

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Ryan Stephens

Ron Plew

Arie D. Jones

SamsTeachYourself

24in

Hours

SQL

FIFTH EDITION

Sams Teach Yourself SQL in 24 Hours, Fifth Edition
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or

transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without

written permission from the publisher. No patent liability is assumed with respect to the use of

the information contained herein. Although every precaution has been taken in the preparation of

this book, the publisher and author assume no responsibility for errors or omissions. Nor is any

liability assumed for damages resulting from the use of the information contained herein.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

ISBN-13: 978-0-672-33541-9

ISBN-10: 0-672-33541-7

The Library of Congress cataloging-in-publication data is on file.

Printed in the United States of America

First Printing May 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been

appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use

of a term in this book should not be regarded as affecting the validity of any trademark or service

mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no

warranty or fitness is implied. The information provided is on an “as is” basis. The authors and

the publisher shall have neither liability nor responsibility to any person or entity with respect to

any loss or damages arising from the information contained in this book or from the programs

accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-

chases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearson.com

Associate Publisher

Mark Taub

Acquisitions Editor

Trina MacDonald

Development Editor

Michael Thurston

Managing Editor

Kristy Hart

Project Editor

Jovana San Nicolas-

Shirley

Copy Editor

The Wordsmithery

LLC

Indexer

Lisa Stumpf

Proofreader

Gill Editorial Services

Technical Editor

Benjamin Schupak

Publishing

Coordinator

Olivia Basegio

Book Designer

Gary Adair

Composition

Gloria Schurick

Contents at a Glance

Part I: An SQL Concepts Overview

HOUR 1 Welcome to the World of SQL . 1

Part II: Building Your Database

HOUR 2 Defining Data Structures . 21

3 Managing Database Objects . 37

4 The Normalization Process . 61

5 Manipulating Data . 73

6 Managing Database Transactions . 87

Part III: Getting Effective Results from Queries

HOUR 7 Introduction to the Database Query . 99

8 Using Operators to Categorize Data. 115

9 Summarizing Data Results from a Query . 141

10 Sorting and Grouping Data. 153

11 Restructuring the Appearance of Data . 169

12 Understanding Dates and Times . 191

Part IV: Building Sophisticated Database Queries

HOUR 13 Joining Tables in Queries . 207

14 Using Subqueries to Define Unknown Data. 225

15 Combining Multiple Queries into One . 239

Part V: SQL Performance Tuning

HOUR 16 Using Indexes to Improve Performance . 255

17 Improving Database Performance . 267

Part VI: Using SQL to Manage Users and Security

HOUR 18 Managing Database Users . 285

19 Managing Database Security. 299

Part VII: Summarized Data Structures

HOUR 20 Creating and Using Views and Synonyms. 313

21 Working with the System Catalog . 329

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22 Advanced SQL Topics . 339

23 Extending SQL to the Enterprise, the Internet, and the Intranet. 355

24 Extensions to Standard SQL. 367

Part IX: Appendixes

A Common SQL Commands . 377

B Using the Databases for Exercises . 383

C Answers to Quizzes and Exercises . 391

D CREATE TABLE Statements for Book Examples. 439

E INSERT Statements for Data in Book Examples . 443

F Glossary. 451

G Bonus Exercises . 455

Index . 461

iv

Teach Yourself SQL in 24 Hours

Table of Contents

Part I: An SQL Concepts Overview

HOUR 1: Welcome to the World of SQL 1

SQL Definition and History . 1

SQL Sessions . 8

Types of SQL Commands . 9

The Database Used in This Book . 12

Summary . 17

Q&A . 17

Workshop . 18

Part II: Building Your Database

HOUR 2: Defining Data Structures 21

What Is Data? . 21

Basic Data Types . 22

Summary . 31

Q&A . 31

Workshop . 32

HOUR 3: Managing Database Objects 37

What Are Database Objects? . 37

What Is a Schema? . 37

Tables: The Primary Storage for Data . 39

Integrity Constraints . 49

Summary . 54

Q&A . 55

Workshop . 55

HOUR 4: The Normalization Process 61

Normalizing a Database . 61

Denormalizing a Database . 69

Summary . 70

Q&A . 70

Workshop . 71

HOUR 5: Manipulating Data 73

Overview of Data Manipulation. 73

Populating Tables with New Data. 74

Updating Existing Data . 80

Deleting Data from Tables. 82

Summary . 83

Q&A . 83

Workshop . 84

HOUR 6: Managing Database Transactions 87

What Is a Transaction? . 87

Controlling Transactions . 88

Transactional Control and Database Performance . 95

Summary . 96

Q&A . 96

Workshop . 97

Part III: Getting Effective Results from Queries

HOUR 7: Introduction to the Database Query 99

What Is a Query? . 99

Introduction to the SELECT Statement . 99

Examples of Simple Queries . 108

Summary . 112

Q&A . 112

Workshop . 113

vi

Teach Yourself SQL in 24 Hours

HOUR 8: Using Operators to Categorize Data 115

What Is an Operator in SQL? . 115

Comparison Operators . 116

Logical Operators . 119

Conjunctive Operators . 126

Negative Operators . 129

Arithmetic Operators . 133

Summary . 136

Q&A . 137

Workshop . 137

HOUR 9: Summarizing Data Results from a Query 141

What Are Aggregate Functions? . 141

Summary . 150

Q&A . 150

Workshop . 150

HOUR 10: Sorting and Grouping Data 153

Why Group Data? . 153

The GROUP BY Clause . 154

GROUP BY Versus ORDER BY . 159

CUBE and ROLLUP Expressions . 161

The HAVING Clause . 164

Summary . 165

Q&A . 166

Workshop . 166

HOUR 11: Restructuring the Appearance of Data 169

ANSI Character Functions . 169

Common Character Functions . 170

Miscellaneous Character Functions . 179

Mathematical Functions . 183

Conversion Functions . 183

Contents

vii

Combining Character Functions . 186

Summary . 187

Q&A . 188

Workshop . 188

HOUR 12: Understanding Dates and Times 191

How Is a Date Stored? . 191

Date Functions . 193

Date Conversions . 198

Summary . 204

Q&A . 204

Workshop . 205

Part IV: Building Sophisticated Database Queries

HOUR 13: Joining Tables in Queries 207

Selecting Data from Multiple Tables . 207

Understanding Joins . 208

Join Considerations . 217

Summary . 221

Q&A . 222

Workshop . 222

HOUR 14: Using Subqueries to Define Unknown Data 225

What Is a Subquery? . 225

Embedded Subqueries . 231

Correlated Subqueries . 233

Subquery Performance . 234

Summary . 235

Q&A . 235

Workshop . 236

viii

Teach Yourself SQL in 24 Hours

HOUR 15: Combining Multiple Queries into One 239

Single Queries Versus Compound Queries. 239

Compound Query Operators . 240

Using ORDER BY with a Compound Query. 246

Using GROUP BY with a Compound Query . 248

Retrieving Accurate Data. 250

Summary . 250

Q&A . 250

Workshop . 251

Part V: SQL Performance Tuning

HOUR 16: Using Indexes to Improve Performance 255

What Is an Index? . 255

How Do Indexes Work? . 256

The CREATE INDEX Command. 257

Types of Indexes . 258

When Should Indexes Be Considered? . 260

When Should Indexes Be Avoided? . 261

Altering an Index. 263

Dropping an Index. 263

Summary . 264

Q&A . 264

Workshop . 265

HOUR 17: Improving Database Performance 267

What Is SQL Statement Tuning? . 267

Database Tuning Versus SQL Statement Tuning . 268

Formatting Your SQL Statement . 268

Full Table Scans . 274

Other Performance Considerations . 275

Cost-Based Optimization . 279

Performance Tools . 280

Summary . 280

Contents

ix

Q&A . 281

Workshop . 281

Part VI: Using SQL to Manage Users and Security

HOUR 18: Managing Database Users 285

User Management in the Database . 285

The Management Process . 288

Tools Utilized by Database Users . 296

Summary . 296

Q&A . 297

Workshop . 297

HOUR 19: Managing Database Security 299

What Is Database Security? . 299

What Are Privileges?. 301

Controlling User Access . 304

Controlling Privileges Through Roles . 308

Summary . 310

Q&A . 310

Workshop . 311

Part VII: Summarized Data Structures

HOUR 20: Creating and Using Views and Synonyms 313

What Is a View? . 313

Creating Views . 316

WITH CHECK OPTION . 320

Creating a Table from a View. 321

Views and the ORDER BY Clause . 322

Updating Data Through a View . 322

Dropping a View . 323

Performance Impact of Using Nested Views . 323

What Is a Synonym? . 324

x

Teach Yourself SQL in 24 Hours

Summary . 325

Q&A . 326

Workshop . 326

HOUR 21: Working with the System Catalog 329

What Is the System Catalog? . 329

How Is the System Catalog Created? . 331

What Is Contained in the System Catalog?. 331

System Catalog Tables by Implementation . 333

Querying the System Catalog . 334

Updating System Catalog Objects . 336

Summary . 337

Q&A . 337

Workshop . 338

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22: Advanced SQL Topics 339

Cursors . 339

Stored Procedures and Functions . 343

Triggers . 346

Dynamic SQL . 348

Call-Level Interface . 349

Using SQL to Generate SQL . 350

Direct Versus Embedded SQL . 351

Windowed Table Functions . 351

Working with XML . 352

Summary. 353

Q&A . 353

Workshop . 354

HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet 355

SQL and the Enterprise . 355

Accessing a Remote Database . 357

Contents

xi

xii

Teach Yourself SQL in 24 Hours

SQL and the Internet . 360

SQL and the Intranet . 361

Summary . 362

Q&A . 363

Workshop . 363

HOUR 24: Extensions to Standard SQL 367

Various Implementations . 367

Example Extensions . 370

Interactive SQL Statements . 373

Summary . 374

Q&A . 375

Workshop . 375

Part IX: Appendixes

APPENDIX A: Common SQL Commands 377

SQL Statements. 377

SQL Clauses . 381

APPENDIX B: Using the Databases for Exercises 383

Windows Installation Instructions for MySQL . 383

Windows Installation Instructions for Oracle . 386

Windows Installation Instructions for Microsoft SQL Server . 388

APPENDIX C: Answers to Quizzes and Exercises 391

APPENDIX D: CREATE TABLE Statements for Book Examples 439

APPENDIX E: INSERT Statements for Data in Book Examples 443

APPENDIX F: Glossary 451

APPENDIX G: Bonus Exercises 455

INDEX 461

About the Author

For more than 10 years, the authors have studied, applied, and documented the SQL stan-

dard and its application to critical database systems in this book.

Ryan Stephens and Ron Plew are entrepreneurs, speakers, and cofounders of Perpetual

Technologies, Inc. (PTI), a fast-growing IT management and consulting firm. PTI specializes

in database technologies, primarily Oracle and SQL servers running on all UNIX, Linux,

and Microsoft platforms. Starting out as data analysts and database administrators, Ryan

and Ron now lead a team of impressive technical subject matter experts who manage data-

bases for clients worldwide. They authored and taught database courses for Indiana

University-Purdue University in Indianapolis for five years and have authored more than a

dozen books on Oracle, SQL, database design, and high availability of critical systems.

Arie D. Jones is the principal technology manager for Perpetual Technologies, Inc. (PTI) in

Indianapolis, Indiana. Arie leads PTI’s team of experts in planning, design, development,

deployment, and management of database environments and applications to achieve the

best combination of tools and services for each client. He is a regular speaker at technical

events and has authored several books and articles pertaining to database-related topics.

Dedication

This book is dedicated to my parents, Thomas and Karlyn Stephens, who always
taught me that I can achieve anything if determined. This book is also dedicated to
my brilliant son, Daniel, and to my beautiful daughters, Autumn and Alivia; don’t

ever settle for anything less than your dreams.

—Ryan

This book is dedicated to my family: my wife, Linda; my mother, Betty; my children,
Leslie, Nancy, Angela, and Wendy; my grandchildren, Andy, Ryan, Holly, Morgan,
Schyler, Heather, Gavin, Regan, Caleigh, and Cameron; and my sons-in-law, Jason

and Dallas. Thanks for being patient with me during this busy time. Love all of you.

—Poppy

I would like to dedicate this book to my wife, Jackie, for being understanding and
supportive during the long hours that it took to complete this book.

—Arie

Acknowledgments

Thanks to all the people in our lives who have been patient during all editions of this

book—mostly to our wives, Tina and Linda. Thanks to Arie Jones for stepping up to the

plate and helping so much with this edition. Thanks also to the editorial staff at Sams for

all of their hard work to make this edition better than the last. It has been a pleasure to

work with each of you.

—Ryan and Ron

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taub

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

This page intentionally left blank

[(H3F)] 1

HOUR 1

Welcome to the World of SQL

What You’ll Learn in This Hour:

. An introduction to and brief history of SQL

. An introduction to database management systems

. An overview of some basic terms and concepts

. An introduction to the database used in this book

Welcome to the world of SQL and the vast, growing database technologies

of today’s businesses all over the world. By reading this book, you have

begun accepting the knowledge that will soon be required for survival in

today’s world of relational databases and data management.

Unfortunately, because it is first necessary to provide the background of

SQL and cover some preliminary concepts that you need to know, the

majority of this hour is overview before we jump into actual coding. Bear

with this hour of the book; this will be exciting, and the “boring stuff” in

this hour definitely pays off.

SQL Definition and History
Every modern-day business has data, which requires some organized

method or mechanism for maintaining and retrieving the data. When the

data is kept within a database, this mechanism is referred to as a database

management system (DBMS). Database management systems have been

around for years, many of which started out as flat-file systems on a main-

frame. With today’s technologies, the accepted use of database manage-

ment systems has begun to flow in other directions, driven by the demands

of growing businesses, increased volumes of corporate data, and of course,

Internet technologies.

The modern wave of information management is primarily carried out

through the use of a relational database management system (RDBMS),

derived from the traditional DBMS. Modern databases combined with

2 HOUR 1: Welcome to the World of SQL

client/server and web technologies are typical combinations used by cur-

rent businesses to successfully manage their data and stay competitive in

their appropriate markets. The trend for many businesses is to move from a

client/server environment to the Web, where location is not a restriction

when users need access to important data. The next few sections discuss

SQL and the relational database, the most common DBMS implemented

today. A good fundamental understanding of the relational database and

how to apply SQL to managing data in today’s information technology

world is important to your understanding of the SQL language.

What Is SQL?

