


Learn SQL Learn SQL Learn SQL 



This page intentionally left blank 



DEANNA DICKEN

KEVIN THOMPSON

Learn SQL Learn SQL Learn SQL 

�



© 2002 by Premier Press, Inc. All rights reserved. No part of this book may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system without written permission from Premier Press,
except for the inclusion of brief quotations in a review.

The Premier Press logo, top edge printing, related trade dress, and "In a Weekend," are
trademarks of Premier Press, Inc. and may not be used without written permission. All
other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet
Associate Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell
Acquisitions Editor: Stacy L. Hiquet
Project Editors: Kezia Endsley, Estelle Manticas
Editorial Assistant: Margaret Bauer
Technical Reviewer: David Fields
Copy Editor: Laura Gabler
Interior Layout: Jill Flores
Cover Design: Premier Press, Inc.
Indexer: Sharon Shock
Proofreader: Kezia Endsley

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer's technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-62-4

Library of Congress Catalog Card Number: 2001099846

Printed in the United States of America

02 03 04 05 RI 10 9 8 7 6 5 4 3 2 1

�



v

ACKNOWLEDGMENTS

First we would like to recognize the individuals who worked on this
book. We want to thank Stacy Hiquet, Acquisitions Editor, for getting
this book going. Estelle Manticas and Kezia Endsley, Project Editors,
worked very hard to keep the book on schedule and looking good. We
also need to thank Laura Gabler for her excellent work as copy editor and
David Fields for his technical review.

We also want to thank our families for their understanding as we worked
many nights and weekends over these past several months to get this book
done. Thank you for your support and encouragement.



vi

ABOUT THE AUTHOR

Deanna Dicken is a Microsoft Certified Solution Developer (MCSD).
She has over 10 years experience in the computer industry, including six
years as a consultant. During this time, she has worked on many large-
scale, critical applications and has been involved in all phases of the life-
cycle. She has also contributed to three SQL Server books for MCSE
study guides and technical edited many other titles. Deanna lives on the
outskirts of Indianapolis, Indiana with her husband, Curtis. They are
expecting their first bundle of joy in May 2002, Kylee Marie Dicken.

Kevin Thompson is an independent contract developer in the Indi-
anapolis area. He specializes in n-tier Internet/intranet and client/server
application development. He has worked with SQL relational databases
for the last 13 years. He has obtained several technical certifications
including Microsoft SQL Server and Sybase Adaptive Server. He has also
worked on several books on the topics of database development, database
administration, and client/server programming. Kevin, his wife Lisa, and
their children Alexandra, Davis, and Harrison live in Carmel, Indiana.
Their dog Dakota enjoys eating sticks of butter, loaves of bread, and any-
thing else that is left out overnight.



This page intentionally left blank 



viii

CONTENTS AT A GLANCE

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

FRIDAY EVENING
Introduction to SQL—Let the Weekend Begin! . . . . . . . . . . . . . 1

SATURDAY MORNING
Selecting Data—How to See What's in There . . . . . . . . . . . . . 29

SATURDAY AFTERNOON
Selecting Data—Bigger and Better . . . . . . . . . . . . . . . . . . . . 79

SATURDAY EVENING
Building a Home for Your Data . . . . . . . . . . . . . . . . . . . . . . 133

SUNDAY MORNING 
Optimization—Feel the Need for Speed? . . . . . . . . . . . . . . . 201

SUNDAY AFTERNOON
Security—Putting the Padlocks on . . . . . . . . . . . . . . . . . . . 263



ix

SUNDAY EVENING
SQL and the Application Developer . . . . . . . . . . . . . . . . . . . 329

APPENDIX A
SQL Samples in SQL Server . . . . . . . . . . . . . . . . . . . . . . . . 403

Appendix B
SQL Samples in Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

APPENDIX C
SQL Samples in MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

APPENDIX D
SQL Samples in Sybase SQL Anywhere . . . . . . . . . . . . . . . . 453

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480



x

CONTENTS

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

FRIDAY EVENING
Introduction to SQL—Let the Weekend Begin! . . . . . . . . . . . . . 1

What Is SQL? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Why Do You Need It?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
The 31 Flavors of SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Where Do You Begin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
The Anatomy of a Relational Database . . . . . . . . . . . . . . . . . . . . 9
Setting Up the Sample Databases . . . . . . . . . . . . . . . . . . . . . . . 16

Saturday Morning  
Selecting Data—How to See What's in There . . . . . . . . . . . . . 29

Using the SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Sorting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Filtering the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Joining Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Creating Computed Columns . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xi

Saturday Afternoon  
Selecting Data—Bigger and Better . . . . . . . . . . . . . . . . . . . . 79

Using Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Aggregate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
String Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Conversion Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Date and Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 101
System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Grouping the Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Filtering the Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Using Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Subqueries within the WHERE Clause. . . . . . . . . . . . . . . . . 117
Subqueries within the HAVING Clause . . . . . . . . . . . . . . . . 123
Subqueries within the SELECT Clause . . . . . . . . . . . . . . . . 124
Subqueries within Subqueries . . . . . . . . . . . . . . . . . . . . . . 125

Creating Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Saturday Evening  
Building a Home for Your Data . . . . . . . . . . . . . . . . . . . . . . 133

Using Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
First Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Second Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Third Normal Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A Couple of Final Changes . . . . . . . . . . . . . . . . . . . . . . . . 148
Advanced Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Creating Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
String Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Numeric Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Date and Time Data Types . . . . . . . . . . . . . . . . . . . . . . . . . 161
Boolean Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Binary Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Creating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Column-Level Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table-Level Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Modifying and Dropping Tables . . . . . . . . . . . . . . . . . . . . . . . . 176
Modifying Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Dropping Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Inserting Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Updating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Deleting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Modifying and Dropping Databases . . . . . . . . . . . . . . . . . . . . . 197

Modifying Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Dropping Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Sunday Morning  
Optimization—Feel the Need for Speed? . . . . . . . . . . . . . . . 201 

Understanding Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Creating an Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Composite Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Sorted Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Unique Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Clustered Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
The Cost of Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Dropping an Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Creating Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 220
How Can Stored Procedures Speed Things Up? . . . . . . . . . . 221
Writing a Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Using Stored Procedures to Divide Up Your Work. . . . . . . . . 225
Multistep Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . 227
Cursors and Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xii Contents



Data-Modification Procedures . . . . . . . . . . . . . . . . . . . . . . 231
Network Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Understanding Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Optimizing Your Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Fine-Tune Your Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Fine-Tune the Database . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Fine-Tune the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

SUNDAY AFTERNOON  
Security—Putting the Padlocks on. . . . . . . . . . . . . . . . . . . 263

Considering Database Security . . . . . . . . . . . . . . . . . . . . . . . . 265
Letting People In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Creating User Accounts and Groups . . . . . . . . . . . . . . . . . . 267
Granting Privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Creating and Using Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Using Views for Security. . . . . . . . . . . . . . . . . . . . . . . . . . 296
Using Views to Simplify Queries . . . . . . . . . . . . . . . . . . . . 298
Views versus Stored Procedures . . . . . . . . . . . . . . . . . . . . 302
Updating Data with Views . . . . . . . . . . . . . . . . . . . . . . . . . 303

Using Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Using Triggers to Audit User Activity . . . . . . . . . . . . . . . . . 309
Using Triggers to Synchronize Data . . . . . . . . . . . . . . . . . . 314
Using Triggers to Maintain Referential Integrity . . . . . . . . . . 317
Using Triggers on Views . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Using Triggers to Enforce Business Rules . . . . . . . . . . . . . . 322

SUNDAY EVENING  
SQL and the Application Developer . . . . . . . . . . . . . . . . . . 329

Making Use of SQL with Office and Microsoft Query . . . . . . . . . 331
Using Microsoft Query . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Using Query within Excel . . . . . . . . . . . . . . . . . . . . . . . . . 344
Using Query within Word . . . . . . . . . . . . . . . . . . . . . . . . . 347

Building Database Applications with Visual Basic 
and Visual Basic .NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Using SQL with Visual Basic 6.0 . . . . . . . . . . . . . . . . . . . . 351

xiiiContents



xiv Contents

Using SQL in Visual Basic .NET . . . . . . . . . . . . . . . . . . . . . 363
Getting Visual C++ and Visual C# .NET to Use SQL . . . . . . . . . . 367

Retrieving SQL Data with Visual C++ . . . . . . . . . . . . . . . . . 368
Retrieving SQL Data with Visual C# .NET . . . . . . . . . . . . . . 372

Making Data Driven Web Pages with ASP and ASP .NET . . . . . . 377
Web Page Data Access with ASP . . . . . . . . . . . . . . . . . . . . 377
Building Data Access Pages with ASP.NET. . . . . . . . . . . . . . 382

Using SQL with PowerBuilder. . . . . . . . . . . . . . . . . . . . . . . . . 387
The PowerBuilder DataWindow . . . . . . . . . . . . . . . . . . . . . 387
Using SQL in PowerScript . . . . . . . . . . . . . . . . . . . . . . . . . 396

Appendix A  
SQL Samples in SQL Server . . . . . . . . . . . . . . . . . . . . . . . . 403

Accessing SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
SQL for the Sample Database . . . . . . . . . . . . . . . . . . . . . . . . . 405
Education, Training, and Certification. . . . . . . . . . . . . . . . . . . . 416

Appendix B
SQL Samples in Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Accessing Oracle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
SQL for the Sample Database . . . . . . . . . . . . . . . . . . . . . . . . . 420
Differences in Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Education, Training, and Certification. . . . . . . . . . . . . . . . . . . . 434

Appendix C
SQL Samples in MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Accessing MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
SQL for the Sample Database . . . . . . . . . . . . . . . . . . . . . . . . . 438
Differences in MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Education, Training, and Certification. . . . . . . . . . . . . . . . . . . . 451



Appendix D
SQL Samples in Sybase SQL Anywhere . . . . . . . . . . . . . . . . 453

Accessing SQL Anywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
SQL for the Sample Database . . . . . . . . . . . . . . . . . . . . . . . . . 456
Differences in Sybase SQL Anywhere. . . . . . . . . . . . . . . . . . . . 468
Education, Training, and Certification. . . . . . . . . . . . . . . . . . . . 468

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

xvContents



xvi

INTRODUCTION

In this age of information, many businesses live and die by the data they
keep in databases. SQL is the gateway to that data. It gives you the
capability to store, utilize, and analyze data.

Welcome to L e a rn SQL in a We e k e n d, your introduction to the powe r-
ful language known as SQL, St ru c t u red Qu e ry Language. In one short
weekend, you will learn the skills necessary to take advantage of the
information so vital to the pro d u c t i v i t y, strategy, and even surv i val of
businesses in this day and age.

What This Book Is About
Learn SQL in a Weekend is an introduction to the widely used language
of SQL. From this weekend course, you will learn

➤ Basic database terminology

➤ Data retrieval techniques

➤ Complex query creation and data summation

➤ Proper database design concepts

➤ Database object creation

➤ Data storage and manipulation commands



xvii

➤ Ad vanced database concepts such as views, triggers, and store d
p ro c e d u re s

➤ Database security concepts

➤ How to use SQL with popular software packages and programming
languages

Once you've completed this book, you will have an excellent foundation
for using SQL with any RDBMS (relational database management sys-
tem). Each RDBMS implements SQL in its own way, but the concepts
covered here are fairly standard. We will point out differences between the
major vendors as each topic is discussed. Therefore, this book makes an
excellent stepping-stone toward more vendor-specific SQL topics.

Who Should Read This Book
Almost everyone in the world has been exposed to a database at some
point in his or her life. Have you ever used an ATM, ordered something
online, or bought groceries? Chances are your account balance, the
description and price of the item you ordered, and the UPC and price of
your groceries all came from a database. SQL is the standard by which
people communicate with databases.



xviii

Whether you would like to build a database to store your record collec-
tion or perhaps someday work as a database administrator, Learn SQL in
a Weekend is a great place to start to learn SQL. This book will guide you
from the basic design of a database through more advanced techniques in
communicating with one.

What You Need to Begin
All you really need to begin is this book. You can read through this book
and get a feel for how SQL is used and why. If you'd like to be able to
follow along with the examples, however, you will need an RDBMS to
play with. This book provides a sample database and links to several free
RDBMS trials on the Web. Once you download and install the trial soft-
ware and sample database, you'll be ready to go. You will be able to try
the examples in the book and check your results against the listings.

The Sunday Evening session provides listings to help you use SQL in
conjunction with several popular software packages and programming
languages. Should you wish to follow along with those examples, you will
need a copy of that software.

How This Book Is Organized
➤ Friday Evening: Introduction to SQL—Let the Weekend Begin!

introduces you to the hows and whys of SQL. The basic terminolo-
gy of SQL and relational database management systems is
described. The major RDBMS vendors, their products, and trial
versions are discussed and links provided. Finally, this opening
chapter walks you through setting up your sample database so you
can follow along with the examples provided throughout the
remainder of the book.

Introduction



xix

➤ Sa t u rday Mo rning: Selecting Da t a — How to See What's in T h e re
gets you started communicating with a database. The most used
SQL command, SELECT, is cove red in this session along with sev-
eral examples of uses for it and variations of it. You learn how to use
the SELECT statement to find out what information is stored in
the database.

➤ Saturday Afternoon: Selecting Data—Bigger and Better takes the
SELECT statement several steps further. First this session covers
several popular functions that can be used in the SELECT to per-
form arithmetic calculations, gather system information, format the
results, and so forth. Next the session explores the benefits of
grouping to summarize data. We then show you how to feed the
results of one query into another. The nested SQL query is called a
subquery. Finally, unions are covered. Unions allow you to combine
the results of two or more queries to form a single result set.

➤ Saturday Evening: Building a Home for Your Data gets into the
details of how you can put together your own database. It begins
with a look at best practices for creating a relational database. You
then move into the mechanics of creating a new database, filling it
with your own tables, and relating the tables to one another. You
then end the day by learning how to insert, modify, and delete data
from these tables.

➤ Sunday Morning: Optimization—Feel the Need for Speed? kicks
off the morning session. You discover many ways that you can get
your database to perform at its highest level. The first and most
basic way is through indexes. You learn how to create and use a few
different kinds of indexes. Next, you see how you can use a little
bit of programming to make high-performance stored procedures.
Then, you learn about ensuring the integrity of your data with
transactions. Finally, the session ends with a large variety of opti-
mization tips and techniques.

Introduction



xx

➤ Sunday Afternoon: Security—Putting the Padlocks On is a ses-
sion devoted to letting the right people see the right data and keep-
ing everyone else out. You begin by discovering how to create
accounts and groups for users. Next you see how these accounts
can be given permission to certain parts of your database. Views are
introduced, which provide you with the flexibility to let users see
only what you want them to see. Lastly, you build some triggers
that you can use to keep an eye on what data people are changing.

➤ Sunday Evening: SQL and the Application Developer ends the
weekend with a look at how power-users and programmers can use
SQL to make their jobs easier. The first part of the session tells how
anyone can use applications such as Microsoft Excel and Word to
directly access data in a SQL database. The remainder of the ses-
sion is geared toward programmers. It discusses ways in which
some of today's most popular programming languages can access
your databases. The languages we cover are Visual Basic, Visual
Basic .NET, Visual C++, Visual C# .NET, ASP, ASP .NET, and
PowerBuilder. In these sections you'll find in-depth discussions
about how each of the languages can connect to a database, retrieve
data, and save changes. There is source code given for each so that
you can follow along.

Special Features in This Book
Learn SQL in a Weekend contains lots of examples so you can follow along
with the discussions. The example code and results are formatted differ-
ently than regular text so you can find them easily. The In a Weekend
series also includes tips, notes, cautions, buzzwords, and Find It Online
links to set apart important information.

Introduction



■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Tips show you a better or more efficient way of performing a task.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Notes set off important information that supplements the topic at hand.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Cautions warn you of potential pitfalls and suggest ways to avoid them.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Buzzwords supply the definition for new terms introduced in the text.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The Find It Online element lists addresses of Web sites that relate to the
topic at hand, such as www.premierpressbooks.com.

xxiIntroduction



This page intentionally left blank 



F R I D A Y  E V E N I N G

I n t roduction to
SQL—Let the

Weekend Begin!

F R I D A Y  E V E N I N G

I n t roduction to
SQL—Let the

Weekend Begin!

F R I D A Y  E V E N I N G

I n t roduction to
SQL—Let the

Weekend Begin!
➤ What Is SQL? 
➤ Why Do You Need It?
➤ The 31 Flavors of SQL
➤ Where Do You Begin?
➤ The Anatomy of a Relational Database
➤ Setting Up the Sample Databases



This page  intentionally left blank 



IIt’s Friday evening and yo u’ve had a long week. We’re sure you can think
of many things yo u’d rather be doing on a Friday night than reading a
technical book. But yo u’re doing it to better yo u r s e l f, right? So tonight

we’ll take it fairly easy. We’ll introduce you to SQL and how it is used.
We’ll define some terms and talk about some of the related vendors. T h e n
we’ll get eve rything ready for you to dig in deep tomorrow morning.

What Is SQL?
SQL, pronounced “sequel,” is an acronym for Structured Query Language.
A standards body called ANSI, the American National Standards Institute,
maintains this language. Many vendors have created their own extensions
to this standard while still maintaining their compliance to the standard.
Therefore, SQL as it is defined by ANSI is referred to as ANSI SQL. We
will delve into the topic of SQL extensions shortly.

First weíll tell you why SQL exists. SQL is a powerful query language that
was created as a means to communicate with databases. Databases store
data. SQL can be used to view, manipulate, and create this data. It can
even define the structures that will hold the data. We are surrounded by
information in this world. Knowing SQL gives you the edge to be able to
collect, access, and analyze this information. Starting with the Saturday
Morning session, we will show you how to use SQL to do these things
and much more.

3



Because SQL is a standards-controlled language, it is reusable from data-
base to database. You do not have to learn a different language if you need
to get data from a contact database versus a recipe database or if you
switched a database from one vendor to another. If each vendor created
its own data access language, you couldnít jump from one vendor to
another without learning a new language. With SQL, however, the basics
are the same for every vendor that conforms to the standard. We men-
tioned that many vendors have their own extensions to SQL—but you
don’t have to learn these extensions unless you want to perform more
complex operations against that database.

Why Do You Need It?
As mentioned previously, SQL is used to communicate with databases.
Databases store information. If you know SQL and have access to a data-
base, you can get the information out of that database or even put infor-
mation in. If you use a computer, chances are you interact with databases.
Many of the applications you have on your computer use a database to
store the information you put into that application, such as contacts in
your e-mail program. Businesses often use databases to store lists of and
information on inventory, orders, employees, payroll, customers, and
much more. Databases are everywhere. They are used to store your cred-
it card transactions, phone calls, payment history, investment options,
insurance claims, and criminal history, for example. You access a database
when you check out at the grocery store, withdraw money from an ATM,
call information, or conduct a search on the Internet. You didn’t specifi-
cally request information from these databases using SQL, but someone
did. They wrote the SQL, and your actions filled in a couple blanks and
sent a request for information off to the database. Soon you will be the
one writing the queries. This book will even show you how to write
queries where unsuspecting individuals like yourself fill in the blanks and
cause a SQL statement to retrieve information from a database.

4 Learn SQL In a Weekend



If you are working with or planning to work with computers for a living,
you need to learn SQL. Individuals whose career path is to develop soft-
ware or e-commerce sites or administer databases someday especially need
to learn SQL. Administrative assistants can benefit from learning SQL.
They can create and maintain contact lists and other such information. It
can also make filling out form letters and creating mailing labels a breeze.
Executives can use SQL to perform ad hoc queries to gather the summa-
ry information they need to better drive the decisions that direct their
company’s future.

The 31 Flavors of SQL
Okay, maybe 31 is an exaggeration, but there are several. Let’s look at the
major vendors of relational database management systems (RDBMS) and
the extensions to the standard they employ.

Oracle Corporation puts out a powerful RDBMS called (appropriately)
Oracle. In its latest version, 9i, Oracle has several editions of its RDBMS
aimed at various levels of user. They have an enterprise edition for very
large database installations with hundreds or thousands of users. They
also have a product called Personal Oracle aimed at the individual user. A
free trial version of this product is available for download from the Web
site. This requires you to have an Oracle Technology Network (OTN)
password, but membership is free and you can sign up when you go to
download.

Oracle uses an extension to SQL called PL/SQL. It allows the typical
nonprocedural SQL to be used in a procedural manner. PL/SQL is like a
programming language in that you can tell the database how to go about
making the inserts or updates (or whatever SQL statements you want to
perform) instead of just telling the database what you’d like to insert or
update, for example. PL/SQL allows for procedure statements such as
looping and IF-THEN statements.

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 5



The Oracle Web site address is http://www.oracle.com/.

The free trial version of the DBMS is available at http://otn.oracle.com/
software/products/oracle9i/content.html.

Sybase and Microsoft collaborated on a product called SQL Server. They
each release their own version of the product; however, they shared code
and version numbers until a few years back anyway. When SQL Server
was in version 4.2a, Sybase and Microsoft decided to go their different
ways with the product. Microsoft started over and ended up with
Microsoft SQL Server 6.0. Sybase arrived at System 10. Even though they
are now very different products, they still share some similarities in both
functionality and syntax.

Microsoft’s current release is SQL Server 2000. It’s a very powerful
enterprise-level RDBMS with strong data-warehousing and analysis capa-
bilities. SQL Server also has an assortment of editions of the product
aimed at developers, personal users, embedded database needs, and also
Windows CE-based handheld devices. SQL Server Enterprise edition
runs on Windows 2000 Server, Windows 2000 Advanced Server, Win-
dows 2000 Datacenter Server, Windows 2000 Professional, Windows
NT 4.0, and Windows NT Workstation 4.0. Other versions are available
that run on Windows 98, Windows Me, and Windows XP.

The SQL Server home on Microsoft’s Web site is http://www.microsoft.
com/sql.

We highly recommend downloading the free 120-day evaluation ve r s i o n
f rom h t t p : / / w w w. m i c ro s o f t . c o m / s q l / e va l u a t i o n / t r i a l / 2 0 0 0 / d e f a u l t . a s p.

Sybase’s product is now called Adaptive Server Enterprise (ASE). This is
also an enterprise-level RDBMS (as if the name didn’t give that away).
Adaptive Server IQ is a similar product they have developed specifically
for business intelligence. NT and Linux are the platforms of choice for
the Sybase offerings. Their lightweight yet mighty RDBMS is called SQL
Anywhere. Sybase is pushing hard to put SQL Anywhere at the top of the
list of database management systems for mobile computing.

6 Learn SQL In a Weekend



The Sybase Web site address is http://www.sybase.com/.

A 60-day trial of ASE 12.5 is available for download from the Sybase Web
site at http://www.sybase.com/ase_125eval.

Both Sybase and Microsoft use T-SQL, or Transact-SQL, as their exten-
sion to ANSI SQL. T-SQL allows for similar procedural functionality;
however, PL-SQL and T-SQL are very different in structure and syntax.
Transact-SQL gets its name from the word transaction. A transaction is a
unit of work performed by the database. It can be as small as a select
statement, or, if prepared correctly, it can include hundreds of statements
that are all interrelated. The statements grouped together in a transaction
either all work or all fail as a unit. Transactions will be discussed in more
detail in the Sunday Morning session.

The enterprise-level offering from IBM is DB2. DB2 holds the second-
largest market share, squished between Oracle and SQL Server. The cur-
rent release has been dubbed DB2 UDB (Universal Database). IBM
developed the first relational database as well as the original version of
SQL back in the 1970s. Much has changed since then, but IBM remains
highly involved in the maintenance of the standards surrounding data-
base technology.

The DB2 trial version is available at h t t p : / / w w w - 4 . i b m . c o m /
software/data/db2/udb/downloads.html.

The IBM Web site address is http://www.ibm.com/.

MySQL, pronounced “my S-Q-L,” isn’t listed as a top RDBMS, proba-
bly because it’s free. Well, free if you accept the terms of their licensing
agreement. Corporations can opt to pay for licenses of the product,
which then gives them more flexibility. Even if you decide to pay for it,
MySQL is very inexpensive comparatively. In addition to the software,
you can even obtain the source code if you like. This gives you the abili-
ty to tweak the database management system to work just the way you
need it to. This package supports many different operating systems:

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 7



Linux, Red Hat, Windows 95/98/NT/2000/XP, Solaris, FreeBSD, Mac
OS X Server 1.1 and OS X 10.1.1, HP-UX 10.20, AIX 4.3, SCO, SGI
IRIX, DEC OSF, and BSDi.

The MySQL Web site address is http://www.mysql.com/.

MySQL can be downloaded at http://www.mysql.com/downloads/
index.html.

There are also several smaller RDBMSs out there for the home user or the
small business user. Microsoft has Access, which is part of the Office Suite
of tools. They also make a product called Fox Pro. Both products are
small RDBMSs with some programmability included for reporting and
screen building. Sybase puts out SQL Anywhere, discussed earlier. Data-
bases implemented on these products can have a limited number of users,
usually fewer than 25.

Where Do You Begin?
We need to take the rest of this evening to establish a foundation for the
discussion of the syntax of SQL. The first thing you need to do before
you can start learning SQL is to understand the approach this book will
take to presenting the topic. Then you will learn a little bit about rela-
tional databases so you can understand how SQL speaks to them. Lastly,
we will show you how to establish your own sandbox (database) to play
in. You will create some sample data and the structures that hold it so you
can have something to work with first thing in the morning.

SQL is not tied to a particular product but instead is implemented as a
standard by several products. Therefore, a single product must be chosen
to present the information and test your SQL through. This book will use
Microsoft SQL Server as the SQL interface.  SQL Server is a very power-
ful database and yet is quick (relative to the others) to download and easy
to get started on. And, well, we happen to think it’s the best dang data-
base management system out there. SQL Server can be set to run as ANSI
compliant, which means all SQL statements issued against the database

8 Learn SQL In a Weekend



must conform to the standard. We won’t be running SQL Server as ANSI
compliant, however, because we will be covering non-ANSI statements
and data types as well. For the most part, however, it does not matter
what RDBMS you choose to use. The ANSI SQL presented in this book
will work for any of them. We do realize that many of you already pos-
sess an RDBMS and will choose to use that instead of SQL Server. For
this, we have provided the syntax for the sample database in the appen-
dix for each major RDBMS. We will also point out differences in syntax
between the vendors as that syntax is discussed. If you do not have an
RDBMS to use to run the samples against, you can download a trial ver-
sion of any of the database management systems discussed in the previ-
ous section, “The 31 Flavors of SQL.”

The Anatomy of a Relational Database
To understand SQL, you must first understand relational databases. SQL
is the mechanism by which users communicate with an RDBMS.
RDBMSs store information in a relational manner. Relational means that
one piece of information relates to another, which relates to another, and
so forth, just like you are related to your parents, siblings, and cousins. A
single RDBMS can hold many databases. Those databases do not have to
be related, but the data inside of a single database is related to the rest of
the data within that database.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An RDBMS (relational database management system),also known as just DBMS, is the
software that contains databases and provides an interface to those databases.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Inside of a relational database, information is stored in tables. You can
think of a table as a folder in a file cabinet, where the file cabinet is the
database. Within a table (folder), you have several related pieces of infor-
mation about the subject of the table (folder). Those pieces of informa-
tion are called columns. Sometimes a piece of information from one

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 9



folder leads you to look at another folder for more information. Similar-
ly, in a relational database, the information in the column of a table can
lead you to look at another table for more information. The table pro-
viding the additional information is referred to as the parent and the sec-
ond table as the child. Thus the tables are related.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A database is a container for related tables.It acts like a file cabinet containing many
folders. It could hold all your customer and order information, for example.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A table stores pieces of related information like a folder in a file cabinet would. An
example of a table would be a customer table, which would hold things like customer
name, address, and phone number.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A column is a piece of information in a table, such as the address of your customer.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

To demonstrate this, say you want to track all your employees and the
departments they work for. First you would need to gather up all the
information you require about each employee. Secondly, you would then
list all the departments in the company. Now you need to relate the two.
Each employee works in a single department. Each department has many
employees. This is considered a one-to-many relationship. Because each
employee belongs to a single department, it only makes sense that you
associate the department with the employee by storing the department
name or identifier in the employee’s file, or in this case, each employee’s
record or row in the Employee table. See Figure 1.1 for the visual repre-
sentation of this relationship. Because each department has multiple
employees, it is considered the parent table, and Employee is considered
the child table. The Employee table depends on the Department table to fill
in the department information for each employee row.

10 Learn SQL In a Weekend



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A row represents a single entry within a table. For example, in your Customer table,
Billy Bob’s Bait and Tackle would have its own entry, or row, separate from Little John’s
Canoe Rental, because each one is an individual customer.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 1.1 displays a one-to-many relationship, but there are others. A
many-to-many relationship exists where one entity has many of another
and visa versa. An example of this would be between patients and doc-
tors. A patient often sees many different doctors, and doctors treat many
different patients. Another type of relationship is one-to-one. Often with
this kind of relationship you will see the data stored together because each
of one entity belongs only to one of the other entity. An example of this
is person-to-spouse. Unless you are a bigamist, you will only have one
spouse at any given time, and that spouse will only have you as their
spouse. Finally, an unusual type of relationship is recursive. Recursive
means the relationship is from an entity back to itself. Figure 1.2 shows
this type of relationship by adding a manager to the model. A manager is
an employee, but at the same time, manager is an important piece of
information about an employee. At the same time that this relationship
is described as recursive, it is also proper to refer to it as a one-to-many
relationship. An employee has one manager, but a manager supervises
many employees.

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 11

Figure 1.1

The relationship
between

Employee 
and D e p a r t m e n t .



In a relational table, there is always a column or set of columns that
uniquely identify each row. The unique identifier is called a primary key.
Primary keys are often denoted in a data model with a key symbol. For
the Employee table in Figure 1.2, you can see that the primary key is
E m p l o y e e _ I D. Each employee has an E m p l o y e e _ I D, and that ID will never
belong to another employee. That makes this column an ideal primary
key. Another important factor in choosing a primary key is that the value
should be static. In other words, the unique value assigned to a row
should never change. And, in fact, Employee_ID will never change for the
employees in the table. This explains why Employee_UserID would not
make a good choice for primary key. What if Sally Smith married Frank
Fuller? Then her user ID would change from SSMITH to S F U L L E R. Now
everything that relates to SSMITH is either lost or needs to be updated to
follow this change of identification.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A primary key is a column or set of columns that uniquely identify each row in the table.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Because the primary key of a table uniquely identifies each row in the
table, it also makes an excellent pointer from other tables. What we mean
h e re is that a row in the table can be re f e renced from another table simply
by referring to the primary key. No other information about the row is

12 Learn SQL In a Weekend

Figure 1.2

The recursive
relationship of the
Employee table.



needed. As an example, look back at the Employee and Department t a b l e s .
The Department table has a primary key of D e p a r t m e n t _ I D. For each employ-
ee row to point to the correct department row, it need only have the
D e p a r t m e n t _ I D. A primary key from one table used as a pointer by another
table is re f e r red to as a foreign key. So whereas Department_ID is the pri-
m a ry key in the Department table, it is a foreign key in the Employee t a b l e .

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A foreign key is a column in the table used to point to the primary key of another table.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Now that you have a basic understanding of relational database con-
cepts, we’ll apply these concepts to the sample database we will be using
for this book. Do n’t worry if you don’t follow fully at this point. In the
Sa t u rday Evening session, we’ll be giving you a full explanation of how
we arrived at this design. In Fi g u re 1.3, you see the table layout of the
sample database. This layout is called a data model. Data models a re visu-
al re p resentations of the tables in a database and the re l a t i o n s h i p s
b e t ween those tables.

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 13

Figure 1.3

The data model for
the sample

database.



Figure 1.3 shows a database for a service-based company called The Slick
Shop. They specialize in oil changes. As with most oil change companies,
they also perform other minor maintenance to their customers’ vehicles.
They can replace air filters and windshield wipers, fill the various fluids
in the engine, flush the radiator, and perform other such tasks. Most of
what they do involves labor, but they also need to charge for parts that
they replace or use up during service.

First and foremost, the Slick Shop needs to track their customers. T h e
information they need to keep about their customers includes the 
c u s t o m e r’s name, address, phone number, and vehicles they bring in for
s e rvice. Because the customer only has one name, one address, and one
phone number, you can put all that information together in the C u s t o m e r
table. The customer might bring in several vehicles, howe ve r, so you won’t
include this in the Customer table. It’s a one-to-many relationship betwe e n
vehicle and customer. Because the vehicle belongs to one customer but the
customer can have many vehicles, you can re f e rence the owner in the 
Vehicle table by including the C u s t o m e r I D. The Slick Shop also needs to
k n ow certain information about the vehicle to easily identify it. They need
to know the ve h i c l e’s ye a r, make, model, color, and license plate number.
They also like to track a ve h i c l e’s last service date so they know right away
when the last time they serviced this vehicle was. Because the vehicle only
has one of each of these things, we’ll store them in the Vehicle table. T h e
vehicle could have more than one owner over time, but The Slick Sh o p
only cares about the current owner of the vehicle. T h e re f o re, it’ll be fine,
for this purpose, to have CustomerID in the Vehicle table. The Slick Sh o p
will just update this information if the ownership changes.

The company does all of their work by filling out job tickets. They fill out
the start and end dates of the job, and the job gets a unique number so
they can reference the jobs by number. They also have to know the cus-
tomer requesting the work and the vehicle needing the work. 
CustomerID identifies the customers, and VehicleID identifies the vehicles,
so you can include those columns in the JobTicket table as foreign keys
to the Customer and Vehicle tables.

14 Learn SQL In a Weekend



On the bottom part of the job ticket, the employees of The Slick Shop
fill in the details of the work they are doing for the job. Because this infor-
mation is related to the job ticket, but the number of lines in the detail
varies, you need to make this a different table, called the J o b T i c k e t D e t a i l
table. You need the JobTicketID from the JobTicket table so you can relate
the line items back to the job ticket. You will identify each row in the
JobTicketDetail with its line item number. However, because more than
one job ticket will have a line item number of one, we also need the
JobTicketID to know which ticket the line item belongs to. Therefore,
the primary key of the JobTicketDetail table is a combination of the
JobTicketID and the L i n e I t e m N u m b e r. Notice that JobTicketDetail is both
a primary key and a foreign key in this instance.

Each item on the job ticket invo l ves a service. The Slick Shop has to
k n ow what service was performed, how long it took, and when it was
completed. Once they know all this, they can determine how much to
charge the customer for the services they performed. Each service has a
specific charge per hour. The Service table will hold this value. T h e re is
no reason to store it in the JobTicketDetail table eve ry time the serv i c e
is perf o r m e d .

The last piece of information they need to total up the job ticket is the
parts that were used to perform the service. Because a job ticket can
involve multiple parts and a part can be used on many job tickets, there
is a many-to-many relationship between JobTicketDetail and P a r t. Part is
the table holding the list of available parts. Because of this relationship,
there needs to be a third table. This third table is called P a r t U s e d. There
will be many parts used by a job ticket, but only one job ticket line item
per part used. Therefore, the PartUsed table will need a foreign key from
the JobTicketDetail table, which is JobTicketID and L i n e I t e m N u m b e r. Sim-
ilarly, a part will be used on many job tickets, so we need a foreign key to
the Part table as part of the primary key for the PartUsed table. With
J o b T i c k e t I D, L i n e I t e m N u m b e r, and PartID as the key to this table, it can
hold a list of every part used on a job ticket and every job ticket that uses
a particular part.

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 15



As you can probably see, this database could continue on and on. You
could add in tables to control inventory by linking in with the Part table
and the PartUsed table. The Slick Shop could keep track of accounts
receivable and accounts payable if they wanted to by gathering informa-
tion from the JobTicketDetail table. You could even add employee infor-
mation into this database and store which employees performed which
services on each vehicle. You could take that one step further and use the
job ticket and employee information to schedule employee shifts or vehi-
cle appointments based on the skills of the employees and the type of ser-
vice the vehicle needs. But for the sake of simplicity, we’ll stop with the
data model we have. It will suffice to get the point across for the discus-
sions to follow.

Setting Up the Sample Database
Now that the data model for The Slick Shop has been defined, you can
use this model to create the database that will serve as your playground
for the remaining chapters. Because we haven’t discussed how to create a
database or tables, for that matter, we will provide all the syntax for you
here. The syntax can also be found in the appendix or downloaded from
the Premier Press Web site. This way, you can cut and paste it into your
favorite DBMS and save your fingers the workout. Each DBMS might
require a slightly different syntax than provided here. The syntax for each
specific DBMS we cover in this book has been provided in the appendix
under the specific section for that particular DBMS.

Nothing else can happen until you create the database. This is, of course,
assuming that you have already chosen and installed the DBMS you plan
to use throughout this book. If you haven’t, please do that now. Open
your DBMS client software. In the case of SQL Server, you will open the
Query Analyzer so you can type in the commands (or paste them in from
the download)we need to issue to create the database. Please note that
some DBMSs have graphical tools or wizards that help you perform such
tasks without typing in the specific command, but you are here to learn

16 Learn SQL In a Weekend



SQL, right? The following is the command you need to execute to create
the sample database. Type the command as you see it here, and then click
Execute or press Enter, whichever your DBMS prefers. If you aren’t sure,
refer to the appendix for the section on your DBMS.

CREATE DATABASE  SlickShop;

That was simple enough. Now you have a place to play. Let’s create the
structures that will hold the sample data. Before you can start adding
tables, though, you have to tell the DBMS which database to use for the
commands that you will be executing. Type the following and execute the
command.

USE SlickShop;

Now you can create the table structures that you saw in Figure 1.3. We’ll
list the code to type here. The explanation of the syntax will come later.
For now, type in (or paste in) each code listing and execute the command.
By the way, the SQL syntax itself is not case sensitive nor does it care
about spacing. For example, “CREATE TABLE” is the same as “create
table”. You can type this either in all uppercase or all lowercase and it
would work the same. You can smush it all together (as long as you leave
one space) and it will still work.

Again, we highly recommend that you download the syntax for the sam-
ple database from the Premier Press Web site instead of trying to type this
in. You’ll save yourself a lot of time and trouble. Should you make a mis-
take will typing this in, however, you can drop the database and start over.
The statement you use to drop a database is as follows.

DROP DATABASE SlickShop;
CREATE TABLE StateOrProvince (
S t a t e O r P r o v i n c e C h a r ( 2 ) NOT NULL PRIMARY KEY CLUSTERED,
StateOrProvinceName V a r c h a r ( 5 0 ) NOT NULL
) ;

CREATE TABLE Customer (
C u s t o m e r I D I n t e g e r IDENTITY NOT NULL PRIMARY KEY CLUSTERED,
F i r s t N a m e V a r c h a r ( 2 0 ) N U L L ,

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 17



L a s t N a m e V a r c h a r ( 3 0 ) N U L L ,
A d d r e s s V a r c h a r ( 1 0 0 ) N U L L ,
C i t y V a r c h a r ( 3 0 ) N U L L ,
S t a t e O r P r o v i n c e Char(2) NULL REFERENCES StateOrProvince 

( S t a t e O r P r o v i n c e ) ,
P o s t a l C o d e V a r c h a r ( 1 0 ) N U L L ,
P h o n e N u m b e r V a r c h a r ( 1 0 ) N U L L
) ;

CREATE TABLE Vehicle (
V e h i c l e I D I n t e g e r IDENTITY NOT NULL PRIMARY KEY CLUSTERED,
V e h i c l e Y e a r S m a l l I n t N U L L ,
M a k e V a r c h a r ( 3 0 ) N U L L ,
M o d e l V a r c h a r ( 3 0 ) N U L L ,
C o l o r V a r c h a r ( 3 0 ) N U L L ,
LicensePlate# V a r c h a r ( 1 0 ) N U L L ,
L a s t S e r v i c e D a t e S m a l l d a t e t i m e N U L L ,
C u s t o m e r I D I n t e g e r NOT NULL REFERENCES Customer (CustomerID)
) ;

CREATE TABLE Service (
S e r v i c e I D I n t e g e r IDENTITY NOT NULL PRIMARY KEY CLUSTERED,
D e s c r i p t i o n V a r c h a r ( 1 0 0 ) NOT NULL,
R a t e P e r H o u r M o n e y NOT NULL
) ;

CREATE TABLE Part (
P a r t I D I n t e g e r IDENTITY NOT NULL PRIMARY KEY CLUSTERED,
D e s c r i p t i o n V a r c h a r ( 1 0 0 ) NOT NULL,
C o s t M o n e y NOT NULL
) ;

CREATE TABLE JobTicket (
J o b T i c k e t I D I n t e g e r IDENTITY NOT NULL PRIMARY KEY CLUSTERED,
C u s t o m e r I D I n t e g e r NOT NULL REFERENCES Customer (CustomerID),
S t a r t D a t e S m a l l d a t e t i m e N U L L ,
E n d D a t e S m a l l d a t e t i m e N U L L ,
V e h i c l e I D I n t e g e r NOT NULL REFERENCES Vehicle (VehicleID)
) ;

CREATE TABLE JobTicketDetail (
J o b T i c k e t I D I n t e g e r NOT NULL REFERENCES JobTicket (JobTicketID),

18 Learn SQL In a Weekend



L i n e I t e m N u m b e r T i n y I n t NOT NULL,
S e r v i c e I D I n t e g e r NOT NULL REFERENCES Service (ServiceID),
D a t e C o m p l e t e S m a l l d a t e t i m e N U L L ,
H o u r s S p e n t Decimal(5,2) NOT NULL DEFAULT 0,
CONSTRAINT PK_JobTicketDetail PRIMARY KEY (JobTicketID, LineItemNumber)
) ;

CREATE TABLE PartUsed (
J o b T i c k e t I D I n t e g e r NOT NULL,
L i n e I t e m N u m b e r T i n y I n t NOT NULL,
P a r t I D I n t e g e r NOT NULL REFERENCES Part (PartID),
Q u a n t i t y T i n y I n t NOT NULL,
CONSTRAINT PK_PartUsed PRIMARY KEY (JobTicketID, LineItemNumber, 
P a r t I D ) ,
CONSTRAINT FK_JobTicketDetail_PartUsed FOREIGN KEY (JobTicketID,

LineItemNumber) REFERENCES JobTicketDetail (JobTicketID, 
L i n e I t e m N u m b e r )

) ;

Now that the structures are in place, you can fill them up with the sam-
ple data. We’ve included the following insert scripts. Simply type them in
and execute them and you will have everything you need to get started
tomorrow.

INSERT INTO StateOrProvince VALUES('AB','Alberta');
INSERT INTO StateOrProvince VALUES('BC','British Columbia');
INSERT INTO StateOrProvince VALUES('MB','Manitoba');
INSERT INTO StateOrProvince VALUES('NB','New Brunswick');
INSERT INTO StateOrProvince VALUES('NF','Newfoundland');
INSERT INTO StateOrProvince VALUES('NT','Northwest Territories');
INSERT INTO StateOrProvince VALUES('NS','Nova Scotia');
INSERT INTO StateOrProvince VALUES('NU','Nunavut');
INSERT INTO StateOrProvince VALUES('ON','Ontario');
INSERT INTO StateOrProvince VALUES('PE','Prince Edward Island');
INSERT INTO StateOrProvince VALUES('QC','Québec');
INSERT INTO StateOrProvince VALUES('SK','Saskatchewan');
INSERT INTO StateOrProvince VALUES('YT','Yukon Territory');
INSERT INTO StateOrProvince VALUES('AL','Alabama');
INSERT INTO StateOrProvince VALUES('AK','Alaska');
INSERT INTO StateOrProvince VALUES('AZ','Arizona');
INSERT INTO StateOrProvince VALUES('AR','Arkansas');
INSERT INTO StateOrProvince VALUES('CA','California');
INSERT INTO StateOrProvince VALUES('CO','Colorado');

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 19



INSERT INTO StateOrProvince VALUES('CT','Connecticut');
INSERT INTO StateOrProvince VALUES('DE','Delaware');
INSERT INTO StateOrProvince VALUES('DC','District of Columbia');
INSERT INTO StateOrProvince VALUES('FL','Florida');
INSERT INTO StateOrProvince VALUES('GA','Georgia');
INSERT INTO StateOrProvince VALUES('HI','Hawaii');
INSERT INTO StateOrProvince VALUES('ID','Idaho');
INSERT INTO StateOrProvince VALUES('IL','Illinois');
INSERT INTO StateOrProvince VALUES('IN','Indiana');
INSERT INTO StateOrProvince VALUES('IA','Iowa');
INSERT INTO StateOrProvince VALUES('KS','Kansas');
INSERT INTO StateOrProvince VALUES('KY','Kentucky');
INSERT INTO StateOrProvince VALUES('LA','Louisiana');
INSERT INTO StateOrProvince VALUES('ME','Maine');
INSERT INTO StateOrProvince VALUES('MD','Maryland');
INSERT INTO StateOrProvince VALUES('MA','Massachusetts');
INSERT INTO StateOrProvince VALUES('MI','Michigan');
INSERT INTO StateOrProvince VALUES('MN','Minnesota');
INSERT INTO StateOrProvince VALUES('MS','Mississippi');
INSERT INTO StateOrProvince VALUES('MO','Missouri');
INSERT INTO StateOrProvince VALUES('MT','Montana');
INSERT INTO StateOrProvince VALUES('NE','Nebraska');
INSERT INTO StateOrProvince VALUES('NV','Nevada');
INSERT INTO StateOrProvince VALUES('NH','New Hampshire');
INSERT INTO StateOrProvince VALUES('NJ','New Jersey');
INSERT INTO StateOrProvince VALUES('NM','New Mexico');
INSERT INTO StateOrProvince VALUES('NY','New York');
INSERT INTO StateOrProvince VALUES('NC','North Carolina');
INSERT INTO StateOrProvince VALUES('ND','North Dakota');
INSERT INTO StateOrProvince VALUES('OH','Ohio');
INSERT INTO StateOrProvince VALUES('OK','Oklahoma');
INSERT INTO StateOrProvince VALUES('OR','Oregon');
INSERT INTO StateOrProvince VALUES('PA','Pennsylvania');
INSERT INTO StateOrProvince VALUES('RI','Rhode Island');
INSERT INTO StateOrProvince VALUES('SC','South Carolina');
INSERT INTO StateOrProvince VALUES('SD','South Dakota');
INSERT INTO StateOrProvince VALUES('TN','Tennessee');
INSERT INTO StateOrProvince VALUES('TX','Texas');
INSERT INTO StateOrProvince VALUES('UT','Utah');
INSERT INTO StateOrProvince VALUES('VT','Vermont');
INSERT INTO StateOrProvince VALUES('VA','Virginia');
INSERT INTO StateOrProvince VALUES('WA','Washington');

20 Learn SQL In a Weekend



INSERT INTO StateOrProvince VALUES('WV','West Virginia');
INSERT INTO StateOrProvince VALUES('WI','Wisconsin');
INSERT INTO StateOrProvince VALUES('WY','Wyoming');
INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )
Values ('John', 'Smith', '10341 Crestpoint Boulevard', 'North Beach',  

'VA', '10234', '1022341234');

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Jacob', 'Salter', '234 North Main', 'Groveland', null,     
'45678', '7665554444');

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Victoria', 'Smithe', '14301 Mountain Ridge Court', 
'Huntington', 'WV', '22211', '2175438679');

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Bryce', 'Hatfield', '566 Pine Road', 'Marion', 'IN', null, 
n u l l ) ;

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Kylee', 'Dicken', null, 'Upland', 'IN', '46905', 
' 7 6 5 4 3 2 1 0 9 8 ' ) ;

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Alex', 'Thompson', null, null, 'IN', null, '3175551213');

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Davis', 'Thompson', '298 North Broadway', 'Greensburg', 
'IN', '46514', '3175551214');

INSERT INTO Customer (FirstName, LastName, Address, City, 
StateOrProvince, PostalCode, PhoneNumber )

Values ('Harrison', 'Thompson', '345 Hawks Point Drive Apt B', 
'Indianapolis', 'IN', '46123', '3175551215');

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,   
LastServiceDate, CustomerID)

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 21



VALUES ('2000', 'Chevrolet', 'S-10', 'Purple', 'TROJANS', 
'8-13-2001', 4);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('1998', 'Ford', 'Mustang', 'Red', 'HH7832', '9-16-2001', 2);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('2002', 'Pontiac', 'Grand Prix', 'Black', 'GOPRDUE', 
'5-21-2002v, 5);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('1968', 'Chevrolet', 'Corvette', 'Black', 'KODIAK', 
'1-20-2002v, 1);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('2002', 'Nissan', 'Altima', 'White', 'HEYDARE', 
'1-26-2002', 3);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('2000', 'Chrysler', 'PT Cruiser', 'Black', 'ALEX T', 
'5-15-2002', 6);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,
LastServiceDate, CustomerID)
VALUES ('2002', 'Chevrolet', 'Trail Blazer', 'Green', 'I TRADE', 

'5-31-2001', 8);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#, 
LastServiceDate, CustomerID)

VALUES ('2001', 'Ford', 'Expedition', 'Maroon', 'DAVIS T', 
'5-31-2001', 7);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,   
LastServiceDate, CustomerID)

VALUES ('1972', 'AMC', 'Gremlin', 'Pink', 'UGOGIRL', v2-17-2002', 4);

INSERT INTO Service (Description, RatePerHour)
VALUES ('Oil Change', 60.00);

22 Learn SQL In a Weekend



INSERT INTO Service (Description, RatePerHour)
VALUES ('Replace Wiperblades', 10.00);

INSERT INTO Service (Description, RatePerHour)
VALUES ('Replace Air Filter', 10.00);

INSERT INTO Service (Description, RatePerHour)
VALUES ('Change PVC Valve', 10.00);

INSERT INTO Service (Description, RatePerHour)
VALUES ('Change and Flush Cooling System', 60.00);

INSERT INTO Service (Description, RatePerHour)
VALUES ('Change and Flush Differential', 60.00);

INSERT INTO Part (Description, Cost)
VALUES ('Protects 10w-30 Oil', 7.49);

INSERT INTO Part (Description, Cost)
VALUES ('Protects 10w-40 Oil', 7.49);

INSERT INTO Part (Description, Cost)
VALUES ('Black Gold 10w-30 Oil', 7.99);

INSERT INTO Part (Description, Cost)
VALUES ('Black Gold 10w-40 Oil', 7.99);

INSERT INTO Part (Description, Cost)
VALUES ('Motion Synthetic Oil 10w-30', 13.99);

INSERT INTO Part (Description, Cost)
VALUES ('Motion Synthetic Oil 10w-40', 13.99);

INSERT INTO Part (Description, Cost)
VALUES ('Texas Tea Economy Oil Filter', 3.99);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Oil Filter', 4.99);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Air Filter', 8.99);

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 23



INSERT INTO Part (Description, Cost)
VALUES ('ACME Wiper Blades', 9.99);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Brake Fluid', 0.00);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Transmission Fluid', 0.00);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Coolant', 0.00);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Windshield Fluid', 0.00);

INSERT INTO Part (Description, Cost)
VALUES ('ACME Differential Fluid', 0.00);

INSERT INTO Part (Description, Cost)
VALUES ('ACME PVC Valve', 12.99);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (1, '1-20-2002', '1-20-2002', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (1, '7-20-2001', '7-20-2001', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (2, '9-16-2001', '9-16-2001', 2);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (3, '1-26-2002', '1-26-2002', 5);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (5, '5-21-2002', '5-21-2002', 3);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (4, '8-13-2001', '8-13-2001', 1);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)
VALUES (4, '2-16-2002', '2-17-2002', 9);

24 Learn SQL In a Weekend



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (1, 1, 1, '1-20-2002', .5);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (2, 1, 1, '7-20-2001', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (2, 2, 3, '7-20-2001', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (2, 3, 4, '7-20-2002', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (3, 1, 1, '9-16-2001', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (4, 1, 1, '1-26-2002', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (5, 1, 2, '5-21-2002', .2);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (5, 2, 1, '5-21-2002', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (6, 1, 5, '8-13-2001', 1.15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (7, 1, 1, '2-16-2002', .35);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (7, 2, 3, '2-16-2002', .1);

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 25



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (7, 3, 4, '2-16-2002', .15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,   
DateComplete, HoursSpent)

VALUES (7, 4, 6, '2-16-2002', 1.0);;

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 
DateComplete, HoursSpent)

VALUES (7, 5, 5, '2-17-2002', .5);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (1, 1, 4, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (1, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (1, 1, 11, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (1, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (2, 1, 5, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (2, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (2, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (2, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (2, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (3, 1, 6, 4);

26 Learn SQL In a Weekend



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (3, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (4, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (4, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (5, 1, 10, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (5, 2, 3, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (5, 2, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (5, 2, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (5, 2, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (6, 1, 13, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 2, 9, 1);

FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 27



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 4, 15, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)
VALUES (7, 5, 13, 1);

What’s Next?
Well, this is enough for a Friday night. Go have some fun or at least get
a good night’s rest. You have a lot to cover tomorrow. In the Saturday
Morning and Afternoon sessions, we’ll show you how to get information
out of the sample database. This might not sound like much, but SQL is
so powerful that there are many options available to you so you can get
the data just the way you like it. It will take some time for this discussion.
Following that, you will learn how to put data into the tables and how to
manipulate that data. You will also learn how to create the structures that
hold the data.

You might be wondering why you will be learning how to get informa-
tion out before you learn to put information in. Well, there are several
reasons. First of all, selecting information out of a database may be all
some of you ever need to do, but if not, it will represent a majority of the
tasks you will perform anyway. Secondly, the discussion of putting data
into a database requires you to know how to get it back out so you know
you did it correctly.

Tomorrow is going to be a busy day. Get some good sleep—you’ll dig
deep into SQL in the morning.

28 Learn SQL In a Weekend



FRIDAY EVENING  Introduction to SQL—Let the Weekend Begin! 29

This page intentionally left blank 



S A T U R D A Y  M O R N I N G

Selecting Data—
How to See

Wh a t ’s in T h e re

S A T U R D A Y  M O R N I N G

Selecting Data—
How to See

Wh a t ’s in T h e re

S A T U R D A Y  M O R N I N G

Selecting Data—
How to See

Wh a t ’s in T h e re
➤ Using the SELECT Statement
➤ Sorting the Results
➤ Filtering the Results
➤ Joining Tables
➤ Creating Computed Columns



GGood morning! We hope you slept well. We have quite a bit to
cover today. Before the end of the day you will have all the infor-
mation you need to use SQL to interact with relational databases.

Today we’ll show you how to get the information you want out of the
database the way you want it. We’ll also discuss database and table cre-
ation and show you how to put information into the database, change it,
and delete it.

Using the SELECT Statement
We are willing to bet that once you start using SQL, the SELECT state-
ment will be the command you use the most. The SELECT statement
allows you to get information out of the database. Without it, you’d be
able to put information into the database and manipulate it, but you’d
never be able to see that information.

First we will examine the most basic SELECT statement. The full syntax
will look different from vendor to vendor. Refer to your vendor’s docu-
mentation if you would like to see the entire syntax offered for your data-
base. You will be able to find vendor-specific commands and syntax in the
appendix for everything covered in this book. We will go over the gener-
ic syntax here, which will be enough to do what is covered in this book.
The SELECT statement has the following basic syntax.

31



SELECT column|expression [,n…]
FROM tablename {,n…};

Column refers to a column in a table. Expressions are not so straightfor-
ward and will be discussed in the next chapter. The [,n…] signifies that
you can specify one or more of the previous item as needed. From this
syntax, you can see that you are allowed to specify one or more columns
or expressions to be selected from the database. The FROM clause then
tells the database where to find the information being referenced in the
SELECT clause. Here you can specify one or more table names.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A clause is a portion of a statement. In the case of SQL, each clause is identified by a
keyword. In the previous case, you have both a SELECT clause and a FROM clause.
Notice that SELECT refers to the statement as well as a clause.The SELECT statement
is the entire command, whereas the SELECT clause is everything from the keyword
SELECT until the keyword FROM only.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The most basic of SELECTs is to select a single column from a single
table.

SELECT description
FROM Part;

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Notice the indentation used in the previous statement. Keeping your clauses lined up in
such a manner makes reading SQL statements much easier. This is especially true the
longer the statement is. You will see this kind of indentation used throughout this book.
It is standard practice to present SQL in this way and is of particular importance for SQL
statements that are maintained or referenced often.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

This statement tells the RDBMS that you would like to see the contents
of the Description column for every row in the Part table. As stated pre-
viously, every SELECT must have a FROM clause to tell the database
where to find the data. In this case, the query looked in the Part table.

32 Learn SQL In a Weekend



Without this piece of information, it would not have known where to look,
especially considering there are two Description columns in the database.
The Service table has a column called Description as well. Eve ry table in a
database has to have a unique name in the database, but column names
need only be unique to the table.

The results of the previous query look like this:

D e s c r i p t i o n
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Protects 10w-30 Oil
Protects 10w-40 Oil
Black Gold 10w-30 Oil
Black Gold 10w-40 Oil
Motion Synthetic Oil 10w-30
Motion Synthetic Oil 10w-40
Texas Tea Economy Oil Filter
ACME Oil Filter
ACME Air Filter
ACME Wiper Blades
ACME Brake Fluid
ACME Transmission Fluid
ACME Coolant
ACME Windshield Fluid
ACME Differential Fluid
ACME PVC Valve

What if you want to see the price for each of these parts, though? Well,
now you need to ask the database for more than one column. Remember
from the previous syntax that to specify more than one column in a
SELECT, you just need to separate the columns with a comma. Here’s
what that query would look like:

SELECT Description, Cost
FROM Part;

33SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

D e s c r i p t i o n C o s t
--------------------------- - - - - - - - - - -
Protects 10w-30 Oil 7 . 4 9 0 0
Protects 10w-40 Oil 7 . 4 9 0 0
Black Gold 10w-30 Oil 7 . 9 9 0 0
Black Gold 10w-40 Oil 7 . 9 9 0 0
Motion Synthetic Oil 10w-30 1 3 . 9 9 0 0
Motion Synthetic Oil 10w-40 1 3 . 9 9 0 0
Texas Tea Economy Oil Filter 3 . 9 9 0 0
ACME Oil Filter 4 . 9 9 0 0
ACME Air Filter 8 . 9 9 0 0
ACME Wiper Blades 9 . 9 9 0 0
ACME Brake Fluid . 0 0 0 0
ACME Transmission Fluid . 0 0 0 0
ACME Coolant . 0 0 0 0
ACME Windshield Fluid . 0 0 0 0
ACME Differential Fluid . 0 0 0 0
ACME PVC Valve 1 2 . 9 9 0 0

The order in which you specify the columns is the order in which the
columns are returned to you in the result set. In the previous case,
Description was specified first and Cost second. Therefore, Description is
the first column of the result set and Cost is second. If you reverse them,
as in the following, they come back from the database in reverse order.

SELECT Cost, Description
FROM Part;

Results:

C o s t D e s c r i p t i o n
----------- - - - - - - - - - - - - - - - - - - - - - -
7 . 4 9 0 0 Protects 10w-30 Oil
7 . 4 9 0 0 Protects 10w-40 Oil
7 . 9 9 0 0 Black Gold 10w-30 Oil
7 . 9 9 0 0 Black Gold 10w-40 Oil
1 3 . 9 9 0 0 Motion Synthetic Oil 10w-30
1 3 . 9 9 0 0 Motion Synthetic Oil 10w-40
3 . 9 9 0 0 Texas Tea Economy Oil Filter
4 . 9 9 0 0 ACME Oil Filter
8 . 9 9 0 0 ACME Air Filter

34 Learn SQL In a Weekend



9 . 9 9 0 0 ACME Wiper Blades
. 0 0 0 0 ACME Brake Fluid
. 0 0 0 0 ACME Transmission Fluid
. 0 0 0 0 ACME Coolant
. 0 0 0 0 ACME Windshield Fluid
. 0 0 0 0 ACME Differential Fluid

1 2 . 9 9 0 0 ACME PVC Valve

Another way of accomplishing similar results with less typing is to use the
* expression. When you specify * in the SELECT, you are telling the data-
base that you would like to see all of the columns of the specified table.

SELECT *
FROM Part;

Results:

P a r t I D Description C o s t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 Protects 10w-30 Oil 7 . 4 9 0 0
2 Protects 10w-40 Oil 7 . 4 9 0 0
3 Black Gold 10w-30 Oil 7 . 9 9 0 0
4 Black Gold 10w-40 Oil 7 . 9 9 0 0
5 Motion Synthetic Oil 10w-30 1 3 . 9 9 0 0
6 Motion Synthetic Oil 10w-40 1 3 . 9 9 0 0
7 Texas Tea Economy Oil Filter 3 . 9 9 0 0
8 ACME Oil Filter 4 . 9 9 0 0
9 ACME Air Filter 8 . 9 9 0 0
1 0 ACME Wiper Blades 9 . 9 9 0 0
1 1 ACME Brake Fluid . 0 0 0 0
1 2 ACME Transmission Fluid . 0 0 0 0
1 3 ACME Coolant . 0 0 0 0
1 4 ACME Windshield Fluid . 0 0 0 0
1 5 ACME Differential Fluid . 0 0 0 0
1 6 ACME PVC Valve 1 2 . 9 9 0 0

Notice, not only are all the columns returned, but also they are returned
in the order they exist in the table. This syntax is especially useful when
you need to see all or most of the columns in the table and you don’t want
to take the time to type the column names.

35SATURDAY MORNING  Selecting Data—How to See What’s in There



◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Using * to specify the columns to return can be a quick and easy way to get the columns
you want to see back from the database. Be warned, however, that this lazy SELECT
could cause you problems if you use it in your code. All the columns are returned in the
order in which they exist in the table. If the structure of the table were to change, such
as a column being added or deleted or a column being moved within the table, the
results from the query would differ. If your code expects the columns in their original
order or only certain columns, using * would cause your code to break. Therefore, it is
usually recommended, for safety sake,to spell out exactly which columns you want and
the order in which you want them.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

What if you want to see what kind of prices you are charging for parts
without seeing the part names? You can run the following query.

SELECT Cost
FROM Part;

Results:

C o s t
- - - - - - - - - - -
7 . 4 9 0 0
7 . 4 9 0 0
7 . 9 9 0 0
7 . 9 9 0 0
1 3 . 9 9 0 0
1 3 . 9 9 0 0
3 . 9 9 0 0
4 . 9 9 0 0
8 . 9 9 0 0
9 . 9 9 0 0
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0

1 2 . 9 9 0 0

36 Learn SQL In a Weekend



This will do, but you really don’t need to see all the duplicate prices.
To eliminate the duplicate rows, SQL provides the keyword 
D I S T I N C T, which, when added to the SELECT statement just before
the column list, lets SQL know you only want to see the unique row s
re t r i e ved from the query.

SELECT DISTINCT Cost
FROM Part;

Results:

C o s t
- - - - - - - - - - -

. 0 0 0 0
3 . 9 9 0 0
4 . 9 9 0 0
7 . 4 9 0 0
7 . 9 9 0 0
8 . 9 9 0 0
9 . 9 9 0 0
1 2 . 9 9 0 0
1 3 . 9 9 0 0

That’s nice, but how about something a little more useful? Say you want
to find out what states your customers are coming from so you know
where to target your marketing efforts.

SELECT DISTINCT StateOrProvince
FROM Customer;

Results:

S t a t e O r P r o v i n c e
- - - - - - - -
N U L L
I N
V A
W V

This is interesting. How’d that NULL get in there? Well, the Customer table
does have one customer whose StateOrProvince value is unknown (N U L L).
Therefore, NULL is considered one of the unique values in the table for
that column.

37SATURDAY MORNING  Selecting Data—How to See What’s in There



Sorting the Results
Well, you know how to get the information out. You even know how to
o rder your columns, but what about ordering the rows? The SQL
SELECT statement has a clause for just such an occasion. This clause is
called the ORDER BY clause. No matter what you type in yo u r
SELECT statement or which clauses you include, the ORDER BY
clause is always last.

SELECT column|expression [,n…]
FROM tablename [,n…]

ORDER BY column|column_position [,n…] [ASC|DESC];

The ORDER BY clause requires at least one column name or column
position. The column name is self-explanatory. Column position means
the position of the column in the SELECT clause. If you were selecting
Description and P a r t I D, for instance, and wanted to see the rows in order
by P a r t I D, you could either use the column name, P a r t I D, or use its posi-
tion in the SELECT clause, which is 2. This query would resemble the
following.

SELECT Description, PartID
FROM Part

ORDER BY 2;

Results:

D e s c r i p t i o n P a r t I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Protects 10w-30 Oil 1
Protects 10w-40 Oil 2
Black Gold 10w-30 Oil 3
Black Gold 10w-40 Oil 4
Motion Synthetic Oil 10w-30 5
Motion Synthetic Oil 10w-40 6
Texas Tea Economy Oil Filter 7
ACME Oil Filter 8
ACME Air Filter 9
ACME Wiper Blades 1 0
ACME Brake Fluid 1 1
ACME Transmission Fluid 1 2

38 Learn SQL In a Weekend



ACME Coolant 1 3
ACME Windshield Fluid 1 4
ACME Differential Fluid 1 5
ACME PVC Valve 1 6

Notice that it sorted the rows by P a r t I D, which is the second column in
the query but the first column in the table. Now you might be wonder-
ing how SQL knew whether you wanted the PartID in ascending order
(smallest to largest) or descending order (largest to smallest). As you can
see, it listed the data in ascending order, which is the default sort order
for the ORDER BY clause. You can also explicitly state that you want to
see the results in ascending order by adding ASC to the end of the
ORDER BY clause. Should you want to see the data in descending order,
specify DESC at the end of the clause instead. The following query shows
the same information as the previous one, only the results will be sorted
in descending order by P a r t I D. Also, this query will state the Sort column
by column name instead of number.

SELECT Description, PartID
FROM Part

ORDER BY PartID DESC;

Results:

D e s c r i p t i o n P a r t I D
------------------------- - - - - - -
ACME PVC Valve 1 6
ACME Differential Fluid 1 5
ACME Windshield Fluid 1 4
ACME Coolant 1 3
ACME Transmission Fluid 1 2
ACME Brake Fluid 1 1
ACME Wiper Blades 1 0
ACME Air Filter 9
ACME Oil Filter 8
Texas Tea Economy Oil Filter 7
Motion Synthetic Oil 10w-40 6
Motion Synthetic Oil 10w-30 5

39SATURDAY MORNING  Selecting Data—How to See What’s in There



Black Gold 10w-40 Oil 4
Black Gold 10w-30 Oil 3
Protects 10w-40 Oil 2
Protects 10w-30 Oil 1

Here’s an interesting question. What happens if you select all columns
using * for the select list and a column position in the ORDER BY
clause? SELECT * always returns the columns in the order in which they
reside in the table, so the column position specified in the ORDER BY
clause would correspond indirectly to the position of the column in the
table. Take a look at the following to see an example of this.

SELECT *
FROM Part

ORDER BY 3;

Results:

P a r t I D D e s c r i p t i o n C o s t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 ACME Brake Fluid . 0 0 0 0
12 ACME Transmission Fluid . 0 0 0 0
1 3 ACME Coolant . 0 0 0 0
14 ACME Windshield Fluid . 0 0 0 0
1 5 ACME Differential Fluid . 0 0 0 0
7 Texas Tea Economy Oil Filter 3 . 9 9 0 0
8 ACME Oil Filter 4 . 9 9 0 0
1 Protects 10w-30 Oil 7 . 4 9 0 0
2 Protects 10w-40 Oil 7 . 4 9 0 0
3 Black Gold 10w-30 Oil 7 . 9 9 0 0
4 Black Gold 10w-40 Oil 7 . 9 9 0 0
9 ACME Air Filter 8 . 9 9 0 0
1 0 ACME Wiper Blades 9 . 9 9 0 0
1 6 ACME PVC Valve 1 2 . 9 9 0 0
5 Motion Synthetic Oil 10w-30 1 3 . 9 9 0 0
6 Motion Synthetic Oil 10w-40 1 3 . 9 9 0 0

This query selects everything from the Part table and orders the results
by C o s t, which happens to be the third column in the table.

40 Learn SQL In a Weekend



To further demonstrate the usefulness of the ORDER BY clause, say your
boss asks you for a report on how much you charge for each part. He
wants to see these parts in order from most expensive to least expensive.
You would use the following query to obtain the results he wants.

SELECT Description, Cost
FROM Part

ORDER BY Cost DESC;

Results:

D e s c r i p t i o n C o s t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Motion Synthetic Oil 10w-30 1 3 . 9 9 0 0
Motion Synthetic Oil 10w-40 1 3 . 9 9 0 0
ACME PVC Valve 1 2 . 9 9 0 0
ACME Wiper Blades 9 . 9 9 0 0
ACME Air Filter 8 . 9 9 0 0
Black Gold 10w-30 Oil 7 . 9 9 0 0
Black Gold 10w-40 Oil 7 . 9 9 0 0
Protects 10w-30 Oil 7 . 4 9 0 0
Protects 10w-40 Oil 7 . 4 9 0 0
ACME Oil Filter 4 . 9 9 0 0
Texas Tea Economy Oil Filter 3 . 9 9 0 0
ACME Brake Fluid . 0 0 0 0
ACME Transmission Fluid . 0 0 0 0
ACME Differential Fluid . 0 0 0 0
ACME Coolant . 0 0 0 0
ACME Windshield Fluid . 0 0 0 0

Your boss is pleased with your report except for one little detail. He wants
to see the parts that cost the same sorted in alphabetical order. You’ll
notice that the free parts are in random order by D e s c r i p t i o n. To fix this,
you need to first sort the list by Cost in descending order like you are
already doing, and then sort by Description in ascending order within the
first sort. SQL has taken this kind of scenario into account and provided
ability to sort on several columns. The first column is the primary sort,
the second column is the secondary sort, and so forth. Each additional
column refines the order within the sort order already established from
the preceding columns. To create the new report for your boss, you would
type the following SQL SELECT.

41SATURDAY MORNING  Selecting Data—How to See What’s in There



SELECT Description, Cost
FROM Part

ORDER BY Cost DESC, Description ASC;

Results:

D e s c r i p t i o n C o s t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Motion Synthetic Oil 10w-30 1 3 . 9 9 0 0
Motion Synthetic Oil 10w-40 3 . 9 9 0 0
ACME PVC Valve   1 2 . 9 9 0 0
ACME Wiper Blades    9 . 9 9 0 0
ACME Air Filter   8 . 9 9 0 0
Black Gold 10w-40 Oil 7 . 9 9 0 0
Black Gold 10w-30 Oil  7 . 9 9 0 0
Protects 10w-30 Oil 7 . 4 9 0 0
Protects 10w-40 Oil 7 . 4 9 0 0
ACME Oil Filter  4 . 9 9 0 0
Texas Tea Economy Oil Filter 3 . 9 9 0 0
ACME Brake Fluid    . 0 0 0 0
ACME Coolant  . 0 0 0 0
ACME Differential Fluid  . 0 0 0 0
ACME Transmission Fluid   . 0 0 0 0
ACME Windshield Fluid   . 0 0 0 0

The bossman seems pretty happy with this one. While he ponders the
results of this report, he asks you if you could give him a list of customers
by state and then by last name. “No problem,” you say.

SELECT FirstName, LastName, Address, City, StateOrProvince, 
P o s t a l C o d e

FROM Customer
ORDER BY StateOrProvince, LastName;

Results:

F i r s t L a s t A d d r e s s C i t y S t a t e O r P o s t a l
N a m e N a m e P r o v i n c e C o d e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
J a c o b S a l t e r 234 North Main G r o v e l a n d N U L L 4 5 6 7 8
K y l e e D i c k e n N U L L U p l a n d I N 4 6 9 0 5
B r y c e H a t f i e l d 566 Pine Road M a r i o n I N N U L L
A l e x T h o m p s o n N U L L N U L L I N N U L L

42 Learn SQL In a Weekend



D a v i s T h o m p s o n 298 North Broadway G r e e n s b u r g I N 4 6 5 1 4
H a r r i s o n T h o m p s o n 345 Hawks Point Drive I n d i a n a p o l i s I N 4 6 1 2 3

Apt B
J o h n S m i t h 10341 Crestpoint North Beach V A 1 0 2 3 4

B o u l e v a r d
V i c t o r i a S m i t h e 14301 Mountain H u n t i n g t o n W V 2 2 2 1 1

Ridge Court

There’s something about this report that’s bothering you. You notice that
it’s taking two lines to display each customer. Before you give your boss
the chance to shoot it down, you want to go ahead and fix this. But how
do you fit it all on the same line? As you examine the report, you notice
that the column names StateOrProvince and PostalCode are longer than
the data in those columns. Luckily, SQL allows you to name the result-
ing column anything you want. This is called an alias.

SELECT FirstName, LastName, Address, City, StateOrProvince AS    
S t a t e ,

PostalCode AS Zip
FROM Customer

ORDER BY StateOrProvince, LastName;

Results:

F i r s t N a m e L a s t N a m e A d d r e s s C i t y S t a t e Z i p
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
J a c o b S a l t e r 234 North Main G r o v e l a n d N U L L 4 5 6 7 8
K y l e e D i c k e n N U L L U p l a n d I N 4 6 9 0 5
B r y c e H a t f i e l d 566 Pine Road M a r i o n I N N U L L
A l e x T h o m p s o n N U L L N U L L I N N U L L
D a v i s T h o m p s o n 298 North Broadway G r e e n s b u r g I N 4 6 5 1 4
H a r r i s o n T h o m p s o n 345 Hawks Point Drive I n d i a n a p o l i s I N 4 6 1 2 3

Apt B
J o h n S m i t h 10341 Crestpoint North Beach V A 1 0 2 3 4

B o u l e v a r d
V i c t o r i a S m i t h e 14301 Mountain Ridge Huntington   WV    22211

C o u r t

So what’s with this NULL in the state column? NULL means no value was
entered into that column. It’s like saying the value is unknown. An empty
string (' ') is different because a value was entered, but that value just 

43SATURDAY MORNING  Selecting Data—How to See What’s in There



happens to be empty. This would show up in the results as a blank instead
of the word N U L L. Notice that N U L Ls sort to the top in ascending order.
They will sort to the bottom in descending order.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A N U L L value means no value has been entered for that column. It represents that the
value for that column is not known.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

You hand this over to the boss and he asks you about these NULL things.
So you confidently explain it to him. He decides he only wants to see cus-
tomers who have complete address information. You not quite as confi-
dently tell the boss, “Sure, I’ll get that right to you.” So far, you have no
idea how to weed out those customers, so you read on.

Filtering the Results
Hmmm, the boss wants a subset of the customers. How are you going to
remove the Customer rows without an address, a city, a state, or a postal
code? Here comes the WHERE clause to the rescue.

SELECT column|expression [,n…]
FROM tablename [,n…]

WHERE condition [AND|OR] [n];

The WHERE clause allows you to filter out rows from the results set by
stating, “I want this, this, and this, but only where this condition (or
these conditions) is (are) true.” So in the case of the report of customers
with full addresses, you say, “I want the customer’s first and last name,
address, city, state, and postal code, but only where the address is not N U L L
and the city is not NULL and the state is not NULL and the postal code is
not N U L L.”

44 Learn SQL In a Weekend



Here’s what that looks like in SQL:

SELECT FirstName, LastName, Address, City, StateOrProvince AS State,
P o s t a l C o d e

FROM Customer
WHERE Address is not NULL

AND City is not NULL
AND StateOrProvince is not NULL
AND PostalCode is not NULL

ORDER BY StateOrProvince, LastName;

Results:

F i r s t N a m e L a s t N a m e A d d r e s s C i t y S t a t e P o s t a l
C o d e

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D a v i s T h o m p s o n 298 North Broadway G r e e n s b u r g I N 4 6 5 1 4
H a r r i s o n T h o m p s o n 345 Hawks Point Drive I n d i a n a p o l i s IN    46123

Apt B
J o h n S m i t h 10341 Crestpoint North Beach V A 1 0 2 3 4

B o u l e v a r d
V i c t o r i a S m i t h e 14301 Mountain Ridge H u n t i n g t o n W V 2 2 2 1 1

C o u r t

Tada! All the incomplete addresses are gone and the boss is happy. Just in
case he asks for something else, we’re going to show you some other tricks
you can do with the WHERE clause. Let’s say you want to see only the
customers who don’t live in Indiana.

SELECT FirstName, LastName, Address, City, StateOrProvince, PostalCode
FROM Customer

WHERE StateOrProvince <> 'IN';

Results:

F i r s t N a m e L a s t N a m e A d d r e s s C i t y S t a t e O r P o s t a l
P r o v i n c e C o d e

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
J o h n S m i t h 10341 Crestpoint North Beach V A 1 0 2 3 4

B o u l e v a r d
V i c t o r i a S m i t h e 14301 Mountain H u n t i n g t o n W V 2 2 2 1 1

Ridge Court

45SATURDAY MORNING  Selecting Data—How to See What’s in There



You use IS NOT with N U L L, but when you want to test inequality against a
value, you use < >. If, instead, you want to test for equality, you use IS w i t h
NULL (as in WHERE City IS NULL) and = with a value as in the follow i n g :

SELECT FirstName, LastName, Address, City, StateOrProvince, 
P o s t a l C o d e

FROM Customer
WHERE StateOrProvince = 'IN';

Results:

F i r s t N a m e L a s t N a m e A d d r e s s C i t y S t a t e O r P o s t a l
P r o v i n c e C o d e

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
B r y c e H a t f i e l d 566 Pine Road M a r i o n I N N U L L
K y l e e D i c k e n N U L L U p l a n d I N 4 6 9 0 5
A l e x T h o m p s o n N U L L N U L L I N N U L L
D a v i s T h o m p s o n 298 North Broadway G r e e n s b u r g I N 4 6 5 1 4
H a r r i s o n T h o m p s o n 345 Hawks Point I n d i a n a p o l i s I N 4 6 1 2 3

Drive Apt B

I S, IS NOT, =, and <> are referred to as operators. They are not the only
operators that SQL allows. Table 2.1 shows the types of operators you
can use and what they mean.

46 Learn SQL In a Weekend



Let’s examine a few of these operators. Say you want to see a list of all the
jobs your company worked beginning January 1, 2002. The following
query would provide such a compilation.

SELECT *
FROM JobTicket

WHERE StartDate >= '1/1/2002';

47SATURDAY MORNING  Selecting Data—How to See What’s in There

TABLE 2.1 SQL COMPARISON OPERATORS

O p e ra t o r D e s c r i p t i o n Example Meaning

I S Equal (used with NULL) City IS NULL Where the City column
contains a NULL

IS NOT Not equal (used with NULL) City IS NOT NULL Where the City column
does not contain a NULL

= Equal City = 'C h i c a g o' Where the City column
contains 'Chicago'

<> Not equal City <> 'C h i c a g o' Where the C i t y column 
does not contain 'C h i c a g o'

< Less than Quantity < 5 Where the Quantity
column contains a value 
less than 5

> Greater than Quantity > 5 Where the Quantity
column contains a value 
greater than 5

<= Less than or equal to Quantity <= 5 Where the Quantity
column contains a value 
less than or equal to 5

>= Greater than or equal to Quantity >= 5 Where the Quantity
column contains a value 
greater than or equal to 5



Results:

J o b C u s t o m e r S t a r t D a t e E n d D a t e V e h i c l e
T i c k e t I D I D I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 2002-01-20 00:00:00 2002-01-20 00:00:00  4
4 3 2002-01-26 00:00:00 2002-01-26 00:00:00 5
5 5 2002-05-21 00:00:00 2002-05-21 00:00:00 3
7 4 2002-02-16 00:00:00 2002-02-17 00:00:00 9

This query used >= because you wanted to see all jobs after and includ-
ing January 1, 2002. What if you just want to see the jobs in January,
though?

SELECT *
FROM JobTicket

WHERE StartDate >= '1/1/2002'
AND StartDate <= '1/31/2002';

Results:

Job Customer  S t a r t D a t e E n d D a t e V e h i c l e
T i c k e t I D I D I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 2002-01-20 00:00:00 2002-01-20 00:00:00 4
4 3 2002-01-26 00:00:00 2002-01-26 00:00:00 5

This query combines less than or equal to January 31, 2002, with the pre-
vious query, which looked for job start dates greater than or equal to Jan-
uary 1, 2002. This results in a query that looks for job start dates between
January 1, 2002, and January 31, 2002, inclusive.

Now you want to see all of those results plus the jobs started in May.
Well, you can’t look for the jobs between January 1, 2002, and May 31,
2002, which would give you jobs in February, March, and April as well.
Instead, you need to use two sets of ranges to get the results you want.

SELECT *
FROM JobTicket

WHERE (StartDate >= '1/1/2002'
AND StartDate <= '1/31/2002')
OR (StartDate >= '5/1/2002'

AND StartDate <= '5/31/2002');

48 Learn SQL In a Weekend



Results:

J o b C u s t o m e r S t a r t D a t e E n d D a t e V e h i c l e
T i c k e t I D I D I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 1 2002-01-20 00:00:00 2002-01-20 00:00:00 4
4 3 2002-01-26 00:00:00 2002-01-26 00:00:00 5
5 5 2002-05-21 00:00:00 2002-05-21 00:00:00 3

This query correctly displays the list of jobs started in January 2002 and
May 2002.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

When combining AND and O R o p e rators in the WHERE clause, it is important to use paren-
theses so it's clear which expressions are to be ANDed and which are to be ORed. If you
fail to provide this type of information to the DBMS, you could get unexpected results.
AND expressions are always evaluated before OR e x p r e s s i o n s .
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

To demonstrate this caution, the following query will find all the vehicles
in the Vehicle table whose Make is Chevrolet and VehicleYear is 2002 or
whose VehicleYear is 2000 regardless of the value in M a k e .

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear = 2000
OR VehicleYear = 2002

AND Make = 'Chevrolet';

Results:

V e h i c l e Y e a r M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 0 0 0 C h e v r o l e t S - 1 0
2 0 0 0 C h r y s l e r PT Cruiser
2 0 0 2 C h e v r o l e t Trail Blazer

Notice that the order of precedence of the A N Ds and OR in this query is
what is causing these results. The AND expression is evaluated first, caus-
ing the DBMS to first find all vehicles with a VehicleYear of 2002 and a
Make of C h e v r o l e t, which gives you just one row. Next, the DBMS 

49SATURDAY MORNING  Selecting Data—How to See What’s in There



evaluates the O R, which says OR the vehicle can have a VehicleYear of 2 0 0 0.
This says nothing of the M a k e, so we get both vehicles having a V e h i c l e Y e a r
of 2 0 0 0. Thus the three rows in the result.

Now when you add parentheses to this query, it will evaluate differently.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE (VehicleYear = 2000
OR VehicleYear = 2002)

AND Make = 'Chevrolet';

Results:

V e h i c l e Y e a r M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000 C h e v r o l e t S - 1 0
2002 Chevrolet Trail Blazer

Adding the parentheses around the OR causes these first two expressions
to be evaluated first. So the DBMS looks for all the vehicles having a
VehicleYear of 2000 or 2 0 0 2. This intermediate result gives you five vehi-
cles. Now the DBMS takes those rows and applies the A N D, which says the
vehicle also must have a make of C h e v r o l e t, which narrows the result
down to just the two vehicles.

From this, you can see the importance of using parentheses to clearly state
the order of precedence when mixing AND and OR operators in your
queries. Please do this if not for yourself, then for the unfortunate soul
who has to maintain your queries long after you’ve forgotten why they
were written.

While we are on the subject of operators, there are a few logical operators
that we need to discuss here as well. These are I N, B E T W E E N, and L I K E. IN is
used to test for a list of values. An example of this is finding all customers
who reside in a city from a certain list of cities.

