our other
table):

mysql> CREATE TABLE customer2 (
 -> cust_id int(10) unsigned not null auto_increment,
 -> fed_id varchar(12) not null ,
 -> cust_type_cd enum('I','B') not null ,
 -> address varchar(30) ,
 -> city varchar(20) ,
 -> state varchar(20) ,
 -> postal_code varchar(10) ,
 -> constraint primary key (
 -> cust_id
 ->)
 ->);
Query OK, 0 rows affected (0.14 sec)

The statement executed without errors, and there is now a customer2 table in the
bank database. In order for the query to generate a well-formed create table statement
for any table, more work is required (such as handling indexes and foreign key con-
straints), but I’ll leave that as an exercise.

Deployment Verification
Many organizations allow for database maintenance windows, wherein existing data-
base objects may be administered (such as adding/dropping partitions) and new
schema objects and code can be deployed. After the deployment scripts have been run,
it’s a good idea to run a verification script to ensure that the new schema objects are in
place with the appropriate columns, indexes, primary keys, and so forth. Here’s a query
that returns the number of columns, number of indexes, and number of primary key
constraints (0 or 1) for each table in the bank schema:

Working with Metadata | 265

mysql> SELECT tbl.table_name,
 -> (SELECT count(*) FROM information_schema.columns clm
 -> WHERE clm.table_schema = tbl.table_schema
 -> AND clm.table_name = tbl.table_name) num_columns,
 -> (SELECT count(*) FROM information_schema.statistics sta
 -> WHERE sta.table_schema = tbl.table_schema
 -> AND sta.table_name = tbl.table_name) num_indexes,
 -> (SELECT count(*) FROM information_schema.table_constraints tc
 -> WHERE tc.table_schema = tbl.table_schema
 -> AND tc.table_name = tbl.table_name
 -> AND tc.constraint_type = 'PRIMARY KEY') num_primary_keys
 -> FROM information_schema.tables tbl
 -> WHERE tbl.table_schema = 'bank' AND tbl.table_type = 'BASE TABLE'
 -> ORDER BY 1;
+--------------+-------------+-------------+------------------+
| table_name | num_columns | num_indexes | num_primary_keys |
+--------------+-------------+-------------+------------------+
account	11	6	1
branch	6	1	1
business	4	1	1
customer	7	1	1
department	2	2	1
employee	9	4	1
individual	4	1	1
officer	7	2	1
product	5	2	1
product_type	2	1	1
transaction	8	4	1
+--------------+-------------+-------------+------------------+
11 rows in set (13.83 sec)

You could execute this statement before and after the deployment and then verify any
differences between the two sets of results before declaring the deployment a success.

Dynamic SQL Generation
Some languages, such as Oracle’s PL/SQL and Microsoft’s Transact-SQL, are supersets
of the SQL language, meaning that they include SQL statements in their grammar along
with the usual procedural constructs, such as “if-then-else” and “while.” Other lan-
guages, such as Java, include the ability to interface with a relational database, but do
not include SQL statements in the grammar, meaning that all SQL statements must be
contained within strings.

Therefore, most relational database servers, including SQL Server, Oracle Database,
and MySQL, allow SQL statements to be submitted to the server as strings. Submitting
strings to a database engine rather than utilizing its SQL interface is generally known
as dynamic SQL execution. Oracle’s PL/SQL language, for example, includes an execute
immediate command, which you can use to submit a string for execution, while SQL
Server includes a system stored procedure called sp_executesql for executing SQL
statements dynamically.

266 | Chapter 15: Metadata

MySQL provides the statements prepare, execute, and deallocate to allow for dynamic
SQL execution. Here’s a simple example:

mysql> SET @qry = 'SELECT cust_id, cust_type_cd, fed_id FROM customer';
Query OK, 0 rows affected (0.07 sec)

mysql> PREPARE dynsql1 FROM @qry;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE dynsql1;
+---------+--------------+-------------+
| cust_id | cust_type_cd | fed_id |
+---------+--------------+-------------+
1	I	111-11-1111
2	I	222-22-2222
3	I	333-33-3333
4	I	444-44-4444
5	I	555-55-5555
6	I	666-66-6666
7	I	777-77-7777
8	I	888-88-8888
9	I	999-99-9999
10	B	04-1111111
11	B	04-2222222
12	B	04-3333333
13	B	04-4444444
99	I	04-9999999
+---------+--------------+-------------+
14 rows in set (0.27 sec)

mysql> DEALLOCATE PREPARE dynsql1;
Query OK, 0 rows affected (0.00 sec)

The set statement simply assigns a string to the qry variable, which is then submitted
to the database engine (for parsing, security checking, and optimization) using the
prepare statement. After executing the statement by calling execute, the statement must
be closed using deallocate prepare, which frees any database resources (e.g., cursors)
that have been utilized during execution.

The next example shows how you could execute a query that includes placeholders so
that conditions can be specified at runtime:

mysql> SET @qry = 'SELECT product_cd, name, product_type_cd, date_offered, date_
retired FROM product WHERE product_cd = ?';
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE dynsql2 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> SET @prodcd = 'CHK';
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql2 USING @prodcd;

Working with Metadata | 267

+------------+------------------+-----------------+--------------+-------------+
| product_cd | name | product_type_cd | date_offered | date_retired|
+------------+------------------+-----------------+--------------+-------------+
| CHK | checking account | ACCOUNT | 2004-01-01 | NULL |
+------------+------------------+-----------------+--------------+-------------+
1 row in set (0.01 sec)

mysql> SET @prodcd = 'SAV';
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql2 USING @prodcd;
+------------+-----------------+-----------------+--------------+--------------+
| product_cd | name | product_type_cd | date_offered | date_retired |
+------------+-----------------+-----------------+--------------+--------------+
| SAV | savings account | ACCOUNT | 2004-01-01 | NULL |
+------------+-----------------+-----------------+--------------+--------------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql2;
Query OK, 0 rows affected (0.00 sec)

In this sequence, the query contains a placeholder (the ? at the end of the statement)
so that the product code can be submitted at runtime. The statement is prepared once
and then executed twice, once for product code 'CHK' and again for product code
'SAV', after which the statement is closed.

What, you may wonder, does this have to do with metadata? Well, if you are going to
use dynamic SQL to query a table, why not build the query string using metadata rather
than hardcoding the table definition? The following example generates the same dy-
namic SQL string as the previous example, but it retrieves the column names from the
information_schema.columns view:

mysql> SELECT concat('SELECT ',
 -> concat_ws(',', cols.col1, cols.col2, cols.col3, cols.col4,
 -> cols.col5, cols.col6, cols.col7, cols.col8, cols.col9),
 -> ' FROM product WHERE product_cd = ?')
 -> INTO @qry
 -> FROM
 -> (SELECT
 -> max(CASE WHEN ordinal_position = 1 THEN column_name
 -> ELSE NULL END) col1,
 -> max(CASE WHEN ordinal_position = 2 THEN column_name
 -> ELSE NULL END) col2,
 -> max(CASE WHEN ordinal_position = 3 THEN column_name
 -> ELSE NULL END) col3,
 -> max(CASE WHEN ordinal_position = 4 THEN column_name
 -> ELSE NULL END) col4,
 -> max(CASE WHEN ordinal_position = 5 THEN column_name
 -> ELSE NULL END) col5,
 -> max(CASE WHEN ordinal_position = 6 THEN column_name
 -> ELSE NULL END) col6,
 -> max(CASE WHEN ordinal_position = 7 THEN column_name
 -> ELSE NULL END) col7,
 -> max(CASE WHEN ordinal_position = 8 THEN column_name

268 | Chapter 15: Metadata

 -> ELSE NULL END) col8,
 -> max(CASE WHEN ordinal_position = 9 THEN column_name
 -> ELSE NULL END) col9
 -> FROM information_schema.columns
 -> WHERE table_schema = 'bank' AND table_name = 'product'
 -> GROUP BY table_name
 ->) cols;
Query OK, 1 row affected (0.02 sec)

mysql> SELECT @qry;
+---
---------------------+
| @qry
 |
+---
---------------------+
| SELECT product_cd,name,product_type_cd,date_offered,date_retired FROM product
WHERE product_cd = ? |
+---
---------------------+
1 row in set (0.00 sec)

mysql> PREPARE dynsql3 FROM @qry;
Query OK, 0 rows affected (0.01 sec)
Statement prepared

mysql> SET @prodcd = 'MM';
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql3 USING @prodcd;
+------------+----------------------+-----------------+--------------+--------------+
| product_cd | name | product_type_cd | date_offered | date_retired |
+------------+----------------------+-----------------+--------------+--------------+
| MM | money market account | ACCOUNT | 2004-01-01 | NULL |
+------------+----------------------+-----------------+--------------+--------------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql3;
Query OK, 0 rows affected (0.00 sec)

The query pivots the first nine columns in the product table, builds a query string using
the concat and concat_ws functions, and assigns the string to the qry variable. The query
string is then executed as before.

Generally, it would be better to generate the query using a procedural
language that includes looping constructs, such as Java, PL/SQL, Trans-
act-SQL, or MySQL’s Stored Procedure Language. However, I wanted
to demonstrate a pure SQL example, so I had to limit the number of
columns retrieved to some reasonable number, which in this example
is nine.

Working with Metadata | 269

Test Your Knowledge
The following exercises are designed to test your understanding of metadata. When
you’re finished, please see Appendix C for the solutions.

Exercise 15-1
Write a query that lists all of the indexes in the bank schema. Include the table names.

Exercise 15-2
Write a query that generates output that can be used to create all of the indexes on the
bank.employee table. Output should be of the form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"

270 | Chapter 15: Metadata

APPENDIX A

ER Diagram for Example Database

Figure A-1 is an entity-relationship (ER) diagram for the example database used in this
book. As the name suggests, the diagram depicts the entities, or tables, in the database
along with the foreign-key relationships between the tables. Here are a few tips to help
you understand the notation:

• Each rectangle represents a table, with the table name above the upper-left corner
of the rectangle. The primary-key column(s) are listed first and are separated from
nonkey columns by a line. Nonkey columns are listed below the line, and foreign
key columns are marked with “(FK).”

• Lines between tables represent foreign key relationships. The markings at either
end of the lines represents the allowable quantity, which can be zero (0), one (1),
or many (). For example, if you look at the relationship between the account and
product tables, you would say that an account must belong to exactly one product,
but a product may have zero, one, or many accounts.

For more information on entity-relationship modeling, please see http://en.wikipedia
.org/wiki/Entity-relationship_model.

271

http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model

branch
branch_id: smallint unsigned

name: varchar(20)
address: varchar(30)
city: varchar(20)
state: varchar(2)
zip: varchar(12)

department

dept_id: smallint unsigned

name: varchar(20)

employee

emp_id: smallint unsigned

fname: varchar(20)
lname: varchar(20)
start_date: date
end_date: date
superior_emp_id: smallint unsigned (FK)
dept_id: smallint unsigned (FK)
title: varchar(20)
assigned_branch_id: smallint unsigned (FK)

product_type

product_type_cd: varchar(10)

name: varchar(50)

product

product_cd: varchar(10)

name: varchar(50)
product_type_cd: varchar(10) (FK)
date_offered: date
date_retired: date

account

account_id: integer unsigned

product_cd: varchar(10) (FK)
cust_id: integer unsigned (FK)
open_date: date
close_date: date
last_activity_date: date
status: varchar(10)
open_branch_id: smallint unsigned (FK)
open_emp_id: smallint unsigned (FK)
avail_balance: float(10,2)
pending_balance: float(10,2)

transaction

txn_id: integer unsigned

txn_date: datetime
account_id: integer unsigned (FK)
txn_type_cd: varchar(10)
amount: double(10,2)
teller_emp_id: smallint unsigned (FK)
execution_branch_id: smallint unsigned (FK)
funds_avail_date: datetime

customer
cust_id: integer unsigned

fed_id: varchar(12)
cust_type_cd: char(2)
address: varchar(30)
city: varchar(20)
state: varchar(20)
postal_code: varchar(10)

officer

officer_id: smallint unsigned

cust_id: integer unsigned (FK)
fname: varchar(30)
lname: varchar(30)
title: varchar(20)
start_date: date
end_date: date

business

cust_id: integer unsigned (FK)

name: varchar(40)
state_id: varchar(10)
incorp_date: date

individual

cust_id: integer unsigned (FK)

fname: varchar(30)
lname: varchar(30)
birth_date: date

Figure A-1. ER diagram

272 | Appendix A: ER Diagram for Example Database

APPENDIX B

MySQL Extensions to the SQL Language

Since this book uses the MySQL server for all the examples, I thought it would be useful
for readers who are planning to continue using MySQL to include an appendix on
MySQL’s extensions to the SQL language. This appendix explores some of MySQL’s
extensions to the select, insert, update, and delete statements that can be very useful
in certain situations.

Extensions to the select Statement
MySQL’s implementation of the select statement includes two additional clauses,
which are discussed in the following subsections.