Structured Query Language (SQL) is the standard language used to communi-

cate with a relational database. The prototype was originally developed by

IBM using Dr. E.F. Codd’s paper (“A Relational Model of Data for Large

Shared Data Banks”) as a model. In 1979, not long after IBM’s prototype,

the first SQL product, ORACLE, was released by Relational Software,

Incorporated (which was later renamed Oracle Corporation). Today it is

one of the distinguished leaders in relational database technologies.

If you travel to a foreign country, you might be required to know that

country’s language to get around. For example, you might have trouble

ordering from a menu via your native tongue if the waiter speaks only his

country’s language. Look at a database as a foreign land in which you seek

information. SQL is the language you use to express your needs to the

database. Just as you would order a meal from a menu in another country,

you can request specific information from within a database in the form of

a query using SQL.

What Is ANSI SQL?

The American National Standards Institute (ANSI) is an organization that

approves certain standards in many different industries. SQL has been

deemed the standard language in relational database communication,

originally approved in 1986 based on IBM’s implementation. In 1987, the

ANSI SQL standard was accepted as the international standard by the

International Standards Organization (ISO). The standard was revised again in

1992 (SQL-92) and once again in 1999 (SQL-99). The newest standard is

now called SQL-2008, which was officially adopted in July of 2008.

SQL Definition and History 3

The New Standard: SQL-2008

SQL-2008 has nine interrelated documents, and other documents might be

added in the near future as the standard is expanded to encompass newly

emerging technology needs. The nine interrelated parts are as follows:

. Part 1: SQL/Framework—Specifies the general requirements for

conformance and defines the fundamental concepts of SQL.

. Part 2: SQL/Foundation—Defines the syntax and operations of SQL.

. Part 3: SQL/Call-Level Interface—Defines the interface for appli-

cation programming to SQL.

. Part 4: SQL/Persistent Stored Modules—Defines the control struc-

tures that then define SQL routines. Part 4 also defines the modules

that contain SQL routines.

. Part 9: Management of External Data (SQL/MED)—Defines

extensions to SQL to support the management of external data

through the use of data-wrappers and datalink types.

. Part 10: Object Language Bindings—Defines extensions to the

SQL language to support the embedding of SQL statements into

programs written in Java.

. Part 11: Information and Definition Schemas—Defines specifica-

tions for the Information Schema and Definition Schema, which

provide structural and security information related to SQL data.

. Part 13: Routines and Types Using the Java Programming

Language—Defines the capability to call Java static routines and

classes as SQL-invoked routines.

. Part 14: XML-Related Specifications—Defines ways in which SQL

can be used with XML.

The new ANSI standard (SQL-2008) has two levels of minimal compliance

that a DBMS may claim: Core SQL Support and Enhanced SQL Support.

You can find a link to the ANSI SQL standard on this book’s web page,

www.informit.com/title/9780672335419.

With any standard comes numerous, obvious advantages, as well as some

disadvantages. Foremost, a standard steers vendors in the appropriate

industry direction for development. In the case of SQL, a standard provides

a basic skeleton of necessary fundamentals, which, as an end result,

enables consistency between various implementations and better serves

www.informit.com/title/9780672335419

4 HOUR 1: Welcome to the World of SQL

increased portability (not only for database programs, but databases in

general and individuals who manage databases).

Some might argue that a standard is not so good, limiting the flexibility

and possible capabilities of a particular implementation. However, most

vendors who comply with the standard have added product-specific

enhancements to standard SQL to fill in these gaps.

A standard is good, considering the advantages and disadvantages. The

expected standard demands features that should be available in any com-

plete SQL implementation and outlines basic concepts that not only force

consistency between all competitive SQL implementations, but also

increase the value of an SQL programmer.

An SQL implementation is a particular vendor’s SQL product, or RDBMS. It is

important to note, as you will hear numerous times in this book, that

implementations of SQL vary widely. There is no one implementation that

follows the standard completely, although some are mostly ANSI-compliant.

It is also important to note that in recent years the list of functionality

within the ANSI standard that must be adhered to in order to be considered

complaint has not changed dramatically. Hence, when new versions of

RDBMS are released, they will most likely claim ANSI SQL compliance.

What Is a Database?

In simple terms, a database is a collection of data. Some like to think of a

database as an organized mechanism that has the capability of storing

information, through which a user can retrieve stored information in an

effective and efficient manner.

People use databases every day without realizing it. A phone book is a

database. The data contained consists of individuals’ names, addresses,

and telephone numbers. The listings are alphabetized or indexed, which

enables the user to reference a particular local resident with ease.

Ultimately, this data is stored in a database somewhere on a computer.

After all, each page of a phone book is not manually typed each year a

new edition is released.

The database has to be maintained. As people move to different cities or

states, entries might have to be added or removed from the phone book.

Likewise, entries have to be modified for people changing names, address-

es, telephone numbers, and so on. Figure 1.1 illustrates a simple database.

SQL Definition and History 5

Data Data

Data

Stored Information

Stored Objects

Vital Database Files

Users

Transactions

Internal

Processes

FIGURE 1.1

The database.

The Relational Database

A relational database is a database divided into logical units called tables,

where tables are related to one another within the database. A relational

database allows data to be broken down into logical, smaller, manageable

units, enabling easier maintenance and providing more optimal database

performance according to the level of organization. In Figure 1.2, you can

see that tables are related to one another through a common key (data

value) in a relational database.

Stored Data, Objects

Relationship

TABLE1

Key

Data...

TABLE2

Key

Data...

Internal Processes

Database Files

Transactions, Queries

Users FIGURE 1.2

The relational

database.

Again, tables are related in a relational database, allowing adequate data

to be retrieved in a single query (although the desired data may exist in

more than one table). By having common keys, or fields, among relational

database tables, data from multiple tables can be joined to form one large

set of data. As you venture deeper into this book, you see more of a rela-

tional database’s advantages, including overall performance and easy data

access.

Client/Server Technology

In the past, the computer industry was predominately ruled by mainframe

computers—large, powerful systems capable of high storage capacity and

high data processing capabilities. Users communicated with the mainframe

through dumb terminals—terminals that did not think on their own but

relied solely on the mainframe’s CPU, storage, and memory. Each terminal

had a data line attached to the mainframe. The mainframe environment

definitely served its purpose and does today in many businesses, but a

greater technology was soon to be introduced: the client/server model.

6 HOUR 1: Welcome to the World of SQL

In the client/server system, the main computer, called the server, is accessible

from a network—typically a local area network (LAN) or a wide area network

(WAN). The server is normally accessed by personal computers (PCs) or by

other servers, instead of dumb terminals. Each PC, called a client, is provid-

ed access to the network, allowing communication between the client and

the server, thus explaining the name client/server. The main difference

between client/server and mainframe environments is that the user’s PC in

a client/server environment is capable of thinking on its own, capable of

running its own processes using its own CPU and memory, but readily

accessible to a server computer through a network. In most cases, a

client/server system is much more flexible for today’s overall business needs

and is much preferred.

Modern database systems reside on various types of computer systems with

various operating systems. The most common types of operating systems

are Windows-based systems, Linux, and command-line systems such as

UNIX. Databases reside mainly in client/server and web environments. A

lack of training and experience is the main reason for failed implementa-

tions of database systems. Nevertheless, an understanding of the

client/server model and web-based systems, which will be explained in the

next section, is imperative with the rising (and sometimes unreasonable)

demands placed on today’s businesses as well as the development of

Internet technologies and network computing. Figure 1.3 illustrates the

concept of client/server technology.

Client

Machine

Client

Machine

Client

Machine

ServerServer Server

Network

Client

Machine

Client

Machine

Client

Machine

FIGURE 1.3

The client/

server model.

Web-Based Database Systems

Business information systems are moving toward web integration.

Databases are now accessible through the Internet, meaning that cus-

tomers’ access to an organization’s information is enabled through an

Internet browser such as Internet Explorer or Firefox. Customers (users of

SQL Definition and History 7

data) are able to order merchandise, check on inventories, check on the sta-

tus of orders, make administrative changes to accounts, transfer money

from one account to another, and so forth.

A customer simply invokes an Internet browser, goes to the organization’s

website, logs in (if required by the organization), and uses an application

built into the organization’s web page to access data. Most organizations

require users to register with them and issue a login and password to the

customer.

Of course, many things occur behind the scenes when a database is being

accessed via a web browser. SQL, for instance, can be executed by the web

application. This executed SQL is used to access the organization’s data-

base, return data to the web server, and then return that data to the cus-

tomer’s Internet browser.

The basic structure of a web-based database system is similar to that of a

client-server system from a user’s standpoint (refer to Figure 1.3). Each user

has a client machine, which has a connection to the Internet and contains

a web browser. The network in Figure 1.3 (in the case of a web-based data-

base) just happens to be the Internet, as opposed to a local network. For the

most part, a client is still accessing a server for information. It doesn’t mat-

ter that the server might exist in another state or even another country. The

main point of web-based database systems is to expand the potential cus-

tomer base of a database system that knows no physical location bounds,

thus increasing data availability and an organization’s customer base.

Popular Database Vendors

Some of the most predominant database vendors include Oracle, Microsoft,

Informix, Sybase, and IBM. These vendors distribute various versions of the

relational database for a base license fee and are normally referred to as

closed source. Many other vendors supply an open-source version of an SQL

database (relational database). Some of these vendors include MySQL,

PostgresSQL, and SAP. Although many more vendors exist than those men-

tioned, this list includes names that you might have recognized on the

bookshelf, in the newspaper, in magazines, on the stock market, or on the

World Wide Web.

Each vendor-specific implementation of SQL is unique in both features and

nature. A database server is a product—like any other product on the

market—manufactured by a widespread number of vendors. It is to the bene-

fit of the vendor to ensure that its implementation is compliant with the cur-

rent ANSI standard for portability and user convenience. For instance, if a

8 HOUR 1: Welcome to the World of SQL

company is migrating from one database server to another, it would be

rather discouraging for the database users to have to learn another lan-

guage to maintain functionality with the new system.

With each vendor’s SQL implementation, however, you find that there are

enhancements that serve the purpose for each database server. These

enhancements, or extensions, are additional commands and options that

are simply a bonus to the standard SQL package and available with a spe-

cific implementation.

SQL Sessions
An SQL session is an occurrence of a user interacting with a relational data-

base through the use of SQL commands. When a user initially connects to

the database, a session is established. Within the scope of an SQL session,

valid SQL commands can be entered to query the database, manipulate

data in the database, and define database structures, such as tables. A ses-

sion may be invoked by either direct connection to the database or through

a front-end application. In both cases, sessions are normally established by

a user at a terminal or workstation that communicates through a network

with the computer that hosts the database.

CONNECT

When a user connects to a database, the SQL session is initialized. The

CONNECT command is used to establish a database connection. With the

CONNECT command, you can either invoke a connection or change connec-

tions to the database. For example, if you are connected as USER1, you can

use the CONNECT command to connect to the database as USER2. When this

happens, the SQL session for USER1 is implicitly disconnected. You would

normally use the following:

CONNECT user@database

When you attempt to connect to a database, you are automatically

prompted for a password that is associated with your current username.

The username is used to authenticate you to the database, and the pass-

word is the key that allows entrance.

DISCONNECT and EXIT

When a user disconnects from a database, the SQL session is terminated.

The DISCONNECT command is used to disconnect a user from the database.

When you disconnect from the database, the software you are using might

Types of SQL Commands 9

still appear to be communicating with the database, but you have lost your

connection. When you use EXIT to leave the database, your SQL session is

terminated, and the software that you are using to access the database is

normally closed.

DISCONNECT

Types of SQL Commands
The following sections discuss the basic categories of commands used in

SQL to perform various functions. These functions include building data-

base objects, manipulating objects, populating database tables with data,

updating existing data in tables, deleting data, performing database

queries, controlling database access, and overall database administration.

The main categories are

. Data Definition Language (DDL)

. Data Manipulation Language (DML)

. Data Query Language (DQL)

. Data Control Language (DCL)

. Data administration commands

. Transactional control commands

Defining Database Structures

Data Definition Language (DDL) is the part of SQL that enables a database

user to create and restructure database objects, such as the creation or the

deletion of a table.

Some of the most fundamental DDL commands discussed during the fol-

lowing hours include

. CREATE TABLE

. ALTER TABLE

. DROP TABLE

. CREATE INDEX

. ALTER INDEX

. DROP INDEX

10 HOUR 1: Welcome to the World of SQL

. CREATE VIEW

. DROP VIEW

These commands are discussed in detail during Hour 3, “Managing

Database Objects,” Hour 17, “Improving Database Performance,” and Hour

20, “Creating and Using Views and Synonyms.”

Manipulating Data

Data Manipulation Language (DML) is the part of SQL used to manipulate

data within objects of a relational database.

The three basic DML commands are

. INSERT

. UPDATE

. DELETE

These commands are discussed in detail during Hour 5, “Manipulating

Data.”

Selecting Data

Though comprised of only one command, Data Query Language (DQL) is the

most concentrated focus of SQL for modern relational database users. The

base command is SELECT.

This command, accompanied by many options and clauses, is used to com-

pose queries against a relational database. A query is an inquiry to the

database for information. A query is usually issued to the database

through an application interface or via a command-line prompt. You can

easily create queries, from simple to complex, from vague to specific.

The SELECT command is discussed in exhilarating detail during Hours 7

through 16.

Data Control Language

Data control commands in SQL enable you to control access to data within

the database. These Data Control Language (DCL) commands are normally

used to create objects related to user access and also control the distribution

of privileges among users. Some data control commands are as follows:

Types of SQL Commands 11

. ALTER PASSWORD

. GRANT

. REVOKE

. CREATE SYNONYM

You will find that these commands are often grouped with other commands

and might appear in a number of lessons throughout this book.

Data Administration Commands

Data administration commands enable the user to perform audits and per-

form analyses on operations within the database. They can also be used to

help analyze system performance. Two general data administration com-

mands are as follows:

. START AUDIT

. STOP AUDIT

Do not get data administration confused with database administration.

Database administration is the overall administration of a database, which

envelops the use of all levels of commands. Data administration is much

more specific to each SQL implementation than are those core commands

of the SQL language.

Transactional Control Commands

In addition to the previously introduced categories of commands, there are

commands that enable the user to manage database transactions:

. COMMIT—Saves database transactions

. ROLLBACK—Undoes database transactions

. SAVEPOINT—Creates points within groups of transactions in which to

ROLLBACK

. SET TRANSACTION—Places a name on a transaction

Transactional commands are discussed extensively during Hour 6,

“Managing Database Transactions.”