SELECT FirstName, LastName, City
FROM Customer

WHERE City IN ('Marion', 'Upland', 'Indianapolis');

50 Learn SQL In a Weekend



Results:

F i r s t N a m e L a s t N a m e C i t y
- - - - - - - - - - - - - - - - - - - - - -
B r y c e H a t f i e l d M a r i o n
K y l e e D i c k e n U p l a n d
H a r r i s o n T h o m p s o n I n d i a n a p o l i s

So the rows from the Customer table are filtered down to just those cus-
tomers whose city is M a r i o n, U p l a n d, or I n d i a n a p o l i s. Notice that the list
of values is contained within parentheses and that each string value is sur-
rounded by single quotes. Numeric values would not be in single quotes
unless you need to compare the numeric value to a numeric value stored
in a string column such as P o s t a l C o d e.

What about the customers who don’t live in those cities? How do you
find them? By simply adding a NOT before I N, you get the inverse of that
result set.

SELECT FirstName, LastName, City
FROM Customer

WHERE City NOT IN ('Marion', 'Upland', 'Indianapolis');

Results:

F i r s t N a m e L a s t N a m e C i t y
- - - - - - - - - - - - - - - - - - - - -
John S m i t h North Beach
Jacob S a l t e r G r o v e l a n d
Victoria S m i t h e H u n t i n g t o n
Davis Thompson G r e e n s b u r g

Wait a minute! There are only four customers here. The Customer table
has eight people. What happened to the fifth customer, whose city is not
in the list? Well, the City column for that customer is N U L L. It has no
known value and is therefore not included in comparisons unless the
comparison is explicitly matching on N U L L.

SELECT FirstName, LastName, City
FROM Customer

WHERE City NOT IN ('Marion', 'Upland', 'Indianapolis')
OR City IS NULL;

51SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

F i r s t N a m e L a s t N a m e C i t y
- - - - - - - - - - - - - - - - - - - - -
John S m i t h North Beach
Jacob S a l t e r G r o v e l a n d
Victoria Smithe H u n t i n g t o n
Alex Thompson N U L L
Davis  Thompson G r e e n s b u r g

There. That looks much better.

If the list of values you want to match against is in a range, you could use
BETWEEN instead. BETWEEN looks for a match against a range of values
including the start and end of the range. If you need to find all the vehi-
cles you’ve serviced that have a model year greater than 1997 and less than
2002, then BETWEEN is the best choice here even though you could get
away with several options. All of the following queries give you the same
results, but using BETWEEN is much more efficient and clean.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear = 2001
OR VehicleYear = 2000
OR VehicleYear = 1999
OR VehicleYear = 1998;

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear < 2002
AND VehicleYear > 1997;

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear IN (2001, 2000, 1999, 1998);

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear BETWEEN 1998 AND 2001;

52 Learn SQL In a Weekend



Results:

V e h i c l e Y e a r Make M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000  Chevrolet S - 1 0
1 9 9 8 Ford M u s t a n g
2000  Chrysler  PT Cruiser
2 0 0 1 F o r d E x p e d i t i o n

As with I N, if you would like to see the opposite result set, specifying N O T
before BETWEEN will provide that which you seek. Notice that the range is
still inclusive even with the N O T.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear NOT BETWEEN 1998 AND 2001;

Results:

VehicleYear Make    M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2002        Pontiac      Grand Prix
1968        Chevrolet   C o r v e t t e
2002        Nissan       A l t i m a
2002        Chevrolet     Trail Blazer
1972        AMC       G r e m l i n

Whereas BETWEEN helps you find values in a range, LIKE is used to find val-
ues matching a pattern. LIKE uses wildcard characters to act as place-
holders for one or more characters in the pattern.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A wildcard character is a character used to construct match expressions.Each wildcard
character can represent one or more character positions in the match expression.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

What if you need to find only those customers whose last name starts
with ‘S’? You would write your query using LIKE and a match expression.

SELECT FirstName, LastName
FROM Customer

WHERE LastName LIKE 'S%';

53SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

F i r s t N a m e L a s t N a m e
- - - - - - - - - - - - - - - - - - - - - - - - -
John      S m i t h
Jacob    S a l t e r
Victoria     S m i t h e

The % in the pattern is used to match any character and any number of
character positions. In the previous expression, it doesn’t matter what the
character is or how many characters come after the ‘S’. The only require-
ment is that the first letter be a capital ‘S’.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

If your database is set to be case sensitive, this query will only work if you use a capi-
tal ‘S’ in the pattern. If you use a lowercase ‘s’, it will take you literally and not find a
single row. Most DBMSs allow you to specify whether the database is case sensitive.
Refer to the documentation for your DBMS.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Now what if you want to find a string within a string? For instance, say
you need to find a customer in the database, but the only thing you can
remember about this person is that the address is something something
Pine something.

SELECT FirstName, LastName, Address
FROM Customer

WHERE Address LIKE '%Pine%';

Results:

F i r s t N a m e LastName A d d r e s s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Bryce Hatfield  566 Pine Road

But wait…there’s more. Not only can you match multiple characters
using %, but you can also match against any single character using the
underscore character (_). The following query will find all customers
whose first name is five characters long and ends in an ‘e’.

54 Learn SQL In a Weekend



SELECT FirstName, LastName
FROM Customer

WHERE FirstName LIKE '_ _ _ _ e ' ;

Results:

F i r s t N a m e L a s t N a m e
- - - - - - - - - - - - -
Bryce         H a t f i e l d
Kylee         D i c k e n

Another thing you can do to create your match expression is specify a set
of valid characters for a position in the string instead of accepting just any
character when you use _. You create the list of acceptable characters by
surrounding it with square brackets ([ ]). Inside the brackets, you can
specify a list of characters ([ a b c d e ]) or a range of characters using 
– ([ a – e ]). The range is inclusive. Here you find all customers whose first
name has a vowel as the second letter.

SELECT FirstName, LastName
FROM Customer

WHERE FirstName LIKE '_[aeiou]%';

Results:

F i r s t N a m e L a s t N a m e
- - - - - - - - - - - - -
John          S m i t h
Jacob         S a l t e r
Victoria      S m i t h e
Davis         T h o m p s o n
Harrison      T h o m p s o n

The _ finds anything for the first letter, the [ ] list finds a vowel in the
second position, and the % finds the rest of the string no matter what the
contents or the length. Now what if you want the opposite? Say you want
to see only the first names that don’t have a vowel in the second position.
What if you just add a NOT to that LIKE statement?

SELECT FirstName, LastName
FROM Customer

WHERE FirstName NOT LIKE '_[aeiou]%';

55SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

FirstName     L a s t N a m e
- - - - - - - - - - - - -
Bryce         H a t f i e l d
Kylee         D i c k e n
Alex          T h o m p s o n

Hey, that worked! But be careful about just adding N O T. It won’t work in
most instances. If you had requested J for the first letter instead of _, then
you’d get John and Jacob in your result set. Adding N O T in this case would
give you all the other first names when all you really want is the names
starting with J that do not have a vowel for the next letter. There aren’t
any of those in your Customer table. The better way to specify this query
is using the wildcard character ^.

SELECT FirstName, LastName
FROM Customer

WHERE FirstName LIKE '_[^aeiou]%';

Results:

FirstName     L a s t N a m e
- - - - - - - - - - - - -
Bryce         H a t f i e l d
Kylee         D i c k e n
Alex          T h o m p s o n

Take a Break!
Take a few minutes here to get up and stretch. Maybe grab a cup of cof-
fee. Try to absorb all that you’ve learned from the first part of this chap-
ter. When you return, there is just as much information awaiting you in
the second half. We’ll show you the ins and outs of gathering information
from multiple tables and then how to create computed columns in the
result set.

56 Learn SQL In a Weekend



Joining Tables
Welcome back! So you’ve learned how to select, sort, and filter, but only
from a single table. What’s the point of a relational database if you can’t
see how data relates between tables? That’s where joins come in. As an
example of why you’d want to join information together, we’d like you to
take another look at the Vehicle table.

SELECT VehicleID, VehicleYear, Make, Model, CustomerID
FROM Vehicle;

Results:

V e h i c l e I D V e h i c l e Y e a r M a k e M o d e l C u s t o m e r I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1      2000 C h e v r o l e t S-10 4
2           1998    Ford          Mustang   2
3           2002    Pontiac       Grand Prix  5
4           1968 Chevrolet     Corvette   1
5           2002   Nissan Altima  3
6           2000  C h r y s l e r PT Cruiser 6
7           2002  Chevrolet Trail Blazer 8
8        2001   Ford   Expedition 7
9       1972  AMC    Gremlin  4

The problem with this information is that all you know about the owner
of the vehicle is the C u s t o m e r I D. To find out the customer’s name, you have
to query the Customer table. Instead of cross-referencing between the two
lists, we’ll show you how to write one query to get this information from
both tables.

SELECT VehicleID, VehicleYear, Make, Model, FirstName, LastName
FROM Vehicle, Customer

WHERE Vehicle.CustomerID = Customer.CustomerID;

57SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

V e h i c l e I D V e h i c l e Y e a r Make Model F i r s t N a m e L a s t N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1     2000   Chevrolet S-10  Bryce H a t f i e l d
2   1998   Ford   Mustang  Jacob  S a l t e r
3   2002 Pontiac  Grand Prix Kylee  D i c k e n
4    1968    Chevrolet Corvette John  S m i t h
5  2002   Nissan  Altima  Victoria S m i t h e
6   2000   Chrysler  PT Cruiser Alex  T h o m p s o n
7   2002   Chevrolet Trail Blazer H a r r i s o n T h o m p s o n
8   2001    Ford    Expedition  Davis  T h o m p s o n
9  1972   AMC   Gremlin   Bryce  H a t f i e l d

Now you can see the owner of each vehicle instead of just the C u s t o m e r I D.
All you had to do was add the Customer columns you wanted to see to the
end of the SELECT statement, add the Customer table to the FROM
clause, and join the two tables by the foreign key in the WHERE clause.
CustomerID is the primary key in the Customer table and the Vehicle table’s
foreign key reference to the Customer table. Therefore, in the WHERE
clause, you could join the two tables correctly by comparing the 
CustomerID in the Vehicle table to the CustomerID in the Customer table.
However, because both columns have the same name, you have to make
them unique by specifying the table they belong to. This is done using
the syntax tablename.columnname (C u s t o m e r . C u s t o m e r I D, for instance).

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

If you fail to join the tables in the FROM clause together in the WHERE clause, you end
up with a Cartesian product. This means that every row from the first table is joined
with every row in the second table and so forth until every possible combination is pre-
s e n t e d . In the case of the previous query, you would have received 72 rows back (9
Vehicle rows multiplied by 8 Customer rows) instead of just the 9.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

This kind of join only returns rows from both tables where those tables
match on the columns equated to each other. This is also referred to as an
INNER JOIN. SQL has two ways of specifying an INNER JOIN: in the

58 Learn SQL In a Weekend



WHERE clause or in the FROM clause. The previous query shows the
join in the WHERE clause. The following query shows you how to spec-
ify the join in the FROM clause.

SELECT VehicleID, VehicleYear, Make, Model, FirstName, LastName
FROM Vehicle INNER JOIN Customer

ON Vehicle.CustomerID = Customer.CustomerID;

Results:

V e h i c l e I D V e h i c l e Y e a r M a k e Model F i r s t N a m e L a s t N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 2000   Chevrolet S-10 Bryce H a t f i e l d
2  1998  Ford  Mustang  Jacob  S a l t e r
3   2002   P o n t i a c Grand Prix K y l e e D i c k e n
4  1968  C h e v r o l e t Corvette John S m i t h
5 2002   Nissan   Altima Victoria S m i t h e
6  2000  C h r y s l e r PT Cruiser A l e x T h o m p s o n
7  2002  Chevrolet Trail Blazer Harrison T h o m p s o n
8   2001   Ford    Expedition  Davis  T h o m p s o n
9    1972    AMC     Gremlin   Bryce   H a t f i e l d

As you can see, the result sets are the same. It’s totally up to you as to
which syntax to use. We personally use the WHERE clause to specify
inner joins. You can choose for yourself.

When it comes to OUTER JOINS, howe ve r, you don’t get a choice.
Not if you want to stick to the standard, that is. Many DBMSs imple-
ment their own syntax for outer joins in the WHERE clause, howe ve r,
the SQL standard only allows for outer joins in the FROM clause.
Refer to the appendixes for alternate forms for outer joins under the
DBMS you are using.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

If you decide to use the outer join syntax specific to your DBMS, you could get different
results than you would using the standard.An outer join performed in the FROM clause
could obtain a different intermediate result set that is then filtered by the WHERE clause.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

59SATURDAY MORNING  Selecting Data—How to See What’s in There



Unlike an INNER JOIN, an OUTER JOIN allows you to obtain the
entire result set from one table regardless of its ability to find a match in
the other table. For instance, take a look at the results of the following
INNER JOIN query. This query will show a list of customers and the
name of the state they live in.

SELECT FirstName, LastName, StateOrProvinceName
FROM Customer INNER JOIN StateOrProvince

ON Customer.StateOrProvince = StateOrProvince.StateOrProvince;

Results:

FirstName  LastName   S t a t e O r P r o v i n c e N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
J o h n Smith     V i r g i n i a
V i c t o r i a Smithe  West Virginia
Bryce  Hatfield   I n d i a n a
Kylee    Dicken         I n d i a n a
Alex      Thompson      I n d i a n a
Davis     Thompson          I n d i a n a
Harrison  Thompson     I n d i a n a

Notice that the previous query only gives you seven of the eight 
customers. Where is Jacob? Jacob’s StateOrProvince value is unknown
(N U L L). T h e re f o re, his row could not be joined to a row in the 
StateOrProvince table. Remember that a NULL is not equal to anything. If
the StateOrProvince table had a NULL entry, the results would not have
changed because a NULL in one column is not equal to a NULL in another
column. The only way to get all the customers to display in the list is to
use an outer join.

Outer joins have three types:

➤ A LEFT OUTER JOIN (or LEFT JOIN) specifies that you would
like to retrieve all the rows from the left table regardless of its abili-
ty to match to a row in the right table.

➤ A RIGHT OUTER JOIN (or RIGHT JOIN) re t r i e ves all the row s
f rom the right table re g a rdless of its ability to join to a row in
the left table.

60 Learn SQL In a Weekend



➤ A FULL OUTER JOIN (or FULL JOIN) gives you both. It retrieves
all the rows from both tables regardless of the ability of either table
to match the other.

Let’s start by looking at a LEFT OUTER JOIN to solve the previous
dilemma.

SELECT FirstName, LastName, StateOrProvinceName
FROM Customer LEFT OUTER JOIN StateOrProvince

ON Customer.StateOrProvince = StateOrProvince.StateOrProvince;

Results:

F i r s t N a m e LastName S t a t e O r P r o v i n c e N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
John       Smith  V i r g i n i a
Jacob    Salter  N U L L
Victoria    Smithe      West Virginia
Bryce    Hatfield  I n d i a n a
Kylee  Dicken   I n d i a n a
Alex   Thompson  I n d i a n a
Davis Thompson I n d i a n a
Harrison  Thompson I n d i a n a

Now you have all the customers from the Customer table and their match-
ing entry from the StateOrProvince table. Jacob’s row appropriately has
NULL for StateOrProvinceName because his state of residency is unknown.
What if you want to see all the states and provinces matched up against
the customers who live there? Simply change the query to a RIGHT
OUTER JOIN.

SELECT FirstName, LastName, StateOrProvinceName
FROM Customer RIGHT OUTER JOIN StateOrProvince

ON Customer.StateOrProvince = StateOrProvince.StateOrProvince;

61SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

FirstName   LastName   S t a t e O r P r o v i n c e N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NULL       NULL A l b e r t a
NULL  NULL  A l a s k a
NULL NULL    A l a b a m a
NULL  NULL   A r k a n s a s
NULL  NULL A r i z o n a
NULL  NULL  British Columbia
NULL   NULL  C a l i f o r n i a
NULL  NULL   C o l o r a d o
NULL     NULL  C o n n e c t i c u t
NULL    NULL      District of Columbia
NULL    NULL  D e l a w a r e
NULL NULL  F l o r i d a
NULL   NULL G e o r g i a
NULL  NULL  H a w a i i
NULL NULL I o w a
NULL    NULL  I d a h o
NULL  NULL   I l l i n o i s
Bryce   Hatfield  I n d i a n a
Kylee    Dicken  I n d i a n a
Alex   Thompson  I n d i a n a
Davis        Thompson  I n d i a n a
Harrison  Thompson I n d i a n a
NULL   NULL K a n s a s
NULL  NULL   K e n t u c k y
NULL    N U L L L o u i s i a n a
NULL   NULL  M a s s a c h u s e t t s
NULL    NULL   M a n i t o b a
NULL    NULL   M a r y l a n d
NULL     NULL  M a i n e
NULL   N U L L M i c h i g a n
NULL     NULL   M i n n e s o t a
NULL   NULL M i s s o u r i
NULL   NULL M i s s i s s i p p i
NULL   NULL  M o n t a n a
NULL     NULL   New Brunswick
NULL     NULL   North Carolina
NULL        NULL  North Dakota
NULL       NULL    N e b r a s k a
NULL    NULL    N e w f o u n d l a n d

62 Learn SQL In a Weekend



NULL        NULL  New Hampshire
NULL NULL   New Jersey
NULL      NULL  New Mexico
NULL       NULL    Nova Scotia
NULL      NULL     Northwest Territories
NULL      NULL    N u n a v u t
NULL     NULL     N e v a d a
NULL      NULL    New York
NULL       NULL   O h i o
NULL     NULL  O k l a h o m a
NULL   NULL     O n t a r i o
NULL    NULL      O r e g o n
NULL  NULL    P e n n s y l v a n i a
NULL    NULL    Prince Edward Island
NULL    NULL Q u é b e c
NULL  NULL  Rhode Island
NULL      NULL  South Carolina
NULL     NULL   South Dakota
NULL   NULL     S a s k a t c h e w a n
NULL  NULL T e n n e s s e e
NULL   NULL T e x a s
NULL   NULL   U t a h
John     Smith   V i r g i n i a
NULL         NULL  V e r m o n t
NULL    NULL  W a s h i n g t o n
NULL     NULL  W i s c o n s i n
Victoria Smithe  West Virginia
NULL    NULL   W y o m i n g
NULL       NULL   Yukon Territory

This gives you every row from the StateOrProvince table matched up with
any rows in the Customer table having that S t a t e O r P r o v i n c e. As you can
see, Indiana is listed five times because five customers reside there. Texas
is only listed once and no customers live there, so the customer columns
are filled with N U L Ls. Take note that Jacob is nowhere to be found in this
list. Again, his StateOrProvince value is N U L L, so none of the entries from
the StateOrProvince table matched with him. To get a complete list of all
the states and all the customers, you’d have to use a FULL OUTER
JOIN, as in the following query.

63SATURDAY MORNING  Selecting Data—How to See What’s in There



SELECT FirstName, LastName, StateOrProvinceName
FROM Customer FULL OUTER JOIN StateOrProvince

ON Customer.StateOrProvince = StateOrProvince.StateOrProvince;

Results:

FirstName  LastName S t a t e O r P r o v i n c e N a m e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Jacob    Salter  N U L L
NULL   NULL  A l b e r t a
NULL  NULL  A l a s k a
NULL  NULL A l a b a m a
NULL NULL  A r k a n s a s
NULL  NULL     A r i z o n a
NULL    NULL  British Columbia
NULL    NULL     C a l i f o r n i a
NULL   NULL     C o l o r a d o
NULL   NULL        C o n n e c t i c u t
NULL     NULL     District of Columbia
NULL   NULL    D e l a w a r e
NULL      NULL      F l o r i d a
NULL   NULL   G e o r g i a
NULL    NULL  H a w a i i
NULL    NULL    I o w a
NULL   NULL   I d a h o
NULL    NULL     I l l i n o i s
Bryce     Hatfield     I n d i a n a
Kylee     Dicken   I n d i a n a
Alex Thompson I n d i a n a
Davis      Thompson   I n d i a n a
Harrison Thompson  I n d i a n a
NULL    NULL     K a n s a s
NULL    NULL     K e n t u c k y
NULL    NULL  L o u i s i a n a
NULL   NULL     M a s s a c h u s e t t s
NULL    NULL    M a n i t o b a
NULL     NULL    M a r y l a n d
NULL     NULL     M a i n e
NULL   NULL M i c h i g a n
NULL       NULL    M i n n e s o t a
NULL     NULL      M i s s o u r i
NULL      NULL        M i s s i s s i p p i
NULL       NULL    M o n t a n a

64 Learn SQL In a Weekend



NULL    NULL     New Brunswick
NULL     NULL       North Carolina
NULL      NULL    North Dakota
NULL    NULL    N e b r a s k a
NULL      NULL        N e w f o u n d l a n d
NULL      NULL         New Hampshire
NULL        NULL        New Jersey
NULL       NULL        New Mexico
NULL    NULL     Nova Scotia
NULL     NULL    Northwest Territories
NULL       NULL        N u n a v u t
NULL    NULL        N e v a d a
NULL   NULL     New York
NULL      NULL  O h i o
NULL     NULL     O k l a h o m a
NULL    NULL    O n t a r i o
NULL     NULL    O r e g o n
NULL      NULL   P e n n s y l v a n i a
NULL      NULL     Prince Edward Island
NULL      NULL      Q u é b e c
NULL      NULL    Rhode Island
NULL      NULL      South Carolina
NULL    NULL    South Dakota
NULL  NULL   S a s k a t c h e w a n
NULL     NULL     T e n n e s s e e
NULL    NULL  T e x a s
NULL      NULL      U t a h
John     Smith   V i r g i n i a
NULL     NULL    V e r m o n t
NULL     NULL       W a s h i n g t o n
NULL     NULL   W i s c o n s i n
Victoria    Smithe     West Virginia
NULL       NULL     W y o m i n g
NULL       NULL     Yukon Territory

Now Jacob shows up on the very first line with a StateOrProvinceName of
N U L L, and you have all the same data from the previous query too.

Another type of join is called a self-join. What this means is that a table
is joining to itself. Why would you want to do this? One very good rea-
son to join a table to itself is in the case of a recursive relationship.

65SATURDAY MORNING  Selecting Data—How to See What’s in There



Remember from the Friday Night session that a re c u r s i ve relationship occurs
when a table is foreign keyed to itself. The example used to demonstrate this
type of relationship was the manager of an employee. The manager of an
e m p l oyee is information about the employee and is there f o re stored in the
Employee table. At the same time, howe ve r, a manager is also an employe e ,
who has a manager, who is an employee, and so forth—thus the need for the
re c u r s i ve re l a t i o n s h i p. How would you create a re p o rt of all the employe e s
including their manager’s name if the key to the Employee table was just
E m p l o y e e I D? This is where you would use a self-join from the Employee t a b l e
to itself to link the Employee.ManagerID to the Employee.EmployeeID to find
the manager’s row in the Employee t a b l e .

SELECT FirstName, LastName, FirstName, LastName
FROM Employee INNER JOIN Employee

ON ManagerID = EmployeeID;

Unfortunately, this syntax doesn’t work. SQL requires each reference to a
column in the SELECT clause to be unique. You know how to solve that
by placing the table name in front of the column name. In this case, how-
ever, the table is the same. Similarly, SQL requires that each table name
in the FROM clause be unique. How are you supposed to do this when
joining a table to itself?

T h a t’s where aliases come to the rescue. As you learned earlier in this
c h a p t e r, aliases can be used to provide a different name for an item in
the query. You used them earlier to give a shorter name to the column
S t a t e O r P r o v i n c e in the result set. You will use aliases here to give a
unique name to the tables in the FROM clause. The new query, using
aliases, will look like this:

SELECT e1.FirstName, e1.LastName, e2.FirstName, e2.LastName
FROM Employee AS e1 INNER JOIN Employee AS e2

ON e1.ManagerID = e2.EmployeeID;

SQL now knows that you want to join Employee to itself and which
columns are coming from the Employee row (e 1) and which columns are
coming from the manager’s row (e 2). Note that AS is optional. 

66 Learn SQL In a Weekend



You could have also written the query as follows:

SELECT e1.FirstName, e1.LastName, e2.FirstName, e2.LastName
FROM Employee e1 INNER JOIN Employee e2

ON e1.ManagerID = e2.EmployeeID;

Another reason you would need a self-join is if you want to compare the
contents of the table to itself. As an example, let’s say you want to find all
the customers that live in the same state. You could join the C u s t o m e r
table to itself on StateOrProvince to obtain this information.

SELECT c1.FirstName, c1.LastName, c1.StateOrProvince,
c2.FirstName, c2.LastName, c2.StateOrProvince

FROM Customer c1 INNER JOIN Customer c2
ON c1.StateOrProvince = c2.StateOrProvince;

Results:

F i r s t N a m e LastName S t a t e FirstName L a s t N a m e S t a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
John  Smith    VA    John   S m i t h V A
Victoria Smithe  WV    Victoria S m i t h e W V
Bryce  Hatfield  IN    B r y c e H a t f i e l d I N
Kylee Dicken IN    Bryce H a t f i e l d I N
Alex Thompson IN    Bryce H a t f i e l d I N
Davis Thompson IN    B r y c e H a t f i e l d I N
Harrison Thompson IN    B r y c e H a t f i e l d I N
B r y c e Hatfield  IN    Kylee D i c k e n I N
K y l e e D i c k e n IN    K y l e e D i c k e n I N
A l e x Thompson IN    K y l e e D i c k e n I N
Davis Thompson IN    K y l e e D i c k e n I N
Harrison Thompson IN    K y l e e D i c k e n I N
Bryce Hatfield IN    A l e x T h o m p s o n I N
Kylee Dicken IN    A l e x T h o m p s o n I N
A l e x Thompson IN    A l e x T h o m p s o n I N
D a v i s T h o m p s o n IN    A l e x T h o m p s o n I N
H a r r i s o n T h o m p s o n IN    A l e x T h o m p s o n I N
B r y c e H a t f i e l d IN    D a v i s T h o m p s o n I N
K y l e e D i c k e n IN    D a v i s T h o m p s o n I N
A l e x T h o m p s o n IN    D a v i s T h o m p s o n I N
Davis T h o m p s o n IN    D a v i s T h o m p s o n I N
H a r r i s o n T h o m p s o n IN    D a v i s T h o m p s o n I N
Bryce H a t f i e l d IN    H a r r i s o n T h o m p s o n I N

67SATURDAY MORNING  Selecting Data—How to See What’s in There



Kylee D i c k e n IN    H a r r i s o n T h o m p s o n I N
A l e x T h o m p s o n IN    H a r r i s o n T h o m p s o n I N
D a v i s T h o m p s o n I N H a r r i s o n T h o m p s o n I N
H a r r i s o n T h o m p s o n IN    H a r r i s o n T h o m p s o n I N

Uh, this is not quite what you want. You already know that John Smith
lives in the same state as himself. So you need to tell SQL to eliminate the
rows where the customer is equal to himself or herself.

Select c1.FirstName, c1.LastName, c1.StateOrProvince,
c2.FirstName, c2.LastName, c2.StateOrProvince

FROM Customer c1 INNER JOIN Customer c2
ON c1.StateOrProvince = c2.StateOrProvince

AND c1.CustomerID <> c2.CustomerID;

Results:

F i r s t N a m e L a s t N a m e State F i r s t N a m e L a s t N a m e S t a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Kylee  Dicken  IN    Bryce  Hatfield I N
Alex  Thompson IN    Bryce  Hatfield I N
Davis  Thompson  IN    Bryce  Hatfield  I N
Harrison T h o m p s o n IN    B r y c e Hatfield I N
Bryce    Hatfield IN    Kylee Dicken  I N
Alex   Thompson  IN    Kylee  Dicken I N
Davis  T h o m p s o n IN    Kylee  Dicken I N
Harrison   Thompson IN    Kylee   Dicken  I N
Bryce    Hatfield IN    Alex  Thompson I N
Kylee Dicken   IN    Alex   Thompson I N
Davis   Thompson  IN    Alex   Thompson  I N
Harrison  Thompson  IN    Alex  Thompson   I N
Bryce   Hatfield IN    Davis  Thompson  I N
Kylee  Dicken  IN    Davis  Thompson  I N
Alex   Thompson IN    Davis Thompson  I N
Harrison Thompson  IN    Davis  Thompson   I N
Bryce    Hatfield  IN    H a r r i s o n Thompson  I N
Kylee   Dicken  IN    Harrison Thompson  I N
Alex    Thompson  IN    H a r r i s o n Thompson   I N
Davis   Thompson  IN    Harrison Thompson   I N

68 Learn SQL In a Weekend



Hmmm. This is closer, but you still have a bunch of repeats. For each cus-
tomer in table c 1, this query gives the other four people that live in the same
state. How do you eliminate the duplicates? It might seem a little strange,
but the best way to do this is to only get the customers whose ID is gre a t e r
than (or less than, if you prefer) the one being examined in table c 1.

Select c1.FirstName, c1.LastName, c1.StateOrProvince,
c2.FirstName, c2.LastName, c2.StateOrProvince

FROM Customer c1 INNER JOIN Customer c2
ON c1.StateOrProvince = c2.StateOrProvince

AND c1.CustomerID > c2.CustomerID;

Results:

F i r s t N a m e LastName State F i r s t N a m e LastName S t a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Kylee  Dicken  IN    Bryce    Hatfield   I N
Alex Thompson  IN    Bryce    Hatfield  I N
Alex Thompson   IN    Kylee   Dicken    I N
Davis  Thompson  IN    Bryce   Hatfield I N
Davis    Thompson   IN    Kylee     Dicken  I N
Davis  Thompson IN    Alex   Thompson I N
Harrison Thompson  IN    Bryce     Hatfield  I N
Harrison  Thompson IN    Kylee   Dicken I N
H a r r i s o n Thompson  IN    Alex     Thompson   I N
Harrison  Thompson   IN    Davis  Thompson  I N

Finally, you have a list of customers who live in the same state as anoth-
er customer. Another way to state this query is to move the C u s t o m e r I D
expression to the WHERE clause instead of the FROM clause:

Select c1.FirstName, c1.LastName, c1.StateOrProvince,
c2.FirstName, c2.LastName, c2.StateOrProvince

FROM Customer c1 INNER JOIN Customer c2
ON c1.StateOrProvince = c2.StateOrProvince

WHERE c1.CustomerID > c2.CustomerID;

You don’t always have to join on equality. You can use inequality to join
two tables as well. Say you want to find out all the vehicles whose model
year is newer (greater than) the model year of the AMC Gremlin.

69SATURDAY MORNING  Selecting Data—How to See What’s in There



SELECT v2.*
FROM Vehicle v1 INNER JOIN Vehicle v2

ON v1.VehicleYear < v2.VehicleYear
WHERE v1.Model = 'Gremlin';

Results:

V e h i c l eV e h i c l eM a k e M o d e l C o l o r L i c e n s e L a s t C u s t o m e r
I D Y e a r P l a t e # S e r v i c e I D

D a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 2 0 0 0 C h e v r o l e tS - 1 0 P u r p l e T R O J A N S 2 0 0 1 - 0 8 - 1 3 4 

00:00:00   
2 1 9 9 8 F o r d M u s t a n g Red H H 7 8 3 2 2 0 0 1 - 0 9 - 1 6 2   

0 0 : 0 0 : 0 0 2
3 2002 Pontiac Grand Prix B l a c k G O P R D U E 2 0 0 2 - 0 5 - 2 1 5 

00:00:00   
5 2 0 0 2 N i s s a n Altima W h i t e H E Y D A R E 2 0 0 2 - 0 1 - 2 6 3 

00:00:00   
6 2000 C h r y s l e r PT Cruiser Black ALEX T 2 0 0 2 - 0 5 - 1 5 6 

00:00:00   
7 2002 C h e v r o l e t T r a i l B l a z e r Green   I TRADE 2 0 0 1 - 0 5 - 3 1 8 

00:00:00   
8 2 0 0 1 F o r d E x p e d i t i o n M a r o o n DAVIS T 2 0 0 1 - 0 5 - 3 1 7 

00:00:00 

One last type of join to look at is the CROSS JOIN. The CROSS JOIN
joins everything from the first table to everything in the second table. If
this type of join is used without a WHERE clause to relate the tables in
some way, you will get a Cartesian product. If a relation is defined, then
the CROSS JOIN acts the same as an INNER JOIN. Here’s an example
of a CROSS JOIN:

SELECT VehicleID, Customer.CustomerID
FROM Vehicle CROSS JOIN Customer;

70 Learn SQL In a Weekend



Results:

V e h i c l e I D C u s t o m e r I D
- - - - - - - - - - - -
1           1
2           1
3           1
4           1
5           1
6           1
7           1
8           1
9           1
.
.
.
1           8
2          8
3           8
4           8
5           8
6           8
7           8
8           8
9           8

The entire result set isn’t shown here because it’s 72 rows. As explained
earlier, a Cartesian product produces a result set containing the number
of rows from the first table multiplied by the number of rows in the sec-
ond table. In this case, you get all eight Customer table rows for each of
the nine Vehicle table rows, resulting in 72 (8x9) rows. This result set is
totally unusable. You have no idea which customer belongs to which
vehicle. The two tables need to be related.

SELECT VehicleID, Customer.CustomerID
FROM Vehicle CROSS JOIN Customer

WHERE Vehicle.CustomerID = Customer.CustomerID;

71SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

VehicleID   C u s t o m e r I D
- - - - - - - - - - - -
1           4
2           2
3           5
4           1
5           3
6           6
7           8
8           7
9           4

Now, as expected, you get just one customer, the right customer, for each
vehicle in the result set. But all you have here is a simple INNER JOIN,
which could be more simply represented with the following syntax.

SELECT VehicleID, Customer.CustomerID
FROM Vehicle, Customer

WHERE Vehicle.CustomerID = Customer.CustomerID;

That is all you need to know about joins to get started. You’ll see a lot
more examples of using joins in the chapters to come. Like we said,
there’s not much of a point in having a relational database if you can’t use
the relationships in your queries. This is what joins give you.

Creating Computed Columns
Computed columns are columns in your result set that are made up of one
or more columns from the tables in the FROM clause of the query. They
are also referred to as expressions. You can create these computed columns
to show such things as the results of arithmetic operations or the com-
bining of text fields.

Remember the customer list you created earlier today? Let’s say the boss
wants to see the customer’s first and last name combined in one col-
umn. You can add these two columns to create a computed column
called Customer Name.

72 Learn SQL In a Weekend



SELECT FirstName + ' ' + LastName AS "Customer Name", Address, City,
StateOrProvince AS State, PostalCode

FROM Customer;

Results:

Customer Name A d d r e s s C i t y S t a t e P o s t a l
C o d e

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
John Smith 10341 Crestpoint Boulevard  North Beach V A 1 0 2 3 4
Jacob Salter 234 North Main G r o v e l a n d N U L L 4 5 6 7 8
Victoria Smithe 14301 Mountain Ridge Court Huntington W V 2 2 2 1 1
Bryce Hatfield 566 Pine Road Marion I N N U L L
Kylee Dicken N U L L U p l a n d I N 4 6 9 0 5
Alex Thompson N U L L N U L L I N N U L L
Davis Thompson 298 North Broadway G r e e n s b u r g I N 4 6 5 1 4
Harrison Thompson 345 Hawks Point Drive Apt B I n d i a n a p o l i s I N 4 6 1 2 3

This query outputs a computed column that combines text columns
from the Customer table. The text columns are combined using the + sym-
bol. A space is used to separate the first and last name of the customer so
the values will not run together. We have provided a name for this col-
umn using the alias "Customer Name". Notice that when an alias contains
a space in the name, it must be surrounded by quotation marks.

You can create computed columns for numeric columns as well. For
instance, say you want to find out the total cost for the part used for each
line item in the PartUsed table. Rather than returning the information
and getting out your calculator, you can use SQL to perform the calcula-
tions for you.

SELECT pu.JobTicketID, pu.LineItemNumber AS "Line#", p.Description,
pu.Quantity, p.Cost, pu.Quantity * p.Cost AS "Part Total"

FROM PartUsed AS pu INNER JOIN Part AS p
ON pu.PartID = p.PartID;

73SATURDAY MORNING  Selecting Data—How to See What’s in There



Results:

Job L i n e D e s c r i p t i o n Q u a n t i t y C o s t P a r t
T i c k e t # T o t a l
I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 1 Black Gold 10w-40 Oil 4 7 . 9 9 0 0 3 1 . 9 6 0 0
1 1 Texas Tea Economy Oil Filter 1 3 . 9 9 0 0 3 . 9 9 0 0
1 1 ACME Brake Fluid 1 . 0 0 0 0 . 0 0 0 0
1 1 ACME Transmission Fluid 1 . 0 0 0 0 . 0 0 0 0
2 1 Motion Synthetic Oil 10w-30 4 1 3 . 9 9 0 0 5 5 . 9 6 0 0
2 1 ACME Oil Filter 1 4 . 9 9 0 0 4 . 9 9 0 0
2 1 ACME Windshield Fluid 1 .0000 . 0 0 0 0
2 2 ACME Air Filter  1 8 . 9 9 0 0 8 . 9 9 0 0
2 3 ACME PVC Valve 1 1 2 . 9 9 0 0 1 2 . 9 9 0 0
3   1 Motion Synthetic Oil 10w-40 4 1 3 . 9 9 0 0 5 5 . 9 6 0 0
3 1 Texas Tea Economy Oil Filter 1 3 . 9 9 0 0 3 . 9 9 0 0
4 1 Protects 10w-30 Oil 4 7 . 4 9 0 0 2 9 . 9 6 0 0
4 1  ACME Oil Filter 1 4 . 9 9 0 0 4 . 9 9 0 0
5 1 ACME Wiper Blades  1  9 . 9 9 0 0 9 . 9 9 0 0
5 2 Black Gold 10w-30 Oil 4  7 . 9 9 0 0 3 1 . 9 6 0 0
5  2 ACME Oil Filter 1 4 . 9 9 0 0 4 . 9 9 0 0
5 2 ACME Transmission Fluid 1 . 0 0 0 0 . 0 0 0 0
5 2     ACME Windshield Fluid 1  . 0 0 0 0 . 0 0 0 0
6  1     ACME Coolant 1   .0000  . 0 0 0 0
7 1     Protects 10w-30 Oil 4 7 . 4 9 0 0 2 9 . 9 6 0 0
7 1  ACME Oil Filter 1  4 . 9 9 0 0 4 . 9 9 0 0
7 1 ACME Transmission Fluid  1 . 0 0 0 0 . 0 0 0 0
7  1 ACME Windshield Fluid 1 .0000 . 0 0 0 0
7 2 ACME Air Filter 1  8 . 9 9 0 0 8 . 9 9 0 0
7 3 ACME PVC Valve        1 1 2 . 9 9 0 0 1 2 . 9 9 0 0
7 4  ACME Differential Fluid 1 .0000 . 0 0 0 0
7  5 ACME Coolant         1   .0000 . 0 0 0 0

This query selects columns from the PartUsed and Part tables. Each row
of the result set represents a part used on a line item on a job. It shows
the quantity of each part used for the job and the cost of each part. The
last column represents the total cost of that part for that line item on the
job. The total is determined by multiplying the cost per part by the quan-
tity used. This computed column was given the alias "Part Total". You
can see from the query that * is used as the multiplication operator. Table
2.2 shows the arithmetic operators.

74 Learn SQL In a Weekend



We’re sure you all are ve ry familiar with add, subtract, multiply, and
divide. We bet some of you, howe ve r, are wondering what the heck mod-
ulo means. Modulo acts like divide, but instead of giving you the entire
result, it only gives you the remainder after whole number division. Fo r
example, 3 would divide into 22 seven times with 1 left ove r. That leftove r
piece (the remainder) is what modulo returns to you. We use modulo
mostly to find out if a number is even or odd. If 2 divides into the num-
ber with no re m a i n d e r, modulo is 0—and the number is even. Just for
grins, let’s see which vehicles in the Vehicle table have an even model ye a r.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear % 2 = 0
ORDER BY VehicleYear;

75SATURDAY MORNING  Selecting Data—How to See What’s in There

TABLE 2.2 SQL ARITHMETIC OPERATORS

Arithemetic Operator Description

+ Add

– Subtract

* Multiply

/ Divide

% Modulo (remainder of a division operation)



Results:

V e h i c l e Y e a r M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1968        Chevrolet  C o r v e t t e
1972        AMC  G r e m l i n
1998        Ford  M u s t a n g
2000        Chevrolet S - 1 0
2000        Chrysler PT Cruiser
2002        Nissan  A l t i m a
2002        C h e v r o l e t Trail Blazer
2002        Pontiac   Grand Prix

And conversely, if you want to see the odd-year vehicles, you would
change the query slightly to the following.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear % 2 = 1
ORDER BY VehicleYear;

Results:

VehicleYear Make M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2001        Ford E x p e d i t i o n

If you need to use more than one arithmetic operator in a single com-
putation, then you need to be aware of operator precedence. Mu l t i p l y,
divide, and modulo operations are evaluated first. Addition and subtrac-
tion are evaluated second. If you have a tie—for instance, you have both
a multiplication and a division operation in the same query—then the
operations are evaluated from left to right. Consider the follow i n g
e x p re s s i o n .

2 * 6 / 3 + 1 − 3 % 2

With precedence in mind, the multiplication, division, and modulo oper-
ations will happen first and be evaluated from left to right. So first you
get 2 * 6 = 12, leaving 12 / 3 + 1 − 3 % 2. Then it will evaluate the divi-
sion, 12 / 3 = 4. This leaves 4 + 1 − 3 % 2. Modulo comes third instead

76 Learn SQL In a Weekend



of the addition, so 3 % 2 = 1 giving 4 + 1 − 1. Next you have a tie between
addition and subtraction, so left-to-right evaluation gives you the addi-
tion first, 4 + 1 = 5. Finally, you have the subtraction, 5 − 1 = 4.

This is the default order of evaluation of an expression. If you would like
m o re control over the order of evaluation, or would like to make yo u r
e x p ression more readable (this is highly recommended), you can use pare n-
theses to direct the order of evaluation. Let’s tweak the expression a tad.

2 * 6 / (((3 + 1) − 3) % 2)

The innermost set of parentheses is evaluated first. So, 3 + 1 = 4, which
leaves 2 * 6 / ((4 − 3) % 2). The next innermost parentheses contain 
4 − 3. This gives 2 * 6 / (1 % 2). The last set of parentheses contains the
modulo 1 % 2 = 1. This leaves 2 * 6 / 1. The multiplication ties in prece-
dence with the division, but because of left-to-right order, it will be next.
Thus 2 * 6 = 12, which leaves the division expression 12 / 1 = 12. See
how radically different the answer is now simply because you added
parentheses to direct the order of evaluation?

Computed columns allow you to push calculations off on the DBMS
instead of returning the data and performing the calculations yourself.
Just be aware of how you specify them.

What’s Next?
So far this morning you have seen how to use SQL to get information out
of a relational database. You know how to put the information in the
order you choose and how to limit the result set to only the rows you are
interested in. This afternoon, you will learn more advanced techniques to
retrieve information. We’ve just scratched the surface here; read on to see
just how powerful SQL is.

77SATURDAY MORNING  Selecting Data—How to See What’s in There



This page intentionally left blank 



S A T U R D A Y  A F T E R N O O N

Selecting Data—
Bigger and Better

S A T U R D A Y  A F T E R N O O N

Selecting Data—
Bigger and Better

S A T U R D A Y  A F T E R N O O N

Selecting Data—
Bigger and Better

➤ Using Functions
➤ Grouping the Results
➤ Filtering the Groups
➤ Using Subqueries
➤ Creating Unions



This page intentionally left blank 



IIn this chapter, we are going to build on what you learned this morn-
ing. We’re going to show you even more ways you can customize the
results you obtain from the database. You’ll learn how to put the

power of the database to work to perform tasks for you that you may be
doing now by hand. The queries in this chapter are going to become
increasingly complex. Don’t feel bad if you have to read a section a cou-
ple times to grasp the concepts. That’s why we saved these topics for the
advanced chapter on selecting data.

Using Functions
SQL has built-in functions available for your use, just like in application
development tools like Visual Basic, C, Delphi, PowerBuilder, and the
like. These functions allow you to extend your productivity on the data-
base server and not rely as much or at all on an application tool to per-
form these tasks. This means you can get the results you want straight
from the server without having to write code in another language to
manipulate that data to see those results.

Unfortunately, the functions supported by each DBMS vary quite a bit.
Many of the aggregate functions like MIN, MAX, COUNT, SUM, and
AVG are standard throughout the various implementations. Other func-
tions that operate on strings, numeric values, or date and time values are
not so standard. You can get the gist of what these types of functions can

81



do for you, but you will need to refer to your DBMS’s documentation to
find out exactly which types of functions are implemented and what they
are named. Fortunately, most vendors have structured their documenta-
tion in a similar fashion so that you can simply search for functions and
then search under the type of function, date time for instance, to find a
list of supported functions and a description of each.

Here’s the kicker, though. As you read earlier, one of the best things about
SQL being a standard is that if you stick to the standard you can port
(move) your code from vendor to vendor and it’ll work. Well, because
most functions are not standard, using them makes your code less
portable (moveable) between vendors. All this means is if you need to use
functions to get the job done, and chances are you will, you just need to
modify those queries before porting the code to the new vendor. In many
cases, the new vendor will have a similar function—it’ll just have a dif-
ferent name.

Now that the disclaimer is out of the way, let’s start exploring some of
these functions and how they help get the job done quicker. There are
several types of functions you are going to examine in turn. These are
aggregate, mathematical, string, conversion, date time, and system.

Aggregate Functions
Aggregate functions give you a single answer based on a set of data passed
into the function. These functions provide a particular statistic about the
data set.

COUNT
For instance, a very highly used aggregate function is COUNT. COUNT
takes a set of data and counts the number of items in the set. It returns a
single value, the count. Consider the following example.

SELECT COUNT(StateOrProvince)
FROM Customer;

82 Learn SQL In a Weekend



Result:

- - - - - -
7

E s s e n t i a l l y, COUNT returned the number of rows in the Customer t a b l e .
You didn’t specify a WHERE clause to eliminate any rows from the
result set, so the entire list of states from the C u s t o m e r table was fed into
the COUNT function, which returned 7, the number of states in the
StateOrProvince column of the Customer table. Hold on! T h e re are only
t h ree states in the StateOrProvince table. Why did SQL return 7? We l l ,
COUNT asked it to count them, not to distinguish one from the other.
To get the count of unique states in the StateOrProvince column, yo u
h a ve to add DISTINCT to the query as follow s .

SELECT COUNT(DISTINCT StateOrProvince)
FROM Customer;

Result:

- - - - - -
3

Ah, now you get just a count of the distinct (unique) values in the
requested column. One more question, though. Why isn’t there a col-
umn name? Well, this is an expression and we didn’t assign the expre s-
sion a name, so it left it blank. You can assign the expression a name, if
yo u’d like, using the AS keyword that we discussed in the Sa t u rd a y
Morning session.

Another thing you can do with COUNT is count all the rows of the
result set without specifying a column name. You do this by using *. This
is used quite often to determine how many rows are in a particular table.

SELECT COUNT(*) AS CountAll
FROM Customer;

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 83



Result:

C o u n t A l l
- - - - - -
8

Notice this gives you the same result as specifying a column without
using DISTINCT. What would happen if you used DISTINCT here?
Absolutely nothing would be different. Why is that? That is because a row
in a table is unique by definition, so specifying DISTINCT against every
column in the row (*) does not change a thing. What it will do, though,
is return an error. COUNT( DISTINCT * ) is not a valid request.

SUM
What if instead of counting the values in a column, you want to add
them together? The SUM function does that for you. Similarly, you pass
it a result set (a column name or expression) and it returns the sum of the
values in that set. DISTINCT can be used with SUM to compute the
total of only the unique values, should you need it. However, * will not
work with SUM as it would not know what exactly you would like to add
together.

SELECT SUM(Cost)
FROM Part;

Result:

- - - - - - - - - - -
9 9 . 8 9 0 0

SELECT SUM(DISTINCT Cost)
FROM Part;

84 Learn SQL In a Weekend



Result:

- - - - - - - - - - -
7 0 . 4 2 0 0

Adding DISTINCT to the query causes it to throw out all the duplicate
values in the Cost column of the Part table before adding the remaining
values together. Therefore, you get a completely different answer from the
second query versus the first query.

MAX and MIN
MIN and MAX are short for minimum and maximum. Given a list of
values, they return the smallest value or the biggest value, respectively.

If you want to determine the most expensive and least expensive parts in
the Part table, you can use the following query.

SELECT Cost
FROM Part

ORDER BY Cost;

Results:

C o s t
- - - - - - - - - - -
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0
. 0 0 0 0
3 . 9 9 0 0
4 . 9 9 0 0
7 . 4 9 0 0
7 . 4 9 0 0
7 . 9 9 0 0
7 . 9 9 0 0
8 . 9 9 0 0
9 . 9 9 0 0
1 2 . 9 9 0 0
1 3 . 9 9 0 0
1 3 . 9 9 0 0

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 85



As you can see, a tie exists for the least expensive parts, which are dis-
played at the top of the list. There is also a tie for most expensive, which
are shown at the bottom of the list. A more efficient way to determine the
cost of the most and least expensive parts is to execute the following query
using the MAX and MIN functions.

SELECT MAX(Cost) AS "Most Expensive", MIN(Cost) AS "Least Expensive"
FROM Part;

Results:

Most Expensive Least Expensive
- - - - - - - - - - - - - - - - - - - - - - - - -
13.9900 . 0 0 0 0

As you can see, the MAX function returned the maximum Cost value and
MIN returned the minimum Cost value. Also notice that you can use
multiple functions in a single SELECT statement.

AVG
Another aggregate function is the AVG function. This function averages
the values passed in to it. So, using the Part table again, let’s find the aver-
age cost of the parts in the table.

SELECT AVG(Cost) AS "Average Cost"
FROM Part;

Result:

Average Cost
- - - - - - - - - -
6 . 2 4 3 1

STDEV and VAR
The last two aggregate functions covered here are STDEV and VAR,
which stand for standard deviation and variance. We don’t know about
you, but we are rarely asked to find the standard deviation for a set of
data. Regardless, we’ll provide a couple examples here in case your job is
a little more statistical in nature than ours.

86 Learn SQL In a Weekend



SELECT STDEV(Cost) AS "Standard Deviation"
FROM Part;

Result:

Standard Deviation
- - - - - - - - - - -
5 . 1 5 0 2 4 4 9 3 7 5 4 0 9 9 8 4

SELECT VAR(Cost) AS "Variance"
FROM Part;

Result:

V a r i a n c e
- - - - - - - - - - -
2 6 . 5 2 5 0 2 2 9 1 6 6 6 6 6 7 8

You will find aggregate functions used quite a bit during your stint with
SQL. Aggregate functions tend to be standard among the major vendors.
The functions you’ve learned here should serve you well no matter what
DBMS you are querying against.

Mathematical Functions
Along the same lines as the aggregate functions, there are the mathemat-
ical functions. What’s the difference? Whereas both types of functions
return a single value as the result, mathematical functions operate on a
single value instead of a set of values like aggregates. Every function dis-
cussed from here forward is a nonaggregate.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An a g g regate function is a function that operates on a set of values to determine the
single value to return. Examples of aggregate functions include AVG , M I N, M A X ,
C O U N T, and SUM.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 87



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A nonaggregate function is a function that operates on a single passed-in value to
determine the single resulting value.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Grouped under mathematical functions there are functions for doing
t r i g o n o m e t ry, such as SIN, COS, TAN, COT, ACOS, ASIN, and
ATAN. These stand for sine, cosine, tangent, cotangent, arccosine, arc-
sine, and arctangent, re s p e c t i ve l y. We don’t do a whole lot with the trig
we learned in high school nor do we know many people that do, so we’re
going to skip these and dig into some of the more widely used mathe-
matical functions.

ABS
ABS is a function used to return the absolute value of the passed-in col-
umn value or expression. Unlike the aggregate functions used pre v i o u s-
l y, this function and all the functions from here forw a rd will return a
value for eve ry value that is in the result set passed in. This means that
if you ask for the absolute value of eve ry row in the P a r t table, you would
get 16 rows back, one for each row in the Part table. This doesn’t make
much sense, though, because all the values in the Cost column are posi-
t i ve, so ABS does nothing for you. Instead, you can use the follow i n g
q u e ry to demonstrate the ABS function. Yo u’ll see that positive va l u e s
come out positive, ze ro values come out ze ro, and negative values come
out positive .

SELECT ABS(35.31), ABS(0), ABS(-35.31);

Results:

- - - - - - -------- - - - - - -
3 5 . 3 1 0 3 5 . 3 1

88 Learn SQL In a Weekend



CEILING (or CEIL) and FLOOR
The CEILING and FLOOR functions can be used to find the nearest
integer above or below the supplied value. This works like rounding
except you specify which direction the value will round.

SELECT CEILING(35.31) AS RoundUp, FLOOR(35.31) As RoundDown;

Results:

RoundUp R o u n d D o w n
- - - - - - - - - - - - - - - -
36    3 5

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

CEILING is not named the same in every DBMS. O ra c l e , for instance, names their
function CEIL.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

ROUND
Speaking of rounding, let’s see what the actual ROUND function will do.
ROUND is used to round a value to the precision specified. If you spec-
ify a negative number for the precision, it counts off that value left from
the decimal point. If you specify a positive number, it counts off right
from the decimal point. A value of zero places the precision at the deci-
mal point. If a negative number is specified that is greater than the num-
ber for digits left of the decimal, 0 is returned. The following query
demonstrates several results from specifying different precisions.

SELECT ROUND(35.31, -1), ROUND(35.31, -3), ROUND(35.31, 1),
ROUND(35.31, 0);

Results:

----- --- - - - - - - - - - -
40.00 .00 35.30 3 5 . 0 0

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 89



SIGN
If you just want to find out if a value is positive or negative, you can use
the SIGN function. If the value is zero, it returns 0. If the value is posi-
tive, it returns 1. If the value is negative, it returns −1.

SELECT SIGN(35.31) AS Positive, SIGN(0) AS Zero, SIGN(-35.31) AS 
N e g a t i v e ;

Results:

Positive Zero  N e g a t i v e
- - - - - - - - - - - - - - - - - - -
1.00   0     - 1 . 0 0

SQUARE and SQRT
You can square a value using SQUARE or find the square root using
SQRT. These are straightforward, so we’ll just show you an example.

SELECT SQUARE(2) AS SquareOfTwo, SQRT(4) AS SquareRootOfFour;

Results:

SquareOfTwo  S q u a r e R o o t O f F o u r
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0  2 . 0

There are several other mathematical functions. The ones we’ve discussed
here are the more common ones. The type of functions you can use
depends on your DBMS. Refer to the documentation for a complete list.

String Functions
Oh, where to begin? So many string functions, so little time. Again, as
with the mathematical functions, we will not be able to cover them all,
but we will give you a taste of the more important ones, and you can use
your system documentation to find out about any others you want to use.

90 Learn SQL In a Weekend



UPPER and LOWER
We’re sure yo u’ve already figured out that string functions operate on
string data such as char and varchar data types. Two of the things yo u’l l
want to do the most with string data is change the characters to either
all uppercase characters or all lowe rcase characters. UPPER is used for
the former and LOWER for the latter. As with all expressions, these can
be used in any part of the statement that supports expressions. T h e re-
f o re, if you use it in the SELECT clause, you get the data back with the
a l t e red case.

SELECT UPPER(Model) AS AllUp, LOWER(Model) AS AllLow
FROM Vehicle;

Results:

AllUp A l l L o w
- - - - - - - - - - - - - - - - - - - - - - - - - - -
S-10        s - 1 0
MUSTANG      m u s t a n g
GRAND PRIX      grand prix
CORVETTE        c o r v e t t e
ALTIMA      a l t i m a
PT CRUISER     pt cruiser
TRAIL BLAZER    trail blazer
EXPEDITION        e x p e d i t i o n
GREMLIN            g r e m l i n

If you use it in the WHERE clause, the case of the data is altered for the
purposes of the comparison. This is very important when your database
is set to be case sensitive. If the column has mixed-case strings in it, the
value you are comparing it to has to match the case of every letter exact-
ly to be equal. If the Slick Shop’s database is case sensitive, the following
query would not find the row you are looking for because the case does
not match. Instead, you’d have to use the second query to be sure that the
database gave us every possible case-insensitive match.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 91



SELECT *
FROM Vehicle

WHERE Model = 'Grand prix';
SELECT *

FROM Vehicle
WHERE UPPER(Model) = UPPER('Grand prix');

In a case-sensitive database, the first query would not find the row in the
Vehicle table. The second query would convert the columns data to all
uppercase as well as the constant you are comparing it to. LOWER would
work just as well here, by the way. You just need to be consistent with the
function used on both sides of the equation.

LTRIM and RTRIM
Another very useful function pair is LTRIM and RTRIM. These guys
trim spaces off the left or right side of the column or expression passed
in. LTRIM trims the left side, whereas RTRIM does the right side. This
becomes important when working with columns of the data type c h a r.
The c h a r data type pads the data in the column with spaces until it is the
exact size of the column definition. In other words, if you have a column
defined as char(20) but the value you want to store in it is only 12 char-
acters long, the database will add eight spaces at the end of the data so it
will be exactly 20 characters long. varchar columns do not do this. They
only store what they are given. Don’t misunderstand, though. There are
still many good reasons for using a char versus a v a r c h a r. You’ll read all
about that later tonight in the Saturday Evening session. Regardless, if
you need to compare a value to a char type column, it is best to trim the
information first in the WHERE clause.

As with other functions, you can also use these trim functions in the
SELECT. For instance, consider that you are working on mailing labels
from a database that has a column called City as a c h a r ( 3 0 ), a State col-
umn as c h a r ( 2 ), and a Zip column as c h a r ( 5 ). To make the concatenation
of city, state, and ZIP code look right on the mailing labels, you’ll want

92 Learn SQL In a Weekend



to trim the City column first. You don’t need to trim the other two
columns because State is supposed to be exactly two characters and Z i p
is supposed to be exactly five characters.

SELECT RTRIM(City) + ', ' + State + '  ' + Zip
FROM Contacts;

So you can visualize this, let’s plug in values instead of columns.

SELECT RTRIM ('Columbus                      ') + ', ' + 'OH' + 
'  ' + '32109';

Results:

- - - - - - - - - - - - - - - - - - - - -
Columbus, OH  32109

LEFT, RIGHT, and SUBSTRING (or SUBSTR)
The LEFT and RIGHT functions return the specified number of char-
acters from the left or right side of the string. Similarly, SUBSTRING
retrieves the requested number of characters but takes a starting position
as a parameter. This allows users to retrieve a portion of a string from the
middle. To demonstrate this, we’re going to use the PhoneNumber column
from the Customer table. The following query will break the phone num-
ber into its respective parts and add formatting.

SELECT '(' + LEFT(PhoneNumber, 3) + ')' + SUBSTRING(PhoneNumber, 4, 
3) + '-' + RIGHT(PhoneNumber, 4) AS "Formatted Phone"

FROM Customer;

Results:

Formatted Phone
- - - - - - - - - - - - - - - -
( 1 0 2 ) 2 3 4 - 1 2 3 4
( 7 6 6 ) 5 5 5 - 4 4 4 4
( 2 1 7 ) 5 4 3 - 8 6 7 9
N U L L

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 93



( 7 6 5 ) 4 3 2 - 1 0 9 8
( 3 1 7 ) 5 5 5 - 1 2 1 3
( 3 1 7 ) 5 5 5 - 1 2 1 4
( 3 1 7 ) 5 5 5 - 1 2 1 5

This query first adds the open parenthesis and then finds the area code
by getting the left three characters of the PhoneNumber column. Next it
adds the close parenthesis and looks for the phone prefix by using SUB-
STRING to find the middle three characters of the prefix, which begin
at position four in the PhoneNumber string. Next it adds the dash and fin-
ishes it off by obtaining the right four digits of the PhoneNumber column.
The result is a nicely formatted phone number. Notice that the NULL was
left alone appropriately.

SUBSTRING is shortened to SUBSTR in some databases. Oracle and DB2, for instance,
use SUBSTR. SQL Server, MySQL, and Sybase use SUBSTRING.

LEN (or LENGTH or DATALENGTH)
LEN is a function you can use to find the length of a column of expres-
sion. It is sometimes named LENGTH (Oracle and DB2) or DATA-
LENGTH (Sybase) as well. The following query returns the length of the
customer’s first name from the Customer table.

SELECT LEN(FirstName) AS Length, FirstName
FROM Customer;

Results:

Length   F i r s t N a m e
- - - - - - - - - - - - - - - - -
4      J o h n
5        J a c o b
8       V i c t o r i a
5       B r y c e
5     K y l e e
4       A l e x
5      D a v i s
8       H a r r i s o n

94 Learn SQL In a Weekend



SPACE
Now how about making all first names the same length. Hmmm. We’ll
use the SPACE function to fill them all to 10 spaces. To do this, you have
to subtract their current length from 10 to get the number of spaces to
pad. So you can see that it worked, we add the LastName column to the
end of the string.

SELECT FirstName + SPACE(LEN(FirstName)* -1 + 10) + LastName
FROM Customer;

Results:

- - - - - - - - - - - - - -
John      Smith
Jacob     Salter
Victoria  Smithe
Bryce     Hatfield
Kylee     Dicken
Alex      Thompson
Davis     Thompson
Harrison  Thompson

REPLACE
REPLACE is another handy string function. It can be used to replace a
portion of a string with another value. You use this function by specify-
ing, first, the string that contains the value you’d like to replace. Then
specify the portion that needs replacing. Finally, give it the string to use
as the replacement. This function would be very useful for situations such
as a change to the area code containing the majority of your customers.
You wouldn’t want to go update these by hand. You’d want to run one
SQL statement to update them all and be done with it. Here is an exam-
ple of what the SELECT would look like. Keep in mind, however, that
SELECT statements never modify the underlying data. We haven’t
shown you how to do that yet. You’ll read about that shortly in the Sat-
urday Evening session.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 95



SELECT PhoneNumber AS 'Old Number',
REPLACE(PhoneNumber, '317', '111') AS 'New Number'

FROM Customer;

Results:

Old Number New Number
- - - - - - - - - - - - - - - - - - - - - - - - -
1022341234 1 0 2 2 3 4 1 2 3 4
7665554444 7 6 6 5 5 5 4 4 4 4
2175438679 2 1 7 5 4 3 8 6 7 9
NULL       N U L L
7654321098 7 6 5 4 3 2 1 0 9 8
3175551213 1 1 1 5 5 5 1 2 1 3
3175551214 1 1 1 5 5 5 1 2 1 4
3175551215 1 1 1 5 5 5 1 2 1 5

SOUNDEX
If you want to look for matching strings by sound rather than a straight
character match, you can use SOUNDEX. SOUNDEX converts the
string into a number representing its sound value. It ignores vowel
sounds. When you compare the SOUNDEX results of two strings, you
are essentially asking if they sound the same regardless of whether they are
spelled the same. The following is an example using the Customer table.

SELECT c1.LastName, c2.LastName
FROM Customer AS c1, Customer AS c2

WHERE SOUNDEX(c1.LastName) = SOUNDEX(c2.LastName)
AND c1.LastName <> c2.LastName
AND c1.CustomerID < c2.CustomerID;

Results:

LastName  L a s t N a m e
- - - - - - - - - - - - - - - - - - - - - - - - -
Smith    S m i t h e

This query selects back the last names from the C u s t o m e r table where the
last names have the same sound but not the same spelling. Also, to avoid
duplicate comparisons, make sure the CustomerID from the first instance
of the table is always less than the CustomerID of the second instance of
the Customer table.

96 Learn SQL In a Weekend



DIFFERENCE
Similar to SOUNDEX is the function DIFFERENCE. DIFFERENCE
is used to determine just how closely two strings sound like each other.
Instead of looking for a direct match, you are looking for a value from 1
to 4, with 4 representing the best match.

SELECT DIFFERENCE('Grey', 'Gray') AS Difference;

Result:

D i f f e r e n c e
- - - - - - - - - -
4

CONCAT (||)
As you’ve seen, the plus operator (+) is used to concatenate strings in SQL
Server. In some DBMSs, such as ORACLE and DB2, you must use the
function CONCAT or the symbol || to concatenate strings. The follow-
ing is an example of both in Oracle.

SELECT 'This is a way to do concatenation ' || ' in Oracle',
CONCAT ('This is another way to do concatenation', ' in 

O r a c l e')
FROM DUAL

These are some of the more widely used string functions. There are many
more available. The documentation for your particular DBMS will show
you the other functions supported by that vendor.

Conversion Functions
Conversion functions allow you to change a value from one data type to
another, apply formatting, or in some cases change the value itself. This
section looks at a few of the more common conversion functions.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 97



CAST
To convert data from one data type to another, you can use the CAST
function. For instance, if you need to concatenate a money value with a
v a r c h a r, you can cast that money column or expression as a string first to
allow the concatenation to work.

Fo rt u n a t e l y, most data types can be automatically conve rted from one data
type to another by the DBMS. These are re f e r red to as implicit conve r s i o n s.
C o n versions that will not take place without using a conversion function
a re re f e r red to as explicit conve r s i o n s.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An implicit conversion is one that the DBMS can perform without specific instruction
to do so. For example,SQL Server will automatically convert an integer value to a string
if it is used in a string function.SQL Server cannot convert a SMALLINT to a string with-
out being told to, however.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An explicit conversion requires the user to tell the DBMS that the value needs to be
converted and what data type it needs to be.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The example used previously, money to v a r c h a r, requires an explicit con-
version. In the first SELECT that follows, we attempt an implicit con-
version and get denied. In the second SELECT, we tell the DBMS that
we’d like the money column cast as a v a r c h a r ( 1 0 ) and the query works
beautifully.

SELECT 'The price of ' + Description + ' is ' + Cost
FROM Part;

Results:

Server: Msg 260, Level 16, State 1, Line 1
Disallowed implicit conversion from data type varchar to data type

money, table 'SlickShop.dbo.Part', column 'Cost'. Use the CONVERT
function to run this query.

98 Learn SQL In a Weekend



SELECT 'The price of ' + Description + ' is ' + CAST(Cost AS 
VARCHAR(10)) + '.'

FROM Part;

Results:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The price of Protects 10w-30 Oil is 7.49.
The price of Protects 10w-40 Oil is 7.49.
The price of Black Gold 10w-30 Oil is 7.99.
The price of Black Gold 10w-40 Oil is 7.99.
The price of Motion Synthetic Oil 10w-30 is 13.99.
The price of Motion Synthetic Oil 10w-40 is 13.99.
The price of Texas Tea Economy Oil Filter is 3.99.
The price of ACME Oil Filter is 4.99.
The price of ACME Air Filter is 8.99.
The price of ACME Wiper Blades is 9.99.
The price of ACME Brake Fluid is 0.00.
The price of ACME Transmission Fluid is 0.00.
The price of ACME Coolant is 0.00.
The price of ACME Windshield Fluid is 0.00.
The price of ACME Differential Fluid is 0.00.
The price of ACME PVC Valve is 12.99.

CONVERT
C O N V E RT works similarly to CAST; howe ve r, it allows the users to
specify a style or format to use in conve rting the data. Again, it only
needs to be used for conversions that need to be explicitly defined.
Because this function allows the users to specify a style or format, it can
make your conversions customizable. Next we combine several columns
f rom the Vehicle table to form a sentence re g a rding the last service date
of each vehicle. You can see that the VehicleYear column, a SMALL-
I N T, needs to be CAST as a char(4) to be combined with the string.
The L a s t S e r v i c e D a t e, we want to see with the format mm/dd/yyyy
applied. T h e re are several format codes. Refer to your DBMS’s docu-
mentation for the applicable codes.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 99



SELECT 'The last service date of the ' + CAST(VehicleYear AS CHAR(4)) +
' ' + Make + ' ' + Model + ' was ' +
CONVERT(VARCHAR(10), LastServiceDate, 101) + '.'

FROM Vehicle;

Results:

- - - - - - - - - - - - - - - - - - - - - - - - - -
The last service date of the 2000 Chevrolet S-10 was 08/13/2001.
The last service date of the 1998 Ford Mustang was 09/16/2001.
The last service date of the 2002 Pontiac Grand Prix was 05/21/2002.
The last service date of the 1968 Chevrolet Corvette was 01/20/2002.
The last service date of the 2002 Nissan Altima was 01/26/2002.
The last service date of the 2000 Chrysler PT Cruiser was 05/15/2002.
The last service date of the 2002 Chevrolet Trail Blazer was 

0 5 / 3 1 / 2 0 0 1 .
The last service date of the 2001 Ford Expedition was 05/31/2001.
The last service date of the 1972 AMC Gremlin was 02/17/2002.

ASCII and CHAR
The ASCII function provides the numeric ASCII value for a character.
Conversely, CHAR is used to get the character value for an ASCII value.

SELECT ASCII('A') AS A, ASCII('a') AS a;

Results:

A a
- - - - - - - - - - - - - - -
65  9 7

SELECT CHAR(65) AS 'ASCII 65', CHAR(97) AS 'ASCII 97';

Results:

ASCII 65 ASCII 97
- - - - - - - - -
A a

100 Learn SQL In a Weekend



Other Conversion Functions
Some databases have specific functions for certain conversion types. For
example, Oracle has three such functions: TO_DATE, TO_CHAR, and
TO_NUMBER. As you can guess, these functions convert data from one
data type to date, char, or number, respectively. The three work similarly,
so we’ll just show you the syntax for TO_DATE.

SELECT TO_DATE('12-JUN-1999', 'mm/dd/yyyy')
FROM DUAL;

In Oracle, you always have to have a FROM clause. If you are not selecting from a par-
ticular table, as in the case of variable assignment or selecting back the current date,
you have to use the dummy table DUAL.

Date and Time Functions
Date and time functions vary in name quite a bit from vendor to vendor.
We will present the more common ones here. Refer to your system doc-
umentation for other date and time functions available in your DBMS.

Date and time functions allow you to perform many types of tasks on
these data types. For instance, there are functions that perform mathe-
matical type tasks, some that are used for formatting, and others that
allow you simply to obtain the current date and/or time.

GETDATE (or SYSDATE)
L e t’s start with the basics. How do you find out what today is? In SQL Se rv-
e r, the function you use is called GETDATE. This is also true of My S Q L
and Sybase. Oracle and DB2, howe ve r, call this function SYSDATE. T h e
first example is from SQL Se rve r. The second is the Oracle syntax.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 101



SELECT GETDATE();
SELECT SYSDATE()

FROM DUAL;

DATEADD and DATEDIFF
Two of the mathematical date and time functions are DATEADD and
DATEDIFF. DATEADD adds a particular value to part of the date. In
other words, you can use it to add two days to the original date, or maybe
you would like to add 32 weeks. Similarly, DATEDIFF is used to find the
interval between two dates given the part of the date you are interested
in. Table 3.1 shows the various date parts that can be specified.

102 Learn SQL In a Weekend

TABLE 3.1 DATA PARTS FOR USE WITH DATEADD AND DATEDIFF

Date Part Format

Days dd, d

DayofYear dy, y

Hours hh

Milliseconds ms

Minutes mi, n

Months mm, m

Quarters q, qq

Seconds s, ss

Weeks wk, ww

Years yy, yyyy



L e t’s say the boss wants you to start printing labels for the next serv i c e
date of the vehicles when they come in for an oil change. You can use
D ATEADD to add three months to the current date to find out when
the vehicle should be due back. Let’s assume the vehicle is brought in on
June 1, 2002.

SELECT DATEADD(mm, 3, GETDATE()) AS NextServiceDate;

Results:

N e x t S e r v i c e D a t e
- - - - - - - - - - - - - - - - - - - - - - - - - -
2002-09-01 00:00:00.000

A good use of DATEDIFF is to find out how many weeks it’s been since
a vehicle was last worked on by the shop. The vehicle table has a column
called LastServiceDate that will work nicely for this query. The results
assume today’s date is June 1, 2002.

SELECT Make, Model, DATEDIFF(wk, LastServiceDate, GETDATE()) AS Weeks
FROM Vehicle;

Results:

Make    Model      LastServiceDate  W e e k s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Chevrolet    S-10    2001-08-13 00:00:00  4 1
Ford        Mustang     2001-09-16 00:00:00  3 6
Pontiac      Grand Prix   2002-05-21 00:00:00  1
Chevrolet    Corvette    2002-01-20 00:00:00  1 8
Nissan     Altima    2002-01-26 00:00:00  1 8
Chrysler     PT Cruiser     2002-05-15 00:00:00  2
Chevrolet    Trail Blazer  2001-05-31 00:00:00 5 2
Ford         Expedition  2001-05-31 00:00:00  5 2
AMC         Gremlin    2002-02-17 00:00:00  1 4

This information is specific to SQL Server (but also applies to Sybase).
Other DBMSs have similar functionality but under different function
names. For instance, to add three months to a date as you did earlier, you
would use the function ADD_MONTHS in Oracle.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 103



DATEPART
DATEPART allows you to obtain the value of a specific piece of the date-
time value. You can obtain information on all the same date parts listed
previously in Table 3.1. The following is an example of some of the date
parts that are available.

SELECT DATEPART(qq, '5/21/2002') AS Quarter,
DATEPART(wk, '5/21/2002') AS Week,
DATEPART(dw, '5/21/2002') AS DayofWeek,
DATEPART(mm, '5/21/2002') AS Month,
DATEPART(ms, '5/21/2002  13:12:11:120') AS Milliseconds;

Results:

Quarter  Week   DayofWeek Month     M i l l i s e c o n d s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2      21     3      5      1 2 0

DATENAME
If you prefer to see the name of the date part instead of the number of
the date part, use the function DATENAME in place of DATEPART. As
you can see from the following example, it’s really only useful for the parts
of the date that have a corresponding name.

SELECT DATENAME(qq, '5/21/2002') AS Quarter,
DATENAME(wk, '5/21/2002') AS Week,
DATENAME(dw, '5/21/2002') AS DayofWeek,
DATENAME(mm, '5/21/2002') AS Month,
DATENAME(ms, '5/21/2002  13:12:11:120') AS Milliseconds;

Results:

Quarter  Week  DayofWeek   Month     M i l l i s e c o n d s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2    21      Tuesday      May     1 2 0

104 Learn SQL In a Weekend



DAY, MONTH, and YEAR
DAY, MONTH, or YEAR functions provide the same results as using the
DATEPART function for the day, month, or year, respectively. The fol-
lowing example shows the syntax.

SELECT DAY('5/21/2002') AS Day,
MONTH('5/21/2002') AS Month,
YEAR('5/21/2002') AS Year;

Results:

Day    Month  Y e a r
- - - - - - - - - - - - - - - - - - - - -
21     5      2 0 0 2

System Functions
The functions discussed in this section allow you to access system infor-
mation or provide decision type functionality. There are several system
functions, but they vary widely from vendor to vendor. Please refer to the
documentation for your DBMS to learn more about the system functions
available to you.

USER_NAME
The USER_NAME function finds either the name associated with a user
ID or the current user’s name. If an ID is passed in, the associated name
is returned. If nothing is passed in, the current user’s name is returned.

SELECT USER_NAME(2) AS 'USER ID 2', USER_NAME() AS 'Current User';

Results:

USER ID 2 Current User
- - - - - - - - - - - - - - - - - - - - - -
guest    d b o

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 105



DATALENGTH
If you need to determine how much space (bytes) a value or expre s s i o n
will use, the DATALENGTH function can provide this information. If
you remember our earlier discussion of the string function LEN, it
returned the length of a string value. This is the same as determining
the storage re q u i rements for a char or varchar column because eve ry
character occupies a single byte of storage space. T h e re f o re, some
DBMSs do not have a LEN function but instead rely on the DATA -
LENGTH function to obtain this information. Unlike LEN, DATA -
LENGTH can evaluate all data types, not just string equivalents. If yo u
want to know how much space a mathematical expression will con-
sume, you can do the follow i n g .

SELECT DATALENGTH(10* PI()/68);

Result:

- - - - - - - -
8

Or what if you just want to know how much room each row of the vehi-
cle table is taking up in the database? If you add up the data length of
each of the columns in the row, you will get the entire storage require-
ment of that row of data.

SELECT DATALENGTH(VehicleID) +
DATALENGTH(VehicleYear) +
DATALENGTH(Make) +
DATALENGTH(Model) +
DATALENGTH(Color) +
DATALENGTH(LicensePlate#) +
DATALENGTH(LastServiceDate) +
DATALENGTH(CustomerID) AS 'Storage in Bytes'

FROM Vehicle;

106 Learn SQL In a Weekend



Results:

Storage in Bytes
- - - - - - - - -
4 0
3 4
4 3
4 2
3 8
4 3
4 7
4 1
3 5

Notice that each row does not consume the same amount of space. How
can that be? Whereas most data types always occupy the same amount of
storage space in the database no matter what their value, varchar columns
(and varchar columns) occupy only the space needed to hold the value
stored in that column on that row. This is another advantage of using the
varchar data type over the char data type.

ISNULL (or NVL)
T h e re is a predicament that comes up from time to time when using
SQL. We’re sure yo u’ll run into it at least once yo u r s e l f. It occurs when
you need to return a set of data, but one of the columns has NULL for 
some of the rows and that is not acceptable. For instance, it might be
p referable to see a value of 0 rather than a NULL for an entry on an
accounting re p o rt. Another common occurrence is the user wanting to
see Unknown (or similar) in place of N U L Ls. The ISNULL function allow s
you to replace N U L Ls found in a column or an expression with a value of
your choosing. In the sample database, a customer doesn’t have a va l u e
for S t a t e O r P r o v i n c e, so you can replace it with U n k n o w n. You need to cast
StateOrProvince as a varchar(10) first, howe ve r, or only Un will fit in the
char(2) column as it stands.

SELECT FirstName, LastName,
ISNULL(CAST(StateOrProvince AS Varchar(10)), 'Unknown')

FROM Customer;

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 107



Results:

FirstName    L a s t N a m e
- - - - - - - - - - - - - - - - - - - - - - - -
John     Smith             V A
Jacob       Salter        U n k n o w n
Victoria      Smithe        W V
Bryce        Hatfield        I N
Kylee       Dicken          I N
Alex        Thompson        I N
Davis        Thompson        I N
Harrison     Thompson          I N

CASE
CASE evaluates a value or an expression to determine the appropriate
result. It can compare values to a column or evaluate several Boolean
expressions. For instance, if you have a column in your table that has only
a code in it, you can use CASE to return the meaning instead of the value.
There isn’t one in the sample database, so let’s make one up.

SELECT ProjectName, Priority =
CASE PriorityCode

WHEN 'H' THEN 'High'
WHEN 'M' THEN 'Medium'
WHEN 'L' THEN 'Low'
ELSE 'Invalid priority code'

E N D
FROM Projects;

This second example, however, uses several Boolean expressions to deter-
mine the appropriate comment for each vehicle in the Vehicle table of
the sample database.

SELECT VehicleYear, Make, Model, Comment =
C A S E

WHEN VehicleYear > 2001 THEN 'New Car'
WHEN VehicleYear > 1999 THEN 'Fairly New Car'
WHEN VehicleYear > 1995 THEN 'Not too old'
WHEN VehicleYear > 1980 THEN 'A car'
ELSE 'An antique!'

E N D
FROM Vehicle;

108 Learn SQL In a Weekend



Results:

VehicleYear Make Model   C o m m e n t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000    Chevrolet   S-10     Fairly New Car
1998   Ford      Mustang     Not too old
2002  Pontiac     Grand Prix    New Car
1968    Chevrolet  Corvette    An antique!
2002   Nissan     Altima    New Car
2000    Chrysler     PT Cruiser   Fairly New Car
2002    Chevrolet    Trail Blazer New Car
2001    Ford        Expedition   Fairly New Car
1972     AMC         Gremlin      An antique!

Take a Break!
Whew! That’s a lot of functions. You did all that reading on just one sec-
tion. Well, you’ve earned yourself a break. We’ll mix it up a little in the
second half of this chapter. When you pick this book back up, you’ll dis-
cover how to group your results together and even how to eliminate cer-
tain groups. After that, the chapter discussed just what the heck a
subquery is and why you might want to use one. Finally, you’ll learn how
to obtain a combined result set from multiple queries.

Grouping the Results
You’ve learned how to select information back from the tables in your
database and you know how to use aggregate functions to obtain statis-
tics on that data. What if you want to categorize that data and get statis-
tics on the categories instead of the whole? We’re going to show you how
to use a new clause in the SELECT statement to do just this. The
GROUP BY clause allows you to combine the rows being selected into
logical groups. It is normally used when one or more aggregate functions
are used in the SELECT clause. Every column or expression in the
SELECT clause, except the aggregate(s), is usually included in the
GROUP BY clause. This allows the DBMS to provide the statistics
requested via the aggregates on each of those groups.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 109



◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

All columns or expressions in your SELECT clause should be included in the GROUP BY
clause except for any aggregates.You can receive unexpected results if you leave one
out. Some DBMSs will not process the query unless you conform to this rule.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

The best way to explain the usefulness of this clause is to show you some
examples. In this first example, you find out how many customers you
have from each state.

SELECT StateOrProvince, COUNT(*)
FROM Customer

GROUP BY StateOrProvince;

Results:

S t a t e O r P r o v i n c e
- - - - - - - - - - -
NULL     1
IN        5
VA        1
WV        1

The GROUP BY caused each row in the Customer table to be included in
a group based on the values in its StateOrProvince column. It then counts
the customers in each group and returns a list of the states found in the
table and the number of rows having that value for S t a t e O r P r o v i n c e.
Notice that even the NULL values are categorized together and counted. In
this case there is one customer with a NULL value in S t a t e O r P r o v i n c e. If
you don’t want the N U L Ls included, simply add a WHERE clause. Note
that the WHERE clause always comes before the GROUP BY clause.

SELECT StateOrProvince, COUNT(*)
FROM Customer

WHERE StateOrProvince IS NOT NULL
GROUP BY StateOrProvince;

110 Learn SQL In a Weekend



Results:

S t a t e O r P r o v i n c e
- - - - - - - - - - - -
IN       5
VA       1

1

The WHERE clause is evaluated first, which eliminates the rows not
meeting the criteria specified. Then the GROUP By clause takes the
remaining rows and groups them. If you want all the groups to show up
in the results even if all the rows for that group were eliminated by the
WHERE clause, use the ALL keyword.

SELECT StateOrProvince, COUNT(*)
FROM Customer

WHERE StateOrProvince IS NOT NULL
GROUP BY ALL StateOrProvince;

Results:

S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - -
NULL      0
IN      5
VA     1
WV     1

NULL shows up again. This time, however, it has no rows in its group
because the WHERE clause eliminated the one customer with a NULL in
S t a t e O r P r o v i n c e.

As mentioned before, you can have multiple aggregate functions in the
SELECT clause. Because most of the aggregate functions work best with
numeric data, we’ll use the Quantity column from P a r t U s e d.

SELECT PartID,
Avg(Quantity) AS Average,
Sum(Quantity) AS Sum,
Count(Quantity) AS Count

FROM PartUsed
GROUP BY PartID;

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 111



Results:

PartID Average Sum  C o u n t
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
1           4           8           2
3           4           4           1
4           4           4           1
5           4           4           1
6           4           4           1
7          1           2           2
8           1           4           4
9           1           2           2
10          1           1           1
11          1           1           1
12          1           3           3
13          1           2           2
14          1           3           3
15          1           1           1
16          1           2           2

The previous query evaluated each row in the PartUsed table to group
them by the P a r t I D. Then it calculated each one of the aggregates for each
of the groups independently to return the result set.