The limit Clause
In some situations, you may not be interested in all of the rows returned by a query.
For example, you might construct a query that returns all of the bank tellers along with
the number of accounts opened by each teller. If your reason for executing the query
is to determine the top three tellers so that they can receive an award from the bank,
then you don’t necessarily need to know who came in fourth, fifth, and so on. To help
with these types of situations, MySQL’s select statement includes the limit clause,
which allows you to restrict the number of rows returned by a query.

To demonstrate the utility of the limit clause, I will begin by constructing a query to
show the number of accounts opened by each bank teller:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
1	8
10	7
13	3
16	6

273

+-------------+----------+
4 rows in set (0.31 sec)

The results show that four different tellers opened accounts; if you want to limit the
result set to only three records, you can add a limit clause specifying that only three
records be returned:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> LIMIT 3;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
1	8
10	7
13	3
+-------------+----------+
3 rows in set (0.06 sec)

Thanks to the limit clause (the fourth line of the query), the result set now includes
exactly three records, and the fourth teller (employee ID 16) has been discarded from
the result set.

Combining the limit clause with the order by clause

While the previous query returns three records, there’s one small problem; you haven’t
described which three of the four records you are interested in. If you are looking for
three specific records, such as the three tellers who opened the most accounts, you will
need to use the limit clause in concert with an order by clause, as in:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> ORDER BY how_many DESC
 -> LIMIT 3;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
1	8
10	7
16	6
+-------------+----------+
3 rows in set (0.03 sec)

The difference between this query and the previous query is that the limit clause is
now being applied to an ordered set, resulting in the three tellers with the most opened
accounts being included in the final result set. Unless you are interested in seeing only
an arbitrary sample of records, you will generally want to use an order by clause along
with a limit clause.

274 | Appendix B: MySQL Extensions to the SQL Language

The limit clause is applied after all filtering, grouping, and ordering
have occurred, so it will never change the outcome of your select state-
ment other than restricting the number of records returned by the
statement.

The limit clause’s optional second parameter

Instead of finding the top three tellers, let’s say your goal is to identify all but the top
two tellers (instead of giving awards to top performers, the bank will be sending some
of the less-productive tellers to assertiveness training). For these types of situations, the
limit clause allows for an optional second parameter; when two parameters are used,
the first designates at which record to begin adding records to the final result set, and
the second designates how many records to include. When specifying a record by
number, remember that MySQL designates the first record as record 0. Therefore, if
your goal is to find the third-best performer, you can do the following:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> ORDER BY how_many DESC
 -> LIMIT 2, 1;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
| 16 | 6 |
+-------------+----------+
1 row in set (0.00 sec)

In this example, the zeroth and first records are discarded, and records are included
starting at the second record. Since the second parameter in the limit clause is 1, only
a single record is included.

If you want to start at the second position and include all the remaining records, you
can make the second argument to the limit clause large enough to guarantee that all
remaining records are included. If you do not know how many tellers opened new
accounts, therefore, you might do something like the following to find all but the top
two performers:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> ORDER BY how_many DESC
 -> LIMIT 2, 999999999;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
| 16 | 6 |
| 13 | 3 |
+-------------+----------+
2 rows in set (0.00 sec)

Extensions to the select Statement | 275

In this version of the query, the zeroth and first records are discarded, and up to
999,999,999 records are included starting at the second record (in this case, there are
only two more, but it’s better to go a bit overboard rather than taking a chance on
excluding valid records from your final result set because you underestimated).

Ranking queries

When used in conjunction with an order by clause, queries that include a limit clause
can be called ranking queries because they allow you to rank your data. While I have
demonstrated how to rank bank tellers by the number of opened accounts, ranking
queries are used to answer many different types of business questions, such as:

• Who are our top five salespeople for 2005?

• Who has the third-most home runs in the history of baseball?

• Other than The Holy Bible and Quotations from Chairman Mao, what are the next
98 best-selling books of all time?

• What are our two worst-selling flavors of ice cream?

So far, I have shown how to find the top three tellers, the third-best teller, and all but
the top two tellers. If I want to do something analogous to the fourth example (i.e., find
the worst performers), I need only reverse the sort order so that the results proceed from
lowest number of accounts opened to highest number of accounts opened, as in:

mysql> SELECT open_emp_id, COUNT(*) how_many
 -> FROM account
 -> GROUP BY open_emp_id
 -> ORDER BY how_many ASC
 -> LIMIT 2;
+-------------+----------+
| open_emp_id | how_many |
+-------------+----------+
| 13 | 3 |
| 16 | 6 |
+-------------+----------+
2 rows in set (0.24 sec)

By simply changing the sort order (from ORDER BY how_many DESC to ORDER BY how_many
ASC), the query now returns the two worst-performing tellers. Therefore, by using a
limit clause with either an ascending or descending sort order, you can produce ranking
queries to answer most types of business questions.

The into outfile Clause
If you want the output from your query to be written to a file, you could highlight the
query results, copy them to the buffer, and paste them into your favorite editor. How-
ever, if the query’s result set is sufficiently large, or if the query is being executed from
within a script, you will need a way to write the results to a file without your interven-
tion. To aid in such situations, MySQL includes the into outfile clause to allow you

276 | Appendix B: MySQL Extensions to the SQL Language

to provide the name of a file into which the results will be written. Here’s an example
that writes the query results to a file in my c:\temp directory:

mysql> SELECT emp_id, fname, lname, start_date
 -> INTO OUTFILE 'C:\\TEMP\\emp_list.txt'
 -> FROM employee; Query OK, 18 rows affected (0.20 sec)

If you remember from Chapter 7, the backslash is used to escape another
character within a string. If you’re a Windows user, therefore, you will
need to enter two backslashes in a row when building pathnames.

Rather than showing the query results on the screen, the result set has been written to
the emp_list.txt file, which looks as follows:

1 Michael Smith 2001-06-22
2 Susan Barker 2002-09-12
3 Robert Tyler 2000-02-09
4 Susan Hawthorne 2002-04-24
...
16 Theresa Markham 2001-03-15
17 Beth Fowler 2002-06-29
18 Rick Tulman 2002-12-12

The default format uses tabs ('\t') between columns and newlines ('\n') after each
record. If you want more control over the format of the data, several additional sub-
clauses are available with the into outfile clause. For example, if you want the data
to be in what is referred to as pipe-delimited format, you can use the fields subclause
to ask that the '|' character be placed between each column, as in:

mysql> SELECT emp_id, fname, lname, start_date
 -> INTO OUTFILE 'C:\\TEMP\\emp_list_delim.txt'
 -> FIELDS TERMINATED BY '|'
 -> FROM employee; Query OK, 18 rows affected (0.02 sec)

MySQL does not allow you to overwrite an existing file when using into
outfile, so you will need to remove an existing file first if you run the
same query more than once.

The contents of the emp_list_delim.txt file look as follows:

1|Michael|Smith|2001-06-22
2|Susan|Barker|2002-09-12
3|Robert|Tyler|2000-02-09
4|Susan|Hawthorne|2002-04-24
...
16|Theresa|Markham|2001-03-15
17|Beth|Fowler|2002-06-29
18|Rick|Tulman|2002-12-12

Extensions to the select Statement | 277

Along with pipe-delimited format, you may need your data in comma-delimited for-
mat, in which case you would use fields terminated by ','. If the data being written
to a file includes strings, however, using commas as field separators can prove prob-
lematic, as commas are much more likely to appear within strings than the pipe char-
acter. Consider the following query, which writes a number and two strings delimited
by commas to the comma1.txt file:

mysql> SELECT data.num, data.str1, data.str2
 -> INTO OUTFILE 'C:\\TEMP\\comma1.txt'
 -> FIELDS TERMINATED BY ','
 -> FROM
 -> (SELECT 1 num, 'This string has no commas' str1,
 -> 'This string, however, has two commas' str2) data;
Query OK, 1 row affected (0.04 sec)

Since the third column in the output file (str2) is a string containing commas, you might
think that an application attempting to read the comma1.txt file will encounter prob-
lems when parsing each line into columns, but the MySQL server has made provisions
for such situations. Here are the contents of comma1.txt:

1,This string has no commas,This string\, however\, has two commas

As you can see, the commas within the third column have been escaped by putting a
backslash before the two commas embedded in the str2 column. If you run the same
query but use pipe-delimited format, the commas will not be escaped, since they don’t
need to be. If you want to use a different escape character, such as using another comma,
you can use the fields escaped by subclause to specify the escape character to use for
your output file.

Along with specifying column separators, you can also specify the character used to
separate the different records in your datafile. If you would like each record in the
output file to be separated by something other than the newline character, you can use
the lines subclause, as in:

mysql> SELECT emp_id, fname, lname, start_date
 -> INTO OUTFILE 'C:\\TEMP\\emp_list_atsign.txt'
 -> FIELDS TERMINATED BY '|'
 -> LINES TERMINATED BY '@'
 -> FROM employee;
Query OK, 18 rows affected (0.03 sec)

Because I am not using a newline character between records, the emp_list_atsign.txt
file looks like a single long line of text when viewed, with each record separated by the
'@' character:

1|Michael|Smith|2001-06-22@2|Susan|Barker|2002-09-12@3|Robert|Tyler|2000-02-
09@4|Susan|Hawthorne|2002-04-24@5|John|Gooding|2003-11-14@6|Helen|Fleming|2004-03-
17@7|Chris|Tucker|2004-09-15@8|Sarah|Parker|2002-12-02@9|Jane|Grossman|2002-05-
03@10|Paula|Roberts|2002-07-27@11|Thomas|Ziegler|2000-10-23@12|Samantha|Jameson|2003-
01-08@13|John|Blake|2000-05-11@14|Cindy|Mason|2002-08-09@15|Frank|Portman|2003-04-
01@16|Theresa|Markham|2001-03-15@17|Beth|Fowler|2002-06-29@18|Rick|Tulman|2002-12-12@

278 | Appendix B: MySQL Extensions to the SQL Language

If you need to generate a datafile to be loaded into a spreadsheet application or sent
within or outside your organization, the into outfile clause should provide enough
flexibility for whatever file format you need.

Combination Insert/Update Statements
Let’s say that you have been asked to create a table to capture information about which
of the bank’s branches are visited by which customers. The table needs to contain the
customer’s ID, the branch’s ID, and a datetime column indicating the last time the
customer visited the branch. Rows are added to the table whenever a customer visits a
certain branch, but if the customer has already visited the branch, then the existing row
should simply have its datetime column updated. Here’s the table definition:

CREATE TABLE branch_usage
 (branch_id SMALLINT UNSIGNED NOT NULL,
 cust_id INTEGER UNSIGNED NOT NULL,
 last_visited_on DATETIME,
 CONSTRAINT pk_branch_usage PRIMARY KEY (branch_id, cust_id)
);

Along with the three column definitions, the branch_usage table defines a primary key
constraint on the branch_id and cust_id columns. Therefore, the server will reject any
row added to the table whose branch/customer pair already exists in the table.

Let’s say that, after the table is in place, customer ID 5 visits the main branch (branch
ID 1) three times in the first week. After the first visit, you can insert a record into the
branch_usage table, since no record exists yet for customer ID 5 and branch ID 1:

mysql> INSERT INTO branch_usage (branch_id, cust_id, last_visited_on)
 -> VALUES (1, 5, CURRENT_TIMESTAMP());
Query OK, 1 row affected (0.02 sec)

The next time the customer visits the same branch, however, you will need to update
the existing record rather than inserting a new record; otherwise, you will receive the
following error:

ERROR 1062 (23000): Duplicate entry '1-5' for key 1

To avoid this error, you can query the branch_usage table to see whether a given
customer/branch pair exists and then either insert a record if no record is found or
update the existing row if it already exists. To save you the trouble, however, the
MySQL designers have extended the insert statement to allow you to specify that one
or more columns be modified if an insert statement fails due to a duplicate key. The
following statement instructs the server to modify the last_visited_on column if the
given customer and branch already exist in the branch_usage table:

mysql> INSERT INTO branch_usage (branch_id, cust_id, last_visited_on)
 -> VALUES (1, 5, CURRENT_TIMESTAMP())
 -> ON DUPLICATE KEY UPDATE last_visited_on = CURRENT_TIMESTAMP();
Query OK, 2 rows affected (0.02 sec)

Combination Insert/Update Statements | 279

The on duplicate key clause allows this same statement to be executed every time
customer ID 5 conducts business in branch ID 1. If run 100 times, the first execution
results in a single row being added to the table, and the next 99 executions result in the
last_visited_on column being changed to the current time. This type of operation is
often referred to as an upsert, since it is a combination of an update and an insert
statement.

Replacing the replace Command
Prior to version 4.1 of the MySQL server, upsert operations were performed using the
replace command, which is a proprietary statement that first deletes an existing row if
the primary key value already exists in the table before inserting a row. If you are using
version 4.1 or later, you can choose between the replace command and the insert...on
duplicate key command when performing upsert operations.