12 HOUR 1: Welcome to the World of SQL

Naming Standards

You should not only adhere to the object-naming syntax of any SQL implementa-

tion, but also follow local business rules and create names that are descriptive

and related to the data groupings for the business.

The Database Used in This Book
Before continuing with your journey through SQL fundamentals, the next

step is introducing the tables and data that you use throughout the course of

instruction for the next 23 one-hour lessons. The following sections provide

an overview of the specific tables (the database) being used, their relation-

ship to one another, their structure, and examples of the data contained.

Figure 1.4 reveals the relationship between the tables that you use for

examples, quiz questions, and exercises in this book. Each table is identi-

fied by the table name as well as each residing field in the table. Follow the

mapping lines to compare the specific tables’ relationship through a com-

mon field, in most cases referred to as the primary key (discussed in Hour 3).

EMPLOYEE_PAY_TBL

emp_id

position

date_hire

pay_rate

date_last_raise

bonus

EMPLOYEE_TBL

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

CUSTOMER_TBL

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

ORDERS_TBL

ord_num

cust_id

prod_id

qty

ord_date

PRODUCTS_TBL

prod_id

prod_desc

cost

FIGURE 1.4

Table relation-

ships for this

book.

Table-Naming Standards

By the
Way

Table-naming standards, as well as any standard within a business, are

critical to maintaining control. After studying the tables and data in the

previous sections, you probably noticed that each table’s suffix is _TBL. This

is a naming standard selected for use, such as what’s been used at various

The Database Used in This Book 13

client sites. The _TBL suffix simply tells you that the object is a table; there

are many different types of objects in a relational database. For example,

in later hours you see that the suffix _INX is used to identify indexes on

tables. Naming standards exist almost exclusively for overall organization

and assist immensely in the administration of any relational database.

Remember, the use of a suffix is not mandatory when naming database

objects. A naming convention is merely used to provide some order when

creating objects. You may choose to utilize whatever standard you wish.

A Look at the Data

This section offers a picture of the data contained in each one of the tables

used in this book. Take a few minutes to study the data, the variations, and

the relationships between the tables and the data. Notice that some fields

might not require data, which is specified when each table is created in the

database.

EMPLOYEE_TBL

EMP_ID LAST_NAM FIRST_NA M ADDRESS CITY ST ZIP PHONE

311549902 STEPHENS TINA D RR 3 BOX 17A GREENWOOD IN 47890
3178784465

442346889 PLEW LINDA C 3301 BEACON INDIANAPOLIS IN 46224
3172978990

213764555 GLASS BRANDON S 1710 MAIN ST WHITELAND IN 47885
3178984321

313782439 GLASS JACOB 3789 RIVER BLVD INDIANAPOLIS IN 45734
3175457676

220984332 WALLACE MARIAH 7889 KEYSTONE INDIANAPOLIS IN 46741
3173325986

443679012 SPURGEON TIFFANY 5 GEORGE COURT INDIANAPOLIS IN 46234
3175679007

EMPLOYEE_PAY_TBL

EMP_ID POSITION DATE_HIRE PAY_RATE DATE_LAST SALARY
BONUS

311549902 MARKETING 23-MAY-1999 01-MAY-2009 4000

442346889 TEAM LEADER 17-JUN-2000 14.75 01-JUN-2009

213764555 SALES MANAGER 14-AUG-2004 01-AUG-2009 3000 2000

313782439 SALESMAN 28-JUN-2007 2000 1000

14 HOUR 1: Welcome to the World of SQL

220984332 SHIPPER 22-JUL-2006 11 01-JUL-2009

443679012 SHIPPER 14-JAN-2001 15 01-JAN-2009

CUSTOMER_TBL

CUST_ID CUST_NAME ADDRESS CUST_CITY ST ZIP CUST_PHONE
CUST_FAX

232 LESLIE GLEASON 798 HARDAWAY DR INDIANAPOLIS IN 47856 3175457690

109 NANCY BUNKER APT A 4556 WATERWAY BROAD RIPPLE IN 47950
3174262323

345 ANGELA DOBKO RR3 BOX 76 LEBANON IN 49967 7658970090

090 WENDY WOLF 3345 GATEWAY DR INDIANAPOLIS IN 46224 3172913421

12 MARYS GIFT SHOP 435 MAIN ST DANVILLE IL 47978 3178567221
3178523434

432 SCOTTYS MARKET RR2 BOX 173 BROWNSBURG IN 45687 3178529835
3178529836

333 JASONS AND DALLAS GOODIES LAFAYETTE SQ MALL INDIANAPOLIS IN 46222
3172978886 3172978887

21 MORGANS CANDIES AND TREATS 5657 W TENTH ST INDIANAPOLIS IN 46234
3172714398

43 SCHYLERS NOVELTIES 17 MAPLE ST LEBANON IN 48990 3174346758

287 GAVINS PLACE 9880 ROCKVILLE RD INDIANAPOLIS IN 46244 3172719991
3172719992

288 HOLLYS GAMEARAMA 567 US 31 WHITELAND IN 49980 3178879023

590 HEATHERS FEATHERS AND THINGS 4090 N SHADELAND AVE INDIANAPOLIS IN
43278 3175456768

610 REGANS HOBBIES 451 GREEN PLAINFIELD IN 46818 3178393441
3178399090

560 ANDYS CANDIES RR 1 BOX 34 NASHVILLE IN 48756 8123239871

221 RYANS STUFF 2337 S SHELBY ST INDIANAPOLIS IN 47834
3175634402

175 CAMERON’S PIES 178 N TIBBS AVON IN 46234 3174543390

290 CALEIGH’S KITTENS 244 WEST ST LEBANON IN 47890 3174867754

56 DANIELS SPANIELS 17 MAIN ST GREENWOOD IN 46578 3172319908

The Database Used in This Book 15

978 AUTUMN’S BASKETS 5648 CENTER ST SOUTHPORT IN 45631 3178887565

ORDERS_TBL

ORD_NUM CUST_ID PROD_ID QTY ORD_DATE

--

56A901 232 11235 1 22-OCT-2009

56A917 12 907 100 30-SEP-2009

32A132 43 222 25 10-OCT-2009

16C17 090 222 2 17-OCT-2009

18D778 287 90 10 17-OCT-2009

23E934 432 13 20 15-OCT-2009

PRODUCTS_TBL

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.10

90 LIGHTED LANTERNS 14.50

15 ASSORTED COSTUMES 10.00

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

A Closer Look at What Comprises a Table

The storage and maintenance of valuable data is the reason for any data-

base’s existence. You have just viewed the data that is used to explain SQL

concepts in this book. The following sections take a closer look at the ele-

ments within a table. Remember, a table is the most common and simple

form of data storage.

Fields

Every table is broken into smaller entities called fields. A field is a column

in a table that is designed to maintain specific information about every

record in the table. The fields in the PRODUCTS_TBL table consist of PROD_ID,

PROD_DESC, and COST. These fields categorize the specific information that is

maintained in a given table.

Records, or Rows of Data

A record, also called a row of data, is each horizontal entry that exists in a

table. Looking at the last table, PRODUCTS_TBL, consider the following first

record in that table:

11235 WITCH COSTUME 29.99

16 HOUR 1: Welcome to the World of SQL

The record is obviously composed of a product identification, product

description, and unit cost. For every distinct product, there should be a cor-

responding record in the PRODUCTS_TBL table.

A row of data is an entire record in a relational database table.

Columns

A column is a vertical entity in a table that contains all information associat-

ed with a specific field in a table. For example, a column in the PRODUCTS_TBL

having to do with the product description consists of the following:

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

ASSORTED MASKS

This column is based on the field PROD_DESC, the product description. A col-

umn pulls information about a certain field from every record within a table.

Primary Keys

A primary key is a column that makes each row of data in the table unique

in a relational database. The primary key in the PRODUCTS_TBL table is

PROD_ID, which is typically initialized during the table creation process. The

nature of the primary key is to ensure that all product identifications are

unique, so that each record in the PRODUCTS_TBL table has its own PROD_ID.

Primary keys alleviate the possibility of a duplicate record in a table and

are used in other ways, which you will read about in Hour 3.

NULL Values

NULL is the term used to represent a missing value. A NULL value in a table is

a value in a field that appears to be blank. A field with a NULL value is a

field with no value. It is important to understand that a NULL value is differ-

ent from a zero value or a field that contains spaces. A field with a NULL

value is one that has been left blank during record creation. Notice that in

the EMPLOYEE_TBL table, not every employee has a middle initial. Those

records for employees who do not have an entry for middle initial signify a

NULL value.

Additional table elements are discussed in detail during the next two hours.

Q&A 17

Examples and Exercises

Many exercises in this book use the MySQL, Microsoft SQL Server, and

Oracle databases to generate the examples. We decided to concentrate on

these three database implementations because they allow freely distributed

versions of their database to be available. This enables you to select an

implementation of your choice, install it, and follow along with the exercis-

es in the book. Note that because these databases are not 100% compliant

to SQL-2008, the exercises might present slight variations or nonadoption

of the ANSI standard. However, by learning the basics of the ANSI stan-

dard, you will be able in most cases to easily translate your skills between

different database implementations.

Summary
You have been introduced to the standard language of SQL and have been

given a brief history and thumbnail of how the standard has evolved over

the past several years. Database systems and current technologies were also

discussed, including the relational database, client/server systems, and web-

based database systems, all of which are vital to your understanding of

SQL. The main SQL language components and the fact that there are

numerous players in the relational database market, and likewise, many

different flavors of SQL, were discussed. Despite ANSI SQL variations, most

vendors do comply to some extent with the current standard (SQL-2008),

rendering consistency across the board and forcing the development of

portable SQL applications.

The database that is used during your course of study was also introduced.

The database, as you have seen it so far, has consisted of a few tables

(which are related to one another) and the data that each table contains at

this point (at the end of Hour 1). You should have acquired some overall

background knowledge of the fundamentals of SQL and should understand

the concept of a modern database. After a few refreshers in the Workshop

for this hour, you should feel confident about continuing to the next hour.

Q&A
Q. If I learn SQL, will I be able to use any of the implementations that use SQL?

A. Yes, you will be able to communicate with a database whose imple-

mentation is ANSI SQL compliant. If an implementation is not com-

pletely compliant, you should be able to pick it up quickly with some

adjustments.

18 HOUR 1: Welcome to the World of SQL

Q. In a client/server environment, is the personal computer the client or the

server?

A. The personal computer is known as the client, although a server can

also serve as a client.

Q. Do I have to use _TBL for each table I create?

A. Certainly not. The use of _TBL is a standard chosen for use to name

and easily identify the tables in your database. You could spell out TBL

as TABLE, or you might want to avoid using a suffix. For example,

EMPLOYEE TBL could simply be EMPLOYEE.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. What does the acronym SQL stand for?

2. What are the six main categories of SQL commands?

3. What are the four transactional control commands?

4. What is the main difference between client/server and web technolo-

gies as they relate to database access?

5. If a field is defined as NULL, does something have to be entered into

that field?

Exercises

1. Identify the categories in which the following SQL commands fall:

CREATE TABLE

DELETE

SELECT

Workshop 19

INSERT

ALTER TABLE

UPDATE

2. Study the following tables, and pick out the column that would be a

good candidate for the primary key:

EMPLOYEE_TBL INVENTORY_TBL EQUIPMENT_TBL

name item model

phone description year

start date quantity serial number

address item number equipment number

employee number location assigned to

3. Refer to Appendix B, “Using the Databases for Exercises.” Download

and install one of the three database implementations on your com-

puter to prepare for hands-on exercises in the following hours of

instruction.

This page intentionally left blank

What Is Data? 21

HOUR 2

Defining Data Structures

What You’ll Learn in This Hour:

. A look at the underlying data of a table

. An introduction to the basic data types

. Instruction on the use of various data types

. Examples depicting differences between data types

In this second hour, you learn more about the data you viewed at the end of

Hour 1, “Welcome to the World of SQL.” You learn the characteristics of the

data and how such data is stored in a relational database. There are several

data types, as you’ll soon discover.

What Is Data?
Data is a collection of information stored in a database as one of several

different data types. Data includes names, numbers, dollar amounts, text,

graphics, decimals, figures, calculations, summarization, and just about

anything else you can possibly imagine. Data can be stored in uppercase,

lowercase, or mixed case. Data can be manipulated or changed; most data

does not remain static for its lifetime.

Data types are used to provide rules for data for particular columns. A data

type deals with the way values are stored in a column as far as the length

allocated for a column and whether values such as alphanumeric, numer-

ic, and date and time data are allowed. There is a data type for every possi-

ble bit or combination of data that can be stored in a particular database.

These data types are used to store data such as characters, numbers, date

and time, images, and other binary data. More specifically, the data might

consist of names, descriptions, numbers, calculations, images, image

descriptions, documents, and so forth.

The data is the purpose of any database and must be protected. The protec-

tor of the data is normally the database administrator (DBA), although it is

22 HOUR 2: Defining Data Structures

Did You
Know?

every database user’s responsibility to ensure that measures are taken to

protect data. Data security is discussed in depth in Hour 18, “Managing

Database Users,” and Hour 19, “Managing Database Security.”

Basic Data Types
The following sections discuss the basic data types supported by ANSI SQL.

Data types are characteristics of the data itself, whose attributes are placed

on fields within a table. For example, you can specify that a field must con-

tain numeric values, disallowing the entering of alphanumeric strings.

After all, you would not want to enter alphabetic characters in a field for a

dollar amount. Defining each field in the database with a data type elimi-

nates much of the incorrect data found in a database due to data entry

errors. Field definition (data type definition) is a form of data validation that

controls the type of data that may be entered into each given field.

Depending on your implementation of relational database management sys-

tem (RDBMS), certain data types can be converted automatically to other

data types depending upon their format. This type of conversion in known

as an implicit conversion, which means that the database handles the con-

version for you. An example of this is taking a numeric value of 1000.92

from a numeric field and inputting it into a string field. Other data types

cannot be converted implicitly by the host RDBMS and therefore must

undergo an explicit conversion. This usually involves the use of an SQL

function, such as CAST or CONVERT. For example

SELECT CAST(‘12/27/1974’ AS DATETIME) AS MYDATE

The very basic data types, as with most other languages, are

. String types

. Numeric types

. Date and time types

SQL Data Types

Every implementation of SQL seems to have its own specific set of data types.