Not only can you have multiple aggregates with a GROUP BY, but you
can also have no aggregates in the SELECT clause. If you go back to the
StateOrProvince query and take off the aggregate, you get the following.

SELECT StateOrProvince
FROM Customer

WHERE StateOrProvince IS NOT NULL
GROUP BY StateOrProvince;

Results:

S t a t e O r P r o v i n c e
- - - - - - - -
I N
V A
W V

112 Learn SQL In a Weekend



This just tells you what the unique values are in the StateOrProvince col-
umn that passed the WHERE clause condition. You can receive the same
results using the DISTINCT keyword and leaving off the GROUP BY.

SELECT DISTINCT StateOrProvince
FROM Customer

WHERE StateOrProvince IS NOT NULL;

If you include a value in the SELECT clause that is unique to every row
in the result set after the WHERE is applied, then you’ll get just as many
rows when the GROUP BY is applied. This is because the GROUP BY
cannot find any nondistinct rows to group. So if you add C u s t o m e r I D, the
key to the Customer table, to the StateOrProvince query you’ve been using,
you will get just as many rows back as you would without the GROUP
BY. Be cautious of what columns you include in your SELECT clause
and how they can affect the results of the grouping.

SELECT CustomerID, StateOrProvince
FROM Customer

WHERE StateOrProvince IS NOT NULL
GROUP BY CustomerID, StateOrProvince;

Results:

CustomerID  S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - -
1         V A
3         W V
4         I N
5           I N
6         I N
7         I N
8        I N

Filtering the Groups
Just like you’ve learned to use the WHERE clause to eliminate unwanted
rows from your result set, here you’ll learn to use the HAVING clause to
eliminate unwanted groups from the results of the GROUP BY clause.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 113



Because the HAVING clause always operates on the GROUP BY clause,
it always immediately follows the GROUP BY clause. In the HAVING
clause, you can use the same operators you can use in the WHERE clause.

As an example of using the HAVING clause, let’s revisit the query you
used earlier to find the number of customers in each state. This time,
however, you only want to see the states that have more than one cus-
tomer in them.

SELECT StateOrProvince, COUNT(*)
FROM Customer

WHERE StateOrProvince IS NOT NULL
GROUP BY StateOrProvince
HAVING COUNT(*) > 1;

Results:

S t a t e O r P r o v i n c e
- - - - - - - - - - - - - -
IN   5

You can see from these results that the HAVING clause removed the
groups for the states of Virginia and West Virginia because they only had
one customer each. They needed two or more to make it into the final
result set.

As mentioned earlier, you can use the ALL keyword in the GROUP BY
clause to allow groups to show up in the result set even if they have no
rows matching the WHERE clause conditions. With the HAVING
clause, however, those groups can still be eliminated from the final result
set if they don’t match the conditions of the HAVING clause.

You can use columns or expressions in the HAVING clause that were not
requested in the SELECT clause. The following query uses the P a r t U s e d
table to demonstrate this.

SELECT PartID,
Avg(Quantity) AS Average,
Sum(Quantity) AS Sum

FROM PartUsed
GROUP BY PartId

HAVING Count(Quantity) > 1;

114 Learn SQL In a Weekend



Results:

PartID      Average     S u m
- - - - - - - - - - - - - - - - - - - - - - -
1    4           8
7      1           2
8       1          4
9        1           2

12      1           3
13       1           2
14       1           3
16      1           2

Notice that all the groups in which the part was not used for more than
one job were eliminated. You know this because if they hadn’t been, the
Average and the Sum columns would contain the same value for those
parts used only once. This query shows that an aggregate not defined in
the SELECT is perfectly legal in the HAVING clause.

Okay, but what about using just a column in the HAVING clause instead
of an aggregate? How about listing only parts that contain the word O i l?
This works for some DBMSs but does not work in all, so check your doc-
umentation for compatibility.

SELECT pu.PartID,
p . D e s c r i p t i o n ,
Avg(Quantity) AS Average,
Sum(Quantity) AS Sum

FROM PartUsed AS pu, Part AS p
WHERE pu.PartID = p.PartID

GROUP BY pu.PartID,
p . D e s c r i p t i o n

HAVING p.Description LIKE ('%Oil%')
ORDER BY pu.PartID;

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 115



Results:

PartID  Description    A v e r a g e S u m
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1     Protects 10w-30 Oil       4    8
3  Black Gold 10w-30 Oil     4        4
4      Black Gold 10w-40 Oil     4   4
5      Motion Synthetic Oil 10w-30  4      4
6      Motion Synthetic Oil 10w-40   4      4
7       Texas Tea Economy Oil Filter  1  2
8      ACME Oil Filter          1     2

Using Subqueries
Now that you know all the pertinent clauses of a SELECT statement, let’s
do it all over again. Won’t that be fun? What we mean is, we’re going to
show you how to place a query within a query. And somewhere along the
way, we’ll try to tell you why you’d want to do such a thing. These queries
within a query are referred to as subqueries. They are found not only in
SELECT statements but also in INSERT, UPDATE, and DELETE state-
ments, which you’ll learn about shortly.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A s u b q u e r y is a SELECT statement nested inside another query. It returns a value to
the containing query for eva l u a t i o n .The query containing the subquery is referred to
as the outer query. A subquery is often referred to as an inner query, inner select, s u b-
s e l e c t , or nested query.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

In a SELECT statement, subqueries can appear in the SELECT, W H E R E ,
and HAVING clauses. In some DBMSs, using more advanced techniques,
you might even find them in the FROM clause, but we’re going to leave
that one alone for the purpose of this book.

116 Learn SQL In a Weekend



Subqueries within the WHERE Clause
By far the most popular place to find a subquery is in the WHERE clause.
You can use this nested query to go off and execute another SELECT
statement, whose result will then be evaluated with the remainder of the
Boolean expression on that line. For example, if you want to retrieve a list
of customers who live in the same state as Kylee Dicken, you can use the
following query.

SELECT FirstName, LastName, StateOrProvince
FROM Customer

WHERE StateOrProvince = (SELECT StateOrProvince
FROM Customer AS c2

WHERE c2.FirstName = 'Kylee'
AND c2.LastName = 'Dicken');

Results:

FirstName LastName  S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - -
Bryce      Hatfield   I N
Kylee    Dicken         I N
Alex       Thompson     I N
Davis     Thompson       I N
Harrison      Thompson     I N

When this subquery is evaluated, it gives back a single result, which is I N.
The rows from the Customer table are checked for the same S t a t e O r P r o v i n c e,
and the matching rows are returned in the result set. This could have been
done with a simple SELECT, as shown here :

SELECT c1.FirstName, c1.LastName, c1.StateOrProvince
FROM Customer AS c1, Customer AS c2

WHERE c1.StateOrProvince = c2.StateOrProvince
AND c2.FirstName = 'Kylee'
AND c2.LastName = 'Dicken';

Notice that in the earlier subquery, we had to identify the Customer t a b l e
with an alias. Even though it was re f e renced in two SELECT statements,
the second query is still part of the first, so the tables need to be distin-
guished. This is particularly important for correlated subqueries. T h e s e

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 117



a re subqueries that must be evaluated for eve ry row because the tables in
the outer query (the query containing the subquery) are re f e renced by
the subquery.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A correlated subquery is a subquery that references the tables of the outer query.
Because of this reference, the subquery must be reevaluated for every row examined by
the outer query.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

EXISTS
To help demonstrate correlated subqueries, we’d like to introduce you to
the EXISTS keyword. EXISTS tests a subquery for the existence of rows
that meet the conditions of the subquery. The subquery does not need to
return any columns, so most people use an * in the SELECT clause (we
prefer to use 1, but that's just us). The subquery is evaluated, and if there
are rows that match the condition, true is returned. If no rows match,
false is returned. Here is an example of a subquery being tested by
EXISTS. It also happens to be a good example of a correlated subquery.

SELECT VehicleYear, Make, Model
FROM Vehicle AS v
WHERE EXISTS (SELECT *

FROM JobTicket AS jt
WHERE jt.VehicleId = v.VehicleId);

Results:

VehicleYear   Make      M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - -
2000          Chevrolet     S - 1 0
1998          Ford      M u s t a n g
2002          Pontiac      Grand Prix
1968         Chevrolet    C o r v e t t e
2002          Nissan     A l t i m a
1972          AMC           G r e m l i n

118 Learn SQL In a Weekend



The previous query uses the subquery to check the JobTicket table to see
if the vehicle is on any of the job tickets created thus far. Only six of the
nine vehicles have a job ticket. To find this out, the subquery had to know
which rows from the outer query were being scrutinized. Therefore, in
the WHERE clause of the subquery you see a join from the table in the
inner query to the table declared in the outer query. That makes this a
correlated subquery.

But what if you want to find the vehicles that aren’t on a job ticket? After
all, why are these vehicles in the system if you haven’t or aren’t planning
on working on them? Stay tuned.

NOT EXISTS
The EXISTS keyword helped you find the vehicles that have at least one
job ticket. How do you go about finding the opposite result, the vehicles
without a job ticket? Well, you simply reverse your existence test to make
it a nonexistence test. You do this by using NOT EXISTS.

SELECT VehicleYear, Make, Model
FROM Vehicle AS v
WHERE NOT EXISTS (SELECT *

FROM JobTicket AS jt
WHERE jt.VehicleId = v.VehicleId);

Results:

VehicleYear M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000    Chrysler    PT Cruiser
2002   Chevrolet  Trail Blazer
2001    Ford       E x p e d i t i o n

Now when the subquery returns a true because there is a matching row
in the JobTicket table, the row from the outer join is thrown out because
the NOT causes the true to become a f a l s e. And likewise, if no row is
found in J o b T i c k e t, a false is returned by the subquery. The NOT makes
the false a t r u e, and that Vehicle row from the outer query becomes part
of the result set.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 119



ANY
Up until now, the subqueries you’ve looked at have either returned a sin-
gle value or, in the case of EXISTS and NOT EXISTS, true or f a l s e. The
ANY keyword, however, allows you to perform a comparison against a list
of values. The subquery following the ANY keyword can return a single
column. If the value being compared to the subquery fulfills the compar-
ison against any value in the list returned by the subquery, that expression
evaluates to true. You can use any comparison operator (such as >, <, <>,
and =) with the ANY keyword.

In the following sample, we are looking for all vehicles whose date of last
service matches any StartDate in the JobTicket table. Although this query
is not terribly useful, it does show how the expression is set up. You can
see that you do find out from the data that follows that one of the six
vehicles that have job tickets was not finished on the same day as any of
the start dates in the JobTicket table.

SELECT VehicleYear, Make, Model, LastServiceDate
FROM Vehicle AS v

WHERE LastServiceDate = ANY (SELECT StartDate
FROM JobTicket AS jt);

Results:

V e h i c l e Y e a r Make Model L a s t S e r v i c e D a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000 Chevrolet  S-10  2001-08-13 00:00:00
1998  Ford   Mustang   2001-09-16 00:00:00
2002     Pontiac   Grand Prix   2002-05-21 00:00:00
1968   Chevrolet  Corvette      2002-01-20 00:00:00
2002     Nissan       Altima        2002-01-26 00:00:00

IN
The IN operator provides another way to look for a match against a list of
values returned from the subquery. Again, the subquery can only re t u r n
one column of data. The value in the expression is then evaluated against
the column of data returned from the subquery to look for a match. If a
match is found, the expression evaluates to t r u e, otherwise f a l s e.

120 Learn SQL In a Weekend



For an example of this, you can search for all customers whose 
StateOrProvince matches a StateOrProvince in the StateOrProvince table.
It should be a given that all the values will match because a foreign key
exists between Customer and S t a t e O r P r o v i n c e. The only row that won’t
match is the customer without a value in the StateOrProvince column (it
contains N U L L).

SELECT FirstName, LastName, StateOrProvince
FROM Customer

WHERE StateOrProvince IN (SELECT StateOrProvince
FROM StateOrProvince);

Results:

FirstName LastName S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
John      Smith    V A
Victoria Smithe     W V
Bryce      Hatfield  I N
Kylee       Dicken     I N
Alex     Thompson   I N
Davis     Thompson    I N
Harrison   Thompson I N

NOT IN
If you just add a NOT before IN, you completely reverse the results of
the previous query using IN. With NOT IN, only the rows that don’t
match will be returned. This will give you a list of customers who do not
have a StateOrProvince value matching one of the values in the 
StateOrProvince table.

SELECT FirstName, LastName, StateOrProvince
FROM Customer

WHERE StateOrProvince NOT IN (SELECT StateOrProvince
FROM StateOrProvince);

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 121



Results:

FirstName LastName    S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Zero rows are returned. How can this be? There is a customer with N U L L
for the StateOrProvince column in the Customer table. NULL doesn’t
match a value in the StateOrProvince table, so why isn’t it returned here?
That is because NULL neither matches nor fails to match, it is simply
unknown. Therefore, if you want to see the customers with an unknown
StateOrProvince value, you have to explicitly check for NULL in the
WHERE clause.

SELECT FirstName, LastName, StateOrProvince
FROM Customer

WHERE StateOrProvince NOT IN (SELECT StateOrProvince
FROM StateOrProvince)

OR StateOrProvince IS NULL;

Results:

FirstName LastName  S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Jacob      Salter       N U L L

There’s the missing customer. By adding an OR condition, searching
specifically for NULL values, to the previous query, you were able to find
the last remaining customer.

Using Aggregates
One other condition we’d like to cover here is returning an aggregate
from your subquery. So for instance if you want to know which vehicles
are newer (have a greater V e h i c l e Y e a r) than the average vehicle in the
Vehicle table, you can use the following query.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleYear > (SELECT AVG(VehicleYear)
FROM Vehicle);

122 Learn SQL In a Weekend



Results:

VehicleYear Make   M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - -
2000        Chevrolet    S - 1 0
1998        Ford    M u s t a n g
2002        Pontiac   Grand Prix
2002        Nissan  A l t i m a
2000        Chrysler  PT Cruiser
2002        Chevrolet    Trail Blazer
2001        Ford     E x p e d i t i o n

First the query finds the average VehicleYear from all the rows in the
Vehicle table, which is 1993. It then plugs that value into the outer query
to find all the vehicles with a VehicleYear greater than 1993. Seven of the
nine vehicles have a greater VehicleYear value.

Subqueries within the HAVING Clause
Very similar to using subqueries with the WHERE clause is using them
with the HAVING clause. Remember that the HAVING clause is to the
GROUP BY clause what the WHERE clause is to the SELECT clause.
Because of this, we will not go into great detail here. We will show you
an example, however.

SELECT VehicleYear, Count(*)
FROM Vehicle

GROUP BY VehicleYear
HAVING VehicleYear > (SELECT AVG(VehicleYear)

FROM Vehicle);

Results:

VehicleYear C o u n t
- - - - - - - - - - - - - - -
1998        1
2000        2
2001        1
2002        3

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 123



The subquery is evaluated to find the average VehicleYear value is 1993.
That value is then plugged into the HAVING clause expression, and all
VehicleYear groups with a value greater than 1993 are returned in the
result set.

Subqueries within the SELECT Clause
Subqueries used in the SELECT clause look similar to the ones you just
saw. Subqueries in the SELECT clause can only return a single value,
however. This is because the result of the subquery becomes a value in the
result set and not just a value or set of values that are plugged into an
expression to be evaluated as is the case with the subqueries in the
WHERE clause.

We’ll examine both a correlated and noncorrelated subquery in the exam-
ples that follow. First, here is the noncorrelated subquery.

SELECT VehicleYear, Make, Model, (SELECT AVG(VehicleYear)
FROM Vehicle) AS Average

FROM Vehicle;

Results:

VehicleYear M a k e M o d e l A v e r a g e
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000        Chevrolet S - 1 0 1 9 9 3
1998        Ford M u s t a n g 1 9 9 3
2002 P o n t i a c Grand Prix 1 9 9 3
1968 Chevrolet C o r v e t t e 1 9 9 3
2002  Nissan A l t i m a 1 9 9 3
2000 C h r y s l e r PT Cruiser 1 9 9 3
2002 Chevrolet Trail Blazer 1 9 9 3
2001 Ford E x p e d i t i o n 1 9 9 3
1972  AMC G r e m l i n 1 9 9 3

Notice that the noncorrelated subquery is evaluated once for the entire
query and that result is plugged into the Average column for each row in
the result set.

124 Learn SQL In a Weekend



A correlated subquery, as you know, will be evaluated once for every row
in the result set and has the potential to return a different value for each
row in that result.

SELECT VehicleYear, Make, Model, (SELECT MAX(EndDate)
FROM JobTicket AS jt

WHERE jt.VehicleID = 
v.VehicleID) AS EndDate

FROM Vehicle AS v;

Results:

VehicleYear Make  M o d e l E n d D a t e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2000 Chevrolet S-10 2001-08-13 00:00:00
1998 Ford  Mustang 2001-09-16 00:00:00
2002  Pontiac  Grand Prix 2002-05-21 00:00:00
1968 Chevrolet Corvette 2002-01-20 00:00:00
2002 Nissan Altima  2002-01-26 00:00:00
2000 Chrysler PT Cruiser N U L L
2002 Chevrolet Trail Blazer N U L L
2001 Ford Expedition  N U L L
1972 AMC  Gremlin  2002-02-17 00:00:00

In this case, the subquery is joined to the outer query on V e h i c l e I D, thus
making it a correlated subquery. This forces the query to be evaluated
once for every row in the result set. Therefore, as you can see, each vehi-
cle in the previous list has its very own maximum EndDate from the
JobTicket table. This represents the last day the vehicle was worked on.

Subqueries within Subqueries
You’ve seen a query within a query, but it’s also possible to place a sub-
query within a subquery. This is called nesting. The outermost query is
the first level, and each level of query below that is a nested level. You can
go several levels deep with nested queries. The breaking point is deter-
mined by how complex the query is and how powerful a system you are
using for the DBMS. (We have never had a problem nesting as far as we
want. We’re fairly certain you won’t either.)

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 125



Why would you want to nest a query within a subquery? Good question;
glad you asked. Well, every query you write has the potential to be used
as a subquery to another query and so on. The best way to write complex
queries is to break it apart into smaller chunks. First you make each
chunk work. Then you can attempt to combine the queries until you get
the results you want.

For example, to find a list of vehicles that have a combined part cost on
the job ticket greater than $40, first you find the combined part cost for
each job ticket.

SELECT JobTicketID, SUM(p.cost * pu.Quantity)
FROM PartUsed AS pu,

Part AS p
WHERE pu.PartID = p.PartID

GROUP BY JobTicketID;

Results:

J o b T i c k e t I D
- - - - - - - - - - - - - - - -
1     3 5 . 9 5 0 0
2  8 2 . 9 3 0 0
3   5 9 . 9 5 0 0
4     3 4 . 9 5 0 0
5    4 6 . 9 4 0 0
6      . 0 0 0 0
7   5 6 . 9 3 0 0

It looks like three of the job tickets have a combined part cost of greater
than $40. Next you need to find which vehicles are on those tickets.

SELECT JobTicketID, VehicleID
FROM JobTicket As jt

WHERE 40 < (SELECT SUM(p.cost * pu.Quantity)
FROM PartUsed pu,

Part p
WHERE pu.PartID = p.PartID

AND pu.JobTicketID = jt.JobTicketID);

126 Learn SQL In a Weekend



Results:

JobTicketID V e h i c l e I D
- - - - - - - - - - -
2           4
3           2
5           3
7           9

Just as predicted, four of the job tickets appear with their associated vehi-
cle. All you had to do was take the first query and add it to the WHERE
clause of the new query. Notice the GROUP BY had to be removed as
well as the JobTicketID column because subqueries can only return a sin-
gle result or column of results. Because of the manner in which you are
referencing this subquery, you have to return the sum by J o b T i c k e t I D, so
you have to make this a correlated subquery by joining to the outer
query’s J o b T i c k e t I D.

Now then, lastly, you need to gather the pertinent information about the
vehicles revealed in the previous query. To do this, you can modify the
new query to return just the list of vehicle IDs because the vehicle infor-
mation is your ultimate goal.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE VehicleID IN (SELECT VehicleID
FROM JobTicket AS jt

WHERE 40 < (SELECT SUM(p.cost * pu.Quantity)
FROM PartUsed pu,

Part p
WHERE pu.PartID = p.PartID

AND pu.JobTicketID = 
j t . J o b T i c k e t I D ) ) ;

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 127



Results:

VehicleYear Make  M o d e l
- - - - - - - - - - - - - - - - - - - - - - - -
1998   Ford   M u s t a n g
2002 Pontiac  Grand Prix
1968   Chevrolet C o r v e t t e
1972    AMC      G r e m l i n

By breaking the query down into logical chunks, you can not only test
your results along the way but also make the task of creating this complex
query a lot less daunting. These same results can be achieved without
nesting queries three levels deep, but it makes for a nice example of how
to nest a subquery within a subquery.

Creating Unions
The UNION operator allows you to combine two or more similar
SELECT statements. It takes the results of each query, eliminates the
duplicates, and returns the list as a single result set. The queries have to
have the same number of columns. The data types of those columns have
to be either the same type, implicitly convertible, or be explicitly con-
verted to a compatible type. Finally, the columns must be in the same
order because the data will be combined in the order defined in the first
query. The columns themselves do not need to be the same column or
even come from the same set of tables.

The following query is an example of a simple UNION to bring
together two result sets. In this case, the columns are the same, but
remember that they do not need to be the same columns. The first
result set brings back all the Ford vehicles, and the second result set
brings back all the Chevrolet vehicles. The UNION combines the two
queries, eliminates the duplicates (there are none here), and returns the
list as a single result set.

128 Learn SQL In a Weekend



SELECT VehicleYear, Make, Model 
FROM Vehicle

WHERE Make = 'Ford'
U N I O N
SELECT VehicleYear, Make, Model

FROM Vehicle
WHERE Make = 'Chevrolet';

Results:

VehicleYear Make M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - -
1968   Chevrolet  C o r v e t t e
1998     Ford    M u s t a n g
2000    Chevrolet  S - 1 0
2001        Ford    E x p e d i t i o n
2002        Chevrolet  Trail Blazer

We’re going to make it a bit more elaborate so you can see more interest-
ing results. This will also find all vehicles with a VehicleYear less than
1995 in both queries.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE Make = 'Ford'
OR VehicleYear < 1995

U N I O N
SELECT VehicleYear, Make, Model

FROM Vehicle
WHERE Make = 'Chevrolet'

OR VehicleYear < 1995
ORDER BY VehicleYear;

Results:

VehicleYear Make M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - -
1968   Chevrolet   C o r v e t t e
1972    AMC     G r e m l i n
1998    Ford     M u s t a n g
2000        Chevrolet    S - 1 0
2001   Ford  E x p e d i t i o n
2 0 0 2 Chevrolet     Trail Blazer

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 129



Notice that we now have an extra row. The AMC Gremlin snuck into the
list because of the OR we added to each query. We really only needed to
add it to one or the other because the UNION eliminated the duplicate
row. The Corvette would have been listed twice as well because it
matched the newly added condition, too.

Also notice that we added an ORDER BY clause. You can only have an
ORDER BY clause on the final query. It will affect the entire result set,
however. If you were to have an ORDER BY clause for each query, it
could get very confusing.

If you want to see all the duplicate rows generated by combining multi-
ple queries, you must use the ALL keyword. Take the previous query,
which would have had two rows for the Gremlin and the Corvette had
the UNION not filtered out the duplicates. Let’s see it again here with
the ALL keyword included.

SELECT VehicleYear, Make, Model
FROM Vehicle

WHERE Make = 'Ford'
OR VehicleYear < 1995

UNION ALL
SELECT VehicleYear, Make, Model

FROM Vehicle
WHERE Make = 'Chevrolet'

OR VehicleYear < 1995
ORDER BY VehicleYear;

Results:

VehicleYear Make  M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - -
1968   Chevrolet    C o r v e t t e
1968        Chevrolet  C o r v e t t e
1972        AMC     G r e m l i n
1972        AMC   G r e m l i n
1998        Ford    M u s t a n g
2000        Chevrolet   S - 1 0
2001        Ford  E x p e d i t i o n
2002        Chevrolet   Trail Blazer

130 Learn SQL In a Weekend



Now we have the entire result set from both queries. You might be won-
dering why the Corvette doesn’t show up three times in the list because it
is a Chevrolet and is less than a 1995, which is a condition in both the
first and second queries. The answer is the Corvette matched the M a k e
condition in the second query, so the OR condition was never evaluated.
It already passed the first condition and therefore made it into the result
set for the second query. It passed the VehicleYear condition of the first
query and thus the two occurrences in the final result set.

What’s Next?
This afternoon, you learned about several functions and how they can
simplify your life. You also discovered the GROUP BY and HAVING
clauses, which help you logically categorize your results and remove the
groups you don’t need. Finally, you explored queries within queries, called
subqueries, and the many possibilities they open up for you. Now that
you’ve studied so much about using SQL to get information out of the
database, the next chapter will show you how to put information into the
database.

SATURDAY AFTERNOON  Selecting Data—Bigger and Better 131



This page intentionally left blank 



S A T U R D A Y  E V E N I N G

Building a Home
for Your Data

S A T U R D A Y  E V E N I N G

Building a Home
for Your Data

S A T U R D A Y  E V E N I N G

Building a Home
for Your Data

➤ How to Design a Normalized Database
➤ How to Create and Modify Your Database
➤ About Data Types You’ll Use in Your Database
➤ How to Create and Modify Tables
➤ How to Insert, Update, and Delete Data



This page intentionally left blank 



SSo now you know how to get data out of your database. But how
did it get in there in the first place? Not surprisingly, this is your
job too. It’s actually not very difficult for you to put data into a

database. The tricky part is getting it in there in such a way that it’s easy
for you to get it back out. Throw the data in haphazardly and you’ll have
a tough time maintaining it or even finding it again. Kind of like when
you throw papers and notes into various piles on your desk. Good luck
trying to find that one certain memo from last month. Organize and sort
them out later? Forget about it! Don’t let your first SQL database look
like your desk. Read through this chapter and by the end of the evening
you’ll be ready to design and populate a clean, logical database.

Using Normalization
Making your database easier to manage, maintain, and query from
involves a fair amount of planning on your part. We know—you hate the
planning part. “Just get me to the fun stuff,” you say! Sure, you can skip
over this part of the chapter to learn how to create your database and
insert your data, but we think you’ll be sorry later. As with most things in
life, a little planning up front will pay off in the long run. In the world of
relational databases, this planning is known as normalization.

135



For this discussion about normalization, we’ll show you how to design
that sample database that you worked with in the prior chapters. In the
Friday Evening session, we gave you a brief overview of the database.
Now we’ll take you back to square one and show you the steps you have
to go though to arrive at this design.

The Slick Shop needs a database that will help keep track of customers
who have automotive work done, what that work is, and how much it
costs them. The first steps, long before you can even think about design-
ing the database, involve project planning. Project planning includes
important steps such as gathering requirements, documenting a state-
ment of work, budgeting, documenting function specifications, estima-
tions, and documenting the project plan.

Although these are all very important steps that should not be ignored,they are the sub-
jects of an entire book in themselves. For this book, we will assume that you have
already completed these steps and are ready to design the database.

After meeting with the users and project sponsors, you grab a copy of one
of their invoices (see Figure 4.1).

136 Learn SQL In a Weekend



Based on this invoice, you draw up a list of the basic pieces of informa-
tion that need to be stored.

➤ Customer’s name

➤ Customer’s address

➤ Customer’s vehicle information

➤ Invoice (or job ticket) number

➤ The date of the job

➤ The cost of the labor

➤ What services were performed

➤ How long was spent on each service

➤ What parts were used

➤ The cost of the parts

➤ The total cost of the job

Next you can take your first cut at creating a table for this data (see
Table 4.1).

SATURDAY EVENING  Building a Home for Your Data 137

Figure 4.1

The Slick Shop
invoice.This is the

information that
the database will

need to store.



Without having to try too hard, you probably can spot many problems
with this table design. First of all, with this design, you’re going to have
trouble searching for customers by last name or customers who live in a
certain state. The first and last name fields should be separated, as should
the different parts of the address and vehicle information. The other big
problem is keeping the services, parts used, and costs in long lists. Stor-
ing them this way will make it very difficult to get them back out of the

138 Learn SQL In a Weekend

TABLE 4.1 FIRST DESIGN

Column Name Sample Data

CustName Brad Clark

CustAddress 101 Shaker Heights Ave. Joliet, IL 60432

CustPhone 8155559811

Vehicle 2001 Dodge Ram, Red, HGH1109

JobTicket 450228

StartDate 06/29/03

EndDate 06/29/03

LaborCost $60.00/hr, $30.00/hr

TimeSpent 0.25 hours, 0.16 hours

Services Oil change, Change PVC value

PartUsed 4 quarts Protects 10w-30 oil, Oil filter, ACME PVC valve

PartsCost $4.20, $2.20, $2.50

TotalCost $28.90



database. What are you going to do, search the S e r v i c e s, P a r t U s e d, and
PartsCosts columns for the positions of the commas? Then what, try to
match them together based on their order? Can you already see a prob-
lem? The oil change service uses two parts, oil and an oil filter. Clearly,
you need to separate this information. Keeping these decisions in mind,
you can take another shot at the table design, shown in Table 4.2.

That’s a little better. It solves the set of concerns raised earlier. But you
can do better. Now you’ll begin the formal process of normalization. This
process uses a series of steps known as Normal Forms. They are appro-
priately named First, Second, and Third Normal Form.

First Normal Form
The rules of First Normal Form are as follows:

➤ Eliminate repeating groups of data in individual tables.

➤ Create a separate table for each set of related data.

➤ Identify each set of related data with a primary key.

The first rule has you looking for groups of repeating data. A quick look
at the table so far reveals several data items that are repeated. The services,
labor costs, time spent, parts, and part costs are each repeated three times.
The obvious problem here is, what happens if a car needs more than three
services or more than three parts replaced? You can solve this problem by
putting each service, time, part, and cost in its own row. This way, every
time a new service or part is needed, you can just add a new row. This will
allow for any number of services or parts to be used on the same car.

Based on the second rule, look at the data to see if it can be broken into
distinct sets of related information. It looks like there are three basic types
of data: customer information, vehicle information, and details about the
job. So separate these into different tables, calling the new tables C u s t o m e r,
V e h i c l e, and J o b. But once you separate them, how will you know what
work was performed for which customer and on which vehicle? To solve
this problem, you need to take a look at the third rule.

SATURDAY EVENING  Building a Home for Your Data 139



140 Learn SQL In a Weekend

FirstName Brad

LastName Clark

Address 101 Shaker Heights Ave.

City Joliet

S t a t e O r P r o v i n c e IL

PostalCode 60432

PhoneNumber 8155559811

Year 2001

Make Dodge

Model Ram

Color Red

LicensePlate# HGH1109

JobTicket 450228

StartDate 06/29/03

EndDate 06/29/03

Service1 Oil change

Service2 Change PVC value

Service3

LaborCost1 $60.00 per hour

LaborCost2 $30.00 per hour

LaborCost3

TimeSpent1 0.25 hours

TimeSpent2 0.16 hours

TimeSpent3

Part1 4 quarts Protects 

10w-30 oil

Part2 Oil filter

Part3 ACME PVC valve

Part1Cost $4.20

Part2Cost $2.20

Part3Cost $2.50

TotalCost $28.90

TABLE 4.2 SECOND DESIGN

Column Name Sample Data Column Name Sample Data



The third rule is suggesting that you take each one of these tables and cre-
ate a primary key for them. Remember in the Friday Evening session you
learned that a primary key was a way to uniquely identify each row in
your table. You’ll start with the Customer table. Now you could make the
customer’s first and last name the primary key. However, sooner or later
you’ll end up with two customers named John Smith. How about includ-
ing the address, city, state, and ZIP code as part of the primary key? Well,
it’s true that this would make it unique, but there are a couple of prob-
lems with this. First, when John Smith moves, the Slick Shop will want
to update his address, which means they’ll be updating the primary key.
Remember when we talked about primary keys, we told you that you
should choose columns that will never have to be changed. Also, although
it’s okay for you to have six columns in the primary key if you need to, it
will be cumbersome when you start to relate this table to others.

For these reasons, what yo u’ll do is create a unique identifying number for
each customer. Yo u’ll simply assign a sequential number to each customer.
This will be your primary key on the Customer table. Yo u’ll do the same for
the Vehicle table. The Job table already has a natural candidate for the pri-
m a ry key. The Slick Shop is already in the practice of assigning a unique
number to each job ticket. Yo u’ll just use this as your primary key.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Just because you create a column in a table does not mean that you have to reveal it to
the customers or even your users. The column can be used just to make your life as a
SQL programmer easier.Your new surrogate key, the customer number, will just be used
to relate tables together.You will not print the number on the customer’s invoice or even
display it to the users.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

SATURDAY EVENING  Building a Home for Your Data 141



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A surrogate key is data that by itself has no meaning, like a name or an address does.
This data uniquely identifies each row in a table. A sequentially increasing number is an
example of a surrogate key. A car’sVIN, although unique, is not a surrogate key because
it means something.The numbers and letters of a VIN tell about the year, manufacturer,
and make of the car.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Now you’re ready to return to the problem of how to relate the jobs to
the correct customers and vehicles. To solve this, you’ll create a foreign
key column in the Job table to hold the customer number. Every row in
the Job table will have a customer number. Remember in the Friday
Evening session when we told you about one-to-many relationships?
Well, this is one of them. On the “one” side is C u s t o m e r—there can only
be one row for each customer. On the “many” side is J o b—each customer
can have many jobs related to him. Likewise, you’ll create another foreign
key column in the Job table to hold the vehicle number. This is another
one-to-many relationship. Over time, a vehicle can have many jobs per-
formed on it.

Now that you’ve removed the repeating data, separated it into three
tables, related the tables together, and assigned primary keys, it’s time to
see what they look like so far. Figures 4.2, 4.3, and 4.4 show the C u s t o m e r,
V e h i c l e, and Job tables, respectively.

142 Learn SQL In a Weekend

Figure 4.2

This is the
Customer table

separated from the
service data.The

first column is now
the primary key.



You might have noticed that the total cost has been left out.An examination of the data
shows that you can compute the total cost in a query by looking at the cost of parts,
quantity of parts used, cost of labor, and labor hours.You can make this calculation and
print the total when an invoice is requested.

Second Normal Form
The rules of Second Normal Form are as follows:

➤ Remove subsets of data that apply to multiple rows of a table and
place them in separate rows.

➤ Create relationships between these new tables and their predecessors
through the use of foreign keys.

The first rule is again having you seek out and eliminate duplicate data.
Only this time instead of looking for data that is repeated among similar
columns, you’re looking for identical data that is repeated in separate
rows. Looking at the Job table, you can see that the job ticket number
and job dates are repeated. So what’s wrong with that? Well, what 

SATURDAY EVENING  Building a Home for Your Data 143

Figure 4.3

This is the V e h i c l e
t a b l e. Note that a

L a s t S e r v i c e D a t e
column has been

a d d e d .

Figure 4.4

This is the J o b
table.The service,

time, parts, and
cost information

are stored in this
table.



happens if, after your users enter all this data, they find out they entered
one of the dates wrong? They will have to find and change each row in
the table that has the wrong date and fix it. If you took this information
and put it in its own table, then you would only have to store each job
ticket number and date one time. That would make data entry and main-
tenance a lot easier.

What you should do is split the Job table in two. Make a table called
JobTicket to hold the common information about a job, such as the tick-
et number, start date, and end date. Then make another table called
J o b T i c k e t D e t a i l. This one will store an individual row for each different
labor item that makes up the job, such as changing the oil, the oil filter,
and PVC valve. The relationship between tables such as these is often
called a header-detail relationship.

The second rule is similar to one of the rules applied during First No r-
mal Form. It wants you to create a relationship between the new tables
that you just split out. You need to make sure that each row in the
JobTicketDetail table stays related to the correct row in the J o b T i c k e t
table. This will keep the header and details together. The way that yo u’l l
keep them related is to add the job ticket number as a column in the
JobTicketDetail table. This column now becomes a foreign key.

As yo u’re pro g ressing along with your normalization, it is important that
f rom time to time you go back and revisit the Normal Forms that yo u
a l ready completed to make sure that the tables still comply. For example,
the new JobTicketDetail table does not yet have a primary key, as Fi r s t
Normal Form re q u i res. You can just create another surrogate key and
s t a rt assigning sequential numbers to each row. Howe ve r, because yo u
a l ready have the job ticket number as a column, maybe you should make
use of it. The job ticket number alone cannot be the primary key because
t h e re will be several detail rows for the same ticket. So what you should
do is add a line item number column. This will be a number that start s
at 1 for each job ticket and increases with each new detail row that is
added. This column cannot be the primary key on its own either because

144 Learn SQL In a Weekend



the values will not be unique. Howe ve r, the combination of the job tick-
et number and the line item number will uniquely identify exactly one
row in this table.

Now it’s time to step back and take a look at these tables so far. The C u s t o m e r
table remains the same as that shown in Fi g u re 4.2, and Vehicle remains the
same as in Fi g u re 4.3. The JobTicket table is shown in Fi g u re 4.5 and
JobTicketDetail in Fi g u re 4.6.

Third Normal Form
The rule of Third Normal Form is as follows:

➤ Remove columns that are not dependent on the primary key.

T h i rd Normal Form can be a little trickier than First and Se c o n d .
What this rule means is that you should look at each column in each
table and ask yourself if it directly relates to the primary key. Apply this
question to the Customer table first. Re m e m b e r, the primary key on this
table, C u s t o m e r I D, identifies a unique individual. So do the F i r s t N a m e
and LastName columns directly relate to the C u s t o m e r I D? Yes, that is the

SATURDAY EVENING  Building a Home for Your Data 145

Figure 4.5

This is the
JobTicket t a b l e. I t
contains only the data
that applies to the job

t i cket as a whole.

Figure 4.6

This is the
J o b T i c k e t D e t a i l
t a b l e. It has one row

for each job that is
performed on a car

or for each part that
is used.



name of that individual. What about the A d d r e s s, C i t y, S t a t e O r-
P r o v i n c e, and P o s t a l C o d e? Yes, they do too. They tell the one and only
place that this person live s .

Now you can skip ahead and apply the question to the J o b T i c k e t D e t a i l
table. When you do this you can see that the HoursSpent column directly
relates to the line item on a job ticket. It tells how long that line item
took. However, the Service and Part columns do not. This is not data
that is unique to just one line item of just one job ticket. The Slick Shop
will perform oil changes for many customers, each on a different job tick-
et. They will also use oil filters and PVC valves on many job tickets.

What you’ll do then is very similar to what you’ve done before. You’ll
remove the service tasks and parts from JobTicketDetail and put them
into separate tables. You’ll create primary keys for the new tables. Then
you’ll relate the JobTicketDetail to them by creating foreign keys.

Separating the services and parts gives you a couple of nice advantages. If
the name of a part ever changes, it will only have to be updated in one
place. It also allows the users to keep a master list of available services and
parts. Later when a customer drives in for some work, the users can sim-
ply choose the services and part from lists.

Take a look at the change to the JobTicketDetail table in Fi g u re 4.7 and
the two new tables, Service in Fi g u re 4.8 and Part in Fi g u re 4.9. T h e
C u s t o m e r, V e h i c l e, and JobTicket tables have not changed.

146 Learn SQL In a Weekend

Figure 4.7

This is the
J o b T i c k e t D e t a i l

t a b l e.Two foreign
k ey s, PartID a n d
S e r v i c e I D, h ave

been added, a n d
Q u a n t i t y is its

own column.



In most cases a database that is in Third Normal Form will suffice. How-
ever, Fourth and Fifth Normal Forms have been defined as well. These are
more complex and are outside the scope of this book.

SATURDAY EVENING  Building a Home for Your Data 147

Figure 4.8

The S e r v i c e
table.

Figure 4.9

The P a r t table.



A Couple of Final Changes
There is one additional change that you should make to the database. As
you look back at the JobTicketDetail table in Figure 4.7, you will see that
there is some duplicate data that could be refined a little more. Notice
how the first two line items are actually part of the same service task—
the oil change. It took two rows because there were two parts involved,
the oil and the oil filter. In fact, there may be some service tasks that take
several parts. This means that the S e r v i c e I D, H o u r s S p e n t, and D a t e C o m p l e t e
will be repeated several times within the same service task. What you’ll do
then is introduce a new table that will go between JobTicketDetail and
P a r t. It will be dedicated to storing the parts that are used on a given
detail row. After you remove the part information from J o b T i c k e t D e t a i l,
this table can focus on the service task and will only need to store one row
per task. Because the new table will be related to both J o b T i c k e t D e t a i l
and P a r t, it will need to include the primary key columns from both. You
will also move the Quantity column to this table because it directly relates
to parts. Call the new table P a r t U s e d.

Now for a peek at what the tables look like. The modified J o b T i c k e t D e t a i l
is shown in Fi g u re 4.10 and the new PartUsed table in Fi g u re 4.11. T h e
Part table has not changed but is displayed in Fi g u re 4.12 to show its 
relation to P a r t U s e d. The C u s t o m e r, V e h i c l e, J o b T i c k e t, P a r t, and S e r v i c e
tables remain unchanged as we l l .

148 Learn SQL In a Weekend

Figure 4.10

The
J o b T i c k e t D e t a i l

table is the same
except that

PartID and
Q u a n t i t y have

been removed.



This gives you some nice separation between the services that are being
performed and the parts that are being used.

You may be thinking that the DateComplete column in the J o b T i c k e t D e t a i l
table looks like duplicate data. T h a t’s not necessarily so. This column was
designed because the Slick Shop wanted to keep track of completion dates
for individual line items. They often have large repair jobs that take two
or more days to complete.

SATURDAY EVENING  Building a Home for Your Data 149

Figure 4.11

This is the new
P a r t U s e d table. It

links a single part
to a single job

ticket line item.

Figure 4.12

The P a r t table has
not changed but is

displayed here to
show its relation to

P a r t U s e d.



Fi n a l l y, yo u’ll add a lookup table called S t a t e O r P r o v i n c e. This is a simple
table that has just two columns, one for the two-character state or prov i n c e
a b b reviation and one for the full name. A foreign key is also added to the
StateOrProvince column in the Customer table that re f e rences the new
table. The main purpose of having a lookup table like this is for user con-
venience. This allows you to display the full state or province name to
users in pick lists. The table can also be used in a join with C u s t o m e r, to
print the full name and address on re p o rts or invo i c e s .

Advanced Design
This sample database is straightforward and fairly simple, yet involved
enough for you to practice some meaningful SQL. You could carry the
design of the database much farther, and indeed, for a real-life business
you would need to do so. We’ll finish this section by giving you a couple
of quick ideas on how the design could be improved.

One of the problems with the current design will surface when a user tries
to print an invoice for work that was done a year or two ago. It is likely
that the price of the parts and labor will increase over time. The SQL
SELECT command will join the tables together and use whatever
amount it finds in the RatePerHour and part Cost columns. So what will
happen is that the invoice will show the correct work that was done, but
it will be shown at today’s prices. This will not be an accurate reflection
of the history of that invoice.

A common way of solving this problem is to redesign the Service and
Part tables to include historical prices. In the Part table, for example, you
could add a column called E f f e c t i v e D a t e, the date on which the price for
the given part goes into effect. Then you could change the primary key
to be both PartID and E f f e c t i v e D a t e. This would allow you to, over time,
save several different prices for each part. You could even enter price
changes that will take effect in the future. If you think about it for a
minute, this will really mess up the SQL SELECT command that figures
out the total cost of the job. No longer can you simply use a PartID to

150 Learn SQL In a Weekend



join to the Part table. Doing this will give you the price history for that
part, which may be dozens of rows. The SELECT command will have to
be rewritten to compare today’s date to the E f f e c t i v e D a t e.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Changing the primary key of table after your design is complete and SQL has been writ-
ten can cause you to have to make many other changes as well. If the primary key was
used as a foreign key in any other table, that will have to be changed as well. Any
INSERT or UPDATE commands that modify the table will have to be changed.Also most
if not all SELECT commands that involve the table will have to be changed.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Now for one more example of an improvement that could be made to the
design. Let’s say the database has been in use for a couple of years now at
all 1,800 Slick Shops nationwide, each with its own database. Now the
corporate headquarters would like you to combine all of the data nightly
and create some SQL queries that will give them a better idea of how the
business is doing nationally. They will not create new data or change it
but will only run queries. This means that you have to create a separate
corporate database just for them. Your first inclination might be to copy
the same design used by the Slick Shop and load it nightly from each of
the 1,800 databases. However, you’ll quickly discover some reasons why
this might not be a good choice. One worry is that there might be so
much data in this corporate database that queries will run too slowly. A
bigger problem is that each Slick Shop gets to set their own prices for
their labor and parts. This means that the corporate database cannot sim-
ply keep labor and part costs in the Service and Part tables as they are
designed today.

A solution is to denormalize the corporate database. Denormalize? After
you’ve spent all this time learning how to normalize, we’re saying to turn
around and undo it? Well, yes, but there’s a very good reason. Many of
the reasons for normalizing a database center on making it easier to main-
tain the data. Your corporate users are not going to be allowed to change

SATURDAY EVENING  Building a Home for Your Data 151



the data, only run SELECT commands. The way to do this is to revert
the database back to one that is closer to the First Normal Form design.
Look back at Figure 4.4. All of the data about the job is back in one table,
including the prices. The actual price that each Slick Shop charged will
be in this table, along with exactly which service and parts were used.
Because no data is modified on this table, it can be heavily indexed for
maximum query performance.

We’ll be covering indexes in the Sunday Morning session.

Your head is probably aching after that discussion! But we hope you have
an appreciation for how important database design can be. The good
news is that once you’ve done this a few times, you’ll start to get good at
it. Soon you won’t have to take your tables through so many steps to
arrive at your final design. The important points to remember about nor-
malization are highlighted here:

➤ Separate distinct data items into different tables.

➤ Eliminate repeating and duplicate data by creating separate tables.

➤ Make sure all tables have primary keys.

➤ Relate tables together with foreign keys.

Creating Databases
Okay, now that you have planned out all of your tables, it’s time to build
them. But first you’ll need a place for these tables to live. All of your tables
will exist within a database. A single database can house many tables.
Some DBMSs allow you to store up to 255 tables inside your database.
Many of them, especially the enterprise versions, still have limits, but they
are very high. SQL Server, for example, allow you to create millions of
tables in a single database. A table, however, can only exist in one data-
base at a time. If you need the same table in two databases, you will have
to maintain two separate copies of the table.

152 Learn SQL In a Weekend



■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

An alternative to creating a second copy of the same table is to use a view.The first data-
base contains the table with the data. Meanwhile, the second database contains a view
that points to the table in the first database. See “Creating and Using Views”in the Sun-
day Afternoon session for more on views.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Not only does the database contain the tables that hold your data, but it
also holds the information about the tables themselves—information
such as the names and data types for each column in the table, default
values, and whether or not the column allows NULL values. The database
stores this information in catalog or system tables. These are special tables
that the DBMS creates and maintains on its own.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Normally, you should just leave the system and catalog tables alone. Modifying these
tables directly is risky business and could cause your data to become corrupted or lost.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Other special items or objects that are stored in your database include
stored procedures, triggers, views, key definitions, indexes, and database
users. Your DBMS probably supports several other unique features, many
of which are stored in the system tables within your database.

The method and command used to create your database will vary
depending on the DBMS you are using. The commands are different
because each DBMS has options allowing you to specify the database size
and file location. There are also a variety of options specific to each
DBMS. In addition to written commands, some DBMSs also include a
graphical interface to make creating your database even easier. The SQL
Server graphical window for creating a database is shown in Figure 4.13.

SATURDAY EVENING  Building a Home for Your Data 153



In general, the command to create your database will look like this:

CREATE DATABASE dbname [options];

The options may let you tell the DBMS such information as where the
database files should be located, the size of the files, how much memory
to use, the size and location of log files, language choice, and sort order.
Your DBMS has many other options that are worth taking some time to
review. Most times, however, the default options have been carefully set
for most small to medium-sized databases. Large or mission-critical data-
bases deserve careful review of all of the available options.

154 Learn SQL In a Weekend

Figure 4.13

Not only does this
SQL Server create
a database dialog
that allows you to
specify the name

and size of the
database file, but it
also has options to

automatically
increase the size as

needed.



Data Types
Okay, there’s just one more topic that you need to understand before
jumping in and creating your first table. You’re going to need to know
your available data types. Yes, it’s back to the planning thing again! But
just like before, a little planning can pay off big. This time the benefits
will come in the form of saving disk space and increasing performance.

Every column in every table must be assigned a data type. This allows you
to earmark a column for a certain kind of data, such as text, numbers, or
dates. As you are selecting data types for each column, you will also be
determining their size. The choices you make for the data type and size
are very important. Making the wrong choice might cause problems, such
as users not being able to enter data, large amounts of disk space going to
waste, or even reduced performance.

We’ll give you a couple of examples now to illustrate the importance of
data type choices and a couple examples later in this section. For the first
example, consider the Customer table, which stores names and addresses.
When you come to the column that will store the ZIP codes, you decide
to make it an integer column. After all, ZIP codes are either five- or nine-
digit numbers, right? After just a few weeks, however, the Slick Shop gets
a customer who is passing through from Vancouver. His postal code is
V6Z 1P5. Now the database refuses to allow his postal code because it is
not a number.

As a second example, remember that in the Customer table you have sep-
arate columns for the customers’ first and last names. You make them
character columns each of size 10. Fate strikes again when a new cus-
tomer named Jackqueline Hollingsworth shows up. Neither her first or
last name will fully fit into the defined columns. The Slick Shop manag-
er is embarrassed to have to hand her an invoice that says Jackquelin
Hollingswo.

You get the idea. The data types and sizes that you choose might come
back to haunt you, so choose wisely. The best way to do this is to know
all of your available choices. Let’s take a look at them now.

SATURDAY EVENING  Building a Home for Your Data 155



Just as the CREATE DATABASE command varies from one DBMS to
the next, so do the data types. Later when we show you how to create
tables, we will be using standard SQL syntax. For the data types, howev-
er, you’ll have to learn the types that are available in your particular
DBMS.

Regardless of the DBMS you are using, there are some very basic cate-
gories of data types that they all share. They are as follows:

➤ Strings

➤ Numbers

➤ Dates and times

➤ Booleans

➤ Binary data

String data types include any character, number, or symbol that can be
typed in with a keyboard. String data types can be either fixed in length
or variable. Numeric data types include whole, decimal, positive, and
negative numbers. Date and time are special data types that are intelligent
enough to know how clocks and calendars work. For example, a date data
type will not let you store the date February 29, 2003, because it is not a
leap year. Boolean data types allow for the storage of yes/no, on/off, or
1/0 data. Finally, binary data types can store data such as graphics or
encrypted files.

The first example involving the ZIP codes pointed out that the choice of
a numeric data type was not appropriate. The second example about the
first and last name fields demonstrated that while the data type may have
been correct, the size was not. For every single column that you create,
you will have to make two decisions, type and size.

String Data Types
The string or character data types allow you to define the maximum
number of characters that they will hold.

C H A R ( 2 5 )

156 Learn SQL In a Weekend



This notation is specifying that a column can hold no more than 25 char-
acters. This would have probably been a better choice for the first and last
name columns. This notation is also saying that the column is going to
be fixed width. If you store the last name Smith in this column, it will still
occupy 25 bytes in the database. The last 20 bytes will be wasted space.

Let’s say that you change the first and last name fields to a fixed length of
25 characters. After a couple of years, your database now has 100,000
customers saved. The average length of the first names is six, and the aver-
age length of the last names is eight. These two fields alone take up
5,000,000 bytes, of which 3,600,000 contain absolutely nothing. These
fields would be good candidates for variable length character types.

V A R C H A R ( 2 5 )

The VARCHAR data type will only use as much space as it needs. The
last name Smith will only take five bytes. However, if you change the
name from S m i t h to S m i t h s o n i a n, it will expand to now use 11 bytes. Now,
in the example, the first and last name column will only occupy a little
more than 1,400,000 bytes.

To be totally accurate, it would take a little more than 1,400,000 bytes. This is due to
the overhead storage required by the VARCHAR data type. More about this later.

Your DBMS will have a limit on how big you can define CHAR and
VARCHAR fields. This is usually anywhere from 2,000 to 8,000 charac-
ters. Most DBMSs have another character data type to store even more.

TEXT, MEMO, LONG VARCHAR

The T E X T, MEMO, or LONG VA RCHAR data types can store much
m o re than any CHAR and VA RCHAR. Each DBMS has a different maxi-
mum, from 64,000 to more than 2 billion characters! This is also a va r i a b l e
s i zed field but will include more storage overhead than the VA RC H A R .

SATURDAY EVENING  Building a Home for Your Data 157



Which String Data Type Should You Choose?
First of all, the text, memo, and LONG VARCHAR data types should be
used sparingly. They do contain more overhead than the other data types
but often have limitations. These data types probably cannot be indexed,
probably cannot be used in joins, and will likely be slower as searching or
sorting columns. These data types are most useful for storing miscella-
neous information and notes. Very lengthy data that will be viewed and
printed but not normally searched on or sorted is a good candidate for
these types. In the sample database, you could add a TEXT, MEMO, or
LONG VARCHAR column to the JobTicket table. It would be a good
place to type notes about what was wrong with the car when it came in
and what special tasks were performed during the service.

Ordinarily your choice will be between the CHAR and VARCHAR data
types. A rule of thumb that we suggest is to always try to use VARCHAR
and fall back to CHAR when necessary. As demonstrated earlier, using
VARCHAR is a great way to conserve space in your database. So when is
the right time to fall back to CHAR? If your string data is going to be
either very short or always be the same length. If you create a column for
the customers’ middle initials and define it as VARCHAR(1), you will
actually end up wasting space. The DBMS is going to use one or two
bytes of overhead in addition to the middle initial. So storing the letter
‘R’ will really take two or three bytes. You’d be better off defining it as
CHAR(1). This will always use just one byte. Now say you want to cre-
ate a column for the status of each job. The status values will be WAIT-
ING, WORKING, and ALLDONE. Each of these is seven characters
long. There is no need to make this a variable length column, because the
data does not vary. You’d simply make it CHAR(7).

Numeric Data Types
In similar fashion to the string data types, you will get to choose the size
of the numeric data types as well. This is where you will really have to pay
attention to your DBMS manual or online help. One vendor’s integer

158 Learn SQL In a Weekend



may take up four bytes, whereas another’s takes only two. Following are
some of the most typical numeric types that store whole numbers.

INTEGER, INT, SMALLINT, TINYINT, NUMBER(x)

These data types will not store any decimal places. They will only store
p o s i t i ve and negative numbers. If your ve n d o r’s integer data type is 4 by t e s ,
it will store whole numbers anywhere in the range of −2,147,483,648 to
2,147,483,647. Howe ve r, if your ve n d o r’s integer data type is two bytes, it
will only store whole numbers from −32,768 to 32,767.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

If you have a column that will never need negative numbers, check to see if your DBMS
supports unsigned data types. If so, this would make the range of a 4-byte integer 0 to
4,294,967,295.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Some databases now support 8-byte integers, called bigint or i n t 8.This data type can
store numbers as high as 9,223,372,036,854,775,807! That would be useful if your
database was going to keep track of the exact amount of the national debt.By the way,
that number is called 9 quintillion.

Other data types are available to hold decimal data.

FLOAT, REAL, NUMERIC, DECIMAL, NUMBER(x,y), DOUBLE

Although you can often use these data types without specifying a size, you
will usually want to do so. So that you don’t just get the default, you
should specify both a size and precision, like

DECIMAL(7, 2)

The 7 indicates that the total size of the number including digits on the left
and right of the decimal point cannot exceed seven. The 2 indicates that
t h e re will be no more than two digits on the right of the decimal point.

SATURDAY EVENING  Building a Home for Your Data 159



Floating point data types such as float and real only require you to spec-
ify the size. The precision will vary.

Your database may also include data types called m o n e y, s m a l l m o n e y, or 
c u r r e n c y. These are really the same as a decimal, numeric, or double data
type only they are predefined. These types will always have two decimal
places and by default will be displayed with a leading currency symbol.

Which Numeric Data Type Should You Choose?
The strategy for choosing your numeric data type should be the same as
the strings. Choose one that is big enough to hold your data now and in
the foreseeable future, but don’t choose them so big that you waste a lot
of space. When defining the Cost column in the P a r t table, you could
have made it decimal(12, 2). This would correctly allow the part cost to
use two decimal places; however, it would also allow parts to be priced at
well over a billion dollars each! A better choice would be decimal(6, 2).
This would allow for a total of six digits including the decimals, so part
prices could go into the thousands; however, this only takes half the space
of the first choice.

Another strategy you should use is to try to select whole number data
types, like integer, as often as possible. Whole numbers are easier to work
with and are not subject to rounding errors like decimal numbers some-
times are. The choice between decimal and whole number data types is
usually pretty easy to make. The Cost column in the Part table needs to
be a decimal because a quart of oil sells for $1.05. The CustomerID column
in the Customer table will be an integer because no decimals are required.
Decimal values would only make the CustomerID more awkward to work
with. But what about the RatePerHour column in the Service table? Is the
Slick Shop always going to set its rates at whole numbers such as $60,
$62, and $78? If they are, then you could use an integer data type. Bet-
ter yet a smallint or even a tinyint if your database supports it. The dan-
ger here is that one day the Slick Shop might want to set the rate to
$69.50 per hour. Then you’d be in trouble.

160 Learn SQL In a Weekend



Whole number data types such as integer are one of the most basic and
widely supported data types. This makes it one of the easiest to use when
you start accessing data from programming languages and query tools. If
you’re sure you don’t need decimals, go with an integer data type. If
there’s a chance that you’ll need decimals later, bite the bullet now and set
it up right the first time. Finally, if this is a column that is intended to
hold an amount of money, your best bet is usually to go ahead and make
it a decimal.

Date and Time Data Types
Your database will provide you with data types that store dates and times.
Behind the scenes, your database will actually store the dates and times as
numbers. This is not something that you have to worry about, though.
Whenever you view one of these data types, it will automatically be dis-
played in a familiar date or time format. Likewise, when you are insert-
ing or updating one of these columns, you can use these same familiar
formats. As mentioned earlier, these data types are smart enough to
understand invalid dates and times. Your database, for example, will not
allow you to save the value 12:73 in a time column.

Most databases have one data type for dates and another for times. Some,
however, combine the date and time into a single data type. Following are
some of the data types that are in this category.

DATE, TIME, DATETIME, SMALLDATETIME, TIMESTAMP

As with the other data types discussed so far, it will be important here as
well to choose an appropriate size. Many of the databases do not give you
a choice. If you want to store a date, you must use the DATE data type.
Others give you a size choice such as DATETIME versus SMALL-
DATETIME. Either way, you need to be aware of the storage limitations.
Just as the numeric data types have upper and lower boundaries, so do the
date and time data types. Actually, the time data type is nothing to worry
about. It will cover all of the hours, minutes, and seconds in a day. The

SATURDAY EVENING  Building a Home for Your Data 161



only thing to note here is how precisely it can store time. Some databas-
es will only go as low as seconds, whereas others will keep track down to
the thousandths of a second.

Date data types, on the other hand, do have definite upper and lower lim-
its. These limitations are usually not an issue for most columns that you
will create. Ordinarily these columns store dates that are relatively close
to today, such as invoice dates, birth dates, and due dates. Date data types
can go much farther into the past and the future if you have that need.
Some go back as far as 4700 B.C. and as far ahead as A.D. 9999. You
might need this if you are storing dates related to ancient Roman history
or the date you predict the Cubs will win their next World Series.

Be sure to note these limitations especially if your database offers a type such as
SMALLDATETIME.This kind of data type is a great way to save space but may be too
restricting. In the Sybase and Microsoft databases, SMALLDATETIME only covers dates
from 1900 to 2079 and only keeps time to the nearest minute.

One more note on date and time data types. These tend to be the most
temperamental types to work with. Some databases are very strict about
the format used to insert dates and times. It might, for example, demand
that your date be formatted as yyyy-mm-dd, with dashes between the
numbers, not slashes. Other databases will be more flexible, allowing
either the month or the year to be first and allowing the use of either
dashes or slashes. Some databases even understand if you use the format
10-DEC-03. Another thing to watch out for is the use of quotes around
the date. Some databases do not need any delimiters surrounding dates
and times. Others will try to interpret 10-19-03 as 10 minus 19 minus 3
and give you a nasty error message. These databases probably demand
that delimiting characters surround the dates and times. The delimiters
will be either single quotes, double quotes, or pound signs.

162 Learn SQL In a Weekend



Boolean Data Types
There are many cases when you might need a column to store simple
yes/no data. In the sample database, you could create a P r e f e r r e d C u s t o m e r
column in the Customer table. You could also have a GenericBrand column
in the Part table. Using a Boolean data type for these would give you a
quick and simple way to flag questions with a yes or no answer. Many of
the DBMSs have special Boolean data types available.

BIT, YES/NO

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

If your DBMS does not provide a special Boolean data type, you can simply use the one
character string data type, CHAR(1).Then you can store values like Y, N, 1, or 0.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Binary Data Types
Binary types are not as frequently used as the ones that we’ve talked about
so far, but they can be very useful. Here are some of the binary types that
are used by the different DBMSs.

BLOB, IMAGE

Some DBMSs simply use the types previously discussed, whereas others
will allow you to specify a size. These sizes go as high as 4 gigabytes in
some DBMSs. Although these binary types can store ordinary text
strings, they are typically used to store the contents of binary files. Many
times graphics, photos, documents, or scanned images are stored in a
binary data type column. On a previous real-life project, we used two sep-
arate binary columns in a customer table to store the photo and signature
of each customer. Later we were able to have our application retrieve these
images and print them on demand.

Another typical use of a binary column is to store sensitive data. Plain text
data can be run through encryption software and then stored in the bina-
ry column. When it is needed again, the encrypted data can be selected
and decrypted for use.

SATURDAY EVENING  Building a Home for Your Data 163



Like the text and memo data types discussed earlier, your DBMS might
put restrictions on the use of binary data types. It might be unavailable
or limited for searching, sorting, indexing, or joining.

Creating Tables
All right, now that you are armed with all of that design information, it’s
time to create some tables! Actually, compared to normalization and
determining the appropriate data types, creating the tables is going to be
pretty easy.

First take a look at the basic syntax to create a new table.

CREATE TABLE tablename
(colname1 datatype,
colname2 datatype,
. . .

) ;

All you really need to do is give the table a name and list all of the
columns with their data types. Table and column names need to begin
with a letter but can contain numbers and a few special characters, such
as the underscore. A naming convention using names that are all one
w o rd with the first letter of each word in uppercase, like PartUsed a n d
L i n e I t e m N u m b e r, will be used for the sample database. Other people like
to put underscores between the words, such as part_used a n d
l i n e _ i t e m _ n u m b e r. It really doesn’t matter as long as you find something
that yo u’re comfortable with.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A naming convention is an agreed-upon standard for giving names to all objects
within a database.The standard might dictate the case, tense, punctuation, and abbre-
viations that should be used when naming new objects.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

164 Learn SQL In a Weekend



◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Some databases are case sensitive, and others have case sensitivity options that can be
turned on and off. A naming convention like PartUsed and LineItemNumber works
best if the database is case insensitive.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

The command to create the Part table looks like this:

CREATE TABLE Parts
(PartID integer,
Description varchar(100),
Cost decimal(6,2)

) ;

Note that the entire list of columns is enclosed within parentheses and
commas separate each column. This is just the very basic syntax. You
could stop here with this much information and begin creating all of your
tables. There are, however, several other options that you can use while
creating a table.

Column-Level Constraints
There are many options that let you customize how each column
responds to data. An expanded CREATE TABLE syntax is shown in the
following:

CREATE TABLE tablename
(colname1 datatype [NULL | NOT NULL] [UNIQUE]
[CHECK(expression)] [DEFAULT value]
[IDENTITY | AUTO_INCREMENT]
[PRIMARY KEY] [REFERENCES othertable (othercol)],
colname2 datatype [NULL | NOT NULL] [UNIQUE]

[CHECK(expression)] [DEFAULT value]
[IDENTITY | AUTO_INCREMENT]
[PRIMARY KEY] [REFERENCES othertable (othercol)],
. . .

) ;

SATURDAY EVENING  Building a Home for Your Data 165



Notice that there are square brackets around each of the options. The
square brackets indicate that this feature is optional and can be left out
entirely. These options are called constraints and can be specified for each
individual column.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A constraint is an option that further defines a table or a column. It will either add
more information to or put certain restrictions on the table or column.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The first constraint is NULL or NOT NULL. This allows you to specify whether
or not a column accepts NULL values. If a column is defined as NOT NULL,
some value has to be assigned to that column or else the database will pro-
duce an error. If you do not specify one of these two constraints, the data-
base will assign its default, which is usually N U L L. For the P a r t table created
earlier, you are going to specify that none of the three columns can 
contain a NULL value. All three of these are important enough that you are
going to demand that the user not leave any of them blank. It would not
do the Slick Shop any good to have a NULL value, for example, in the
Description column. They would look at it one day and see that part
number 101 costs $15.50 but not know what that part is. A good exam-
ple of where it would make more sense would be if you added a Color 
column to this table. For a few of the parts the Slick Shop sells, the color
matters, such as fuzzy dice. However, most of the items, like oil and air
filters, do not have color choices. These products would have a NULL value
in the Color column.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

N U L L is the absence of data. It is not the same thing as zero (0),nor is it the same thing
as an empty string (' '). It is often used in databases to represent “not applicable”or “I
don’t know.”

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

166 Learn SQL In a Weekend



Placing the UNIQUE constraint after a column’s name and data type will
ensure that there will be no duplicate values entered into that column. In
the database, you may choose to add this constraint to the D e s c r i p t i o n
column in the Part table so that no two products end up getting the same
exact name.

The CHECK constraint lets you include some data validation dire c t l y
into the table. You can assign an expression to a column that will be va l-
idated before the data is inserted or modified. If the expression turns
out to be false, the data will not be inserted or changed. For example,
on the Part table, you might want to add a CHECK constraint to make
s u re that no one sets a value in the Cost column to a negative number.
The expression is just like an expression that you would use in a
WHERE clause. The expression must be placed in parentheses after the
k e y w o rd CHECK.

When the DEFAULT constraint is specified, you do not have to insert a
value for that column even if it is defined as NOT NULL. In the case where
a value is not provided, the default value will be used. You may want to
use this constraint as well for the Cost column in the Part table. You
could make the default value $0.01. That way, if a Slick Shop employee
needs to enter a part but does not know the price, it will get entered any-
way with a price of one cent. Hopefully, the employee will return later
and update it to the correct price.

Take a look at the CREATE TABLE command now making use of these
four column constraints.

CREATE TABLE Part
(PartID integer NOT NULL,
Description varchar(100) NOT NULL UNIQUE,
Cost decimal(6,2) NOT NULL CHECK(Cost >= 0.00) DEFAULT 0.01

) ;

The IDENTITY or AU TO_INCREMENT constraint will define a
numeric column that will automatically populate itself with incre m e n t i n g
numbers. This can be an extremely useful feature when creating ID num-

SATURDAY EVENING  Building a Home for Your Data 167



bers, especially numbers that have no real meaning. You might have noticed
that several of the tables that you created last night, such as C u s t o m e r, used
the IDENTITY constraint. You might have also noticed the INSERT com-
mands for those tables did not include a value for those particular columns.
The DBMS will automatically populate the column with the next ava i l a b l e
n u m b e r. You don’t really care what a new customer’s number is, you just
want the customer to have one that is unique.

Not all DBMSs support auto-numbering as a constraint. In Access, for example, you
define the data type of the column as ' A u t o N u m b e r '. Still other DBMSs require you to
write your own auto-numbering code in a trigger.

There are also constraints available that will define primary keys and for-
eign key relationships. Using these while creating tables will enable your
database to enforce referential integrity.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Referential integrity is the concept of keeping a database’s tables properly related to
one another. If two tables are related in a database, there should not be missing or
undefined data in any of the columns that make up the relationship.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Using the PRIMARY KEY constraint after a column will designate that
column, and that column alone, as the primary key. Some databases will
also go ahead and create an index on this column as well. You’ll add this
constraint to the PartID column.

CREATE TABLE Part
(PartID integer NOT NULL PRIMARY KEY,
Description v a r c h a r ( 1 0 0 ) NOT NULL UNIQUE,
Cost  d e c i m a l ( 6 , 2 ) NOT NULL CHECK(Cost >= 0.00) 

DEFAULT 0.01
) ;

168 Learn SQL In a Weekend



As you learned earlier, a primary key column will uniquely identify each
row of data in a given table. The database will not allow you to enter the
same value in the primary key column on two separate rows. This sounds
just like the UNIQUE constraint, doesn’t it? Well, yes, it is very similar.
In the preceding code, you already had a UNIQUE constraint set up on
the Description column. Couldn’t Description just be used as the 
primary key? Yes, it could. This just wouldn’t really be the best choice,
however. Because the Description column has meaningful data, it will be
subject to change. It is very likely that one day the part descriptions will
need to be changed. Because the primary key column of the Part table is
used as a foreign key in another table, changes like this would have to be
synchronized. A surrogate key like PartID is a better choice. Because the
number doesn’t mean anything, it probably will never change. Plus,
remember that you don’t have to show this number to the users, so they
will not even be tempted to change it.

The REFERENCES constraint is used to create foreign key relationships.
You will remember that in the PartUsed table there is a PartID column
that is a foreign key to the PartID in the Part table. This relationship can
be defined when you create the PartUsed table.

CREATE TABLE PartUsed (
JobTicketID i n t e g e r ,
L i n e I t e m N u m b e r i n t e g e r ,
PartID      integer REFERENCES Part(PartID),
Quantity   i n t e g e r

) ;

After the keyword REFERENCES, specify the name of the table and col-
umn to which this is a foreign key. The PRIMARY KEY and REFER-
ENCES constraints can be used as we’ve described them here only if the
primary and foreign keys are made up of just one column. If two or more
columns make up the key, a table-level constraint must be used.

SATURDAY EVENING  Building a Home for Your Data 169



The tables that you created in the Friday Evening session included one other column
constraint, CLUSTERED. This refers to the way the column’s data will be indexed. We’ll
cover this in the Sunday Morning session.

Table-Level Constraints
For a table like PartUsed that has more than one column in its primary
key, the CREATE TABLE command will not allow you to use the PRI-
MARY KEY constraint beside each column. Instead, you must use a
table-level constraint that is specified below all of the columns. The syn-
tax for table-level constraints is given in the following:

CREATE TABLE tablename (
colname1  datatype,
colname2 datatype,
. . .
[, PRIMARY KEY (colname1, colname2)]
[, FOREIGN KEY (colname1, colname2) REFERENCES othertable(col1, 

c o l 2 ) ]
[, UNIQUE (colname1, colname2)]

) ;

Be sure to take note of the commas before the keywords PRIMARY KEY and FOREIGN
KEY. Some databases do not like it when you forget these commas and will produce
cryptic error messages that will leave you scratching your head.

The PartUsed table needs to make use of two of these table-level con-
straints. First the primary key includes three columns: J o b T i c k e t I D,
L i n e I t e m N u m b e r, and P a r t I D. Next the foreign key that references the
JobTicketDetail table uses two columns: JobTicketID and L i n e I t e m N u m b e r.
Take a look at the CREATE TABLE command.

170 Learn SQL In a Weekend



CREATE TABLE PartUsed(
JobTicketID   i n t e g e r ,
LineItemNumber i n t e g e r ,
PartID        integer REFERENCES Part(PartID),
Quantity      i n t e g e r ,
PRIMARY KEY (JobTicketID, LineItemNumber, PartID),
FOREIGN KEY (JobTicketID, LineItemNumber) REFERENCES
JobTicketDetail(JobTicketID, LineItemNumber)
) ;

Notice how you can use a table-level constraint to create the foreign key
reference to J o b T i c k e t D e t a i l. However, at the same time, you can use a
column-level constraint to create the foreign key reference to P a r t. This
key could have been defined at the table level as well. The command that
follows will produce identical results to the one just preceding it.

CREATE TABLE PartUsed
(JobTicketID integer,
LineItemNumber integer,
PartID integer,
Quantity integer,
PRIMARY KEY (JobTicketID, LineItemNumber, PartID),
FOREIGN KEY (JobTicketID, LineItemNumber) REFERENCES

JobTicketDetail(JobTicketID, LineItemNumber),
FOREIGN KEY (PartID) REFERENCES Part(PartID)

) ;

By creating the PartUsed table with these two foreign keys, you’ve just
related three tables together. Figure 4.14 has a diagram that shows the
relationships.

The first thing we’d like you to notice are the little keys to the left of some
of the column names. These show columns that make up the primary key.
Now look at the lines between the tables. Each line indicates a foreign key

SATURDAY EVENING  Building a Home for Your Data 171

Figure 4.14

The relationship
between

J o b T i c k e t D e t a i l,
P a r t U s e d, and

P a r t.



relationship between two tables. One side of the line has a picture of a
key. This is the primary key side. The other, the foreign key side, has a
picture of a little chain link. From Figure 4.14 you can also see the one-
to-many relationships. The primary key side (with the key) is the “one”
side. The foreign key side (with the chain link) is the “many” side. Think
about the Part and PartUsed tables. There will only be one PartID 501 in
the Part table. However, over time, there will be several rows in P a r t U s e d
that have a PartID of 5 0 1.

It’s easy to see which columns are related to each other in Figure 4.14
because the same column names have been used. The columns that store
part numbers are called PartID in both the PartUsed and Part tables.
However, you do not have to use matching names to relate columns
together. Consider the tables in Figure 4.15.

This is a simplified example of tables that hold package shipment infor-
mation. Say you have a small customer table called C u s t and one for the
p a rcels called P a c k a g e. You can see that you need two foreign keys in
Package that re f e rence C u s t, one for the sender and one for the re c i p i e n t .
It would be nice if you could put two columns called CustomerID in the
Package table so that they matched C u s t. Of course, you can’t do this.
Instead, you create column names that make sense to you, SenderID a n d
R e c e i v e r I D. You then create a foreign key from each one of these to 
CustomerID in the Cust table. SQL will treat these foreign keys the same
as if they had matching column names.

172 Learn SQL In a Weekend

Figure 4.15

Column names do
not have to match

to set up foreign
key relationships.



Primary and foreign key definitions are not required in a database. If they
are not created, you will still be able to join tables together with a
SELECT command. However, having the keys does provide you with
some nice features. It will ensure that you do not enter any data that vio-
lates the relationship. For example, the foreign key between PartUsed and
Part ensures that no PartID is added to PartUsed that does not first exist
in P a r t. In other words, the Slick Shop cannot use a part until it has been
entered first. The foreign key will also prevent someone from deleting a
row in the Part table if it has already been used in the PartUsed table. This
will prevent orphaned data.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An orphaned data item is one that cannot be traced back to its parent. It is data in a
foreign key column that should exist as a primary key in another table but does not.This
is often the result of the row in the primary key table being deleted.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Your database might provide some other useful constraints related to fore i g n
keys. It might allow you to define cascading updates or cascading deletes.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A cascading update will handle the situation when a primary key value is updated.
The cascading update will automatically update any related foreign key values in other
tables to match the new value.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A cascading delete will handle the situation when a primary key row is deleted.The
cascading delete will automatically delete the related foreign key rows in other tables.
An alternative action might also be available to update the foreign key values to N U L L
instead of deleting the row.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

SATURDAY EVENING  Building a Home for Your Data 173



Another benefit of taking the time to define the primary and foreign keys
is that many external software packages will take advantage of this infor-
mation. Software such as data-modeling packages will read all of the table
information including the keys and create an Entity Relationship Dia-
gram (ERD). The diagrams in Figures 4.14 and 4.15 earlier came from a
data-modeling software package. The key definitions are also used by
graphical query tools to automatically create the joins for SELECT state-
ments.

The final table-level constraint that was shown in the syntax was
UNIQUE. Use this at the table level if you want the combination of two
or more columns to be unique. You might want to use the UNIQUE
constraint on the Customer table to ensure that you don’t enter the same
person twice. The combination of F i r s t N a m e, L a s t N a m e, and City is unique
in the CREATE TABLE command that follows:

CREATE TABLE Customer (
CustomerID    Integer IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,
FirstName  Varchar(20)  NULL,
LastName    Varchar(30)  NULL,
Address      Varchar(100) NULL,
City          Varchar(30)  NULL,
StateOrProvince  Char(2)      NULL,
PostalCode    Varchar(10)  NULL,
PhoneNumber    Varchar(10)  NULL,
UNIQUE (FirstName, LastName, City)

) ;

This means that the database will not allow you to add two people with
the same name from the same city. However, it will allow people to have
the same first and last names as long as they have different cities.

174 Learn SQL In a Weekend



■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

That scenario was just for example purposes.That would actually not be a very good way
to make sure the same customer did not get entered twice. It is certainly possible that
two different people with the same name live in the same city.The approach that we’ve
taken to this requirement in the past is to perform a check in the application that inserts
new customers. We had the program search for existing customers with the same name
as the one being added. If there were any matches, we had a window pop up display-
ing the matched names with addresses and let the user either choose one or continue
with the insert.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Take a Break!
Okay, time for a break! Don’t doze off now. In the next half of this chap-
ter, you’ll get to start plugging in some data and making that database
work for its money. But first, all that talk about data types got us think-
ing of a little quiz for you. The answers are at the end of the chapter.

1. Which data type would you use to store the number of miles the
moon is from the earth? (Hint: The moon is about 239,000 miles
from the earth.)

A. 1-byte unsigned integer

B. 2-byte unsigned integer

C. 4-byte integer

D. 8-byte integer

2. Which data type would you use to store the number of miles from
the earth to the sun? (Hint: The sun is about 92 million miles from
the earth.)

3. Which data type would be best to store the entire text of Lincoln’s
Gettysburg Address? (Hint: It contains just under 1,500 characters,
including spaces.)

SATURDAY EVENING  Building a Home for Your Data 175



A. CHAR(1500)

B. VARCHAR(8000)

C. MEMO

D. IMAGE

All right, enough of that. Let’s get back to business!

Modifying and Dropping Tables
So now you know enough to create your own tables, and assuming you
build them right the first time, you’re all set. But you know as well as we
do that tables will need to be changed, maybe even removed.

Modifying Tables
When we talk about modifying tables in this section, we mean chang-
ing the stru c t u re of the table, not the data inside the table. We’ll talk
about modifying the data later in this chapter in the section called
“ Updating Da t a . ”

Modifying the structure of a table is done with the ALTER TABLE com-
mand. There are three basic things that can be modified: columns, col-
umn constraints, and table constraints.

Columns can be added to a table, given a new name, given a new type,
or removed from the table. The syntax to add a column is as follows:

ALTER TABLE tablename
ADD colname datatype [constraints];

You simply give the new column a name and a data type. If you want to
add a column to hold part colors, use the following command:

ALTER TABLE Part
ADD Color varchar(15)

176 Learn SQL In a Weekend



This will add the column Color to the end of the table. Remember,
though, that SQL does not care about the order of the columns. It’s
important to note that this command can be executed to add the new col-
umn even if there is already data in the table. The values for the new col-
umn will all be set to N U L L. You can then use UPDATE commands to set
the values if you want.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Although the order of the columns does not matter, you might want to add your new
column in a logical position rather than at the end. Check to see if your DBMS supports
an option to add the column at any spot in the table.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

You probably also noticed that after the data type you get to specify 
column-level constraints. These will be the same ones that are available
with the CREATE TABLE command, such as NULL/NOT NULL, C H E C K, and
D E F A U L T. For the new Color column, you could have defined it to be N O T
N U L L. The problem with this is what value would be given to the existing
rows? It’s for this reason that your database will not allow you to add a N O T
NULL column unless you also define a default value.

ALTER TABLE Part
ADD Color varchar(15) NOT NULL DEFAULT 'Blue';

This will add the Color column, and every row that previously existed will
now have the value ' B l u e ' in this new column.

There is also the following syntax to remove a column from a table.

ALTER TABLE tablename
DROP COLUMN colname;

Any data that is in that column, of course, will be gone as well as con-
straints assigned to that column. Also, if the column is re f e renced in an
index, view, stored pro c e d u re, or trigger, one of two things will happen.
Either your database will not allow you to drop the column or the index,
v i ew, stored pro c e d u re, or trigger will not function properly anymore .

SATURDAY EVENING  Building a Home for Your Data 177



Fo l l owing is an example showing how to re m ove the Color c o l u m n .
In d e xes, views, triggers, and stored pro c e d u res will be cove red in 
Su n d a y’s chapters.

ALTER TABLE Part

DROP COLUMN Color

Not all DBMSs allow you to drop a column. If yours does not, your only way to do this
is to drop the entire table and re-create it without the column you don’t want.Of course,
as you’ll see in the next section,dropping a table will delete all of its data,so you’ll want
to save your data first. See the sidebar called “Using the INSERT Command to Help
Remove a Column” in the “Inserting Data” section of this chapter for one method of
dropping a column without losing all of your data.

T h e re are many other DBMS-specific uses of ALTER TABLE. The follow-
ing list includes some of the things that can be done with ALTER TA B L E .

➤ Change a column’s data type.

➤ Rename a table.

➤ Add primary or foreign keys.

➤ Create or drop indexes.

➤ Enable or disable triggers.

➤ Add column constraints such as D E F A U L T, C H E C K, U N I Q U E, and N U L L.

Dropping Tables
This probably goes without saying, but be careful! There is no recycle bin
where you can go back and restore a table after it’s gone. Even if you do
have a full database backup, it is not easy to get just one single table
restored apart from the rest of the database.

Deleting or dropping a table will delete almost everything that is con-
nected to it. Most important, all of the data in that table will be gone.
The table structure, indexes, triggers, constraints, and privileges will be

178 Learn SQL In a Weekend



deleted as well. Some DBMSs will delete the views associated with the
table; however, most will not. In this case, the view will be left sitting
there without its associated table and will no longer work. The same is
true of a stored procedure that references the dropped table. We’ll cover
stored procedures in the Sunday Morning session and we’ll talk about
views in the Sunday Afternoon session.

The syntax for dropping a table is pretty basic.

DROP TABLE tablename

It’s a simple little command but a powerful one! SQL will not stop to ask
you, “Are you sure?” It will just drop the table with no regrets. The
DROP TABLE command, however, is nice enough to prevent orphaned
data. It will not let you drop a table if another table has referenced it in a
foreign key.

Take, for example, the Customer and JobTicket tables. For right now,
assume that these are the only two tables in the database. The J o b T i c k e t
table has a foreign key on its CustomerID column that references the same
column in the Customer table. It’s okay to drop the JobTicket table
because this will simply leave a list of people in the Customer table. The
DBMS will not let you drop the Customer table, though. If it did, all that
would be left would be a bunch of CustomerID numbers in the J o b T i c k e t
table that do not relate to anyone.

If you really do want to drop the Customer table, you have a couple of
choices. You can drop the tables in the correct order, first J o b T i c k e t, and
then C u s t o m e r. Your other option is to remove the foreign key constraint
and then drop the Customer table. Of course, by doing this, you will leave
orphaned data in J o b T i c k e t.