However, the replace command performs a delete operation when duplicate key values
are encountered, which can cause a ripple effect if you are using the InnoDB storage
engine and have foreign key constraints enabled. If the constraints have been created
with the on delete cascade option, then rows in other tables may also be automatically
deleted when the replace command deletes a row in the target table. For this reason,
it is generally regarded as safer to use the on duplicate key clause of the insert state-
ment rather than the older replace command.

Ordered Updates and Deletes
Earlier in the appendix, I showed you how to write queries using the limit clause in
conjunction with an order by clause to generate rankings, such as the top three tellers
in terms of accounts opened. MySQL also allows the limit and order by clauses to be
used in both update and delete statements, thereby allowing you to modify or remove
specific rows in a table based on a ranking. For example, imagine that you are asked
to remove records from a table used to track customer logins to the bank’s online
banking system. The table, which tracks the customer ID and date/time of login, looks
as follows:

CREATE TABLE login_history
 (cust_id INTEGER UNSIGNED NOT NULL,
 login_date DATETIME,
 CONSTRAINT pk_login_history PRIMARY KEY (cust_id, login_date)
);

The following statement populates the login_history table with some data by gener-
ating a cross join between the account and customer tables and using the account’s
open_date column as a basis for generating login dates:

mysql> INSERT INTO login_history (cust_id, login_date)
 -> SELECT c.cust_id,
 -> ADDDATE(a.open_date, INTERVAL a.account_id * c.cust_id HOUR)

280 | Appendix B: MySQL Extensions to the SQL Language

 -> FROM customer c CROSS JOIN account a;
Query OK, 312 rows affected (0.03 sec)
Records: 312 Duplicates: 0 Warnings: 0

The table is now populated with 312 rows of relatively random data. Your task is to
look at the data in the login_history table once a month, generate a report for your
manager showing who is using the online banking system, and then delete all but the
50 most-recent records from the table. One approach would be to write a query using
order by and limit to find the 50th most recent login, such as:

mysql> SELECT login_date
 -> FROM login_history
 -> ORDER BY login_date DESC
 -> LIMIT 49,1;
+---------------------+
| login_date |
+---------------------+
| 2004-07-02 09:00:00 |
+---------------------+
1 row in set (0.00 sec)

Armed with this information, you can then construct a delete statement that removes
all rows whose login_date column is less than the date returned by the query:

mysql> DELETE FROM login_history
 -> WHERE login_date < '2004-07-02 09:00:00';
Query OK, 262 rows affected (0.02 sec)

The table now contains the 50 most-recent logins. Using MySQL’s extensions, how-
ever, you can achieve the same result with a single delete statement using limit and
order by clauses. After returning the original 312 rows to the login_history table, you
can run the following:

mysql> DELETE FROM login_history
 -> ORDER BY login_date ASC
 -> LIMIT 262;
Query OK, 262 rows affected (0.05 sec)

With this statement, the rows are sorted by login_date in ascending order, and then
the first 262 rows are deleted, leaving the 50 most recent rows.

In this example, I had to know the number of rows in the table to con-
struct the limit clause (312 original rows − 50 remaining rows = 262
deletions). It would be better if you could sort the rows in descending
order and tell the server to skip the first 50 rows and then delete the
remaining rows, as in:

DELETE FROM login_history
ORDER BY login_date DESC
LIMIT 49, 9999999;

However, MySQL does not allow the optional second parameter when
using the limit clause in delete or update statements.

Ordered Updates and Deletes | 281

Along with deleting data, you can use the limit and order by clauses when modifying
data as well. For example, if the bank decides to add $100 to each of the 10 oldest
accounts to help retain loyal customers, you can do the following:

mysql> UPDATE account
 -> SET avail_balance = avail_balance + 100
 -> WHERE product_cd IN ('CHK', 'SAV', 'MM')
 -> ORDER BY open_date ASC
 -> LIMIT 10;
Query OK, 10 rows affected (0.06 sec)
Rows matched: 10 Changed: 10 Warnings: 0

This statement sorts accounts by the open date in ascending order and then modifies
the first 10 records, which, in this case, are the 10 oldest accounts.

Multitable Updates and Deletes
In certain situations, you might need to modify or delete data from several different
tables to perform a given task. If you discover that the bank’s database contains a
dummy customer left over from system testing, for example, you might need to remove
data from the account, customer, and individual tables.

For this section, I will create a set of clones for the account, customer,
and individual tables, called account2, customer2, and individual2. I
am doing so both to protect the sample data from being altered and to
avoid any problems with foreign key constraints between the tables
(more on this later in the section). Here are the create table statements
used to generate the three clone tables:

CREATE TABLE individual2 AS
SELECT * FROM individual;
CREATE TABLE customer2 AS
SELECT * FROM customer;
CREATE TABLE account2 AS
SELECT * FROM account;

If the customer ID of the dummy customer is 1, you could generate three individual
delete statements against each of the three tables, as in:

DELETE FROM account2
WHERE cust_id = 1;
DELETE FROM customer2
WHERE cust_id = 1;
DELETE FROM individual2
WHERE cust_id = 1;

Instead of writing individual delete statements, however, MySQL allows you to write
a single multitable delete statement, which, in this case, looks as follows:

282 | Appendix B: MySQL Extensions to the SQL Language

mysql> DELETE account2, customer2, individual2
 -> FROM account2 INNER JOIN customer2
 -> ON account2.cust_id = customer2.cust_id
 -> INNER JOIN individual2
 -> ON customer2.cust_id = individual2.cust_id
 -> WHERE individual2.cust_id = 1;
Query OK, 5 rows affected (0.02 sec)

This statement removes a total of five rows, one from each of the individual2 and
customer2 tables, and three from the account2 table (customer ID 1 has three accounts).
The statement comprises three separate clauses:

delete
Specifies the tables targeted for deletion.

from
Specifies the tables used to identify the rows to be deleted. This clause is identical
in form and function to the from clause in a select statement, and not all tables
named herein need to be included in the delete clause.

where
Contains filter conditions used to identify the rows to be deleted.

The multitable delete statement looks a lot like a select statement, except that a
delete clause is used instead of a select clause. If you are deleting rows from a single
table using a multitable delete format, the difference becomes even less noticeable. For
example, here’s a select statement that finds the account IDs of all accounts owned
by John Hayward:

mysql> SELECT account2.account_id
 -> FROM account2 INNER JOIN customer2
 -> ON account2.cust_id = customer2.cust_id
 -> INNER JOIN individual2
 -> ON individual2.cust_id = customer2.cust_id
 -> WHERE individual2.fname = 'John'
 -> AND individual2.lname = 'Hayward';
+------------+
| account_id |
+------------+
| 8 |
| 9 |
| 10 |
+------------+
3 rows in set (0.01 sec)

If, after viewing the results, you decide to delete all three of John’s accounts from the
account2 table, you need only replace the select clause in the previous query with a
delete clause naming the account2 table, as in:

mysql> DELETE account2
 -> FROM account2 INNER JOIN customer2
 -> ON account2.cust_id = customer2.cust_id
 -> INNER JOIN individual2
 -> ON customer2.cust_id = individual2.cust_id

Multitable Updates and Deletes | 283

 -> WHERE individual2.fname = 'John'
 -> AND individual2.lname = 'Hayward';
Query OK, 3 rows affected (0.01 sec)

Hopefully, this gives you a better idea of what the delete and from clauses are used for
in a multitable delete statement. This statement is functionally identical to the follow-
ing single-table delete statement, which uses a subquery to identify the customer ID
of John Hayward:

DELETE FROM account2
WHERE cust_id =
 (SELECT cust_id
 FROM individual2
 WHERE fname = 'John' AND lname = 'Hayward';

When using a multitable delete statement to delete rows from a single table, you are
simply choosing to use a querylike format involving table joins rather than a traditional
delete statement using subqueries. The real power of multitable delete statements lies
in the ability to delete from multiple tables in a single statement, as I demonstrated in
the first statement in this section.

Along with the ability to delete rows from multiple tables, MySQL also gives you the
ability to modify rows in multiple tables using a multitable update. Let’s say that your
bank is merging with another bank, and the databases from both banks have overlap-
ping customer IDs. Your management decides to fix the problem by incrementing each
customer ID in your database by 10,000 so that the second bank’s data can be safely
imported. The following statement shows how to modify the ID of customer ID 3 across
the individual2, customer2, and account2 tables using a single statement:

mysql> UPDATE individual2 INNER JOIN customer2
 -> ON individual2.cust_id = customer2.cust_id
 -> INNER JOIN account2
 -> ON customer2.cust_id = account2.cust_id
 -> SET individual2.cust_id = individual2.cust_id + 10000,
 -> customer2.cust_id = customer2.cust_id + 10000,
 -> account2.cust_id = account2.cust_id + 10000
 -> WHERE individual2.cust_id = 3;
Query OK, 4 rows affected (0.01 sec)
Rows matched: 5 Changed: 4 Warnings: 0

This statement modifies four rows: one in each of the individual2 and customer2 tables,
and two in the account2 table. The multitable update syntax is very similar to that of
the single-table update, except that the update clause contains multiple tables and their
corresponding join conditions rather than just naming a single table. Just like the single-
table update, the multitable version includes a set clause, the difference being that any
tables referenced in the update clause may be modified via the set clause.

284 | Appendix B: MySQL Extensions to the SQL Language

If you are using the InnoDB storage engine, you will most likely not be
able to use multitable delete and update statements if the tables involved
have foreign key constraints. This is because the engine does not guar-
antee that the changes will be applied in an order that won’t violate the
constraints. Instead, you should use multiple single-table statements in
the proper order so that foreign key constraints are not violated.

Multitable Updates and Deletes | 285

APPENDIX C

Solutions to Exercises

Chapter 3

3-1
Retrieve the employee ID, first name, and last name for all bank employees. Sort by last
name and then by first name.

mysql> SELECT emp_id, fname, lname
 -> FROM employee
 -> ORDER BY lname, fname;
+--------+----------+-----------+
| emp_id | fname | lname |
+--------+----------+-----------+
2	Susan	Barker
13	John	Blake
6	Helen	Fleming
17	Beth	Fowler
5	John	Gooding
9	Jane	Grossman
4	Susan	Hawthorne
12	Samantha	Jameson
16	Theresa	Markham
14	Cindy	Mason
8	Sarah	Parker
15	Frank	Portman
10	Paula	Roberts
1	Michael	Smith
7	Chris	Tucker
18	Rick	Tulman
3	Robert	Tyler
11	Thomas	Ziegler
+--------+----------+-----------+
18 rows in set (0.01 sec)

287

3-2
Retrieve the account ID, customer ID, and available balance for all accounts whose
status equals 'ACTIVE' and whose available balance is greater than $2,500.

mysql> SELECT account_id, cust_id, avail_balance
 -> FROM account
 -> WHERE status = 'ACTIVE'
 -> AND avail_balance > 2500;
+------------+---------+---------------+
| account_id | cust_id | avail_balance |
+------------+---------+---------------+
3	1	3000.00
10	4	5487.09
13	6	10000.00
14	7	5000.00
15	8	3487.19
18	9	9345.55
20	10	23575.12
22	11	9345.55
23	12	38552.05
24	13	50000.00
+------------+---------+---------------+
10 rows in set (0.00 sec)

3-3
Write a query against the account table that returns the IDs of the employees who
opened the accounts (use the account.open_emp_id column). Include a single row for
each distinct employee.

mysql> SELECT DISTINCT open_emp_id
 -> FROM account;
+-------------+
| open_emp_id |
+-------------+
| 1 |
| 10 |
| 13 |
| 16 |
+-------------+
4 rows in set (0.00 sec)

3-4
Fill in the blanks (denoted by <#>) for this multi-data-set query to achieve the results
shown here:

mysql> SELECT p.product_cd, a.cust_id, a.avail_balance
 -> FROM product p INNER JOIN account <1>
 -> ON p.product_cd = <2>
 -> WHERE p.<3> = 'ACCOUNT';

288 | Appendix C: Solutions to Exercises

+------------+---------+---------------+
| product_cd | cust_id | avail_balance |
+------------+---------+---------------+
CD	1	3000.00
CD	6	10000.00
CD	7	5000.00
CD	9	1500.00
CHK	1	1057.75
CHK	2	2258.02
CHK	3	1057.75
CHK	4	534.12
CHK	5	2237.97
CHK	6	122.37
CHK	8	3487.19
CHK	9	125.67
CHK	10	23575.12
CHK	12	38552.05
MM	3	2212.50
MM	4	5487.09
MM	9	9345.55
SAV	1	500.00
SAV	2	200.00
SAV	4	767.77
SAV	8	387.99
+------------+---------+---------------+
21 rows in set (0.02 sec)

The correct values for <1>, <2>, and <3> are:

1. a

2. a.product_cd

3. product_type_cd

Chapter 4

4-1
Which of the transaction IDs would be returned by the following filter conditions?

txn_date < '2005-02-26' AND (txn_type_cd = 'DBT' OR amount > 100)

Transaction IDs 1, 2, 3, 5, 6, and 7.