The use of implementation-specific data types is necessary to support the philos-

ophy of each implementation on how to handle the storage of data. However, the

basics are the same among all implementations.

Basic Data Types 23

Constant characters, those strings that always have the same length, are

stored using a fixed-length data type. The following is the standard for an

SQL fixed-length character:

CHARACTER(n)

n represents a number identifying the allocated or maximum length of the

particular field with this definition.

Some implementations of SQL use the CHAR data type to store fixed-length

data. You can store alphanumeric data in this data type. An example of a

constant length data type would be for a state abbreviation because all

state abbreviations are two characters.

Spaces are normally used to fill extra spots when using a fixed-length data

type; if a field’s length was set to 10 and data entered filled only 5 places,

the remaining 5 spaces would be recorded as spaces. The padding of spaces

ensures that each value in a field is a fixed length.

Fixed-Length Strings

Fixed-Length Data Types

Be careful not to use a fixed-length data type for fields that might contain varying-

length values, such as an individual’s name. If you use the fixed-length data type

inappropriately, you eventually encounter problems such as the waste of available

space and the inability to make accurate comparisons between data.

Always use the varying-length data type for nonconstant character strings to save

database space.

Watch
Out!

Varying-Length Strings

SQL supports the use of varying-length strings, strings whose length is not

constant for all data. The following is the standard for an SQL varying-

length character:

CHARACTER VARYING(n)

n represents a number identifying the allocated or maximum length of the

particular field with this definition.

Common data types for variable-length character values are the VARCHAR,

VARBINARY, and VARCHAR2 data types. VARCHAR is the ANSI standard, which

Microsoft SQL Server and MySQL use; Oracle uses both VARCHAR and

VARCHAR2. The data stored in a character-defined column can be alphanu-

meric, which means that the data value may contain numeric characters.

VARBINARY is similar to VARCHAR and VARCHAR2 except that it contains a

24 HOUR 2: Defining Data Structures

Large Object Types

Some variable-length data types need to hold longer lengths of data than

what is traditionally reserved for a VARCHAR field. The BLOB and TEXT data

types are two examples of such data types in modern database implemen-

tations. These data types are specifically made to hold large sets of data.

The BLOB is a binary large object, so its data is treated as a large binary

string (a byte string). A BLOB is especially useful in an implementation that

needs to store binary media files in the database, such as images or MP3s.

The TEXT data type is a large character string data type that can be treated

as a large VARCHAR field. It is often used when an implementation needs to

store large sets of character data in the database. An example of this would

be storing HTML input from the entries of a blog site. Storing this type of

data in the database enables the site to be dynamically updated.

Numeric Types

Numeric values are stored in fields that are defined as some type of number,

typically referred to as NUMBER, INTEGER, REAL, DECIMAL, and so on.

The following are the standards for SQL numeric values:

. BIT(n)

. BIT VARYING(n)

. DECIMAL(p,s)

. INTEGER

. SMALLINT

. BIGINT

. FLOAT(p,s)

. DOUBLE PRECISION(p,s)

. REAL(s)

variable length of bytes. Normally, you would use a type such as this to

store some kind of digital data such as possibly an image file.

Remember that fixed-length data types typically pad spaces to fill in allo-

cated places not used by the field. The varying-length data type does not

work this way. For instance, if the allocated length of a varying-length

field is 10, and a string of 5 characters is entered, the total length of that

particular value would be only 5. Spaces are not used to fill unused places

in a column.

Basic Data Types 25

p represents a number identifying the allocated or maximum length of the

particular field for each appropriate definition.

s is a number to the right of the decimal point, such as 34.ss.

A common numeric data type in SQL implementations is NUMERIC, which

accommodates the direction for numeric values provided by ANSI. Numeric

values can be stored as zero, positive, negative, fixed, and floating-point

numbers. The following is an example using NUMERIC:

NUMERIC(5)

This example restricts the maximum value entered in a particular field to

99999. Note that all the database implementations that we use for the

examples support the NUMERIC type but implement it as a DECIMAL.

Decimal Types

Decimal values are numeric values that include the use of a decimal point.

The standard for a decimal in SQL follows, where p is the precision and s is

the decimal’s scale:

DECIMAL(p,s)

The precision is the total length of the numeric value. In a numeric defined

DECIMAL(4,2), the precision is 4, which is the total length allocated for a

numeric value. The scale is the number of digits to the right of the decimal

point. The scale is 2 in the previous DECIMAL(4,2) example. If a value has

more places to the right side of the decimal point than the scale allows, the

value is rounded; for instance, 34.33 inserted into a DECIMAL(3,1) is typical-

ly rounded to 34.3.

If a numeric value was defined as the following data type, the maximum

value allowed would be 99.99:

DECIMAL(4,2)

The precision is 4, which represents the total length allocated for an associ-

ated value. The scale is 2, which represents the number of places, or bytes,

reserved to the right side of the decimal point. The decimal point does not

count as a character.

Allowed values for a column defined as DECIMAL(4,2) include the following:

. 12

. 12.4

26 HOUR 2: Defining Data Structures

. 12.44

. 12.449

The last numeric value, 12.449, is rounded off to 12.45 upon input into the

column. In this case, any numbers between 12.445 and 12.449 would be

rounded to 12.45.

Integers

An integer is a numeric value that does not contain a decimal, only whole

numbers (both positive and negative).

Valid integers include the following:

. 1

. 0

. –1

. 99

. –99

. 199

Floating-Point Decimals

Floating-point decimals are decimal values whose precision and scale are

variable lengths and virtually without limit. Any precision and scale is

acceptable. The REAL data type designates a column with single-precision,

floating-point numbers. The DOUBLE PRECISION data type designates a col-

umn that contains double-precision, floating-point numbers. To be consid-

ered a single-precision floating point, the precision must be between 1 and

21 inclusive. To be considered a double-precision floating point, the preci-

sion must be between 22 and 53 inclusive. The following are examples of

the FLOAT data type:

. FLOAT

. FLOAT(15)

. FLOAT(50)

Basic Data Types 27

Date and Time Types

The SECOND element can also be broken down to fractions of a second. The range

is from 00.000 to 61.999, although some implementations of SQL might not sup-

port this range. The extra 1.999 seconds is used for leap seconds.

By the
Way

Date and Time Types

Date and time data types are quite obviously used to keep track of informa-

tion concerning dates and time. Standard SQL supports what are called

DATETIME data types, which include the following specific data types:

. DATE

. TIME

. DATETIME

. TIMESTAMP

The elements of a DATETIME data type consist of the following:

. YEAR

. MONTH

. DAY

. HOUR

. MINUTE

. SECOND

Be aware that each implementation of SQL might have its own customized

data type for dates and times. The previous data types and elements are

standards to which each SQL vendor should adhere, but be advised that

most implementations have their own data type for date values, varying in

both appearance and the way date information is actually stored internally.

A length is not normally specified for a date data type. Later in this hour,

you learn more about dates, how date information is stored in some imple-

mentations, and how to manipulate dates and times using conversion func-

tions. You also study practical examples of how dates and times are used in

the real world.

28 HOUR 2: Defining Data Structures

Literal Strings

A literal string is a series of characters, such as a name or a phone number,

that is explicitly specified by a user or program. Literal strings consist of

data with the same attributes as the previously discussed data types, but the

value of the string is known. The value of a column is usually unknown

because a column typically has a different value associated with each row

of data in a table.

You do not actually specify data types with literal strings—you simply speci-

fy the string. Some examples of literal strings follow:

. ’Hello’

. 45000

. ”45000”

. 3.14

. ’November 1, 1997’

The alphanumeric strings are enclosed by single quotation marks, whereas

the number value 45000 is not. Also notice that the second numeric value of

45000 is enclosed by quotation marks. Generally speaking, character strings

require quotation marks, whereas numeric strings don’t.

The process that converts a number into a numeric type is known as an

implicit conversion. This means that the database attempts to figure out what

type it needs to create for the object. So if you do not have a number

enclosed with single quotation marks, the SQL compiler assumes that you

want a numeric type. You need to be careful when working with data to

ensure that the data is being represented as you want it to be. Otherwise, it

might skew your results or result in an unexpected error. You see later how

literal strings are used with database queries.

NULL Data Types

As you should know from Hour 1, a NULL value is a missing value or a col-

umn in a row of data that has not been assigned a value. NULL values are

used in nearly all parts of SQL, including the creation of tables, search con-

ditions for queries, and even in literal strings.

The following are two methods for referencing a NULL value:

. NULL (the keyword NULL itself)

Basic Data Types 29

The following does not represent a NULL value, but a literal string contain-

ing the characters N-U-L-L:

’NULL’

When using the NULL data type, it is important to realize that data is not

required in a particular field. If data is always required for a given field,

always use NOT NULL with a data type. If there is a chance that there might

not always be data for a field, it is better to use NULL.

BOOLEAN Values

A BOOLEAN value is a value of TRUE, FALSE, or NULL. BOOLEAN values are used to

make data comparisons. For example, when criteria are specified for a

query, each condition evaluates to a TRUE, FALSE, or NULL. If the BOOLEAN

value of TRUE is returned by all conditions in a query, data is returned. If a

BOOLEAN value of FALSE or NULL is returned, data might not be returned.

Consider the following example:

WHERE NAME = ‘SMITH’

This line might be a condition found in a query. The condition is evaluated

for every row of data in the table that is being queried. If the value of NAME

is SMITH for a row of data in the table, the condition returns the value TRUE,

thereby returning the data associated with that record.

Most database implementations do not implement a strict BOOLEAN type and

instead opt to use their own methodology. MySQL contains the BOOLEAN type

but it is merely a synonym for their existing TINYINT type. Oracle prefers to

direct its users to use a CHAR(1) value to denote a BOOLEAN, and Microsoft

SQL Server uses a value known as BIT.

Differences in Data Type Implementations

Some of the data types mentioned during this hour might not be available by

name in the implementation of SQL that you are using. Data types are often

named differently among implementations of SQL, but the concept behind each

data type remains. Most, if not all, data types are supported by relational data-

bases.

By the
Way

A user-defined type is a data type that the user defines. User-defined types

allow users to customize their own data types to meet data storage needs

and are based on existing data types. User-defined data types can assist the

User-Defined Types

30 HOUR 2: Defining Data Structures

developer by providing greater flexibility during database application

development because they maximize the number of possibilities for data

storage. The CREATE TYPE statement is used to create a user-defined type.

For example, you can create a type as follows in both MySQL and Oracle:

CREATE TYPE PERSON AS OBJECT

(NAME VARCHAR (30),

SSN VARCHAR (9));

You can reference your user-defined type as follows:

CREATE TABLE EMP_PAY

(EMPLOYEE PERSON,

SALARY DECIMAL(10,2),

HIRE_DATE DATE);

Notice that the data type referenced for the first column EMPLOYEE is PERSON.

PERSON is the user-defined type you created in the first example.

Domains

A domain is a set of valid data types that can be used. A domain is associ-

ated with a data type, so only certain data is accepted. After you create a

domain, you can add constraints to the domain. Constraints work in con-

junction with data types, allowing you to further specify acceptable data

for a field. The domain is used like the user-defined type.

You can create a domain as follows:

CREATE DOMAIN MONEY_D AS NUMBER(8,2);

You can add constraints to your domain as follows:

ALTER DOMAIN MONEY_D

ADD CONSTRAINT MONEY_CON1

CHECK (VALUE > 5);

You can reference the domain as follows:

CREATE TABLE EMP_PAY

(EMP_ID NUMBER(9),

EMP_NAME VARCHAR2(30),

PAY_RATE MONEY_D);

Q&A 31

Summary
Several data types are available with SQL. If you have programmed in

other languages, you probably recognize many of the data types men-

tioned. Data types allow different types of data to be stored in the data-

base, ranging from simple characters to decimal points to date and time.

The concept of data types is the same in all languages, whether program-

ming in a third-generation language such as C and passing variables or

using a relational database implementation and coding in SQL. Of course,

each implementation has its own names for standard data types, but they

basically work the same. Also remember that an RDBMS does not have to

implement all of the data types in the ANSI standard to be considered ANSI

compliant. Therefore, it is prudent to check with the documentation of your

specific RDBMS implementation to see what options you have available.

You must take care in planning for both the near and distant future when

deciding on data types, lengths, scales, and precisions in which to store your

data. Business rules and how you want the end user to access the data are

other factors in deciding on specific data types. You should know the nature of

the data and how data in the database is related to assign proper data types.

Q&A
Q. How is it that I can enter numbers such as a person’s Social Security number

in fields defined as character fields?

A. Numeric values are still alphanumeric, which are allowed in string

data types. The process is called an implicit conversion because the

database system handles it automatically. Typically, the only data

stored as numeric values are values used in computations. However, it

might be helpful for some to define all numeric fields with a numeric

data type to help control the data entered in that field.

Q. I still do not understand the difference between constant-length and varying-

length data types. Can you explain?

A. Say you have an individual’s last name defined as a constant-length

data type with a length of 20 bytes. Suppose the individual’s name is

Smith. When the data is inserted into the table, 20 bytes are taken: 5

for the name, and 15 for the extra spaces. (Remember that this is a

constant-length data type.) If you use a varying-length data type with

a length of 20 and insert Smith, only 5 bytes of space are taken. If you

then imagine that you are inserting 100,000 rows of data into this sys-

tem, you could possibly save 1.5 million bytes of data.

32 HOUR 2: Defining Data Structures

Q. Are there limits on the lengths of data types?

A. Yes, there are limits on the lengths of data types, and they do vary

among the various implementations.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. True or false: An individual’s Social Security number, entered in the

format ’111111111’, can be any of the following data types: constant-

length character, varying-length character, or numeric.

2. True or false: The scale of a numeric value is the total length allowed

for values.

3. Do all implementations use the same data types?

4. What are the precision and scale of the following?

DECIMAL(4,2)

DECIMAL(10,2)

DECIMAL(14,1)

5. Which numbers could be inserted into a column whose data type is

DECIMAL(4,1)?

A. 16.2

B. 116.2

C. 16.21

D. 1116.2

E. 1116.21

6. What is data?

Workshop 33

Exercises

1. Take the following column titles, assign them to a data type, decide on

the proper length, and give an example of the data you would enter into

that column.

A. ssn

B. state

C. city

D. phone_number

E. zip

F. last_name

G. first_name

H. middle_name

I. salary

J. hourly_pay_rate

K. date_hired

2. Take the same column titles and decide whether they should be NULL or

NOT NULL, realizing that in some cases where a column would normally

be NOT NULL, the column could be NULL or vice versa, depending on the

application.