Remember when we asked you to assume that those were the only two
tables in the database? Well, they’re not, are they? In fact, you would not
be able to drop J o b T i c k e t because JobTicketDetail references it in a for-
eign key. You can’t drop JobTicketDetail either because PartUsed 

SATURDAY EVENING  Building a Home for Your Data 179



references it in a foreign key. In order to drop the Customer table without
removing the constraints, you would have to drop tables in this order:
P a r t U s e d, J o b T i c k e t D e t a i l, J o b T i c k e t, and finally C u s t o m e r.

Just one more reason why your mother stresses the importance of good
planning and doing the job right the first time!

Inserting Data
So what good is a table without data? None. After all this planning, cre-
ating, altering, and dropping, it’s high time to store some real data. SQL
uses the INSERT command to put a new row of data into a table. Take
a look at the syntax:

INSERT INTO tablename [(colname1, colname2, ...)]
VALUES (value1, value2, ...);

It’s really a pretty easy command. Simply list the column names yo u
want to put data in, and then list the values in the same ord e r. Your data-
base will validate the command for you. It will make sure that yo u’ve
specified the same number of columns as values. It will also see to it that
the values are of the same data types as the columns. Of course, any
p roblem with these validations will be re p o rted as an error and no data
will be insert e d .

Here’s a sample INSERT command:

INSERT INTO Customer
(FirstName, LastName, Address, City, StateOrProvince, PostalCode)

V A L U E S
('Christian', 'Badar', '8007 Landover Rd.', 'Indianapolis', 'IN',   

' 4 6 0 0 0 ' ) ;

This command will insert a new person into the Customer table. Notice
how all of the values use quotes around the data. This is because all six of
the columns are character data types. If you are inserting data into a
numeric column, however, do not use quotes. Notice also how the order
of the values matches the order of the column names. A mistake that your

180 Learn SQL In a Weekend



database will not be able to catch for you will be if you mix up values of
the same data type. In the preceding command, if you switched ' I N ' and
' 4 6 0 0 0 ', that is the way they would be stored. They are both character
data going into character columns. The only thing that may save you is if
' 4 6 0 0 0 ' was too long to fit in the StateOrProvince column (which it is).
In this case, your DBMS will either generate an error or truncate the data
and store as much as will fit in the column.

What about the CustomerID column? Why not include that column?
You’ll recall that earlier in this chapter we pointed out that the C u s t o m e r I D
column in the Customer table is auto-numbered. Because of this you are
not allowed to specify a value for this column. The database will auto-
matically find the highest number used so far, increment it by one, and
use it in your new row.

Now consider this INSERT statement:

INSERT INTO Customer
(City, PostalCode, Address, FirstName, StateOrProvince, LastName)

V A L U E S
('Indianapolis', '46000', '8007 Landover Rd.', 'Christian', 'IN', 

' B a d a r ' ) ;

This will produce identical results as the previous command. This exam-
ple demonstrates that you do not have to list columns in the same order
as they were created. Again just make sure that the values appear in the
same order as the column names.

Not all of the columns in the table have to be included in the INSERT
command. Any column that allows NULL values or has a default defined
does not have to be specified. In the Customer table, most of the columns
a re defined to allow N U L Ls. If a customer came to the Slick Shop but did not
want to divulge her address, she could still be entered with this command:

INSERT INTO Customer (FirstName, LastName)
VALUES ('Mona', 'Lambdin');

SATURDAY EVENING  Building a Home for Your Data 181



This will leave the remaining fields with NULL values. They could later
be changed with an UPDATE command. If any of the columns that are
left out of the INSERT command have a default defined, the default
value will be inserted. If instead a value is provided, the value will super-
sede the default.

If you look back at the syntax of the INSERT command, you’ll see that
the list of columns is actually optional. You could write your INSERT
command list this:

INSERT INTO JobTicketDetail
VALUES (1, 2, 2, '5/18/2003', 0.25);

If you leave off the list of columns, the INSERT command assumes that
you are providing a value for every column and that they are in the cor-
rect order. If you want to leave any of the columns out or use a different
order, you must include the list of column names.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

It is not a good practice to leave out the column list, especially for INSERT statements
that are executed within a stored procedure, a trigger, or an external program. If some-
one ever adds new column, removes a column, or changes their order within the table,
this kind of INSERT will no longer work. An INSERT statement that explicitly names its
columns will most likely continue to function properly.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Here’s a useful variation of the INSERT syntax:

INSERT INTO tablename [(colname1, colname2, ...)]
SELECT colname1, colname2, ...

FROM othertable
[WHERE whereclause];

Instead of explicitly entering the values, this syntax allows you to get the
data from another table. This will work as long as the SELECT command
returns the same number of columns as is specified in the column list and
they are of the correct data type and size.

182 Learn SQL In a Weekend



Try this out with the Customer table. Say that the Slick Shop of Peoria is
closing and will be referring all of their customers to the Slick Shop of
Springfield. Now assume that Peoria’s Customer table has been put in the
Springfield database and named P e o r i a C u s t o m e r. You can copy all of the
Peoria customers into Springfield’s Customer table with this command:

INSERT INTO Customer (FirstName, LastName,
City, StateOrProvince, Address, PostalCode, Phone)

SELECT FirstName, LastName,
City, StateOrProvince, Address, PostalCode, 'REQUEST'

FROM PeoriaCustomer
WHERE City <> 'Springfield';

There are several things to take note of in this command. Again you can
see that columns are not inserted in their defined order, but the order
specified does match the column list. Next the phone numbers are not
copied. Instead, the word ‘REQUEST’ is used to remind the employees
to ask each customer for his or her phone number. Finally, a WHERE
clause is included on the SELECT command. This will only copy the
customers from PeoriaCustomer who do not live in Springfield.

Unlike the standard INSERT command, which would only load one row
at a time, this one has the potential to load hundreds or thousands of
rows at the same time.

SATURDAY EVENING  Building a Home for Your Data 183

USING THE INSERT COMMAND TO HELP REMOVE A COLUMN

A few pages back when we we re talking about using the A LTER TA B L E
command to re m ove a column, we mentioned that not all DBMSs support
this syntax. As we said, the only way to re m ove a column in that case is to
d rop the entire table and re - c reate it without the unwanted column. T h e
p roblem here is that all of the data will be lost. We’ll show you one solu-
tion to this problem here using the INSERT command with SELECT.

c o n . . .



184 Learn SQL In a Weekend

For this ex a m p l e , l e t ’s say yo u ’re working with a table called D e p a r t m e n t.
You want to re m ove the L o c a t i o n c o l u m n , but you want to be sure to keep
all of the rest of the data. First you’ll create a table to use temporarily that
has the same columns and data types as the D e p a r t m e n t t a b l e .

CREATE TABLE DeptTemp
(DeptID Integer,
DeptName Varchar(50),
ProfitCenterNum Integer,
Location Varchar(20)

) ;

You can just create this table without any constra i n t s .You especially do not
want any auto-numbered columns, because you want to retain all of the orig-
inal data. N ow you’ll copy all of the data from D e p a r t m e n t into this table.

INSERT INTO DeptTemp (DeptID, DeptName, ProfitCenterNum, 
L o c a t i o n )

SELECT DeptID, DeptName, ProfitCenterNum, Location
FROM Department;

Next drop the D e p a r t m e n t table and re-create it without the L o c a t i o n
column.

DROP TABLE Department;
CREATE TABLE Department (
(DeptID          Integer,
DeptName        Varchar(50),
ProfitCenterNum Integer

) ;

Now you can populate the new D e p a r t m e n t table using the data in the
temporary table.

INSERT INTO Department (DeptID, DeptName, ProfitCenterNum)
SELECT DeptID, DeptName, ProfitCenterNum

FROM DeptTemp;

Finally, after verifying that the data was copied correctly, you can get rid
of the temporary table.

DROP TABLE DeptTemp;



Before the INSERT statement adds rows to a table, it will first validate all
of the table- and column-level constraints. It will make sure that you are
not adding a duplicate primary key or duplicate data that violates a
UNIQUE constraint. It will make sure none of the CHECK constraints
are violated. It will also make sure you are not adding data to a foreign
key that does not exist in the referenced table. An example of this would
be if you tried to insert a new row into JobTicket with the CustomerID set
to 5 0 0, when there is no CustomerID of 500 in the Customer table. This is
where the strength of the relational database comes into play. This kind
of referential integrity validation will help to ensure that you are not cre-
ating bad data. It will force you to create the customer row first and then
the job ticket.

Updating Data
Modifying data in SQL is accomplished by using the UPDATE com-
mand. The syntax for the command is as follows:

UPDATE tablename
SET colname1 = expression1, colname2 = expression2, ...

[WHERE whereclause];

An example of a ve ry simple UPDATE command follows. Using this
command, yo u’ll change eve ry row in the Customer table to have the
same state.

UPDATE Customer
SET StateOrProvince = 'IL';

This will change every single state to Illinois because you did not include
a WHERE clause at the end of the command. This is the same as run-
ning a SELECT without a WHERE clause—all rows are affected. Most
times this is not what you will want to do. Usually you will want to
include a WHERE clause in order to perform a more selective update.

SATURDAY EVENING  Building a Home for Your Data 185



◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Take extra care when issuing an UPDATE command. It is easy to get so caught up with
the columns and values you’re setting that you forget to add the WHERE clause. We’ve
done that before on a live production database. Believe us—that can ruin your day!
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Besides the WHERE clause, the syntax also shows that more than one
column can be updated at the same time. Let’s try the UPDATE com-
mand again, this time changing the city and state of everyone who has
certain ZIP codes.

UPDATE Customer
SET City = 'Springfield', StateOrProvince = 'IL'

WHERE PostalCode IN ('62701', '62702', '62703', '62704', '62707');

This command will set both the City and StateOrProvince columns at the
same time. Notice how the WHERE clause is identical to one that you
would use in a SELECT command. Nearly any WHERE clause that you
can use with a SELECT command can also be placed in an UPDATE.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Before executing an UPDATE command, you might want to test it first.To do this, write
a SELECT command and paste in the exact WHERE clause that you are planning on
using in the UPDATE.You can then examine the rows that are returned.These will be the
very same rows that you are getting ready to update.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

So UPDATE can use the same WHERE clauses as the SELECT state-
ment. What about that cool subquery you learned about this afternoon?
Yes, that will work too! A subquery can be used in the WHERE clause of
an UPDATE. Let’s say that you have several jobs that are backlogged in
the JobTicket table. They are scheduled to start over the next two weeks.
You already have rows for them in J o b T i c k e t. However, you want to
schedule all the customers from Peoria to have their service start this
Tuesday. You could use a subquery to look at the City column in the 
Customer table even though you’re updating J o b T i c k e t.

186 Learn SQL In a Weekend



UPDATE JobTicket
SET StartDate = '2003-02-04'

WHERE CustomerID IN
(SELECT CustomerID

FROM Customer
WHERE City = 'Peoria' AND StateOrProvince = 'IL')
AND EndDate IS NULL;

You’ve taken care in the WHERE clause of the subquery to make sure
that you’re updating the customers from Peoria, IL (not the ones from
Peoria, AZ). You’re also being careful to only update the jobs that are not
already done, by looking for end dates that are N U L L.

A nice feature of the UPDATE command is that the expression to which
you set the column does not have to be a hard-coded value. It can be
based on the value of another column or even based on its own value. If
you want to increase the cost of all of the filters the Slick Shop sells by 5
percent, you can use the following UPDATE:

UPDATE Part
SET Cost = Cost * 1.05

WHERE Description LIKE '%filter%';

The UPDATE command will even let you use the result of a query to set
the new column value. Study the next command for a minute.

UPDATE Vehicle
SET LastServiceDate = (SELECT MAX(jtd.DateComplete)

FROM JobTicketDetail jtd
JOIN JobTicket jt

ON jt.JobTicketID = jtd.JobTicketID
WHERE jt.VehicleID = 4)

WHERE VehicleID = 4;

In this example, yo u’re updating the LastServiceDate column in the V e h i c l e
table for vehicle number 4. Yo u’re making sure that its L a s t S e r v i c e D a t e
matches the latest DateComplete for that same vehicle in the J o b T i c k e t D e t a i l
table. Look at the SELECT command first. It joins JobTicket and 
JobTicketDetail so that it can find the maximum DateComplete value for

SATURDAY EVENING  Building a Home for Your Data 187



vehicle number 4. It’s important to note that this query will return only one
column and one row. Yo u’ve then taken that SELECT command and placed
it in an otherwise ord i n a ry UPDATE statement.

As with the INSERT statement, UPDATE will verify all table and col-
umn constraints to make sure there are no violations. If there are viola-
tions, the UPDATE will be cancelled and an error message will be
returned. A foreign key relationship is one of the most important con-
straints verified. Your database will ensure that these relationships remain
valid. Any attempt to violate a foreign key relationship will result in an
error and the data will not be updated. Say, for example, you want to
update the CustomerID in the JobTicket table because you think that the
customer is incorrect for job ticket 4 0 5 1. Run the following UPDATE
statement:

UPDATE JobTicket
SET CustomerID = 22018

WHERE JobTicketID = 4051;

This statement will run fine if there really is a CustomerID of 22018 in the
Customer table. If there is not, then the UPDATE will fail and you will
get an error message explaining that you were trying to violate a foreign
key relationship. If the UPDATE command were to allow you to do this,
you would be creating bad data. You would have a job ticket that could
not be traced back to a customer.

What if you tried to update the CustomerID in the Customer table instead?
Let’s say you get the wacky idea that you want to change a customer’s ID
number from 1 to 1 0 1. Now you’re entering a dangerous area, because
you’re thinking about updating a primary key.

UPDATE Customer
SET CustomerID = 101

WHERE CustomerID = 1;

This command will work as long as CustomerID 1 has not been used as a
foreign key value in any other table. In this case, that means as long as
there are no vehicles or job tickets assigned to this customer.

188 Learn SQL In a Weekend



In the sample database, this UPDATE will not work even if the CustomerID has not
been used as a foreign key.This is because the CustomerID is an auto-numbered col-
umn. An auto-numbered column does not allow updates.

Earlier in the chapter, we talked about and defined cascading updates. If
you were allowed to update the CustomerID column and had defined a cas-
cading update to take place, then you would not have received an error.
Instead, when you issued the previous UPDATE command, it would
have updated the customer number to 101 in all three tables: C u s t o m e r,
V e h i c l e, and J o b T i c k e t.

Deleting Data
We’ve talked about inserting and updating, so it must be time for delet-
ing. When you use the SQL DELETE command, you will be removing
an entire row of data at the same time. If you really just want to delete
the values from a few of the columns but leave the rest of the row, then
you should use the UPDATE command instead.

The syntax for the DELETE command is as follows:

DELETE FROM tablename [WHERE whereclause];

It’s a pretty easy command. Simply name the table and specify which
rows you want to delete. Just like the UPDATE command, DELETE
uses a WHERE clause to specify which rows will be deleted. Again, this
WHERE clause is the same as you would use in a SELECT statement.
The WHERE clause is optional, so the most simple form of DELETE
would be like this example:

DELETE FROM PartUsed

Because you did not use a WHERE clause, this command will delete all
of the rows in the table. Remember the caution we gave you in the last
section about forgetting the WHERE clause on an UPDATE? How bad

SATURDAY EVENING  Building a Home for Your Data 189



would it be to forget it on a DELETE? There’s no easy way to get those
rows back. If you don’t have a copy or backup of that data, it’s gone for-
ever. We’re happy to report that we haven’t made this mistake on a pro-
duction database (yet).

Using the DELETE command to delete all of the rows from a large table
may take a long time. If your database is using a transaction log, each and
every row deleted must have information written to the log. Some
DBMSs offer the TRUNCATE TABLE command as an alternative to
DELETE.

TRUNCATE TABLE tablename;

This command will very quickly delete all rows from the table. The trade-
off is that this command does not store any information in the transac-
tion log. This means that if you have to restore transactions from backup,
there will be no record of this action. Your DBMS might also prevent you
from using TRUNCATE on tables that are referenced by other tables as
a foreign key.

Although there are many perfectly valid reasons to delete all of the rows
from a table, most of the time you’ll find yourself deleting only a few rows
at a time. In fact, it is very common to use the primary key column or
columns in the WHERE clause to delete just one row. Following is an
example showing how to remove an obsolete part from the Part table.

DELETE FROM Part WHERE PartID = 323;

Because PartID is the primary key of the Part table, you are ensuring that
only one row will be deleted. To delete just one row from a table that has
more than one column in the primary key such as J o b T i c k e t D e t a i l, you
use this command:

DELETE FROM JobTicketDetail
WHERE JobTicketID = 4039 AND LineItemNumber = 3;

190 Learn SQL In a Weekend



Just like SELECT and UPDATE, the WHERE clause can get more sophis-
ticated. It can include subqueries that re f e rence other tables. Yo u’ll use a
s u b q u e ry to modify the earlier example where you deleted an obsolete part .

DELETE FROM Part
WHERE PartID IN
(SELECT PartID

FROM Part
WHERE PartID NOT IN (SELECT DISTINCT PartID FROM PartUsed));

This DELETE command actually uses a subquery within a subquery. If
you examine it closely, you’ll see that the second SELECT gets a list of all
parts that have been used. The first SELECT gets a list from the P a r t
table of everything that is not in the list of used parts. This list of unused
parts is then deleted from the Part table.

Just like the tip that we gave you in the “Updating Data” section, it is also
a good idea to test the WHERE clause with a SELECT before running
the DELETE. Because the preceding command to delete unused parts is
a little involved, you would probably want to test it first this way:

SELECT PartID, Description, Cost
FROM Part

WHERE PartID IN
(SELECT PartID

FROM Part
WHERE PartID NOT IN (SELECT DISTINCT PartID FROM PartUsed));

This will show you the list of products that are unused. If this looks good,
you can then run the DELETE. The DELETE command will indicate
that it succeeded, and most DBMSs will even tell you how many rows
were deleted. If you used the same exact WHERE clause for the SELECT
and DELETE, the number of rows should match. Just to be sure, you
could run the SELECT once again. This time it should not return any
rows, meaning that now all of the parts in the Part table have been used
at least once.

SATURDAY EVENING  Building a Home for Your Data 191



It is perfectly safe to issue a DELETE command with a WHERE clause that
does not find any rows. For example, nothing will happen if the Part t a b l e
has PartID values from 1 to 100 and you issue the following command:

DELETE FROM Part WHERE PartID = 323;

This makes it convenient to run a recurring DELETE job and not have
to worry about whether or not the WHERE clause found any rows. You
could run the earlier DELETE command every couple of months to find
and delete all unused parts. If it runs when there are not unused parts to
be deleted, then no harm done!

The DELETE command is also subject to referential integrity checks. In
the preceding examples, you have been deleting rows from the Part table.
Every time you do this, your database is going to check to make sure that
the PartID you’re deleting is not used as a foreign key value in the 
PartUsed table. If it has been used, the delete will not be allowed. Were it
to allow this delete, you would be leaving orphaned data in P a r t U s e d.

Remember the discussion earlier in this chapter about dropping tables,
and how because of the foreign keys they had to be dropped in a certain
order? For the same reason, this applies to DELETE as well. If you real-
ly want to delete a part that has been used already, you will first have to
delete all of the PartUsed rows that reference that P a r t I D. However, once
you delete rows from P a r t U s e d, you may have just left some of the line
items in JobTicketDetail without parts. You may want to delete those line
items as well. Finally, because you’ve now deleted some line items from a
job ticket, you may want to just go ahead and delete the whole thing from
J o b T i c k e t. So this is just an example that shows you should not take
deletes lightly in a relational database. Stop first and think about the con-
sequences a delete will have on the related tables.

192 Learn SQL In a Weekend



SATURDAY EVENING  Building a Home for Your Data 193

REFERENTIAL INTEGRITY SEEMS LIKE A

PAIN—SHOULD YOU SKIP IT?

You’re probably guessing that we’ll answer that with,“No! Don’t ever
skip it! Are you nuts?”Actually, the answer is that there are pros and
cons of both sides of this question.

We’ve discussed many good reasons to build referential integrity into
your database.These reasons include ensuring that no orphaned data
is created by INSERTs, UPDATEs, or DELETEs and keeping primary and
foreign key relationships linked at all times. It is because of this refer-
ential integrity, for example, that you can be confident that when you
look at a job ticket, you will be able to trace it back to a valid cus-
tomer and a valid vehicle.

We also discussed earlier the fact that you don’t have to define primary
and foreign keys if you don’t want to, thus removing the referential
integrity. If you are in a database design phase or very early in an
application development stage, you might want to temporarily go with-
out the referential integrity. During these periods, the table structures
are often subject to frequent changes. Columns may be added,
removed, and shifted to other tables as you are trying to come up with
the best design.

L e t ’s say that yo u ’ve just finished your database design and created all
of your tables.You then discover that you need to add a column to hold
a second customer address line and that you don’t need the phone num-
ber column after all.Your DBMS may be one that doesn’t allow you to
delete columns, so you have to drop the table and re - c reate it. Earlier in
this chapter, we talked about the effect that re f e rential integrity has on
d ropping tables. If you have all of the foreign keys defined, you wo u l d
h ave to first drop three other tables in the correct order before yo u
could drop the C u s t o m e r t a b l e .T h e n , of course, you would have to 

c o n . . .



194 Learn SQL In a Weekend

re - c reate all four tables. To make matters wo r s e , what if those tables
had data in them that you didn’t want to lose? Without the foreign key s ,
h oweve r, you could have just worked with the C u s t o m e r table alone.

One strategy is to leave the foreign keys off until the database design is
nailed down tight. This strategy does come with its dangers, t h o u g h .
M a ny times, especially on large pro j e c t s , the goal of finalizing a design is
a moving targ e t . We ’ve been on projects where application deve l o p m e n t
gets fully under way while the table structures are still changing on a
daily basis. The application developers might be completely unawa re that
the foreign keys are missing. This can lead to big mistakes.

Let’s say that you’ve decided to leave your foreign keys off until you’re
sure the table structures are 100 percent correct. Meanwhile develop-
ers begin coding and you eventually forget to create the keys. Several
weeks later, after an application is in production, you discover that the
database has a whole bunch of job tickets with N U L L values in the
C u s t o m e r I D column—some even have invalid numbers.The developers
didn’t know that a job ticket always had to have a customer assigned
to it.They also wrote code that deletes customers without regard for
whether there are any job tickets or vehicles related to that customer.
The database allowed them to write these INSERTs and DELETEs, so
they figured they must be okay. Now you not only have bad data that
must be cleaned up but the developers have to rewrite their code.

Another situation where leaving referential integrity off is common is
on data warehouse databases.These databases are typically built for
reporting purposes. Often they are tuned such that they are no longer
fully normalized. Also some or all of the tables may have their data
completely deleted and reloaded on a routine basis. Because these
kinds of tables are not being used as the primary data entry destina-
tion, they don’t need the benefits of referential integrity. It would also
be a huge hassle to delete and reload the tables in the proper order.

con...



If your DBMS provides for cascading deletes, you might find this to be a
handy feature. A cascading delete is specified while defining a foreign key.
The following code shows the CREATE TABLE statement for the 
Vehicle table used in last night’s session. This one is modified to include
a cascading delete action on the foreign key that references C u s t o m e r.

CREATE TABLE Vehicle (
VehicleID Integer IDENTITY(1,1) NOT NULL PRIMARY KEY 

C L U S T E R E D ,
VehicleYear SmallInt NULL,
Make    Varchar(30) NULL,
Model    Varchar(30) NULL,
Color        Varchar(30) NULL,
LicensePlate#  Varchar(10) NULL,
LastServiceDate Smalldatetime NULL,
CustomerID    Integer NOT NULL

REFERENCES Customer (CustomerID) ON DELETE CASCADE
) ;

With this cascading delete in place, if you delete a customer from the 
Customer table, all vehicles that customer owns will be deleted as well.
This is a powerful feature that can be a nice time-saver. It can also be con-
fusing for people who don’t realize the database has cascading actions and
can’t figure out why certain rows sometimes disappear.

SATURDAY EVENING  Building a Home for Your Data 195

Naturally, the decision to use referential integrity will rely on your
unique situation.As you can tell from the preceding discussion, it is
there to help you keep a nice orderly database but at times can be an
administrative pain. Our recommendation is that you plan to use refer-
ential integrity for active data entry and transaction processing data-
bases.Also make it a priority to get it in place as soon as possible.
However, if you have a data warehouse or reporting database, you
might be better off without the referential integrity.



Cascading deletes can involve more than just two tables. The preceding
example might not work so smoothly in the Slick Shop database because
the VehicleID column is used as a foreign key in the JobTicket table. This
means that you could not delete a vehicle if it had one or more job tick-
ets created for it. You could, however, set up a cascading delete on
J o b T i c k e t. In fact, you might want to set up cascading deletes all the way
down the chain of tables. If you did this, when you deleted a row from
C u s t o m e r, not only would all related rows from Vehicle be deleted but so
also would related rows from J o b T i c k e t, J o b T i c k e t D e t a i l, and P a r t U s e d.
This cascading delete is depicted in Figure 4.16. In effect, you’d be eras-
ing all traces of that customer ever existing. What power you now possess!

Figure 4.16 shows how this one command

DELETE FROM Customer WHERE CustomerID = 247;

can actually delete 16 rows.

196 Learn SQL In a Weekend

Figure 4.16

The effects of a
single DELETE

command, when all
of the tables have
cascading delete
actions defined.



Modifying and Dropping Databases
The ALTER DATABASE or SET command is available to make changes
to a database, and the DROP DATABASE command will delete the
whole thing.

Modifying Databases
Your DBMS will provide you with one or more methods of changing its
characteristics. It might provide SQL commands such as these two:

ALTER DATABASE dbname [options];
SET option = value;

In addition to or in place of these, you might also have a graphical inter-
face available to make database changes. These are changes or settings
that affect the entire database. They include such things as

➤ Adding, deleting, or resizing database storage files

➤ Specifying backup drives or tapes

➤ Specifying the use of transaction logs

➤ Setting backup and recovery options

➤ Changing sort options

➤ Changing character sets

➤ Setting the behavior of transactions

➤ Setting cache options

This merely names a few of the things that can be changed. When we
talked about creating databases earlier, we said that creating a database
with its default options is sufficient for most databases. These settings and
options will let you fine-tune your databases after development is well
under way or even complete.

SATURDAY EVENING  Building a Home for Your Data 197



Dropping Databases
D ROP DATABASE is the granddaddy of all DROP commands. Is s u-
ing this command will wipe out eve rything—tables, data, indexe s ,
triggers, stored pro c e d u res, and permissions. Not your eve ryday kind
of command.

DROP DATABASE dbname;

Depending on your DBMS and even the version you are using, DROP
DATABASE might not actually remove the database files. It might just
remove all references to the database, so that the DBMS no longer knows
anything about it, and no one can access it. The files might be left there
for you to back up or delete as you see fit. Be sure to determine whether
your DBMS leaves the files. Unused database files could be left consum-
ing a lot of valuable disk space.

What’s Next?
That is definitely enough for today, wouldn’t you agree? You’ve been
through all the fundamentals of SQL. You’re now equipped to handle a
large percentage of the SQL tasks that you’ll need to do on a day-to-day
basis. Tomorrow morning, you’ll be digging deeper by taking a look at
how you can fine-tune your tables and SQL. You know how to put data
in and get it back out. But is it fast enough for you? Is it fast enough for
your end users? Hint: It’s never fast enough for your end users.

Until then, get up and have a good night. Rent a movie, re i n t roduce yo u r-
self to your family, or take yourself to dinner. See you in the morning!

Oh, the answers to the quiz?

1. The moon is about 239,000 miles from the earth. You would
need a 4-byte integer to store this number. A 2-byte unsigned
integer will only hold 65,536. A 4-byte signed integer will hold
m o re than 2 billion.

198 Learn SQL In a Weekend



2. The sun is about 92 million miles from the earth. So the same 4-
byte integer could be used.

3. The Gettysburg Address contains just under 1,500 characters
including spaces. So you would really only need the CHAR(1500).

SATURDAY EVENING  Building a Home for Your Data 199



This page intentionally left blank 



S U N D A Y  M O R N I N G

O p t i m i z a t i o n —
Feel the Need for

S p e e d ?

S U N D A Y  M O R N I N G

O p t i m i z a t i o n —
Feel the Need for

S p e e d ?

S U N D A Y  M O R N I N G

O p t i m i z a t i o n —
Feel the Need for

S p e e d ?
➤ Understanding Indexes
➤ Creating Stored Procedures
➤ Understanding Transactions
➤ Optimizing Your Database



This page intentionally left blank 



RRelational database management systems are good. Most have been
around for years and have been fine-tuned by their vendors for
optimal performance. You’ve already learned enough this weekend

to create a database, say to catalog your home DVD collection. This data-
base would perform very nicely too. However, if your database is 
supporting a business, you’ll want to begin investigating some perfor-
mance enhancements. These will help ensure that the database users get
the best response time possible.

Understanding Indexes
The number one performance booster in a relational database is the use
of indexes. Indexes provide fast access to data. Like many of the SQL lan-
guage features we’ve talked about so far, indexes have a very basic form
and syntax. However, you can benefit even further from learning about
their inner workings.

A SQL index is very similar to the index in the back of a book. If you
want to find pages in this book that talk about the SELECT command,
you could start at the beginning and flip through page by page looking for
it. Every time you found a page that talked about the SELECT com-
mand, you could dog-ear that page and continue searching. You’d have to
search all the way to the end of the book because you never know where
we’ll talk about SELECT next. Well, you’ve read enough books to know

203



that’s not the way to do it. This book has an index, so you can just go
back there, look up SELECT, and note all of the pages next to it. This is
much faster, especially because the index is in alphabetical order.

A SQL index works the same way. If you ask your database to find all of
the customers who have the last name Hatfield, you don’t want it to have
to look at every single customer. It would be faster if it could look at an
index like this book has so that it would be able to quickly find every
Hatfield. That’s just what we’re going to show you how to do.

Creating an Index
A SQL index is created on a column or a group of columns within a table.
A table can also have more than one index, a nice feature that this book
does not have. To get started, take a look at the syntax to create an index.

CREATE [UNIQUE] INDEX indexname
ON tablename (columnname [ASC | DESC] [,…n]);

This will build a single index on one or more columns on a single table.
A minute ago we were talking about finding customers with the last name
Hatfield. We said that it would be faster if you could use an index to look
up last names. So that’s just what you’ll do—create an index on the last
name column of the Customer table.

CREATE INDEX idx_LastName
ON Customer (LastName);

That’s all you need to do. When you execute this CREATE INDEX com-
mand, after a few seconds it will be done. The index will be created and
available for use. Now the really nice thing about the index is that you
don’t have to worry about explicitly using it because your DBMS will do
that for you. If you’re ready to do a last name search, just submit a
SELECT command.

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName = 'Hatfield';

204 Learn SQL In a Weekend



This is no different than the basic SELECT that you learned about in the
Sa t u rday Morning session. Only now it will return results faster. 
The DBMS automatically recognizes that you are searching based on the
LastName column. It also knows that an index is available for that column.
So in the same way you quickly find things in this book with its index,
the DBMS looks at the index named idx_LastName and knows right where
to find Hatfield. You didn’t even have to specify the name of the index—
the DBMS just knew it was there and used it!

So you had to give the index a name but didn’t have to use it. Will you
ever use the name? Rarely, if at all. An index is a database object, just like
a table, a column, a stored procedure, and a trigger. All database objects
must have a name, so that’s why you need to come up with one. We’re
going to use a naming convention of idx_ followed by the column name.
You can call it whatever you want, but be aware that you might occa-
sionally see this name pop up in places. These object names are stored in
the system or catalog tables, and your DBMS has commands that can list
the objects. Also sometimes when there is a problem a SQL error message
might include the name of an index. The idx_ naming convention will
help you quickly identify that the object name you’re looking at is an
index on the L a s t N a m e column.

When new customers come into the Slick Shop, they most certainly will
not arrive in alphabetical order. This means that they will be inserted into
the C u s t o m e r table in a random, unsorted order. This is fine because, as
Figure 5.1 shows, the index will be sorted and will point to the data rows.

A SQL database will not actually store the index entries in a top-to-bottom alphabet-
ized list like this.The DBMS will key the index in a hierarchical format called a B-Tree.
This provides even faster lookups than an alphabetized list would. Fortunately, you never
have to worry about how indexes are internally stored. So for this book, we’ll just keep
it simple and continue to show indexes as a sorted list like the one shown in Figure 5.1.

205SUNDAY MORNING  Optimization—Feel the Need for Speed?



So do you have to create an index before you can search on a particular
column? No, you can search using a WHERE clause on any column,
indexed or not. However, if you search on a column that has no index, it
will be the same as flipping through this book page by page. The
SELECT command will have to look at every single row for the match-
ing value. This kind of search is called a table scan.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A table scan is the process of a SQL command looking at every row in a table one by
one in order to test the values of one or more columns.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A table scan is the kind of activity that you will want to try to avoid. The
sample database only has a handful of customers right now. Any DBMS
will be able to easily look up a customer from this list in the blink of an
eye, even without an index. Someday, though, the Slick Shop expects to
get more than 100,000 customers in their database. Every time a new
customer gets added, the SELECT command will get a little bit slower.
It will be hard to notice at first, but soon the users will realize that your
database is not as speedy as it once was. Then they’ll call you, and you will
be forced to feel their pain.

With an index, however, queries will seem to run as quickly with 100,000
rows as they did with 10. A well-indexed table can produce excellent
response times even after millions upon millions of rows have been insert-
ed. Now we’re not going to lie to you and tell you that a query on a 10-
row table will perform the same as on a 10 million-row table. We will,
however, say that performance will degrade an order of magnitude faster

206 Learn SQL In a Weekend

Figure 5.1

Sorted index
entries point to the

data rows.



on a table without an index. The DBMS stores the index information so
efficiently that even with 10 million entries it will only have to look at a
few index entries before it finds the one you want.

What about when you add new customers or change some last names?
How do you update the index? Good news—you don’t have to! The
DBMS will constantly watch the INSERT and DELETE commands that
you perform and accordingly add or remove entries from the index. It will
also watch for UPDATE commands that affect the index, such as a
change to a last name. In this case, the index entry will be re-sorted to its
proper place. Figure 5.2 shows how the index from earlier is affected by
such changes.

So you just worry about maintaining the data and the DBMS will worry
about maintaining the index. One thing you might want to think about,
however, is whether updating an indexed column will cause too much of
a strain on the database. As you saw, when the LastName column was
updated, the index had to be rearranged. This operation will occur very
quickly. But what if data from this column were being updated hundreds
of times per day, or even per hour? This process of re-sorting the index
might begin to contribute to poor performance. More about this later
when we talk about performance and optimization.

207SUNDAY MORNING  Optimization—Feel the Need for Speed?

Figure 5.2

We added a new
c u s t o m e r, 1 0 6 ,

which has caused a
new index entry.We
also updated Pa u l a ’s

last name from
Carter to Zimmer,
which has caused
her index entry to

m ove to the bottom
of the list.



In the Sa t u rday Morning and Sa t u rday Afternoon sessions, you learned
h ow to perform some more advanced WHERE clauses. You saw the use
of ranges with BETWEEN, lists with IN, and wildcards with LIKE. T h e
database can use an index for any of these types of queries. The next
t h ree SELECT commands that follow will make use of the index on the
LastName c o l u m n .

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName BETWEEN 'A b b o t t' AND 'H a t f i e l d';

Because the DBMS stores the index entries in order, it just has to find the
last name Abbott and then return all of the rows in index order until it
finds Hatfield.

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName IN ('A b b o t t', 'H a t f i e l d', 'C a r t e r') ;

This is very similar to the query earlier that looked for Hatfield. Only this
time the database will use the index to locate three different names.

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName LIKE 'H %';

This query too will use the index. It’s the same idea as you using a phone
book to point out all the last names that start with H. You would be able
to quickly open the phone book and find the first name that starts with
H, and then run your finger down all of the names until you hit the last
one starting with H. Now imagine someone asking you to point out all
of the last names in the phone book that end with the letter S. That would
be much more difficult. In fact, you would just have to start from the
beginning and examine every name in the book. A SELECT command
would have to do the same thing. It would have to perform a full table
scan to get this list of names. 

208 Learn SQL In a Weekend



You would write the SELECT command like this:

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName LIKE '% S';

This query will work and will return the correct results—it will just be
much slower than the previous one. When wildcard characters are used
in queries, the indexes will only be used if the wildcard characters come
at the end of the comparison string.

As you saw in the Saturday Morning session, the WHERE clause of a
SELECT is likely to contain more than one comparison. Consider the
following query:

SELECT FirstName, LastName, City
FROM Customer

WHERE LastName = 'T h o m p s o n'
AND FirstName = 'D a v i s';

If you still only have the one index on the LastName column, will this
query be able to use it? Yes, it will. The DBMS’s optimizer will recognize
that the LastName column has an index and use it to find all of the peo-
ple with the last name Thompson. That will take care of most of the
work. Then it will just need to scan through the Thompsons one by one
looking for everyone with the first name Davis. So because the F i r s t N a m e
column is not indexed, it still has to do a little bit of scanning, but it’s
minimal compared to a full table scan.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An optimizer is programming logic that is built into the DBMS. Its purpose it to inves-
tigate SQL commands before they are executed and determine the best and fastest way
to execute the command.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

As mentioned at the beginning of this section, you can create more than
one index on a table. You could create one index on the LastName column,
one on the FirstName column, and one on the Address column. In fact,
you could create an index on every single column if you wanted to. We

209SUNDAY MORNING  Optimization—Feel the Need for Speed?



don’t recommend that you do this though. Just as the index for this book
takes up a certain amount of space, so do database indexes. Indexes can
also hamper performance in some areas. Later in this chapter, we’ll talk
about the space consumed by indexes, performance issues, and strategies
for determining which columns to index.

For now, you should just think about what makes sense. You know that
the optimizer will look at the WHERE clauses for indexed columns. So
ask yourself which columns you most commonly use in WHERE claus-
es. You might not know yet if this is a brand new database. If not, you’ll
have to take your best guess for now. You can always add or remove index-
es later as development progresses. In the Customer table, you think you’ll
be doing a lot of searching by the customer’s last name. You also know
that you’re going to have a report that looks up all customers in a given
ZIP code. Knowing this, you’ll create an index on the LastName column
and another one on P o s t a l C o d e. Remember this does not limit you to
querying on those two columns alone. You might need to occasionally
search on the PhoneNumber column. That’s okay—it will just be a little
slower than searching on the LastName or PostalCode columns. If you find
yourself doing frequent searches on P h o n e N u m b e r, it probably makes sense
to index that column too.

The primary key column is always a good choice for an index as well. In
fact, many DBMSs will automatically create an index on this column
when you create the table and indicate that it is the primary key. If this is
not done automatically, you will want to go ahead and create it on your
own. There are two reasons for this. First, the primary key of a table ends
up getting frequently used in WHERE clauses. Second, the primary key
will be used in joins. When two tables are joined together, the query will
benefit greatly if the columns involved in the join are indexed. The
DBMS is actually performing a lookup based on the joined columns, the
same as if you had put them in the WHERE clause. The following query
joins Customer and Vehicle to get a list of each customer and the cus-
tomer’s related cars.

210 Learn SQL In a Weekend



SELECT LastName, FirstName, VehicleYear, Make, Model
FROM Customer INNER JOIN Vehicle

ON Customer.CustomerID = Vehicle.CustomerID
ORDER BY LastName, FirstName, VehicleYear DESC;

The CustomerID column from Customer is being used in the join and so
is the CustomerID f rom V e h i c l e. The query can run faster if both of these
columns are indexed. The CustomerID column is a foreign key in the
Vehicle table. As a rule of thumb, all primary and foreign key columns
a re excellent candidates for indexe s .

Indexes are not used exclusively by SELECT statements. Inserts, updates,
and deletes will benefit from them as well. As we showed you in the 
Saturday Evening session, the INSERT, UPDATE, and DELETE com-
mands can each make use of a WHERE clause. For example, if you 
create an index on the VehicleYear column, the following UPDATE com-
mand will use it.

UPDATE Vehicle
SET LicensePlate# = NULL

WHERE VehicleYear = 2004;

The index will be used to find the correct rows to update in the same way
a SELECT command would use the index to find the rows to display.

Composite Indexes
Now recall that the JobTicketDetail table has two columns in its prima-
ry key. Also recall that earlier in this chapter we mentioned that an index
could be created on more than one column. The syntax for creating an
index on the primary key of JobTicketDetail then looks like this:

CREATE INDEX idx_JobID_LineNum
ON JobTicketDetail (JobTicketID, LineItemNumber);

This one index, i d x _ J o b I D _ L i n e N u m, has the index information for both
columns. An index that is made up of two or more columns is called a
composite index. Your new composite index is perfect because it includes
both columns that define the primary key. Often these two columns will
be used in the join of a query, like the following SELECT.

211SUNDAY MORNING  Optimization—Feel the Need for Speed?



SELECT j.HoursSpent, p.PartID, p.Quantity
FROM JobTicketDetail AS j INNER JOIN PartUsed AS p

ON j.JobTicketID = p.JobTicketID
AND j.LineItemNumber = p.LineItemNumber

WHERE j.HoursSpent < 0.50;

This query lists all of the P a r t I Ds that have been used on a line item task
that took less than a half hour. Notice that the joined columns are
JobTicketID and L i n e I t e m N u m b e r, the same ones on which you built your
new index.

There are many other cases where you can use a composite index other
than primary and foreign keys. Let’s say that you’ve found out that the
Slick Shop often queries for vehicles based on their make, model, and
color. For example, it’s common for them to need to look for a red Ford
Mustang.

SELECT VehicleID, CustomerID, VehicleYear, Make, Model, Color
FROM Vehicle

WHERE Make = 'F o r d'
AND Model = 'M u s t a n g'
AND Color = 'R e d';

You might want to create a composite index on all three of these columns:
M a k e, M o d e l, and C o l o r.

CREATE INDEX idx_Make_Model_Color
ON Vehicle (Make, Model, Color);

Now when you execute that query to look for all red Ford Mustangs, the
optimizer will use this one index to quickly find each of those rows. This
index will also get used when a query uses only Make and Model in the
WHERE clause. The same is true if only Make is in the WHERE clause.
The optimizer can use the index if the columns in the query come from
the first part, or left side, of the index. Figure 5.3 shows a representation
of the index just created on the Vehicle table.

212 Learn SQL In a Weekend



The index is sorted first by M a k e; then M o d e l; then C o l o r. From this figure
you can see that it will be easy for the DBMS to look at the index and
find all Chevrolet S-10s regardless of color. It would also be easy to find
all of the Chevrolets since the index is sorted first by the Make column.
However, a query that asks for all of the black cars will not be so easy.

SELECT VehicleID, CustomerID, VehicleYear, Make, Model, Color
FROM Vehicle

WHERE Color = 'B l a c k';

This query will not be able to use the index. Just like you would have to
search down the list one by one looking for “Black”, so does this query.
This query will perform a table scan. Now if you find that this kind of
query is also very common, you could simply create an index on the C o l o r
column as well.

CREATE INDEX idx_Color
ON Vehicle (Color);

The Color column is now used in two separate indexes.

213SUNDAY MORNING  Optimization—Feel the Need for Speed?

Figure 5.3

A composite index
on the V e h i c l e

table.



In d e xes are also used to speed up sorting. Because the column data is
a l ready stored as sorted information in the index, the DBMS can take
a d vantage of this if it’s used in an ORDER BY clause. Because the V e h i c l e
table now has the new ind_Color index, the following query will use it.

SELECT VehicleID, CustomerID, VehicleYear, Make, Model, Color
FROM Vehicle

ORDER BY Color;

Sorted Indexes
In the CREATE INDEX syntax you also saw the optional keywords ASC
and DESC. These refer to the order in which the index stores its data. By
default, index data is stored in ascending order. So the command used to
create the idx_Color index is the same as this one:

CREATE INDEX idx_Color
ON Vehicle (Color ASC);

You might find that certain data is viewed in reverse order most often.
This might be the case with the VehicleYear column. You might often
sort it descending so that the newer cars are always at the top. In this case,
you could make use of the following index:

CREATE INDEX idx_Year
ON Vehicle (VehicleYear DESC);

A descending sort index like this will only help you out when sorting
data. If the index is being used for a WHERE clause for searching pur-
poses, the optimizer does not really care if it is sorted ascending or
descending. It can find the data just as easily either way. Most people just
create their indexes with the default ascending order unless they have spe-
cial sorting requirements.

214 Learn SQL In a Weekend



Unique Indexes
A unique index will prevent duplicate values from being entered within
the same column. The syntax for this option uses the UNIQUE keyword.

CREATE UNIQUE INDEX idx_License
ON Vehicle (LicensePlate#);

This index will not allow any duplicate license plate numbers to be
entered into the Vehicle table. If any INSERT or UPDATE command
tries to set the LicensePlate# column to a value that already exists, the
command will be cancelled and will fail. If there is already data in the
table, the CREATE UNIQUE INDEX command will first check to see
that the values of the column are already unique. If they are not, the index
cannot be created. A NULL is considered a value, so a uniquely indexed
column cannot have more than one row with a NULL value.

You might recognize this as being very similar to the UNIQUE constraint
covered in the Saturday Evening session. That’s because it is. The
UNIQUE constraint and the unique index perform the same job, mak-
ing sure that duplicate values do not get into the same column or group
of columns. The difference, of course, is that the index not only does that
job but performs the duties of an index as well.

Clustered Indexes
Indexes fall into two general categories, clustered and nonclustered. So far
we’ve discussed only nonclustered indexes. 

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A clustered index is one that will actually keep the physical order of the data rows
sorted. A nonclustered index does not affect the physical order of the data.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

All indexes, clustered or nonclustered, keep their own index informa-
tion sorted. But only a clustered index affects the order in which the
data is store d .

215SUNDAY MORNING  Optimization—Feel the Need for Speed?



Yo u’re going to revisit an index created a few pages back. Re m e m b e r
the index on the LastName column of the Customer table? It’s shown in
Fi g u re 5.2. This is a nonclustered index. The last names are sort e d
within the index, but the data rows are not. Yo u’ll make this a clustere d
index instead.

CREATE CLUSTERED INDEX idx_LastName

ON Customer (LastName);

When a clustered index is created on a table that already has data in it,
the existing data will be re-sorted. The data and the index will now be in
the same order. Figure 5.4 shows the result on the Customer table after cre-
ating this clustered index. Notice how the data rows have been reordered
by the last name and now match the index order.

Because the rows can only be sorted one way at a time, there can only be
one clustered index per table. There can still be other nonclustered index-
es at the same time.

The benefit of a clustered index is shorter response time on queries that
access the data in this particular order. For example, the clustered index
on the LastName column will benefit from this query:

SELECT CustomerID, FirstName, LastName, City
FROM Customer

ORDER BY LastName;

The query wants to return the customers sorted by last name. Because of
the clustered index, the data does not have to be sorted. It is already
stored in the right order. Some WHERE clauses will also benefit from a
clustered index. This query is asking for all of the customers whose last
name is in the last half of the alphabet.

216 Learn SQL In a Weekend

Figure 5.4

A clustered index
keeps the data

physically sorted.



SELECT CustomerID, FirstName, LastName, City
FROM Customer

WHERE LastName >= 'N';

All the optimizer will have to do is find the first name that starts with N
and then just return the rows in order until the end of the table is
reached.

Clustered indexes will maintain the sorted order of the data even as rows
are added, changed, and deleted. So there is an extra processing cost
involved with them.

The Cost of Indexes
A while ago we mentioned that you could create an index on every single
column in a table if you wanted to. This would mean that an index would
be available for any query or join that you come up with. Although this
is true, indexes do come at a price. There is no free lunch. Indexes con-
sume disk space and processing time.

As you saw back in Figures 5.1 and 5.3, an index stores a copy of the data
from the column or columns that are indexed. An index also has some
overhead bytes as well. If you indexed every column of a table, you would
be doubling the amount of storage space used. In fact, given the over-
head, you would more than double the space. Besides filling up a server’s
disk quicker, this can have side effects such as longer backup cycles and
increased backup media requirements.

If you feel that disk space is re l a t i vely cheap and the extra storage re q u i re-
ments don’t concern you, performance certainly should. The server will be
able to perform only a certain number of operations per second. If it’s spend-
ing too much of its time updating indexes, you could start to see slow
response time from queries and data modification commands. Eve ry time a
row is inserted into a table, all indexes on that table must be modified and
re - s o rted so that the new values can be added. Likewise, eve ry time a row is
deleted, all indexes need to re m ove the deleted values. When data is updat-
ed, indexes will need to be adjusted if any of their columns we re changed.

217SUNDAY MORNING  Optimization—Feel the Need for Speed?



You’ve probably visited a Wal-Mart store in the middle of December.
There are a dozen or more checkout lanes, each beeping away as items are
scanned. Well, every time you hear a beep, a row is being inserted into a
table somewhere with the information about the product that was just
scanned. Think of the volume of data that is being inserted. They cannot
afford to have their database get bogged down by constantly re-sorting
indexes to accommodate this new data. This is a good example of a table
that should have as few indexes as possible.

Which of your columns should be indexed? This is another one of those
design questions that has no easy answers. You will need to examine each
table individually and weigh its potential performance gains against its
potential performance hindrances. The example of the Wal-Mart trans-
action table is a case where the speeds of the inserts are the top priority.
If customers have to wait in line too long because of slow scanners, Wal-
Mart will start losing business. In this case, the fewer indexes the better.
The obvious trade-off will be that without indexes, getting data out of
such a table will take a long time. This might need to be an operation that
occurs by long-running jobs during off-peak hours.

The Slick Sh o p, on the other hand, has a fairly low - volume database.
L e t’s say they average nine jobs per hour. So there are usually seve r a l
minutes between database entries. This should allow plenty of time for
the database to maintain its indexes. As you start looking at each table,
you might want to go ahead and create indexes on all the columns yo u
think might be queried one day. So in the Customer table you cre a t e
i n d e xes on C u s t o m e r I D, F i r s t N a m e, L a s t N a m e, C i t y, S t a t e O r P r o v i n c e, and
P o s t a l C o d e. All of the columns except Address and PhoneNumber b e c a u s e
you figure that it’s not likely someone will query on these two. Yo u’l l
then continue with each table in the same way, indexing eve ry column
that is even a remote candidate. Even though you have the luxury of a
l ow - volume processing system, you should not neglect the storage space
re q u i red for all of these indexes. Many of the Slick Shops across the

218 Learn SQL In a Weekend



c o u n t ry have older database servers that don’t have much in the way of
disk space. Creating indexes in a careless manner like this could eat up
all of their disk space in a hurry.

A better approach to take is to start conservatively. Begin by building
indexes on the primary and foreign keys of each table. Next create index-
es for only those columns that you know for sure will be used heavily in
WHERE clauses. This is a good point to step back and watch as devel-
opment or usage of the database begins. If a front-end application is
being developed for this database, some clues will begin to surface. For
example, a search window might be developed for the Slick Shop appli-
cation to look up parts by their description. Is this a special-duty feature
that is only used once a month, or is it the main method of assigning
parts to a job and used several times an hour? If the latter is true, this col-
umn is a good candidate for an index.

For each table, you will also want to decide if there is a good candidate
for a clustered index. Remember that this kind of index has even more
processing overhead than a nonclustered index, so you might not want
one on every table. A search window that displays parts sorted by descrip-
tion could benefit from a clustered index on the Description column.
This is not data that changes frequently, so the cost of reordering rows is
not a concern. A large, high-volume table, however, might have trouble
keeping up with not only sorting its indexes but also sorting its data.

The nice thing about indexes is that they are more forgiving than tables
and columns. If you find that yo u’ve put a column in the wrong table
or chosen the wrong data type for a column, this could be a costly mis-
take. De velopers will have likely written a lot of SQL that will no longer
w o rk after you correct your mistake. In d e xes, on the other hand, can be
added and dropped virtually at will. Even after a database is being used
in production, an index can be added and immediate perf o r m a n c e
gains can be accomplished. What if you discover the index is wort h l e s s
or takes up too much space? Drop it at any time. Creating and 

219SUNDAY MORNING  Optimization—Feel the Need for Speed?



d ropping indexes will not affect the SQL code that has been written.
Remember that the optimizer determines whether indexes are ava i l-
able—the SQL commands do not va ry.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Some DBMSs have a very advanced feature called optimizer hints. This is a feature in
which the SQL command can name the particular index that it wants the optimizer to
use. This is a case where dropping an index could cause a query to stop working. This
feature is seldom used because the optimizers are very good at choosing the indexes on
their own.You should,however, be aware that this option exists because someone might
one day use it without your knowledge.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Dropping an Index
Aha! Finally, a use for that index name! You’ll need to know an index’s
name if you ever want to get rid of it.

DROP INDEX tablename.indexname;

This command will, of course, delete the index from the table. No data
will be lost from the table, and the index can be re - c reated at any time.
So this is a fairly safe command. When the index is dropped, the space
that it was consuming will be immediately freed. The trade-off is that
the moment the index is gone, the optimizer can no longer use it to
speed up queries.

Creating Stored Procedures
Many of the database systems that we’ve discussed in this book support
the creation and use of stored procedures. A stored procedure is a set of one
or more queries or commands that are saved and can be executed later. In
fact, there’s a lot more to them than that. Stored procedures can include
command logic that performs loops, conditional statements, and can run
external processes.

220 Learn SQL In a Weekend



How Can Stored Procedures Speed Things Up?
Stored procedures should always be a consideration if you are concerned
about database performance. They can improve performance for the fol-
lowing reasons:

➤ They are precompiled.

➤ They can perform complex, multistep operations.

➤ Smaller requests are sent to the server.

You can think of a stored procedure as very similar to a function or sub-
routine in a programming language. It is simply a series of commands
that get executed when called. Like programming languages, a stored pro-
cedure can accept arguments and return values. The procedures also get
compiled, just as most languages do. The biggest difference is that with-
in a stored procedure, you can include SQL commands and have it return
rows and columns.

Earlier in this chapter, we talked about how the optimizer looks at queries
and examines the tables, columns, and indexes to determine the best plan
of attack. This optimization process will occur every time the query is
run. This will happen even if the very same query gets run hundreds of
times a day. If this query were in a stored procedure, the optimizer would
only have to determine its plan one time, when the procedure is first cre-
ated. The information the optimizer puts together is compiled into the
procedure. When it’s run, the optimization step will be skipped, and the
query can begin immediately. Naturally, because a step is being removed
from the process, the query will run faster.

Now, before you get your hopes up too high, let us adjust your expecta-
tions. The optimizers in today’s DBMSs are ve ry good at what they do.
They are ve ry fast too. If you take a SELECT command and place it in
a stored pro c e d u re, you might not be able to tell any difference in speed.
You most certainly will not see any difference in the Slick Shop sample
d a t a b a s e — i t’s just too small. In fact, even with many large databases,
you might have a hard time seeing a difference. The optimization

221SUNDAY MORNING  Optimization—Feel the Need for Speed?



p rocess many times takes less than a second in the first place. But don’t
stop reading! This is a ve ry real benefit. St o red pro c e d u res can include
any number of SQL commands, each one precompiled and pre o p t i-
m i zed. Begin combining these and the speed difference will start to 
s u rface. Do n’t forget also that a multiuser database will have dozens or
e ven hundreds of users executing the same queries all day long. Mu l t i p l y
the time savings by the number of times the pro c e d u re is executed and
you start to see its wort h .

Writing a Procedure
Before showing you a few stored procedure examples, we want to explain
one thing. When you write a stored procedure, you can use programming
code in addition to SQL commands. This code can do looping, do
branching, make use of variables, and so on. The programming languages
are unique to each database system. Oracle’s language is called PL/SQL,
whereas SQL Server and Sybase use Transact-SQL. The vendors don’t
even pretend to follow any kind of standard. In fact, they are each very
proud of their language and its individual capabilities. As we said in the
first chapter, we are showing most examples from SQL Server and will do
so here. We will not, however, get into the details of Transact-SQL. We’ll
just show and explain enough so you can understand the things stored
procedures are capable of doing.

Okay then, with that disclaimer out of the way, let’s take a look at a sim-
ple stored procedure.

CREATE PROCEDURE GetCustomerVehicleData
A S

SELECT c.FirstName, c.LastName, v.VehicleYear, v.Make, v.Model
FROM Customer AS c
JOIN Vehicle AS v

ON c.CustomerID = v.CustomerID
ORDER BY c.LastName, c.FirstName, v.VehicleYear;

G O

222 Learn SQL In a Weekend



This procedure simply contains one SELECT command that returns a
sorted list of all customers and their vehicles. The first line gives the pro-
cedure a name, G e t C u s t o m e r V e h i c l e D a t a. When the preceding statements
are run, the procedure will be created in the current database. It is also
compiled at the same time. This means that just like any other program-
ming language compiler, the syntax will be checked. Not only are the 
keywords checked for spelling and proper usage, but the query is analyzed
as well. It will be checked to make sure that valid table and column names
have been used and that the query is otherwise written correctly. The
optimizer will also examine the query at this time and store its execution
plan. The only thing that does not happen is the running of the SELECT
command itself. When you create the procedure, if all goes well, you will
just get a simple message returned to you that says something like “The
command completed successfully.”

In order to run the procedure, you just need to call it by name.

EXECUTE GetCustomerVehicleData;

This will run the precompiled procedure and return a result set like the
following:

F i r s t N a m e L a s t N a m e V e h i c l e Y e a r M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------- 
Kylee  Dicken 2002    Pontiac Grand Prix
Bryce  Hatfield 1972     AMC    G r e m l i n
Bryce  Hatfield 2000     Chevrolet S - 1 0
Jacob   Salter  1998     Ford    M u s t a n g
John   Smith   1968    Chevrolet C o r v e t t e
V i c t o r i a Smithe 2002   Nissan  A l t i m a
Alex  T h o m p s o n 2000   Chrysler PT Cruiser
Davis  T h o m p s o n 2001    Ford   E x p e d i t i o n
H a r r i s o n T h o m p s o n 2002    Chevrolet Trail Blazer

It’s the same exact output that you would get if you had just run the
SELECT outside of the stored procedure.

As we said, procedures can accept arguments. This is where you’ll begin
to see some more possibilities. The GetCustomerVehicleData procedure is
fine, but you could make it more dynamic by allowing the user to get 

223SUNDAY MORNING  Optimization—Feel the Need for Speed?



filtered results. Modify the procedure a little bit to accept an argument, a
vehicle year. Then you can have the procedure return the same data but
only restrict it to return vehicles that are the same year the user specifies.

In order to modify a procedure, you will have to drop it first. Because a procedure is
another object in a database like tables, columns, and indexes, no two procedures can
have the same name. In this case, you will need to execute the following command
before you can create the procedure again.

DROP PROCEDURE GetCustomerVehicleData;

CREATE PROCEDURE GetCustomerVehicleData
(@Year int)
A S

SELECT c.FirstName, c.LastName, v.VehicleYear, v.Make, v.Model
FROM Customer AS c
JOIN Vehicle AS v

ON c.CustomerID = v.CustomerID
WHERE v.VehicleYear = @Year

ORDER BY c.LastName, c.FirstName, v.VehicleYear;

G O

You’ve now added two things to the procedure. At the beginning, you
specified that the procedure will accept an integer argument into the 
variable called @ Y e a r. Then you added a WHERE clause that looks for
vehicles that match the year passed into that argument. Now when you
execute this procedure, you’re required to pass it one argument.

EXECUTE GetCustomerVehicleData 2002;

This gives you only the rows that you want.

F i r s t N a m e L a s t N a m e V e h i c l e Y e a r M a k e M o d e l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------- 
Kylee Dicken  2002     Pontiac Grand Prix
Victoria Smithe  2002    Nissan   A l t i m a
Harrison T h o m p s o n 2002    C h e v r o l e t Trail Blazer

224 Learn SQL In a Weekend



Now you have a flexible, preoptimized query. You can give users access to
this query, and off they go! They don’t even have to know how to write a
SELECT query. They’ll just have to know the name of the procedure and
any arguments that are required. This can be a useful method of separat-
ing front-end development from the back-end development.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

In terms of application development, front-end refers to the programs that the users
interact with. Back-end refers to the database.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Using Stored Procedures to Divide Up Your Work
In the Sunday Evening session, we’re going to discuss the use of SQL in
f ront-end programming languages and development tools, such as 
Visual Basic and ASP.NET. You’ll see examples there of SQL that is
embedded into the front-end code. This means that the developer who is
writing a front-end application would have to know SQL well and be able
to write good SELECT, INSERT, UPDATE, and DELETE commands.
As an alternative, you could use stored procedures to divide this workload
among two groups of developers. Back-end developers or database
administrators (DBAs) could be in charge of creating and maintaining
stored procedures that handle all data access. Front-end developers would
then be free to concentrate more on data collection and presentation.

Some people say that this separates the ones who do the real work fro m
those who merely point and click. We’re not going to get in the middle
of that argument. We will say, howe ve r, that this method does have
many benefits. The front-end application developers would technically
only need to know the pro c e d u re name and its arguments. They could
then call the pro c e d u re from their program and work with the re s u l t s
that are returned. If any changes are needed, say a new column needs to
be added, the stored pro c e d u re developers could make them. On c e
changes have been made, the application developers don’t have to worry
about what the specific SQL change was. They simply have to adjust

225SUNDAY MORNING  Optimization—Feel the Need for Speed?



their code to reflect any input or output changes. For example, the appli-
cation developer might be receiving a new column in the output or be
expected to pass a new argument.

This division of labor comes in ve ry handy when a stored pro c e d u re is
re q u i red to handle some pretty complex logic. A back-end stored pro c e-
d u re developer can spend days writing a pro c e d u re that is several 
h u n d red lines long. At the same time, the application developer could be
getting the code ready to call the pro c e d u re and work with the re s u l t s
that will be returned. The application developer doesn’t have to worry
about how complex the pro c e d u re is but instead just needs to know the
inputs and the outputs. In fact, the front-end developer doesn’t have to
k n ow SQL at all.

If you think this division of labor seems a little too utopian, you’re prob-
ably right. Although the development environment being described is
utilized by many projects at many companies, it’s not as ideal as it sounds.
We do highly recommend that the front-end developers not only know
SQL but also have at least some active participation in the back-end
development. An application developer will be able to write a much bet-
ter system with the knowledge of things like primary keys, foreign keys,
indexes, cascading actions, triggers, and table joins. Keep in mind that the
front-end and back-end developers that we’ve described can actually be
the same person. Whether it’s one person or two separate developers,
you’ll still get many benefits from having the SQL written outside of the
front-end application.

You probably re c o g n i ze this development model. Many times in the 
p rogramming world one person will write a function that is used by
someone else. In fact, the function might be used by several people for
s e veral different projects. In the same way, a stored pro c e d u re can serve
as common code that can be used in many different places. A single pro-
c e d u re could be called from more than location in the same application.
It could also be called by several different applications. This prov i d e s
some nice re u s a b i l i t y.

226 Learn SQL In a Weekend



Multistep Stored Procedures
All right, it’s time to turn your attention back to the specifics of the stored
procedures. We’ve mentioned a few times that you can benefit from the
capabilities of a complex procedure. Let’s take a look at one now.

CREATE PROCEDURE PartUsageByState
(@Part int, @BeginDate smalldatetime, @EndDate smalldatetime, 

@State char(2))
A S

IF @BeginDate < '2 0 0 0 - 0 1 - 0 1'
RETURN −1 ;

-- create the working table
CREATE TABLE #temp

(JobTicketID int);

-- get a list of all JobTicketIDs that used the given
-- part between the given dates.
INSERT INTO #temp
( J o b T i c k e t I D )
SELECT jt.JobTicketID

FROM JobTicket AS jt
JOIN JobTicketDetail jtd ON jt.JobTicketID = jtd.JobTicketID
JOIN PartUsed AS pu ON jtd.JobTicketID = pu.JobTicketID

AND jtd.LineItemNumber = pu.LineItemNumber
AND pu.PartID = @Part

WHERE jt.StartDate BETWEEN @BeginDate AND @EndDate;

-- join in the temporary table and return the vehicles owned
-- by customers who live in the given state or province.
SELECT c.FirstName, c.LastName, v.VehicleYear, v.Make, v.Model

FROM Customer AS c
JOIN Vehicle AS v ON c.CustomerID = v.CustomerID
JOIN JobTicket AS jt ON c.CustomerID = jt.CustomerID
JOIN #temp ON jt.JobTicketID = #temp.JobTicketID

WHERE c.StateOrProvince = @State;

-- remove the temporary table
DROP TABLE #temp;

G O

227SUNDAY MORNING  Optimization—Feel the Need for Speed?



The lines that begin with two dashes are comments.

Because this is not an extensive book about Transact-SQL, we will not go
into great detail about this procedure—we’ll just point out the highlights.
First of all, the purpose of this procedure is to return a list of vehicles that
were serviced with certain parts between two given dates. Furthermore,
the vehicle’s owner must live in a certain state. The way that this proce-
dure accomplished its task is to divide the work into two separate queries.
A temporary table is created to hold an intermediate result set. The tem-
porary table gets populated with the JobTicketID numbers for jobs that
used the given part between the two dates. This temporary table is then
joined into the second SELECT, which looks for customers who live in a
certain state. It is this second SELECT that actually returns the rows.
Finally, before the procedure exits, the temporary table is dropped.

This procedure shows a common example of how an intermediate result
set can be stored and then later used. This is the kind of processing that
is not very conducive to front-end programming. It is much more con-
venient and concise to put all of this work into one stored procedure.

If you’re really on the ball and not too sleepy from reading late last night,you might be
asking why you didn’t just perform that task all in one query. Good question! Actually,
you could have.There are two reasons that we didn’t have you do that. First, we want-
ed to demonstrate to you a more complex query that used an intermediate result set.
Second, and more important, this is a technique that you should consider when dealing
with large SELECT commands. Sometimes, when too many tables get joined into a
query, it can actually get bogged down and perform badly. Breaking a query into sepa-
rate steps like this might increase performance. Even if you don’t see a significant per-
formance gain, writing a query this way will often help you and your stored procedure
heirs to understand it better.

228 Learn SQL In a Weekend



Cursors and Looping
Another advanced feature that stored pro c e d u res can take advantage of
is the cursor. A c u r s o r is a mechanism that will hold the rows and
columns of a result set so that they can be processed in some way. Of t e n
this processing invo l ves looping through each row one by one, examin-
ing the data, and performing some action. You can think of the cursor
as a pointer to a given row in a result set. Using commands, you can
m ove the cursor down the list. The row that the cursor is pointing to is
re f e r red to as the current row. You are not limited to using cursors only
in stored pro c e d u res. Howe ve r, because there are several commands
i n vo l ved with cursor use, it is most common and convenient to write
them into a stored pro c e d u re .

For database systems that support cursors, the syntax is pretty standard.
First the cursor must be defined. A SELECT statement is part of the def-
inition. This will be the basis for the result set.

DECLARE cursor_name CURSOR FOR select_statement;
DECLARE CURSOR cursor_name IS select_statement;
DECLARE CURSOR cursor_name FOR select_statement;

The first DECLARE syntax is for Sybase and Mi c rosoft, the second is
for Oracle, and the third is Informix. You can see that they all have the
same re q u i rements, a cursor name and a SELECT command. At the end
of the DECLARE command, a full SQL SELECT is expected. It can be
any valid SELECT, complete with joins and WHERE clauses if yo u
need them. The following command defines a new cursor with a two-
table query.

DECLARE vehicle2002 CURSOR FOR
SELECT c.FirstName, c.LastName, v.VehicleYear, v.Make, v.Model

FROM Customer AS c
JOIN Vehicle AS v

ON c.CustomerID = v.CustomerID
WHERE v.VehicleYear = 2002

ORDER BY c.LastName, c.FirstName, v.VehicleYear;

At this point, however, the command has not run. First it must be
opened.

229SUNDAY MORNING  Optimization—Feel the Need for Speed?



OPEN cursor_name;

This causes the SELECT defined in the cursor to be executed. The result
set is stored in memory—it will not be returned to the screen or to a
front-end application. You must use further cursor commands to access
it. At this point you can begin to move the cursor through the result set.

FETCH cursor_name INTO variable1 [, variable2...];

The FETCH command will first move the cursor so that it points to the
next row. It will then populate the variables with the data from the
columns of the current row. The number of variables that you name in
the FETCH command must match the number of columns in the
SELECT. If the cursor is pointing to the last row in the result set when
the FETCH command is issued, a special error code or flag will be set so
that you’ll know you’re at the end.

When you’re finished with the cursor, be sure to close it:

CLOSE cursor_name;

For the cursor example, you’re going to create a stored procedure called
D e l e t e O l d J o b s, which will look for jobs that are more than two years old
and delete them.

CREATE PROCEDURE DeleteOldJobs AS
DECLARE @Ticket int

-- define the cursor
DECLARE c1 CURSOR FOR
SELECT JobTicketID

FROM JobTicket
WHERE StartDate <= DATEADD(yy, -2, getdate( ));

-- open the cursor actually runs the query
OPEN c1;

-- put the first JobTicketID into the variable
FETCH c1 INTO @Ticket;

WHILE @@FETCH_STATUS = 0
B E G I N

230 Learn SQL In a Weekend



-- delete the old job data
DELETE FROM PartUsed
WHERE JobTicketID = @Ticket;

DELETE FROM JobTicketDetail
WHERE JobTicketID = @Ticket;

DELETE FROM JobTicket
WHERE JobTicketID = @Ticket;

-- move the cursor to the next JobTicketID, and put
-- the ID in the variable.
FETCH c1 INTO @Ticket;

E N D

-- close the cursor and free up memory
CLOSE c1;
DEALLOCATE c1;

G O

Notice that the standard cursor commands like DECLARE, OPEN, and
FETCH are combined with a Transact-SQL command such as WHILE.
This is where you will have to learn your DBMS’s language if you want
to do something like loop through a cursor.

With this procedure in place, it can be run every now and then to purge
the old data.

EXECUTE DeleteOldJobs;

Data-Modification Procedures
Stored procedures are not only good for data retrieval, but they can also
be very useful for data modification. A stored procedure does not have to
return a result set. If you have a stored procedure whose purpose it is to
insert new customers and vehicles, there is really no need to return any-
thing. Why would you want to write a procedure to handle simple
INSERT commands? For just the same reasons already discussed. Even
procedures that perform INSERT, UPDATE, and DELETE commands

231SUNDAY MORNING  Optimization—Feel the Need for Speed?



receive a performance gain from being precompiled. Also you can take
advantage of the database system’s language capabilities to perform sever-
al tasks from just one procedure call.

As an example, you’re going to create a procedure that will add a new cus-
tomer and the customer’s vehicle to the database at the same time. This
is a procedure that would be used when a new customer comes to the
Slick Shop.

CREATE PROCEDURE A d d C u s t o m e r V e h i c l e
(@FirstName       v a r c h a r ( 2 0 ) ,
@LastName        v a r c h a r ( 3 0 ) ,
@Address         v a r c h a r ( 1 0 0 ) ,
@City            v a r c h a r ( 3 0 ) ,
@StateOrProvince c h a r ( 2 ) ,
@PostalCode      v a r c h a r ( 1 0 ) ,
@PhoneNumber     v a r c h a r ( 1 0 ) ,
@Year            s m a l l i n t ,
@Make            v a r c h a r ( 3 0 ) ,
@Model           v a r c h a r ( 3 0 ) ,
@Color           v a r c h a r ( 3 0 ) ,
@LicensePlate#   v a r c h a r ( 1 0 ) )

A S

DECLARE @CustID int

-- insert a new customer row
INSERT INTO Customer

(FirstName, LastName, Address, City,
StateOrProvince, PostalCode, PhoneNumber)

V A L U E S
(@FirstName, @LastName, @Address, @City,
@StateOrProvince, @PostalCode, @PhoneNumber);

-- save the new CustomerID number that was auto-generated
SELECT @CustID = @@identity;

-- insert a new vehicle row
INSERT INTO Vehicle
(VehicleYear, Make, Model, Color,
LicensePlate#, LastServiceDate, CustomerID)

232 Learn SQL In a Weekend



V A L U E S
(@Year, @Make, @Model, @Color,
@LicensePlate#, NULL, @CustID);

G O

Yes, this procedure does have a lot of arguments that you have to pass it.
However, it is doing two jobs at once. First it inserts a new row into the
Customer table. No big deal there. But look at what it does next. It saves
the value of a special Transact-SQL variable called @ @ i d e n t i t y. This vari-
able contains the auto-number that was just assigned to that new
customer. This is valuable because you need it to make the insert into the
Vehicle table. So that’s what you have it do next.

These are basically the same two steps that you would have to perf o r m
if you we re not using a stored pro c e d u re. He re, though, yo u’ve 
combined them into one call. As a matter of fact, without the pro c e-
d u re this task would be even more invo l ved than just two INSERT
commands. Think about this—after you do the first INSERT, how
would you know what CustomerID the database just assigned to the new
row? You need to know this so that you can use it for the INSERT to
the Vehicle table. After the INSERT, you could SELECT the row back
out by using the FirstName and LastName in the WHERE clause. Bu t
what if it returns more than one person with the same name? Alterna-
t i ve l y, you could query for the highest CustomerID like this:

SELECT MAX(CustomerID)
FROM Customer;

This would usually work. Howe ve r, what happens if in the split second
b e t ween your INSERT and this SELECT, someone else inserts a row
into C u s t o m e r? In that case, your SELECT command will actually re t u r n
the number that the other user just generated. Not good! Even if yo u
do find a reliable way to discover the new C u s t o m e r I D, it will still be at
least a three-step process: an INSERT, one or more SELECTs, and the
final INSERT. 

233SUNDAY MORNING  Optimization—Feel the Need for Speed?



The stored pro c e d u re, on the other hand, is one simple call like this:

EXECUTE AddCustomerVehicle 'J u n i o r', 'R i c h a r d s o n', 
'404 West Pine Ave.',
'St. Louis', 'M O', '2 0 1 1 5', '3 1 3 5 5 5 0 9 8 7', '2 0 0 2', 'L i n c o l n',
'C o n t i n e n t a l', 'B l u e', '3 8 X P 2 J R';

Again, don’t expect a result set to be returned from this procedure call. At
the most you’ll probably get two separate messages informing you that a
row has been inserted.

Network Traffic
One last performance benefit of stored pro c e d u res that we stated was
that smaller requests are sent to the serve r. Even if you just look at the
small pro c e d u re G e t C u s t o m e r V e h i c l e D a t a, you can see the difference. If a
p rogram we re issuing that same SELECT command, it would be send-
ing about five times as many characters over the network as it would if
it just called the pro c e d u re. Once again, this is not the kind of thing yo u
will notice when you are working on a database by yo u r s e l f. But don’t
forget about the multiplying effect of all of the other users that will be
sending SQL back and forth over the network when the database is in
p roduction. It’s also worth noting that SQL database commands might
not be the only traffic competing for the network. The network can have
many types of data floating around, such as files being re t r i e ved, output
being sent to printers, e-mails being exchanged, and sports Web sites
being dow n l o a d e d .

The more your SQL commands can be condensed, the quicker they will
make it to the server for execution. One of the best ways to do this is to
package SQL commands into stored procedures.

Take a Break!
Okay, time to slow down for a minute and take a break. Kind of ironic
that we’d tell you to slow down in the middle of a chapter on speed, isn’t
it? Do you think people will ever perform as relentlessly as computers?

234 Learn SQL In a Weekend



Perhaps so if everybody had all kinds of performance optimization tech-
niques like those we’ve been presenting.

Then again, people do have several. People can learn speed-reading, go
speed-walking, send instant messages to friends, have a power lunch, get
abs of steel in 15 minutes, get instant credit approval, grab some fast
food, take a shot at being an instant winner, attend a fast-track training
course, phone home while driving, fast forward through the commercials,
and when it’s all done take a power nap.

Wow, that should buy you enough time to finish reading this chapter
before noon!

Understanding Transactions
Ready to get back to it? All right then, let’s tackle the subject of transac-
tions. In a nutshell, a transaction is one or more operations combined to
form a single unit of work. An example would be when you say to your
spouse in the morning, “I’m going to work now.” That sounds like you’re
doing just one single thing. In reality you’re going to work on a propos-
al, write several e-mails, code a program, attend a meeting, secure the
company Web site, and on and on. You’re bundling all of these activities
into one thing you call “work.”

Now, if you fail at one of your tasks during the day, you’ll still go home
and say, “I’m home from work!” This is where there is a major difference
with a database transaction. A transaction in a relational database will not
accept any failures at all.

One of the classic examples of a database transaction comes from the
world of banking. Let’s say you walk up to your bank’s ATM and choose
to make a transfer. You elect to transfer $100 from your savings account
to your checking account. Now everybody knows that there is no real
cash involved in this transfer—it’s all done electronically. Your savings
account balance will be reduced by $100, and your checking account bal-
ance will be increased by the same amount. This is an oversimplification,

235SUNDAY MORNING  Optimization—Feel the Need for Speed?



but for the purpose of this example, assume that there is a table called
Checking and another called S a v i n g s. Let’s also say that your account
number is 1 2 3 4.

In terms of SQL then, the ATM needs to make the following two updates
in order to process your transfer.

UPDATE Savings
SET Balance = Balance - 100

WHERE AccountNbr = 1234;

UPDATE Checking
SET Balance = Balance + 100

WHERE AccountNbr = 1234;

Two quick updates, the ATM spits out a receipt, and you’re on your way.
But what if the second UPDATE fails for some reason? What if, in the
fraction of a second between the first UPDATE and the second, the
bank’s database server crashes? We’ll tell you what happens—you just lost
$100! The first UPDATE reduced your savings balance, but the second
one either failed or never got the chance to run. You could switch the
order of these two commands, but you’d essentially have the same prob-
lem. This time the problem would go in your favor, so you might not
mind, but the bank sure will!

This example presents a scenario where it is critical that both steps in the
process must succeed. If it’s not possible that they both succeed, they both
must fail. This is what transactions are all about. They define a unit of
work and ensure that every command within the unit succeeds. If just
one thing in the transaction fails, everything must be put back the way it
was at the beginning.

The way this is done is to begin a transaction before the first command
and then check each command along the way. As soon as you detect that
one of them has failed, cancel the transaction. If you reach the end with-
out any failures, end the transaction normally. There are three commands
you’ll use to accomplish this.

236 Learn SQL In a Weekend



BEGIN TRANSACTION;
COMMIT TRANSACTION;
ROLLBACK TRANSACTION;

Place the BEGIN TRANSACTION command before the first SQL com-
mand that modifies any data. This acts as a bookmark. If all goes well and
all of your commands succeed, you issue a COMMIT TRANSACTION
command at the end. This will make all changes permanent and allow the
database to forget about that bookmark. If you find that a command has
failed, you execute the ROLLBACK TRANSACTION command. This
will cancel every command that was executed all the way back to the
bookmark, the BEGIN TRANSACTION. After a ROLLBACK you can-
not tell that anything happened. The database will be in exactly the same
state as it was before you executed the BEGIN TRANSACTION.

The ROLLBACK TRANSACTION command will only reverse changes made in the current
user’s session. In other words, if you issue a ROLLBACK command, this will not affect
the data that other users are changing at the same time.

L e t’s return back to the banking example now and look at the flowc h a rt in
Fi g u re 5.5. This demonstrates the error checking that must be perf o r m e d
within a transaction. It shows that if either step fails, a RO L L B AC K
T R A N S ACTION command is immediately issued. Only if eve ry single
step succeeds should a COMMIT T R A N S ACTION be perf o r m e d .

L e t’s turn our attention back to the Slick Shop database now. One place
that you might want to use a transaction is when you add a new job tick-
et with all of its detail and part information. Assume that the Slick Sh o p
has a front-end application that allows the employee to enter all of the
job ticket information including the parts that will be used. This appli-
cation has a Sa ve button that will send all of this data to the database at
the same time. It will insert one row into J o b T i c k e t, one or more row s
into J o b T i c k e t D e t a i l, and one or more rows into P a r t U s e d. This is a good
situation where yo u’ll want to use a transaction. If there is ever an erro r

237SUNDAY MORNING  Optimization—Feel the Need for Speed?



i n s e rting into the JobTicketDetail table, you don’t want to leave the suc-
cessfully inserted row in J o b T i c k e t. If you did, you would have a job 
ticket sitting in the database without any related details.

Here’s an example of a full transaction to handle the task of inserting a
job ticket with all of its details. For this example, you’re going to be send-
ing each individual command one at a time from a front-end application.
This application will perform some tasks and error checking that will be
shown in parentheses.

BEGIN TRANSACTION;

INSERT INTO JobTicket
(CustomerID, StartDate, VehicleID)

V A L U E S
(3, '2 0 0 2 - 1 2 - 2 2', 5);

(Application checks for an error, if there is an error...)
ROLLBACK TRANSACTION;

(Application retrieves the new JobTicketID and finds that it is 13)

238 Learn SQL In a Weekend

Figure 5.5

A flowchart of a
transaction in

which $100 is
transferred from a
savings account to

checking.



INSERT INTO JobTicketDetail
(JobTicketID, LineItemNumber, ServiceID, HoursSpent)

V A L U E S
(13, 1, 1, 0.5);

(Application checks for an error, if there is an error...)
ROLLBACK TRANSACTION;

INSERT INTO PartUsed
(JobTicketID, LineItemNumber, PartID, Quantity)

V A L U E S
(13, 1, 2, 1);

(Application checks for an error, if there is an error...)
ROLLBACK TRANSACTION;

INSERT INTO PartUsed
(JobTicketID, LineItemNumber, PartID, Quantity)

V A L U E S
(13, 1, 8, 1);

(Application checks for an error, if there is an error...)
ROLLBACK TRANSACTION;

(If the application determines there were no errors at all...)
COMMIT TRANSACTION;

Notice how the application meticulously checked for errors after every
INSERT. Even if the first three had worked and the fourth had failed, the
ROLLBACK would put the database back in its original state. No part of
this job ticket would be in the database. This keeps the integrity of the
data intact.

Sending each command separately from an application is usually not the
best way to handle this situation, however. Doing it this way risks
adversely affecting other users. When you begin a transaction, you’re
telling the database that you want to reserve the right to roll back the
changes later if necessary. In order to ensure this capability, the database
will place locks on your data and possibly other data that shares the same
page. Some DBMSs work with data in 8K or 16K pages. Each page will

239SUNDAY MORNING  Optimization—Feel the Need for Speed?



contain several rows of data. When you insert or update a row, the data-
base system can put a lock on the entire page until you are done. In the
case of a transaction, you are not considered done until a COMMIT or
ROLLBACK command has been issued.

Check the documentation for your DBMS. Each has its own locking schemes. Some lock
pages, some lock a single row, whereas others lock an entire table.Your database sys-
tem might even have commands or settings that you can use to fine-tune the type of
locks that it will use.

The more commands that are in your transaction, the more locks you’ll
be creating. And the more locks you create, the better chance you have of
blocking another user. You will block another user if your transaction has
a lock on some data that another user needs to access. Whatever com-
mand the other user has run will just sit and wait until your transaction
is done. This is why it’s critical in a multiuser database that transactions
run as quickly as possible. The transaction that you created sends all of its
commands from an application. This will require a lot of interaction
between the database and the application. This will naturally be slower
than running the whole transaction on the database server. How can you
do that? With a stored procedure, of course. With just a few changes, you
can rewrite this transaction as a stored procedure.