4-2
Which of the transaction IDs would be returned by the following filter conditions?

account_id IN (101,103) AND NOT (txn_type_cd = 'DBT' OR amount > 100)

Transaction IDs 4 and 9.

Chapter 4 | 289

4-3
Construct a query that retrieves all accounts opened in 2002.

mysql> SELECT account_id, open_date
 -> FROM account
 -> WHERE open_date BETWEEN '2002-01-01' AND '2002-12-31';
+------------+------------+
| account_id | open_date |
+------------+------------+
6	2002-11-23
7	2002-12-15
12	2002-08-24
20	2002-09-30
21	2002-10-01
+------------+------------+
5 rows in set (0.01 sec)

4-4
Construct a query that finds all nonbusiness customers whose last name contains an
a in the second position and an e anywhere after the a.

mysql> SELECT cust_id, lname, fname
 -> FROM individual
 -> WHERE lname LIKE '_a%e%';
+---------+--------+---------+
| cust_id | lname | fname |
+---------+--------+---------+
| 1 | Hadley | James |
| 9 | Farley | Richard |
+---------+--------+---------+
2 rows in set (0.02 sec)

Chapter 5

5-1
Fill in the blanks (denoted by <#>) for the following query to obtain the results that
follow:

mysql> SELECT e.emp_id, e.fname, e.lname, b.name
 -> FROM employee e INNER JOIN <1> b
 -> ON e.assigned_branch_id = b.<2>;
+--------+----------+-----------+---------------+
| emp_id | fname | lname | name |
+--------+----------+-----------+---------------+
1	Michael	Smith	Headquarters
2	Susan	Barker	Headquarters
3	Robert	Tyler	Headquarters
4	Susan	Hawthorne	Headquarters
5	John	Gooding	Headquarters

290 | Appendix C: Solutions to Exercises

6	Helen	Fleming	Headquarters
7	Chris	Tucker	Headquarters
8	Sarah	Parker	Headquarters
9	Jane	Grossman	Headquarters
10	Paula	Roberts	Woburn Branch
11	Thomas	Ziegler	Woburn Branch
12	Samantha	Jameson	Woburn Branch
13	John	Blake	Quincy Branch
14	Cindy	Mason	Quincy Branch
15	Frank	Portman	Quincy Branch
16	Theresa	Markham	So. NH Branch
17	Beth	Fowler	So. NH Branch
18	Rick	Tulman	So. NH Branch
+--------+----------+-----------+---------------+
18 rows in set (0.03 sec)

The correct values for <1> and <2> are:

1. branch

2. branch_id

5-2
Write a query that returns the account ID for each nonbusiness customer
(customer.cust_type_cd = 'I') along with the customer’s federal ID (cus
tomer.fed_id) and the name of the product on which the account is based (prod
uct.name).

mysql> SELECT a.account_id, c.fed_id, p.name
 -> FROM account a INNER JOIN customer c
 -> ON a.cust_id = c.cust_id
 -> INNER JOIN product p
 -> ON a.product_cd = p.product_cd
 -> WHERE c.cust_type_cd = 'I';
+------------+-------------+------------------------+
| account_id | fed_id | name |
+------------+-------------+------------------------+
1	111-11-1111	checking account
2	111-11-1111	savings account
3	111-11-1111	certificate of deposit
4	222-22-2222	checking account
5	222-22-2222	savings account
6	333-33-3333	checking account
7	333-33-3333	money market account
8	444-44-4444	checking account
9	444-44-4444	savings account
10	444-44-4444	money market account
11	555-55-5555	checking account
12	666-66-6666	checking account
13	666-66-6666	certificate of deposit
14	777-77-7777	certificate of deposit
15	888-88-8888	checking account
16	888-88-8888	savings account
17	999-99-9999	checking account

Chapter 5 | 291

| 18 | 999-99-9999 | money market account |
| 19 | 999-99-9999 | certificate of deposit |
+------------+-------------+------------------------+
19 rows in set (0.00 sec)

5-3
Construct a query that finds all employees whose supervisor is assigned to a different
department. Retrieve the employees’ ID, first name, and last name.

mysql> SELECT e.emp_id, e.fname, e.lname
 -> FROM employee e INNER JOIN employee mgr
 -> ON e.superior_emp_id = mgr.emp_id
 -> WHERE e.dept_id != mgr.dept_id;
+--------+-------+-----------+
| emp_id | fname | lname |
+--------+-------+-----------+
| 4 | Susan | Hawthorne |
| 5 | John | Gooding |
+--------+-------+-----------+
2 rows in set (0.00 sec)

Chapter 6

6-1
If set A = {L M N O P} and set B = {P Q R S T}, what sets are generated by the following
operations?

• A union B

• A union all B

• A intersect B

• A except B

1. A union B = {L M N O P Q R S T}

2. A union all B = {L M N O P P Q R S T}

3. A intersect B = {P}

4. A except B = {L M N O}

6-2
Write a compound query that finds the first and last names of all individual customers
along with the first and last names of all employees.

mysql> SELECT fname, lname
 -> FROM individual
 -> UNION

292 | Appendix C: Solutions to Exercises

 -> SELECT fname, lname
 -> FROM employee;
+----------+-----------+
| fname | lname |
+----------+-----------+
James	Hadley
Susan	Tingley
Frank	Tucker
John	Hayward
Charles	Frasier
John	Spencer
Margaret	Young
Louis	Blake
Richard	Farley
Michael	Smith
Susan	Barker
Robert	Tyler
Susan	Hawthorne
John	Gooding
Helen	Fleming
Chris	Tucker
Sarah	Parker
Jane	Grossman
Paula	Roberts
Thomas	Ziegler
Samantha	Jameson
John	Blake
Cindy	Mason
Frank	Portman
Theresa	Markham
Beth	Fowler
Rick	Tulman
+----------+-----------+
27 rows in set (0.01 sec)

6-3
Sort the results from Exercise 6-2 by the lname column.

mysql> SELECT fname, lname
 -> FROM individual
 -> UNION ALL
 -> SELECT fname, lname
 -> FROM employee
 -> ORDER BY lname;
+----------+-----------+
| fname | lname |
+----------+-----------+
Susan	Barker
Louis	Blake
John	Blake
Richard	Farley
Helen	Fleming
Beth	Fowler
Charles	Frasier

Chapter 6 | 293

John	Gooding
Jane	Grossman
James	Hadley
Susan	Hawthorne
John	Hayward
Samantha	Jameson
Theresa	Markham
Cindy	Mason
Sarah	Parker
Frank	Portman
Paula	Roberts
Michael	Smith
John	Spencer
Susan	Tingley
Chris	Tucker
Frank	Tucker
Rick	Tulman
Robert	Tyler
Margaret	Young
Thomas	Ziegler
+----------+-----------+
27 rows in set (0.01 sec)

Chapter 7

7-1
Write a query that returns the 17th through 25th characters of the string 'Please find
the substring in this string'.

mysql> SELECT SUBSTRING('Please find the substring in this string',17,9);
+--+
| SUBSTRING('Please find the substring in this string',17,9) |
+--+
| substring |
+--+
1 row in set (0.00 sec)

7-2
Write a query that returns the absolute value and sign (−1, 0, or 1) of the number −25.
76823. Also return the number rounded to the nearest hundredth.

mysql> SELECT ABS(-25.76823), SIGN(-25.76823), ROUND(-25.76823, 2);
+----------------+-----------------+---------------------+
| ABS(-25.76823) | SIGN(-25.76823) | ROUND(-25.76823, 2) |
+----------------+-----------------+---------------------+
| 25.76823 | −1 | −25.77 |
+----------------+-----------------+---------------------+
1 row in set (0.00 sec)

294 | Appendix C: Solutions to Exercises

7-3
Write a query to return just the month portion of the current date.

mysql> SELECT EXTRACT(MONTH FROM CURRENT_DATE());
+----------------------------------+
| EXTRACT(MONTH FROM CURRENT_DATE) |
+----------------------------------+
| 5 |
+----------------------------------+
1 row in set (0.02 sec)

(Your result will most likely be different, unless it happens to be May when you try this
exercise.)

Chapter 8

8-1
Construct a query that counts the number of rows in the account table.

mysql> SELECT COUNT(*)
 -> FROM account;
+----------+
| count(*) |
+----------+
| 24 |
+----------+
1 row in set (0.32 sec)

8-2
Modify your query from Exercise 8-1 to count the number of accounts held by each
customer. Show the customer ID and the number of accounts for each customer.

mysql> SELECT cust_id, COUNT(*)
 -> FROM account
 -> GROUP BY cust_id;
+---------+----------+
| cust_id | count(*) |
+---------+----------+
1	3
2	2
3	2
4	3
5	1
6	2
7	1
8	2
9	3
10	2
11	1

Chapter 8 | 295

| 12 | 1 |
| 13 | 1 |
+---------+----------+
13 rows in set (0.00 sec)

8-3
Modify your query from Exercise 8-2 to include only those customers having at least
two accounts.

mysql> SELECT cust_id, COUNT(*)
 -> FROM account
 -> GROUP BY cust_id
 -> HAVING COUNT(*) >= 2;
+---------+----------+
| cust_id | COUNT(*) |
+---------+----------+
1	3
2	2
3	2
4	3
6	2
8	2
9	3
10	2
+---------+----------+
8 rows in set (0.04 sec)

8-4 (Extra Credit)
Find the total available balance by product and branch where there is more than one
account per product and branch. Order the results by total balance (highest to lowest).

mysql> SELECT product_cd, open_branch_id, SUM(avail_balance)
 -> FROM account
 -> GROUP BY product_cd, open_branch_id
 -> HAVING COUNT(*) > 1
 -> ORDER BY 3 DESC;
+------------+----------------+--------------------+
| product_cd | open_branch_id | SUM(avail_balance) |
+------------+----------------+--------------------+
CHK	4	67852.33
MM	1	14832.64
CD	1	11500.00
CD	2	8000.00
CHK	2	3315.77
CHK	1	782.16
SAV	2	700.00
+------------+----------------+--------------------+
7 rows in set (0.01 sec)

Note that MySQL would not accept ORDER BY SUM(avail_balance) DESC,, so I was
forced to indicate the sort column by position.

296 | Appendix C: Solutions to Exercises

Chapter 9

9-1
Construct a query against the account table that uses a filter condition with a noncor-
related subquery against the product table to find all loan accounts
(product.product_type_cd = 'LOAN'). Retrieve the account ID, product code, customer
ID, and available balance.

mysql> SELECT account_id, product_cd, cust_id, avail_balance
 -> FROM account
 -> WHERE product_cd IN (SELECT product_cd
 -> FROM product
 -> WHERE product_type_cd = 'LOAN');
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
21	BUS	10	0.00
22	BUS	11	9345.55
24	SBL	13	50000.00
+------------+------------+---------+---------------+
3 rows in set (0.07 sec)

9-2
Rework the query from Exercise 9-1 using a correlated subquery against the product
table to achieve the same results.

mysql> SELECT a.account_id, a.product_cd, a.cust_id, a.avail_balance
 -> FROM account a
 -> WHERE EXISTS (SELECT 1
 -> FROM product p
 -> WHERE p.product_cd = a.product_cd
 -> AND p.product_type_cd = 'LOAN');
+------------+------------+---------+---------------+
| account_id | product_cd | cust_id | avail_balance |
+------------+------------+---------+---------------+
21	BUS	10	0.00
22	BUS	11	9345.55
24	SBL	13	50000.00
+------------+------------+---------+---------------+
3 rows in set (0.01 sec)

9-3
Join the following query to the employee table to show the experience level of each
employee:

SELECT 'trainee' name, '2004-01-01' start_dt, '2005-12-31' end_dt
UNION ALL
SELECT 'worker' name, '2002-01-01' start_dt, '2003-12-31' end_dt

Chapter 9 | 297

UNION ALL
SELECT 'mentor' name, '2000-01-01' start_dt, '2001-12-31' end_dt

Give the subquery the alias levels, and include the employee’s ID, first name, last name,
and experience level (levels.name). (Hint: build a join condition using an inequality
condition to determine into which level the employee.start_date column falls.)

mysql> SELECT e.emp_id, e.fname, e.lname, levels.name
 -> FROM employee e INNER JOIN
 -> (SELECT 'trainee' name, '2004-01-01' start_dt, '2005-12-31' end_dt
 -> UNION ALL
 -> SELECT 'worker' name, '2002-01-01' start_dt, '2003-12-31' end_dt
 -> UNION ALL
 -> SELECT 'mentor' name, '2000-01-01' start_dt, '2001-12-31' end_dt) levels
 -> ON e.start_date BETWEEN levels.start_dt AND levels.end_dt;