A. ssn

B. state

C. city

D. phone_number

E. zip

F. last_name

G. first_name

H. middle_name

I. salary

J. hourly_pay_rate

K. date_hired

34 HOUR 2: Defining Data Structures

3. We are going to set up a database to use for the subsequent hours in

this book. Remember that you have to have installed one of the three

database implementations—MySQL, Oracle, or Microsoft SQL Server—

before continuing:

MySQL

From Windows Explorer, go to the folder where you installed MySQL

on your computer. Double-click on the bin folder, and then double-

click on the executable file called mysql.exe. If you receive an error

stating that the server could not be found, first execute

winmysqladmin.exe from the bin folder, and then enter a username and

password. After the server is started, execute mysql.exe from the bin

folder.

At the mysql> command prompt, enter the following command to

create a database to use for this book’s exercises:

create database learnsql;

Be sure to press the Enter key on your keyboard after entering the com-

mand.

For all subsequent hands-on exercises in this book, you double-click on

the mysql.exe executable and then enter the following command to use

the database you just created:

use learnsql;

Oracle

Open your web browser and navigate to the administration home

page, which is typically located at http://127.0.0.1:8080/apex. At the

login prompt, if this is the first time that you are logging into the sys-

tem, use system as the username and the password that you set up

during the installation. From the administration screen you can select

SQL, SQL Commands, Enter Command. Now in the command win-

dow, input the following command and click the Run button:

create user learnsql identified by learnsql_2010;

In Oracle, when you create a user, the RDMS automatically creates a

schema. So with this command you not only created a user for query-

ing the data but a schema named learnsql. Oracle treats the schema

in much the same way that MySQL and Microsoft SQL Server treat a

database. You can view your schema by simply logging out and then

logging back in as the newly created user.

Workshop 35

Microsoft

From the Start menu, type SSMS.exe into the Run box and press Enter.

This brings up SQL Server Management Studio. The first dialog box to

open is for your database connection. If it is not already filled in with

localhost as the server name, type localhost into the box. Leave the

other values such as Windows Authentication as they are, and click

the Connect button. On the left side of the screen is an area called

Object Explorer showing your localhost database instance. Right-click

on localhost and select New Query. This opens a query window in the

right pane. Now type the following command and press F5:

Create database learnsql;

Then right-click the folder underneath localhost that’s labeled

Databases and select Refresh. Now if you expand the folder tree by click-

ing on the + symbol, you should see your learnsql database.

This page intentionally left blank

[(H3F)] 37

HOUR 3

Managing Database Objects

What You’ll Learn in This Hour:

. An introduction to database objects

. An introduction to the schema

. An introduction to the table

. A discussion of the nature and attributes of tables

. Examples for the creation and manipulation of tables

. A discussion of table storage options

. Concepts on referential integrity and data consistency

In this hour, you learn about database objects: what they are, how they

act, how they are stored, and how they relate to one another. Database

objects are the logical units that compose the building blocks of the data-

base. The majority of the instruction during this hour revolves around the

table, but keep in mind that there are other database objects, many of

which are discussed in later hours of study.

What Are Database Objects?
A database object is any defined object in a database that is used to store or

reference data. Some examples of database objects include tables, views,

clusters, sequences, indexes, and synonyms. The table is this hour’s focus

because it is the primary and simplest form of data storage in a relational

database.

What Is a Schema?
A schema is a collection of database objects normally associated with one

particular database username. This username is called the schema owner, or

the owner of the related group of objects. You may have one or multiple

schemas in a database. The user is only associated with the schema of the

38 HOUR 3: Managing Database Objects

USER1 accesses own TABLE1: TABLE1

USER1 accesses own TEST: TEST

USER1 accesses USER2’s TABLE10: USER2.TABLE10

USER1 accesses USER2’s TEST: USER2.TEST

same name, and often the terms are used interchangeably. Basically, any

user who creates an object has just created it in her own schema unless she

specifically instructs it to be created in another one. So, based on a user’s

privileges within the database, the user has control over objects that are cre-

ated, manipulated, and deleted. A schema can consist of a single table and

has no limits to the number of objects that it may contain, unless restricted

by a specific database implementation.

Say you have been issued a database username and password by the data-

base administrator. Your username is USER1. Suppose you log on to the

database and then create a table called EMPLOYEE_TBL. According to the

database, your table’s actual name is USER1.EMPLOYEE_TBL. The schema

name for that table is USER1, which is also the owner of that table. You

have just created the first table of a schema.

The good thing about schemas is that when you access a table that you

own (in your own schema), you do not have to refer to the schema name.

For instance, you could refer to your table as either one of the following:

EMPLOYEE_TBL

USER1.EMPLOYEE_TBL

The first option is preferred because it requires fewer keystrokes. If another

user were to query one of your tables, the user would have to specify the

schema as follows:

USER1.EMPLOYEE_TBL

In Hour 20, “Creating and Using Views and Synonyms,” you learn about

the distribution of permissions so that other users can access your tables.

You also learn about synonyms, which enable you to give a table another

name so you do not have to specify the schema name when accessing a

table. Figure 3.1 illustrates two schemas in a relational database.

There are, in Figure 3.1, two user accounts in the database that own tables:

USER1 and USER2. Each user account has its own schema. Some examples for

how the two users can access their own tables and tables owned by the

other user follow:

Tables: The Primary Storage for Data 39

In this example, both users have a table called TEST. Tables can have the

same names in a database as long as they belong to different schemas. If

you look at it this way, table names are always unique in a database

because the schema owner is actually part of the table name. For instance,

USER1.TEST is a different table than USER2.TEST. If you do not specify a

schema with the table name when accessing tables in a database, the data-

base server looks for a table that you own by default. That is, if USER1 tries

to access TEST, the database server looks for a USER1-owned table named

TEST before it looks for other objects owned by USER1, such as synonyms to

tables in another schema. Hour 21, “Working with the System Catalog,”

helps you fully understand how synonyms work.

You must be careful to understand the distinction between objects in your

own schema and those objects in another schema. If you do not provide a

schema when performing operations that alter the table, such as a DROP

command, the database assumes that you mean a table in your own

schema. This could possibly lead to your unintentionally dropping the

wrong object. So you must always pay careful attention as to which user

you are currently logged into the database with.

Object Naming Rules Differ Between Systems

Every database server has rules concerning how you can name objects and

elements of objects, such as field names. You must check your particular imple-

mentation for the exact naming conventions or rules.

USER1

test

table1

table2

USER2

test

table10

table20

Schema Owners

DATABASE

Schema Objects

(Tables)

FIGURE 3.1

Schemas in a

database.

Watch
Out!

Tables: The Primary Storage for Data
The table is the primary storage object for data in a relational database. In

its simplest form, a table consists of row(s) and column(s), both of which

hold the data. A table takes up physical space in a database and can be

permanent or temporary.

40 HOUR 3: Managing Database Objects

Generally, a column name must be one continuous string and can be limit-

ed to the number of characters used according to each implementation of

SQL. It is typical to use underscores with names to provide separation

between characters. For example, a column for the customer’s name can be

named CUSTOMER_NAME instead of CUSTOMERNAME. This is normally done to

increase the readability of database objects. There are other naming con-

ventions that you can utilize, such as Camel Case, to fit your specific pref-

erences. As such, it is important for a database development team to agree

upon a standard naming convention and stick to it so that order is main-

tained within the development process.

The most common form of data stored within a column is string data. This

data can be stored as either uppercase or lowercase for character-defined

fields. The case that you use for data is simply a matter of preference,

which should be based on how the data will be used. In many cases, data

is stored in uppercase for simplicity and consistency. However, if data is

stored in different case types throughout the database (uppercase, lower-

case, and mixed case), functions can be applied to convert the data to

either uppercase or lowercase if needed. These functions are covered in

Hour 11, “Restructuring the Appearance of Data.”

Columns also can be specified as NULL or NOT NULL, meaning that if a col-

umn is NOT NULL, something must be entered. If a column is specified as

NULL, nothing has to be entered. NULL is different from an empty set, such as

FIGURE 3.2

An example of

a column.

Columns

A field, also called a column in a relational database, is part of a table that

is assigned a specific data type. The data type determines what kind of

data the column is allowed to hold. This enables the designer of the table

to help maintain the integrity of the data.

Every database table must consist of at least one column. Columns are

those elements within a table that hold specific types of data, such as a

person’s name or address. For example, a valid column in a customer table

might be the customer’s name. Figure 3.2 illustrates a column in a table.

Tables: The Primary Storage for Data 41

an empty string, and holds a special place in database design. As such, you

can relate a NULL value to a lack of any data in the field.

Rows

A row is a record of data in a database table. For example, a row of data in

a customer table might consist of a particular customer’s identification

number, name, address, phone number, and fax number. A row is com-

posed of fields that contain data from one record in a table. A table can

contain as little as one row of data and up to as many as millions of rows

of data or records. Figure 3.3 illustrates a row within a table.

FIGURE 3.3

Example of a

table row.

By the
WayTypes We Use in This Hour

In this hour’s examples, we use the popular data types CHAR (constant-length

character), VARCHAR (variable-length character), NUMBER (numeric values, decimal,

and nondecimal), and DATE (date and time values).

Some elementary questions need to be answered when creating a table:

. What type of data will be entered into the table?

. What will be the table’s name?

. What column(s) will compose the primary key?

. What names shall be given to the columns (fields)?

The CREATE TABLE Statement

The CREATE TABLE statement in SQL is used to create a table. Although the

very act of creating a table is quite simple, much time and effort should be

put into planning table structures before the actual execution of the CREATE

TABLE statement. Carefully planning your table structure before implemen-

tation saves you from having to reconfigure things after they are in

production.

42 HOUR 3: Managing Database Objects

After these questions are answered, the actual CREATE TABLE statement is

simple.

The basic syntax to create a table is as follows:

CREATE TABLE table_name

(field1 data_type [not null],

field2 data_type [not null],

field3 data_type [not null],

field4 data_type [not null],

field5 data_type [not null]);

Note that a semicolon is the last character in the previous statement. Also,

brackets indicate portions that are optional. Most SQL implementations

have some character that terminates a statement or submits a statement to

the database server. Oracle, Microsoft SQL Server, and MySQL use the semi-

colon. Although Transact-SQL, Microsoft SQL Server’s ANSI SQL version, has

no such requirement, it is considered best practice to use it. This book uses

the semicolon.

Create a table called EMPLOYEE_TBL in the following example using the syntax

for MySQL:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST_ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER(5) NOT NULL,

EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL);

The following code would be the compatible code for both Microsoft SQL

Server and Oracle:

Existing Systems Often Have Existing Naming Rules

Be sure to check your implementation for rules when naming objects and other

database elements. Often database administrators adopt a naming convention

that explains how to name the objects within the database so you can easily dis-

cern how they are used.

By the
Way

. What data type will be assigned to each column?

. What will be the allocated length for each column?

. Which columns in a table can be left as a null value?

Tables: The Primary Storage for Data 43

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST_ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER NOT NULL,

EMP_PHONE INTEGER NULL,

EMP_PAGER INTEGER NULL);

Eight different columns make up this table. Notice the use of the underscore

character to break the column names up into what appears to be separate

words (EMPLOYEE ID is stored as EMP_ID). This is a technique that is used to

make table or column name more readable. Each column has been

assigned a specific data type and length, and by using the NULL/NOT NULL

constraint, you have specified which columns require values for every row

of data in the table. The EMP_PHONE is defined as NULL, meaning that NULL

values are allowed in this column because there might be individuals with-

out a telephone number. The information concerning each column is sepa-

rated by a comma, with parentheses surrounding all columns (a left paren-

thesis before the first column and a right parenthesis following the infor-

mation on the last column).

Limitations on Data Types Vary

Check your particular implementation for name length limits and characters that

are allowed; they could differ from implementation to implementation.

Watch
Out!

Each record, or row of data, in this table consists of the following:

EMP_ID, EMP_NAME, EMP_ST_ADDR, EMP_CITY, EMP_ST, EMP_ZIP, EMP_PHONE,
EMP_PAGER

In this table, each field is a column. The column EMP_ID could consist of one

employee’s identification number or many employees’ identification num-

bers, depending on the requirements of a database query or transaction.

Naming Conventions

When selecting names for objects, specifically tables and columns, make

sure the name reflects the data that is to be stored. For example, the name

for a table pertaining to employee information could be named

EMPLOYEE_TBL. Names for columns should follow the same logic. When stor-

ing an employee’s phone number, an obvious name for that column would

be PHONE_NUMBER.

44 HOUR 3: Managing Database Objects

The ALTER TABLE Command

You can modify a table after the table has been created by using the ALTER

TABLE command. You can add column(s), drop column(s), change column

definitions, add and drop constraints, and, in some implementations, mod-

ify table STORAGE values. The standard syntax for the ALTER TABLE command

follows:

alter table table_name [modify] [column column_name][datatype | null not
null]

[restrict | cascade]
[drop] [constraint constraint_name]

[add] [column] column definition

Modifying Elements of a Table

The attributes of a column refer to the rules and behavior of data in a col-

umn. You can modify the attributes of a column with the ALTER TABLE com-

mand. The word attributes here refers to the following:

. The data type of a column

. The length, precision, or scale of a column

. Whether the column can contain NULL values

The following example uses the ALTER TABLE command on EMPLOYEE_TBL to

modify the attributes of the column EMP_ID:

ALTER TABLE EMPLOYEE_TBL MODIFY

EMP_ID VARCHAR(10);

Table altered.

The column was already defined as data type VARCHAR (a varying-length

character), but you increased the maximum length from 9 to 10.

Adding Mandatory Columns to a Table

One of the basic rules for adding columns to an existing table is that the

column you are adding cannot be defined as NOT NULL if data currently

exists in the table. NOT NULL means that a column must contain some value

for every row of data in the table. So, if you are adding a column defined

as NOT NULL, you are contradicting the NOT NULL constraint right off the bat

if the preexisting rows of data in the table do not have values for the new

column.

There is, however, a way to add a mandatory column to a table:

1. Add the column and define it as NULL. (The column does not have

to contain a value.)

Tables: The Primary Storage for Data 45

By the
WayUsing NULL for Table Creation

NULL is a default attribute for a column; therefore, it does not have to be entered

in the CREATE TABLE statement. NOT NULL must always be specified.