CREATE PROCEDURE AddOilChangeJobTicket
(@Cust int, @Start smalldatetime, @Vehicle int,
@OilType int, @Quarts tinyint, @FilterType int, @Hours 

decimal(5, 2))
A S

DECLARE @TicketID int

BEGIN TRANSACTION;

INSERT INTO JobTicket
(CustomerID, StartDate, VehicleID)

240 Learn SQL In a Weekend



V A L U E S
(@Cust, @Start, @Vehicle);

IF @@ERROR <> 0
B E G I N

ROLLBACK TRANSACTION;
RETURN −1 ;

E N D

SELECT @TicketID = @@IDENTITY;

INSERT INTO JobTicketDetail
(JobTicketID, LineItemNumber, ServiceID, HoursSpent)

V A L U E S
(@TicketID, 1, 1, @Hours);

IF @@ERROR <> 0
B E G I N

ROLLBACK TRANSACTION;
RETURN −1 ;

E N D

INSERT INTO PartUsed
(JobTicketID, LineItemNumber, PartID, Quantity)

V A L U E S
(@TicketID, 1, @OilType, @Quarts);

IF @@ERROR <> 0
B E G I N

ROLLBACK TRANSACTION;
RETURN −1 ;

E N D

INSERT INTO PartUsed
(JobTicketID, LineItemNumber, PartID, Quantity)

V A L U E S
(@TicketID, 1, @FilterType, 1);

IF @@ERROR <> 0
B E G I N

ROLLBACK TRANSACTION;
RETURN −1 ;

E N D

241SUNDAY MORNING  Optimization—Feel the Need for Speed?



COMMIT TRANSACTION;
RETURN 0;

G O

As before, this procedure is written in SQL Serve r ’s Transact-SQL language. If you’re using
a different DBMS, you’ll have a couple of differences, such as the way you determine
whether there was an error and the way you retrieve the auto-generated J o b T i c k e t I D.

This procedure, A d d O i l C h a n g e J o b T i c k e t, is designed to add a new job tick-
et, add one line item for the oil change, and use two parts: oil and an oil
filter. As discussed earlier in the stored procedure section of this chapter,
there are several advantages to having these commands combined in one
procedure. The command sent to the database is much smaller, the code
is combined into one neat package, and you have your database system’s
language available to use. As far as transactions go, having these com-
mands in a stored procedure means that they will be executed quicker and
therefore hold locks open for a shorter time period.

One of the keys, then, to writing good transactions is to get them to do
their job as quickly as possible. We’ve just suggested that a stored proce-
dure is one way to do this. Another is to try to keep the transaction as
short as you can. If it has to include 15 different commands, that’s okay.
But if it can get the same thing done in only 10 commands, that’s the way
to go. The fewer the number of commands, the more likely the transac-
tion will run quicker, which means holding fewer locks open for less time.

If for some reason you cannot use a stored procedure (maybe your DBMS
doesn’t support them), by all means never stop in the middle of a trans-
action for user interaction. After the BEGIN TRANSACTION has been
sent, never prompt the user for information or stop to display a message.
Once a prompt or message like this pops up, there’s no telling how long

242 Learn SQL In a Weekend



it will be before the user responds to it. They might leave for their lunch
break. Meanwhile the transaction will be half complete and might be
holding locks open that are blocking other users.

A nice feature of a transaction is that other database users will not be able
to see any of your changes until the transaction is committed. If anoth-
er user happens to run a SELECT command while your transaction is
still running, their results will not reflect your changes. They will see the
data the way it was before you changed it. This pre vents them from 
seeing incomplete or inconsistent data. If you we re running the
AddOilChangeJobTicket s t o red pro c e d u re at the same time someone else
was selecting job ticket data, they would not want to see incomplete
data. If they could see your changes as you made them, they might see a
JobTicket row without any matching details. Another reason for not 
letting them see your changes is because you might perform a RO L L-
B ACK. You don’t want another user to see data changes that may end up
getting cancelled. They would be left looking at rows that don’t re a l l y
exist. Now the instant that you perform a COMMIT T R A N S AC T I O N ,
your changes will be made permanent and all users will see them.

One more thing—you will always be able to see your own changes even
before they are committed. If in the middle of a transaction you need to
select some data, your changes will be visible to you. You will be the only
user to whom the database shows your changes until they are committed.

Optimizing Your Database
The optimization techniques talked about so far this morning will go a
long way tow a rd putting your database in high gear. In this final part of
the chapter, we’ll give you some advanced tuning options and ideas.
They will be most useful to you if you are developing a large-scale, high-
volume, or mission-critical database. These databases usually have 
higher expectations placed on them and excellent performance is a top
p r i o r i t y. T h a t’s not to say that your smaller, low - volume databases 

243SUNDAY MORNING  Optimization—Feel the Need for Speed?



cannot use the techniques as well. It’s just that it may not be worth the
time and effort invo l ved. You might only end up gaining a few millisec-
onds of speed from your small database. A large database with dozens or
h u n d reds of users, on the other hand, might be able to gain several sec-
onds per transaction.

Fine-TuneYour Queries
There are many things that can be done to speed up the SQL that you
write. This section presents many different ideas for writing queries,
returning results, and debugging applications.

Use Those Indexes
We started this chapter talking about the importance of indexes. So by
now it goes without saying that you’ll want to try to get as many queries
as possible to use one or more indexes. That’s what they’re there for! Set
aside a few different points during each project to review the types of
queries that are being used. Use this time to determine whether there
need to be more indexes or whether some are going unused. You’ll take
your best guess when you first create the database and then reevaluate as
development progresses. Often you’ll find out that a new index is needed
after the database is being used in a production environment.

So how will you know when a new index is needed? You’ll usually find
out from someone else with a not-so-subtle clue like, “Hey, why is this
thing so slow?” If an end user or a developer can show you a screen or an
operation that seems to take too long, this will give you a good starting
place. For example, a user complains that it used to take about one sec-
ond for the customer search list to pop up, but now it takes 10 seconds.
The first thing to do is to look for the query that generates that list.
Maybe the query looks like this:

SELECT FirstName, LastName, Address,
City, StateOrProvince, PostalCode, PhoneNumber

FROM Customer
WHERE StateOrProvince = 'I L';

244 Learn SQL In a Weekend



The problem might be that over time, more and more customers have
been added to the Customer table and that the StateOrProvince column is
not indexed. If there’s no index, this query will have to perform a table
scan every time it runs. The solution could be as simple as creating an
index on this column.

What if, in a situation like this, there was already an index on the column
or creating one didn’t seem to help? In this case, it could be a problem
with the way an application is interacting with the database. To find out
for sure, first eliminate the application from the equation. Copy the
query from the application and run it in your DBMS’s query editor or
Interactive SQL (ISQL) environment. This will show you how well the
query performs without any overhead or strange things that may be hap-
pening inside an application. If you still consider the query to be slow in
this environment, you know that there is fine-tuning work to be done.
This could be anywhere from creating a simple index to restructuring the
tables involved in the query. There are many other options that will give
you some ideas in the remainder of this chapter.

Avoid Large Result Sets
If you find that the query is running much quicker outside of the appli-
cation, you’ve already made some progress. One problem might be that
the query is just returning too much data. The example query for a cus-
tomer search list returns all of the customers who live in Illinois. An
example of this customer search is shown in Figure 5.6.

If there are thousands of customers in this state, it might take a while for
the application to receive that many rows. Sure the query might run
quickly, but getting all of those bytes from the database over to the appli-
cation might be the slow part. If you could reduce the number of bytes
being transferred, that might improve performance. There are two ways
to do this: bring back fewer rows or bring back fewer columns. Is it real-
ly necessary to return seven columns in this customer search list? Maybe
it could be split up. The query could select just the F i r s t N a m e, L a s t N a m e,

245SUNDAY MORNING  Optimization—Feel the Need for Speed?



and Address columns and display them in a list. A customer could be
selected, and further details could be displayed on demand. This could
significantly reduce the amount of data being pulled from the database.

Limiting the number of rows returned can be a big help as well. The
search window allows the user to select a state and will return all cus-
tomers who live in that state. If this still returns hundreds or thousands
of rows, you might want to include an addition search condition. You
could add a last name or city search option. Either one of these will sig-
nificantly reduce the number of rows that are returned. Not only will this
allow the data to be displayed faster, but the data will also be more man-
ageable for the user to browse through. This type of customer search is
displayed in Figure 5.7.

Sorting Data
If you must return a large result set, consider its sort order. Is it being sort-
ed by the database server or the client PC? Does it need to be sorted at
all? Although database servers are very good at sorting, there may be times

246 Learn SQL In a Weekend

Figure 5.6

A customer search
window that

returns a lot of
columns and rows.



when you find it better to issue a SELECT command without an
ORDER BY clause. If the database has very heavy simultaneous usage,
you might want your queries to get on and off the server as quickly as
they can. One way to do this is to skip the sorting step. If this sounds
good, but you really need sorted data, you have a couple of options. If
you want the data in the same order as a clustered index, you’re in luck.
The data is already sorted and will be returned that way. If not, you could
have the client PC sort it. This is a definite part of the equation that you’ll
want to consider. Sorting data at the client means it will not have to con-
tend with any other database processes during the sort. Most sort routines
that are built into programming and reporting tools are very quick. On
the downside, this might hinder users who are stuck with PCs that are
underpowered. The question of whether to perform sorts at the client or
the server is often one that can only be answered by observing production
database usage or by stress testing.

247SUNDAY MORNING  Optimization—Feel the Need for Speed?

Figure 5.7

This search window
returns fewer

columns and fewer
rows.A button is
provided to view

the full details of a
selected customer.



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Stress testing is the process of running multiple database operations at the same time
in order to observe performance. Often a stress test will attempt to duplicate or even
exceed the maximum expected load of its future production environment.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Load Up Your Test Database
It’s best if you can load up your development database with a lot of sam-
ple data. Put as much data in as you expect there to be when the database
goes live. This will help performance problems to surface long before it
gets into the user’s hands. It will point out slow queries, the need for
indexing, or inappropriate use of front-end applications. However, load-
ing sample data is often a step that gets skipped by developers and DBAs.
Why? It’s a pain and it takes a long time. No one is going to sit and type
in hundreds of thousands of rows of test data. So most of the time devel-
opers are writing SQL for tables that have only a dozen or so rows. Tables
that small will always perform fabulously! It’s worth the effort to spend a
few hours or even a few days to get some good sample data created.

Creating test data doesn’t have to be hard. Here are a few options. First,
if the database you are creating is replacing another, draw your data from
the old database. This is the best possible situation. You’ll have real data
complete with its real-life quirks and anomalies. Your DBMS might have
tools that can directly copy data from the old database to the new one. If
not, it will have a way to import data from a file. One of the issues that
you’ll probably face here is that an old database and a new one often are
far from identical. It will take some work on your part to get the right
columns into the right tables.

If you don’t have the luxury of an existing database to draw your data
from, you could write a program. A small program or stored procedure
could be written to perform inserts into your tables. Programs like this
often have a base set of data that they draw from to create the INSERT
commands. For example, when building an INSERT command for the

248 Learn SQL In a Weekend



Customer table, the program might randomly choose a last name from a
file, then randomly choose a first name, then randomly choose an
address, and so on. This method lets you loop as many times as you want
to create the number of rows you need. The data that you’ll end up with
will be a little redundant, but you’ll have the volume that you need.

One final option we’ll discuss for loading sample data is to use a com-
mercially available test-data-generation tool. You or your company might
already own one of these. Many data-modeling tools already include this
as a feature. Check the help file or product documentation if you’re not
sure. It might be a feature that’s buried deep in a menu somewhere. If you
don’t have one, there are several companies that market these kinds of
products. One such product is called WinSQL from IndusSoft Tech-
nologies. Although this product’s main function is to edit and execute
SQL, it also includes a data generation feature. It can create realistic data
by reading from files or by getting data from other tables. It can also
quickly create random data by matching a pattern or by simply generat-
ing meaningless garbled text. Figure 5.8 shows this tool being used to
generate some customer data.

Following is some of the sample data that this tool generated:

C u s t o m e r F i r s t N a m e L a s t N a m e A d d r e s s C i t y
I D
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 1 K y l e B u s c a v a g e 12011 Sunset Valley Rd B o h e m i a
42 E v a n g e l o s A n t o n i n i 11606 Vantage Hill Rd Green Bay
4 3 M e l v i n Bird    8 W 36th St      Fort 

L a u d e r d a l e
44   Lauren  Bowling 231 Old Tower Hill Rd C i n c i n n a t i
45   Lucien Cantey  356 Chebacco Rd   A u b u r n d a l e
46   Nathan Bushek   515 N Sam Houston Pkwy  H u n t i n g d o n

V a l l e y
47  Nakhle   Barge  5218 S Westnedge Ave   C a m b r i d g e
48   Cesario Adonizio  4199 Campus Dr Ste 550 I r v i n e
49   Gilbert   Bonner   910 Duncan Ln APT 44  Chicago 

H e i g h t s
50    Andrea  Ash    9030 W Sahara Ave 340  B e a v e r t o n

249SUNDAY MORNING  Optimization—Feel the Need for Speed?



A more expensive but possibly more robust tool is called Da t a Fa c t o ry
f rom Quest So f t w a re. Like WinSQL, it will display the tables and
columns from your database and allow you to define how each column
is to be loaded. Da t a Fa c t o ry, howe ve r, is keenly aware of foreign key
re f e rences and will create valid data between tables with correct re f e r-
ential integrity.

Information about WinSQL can be found at h t t p : / / w w w. i n d u s - s o f t . c o m /,
and the Web site for Da t a Fa c t o ry is h t t p : / / w w w. q u e s t . c o m /.

Limit Your Use of Grouping Commands
Although GROUP BY and HAVING clauses are very nice features, they,
too, take extra time to process. Once again if you find yourself develop-
ing on a multiuser database that you expect to be heavily used, you might
want to reconsider these two clauses. As you can imagine, there are sev-
eral steps that the DBMS must take to group, summarize, and refilter a
GROUP BY, HAVING query. Every step that a query must perform will
not only take longer but is an extra opportunity to get stuck waiting in

250 Learn SQL In a Weekend

Figure 5.8

WinSQL is one 
tool that can

quickly create a
large amount of

test data.



line for another process to complete. Results that have to be grouped and
summarized many times can have this performed by a client application.
Development tools such as Visual Basic and PowerBuilder, for example,
have built-in graphical tools that can easily handle data grouping and
summarization. In fact, reporting tools such as Crystal Reports and Cog-
nos Impromptu do not want you to use GROUP BY and HAVING
clauses. One of the strongest suits of these tools is their ability to crunch,
combine, rotate, and drill down into data. Using these clauses would
actually take away much of the flexibility of these types of reporting tools.

Drop Indexes before Bulk Loads
Earlier in this chapter, we talked about the fact that indexes will actually
cause more work for INSERT, UPDATE, and DELETE commands.
Most of the time this will not even be noticeable, especially when you’re
inserting just a row here and a row there. But when you’re trying to load
hundreds or thousands of rows at the same time, the performance hit can
be all too visible. The indexes will be constantly reordering themselves
over and over again for every new row that is inserted. There are two
things that can help speed bulk loads. First try dropping all of the index-
es before loading the data. Without any indexes you’ll see the data load
much quicker. You will, of course, have to spend some time re-creating
the indexes after the data is loaded. However, many times this two-step
process is much faster than loading with the indexes still on the table. If
you find that it’s not practical to drop the indexes for a short time, try
sorting the data before loading it. If the data is sorted the same way as one
of the indexes, that index will have much less work to perform when each
new row comes in. The best choice, if possible, is to have the data pre-
sorted the same as the clustered index.

Avoid Table Scans
When we talked earlier about table scans, we practically called them evil.
Well, if you’re dealing with a large table, they are evil. Nothing will 
make a query crawl slower than having it table scan 500,000 rows.

251SUNDAY MORNING  Optimization—Feel the Need for Speed?



Imagine what the following SELECT command must go through to find
matching rows on a 500,000-row table with no indexes.

SELECT FirstName, LastName
FROM Customer

WHERE City = 'S p r i n g f i e l d'
AND (StateOrProvince = 'A Z' OR StateOrProvince = 'N V')
AND LastName LIKE '% z %';

The poor database will have to examine eve ry single row and look for the
city of Sp r i n gfield. Then it will check for either of two states. Fi n a l l y, the
k i l l e r, it will have to scan through eve ry last name looking for the letter Z.
This is a fairly simple query to investigate. It is easy to see the three columns
that are being used and which ones could benefit from an index. The C i t y
column could and possibly StateOrProvince as well. A more complex query,
h owe ve r, like the next one might not be so easy to figure out.

SELECT v.VehicleYear, v.Make, v.Model, p.Cost, pu.Quantity
FROM Vehicle AS v
JOIN JobTicket AS jt

ON v.VehicleID = jt.VehicleID
AND jt.StartDate > '2 0 0 2 - 0 1 - 0 1'

JOIN JobTicketDetail AS jtd
ON jt.JobTicketID = jtd.JobTicketID

JOIN PartUsed AS pu
ON jtd.JobTicketID = pu.JobTicketID

AND jtd.LineItemNumber = pu.LineItemNumber
JOIN Part AS p

ON pu.PartID = p.PartID
AND p.Cost > 5.00

WHERE v.VehicleYear > 1969;

This query joins five tables together in order to show parts that cost more
than $5.00 used in jobs after January 1, 2002, in cars built after 1969. If
this were a query that you found to be running slowly, it might not be
easy to know where to start looking. The first step, though, would be to
look at each column that is involved in a join and make sure that it is
indexed. So you’d check columns such as V e h i c l e I D, J o b T i c k e t I D, and
L i n e I t e m N u m b e r. If this doesn’t help or the indexes were already in place, it
might be time to dig deeper.

252 Learn SQL In a Weekend



Examine the Execution Plan
Some of the database systems have analysis tools built into them to help
debug queries like this. Each DBMS has its own syntax for turning this
f e a t u re on. Or a c l e’s command, for example, is EXPLAIN PLAN, where a s
SQL Se rver uses SET SHOW P LAN_TEXT ON. Each DBMS will also
h a ve its own way of displaying the results. When this option is turned on
and the query is executed, instead of ord i n a ry rows and columns re t u r n e d ,
an execution plan will be displayed. Yo u’ll see the optimize r’s plan of
attack. Now, looking into a computer’s brain is not always pre t t y. Take a
look at SQL Se rve r’s SHOW P LAN_TEXT for a five-table query :

Nested Loops(Inner Join, OUTER REFERENCES:([pu].[PartID]))
Nested Loops(Inner Join, OUTER REFERENCES:([jtd].

[ L i n e I t e m N u m b e r ] ,
[ j t d ] . [ J o b T i c k e t I D ] ) )

Nested Loops(Inner Join, OUTER REFERENCES:([jt].
[ J o b T i c k e t I D ] ) )

Nested Loops(Inner Join, OUTER REFERENCES:
( [ j t ] . [ V e h i c l e I D ] ) )

Clustered Index Scan
( O B J E C T : ( [ S l i c k S h o p ] . [ d b o ] . [ J o b T i c k e t ] .
[PK__JobTicket__7F60ED59] AS [jt]),
WHERE:([jt].[StartDate]>’Jan  1 2002

1 2 : 0 0 A M ’ ) )
Clustered Index Seek

( O B J E C T : ( [ S l i c k S h o p ] . [ d b o ] . [ V e h i c l e ] .
[PK__Vehicle__78B3EFCA] AS [v]),
S E E K : ( [ v ] . [ V e h i c l e I D ] = [ j t ] . [ V e h i c l e I D ] ) ,
WHERE:([v].[VehicleYear]>1969) 

ORDERED FORWARD)
Clustered Index Seek

( O B J E C T : ( [ S l i c k S h o p ] . [ d b o ] . [ J o b T i c k e t D e t a i l ] .
[PK_JobTicketDetail] AS [jtd]),
S E E K : ( [ j t d ] . [ J o b T i c k e t I D ] = [ j t ] . [ J o b T i c k e t I D ] )
ORDERED FORWARD)

Clustered Index Seek
(OBJECT:([SlickShop].[dbo].[PartUsed].[PK_PartUsed] 

AS [pu]),

253SUNDAY MORNING  Optimization—Feel the Need for Speed?



SEEK:([pu].[JobTicketID]=[jtd].[JobTicketID] AND
[ p u ] . [ L i n e I t e m N u m b e r ] = [ j t d ] . [ L i n e I t e m N u m b e r ] )
ORDERED FORWARD)

Clustered Index Seek
(OBJECT:([SlickShop].[dbo].[Part].[PK__Part__7D78A4E7] 

AS [p]),
S E E K : ( [ p ] . [ P a r t I D ] = [ p u ] . [ P a r t I D ] ) ,
WHERE:(Convert([p].[Cost])>5.00) ORDERED FORWARD)

Yikes! We weren’t kidding when we said that it was not going to be pret-
ty. Don’t worry, though, we’re not going to get into the full details of this
output. We just want to point out some of the key things you’ll want to
look for in an execution plan output like this. The plan will show index-
es that are going to be used to fetch the data. It will often also show the
order in which it will process the query. The biggest thing that you’ll be
looking for is some kind of reference to a table scan. In the output, there
are several lines that say Clustered Index Seek, but notice the one near the
top that says Clustered Index Scan. That keyword scan is the clue you’re
looking for. It tells you that at least one table scan is going to be per-
formed. If you read down a couple lines farther, you’ll see the culprit
behind the table scan: W H E R E : ( [ j t ] . [ S t a r t D a t e ] >'Jan  1 2002 12:00AM').

Based on this execution plan, the first thing that you should try is to cre-
ate an index on the StartDate column in the JobTicket table. Indeed,
after you create this index and rerun the SHOWPLAN_TEXT, you get
slightly different output from the execution plan. This time instead of
reporting a scan, it says Index Seek and then names the new index. It
looks as though that will resolve the table scan problem. Of course, the
true test will be to run the query in its normal environment and see how
long it takes.

Deadlocks
Deadlock situations will not only slow users down, but they will also
stop users in their tracks. A deadlock occurs when two users are each
waiting to access data that the other has locked. Fi g u re 5.9 helps explain
d e a d l o c k i n g .

254 Learn SQL In a Weekend



In this example two users have each started a transaction. They are
both updating the Customer and Vehicle tables. The first transaction
updates Customer and locks a part of that table. Be f o re the first trans-
action does anything else, the second transaction updates Vehicle a n d
locks part of that table. Now the first transaction wants to update the
Vehicle table but must wait until the lock is released. Likewise, the sec-
ond one wants to update the Customer table but must wait for that lock
to be released. So like two stubborn mules, neither one wanting to
budge, they have a deadlock. Both transactions will just sit there and
wait. Eve n t u a l l y, one of them will time out, fail, and get rolled back,
a l l owing the other one to pro c e e d .

One way to help avoid deadlocks is to write the transactions so that they
access the tables in the same order. If you could rewrite the second trans-
action to update Customer first and Vehicle second, this will help. Figure
5.10 shows how the scenario looks when the transactions update in the
same order.

255SUNDAY MORNING  Optimization—Feel the Need for Speed?

Figure 5.9

A deadlock occurs
when two users are

waiting for each
other to release

their locks.



This way these two transactions will never be waiting for each other to
release locks. One of them might have to wait a short time for the other
to commit. As Figure 5.10 shows, if the second transaction tries to begin
while the first one is running, it will get stopped right away. It will be
freed to continue as soon as the first transaction is either committed or
rolled back.

Set Up a Database Trace
Many times it’s difficult to determine the cause of a performance prob-
lem because a front-end application hides all of the SQL commands that
it uses. When you press Search, Save, or OK in an application, what is
SQL sending to the database? Is it just one simple SELECT or is it a half-
dozen complex queries? Sometimes it’s hard to determine even when you
wrote the program’s source code. One way to look under the covers is to
put a trace between your front-end application and your database. A trace
will allow you to view SQL commands and data that are passing to and
from the database.

256 Learn SQL In a Weekend

Figure 5.10

The transactions
access the tables in

the same order to
avoid a deadlock.



There are a few different ways you can capture this information. Your
database system might come with this feature. If it does, you’ll probably
have to log on as the administrator and turn this feature on. If it does not
have this feature, you might be able to set up a trace using Open Data-
base Connectivity (ODBC). If your front-end application runs on 
Windows and uses ODBC to connect to the database, you can open the
ODBC administrator and turn on tracing. A log file will be created con-
taining all SQL commands that your application sends while it runs.
When the application is finished, you can review the log file. If neither of
these is an option, you could use a network packet-sniffer. This kind of
program will intercept all of the traffic that is passing through a network,
not just SQL commands.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Unless you or someone you know is experienced at sniffing network packets, you might
want to leave this option alone.There are a lot of bytes passed back and forth on a net-
work, and you’ll be seeing all of them. Most of what you’ll see will be confusing binary
data. Unless you or your friend knows what you’re doing, it could turn out to be a frus-
trating experience.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

If none of the tracing options are available, you can just do it fro m
within the application. This suggestion assumes that you have access to
the source code or access to someone who does. Go to the part of the
application where you suspect the performance problem. Modify the
p rogram such that either before or after each SQL command is sent,
output is also sent to a log file. This can just be a plain file that will 
contain one SQL command after the next. You could even make the
application a little fancy and create a switch that will turn this feature
on only when you need it.

257SUNDAY MORNING  Optimization—Feel the Need for Speed?



Fine-Tune the Database
A big consideration when you are designing a database for performance
is its main role. Does the database fit the mold of an online transaction
processing (OLTP) database or online analytical processing (OLAP) data-
base? An OLTP database is one that is most heavily involved with data
entry and modification. As its name suggests, its job is to process trans-
actions. It expects to deal with inserts, updates, and deletes all day long
and possibly in high volumes. This is not to say that queries cannot be
run against an OLTP database. However, because its main focus is data
collection, queries and reports might be limited. An OLAP database, on
the other hand, is made for reporting. It will have tables specifically built
to serve up a wide variety of reports quickly. This type of database will
usually not have any data entry taking place. New or updated data is fed
to it in batches hourly, daily, or weekly.

The type of database that you are building will have an effect on the way
you design your tables and indexes. If you are building an OLTP data-
base, you will want to normalize the tables in order to reduce entry and
maintenance of redundant data. Normalization will also help keep the
integrity of the data intact. Because an OLTP database is not as con-
cerned with reporting, it will benefit from fewer indexes. Remember that
indexes will actually slow down data modification commands. An OLAP
database is built for reporting speed. Because it will not be accepting data
entry, it can be loaded up with indexes. Several index combinations can
be built to aid a variety of queries. The table structure will be much dif-
ferent too. These tables can actually be denormalized. When two or more
tables are brought together, there will be fewer tables involved in the
query. Fewer tables mean fewer joins, and fewer joins mean quicker
results. Remember these tables are not going to accept data entry, so the
fact that they have redundant data no longer matters.

The OLAP database is actually a copy of the OLTP, except it’s just shaped
or stored differently. A typical scenario is that the OLTP database works
hard all day receiving new data and modifications. Later, in the middle of

258 Learn SQL In a Weekend



the night, jobs are run that extract data from this database and load it into
the OLAP database. Before the data can be loaded, it might have to be
joined or summarized in order to fit the table structures. The next morn-
ing both databases are ready to begin their day. The OLTP is ready for
more data, and the OLAP is ready to run reports.

The Slick Shop database is an OLTP database. You’ve normalized it and
created only a few indexes. What would its sister database, the OLAP,
look like? First of all you’d identify some tables to denormalize. Let’s say
you’re planning to do a lot of reporting on job ticket data. To show all
details of a job ticket, you’d have to query J o b T i c k e t, J o b T i c k e t D e t a i l,
P a r t U s e d, P a r t, and S e r v i c e. That’s five tables and several columns to be
joined. Instead, you’ll build one single table to hold this information.

CREATE TABLE J o b T i c k e t C o m b i n e d
(JobTicketID  i n t ,
CustomerID   i n t ,
StartDate    s m a l l d a t e t i m e ,
EndDate        s m a l l d a t e t i m e ,
VehicleID      i n t ,
LineItemNumber t i n y i n t ,
ServiceDesc    v a r c h a r ( 1 0 0 ) ,
RatePerHour    m o n e y ,
HoursSpent     decimal(5, 2),
DateComplete   s m a l l d a t e t i m e ,
PartDesc       v a r c h a r ( 1 0 0 ) ,
PartCost       m o n e y ,
Quantity       t i n y i n t ) ;

This table has a lot of columns, and it will have a lot of rows too. Look
how the table not only has a separate row for every line item but also has
a separate row for every part used. Much of the data in this table, such as
J o b T i c k e t I D, C u s t o m e r I D, and S t a r t D a t e, will be repeated over and over
again. That’s okay, though, because this database will not be used to
update data. You don’t have to worry about finding all of the copies of the
same data and getting them updated. This is especially true if your night-
ly batch loading jobs remove all of the data before reloading the tables. In
this case, the tables would get a fresh start every night.

259SUNDAY MORNING  Optimization—Feel the Need for Speed?



As mentioned earlier, indexing is a big part of an OLAP database. You
would start placing indexes on this table with very little worry. You don’t
have to be as cautious as before because the goal here is quick output. But
data does have to get into the tables at some point, doesn’t it? It might be
nightly or weekly, but whenever it happens all of those indexes are going
to slow down the load. This is something that you’ll have to measure. If
it takes four hours to fully reload your heavily indexed OLAP database, is
this okay? It might be, especially if it’s during a time period in which no
one uses this database. If your office is closed at night, there should be
plenty of time for this nightly update. If this nightly job, however, is tak-
ing 15 hours, it’s time for a new plan. One idea mentioned before is to
load the tables without their indexes. Drop all of the indexes, load the
data, and then re-create them. This will allow the data to be loaded much
faster as it eliminates the needless index reorganization. When the index-
es are created as the last step, they only have to do their thing one time.

The OLAP table you just built is at the detail level. In it you’ll be able to
find all details from every job. You might want to build summary level
tables as well. These will have data that has already been totaled up and
stored into neat categories such as weekly or monthly totals. This would
save even more time when reports are being generated. If you had people
who were interested in the Slick Shop’s monthly statistics, you’d build
another table, like this one:

CREATE TABLE J o b T i c k e t M o n t h l y
(Month           t i n y i n t ,
Year            s m a l l i n t ,
NumOfJobs       i n t ,
LineItemsPerJob t i n y i n t ,
AvgRatePerHour  m o n e y ,
AvgHoursSpent   decimal(5, 2),
AvgPartCost     m o n e y ,
TotalRevenue    m o n e y ) ;

This is a very different kind of table. It has just one row for every month
of every year. On that row, you’ll be able to see the number of jobs that
were performed, average hours and costs, as well as the total revenue for

260 Learn SQL In a Weekend



the month. These are all numbers that might take a while to generate, but
they only need to be done one time. A program or stored procedure that
runs at the end of every month can summarize the data and insert a new
row into this table. Now whenever someone needs monthly data, it’s a
lightning-quick query away.

Fine-Tune the Server
Another opportunity to gain some performance is to place data and
indexes on separate disk controllers. This means that one physical
read/write device will access data whereas another accesses indexes, so you
can have two controllers that are working simultaneously. The time to set
this up actually comes way back at the time the database is created. There
are a couple of requirements to make use of this feature. First and fore-
most, your server must have at least two separate hard drives. Second,
your DBMS must allow you to store data and indexes on separate drives.
The first thing to do is to allocate space for the data when you first cre-
ate the database. Remember in the last chapter when we talked about 
creating a database, we said that you can usually accept the default
options. This is a case where you will want to find the syntax for your
database system’s CREATE DATABASE command. It will show you how
to specify a particular drive that the data and indexes will be stored on.
The next step comes when you are creating tables and indexes. When cre-
ating them, you will have the opportunity to specify the drive where the
data will reside. The same goes for indexes. By carefully separating them
like this, you can nicely divide the work across two or more drives.

Another option you might have available to you is called striping. This is
the practice of taking a single table and spreading its data out over two or
more disks. This will also be an option when creating your table. You can
specify multiple disks on which to store the data. The database system
will then take care of spreading out (striping) the data equally across each
of the disks. The advantage will be in both queries and data modification
commands. Each disk controller can work for you at the same time when

261SUNDAY MORNING  Optimization—Feel the Need for Speed?



accessing this table. A possible disadvantage, however, is that unless these
drives are dedicated to this one table, they’ll be competing with activity
from other tables. Striping is most often used with very large tables.

What’s Next?
Armed with all of these good optimizing ideas, yo u’re probably all set to
d r i ve over to the office and start tuning all of your databases, right? Ok a y,
o k a y, we know it’s still Su n d a y. Do n’t go back any sooner than you have to.

After lunch we’ll pick it up again and talk about security. We’ll show you
how to let the people in who should be there and how to keep everyone
else out. You’ll be able to do this with password protection on a few dif-
ferent levels. We’ll also introduce you to the stored procedure’s first
cousin, the trigger.

262 Learn SQL In a Weekend



S U N D A Y  A F T E R N O O N

S e c u r i t y —
Putting the
Padlocks on

S U N D A Y  A F T E R N O O N

S e c u r i t y —
Putting the
Padlocks on

S U N D A Y  A F T E R N O O N

S e c u r i t y —
Putting the
Padlocks on

➤ Considering Database Security
➤ Creating and Using Views
➤ Using Triggers



This page intentionally left blank 



IIt’s hard to forget about security. Everywhere you turn, you’re remind-
ed of it. You’re prompted for several passwords each day, viruses occa-
sionally fill up your mailbox, and every few weeks news breaks that a

hacker has breached yet another security hole. Hollywood even produces
a new movie every so often that glamorizes the world of hacking. Your
concern, as far as SQL goes, is how you can secure this database that
you’ve spent all this time on. This afternoon’s session is going to focus on
just that topic, database security. We’ll break down this broad category
and take a look at security from several angles.

Considering Database Security
It will probably be no surprise to you to hear that database security via
SQL is password based. Like us, you no doubt have dozens of usernames
and passwords that you have to keep track of. This seems to be the most
accepted form of security right now. The basic protection model of a rela-
tional database comes in two layers. A username and a password are used
to gain access to a database. From that point, this same username has spe-
cific rights assigned to it. Just because a user can log on to a database does
not mean that the user has free rein over all of the data. It’s like your
workplace—just because you were given a key to the office’s front door
doesn’t mean you’ll be able to open every door once you’re inside. You’re
not supposed to be in the boss’s office, so you’re locked out. (Hopefully,
he invites you in at least around annual pay-raise time.)

265



Letting People In
The first thing that you need to do for your database users is to let them
in the front door. If you’ve been following along in the book so far, try-
ing out the samples, you already have an idea what this security is about.
Almost any database that you deal with will force you to log on to it
before you can do anything else. Some come with default usernames and
passwords; others have you set them up when the database is first
installed. One notable exception is Microsoft Access. By default, Access
lets you create a new database and work away as long as you want with-
out password protection. You can go back later to set up passwords in
Access whenever you are ready.

When it comes to creating new user accounts, each DBMS does things
its own way. We’ll show you examples of several in a few minutes. But
first we want to talk about a couple of security options that are provided
by the larger vendors.

Database Authentication
The first option is one that is provided by all database systems. This is the
method where a person provides a username and password to the data-
base for verification. The database software is in charge of validating this
information and allowing or denying access. Passwords are stored and
maintained by the database system, most likely encrypted within the
database itself.

Operating System Authentication
Many of the large DBMSs offer the option of authenticating users at the
operating system level. When this option is in place, once users are logged
on to their operating system, network, or domain, they don’t need to log
on a second time to access the database. As long as their current username
has been given permission in the database, they are free to go straight in.

266 Learn SQL In a Weekend



This authentication model has some pros and cons to consider. One of
the big advantages is that you’ll be able to make your database applica-
tions more seamless. Users can just open the database application and
begin working. The need for yet another username and password has
been eliminated. The database will still know who the user is and be able
to apply the correct privileges with regard to the data. Another advantage
is that this introduces the opportunity to use more advanced security
measures, such as card readers or fingerprint scanners. Devices like this
can grant access to a network after which the authentication is passed
automatically to the database.

Many people choose the database authentication instead because they
want users to explicitly log on every time. Sometimes in an office envi-
ronment there are shared workstations in use. Using operating system
authentication would require that one user log off of a workstation and
the other log on before starting the database application. An even more
common reason for not letting the operating system authenticate is the
problem of users who get up and leave their workstation unprotected.
Because a database using this option does not require a password, this
vacant workstation is leaving data vulnerable. Anyone who happens by
and launches one of the database’s applications will be seen by the data-
base as this absent person. Any data that was meant for this person to see
is now in the hands of someone else.

Creating User Accounts and Groups
Once you’ve decided on a method of authentication, you’ll be ready to
create the accounts. You’ll take a look at creating both individual user
accounts as well as groups. Using a group is a convenient way to assign
privileges. Instead of assigning the same privileges over and over again to
similar users, you can assign them one time to a group. You can then add
and remove users from the group as often as you like.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 267



As we said, user accounts and groups are created a different way on each
DBMS. We’ll cover several of them here so you can get a feel for them.
We’ll just show the basic syntax for each, so yo u’ll want to check yo u r
documentation for any special options that might be available. On e
thing they all have in common is that in order to create user accounts
and groups, you will have to be logged on as the system or database
a d m i n i s t r a t o r.

Creating Server Logon Names and Roles in
Microsoft
To create a new user logon name in Microsoft SQL Server, you’ll use a
system-stored procedure.

EXECUTE sp_addlogin logonname [, password] [, database];

This is one of many stored procedures that come preinstalled with the
database system. The arguments to this procedure are a unique database
logon name, an optional password, and an optional database name that
the user will connect to by default. You’ll use this procedure to create a
server logon name for a new employee of the Slick Shop.

EXECUTE sp_addlogin 'JackieP', 'oillady', 'SlickShop';

If you want to use operating system authentication, just make sure the
logon name is the same as the user’s network logon name. After running
this procedure, Jackie can now log on to the database server but can’t do
anything. Even though you’ve assigned her a default database, she is not
yet a user in this database. Her logon name must be added as a user to
each database that you want to grant her access into. This is done with
another system-stored procedure.

USE dbname;
EXECUTE sp_adduser loginname;

First you need to get yourself into the correct database. Then on the pro-
cedure call, you specify the logon name that you created earlier.

268 Learn SQL In a Weekend



USE slickshop;
G O
EXECUTE sp_adduser 'JackieP';

Now Jackie will be able to not only log on to the database server but
also get into the SlickShop database. Sadly for her, though, this will
still not do her any good. At this point she has no rights. She cannot
v i ew or edit any data. This will come later when we talk about granti-
ng permissions.

If you want to get rid of a logon account, you first must drop it as a user
from each database that it’s been added to.

USE slickshop;
G O
EXECUTE sp_dropuser 'JackieP';

Only after it’s no longer a user in any database can its server logon name
be dropped.

EXECUTE sp_droplogin 'JackieP';

Throughout the rest of this session you’re going to use the JackieP logon account. So
if you’ve just dropped it, you’ll want to recreate it now.

Groups (or roles, as they are called in SQL Server) are very similar in that
they are created with a system-stored procedure.

EXECUTE sp_addrole 'Accounting';

This new role that is created is different than a logon name because no one
can use it to log on to the database serve r. Instead, it is available to accept
members. Members can be added to the role with another pro c e d u re .

EXECUTE sp_addrolemember 'Accounting', 'JackieP';

Now any privileges that are given to the Accounting role are also auto-
matically assigned to Jackie as well. Jackie can be removed from the group
later with a similar command.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 269



EXECUTE sp_droprolemember 'Accounting', 'JackieP';

In doing so, Jackie will lose all of the privileges that the Accounting role
has. If she has any permissions that were specifically assigned to her, she
will keep these. Finally, use this command to remove the entire role:

EXECUTE sp_droprole 'Accounting';

All users must be removed from the role before this command will be
allowed.

Creating Server Logon Names and Groups in
Sybase
Remember from the Friday Evening session that Sybase Ad a p t i ve Se rv-
er and Mi c rosoft SQL Se rver actually used to be the same pro d u c t .
Because of this, as we’ve already shown you several times, the two still
s h a re a lot of commands. In fact, the way user logon names are cre a t-
ed is still the same. Refer to the preceding section on Mi c rosoft for the
f o l l owing commands:

s p _ a d d l o g i n
s p _ a d d u s e r
s p _ d r o p u s e r
s p _ d r o p l o g i n

Sybase, however, creates groups and roles differently. The syntax that
we’re going to show you is actually still supported by Microsoft, but the
concept of the roles is now preferred. To create a new group, you’ll use
another system-stored procedure.

EXECUTE sp_addgroup 'Accounting';

Users can be added to the group like this:

EXECUTE sp_changegroup 'JackieP', 'Accounting';

This will put Jackie into the Accounting group. If she was already assigned
to another group, she will be removed from it and placed in this group
now. A user can be assigned to only one group at a time. 

270 Learn SQL In a Weekend



To drop a group, use this command:

EXECUTE sp_dropgroup 'Accounting';

A group cannot be dropped if it has any users still in it.

Roles are actually now the preferred method of grouping users in Sybase.
A role is created with this command:

CREATE ROLE Marketing;

If you want to add Jackie to this role, you’d issue the following command:

GRANT ROLE Marketing TO JackieP;

You can even set up a hierarchy of roles within Sybase. You’d do this by
granting one role access to another.

CREATE ROLE Finance;
GRANT ROLE Accounting TO Finance;
GRANT ROLE Payables TO Finance;
GRANT ROLE Receivables TO Finance;

This way you could have employees separated into their own roles such
as Payables or R e c e i v a b l e s. However, you could also have users in the
Finance role that have access to everything that the other roles have.

To remove a role, you do not have to remove its members.

DROP ROLE Accounting;

All users within this role will lose their membership.

Creating Users and Roles in Oracle
If you use Oracle, the following syntax will allow you to create new users.

CREATE USER username
IDENTIFIED BY password;

This is very similar to the commands that Sybase and Microsoft use. One
difference is that this one command creates an account within the data-
base, where Sybase and Microsoft needed two commands to do this. In
this command you’ll need to specify a new username and come up with

SUNDAY AFTERNOON  Security—Putting the Padlocks on 271



a password. There are other options that you can use that will specify such
things as the amount of disk space the logon name is limited to use and
whether or not the password will expire in the future.

CREATE USER JackieP
IDENTIFIED BY oillady;

Assuming this command is run from the SlickShop database, it will cre a t e
Jackie as a database user. Howe ve r, she will not be able to log on to the
database until she has first been granted the CREATE SESSION privilege.

GRANT CREATE SESSION TO JackieP;

If Jackie quits the company, just use the following command to remove
her account:

DROP USER JackieP;

Oracle also uses roles to group user accounts together. To create a new
role, use the following syntax:

CREATE ROLE Accounting IDENTIFIED BY numbers;

Notice how the role has a password. This is one of many ways to create a
new role. In this case, a user who wants to start using this role would need
to supply the password with the SET ROLE command. User accounts
can be added to the role with the following command:

GRANT Accounting TO JackieP;

Users can be removed from the role with this one:

REVOKE Accounting FROM JackieP;

And, finally, the role can be dropped. You can drop the role even if users
are currently assigned to it. They will obviously not be in the role any
more and will lose all privileges that the role had.

DROP ROLE Accounting;

272 Learn SQL In a Weekend



Creating Users and Roles in Informix
With Informix, you will be using the operating system authentication
that we talked about earlier. The user must first have a logon name creat-
ed at the network. Informix will use this logon name. All you have to do
is allow the user to connect to the database system. You do this with the
GRANT command.

GRANT CONNECT TO JackieP;

Later, we’ll show you the SQL GRANT command used by all databases.
You’ll use it to give people access to tables and other objects.

To re m ove Jackie as a user from the database, use the REVOKE command.

REVOKE CONNECT FROM JackieP;

A new role can be created with this command:

CREATE ROLE Accounting;

Next, users can be added to the role this way:

GRANT Accounting TO JackieP;

In order to make use of the role, after Jackie is logged in, she’ll have to
use this command:

SET ROLE Accounting;

This command will verify that she is indeed a member of this role and
give her all access that has been previously granted to the role.

Creating Users in MySQL
In MySQL you use the GRANT command as follows to create Jackie’s
new account.

GRANT USAGE ON *.* TO JackieP@localhost IDENTIFIED BY oillady;

Like the other DBMSs, this just gets her into the database but doesn’t
give her access to any data yet.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 273



Creating Users and Groups in Access
Microsoft Access is going to be the exception in the security discussion.
Although Access has the same security features as the other database sys-
tems being discussed, it is not set up through commands. In Access, you
manage all of the security through menu options and dialog boxes. For
instance, to create a new user or group, select the Tools menu, and then
Security, and then User and Group Accounts. The dialog box that opens
will allow you to create a new user and assign a password.

Other dialog boxes allow groups to be created, users to be assigned to
groups, and privileges to be assigned. It should be noted that many of the
other DBMSs also have nice user interfaces like Access that let you do the
same thing. However, because this is a SQL book, you’ll continue to look
at the commands to accomplish these tasks.

Granting Privileges
Now people have access to the database and they can log in. They might
even be members of a group or be assigned to one or more roles. But
unless they or their group is explicitly granted privileges, they are help-
less. You’ll be using the SQL GRANT and REVOKE commands to
administer rights.

The most basic kind of database security that you can have is just to
a l l ow eve ryone to do eve rything. Do n’t laugh. Although this doesn’t
sound like security at all, it is actually a valid security model. In cert a i n
situations, the security measures that we’re going to talk about are
ove rkill. This is usually the case where there are a ve ry limited number
of users that are well trusted. Setting up and maintaining security on a
t a b l e - by-table basis might actually be a waste of time. Re m e m b e r, these
users do need to have a valid database logon name in the first place. So
t h e re is some level of security.

274 Learn SQL In a Weekend



Most of the time, however, you will want to set up restrictive security.
There are many good reasons for this. It will help to prevent accidental
modifications or deletions. It will prevent extraneous objects, like tables,
views, and procedures, from being created. But probably most important,
it will keep prying eyes off of data that shouldn’t be seen.

Granting Table Privileges
You’ve already seen the GRANT command in action a few times. It’s used
by some of the database systems to create users. Standard SQL uses the
GRANT command to give users access to the data in tables. Take a look
at the syntax.

GRANT [ALL PRIVILEGES] |
[SELECT | INSERT | UPDATE | DELETE | REFERENCES [, ...]]
[(columns [, ...])] ON table_or_view

TO user_or_role [, ...]
[WITH GRANT OPTION];

T h e re are a lot of things to talk about in this command, so let’s start
with the basics. The main information you need to provide is what
privileges yo u’re granting, what table yo u’re granting them on, and
who yo u’re granting them to. If you want to allow the user JackieP t o
v i ew the Customer table but not add, change, or delete data, you use the
f o l l owing command:

GRANT SELECT
ON Customer
TO JackieP;

Now she can run all of the SELECT commands she wants on the C u s t o m e r
table. Howe ve r, if she attempts an INSERT command, she will get an
e r ro r. The same is true for UPDATE and DELETE. Now log in to the
database with the JackieP logon account. With this account yo u’ll be able
to perform SELECT commands like the follow i n g :

SELECT LastName, Count(*)
FROM Customer

WHERE PostalCode IN ('50990', '50991', '50992')
GROUP BY LastName;

SUNDAY AFTERNOON  Security—Putting the Padlocks on 275



Any SELECT command that involves the Customer table will now be
valid for this user. The following command, however, will not be allowed.

SELECT c.LastName, v.Make, v.Model
FROM Customer AS c
JOIN Vehicle AS v ON c.CustomerID = v.CustomerID;

In order to run this command, the user will have to have the SELECT
privilege granted on all tables involved in the query. In this case, that
means both Customer and V e h i c l e.

More than one privilege can be granted at the same time.

GRANT SELECT, INSERT, UPDATE
ON Customer
TO JackieP;

This command will allow Jackie to do everything with the Customer table
except delete rows from it.

Privileges can also be assigned to more than one user at the same time.
This allows you to quickly set up the same rights for similar users.

GRANT SELECT, INSERT, UPDATE
ON Customer
TO JackieP, MarkB, LarryR;

This GRANT command includes two new users, Mark and Larry. In order to run the com-
mand you will first need to create logon accounts for them and grant them access to the
SlickShop database.

So, using the GRANT command, you’ll move through the database table
by table, assigning the appropriate rights to each user. As you can imag-
ine, you’ll need to put some thought into this activity. For example, in the
preceding code three users are given the rights to add, modify, and view
customers. Let’s say that these three people are employees at the Slick
Shop. Will there be some other user then that has the ability to delete cus-
tomers? Probably so. This will most likely be a manager or supervisor.
This person will most likely be given all rights to the table.

276 Learn SQL In a Weekend



GRANT ALL PRIVILEGES
ON Customer
TO GusT;

This is the same thing as granting Gus SELECT, INSERT, UPDATE,
and DELETE. What other things will the three employees be allowed to
do? In the Slick Shop database, they will probably be allowed to add and
modify vehicles as well as job tickets. So they would be granted the fol-
lowing privileges:

GRANT SELECT, INSERT, UPDATE
ON Vehicle
TO JackieP, MarkB, LarryR;

GRANT SELECT, INSERT, UPDATE
ON JobTicket
TO JackieP, MarkB, LarryR;

GRANT SELECT, INSERT, UPDATE
ON JobTicketDetail
TO JackieP, MarkB, LarryR;

GRANT SELECT, INSERT, UPDATE
ON PartUsed
TO JackieP, MarkB, LarryR;

Again the shop manager Gus would be granted ALL PRIVILEGES to
these four tables. This would allow him to log on to the database and per-
form any operation including deleting. Kind of reminds you of being at
a department store, doesn’t it? You know, the way a supervisor has to
come over to the register and enter his or her password in order to per-
form an override.

For the three employees, however, this access is not good enough yet. If
they are creating a job ticket, they will want to be able to pick parts and
services from a list. This means that they will need to be able to select
from these two tables. In the same way, they will need to be able to select
from the StateOrProvince table so they can view the list of states.

GRANT SELECT
ON Part
TO JackieP, MarkB, LarryR;

SUNDAY AFTERNOON  Security—Putting the Padlocks on 277



GRANT SELECT
ON Service
TO JackieP, MarkB, LarryR;

GRANT SELECT
ON StateOrProvince
TO JackieP, MarkB, LarryR;

Tables like these might seem inconsequential because they are small and
mainly just used for lookup information. Howe ve r, security should not be
taken lightly on tables such as these. Let us give you a couple of examples of
what could happen if all employees we re granted INSERT and UPDATE to
these tables. First a dishonest employee could use it as a way to give his
friends unauthorized discounts. Be f o re creating a job ticket, he could update
the Service table and reduce the labor cost. After the ticket is created, he
could reset it. It doesn’t have to be a dishonest person you have to worry
about. A well-meaning employee could get into this table and add or change
s e rvices and really make a mess out of things. Fi n a l l y, you have the compa-
ny joker to worry about. He might take advantage of his INSERT privileges
on StateOrProvince to add Cuba and Iceland as new states.

278 Learn SQL In a Weekend

ISN’T APPLICATION SECURITY GOOD ENOUGH?

M a ny times a front-end application will perform its own security. A p p l i c a-
tions will often recognize the user that has logged on and administer its
own security. It might limit the menu options or screens that can be
a c c e s s e d . It will hide certain data from certain users. It will even re m ove
certain options from the scre e n , such as a Delete button, for some users.
Under this method, all database users are given all rights to all tables. T h e
a p p l i c a t i o n ’s security, h oweve r, e n s u res that the right people are getting
to the right data.You might be asking if this is good enough especially if
this application is the only way the user has of accessing the database.

c o n .



SUNDAY AFTERNOON  Security—Putting the Padlocks on 279

As mentioned earlier, this security method is valid but has its pitfalls.
Most often if someone feels that setting up security at the database
l evel is too big of a pain, t h ey will simply grant all rights to eve r yo n e .
Then they will allow the application to handle the security. The re a-
soning is that otherwise there will be a duplication of effort. T h e
same security will have to be controlled both in the database and in
the application.

The biggest problem with relying on application security is the
assumption that the front-end application is the only entry point into
the database.There are a lot of software products available that allow
anyone with a username and password to access a relational database.
Microsoft Access is one such product. Even if your database is not
Access, it is likely that it can still attach to your database. Once users
connect this way, they will be limited only by database security. Third-
party products such as this are easier to come by than you might think.
Simply jump on the Internet and perform a search. It won’t take you
long to find several low-cost or even free software applications that can
log on to a relational database and perform SQL commands.

Another problem can come from the application development staff.
Unless you have excellent documentation procedures in place, it’s pos-
sible that someone one day will misunderstand your security inten-
tions. If they see that all users have full access to all tables, they might
assume that there are no security restrictions.They might spend a lot
of time developing an application that allows users to see and modify
data that they shouldn’t.

So unless you have a great deal of trust and control over all of the
developers and users on your database, it’s usually best to issue privi-
leges at the database level in addition to the application.



The table security can be fine-tuned by going down to the column level.
Sometimes you’ll have tables that you want everyone to look at and
maybe modify, but a few of the columns contain sensitive data. It might
be an employee table where everyone in the company is allowed to see the
names, job titles, and phone numbers. The table might have information
that is not for everyone to see, such as salary, age, and home address.
These columns can be protected with the GRANT command by explic-
itly naming the columns that users are allowed to view or modify.

Let’s take the Slick Shop’s Customer table as an example. The Slick Shop
has decided that customer addresses and phone numbers should only be
available to the store manager. If Gus is the manager and Jackie is the
employee, the following GRANT commands will make this happen.

GRANT SELECT (CustomerID, FirstName, LastName)
ON Customer
TO JackieP;

GRANT SELECT
ON Customer
TO GusT;

Now when Jackie logs in, she will only be able to see three columns in the
table, whereas Gus will be able to see all of them. If Jackie tries one of the
following SELECT commands, she will get an error.

SELECT CustomerID, LastName, City, PhoneNumber
FROM Customer;

SELECT *
FROM Customer;

Both of these commands are trying to access columns that Jackie does not
have permission to view. The only thing that’s going to work for her is to
write a SELECT that is limited to C u s t o m e r I D, F i r s t N a m e, and L a s t N a m e.
Because no column limitations have been specified for Gus, he will be
able to select any or all columns from this table.

280 Learn SQL In a Weekend



Limiting columns like this is sometimes called ve rtically part i t i o n e d
s e c u r i t y. Ve rtical refers to the way only certain columns can be accessed.
It’s important to note that all rows can still be accessed. Limiting the
rows would be h o r i zontally partitioned security. We’ll be talking about
this later in the chapter in the section “Creating and Using Vi ew s . ”

If the Slick Shop were using vertical security like this for SELECT on the
Customer table, they would probably do the same for UPDATE.

GRANT SELECT (CustomerID, FirstName, LastName)
ON Customer
TO JackieP;

GRANT UPDATE (CustomerID, FirstName, LastName)
ON Customer
TO JackieP;

GRANT ALL PRIVILEGES
ON Customer
TO GusT;

Now Jackie is allowed to not only view these three columns but update
them as well. Gus will be the only one who is allowed to insert new cus-
tomers, delete customers, and update their address and phone information.

You’re most likely starting to see the potential for a lot of work on your
part. If there are dozens of employees and managers and dozens of tables,
it could take all day to get these rights granted. That’s where the groups
or roles come in. By granting the rights to the role, you can set up a par-
ticular type of user one time and then simply assign the role to users. So
far, for the database, you will have discovered two types of users, employ-
ees and managers. These are great candidates for roles.

To go about setting up this type of security, you would first create the
roles the way we described at the beginning of this chapter. Let’s say
you’ve created a role called Employee and one called M a n a g e r. Next you’d
create all of the user logon names but only give them enough rights to log
on to the database. You will not assign them rights on any tables. Now
you can start assigning privileges to the roles.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 281



GRANT SELECT (CustomerID, FirstName, LastName)
ON Customer
TO Employee;

GRANT UPDATE (CustomerID, FirstName, LastName)
ON Customer
TO Employee;

GRANT SELECT, INSERT, UPDATE
ON Vehicle
TO Employee;

GRANT SELECT, INSERT, UPDATE
ON JobTicket
TO Employee;

GRANT SELECT, INSERT, UPDATE
ON JobTicketDetail
TO Employee;

GRANT SELECT, INSERT, UPDATE
ON PartUsed
TO Employee;

GRANT SELECT
ON Part
TO Employee;

GRANT SELECT
ON Service
TO Employee;

GRANT SELECT
ON StateOrProvince
TO Employee;

Now the Employee role is set up and you don’t have to worry about grant-
ing these specific rights again. All you have to do is assign a user to this
role and he’s ready to go. We will not show the GRANT commands used
to set up the Manager role, but for this one you would simply grant it ALL
PRIVILEGES on every table.

282 Learn SQL In a Weekend



If you’re able to plan your groups or roles well, you might never need to
grant anything to an individual user. All of their rights will come from the
role. You might, however, need to make exceptions. The Slick Shop
might find that parts need to be updated more frequently than they first
thought. This is fine as long as a manager is available. If no managers are
around, they’d want someone like Jackie to do it. You could solve this by
granting the UPDATE privilege to JackieP. Now she will have all of the
rights of the Employee role, plus the ability to update the Part table.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Although making “one off” exceptions like this is perfectly fine, if you start making a lot
of them, you’ll lose the major benefit of roles.You could easily find yourself back in the
business of managing privileges on a user-by-user basis. If possible,try to create anoth-
er role to fill the need. In the preceding example, you could have created a new role
called AssistManager and granted UPDATE on Part to this role.Then you could make
Jackie a member of both roles, Employee and A s s i s t M a n a g e r.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Another common practice is to share user logon names among several
users. For example, instead of having Jackie, Larry, and Gus access the
database with their own logon names, they would use generic usernames
like SlickUser and S l i c k M g r. These logon names would be granted per-
missions the same way as we talked about before. In fact, this method is
very similar to using roles or groups. Once a privilege is granted to the
logon name, everyone who uses it benefits right away. The main advan-
tage to this method is that it’s easy. A handful of logon names can be cre-
ated and granted access. That’s all that has to be done. When new
employees are hired, there’s no need to create a new logon name—just tell
them the username and password. No logon names have to be created,
and no one has to be added to a group or role.

The problem is (you knew this was coming) there are a lot of drawbacks
to this type of security. It can be summed up this way—you lose account-
ability. You won’t know who is who. There are times where you will want

SUNDAY AFTERNOON  Security—Putting the Padlocks on 283



your database to store information about which user performed an action
and when it occurred. You might want to add columns to some tables
that store the username of the last person who modified each row along
with the time. This is still possible with this security method, but all
you’ll see are a bunch of rows modified by generic users like S l i c k U s e r.
This really won’t help much if you’re trying to track down a problem.
There are also times that you’ll need to see who’s logged on to the data-
base right now and what they are doing. When you use your DBMS’s fea-
ture to show everyone who’s logged on at the moment, all you’ll see are a
bunch of users with the same name. What if something has gone wrong
with one of those logon names? Maybe it’s grabbed some locks on some
tables and won’t let go, causing all of the other users to wait on it. This
would be a great time to know exactly who that person is so that you
could do something about it. But with generic logon names, you’ll only
be able to narrow it down to a certain group of people.

Another problem is that it makes password management more difficult.
Given that several people depend on the same password, it takes coordi-
nation between everyone involved just to change a password. As you can
imagine, for this reason, the passwords tend to stay the same forever,
which is a problem in itself. Why do people change passwords in the first
place? To keep the bad guys guessing. If someone learns the password, at
least it’s only valid until the next time it’s changed. A password like this
one, however, which will probably never change, can be a security risk.
People will come and go, and although most will forget all about that
database and its password, there just might be that one guy who tucks
that information away. A password that never changes can be like leaving
a key under the doormat.

Fi n a l l y, this security method takes away the ability to grant permission
for the “one off” situations discussed earlier. Remember when Jackie, a
member of the Employee role, needed access to update the Part t a b l e ?
Using the method of generic logon names, this would not be possible.
One of two things would have to happen. You would either have to
grant the permission to the generic logon name that she uses or let her

284 Learn SQL In a Weekend



b o r row a manager logon name. Granting the permission to her generic
logon name will of course grant it to eve ryone else who uses it. Letting
her borrow the manager’s logon name means that she now has too much
access. Not to mention that she now knows the magic password that’s
not likely to change.

An option of the GRANT command that we haven’t talked about yet is
WITH GRANT OPTION. This is tacked on to the end of a GRANT
statement. It not only gives the user the permission that you specified but
also allows the user to grant that permission to someone else.

GRANT SELECT, UPDATE
ON Customer
TO GusT

WITH GRANT OPTION;

Gus can now view and modify the customer data, plus he can also issue
the GRANT command himself. However, he will only be able to grant
SELECT and UPDATE permissions on the Customer table. Gus can log
in to the database and run the following command:

GRANT UPDATE
ON Customer
TO JackieP;

Gus is not allowed to grant INSERT or DELETE, and he is not allowed
to grant any kind of access to any other table. The WITH GRANT
OPTION clause is a way of passing on some database management
responsibility. This could be used as a nice way of taking care of those
“one off” situations that we keep talking about. Let’s say Gus is leaving
for the day or going on vacation. He could grant the UPDATE permis-
sion on Customer to Jackie. When he returns he could take the permission
away again. This could all be done without having to contact or bother
you, the database administrator.

This option, of course, means that you trust the person to whom you
grant access to do the right thing. Hopefully, that person won’t just grant
rights to everyone so as not to have to worry about it anymore. It can
become easy for you to lose track of who has what permission. If several

SUNDAY AFTERNOON  Security—Putting the Padlocks on 285



people have the WITH GRANT OPTION and each of them start mer-
rily granting away, you might have a little mess on your hands. You, as
the database administrator, will still be able to see which user has which
permissions. However, if it ends up that every user has every privilege,
what was the point of your carefully planned security in the first place?

Also, as the database administrator, you will always be able to revoke the
rights that one user has granted to another. We’ll be talking about revok-
ing rights in a little bit. If you find that Gus has gone nuts and granted
permissions to everyone, you can take them away again. Of course, that
will not stop Gus from granting them back again. If you want to take
away Gus’s right to grant to other people, you’d have to revoke his per-
mission and then grant it back, this time without the WITH GRANT
OPTION. As long as we’re talking about revoking, let us tell you what
happens when you revoke a user’s rights after they have granted to some-
one else. The rights that are taken away from a user will cascade down to
everyone else that the first user granted rights to. This will only happen,
though, if you use the CASCADE option. So looking back to the last
example, if you revoked Gus’s UPDATE permission on the Customer table
with the CASCADE option, Jackie would also lose that same permission.
Later in this chapter, we’ll talk about revoking users’ rights and the use of
this CASCADE option.

The final option of the GRANT command that we haven’t talked about
yet is the REFERENCES privilege. This is a privilege like SELECT or
UPDATE that is granted on a table. When REFERENCES is granted, it
allows the user to create a foreign key constraint that references that table.
Now this is not going to be very useful to someone unless they have the
ability to create their own table. That’s what we’ll tell you about in the
next section.

286 Learn SQL In a Weekend



Granting Database Privileges
All of the granting that we’ve talked about so far has been for tables. This
covers a large percentage of the permissions that you’ll be handing out.
However, there are other tasks that you might want to allow users to per-
form, such as running stored procedures and creating tables.

Granting Permission to Create Tables
Let’s start with giving users the rights to create their own tables. This
allows them to create and maintain their own table structures side by side
with the ones that you’ve created. They will even be able to create foreign
key references from their tables to yours if they have the REFERENCES
privilege granted on your tables.

The syntax for allowing users to create tables is very similar to what you’ve
seen so far. It’s just another privilege like SELECT and UPDATE. The
difference is that you don’t name a table like you’ve seen with the
GRANT command so far. The following syntax works for most of the
database systems.

GRANT CREATE TABLE TO GusT;

In the MySQL database, you grant the same way, only you’re required to
use the ON keyword. However, you’re granting rights not to a specific
table but rather to the database as a whole. You do this by specifying * . *.

GRANT CREATE ON *.* TO JackieP@localhost;

Working with User-Created Tables
Why would you want to let people create their own tables? Aren’t the
ones you created good enough? Don’t get your feelings hurt! There are
some very good reasons to allow users to create their own tables. Let’s talk
about the user first. Many times database users have the need to store
additional information that either you didn’t think about or don’t have
the time to set up for them. There are situations in which a user might
only need the table for a short period of time. Giving users the right to
create their own tables can be a convenience for both of you.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 287



As an example, say that Gus the Slick Shop manager wants to store addi-
tional information about the vehicles that he services. If he had been
granted the permission, he might log in and create the following table:

CREATE TABLE VehicleInfo
(VehicleID        i n t ,
RepairNotes      v a r c h a r ( 1 0 0 0 ) ,
Odometer         i n t ,
SpecialInstructions v a r c h a r ( 1 0 0 0 )

) ;

Also if Gus is granted the REFERENCES permission on the V e h i c l e
table, he will be able to create the table with a foreign key like this:

CREATE TABLE VehicleInfo
(VehicleID        int  REFERENCES Vehicle (VehicleID),
RepairNotes       v a r c h a r ( 1 0 0 0 ) ,
Odometer           i n t ,
SpecialInstructions v a r c h a r ( 1 0 0 0 )

) ;

This new VehicleInfo table lets Gus store notes, instructions, and odome-
ter readings for the vehicles that come into his shop. It’s important to
note that Gus is now the owner of this table. He is the only user that has
access to it. Gus automatically has all permissions on his own table. He
also has the ability to grant rights to his table to any other user. Gus can
run the following command to let Jackie see his data:

GRANT SELECT ON VehicleInfo TO JackieP;

Now here’s the tricky part. After Gus grants Jackie this permission, she
logs in and runs the following:

SELECT *
FROM VehicleInfo;

Instead of seeing the data, she gets an error message telling her that
VehicleInfo is an invalid table name! W h a t’s happening is that the data-
base is looking for a VehicleInfo table that was created by the database
owner (d b o). When you as the database administrator create tables, they
a re owned by d b o. W h e n e ver a table is named in a SQL command, the

288 Learn SQL In a Weekend



database only considers tables owned by d b o. If you want the SQL
command to use a table owned by another user, you must prefix the
table name with that user’s logon name. So Jackie should rewrite her
SELECT command to look like this:

SELECT *
FROM GusT.VehicleInfo;

This will return all the rows from Gus’s table. The only user that does not
have to do this is Gus himself. When Gus is logged on, he can issue com-
mands like these:

SELECT *
FROM VehicleInfo;

UPDATE VehicleInfo
SET Odometer = 65099

WHERE VehicleID = 3;

For Gus, these commands will work even though they are not prefixed
with his logon name. The database knows that this is his table, and there-
fore the prefix is not required. All other users that Gus has granted per-
mission, however, must use the prefix.

Another case where allowing users to create tables is during deve l o p-
ment. Allowing the development staff to create tables can give them
some flexibility. De velopers can create their own tables while working on
a new project or system phase. This lets them play with various table
designs until they find one that works best. Later they can have tables
c reated by d b o.

Another useful strategy is for developers to create their own copy of an
existing table. There can be more than one table with the same name in
a database if they are owned by different users. As an example, let’s say
Becca, an application developer on the Slick Shop project, has been given
the assignment to upgrade the system to collect some new vehicle infor-
mation. She’ll be adding two new columns to store the engine size, one
by cylinders and one by cubic liters. Both of these columns will be
required and so will use the NOT NULL constraint. While she is developing

SUNDAY AFTERNOON  Security—Putting the Padlocks on 289



her front-end application, she will be working in a development database
so she will not disrupt the end users. She does not, however, want to
change the Vehicle table until all of her changes are complete. If she put
her new required columns in the Vehicle table, none of the other devel-
opers would be able to use the Slick Shop application until Becca made
her new application available. The old Slick Shop application would be
attempting to insert rows into the Vehicle table without the two required
columns, which would cause it to fail.

The method she should use is to create her own Vehicle table. Her table
will sit side by side with the original Vehicle table. One will be owned by
Becca, the other by d b o. When Becca modifies the SQL in her applica-
tion, she will be able to write ordinary commands like this one:

INSERT INTO Vehicle
(VehicleYear, Make, Model, Color, LicensePlate#,

Cylinders, CubicLiters)
V A L U E S

(2003, 'Volkswagen', 'Beetle', 'Yellow', 'BUGSME2', 4, 2.2);

Notice how she does not have to put a prefix in front of the table name.
The database will see that she has her own Vehicle table and use that one.
Other users, however, will still be directed to the Vehicle table that is
owned by d b o. So they will be able to run the old application the same as
always. If someone else wants access to Becca’s table, she will have to grant
them rights to it. When they use the table name in a SQL command, they
must remember to prefix it with her logon name.

One final note about user tables. The database administrator or d b o
always has all privileges on all tables. The only thing to remember is that
even the dbo must prefix the tables with the owner’s name if they belong
to someone else.

Granting Permission to Run Stored Procedures
The other main privilege that you should be aware of is EXECUTE. If
your database supports stored procedures, you’ll need to use this privilege
to allow users to run them.

290 Learn SQL In a Weekend



GRANT EXECUTE ON CreateJobTicket TO JackieP;

Remember that you can do many things in a stored procedure. A single
procedure might perform several inserts, updates, and deletes. The EXE-
CUTE permission gives you a good way of securing powerful procedures.
You’ll be able to decide which users can run each stored procedure.

There’s another feature of stored procedures that will let you secure your
database even further. When a user runs a stored procedure, it has all of
the rights of its creator. So when a user is executing a procedure that data-
base owner created, the user will have all the rights of the dbo (which is
full access to everything). Don’t worry, though—only the owner of a pro-
cedure can change it. So anyone who runs it will only be performing the
commands that are built into the procedure.

The user who runs a procedure is not required to have permissions on the
tables that the procedure accesses. This is where the extra security mea-
sure comes in. You could actually build your database in such a way that
all SQL commands are issued through stored procedures. If this is the
case, none of the users would have to have permissions on the tables.
They would only need the EXECUTE privilege on the appropriate pro-
cedures. Tightening down the security this way means that users can still
access and modify data, but it is strictly controlled by your procedures.
Without specific permissions on tables, they would not be able to execute
SQL of their own.

Is this level of security really necessary? The answer will certainly depend
on your situation. But if you’re worried about people using third-party
tools to modify data, this strategy will help. If the users have no permis-
sions to any tables, these tools will be useless. Is it practical to lock down
every single table and access them through stored procedures exclusively?
Probably not. This can really hinder the user and put a burden on the
stored procedure developer. Some tables are so easy to work with that a
stored procedure might not be necessary. Take the Part table, for
instance. You could write four stored procedures to access this table: one
to select from it, one to insert a row, one to update a row, and another to

SUNDAY AFTERNOON  Security—Putting the Padlocks on 291



delete a row. But the Part table is not very complicated and does not have
a lot of difficult relationships with other tables. This might be a good
table to hand out rights to appropriate users, allowing them to work with
the table directly.

Other times you might feel that the tables are too cryptic for the average
user or have delicate relationships that must be maintained. In cases like
this, you could allow access via stored procedure only. In the Slick Shop
database, you could make this case for the tables that store job ticket data.
There are a handful of tables involved that relate to one another. You
might want to create some stored procedures that manage this data and
maintain its integrity properly. In the Sunday Morning session, we
showed you a couple of procedures that do just that. If the thought of
users poking around in these tables makes you nervous, maybe you’d
want to take away permissions to these tables. A possible downside to this
is that you might end up having to write more procedures in order to
cover different scenarios.

Other Database Privileges
The CREATE TABLE and EXECUTE permissions are two of the most
useful and widely supported privileges. However, your DBMS is likely to
have many other database-level privileges that you want users to have.
Following is a list of some of these privileges:

➤ Create databases

➤ Create logon names

➤ Create groups or roles

➤ Create indexes

➤ Create stored procedures

➤ Create views

➤ Create triggers

➤ Back up and restore databases

292 Learn SQL In a Weekend



Although this is not a complete list and not every database system sup-
ports all of these privileges, this should give you an idea of what can be
done. Using these plus the ones discussed earlier, you have a very large
number of privilege combinations that you can set up.

Revoking Privileges
Finally, you’ve come to the part about taking rights away from someone.
This won’t take long because it’s really the same as the GRANT com-
mand, only it uses the keyword REVOKE. The syntax for this command
is as follows:

REVOKE [ALL PRIVILEGES] |
[SELECT | INSERT | UPDATE | DELETE | REFERENCES [, ...]]
[(columns [, ...])] ON table_or_view

FROM user_or_role [, ...]
[ C A S C A D E ] ;

You’ll notice another difference in that it uses the keyword FROM
instead of TO in order to make the command’s English more proper. So
when you decide that you want to take away some of Jackie’s rights on
the Customer table, you can use this command:

REVOKE INSERT, UPDATE, DELETE
ON Customer

FROM JackieP;

Now Jackie cannot modify data in this table anymore. However, if she
previously had the SELECT permission, she will still be able to query this
table. You could also get very specific and revoke access to just a few
columns. Assume Jackie was given permission to update certain columns
with this command:

GRANT UPDATE
(Make, Model, Color, VehicleYear) ON Vehicle
TO JackieP;

Later her access could be restricted a little with this command:

REVOKE UPDATE
(Color, VehicleYear) ON Vehicle

FROM JackieP;

SUNDAY AFTERNOON  Security—Putting the Padlocks on 293



Now Jackie can still update the Vehicle table, but only the Make and M o d e l

columns.

The other option is one that we mentioned before, CASCADE. Its pur-
pose is to re voke the rights not only from the named user but also fro m
a n yone else that this user had granted the same rights. Remember ear-
lier how you let Gus grant rights to others on the Customer table with
this command:

GRANT SELECT, UPDATE
ON Customer
TO GusT

WITH GRANT OPTION;

If you later decide to re voke his UPDATE privilege, you can use the
CASCADE option to also re voke UPDATE from eve ryone that he
g a ve it to.

REVOKE UPDATE
ON Customer

FROM GusT
C A S C A D E ;

Take a Break!
Ok a y, it’s break time! But don’t reach for that bookmark yet! Being that
i t’s Sunday afternoon, yo u’re liable to turn on football or auto racing,
and then yo u’ll never come back! T h e re’s some good stuff ahead, so
stick aro u n d .

While we’re on the subject of security, we’re reminded of a good story
about computer hacking. If you’re at all interested in this sort of thing,
we’d recommend the book “Cuckoo’s Egg: Tracking a Spy Through the
Maze of Computer Espionage” by Clifford Stoll. Although it was written
in 1989, it still holds up well. It’s an interesting detailed account of how
the author discovers someone is hacking into his company’s mainframe.

294 Learn SQL In a Weekend



He chronicles his efforts to not only stop but also track down the hack-
er. The whole saga begins when Stoll notices that a balance sheet is off by
just 75 cents!

Creating and Using Views
Okay, let’s get back to it with a new topic. In this section we’ll introduce
views. You’ll see that a view is a lot like a table and how sometimes it’s
easy to forget that it’s not. We’ve put it in this chapter because we’re going
to talk about one way views can be used to control security. But we’re also
going to talk about a few of its other uses as well.

A view is a saved query that can function in many of the ways a table
does. The general syntax is pretty simple.

CREATE VIEW view_name
A S

s e l e c t _ s t a t e m e n t

You can create a view based on a select from the Customer table, as follow s :

CREATE VIEW IndianaCustomers
A S

SELECT CustomerID, FirstName, LastName, City, StateOrProvince,
P o s t a l C o d e

FROM Customer
WHERE StateOrProvince = 'IN'

You can put any valid SELECT command after the keyword AS. The
view now works like a table. You can select from it like this:

SELECT *
FROM IndianaCustomers;

The database will recognize that IndianaCustomers is a view, and it will
actually run the SELECT command that is in the view’s definition. The
result of this query on the view is as follows:

SUNDAY AFTERNOON  Security—Putting the Padlocks on 295



C u s t o m e r F i r s t N a m e L a s t N a m e C i t y S t a t e - P o s t a l C o d e
I D O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 B r y c e H a t f i e l d M a r i o n I N N U L L
5 K y l e e D i c k e n U p l a n d I N 4 6 9 0 5
6 A l e x Thompson N U L L I N N U L L
7 D a v i s T h o m p s o n G r e e n s b u r g I N 4 6 5 1 4
8 H a r r i s o n T h o m p s o n I n d i a n a p o l i s IN 4 6 1 2 3

Pay attention to two things here. First, only the rows with customers who
live in Indiana are returned. The WHERE clause in the view’s definition
was used. Second, even though you specified a SELECT *, you only got
six of the table’s eight columns back. This is because the view’s definition
determines which columns the view returns.

Views are dynamic in that while the view itself might never change, its
results will. Because a view is simply executing a SELECT command, it
will always display the latest data in the underlying table or tables.

Using Views for Security
Earlier in this chapter, you looked at a method of security called vertical-
ly partitioned. It was vertical because it used the GRANT command to
limit the columns of a table that a given user could view or modify. This
is useful if a table has certain columns that you want hidden, such as
salary amounts or phone numbers. We also mentioned that we would
show you how to horizontally partition a table for security.

Do you see how the view can be used to provide horizontally partitioned
security? You grant a user SELECT access to the view only, not the table.
This will force the user to query with the view, which can limit the rows
that are returned. In fact, because a view’s definition specifies the columns
that are visible, it can be used for vertically partitioned security as well.

Users who have permission to query a view can choose their own columns
and apply their own WHERE clause.

SELECT FirstName, StateOrProvince, PostalCode
FROM IndianaCustomers

WHERE PostalCode IS NOT NULL;

296 Learn SQL In a Weekend



This query will return the following result set:

F i r s t N a m e S t a t e O r P r o v i n c e P o s t a l C o d e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
K y l e e I N 4 6 9 0 5
Davis    IN     4 6 5 1 4
Harrison    IN     4 6 1 2 3

You asked for only three columns and rows where the postal codes are not
N U L L. This shows how you can filter a view rather than just accept all of
its output. When you put a WHERE clause on a view as done here, you’re
actually instructing the database to process two WHERE clauses. In the
example, it will first filter out just the Indiana customers, and then it will
filter out the non-NULL postal codes.

Your DBMS’s optimizer is actually smart enough to recognize what’s going on here. I n s t e a d
of processing two separate WHERE clauses, it has the ability to internally combine them.
The optimizer will likely combine them into one WHERE clause that looks like this:

WHERE StateOrProvince = 'IN' AND PostalCode IS NOT NULL

A set of similar views can be created to let each user see the same data in
a different way. For example, you might want to divide the customer base
geographically, allowing the employees to see only their assigned cus-
tomers. To do this you could create views like these:

CREATE VIEW NorthEastCust
A S

SELECT *
FROM Customer

WHERE StateOrProvince IN ('CT', 'DE', 'ME', 'NH', 'RI', 'VA', 'WV')

CREATE VIEW MidwestCust
A S

SELECT *
FROM Customer

WHERE StateOrProvince IN ('IL', 'IN', 'OH', 'MI', 'KY', 'MO')

SUNDAY AFTERNOON  Security—Putting the Padlocks on 297



CREATE VIEW CanadaCust
A S

SELECT *
FROM Customer

WHERE StateOrProvince IN
('AB', 'BC', 'MBv, 'NB', 'NF', 'NS', 'NT', 'NU', 'ON', 'PE', 'QC',

'SK', 'YT')

This way, employees can be granted the SELECT permission on just the
view that applies to them. Then they don’t have to worry about sifting
through the entire list of customers.

Permissions are granted to views the same way as they are on tables. Use the GRANT
command and place the name of the view where you would normally put the table name.

Using Views to Simplify Queries
You could even create a view that comprises more than one table. In this
next example, the view will pull together all of the job ticket data. You’re
not going to put a WHERE clause in the view this time, though. This
way it will return all the job tickets by default. If the user wants to filter
the data, he can use his own WHERE clause on the view just as he would
on a table.

CREATE VIEW JobTicketView
A S

SELECT jt.JobTicketID,
j t . S t a r t D a t e ,
j t d . L i n e I t e m N u m b e r ,
s.Description AS Service,
p.Description AS Part,
j t . C u s t o m e r I D

FROM JobTicket AS jt
JOIN JobTicketDetail AS jtd ON jt.JobTicketID = jtd.JobTicketID
JOIN PartUsed AS pu ON (jtd.JobTicketID = pu.JobTicketID

AND jtd.LineItemNumber = pu.LineItemNumber)
JOIN Service AS s ON jtd.ServiceID = s.ServiceID
JOIN Part AS p ON pu.PartID = p.PartID

298 Learn SQL In a Weekend



A great advantage of a view like this is the way you can shield users from
complex SQL. This view is fairly involved. It has five tables and four joins
in it. The people who run this view don’t have to know anything about
the tables involved in the query. To them, JobTicketView will look like it’s
one big table with all of the job ticket details in it.

It’s important for you to understand that views are not tables and do not contain any
data themselves.The underlying tables will still hold all of the data.A view simply holds
the query. Every time a view is used in a SQL command, the query within the view will
be executed again.

This view can now be treated like a table in a query. You’ll select some job
ticket data using the view now. However, because you don’t want all of
the job tickets, you’ll include a WHERE clause.

SELECT JobTicketID, LineItemNumber, Service, Part
FROM JobTicketView

WHERE StartDate >= '2002-1-30'
ORDER BY JobTicketID, LineItemNumber;

If you didn’t know better, you’d look at this query and think it was using
a table. Well, okay—the name of the view is a dead giveaway! Notice how
the user of the view is able to write a simple query and not have to worry
about joins and the five tables it takes to get this data. The results of this
query are shown in the following:

J o b T i c k e t L i n e I t e m S e r v i c e P a r t
I D N u m b e r
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 1        Replace Wiperblades ACME Wiper Blades
5 2  Oil Change Black Gold 10w-30 Oil
5 2 Oil Change ACME Oil Filter
5  2  Oil Change ACME Transmission Fluid
5  2  Oil Change ACME Windshield Fluid
7  1 Oil Change Protects 10w-30 Oil
7  1 Oil Change ACME Oil Filter
7 1  Oil Change ACME Transmission Fluid

SUNDAY AFTERNOON  Security—Putting the Padlocks on 299



7 1  Oil Change ACME Windshield Fluid
7 2 Replace Air Filter ACME Air Filter
7 3  Change PVC Valve  ACME PVC Valve
7 4  Change and Flush  ACME Differential Fluid

D i f f e r e n t i a
7 5  Change and Flush  ACME Coolant

Cooling Sys

That’s not to say that they can’t do joins if they want to. Because a view
works just like a table, it can be joined to other views or tables. In the
J o b T i c k e t V i e w, you’ve included the CustomerID column but none of the
information from the Customer table. If you want to see some of that data,
you’ll have to join the view to that table.