+--------+----------+-----------+---------+
| emp_id | fname | lname | name |
+--------+----------+-----------+---------+
6	Helen	Fleming	trainee
7	Chris	Tucker	trainee
2	Susan	Barker	worker
4	Susan	Hawthorne	worker
5	John	Gooding	worker
8	Sarah	Parker	worker
9	Jane	Grossman	worker
10	Paula	Roberts	worker
12	Samantha	Jameson	worker
14	Cindy	Mason	worker
15	Frank	Portman	worker
17	Beth	Fowler	worker
18	Rick	Tulman	worker
1	Michael	Smith	mentor
3	Robert	Tyler	mentor
11	Thomas	Ziegler	mentor
13	John	Blake	mentor
16	Theresa	Markham	mentor
+--------+----------+-----------+---------+
18 rows in set (0.00 sec)

9-4
Construct a query against the employee table that retrieves the employee ID, first name,
and last name, along with the names of the department and branch to which the em-
ployee is assigned. Do not join any tables.

mysql> SELECT e.emp_id, e.fname, e.lname,
 -> (SELECT d.name FROM department d
 -> WHERE d.dept_id = e.dept_id) dept_name,
 -> (SELECT b.name FROM branch b
 -> WHERE b.branch_id = e.assigned_branch_id) branch_name
 -> FROM employee e;
+--------+----------+-----------+----------------+---------------+

298 | Appendix C: Solutions to Exercises

| emp_id | fname | lname | dept_name | branch_name |
+--------+----------+-----------+----------------+---------------+
1	Michael	Smith	Administration	Headquarters
2	Susan	Barker	Administration	Headquarters
3	Robert	Tyler	Administration	Headquarters
4	Susan	Hawthorne	Operations	Headquarters
5	John	Gooding	Loans	Headquarters
6	Helen	Fleming	Operations	Headquarters
7	Chris	Tucker	Operations	Headquarters
8	Sarah	Parker	Operations	Headquarters
9	Jane	Grossman	Operations	Headquarters
10	Paula	Roberts	Operations	Woburn Branch
11	Thomas	Ziegler	Operations	Woburn Branch
12	Samantha	Jameson	Operations	Woburn Branch
13	John	Blake	Operations	Quincy Branch
14	Cindy	Mason	Operations	Quincy Branch
15	Frank	Portman	Operations	Quincy Branch
16	Theresa	Markham	Operations	So. NH Branch
17	Beth	Fowler	Operations	So. NH Branch
18	Rick	Tulman	Operations	So. NH Branch
+--------+----------+-----------+----------------+---------------+
18 rows in set (0.12 sec)

Chapter 10

10-1
Write a query that returns all product names along with the accounts based on that
product (use the product_cd column in the account table to link to the product table).
Include all products, even if no accounts have been opened for that product.

mysql> SELECT p.product_cd, a.account_id, a.cust_id, a.avail_balance
 -> FROM product p LEFT OUTER JOIN account a
 -> ON p.product_cd = a.product_cd;
+------------+------------+---------+---------------+
| product_cd | account_id | cust_id | avail_balance |
+------------+------------+---------+---------------+
AUT	NULL	NULL	NULL
BUS	21	10	0.00
BUS	22	11	9345.55
CD	3	1	3000.00
CD	13	6	10000.00
CD	14	7	5000.00
CD	19	9	1500.00
CHK	1	1	1057.75
CHK	4	2	2258.02
CHK	6	3	1057.75
CHK	8	4	534.12
CHK	11	5	2237.97
CHK	12	6	122.37
CHK	15	8	3487.19
CHK	17	9	125.67
CHK	20	10	23575.12

Chapter 10 | 299

CHK	23	12	38552.05
MM	7	3	2212.50
MM	10	4	5487.09
MM	18	9	9345.55
MRT	NULL	NULL	NULL
SAV	2	1	500.00
SAV	5	2	200.00
SAV	9	4	767.77
SAV	16	8	387.99
SBL	24	13	50000.00
+------------+------------+---------+---------------+
26 rows in set (0.01 sec)

10-2
Reformulate your query from Exercise 10-1 to use the other outer join type (e.g., if you
used a left outer join in Exercise 10-1, use a right outer join this time) such that the
results are identical to Exercise 10-1.

mysql> SELECT p.product_cd, a.account_id, a.cust_id, a.avail_balance
 -> FROM account a RIGHT OUTER JOIN product p
 -> ON p.product_cd = a.product_cd;
+------------+------------+---------+---------------+
| product_cd | account_id | cust_id | avail_balance |
+------------+------------+---------+---------------+
AUT	NULL	NULL	NULL
BUS	21	10	0.00
BUS	22	11	9345.55
CD	3	1	3000.00
CD	13	6	10000.00
CD	14	7	5000.00
CD	19	9	1500.00
CHK	1	1	1057.75
CHK	4	2	2258.02
CHK	6	3	1057.75
CHK	8	4	534.12
CHK	11	5	2237.97
CHK	12	6	122.37
CHK	15	8	3487.19
CHK	17	9	125.67
CHK	20	10	23575.12
CHK	23	12	38552.05
MM	7	3	2212.50
MM	10	4	5487.09
MM	18	9	9345.55
MRT	NULL	NULL	NULL
SAV	2	1	500.00
SAV	5	2	200.00
SAV	9	4	767.77
SAV	16	8	387.99
SBL	24	13	50000.00
+------------+------------+---------+---------------+
26 rows in set (0.02 sec)

300 | Appendix C: Solutions to Exercises

10-3
Outer-join the account table to both the individual and business tables (via the
account.cust_id column) such that the result set contains one row per account. Col-
umns to include are account.account_id, account.product_cd, individual.fname,
individual.lname, and business.name.

mysql> SELECT a.account_id, a.product_cd,
 -> i.fname, i.lname, b.name
 -> FROM account a LEFT OUTER JOIN business b
 -> ON a.cust_id = b.cust_id
 -> LEFT OUTER JOIN individual i
 -> ON a.cust_id = i.cust_id;
+------------+------------+----------+---------+------------------------+
| account_id | product_cd | fname | lname | name |
+------------+------------+----------+---------+------------------------+
1	CHK	James	Hadley	NULL
2	SAV	James	Hadley	NULL
3	CD	James	Hadley	NULL
4	CHK	Susan	Tingley	NULL
5	SAV	Susan	Tingley	NULL
6	CHK	Frank	Tucker	NULL
7	MM	Frank	Tucker	NULL
8	CHK	John	Hayward	NULL
9	SAV	John	Hayward	NULL
10	MM	John	Hayward	NULL
11	CHK	Charles	Frasier	NULL
12	CHK	John	Spencer	NULL
13	CD	John	Spencer	NULL
14	CD	Margaret	Young	NULL
15	CHK	Louis	Blake	NULL
16	SAV	Louis	Blake	NULL
17	CHK	Richard	Farley	NULL
18	MM	Richard	Farley	NULL
19	CD	Richard	Farley	NULL
20	CHK	NULL	NULL	Chilton Engineering
21	BUS	NULL	NULL	Chilton Engineering
22	BUS	NULL	NULL	Northeast Cooling Inc.
23	CHK	NULL	NULL	Superior Auto Body
24	SBL	NULL	NULL	AAA Insurance Inc.
+------------+------------+----------+---------+------------------------+
24 rows in set (0.05 sec)

10-4 (Extra Credit)
Devise a query that will generate the set {1, 2, 3,..., 99, 100}. (Hint: use a cross join
with at least two from clause subqueries.)

SELECT ones.x + tens.x + 1
FROM
 (SELECT 0 x UNION ALL
 SELECT 1 x UNION ALL
 SELECT 2 x UNION ALL
 SELECT 3 x UNION ALL

Chapter 10 | 301

 SELECT 4 x UNION ALL
 SELECT 5 x UNION ALL
 SELECT 6 x UNION ALL
 SELECT 7 x UNION ALL
 SELECT 8 x UNION ALL
 SELECT 9 x) ones
CROSS JOIN
(SELECT 0 x UNION ALL
 SELECT 10 x UNION ALL
 SELECT 20 x UNION ALL
 SELECT 30 x UNION ALL
 SELECT 40 x UNION ALL
 SELECT 50 x UNION ALL
 SELECT 60 x UNION ALL
 SELECT 70 x UNION ALL
 SELECT 80 x UNION ALL
 SELECT 90 x) tens;

Chapter 11

11-1
Rewrite the following query, which uses a simple case expression, so that the same
results are achieved using a searched case expression. Try to use as few when clauses as
possible.

SELECT emp_id,
 CASE title
 WHEN 'President' THEN 'Management'
 WHEN 'Vice President' THEN 'Management'
 WHEN 'Treasurer' THEN 'Management'
 WHEN 'Loan Manager' THEN 'Management'
 WHEN 'Operations Manager' THEN 'Operations'
 WHEN 'Head Teller' THEN 'Operations'
 WHEN 'Teller' THEN 'Operations'
 ELSE 'Unknown'
 END
FROM employee;

 SELECT emp_id,
 CASE
 WHEN title LIKE '%President' OR title = 'Loan Manager'
 OR title = 'Treasurer'
 THEN 'Management'
 WHEN title LIKE '%Teller' OR title = 'Operations Manager'
 THEN 'Operations'
 ELSE 'Unknown'
 END
FROM employee;

302 | Appendix C: Solutions to Exercises

11-2
Rewrite the following query so that the result set contains a single row with four col-
umns (one for each branch). Name the four columns branch_1 through branch_4.

mysql> SELECT open_branch_id, COUNT(*)
 -> FROM account
 -> GROUP BY open_branch_id;
+----------------+----------+
| open_branch_id | COUNT(*) |
+----------------+----------+
1	8
2	7
3	3
4	6
+----------------+----------+
4 rows in set (0.00 sec)

mysql> SELECT
 -> SUM(CASE WHEN open_branch_id = 1 THEN 1 ELSE 0 END) branch_1,
 -> SUM(CASE WHEN open_branch_id = 2 THEN 1 ELSE 0 END) branch_2,
 -> SUM(CASE WHEN open_branch_id = 3 THEN 1 ELSE 0 END) branch_3,
 -> SUM(CASE WHEN open_branch_id = 4 THEN 1 ELSE 0 END) branch_4
 -> FROM account;
+----------+----------+----------+----------+
| branch_1 | branch_2 | branch_3 | branch_4 |
+----------+----------+----------+----------+
| 8 | 7 | 3 | 6 |
+----------+----------+----------+----------+
1 row in set (0.02 sec)

Chapter 12

12-1
Generate a transaction to transfer $50 from Frank Tucker’s money market account to
his checking account. You will need to insert two rows into the transaction table and
update two rows in the account table.

START TRANSACTION;

SELECT i.cust_id,
 (SELECT a.account_id FROM account a
 WHERE a.cust_id = i.cust_id
 AND a.product_cd = 'MM') mm_id,
 (SELECT a.account_id FROM account a
 WHERE a.cust_id = i.cust_id
 AND a.product_cd = 'chk') chk_id
INTO @cst_id, @mm_id, @chk_id
FROM individual i
WHERE i.fname = 'Frank' AND i.lname = 'Tucker';

Chapter 12 | 303

INSERT INTO transaction (txn_id, txn_date, account_id,
 txn_type_cd, amount)
VALUES (NULL, now(), @mm_id, 'CDT', 50);

INSERT INTO transaction (txn_id, txn_date, account_id,
 txn_type_cd, amount)
VALUES (NULL, now(), @chk_id, 'DBT', 50);

UPDATE account
SET last_activity_date = now(),
 avail_balance = avail_balance - 50
WHERE account_id = @mm_id;

UPDATE account
SET last_activity_date = now(),
 avail_balance = avail_balance + 50
WHERE account_id = @chk_id;

COMMIT;

Chapter 13

13-1
Modify the account table so that customers may not have more than one account for
each product.