In Microsoft SQL Server, we are provided with an IDENTITY column type. The

following is an example for the SQL Server implementation:

CREATE TABLE TEST_INCREMENT(

ID INT IDENTITY(1,1) NOT NULL,

TEST_NAME VARCHAR(20));

Oracle does not provide a direct method for an auto-incrementing column.

However, there is one method using an object called a SEQUENCE and a

TRIGGER that simulates the effect in Oracle. This technique is discussed when

we talk about TRIGGERs in Hour 22, “Advanced SQL Topics.”

Now we can insert values into the newly created table without specifying a

value for our auto-incrementing column:

INSERT INTO TEST_INCREMENT(TEST_NAME)

VALUES (‘FRED’),(‘JOE’),(‘MIKE’),(‘TED’);

SELECT * FROM TEST_INCREMENT;

| ID | TEST_NAME |

| 1 | FRED |

| 2 | JOE |

| 3 | MIKE |

| 4 | TED |

2. Insert a value into the new column for every row of data in the

table.

3. Alter the table to change the column’s attribute to NOT NULL.

Adding Auto-Incrementing Columns to a Table

Sometimes it is necessary to create a column that auto-increments itself

to give a unique sequence number for a particular row. You could do this

for many reasons, such as not having a natural key for the data, or

wanting to use a unique sequence number to sort the data. Creating an

auto-incrementing column is generally quite easy. In MySQL, the imple-

mentation provides the SERIAL method to produce a truly unique value for

the table. Following is an example:

CREATE TABLE TEST_INCREMENT(

ID SERIAL,

TEST_NAME VARCHAR(20));

46 HOUR 3: Managing Database Objects

Modifying Columns

You need to consider many things when modifying existing columns of a

table. Following are some common rules for modifying columns:

. The length of a column can be increased to the maximum length

of the given data type.

. The length of a column can be decreased only if the largest value

for that column in the table is less than or equal to the new length

of the column.

. The number of digits for a number data type can always be

increased.

. The number of digits for a number data type can be decreased only

if the value with the most number of digits for that column is less

than or equal to the new number of digits specified for the column.

. The number of decimal places for a number data type can either

be increased or decreased.

. The data type of a column can normally be changed.

Some implementations might actually restrict you from using certain ALTER

TABLE options. For example, you might not be allowed to drop columns

from a table. To do this, you have to drop the table itself and then rebuild

the table with the desired columns. You could run into problems by drop-

ping a column in one table that is dependent on a column in another table

or dropping a column that is referenced by a column in another table. Be

sure to refer to your specific implementation documentation.

By the
Way Creating Tables for Exercises

You will create the tables that you see in these examples at the end of this hour

in the “Exercises” section. In Hour 5, “Manipulating Data,” you will populate the

tables you create in this hour with data.

Watch
Out!

Creating a Table from an Existing Table

Altering or Dropping Tables Can Be Dangerous

Take heed when altering and dropping tables. If you make logical or typing mis-

takes when issuing these statements, you can lose important data.

Tables: The Primary Storage for Data 47

You can create a copy of an existing table using a combination of the

CREATE TABLE statement and the SELECT statement. The new table has the

same column definitions. You can select any or all columns. New columns

that you create via functions or a combination of columns automatically

assume the size necessary to hold the data. The basic syntax for creating a

table from another table is as follows:

create table new_table_name as

select [* | column1, column2]
from table_name

[where]

Notice some new keywords in the syntax, particularly the SELECT keyword.

SELECT is a database query and is discussed in more detail in Chapter 7,

“Introduction to the Database Query.” However, it is important to know

that you can create a table based on the results from a query.

Both MySQL and Oracle support the CREATE TABLE AS SELECT method of cre-

ating a table based on another table. Microsoft SQL Server, however, uses a

different statement. For that database implementation, you use a SELECT

... INTO statement. This statement is used like this:

select [* | column1, columnn2]
into new_table_name

from table_name

[where]

Here you’ll examine some examples of using this method.

First, do a simple query to view the data in the PRODUCTS_TBL table:

select * from products_tbl;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

Next, create a table called PRODUCTS_TMP based on the previous query:

create table products_tmp as

select * from products_tbl;

Table created.

Dropping Tables

Dropping a table is actually one of the easiest things to do. When the

RESTRICT option is used and the table is referenced by a view or constraint,

the DROP statement returns an error. When the CASCADE option is used, the

drop succeeds and all referencing views and constraints are dropped. The

syntax to drop a table follows:

drop table table_name [restrict | cascade]

48 HOUR 3: Managing Database Objects

In SQL Server, the same statement would be written as such:

select *

into products_tmp

from products_tbl;

Table created.

Now if you run a query on the PRODUCTS_TMP table, your results appear the

same as if you had selected data from the original table.

select *

from products_tmp;

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

Default STORAGE Attributes for Tables

When creating a table from an existing table, the new table takes on the same

STORAGE attributes as the original table.

What the * Means

SELECT * selects data from all fields in the given table. The * represents a com-

plete row of data, or record, in the table.

Did You
Know?

Did You
Know?

Integrity Constraints 49

Watch
Out!

Be Specific When Dropping a Table

Whenever you’re dropping a table, be sure to specify the schema name or owner

of the table before submitting your command. You could drop the incorrect table.

If you have access to multiple user accounts, ensure that you are connected to

the database through the correct user account before dropping tables.

SQL Server does not allow for the use of the CASCADE option. So for that par-

ticular implementation, you must ensure that you drop all objects that ref-

erence the table you are removing to ensure that you are not leaving an

invalid object in your system.

In the following example, you drop the table that you just created:

drop table products_tmp;

Table dropped.

Integrity Constraints
Integrity constraints ensure accuracy and consistency of data in a relation-

al database. Data integrity is handled in a relational database through the

concept of referential integrity. Many types of integrity constraints play a

role in referential integrity (RI).

Primary Key Constraints

Primary key is the term that identifies one or more columns in a table that

make a row of data unique. Although the primary key typically consists of

one column in a table, more than one column can comprise the primary

key. For example, either the employee’s Social Security number or an

assigned employee identification number is the logical primary key for an

employee table. The objective is for every record to have a unique primary

key or value for the employee’s identification number. Because there is

probably no need to have more than one record for each employee in an

employee table, the employee identification number makes a logical pri-

mary key. The primary key is assigned at table creation.

The following example identifies the EMP_ID column as the PRIMARY KEY for

the EMPLOYEES table:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,

50 HOUR 3: Managing Database Objects

EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST_ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER(5) NOT NULL,

EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL);

This method of defining a primary key is accomplished during table cre-

ation. The primary key in this case is an implied constraint. You can also

specify a primary key explicitly as a constraint when setting up a table, as

follows:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST_ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER(5) NOT NULL,

EMP_PHONE INTEGER(10) NULL,

EMP_PAGER INTEGER(10) NULL,

PRIMARY KEY (EMP_ID));

The primary key constraint in this example is defined after the column

comma list in the CREATE TABLE statement.

You can define a primary key that consists of more than one column by

either of the following methods, which demonstrate creating a primary key

in an Oracle table:

CREATE TABLE PRODUCT_TST

(PROD_ID VARCHAR2(10) NOT NULL,

VEND_ID VARCHAR2(10) NOT NULL,

PRODUCT VARCHAR2(30) NOT NULL,

COST NUMBER(8,2) NOT NULL,

PRIMARY KEY (PROD_ID, VEND_ID));

ALTER TABLE PRODUCTS_TST

ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

Unique Constraints

A unique column constraint in a table is similar to a primary key in that the

value in that column for every row of data in the table must have a unique

value. Although a primary key constraint is placed on one column, you

can place a unique constraint on another column even though it is not

actually for use as the primary key.

Integrity Constraints 51

Study the following example:

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,

EMP_NAME VARCHAR (40) NOT NULL,

EMP_ST_ADDR VARCHAR (20) NOT NULL,

EMP_CITY VARCHAR (15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP INTEGER(5) NOT NULL,

EMP_PHONE INTEGER(10) NULL UNIQUE,

EMP_PAGER INTEGER(10) NULL);

The primary key in this example is EMP_ID, meaning that the employee

identification number is the column ensuring that every record in the table

is unique. The primary key is a column that is normally referenced in

queries, particularly to join tables. The column EMP_PHONE has been desig-

nated as a UNIQUE value, meaning that no two employees can have the

same telephone number. There is not a lot of difference between the two,

except that the primary key provides an order to data in a table and, in the

same respect, joins related tables.

Foreign Key Constraints

A foreign key is a column in a child table that references a primary key in

the parent table. A foreign key constraint is the main mechanism that

enforces referential integrity between tables in a relational database. A col-

umn defined as a foreign key references a column defined as a primary key

in another table.

Study the creation of the foreign key in the following example:

CREATE TABLE EMPLOYEE_PAY_TST

(EMP_ID CHAR(9) NOT NULL,

POSITION VARCHAR2(15) NOT NULL,

DATE_HIRE DATE NULL,

PAY_RATE NUMBER(4,2) NOT NULL,

DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL
(EMP_ID));

The EMP_ID column in this example has been designated as the foreign key

for the EMPLOYEE_PAY_TBL table. This foreign key, as you can see, references

the EMP_ID column in the EMPLOYEE_TBL table. This foreign key ensures that

for every EMP_ID in the EMPLOYEE_PAY_TBL, there is a corresponding EMP_ID in

the EMPLOYEE_TBL. This is called a parent/child relationship. The parent table is

the EMPLOYEE_TBL table, and the child table is the EMPLOYEE_PAY_TBL table.

Study Figure 3.4 for a better understanding of the parent table/child table

relationship.

52 HOUR 3: Managing Database Objects

Previous examples use the keywords NULL and NOT NULL listed on the same

line as each column and after the data type. NOT NULL is a constraint that

you can place on a table’s column. This constraint disallows the entrance of

NULL values into a column; in other words, data is required in a NOT NULL

column for each row of data in the table. NULL is generally the default for a

column if NOT NULL is not specified, allowing NULL values in a column.

ALTER TABLE Variations

The options available with the ALTER TABLE command differ among implementa-

tions of SQL, particularly when dealing with constraints. In addition, the actual

use and definitions of constraints vary, but the concept of referential integrity

should be the same with all relational databases.

By the
Way

In this figure, the EMP_ID column in the child table references the EMP_ID

column in the parent table. For a value to be inserted for EMP_ID in the

child table, a value for EMP_ID in the parent table must exist. Likewise, for a

value to be removed for EMP_ID in the parent table, all corresponding first

values for EMP_ID must be removed from the child table. This is how refer-

ential integrity works.

You can add a foreign key to a table using the ALTER TABLE command, as

shown in the following example:

alter table employee_pay_tbl

add constraint id_fk foreign key (emp_id)

references employee_tbl (emp_id);

EMPLOYEE_PAY_TBL

emp_id

position

date_hire

pay_rate

date_last_raise

EMPLOYEE_TBL

emp_id

last_name

first_name

mid_name

address

city

state

zip

phone

pager

Primary

Key

Foreign

Key

Parent

Table

Child

Table

FIGURE 3.4

The

parent/child

table relation-

ship.

NOT NULL Constraints

Integrity Constraints 53

Check Constraints

You can utilize check (CHK) constraints to check the validity of data entered

into particular table columns. Check constraints provide back-end database

edits, although edits are commonly found in the front-end application as

well. General edits restrict values that can be entered into columns or

objects, whether within the database or on a front-end application. The

check constraint is a way of providing another protective layer for the data.

The following example illustrates the use of a check constraint in Oracle:

CREATE TABLE EMPLOYEE_CHECK_TST

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL,

PRIMARY KEY (EMP_ID),

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = ‘46234’));

The check constraint in this table has been placed on the EMP_ZIP column,

ensuring that all employees entered into this table have a ZIP Code of

’46234’. Perhaps that is a little restricting. Nevertheless, you can see how it

works.

If you wanted to use a check constraint to verify that the ZIP Code is within

a list of values, your constraint definition could look like the following:

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP in (‘46234’,’46227’,’46745’));

If there is a minimum pay rate that can be designated for an employee,

you could have a constraint that looks like the following:

CREATE TABLE EMPLOYEE_PAY_TBL

(EMP_ID CHAR(9) NOT NULL,

POSITION VARCHAR2(15) NOT NULL,

DATE_HIRE DATE NULL,

PAY_RATE NUMBER(4,2) NOT NULL,

DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL
(EMP_ID),

CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

In this example, any employee entered into this table must be paid more

than $12.50 an hour. You can use just about any condition in a check con-

straint, as you can with an SQL query. You learn more about these condi-

tions in Hours 5 and 7.

54 HOUR 3: Managing Database Objects

Dropping Constraints

Using the ALTER TABLE command with the DROP CONSTRAINT option, you

can drop any constraint that you have defined. For example, to drop the

primary key constraint in the EMPLOYEES table, you can use the following

command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Table altered.

Some implementations provide shortcuts for dropping certain constraints. For

example, to drop the primary key constraint for a table in MySQL, you can

use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Table altered.

Other Ways of Dealing with Constraints

Instead of permanently dropping a constraint from the database, some implemen-

tations allow you to temporarily disable constraints and then enable them later.

Did You
Know?

Summary
You have learned a little about database objects in general, but you have

specifically learned about the table. The table is the simplest form of data

storage in a relational database. Tables contain groups of logical informa-

tion, such as employee, customer, or product information. A table is com-

posed of various columns, with each column having attributes; those attrib-

utes mainly consist of data types and constraints, such as NOT NULL values,

primary keys, foreign keys, and unique values.

You learned the CREATE TABLE command and options, such as storage

parameters, that might be available with this command. You also learned

how to modify the structure of existing tables using the ALTER TABLE com-

mand. Although the process of managing database tables might not be the

most basic process in SQL, if you first learn the structure and nature of

tables, you will more easily grasp the concept of accessing the tables,

whether through data manipulation operations or database queries. In later

hours, you learn about the management of other objects in SQL, such as

indexes on tables and views.

Workshop 55

Q&A
Q. When I name a table that I am creating, is it necessary to use a suffix such

as _TBL?

A. Absolutely not. You do not have to use anything. For example, a table

to hold employee information could be named something similar to

the following, or anything else that would refer to what type of data is

to be stored in that particular table:

EMPLOYEE

EMP_TBL

EMPLOYEE_TBL

EMPLOYEE_TABLE

WORKER

Q. Why is it so important to use the schema name when dropping a table?

A. Here’s a true story about a new DBA who dropped a table. A program-

mer had created a table under his schema with the same name as a

production table. That particular programmer left the company. His

database account was being deleted from the database, but the DROP

USER statement returned an error because he owned outstanding

objects. After some investigation, it was determined that his table was

not needed, so a DROP TABLE statement was issued.