SELECT jtv.JobTicketID,
c . F i r s t N a m e ,
c . L a s t N a m e ,
c . C i t y ,
j t v . P a r t

FROM JobTicketView AS jtv
JOIN Customer AS c ON jtv.CustomerID = c.CustomerID

WHERE jtv.StartDate >= '2002-1-30';

Just use the view in a join like it was a table. The query will produce these
results:

J o b T i c k e t I D F i r s t N a m e L a s t N a m e C i t y P a r t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5  Kylee   Dicken  Upland ACME Wiper Blades
5   Kylee   Dicken  U p l a n d Black Gold 10w-30 Oil
5     Kylee  Dicken U p l a n d ACME Oil Filter
5        Kylee Dicken Upland ACME Transmission Fluid
5        Kylee  Dicken  Upland ACME Windshield Fluid
7        Bryce   Hatfield Marion Protects 10w-30 Oil
7         Bryce   Hatfield M a r i o n ACME Oil Filter
7        Bryce  Hatfield M a r i o n ACME Transmission Fluid
7        Bryce   Hatfield M a r i o n ACME Windshield Fluid
7         Bryce  Hatfield M a r i o n ACME Air Filter
7         Bryce   Hatfield Marion ACME PVC Valve
7        Bryce  Hatfield  Marion ACME Differential Fluid
7       Bryce   H a t f i e l d M a r i o n ACME Coolant

300 Learn SQL In a Weekend



Look back at the code that created the view. Do you see how the keyword
AS is used to rename two of the columns? This is done because there are
two columns named D e s c r i p t i o n, one from the Service table and one
from P a r t. All of the other column names are left alone. The columns of
a view will adopt the column names on the underlying tables unless you
rename them. Another way you can use a view is for the purpose of giv-
ing columns better or more meaningful names. This next view is very
simple. You’re just going to select all of the rows and columns from the
Customer table, but you’ll give some of the columns new names.

CREATE VIEW CustView
A S

SELECT CustomerID,
FirstName + ' ' + LastName AS Name,
A d d r e s s ,
C i t y ,
StateOrProvince AS State,
PostalCode AS Zip,
P h o n e N u m b e r

FROM Customer

This view uses the keyword AS to rename a few of the columns. You’ve
even combined the first and last names into one column called N a m e.
Now, using the view, the query can be a little more user friendly.

SELECT Name, City, State, Zip
FROM CustView

WHERE State <> 'IN';

The results of this query are shown in the following. Notice how the col-
umn headers have the new names as well.

Name  City   S t a t e Zip        
- - - - - - - - - - - - - - - - - - - - - - - - ------ 
John Smith  North Beach VA 1 0 2 3 4
Victoria Smithe Huntington WV 2 2 2 1 1

A view could also be used to simplify queries that aggregate data. You
might want to give the users a simple view that will show them the total
number of parts used during each month.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 301



CREATE VIEW PartsByMonth
A S
SELECT DATEPART(yyyy, jtd.DateComplete) AS Year,

DATEPART(mm, jtd.DateComplete) AS Month,
SUM(pu.Quantity) AS PartsUsed

FROM JobTicketDetail AS jtd
JOIN PartUsed AS pu ON (jtd.JobTicketID = pu.JobTicketID

AND jtd.LineItemNumber = pu.LineItemNumber)
GROUP BY DATEPART(yyyy, jtd.DateComplete),

DATEPART(mm, jtd.DateComplete)

Instead of having to deal with date functions, joins, and aggregate com-
mands, the user can run a simple command,

SELECT * FROM PartsByMonth
ORDER BY Year, Month;

and get up-to-date results quickly and easily.

Year Month P a r t s U s e d
- - - - - - - - - - - - - - - - - - - - -
2001  7   7
2001  8   1
2001      9   5
2002    1     1 2
2002     2       1 1
2002     5     8
2002      7     1

Views versus Stored Procedures
You might be thinking that views and stored procedures are similar. In a
way they are. They both let you store a query in a nice little package and
run it later without having to type the whole query again. However, that’s
where the similarity ends. A view can only contain the SELECT com-
mand, whereas procedures can have any SQL command as well as the
DBMS’s programming language. A view can have one and only one
SELECT, whereas a procedure can have many. Now your view can use a
UNION to combine more than one SELECT in a view, but this is still

302 Learn SQL In a Weekend



considered a single SQL command. In case you missed it, we introduced
the UNION in the Saturday Afternoon session. By the way, you can use
views within a stored procedure.

Updating Data with Views
Like its name implies, the main purpose of a view is to look at data. Your
DBMS, however, might allow you to insert, update, or delete data with a
view. You might want to use views in this way as an additional security
feature. If you’ve already written views that limit the data that a user can
see, you could have them use those same views to update the data.

Updating Data with Simple Views
Remember the views that you created that let employees see only the cus-
tomers that are in their assigned region? One of them looked like this:

CREATE VIEW NorthEastCust
A S

SELECT *
FROM Customer

WHERE StateOrProvince IN ('CT', 'DE', 'ME', 'NH', 'RI', 'VA', 'WV')

You might have granted Larry SELECT access to this view so that you
would not have to grant it on C u s t o m e r. You could also grant him
INSERT, UPDATE, and DELETE permissions on this view. This gives
Larry permission to work with his set of customers while not disturbing
the others that don’t belong to him.

Let’s take a look at the steps involved. First assume that Larry does not
have any permissions granted on the Customer table. Now grant him
rights on his view N o r t h E a s t C u s t.

GRANT SELECT, INSERT, UPDATE, DELETE
ON NorthEastCust
TO LarryR;

SUNDAY AFTERNOON  Security—Putting the Padlocks on 303



Now when he logs in and selects the data from his view, he will see only
his customers.

SELECT CustomerID, FirstName, LastName, StateOrProvince
FROM NorthEastCust;

C u s t o m e r I D FirstName LastName  S t a t e O r P r o v i n c e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1    John    Smith   V A
3     Victoria  Smithe  W V

Because he has been granted the ability to update the view, he can per-
form the following command:

UPDATE NorthEastCust
SET FirstName = 'Roberto'

WHERE CustomerID = 1;

This command will work and will actually change the data in the C u s t o m e r
table. What if Larry starts getting funny ideas about updating a customer
that does not belong to him? The view will pre vent him from doing it.
L e t’s say he tries this command:

UPDATE NorthEastCust
SET FirstName = 'Roberto'

WHERE CustomerID = 5;

Customer number 5 is not one that is included in the NorthEastCust view.
This customer is from Indiana. This UPDATE command will fail to
update any data. So how does this view do this? By combining WHERE
clauses. Look at the WHERE clause used to create the view and the one
used in the UPDATE command. If you were to combine the two, you’d
get a command that looks like this:

UPDATE Customer
SET FirstName = ‘Roberto’

WHERE CustomerID = 5
AND StateOrProvince IN ('CT', 'DE', 'ME', 'NH', 'RI', 'VA', 'WV');

When Larry tried to use the view to update customer 5, this is the com-
mand that the database’s optimizer actually attempted. This command,
however, doesn’t find any rows to update because there is no row that has
CustomerID of 5 and one of those seven states.

304 Learn SQL In a Weekend



This same concept applies when using a view to delete rows. The
WHERE clause from the view will be combined with the WHERE clause
from the DELETE. So a user will only be able to delete rows that are con-
tained within the view. Larry can try this delete:

DELETE FROM NorthEastCust
WHERE CustomerID = 12;

The command will only work if customer number 12 is from one of the
seven states that are in the NorthEastCust view. This prevents him from
deleting customers that he couldn’t even see in the first place.

The INSERT statement is the exception. Because the basic INSERT
doesn’t use a WHERE clause, it can’t combine with a view’s WHERE
clause like you’ve seen before. You can insert rows with a view that are not
contained within that view. This means that after the row is inserted, you
might not be able to see it with the view. For example, Larry uses the fol-
lowing command:

INSERT INTO NorthEastCust
(FirstName, LastName, City, StateOrProvince)

V A L U E S
('Natasha', 'Velk', 'Rome', 'GA');

This will work. However, because Georgia is not one of the states includ-
ed in the view, Larry will never be able to see, update, or delete his new
customer.

Because a view does not have to contain all of the columns from a table,
you should be aware of how the INSERT command handles this type of
view. The columns that are not included in the view will either be given
a value of NULL or be set to the column’s default. If a column outside of
the view has the NOT NULL constraint and does not have a default, the
INSERT will fail.

It’s important to note that whenever you use a view to modify data, you are
actually changing the data on the underlying table. T h e re are no changes
being made to the view since views themselves don’t contain any data.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 305



Updating Data with Complex Views
Earlier we showed you examples of views that invo l ve more than one
table. The purpose of these was to bring data together from seve r a l
tables without the users having to make their own joins. Each DBMS
handles data modification with complex views a little bit differe n t l y. In
general, though, the modifications will be allowed as long as they are
kept within a single table. Take a look at the following view that joins
two tables together.

CREATE VIEW Jobs2002
A S

SELECT jt.JobTicketID, jt.StartDate,
jt.EndDate, jtd.LineItemNumber, jtd.HoursSpent

FROM JobTicket jt
JOIN JobTicketDetail jtd ON jt.JobTicketID = jtd.JobTicketID

WHERE jt.StartDate BETWEEN '1-1-2002' AND '12-31-2002'

The view shows all job tickets created in 2002 along with some of the line
item details. A simple update that you are allowed to perform through
this view would be to change the start or end date of the job ticket.

UPDATE Jobs2002
SET StartDate = '3-22-2002'

WHERE JobTicketID = 7;

You can do this because it’s fairly simple for the view to determine that
the StartDate column comes from the JobTicket table and that you’re
using the primary key in the WHERE clause. Remember also that the
WHERE clause of the UPDATE will be combined with the WHERE
clause of the view. So the command will work as long as job ticket num-
ber 7 was started in the year 2002.

What if you tried to update the other table, J o b T i c k e t D e t a i l?

UPDATE Jobs2002
SET HoursSpent = 2.5

WHERE JobTicketID = 7;

306 Learn SQL In a Weekend



This might not work on your DBMS. It works in SQL Server, but Ora-
cle will not accept it. Oracle has a requirement that in order to update a
given table, each of its primary key columns must be included in the view.
So in order for this update to work in Oracle, you’d have to have the
JobTicketID column included as a column in the Jobs2002 view.

None of the database systems are going to like this command:

UPDATE Jobs2002
SET StartDate = '3-23-2002', HoursSpent = 1.5

WHERE JobTicketID = 7;

Here you’re attempting to update columns from two different tables at
the same time. This is just one of the restrictions placed in multitable
views that we’re going to talk about next.

Restrictions on Joined Views
Before you start using views to update data, be sure that you’re aware of
the restrictions your DBMS has established. We’ll talk about some of the
most common or even obvious ones next.

A view cannot be used to modify data if it has any of the following char-
acteristics:

➤ The view cannot contain aggregate functions such as GROUP BY,
AVG, MIN, MAX, or SUM.

➤ The view cannot have a keyword (other than WHERE) that modi-
fies the number of rows that are returned, such as DISTINCT,
UNION, or TOP.

➤ The view must have at least one table. In other words, it cannot be
built entirely from expressions.

➤ The view cannot involve computed or derived columns. It should
just select simple column names.

➤ If the view contains a join, only one table can be modified.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 307



➤ It is likely that your DBMS will require that the view contain all of
the primary key columns from the table you are modifying, espe-
cially when inserting or deleting.

➤ Column names cannot be ambiguous. For example, if the view has
two columns called Description from two different tables, it will
not know what to do when you try to update a column called
D e s c r i p t i o n.

Again, be sure to check out your documentation on the view topic. Many
DBMSs even have special options for the CREATE VIEW command if
you know ahead of time that a view is going to be used to modify data.
There is also a special trigger called INSTEAD OF that some DBMSs
support, which makes updating with a view easier. In the next section,
we’ll introduce triggers and the wide variety of things they can do for you.

Using Triggers
Triggers are another powerful feature that you’ll find on most database
systems, such as Sybase, Microsoft, Oracle, Informix, and DB2. A trigger
is very similar to a stored procedure. The biggest difference is that you
must explicitly run a stored procedure, whereas a trigger is run automat-
ically in response to a specific event. The events are either when a row is
inserted, updated, or deleted. We’ll be going into detail in this section,
but in short some of the things you can do with triggers include:

➤ Write to an audit log when rows are changed.

➤ Synchronize changes to a backup database.

➤ Cascade changes and maintain referential integrity.

➤ Enforce complex data validation and business rules.

308 Learn SQL In a Weekend



Using Triggers to Audit User Activity
A trigger can be defined to automatically “fire” whenever an INSERT, an
UPDATE, or a DELETE command is issued on a particular table. You
can create any one or all three of these triggers for each table in the data-
base. You must be the owner of a table in order to create a trigger on it;
however, anyone can cause the trigger to fire. For example, Jackie creates
a table and therefore is the only one who can create triggers on it. So she
creates an INSERT trigger. She then grants Larry the INSERT permis-
sion on her table. Now every time either she or Larry inserts a row into
this table, the trigger will fire.

The basic syntax for a trigger is as follows:

CREATE TRIGGER trigger_name
ON table_name

{AFTER | BEFORE | INSTEAD OF} {[INSERT] [,] [UPDATE] [,] [DELETE]}
A S

t r i g g e r _ c o d e

Although triggers can serve countless purposes, we’ll just present a few
practical ideas here and let your own creativity take over after that. The
first idea that we’ll talk about is to make an audit trail.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

An audit trail is a historical record of changes that are made to a set of data.The record
can include the name of the person who made the changes, the date,the time, and spe-
cific details about the data that was inserted, updated, or deleted.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

As a part of your security plan you might want to use an audit trail to
keep an eye on what the users are up to. Possibly even a more practical
use of an audit trail is to be able to trace a table’s history in case data one
day gets lost, damaged, or overwritten. In some cases, audit trails are even
required by law for certain types of data.

As an example, let’s say you’ve decided that you’d like to start an audit trail
on a few of your Slick Shop tables. You’ll begin by creating a table that
will hold the audit trail data.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 309



CREATE TABLE AuditTrail
(TableName  varchar(30),
Action     char(6),
Details    varchar(2000),
LogDate    smalldatetime

) ;

Because you will eventually store audit information from different tables,
the first column, T a b l e N a m e, will tell where the change took place. A c t i o n
will be either INSERT, UPDATE, or DELETE. The large Details col-
umn will contain whatever descriptive information you want to put, such
as the data values that were involved. Finally, the LogDate column will
store the date and time the row was entered into the audit trail.

Now you’re ready to create your first trigger that will make an audit trail
entry every time a new row is inserted into the Customer table.

CREATE TRIGGER tr_i_Customer
ON Customer

AFTER INSERT
A S

DECLARE @first varchar(20);
DECLARE @last  varchar(30);

SELECT @first = FirstName
FROM inserted;

SELECT @last = LastName
FROM inserted;

INSERT INTO AuditTrail
(TableName, Action, Details, LogDate)

V A L U E S
( ' C u s t o m e r ' ,
' I n s e r t ' ,
'New customer added: ' + @first + ' ' + @last,

g e t d a t e ( ) ) ;

310 Learn SQL In a Weekend



Remember that triggers are very similar to stored procedures. Triggers can make 
heavy use of DBMS-specific languages.The trigger examples in this book are written in
Transact-SQL, which is the language of Sybase and Microsoft. All of the concepts that
we’ll discuss, however, can be carried over to any other DBMS that supports triggers.

You begin this trigger by naming it tr_i_Customer (tr for trigger and i
for insert). You then specify that the trigger be placed on the C u s t o m e r
table and that it should fire when an INSERT command is issued. Specif-
ically, this trigger will start running after the row has been inserted. Fol-
lowing the keyword AS, you begin writing the trigger’s code. For this
trigger, there are just a few short commands. But like a stored procedure,
it could have many commands and include things like loops and condi-
tional statements.

As you probably guessed,a trigger that uses the keyword BEFORE runs before the data
is modified, whereas AFTER runs the trigger code after the data is modified.

Microsoft SQL Server and Sybase Adaptive Server do not support BEFORE triggers.

In the trigger, every time a new Customer row is inserted, you have it auto-
matically insert a row into A u d i t T r a i l. That way, users don’t have to worry
about doing it themselves. In fact, users might not even know this is hap-
pening—maybe you don’t want them to know. All the users will see is
that the Customer they inserted got added like they expected.

Notice how the trigger performs two SELECT commands from a table
called i n s e r t e d. In Transact-SQL this is a special virtual table that is only
available within a trigger. This virtual table will have the exact same col-
umn structure as the table on which the trigger is based. It will also con-
tain the row or rows of data that are currently being inserted. In the
trigger, you used this special table to look at the first and last names and

SUNDAY AFTERNOON  Security—Putting the Padlocks on 311



store them into variables. You then took these two variables and put them
together to form a string that shows the name of the new customer added.
This string gets placed in the Details column of the AuditTrail table.

O racle and DB2 can also look at the new data being inserted—they just use a dif-
ferent syntax.

In DB2 you must give the virtual table a name with this command, REFERENCING NEW
TABLE AS NewCust.Then columns can be accessed like N e w C u s t . F i r s t N a m e.

It’s nearly the same in Oracle. The virtual table is named with REFERENCING NEW AS
N e w C u s t, and a colon must precede the table name as : N e w C u s t . F i r s t N a m e.

Now that the trigger is created, whenever someone inserts a row such as
this one,

INSERT INTO Customer
(FirstName, LastName, Address, City, StateOrProvince, 

P o s t a l C o d e )
V A L U E S

('Paul', 'Trulock', '3340 Westwood Rd.', 'San Diego', 'CA',
' 2 0 8 0 0 ' ) ;

you’ll find the following row will be placed in the AuditTrail table.

T a b l e N a m e A c t i o n D e t a i l s LogDate 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C u s t o m e r I n s e r t New customer added: Paul Trulock 2003-7-19 17:25:32

If you were reading along carefully, you’ll know that we said that the
inserted table contains the row or rows that are currently being added.
Normally, this will just be one row. But you’ll recall that it’s possible to
insert more than one row at a time. Take, for example, the following com-
mand that copies customers from one table to another.

312 Learn SQL In a Weekend



INSERT INTO Customer
(FirstName, LastName, Address, City, StateOrProvince, PostalCode)

SELECT FirstName, LastName, Address, City, StateOrProvince,
P o s t a l C o d e

FROM PeoriaCust
WHERE CustomerID <= 300;

This command will insert 300 customers at the same time. This means
that when the insert trigger fires, the inserted table will have 300 rows in
it. The two SELECT commands in the trigger don’t expect more than
one row to be in the inserted table. Also the INSERT command that
adds a row to AuditTrail is only designed to insert a single row. You
should instead write the trigger like the one that follows:

CREATE TRIGGER tr_i_Customer
ON Customer

AFTER INSERT
A S

INSERT INTO AuditTrail
(TableName, Action, Details, LogDate)

SELECT 'Customer', 'Insert',
'New customer added: ' + FirstName + ' ' + LastName,
g e t d a t e ( )

FROM inserted;

This trigger inserts rows into the AuditTrail table based on a SELECT
from the inserted table. This will ensure that all of the rows in 
the inserted table are seen and that corresponding entries are made in
A u d i t T r a i l.

Maybe instead of logging every single action that takes place, you only
want to note some of the more interesting things that happen. Say, for
example, you want to make an audit trail entry only when a customer’s
phone number changes. For this you would need an update trigger. The
update trigger will be fired whenever an UPDATE command is per-
formed on the Customer table. It could be that the first name changed, or
maybe the postal code, or maybe the phone number. You’re only inter-
ested in making a log entry if the phone number actually changed. 

SUNDAY AFTERNOON  Security—Putting the Padlocks on 313



Triggers have the ability to determine which columns have changed and
which have not. The Transact-SQL command that you’ll use to find this
out is IF UPDATE.

CREATE TRIGGER tr_u_CustPhone
ON Customer

AFTER UPDATE
A S

IF UPDATE(PhoneNumber)
INSERT INTO AuditTrail

(TableName, Action, Details, LogDate)
SELECT 'Customer', 'Update',

'Phone number change!',
g e t d a t e ( ) ;

Using Triggers to Synchronize Data
Another common use of triggers is to keep data synchronized between
different tables, which might be on separate databases. This is sometimes
used as a form of replication, so that two databases remain identical.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Replication is the term used for copying or distributing data between two or more
databases. It can involve creating identical copies of data, summarizing data, or storing
a subset of the original.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

In the Sa t u rday Evening session, we used an example where the Sl i c k
Shop had 1,800 stores nationally and there was a corporate office that
wanted to keep track of all of the data. They would like to start by keep-
ing a master customer table that holds all customers from all locations.
Assuming the appropriate connections exist between the stores and the
corporate office, triggers could be used to do this. You want the corpo-
rate database to re c e i ve a copy of each new customer inserted. Likew i s e
you want updates and deletions to carry over as well. For this example,
each Slick Shop location has a connection to the corporate database
called S l i c k C o r p.

314 Learn SQL In a Weekend



The structure of the Customer table in the SlickCorp database will be the
same as the stores use with a few differences. First, a new column called
StoreID will identify which store the data originated from. Second, the
CustomerID column will not be set up as an auto-numbered column. It
will instead get the values directly from the stores. Finally, the primary
key of this table will be StoreID and C u s t o m e r I D.

The insert trigger is pretty similar to what you saw earlier. In this one, you
will provide for the extra column, S t o r e I D, by giving it the number of this
particular Slick Shop, 1 1 0 8.

CREATE TRIGGER tr_i_Customer
ON Customer

AFTER INSERT
A S

INSERT INTO SlickCorp.dbo.Customer
(StoreID, CustomerID, FirstName, LastName,
Address, City, StateOrProvince,
PostalCode, PhoneNumber)

SELECT 1108, CustomerID, FirstName, LastName,
Address, City, StateOrProvince,
PostalCode, PhoneNumber

FROM inserted;

The delete trigger is a little more involved. It loops through a cursor of
each row that was deleted and removes the corresponding row from the
corporate database. Notice the use of the virtual table d e l e t e d. It’s just like
the inserted table, only it contains a copy of all rows that were removed
by the DELETE command.

CREATE TRIGGER tr_d_Customer
ON Customer

AFTER DELETE
A S

DECLARE @id int;
DECLARE c1 CURSOR FOR
SELECT CustomerID

FROM deleted;

SUNDAY AFTERNOON  Security—Putting the Padlocks on 315



OPEN c1;
FETCH c1 INTO @id;
WHILE @@FETCH_STATUS = 0

B E G I N
DELETE FROM SlickCorp.dbo.Customer
WHERE CustomerID = @id

AND StoreID = 1108;

FETCH c1 INTO @id;
E N D

CLOSE c1;
DEALLOCATE c1;

Finally, you need a trigger to handle any updates that modify a customer.
Rather than try to figure out each and every column that has changed,
you could instead just delete the customers that changed and then insert
them with the new data. To do this, you’ll perform the same actions that
you did in the delete and insert triggers, one after the other.

CREATE TRIGGER tr_u_Customer
ON Customer

AFTER UPDATE
A S

DECLARE @id int;
DECLARE c1 CURSOR FOR
SELECT CustomerID

FROM deleted;

OPEN c1;

FETCH c1 INTO @id;
WHILE @@FETCH_STATUS = 0

B E G I N
DELETE FROM SlickCorp.dbo.Customer
WHERE CustomerID = @id

AND StoreID = 1108;

FETCH c1 INTO @id;
E N D

316 Learn SQL In a Weekend



CLOSE c1;
DEALLOCATE c1;

INSERT INTO SlickCorp.dbo.Customer
(StoreID, CustomerID, FirstName, LastName,
Address, City, StateOrProvince,
PostalCode, PhoneNumber)

SELECT 1108, CustomerID, FirstName, LastName,
Address, City, StateOrProvince,
PostalCode, PhoneNumber

FROM inserted;

Notice how this trigger is a combination of the prior two triggers,
tr_d_Customer and t r _ i _ C u s t o m e r. The first part of the trigger deletes all of
the modified customers from the SlickCorp database. The last part of the
trigger inserts the customers back in complete with its modified data.

Your database will not have an “updated” table or anything similar.
Instead, inside an UPDATE trigger you will be able to see how the row
looked before the update occurred and also see how it looks after. In
Transact-SQL this means that you’ll be looking at both the inserted and
deleted tables.

A trigger can only be applied to one table within a single database. So each
of these three triggers would have to be created on eve ry Slick Shop data-
base that you wanted to replicate. Be f o re each trigger is created, the hard -
coded store number would have to be changed to reflect the proper va l u e .

There are many other variations of synchronization triggers like these.
You could have triggers that synchronize data within the same database.
You could send summarized data to another table. You could even have a
trigger run some stored procedures for you.

Using Triggers to Maintain Referential Integrity
In the Saturday Evening session, we talked about a feature that some
DBMSs have, called cascading updates and deletes. They automatically
carry updates or deletes through to related tables in order to maintain 

SUNDAY AFTERNOON  Security—Putting the Padlocks on 317



referential integrity. For example, if a row from the Customer table were
deleted, a cascading delete would automatically delete all of the related
rows in the Vehicle table. This would help prevent orphaned rows in the
Vehicle table—vehicles without related customers. If your database sys-
tem does not support these kinds of cascading actions, you could accom-
plish the same thing with triggers.

The following is a delete trigger on the Customer table. It will delete all
vehicles owned by the customer who was deleted.

CREATE TRIGGER tr_d_CustVehicle
ON Customer

AFTER DELETE
A S

DELETE FROM Vehicle
WHERE CustomerID IN (SELECT CustomerID

FROM deleted);

Now this trigger is set except for one thing, the foreign key that exists
b e t ween Customer and V e h i c l e. If you attempt to delete a row from C u s t o m e r
while there is a related row in V e h i c l e, the command will fail. The fore i g n
key relationship is tested before the trigger is executed. The only way for
this trigger to do its job is to re m ove the foreign key definition from the
Vehicle t a b l e .

You’ll recall back in that Saturday Evening session the long discussion
about the pros and cons of using foreign keys. If you have a database that
you’ve decided you want to have foreign keys, this trigger doesn’t look too
attractive. There is, however, an alternative. In that session, we told you
that in order to delete a row on the primary key side of the relationship,
you’d first have to delete the foreign key side rows. In this case, you’d have
to delete the Vehicle rows first; then you’d be able to delete the C u s t o m e r.
The problem with the trigger is that it’s deleting the Customer row first.
The INSTEAD OF trigger option allows you to bypass a command’s nor-
mal action and run just the trigger’s code instead.

Knowing this, you should rewrite the trigger so that it will delete the
Vehicle rows first and then the Customer rows.

318 Learn SQL In a Weekend



CREATE TRIGGER tr_d_CustVehicle
ON Customer

INSTEAD OF DELETE
A S

DELETE FROM Vehicle
WHERE CustomerID IN (SELECT CustomerID

FROM deleted);

DELETE FROM Customer
WHERE CustomerID IN (SELECT CustomerID

FROM deleted);

Now when someone issues a command like this,

DELETE FROM Customer WHERE CustomerID = 207;

the delete on the Customer table will not happen. Instead, the trigger code
will run, which will first delete any vehicles owned by that customer.
After that the trigger will go ahead and delete the customer. Notice how
this trigger is also written to handle the case where several customers are
deleted at the same time, as in the next command.

DELETE FROM Customer WHERE LastName = 'Wilson';

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Try to make your triggers as concise and fast as possible. Remember that every time the
user modifies data, your trigger now will cause more work to be done than before.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Using Triggers on Views
A view cannot have BEFORE or AFTER triggers assigned to it the way
a table can. However, if the view is capable of modifying data and the
underlying table has a trigger, that trigger will fire even if the view was
used in the SQL command. The only type of trigger that can be created
directly on a view is an INSTEAD OF trigger. As we said earlier, there are
many restrictions on views that determine whether or not a view can be
used to modify data. The INSTEAD OF trigger option can be used to

SUNDAY AFTERNOON  Security—Putting the Padlocks on 319



give a nonupdating view the ability to modify data. Truthfully, the view
will have nothing to do with the data modification. The INSTEAD OF
trigger will do all the work.

To demonstrate this type of trigger on a view, you’ll create a nonupdata-
ble view. This view will join two tables and aggregate some data.

CREATE VIEW JobSummaryView
A S

SELECT j.JobTicketID, j.StartDate, j.EndDate, COUNT(*) 
AS 'NumOfLines'

FROM JobTicket AS j
JOIN JobTicketDetail AS jtd ON j.JobTicketID = jtd.JobTicketID

GROUP BY j.JobTicketID, j.Startdate, j.EndDate

When you do a SELECT * on this view, you get the following:

J o b T i c k e t I D S t a r t D a t e E n d D a t e N u m O f L i n e s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1  2002-01-20 00:00:00 2002-01-20 00:00:00 1
2 2001-07-20 00:00:00 2001-07-20 00:00:00 3
3     2001-09-16 00:00:00 2001-09-16 00:00:00 1
4      2002-01-26 00:00:00 2002-01-26 00:00:00  1
5      2002-05-21 00:00:00 2002-05-21 00:00:00 2
6      2001-08-13 00:00:00 2001-08-13 00:00:00 1
7      2002-03-22 00:00:00 2002-02-17 00:00:00  5

It shows the start and end dates of every job ticket and how many line
items there are for each. Because this view aggregates data with GROUP
BY, it can’t be used to update data. If you attempted to issue an UPDATE
command on this view right now, you’d get an error. In order to allow
updates, you’ll create an INSTEAD OF trigger for this view.

CREATE TRIGGER tr_u_JobSummaryView
ON JobSummaryView

INSTEAD OF UPDATE
A S

DECLARE @id    int;
DECLARE @start smalldatetime;
DECLARE @end   smalldatetime;

320 Learn SQL In a Weekend



DECLARE c1 CURSOR FOR
SELECT JobTicketID, StartDate, EndDate

FROM inserted;

OPEN c1;

FETCH c1 INTO @id, @start, @end;
WHILE @@FETCH_STATUS = 0

B E G I N
UPDATE JobTicket

SET StartDate = @start,
EndDate   = @end

WHERE JobTicketID = @id;

FETCH c1 INTO @id, @start, @end;
E N D

CLOSE c1;
DEALLOCATE c1;

Now you can write a command like the following:

UPDATE JobSummaryView
SET StartDate = '2003-1-2', EndDate = '2003-1-3'

WHERE JobTicketID = 1;

Remember that the INSTEAD OF trigger will cause the UPDATE to be
ignored. Basically, all it will do is fire the trigger. This means that you’ll
have to do all of the work yourself in the code of the trigger. As before,
you’ve written this one to loop through all of the rows that would be
affected by the WHERE clause of the UPDATE command. The virtual
tables that show inserted and deleted rows are available just like they are
in regular table triggers.

As it loops through each row, the cursor puts the job ticket number
and the new date values into variables. Then the trigger performs its
own UPDATE command on the JobTicket table. This will all be seam-
less to users; they’ll just execute an UPDATE command and it will ru n
as expected.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 321



Using Triggers to Enforce Business Rules
In the Saturday Evening session, when we talked about creating tables, we
showed you how you can build some validation into a table. You can use
the CHECK constraint on a column to perform some simple validation.
Triggers are better suited for more complex validation or enforcement of
business rules.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A business rule defines or restricts data to meet a particular business practice rather
than just a universally accepted fact. For example, this is a business rule: “License plate
numbers are required for all vehicles except those from Canada.” This is a rule that the
database will allow you to break unless you somehow prevent it. It’s also a rule that
some companies will use and others will not.This is not a business rule: “Quantity val-
ues cannot contain any letters or special characters.” This is a universally accepted fact.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

We’ll give you a few examples of triggers that enforce business rules, start-
ing with a simple one that ensures that each job ticket’s end date does not
come before the start date.

CREATE TRIGGER tr_iu_JobDates
ON JobTicket

AFTER INSERT, UPDATE
A S

IF EXISTS (SELECT * FROM inserted WHERE EndDate < StartDate)
B E G I N

RAISERROR ('The start date must be before the end date.', 16, 1);
ROLLBACK TRANSACTION;

E N D

Notice how this one trigger applies to both INSERT and UPDATE. It
looks at the data in the inserted table, which holds both newly insert e d
rows and the new values of updated rows. Notice also that this trigger
uses the RO L L B ACK command to cancel the inserts or updates that
took place. The insert or update that was executed was considered its
own transaction even if there was not an explicit BEGIN T R A N S AC-
TION command. So any violation of this business rule will cause the

322 Learn SQL In a Weekend



i n s e rted or updated rows to be cancelled. Also included is the Tr a n s a c t -
SQL command RAISERROR, which returns an error message to the
u s e r. For more information on transactions, look back at the Su n d a y
Morning session.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Your DBMS might allow you to create more than one of the same type of trigger on the
same table. For example, you might be able to create three different update triggers on
the Customer table. If this feature is available, there will also be a command that will
allow you to specify the order in which the triggers will be fired.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Triggers can also enforce business rules by looking into other tables in the
same database or even a separate database. Let’s assume that the Slick
Shop has a business rule that a certain part cannot be installed in older
cars due to some government regulation. This next trigger watches the
parts that are being used on job tickets. It will prevent vehicles built
before 2000 from using part number 9.

CREATE TRIGGER tr_i_CheckPart9
ON PartUsed

AFTER INSERT
A S

IF EXISTS (SELECT *
FROM Vehicle AS v
JOIN JobTicket AS j ON j.VehicleID = v.VehicleID
JOIN inserted AS i ON i.JobTicketID = j.JobTicketID

WHERE v.VehicleYear < 2000
AND i.PartID = 9)

B E G I N
RAISERROR ('The ACME Oil Filter is not for use in cars

built before 2000.', 16, 1);
ROLLBACK TRANSACTION;

E N D

This trigger joins the inserted table through JobTicket to Vehicle to find
out if any of the parts being inserted are number 9, going on a pre-2000 car.
If it finds a violation, it will raise an error message and roll back the changes.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 323



Triggers and CHECK constraints are similar but have a few key differences. The trigger
is much more powerful in that it has the ability to base decisions on other columns,
tables, and databases.The trigger, however, can only validate data that is changed after
the time that you create the trigger. It cannot validate data that was already sitting in
the table before you applied the trigger. A CHECK constraint will go back and validate
all data that is currently in a table.

A trigger can also be used to create or modify data, as the next example
will demonstrate. For this one, you’ve received a request from the Slick
Shop’s marketing department to combine the city, state, and postal code
fields. This will help them to format their mailing label more easily. You,
of course, don’t want to combine these three fields into one because you’d
lose the ability to query these fields independently. What you will do,
though, is create a new column that will fit their needs.

ALTER TABLE Customer
ADD CityStateZip varchar(46);

This new column is big enough to hold the C i t y, S t a t e O r P r o v i n c e, and
PostalCode columns with a few extra bytes for a comma and some blank
spaces. Next you’ll create a trigger that will populate this column auto-
matically every time customer data is inserted or updated.

CREATE TRIGGER tr_iu_CityStateZip
ON Customer

AFTER INSERT, UPDATE
A S

DECLARE @id    int;
DECLARE @city  varchar(30);
DECLARE @state char(2);
DECLARE @zip   varchar(10);

DECLARE c1 CURSOR FOR
SELECT CustomerID, City, StateOrProvince, PostalCode

FROM inserted;

324 Learn SQL In a Weekend



OPEN c1;

FETCH c1 INTO @id, @city, @state, @zip;
WHILE @@FETCH_STATUS = 0

B E G I N
UPDATE Customer

SET CityStateZip = @city + ', ' + @state + ' ' + @zip
WHERE CustomerID = @id;

FETCH c1 INTO @id, @city, @state, @zip;
E N D

CLOSE c1;
DEALLOCATE c1;

As before, you’re able to use the same trigger for both inserts and updates.
Notice how this trigger actually updates the same table on which the trig-
ger is built. So if an INSERT command is run on the Customer table, first
the row will be inserted, the trigger will perform an UPDATE on that
same row. Because a trigger and the command that fired the trigger run
within their own transaction, other users cannot see any changes until the
trigger is finished. In the case of the previous trigger, this means that if
someone happens to run a SELECT in the split second between the
INSERT and the trigger’s UPDATE, they will not see the new customer
at all. However, the instant that the trigger is done, the transaction is
committed and everyone (with proper authority) can see the changes.

Remember also that all of the rows that existed before this trigger was cre-
ated will have NULL values in the CityStateZip column. You would prob-
ably want to write a little stored procedure to get the existing values
updated. You could use the trigger code as a basis for the procedure. You
would only have to run it one time—from then on the trigger will keep
the column synchronized.

Because this is a chapter on security, you’ll finish with a trigger that
updates column data in order to save audit information. This trigger is an
alternative to the one presented in the section “Using Triggers to Audit
User Activity.” This one will update columns within the same table that

SUNDAY AFTERNOON  Security—Putting the Padlocks on 325



is being modified. This is a technique that we have used with success on
past projects. What you do is add two columns to the end of every table:
one will store the last date and time a row was changed, the other will
store the username of the last person who performed the change. Because
you’re probably tired using the Customer table for examples, you’ll use P a r t
this time. Following is the command to create the Part table with the two
extra columns you need.

CREATE TABLE Part (
PartID   Integer  IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,
Description Varchar(100)  NOT NULL,
Cost    Money      NOT NULL,
UpdateDate  S m a l l D a t e T i m e N U L L ,
UpdateUser  V a r c h a r ( 3 0 ) N U L L
)

Notice that the two new columns must allow NULL values. This is because
when a new row is added, the user will not include the date and username
information. They will get inserted with NULL values, and the trigger will
then update them right away. Now all you need is a trigger that will auto-
matically update these columns whenever a row is inserted or updated.
The trigger uses two Transact-SQL functions, getdate and s u s e r _ s n a m e, to
get the current date and the logged-in user, respectively. Other DBMSs
will use different function names.

CREATE TRIGGER tr_iu_PartTracking
ON Part

AFTER INSERT, UPDATE
A S

UPDATE Part
SET UpdateDate = getdate(),

UpdateUser = suser_sname()
WHERE PartID IN (SELECT PartID

FROM inserted);

So, when a row is inserted,

INSERT INTO Part
(Description, Cost)

V A L U E S
('60 Month Battery', 65.99);

326 Learn SQL In a Weekend



the last two columns will tell you who added the row and when.

P a r t I D Description Cost UpdateDate  U p d a t e U s e r
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 60 Month Battery 6 5 . 9 9 0 0 2002-06-03 11:43:00 G u s T

And when someone later comes along and updates the row,

UPDATE Part
SET Cost = 72.50

WHERE PartID = 15;

the two columns will get automatically updated.

P a r t I D Description Cost UpdateDate U p d a t e U s e r
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 60 Month Battery 7 2 . 5 0 0 0 2002-12-18 15:27:00 J a c k i e P

We’ve found this to be very useful, especially in databases with a large user
base. Although it doesn’t provide as much information as the audit trail
presented earlier, it is another way to track down problems. We’ve had
pretty good success with it when we’ve needed to find data that changed
on a certain day or find out who last touched a particular row.

What’s Next?
We’re going to wrap up the book this evening by discussing application
development languages. Although SQL can be placed in the hands of end
users, this is not very common. Instead, developers usually write and
compile applications that mask most if not all of the SQL. End users
don’t have to ever know what language or database is being used. As a
developer, you have many choices of languages that can access your rela-
tional database.

In the next chapter, we’ll show you a few of the most popular and wide-
ly available languages and how each of them deals with SQL.

SUNDAY AFTERNOON  Security—Putting the Padlocks on 327



This page intentionally left blank 



S U N D A Y  E V E N I N G

SQL and the
A p p l i c a t i o n
D e ve l o p e r

S U N D A Y  E V E N I N G

SQL and the
A p p l i c a t i o n
D e ve l o p e r

S U N D A Y  E V E N I N G

SQL and the
A p p l i c a t i o n
D e ve l o p e r

➤ Making Use of SQL with Office and Microsoft Query 
➤ Building Database Applications with Visual Basic 

and Visual Basic .NET
➤ Getting Visual C++ and Visual C# .NET to Use SQL
➤ Making Data Driven Web Pages with ASP and ASP .NET
➤ Using SQL with PowerBuilder



This page intentionally left blank 



WWell, you’re into the home stretch now! You’ve learned as much
SQL as we’re going to show you in this book. Now we’ll move
on to some of the ways that users and application developers

interact with SQL. Users fall into three categories. The first type of users
don’t want to have to deal with SQL, tables, columns, or procedures.
They just want an easy-to-use interface to their data. They want to do
their job as quickly and accurately as possible. The application developer
will support these users. The second type are somewhat more advanced
users who don’t mind dabbling with tools that will allow them to create
their own reports. This is especially true if they have tools to use that will
let them point-and-click instead of typing SQL commands. The user type
is the power-user. Power-users are people who don’t mind getting their
hands dirty and typing some good old SQL.

Most users fall into the first category. They will rely on you to build them
sophisticated database applications. In this evening’s session, you’ll see
various ways that you’ll be able to satisfy this type of user.

Making Use of SQL with Office and
Microsoft Query

The products within Microsoft Office have very nice database query
capabilities built into them. The applications such as Word and Excel can
run live queries against a relational database and bring the results back

331



into the document or spreadsheet. The queries can be saved so that the
results can be refreshed later. One of the uses for this in Word is to use
query results to make mail merge documents. As you read through this
section, keep in mind that many other spreadsheet and word-processing
programs offer similar data access capabilities.

The Office applications accomplish their query capabilities through
another Office application called Microsoft Query (or just Query).

Using Microsoft Query
Query is an application that is often overlooked or even unknown to
many people. One reason for this is that it’s not installed with Office by
default. Even if it is installed, a shortcut is not placed on the menu for
you. In this section, we’ll step you through the highlights of this applica-
tion, starting with how to get it installed.

One way to tell whether Query is already installed is to start Excel and
click Data, and then Get External Data, and then New Database Query.
If Query is not installed, you’ll be told now. The newer versions of Office
will prompt you to insert your Office CD so that the installation can
begin. After a very short installation process, you’ll see the Choose Data
Source dialog box, as shown in Figure 7.1. This is the same dialog box
you’ll see if Query was installed in the first place.

For now, just cancel this dialog box and either close or minimize Excel.
You’ll come back to it later. First we want to show you how to get Query
on your Start menu. The reason that the install does not create a shortcut
for you is because Microsoft considers it to be a second-tier application.
This means that although it’s a fully functional, supported application, its
main purpose is to be executed from within other applications such Word
and Excel. Query, however, is a worthwhile program that can be used to
simplify database queries by writing SQL for you. Many times people
who don’t know about Query scour the Internet in search of a program

332 Learn SQL In a Weekend



that does the same thing. Sometimes they’ll even purchase expensive
packages with advanced capabilities that they don’t need just in order to
give users an easy way to look at their data.

Query can be given to your advanced users and power-users. They will
need to deal with tables, columns, and some syntax rules, but not SQL.
They will not have to learn syntax for the SELECT command, WHERE
clause, or joins. For the most part they can just point-and-click and
they’ll have their results. The queries can be saved and the output can be
copied and pasted somewhere else.

Okay then, time to get Microsoft Query on your Start menu. Once it’s
installed, all you need to do is locate the program and create a shortcut
for it. Easier said than done! Each new version of Office likes to put pro-
grams in a different place. We’ve found that even if a PC has only had one
version of Office installed on it, there can be as many as 10 subdirecto-
ries named “Office” or some variation thereof.

SUNDAY EVENING  SQL and the Application Developer 333

Figure 7.1

If you can get the
Choose Data

Source dialog box
to appear, you

know that Microsoft
Query is installed.



Anyway, here are a few places it’s been known to hide:

C:\Program Files\Office2K\Office\MSQRY32.EXE
C:\Program Files\Microsoft Office\Office\MSQRY32.EXE
C:\Program Files\Common Files\Microsoft Shared\Msquery\MSQRY32.EXE

If you don’t find it in one of these places, try searching your whole hard
d r i ve for M S Q R Y 3 2 . E X E. When you find it, create a new shortcut with this
file as the target and name it “Mi c rosoft Qu e ry”. Now use the short c u t
to start Qu e ry and we’ll walk you through the product. After it start s ,
yo u’ll be taken to a blank screen. Press the first button on the toolbar or
select File, and then New from the menu. Yo u’ll see the Choose Da t a
So u rce dialog box that’s back in Fi g u re 7.1. You may see some default
data sources in this dialog box, but yo u’ll want to create a new one to
point to your own database. Make sure <New Data So u rce> is high-
lighted and click on OK. This will open the Create New Data So u rc e
dialog box, as shown in Fi g u re 7.2. Type in any name for your data
s o u rce and select the driver type that matches your DBMS, such as SQL
Se rve r, Oracle, or In f o r m i x .

334 Learn SQL In a Weekend

Figure 7.2

Start creating a
new data source by

giving it a name
and indicating what

DBMS your
database lives in.



Next, press Connect to get to the Login dialog box. Here you’ll tell it the
name of your server first. The check box called Use Trusted Connection
should be turned on only if you’re using server authentication. Remem-
ber from the Sunday Afternoon session that this means your network
logon is the same as your database logon. If you’re not using database
authentication, clear the check box and enter your login name and pass-
word. Don’t press OK yet; first you’ll want to click Options. This will let
you choose the database that you want to connect to. You can just leave
the other three options alone. The completed Login dialog box is shown
in Figure 7.3.

Now you can press OK, after which you’ll find yourself back at the Cre-
ate New Data Source dialog box. The fourth option here asks you if you
want to specify a default table. Don’t select one. It’s easier just to wait
until later when you’re ready to build a query. The last option is a check
box that allows you to save your password along with the other data
source information. If you check this box, right away you’ll get a warning
message. It will tell you that although this is a nice feature, it’s going to

SUNDAY EVENING  SQL and the Application Developer 335

Figure 7.3

In the Login dialog
box, you’ll provide

all the necessary
information to

connect to your
database.



store your password in a plain text file that someone could find one day.
They’re not lying either. When you press OK, Query will create a text file
with a .DSN extension that will simply show all the information you put
in the last two dialog boxes (including your password). If you leave the
check box cleared, you’ll be prompted for your database password when-
ever you use this data source.

After you press OK, you’ll be back to the Choose Data Source dialog box,
and your new data source will be in the list. Select your data source, but
before you press OK, clear the Use Query Wizard check box. The wizard
is a nice little set of dialog boxes that step you through building a simple
query. Let’s be tough about it and go without the wizard’s help. After
clearing the check box, press OK and you’ll enter the query interface. The
Add Tables dialog box, as shown in Figure 7.4, will open on its own.

The permissions that you’ve granted to a user will take effect here. The
user will only see tables for which he or she has SELECT permission.
Remember when we discussed security in the Sunday Afternoon session?
You may have users who find their way into Query on their own, so make

336 Learn SQL In a Weekend

Figure 7.4

The Add Tables
dialog box will

display the tables
and views that you
have permission to

query.



sure you have the permissions set up properly! Notice that in Figure 7.4
not only are tables listed but also the views created in the last session.
Both the tables and the views are available for your new query.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Unless you use some kind of naming convention to distinguish tables from views, this is
an example of a place where you won’t know which is which.Then again, maybe you
don’t want to confuse your users with tables versus views. It might be best to just let
them think they’re all tables.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Select the Customer table and press Add. The table is added to the query
window behind the dialog box. You can keep adding as many tables as
you need, but for now just press Close. If you need to, resize the panes
inside the query window and resize the Customer table dialog box so you
can see all of the columns. Figure 7.5 shows the query window.

SUNDAY EVENING  SQL and the Application Developer 337

Figure 7.5

The query window
is now ready to
start building a

new query with the
C u s t o m e r table.



If you skipped the Sunday Afternoon session, you might be wondering where the
CityStateZip column came from.This is a column that you added in the last session.
It is populated by a trigger and contains the combination of the C i t y, S t a t e O r P r o v i n c e,
and PostalCode c o l u m n s .

The pane in the lower half of the query window is where your query
results will be displayed. T h e re is nothing there yet because you have n’t
told it what columns you want to see. To get this done, just drag columns
o n e - by-one from the table to the lower pane. You can also click the white
rectangular box in the lower pane to drop down a list of columns to choose
f rom. Fi g u re 7.6 shows four of the columns from Customer s e l e c t e d .

Notice that at the top of the table there is an asterisk (*). If you want to
see all of the columns, you can just drag this down to the results pane
instead of dragging each column one by one. If you want to remove a col-
umn later, just click on the column name in the results pane and press the
Delete key.

338 Learn SQL In a Weekend

Figure 7.6

When you drag
columns down to
the results pane,

the data will
appear

automatically.



You can sort the results by selecting a column and pressing the Sort
Ascending or Sort Descending button. If you want to sort by more than
one column, select Records, Sort from the menu. A sorting dialog box
will let you add and remove sorting combinations.

Now press the Show/Hide Criteria button on the toolbar or choose View,
Criteria from the menu. This will open the criteria pane in the middle of
the query window. In the same way you did it in the results pane, you can
drag or select columns in the criteria pane. Once you have a column in
the criteria pane, you can then specify a comparison value below it. If the
column is a character data type, you must put single quotes around the
value. As soon as you click somewhere else or move the cursor out of the
value box, the results will be filtered. The query window in Figure 7.7
indicates that only customers from Indiana should be displayed.

A nice feature of the criteria pane is that it can help you define the com-
parison value. Double-click the value rectangle directly below the column
name. The Edit Criteria dialog box will open. This dialog box has sever-
al options for the operator such as, “equals”, “does not equal”, “is greater

SUNDAY EVENING  SQL and the Application Developer 339

Figure 7.7

The middle pane
allows you to

specify criteria that
will filter the query.



than”, “is between”, and “begins with”, just to name a few. Select one of
these operators, and then enter a value below it. In this particular value
box, if you don’t put quotes around character values, Query will do it for
you. When you press OK, the filter will be applied. In Figure 7.8, the fil-
ter has been changed to show all customers that are not in Indiana.

Anything that the Edit Criteria dialog box enters in the value field you
can do yourself if you know the proper syntax. For example, if you want
to see all last names that start with the letter “S”, you could open the dia-
log box, select Begins With, and type S in the value box. But if you know
the syntax, you could skip the dialog box and just enter Like 'S%' in the
query window’s value box. There is one nice thing the Edit Criteria dia-
log box can do for you that you can’t do on your own. Open the dialog
box again and click on Values. This will open the Select Value(s) dialog
box, which will show you all of the unique values that currently exist in
that column. If you select a value, it will be returned to the previous dia-
log box. This is a nice way to take a look at the data that’s available in a
column, especially if you’re not familiar with the table or column.

340 Learn SQL In a Weekend

Figure 7.8

The Edit Criteria
dialog box can be
used to assist you

with the various
operators.



■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Be careful with the Values button. If you’re working with a very large table,it could take
a long time to bring back the list. When it’s pressed, it is running a SQL command sim-
ilar to this:

SELECT DISTINCT StateOrProvince FROM Customer;

If the column is not indexed, you’re asking for a table scan. The DISTINCT keyword will
slow the query a bit more as well.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Of course, what yo u’re really doing in the criteria pane is having Qu e ry
build a WHERE clause for you. You can view the SQL that Qu e ry is
building any time during this process. Just press the Vi ew SQL button or
select Vi ew and then SQL from the menu. The SQL dialog box, like the
one in Fi g u re 7.9, will show you the command that Qu e ry has built so far.

You can highlight and copy the SELECT command from this dialog box.
This raises an interesting idea. Could you click and drag within Query to
build a SELECT and then paste it into your stored procedure, trigger,

SUNDAY EVENING  SQL and the Application Developer 341

Figure 7.9

The SQL dialog box
shows the

command that
Query has built.



view, or application code? Sure! If you find this to be an easier method of
writing queries, go for it! It can also be a good way for someone to teach
himself some SQL.

Mi c rosoft Qu e ry is not limited to single-table queries, so let’s get anoth-
er table invo l ved. Click the Add Table(s) button or select Table and then
Add Tables on the menu. Yo u’ll get the Add Tables dialog box that yo u’ve
seen before (see Fi g u re 7.4). Select the Vehicle table and then press Ad d .
Although the dialog box does not go away, yo u’ll be able to see that the
Vehicle table was added to the top pane. The dialog box stays open in
case you need to add more tables. T h a t’s all we want you to add, so just
p ress Close.

We want you to notice how the two tables, Customer and V e h i c l e, have a
line between them. This shows the relationship between the two tables.
Specifically, the ends of the line point to the CustomerID column of each
table. How did Query know to do this? It read the foreign key that you
created on the Vehicle table. Now what you can do is drag columns from
this table into the results pane and the criteria pane. For Figure 7.10,
three columns have been added from the Vehicle table to the results, and
the VehicleYear has been used in the criteria.

Something else done in Figure 7.10 was to add another value to the cri-
teria under the StateOrProvince column. Notice the word “or” on the sec-
ond line below the column name. This means that values placed below
the column will be an OR condition. Because 'IN' is on the first line and
'WV' is on the second, this is the same as

StateOrProvince = 'IN' OR StateOrProvince = 'WV'

To re m ove a table from a query, click on the table in the top pane and
p ress the Delete key. Because the table is being re m oved from the
q u e ry, all columns from that table will be re m oved from the results and
criteria panes.

342 Learn SQL In a Weekend



So far, every time you’ve added a new column or changed criteria, the
results pane has updated itself right away. Of course, what’s happening
here is that Query is sending a new SELECT command to the database
each time. For a table as small as the ones you’re using, that’s not a prob-
lem. However, with tables of substantial size, this could be an annoyance.
Even if the query takes just two seconds, you’ll find Query delaying your
progress often to rerun its command. Toggle the Auto Query button off
or select Records and then Automatic Query to turn this feature off.
You’ll now be able to work on queries without the results updating. When
you’re ready to run the query, just press the Query Now button or select
Records then Query Now on the menu.

You can use the Save button to name and save your query. Now it will be
available for you to open and run later. You could use this feature to cre-
ate some standard queries for your users. They could later open the
queries and change the criteria to suit their needs. If you do this, keep in
mind that your logon may have access to more tables than they do. If you

SUNDAY EVENING  SQL and the Application Developer 343

Figure 7.10

The query window
with two tables

joined.



save a query using tables that they don’t have permission on, the query
will not work for them. The users, of course, can always create and save
their own queries.

Contrary to its name, Query will also allow you to edit the data in the
results pane. By default, you cannot change anything. But you can turn
on the edit mode by selecting the Records menu, and then Allow Edit-
ing. Now you’ll be able to go down in the results pane and change the val-
ues. The database will get updated when you move off of the row. You
cannot edit data if there is more than one table in the query.

Using Query within Excel
Now it’s time to look back to the Office products to see how they inte-
grate with Microsoft Query. If you still have Query open, go ahead and
close it now. This is where you will see why Microsoft calls it a second-
tier application. Open Excel now and start with a blank spreadsheet. Now
you can access Query the same way we had you do at the beginning of
this session. Select Data from the menu, and then Get External Data, and
then New Database Query. You’ll see the Choose Data Source dialog box
now, just like you saw back in Figure 7.1. Select the data source you cre-
ated earlier and press OK. Enter your database password if necessary.
You’ll now find yourself back in the query window that you worked
through in the last section.

Go ahead and create a new query now by adding a table or two and sev-
eral columns for the results. After you get the query all set up, you can
save it if you want to. Now you’re ready to send this data back to Excel.
Choose the File menu, and then Return Data to Excel. You’ll be sent back
to Excel and given a dialog box called Returning External Data to
Microsoft Excel, as shown in Figure 7.11.

You can see from this dialog box that Excel is giving you a choice of three
places to put the results of the query. It can go in the current worksheet,
a new worksheet, or a pivot table.

344 Learn SQL In a Weekend



■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

We don’t have the space here to get into Excel pivot tables, but if you’ve never played
with one,check it out sometime. Pivot tables allow you to place your data in a cross-tab
layout. After that you can group data, drag columns around, and summarize different
ways in order to analyze the results.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Just press OK and let the data start in cell A1. Now the results of your
query are brought into Excel. Notice also that you’ll have the External
Data toolbar available now. Figure 7.12 shows the query results after
they’ve been returned to Excel.

Query will feed Excel the column headers and all of the rows and
columns of data in your result set. You are able to work with the data in
these cells in all of the usual ways. You can format the cells, create for-
mulas, and even change the data in the result set. You should note, how-
ever, that changing the values in Excel will not change the database
values. Excel has a copy of the data.

SUNDAY EVENING  SQL and the Application Developer 345

Figure 7.11

This dialog box
prompts you to

specify a location
for the query

results.



When you save the spreadsheet, the values and any of your modifications
will be saved as well. Excel also saves information about the source of the
data in the spreadsheet. This is so that you’ll be able to refresh the data
later. The next time you open the spreadsheet, the data will be the same
as you last saved it. Excel will not automatically retrieve from your data-
base. When you’re ready to rerun your query, move to one of the cells
within your results. When you do this, the Refresh Data button on the
External Data toolbar will become available. This button has a picture of
a red exclamation point. Press this button to have Microsoft Query go
out and run your query again. The new result set will be brought back
into the same spot in the spreadsheet. You won’t even see any of Query’s
windows pop up, unless it encounters an error or has to ask you for a
password. Any changes that you’ve made to the data will be replaced with
the real values from the database. This goes for formatting changes too,
which revert back to their defaults. Everything else in the spreadsheet that
is outside of the result set’s cells will remain untouched.

346 Learn SQL In a Weekend

Figure 7.12

Results that have
been returned from

Query into Excel.



Using Query within Word
Another popular use of Microsoft Query that we’ll show you is to get data
into Word. This is similar to the way Excel does it, but there are some dif-
ferences with the menus and the functionality. Finding Query when
you’re in Word can be a little tricky. First, you’ll need to open the Data-
base toolbar. From the View menu, select Toolbars, and then Database.
This will give you a new toolbar with 10 buttons on it. Now you’re ready
to integrate some data into your documents.

The first sample we’ll show you will just be a quick way to place query
results into a Word document. After that you’ll do a mail merge sample.
Press the Insert Database button and you’ll be given the Database dialog
box, as shown in Figure 7.13.

This dialog box kind of works like a three-step wizard. The first thing you
must do is press Get Data. This will give you a dialog box in which you
can search for a file to open. Instead of selecting a file, press MS Query.
This will open Microsoft Query and bring you to the Choose Data
Source dialog box, just like Figure 7.1. Now that you’re in Query, you can

SUNDAY EVENING  SQL and the Application Developer 347

Figure 7.13

The Database
dialog box steps
you through the

process of pulling
data into your

document.



either open a saved query or create a new one. Create a query the same
way that you did earlier, and when you’re finished, choose Return Data
to Microsoft Word from the File menu. Now you’ll be sent back to Word
and the Database dialog box where three new options are available.
Choose Query Options to go back to work on the query again. Clicking
Table AutoFormat will let you define what the Word table is going to
look like. After using these two options (or not), press Insert Data. This
will put the query results into your document in a Word table.

Just like Excel, this data is just a copy, so you can modify it if you want.
Your changes will not affect the database. Query was used to bring data
into the document shown in Figure 7.14.

One of the most popular reasons for accessing a database via Word is to
create mail merge documents. These are documents that have placehold-
ers for data such as name and address. A single document can be created
with these placeholders, and then when the addresses are pulled in it will
generate a separate document for each row of data.

348 Learn SQL In a Weekend

Figure 7.14

Query data that
has been retrieved

into a Word
document.



The C u s t o m e r table will work as an excellent source of mail merge data. 
To start a mail merge, open a new blank document and choose Mail
Merge from the Tools menu. This will open another wizard-like dialog
box, called Mail Merge Helper. This dialog box is shown in Figure 7.15.

For step one, press Create and notice that you have a few options here.
For this sample choose Form Letters. Word will ask you if you want to
create the form letter in the current document or a new one. Press Active
Window. Now in step two, press Get Data and choose Open Data
Source. Like before, this will give you the dialog box where you can
search for a file to open. Also like before, click MS Query and you’ll be
sent to the Microsoft Query window. You know what to do here. Create
a query that includes the customers’ names and addresses. When you
return the data to Word, you’ll be shown a warning that there are no
merge fields in your document yet. That’s okay—you’ll take care of that
in a minute. Just press Edit Main Document and you’ll be returned to
your blank document.

SUNDAY EVENING  SQL and the Application Developer 349

Figure 7.15

This dialog box will
step you through

creating a mail
merge document.



You’ll notice that the Mail Merge toolbar is now available. On this tool-
bar press the Insert Merge Field button, and a list of your columns will
drop down. Select them one by one, placing them in the document at
appropriate spots. You can intersperse these fields with your own text.
Figure 7.16 shows your document after you’ve completed adding the
fields and typing the text.

To see how real data will look in the form letter, press the View Merged
Data button. You’ll see the first name and address appear instead of the
placeholders. You can now move back and forth through the data with
the navigation buttons on the toolbar. There are many other mail merge
features included in Word that we’ll let you explore on your own.

350 Learn SQL In a Weekend

Figure 7.16

The merge fields in
this document are

noted by the
double brackets.



Building Database Applications with Visual
Basic and Visual Basic .NET

Users who do not want to work with SQL, even on a point-and-click
level, often turn to application developers to help them out. Most users
today prefer the ease of use that comes with graphical user interface
(GUI) applications. One of the most popular GUI application develop-
ment tools is Visual Basic. In addition to creating these applications,
Visual Basic has strong capabilities for accessing relational databases. In
this section, we’ll split up the discussion between Visual Basic 6.0 and its
newest release, Visual Basic .NET.

Using SQL with Visual Basic 6.0
Visual Basic 6.0 (VB6) has been a longtime mainstay in many develop-
ment shops. There are still a considerable number of programs in VB6
and will be until they are either converted to the newer version or retired.
Throughout the history of Visual Basic, there have been a few ways of
accessing data, most notably Remote Data Objects (RDO) and Data
Access Objects (DAO). When VB6 came along the preferred method
became ActiveX Data Objects (ADO). When writing VB6 code you’ll
mostly deal with ADO, which we’ll demonstrate later. In this first sec-
tion, however, you’ll see how to use ADO controls that let you build a
database application with very little programming.

Data Bound Controls in VB6
In VB6 many of the controls that are available to you can be synchro-
n i zed with a result set from a database. When you do this they become
bound controls. Examples of some of these controls include text boxe s ,
d ro p - d own lists, check boxes, radio (or option) buttons, and grids. In
this first demonstration, we’ll show you how to get your relational data
into a grid contro l .

SUNDAY EVENING  SQL and the Application Developer 351



Using the VB6 Grid Control
A grid control is very much like a spreadsheet. When it has data, you’ll
see columns and rows with a separate cell for each value. You can even use
the grid control to update the database. To get started with this example,
open VB6 and start a new Standard EXE project. When you do this you’ll
get a blank form (or window) to work with. Before you do anything else,
you’ll need to add a couple of components to this project. Select the Pro-
ject menu, and then Components. As shown in Figure 7.17, in the Com-
ponents dialog box, check both Microsoft ADO Data Control 6.0 and
Microsoft DataGrid Control 6.0, and then press OK.

The toolbox with various controls should be available on the left side of
the VB6 window. If it is not, select the View menu, and then Toolbox. In
the toolbox, double-click the ADO Data Control button to add it to the
form. The purpose of this control is to establish a connection to your
database, run queries, and retrieve result sets. Right-click the control on
the form and select ADODC Properties. This property page is where you
will provide information about your database and how to get connected

352 Learn SQL In a Weekend

Figure 7.17

The ADO Data
Control and

DataGrid Control
are not included by

default in a
Standard EXE

project.



to it. Choose Use Connection String and press Build. This will open a
dialog box that will guide you through the process of creating a connec-
tion string. Select your DBMS from the list of providers and press Next.
Now enter the server name, username, and password and select your
database. For this example, be sure to check Allow Saving Password. The
completed dialog box is shown in Figure 7.18.

Press Test Connection to make sure you can successfully log in. When
you press OK in the dialog box, you’ll notice that back on the property
page a long string has been entered for you. The string will look some-
thing like this:

Provider=SQLOLEDB.1; Persist Security Info=True;
User ID=GusT;Password=oilman;Initial Catalog=SlickShop;
Data Source=Server001

You could type this string in yourself instead of using the Data Link Prop-
erties dialog box. If you do, just make sure that you have it formatted cor-
rectly or you won’t get connected to your database. Before you close this
dialog box, set up a query that the data control will use. Click the Record-

SUNDAY EVENING  SQL and the Application Developer 353

Figure 7.18

The Data Link
Properties dialog
box assists you in

building a
connection string.



Source tab, and then 1 − adCmdText from the drop-down list. This indi-
cates that you want to write your own query. In the Command Text box
you can type any SQL SELECT command. For this example, use the fol-
lowing command:

SELECT *
FROM JobTicketDetail

WHERE DateComplete > '2001-1-1';

Now double-click the DataGrid button in the toolbox to add a grid to
the form. Resize the grid to fill up the form. Highlight the grid in the
form and find its D a t a S o u r c e property in the property pane. In the drop-
down next to the DataSource property, find and select the name of your
ADO Data Control, which by default is A d o d c 1. By doing this, you have
just bound the grid to the data control.

That’s all you need to do! Click the Start button on the toolbar or press
F5 to run the application. When the form opens, the data control will
automatically connect to your database. Because the grid is bound to the
data control, it displays the result set. Your sample application is shown
in Figure 7.19.

354 Learn SQL In a Weekend

Figure 7.19

A data grid control
that displays data

from the
J o b T i c k e t D e t a i l

table.



Notice that the data control has navigation arrows on it. You can press
these to move through the next, previous, first, and last records. If you
don’t like it or don’t have a use for it, you can set its Visible property to
F a l s e. That way the control will still be there and do its job, but you’ll
only see the grid. You can move around the cells in the grid and change
the data. The changes that you make will be saved immediately to the
database. If you don’t want people changing the data, you can set the
grid’s AllowUpdate property to F a l s e.

As with all controls in VB6, you can use code to change a grid’s behav-
ior at run-time. As a quick example of this, we’ll show you how to mod-
ify this form so that you can dynamically change the SQL SELECT and
reload the grid. If you have n’t done so alre a d y, close your form and
return to VB6. Now add two more controls to the form, a text box and
a command button. Place both of them below the grid. Set the M u l t i L i n e
p ro p e rty of the text box to True and set the Caption of the command
button to Run SQL.

Double-click the command button to open the code window. You’ll see
that VB6 has created an empty subroutine for the Click event. Enter the
following two lines in the Click event:

Private Sub Command1_Click()
Adodc1.RecordSource = Text1.Text
A d o d c 1 . R e f r e s h

End Sub

In this code Adodc1 is the default name of the ADO data control.To find out the name
of your data control, click on it and look at its Name property.

This code will take whatever you type into the text box and assign it as
the new RecordSource for the data control. The Refresh method is then
called to actually run the query and return the results to the bound grid.
The modified form is shown in Figure 7.20.

SUNDAY EVENING  SQL and the Application Developer 355



Using Other VB6 Controls
As mentioned, many of the other controls can be bound to a data source
as well. Binding text boxes, check boxes, and option buttons will let you
further customize your applications. The idea is very much the same as
binding a grid control. The major difference is that these other controls
will each be bound to their own column.

We’ll step you through an example like the one you did with the grid,
only this time yo u’ll use separate controls. St a rting with the form fro m
the last example, highlight and delete the grid control. You should be left
with the data control, text box, and command button. Re m e m b e r, the
data control is already configured to connect to your database and has a
SELECT command assigned to its RecordSource p ro p e rt y. If the data
c o n t rol is not visible, set it back to True n ow. Add three labels and thre e
text boxes to the form. Set the captions of the labels to say Job Ticket ID,
Line Item #, and Date Complete. Si ze each control and arrange them as
s h own in Fi g u re 7.21. Now set the Data Source p ro p e rty of all three text
b oxes to the name of your data control (which is Adodc1 unless yo u

356 Learn SQL In a Weekend

Figure 7.20

This form only
needs two lines of

code in order to
allow users to enter

their own queries.



renamed it). Fi n a l l y, yo u’ll need to assign a column to each text box. Se t
the DataField p ro p e rty of the first text box to J o b T i c k e t I D, the second to
L i n e I t e m N u m b e r, and the third to D a t e C o m p l e t e. Now press the St a rt
button on the VB6 toolbar and your form should look something like
Fi g u re 7.21.

Notice that with this method, you can only see one row of data at a time.
You can use the navigation buttons on the data control to scroll forward
and backward through the rows. Most developers, however, don’t like the
looks of the data control. You can get the same results by making your
own navigation buttons. Set the Visible property of the data control back
to F a l s e, and add two new command buttons. Set the caption of one to
Next and the other to P r e v i o u s. Now just write one line of code for the
Click event of each.

SUNDAY EVENING  SQL and the Application Developer 357

Figure 7.21

This form uses
individual controls
that are bound to
the data control.



Private Sub cmdNext_Click()
A d o d c 1 . R e c o r d s e t . M o v e N e x t

End Sub

Private Sub cmdPrev_Click()
A d o d c 1 . R e c o r d s e t . M o v e P r e v i o u s

End Sub

There’s one more thing to notice about this sample. If you try to type a
SELECT command in the text box and press the Run SQL button, you’ll
find that it doesn’t work. The reason is that each text box is bound to a
specific column. Unless the SELECT command you use has the same
columns in the result set, it will not be able to bind it back to the text
boxes. Of course, VB6 is a strong enough language that you could write
code to determine the columns returned from the new query and change
the DataField property for each text box.

Using SQL in VB6 Code
As you develop applications with VB6, you might find that you need
more capabilities than bound controls can give you. By writing code,
you’ll have an almost unlimited capacity to deal with your relational data-
base. In code, you can still use ADO objects, but you don’t have to use
the controls as you did before.

Begin a new Standard EXE project just as you did in the last example. To
make sure the ADO objects are available, select References from the Pro-
ject menu. In the References dialog box, check Microsoft ActiveX Data
Objects 2.x Library. Because there have been many versions of this object
library, you might see several to choose from. For this example, choose
the latest version.

Now place two text boxes on the form and two command buttons. Name
the text boxes t x t F i r s t a n d t x t L a s t. Name the command buttons
cmdRetrieve and c m d N e x t. Also set their captions to R e t r i e v e and N e x t,
respectively. This little application will display the first and last names of
customers one at a time and allow you to scroll through them. 

358 Learn SQL In a Weekend



Following is the code that will make it all work:

Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset

Private Sub cmdRetrieve_Click()
Set conn = New ADODB.Connection
conn.ConnectionString = "Provider=SQLOLEDB.1; " & _

"Persist Security Info=True;User ID=GusT; " & _
"Password=oilman;Initial Catalog=SlickShop;Data Source=Server001"

c o n n . O p e n
Set rs = conn.Execute("SELECT CustomerID, FirstName, LastName " & _

"  FROM Customer”)
txtFirst.Text = rs.Fields("FirstName")
txtLast.Text = rs.Fields("LastName")

End Sub

Private Sub cmdNext_Click()
r s . M o v e N e x t
txtFirst.Text = rs.Fields("FirstName")
txtLast.Text = rs.Fields("LastName")

End Sub

The first line declares a variable called conn that is an ADO connection
object. The next line declares rs to be an ADO re c o rdset object. In the
code for the Click e vent of the cmdRetrieve button, the first thing that’s
done is to create the connection object and assign it to c o n n. Next the
connection object’s ConnectionString p ro p e rty is set. Yo u’ll re c o g n i ze
the string that it’s being set to from the grid control sample earlier. T h i s
ConnectionString has the same syntax. Now the Open method is called
to actually connect to the database.

Now it’s time to send a query. For this, use the Execute method of the
connection object. As the argument to the method, send any SQL
SELECT command. The result set that’s returned from the E x e c u t e
method will come back in the form of an ADO recordset object. So the
rs variable is set to capture and store this recordset. At this point, the
recordset object, r s, contains the entire set of rows and columns returned
from the query. It is pointing to the first row of data. The last thing the
Click event of cmdRetrieve does is to set the two text boxes to show the

SUNDAY EVENING  SQL and the Application Developer 359



names. It uses the Fields property of the recordset object to set the text
value of each box. Now when this event is done, it will show the name of
the first customer. The sample application is shown in Figure 7.22.

The Click e vent of the cmdNext command button first needs to move
the re c o rdset object’s pointer to the next row. It does this with the
MoveNext method. All it has to do then is reset the values of the two text
b oxes the same way the code for the cmdRetrieve button did. Now as
you click Next, the text boxes will change to display the name that
matches the re c o rd s e t’s current row. If you press it enough times, yo u’l l
e ventually get an error message stating, "Either BOF or EOF is True."
BOF and EOF mean “Beginning of Fi l e” and “End of File,” re s p e c t i ve-
l y. In your case, yo u’ve reached the end of file (the end of the result set).
Yo u’ll want to add some error checking in your program to pre ve n t
users from getting this message. The C l i c k e vent for c m d N e x t is show n
h e re with this improve m e n t .

360 Learn SQL In a Weekend

Figure 7.22

This form displays
the results of a

query written
entirely in code.



Private Sub cmdNext_Click()
r s . M o v e N e x t
If rs.EOF Then

txtFirst.Text = ""
txtLast.Text = ""
cmdNext.Enabled = False

E l s e
txtFirst.Text = rs.Fields("FirstName")
txtLast.Text = rs.Fields("LastName")

End If
End Sub

After the re c o rdset moves to its next row, the code looks at the E O F
p ro p e rt y. If it is True this indicates that it just moved past its last row.
In this case the code blanks out the two text boxes and disables the Ne x t
button so that it can’t be pressed again. If the re c o rdset is not at EOF,
it is pointing at a good row, so the first and last names can be displaye d .

At this point, the form looks and acts a lot like the one you created with
bound text boxes. The difference is that although you have more control
over the way these text boxes behave, they do not yet have the capability
to update the database. Because this form accessed its data with code, it
will have to update it the same way. You’ll do this by modifying the C l i c k
event of cmdNext again to perform a SQL UPDATE command before it
moves to the next row. You’ll have to construct your own UPDATE—
that’s why you included the primary key column CustomerID in the query.

Private Sub cmdNext_Click()
Dim cmd As ADODB.Command

Set cmd = New ADODB.Command
cmd.ActiveConnection = conn
cmd.CommandType = adCmdText
cmd.CommandText = "UPDATE Customer " & _

"SET FirstName = '" & txtFirst.Text & "', " & _
"    LastName = '" & txtLast.Text & "' " & _
"WHERE CustomerID = " & rs.Fields("CustomerID")

c m d . E x e c u t e
Set cmd = Nothing

SUNDAY EVENING  SQL and the Application Developer 361



r s . M o v e N e x t
If rs.EOF Then

txtFirst.Text = ""
txtLast.Text = ""
cmdNext.Enabled = False

E l s e
txtFirst.Text = rs.Fields("FirstName")
txtLast.Text = rs.Fields("LastName")

End If
End Sub

At the beginning of the script yo u’ve declared a new variable cmd to be
an ADO command object. The command object is useful for SQL that
does not return result sets like the UPDATE command. First it creates a
n ew instance of the command object, and then it sets three of its pro p-
e rties. The connection object that was established earlier is set to the
ActiveConnection p ro p e rt y. The CommandType is set to adCmdText to tell it
to expect a text command, as opposed to a table name or stored pro c e-
d u re name. Fi n a l l y, the CommandText p ro p e rty gets set to a string that con-
tains the UPDATE command. Notice how this string is built using the
values from the two text boxes. These values are the new data to be
s a ved. Also notice that even though the CustomerID column is never dis-
p l a yed on the screen, it is still available in the re c o rdset object. The code
uses this value in the WHERE clause. Now the command can be ru n
with the Execute method. The last new thing to happen is that the com-
mand object gets set to N o t h i n g. This will destroy the object and free the
m e m o ry that it was using.

Destroying objects like this is an important step to ensure that your application does not
consume memory without releasing it.To keep the example simple,we did not show the
code that destroyed the connection and recordset objects.As a rule of thumb, be sure to
destroy everything that you create.

362 Learn SQL In a Weekend



This is where you’ll leave this application. Although it functions and does
its job, there is so much more that it could do. It could collect and dis-
play the full set of data, validate the information as it’s being typed in,
print out reports, and so on. Another important part of writing code for
database access is error checking. Although your simple application will
work most of the time, it probably won’t take you long to break it. For
example, try clicking Next before you click Retrieve. Also try entering a
first name longer than 20 characters. Your database application needs to
anticipate these kinds of errors and gracefully handle them. You’ll need to
write code that displays helpful messages to the users instead of just let-
ting it crash and burn.

Using SQL in Visual Basic .NET
Visual Basic .NET (VB .NET) represents one of the product’s largest
leaps forward in its history. For the purposes of this book, one of the
changes that you’ll be looking at is the use of the next version of ADO.
You should not be surprised to learn that this new version is called
ADO.NET. In this section, you’ll see that although the names of the
objects have changed between ADO and ADO.NET, most of them func-
tion the same way.

As far as VB .NET itself is concerned, you’ll see that there are similar ways
to access your SQL database. We’ll show you an example of binding a
data grid control to a data source, similar to the VB6 sample you worked
with in the last section.

To start your sample, open Visual Studio .NET and choose to begin a
new Visual Basic project. Select Windows Application as the project tem-
plate. This will put you into the VB .NET development environment and
start you with a new blank form. The first thing you’ll need to add to the
form is a data adapter. The data adapter will contain the SQL command
that you’ll use later to populate a data set. Open the Toolbox menu by
clicking or hovering your mouse pointer over the toolbox icon. On the
menu choose the Data tab, and then drag OleDbDataAdapter onto the

SUNDAY EVENING  SQL and the Application Developer 363



form. This will start the Data Adapter Configuration wizard. On the sec-
ond page of this wizard you’ll be asked to select a data connection to use.
Unless you’ve created one before, there will not be any to choose from.
Press New Connection to open the Data Link Properties dialog box. This
is the same dialog box that you saw back in Figure 7.18. Fill in the con-
nection information for your server and database, and then press OK.

Now back in the wizard you are asked if you’ll be using SQL statements
or stored procedures. Select SQL statements, and then press Next. Final-
ly, you’re asked for the SQL SELECT command that will be used to load
the data set. You can use the familiar graphical query builder that you’ve
seen a couple times before or just type the command yourself. For this
sample, enter the same query that you used in the VB6 sample.

SELECT *
FROM JobTicketDetail

WHERE DateComplete > '2001-1-1'

Press Next to see the final wizard page, and then press Finish. Yo u’ll see
that two objects have been placed in a pane below the form. The first is a
connection, which VB .NET has named O l e D b C o n n e c t i o n 1. It contains the
information necessary to connect to your database. The other is the data
adapter named O l e D b D a t a A d a p t e r 1, which contains your SQL SELECT.

Another thing you’ll need to add to the form is a DataSet object that will
hold the query’s results. A DataSet object is similar to the recordset you
used in VB6. One of the major differences though is where a recordset
can only hold data from one table, a DataSet can store rows from many
tables. You can think of a DataSet as holding more than one recordset. To
add the DataSet to the form, select the Data menu and then Generate
Dataset. In the dialog box that opens, all you really need to do is choose
to create a new DataSet and give it a name. Call it d s J o b T i c k e t. The rest
should be done for you. Just make sure that there’s a check next to the
JobTicketDetail table and the option is checked that says “Add This
Dataset to the Designer.” After you press OK, the pane below the form
will display the new DataSet object that you just created.

364 Learn SQL In a Weekend



Now you’re ready to place one or more controls on your form and bind
them to the DataSet. In this example, you’ll be using a grid control; how-
ever, just like the VB6 example before, you can also bind individual
columns to controls such as text boxes and drop-down lists. VB .NET
binding, in fact, is more powerful than VB6, where you could only bind
data to one property (usually the Text property). In VB .NET you can
bind a DataSet to any of a control’s properties. For example, if you have
a database column with color values or digital images, you can bind a
control’s foreground or background color properties or even set its
images. This way certain properties as well as data can be displayed with-
out having to explicitly set property values.

Now back in your project, click the Toolbox menu and then click the
Windows Forms tab. Drag the data grid onto your form, and then repo-
sition and size it. Go to the properties of the data grid and select
DsJobTicket1 as the Data Source property. Next select JobTicketDetail as
the DataMember property. Unlike VB6, if you run the application now, the
grid will not display your data. You’ll need one line of code to populate
the grid. Double-click on an empty spot on the form to get into the 
form’s Load event. Enter this one line of code that will fill the DataSet:

O l e D b D a t a A d a p t e r 1 . F i l l ( D s J o b T i c k e t 1 )

Fi g u re 7.23 shows the VB .NET development environment with many
of the features we’ve discussed. In it you can see the form with the data
grid placed on it. Be l ow that is a separate pane with the data adapter,
connection, and data set objects. At the bottom, you can see the code
for the form’s Load e vent. Then on the right side, in the pro p e rty pane
yo u’ll see the data grid’s DataMember and Data Source p ro p e rties that have
been set.

Now you can click the Start button in the toolbar to run the application.
After it compiles, the form will open and display the table’s data. You can
move freely around the grid and change data; however, in order to have
it update the database, there is one more line of code you’ll have to write.

SUNDAY EVENING  SQL and the Application Developer 365



Close the form to return to VB .NET. Add a command button to the
form and set its name to S a v e. Now double-click it to get into its C l i c k
event and enter the following line:

O l e D b D a t a A d a p t e r 1 . U p d a t e ( D s J o b T i c k e t 1 )

Now you can run the application, change some data, and use the Save
button to write the changes to the database.

Take a Break!
Well, there’s not long to go now! We hope that you’ve already seen some
great ways to use SQL in everyday applications and that you’re coming
up with some ideas of your own. We thought we’d take a minute to tell
you about a few ways that we’ve used SQL databases in the past.

One of the largest database applications that we’ve worked on was for a
large automobile auction company. The application collects real-time
data as the auction is taking place. It then serves as a cash register, col-

366 Learn SQL In a Weekend

Figure 7.23

This is the Visual
Basic .NET

development
environment after

you have your data
grid application

ready to go.



lecting payments and printing checks. We even wrote an application that
runs on a touch-screen computer that can query the database and provide
lookups for customers.

We’ve developed a Web site that takes orders for scouting troops’ fund-
raisers. Another of our projects accesses a relational database to provide
dynamic content for more than 100 radio stations’ Web sites. One of our
GUI applications maintains environmental regulation data for the state
government. Another prints product labels for a manufacturing compa-
ny in different languages. We’ve also created a variety of programs to
move data from one DBMS to another.

Nearly every project that we’ve been a part of in our careers has been
based on a relational database. We’ve had to use several combinations of
DBMSs and development languages. The nice thing about it was that
once we had mastered the fundamentals of SQL, we were able to apply
that knowledge from one database to the next.

Okay, hold on for the final stretch because you’re going to start off with
a little more complicated language, C++.

Getting Visual C++ and Visual C# .NET 
to Use SQL

C++ (pronounced “C Plus Plus”) and C# (pronounced “C Sharp”) are
considered lower-level languages than Visual Basic, PowerBuilder, and
Access. They give you greater control, more flexibility, and more access to
the operating system, and they perform better than the other languages.
This comes at a price though. C++ and C# are more difficult to learn and
allow you to make more serious mistakes. Usually the result of such mis-
takes is crashing the operating system.

T h e re are many C++ compilers available, and some even have an integrat-
ed development environment (IDE). In this section, yo u’ll be taking a
look at Mi c ro s o f t’s Visual C++ and Visual C# .NET. These IDEs assist yo u

SUNDAY EVENING  SQL and the Application Developer 367



by letting you point and click to create forms and controls much the same
way that Visual Basic does. As you do, the IDE will generate C++ or C#
code behind the scenes. Yo u’ll be able to go in later and add to this code.

Retrieving SQL Data with Visual C++
Here, we’ll step you through a small sample application that will retrieve
rows from your database and display them in a list box control. To begin
this exercise, start Visual C++ and choose New from the File menu. Select
MFC AppWizard (exe) as the project type and enter SlickShopDemo as the
project name. After you press OK, you’ll see the MFC AppWizard. Select
Dialog Based as the application type and press Next. Uncheck About Box
and ActiveX Controls because you don’t need support for these features.
Now just press Next until you get to the end of the wizard and then press
Finish. You’ll be shown a summary of what the wizard is about to do.
Press OK and the wizard will create a form and write some code for you.
The new form has two command buttons, OK and Cancel, as well as a
static text control that instructs you to place controls on the form. You
will do that in a few minutes.