ALTER TABLE account
ADD CONSTRAINT account_unq1 UNIQUE (cust_id, product_cd);

13-2
Generate a multicolumn index on the transaction table that could be used by both of
the following queries:

SELECT txn_date, account_id, txn_type_cd, amount
FROM transaction
WHERE txn_date > cast('2008-12-31 23:59:59' as datetime);

SELECT txn_date, account_id, txn_type_cd, amount
FROM transaction
WHERE txn_date > cast('2008-12-31 23:59:59' as datetime)
 AND amount < 1000;

CREATE INDEX txn_idx01
ON transaction (txn_date, amount);

304 | Appendix C: Solutions to Exercises

Chapter 14

14-1
Create a view that queries the employee table and generates the following output when
queried with no where clause:

+-----------------+------------------+
| supervisor_name | employee_name |
+-----------------+------------------+
NULL	Michael Smith
Michael Smith	Susan Barker
Michael Smith	Robert Tyler
Robert Tyler	Susan Hawthorne
Susan Hawthorne	John Gooding
Susan Hawthorne	Helen Fleming
Helen Fleming	Chris Tucker
Helen Fleming	Sarah Parker
Helen Fleming	Jane Grossman
Susan Hawthorne	Paula Roberts
Paula Roberts	Thomas Ziegler
Paula Roberts	Samantha Jameson
Susan Hawthorne	John Blake
John Blake	Cindy Mason
John Blake	Frank Portman
Susan Hawthorne	Theresa Markham
Theresa Markham	Beth Fowler
Theresa Markham	Rick Tulman
+-----------------+------------------+
18 rows in set (1.47 sec)

mysql> CREATE VIEW supervisor_vw
 -> (supervisor_name,
 -> employee_name
 ->)
 -> AS
 -> SELECT concat(spr.fname, ' ', spr.lname),
 -> concat(emp.fname, ' ', emp.lname)
 -> FROM employee emp LEFT OUTER JOIN employee spr
 -> ON emp.superior_emp_id = spr.emp_id;
Query OK, 0 rows affected (0.12 sec)

mysql> SELECT * FROM supervisor_vw;
+-----------------+------------------+
| supervisor_name | employee_name |
+-----------------+------------------+
NULL	Michael Smith
Michael Smith	Susan Barker
Michael Smith	Robert Tyler
Robert Tyler	Susan Hawthorne
Susan Hawthorne	John Gooding
Susan Hawthorne	Helen Fleming
Helen Fleming	Chris Tucker

Chapter 14 | 305

Helen Fleming	Sarah Parker
Helen Fleming	Jane Grossman
Susan Hawthorne	Paula Roberts
Paula Roberts	Thomas Ziegler
Paula Roberts	Samantha Jameson
Susan Hawthorne	John Blake
John Blake	Cindy Mason
John Blake	Frank Portman
Susan Hawthorne	Theresa Markham
Theresa Markham	Beth Fowler
Theresa Markham	Rick Tulman
+-----------------+------------------+
18 rows in set (0.17 sec)

14-2
The bank president would like to have a report showing the name and city of each
branch, along with the total balances of all accounts opened at the branch. Create a
view to generate the data.

mysql> CREATE VIEW branch_summary_vw
 -> (branch_name,
 -> branch_city,
 -> total_balance
 ->)
 -> AS
 -> SELECT b.name, b.city, sum(a.avail_balance)
 -> FROM branch b INNER JOIN account a
 -> ON b.branch_id = a.open_branch_id
 -> GROUP BY b.name, b.city;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM branch_summary_vw;
+---------------+-------------+---------------+
| branch_name | branch_city | total_balance |
+---------------+-------------+---------------+
Headquarters	Waltham	27882.57
Quincy Branch	Quincy	53270.25
So. NH Branch	Salem	68240.32
Woburn Branch	Woburn	21361.32
+---------------+-------------+---------------+
4 rows in set (0.01 sec)

Chapter 15

15-1
Write a query that lists all the indexes in the bank schema. Include the table names.

mysql> SELECT DISTINCT table_name, index_name
 -> FROM information_schema.statistics
 -> WHERE table_schema = 'bank';

306 | Appendix C: Solutions to Exercises

+--------------+--------------------+
| table_name | index_name |
+--------------+--------------------+
account	PRIMARY
account	account_unq1
account	fk_product_cd
account	fk_a_branch_id
account	fk_a_emp_id
account	acc_bal_idx
branch	PRIMARY
business	PRIMARY
customer	PRIMARY
department	PRIMARY
department	dept_name_idx
employee	PRIMARY
employee	fk_dept_id
employee	fk_e_branch_id
employee	fk_e_emp_id
individual	PRIMARY
officer	PRIMARY
officer	fk_o_cust_id
product	PRIMARY
product	fk_product_type_cd
product_type	PRIMARY
transaction	PRIMARY
transaction	fk_t_account_id
transaction	fk_teller_emp_id
transaction	fk_exec_branch_id
transaction	txn_idx01
+--------------+--------------------+
26 rows in set (0.00 sec)

15-2
Write a query that generates output that can be used to create all of the indexes on the
bank.employee table. Output should be of the form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"

mysql> SELECT concat(
 -> CASE
 -> WHEN st.seq_in_index = 1 THEN
 -> concat('ALTER TABLE ', st.table_name, ' ADD',
 -> CASE
 -> WHEN st.non_unique = 0 THEN ' UNIQUE '
 -> ELSE ' '
 -> END,
 -> 'INDEX ',
 -> st.index_name, ' (', st.column_name)
 -> ELSE concat(' ', st.column_name)
 -> END,
 -> CASE
 -> WHEN st.seq_in_index =
 -> (SELECT max(st2.seq_in_index)
 -> FROM information_schema.statistics st2

Chapter 15 | 307

 -> WHERE st2.table_schema = st.table_schema
 -> AND st2.table_name = st.table_name
 -> AND st2.index_name = st.index_name)
 -> THEN ');'
 -> ELSE ''
 -> END
 ->) index_creation_statement
 -> FROM information_schema.statistics st
 -> WHERE st.table_schema = 'bank'
 -> AND st.table_name = 'employee'
 -> ORDER BY st.index_name, st.seq_in_index;
+---+
| index_creation_statement |
+---+
| ALTER TABLE employee ADD INDEX fk_dept_id (dept_id); |
| ALTER TABLE employee ADD INDEX fk_e_branch_id (assigned_branch_id); |
| ALTER TABLE employee ADD INDEX fk_e_emp_id (superior_emp_id); |
| ALTER TABLE employee ADD UNIQUE INDEX PRIMARY (emp_id); |
+---+
4 rows in set (0.20 sec)

308 | Appendix C: Solutions to Exercises

Index

Symbols
! (exclamation mark), != (not equal to)

operator, 67
% (percent sign), wildcard character in partial

string matches, 74
' ' (quotes, single)

in strings, 116
surrounding strings, 114

' (apostrophe) in strings, 116
() (parentheses)

enclosing subqueries, 157
ordering query combinations in compound

queries, 111
using with filter conditions, 64

< (less than) operator
scalar subqueries and, 159
using with all operator, 163

<= (less than or equal to) operator, 159
<> (not equal to) operator

in inequality conditions, 67
scalar subqueries and, 159
using with all operator, 163

= (equals sign)
= null, filtering for null values, 77
equal to operator

scalar subqueries and, 159
using with all operator, 163
using with any operator, 165

in equality conditions, 67
> (greater than) operator

scalar subqueries and, 159
using with all operator, 163

>= (greater than or equal to) operator, 159

\ (backslash), escaping special characters in
strings, 116

_ (underscore), wildcard character in partial
string matches, 74

A
abs() function, 130
aggregate functions, 144, 145–150

count() function, 147
exercises with, 156
handling null values, 149
in having clause, 155
implicit versus explicit groups, 146
listing of common functions, 145
using expressions as arguments, 149
where clause and, 155

aggregation
selective aggregation using case expressions,

209
using views for data aggregation, 249

all operator, 163
<> all comparisons, null values and, 163

alter table statements
adding or removing constraints, 239
adding or removing indexes, 229
changing storage engine, 224
modifying definition of existing table, 31

and operator
condition evaluation with, 63
three-condition evaluation using and, or,

64
three-condition evaluation using and, or,

and not, 65
using in select statement where clause, 54

ANSI mode, 115

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

309

ANSI SQL standard, join syntax, 86
any operator, 165
arithmetic functions, 126
arithmetic operators in filter conditions, 66
as keyword

using with column aliases, 47
using with table aliases, 52

asc and desc keywords, 57
ASCII character set, 117
ascii() function, 118
atomicity, 219
auto-commit mode, 221
auto-increment feature in MySQL, 31
avg() function, 145

B
B-tree (balanced-tree) indexes, 232
begin transaction command, 221
between operator, 69
bitmap indexes, 233
branch nodes (B-tree indexes), 232

C
C language, SQL integration toolkits, 10
C#, SQL integration toolkit, 10
C++, SQL integration toolkits, 10
Cartesian products, 83, 192–198
cascading deletes, 242
cascading updates, 241
case expressions, 204

examples, 207–215
checking for existence, 211
conditional updates, 214
division-by-zero errors, 212
handling null values, 214
result set transformations, 208
selective aggregation, 209

searched, 205
simple, 206

cast() function, 141
converting strings to temporal data types,

135
ceil() function, 128
char type, 19, 113
char() function, 117

generating strings, 118
character data types, 113
character data, MySQL database, 18

character sets
ASCII, 117
latin1, 118
sorting order or collation, 71

check constraints, 238
clauses

referencing multiple tables joined in a query,
52

select statement, 43
select clause, 43

select, from, and where, 11
subqueries in, 159

CLOB (Character Large Object) type, 114
code examples from this book, xii
collation, 71
column aliases, 46
columns, 5

defined, 6
incorrect values for, 37
multicolumn grouping, 151
query returning number of, 265
single-column grouping, 151
viewing for a table with describe command,

39
columns view, 260
comments, 11
commit command, 219

ending transactions, 222
issuing for savepoints, 225

commits, auto-commit mode, 221
comparison operators

in filter conditions, 66
using scalar subqueries with, 159
using with all operator, 163
using with any operator, 165

complexity, hiding with use of views, 250
compound key, 5
compound queries, 103
concat() function, 118

appending characters to strings, 123
building strings from individual pieces of

data, 123
conditional logic, 203–216

case expressions, 204
examples, 207–215
searched, 205
simple, 206

defined, 203
exercises in, 215

310 | Index

conditions, filter (see filter conditions; filtering)
constraints, 238–243

cascading, 240–242
creating, 238
exercises, 242
getting information about primary key

constraints, 264
getting information about using

information_schema, 261
indexes and, 239
query returning number of primary key

constraints, 265
containing statement, 157
conversions

functions for, 141
invalid date conversions causing statement

errors, 37
string-to-date, 135

convert_tz() function, 139
Coordinated Universal Time (UTC), 131
correlated subqueries, 158, 167

in case expressions checking existence, 211
scalar subqueries example, 179
summing transactions for an account, 209
using exists operator, 169
using for data manipulation, 170
using with not exists operator, 170

count() function, 145, 146
counting banking transactions for a day

(example), 197
counting distinct values, 147

create index command, 229
create table statements

building for MySQL table creation, 27
checking for well-formed, 265
creating constraints, 238
index generated by, 230
query generating, using

information_schema, 263
create view statements, 245
cross joins, 83, 192–198
cube operations in grouping, 154
current date or time, generating from strings,

136

D
data dictionary, 8, 258
data statements, x, 7

errors in table data insertion and
modification, 36

data types, character, 113
data types, MySQL, 18

character data, 18
character sets, 19
text types, 20

numeric data, 21
floating-point types, 22
integer types, 22
temporal types, 23

database connections, 41
database systems, 1
databases, 1–7

constraints, 238–243
creating MySQL database, 15
defined, 1
indexes, 227–237
multiuser, 217

locking, 218
nonrelational, 2
optimizer, 9
relational model, 4
specifying database for mysql tool, 17
SQL92 join syntax, 86
terms and definitions, 6
time zones and, 131
tools for SQL commands, 10

date type, 23
datediff() function, 140
dates and times

date format components, MySQL temporal
types, 24

functions generating dates from strings,
135

invalid date conversions, 37
MySQL temporal types, 23
string-to-date conversions, 135
temporal functions returning dates, 137
time zones, 131

datetime type, 23, 24
strings representing datetime values, 134

date_add() function, 137, 195
dayname() function, 139
DB2 Universal Database, 12
deadlocks, 222
deallocate statements, 267
delete statements

deleting data from MySQL table, 35

Index | 311

using correlated subqueries, 171
deletes, cascading, 242
deployment verification for schema objects,

265
desc and asc keywords, 57
describe (desc) command, 29

columns in table, describing, 39
examining views, 247

distinct keyword, 48, 162
division-by-zero errors, 212
driving table, 90
duplicates

excluding using union operator, 105
removal by except and except all operators,

108
removal by intersect operator, 106
removing from query returns, 47
union all operator and, 104

durability, 220
dynamic SQL execution, 266

E
Eastern Standard Time, 131
entities, 5

defined, 6
enum data type, MySQL, 28
equality conditions, 66

case expressions and, 207
correlated subqueries in, 167
data modification using, 67
error from subquery returning more than

one row, 160
subquery in, 158

equi-joins, 94
escaping single quotes in strings, 116
except all operator, 107
except operation (sets), 100
except operator, 107
execute statements, 267
existence, checking for, 211
exists operator, 169
explicit groups, 146
expressions, 204

(see also case expressions)
in filter conditions, 66
generating with subqueries, 177
grouping via, 152
included in select clause (example), 45

sorting data in select statement order by
clause, 58

using as arguments for aggregate functions,
149

extract() function, 139
returning only year portion of a date, 152

F
Falcon storage engine, 224
filter conditions

ANSI join syntax and, 86
group, 145, 155
join conditions versus, 96
in select statement where clause, 52
subqueries in, 177
in where clauses, 63

filtering, 63–79
building conditions, 66
condition types, 66

equality conditions, 66
inequality conditions, 67
matching conditions, 73
membership conditions, 71
modifying data with equality conditions,