It worked like a charm, but the problem was that the DBA was logged

in as the production schema when the DROP TABLE statement was

issued. The DBA should have specified a schema name, or owner, for

the table to be dropped. Yes, the wrong table in the wrong schema was

dropped. It took approximately eight hours to restore the production

database.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Does the following CREATE TABLE statement work? If not, what needs to

be done to correct the problem(s)? Are there limitations as to what

database implementation it works in (MySQL, Oracle, SQL Server)?

Create table EMPLOYEE_TABLE as:

(ssn number(9) not null,

last_name varchar2(20) not null,

first_name varchar2(20) not null,

middle_name varchar2(20) not null,

st address varchar2(30) not null,

city char(20) not null,

state char(2) not null,

zip number(4) not null,

date hired date);

2. Can you drop a column from a table?

3. What statement would you issue to create a primary key constraint on

the preceding EMPLOYEE_TABLE?

4. What statement would you issue on the preceding EMPLOYEE_TABLE to

allow the MIDDLE_NAME column to accept NULL values?

5. What statement would you use to restrict the people added into the

preceding EMPLOYEE_TABLE to only reside in the state of New York

(’NY’)?

6. What statement would you use to add an auto-incrementing column

called EMPID to the preceding EMPLOYEE_TABLE using both the MySQL

and SQL Server syntax?

Exercises

In the following exercise, you will be creating all the tables in the database

to set up the environment for later. Additionally, you will be executing sev-

eral commands that will allow you to investigate the table structure in an

existing database. For thoroughness we have provided instructions for each

of the three implementations (MySQL, Microsoft SQL Server, and Oracle)

because each is slightly different in its approach.

MySQL

Bring up a command prompt and use the following syntax to log onto

your local MySQL instance, replacing username with your username

and password with your password. Ensure that you do not leave a

space between –p and your password.

Mysql -h localhost –u username -ppassword

56 HOUR 3: Managing Database Objects

Workshop 57

At the mysql> command prompt, enter the following command to tell

MySQL that you want to use the database you created previously:

use learnsql;

Now go to Appendix D, “CREATE TABLE Statements for Book Exam-

ples,” to get the DDL for the tables used in this book. At the mysql>

prompt, enter each CREATE TABLE statement. Be sure to include a

semicolon at the end of each CREATE TABLE statement. The tables that

you create are used throughout the book.

At the mysql> prompt, enter the following command to get a list of

your tables:

show tables;

At the mysql> prompt, use the DESCRIBE command (desc for short) to

list the columns and their attributes for each one of the tables you cre-

ated. For

example:

describe employee_tbl;

describe employee_pay_tbl;

If you have errors or typos, simply re-create the appropriate table(s). If

the table was successfully created but has typos (perhaps you did not

properly define a column or forgot a column), drop the table, and

issue the CREATE TABLE command again. The syntax of the DROP TABLE

command is as follows:

drop table orders_tbl;

Microsoft SQL Server

Bring up a command prompt and use the following syntax to log onto

your local SQL Server instance, replacing username with your username

and password with your password. Ensure that you do not leave a

space between –p and your password.

SQLCMD -S localhost –U username -Ppassword

58 HOUR 3: Managing Database Objects

At the 1> command prompt, enter the following command to tell SQL

Server that you want to use the database you created previously.

Remember that with SQLCMD you must use the keyword GO to tell the

command tool that you want the previous lines to execute.

1>use learnsql;

2>GO

Now go to Appendix D to get the DDL for the tables used in this book.

At the 1> prompt, enter each CREATE TABLE statement. Be sure to

include a semicolon at the end of each CREATE TABLE statement and

follow up with the keyword GO to have your statement execute. The

tables that you create are used throughout the book.

At the 1> prompt, enter the following command to get a list of your

tables. Follow this command with the keyword GO:

Select name from sys.tables;

At the 1> prompt, use the sp_help stored procedure to list the columns

and their attributes for each one of the tables you created. For exam-

ple:

Sp_help_ employee_tbl;

Sp_help employee_pay_tbl;

If you have errors or typos, simply re-create the appropriate table(s). If

the table was successfully created but has typos (perhaps you did not

properly define a column or forgot a column), drop the table and issue

the CREATE TABLE command again. The syntax of the DROP TABLE com-

mand is as follows:

drop table orders_tbl;

Oracle

Bring up a command prompt, and use the following syntax to log

onto your local Oracle instance. You are prompted to enter your user-

name and password.

sqlplus

Workshop 59

Now go to Appendix D to get the DDL for the tables used in this book.

At the SQL> prompt, enter each CREATE TABLE statement. Be sure to

include a semicolon at the end of each CREATE TABLE statement. The

tables that you create are used throughout the book.

At the SQL> prompt, enter the following command to get a list of your

tables:

Select * from cat;

At the SQL> prompt, use the DESCRIBE command (desc for short) to list

the columns and their attributes for each one of the tables you created.

For example:

describe employee_tbl;

describe employee_pay_tbl;

If you have errors or typos, simply re-create the appropriate table(s). If

the table was successfully created but has typos (perhaps you did not

properly define a column or forgot a column), drop the table, and

issue the CREATE TABLE command again. The syntax of the DROP TABLE

command is as follows:

drop table orders_tbl;

This page intentionally left blank

Normalizing a Database 61

HOUR 4

The Normalization Process

What You’ll Learn in This Hour:

. What normalization is

. Benefits of normalization

. Advantages of denormalization

. Normalization techniques

. Guidelines of normalization

. The three normal forms

. Database design

In this hour, you learn the process of taking a raw database and breaking

it into logical units called tables. This process is referred to as normalization.

The normalization process is used by database developers to design data-

bases in which it is easy to organize and manage data while ensuring the

accuracy of data throughout the database. The great thing is that the

process is the same regardless of which relational database management sys-

tem (RDBMS) you are using.

The advantages and disadvantages of both normalization and denormal-

ization of a database are discussed in this hour, as well as data integrity

versus performance issues that pertain to normalization.

Normalizing a Database
Normalization is a process of reducing redundancies of data in a database.

A technique that is used when designing and redesigning a database,

normalization optimally designs a database to reduce redundant data.

The actual guidelines of normalization, called normal forms, are discussed

later in this hour. It was a difficult decision to cover normalization in this

book because of the complexity involved. Understanding the rules of the

normal forms can be difficult this early in your SQL journey. However, nor-

malization is an important process that, if understood, increases your

62 HOUR 4: The Normalization Process

understanding of SQL. We have attempted to simplify the process of nor-

malization as much as possible in this hour. At this point, don’t be overly

concerned with all the specifics of normalization; it is most important to

understand the basic concepts.

The Raw Database

A database that is not normalized might include data that is contained in

one or more tables for no apparent reason. This could be bad for security

reasons, disk space usage, speed of queries, efficiency of database updates,

and, maybe most importantly, data integrity. A database before normaliza-

tion is one that has not been broken down logically into smaller, more

manageable tables. Figure 4.1 illustrates the database used for this book

before it was normalized.

Determining the set of information that the raw database consists of is one

of the first and most important steps in logical database design. You must

know all the data elements that comprise your database to effectively

apply the techniques discussed in this chapter. Taking the time to perform

the due diligence of gathering the set of required data keeps you from

having to backtrack your database design scheme because of missing data

elements.

Logical Database Design

Any database should be designed with the end user in mind. Logical data-

base design, also referred to as the logical model, is the process of arranging

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

position

date_hire

pay_rate

bonus

date_last_raise

COMPANY_DATABASE

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

ord_num

qty

ord_date

prod_id

prod_desc

cost

FIGURE 4.1

The raw data-

base.

Normalizing a Database 63

data into logical, organized groups of objects that can easily be main-

tained. The logical design of a database should reduce data repetition or go

so far as to completely eliminate it. After all, why store the same data

twice? Additionally, the logical database design should strive to make the

database easy to maintain and update. Naming conventions used in a

database should also be standard and logical to aid in this endeavor.

What Are the End User’s Needs?

The needs of the end user should be one of the top considerations when

designing a database. Remember that the end user is the person who ulti-

mately uses the database. There should be ease of use through the user’s

front-end tool (a client program that enables a user access to a database),

but this, along with optimal performance, cannot be achieved if the user’s

needs are not considered.

Some user-related design considerations include the following:

. What data should be stored in the database?

. How does the user access the database?

. What privileges does the user require?

. How should the data be grouped in the database?

. What data is the most commonly accessed?

. How is all data related in the database?

. What measures should be taken to ensure accurate data?

. What measures can be taken to reduce redundancy of data?

. What measures can be taken to ensure ease of use for the end user

who is maintaining the data?

Data Redundancy

Data should not be redundant; the duplication of data should be kept to a

minimum for several reasons. For example, it is unnecessary to store an

employee’s home address in more than one table. With duplicate data,

unnecessary space is used. Confusion is always a threat when, for instance,

an address for an employee in one table does not match the address of the

same employee in another table. Which table is correct? Do you have docu-

mentation to verify the employee’s current address? As if data management

were not difficult enough, redundancy of data could prove to be a disaster.

64 HOUR 4: The Normalization Process

Reducing redundancy also ensures that updating the data within the data-

base is relatively simple. If you have a single table for the employees’

addresses and you update that table with new addresses, you can rest

assured that it is updated for everyone who is viewing the data.

The Normal Forms

The next sections discuss the normal forms, an integral concept involved in

the process of database normalization.

Normal form is a way of measuring the levels, or depth, to which a data-

base has been normalized. A database’s level of normalization is deter-

mined by the normal form.

The following are the three most common normal forms in the normaliza-

tion process:

. The first normal form

. The second normal form

. The third normal form

There are normal forms beyond these, but they are used far less often than

the three major ones noted here. Of the three major normal forms, each

subsequent normal form depends on normalization steps taken in the pre-

vious normal form. For example, to normalize a database using the second

normal form, the database must be in the first normal form.

The First Normal Form

The objective of the first normal form is to divide the base data into tables.

When each table has been designed, a primary key is assigned to most or

all tables. Remember from Hour 3, “Managing Database Objects,” that

your primary key must be a unique value, so try to select a data element

for the primary key that naturally uniquely identifies a specific piece of

data. Examine Figure 4.2, which illustrates how the raw database shown in

Figure 4.1 has been redeveloped using the first normal form.

You can see that to achieve the first normal form, data had to be broken

into logical units of related information, each having a primary key and

ensuring that there are no repeated groups in any of the tables. Instead of

one large table, there are now smaller, more manageable tables:

EMPLOYEE_TBL, CUSTOMER_TBL, and PRODUCTS_TBL. The primary keys are nor-

mally the first columns listed in a table, in this case, EMP_ID, CUST_ID, and

PROD_ID. This is a normal convention that you should use when diagram-

ming your database to ensure that it is easily readable.

Normalizing a Database 65

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

position

position_desc

date_hire

pay_rate

bonus

date_last_raise

EMPLOYEE_TBL

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

position

position_desc

date_hire

pay_rate

bonus

date_last_raise

COMPANY_DATABASE

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

ord_num

qty

ord_date

CUSTOMER_TBL

prod_id

prod_desc

cost

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

ord_num

qty

ord_date

prod_id

prod_desc

cost

PRODUCTS_TBL

FIGURE 4.2

The first nor-

mal form.

However, your primary key could also be made up of more than one of the

columns in the data set. Often times, these values are not simple database-

generated numbers but logical points of data such as a product’s name or a

book’s ISBN number. These are commonly referred to as natural keys

because they would uniquely define a specific object regardless of whether

it was in a database. The main thing that you need to remember in picking

out your primary key for a table is that it must uniquely identify a single

row. Without this, you introduce the possibility of adding duplication into

your results of queries and prevent yourself from doing even simple things

such as removing a particular row of data based solely on the key.

The Second Normal Form

The objective of the second normal form is to take data that is only partly

dependent on the primary key and enter that data into another table.

Figure 4.3 illustrates the second normal form.

According to the figure, the second normal form is derived from the first

normal form by further breaking two tables into more specific units.

EMPLOYEE_TBL is split into two tables called EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL. Personal employee information is dependent on the pri-

mary key (EMP_ID), so that information remained in the EMPLOYEE_TBL

(EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP,

PHONE, and PAGER). On the other hand, the information that is only partly

dependent on the EMP_ID (each individual employee) populates

EMPLOYEE_PAY_TBL (EMP_ID, POSITION, POSITION_DESC, DATE_HIRE, PAY_RATE,

66 HOUR 4: The Normalization Process

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

position

position_desc

date_hire

pay_rate

bonus

date_last_raise

EMPLOYEE_TBL

emp_id

position

position_desc

date_hire

pay_rate

bonus

date_last_raise

EMPLOYEE_PAY_TBL

emp_id

last_name

first_name

middle_name

address

city

state

zip

phone

pager

EMPLOYEE_TBL

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

CUSTOMER_TBL

cust_id

cust_name

cust_address

cust_city

cust_state

cust_zip

cust_phone

cust_fax

ord_num

prod_id

qty

ord_date

CUSTOMER_TBL

ord_num

prod_id

qty

ord_date

ORDERS_TBL

SECOND NORMAL FORMFIRST NORMAL FORM

FIGURE 4.3

The second nor-

mal form.

CUSTOMER_TBL is split into two tables called CUSTOMER_TBL and ORDERS_TBL.

What took place is similar to what occurred in the EMPLOYEE_TBL. Columns

that were partly dependent on the primary key were directed to another

table. The order information for a customer depends on each CUST_ID but

does not directly depend on the general customer information in the origi-

nal table.

and DATE_LAST_RAISE). Notice that both tables contain the column EMP_ID.

This is the primary key of each table and is used to match corresponding

data between the two tables.

Normalizing a Database 67

emp_id

position

position_desc

date_hire

pay_rate

bonus

date_last_raise

EMPLOYEE_PAY_TBL

emp_id

position

date_hire

pay_rate

bonus

date_last_raise

EMPLOYEE_PAY_TBL

position

position_desc

POSITIONS_TBL

FIGURE 4.4

The third nor-

mal form.

Naming Conventions

Naming conventions are one of the foremost considerations when you’re

normalizing a database. Names are how you refer to objects in the data-

base. You want to give your tables names that are descriptive of the type of

information they contain so that the data you are looking for is easy to

find. Descriptive table names are especially important for users who had no

part in the database design but who need to query the database.