Your new form is on the right side, the workspace pane is on the left, and
the toolbox containing the controls is floating near the form. Switch to
the FileView tab in the workspace pane. This tab will show all of the files
that are included in your project. If you click around a little you’ll dis-
cover that Visual C++ has already created about 10 files. Expand the
Header Files folder and double-click on S t d A f x . h. This file defines other
files that will be compiled into your application. Add the following two
lines to the very end of this file:

#include <comdef.h>
#import "c:\program files\common files\system\ado\msado15.dll"
➥no_namespace rename ("EOF", "adoEOF")

368 Learn SQL In a Weekend



◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

The second line is pretty long, but you must put it all on one line. If you don’t,your pro-
gram will not compile properly.The ➥ character you see on certain code lines indicates
that these lines, although represented in the book on several lines due to page size,
should in reality be one long line.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ 

Pay special attention to the capitalization of the commands in this section. C++ is case
sensitive and will not compile if you use the wrong case.
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

These lines make sure your application has access to the ADO library.
Now close and save this file. Next go to the ClassView tab in the work-
space pane and expand the application class, C S l i c k S h o p D e m o A p p. Double-
click the InitInstance method so that you can modify it. Notice how this
method already has several lines of code. You are going to add two func-
tion calls to the beginning to initialize ADO. Add the commands as
shown here immediately after the curly bracket.

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
// CSlickShopDemoApp initialization
BOOL CSlickShopDemoApp::InitInstance()
{

A f x O l e I n i t ( ) ;
A f x E n a b l e C o n t r o l C o n t a i n e r ( ) ;
// Standard initialization

(several more lines appear here...)
}

Close and save this file. Now you’ll place a list box control on the form
that will display the query results. Do this by dragging the List Box but-
ton from the floating toolbox onto the form. Resize the list box to fill the
empty space in the form. You can delete the static text control that Visu-
al C++ placed there if you want. Right-click on the list box and select
Properties to open its property dialog box. Notice that its ID (or name)
is I D C _ L I S T 1. Don’t do anything here—just close the dialog box.

SUNDAY EVENING  SQL and the Application Developer 369



What you’re going to do now is create a class variable that references your
list box. Right-click anywhere in the form and choose ClassWizard. Go
to the Member Variables tab and select IDC_LIST1 from the list of Con-
trol IDs. This indicates which control you will be associating the variable
with. Now press Add Variable and you’ll see the dialog box displayed in
Figure 7.24.

Make the name of the new variable m _ l b P a r t, choose Control for the
c a t e g o ry, and select CListBox for the variable type. Press OK and yo u’l l
see this information added to the list next to I D C _ L I S T 1. Press OK again
to exit the C l a s s W i z a r d. In case yo u’re wondering, what the wizard 
has just done is add a few lines of code to SlickShopDemoDlg.cpp a n d
S l i c k S h o p D e m o D l g . h.

All you have left to do now is write the code that will run a query and
populate the list box. You’ll have this action take place when the OK but-
ton on your form is pressed. Double-click the OK button and a small dia-
log box will open and ask you what you want to name the function for
its Click event. It offers you the default name O n O K, which is fine. Press

370 Learn SQL In a Weekend

Figure 7.24

This dialog box is
used to associate a
new variable with a
control that is on a

form.



OK to accept it and you will be taken into the code for that function. In
this function there is a comment and one line of code already there. Place
two slashes in front of that line of code to comment it out. That is a func-
tion call that will close the form when OK is pressed, which you don’t
want to happen. Instead, you want it to run the query and fill the list box,
so enter the code as follows:

void CSlickShopDemoDlg::OnOK()
{

// CDialog::OnOK();

_RecordsetPtr  pRecordSet;
_variant_t  vRecordSetField;
Cstring  sRecordSetField;

_bstr_t  bConn("Provider=SQLOLEDB.1; Persist
➥Security Info=True;User ID=GusT;Password=oilman;
➥Initial Catalog=SlickShop;Data Source=Server001");

_variant_t  vQuery("SELECT * FROM Part;");

p R e c o r d S e t . C r e a t e I n s t a n c e ( _ _ u u i d o f ( R e c o r d s e t ) ) ;
pRecordSet->Open(vQuery, bConn, adOpenDynamic,

➥adLockOptimistic, adCmdText);

while (!pRecordSet->GetadoEOF())
{

vRecordSetField = pRecordSet->GetCollect(L"Description");
sRecordSetField = vRecordSetField.bstrVal;

m _ l b P a r t . A d d S t r i n g ( s R e c o r d S e t F i e l d ) ;

p R e c o r d S e t - > M o v e N e x t ( ) ;
}

}

Some of this code will remind you of the Visual Basic example that you
worked on earlier. After the variables are declared, a connection string is
assigned to bConn and a query string is assigned to v Q u e r y. An instance of
a recordset object is created, and then its Open method connects to the
database, runs the query, and stores its results. After that a loop is run that

SUNDAY EVENING  SQL and the Application Developer 371



moves through each row in the result set. In the loop the Description col-
umn is copied to a variable and added to the list box. By default, the list
box will automatically sort the strings as they are added.

Now you’re ready to try it out. Before you do, press the Save All button
on the toolbar or select Save All from the File menu. To compile your
application into an executable file, select Build SlickShopDemo.exe from
the Build menu or just press F7. The output window will open at the bot-
tom of the screen and display some compile messages. Any errors that are
found will be displayed here. If all goes well, the output window will
report the following:

SlickShopDemo.exe − 0 error(s), 0 warning(s)

If there are any errors or warnings, scroll up through the output window
to see the details. You’ll be told which file and line number has a prob-
lem. One of the most common errors is a misspelled variable or function
name. Remember that case matters in C++. After you get a good compile,
go back to the Build menu and select Execute SlickShopDemo.exe. Your
form will open, and when you press OK, your list box will display the
descriptions from the Part table. Your completed application will look
something like Figure 7.25.

Retrieving SQL Data with Visual C# .NET
One of the nice innovations of Visual Studio .NET is that you can work
within the same IDE no matter what language you choose. This means
that everything you learn about the visual designers can be carried over
from one language to the next. The only thing you’ll find different is the
syntax of the language itself.

To show you what we mean, turn back to the section called “Using SQL
in Visual Basic .NET.” Follow those instructions step by step to create a
Visual C# application that retrieves data into a grid. There are only two
minor differences that you need to note. First, when you choose to create
a new project, select Visual C# Projects instead of Visual Basic Projects.

372 Learn SQL In a Weekend



The second is to pay careful attention to the case used in your code
because C#, like C++, is case sensitive. The command you used in Visu-
al Basic .NET remains the same but a couple of the letters have to change
from uppercase to lowercase. The command that goes in the F o r m _ L o a d
event must look like this:

o l e D b D a t a A d a p t e r 1 . F i l l ( d s J o b T i c k e t 1 ) ;

Note also that C# commands end with a semicolon. Other than that,
everything you did in the Visual Basic .NET sample applies to Visual C#
.NET the very same way.

Now we’re going to have you try a C# program that involves a little more
code. This one will allow you to search for customers by their state or
province, display the rows found, and scroll through them.

To begin the sample, you should close your project if you currently have
one open. Do this by selecting Close Solution from the File menu. Now
s t a rt a new project in Visual Studio .NET. In the New Project dialog
b ox select Visual C# Projects and choose Wi n d ows Application as the

SUNDAY EVENING  SQL and the Application Developer 373

Figure 7.25

The completed
C++ demo
application.



template. When you press OK a new blank form will be created for yo u .
In the next few steps yo u’ll be creating the data adapter and data set
objects just like you did previously and back in the Visual Basic .NET
sample. To create the data adapter, click on the toolbox icon, and then
open the Data tab. Drag OleDbDataAdapter onto your form. This will
open the Data Adapter Configuration wizard. Click Next and you will
be asked to select a data connection. If you followed the Visual Ba s i c
.NET or the last C# sample, you will already have a data connection in
the dro p - d own list. If not, you can create one by pressing New Con-
nection. This will open the Data Link Pro p e rties dialog box shown pre-
viously in Fi g u re 7.18. Fill out this dialog box with the server name,
username, password, and database name.

Back in the Data Adapter Configuration wizard, press Next and you’ll be
asked to choose a query type. Select Use SQL Statements and press Next.
Now you get to type your SQL SELECT command. Notice that there is
a Query Builder button that you can use to graphically build the query if
you’d like to. Enter the following query:

SELECT FirstName, LastName, Address, City, PhoneNumber
FROM Customer

WHERE (StateOrProvince = ?);

The question mark represents an argument that you will feed to the query
at run-time. Now press Finish, and two new objects will be placed into
the pane below the form, oleDbDataAdapter1 and o l e D b C o n n e c t i o n 1. Next
you will create the data set object that will hold the rows returned from
the query. Right-click on the data adapter object, o l e D b D a t a A d a p t e r 1, and
select Generate Dataset. In the Generate Dataset dialog box you’ll be cre-
ating a new data set. Change its name from DataSet1 to d s C u s t o m e r. Be
sure to leave the check mark next to the Customer table and press OK. The
new data set will appear in the pane below the form and be given the
name d s C u s t o m e r 1.

Now yo u’re ready to add a few controls to the form. Yo u’re going to add
six text boxes and three buttons. To add a text box, click on the toolbox
icon, and then select the Wi n d ows Forms tab. Drag the Te x t B ox icon

374 Learn SQL In a Weekend



onto the form, and then re s i ze and position it. In the Pro p e rties pane,
set its name to txtState and erase the Text p ro p e rt y. Repeat this pro c e s s
for the next five text boxes. Name them t x t F i r s t N a m e, t x t L a s t N a m e,
t x t A d d r e s s, t x t C i t y, and t x t P h o n e. Now create the first button by drag-
ging the Button icon from the toolbox onto the form. Set its Text 
p ro p e rty to Get Customers, and name it b t n G e t C u s t. Name the other two
b u t t o n s btnNext and b t n P r e v i o u s. Set their Text p ro p e rties to Next a n d
P r e v i o u s, re s p e c t i ve l y.

Now for a little code that will use the state or province that you put in
the text box to run your query. The code will put the results of the query
into the data set d s C u s t o m e r1. Double-click the Get Customers button to
open the code editor. It will place your cursor in the button’s Click event.
Enter the code as follows:

private void btnGetCust_Click(object sender, System.EventArgs e)
{

o l e D b D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [ " S t a t e O r P r o v i n c e " ] .
➥Value = txtState.Text;
d s C u s t o m e r 1 . C l e a r ( ) ;
o l e D b D a t a A d a p t e r 1 . F i l l ( d s C u s t o m e r 1 ) ;

}

The first command takes the value from the txtState text box and assigns
it as the parameter of the SQL query. The next command clears out any
data that may be left in the data set. Finally, the F i l l method runs the
query and populates the data set.

You are now ready to bind the other five text boxes to the data set. St a rt
by clicking on t x t F i r s t N a m e and going to the pro p e rty pane. Find the
DataBindings p ro p e rty and expand it. Under it click on the dro p - d ow n
next to the T e x t p ro p e rt y. In that dro p - d own box, click to expand
d s C u s t o m e r 1, expand C u s t o m e r, and finally select F i r s t N a m e. This binds
the data set’s FirstName column to the text box. Repeat this process with
the other four text boxes, binding them to the appropriate columns.

You can try your application now by pressing F5 or clicking the Start but-
ton on the toolbar. Your form should look something like Figure 7.26.

SUNDAY EVENING  SQL and the Application Developer 375



Type a state or province abbreviation in the first text box and press Get
Customers. You’ll see the first matching customer’s data appear in the
other text boxes.

The last thing you’ll do with this sample is to get the Next and Previous
buttons working. They will allow you to scroll through all of the rows in
the data set. Close your application form to return to Visual C# .NET.
Double-click on the Next button to open the code editor to its C l i c k
event. Enter the following line of code in this event:

private void btnNext_Click(object sender, System.EventArgs e)
{

this.BindingContext[dsCustomer1, "customer"].Position +=1 ;
}

Likewise, put the next line of code in the C l i c k event for the Previous but-
ton:

private void btnPrevious_Click(object sender, System.EventArgs e)
{

this.BindingContext[dsCustomer1, "customer"].Position -=1 ;
}

376 Learn SQL In a Weekend

Figure 7.26

This C# application
runs a query with a

parameter.



Now when you run your application, if your query returns more than one
row, you’ll be able to use these buttons to scroll forward and backward
through the data set.

Making Data Driven Web Pages with ASP
and ASP.NET

Active Server Pages (ASP) is one of Microsoft’s most popular server-side
development languages. All of the ASP code that you write runs on the
server and returns a standard Hypertext Markup Language (HTML) page
back to the user’s Internet browser. This means that no special browser or
operating system is required to view ASP pages. The only requirement is
that the server be capable of processing ASP code. Microsoft’s Internet
Information Server (IIS) not surprisingly is one that can do this. Some
other Web servers can be given this capability with add-on software.

Because all of your ASP code runs on your server, you have the luxury of
full control over the environment. This includes connecting to your data-
base, which can be located on either the same server or a different one. In
this section, we will first talk about the ASP that has been widely used for
the last several years. After that, we will take a look at the newest version,
ASP.NET.

Web Page Data Access with ASP
When you program with ASP you have two choices for the language you
use, VBScript or JScript. VBScript is a subset of Visual Basic. It uses the
same syntax and commands, only there are fewer available. Most notably,
you do not have access to anything visual such as text boxes and com-
mand buttons. JScript is similar to JavaScript. It doesn’t matter too much
which one you choose. Although there are slight differences in their capa-
bilities, the choice is mostly a matter of preference. For this book, we’ll
use VBScript in our examples.

SUNDAY EVENING  SQL and the Application Developer 377



The examples in this section require that you have access to a Web server capable of run-
ning ASP, such as IIS.You’ll need to be able to save files in the serve r ’s Web directories.
This does not have to be a public serve r. In fact, if you’re running Windows NT, 2 0 0 0 , o r
XP Professional, your local computer can act as your own personal Web serve r.

ASP can use the same objects as Visual Basic. In the first example,
yo u’re going to use ADO and its re c o rdset object in the same way V B
would. In this example, yo u’re going to run a SELECT command on
the StateOrProvince table and display the results in an HTML table.
The way that ASP returns Web pages is to write out all the HTML,
essentially building the page piece by piece. Your ASP is going to re t u r n
to the user’s browser HTML that looks something like this:

< H T M L >
<HEAD><TITLE>SlickShop Demo</TITLE></HEAD>
<TABLE border=1>
<TR><TH>Abbr</TH><TH>State or Province</TH></TR>
< T R > < T D > A B < / T D > < T D > A l b e r t a < / T D > < / T R >
< T R > < T D > A K < / T D > < T D > A l a s k a < / T D > < / T R >
< T R > < T D > A L < / T D > < T D > A l a b a m a < / T D > < / T R >
< T R > < T D > A R < / T D > < T D > A r k a n s a s < / T D > < / T R >
< / T A B L E >
< / H T M L >

ASP files are a mixture of HTML and code. When you want to write
VBScript code, place it between the brackets <% and % >. Eve ry t h i n g
b e t ween these two brackets will run on the serve r. Eve rything outside
of the brackets will simply be returned to the brow s e r. So all you have
to do to return HTML to a browser is type it in your ASP file outside
the brackets. To have VBScript return HTML, yo u’ll use ASP’s
Response object. Feed its Write method the strings you want to send
back to the brow s e r. Use any simple file editor such as Notepad to
enter this ASP page:

<%@ language="VBScript" %>
< H T M L >
<HEAD><TITLE>SlickShop Demo</TITLE></HEAD>

378 Learn SQL In a Weekend



<TABLE border=1>
<TR><TH>Abbr</TH><TH>State or Province</TH></TR>
< %

Dim rs
Dim sSQL
Dim sConnectString
Const adOpenStatic = 3
Const adLockReadOnly = 1
Const adCmdText = &H0001

sConnectString = "Provider=SQLOLEDB;Data Source=Server001;" _
& "Initial Catalog=SlickShop;User Id=GusT;Password=oilman;" _
& "Connect Timeout=15;Network Library=dbmssocn;"

sSQL = "SELECT * FROM StateOrProvince ORDER BY StateOrProvince;"

Set rs = Server.CreateObject("ADODB.Recordset")
rs.Open sSQL, sConnectString, adOpenStatic, 

➥adLockReadOnly, adCmdText

If Not rs.EOF Then
r s . M o v e F i r s t
Do While Not rs.EOF

Response.Write "<TR><TD>"
Response.Write rs.Fields("StateOrProvince")
Response.Write "</TD><TD>"
Response.Write rs.Fields("StateOrProvinceName")
Response.Write "</TD></TR>" & vbCrL
r s . M o v e N e x t

L o o p
End If

r s . C l o s e
Set rs = Nothing

% >
< / T A B L E >
< / H T M L >

SUNDAY EVENING  SQL and the Application Developer 379



There are several similarities between this ASP page and the Visual Basic
examples that you saw earlier. It uses a nearly identical connection string
to provide the logon details. It also uses the ADO recordset object. In
Visual Basic you declared this object with D i m; however, in ASP you bring
it to life with S e r v e r . C r e a t e O b j e c t. The recordset’s Open method runs the
query and returns the result set. A loop then goes through each row and
writes the values out in HTML table format.

Save the file as GetStates.asp on your Web server. Now open your Web
browser and enter the server, path, and file name to request your ASP
page. Figure 7.27 shows the results in a browser.

In the next example, you’ll create a simple page that will add a new row
to the Part table. This is a lot like the last example. It uses the recordset
object again, only this time you’ll populate it with some data, and then
use its Update method to perform the INSERT.

380 Learn SQL In a Weekend

Figure 7.27

The HTML for this
page was built on

the server and
returned to the

browser.



Open a new file and enter the following ASP code:

<%@ language="VBScript" %>
< H T M L >
<HEAD><TITLE>SlickShop Insert Demo</TITLE></HEAD>
< %

Dim sConnectString
Dim rs
Dim iPartID
Const adOpenKeyset = 1
Const adLockPessimistic = 2

sConnectString = "Provider=SQLOLEDB;Data Source=server001;" _
& "Initial Catalog=SlickShop;User Id=GusT;Password=oilman;" _
& "Connect Timeout=15;Network Library=dbmssocn;"

Set rs = Server.CreateObject("ADODB.Recordset")

rs.Source = "Part"
rs.ActiveConnection = sConnectString
rs.CursorType       = adOpenKeyset
rs.LockType         = adLockPessimistic
r s . O p e n

r s . A d d N e w

rs.Fields("Description") = "Tiger skin seat covers"
rs.Fields("Cost") = 45.95

r s . U p d a t e

' Get the new autonumbered PartID
iPartID = rs.Fields("PartID").Value

Response.Write "<P>Part ID #" & iPartID & " was added</p>"

r s . C l o s e
Set rs = Nothing

% >
< / H T M L >

SUNDAY EVENING  SQL and the Application Developer 381



Save this file as AddPart.asp in one of the Web server’s directories. In this
file the connect string is the same as before. This time, however, after cre-
ating the recordset object, you set its Source property to P a r t. This tells
the re c o rdset that you don’t need it to re t r i e ve any data, but to be pre-
p a red to interact with the Part table. You open the re c o rdset and then
add a new blank row to it. You only need to provide values for the
Description and Cost columns; remember that the PartID is an auto-
n u m b e red column. The Update method takes care of generating and
sending a SQL INSERT to the serve r. The re c o rdset then automatically
gets itself updated with the new PartID value that the server assigned.
Your code stores this in a variable and writes it to the brow s e r.

You could make browser output more interesting than we’ve done. All
this page will display after it inserts the row is "Part ID #17 was added".
The other obvious enhancement to this ASP page would be to allow users
to enter their own values instead of hard-coding them. ASP is an excel-
lent language for building Web-based data entry forms. Many times an
ASP page will provide the data entry controls such as text boxes and drop-
down lists. This page will then call another ASP page like the one in the
last example to perform the SQL.

Building Data Access Pages with ASP.NET
As you might expect, the newest version of Active Server Pages, ASP.NET,
includes a lot of new features, scalability, performance, and strength. For
example, where ASP gave you the choice to program only in VBScript or
JScript, ASP.NET has dozens of choices. You can use languages such as
VB .NET, C#, JScript .NET, and even FORTRAN and Cobol! Another
one of its biggest advancements is its set of server controls. These are con-
trols that appear in the browser, such as text boxes, drop-down lists, and
calendars. ASP.NET server controls are much easier to work with, provide
more capabilities, and require less code than HTML controls in ASP.

382 Learn SQL In a Weekend



As with the first ASP.NET sample, yo u’re going to build a page that re t u r n s
an HTML table that contains all of the data from the S t a t e O r P r o v i n c e
table. This ASP.NET page is going to produce the same results that the
ASP sample in the last section did. This will give you the chance to com-
pare the differences.

Again, as with ASP, in order to run this sample,you’ll need to save it on a computer that
can act as a Web server.This server must have the Microsoft .NET Framework installed.
As before, the Web server can simply be your local computer.

The .NET Framework is available as a free download from Microsoft at
http://msdn.microsoft.com.

If you begin developing full-scale Web applications with ASP.NET, you’ll
want a nice development environment like Microsoft Visual Studio
.NET. However, for this sample you can simply use a plain text editor to
enter this code:

<%@ Page Language="VB"%>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

<script language="VB" runat="server">
Dim conn As SqlConnection

Sub Page_Load(Sender As Object, E As EventArgs)
conn = New SqlConnection("Data Source=server001;" _

& "Initial Catalog=SlickShop;User Id=GusT;Password=oilman;" _
& "Connect Timeout=15;Network Library=dbmssocn;")

S h o w D a t a G r i d
End Sub

Sub ShowDataGrid()
Dim comm As SqlCommand
Dim sSQL As String

sSQL = "SELECT * FROM StateOrProvince ORDER BY StateOrProvince;"
comm = New SqlCommand(sSQL, conn)
c o n n . O p e n ( )

SUNDAY EVENING  SQL and the Application Developer 383



StateGrid.DataSource = comm.ExecuteReader _
( S y s t e m . D a t a . C o m m a n d B e h a v i o r . C l o s e C o n n e c t i o n )

S t a t e G r i d . D a t a B i n d ( )
c o n n . C l o s e ( )

End Sub
< / s c r i p t >
< H T M L >
<HEAD><TITLE>ASP.NET Grid Sample</TITLE></HEAD>
<asp:DataGrid id="StateGrid" runat="server" />
< / H T M L >

This code sample and the next one use the objects that are specifically tuned for SQL
Server. These objects include S q l C o n n e c t i o n, S q l C o m m a n d, and S q l P a r a m e t e r. If
you’re using a different DBMS, you can use the equivalent objects O l e D b C o n n e c t i o n,
O l e D b C o m m a n d, and O l e D b P a r a m e t e r, used in previous examples.You will also need to
change the third code line to include the namespace S y s t e m . D a t a . O l e D b.

Save this file on the Web server as G e t S t a t e s _ N e t . a s p x. Notice that the file
extension for ASP files is .asp, whereas ASP.NET uses .aspx. Now for a
look at some of this file’s highlights. The first line specifies that the lan-
guage you’ll be using in this file is VB (actually VB .NET). Because VB
.NET is driven by events, so is this ASP.NET code. The first event you
code for is P a g e _ L o a d, which happens when the page is first called on. This
event uses a connect string to create a connection object, and then calls
the subroutine S h o w D a t a G r i d.

The ShowDataGrid routine sets up a SQL SELECT and uses it and the
connection object to create a command object. When the connection
object’s Open method is executed, the query is run on the database server.
Up until this point there have only been a few differences. The names of
the objects and the order they’re accessed are slightly different. But the
two commands that come next show off one of ASP.NET’s new data con-
trols. You’ll see that these two lines reference an object named S t a t e G r i d.
If you look down to the next to the last line in the file, you’ll see the def-
inition of this object. An asp tag on that line places a D a t a G r i d control on
the page and names it S t a t e G r i d.

384 Learn SQL In a Weekend



Back in the ShowDataGrid routine, the code is setting the DataSource prop-
erty of StateGrid to the command object. It then binds the result set to
the grid control. You will recall from earlier that this is very similar to the
bound grid you used in Visual Basic. Also notice that there is no need to
loop through the result set and build the HTML table the way you did
in ASP. Here, once you bind the result set to the data grid, ASP.NET will
take care of building the HTML. The DataGrid control has many prop-
erties and methods that you can access in your code to fine-tune its
appearance and behavior.

One more thing to notice is the way that the program code is separated
from the HTML. This is in contrast to ASP, where code and HTML are
often interwoven. Now use your browser to call G e t S t a t e s _ N e t . a s p x. You’ll
see that the results are nearly identical to Figure 7.27.

When you run an ASP.NET page through a browser for the first time, you’ll notice that
it is somewhat slower than an ASP page. Don’t let this discourage you.The first time it
r u n s, the server is compiling your script for you. Now every time this page is request-
ed in the future, its compiled version can be used. It will actually perform much better
than old ASP.

The next example will mimic the second ASP example where you wrote
a page that added a row to the Part table. Begin another new file and type
in this ASP.NET code:

<%@ Page Language="VB"%>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

<script language="VB" runat="server">
Dim conn As SqlConnection

Sub Page_Load(Sender As Object, E As EventArgs)
conn = New SqlConnection("Data Source=server001;" _

& "Initial Catalog=SlickShop;User Id=GusT;Password=oilman;" _
& "Connect Timeout=15;Network Library=dbmssocn;")

SUNDAY EVENING  SQL and the Application Developer 385



A d d P a r t
End Sub

Sub AddPart()
Dim comm As SqlCommand
Dim sSQL As String

sSQL = "INSERT INTO Part " _
& "(Description, Cost) " _
& "VALUES (@sDesc, @dCost)"

comm = New SqlCommand(sSQL, conn)

comm.Parameters.Add(New SqlParameter
➥("@sDesc", SqlDbType.VarChar, 80))
comm.Parameters.Add(New SqlParameter("@dCost", SqlDbType.Decimal))

comm.Parameters("@sDesc").Value = "Tire Chains"
comm.Parameters("@dCost").Value = 22.50

c o n n . O p e n ( )
c o m m . E x e c u t e N o n Q u e r y ( )
c o n n . C l o s e ( )

PartLabel.Text = "A new part has been added!"
End Sub

< / s c r i p t >

< H T M L >
<HEAD><TITLE>ASP.NET Insert Sample</TITLE></HEAD>
<asp:Label id="PartLabel" runat="server" />
< / H T M L >

Save this file with the name AddPart_Net.aspx on your Web server. Again
in this code sample, the Page_Load event creates a new connection object,
and then calls a subroutine to do the work. In the AddPart routine, you’ve
set up a string that will perform the insert. There are a couple of choices
here. You could have built your values right into the string and saved a
few lines of script. However, we’re having you use parameters instead. You
created two new parameter objects and added them to the command
object. Each parameter has its own specific data type, VARCHAR, and

386 Learn SQL In a Weekend



decimal. After that you assigned a value to each parameter. Parameters
can be helpful if you’re dealing with large or complicated SQL commands
or stored procedures. Sometimes it’s easier for you to code it this way and
understand it later rather than concatenating long strings.

Now at the bottom of the A d d P a r t routine, you use the connection
o b j e c t’s Open method to connect to the database. You then use the E x e-
cuteNonQuery method to run the INSERT command. As its name indi-
cates, this method is used because it is not returning any results. Now
you use the Close method to disconnect from the database. Fi n a l l y,
you set the text of an ASP.NET label object that appears in the HTML
at the bottom of the file.

Now you’re ready to switch over to your browser and enter the server,
path, and file name to see this page run. The page will just appear as a
simple message stating that a part has been added. When you check your
Part table, you’ll see that indeed a new row has been inserted.

Using SQL with PowerBuilder
PowerBuilder is a well-established application development language that
has been around for several years. It is a Sybase product that is a Visual
Basic competitor. After its introduction it quickly became a developer
favorite for creating GUI applications because of its ease of use and its
strong relational database support. Although its popularity has declined
recently, it is still alive within many businesses.

The PowerBuilder DataWindow
One of the reasons that PowerBuilder (PB) became such a widely used
language was due to the DataWindow. The PB DataWindow is an object
that can access databases for display and modification of data. It is simi-
lar to a Visual Basic grid control, but much more powerful. An entire
interface can be designed with a DataWindow, allowing for complete
data maintenance with very little code.

SUNDAY EVENING  SQL and the Application Developer 387



To begin your sample, start PowerBuilder and choose to create a new
application. Give the application a name and choose a directory in which
to store the PB Library file. Before you create anything, you’ll need to
establish a connection with your database. Press the DB Profile button on
the toolbar, and you’ll see the Database Profiles dialog box appear. In it
you should see your DBMS listed under the Installed Database Inter-
faces. If not, then you’ll have to install it from the PowerBuilder CD.
Now highlight your DBMS and press New. You can see from Figure 7.28
that the information it asks for is the same as each of the other products
has wanted: server name, login name, password, and database name.

Press OK to save the profile and close the Database Profile dialog box.
Now when you create new DataWindows, they will automatically use this
profile. To do this, press the New button on the toolbar and select the
DataWindow tab in the dialog box. You are presented with several styles
of DataWindows to choose from. Besides being a great data entry object,
the DataWindow is also an excellent report writer. As you can see in Fig-
ure 7.29, many of the styles, such as Crosstab, Label, Group, and Graph,
are oriented toward reporting.

388 Learn SQL In a Weekend

Figure 7.28

A profile like this
one is used by

PowerBuilder to
make database

connections.



For this example, choose Freeform, which will allow you to place
columns and labels anywhere on the form. You’re now given a dialog box
that asks which data source you’d like to use. Your choices include a SQL
SELECT, a stored procedure, and external data. Choose the SQL
SELECT option and you will be taken to a query building window. This
window looks a little bit like the Microsoft Query interface. Hold down
the Ctrl key and click both the C u s t o m e r table and V e h i c l e. When you
press Open, the two tables will be displayed with a line drawn between
them to display the relationship.

Click the columns that yo u’d like to include in the Da t a Wi n d ow.
Include columns that you need but don’t want to show to the users, such
as primary keys. For this example, click C u s t o m e r I D, F i r s t N a m e, L a s t N a m e,
S t a t e O r P r o v i n c e, V e h i c l e Y e a r, M a k e, and M o d e l. T h e re are many query
options in the pane in the lower half of the window. We’ll just have yo u
set a couple of them. On the So rt tab, drag L a s t N a m e, and then F i r s t N a m e
to the right side. The SQL command will use this for its ORDER BY
clause. Now on the W h e re tab, select Vehicle.VehicleYear f rom the 

SUNDAY EVENING  SQL and the Application Developer 389

Figure 7.29

There are several
types of

DataWindows to
choose from.



Column dro p - d own. Select >= as the operator, and enter 2000 as the
V a l u e. This, of course, will help build the WHERE clause. At any time,
as shown in Fi g u re 7.30, you can click the Syntax tab to view the SQL
that it has built so far.

When you’re finished building the query, press the Return button on the
toolbar. You’ll be given some options about the colors of the text labels
and data fields. Just accept the defaults and you will be taken to the
DataWindow editor, what is called a painter. The painter is divided into
several panes that can be sized or hidden as you need. The main one that
you’ll be working in is the design pane. This is where you can lay out the
data fields and labels as well as other objects like lines and boxes.

Although a Da t a Wi n d ow can display data from more than one table at
a time, it can only modify the data in one. Because you included two
tables in the query, the Da t a Wi n d ow made the assumption that this is a
read-only re p o rt. In doing so, it set the tab order of each field to 0 so
that the cursor cannot enter any fields. Because you want the fields fro m
the Customer table to be editable, you can turn the tab order back on.

390 Learn SQL In a Weekend

Figure 7.30

The DataWindow’s
query builder helps

you build a SQL
SELECT command.



Press the Tab Order button on the toolbar or select Tab Order from the
Format menu. Little red numbers will appear near each field. Click on
the number by the first name field and type the number 1. Next click
on the number next to the last name field and type a 2. Fi n a l l y, set the
state field to 3. Now toggle the Tab Order feature off. Highlight and
delete the CustomerID field and its related label. It will still be a part of
the Da t a Wi n d ow, but the users don’t need to see it. Now you can mod-
ify the text for the labels, fonts, and colors if you want.

As you’re working in the design pane, you’ll see the changes taking effect
in the preview pane if it’s open. If it isn’t, select Preview from the View
menu. This will show you what the DataWindow will look like with live
data in it. You can even scroll through the rows.

Now an important step yo u’ll need to take if this Da t a Wi n d ow is to be used
to modify data is to set the update pro p e rties. Select the Rows menu, and
then Update Pro p e rties. If your query had been from just one table, this dia-
log box would be completed for you. Howe ve r, because you have two tables,
e ve rything is turned off. Because you want this Da t a Wi n d ow to handle data
modifications, turn on the Allow Updates check box. Now choose the 
Customer table from the Tables To Update dro p - d own. Skip down to the
Unique Key Column(s) list box. This is where you need to tell the Da t a -
Wi n d ow which column or columns make up the primary key of the 
table you want it to update. In this case, yo u’ll click c u s t o m e r _ c u s t o m e r i d.
Re m e m b e r, even though this column is not displayed, the Da t a Wi n d ow still
re t r i e ves its data for later use. To the left of this list box yo u’ll find another
one, titled Updateable Columns. Click eve ry column that you want the
Da t a Wi n d ow to modify. In this case it will be customer_firstname, 

c u s t o m e r _ l a s t n a m e, and c u s t o m e r _ s t a t e o r p r o v i n c e. We won’t talk about the
rest of the dialog box. These are advanced options that pertain to multiuser
c o n c u r re n c y. When your dialog box looks like Fi g u re 7.31, press OK.

SUNDAY EVENING  SQL and the Application Developer 391



The selections that you make in this dialog box tell the DataWindow how
to build the SQL commands that it will send to your database. For exam-
ple, in this dialog box you indicated that the primary key is C u s t o m e r I D.
The DataWindow will now build SQL UPDATE and DELETE com-
mands with this column in the WHERE clause.

If you investigate the preview pane, you’ll see that you can now modify
data in the three customer fields. You can even scroll up and down in
order to see and change other rows. However, unlike Visual Basic bound
controls, your changes will not affect the database until you say so. The
DataWindow is keeping track of every modification you make, as well as
any new rows added or old rows deleted. If you want to make your
changes permanent, press the Save Changes button on the toolbar, or
select Update from the Rows menu. This will cause the DataWindow to
build an UPDATE for each row changed, an INSERT for each new row,
and a DELETE for every row deleted. These commands will be sent one
by one to the database. The DataWindow does all of the work for you!

392 Learn SQL In a Weekend

Figure 7.31

The Specify Update
Properties dialog

box must be
completed before a

DataWindow can
modify data.



Although you can get your DataWindow looking pretty nice, you don’t
want your users to have to get into PowerBuilder to use it. Instead, you’ll
be creating a window to place the DataWindow into. First you’ll need to
save and name it. Press the Save button or select Save from the File menu
and give it a name.

Now press the New button and you’ll be taken back to the dialog box in
Figure 7.29. Change to the Object tab and select Window. This will open
a new blank window in PowerBuilder’s window painter. Like the
DataWindow painter, there are several panes to work with. The layout
pane has your new window in it. On it you’re going to place your
DataWindow and two command buttons. Select the Insert menu, then
Control, and then DataWindow. Now click somewhere on your blank
window. This will create a small white box. With the box highlighted, go
to the Properties pane and either type your DataWindow name into the
DataObject property or search for it by pressing the ellipse button. As
soon as you do, you’ll see that the white box has changed to display your
DataWindow. Resize the box so that you can see all of the DataWindow’s
contents. Next add a command button by selecting the Insert menu, then
C o n t rol, and then CommandButton. Click somew h e re below the
DataWindow. Add a second one the same way. Set the Text property of
the first one to Get Data and the second to Save Data.

Powe r Bu i l d e r, like Visual Basic, lets you write code for several eve n t s
of each control. To access the script-writing pane, double-click on yo u r
Da t a Wi n d ow control. The script pane will open, and you notice fro m
one of the dro p - d own lists that yo u’ve been put into the i t e m c h a n g e d
e vent. The event can be changed from here by choosing a new one
f rom the dro p - d own. Change it to the constructor event now. Wi t h o u t
going into too much detail, we’re now going to show you the code
i n vo l ved with getting this window to re t r i e ve data, allow modifica-
tions, and save data.

SUNDAY EVENING  SQL and the Application Developer 393



The following code goes in the constructor event of your DataWindow
control. It makes a connection to the database and tells that DataWin-
dow control to make use of that connection.

SQLCA.DBMS = "MSS Microsoft SQL Server"
SQLCA.Database = "SlickShop"
SQLCA.ServerName = "Server001"
SQLCA.LogId = "GusT"
SQLCA.LogPass = "oilman"
SQLCA.AutoCommit = False
SQLCA.DBParm = ""
C O N N E C T ;
t h i s . S e t T r a n s O b j e c t ( S Q L C A )

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Notice that a specific DBMS is referenced in the code.Yours will need to go in place of
this if it’s different. A quick way to build these first seven lines of code is to go back to
the Database Profiles dialog box and edit the profile that you set up earlier. In the dia-
log box you saw back in Figure 7.28, select the Syntax tab. Here you will have the code
written for you.You can simply copy it and paste in into the constructor event of your
DataWindow control.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Put this next line of code in the Clicked event of the Get Data button. It
will instruct the DataWindow to perform its SELECT command and
return the data.

d w _ 1 . R e t r i e v e ( )

The next line goes in the Clicked event of the Save Data button. It tells
the DataWindow to perform the INSERT, UPDATE, and DELETE
commands that it has saved up.

d w _ 1 . U p d a t e ( )

Now the window is done. You can save it and give it the name
w _ c u s t v e h. The only thing left is to tell your application what to do
when it first starts. Press the Open button on the toolbar, and in the
dialog box, choose Applications from the Object Type dro p - d own list.

394 Learn SQL In a Weekend



T h e re will only be one application found; choose it and press OK.
Yo u’ll be taken into a script pane showing the application’s Open e ve n t .
Type this command:

O p e n ( w _ c u s t v e h )

This will tell the application that the first (and only) thing it should do
when it’s run is to open your window. That’s all there is to it! Now when
you click the Run button, your window will open. Clicking Get Data will
display the customer and vehicle data. You can use the PageUp and Page-
Down keys to scroll through the rows. You can make changes to any of
the customer fields. Finally, if you want to save the changes to the data-
base, press Save Data. The window is shown in Figure 7.32.

You can see that the DataWindow is a very powerful tool. The real-life
PowerBuilder applications that we have written always make extensive use
of DataWindows. It is not uncommon for a PowerBuilder project to
actually use more DataWindows than regular user interface windows.
Remember that not only is it used for data modification, but also it is a
very strong and full-featured report writer. When you’re dealing with

SUNDAY EVENING  SQL and the Application Developer 395

Figure 7.32

The functional
PowerBuilder

application took
only a dozen lines

of code.



databases, you should always try to utilize DataWindows first. If they
don’t meet your needs, then you always have the option to use SQL with-
in PowerBuilder code.

Using SQL in PowerScript
PowerScript is the language of PowerBuilder. It is similar to Visual Basic,
and if you know one, it’s not hard to learn the other. PowerScript sup-
ports embedded SQL, meaning that you can mix SQL in with the regu-
lar PowerScript commands. For example, you can write code that uses a
SQL INSERT command inside a PowerScript loop, as follows:

Integer i

For i = 1 To 5
INSERT INTO Customer

(FirstName, LastName, City, StateOrProvince)
V A L U E S

("Hannah", "Yoder", "Madison", "WI");
N e x t

This is just a very simple script that declares an integer variable and uses
it to loop five times. In the loop is an ordinary INSERT command. This
command will be sent to the database to which the application is cur-
rently connected. Of course, this command is not very useful because it
inserts the same person five times. Usually your embedded SQL com-
mands will use variables in place of hard-coded data.

The next example will use embedded SQL to let a users provide the data
for new customers instead of hard-coded values. To begin, create a new
window the same way you did in the last section. Place four labels, three
single-line edits, one drop-down list box, and one command button on
the window. Name the controls and set their Text properties according to
Table 7.1.

396 Learn SQL In a Weekend



SUNDAY EVENING  SQL and the Application Developer 397

TABLE 7.1
OBJECTS AND PROPERTIES FOR THE POWERBUILDER SAMPLE

Control Property Value

Label Name st_1

Text First Name:

Label Name st_2

Text Last Name:

Label Name st_3

Text City:

Label Name st_4

Text State:

Single Line Edit Name sle_first

Single Line Edit Name sle_last

Single Line Edit Name sle_city

Drop-Down List Box Name ddlb_state

VscrollBar (checked)

Command Button Name cb_save

Text Save New

Window Name w_newcust

Title New Customer



Arrange the controls on the window as you see them in Figure 7.33.
When you’re done, save the window, but don’t close it.

As you can see from Figure 7.33, you’re going to be putting code into the
Open event of the window (w_newcust). Go to the script pane now and
select this event. A quick way to get there is to double-click a blank spot
on the window. The following code goes in this event:

SQLCA.DBMS = "MSS Microsoft SQL Server"
SQLCA.Database = "SlickShop"
SQLCA.ServerName = "Server001"
SQLCA.LogId = "GusT"
SQLCA.LogPass = "oilman"
SQLCA.AutoCommit = False
SQLCA.DBParm = ""

C O N N E C T ;

String lsState

398 Learn SQL In a Weekend

Figure 7.33

This is a window
that uses

embedded SQL to
add new

customers.



DECLARE c1 CURSOR FOR
SELECT StateOrProvince

FROM StateOrProvince
ORDER BY StateOrProvince;

OPEN c1;

FETCH c1 INTO :lsState;

Do While SQLCA.SQLCode = 0
d d l b _ s t a t e . A d d I t e m ( l s S t a t e )

FETCH c1 INTO :lsState;
L o o p

You’ll notice that the first several lines are the same as those you used in
the last section. This code actually only needs to appear one time in an
application in order to connect to a database. We’re showing it again here
to give a more complete example. Briefly, SQLCA is a transaction object
that manages the connection to a database and is available globally to all
scripts in an application.

After the connection is made, you’ll see that a SQL cursor is being used
to return a result set of all rows from the StateOrProvince table. The cur-
sor works the same way as we showed you in the Sunday Morning ses-
sion. Look at the FETCH commands. Here you’re going to be mixing a
PowerScript variable in with the SQL. The FETCH command places the
column value into the variable. In PowerScript, whenever a variable is
used inside of a SQL command, a colon must precede the variable’s
name. A Do While loop will continue fetching each value until the end of
the result set is reached. Inside the loop, you’ll use the drop-down list
box’s AddItem method to put the value in the list. The result is that the list
box will contain a sorted list of all states and provinces.

If you want to test this out now, there’s one thing you’ll have to do first—
write a line of code to open the window. Go back to the application’s O p e n
event and change the line of code you wrote in the last section to open
this window instead.

SUNDAY EVENING  SQL and the Application Developer 399



Open (w_newcust)

Now when you press the Run button, your new window will open and
the dro p - d own list of states and provinces will be fully populated. T h e
only thing left to do now is to make the Sa ve Now command button
w o rk. Close your window and go back to the window painter for
w _ n e w c u s t. Double-click the command button so that its Clicked e ve n t
appears in the script pane. Place the following code in this script:

String lsFirst, lsLast, lsCity, lsState

lsFirst = sle_first.Text
lsLast = sle_last.Text
lsCity = sle_city.Text
lsState = ddlb_state.Text

INSERT INTO Customer
(FirstName, LastName, City, StateOrProvince)

V A L U E S
(:lsFirst, :lsLast, :lsCity, :lsState);

sle_first.Text = ""
sle_last.Text = ""
sle_city.Text = ""
ddlb_state.Text = ""

In this code you first declare four string variables to temporarily store
the user’s data. Then copy the data from the Text p ro p e rties of each of
the four controls into the variables. Then you can use an embedded
SQL INSERT command. Use all four variables in this command. After
the INSERT, clear out each of the controls to get ready for the next
n ew customer.

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

As mentioned earlier, a good rule of thumb with PowerBuilder is to try to make use of
the DataWindow before resorting to embedded SQL.This last example was a nice way
to introduce you to embedded SQL,but it all could have been done with DataWindows.
Even the drop-down list box of states and provinces could be its own little DataWindow.
■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

400 Learn SQL In a Weekend



What’s Next?
Congratulations, you made it all the way through in a weekend! You now
know enough about SQL to build a good solid relational database, tuned
for performance and ready to support production applications.

The only things left in this book are the appendixes. In them you’ll find
DBMS-specific SQL commands to create the Slick Shop sample data-
base. Also, for each DBMS we’ve included the INSERT commands to get
the database loaded. Plus you’ll find sample syntax for the different
DBMSs for many of the commands covered in the book.

SUNDAY EVENING  SQL and the Application Developer 401



This page intentionally left blank 



A P P E N D I X  A

SQL Samples in
SQL Serve r

A P P E N D I X  A

SQL Samples in
SQL Serve r

A P P E N D I X  A

SQL Samples in
SQL Serve r

403

Accessing SQL Server
SQL Server comes with several graphical tools allowing you to do every-
thing from trace queries executing against the database, to managing the
database servers, to executing SQL commands and obtaining results. For
this book, we are interested in your learning how to use SQL to create
queries and to create and modify database objects. SQL Server has graph-
ical tools that help you build these objects and hide the SQL from you.
Instead of using these tools, we are going to use the Query Analyzer dur-
ing this book so you can learn the commands that perform these tasks.



Query Analyzer can be found on the Start menu under Programs,
Microsoft SQL Server, Query Analyzer. It will ask you to log in, as seen
in Figure A.1. If you have SQL Server installed locally, you can leave the
SQL Server box empty or put a period in there. As for the authentication,
you will need to know which scheme the SQL Server uses. Check with
the administrator for the scheme, login name, and password. If you
installed SQL Server locally and don’t remember how you set it up, try
Windows authentication. If that doesn’t work, select SQL Server authen-
tication and use sa for the user. Leave the password blank.

Once you are in Qu e ry Analyze r, you can run the script to set up the
tables. If you cannot download the script, type them in as they are in the
next section. To obtain the script, go to the Premier Press Web site
(w w w. p re m i e r p re s s b o o k s . c o m /) and download the sample script for SQL
Se rve r. Select File, Open from the menu to load the script. Select Qu e ry,
Execute from the menu or press F5 to execute the SQL in the script. If yo u
c reate the tables using this script, you can skip the next section.

404 Learn SQL In a Weekend

Figure A.1

The Query Analyzer
login dialog box.



SQL for the Sample Database
This appendix will give you the SQL you need to create the database and
tables for the Slick Shop sample database. This syntax can also be down-
loaded from the Premier Press Web site if you’d rather not type it in. The
syntax covered here is in SQL Server. You can see the syntax for the other
DBMSs covered here by accessing that vendor’s specific appendix.

To create the database, open the Query Analyzer for SQL Server as
described in the previous section. Type the command as you see it here
and then click Execute:

CREATE DATABASE SlickShop

Now that the database is created, tell SQL Server that you’d like to use
that newly created database. This command tells SQL Server which data-
base to use for the commands that you will be executing next. Type the
following and execute the command.

USE SlickShop

Now you can create the table structures for the sample database. If you’d
like to see the graphical representation of those tables, please refer to Fig-
ure 1.3 in the Friday Evening session. Type in each code listing that 
follows and execute the command. Download the script from the Premier
Press Web site, if you can, as an alternative to typing all this.

CREATE TABLE StateOrProvince (

StateOrProvince Char(2) NOT NULL PRIMARY KEY CLUSTERED,

StateOrProvinceName Varchar(50) NOT NULL

);

CREATE TABLE Customer (

CustomerID Integer IDENTITY NOT NULL

PRIMARY KEY CLUSTERED,

FirstName Varchar(20) NULL,

LastName Varchar(30) NULL,

Address Varchar(100) NULL,

City Varchar(30) NULL,

StateOrProvince Char(2) NULL REFERENCES

APPENDIX A  SQL Samples in SQL Server 405



StateOrProvince (StateOrProvince),

PostalCode Varchar(10) NULL,

PhoneNumber Varchar(10) NULL

);

CREATE TABLE Vehicle (

VehicleID Integer IDENTITY NOT NULL

PRIMARY KEY CLUSTERED,

VehicleYear SmallInt NULL,

Make Varchar(30) NULL,

Model Varchar(30) NULL,

Color Varchar(30) NULL,

LicensePlate# Varchar(10) NULL,

LastServiceDate Smalldatetime NULL,

CustomerID Integer NOT NULL

REFERENCES Customer (CustomerID)

);

CREATE TABLE Service (

ServiceID Integer IDENTITY NOT NULL

PRIMARY KEY CLUSTERED,

Description Varchar(100) NOT NULL,

RatePerHour Money NOT NULL

);

CREATE TABLE Part (

PartID Integer IDENTITY NOT NULL

PRIMARY KEY CLUSTERED,

Description Varchar(100) NOT NULL,

Cost Money NOT NULL

);

CREATE TABLE JobTicket (

JobTicketID Integer IDENTITY NOT NULL

PRIMARY KEY CLUSTERED,

CustomerID Integer NOT NULL

REFERENCES Customer (CustomerID),

StartDate Smalldatetime NULL,

EndDate Smalldatetime NULL,

VehicleID Integer NOT NULL

REFERENCES Vehicle (VehicleID)

);

406 Learn SQL In a Weekend



CREATE TABLE JobTicketDetail (

JobTicketID Integer NOT NULL

REFERENCES JobTicket (JobTicketID),

LineItemNumber TinyInt NOT NULL,

ServiceID Integer NOT NULL

REFERENCES Service (ServiceID),

DateComplete Smalldatetime NULL,

HoursSpent Decimal(5,2) NOT NULL DEFAULT 0,

CONSTRAINT PK_JobTicketDetail PRIMARY KEY (JobTicketID,

LineItemNumber)

);

CREATE TABLE PartUsed (

JobTicketID Integer NOT NULL,

LineItemNumber TinyInt NOT NULL,

PartID Integer NOT NULL REFERENCES Part (PartID),

Quantity TinyInt NOT NULL,

CONSTRAINT PK_PartUsed PRIMARY KEY (JobTicketID, LineItemNumber,

PartID),

CONSTRAINT FK_JobTicketDetail_PartUsed FOREIGN KEY (JobTicketID,

LineItemNumber)

REFERENCES JobTicketDetail (JobTicketID, LineItemNumber)

);

Now that the stru c t u res are in place, you can fill them up with the sample
data. We’ve included the INSERT scripts in the following. Simply type
them in and execute them, and you will have eve rything you need to get
s t a rted. If yo u’d rather not type all these commands (and why would yo u ? ) ,
you can download these statements from the Premier Press Web site.

INSERT INTO StateOrProvince VALUES('AB','Alberta');

INSERT INTO StateOrProvince VALUES('BC','British Columbia');

INSERT INTO StateOrProvince VALUES('MB','Manitoba');

INSERT INTO StateOrProvince VALUES('NB','New Brunswick');

INSERT INTO StateOrProvince VALUES('NF','Newfoundland');

INSERT INTO StateOrProvince VALUES('NT','Northwest Territories');

INSERT INTO StateOrProvince VALUES('NS','Nova Scotia');

INSERT INTO StateOrProvince VALUES('NU','Nunavut');

INSERT INTO StateOrProvince VALUES('ON','Ontario');

INSERT INTO StateOrProvince VALUES('PE','Prince Edward Island');

INSERT INTO StateOrProvince VALUES('QC','Quebec');

INSERT INTO StateOrProvince VALUES('SK','Saskatchewan');

APPENDIX A  SQL Samples in SQL Server 407



INSERT INTO StateOrProvince VALUES('YT','Yukon Territory');

INSERT INTO StateOrProvince VALUES('AL','Alabama');

INSERT INTO StateOrProvince VALUES('AK','Alaska');

INSERT INTO StateOrProvince VALUES('AZ','Arizona');

INSERT INTO StateOrProvince VALUES('AR','Arkansas');

INSERT INTO StateOrProvince VALUES('CA','California');

INSERT INTO StateOrProvince VALUES('CO','Colorado');

INSERT INTO StateOrProvince VALUES('CT','Connecticut');

INSERT INTO StateOrProvince VALUES('DE','Delaware');

INSERT INTO StateOrProvince VALUES('DC','District of Columbia');

INSERT INTO StateOrProvince VALUES('FL','Florida');

INSERT INTO StateOrProvince VALUES('GA','Georgia');

INSERT INTO StateOrProvince VALUES('HI','Hawaii');

INSERT INTO StateOrProvince VALUES('ID','Idaho');

INSERT INTO StateOrProvince VALUES('IL','Illinois');

INSERT INTO StateOrProvince VALUES('IN','Indiana');

INSERT INTO StateOrProvince VALUES('IA','Iowa');

INSERT INTO StateOrProvince VALUES('KS','Kansas');

INSERT INTO StateOrProvince VALUES('KY','Kentucky');

INSERT INTO StateOrProvince VALUES('LA','Louisiana');

INSERT INTO StateOrProvince VALUES('ME','Maine');

INSERT INTO StateOrProvince VALUES('MD','Maryland');

INSERT INTO StateOrProvince VALUES('MA','Massachusetts');

INSERT INTO StateOrProvince VALUES('MI','Michigan');

INSERT INTO StateOrProvince VALUES('MN','Minnesota');

INSERT INTO StateOrProvince VALUES('MS','Mississippi');

INSERT INTO StateOrProvince VALUES('MO','Missouri');

INSERT INTO StateOrProvince VALUES('MT','Montana');

INSERT INTO StateOrProvince VALUES('NE','Nebraska');

INSERT INTO StateOrProvince VALUES('NV','Nevada');

INSERT INTO StateOrProvince VALUES('NH','New Hampshire');

INSERT INTO StateOrProvince VALUES('NJ','New Jersey');

INSERT INTO StateOrProvince VALUES('NM','New Mexico');

INSERT INTO StateOrProvince VALUES('NY','New York');

INSERT INTO StateOrProvince VALUES('NC','North Carolina');

INSERT INTO StateOrProvince VALUES('ND','North Dakota');

INSERT INTO StateOrProvince VALUES('OH','Ohio');

INSERT INTO StateOrProvince VALUES('OK','Oklahoma');

INSERT INTO StateOrProvince VALUES('OR','Oregon');

INSERT INTO StateOrProvince VALUES('PA','Pennsylvania');

INSERT INTO StateOrProvince VALUES('RI','Rhode Island');

INSERT INTO StateOrProvince VALUES('SC','South Carolina');

408 Learn SQL In a Weekend



INSERT INTO StateOrProvince VALUES('SD','South Dakota');

INSERT INTO StateOrProvince VALUES('TN','Tennessee');

INSERT INTO StateOrProvince VALUES('TX','Texas');

INSERT INTO StateOrProvince VALUES('UT','Utah');

INSERT INTO StateOrProvince VALUES('VT','Vermont');

INSERT INTO StateOrProvince VALUES('VA','Virginia');

INSERT INTO StateOrProvince VALUES('WA','Washington');

INSERT INTO StateOrProvince VALUES('WV','West Virginia');

INSERT INTO StateOrProvince VALUES('WI','Wisconsin');

INSERT INTO StateOrProvince VALUES('WY','Wyoming');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('John', 'Smith', '10341 Crestpoint Boulevard',

'North Beach', 'VA', '10234', '1022341234');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Jacob', 'Salter', '234 North Main', 'Groveland',

null, '45678', '7665554444');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Victoria', 'Smithe', '14301 Mountain Ridge Court',

'Huntington', 'WV', '22211', '2175438679');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Bryce', 'Hatfield', '566 Pine Road', 'Marion',

'IN', null, null);

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Kylee', 'Dicken', null, 'Upland', 'IN', '46905',

'7654321098');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Alex', 'Thompson', null, null, 'IN', null,

'3175551213');

APPENDIX A  SQL Samples in SQL Server 409



INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Davis', 'Thompson', '298 North Broadway', 'Greensburg',

'IN', '46514', '3175551214');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Harrison', 'Thompson', '345 Hawks Point Drive Apt B',

'Indianapolis', 'IN', '46123', '3175551215');

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2000', 'Chevrolet', 'S-10', 'Purple', 'TROJANS',

'8-13-2001', 4);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('1998', 'Ford', 'Mustang', 'Red', 'HH7832',

'9-16-2001', 2);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2002', 'Pontiac', 'Grand Prix', 'Black', 'GOPRDUE',

'5-21-2002', 5);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('1968', 'Chevrolet', 'Corvette', 'Black', 'KODIAK',

'1-20-2002', 1);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2002', 'Nissan', 'Altima', 'White', 'HEYDARE',

'1-26-2002', 3);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2000', 'Chrysler', 'PT Cruiser', 'Black', 'ALEX T',

'5-15-2002', 6);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2002', 'Chevrolet', 'Trail Blazer', 'Green', 'I TRADE',

'5-31-2001', 8);

410 Learn SQL In a Weekend



INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('2001', 'Ford', 'Expedition', 'Maroon', 'DAVIS T',

'5-31-2001', 7);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, LicensePlate#,

LastServiceDate, CustomerID)

VALUES ('1972', 'AMC', 'Gremlin', 'Pink', 'UGOGIRL',

'2-17-2002', 4);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Oil Change', 60.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Wiperblades', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Air Filter', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change PVC Valve', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Cooling System', 60.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Differential', 60.00);

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-30 Oil', 7.49)

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-40 Oil', 7.49)

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-30 Oil', 7.99)

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-40 Oil', 7.99);

INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-30', 13.99);

APPENDIX A  SQL Samples in SQL Server 411



INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-40', 13.99);

INSERT INTO Part (Description, Cost)

VALUES ('Texas Tea Economy Oil Filter', 3.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Oil Filter', 4.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Air Filter', 8.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Wiper Blades', 9.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Brake Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Transmission Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Coolant', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Windshield Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Differential Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME PVC Valve', 12.99);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '1-20-2002', '1-20-2002', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '7-20-2001', '7-20-2001', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (2, '9-16-2001', '9-16-2001', 2);

412 Learn SQL In a Weekend



INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (3, '1-26-2002', '1-26-2002', 5);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (5, '5-21-2002', '5-21-2002', 3);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '8-13-2001', '8-13-2001', 1);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '2-16-2002', '2-17-2002', 9);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (1, 1, 1, '1-20-2002', .5);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (2, 1, 1, '7-20-2001', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (2, 2, 3, '7-20-2001', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (2, 3, 4, '7-20-2002', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (3, 1, 1, '9-16-2001', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (4, 1, 1, '1-26-2002', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (5, 1, 2, '5-21-2002', .2);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (5, 2, 1, '5-21-2002', .25);

APPENDIX A  SQL Samples in SQL Server 413



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (6, 1, 5, '8-13-2001', 1.15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 1, 1, '2-16-2002', .35);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 2, 3, '2-16-2002', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 3, 4, '2-16-2002', .15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 4, 6, '2-16-2002', 1.0);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 5, 5, '2-17-2002', .5);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 4, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 11, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 5, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 14, 1);

414 Learn SQL In a Weekend



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 6, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 1, 10, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 3, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (6, 1, 13, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 1, 4);

APPENDIX A  SQL Samples in SQL Server 415



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 4, 15, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 5, 13, 1);

Your sample database is now ready to use. Enjoy!

Education, Training, and Certification
This book only covers SQL as a language and not specific information on
the database management systems that use it. Should you decide to con-
tinue to use SQL Se rve r, you may need a more specific book about the
p roduct. Fo l l owing is a list of some of the books available on SQL Se rve r :

Title: Professional SQL Server 2000 Programming
Author(s): Rob Vieira
Publisher: Wrox Press
List Price: $59.99

Title: Microsoft SQL Server 2000 Reference Library
Author(s): David Iseminger
Publisher: Microsoft Press
List Price: $179.99

416 Learn SQL In a Weekend



Title: Teach Yourself SQL Server in 21 Days
Author(s): Richard Waymire and Rick Sawtell
Publisher: Sams
List Price: $39.99

Title: SQL Server 2000 Unleashed
Author(s): Ray Rankins, Paul Jensen, et al.
Publisher: Sams
List Price: $59.99

There is a magazine available on SQL Server as well. It has both hard
copy and CD-ROM versions available. You can find out more or sub-
scribe at www.sqlmag.com/.

Mi c rosoft offers Web casts, online seminars, CD-ROMs, and instru c t o r -
led training. The classes are offered through Mi c rosoft Certified Te c h n i c a l
Education Centers (Mi c rosoft CTECs). To find the training you need,
check out w w w. m i c ro s o f t . c o m / s q l / u s i n g / t r a i n i n g / d e f a u l t . a s p.

Microsoft has a long list of certifications available. For SQL Server, you
could get a simple Microsoft Certified Professional (MCP) certification,
which can be obtained to denote proficiency in a particular Microsoft
application. T h e re is also Mi c rosoft Certified Solution De ve l o p e r
(MCSD) or Microsoft Certified Application Developer (MCAD) certifi-
cations, which are more involved. They specify proficiency in Microsoft
standards as well as both front-end and back-end technologies. These are
primarily for the application developer. If you are more comfortable with
the administrative side of things, you might look at the Microsoft Certi-
fied System Engineer (MCSE) or Microsoft Certified Database Adminis-
trator (MCDBA) certifications. MCSE is more for individuals who
support and administer servers. If you want to be a database administra-
tor, you may wish to seek the MCDBA certification. You can find the
official curriculum for all these at www.microsoft.com/traincert/mcp.

APPENDIX A  SQL Samples in SQL Server 417



This page intentionally left blank 



A P P E N D I X  B

SQL Samples in
O ra c l e

A P P E N D I X  B

SQL Samples in
O ra c l e

A P P E N D I X  B

SQL Samples in
O ra c l e

419

Accessing Oracle
Oracle provides an editor called SQLPlus. SQLPlus allows you to execute
SQL commands against the database. Once you have the client tools
installed for Oracle, you can find SQLPlus on the Start menu under Pro-
grams, Oracle Application Tools.

When you start SQLPlus, you will be asked for a username, password ,
and host. If you don't already have a username and password assigned,
type in SYSTEM for the username and MANAGER for the password. Leave
host blank unless you are connecting to a remote database. When yo u
bring up the editor, you will see a prompt, S Q L >. This is where you type



your commands. All commands in SQLPlus have to be terminated.
Unlike SQL Se rve r, where you do not have to have the semicolon at the
end of each statement, SQLPlus will not execute the statement until a
terminator is typed in (or Run is selected from the menu). In this case,
you are going to use the semicolon. Once the semicolon is typed, termi-
nating the command, and Return is pressed, the editor automatically
runs the command. Should you need to cancel a command, type
Ctrl+C. To exit, type E X I T.

The best way to enter in the commands needed to set up the sample data-
base is to download the commands for Oracle from the Premier Press
Web site (www.premierpressbooks.com/). You can copy the commands
from the downloaded file and paste them into the editor.

If you can download the SQL, you can skip the next section. Should you
need to type the commands in yourself, however, the next section will
give you all the commands necessary to load up the sample database.

Should you make a mistake while entering the commands that you can’t
correct, type the following command and start over:

DROP DATABASE SlickShp;

SQL for the Sample Database
This section will give you the SQL you need to create the database and
tables for the Slick Shop sample database. However, because Oracle does
not allow database names longer than eight characters, you will have to
name the database SlickShp instead.

This syntax can also be downloaded from the Premier Press Web site if
you’d rather not type it in. The syntax covered here is for Oracle only.

To create the database, open SQLPlus as described. Type the command
as you see it here and then press Enter on the keyboard:

CREATE DATABASE SlickShp;

420 Learn SQL In a Weekend



Now you can create the table structures for the sample database. If you’d
like to see the graphical representation of those tables, please refer to Fig-
ure 1.3 in the Friday Evening session. Type in each code listing as follows:

CREATE TABLE StateOrProvince (

StateOrProvince Char(2) NOT NULL PRIMARY KEY,

StateOrProvinceName Varchar2(50) NOT NULL

);

CREATE TABLE Customer (

CustomerID Integer NOT NULL PRIMARY KEY,

FirstName Varchar2(20) NULL,

LastName Varchar2(30) NULL,

Address Varchar2(100) NULL,

City Varchar2(30) NULL,

StateOrProvince Char(2) NULL REFERENCES StateOrProvince

(StateOrProvince),

PostalCode Varchar2(10) NULL,

PhoneNumber Varchar2(10) NULL

);

CREATE SEQUENCE CustomerSeq NOCACHE;

CREATE TABLE Vehicle (

VehicleID Integer NOT NULL PRIMARY KEY,

VehicleYear SmallInt NULL,

Make Varchar2(30) NULL,

Model Varchar2(30) NULL,

Color Varchar2(30) NULL,

LicensePlate Varchar2(10) NULL,

LastServiceDate Date NULL,

CustomerID Integer NOT NULL 

REFERENCES Customer(CustomerID)

);

CREATE SEQUENCE VehicleSeq NOCACHE;

CREATE TABLE Service (

ServiceID Integer NOT NULL PRIMARY KEY,

Description Varchar2(100) NOT NULL,

RatePerHour Number(5,2) NOT NULL

);

APPENDIX B  SQL Samples in Oracle 421



CREATE SEQUENCE ServiceSeq NOCACHE;

CREATE TABLE Part (

PartID Integer NOT NULL PRIMARY KEY,

Description Varchar2(100) NOT NULL,

Cost Number(5,2) NOT NULL

);

CREATE SEQUENCE PartSeq NOCACHE;

CREATE TABLE JobTicket (

JobTicketID Integer NOT NULL PRIMARY KEY,

CustomerID Integer NOT NULL REFERENCES Customer 

(CustomerID),

StartDate Date NULL,

EndDate Date NULL,

VehicleID Integer NOT NULL REFERENCES Vehicle 

(VehicleID)

);

CREATE SEQUENCE JobTicketSeq NOCACHE;

CREATE TABLE JobTicketDetail (

JobTicketID Integer NOT NULL 

REFERENCES JobTicket (JobTicketID),

LineItemNumber Number(3) NOT NULL,

ServiceID Integer NOT NULL 

REFERENCES Service (ServiceID),

DateComplete Date NULL,

HoursSpent Number(5,2) DEFAULT 0 NOT NULL,

CONSTRAINT PK_JobTicketDetail PRIMARY KEY (JobTicketID, 

LineItemNumber)

);

CREATE TABLE PartUsed (

JobTicketID Integer NOT NULL,

LineItemNumber Number(3) NOT NULL,

PartID Integer NOT NULL REFERENCES Part (PartID),

Quantity Number(3) NOT NULL,

CONSTRAINT PK_PartUsed PRIMARY KEY (JobTicketID, LineItemNumber, 

PartID),

422 Learn SQL In a Weekend



CONSTRAINT FK_JobTicketDetail_PartUsed FOREIGN KEY (JobTicketID,

LineItemNumber) REFERENCES JobTicketDetail (JobTicketID,

LineItemNumber)

);

Now that the stru c t u res are in place, you can fill them up with the sample
data. We’ve included the INSERT scripts in the following. Simply type
them in and execute them, and you will have eve rything you need to get
s t a rted. If yo u’d rather not type all these commands (and why would yo u ? ) ,
you can download these statements from the Premier Press Web site.

INSERT INTO StateOrProvince VALUES('AB','Alberta');

INSERT INTO StateOrProvince VALUES('BC','British Columbia');

INSERT INTO StateOrProvince VALUES('MB','Manitoba');

INSERT INTO StateOrProvince VALUES('NB','New Brunswick');

INSERT INTO StateOrProvince VALUES('NF','Newfoundland');

INSERT INTO StateOrProvince VALUES('NT','Northwest Territories');

INSERT INTO StateOrProvince VALUES('NS','Nova Scotia');

INSERT INTO StateOrProvince VALUES('NU','Nunavut');

INSERT INTO StateOrProvince VALUES('ON','Ontario');

INSERT INTO StateOrProvince VALUES('PE','Prince Edward Island');

INSERT INTO StateOrProvince VALUES('QC','Quebec');

INSERT INTO StateOrProvince VALUES('SK','Saskatchewan');

INSERT INTO StateOrProvince VALUES('YT','Yukon Territory');

INSERT INTO StateOrProvince VALUES('AL','Alabama');

INSERT INTO StateOrProvince VALUES('AK','Alaska');

INSERT INTO StateOrProvince VALUES('AZ','Arizona');

INSERT INTO StateOrProvince VALUES('AR','Arkansas');

INSERT INTO StateOrProvince VALUES('CA','California');

INSERT INTO StateOrProvince VALUES('CO','Colorado');

INSERT INTO StateOrProvince VALUES('CT','Connecticut');

INSERT INTO StateOrProvince VALUES('DE','Delaware');

INSERT INTO StateOrProvince VALUES('DC','District of Columbia');

INSERT INTO StateOrProvince VALUES('FL','Florida');

INSERT INTO StateOrProvince VALUES('GA','Georgia');

INSERT INTO StateOrProvince VALUES('HI','Hawaii');

INSERT INTO StateOrProvince VALUES('ID','Idaho');

INSERT INTO StateOrProvince VALUES('IL','Illinois');

INSERT INTO StateOrProvince VALUES('IN','Indiana');

INSERT INTO StateOrProvince VALUES('IA','Iowa');

INSERT INTO StateOrProvince VALUES('KS','Kansas');

INSERT INTO StateOrProvince VALUES('KY','Kentucky');

APPENDIX B  SQL Samples in Oracle 423



INSERT INTO StateOrProvince VALUES('LA','Louisiana');

INSERT INTO StateOrProvince VALUES('ME','Maine');

INSERT INTO StateOrProvince VALUES('MD','Maryland');

INSERT INTO StateOrProvince VALUES('MA','Massachusetts');

INSERT INTO StateOrProvince VALUES('MI','Michigan');

INSERT INTO StateOrProvince VALUES('MN','Minnesota');

INSERT INTO StateOrProvince VALUES('MS','Mississippi');

INSERT INTO StateOrProvince VALUES('MO','Missouri');

INSERT INTO StateOrProvince VALUES('MT','Montana');

INSERT INTO StateOrProvince VALUES('NE','Nebraska');

INSERT INTO StateOrProvince VALUES('NV','Nevada');

INSERT INTO StateOrProvince VALUES('NH','New Hampshire');

INSERT INTO StateOrProvince VALUES('NJ','New Jersey');

INSERT INTO StateOrProvince VALUES('NM','New Mexico');

INSERT INTO StateOrProvince VALUES('NY','New York');

INSERT INTO StateOrProvince VALUES('NC','North Carolina');

INSERT INTO StateOrProvince VALUES('ND','North Dakota');

INSERT INTO StateOrProvince VALUES('OH','Ohio');

INSERT INTO StateOrProvince VALUES('OK','Oklahoma');

INSERT INTO StateOrProvince VALUES('OR','Oregon');

INSERT INTO StateOrProvince VALUES('PA','Pennsylvania');

INSERT INTO StateOrProvince VALUES('RI','Rhode Island');

INSERT INTO StateOrProvince VALUES('SC','South Carolina');

INSERT INTO StateOrProvince VALUES('SD','South Dakota');

INSERT INTO StateOrProvince VALUES('TN','Tennessee');

INSERT INTO StateOrProvince VALUES('TX','Texas');

INSERT INTO StateOrProvince VALUES('UT','Utah');

INSERT INTO StateOrProvince VALUES('VT','Vermont');

INSERT INTO StateOrProvince VALUES('VA','Virginia');

INSERT INTO StateOrProvince VALUES('WA','Washington');

INSERT INTO StateOrProvince VALUES('WV','West Virginia');

INSERT INTO StateOrProvince VALUES('WI','Wisconsin');

INSERT INTO StateOrProvince VALUES('WY','Wyoming');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'John', 'Smith', 

'10341 Crestpoint Boulevard', 'North Beach', 'VA', 

'10234', '1022341234');

424 Learn SQL In a Weekend



INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Jacob', 'Salter', 

'234 North Main', 'Groveland', null, '45678', 

'7665554444');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Victoria', 'Smithe', 

'14301 Mountain Ridge Court', 'Huntington', 'WV', 

'22211', '2175438679');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Bryce', 'Hatfield', 

'566 Pine Road', 'Marion', 'IN', null, null);

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Kylee', 'Dicken', null, 'Upland',

'IN', '46905', '7654321098');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Alex', 'Thompson', null, null,

'IN', null, '3175551213');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Davis', 'Thompson', '298 North 

Broadway', 'Greensburg', 'IN', '46514', '3175551214');

INSERT INTO Customer (CustomerID, FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES (CustomerSeq.NEXTVAL, 'Harrison', 'Thompson', 

'345 Hawks Point Drive Apt B', 'Indianapolis', 'IN', 

'46123', '3175551215');

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2000', 'Chevrolet', 'S-10', 

'Purple', 'TROJANS', '13-AUG-01', 4);

APPENDIX B  SQL Samples in Oracle 425



INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '1998', 'Ford', 'Mustang', 'Red',

'HH7832', '16-SEP-01', 2);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2002', 'Pontiac', 'Grand Prix',

'Black', 'GOPRDUE', '21-MAY-02', 5);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '1968', 'Chevrolet', 'Corvette',

'Black', 'KODIAK', '20-JAN-02', 1);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2002', 'Nissan', 'Altima', 'White',

'HEYDARE', '26-JAN-02', 3);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2000', 'Chrysler', 'PT Cruiser',

'Black', 'ALEX T', '15-MAY-02', 6);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2002', 'Chevrolet', 

'Trail Blazer', 'Green', 'I TRADE', '31-MAY-01', 8);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '2001', 'Ford', 'Expedition', 

'Maroon', 'DAVIS T', '31-MAY-01', 7);

INSERT INTO Vehicle (VehicleID, VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES (VehicleSeq.NEXTVAL, '1972', 'AMC', 'Gremlin', 'Pink',

'UGOGIRL', '17-FEB-02', 4);

426 Learn SQL In a Weekend



INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Oil Change', 60.00);

INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Replace Wiperblades', 10.00);

INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Replace Air Filter', 10.00);

INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Change PVC Valve', 10.00);

INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Change and Flush Cooling System',

60.00);

INSERT INTO Service (ServiceID, Description, RatePerHour)

VALUES (ServiceSeq.NEXTVAL, 'Change and Flush Differential',

60.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Protects 10w-30 Oil', 7.49);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Protects 10w-40 Oil', 7.49);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Black Gold 10w-30 Oil', 7.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Black Gold 10w-40 Oil', 7.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Motion Synthetic Oil 10w-30', 13.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Motion Synthetic Oil 10w-40', 13.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'Texas Tea Economy Oil Filter', 3.99);

APPENDIX B  SQL Samples in Oracle 427



INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Oil Filter', 4.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Air Filter', 8.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Wiper Blades', 9.99);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Brake Fluid', 0.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Transmission Fluid', 0.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Coolant', 0.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Windshield Fluid', 0.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME Differential Fluid', 0.00);

INSERT INTO Part (PartID, Description, Cost)

VALUES (PartSeq.NEXTVAL, 'ACME PVC Valve', 12.99);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate, 

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 1, '20-JAN-02', '20-JAN-02', 4);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate,

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 1, '20-JUL-01', '20-JUL-01', 4);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate, 

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 2, '16-SEP-01', '16-SEP-01', 2);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate,

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 3, '26-JAN-02', '26-JAN-02', 5);

428 Learn SQL In a Weekend



INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate, 

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 5, '21-MAY-02', '21-MAY-02', 3);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate,

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 4, '13-AUG-01', '13-AUG-01', 1);

INSERT INTO JobTicket (JobTicketID, CustomerID, StartDate, EndDate,

VehicleID)

VALUES (JobTicketSeq.NEXTVAL, 4, '16-FEB-02', '17-FEB-02', 9);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (1, 1, 1, '20-JAN-02', .5);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 1, 1, '20-JUL-01', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 2, 3, '20-JUL-01', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 3, 4, '20-JUL-01', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (3, 1, 1, '16-SEP-01', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (4, 1, 1, '26-JAN-02', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 1, 2, '21-MAY-02', .2);

APPENDIX B  SQL Samples in Oracle 429



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 2, 1, '21-MAY-02', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (6, 1, 5, '13-AUG-01', 1.15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 1, 1, '16-FEB-02', .35);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 2, 3, '16-FEB-02', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 3, 4, '16-FEB-02', .15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (7, 4, 6, '16-FEB-02', 1.0);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 5, 5, '17-FEB-02', .5);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 4, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 11, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 5, 4);

430 Learn SQL In a Weekend



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 6, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 1, 10, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 3, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (6, 1, 13, 1);

APPENDIX B  SQL Samples in Oracle 431



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 4, 15, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 5, 13, 1);

Your sample database is now ready to use. Enjoy!

Differences in Oracle
Oracle is a different beast compared to other databases. It has its own
unique approach to handling SQL. Because of this, several changes were
made to the syntax used to create the sample database so that it could be
created in Oracle.

Oracle has a more limited set of data types. The Money data type and the
SmallDatetime data type mean nothing to Oracle. Money was changed to
Number(5,2) for the RatePerHour column in the Service table and also the
Cost column in the Part table. Varchar is an unused data type in Oracle.
It uses Varchar2 instead. Several columns required this change. Oracle
also does not recognize the data type Tinyint. TinyInt was changed to

432 Learn SQL In a Weekend



Number(3) for the LineItemNumber in both JobTicketDetail and 
P a r t U s e d. Si m i l a r l y, the Quantity column of PartUsed was changed. T h e
S m a l l D a t e t i m e data type was changed to just D a t e. This affected the 
DateComplete column in JobTicketDetail and the StartDate and E n d D a t e
columns of the JobTicket table. The LastServiceDate column in 
Vehicle also re q u i red this change. Oracle also prefers that dates be
e n t e red in a certain format. The default format for date entry and dis-
play in Oracle is dd-mon-yy (for example, 2 1 - M A Y - 0 2) .

You may have also noticed that there are new commands that must be
issued, called CREATE SEQUENCE. This command creates an object in
the database that is responsible for maintaining the last sequential number
issued and issuing the next value available. W h e reas with SQL Se rver yo u
we re able to identify a column as an IDENTITY (or auto-number), with
Oracle the sequence object is instead used to fill in the next sequential
value. This is done by using the statement sequencename.NEXTVAL in the
I N S E RT statement.

For instance, the Customer table’s CustomerID is an IDENTITY in SQL
Server. It is given the next sequential value simply by inserting NULL
into that column in the INSERT statement or eliminating the column
from the INSERT altogether. With Oracle, however, the CREATE
SEQUENCE command is used to create the sequence object CustomerSeq.
When a row is inserted into the Customer table, the sequence provides
the value for CustomerID by explicitly inserting CustomerSeq.NEXTVAL

instead of NULL.

Another major difference between SQL Server and Oracle is in the way
they extend SQL. SQL Server uses T-SQL (or Transact-SQL) and Oracle
uses PL-SQL. Other DBMS vendors use T-SQL to extend SQL, but only
Oracle utilizes PL-SQL. You’ll need to know about PL-SQL if you have
a need to do more advanced SQL programming, such as procedures,
packages, and triggers in Oracle.

APPENDIX B  SQL Samples in Oracle 433



Education, Training, and Certification
This book only covers SQL as a language and not specific information on
the database management systems that use it. Should you decide to con-
tinue to use Oracle, you may need a more specific book about the prod-
uct. The following are just a few of the hundreds of books available on
Oracle and its related technologies:

Title: Expert One on One: Oracle
Author(s): Thomas Kyte
Publisher: Wrox Press
List Price: $59.99

Title: Learning Oracle PL/SQL
Author(s): Bill Pribyl and Steven Feuerstein
Publisher: O'Reilly and Associates
List Price: $39.99

Title: Beginning Oracle Programming
Author(s): Sean Dillon
Publisher: Wrox Press
List Price: $49.99

Title: Practical Oracle 8: Building Efficient Databases
Author(s): Jonathan Lewis
Publisher: Addison-Wesley
List Price: $44.99

Oracle also publishes its own magazine. You can register for the magazine
on the Oracle Web site at www.oracle.com/oramag.

There are also several training classes available for Oracle. These classes
can be taken from Oracle or through an authorized Oracle training cen-
ter. The Oracle Web site (www.oracle.com/education/oln) has all the
information on their training and certification offerings. They have
instructor-led online training, estudy seminars, and self-paced training
available. You can even structure your training to meet your specific cer-
tification goals.

434 Learn SQL In a Weekend



Currently, Oracle offers three levels of certification. The associate level
requires taking two exams. The professional requires four exams. An on-
site exam is required for master certification. The exam must be taken at
an Oracle Un i versity Education Center. Find out more at
otn.oracle.com/training/content.html.

APPENDIX B  SQL Samples in Oracle 435



This page intentionally left blank 



A P P E N D I X  C

SQL Samples in
M y S Q L

A P P E N D I X  C

SQL Samples in
M y S Q L

A P P E N D I X  C

SQL Samples in
M y S Q L

437

Accessing MySQL
MySQL comes with a character-based editor that can be used to com-
municate with the database. Once MySQL has been installed, there will
exist a file named mysql.exe. For the Windows version of MySQL, this
file resides in the bin directory under the MySQL directory.

Because the mysql editor, or terminal, is character based, it is run from a
command prompt. To bring up the editor in Windows, bring up Run
from the Start menu and type c:\MySQL\bin\mysql test. This allows you
into MySQL without needing a login. For other operating systems, please
refer to the documentation that comes with the download. It can be
found in the docs directory under MySQL.



The MySQL documentation can also be found on the MySQL Web site
at www.mysql.com/. The online documentation is searchable. This
makes it much easier to find the exact topic you need.

When you bring up the editor, you will see a prompt, mysql>. This is
where you type your commands. All commands in MySQL have to be
terminated. Unlike SQL Server, where you do not have to have the semi-
colon at the end of each statement, MySQL will not execute the state-
ment until a terminator is typed in. Once the semicolon is typed,
terminating the command, and Return is pressed, the editor automati-
cally runs the command. Should you need to cancel a command, type /c.

The best way to enter in the commands needed to set up the sample data-
base is to download the commands for MySQL from the Premier Press
Web site (www.premierpressbooks.com/). You can copy the commands
from the downloaded file and paste them into the editor. Because the edi-
tor is running in a shell, however, you will need to access the paste com-
mand from the drop-down menu on the title bar (use the far left icon).

If you can download the SQL, you can skip the next section. Should you
need to type the commands in yourself, however, the next section will
give you all the commands necessary to load up the sample database.

Should you make a mistake while entering the commands that you can’t
correct, type the following command and start over:

DROP DATABASE SlickShop;

SQL for the Sample Database
This section will give you the SQL you need to create the database and
tables for the Slick Shop sample database. This syntax can also be down-
loaded from the Premier Press Web site if you'd rather not type it in. The
syntax covered here is for MySQL.