67
range conditions, 68

evaluation of conditions, 63
using not operator, 65
using parentheses, 64

exercises, 79
null values, 76

floating-point numbers, controlling precision
of, 128

floating-point types, MySQL, 22
floor() function, 128
foreign key constraints, 238

cascading, 240–242
foreign keys, 6

defined, 7
nonexistent key causing statement errors,

36
self-referencing, 93
using in joins, 82

from clauses, 11
join order and, 90
joining three or more tables, 88
joining two tables using inner join, 84
missing, 18
on subclause, 83

312 | Index

ANSI join syntax in, 86
in select statement, 48–52

table aliases, 52
table links, 51
tables defined by, 49

select statements for updatable views, 252
subqueries in, 172
using in joins, 82
using subclause, 85
using with select clause in select statement,

44
full-text indexes, 234
functions

advantages of case expressions over for
conditional logic, 204

aggregate, 145–150
built-in function in select clause (example),

45
conversion, 141
generating dates from strings, 135
numeric

controlling number precision, 128
handling signed data, 130
single-argument, 126

string functions returning numbers, 119
string functions returning strings, 123–125
temporal functions returning dates, 137
temporal functions returning numbers, 140
temporal functions returning strings, 139

G
GMT (Greenwich Mean Time), 131
group by clauses, 144

explicit groups in, 147
in select statements, 55
where clause and, 145

grouping, 143–145, 150–154
exercises in, 156
generating rollups, 152, 174
group filter conditions, 155
implicit versus explicit groups, 146
multicolumn groups, 151
single-column groups, 151
using expressions, 152
using subqueries, 173, 175
with cube option, 154

H
having clauses

aggregate functions in, 155
group filter conditions in, 145, 155
in select statements, 55
subqueries in filter conditions, 177

hierarchical database systems, 2
high-cardinality data, 234

I
if-then-else statements, 204
implicit groups, 146
in operator, 71

searching for value within set of values,
160

using with subquery, 161
indexes, 227–237

B-tree (balanced-tree), 232
bitmap, 233
constraints and, 239
creating, 228
exercises, 242
multicolumn, 231
overhead of, strategy for minimizing, 237
query returning number of, 265
removing via alter table command, 230
retrieving information about using

information_schema, 260
text, 234
unique, 230
uses of, 234
viewing for a table, 229

inequality conditions, 67
scalar subquery in, 159

information_schema objects, 258–262
columns view, 268
information about constraints, 261
information about table indexes, 260
views available in MySQL 6.0, 261
views in, 259

inner joins, 83
exercises in, 97

INNER keyword, 84
InnoDB storage engine, 224
insert statements, 31, 32–34

errors from nonexistent foreign key, 36
errors from nonunique primary key, 36
example, 11

Index | 313

important considerations, 33
inserting data through views, 254
noncorrelated scalar subqueries generating

values for, 180
insert() function, 124
integer types, MySQL, 22
integration toolkits for SQL, 9
intermediate result sets, 90
intersect all operator, 106
intersect operator, 106

precedence of, 111
intersection operation (sets), 100
intervals

adding to dates, 137
common interval types, 138
determing number between two dates, 140
using with extract() function, 140

is not null operator, 77
is null operator, 76

J
Java

SQL integration toolkits, 10
SQL statements and, 266

join conditions
ANSI join syntax and, 86
filter conditions versus, 96

join keyword, 82
joins, 81, 183–201

ANSI syntax for, 86
cross joins, 83, 192–198
defined, 82
equi- versus non-equi-joins, 94–96
exercises, 97
exercises in, 200
inner joins, 83
join versus filter conditions, 96
joining three or more tables, 88–93

order of joins, 89
specifying join order, 90
using same table twice, 92
using subqueries as tables, 90

joining views to other tables or views, 247
natural joins, 198
outer joins, 183–192

left versus right, 187
self, 190
three-way, 188

self-joins, 93

specifying type of join, 84

L
last_day() function, 138
latin1 character set, 20
leaf nodes (B-tree indexes), 232
left outer joins, 187
left() function, 73
length() function, 119
like operator, 74

comparing strings, 122
regular expressions and, 76

limit clauses, 58
links, table, 51
locate() function, 120
locking, 218

granularities of locks, 218
storage engines and, 224

low-cardinality data, 233

M
matching conditions, 73

using multiple search expressions, 75
using regular expressions, 75
using wildcards, 73

example search expressions, 74
max() function, 145
membership conditions, 71

generating using subqueries, 72
using not in operator, 72

metadata, 8, 257–270
exercises in, 270
information included in, 257
information_schema objects, 258–262
publishing by database servers, 258
using in deployment verification, 265
using in dynamic SQL generation, 266–270
using in schema generation scripts, 262–

265
min() function, 145
mod() function, 127
mode, checking and changing for MySQL,

115
modulo operator, 127
multibyte character sets, 19
multiparent hierarchy, 3
MySQL, x

bank schema (example), 38–40

314 | Index

constraint generation, indexes and, 239
creating a sample database, 16
data types, 18

character, 18
numeric, 21

downloading and installing MySQL 6.0
server, 15

dynamic SQL execution, 267
except operator and, 107
grouping, with cube option not supported,

154
if() function, 204
indexes, 229
information_schema database, 258
intersect operator and, 106
loading time zone data, 132
locking, 218
mysql command-line tool, 10
overview of, 12
populating and modifying tables, 30–36

deleting data, 35
inserting data, 31–35
updating data, 35

set operation precedence, 111
specifying join order, 90
storage engines, 223
table creation, 25–30

building SQL schema statements, 27
time zone settings, 131
transactions

disabling auto-commit mode, 221
error message for deadlock, 222
starting, 221

updatable views, 251
mysql command-line tool

--xml option, 34
result sets returned by, 42
running create table statement, 28
using, 17

N
natural joins, 198
natural key, 5
network database systems, 3
non-equi-joins, 94
noncorrelated subqueries, 158–167

multiple-column, 165
multiple-row, single-column, 160–165

using all operator, 163

using any operator, 165
nonprocedural languages, 9
normalization

defined, 6
table design in MySQL and, 26

not exists operator, 170, 171
not in operator, 72

<> all versus, 163
using in subquery, 162

not operator, using with filter conditions, 65
null values, 29

comparisons with not in and <> all
operators, 163

filtering, 76
handling using case expressions, 214
handling when performing aggregations,

149
subqueries generating data for columns

allowing null values, 180
numeric data, 126–130

controlling number precision, 128
converting strings to, using cast() function,

141
performing arithmetic functions, 126
signed data, 130

numeric data types, MySQL, 21
conditions specifying ranges of numbers,

70
floating-point types, 22
integer types, 22

O
on subclause of from clause, 83

ANSI join syntax in, 86
joining three or more tables, 88

open source database servers, 13
operators, 63

(see also names of individual operators)
and, or operators in filter conditions, 63
in filter conditions, 66

optimizers, 9
or operator

in filter conditions, 64
three-condition evaluation using and, or,

64
three-condition evaluation using and, or,

and not, 65
two-condition evaluation using, 64
using in select statement where clause, 54

Index | 315

Oracle Database, 12
bitmap indexes, 233
chr() function, 117
concatenation operator (||), 118, 124
constraint generation, indexes and, 239
decode() function, 204
drop index command, 230
dynamic SQL execution, 266
from clauses and, 18
generating current date or time from strings,

137
grouping, with cube option, 154
inserting and updating data through views,

254
instr() function, 120
locking, 218
metadata, 258
minus operator, 107
mod() function, 127
new_time() function, 139
power() function, 127
replace() function, 125
rollups, 153
sequences, 31
specifying join order, 90
starting transactions, 221
substr() function, 125
subtracting dates, 141
text indexes and search tools, 234
time zone settings, 132
to_date() function, 136

Oracle PL/SQL language, 266
order by clauses, 34

in select statements, 55–59
ascending and descending sort order,

57
sorting via expressions, 58
sorting via numeric placeholders, 59

sorting compound query results, 108
outer joins, 183–192

left versus right, 187
self, 190
three-way, 188
using subqueries instead of, 206

P
page locks, 218
Perl, SQL integration toolkit, 10
PL/SQL language, 266

position() function, 119
PostgreSQL, 13
pow() or power() function, 127
precedence of set operations, 109
prepare statements, 267
primary key constraints, 238

getting information about, 264
query returning number of, 265

primary keys, 5
defined, 7
generating numeric values for, 31
nonunique key values causing SQL

statement errors, 36
procedural languages, 9
programming languages, ix

integrating SQL with, 9
nonprocedural, 9

Python, SQL integration toolkit, 10

Q
queries, 41

(see also select statements)
tuning, 236

query optimizers, 42
quote() function, 116

R
range conditions, 68

correlated subqueries in, 168
string ranges, 70
using between operator, 69

read locks, 218
regexp operator, 76

using in string comparisons, 122
regular expressions, 122

(see also regexp operator)
using to build search expressions, 75

relational databases
mature, popular commercial products, 12
relational model, 4

replace() function, 125
result sets

defined, 7
intermediate, 90
returned by mysql tool (example), 42
returned by subqueries, 157
transformations performed with case

expressions, 208

316 | Index

right outer joins, 187
rollback command, 219

ending transactions, 221
issued against unnamed savepoint, 225
rolling back savepoints, 224

rollups, 152
generating with subquery, 174

round() function, 128
row locks, 218
rows, 5

defined, 6

S
savepoints in transactions, 223

creating, 224
example of use, 224
rolling back, 224

scalar subqueries, 159
correlated, 179
noncorrelated, generating values for insert

statement, 180
schema statements, x, 7

building for table creation in MySQL, 27
schemas

bank schema example for MySQL, 38–40
deployment verification for, 265
generation scripts, 263–265
information_schema, 258–262

search expressions
examples using wildcards, 74
using multiple, 75
using regular expressions, 75

searched case expressions, 205
advantages of, 207

security, data security using views, 248
select clause

aggregate functions in, 144
select clauses, 11
select statements, 41–61

clauses, 43
exercises, 60
from clause, 48–52

subqueries in, 172
table links, 51

group by and having clauses, 55
order by clause, 55–59

ascending and descending sort order,
57

soring via numeric placeholders, 59

sorting via expressions, 58
query execution by database servers, 41
querying views, 247
select clause, 43–48

column aliases in, 46
removing duplicates from returns, 47

table aliases used outside from clause, 52
updatable views, 252
where clause, 52–54

self-joins, 93
self outer joins, 190

self-non-equi joins, 94
self-referencing foreign key, 93
sequences, Oracle Database, 31
SET command, 115
set operators, 103–108

except operator, 107
intersect operator, 106
precedence of, 109
union all, merging results from queries,

173
union and union all operators, 103–105

sets, 99–112
exercises in set operations, 111
guidelines for performing set operations on

two data sets, 102
primer in set theory, 99
rules for set operations, 108–111

operation precedence, 109
sorting compound query results, 108

set theory applied to relational databases,
102

show table command, 224
show tables command, 39
sign() function, 130
simple case expressions, 206
sorting (see order by clauses)
SQL (Structured Query Language), ix

dynamic generation of, 266–269
history of, 7
integration toolkits, 9
as nonprocedural language, 9
statement classes, 7
statement examples, 10

SQL Server, 12
coalesce() function, 204
concatenation operator (+), 118, 124
constraint generation, indexes and, 239
convert() function, 136

Index | 317

current_timestamp() function, 137
datediff() function, 141
datepart() function, 140
drop index command, 230
dynamic SQL execution, 266
generating XML from query output, 35
grouping, with cube option, 154
inserting and updating data through views,

254
len() function, 119
locking, 218
metadata and information_schema, 258
modulo operator (%), 127
power() function, 127
replace() and stuff() functions, 125
specifying join order, 90
transactions

disabling auto-commit mode, 221
savepoints, 225
starting, 221

SQL92 version of ANSI SQL standard, 86
start transaction command, 221
statement classes, 7
statement scope, 157
statements

case expressions in, 205
clauses, 11
data and schema, x
dynamic SQL execution in MySQL, 267
errors in data statements, 36
examples of, 10
for updatable views, 251

storage engines
choosing, 223
locking and, 218

STRAIGHT_JOIN keyword, 90
strcmp() function, 120
strict mode, 115
strings

character data types in string data, 113
conversion to datetimes in MySQL, 37
converting to number using cast() function,

141
generating string data, 114–118

single quotes in strings, 116
special characters in strings, 117

manipulating, 119–125
string functions returning numbers,

119–122

string functions returning strings, 123–
125

partial string matches, 73
ranges of, 70
representing temporal data, 132

date format components, 133
functions generating dates, 135
required date components, 134
strig-to-date conversions, 135

SQL statements submitted to database
server as, 266

temporal functions that return, 139
str_to_date() function, 135
subqueries, 157–182

correlated, 167–171
data manipulation with, 170
using with exists operator, 169

defined, 157
exercises in, 181
generating membership conditions, 72
in statements for updatable views, 251
noncorrelated, 159

multicolumn, 165
multiple-row, single-column, 160–165

summary of types, 181
tables generated by, 49
types of, 158
using as data source, 172–177

data fabrication with subqueries, 173
task-oriented subqueries, 175

using as tables, 90
using in filter conditions, 177
using instead of outer joins, 206
using to generate expressions, 177
using to limit number of joins, 189

substring() function, 125
substrings

extracting from strings, 125
locating within strings, 119

sum() function, 146, 210
surrogate key, 5
Sybase Adaptive Server, 12
system catalog, 258