438 Learn SQL In a Weekend



To create the database, open the MySQL editor as described pre v i o u s l y.
Type the command as you see it here and then press Enter on the keyboard :

CREATE DATABASE SlickShop;

Now that the database is created, tell MySQL that you’d like to use that
newly created database. This command tells MySQL which database to
use for the commands that you will be executing next. Type the follow-
ing and press Enter:

USE SlickShop;

Now you can create the table structures for the sample database. If you’d
like to see the graphical representation of those tables, please refer to Fig-
ure 1.3 in the Friday Evening session. Type in each code listing as follows:

CREATE TABLE StateOrProvince (

StateOrProvince Char(2) NOT NULL PRIMARY KEY,

StateOrProvinceName Varchar(50) NOT NULL

);

CREATE TABLE Customer (

CustomerID Integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

FirstName Varchar(20) NULL,

LastName Varchar(30) NULL,

Address Varchar(100) NULL,

City Varchar(30) NULL,

StateOrProvince Char(2) NULL REFERENCES StateOrProvince

(StateOrProvince),

PostalCode Varchar(10) NULL,

PhoneNumber Varchar(10) NULL

);

CREATE TABLE Vehicle (

VehicleID Integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

VehicleYear SmallInt NULL,

Make Varchar(30) NULL,

Model Varchar(30) NULL,

Color Varchar(30)   NULL,

LicensePlate Varchar(10)   NULL,

APPENDIX C  SQL Samples in MySQL 439



LastServiceDate Datetime NULL,

CustomerID Integer NOT NULL 

REFERENCES Customer(CustomerID)

);

CREATE TABLE Service (

ServiceID Integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

Description Varchar(100) NOT NULL,

RatePerHour Decimal(5,2) NOT NULL

);

CREATE TABLE Part (

PartID Integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

Description Varchar(100) NOT NULL,

Cost Decimal(5,2) NOT NULL

);

CREATE TABLE JobTicket (

JobTicketID Integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

CustomerID Integer NOT NULL REFERENCES Customer 

(CustomerID),

StartDate Datetime NULL,

EndDate Datetime NULL,

VehicleID Integer NOT NULL REFERENCES Vehicle 

(VehicleID)

);

CREATE TABLE JobTicketDetail (

JobTicketID Integer NOT NULL 

REFERENCES JobTicket (JobTicketID),

LineItemNumber TinyInt NOT NULL,

ServiceID Integer NOT NULL 

REFERENCES Service (ServiceID),

DateComplete Datetime NULL,

HoursSpent Decimal(5,2) NOT NULL DEFAULT 0,

CONSTRAINT PK_JobTicketDetail PRIMARY KEY (JobTicketID,

LineItemNumber)

);

CREATE TABLE PartUsed (

JobTicketID Integer NOT NULL,

LineItemNumber TinyInt NOT NULL,

440 Learn SQL In a Weekend



PartID Integer NOT NULL REFERENCES Part (PartID),

Quantity TinyInt NOT NULL,

CONSTRAINT PK_PartUsed PRIMARY KEY (JobTicketID, LineItemNumber,

PartID),

CONSTRAINT FK_JobTicketDetail_PartUsed FOREIGN KEY (JobTicketID,

LineItemNumber) REFERENCES JobTicketDetail (JobTicketID,

LineItemNumber)

);

Now that the stru c t u res are in place, you can fill them up with the sample
data. We’ve included the I N S E RT scripts in the following. Simply type
them in and execute them, and you will have eve rything you need to get
s t a rted. If yo u’d rather not type all these commands (and why would yo u ? ) ,
you can download these statements from the Premier Press Web site.

INSERT INTO StateOrProvince VALUES('AB','Alberta');

INSERT INTO StateOrProvince VALUES('BC','British Columbia');

INSERT INTO StateOrProvince VALUES('MB','Manitoba');

INSERT INTO StateOrProvince VALUES('NB','New Brunswick');

INSERT INTO StateOrProvince VALUES('NF','Newfoundland');

INSERT INTO StateOrProvince VALUES('NT','Northwest Territories');

INSERT INTO StateOrProvince VALUES('NS','Nova Scotia');

INSERT INTO StateOrProvince VALUES('NU','Nunavut');

INSERT INTO StateOrProvince VALUES('ON','Ontario');

INSERT INTO StateOrProvince VALUES('PE','Prince Edward Island');

INSERT INTO StateOrProvince VALUES('QC','Quebec');

INSERT INTO StateOrProvince VALUES('SK','Saskatchewan');

INSERT INTO StateOrProvince VALUES('YT','Yukon Territory');

INSERT INTO StateOrProvince VALUES('AL','Alabama');

INSERT INTO StateOrProvince VALUES('AK','Alaska');

INSERT INTO StateOrProvince VALUES('AZ','Arizona');

INSERT INTO StateOrProvince VALUES('AR','Arkansas');

INSERT INTO StateOrProvince VALUES('CA','California');

INSERT INTO StateOrProvince VALUES('CO','Colorado');

INSERT INTO StateOrProvince VALUES('CT','Connecticut');

INSERT INTO StateOrProvince VALUES('DE','Delaware');

INSERT INTO StateOrProvince VALUES('DC','District of Columbia');

INSERT INTO StateOrProvince VALUES('FL','Florida');

INSERT INTO StateOrProvince VALUES('GA','Georgia');

INSERT INTO StateOrProvince VALUES('HI','Hawaii');

INSERT INTO StateOrProvince VALUES('ID','Idaho');

INSERT INTO StateOrProvince VALUES('IL','Illinois');

APPENDIX C  SQL Samples in MySQL 441



INSERT INTO StateOrProvince VALUES('IN','Indiana');

INSERT INTO StateOrProvince VALUES('IA','Iowa');

INSERT INTO StateOrProvince VALUES('KS','Kansas');

INSERT INTO StateOrProvince VALUES('KY','Kentucky');

INSERT INTO StateOrProvince VALUES('LA','Louisiana');

INSERT INTO StateOrProvince VALUES('ME','Maine');

INSERT INTO StateOrProvince VALUES('MD','Maryland');

INSERT INTO StateOrProvince VALUES('MA','Massachusetts');

INSERT INTO StateOrProvince VALUES('MI','Michigan');

INSERT INTO StateOrProvince VALUES('MN','Minnesota');

INSERT INTO StateOrProvince VALUES('MS','Mississippi');

INSERT INTO StateOrProvince VALUES('MO','Missouri');

INSERT INTO StateOrProvince VALUES('MT','Montana');

INSERT INTO StateOrProvince VALUES('NE','Nebraska');

INSERT INTO StateOrProvince VALUES('NV','Nevada');

INSERT INTO StateOrProvince VALUES('NH','New Hampshire');

INSERT INTO StateOrProvince VALUES('NJ','New Jersey');

INSERT INTO StateOrProvince VALUES('NM','New Mexico');

INSERT INTO StateOrProvince VALUES('NY','New York');

INSERT INTO StateOrProvince VALUES('NC','North Carolina');

INSERT INTO StateOrProvince VALUES('ND','North Dakota');

INSERT INTO StateOrProvince VALUES('OH','Ohio');

INSERT INTO StateOrProvince VALUES('OK','Oklahoma');

INSERT INTO StateOrProvince VALUES('OR','Oregon');

INSERT INTO StateOrProvince VALUES('PA','Pennsylvania');

INSERT INTO StateOrProvince VALUES('RI','Rhode Island');

INSERT INTO StateOrProvince VALUES('SC','South Carolina');

INSERT INTO StateOrProvince VALUES('SD','South Dakota');

INSERT INTO StateOrProvince VALUES('TN','Tennessee');

INSERT INTO StateOrProvince VALUES('TX','Texas');

INSERT INTO StateOrProvince VALUES('UT','Utah');

INSERT INTO StateOrProvince VALUES('VT','Vermont');

INSERT INTO StateOrProvince VALUES('VA','Virginia');

INSERT INTO StateOrProvince VALUES('WA','Washington');

INSERT INTO StateOrProvince VALUES('WV','West Virginia');

INSERT INTO StateOrProvince VALUES('WI','Wisconsin');

INSERT INTO StateOrProvince VALUES('WY','Wyoming');

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('John', 'Smith', '10341 Crestpoint Boulevard',

'North Beach', 'VA', '10234', '1022341234');

442 Learn SQL In a Weekend



INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Jacob', 'Salter', '234 North Main', 'Groveland', null,

'45678', '7665554444');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Victoria', 'Smithe', '14301 Mountain Ridge Court',

'Huntington', 'WV', '22211', '2175438679');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Bryce', 'Hatfield', '566 Pine Road', 'Marion', 'IN',

null, null);

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Kylee', 'Dicken', null, 'Upland', 'IN', '46905',

'7654321098');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Alex', 'Thompson', null, null, 'IN', null, 

'3175551213');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Davis', 'Thompson', '298 North Broadway', 'Greensburg',

'IN', '46514', '3175551214');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Harrison', 'Thompson', '345 Hawks Point Drive Apt B',

'Indianapolis', 'IN', '46123', '3175551215');

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2000', 'Chevrolet', 'S-10', 'Purple', 'TROJANS', 

'2001-8-13', 4);

APPENDIX C  SQL Samples in MySQL 443



INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('1998', 'Ford', 'Mustang', 'Red', 'HH7832', 

'2001-9-16', 2);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2002', 'Pontiac', 'Grand Prix', 'Black', 'GOPRDUE',

'2002-5-21', 5);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('1968', 'Chevrolet', 'Corvette', 'Black', 'KODIAK',

'2002-1-20', 1);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2002', 'Nissan', 'Altima', 'White', 'HEYDARE', 

'2002-1-26', 3);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2000', 'Chrysler', 'PT Cruiser', 'Black', 'ALEX T',

'2002-5-15', 6);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2002', 'Chevrolet', 'Trail Blazer', 'Green', 'I TRADE',

'2001-5-31', 8);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('2001', 'Ford', 'Expedition', 'Maroon', 'DAVIS T', 

'2001-5-31', 7);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate, LastServiceDate, CustomerID)

VALUES ('1972', 'AMC', 'Gremlin', 'Pink', 'UGOGIRL', 

'2002-2-17', 4);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Oil Change', 60.00);

444 Learn SQL In a Weekend



INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Wiperblades', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Air Filter', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change PVC Valve', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Cooling System', 60.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Differential', 60.00);

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-30 Oil', 7.49);

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-40 Oil', 7.49);

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-30 Oil', 7.99);

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-40 Oil', 7.99);

INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-30', 13.99);

INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-40', 13.99);

INSERT INTO Part (Description, Cost)

VALUES ('Texas Tea Economy Oil Filter', 3.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Oil Filter', 4.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Air Filter', 8.99);

APPENDIX C  SQL Samples in MySQL 445



INSERT INTO Part (Description, Cost)

VALUES ('ACME Wiper Blades', 9.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Brake Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Transmission Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Coolant', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Windshield Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Differential Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME PVC Valve', 12.99);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '2002-1-20', '2002-1-20', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '2001-7-20', '2001-7-20', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (2, '2001-9-16', '2001-9-16', 2);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (3, '2002-1-26', '2002-1-26', 5);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (5, '2002-5-21', '2002-5-21', 3);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '2001-8-13', '2001-8-13', 1);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '2002-2-16', '2002-2-17', 9);

446 Learn SQL In a Weekend



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (1, 1, 1, '2002-1-20', .5);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 1, 1, '2001-7-20', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 2, 3, '2001-7-20', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 3, 4, '2001-7-20', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (3, 1, 1, '2001-9-16', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (4, 1, 1, '2002-1-26', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 1, 2, '2002-5-21', .2);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 2, 1, '2002-5-21', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (6, 1, 5, '2001-8-13', 1.15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 1, 1, '2002-2-16', .35);

APPENDIX C  SQL Samples in MySQL 447



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 2, 3, '2002-2-16', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 3, 4, '2002-2-16', .15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 4, 6, '2002-2-16', 1.0);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 5, 5, '2002-2-17', .5);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 4, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 11, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 5, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 3, 16, 1);

448 Learn SQL In a Weekend



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 6, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 1, 10, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 3, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (6, 1, 13, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 12, 1);

APPENDIX C  SQL Samples in MySQL 449



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 4, 15, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 5, 13, 1);

Your sample database is now ready to use. Enjoy!

Differences in MySQL
There are a few things we had to change in the syntax for the sample data-
base so it could be used in MySQL. We would like to highlight those
changes so you can be aware of the differences as you go through the text
in the book.

MySQL has a more limited set of data types. The Money data type and
the SmallDatetime data type mean nothing to MySQL. Money w a s
changed to Decimal(5,2) for the RatePerHour column in the S e r v i c e
table and also the Cost column in the Part table. The S m a l l D a t e t i m e
data type was changed to just D a t e t i m e. This affected the D a t e C o m p l e t e
column in JobTicketDetail and the StartDate and EndDate columns of
the JobTicket table. The LastServiceDate column in Vehicle a l s o
re q u i red this change. In addition, the pound sign had to be re m ove d
f rom the end of the LicensePlate# column in V e h i c l e. MySQL does not
like this special character in the column name.

T h e re are some topics cove red in this book that MySQL does not support .
The makers of MySQL plan to support some in the future. Others, they
feel they do not need to provide support for at all. You can check the
MySQL Web site for the current status of their plans on each of these items.

450 Learn SQL In a Weekend



The following is a list of the unsupported items in MySQL to date:

➤ Subqueries

➤ Stored procedures

➤ Triggers

➤ Foreign keys

➤ Views

Education, Training, and Certification
This book only covers SQL as a language and not specific information on
the database management systems that use it. Should you decide to con-
tinue to use MySQL, you may need a more specific book about the prod-
uct. Following is a list of some of the books available on MySQL:

Title: PHP and MySQL Web Development
Author(s): Luke Welling and Laura Thomson
Publisher: Sams
List Price: $49.99

Title: MySQL
Author(s): Paul Dubois and Michael Widenius
Publisher: New Riders
List Price: $49.99

Title: MySQL and mSQL
Author(s): Randy Jay Yager, George Reese, Tim King, 

and Andy Oram
Publisher: O’Reilly
List Price: $34.99

Title: Sams’ Teach Yourself MySQL in 21 Days
Author(s): Mark Maslakowski and Tony Butcher
Publisher: Sams
List Price: $39.99

APPENDIX C  SQL Samples in MySQL 451



Title: MySQL
Author(s): Michael Kofler
Publisher: APress
List Price: $39.95

The MySQL Web site contains a list of articles aimed at all levels of devel-
opers. The list of articles can be found at www.mysql.com/articles/. If
you are looking for something more structured or detailed, there is
online, CD-ROM, and instructor-led training available for MySQL.
Classes are held at Authorized MySQL Training Centers. You can also
request in-house training should this be necessary. Check out
www.mysql.com/training/index.html for more information.

MySQL is in the process of offering a certification path. They plan to
release the curriculum later this year (2002). The proposed certifications
are Certified MySQL Database Administrator and Certified MySQL
Database Developer.

452 Learn SQL In a Weekend



A P P E N D I X  D

SQL Samples in
Sybase SQL
A ny w h e re

A P P E N D I X  D

SQL Samples in
Sybase SQL
A ny w h e re

A P P E N D I X  D

SQL Samples in
Sybase SQL
A ny w h e re

453

Accessing SQL Anywhere
SQL Anywhere comes with a graphical editor called Interactive SQL (or
ISQL). It is used to execute commands or view data in the database. You
can find it on the Start menu under Programs, Sybase SQL Anywhere 7,
Adaptive Anywhere 7, Interactive SQL.



When ISQL starts, it asks you to log in. By default it has installed a sam-
ple database, so you can log in to that database by typing in dba for the
username and sql for the password. You can select the ODBC Data
Source Name from the list. Pick either data source. This is demonstrated
in Figure D.1.

Once logged in to ISQL, you will see a three-pane window as in Figure
D.2. The top pane allows you to enter SQL commands. The middle pane
is used to display messages, and the bottom pane is for output.

In ISQL, you execute commands by typing them in the top pane and
clicking the Execute button on the toolbar (or by selecting SQL, Execute
from the menu). You can also load in a script by selecting File, Open from
the menu. Should you need to stop the execution of a statement or script,
click the Interrupt button on the toolbar.

454 Learn SQL In a Weekend

Figure D.1

The ISQL Connect
dialog box.



The best way to enter in the commands needed to set up the sample
database is to download the commands for SQL Anywhere from the
Premier Press Web site (w w w. p re m i e r p re s s b o o k s . c o m /). You can open
the file in ISQL as just described. Click on Execute and the sample
database is re a d y.

First, however, you have to create the database in ISQL. This is very dif-
ferent, so you’ll have to do this separate from the rest of the statements.
In the top pane, type the following and click Execute on the toolbar:

CREATE DATABASE 'C:\\SlickShop'

You have to connect to the Slick Shop database to execute the rest of
the statements. On the menu, select File, New Wi n d ow. The Connect
dialog box displays. Type in DBA for the username and SQL for the pass-
w o rd. Instead of selecting an ODBC data source, you need to select a
database. Click on the Database tab. For Database Filename, type in
C:\SlickShop.db or click on Browse to select it from the Open File 
dialog box. The Database tab is shown in Fi g u re D.3. Now click on
OK. The title over the panes shows that you are now connected to the
Slick Shop database.

APPENDIX D  SQL Samples in Sybase SQL Anywhere 455

Figure D.2

The ISQL window.



If you can download the SQL, you can skip the next section. Should you
need to type the commands in yourself, however, the next section will
give you all the commands necessary to load up the sample database.

Should you make a mistake while entering the commands that you can’t
correct, type the following command and start over:

DROP DATABASE SlickShop;

SQL for the Sample Database
This section will give you the SQL you need to create the database and
tables for the Slick Shop sample database. This syntax can also be down-
loaded from the Premier Press Web site if you’d rather not type it. The
syntax covered here is for Sybase SQL Anywhere; however, this should
work fine in Sybase as well.

456 Learn SQL In a Weekend

Figure D.3

The Database tab
on the Connect

dialog box.



If you haven’t already created the database, do so now. The steps are
described in the previous section.

Now you can create the table structures for the sample database. If you’d
like to see the graphical representation of those tables, please refer to Fig-
ure 1.3 in the Friday Evening session. Type in each code listing as follows:

CREATE TABLE StateOrProvince (

StateOrProvince Char(2) NOT NULL PRIMARY KEY CLUSTERED,

StateOrProvinceName Varchar(50) NOT NULL

);

CREATE TABLE Customer (

CustomerID Integer IDENTITY NOT NULL 

PRIMARY KEY CLUSTERED,

FirstName Varchar(20) NULL,

LastName Varchar(30) NULL,

Address Varchar(100) NULL,

City Varchar(30) NULL,

StateOrProvince Char(2) NULL

REFERENCES StateOrProvince (StateOrProvince),

PostalCode Varchar(10) NULL,

PhoneNumber Varchar(10 NULL

);

CREATE TABLE Vehicle (

VehicleID Integer IDENTITY NOT NULL 

PRIMARY KEY CLUSTERED,

VehicleYear SmallInt NULL,

Make Varchar(30) NULL,

Model Varchar(30) NULL,

Color Varchar(30) NULL,

LicensePlate# Varchar(10) NULL,

LastServiceDate Smalldatetime NULL,

CustomerID Integer NOT NULL 

REFERENCES Customer (CustomerID)

);

CREATE TABLE Service (

ServiceID Integer IDENTITY NOT NULL 

PRIMARY KEY CLUSTERED,

APPENDIX D  SQL Samples in Sybase SQL Anywhere 457



Description Varchar(100) NOT NULL,

RatePerHour Money NOT NULL

);

CREATE TABLE Part (

PartID Integer IDENTITY NOT NULL 

PRIMARY KEY CLUSTERED,

Description Varchar(100) NOT NULL,

Cost Money NOT NULL

);

CREATE TABLE JobTicket (

JobTicketID Integer IDENTITY NOT NULL 

PRIMARY KEY CLUSTERED,

CustomerID Integer NOT NULL 

REFERENCES Customer (CustomerID),

StartDate Smalldatetime NULL,

EndDate Smalldatetime NULL,

VehicleID Integer NOT NULL 

REFERENCES Vehicle (VehicleID)

);

CREATE TABLE JobTicketDetail (

JobTicketID Integer NOT NULL 

REFERENCES JobTicket (JobTicketID),

LineItemNumber TinyInt NOT NULL,

ServiceID Integer NOT NULL 

REFERENCES Service (ServiceID),

DateComplete Smalldatetime NULL,

HoursSpent Decimal(5,2) NOT NULL DEFAULT 0,

CONSTRAINT PK_JobTicketDetail PRIMARY KEY (JobTicketID,

LineItemNumber)

);

CREATE TABLE PartUsed (

JobTicketID Integer NOT NULL,

LineItemNumber TinyInt NOT NULL,

PartID Integer NOT NULL REFERENCES Part (PartID),

Quantity TinyInt NOT NULL,

CONSTRAINT PK_PartUsed PRIMARY KEY (JobTicketID, LineItemNumber, 

PartID),

458 Learn SQL In a Weekend



CONSTRAINT FK_JobTicketDetail_PartUsed FOREIGN KEY (JobTicketID,

LineItemNumber)

REFERENCES JobTicketDetail (JobTicketID, LineItemNumber)

);

Now that the stru c t u res are in place, you can fill them up with the sample
data. We’ve included the I N S E RT scripts in the following. Simply type
them in and execute them, and you will have eve rything you need to get
s t a rted. If yo u’d rather not type all these commands (and why would yo u ? ) ,
you can download these statements from the Premier Press Web site.

INSERT INTO StateOrProvince VALUES('AB','Alberta');

INSERT INTO StateOrProvince VALUES('BC','British Columbia');

INSERT INTO StateOrProvince VALUES('MB','Manitoba');

INSERT INTO StateOrProvince VALUES('NB','New Brunswick');

INSERT INTO StateOrProvince VALUES('NF','Newfoundland');

INSERT INTO StateOrProvince VALUES('NT','Northwest Territories');

INSERT INTO StateOrProvince VALUES('NS','Nova Scotia');

INSERT INTO StateOrProvince VALUES('NU','Nunavut');

INSERT INTO StateOrProvince VALUES('ON','Ontario');

INSERT INTO StateOrProvince VALUES('PE','Prince Edward Island');

INSERT INTO StateOrProvince VALUES('QC','Quebec');

INSERT INTO StateOrProvince VALUES('SK','Saskatchewan');

INSERT INTO StateOrProvince VALUES('YT','Yukon Territory');

INSERT INTO StateOrProvince VALUES('AL','Alabama');

INSERT INTO StateOrProvince VALUES('AK','Alaska');

INSERT INTO StateOrProvince VALUES('AZ','Arizona');

INSERT INTO StateOrProvince VALUES('AR','Arkansas');

INSERT INTO StateOrProvince VALUES('CA','California');

INSERT INTO StateOrProvince VALUES('CO','Colorado');

INSERT INTO StateOrProvince VALUES('CT','Connecticut');

INSERT INTO StateOrProvince VALUES('DE','Delaware');

INSERT INTO StateOrProvince VALUES('DC','District of Columbia');

INSERT INTO StateOrProvince VALUES('FL','Florida');

INSERT INTO StateOrProvince VALUES('GA','Georgia');

INSERT INTO StateOrProvince VALUES('HI','Hawaii');

INSERT INTO StateOrProvince VALUES('ID','Idaho');

INSERT INTO StateOrProvince VALUES('IL','Illinois');

INSERT INTO StateOrProvince VALUES('IN','Indiana');

INSERT INTO StateOrProvince VALUES('IA','Iowa');

INSERT INTO StateOrProvince VALUES('KS','Kansas');

INSERT INTO StateOrProvince VALUES('KY','Kentucky');

APPENDIX D  SQL Samples in Sybase SQL Anywhere 459



INSERT INTO StateOrProvince VALUES('LA','Louisiana');

INSERT INTO StateOrProvince VALUES('ME','Maine');

INSERT INTO StateOrProvince VALUES('MD','Maryland');

INSERT INTO StateOrProvince VALUES('MA','Massachusetts');

INSERT INTO StateOrProvince VALUES('MI','Michigan');

INSERT INTO StateOrProvince VALUES('MN','Minnesota');

INSERT INTO StateOrProvince VALUES('MS','Mississippi');

INSERT INTO StateOrProvince VALUES('MO','Missouri');

INSERT INTO StateOrProvince VALUES('MT','Montana');

INSERT INTO StateOrProvince VALUES('NE','Nebraska');

INSERT INTO StateOrProvince VALUES('NV','Nevada');

INSERT INTO StateOrProvince VALUES('NH','New Hampshire');

INSERT INTO StateOrProvince VALUES('NJ','New Jersey');

INSERT INTO StateOrProvince VALUES('NM','New Mexico');

INSERT INTO StateOrProvince VALUES('NY','New York');

INSERT INTO StateOrProvince VALUES('NC','North Carolina');

INSERT INTO StateOrProvince VALUES('ND','North Dakota');

INSERT INTO StateOrProvince VALUES('OH','Ohio');

INSERT INTO StateOrProvince VALUES('OK','Oklahoma');

INSERT INTO StateOrProvince VALUES('OR','Oregon');

INSERT INTO StateOrProvince VALUES('PA','Pennsylvania');

INSERT INTO StateOrProvince VALUES('RI','Rhode Island');

INSERT INTO StateOrProvince VALUES('SC','South Carolina');

INSERT INTO StateOrProvince VALUES('SD','South Dakota');

INSERT INTO StateOrProvince VALUES('TN','Tennessee');

INSERT INTO StateOrProvince VALUES('TX','Texas');

INSERT INTO StateOrProvince VALUES('UT','Utah');

INSERT INTO StateOrProvince VALUES('VT','Vermont');

INSERT INTO StateOrProvince VALUES('VA','Virginia');

INSERT INTO StateOrProvince VALUES('WA','Washington');

INSERT INTO StateOrProvince VALUES('WV','West Virginia');

INSERT INTO StateOrProvince VALUES('WI','Wisconsin');

INSERT INTO StateOrProvince VALUES('WY','Wyoming');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('John', 'Smith', '10341 Crestpoint Boulevard',

'North Beach', 'VA', '10234', '1022341234');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Jacob', 'Salter', '234 North Main', 'Groveland', 

null, '45678', '7665554444');

460 Learn SQL In a Weekend



INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Victoria', 'Smithe', '14301 Mountain Ridge 

Court', 'Huntington', 'WV', '22211', '2175438679');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Bryce', 'Hatfield', '566 Pine Road', 'Marion', 

'IN', null, null);

INSERT INTO Customer (FirstName, LastName, Address, City,

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Kylee', 'Dicken', null, 'Upland', 'IN', '46905',

'7654321098');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Alex', 'Thompson', null, null, 'IN', null, 

'3175551213');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Davis', 'Thompson', '298 North Broadway', 

'Greensburg', 'IN', '46514', '3175551214');

INSERT INTO Customer (FirstName, LastName, Address, City, 

StateOrProvince, PostalCode, PhoneNumber )

VALUES ('Harrison', 'Thompson', '345 Hawks Point Drive 

Apt B', 'Indianapolis', 'IN', '46123', '3175551215');

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2000', 'Chevrolet', 'S-10', 'Purple', 'TROJANS', 

'2001-8-13', 4);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('1998', 'Ford', 'Mustang', 'Red', 'HH7832', 

'2001-9-16', 2);

APPENDIX D  SQL Samples in Sybase SQL Anywhere 461



INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2002', 'Pontiac', 'Grand Prix', 'Black', 'GOPRDUE', 

'2002-5-21', 5);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('1968', 'Chevrolet', 'Corvette', 'Black', 'KODIAK', 

'2002-1-20', 1);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2002', 'Nissan', 'Altima', 'White', 'HEYDARE', 

'2002-1-26', 3);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2000', 'Chrysler', 'PT Cruiser', 'Black', 'ALEX T', 

'2002-5-15', 6);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2002', 'Chevrolet', 'Trail Blazer', 'Green', 

'I TRADE', '2001-5-31', 8);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('2001', 'Ford', 'Expedition', 'Maroon', 'DAVIS T', 

'2001-5-31', 7);

INSERT INTO Vehicle (VehicleYear, Make, Model, Color, 

LicensePlate#, LastServiceDate, CustomerID)

VALUES ('1972', 'AMC', 'Gremlin', 'Pink', 'UGOGIRL', 

'2002-2-17', 4);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Oil Change', 60.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Wiperblades', 10.00);

462 Learn SQL In a Weekend



INSERT INTO Service (Description, RatePerHour)

VALUES ('Replace Air Filter', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change PVC Valve', 10.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Cooling System', 60.00);

INSERT INTO Service (Description, RatePerHour)

VALUES ('Change and Flush Differential', 60.00);

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-30 Oil', 7.49);

INSERT INTO Part (Description, Cost)

VALUES ('Protects 10w-40 Oil', 7.49);

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-30 Oil', 7.99);

INSERT INTO Part (Description, Cost)

VALUES ('Black Gold 10w-40 Oil', 7.99);

INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-30', 13.99);

INSERT INTO Part (Description, Cost)

VALUES ('Motion Synthetic Oil 10w-40', 13.99);

INSERT INTO Part (Description, Cost)

VALUES ('Texas Tea Economy Oil Filter', 3.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Oil Filter', 4.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Air Filter', 8.99);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Wiper Blades', 9.99);

APPENDIX D  SQL Samples in Sybase SQL Anywhere 463



INSERT INTO Part (Description, Cost)

VALUES ('ACME Brake Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Transmission Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Coolant', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Windshield Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME Differential Fluid', 0.00);

INSERT INTO Part (Description, Cost)

VALUES ('ACME PVC Valve', 12.99);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '2002-1-20', '2002-1-20', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (1, '2001-7-20', '2001-7-20', 4);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (2, '2001-9-16', '2001-9-16', 2);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (3, '2002-1-26', '2002-1-26', 5);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (5, '2002-5-21', '2002-5-21', 3);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '2001-8-13', '2001-8-13', 1);

INSERT INTO JobTicket (CustomerID, StartDate, EndDate, VehicleID)

VALUES (4, '2002-2-16', '2002-2-17', 9);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID,

DateComplete, HoursSpent)

VALUES (1, 1, 1, '2002-1-20', .5);

464 Learn SQL In a Weekend



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 1, 1, '2001-7-20', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 2, 3, '2001-7-20', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (2, 3, 4, '2001-7-20', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (3, 1, 1, '2001-9-16', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (4, 1, 1, '2002-1-26', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 1, 2, '2002-5-21', .2);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (5, 2, 1, '2002-5-21', .25);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (6, 1, 5, '2001-8-13', 1.15);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 1, 1, '2002-2-16', .35);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 2, 3, '2002-2-16', .1);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 3, 4, '2002-2-16', .15);

APPENDIX D  SQL Samples in Sybase SQL Anywhere 465



INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 4, 6, '2002-2-16', 1.0);

INSERT INTO JobTicketDetail (JobTicketID, LineItemNumber, ServiceID, 

DateComplete, HoursSpent)

VALUES (7, 5, 5, '2002-2-17', .5);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 4, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 11, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (1, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 5, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (2, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 6, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (3, 1, 7, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 1, 4);

466 Learn SQL In a Weekend



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (4, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 1, 10, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 3, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (5, 2, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (6, 1, 13, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 1, 4);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 8, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 14, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 1, 12, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 2, 9, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 3, 16, 1);

INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 4, 15, 1);

APPENDIX D  SQL Samples in Sybase SQL Anywhere 467



INSERT INTO PartUsed (JobTicketID, LineItemNumber, PartID, Quantity)

VALUES (7, 5, 13, 1);

Your sample database is now ready to use. Enjoy!

Differences in Sybase SQL Anywhere
There are very few differences between SQL Server and Sybase at a basic
level. The only change we had to make to the SQL that creates the sam-
ple database is the format of the dates that are inserted. Sybase expects the
dates to be in the format yyyy-mm-dd. So instead of typing 05-21-2002, you
have to type 2002-05-21, for instance.

You will see more differences between the two RDBMSs as you perform
more advanced tasks. SQL Server and Sybase are, in our experience, the
easiest databases to switch between.

Education, Training, and Certification
This book only covers SQL as a language and not specific information on
the database management systems that use it. Should you decide to con-
tinue to use a Sybase RDBMS, you might need a more specific book
about the product. Following is a list of some of the books available on
Sybase Adaptive Server, Sybase SQL Server 11, and SQL Anywhere:

Title: Sybase ASE 12.5 Performance and Tuning
Author(s): Jeff Garbus
Publisher: Wordware Publishing
List Price: $59.95

Title: Guide to Sybase and SQL Server
Author(s): D. McGoveran and C.J. Date
Publisher: Addison-Wesley
List Price: $59.99

468 Learn SQL In a Weekend



Title: Sybase SQL Server 11 Unleashed
Author(s): Ray Rankins et al.
Publisher: Sams
List Price: $59.99

Title: SQL Anywhere Studio
Author(s): Jose A. Ramalho and Cloyde Brown
Publisher: Wordware Publishing
List Price: $12.95

Sybase offers both online and instructor-led training. Sybase has several
authorized training partners. These are training centers that are certified
to teach Sybase technologies. Check the Sybase Web site at
www.sybase.com/education for a listing of classes and training centers.

Sybase also offers a couple different levels of certification for their data-
base products: Adaptive Server Administrator (Associate or Professional),
SQL Anywhere, and SQL Developer. You can find out more about these
certifications at www.sybase.com/education/profcert.

APPENDIX D  SQL Samples in Sybase SQL Anywhere 469



This page intentionally left blank 



471

A
ABS—A SQL mathematical function that takes a value and returns the absolute value.

ALTER DATABASE—A SQL command used to change the properties of a database from a DBMS
such as the character set, caching, and backup characteristics.

ALTER TABLE—A SQL statement that is used to change the properties of a table such as the
columns it contains or the constraints that apply to it.

ANY—A SQL keyword that allows you to perform a comparison against a list of values—ANY is used
in combination with the SQL comparison operators.

AS—A SQL keyword used to alias a column name, an expression, or a table name.

ASCII—A SQL function that provides the numeric ASCII value for a character.

Audit trail—A historical record of changes that are made to a set of data. The record may include the
name of the person who made the changes, the date, the time, and specific details about the data that
was inserted, updated, or deleted.

AUTO_INCREMENT—A column whose value automatically increments by a set value whenever a
row is inserted with a NULL in the column. SQL Server and Sybase use IDENTITY.

AVG—A SQL aggregate function that takes a set of data (a column or an expression) and averages the
values in the set.

B
BETWEEN—A SQL operator that determines if a value is within the specified range.

GLOSSARY



Business rule—Defines or restricts data to meet a particular business practice rather than just a uni-
versally accepted fact.

C
Cartesian product—Occurs when at least two tables are not properly joined together. Every row from
the first table is joined with every row in the second table and so forth until every possible combina-
tion is presented.

Cascading delete—Handles the situation where a primary key row is deleted. The cascading delete
will automatically delete the related foreign key rows in other tables. An alternative action may also be
available to update the foreign key values to NULL instead of deleting the row.

Cascading update— Handles the situation where a primary key value is updated. The cascading update
will automatically update any related foreign key values in other tables to match the new va l u e .

CASE—A SQL function that is used to evaluate a value or an expression to determine the appropriate
result. It can be used to compare values to a column or to evaluate several Boolean expressions.

CAST—A SQL function used to convert a column or an expression from one data type to another.

CEIL—See CEILING.

CEILING—A SQL function that returns the nearest integer greater than the value specified.

CHAR—A SQL function that returns the character associated with an ASCII value.

Clause—A portion of a statement. In the case of SQL, each clause is identified by a keyword such as
FROM or WHERE.

Clustered index—An index that specifies the physical order of the data. A table may have only one
clustered index.

Column—A piece of information in a table, such as the address of your customer.

Composite index—An index made up of two or more columns.

Computed columns—Columns in your result set that are made up of one or more columns from the
tables in the FROM clause of the query. They are also referred to as expressions.

CONCAT—A SQL function that combines two strings together.

Constraint—An option that further defines a table or a column. It will either add more information
to or put certain restrictions on the table or column.

CONVERT—A SQL function used to convert a column or an expression from one data type to
another. It is similar to CAST, only CONVERT allows a format to be specified as well.

472 Learn SQL In a Weekend



Glossary 473

Correlated subquery—A subquery that references the tables of the outer query. Because of this refer-
ence, the subquery must be reevaluated for every row examined by the outer query.

CO U N T—A SQL aggregate function that takes a set of data and counts the number of items in the set.

CREATE DATABASE—A SQL command used to create a database.

CREATE INDEX—A SQL command used to create an index on a table.

CREATE ROLE—A SQL command used to create a role in the database.

CREATE SESSION—A privilege that must be granted to each user in an Oracle database before the
user can access the database.

CREATE TABLE—A SQL command used to create a table in the database.

CREATE TRIGGER—A SQL command used to create a trigger on a table.

CREATE USER—A SQL command used to create a user in the database.

CREATE VIEW—A SQL command used to create a view in the database.

CROSS JOIN—Used to join each row from the first table to each row of the second table. When used
without a WHERE clause, it results in a Cartesian product. When used with a WHERE clause, it acts
like an INNER JOIN.

D
Database—A container for related tables. It acts like a file cabinet containing many folders.

DATALENGTH—See LEN.

DATEADD—A SQL function used to add a particular value to part of the date. For instance, you
could use it to add two days to the original date, or maybe you would like to add 32 weeks.

DATEDIFF—A SQL function used to find the interval between two dates. The interval can be
expressed in any one of a list of units such as days, weeks, quarters, or many other units.

DATENAME—A SQL function that allows you to obtain the value of a specific piece of the DATE-
TIME value. It is similar to DATEPART, except that this function will show you the name of the
value instead of the number.

DATEPART—A SQL function that allows you to obtain the value of a specific piece of the DATE-
TIME value.

DAY—A SQL function that returns the day portion of a date value.

DELETE—A SQL command used to remove rows of data from a table.



474 Learn SQL In a Weekend

DIFFERENCE—A SQL function used to find out how closely two strings sound. A number from 0
to 4 is returned, with 4 being the best possible match.

DISTINCT—A SQL keyword that filters duplicates from a result set.

DROP DATABASE—A SQL command used to delete a database from a DBMS.

DROP INDEX—A SQL command used to delete an index from a table.

DROP ROLE—An Oracle command used to delete a role from the database.

DROP TABLE—A SQL command used to delete a table from the database.

DROP USER—An Oracle command that deletes a user from the database.

E
EXECUTE—A SQL command used to run a stored procedure or function.

EXISTS—A SQL command used to test for the existence of a result set returned from a subquery.

Explicit conve r s i o n—A conversion that re q u i res the user to tell the DBMS that the value needs con-
ve rted and what data type it needs to be.

F
FLOOR—A SQL function that returns the nearest integer lesser than the value specified.

Foreign key—A column in the table used to point to the primary key of another table.

FROM—A SQL clause used to specify the tables involved in a SELECT, an INSERT, an UPDATE, or
a DELETE statement.

FULL OUTER JOIN—See OUTER JOIN.

G
GETDATE—A SQL function that returns the current date and time from the database server. SYS-
DATE is used instead of GETDATE by some DBMSs.

GRANT—A SQL command used to grant a privilege to a user, role, or group.

GRANT ROLE—A Sybase command used to grant a role to a user.

GROUP BY—A SQL clause used to group the rows in a result set by the specified columns.



Glossary 475

H
H AV I N G—A SQL clause used to filter the groups in a result set. It is used with the GROUP BY clause.

I
IDENTITY—See AUTO_INCREMENT.

Implicit conversion—A conversion that the DBMS can perform without specific instruction to do so.
For example, SQL Server will automatically convert an integer value to a string if it is used in a string
function. SQL Server cannot convert a smallint to a string without being told to, however.

IN—A SQL operator that allows you to match a column or an expression against a list of values.

In d e x—An index provides the DBMS with the logical or physical order of the data in the table. W h e n
the DBMS has an index to tell it the order of the data, it can access the data in the table much faster.

INNER JOIN—A type of join in SQL. An inner join is used when the tables being joined must have
a matching value in the other table.

INSERT—A SQL statement used to insert data into a table.

ISNULL—A SQL function that allows you to replace NULLs found in a column or an expression
with a value of your choosing. 

L
LEFT—A SQL function that removes the specified number of characters from the left side of a sup-
plied string.

LEFT OUTER JOIN—See OUTER JOIN.

LEN—A SQL function that returns the length of a column or an expression. 

LENGTH—See LEN.

LIKE—A SQL operator used to compare a column or an expression to a match expression.

LOWER—A SQL function that returns the supplied string in all lowercase characters.

LTRIM—A SQL function that trims spaces from the left side of the supplied string.

M
MAX—A SQL aggregate function that takes a set of data (a column or an expression) and returns the
largest value in that set.



476 Learn SQL In a Weekend

MIN—A SQL aggregate function that takes a set of data (a column or an expression) and returns the
smallest value in that set.

MONTH—A SQL function that returns the month portion of a date value.

N
Naming convention—An agreed-upon standard for giving names to all objects within a database. The
standard may dictate the case, tense, punctuation, and abbreviations that should be used when naming
new objects.

Nonclustered index—An index that specifies a logical order for the data. A table may have many non-
clustered indexes.

NULL—Means the value is unknown. It is not the same as an empty string.

NVL—See ISNULL.

O
Optimizer—Programming logic that is built into the DBMS. Its purpose is to investigate SQL com-
mands before they are executed and determine the best and fastest way to execute the command.

ORDER BY—A SQL clause used to sort the result set on the columns specified.

Orphaned data—Data that cannot be traced back to its parent. It is data in a foreign key column that
should exist as a primary key in another table, but does not. This is often the result of the row in the
primary key table being deleted.

OUTER JOIN—A type of join in SQL. An OUTER JOIN is used when all the rows from one table
should be returned regardless of a matching row being found in the other table. A RIGHT OUTER
JOIN means all rows from the right table should be returned. A LEFT OUTER JOIN means all rows
from the left table should be returned. 

P
PL-SQL—Oracle's extension to ANSI SQL.

Primary key—A column or set of columns that uniquely identify each row in the table.

R
RDBMS—See Relational Database Management System.



Glossary 477

Referential integrity—The concept of keeping a database's tables properly related to one another. If
two tables are related in a database, then there should not be missing or undefined data in any of the
columns that make up the relationship.

Relational Database Management System—Also known as RDBMS or just DBMS, the software
that contains databases and provides an interface to those databases.

R E P LAC E—A SQL function that is used to replace a portion of a string with another va l u e .

Replication—A term used for copying or distributing data between two or more databases. It can
involve creating identical copies of data, summarizing data, or storing a subset of the original.

REVOKE—A SQL command used to remove a privilege previously granted to a user, role, or group.

RIGHT—A SQL function that removes the specified number of characters from the right side of a
supplied string.

RIGHT OUTER JOIN—See OUTER JOIN.

ROUND—A SQL function used to round a value to the precision specified.

Row—Represents a single entry within a table.

RTRIM—A SQL function that trims spaces from the right side of the supplied string.

S
SELECT—A SQL command used to retrieve data from an RDBMS.

SET—A SQL command used to set various database environment variables.

SET ROLE—A SQL command Oracle users must issue before they can use a role they have been
assigned.

SIGN—A SQL function that returns 1 if the specified value is positive, −1 if it is negative, or 0 if the
value is zero.

SOUNDEX—A SQL function that converts the string into a number representing its sound value.
When the SOUNDEX value of one string is equal to the SOUNDEX value of another string, it means
the two strings sound alike even if they are spelled differently.

sp_addlogin—A SQL Server stored procedure used to add a login to the database.

sp_addgroup—A Sybase stored procedure used to add a group to the database.

sp_addrole—A SQL Server stored procedure used to add a role to the database.

sp_addrolemember—A SQL Server stored procedure used to add a user to a role in the database.

sp_adduser—A SQL Server stored procedure used to add a user to the database.



sp_changegroup—A Sybase stored procedure used to add a member to a group in the database.

sp_dropgroup—A Sybase stored procedure used to delete a group from the database.

sp_droplogin—A SQL Server stored procedure used to delete a login from the database.

sp_droprole—A SQL Server stored procedure used to drop a role from the database.

sp_dropuser—A SQL Server stored procedure used to delete a user from the database.

SPACE—A SQL function that returns a string containing the specified number of spaces.

SQL—An ANSI standard language used to communicate with relational database management sys-
tems.

SQRT—A SQL function that returns the square root of the value specified.

SQUARE—A SQL function that returns the square of the value specified.

STDEV—A SQL aggregate function that takes a set of data (a column name or an expression) and
returns the standard deviation of the values in that set.

Stored procedures—A set of one or more queries or commands that are saved and can be executed
later.

Subquery—A SELECT statement nested inside another query. It returns a value to the containing
query for evaluation. The query containing the subquery is referred to as the outer query. Subqueries
are often referred as an inner query, an inner select, a subselect, or a nested query.

SUBSTRING—A SQL function that returns the portion of the supplied string starting with the sup-
plied beginning position and ending with the supplied ending position.

SUM—A SQL aggregate function that takes a set of data (a column name or an expression) and
returns the sum of the values in that set.

Surrogate key—Data that by itself has no meaning, like a name or an address does. This data is used
to uniquely identify each row in a table. A sequentially increasing number is an example of a surrogate
key.

SYSDATE—See GETDATE.

T
Table—Stores pieces of related information like a folder in a file cabinet would. An example of a table
would be a customer table that would hold things like customer name, address, and phone number.

Table scan—The process of a SQL command looking at every row in a table one by one in order to
test the values of one or more columns.

478 Learn SQL In a Weekend



TO_CHAR—An Oracle function that converts a value to a char data type.

TO_DATE—An Oracle function that converts a value to a date data type.

TO_NUMBER—An Oracle function that converts a value to a number data type.

Transact-SQL—An extension to ANSI SQL used by SQL Server and Sybase. It is also called T-SQL.
Transact-SQL does not have the exact same capabilities between vendors, but the basis is similar.

Triggers—A set of SQL commands that runs automatically. A trigger is associated with a certain table
and only executes when the specified action takes place on that table.

U
UNION—A SQL operator that allows you to combine the results of two or more similar SELECT
statements.

Unique index—An index created on a column or set of columns to prevent duplicate entries. One is
most often found on a primary key column.

UPDATE—A SQL statement used to modify the data in one or more columns of a table.

UPPER—A SQL function that returns the supplied string in all uppercase characters.

USER_NAME—A SQL function that returns the name of the current user, or the name associated
with the supplied user ID.

V
VAR—A SQL aggregate function that takes a set of data (a column name or an expression) and
returns the variance of the values in that set.

W
W H E R E—A SQL clause used to filter the result set.

Y
YEAR—A SQL function that returns the year portion of a date value.

Glossary 479



480

Symbols
+ (addition operator), 75–76

* (asterisk), 338

/ (division operator), 75–76

= (Equal operator), 47

> (greater than operator), 47

>= (greater than or equal operator), 47

< (less than operator), 47

<=(less than or equal to operator), 47–48

* (multiplication operator), 75–76

<>(Not equal operator), 47

% (remainder of division operator), 75–76

[ ] (square brackets), 55

|| (string concatenation), 97

− (subtraction operator), 75–76

_ (underscore character), 54–55

% (wildcard character), 54

A
ABS function, 88

Access, creating user accounts and groups in, 274

accessing

MySQL, 437–438

Oracle, 419–420

SQL Anywhere, 453–456

SQL Server, 403–404

ACOS function, 88

Active Server Pages (ASP), Web page data access with,
377–382

ActiveX Data Objects (ADO), 351

Adaptive Server Enterprise (ASE), 6

Add Tables dialog box (Microsoft Query), 336, 342

adding

columns to tables, 176

Microsoft Query to Start menu, 332

addition operator (+), 75–76

ADO (ActiveX Data Objects), 351

ADO Control button (Visual Basic 6.0), 352

INDEX



481

aggregate functions

AVG, 86

COUNT, 82–84

defined, 87

MAX, 85–86

nonaggregate function, 88

returning from subquery, 122–123

STDEV, 86–87

SUM, 84–85

VAR, 86–87

alias, 43

Allow Editing option (Microsoft Query), 344

Allow Updates check box (PowerBuilder), 391

ALTER TABLE command, 176–177

DELETE command, 189–196

DROP TABLE command, 178–180

INSERT command, 180–185

UPDATE command, 185–189

AND expression, 49–50

ANSI (American National Standards Institute), 3

ANY keyword, 120

arithmetic operators, list of, 75

ASCII function, 100

ASE (Adaptive Server Enterprise), 6

ASIN function, 88

ASP (Active Server Pages), Web page data access with,
377–382

ASP.NET, building data access pages with, 382–387

asterisk (*), 338

ATAN function, 88

audit trails, 309

authentication

database authentication, 266

operating system authentication, 266–267

Auto Query button (Microsoft Query), 343

AVG function, 86

B
back-end application development, 225

BEGIN TRANSACTION command, 237, 322

BETWEEN expression, 50–53

binary data types, 163–164

Boolean data types, 163

brackets ([ ]), 55

business rules, 322

business rules, enforcing with triggers, 322–327

buttons

ADO Control (Visual Basic 6.0), 352

Auto Query (Microsoft Query), 343

DataGrid (Visual Basic 6.0), 354



482 Index

clauses

defined, 32

FROM, joining tables using, 58

WITH GRANT OPTION, 285

HAVING, subqueries within, 123–124

ORDER BY, 38–43

sorting indexes using, 214

SQL SELECT option, 389

REFERENCE, granting permissions with, 286

WHERE

CREATE INDEX command, 206

filtering results using, 44–56

function of, 44

joining tables using, 58

subqueries within, 117–118

views, using to simplify queries, 298–301

clustered indexes, 215–217

columns

adding to tables, 176

column-level constraints, 165

CHECK constraint, 167

IDENTITY constraint, 167–168

NULL, 166

PRIMARY KEY constraint, 168

REFERENCES constraint, 169

UNIQUE constraint, 167

computed, creating, 72–74

defined, 10

deleting from tables, 189–196

foreign key, 13

primary key, 12

removing from tables, 176–177

selecting

multiple, 33–34

in order, 40

single from single table, 32

Get Data (PowerBuilder), 395

Insert Database (Microsoft Word), 347

Insert Merge Field (Microsoft Word), 350

Query Now (Microsoft Query), 343

Refresh (Microsoft Excel), 346

Save Changes (PowerBuilder), 392

Show/Hide Criteria (Microsoft Query), 339

Sort Ascending (Microsoft Query), 339

Sort Descending (Microsoft Query), 339

Tab Order (PowerBuilder), 391

View Merged Data (Microsoft Word), 350

C
C# .NET

Generate Dataset dialog box, 374

New Project dialog box, 373–374

overview, 367

retrieving SQL data with, 372–377

C++ (Visual C++)

overview, 367

retrieving SQL data with, 368–372

cascading delete, 173

cascading update, 173

CASE function, 108–109

case sensitivity, naming conventions, 165

CAST function, 98–99

CEIL function, 89

certifications

MySQL, 451–452

Oracle, 434–435

SQL Anywhere, 468–469

SQL Server, 416–417

CHAR function, 100

CHECK constraint, 167

Choose Data Source dialog box, 333

Choose Query Options (Microsoft Word), 348



DELETE, 189–196

deleting entries from indexes, 207

deleting triggers using, 315

stored procedures and, 225

DROP DATABASE, 197–198

DROP INDEX, 220

DROP PROCEDURE, 224

DROP TABLE, 178–180

EXECUTE, privileges and, 290–292

FETCH, 230–231, 399

GRANT (granting privileges)

WITH GRANT OPTION clause, 285

overview, 274–275

REFERENCES clause, 286

running stored procedures using, 290–292

table privileges, 274–287

views, granting privileges to, 298

grouping, limiting use of, 250–251

IF UPDATE, 314

INSERT, 168

adding entries to indexes, 207

granting privileges using, 277–278

rows, adding to tables, 180

stored procedures and, 225

triggers, auditing user activity with, 309–314

INSTEAD OF, 319–321

RAISERROR, 323

REVOKE, 284, 293

ROLLBACK TRANSACTION, 237

SQL INSERT, 400

UPDATE, 185–189

IF UPDATE command, 314

stored procedures and, 225

transactions, 236

updating data with views, 303–307

updating entries in indexes, 207

COMMIT TRANSACTION command, 237

sorting

in alphabetical order, 41–42

by name, 39–40

in order returned, 34–35

UPDATE command, 185–189

CommandButton (PowerBuilder), 393

commands. See also statements

ALTER TABLE, 176–177

DELETE command, 189–196

DROP TABLE command, 178–180

INSERT, 180–185

UPDATE command, 185–189

BEGIN TRANSACTION, 237, 322

COMMIT TRANSACTION, 237

CREATE DATABASE, 154

binary data types, 163–164

Boolean data types, 163

date and time data type, 161–162

DROP DATABASE command, 197–198

numeric data types, 158–161

string data types, 156–158

CREATE INDEX

DELETE command, 207

INSERT command, 207

naming conventions, 205

SELECT command, 204–211

syntax for, 204

table scans, avoiding, 206

UPDATE command, 207

WHERE clause, 206

CREATE SEQUENCE, 433

CREATE TABLE, 164

column-level constraints, 165–169

DELETE command, 189–196

INSERT command, 180–185

naming conventions, 164–165

table-level constraints, 170–174

UPDATE command, 185–189

483Index



comparison operators

greater than or equal to, 47–48

less than or equal to operator, 48

list of, 47

Components dialog box (Visual Basic 6.0), 352

composite indexes, 211–214

computed columns, creating, 72–74

CONCAT function, 97

constraints

column-level, 165

CHECK constraint, 167

IDENTITY constraint, 167–168

NULL, 166

PRIMARY KEY constraint, 168

REFERENCES constraint, 169

UNIQUE constraint, 167

defined, 166

IDENTITY, 433

table-level, 170–174

UNIQUE, CREATE UNIQUE INDEX command,
215

conversion functions

ASCII, 100

CAST, 98–99

CHAR, 100

CONVERT, 99–100

explicit conversions, 98

implicit conversions, 98

overview, 97

TO_CHAR, 101

TO_DATE, 101

TO_NUMBER, 101

CONVERT function, 99–100

correlated subquery, 118

COS function, 88

COT function, 88

COUNT function, 82–84

CREATE DATABASE command, 154

binary data types, 163–164

Boolean data types, 163

date and time data types, 161–162

DROP DATABASE command, 197–198

numeric data types, 158–161

string data types, 156–158

table scans, avoiding, 206

WHERE clause, 206

CREATE INDEX command

DELETE command, 207

INSERT command, 207

naming conventions, 205

SELECT command, 204–205, 207–211

syntax for, 204

UPDATE command, 207

Create New Data Source dialog box (Microsoft
Query), 334–335

CREATE SEQUENCE command, 433

CREATE TABLE command, 164

column-level constraints, 165

AUTO_INCREMENT constraint, 167–168

CHECK constraint, 167

IDENTITY constraint, 167–168

NULL, 166

PRIMARY KEY constraint, 168

REFERENCES constraint, 169

UNIQUE constraint, 167

DELETE command, 189–196

INSERT COMMAND, 168, 180–185

naming conventions, 164–165

table-level constraints, 170–174

UPDATE command, 185–189

CROSS JOIN command, 70–72

cursors, stored procedures and, 229–231

484 Index



MyQSL, sample of, 438–450

one-to-many relationship, 10

one-to-one relationship, 11

optimization techniques. see optimization

Oracle, sample of, 420–432

performance, speeding up, 221–222

recursive relationship, 11–12

rows

defined, 11

eliminating duplicate, 37

SQL Anywhere, sample database, 456–468

SQL Server, sample database, 405–414

tables

defined, 10

joining, 57–72

rows, 11

DataFactory (Quest Software), 250

DataGrid button (Visual Basic 6.0), 354

DATALENGTH function, 106–107

DataSet objects, 364–365

DataWindow (PowerBuilder DataWindow), 396

Allow Updates check box, 391

CommandButton, 393

Database Profiles dialog box, 388

Get Data button, 395

overview, 387

Save Changes button, 392

SQL SELECT option, 389

Syntax tab, 390

Tab Order button, 391

date and time data types, 161–162

date and time functions

DATEADD, 102–103

DATEDIFF, 102–103

DATENAME, 104

DATEPART, 104

DAY, 105

GETDATE, 101–102

D
DAO (Data Access Objects), 351

data

orphaned data, 173

striping, 261–262

synchronizing with triggers, 314–317

updating with views

complex views, 306–307

simple views, 303–305

Data Access Objects (DAO), 351

Data Adapter Configuration wizard (Visual 
Basic .NET), 363–366

Data Link Pro p e rties dialog box (Visual Basic 6.0), 3 5 3

data models, 13

data types

binary, 163–164

Boolean, 163

date and time, 161–162

numeric, 158–161

string, 156–158

varchar, 157, 386

Database dialog box (Microsoft Word), 347

Database Profiles dialog box (PowerBuilder), 388

databases. See also RDBMS

columns

computed, creating, 72–77

defined, 10

foreign key, 13

primary key, 12

selecting in order, 40

sorting by name, 39–40

sorting in alphabetical order, 41–42

creating. see CREATE DATABASE command

data models, 13

defined, 10

DROP DATABASE command, 197–198

dropping, example of, 17–27

many-to-many relationship, 11

485Index



MONTH, 105

SYSDATE, 101–102

YEAR, 105

DATE data type, 161

DATEDIFF function, 102–103

DATENAME function, 104

DATEPART function, 104

DATETIME data type, 161

DAY function, 105

DBMS. See RDBMS (relational database management
systems)

deadlocking, 254–256

DELETE command, 189–196

delete entries from indexes, 207

deleting triggers using, 315

stored procedures and, 225

deleting

cascading delete, 173

columns from tables, 176–177, 189–196

rows from tables, 189–196

tables from queries, 342

triggers, 315

dialog boxes

Add Table (Microsoft Query), 336, 342

Choose Data Source, 333

Components (Visual Basic 6.0), 352

Create New Data Source (Microsoft Query),
334–335

Data Link (Visual Basic 6.0), 353

Database (Microsoft Word), 347

Database Profiles (PowerBuilder), 388

Edit Criteria (Microsoft Query), 339–340

Generate Dataset (C# .NET), 374

Login (Microsoft Query), 335

Mail Merge Helper (Microsoft Word), 349

New Project (C# .NET), 373–374

References (Visual Basic 6.0), 358

Returning External Data to Microsoft Excel,
344–345

Select Values (Microsoft Query), 340

SQL (Microsoft Query), 341

DIFFERENCE function, 97

DISTINCT keyword, 37

division operator (/), 75–76

DROP DATABASE command, 197–198

DROP INDEX command, 220

DROP PROCEDURE command, 224

DROP TABLE command, 178–180

E
Edit Criteria dialog box (Microsoft Query), 339–340

Edit Main Document option (Microsoft Word), 349

editing tables. See ALTER TABLE command

education

MySQL, 451–452

Oracle, 434–435

SQL Anywhere, 468–469

SQL Server, 416–417

Equal operator (=), 47

ERD (Entity Relationship Diagram), 174

examples. See queries

Excel (Microsoft Excel)

Refresh button, 346

Returning External Data to Microsoft Excel dialog
box, 344–345

EXECUTE command, privileges and, 290–292

EXISTS keyword, 118–119

explicit conversions, 98

F
FETCH command, 230–231, 399

First Normal Form, 139–143

FLOOR function, 89

foreign key, 13

486 Index



mathematical, 87

ABS, 88

CEIL, 89

FLOOR, 89

ROUND, 89

SIGN, 90

SQRT, 90

SQUARE, 90

trigonometry functions, 88

overview, 81–82

string, 90

CONCAT, 97

DATALENGTH, 94

DIFFERENCE, 97

LEFT, 93–94

LEN, 94

LOWER, 91–92

LTRIM, 92–93

REPLACE, 95–96

RIGHT, 93–94

RTRIM, 92–93

SOUNDEX, 96

SPACE, 95

SUBSTRING, 93–94

UPPER, 91–92

system

CASE function, 108–109

DATALENGTH, 106–107

ISNULL, 107–108

NVL, 107–108

USER_NAME, 105

G
Generate Dataset dialog box (C# .NET), 374

Get Data button (PowerBuilder), 395

GETDATE function, 101–102

FOREIGN KEY keyword, 170

Fox Pro, 8

FreeBSD, relational databases and, 8

FROM statement

function of, 32

joining tables using, 58

front-end application development, 225

functions

aggregate

AVG, 86

COUNT, 82–84

MAX, 85–86

nonaggregate, 88

returning from subquery, 122–123

STDEV, 86–87

SUM, 84–85

VAR, 86–87

conversion

ASCII, 100

CAST, 98–99

CHAR, 100

CONVERT, 99–100

explicit conversions, 98

implicit conversions, 98

overview, 97

TO_CHAR, 101

TO_DATE, 101

TO_NUMBER, 101

date and time

DATEADD, 102–103

DATEDIFF, 102–103

DATENAME, 104

DATEPART, 104

DAY, 105

GETDATE, 101–102

MONTH, 105

SYSDATE, 101–102

YEAR, 105

487Index



granting privileges (GRANT command)

WITH GRANT OPTION clause, 285

INSERT command, 277–278

overview, 274–275

REFERENCES clause, 286

to run stored procedures, 290–292

table privileges, 275–287

views, granting privileges to, 298

greater than operator, 47

greater than or equal to operator, 47

group accounts, creating, 267

in Access, 273

in Informix, 273

in Microsoft, 268–270

in MySQL, 273

in Oracle, 271–272

in Sybase, 270–271

grouping commands, limiting use of, 250–251

H
HAVING clause, subqueries within, 123–124

I
IBM Web site, 7

IDENTITY constraint, 167–168, 433

IF UPDATE command, 314

implicit conversions, 98

IN expression, 50–51

IN keyword, 120–121

indexes

adding or removing entries from, 207

clustered, 215–217

composite, 211–214

creating. see CREATE INDEX command

disk space, 217–218, 319

dropping, 220, 251

in hierarchical format, 205

nonclustered, 215

optimization techniques, 244–245

overview, 203–204

processing time, 217–218, 319

re-sorting, 207

response times, 206–207

sorted, 214

unique, 215

Informix, creating user accounts and groups in, 273

INNER JOIN command, 58–59

INSERT command, 168

adding entries to indexes, 207

granting privileges using, 277–278

rows and columns, adding to tables, 180–185

stored procedures and, 225

triggers, auditing user activity with, 309–314

Insert Database button (Microsoft Word), 347

Insert Merge Field button (Microsoft Word), 350

INSTEAD OF command, 319–321

IS NOT operator, 47

IS operator, 47

ISNULL function, 107–108

J
joining tables, 57

eliminating duplicates, 69

using CROSS JOIN, 70–72

using FROM and WHERE clause, 58

using INNER JOIN, 58–59

using OUTER JOIN, 58–65

using self-join, 65–68

488 Index



ROUND, 89

SIGN, 90

SQRT, 90

SQUARE, 90

trigonometry functions, 88

MAX function, 85–86

Microsoft

creating user accounts and groups in, 268–270

Web site, 383

Microsoft Excel. See Excel

Microsoft Query. See Query

Microsoft Visual Basic 6.0. See Visual Basic 6.0

Microsoft Word. See Word

MONTH function, 105

multiplication operator (*), 75–76

MySQL

accessing, 437–438

certifications, 451–452

creating user accounts in, 273

enhancements to, 450–451

references, 451–452

sample database, 438–450

training, 451–452

Web site address, 8

N
,n (one or more of previous items), 32

naming conventions

case sensitivity, 165

CREATE INDEX command, 205

defined, 164

nesting, 125

New Project dialog box (C# .NET), 373–374

nonaggregate function, 88

nonclustered indexes, 215

normalization

defined, 135

First Normal Form, 139–143

K
keywords

IN, 120–121

ANY, 120

DISTINCT, 37

EXISTS, 118–119

FOREIGN KEY, 170

NOT EXISTS, 119

NOT IN, 121–122

PRIMARY KEY, 170

L
LEN function, 94

less than operator, 47

less than or equal to operator, 47–48

LIKE expression, 50–51, 53

Linux, relational databases and, 8

Login dialog box (Microsoft Query), 335

logon names and roles, creating, 267

in Access, 274

in Informix, 273

in Microsoft, 268–270

in MySQL, 273

in Oracle, 271–272

in Sybase, 270–271

looping, 229–231

LOWER function, 91–92

LTRIM function, 92–93

M
Mail Merge Helper dialog box (Microsoft Word), 349

many-to-many relationship, 11

mathematical functions

ABS, 88

CEIL, 89

FLOOR, 89

overview, 87

489Index



Second Normal Form, 143–145

Slick Shop database example, 136–139

Third Normal Form, 145–147

Not equal operator, 47

NOT EXISTS keyword, 119

NOT expression, 51, 56

NOT IN keyword, 121–122

NULL value, 37, 44

numeric data types, 158–161

NVL function, 107–108

O
ODBC (Open Database Connectivity), 257

OLTP (online transaction processing), 258–261

one-to-many relationship, 10

one-to-one relationship, 11

online transaction processing. See OLTP

Open Database Connectivity. See ODBC

operating system authentication, 266–267

operators

arithmetic operators, list of, 75

comparison operators, list of, 47–48

UNION, 128–130

optimization, 243

DataFactory (Quest Software), 250

deadlocking, 254–256

execution plans, examining, 253–254

grouping commands, limiting use of, 250–251

indexes, 244–245

dropping before bulk loads, 251

result sets, avoiding large, 245–246

servers, fine tuning, 261–262

sorting data, 246–247

stress testing, 248

striping, 261–262

table scans, avoiding, 251–252

test data, 248–250

traces, setting up, 256–257

optimizer, 209

OR expression, 49–50

Oracle

accessing, 419–420

certifications, 434

creating user accounts and groups in, 271–272

enhancements to, 432–433

references, 434

relational databases and, 5–6

sample database, 420–432

Web site address, 6

ORDER BY clause, 38–43

sorting indexes using, 214

SQL SELECT option, 389

orphaned data, 173

orphaned rows, preventing, 318

OUTER JOINS, 58–65

P
performance (database performance). See also

optimization, 221–222

permissions. See privileges

PowerBuilder DataWindow. See DataWindow, 396

PowerScript, 396–400

Premier Press Web site, 404

primary key, 12

PRIMARY KEY constraint, 168

PRIMARY KEY keyword, 170

privileges, granting (GRANT command)

WITH GRANT OPTION clause, 285

INSERT command, 277–278

overview, 274–275

REFERENCES clause, 286

to run stored procedures, 290–292

table privileges, 275–287

privileges, revoking, 284, 293

490 Index



expressions

AND, 50

BETWEEN, 50, 52–53

IN, 50–51

LIKE, 50, 52–53

NOT, 51

OR, 50

FLOOR function, 89

GETDATE function, 102

indexes

clustered, 216–217

creating, 204–211

dropping, 220

sorted, 214

unique, 215

ISNULL function, 107–108

joins

INNER JOINS, 58–59

OUTER JOINS, 58–65

self-joins, 65–68

IN keyword, 120–121

LEFT function, 93–94

LEN function, 94

logon names and roles, creating

in Access, 274

in Informix, 273

in Microsoft, 268–270

in MySQL, 273

in Oracle, 271–272

in Sybase, 270–271

LOWER function, 91–92

LTRIM function, 93

MAX function, 85–86

MONTH function, 105

MySQL, sample database, 438–450

NOT EXISTS keyword, 119

NOT IN keyword, 121–122

Q
queries

[ ] (square brackets), 55

_ (underscore character), 54–55

ABS function, 88

ANY keyword, 120

arithmetic operators, 75–77

ASCII function, 100

ASP (Active Server pages), Web page data access with,
377–382

ASP.NET, building data access pages with, 383–386

AVG function, 86

CASE function, 108–109

CAST function, 98–99

CEIL function, 89

CHAR function, 100

FROM clause, joining tables using, 58

columns, computed, 71–76

comparison operators

greater than or equal operator, 47–48

less than or equal to operator, 48

WHERE clause, 44

CONCAT function, 97

CONVERT function, 100

COUNT function, 83–84

databases, dropping, 17–27

DATEADD function, 103

DATEDIFF function, 103

DATELENGTH function, 106–107

DATENAME function, 104

DATEPART function, 104

DAY function, 105

DIFFERENCE function, 97

EXISTS keyword, 118

AND expression, 49–50

BETWEEN expression, 50–53

IN expression, 50–51

491Index



NVL function, 107–108

optimization techniques

execution plans, examining, 253–254

indexes, 244–245

table scans, avoiding, 252

test data, 249

Oracle, sample database, 420–432

privileges

granting, 275–286

revoking, 284, 293

removing tables from, 342

REPLACE function, 96

RIGHT, 93–94

ROUND function, 89

RTRIM function, 93

SELECT statement

DISTINCT keyword, 37

eliminating duplicate rows using, 37

function of, 31

limitation of, 36

ORDER BY clause, 38–43

selecting columns in order using, 40

selecting multiple columns using, 33–34

selecting single columns from single table, 32

sorting columns by name using, 39–41

sorting columns in alphabetical order using,
41–42

sorting columns in order returned, 34–35

subqueries within, 124–125

WHERE clause, 44

SIGN function, 90

simplifying with views, 298–301

SOUNDEX function, 96

SPACE function, 95

SQL Anywhere, sample database, 456–468

SQL Server, sample database, 405–416

SQRT function, 90

SQUARE function, 90

STDEV function, 86–87

stored procedures

cursors and looping, 229–231

data modifications, 231–234

DROP PROCEDURE command, 224

multistep, 227

writing, 222–225

subqueries

within HAVING clause, 123–124

within subqueries, 125–128

within WHERE clause, 117–118

SUBSTRING, 93–94

SUM function, 84–85

SYSDATE function, 102

tables, joining, 57–69, 71–72

TO_DATE, 101

transactions, 236–241

triggers

auditing user activity using, 309–314

enforcing business rules using, 322–327

maintaining integrity using, 318–319

synchronizing data using, 314–317

using on views, 319–321

UNION operator, 128–130

UPPER function, 91–92

USER_NAME, 105

VAR function, 87

views

updating data with, 303–307

using for security, 297–298

using to simplify queries, 298–301

YEAR function, 105

Query (Microsoft Query), 337

Add Tables dialog box, 336, 342

adding to Start menu, 332

Allow Editing option, 344

Auto Query button, 343

Create New Data Source dialog box, 334–335

Edit Criteria dialog box, 339–340

Login dialog box, 335

492 Index



Returning External Data to Microsoft Excel dialog
box, 344–345

revoking privileges (REVOKE command), 284, 293

ROLLBACK TRANSACTION command, 237

ROUND function, 89

rows

adding to tables, 180

defined, 11

deleting from tables, 189–196

eliminating duplicate, 37

orphaned, preventing, 318

RTRIM function, 92–93

S
samples. See queries

Save Changes button (PowerBuilder), 392

Second Normal Form, 143–145

security

authentication

database authentication, 266

operating system authentication, 266–267

password based, 265

triggers

auditing user activity using, 309–314

defined, 308

stored procedures versus, 308

uses for, 308

user accounts and groups, creating, 267

in Access, 274

in Informix, 273

in Microsoft, 268–270

in MySQL, 273

in Oracle, 271–272

in Sybase, 270–271

views

defined, 295

restrictions on, 307–308

updating data with, 303–307

using for security, 296–298

using to simplify queries, 298–302

Query Now button, 343

Select Values dialog box, 340

Show/Hide Criteria button, 339

Sort Ascending button, 339

Sort Descending button, 339

SQL dialog box, 341

starting, 334

Query Now button (Microsoft Query), 343

Quest Software Web site, 250

R
RAISERROR command, 323

RDBMS (relational database management systems).
See also databases

DB2, 7

defined, 5, 9

IBM, 6

MySQL, 8

Oracle Corporation, 5–6

Sybase, 6–7

RDO (Remote Data Objects), 351

Record Source tab (Visual Basic 6.0), 353–354

recursive relationship, 11–12

references

MySQL, 451–452

Oracle, 434–435

SQL Anywhere, 468–469

SQL Server, 416–417

REFERENCES constraint, 169

References dialog box (Visual Basic 6.0), 358

Refresh button (Microsoft Excel), 346

relational database management systems. See RDBMS

remainder of division operation (%), 75–76

Remote Data Objects (RDO), 351

removing columns from tables, 176–177

REPLACE function, 95–96

replication, 314

restrictions, on views, 307–308

493Index



SELECT statement

creating indexes using, 207–211

creating views using, 295–296

cursors, defining, 229

DISTINCT keyword, 37

eliminating duplicate rows using, 37

function of, 31

indexes, creating, 204–205

limitation of, 36

ORDER BY clause, 38–43

privileges, granting, 275–278

selecting columns in order using, 40

selecting multiple columns, 33–34

selecting single column from single table, 32

sorting columns by name using, 39–40

sorting columns in alphabetical order using, 41–42

sorting columns in order returned, 34–35

stored procedures and, 221–222

subqueries within, 124–125

syntax for, 32

WHERE clause, 44

Select Values dialog box (Microsoft Query), 340

self-join, 65–68

servers, optimization techniques, 261–262

Show/Hide Criteria button (Microsoft Query), 339

SIGN function, 90

SIN function, 88

sites. See Web sites

Solaris, relational databases and, 8

Sort Ascending button (Microsoft Query), 339

Sort Descending button (Microsoft Query), 339

sorted indexes, 214

SOUNDEX function, 96

SPACE function, 95

SQL Anywhere

accessing, 453–456

certifications, 468–469

education, 468–469

enhancements to, 465–468

sample database, 456–468

training, 468–469

SQL dialog box (Microsoft Query), 341

SQL INSERT command, 400

SQL SELECT option (PowerBuilder), 389

SQL Server

accessing, 403–404

certifications, 417

resources, list of, 416–417

sample database, 405–416

SQL (Structured Query Language)

overview, 3–4

reasons for, 4–5

using with Visual Basic 6.0

data bound controls in, 351–358

VB6 code, 358–363

using with Visual Basic .NET, 363–366

SQRT function, 90

square brackets ([ ]), 55

SQUARE function, 90

starting

mail merge, 349

Microsoft Query, 332–334

statements. See also commands

FROM, 32

SELECT

creating indexes using, 207–211

creating views using, 295–296

cursors, defining, 229

DISTINCT keyword, 37

eliminating duplicate rows using, 37

function of, 31

indexes, creating, 204–205

limitation of, 36

ORDER BY clause, 39–43

privileges, granting, 275–278

selecting columns in order using, 40

494 Index



SOUNDEX, 96

SPACE, 95

SUBSTRING, 93–94

UPPER, 91–92

striping, 261–262

Structured Query Language. See SQL

subqueries

correlated, 118

defined, 116

within HAVING clause, 123–124

returning aggregate functions from, 122–123

within SELECT clause, 124–125

within subqueries, 125–128

within WHERE clause, 117–118

subtraction operator (−), 75–76

SUM function, 84–85

surrogate key, 142

Sybase

ASE (Adaptive Server Enterprise), 6

creating user accounts and groups in, 270–271

relational databases and, 6–7

Web site address, 7

Syntax tab (PowerBuilder), 390

SYSDATE function, 101–102

system functions

CASE, 108–109

DATALENGTH, 106–107

ISNULL, 107–108

NVL, 107–108

USER_NAME, 105

T
Tab Order button (PowerBuilder), 391

table scans, 206, 251–252

tables

adding rows to, 180

columns

defined, 10

selecting multiple columns, 33–34

selecting single column from single table, 32

sorting columns by name using, 39–40

sorting columns in alphabetical order using,
41–42

sorting columns in order returned, 34–35

stored procedures and, 221–222

subqueries within, 124–125

syntax, 32

WHERE clause, 44–56

STDEV function, 86–87

stored procedures

cursors, 229–231

data-modifications, 231–234

database performance, speeding up, 221–222

defined, 220

division of work using, 225–226

DROP PROCURE command, 224

granting privileges to run, 290–292

looping, 229–231

multistep, 227–228

network traffic, 234

SELECT statement, 221–222

triggers versus, 308

views versus, 302–303

writing, 222–225

stress testing, 248

string data types, 156–158

string functions, 90

CONCAT, 97

DATALENGTH, 94

DIFFERENCE, 97

LEFT, 93–94

LEN, 94

LOWER, 91–92

LTRIM, 92–93

REPLACE, 95–96

RIGHT, 93–94

RTRIM, 92–93

495Index



selecting in order, 40

sorting by name, 39–40

creating. see CREATE TABLE command

data models, 13

defined, 10

DROP TABLE command, 178–180

editing. see ALTER TABLE command, 176

granting privileges to, 274–287

joining, 57

eliminating duplicates, 69

using CROSS JOIN, 70–72

using FROM and WHERE clause, 58

using INNER JOIN, 58–59

using OUTER JOIN, 58–65

using self-join, 65–68

naming, 33

removing from queries, 342

selecting single column from, 32

Slick Shop example, 17–27

TAN function, 88

Test Connection option (Visual Basic 6.0), 353

test data, creating, 248–250

testing, stress testing, 248

Third Normal Form, 145–147

time and date data types, 161–162

time and date functions

DATEADD, 102–103

DATEDIFF, 102–103

DATENAME, 104

DAY, 105

GETDATE, 101–102

MONTH, 105

SYSDATE, 101–102

YEAR, 105

TO_CHAR function, 101

TO_DATE function, 101

TO_NUMBER function, 101

traces, setting up, 256–257

training

MySQL, 451–452

Oracle, 434–435

SQL Anywhere, 468–469

SQL Server, 416–417

transactions

BEGIN TRANSACTION command, 237

blocking users access to, 240

COMMIT TRANSACTION command, 237

defined, 7, 235

example of, 235

illustration of, 238

ROLLBACK TRANSACTION command, 237

UPDATE command, 236

writing good, 242

triggers

auditing user activity using, 309–314

defined, 308

deleting, 315

enforcing business rules using, 322–327

inserting, 315

maintaining integrity using, 317–319

stored procedures versus, 308

synchronizing data using, 314–317

uses for, 308

views, using triggers on, 319–321

trigonometry functions, 88

U
underscore character (_), 54–55

UNION operator, 128–130

UNIQUE constraint, 167, 215

UPDATE command, 185–189

IF UPDATE command, 314

stored procedures and, 225

transactions, 236

updating entries in indexes, 207

496 Index



Visual Basic .NET, using SQL in, 363–366

Visual C++. See C++

Visual C# .NET. See C# .NET

W
Web pages, data access with ASP, 377–382

Web sites

IBM, 7

Microsoft, 383

MySQL, 8

Oracle, 6, 434

Premier Press, 404

Quest Software, 250

Sybase, 7

WHERE clause

CREATE INDEX command, 206

filtering results using, 44–56

function of, 44

joining tables using, 58

subqueries within, 117–118

views, using to simplify queries, 298–301

wildcard characters, 53

Windows, relational databases and, 8

WITH GRANT OPTION clause (granting
privileges), 285

Word (Microsoft Word)

Choose Query Options, 348

Database dialog box, 347

Edit Main Document option, 349

Insert Datatbase button, 347

Insert Merge Field button, 350

Mail Merge Helper dialog box, 349

View Merged Data button, 350

writing stored procedures, 222–225

Y
YEAR function, 105

UPPER function, 91–92

Use Connection String option (Visual Basic 6.0), 353

user accounts and groups, creating, 267

in Access, 274

in Informix, 273

in Microsoft, 268, 270

in MySQL, 273

in Oracle, 271–272

in Sybase, 270–271

USER_NAME function, 105

users, auditing activity of, 309–314

V
VAR function, 86–87

VARCHAR data type, 157, 386

View Merged Data button (Microsoft Word), 350

views

creating new, 295

defined, 295

granting permissions to, 298

joined, restrictions on, 307–308

simplifying queries using, 298–301

stored procedures versus, 302–303

updating data with

complex views, 306–307

simple views, 303–305

using for security, 296–298

using triggers on, 319–321

Visual Basic 6.0

ADO Data Control button, 352

Components dialog box, 352

Data Link Properties dialog box, 353

DataGrid button, 354

Record Source tab, 353–354

References dialog box, 358

Test Connection option, 353

Use Connection String option, 353

using SQL with, 351–358

497Index


	CONTENTS
	Introduction
	FRIDAY EVENING: Introduction to SQL—Let the Weekend Begin!
	What Is SQL?
	Why Do You Need It?
	The 31 Flavors of SQL
	Where Do You Begin?
	The Anatomy of a Relational Database
	Setting Up the Sample Databases

	Saturday Morning: Selecting Data—How to See What's in There
	Using the SELECT Statement
	Sorting the Results
	Filtering the Results
	Joining Tables
	Creating Computed Columns

	Saturday Afternoon: Selecting Data—Bigger and Better
	Using Functions
	Aggregate Functions
	String Functions
	Conversion Functions
	Date and Time Functions
	System Functions

	Grouping the Results
	Filtering the Groups
	Using Subqueries
	Subqueries within the WHERE Clause
	Subqueries within the HAVING Clause
	Subqueries within the SELECT Clause
	Subqueries within Subqueries

	Creating Unions

	Saturday Evening: Building a Home for Your Data
	Using Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	A Couple of Final Changes
	Advanced Design

	Creating Databases
	Data Types
	String Data Types
	Numeric Data Types
	Date and Time Data Types
	Boolean Data Types
	Binary Data Types

	Creating Tables
	Column-Level Constraints
	Table-Level Constraints

	Modifying and Dropping Tables
	Modifying Tables
	Dropping Tables

	Inserting Data
	Updating Data
	Deleting Data
	Modifying and Dropping Databases
	Modifying Databases
	Dropping Databases


	Sunday Morning: Optimization—Feel the Need for Speed?
	Understanding Indexes
	Creating an Index
	Composite Indexes
	Sorted Indexes
	Unique Indexes
	Clustered Indexes
	The Cost of Indexes
	Dropping an Index

	Creating Stored Procedures
	How Can Stored Procedures Speed Things Up?
	Writing a Procedure
	Using Stored Procedures to Divide Up Your Work
	Multistep Stored Procedures
	Cursors and Looping
	Data-Modification Procedures
	Network Traffic

	Understanding Transactions
	Optimizing Your Database
	Fine-Tune Your Queries
	Fine-Tune the Database
	Fine-Tune the Server


	SUNDAY AFTERNOON: Security—Putting the Padlocks on
	Considering Database Security
	Letting People In
	Creating User Accounts and Groups
	Granting Privileges

	Creating and Using Views
	Using Views for Security
	Using Views to Simplify Queries
	Views versus Stored Procedures
	Updating Data with Views

	Using Triggers
	Using Triggers to Audit User Activity
	Using Triggers to Synchronize Data
	Using Triggers to Maintain Referential Integrity
	Using Triggers on Views
	Using Triggers to Enforce Business Rules


	SUNDAY EVENING: SQL and the Application Developer
	Making Use of SQL with Office and Microsoft Query
	Using Microsoft Query
	Using Query within Excel
	Using Query within Word

	Building Database Applications with Visual Basic and Visual Basic .NET
	Using SQL with Visual Basic 6.0
	Using SQL in Visual Basic .NET

	Getting Visual C++ and Visual C# .NET to Use SQL
	Retrieving SQL Data with Visual C++
	Retrieving SQL Data with Visual C# .NET

	Making Data Driven Web Pages with ASP and ASP .NET
	Web Page Data Access with ASP
	Building Data Access Pages with ASP.NET

	Using SQL with PowerBuilder
	The PowerBuilder DataWindow
	Using SQL in PowerScript


	Appendix A: SQL Samples in SQL Server
	Accessing SQL Server
	SQL for the Sample Database
	Education, Training, and Certification

	Appendix B: SQL Samples in Oracle
	Accessing Oracle
	SQL for the Sample Database
	Differences in Oracle
	Education, Training, and Certification

	Appendix C: SQL Samples in MySQL
	Accessing MySQL
	SQL for the Sample Database
	Differences in MySQL
	Education, Training, and Certification

	Appendix D: SQL Samples in Sybase SQL Anywhere
	Accessing SQL Anywhere
	SQL for the Sample Database
	Differences in Sybase SQL Anywhere
	Education, Training, and Certification

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