T
table aliases, 52

queries requiring, 93
table locks, 218
tables, 4

318 | Index

bank schema (example), 38
created for special purposes, problems with,

175
creating for MySQL database, 25–30

designing a table, 25
refining design, 26
SQL statements to create tables, 27

defined, 6
defined for query with from clause, 49
deleting data from MySQL table, 35
generated by subquery, 49
inserting and modifying data, errors in SQL

statements, 36
listing available tables in database with show

tables, 39
populating and modifying, 30
pre-aggregated data, 249
storage engines for, 224
updating data in MySQL, 35

temporal data, 130–141
converting strings to, using cast() function,

142
generating, 132–137

string representations of, 132
manipulating, 137–141

temporal functions returning dates, 137
temporal functions returning strings,

139
maniuplating

temporal functions returning numbers,
140

time zones, 131
temporal data types, MySQL, 23

date format components, 24
evaluating with range conditions, 68
invalid date conversions, 37

text data, MySQL, 20
text indexes, 234
text type, 114
time type, 23, 25
time zones, 131

converting datetime values between, 139
loading MySQL time zone data, 132

timestamp type, 23, 24
Transact-SQL language, 266
transaction statements, 7
transactions, 217–225

defined, 219
ending, 221

exercises in, 225
multiuser databases, 217
savepoints, 223
starting, 220

truncate() function, 129
tuning queries, 236

U
union all operator

joining partitioned data in a view, 251
merging results from separate queries, 173
merging results of separate queries, 193

union and union all operators, 103–105
precedence of, 110

union operation (sets), 99
unique constraints, 238
unique keyword, 230
unsigned data, 22, 130
update statements, 11

column value violations, 37
invalid date conversions, 37
MySQL table updates, 35
using correlated subqueries, 170

updates
cascading, 241
conditional, 214
views, 251

updating complex views, 253
updating simple views, 252

username, specifying for mysql tool, 17
using subclause of from clause, 85
UTC (Coordinated Universal Time), 131

V
varchar type, 19, 114

columns storing strings, 114
string length in varchar columns, 115

versioning, 218
storage engines and, 224

views, 50, 245–256
creating with create view statement, 245
defined, 245
examining with describe command, 247
exercises in, 255
in information_schema, 258

getting information about, 259
joining to other tables or views, 247

Index | 319

listing of information_schema views in
MySQL 6.0, 261

querying, 246
reasons to use, 248

data aggregation, 249
data security, 248
hiding complexity, 250
joining partitioned data, 251

updatable, 251
updating complex views, 253
updating simple views, 252

virtual tables (see views)
Visual Basic, SQL integration toolkit, 10

W
when clauses

in case expressions, 204
evaluation in searched case expressions,

205
where clauses, 11

aggregate functions and, 155
ANSI join syntax in, 86
delete statement, 36
filter conditions in, 63
in select statements, 52–54
update statement, 12, 35

wildcards in searches for partial string matches,
73

with cube option, 154
with rollup option, 152
write locks, 218

X
XML, generating from query output, 34

Y
year type, 23, 24

320 | Index

About the Author
Alan Beaulieu has been designing, building, and implementing custom database ap-
plications for over 15 years. He currently runs his own consulting company that spe-
cializes in designing Oracle databases and supporting services in the fields of financial
services and telecommunications. In building large databases for both OLTP and OLAP
environments, Alan utilizes such Oracle features as Parallel Query, Partitioning, and
Parallel Server. Alan has a Bachelor of Science degree in Operations Research from the
Cornell University School of Engineering. He lives in Massachusetts with his wife and
two daughters and can be reached at albeau_mosql@yahoo.com.

Colophon
The animal on the cover of Learning SQL, Second Edition, is an Andean marsupial tree
frog (Gastrotheca riobambae). As its name suggests, this crepuscular and nocturnal frog
is native to the western slopes of the Andes mountains and is widely distributed from
the Riobamba basin to Ibarra in the north.

During courtship, the male calls (“wraaack-ack-ack”) to attract a female. If a gravid
female is attracted to him, he climbs onto her back and performs a common frog mating
hold called the nuptial amplexus. As the eggs emerge from the female’s cloaca, the male
catches the eggs with his feet and fertilizes them while maneuvering them into a pouch
on the female’s back. A female may incubate an average of 130 eggs, and development
in the pouch lasts between 60 and 120 days. During incubation, swelling becomes
visible, and lumps appear beneath the skin on the female’s back. When the tadpoles
emerge from the pouch, the female tree frog deposits them into the water. Within two
or three months the tadpoles metamorphose into froglets, and at seven months they
are ready to mate (“wraaaack-ack-ack”).

Both the male and female tree frog have expanded digital discs on their fingers and toes
that help them climb vertical surfaces such as trees. Adult males reach 2 inches in length,
while females reach 2.5 inches. Sometimes they are green, sometimes brown, and
sometimes a combination of green and brown. The color of the juveniles may change
from brown to green as they grow.

The cover image is from the Dover Archive Pictorial. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Why Learn SQL?
	Why Use This Book to Do It?
	Structure of This Book
	Conventions Used in This Book
	How to Contact Us
	Using Code Examples
	Safari® Books Online
	Acknowledgments

	Chapter 1. A Little Background
	Introduction to Databases
	Nonrelational Database Systems
	The Relational Model
	Some Terminology

	What Is SQL?
	SQL Statement Classes
	SQL: A Nonprocedural Language
	SQL Examples

	What Is MySQL?
	What’s in Store

	Chapter 2. Creating and Populating a Database
	Creating a MySQL Database
	Using the mysql Command-Line Tool
	MySQL Data Types
	Character Data
	Character sets
	Text data

	Numeric Data
	Temporal Data

	Table Creation
	Step 1: Design
	Step 2: Refinement
	Step 3: Building SQL Schema Statements

	Populating and Modifying Tables
	Inserting Data
	Generating numeric key data
	The insert statement

	Updating Data
	Deleting Data

	When Good Statements Go Bad
	Nonunique Primary Key
	Nonexistent Foreign Key
	Column Value Violations
	Invalid Date Conversions

	The Bank Schema

	Chapter 3. Query Primer
	Query Mechanics
	Query Clauses
	The select Clause
	Column Aliases
	Removing Duplicates

	The from Clause
	Tables
	Subquery-generated tables
	Views

	Table Links
	Defining Table Aliases

	The where Clause
	The group by and having Clauses
	The order by Clause
	Ascending Versus Descending Sort Order
	Sorting via Expressions
	Sorting via Numeric Placeholders

	Test Your Knowledge
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4

	Chapter 4. Filtering
	Condition Evaluation
	Using Parentheses
	Using the not Operator

	Building a Condition
	Condition Types
	Equality Conditions
	Inequality conditions
	Data modification using equality conditions

	Range Conditions
	The between operator
	String ranges

	Membership Conditions
	Using subqueries
	Using not in

	Matching Conditions
	Using wildcards
	Using regular expressions

	Null: That Four-Letter Word
	Test Your Knowledge
	Exercise 4-1
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4

	Chapter 5. Querying Multiple Tables
	What Is a Join?
	Cartesian Product
	Inner Joins
	The ANSI Join Syntax

	Joining Three or More Tables
	Using Subqueries As Tables
	Using the Same Table Twice

	Self-Joins
	Equi-Joins Versus Non-Equi-Joins
	Join Conditions Versus Filter Conditions
	Test Your Knowledge
	Exercise 5-1
	Exercise 5-2
	Exercise 5-3

	Chapter 6. Working with Sets
	Set Theory Primer
	Set Theory in Practice
	Set Operators
	The union Operator
	The intersect Operator
	The except Operator

	Set Operation Rules
	Sorting Compound Query Results
	Set Operation Precedence

	Test Your Knowledge
	Exercise 6-1
	Exercise 6-2
	Exercise 6-3

	Chapter 7. Data Generation, Conversion, and
 Manipulation
	Working with String Data
	String Generation
	Including single quotes
	Including special characters

	String Manipulation
	String functions that return numbers
	String functions that return strings

	Working with Numeric Data
	Performing Arithmetic Functions
	Controlling Number Precision
	Handling Signed Data

	Working with Temporal Data
	Dealing with Time Zones
	Generating Temporal Data
	String representations of temporal data
	String-to-date conversions
	Functions for generating dates

	Manipulating Temporal Data
	Temporal functions that return dates
	Temporal functions that return strings
	Temporal functions that return numbers

	Conversion Functions
	Test Your Knowledge
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3

	Chapter 8. Grouping and Aggregates
	Grouping Concepts
	Aggregate Functions
	Implicit Versus Explicit Groups
	Counting Distinct Values
	Using Expressions
	How Nulls Are Handled

	Generating Groups
	Single-Column Grouping
	Multicolumn Grouping
	Grouping via Expressions
	Generating Rollups

	Group Filter Conditions
	Test Your Knowledge
	Exercise 8-1
	Exercise 8-2
	Exercise 8-3
	Exercise 8-4 (Extra Credit)

	Chapter 9. Subqueries
	What Is a Subquery?
	Subquery Types
	Noncorrelated Subqueries
	Multiple-Row, Single-Column Subqueries
	The in and not in operators
	The all operator
	The any operator

	Multicolumn Subqueries

	Correlated Subqueries
	The exists Operator
	Data Manipulation Using Correlated Subqueries

	When to Use Subqueries
	Subqueries As Data Sources
	Data fabrication
	Task-oriented subqueries

	Subqueries in Filter Conditions
	Subqueries As Expression Generators

	Subquery Wrap-up
	Test Your Knowledge
	Exercise 9-1
	Exercise 9-2
	Exercise 9-3
	Exercise 9-4

	Chapter 10. Joins Revisited
	Outer Joins
	Left Versus Right Outer Joins
	Three-Way Outer Joins
	Self Outer Joins

	Cross Joins
	Natural Joins
	Test Your Knowledge
	Exercise 10-1
	Exercise 10-2
	Exercise 10-3
	Exercise 10-4 (Extra Credit)

	Chapter 11. Conditional Logic
	What Is Conditional Logic?
	The Case Expression
	Searched Case Expressions
	Simple Case Expressions

	Case Expression Examples
	Result Set Transformations
	Selective Aggregation
	Checking for Existence
	Division-by-Zero Errors
	Conditional Updates
	Handling Null Values

	Test Your Knowledge
	Exercise 11-1
	Exercise 11-2

	Chapter 12. Transactions
	Multiuser Databases
	Locking
	Lock Granularities

	What Is a Transaction?
	Starting a Transaction
	Ending a Transaction
	Transaction Savepoints

	Test Your Knowledge
	Exercise 12-1

	Chapter 13. Indexes and Constraints
	Indexes
	Index Creation
	Unique indexes
	Multicolumn indexes

	Types of Indexes
	B-tree indexes
	Bitmap indexes
	Text indexes

	How Indexes Are Used
	The Downside of Indexes

	Constraints
	Constraint Creation
	Constraints and Indexes
	Cascading Constraints

	Test Your Knowledge
	Exercise 13-1
	Exercise 13-2

	Chapter 14. Views
	What Are Views?
	Why Use Views?
	Data Security
	Data Aggregation
	Hiding Complexity
	Joining Partitioned Data

	Updatable Views
	Updating Simple Views
	Updating Complex Views

	Test Your Knowledge
	Exercise 14-1
	Exercise 14-2

	Chapter 15. Metadata
	Data About Data
	Information_Schema
	Working with Metadata
	Schema Generation Scripts
	Deployment Verification
	Dynamic SQL Generation

	Test Your Knowledge
	Exercise 15-1
	Exercise 15-2

	Appendix A. ER Diagram for Example Database
	Appendix B. MySQL Extensions to the SQL Language
	Extensions to the select Statement
	The limit Clause
	Combining the limit clause with the order by clause
	The limit clause’s optional second parameter
	Ranking queries

	The into outfile Clause

	Combination Insert/Update Statements
	Ordered Updates and Deletes
	Multitable Updates and Deletes

	Appendix C. Solutions to Exercises
	Chapter 3
	3-1
	3-2
	3-3
	3-4

	Chapter 4
	4-1
	4-2
	4-3
	4-4

	Chapter 5
	5-1
	5-2
	5-3

	Chapter 6
	6-1
	6-2
	6-3

	Chapter 7
	7-1
	7-2
	7-3

	Chapter 8
	8-1
	8-2
	8-3
	8-4 (Extra Credit)

	Chapter 9
	9-1
	9-2
	9-3
	9-4

	Chapter 10
	10-1
	10-2
	10-3
	10-4 (Extra Credit)

	Chapter 11
	11-1
	11-2

	Chapter 12
	12-1

	Chapter 13
	13-1
	13-2

	Chapter 14
	14-1
	14-2

	Chapter 15
	15-1
	15-2

	Index