Companies should have a company-wide naming convention to provide

guidance in the naming of not only tables within the database, but users,

filenames, and other related objects. Naming conventions also help in

database administration by making it easier to discern the purpose of

tables and locations of files within a database system. Designing and

enforcing naming conventions is one of a company’s first steps toward a

successful database implementation.

The Third Normal Form

The third normal form’s objective is to remove data in a table that is not

dependent on the primary key. Figure 4.4 illustrates the third normal form.

Another table was created to display the use of the third normal form.

EMPLOYEE_PAY_TBL is split into two tables: one table containing the actual

employee pay information and the other containing the position descrip-

tions, which really do not need to reside in EMPLOYEE_PAY_TBL. The

POSITION_DESC column is totally independent of the primary key, EMP_ID. As

you can see, the normalization process is a series of steps that breaks down

the data from your raw database into discrete tables of related data.

68 HOUR 4: The Normalization Process

Benefits of Normalization

Normalization provides numerous benefits to a database. Some of the

major benefits include the following:

. Greater overall database organization

. Reduction of redundant data

. Data consistency within the database

. A much more flexible database design

. A better handle on database security

. Reinforcement of the concept of referential integrity

Organization is brought about by the normalization process, making

everyone’s job easier, from the user who accesses tables to the database

administrator (DBA) who is responsible for the overall management of

every object in the database. Data redundancy is reduced, which simplifies

data structures and conserves disk space. Because duplicate data is mini-

mized, the possibility of inconsistent data is greatly reduced. For example,

in one table an individual’s name could read STEVE SMITH, whereas the

name of the same individual might read STEPHEN R. SMITH in another

table. Reducing duplicate data increases data integrity, or the assurance of

consistent and accurate data within a database. Because the database has

been normalized and broken into smaller tables, you have more flexibility

in modifying existing structures. It is much easier to modify a small table

with little data than to modify one big table that holds all the vital data in

the database. Lastly, security is provided in the sense that the DBA can

grant access to limited tables to certain users. Security is easier to control

when normalization has occurred.

Referential integrity simply means that the values of one column in a table

depend on the values of a column in another table. For instance, for a cus-

tomer to have a record in the ORDERS_TBL table, there must first be a record

for that customer in the CUSTOMER_TBL table. Integrity constraints can also

control values by restricting a range of values for a column. The integrity

constraint should be created at the table’s creation. Referential integrity is

typically controlled through the use of primary and foreign keys.

In a table, a foreign key, normally a single field, directly references a pri-

mary key in another table to enforce referential integrity. In the preceding

paragraph, the CUST_ID in ORDERS_TBL is a foreign key that references

CUST_ID in CUSTOMER_TBL. Normalization helps to enhance and enforce these

Denormalizing a Database 69

constraints by logically breaking down data into subsets that are referenced

by a primary key.

Drawbacks of Normalization

Although most successful databases are normalized to some degree, there is

one substantial drawback of a normalized database: reduced database per-

formance. The acceptance of reduced performance requires the knowledge

that when a query or transaction request is sent to the database, there are

factors involved, such as CPU usage, memory usage, and input/output

(I/O). To make a long story short, a normalized database requires much

more CPU, memory, and I/O to process transactions and database queries

than does a denormalized database. A normalized database must locate

the requested tables and then join the data from the tables to either get the

requested information or to process the desired data. A more in-depth dis-

cussion concerning database performance occurs in Hour 18, “Managing

Database Users.”

Denormalizing a Database
Denormalization is the process of taking a normalized database and modify-

ing table structures to allow controlled redundancy for increased database

performance. Attempting to improve performance is the only reason to

denormalize a database. A denormalized database is not the same as a

database that has not been normalized. Denormalizing a database is the

process of taking the level of normalization within the database down a

notch or two. Remember, normalization can actually slow performance

with its frequently occurring table join operations. (Table joins are discussed

during Hour 13, “Joining Tables in Queries.”)

Denormalization might involve recombining separate tables or creating

duplicate data within tables to reduce the number of tables that need to be

joined to retrieve the requested data, which results in less I/O and CPU

time. This is normally advantageous in larger data warehousing applica-

tions in which aggregate calculations are being made across millions of

rows of data within tables.

There are costs to denormalization, however. Data redundancy is increased

in a denormalized database, which can improve performance but requires

more extraneous efforts to keep track of related data. Application coding

renders more complications because the data has been spread across vari-

ous tables and might be more difficult to locate. In addition, referential

70 HOUR 4: The Normalization Process

integrity is more of a chore; related data has been divided among a num-

ber of tables.

There is a happy medium in both normalization and denormalization, but

both require a thorough knowledge of the actual data and the specific busi-

ness requirements of the pertinent company. If you do look at denormaliz-

ing parts of your database structure, carefully document the process so you

can see exactly how you are handling issues such as redundancy to main-

tain data integrity within your systems.

Summary
A difficult decision has to be made concerning database design—to nor-

malize or not to normalize, that is the question. You always want to nor-

malize a database to some degree. How much do you normalize a database

without destroying performance? The real decision relies on the applica-

tion. How large is the database? What is its purpose? What types of users

are going to access the data? This hour covered the three most common

normal forms, the concepts behind the normalization process, and the

integrity of data. The normalization process involves many steps, most of

which are optional but vital to the functionality and performance of your

database. Regardless of how deep you decide to normalize, there is almost

always a trade-off, either between simple maintenance and questionable

performance or complicated maintenance and better performance. In the

end, the individual (or team of individuals) designing the database must

decide, and that person or team is responsible.

Q&A
Q. Why should I be so concerned with the end user’s needs when designing the

database?

A. The end users are the real data experts who use the database, and, in

that respect, they should be the focus of any database design effort.

The database designer only helps organize the data.

Q. Is normalization more advantageous than denormalization?

A. It can be more advantageous. However, denormalization, to a point,

could be more advantageous. Remember, many factors help determine

which way to go. You will probably normalize your database to reduce

repetition in the database, but you might turn around and denormal-

ize to a certain extent to improve performance.

Workshop 71

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. True or false: Normalization is the process of grouping data into logi-

cal related groups.

2. True or false: Having no duplicate or redundant data in a database,

and having everything in the database normalized, is always the best

way to go.

3. True or false: If data is in the third normal form, it is automatically in

the first and second normal forms.

4. What is a major advantage of a denormalized database versus a nor-

malized database?

5. What are some major disadvantages of denormalization?

6. How do you determine if data needs to be moved to a separate table

when normalizing your database?

7. What are the disadvantages of overnormalizing your database design?

Exercises

1. You are developing a new database for a small company. Take the fol-

lowing data and normalize it. Keep in mind that there would be many

more items for a small company than you are given here.

Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg,

Indiana, 47890, $9.50 per hour, date started January 22, 2006, SSN is

323149669.

72 HOUR 4: The Normalization Process

Jack Lee Nelson, salesman, 3334 N. Main St., Brownsburg, IN, 45687,

317-852-9901, salary of $35,000.00 per year, SSN is 312567342, date

started 10/28/2005.

Customers:

Robert’s Games and Things, 5612 Lafayette Rd., Indianapolis, IN,

46224, 317-291-7888, customer ID is 432A.

Reed’s Dairy Bar, 4556 W 10th St., Indianapolis, IN, 46245,

317-271-9823, customer ID is 117A.

Customer Orders:

Customer ID is 117A, date of last order is December 20, 2009, the prod-

uct ordered was napkins, and the product ID is 661.

2. Log in to your new database instance just as you did in Hour 3.

Ensure that you are in the learnsql database by using the following

statement:

Use learnsql;

In Oracle this is known as a schema; by default you create items in

your user schema.

Now that you are in the database, open a command window and

enter some CREATE TABLE statements based on the tables you defined in

Exercise 1.

Overview of Data Manipulation 73

HOUR 5

Manipulating Data

What You’ll Learn in This Hour:

. An overview of DML

. Instruction on how to manipulate data in tables

. Concepts behind table population of data

. How to delete data from tables

. How to change or modify data in tables

In this hour, you learn the part of SQL known as Data Manipulation

Language (DML). DML is the part of SQL that you use to change data and

tables in a relational database.

Overview of Data Manipulation
DML is the part of SQL that enables a database user to actually propagate

changes among data in a relational database. With DML, the user can

populate tables with new data, update existing data in tables, and delete

data from tables. Simple database queries can also be performed within a

DML command.

The three basic DML commands in SQL are

. INSERT

. UPDATE

. DELETE

The SELECT command, which can be used with DML commands, is dis-

cussed in more detail in Hour 7, “Introduction to the Database Query.” The

SELECT command is the basic query command that you can use after you

have entered data into the database with the INSERT command. So in this

hour we concentrate on getting the data into our tables so that we have

something interesting to use the SELECT command on.

74 HOUR 5: Manipulating Data

Watch
Out!

Populating Tables with New Data
Populating a table with data is simply the process of entering new data into

a table, whether through a manual process using individual commands or

through batch processes using programs or other related software. Manual

population of data refers to data entry via a keyboard. Automated population

normally deals with obtaining data from an external data source (such as

another database or possibly a flat file) and loading the obtained data into

the database.

Many factors can affect what data and how much data can be put into a

table when populating tables with data. Some major factors include exist-

ing table constraints, the physical table size, column data types, the length

of columns, and other integrity constraints, such as primary and foreign

keys. The following sections help you learn the basics of inserting new data

into a table, in addition to offering some Do’s and Don’ts.

Inserting Data into a Table

Use the INSERT statement to insert new data into a table. There are a few

options with the INSERT statement; look at the following basic syntax to

begin:

INSERT INTO TABLE_NAME

VALUES (‘value1’, ‘value2’, [NULL]);

Data Is Case Sensitive

Do not forget that SQL statements can be in uppercase or lowercase. However,

data is always case-sensitive. For example, if you enter data into the database as

uppercase, it must be referenced in uppercase. These examples use both lower-

case and uppercase statements just to show that it does not affect the outcome.

Using this INSERT statement syntax, you must include every column in the

specified table in the VALUES list. Notice that each value in this list is sepa-

rated by a comma. Enclose the values inserted into the table by single quo-

tation marks for character and date/time data types. Single quotation

marks are not required for numeric data types or NULL values using the NULL

keyword. A value should be present for each column in the table, and those

values must be in the same order as the columns are listed in the table. In

later sections, you learn how to specify the column ordering, but for now

just know that the SQL engine you are working with assumes that you want

to enter the data in the same order in which the columns were created.

In the following example, you insert a new record into the PRODUCTS_TBL table.

Populating Tables with New Data 75

Here is the table structure:

products_tbl

COLUMN Name Null? DATA Type

--

PROD_ID NOT NULL VARCHAR(10)

PROD_DESC NOT NULL VARCHAR(25)

COST NOT NULL NUMBER(6,2)

Here is the sample INSERT statement:

INSERT INTO PRODUCTS_TBL

VALUES (‘7725’,’LEATHER GLOVES’,24.99);

1 row created.

In this example, three values were inserted into a table with three columns.

The inserted values are in the same order as the columns listed in the table.

The first two values are inserted using single quotation marks because the

data types of the corresponding columns are of character type. The third

value’s associated column, COST, is a numeric data type and does not

require quotation marks, although you can use them without fear of affect-

ing the outcome of the statement.

When to Use Quotation Marks

Although single quotation marks are not required around numeric data that is

being inserted, they may be used with any data type. Said another way, single

quotation marks are optional when referring to numeric data values in the data-

base, but they are required for all other data values (data types). Although usually

a matter of preference, most SQL users choose not to use quotation marks with

numeric values because it makes their queries more readable.

By the
Way

There is a way you can insert data into specified columns. For instance, sup-

pose you want to insert all values for an employee except a pager number.

You must, in this case, specify a column list as well as a VALUES list in your

INSERT statement.

INSERT INTO EMPLOYEE_TBL

(EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP,
PHONE)

VALUES

(‘123456789’, ‘SMITH’, ‘JOHN’, ‘JAY’, ‘12 BEACON CT’,

‘INDIANAPOLIS’, ‘IN’, ‘46222’, ‘3172996868’);

1 row created.

Inserting Data into Limited Columns of a Table

76 HOUR 5: Manipulating Data

The syntax for inserting values into a limited number of columns in a table

is as follows:

INSERT INTO TABLE_NAME (‘COLUMN1’, ‘COLUMN2’)

VALUES (‘VALUE1’, ‘VALUE2’);

You use ORDERS_TBL and insert values into only specified columns in the fol-

lowing example.

Here is the table structure:

ORDERS_TBL

COLUMN NAME Null? DATA TYPE

ORD_NUM NOT NULL VARCHAR2(10)

CUST_ID NOT NULL VARCHAR2(10)

PROD_ID NOT NULL VARCHAR2(10)

QTY NOT NULL NUMBER(4)

ORD_DATE NULL DATE

Here is the sample INSERT statement:

insert into orders_tbl (ord_num,cust_id,prod_id,qty)

values (‘23A16’,’109’,’7725’,2);

1 row created.

You have specified a column list enclosed by parentheses after the table

name in the INSERT statement. You have listed all columns into which you

want to insert data. ORD_DATE is the only excluded column. If you look at the

table definition, you can see that ORD_DATE does not require data for every

record in the table. You know that ORD_DATE does not require data because

NOT NULL is not specified in the table definition. NOT NULL tells us that NULL

values are not allowed in the column. Furthermore, the list of values must

appear in the same order as the column list.

Column List Ordering Can Differ

The column list in the INSERT statement does not have to reflect the same order

of columns as in the definition of the associated table, but the list of values must

be in the order of the associated columns in the column list. Additionally, you can

leave off the NULL syntax for a column because the defaults for most RDBMS

specify that columns allow NULL values.

Did You
Know?

Inserting Data from Another Table

You can insert data into a table based on the results of a query from

another table using a combination of the INSERT statement and the

Populating Tables with New Data 77

SELECT statement. Briefly, a query is an inquiry to the database that either

expects or does not expect data to be returned. See Hour 7 for more infor-

mation on queries. A query is a question that the user asks the database,

and the data returned is the answer. In the case of combining the INSERT

statement with the SELECT statement, you are able to insert the data

retrieved from a query into a table.

The syntax for inserting data from another table is

insert into table_name [(‘column1’, ‘column2’)]

select [* |(‘column1’, ‘column2’)]
from table_name

[where condition(s)];

You see three new keywords in this syntax, which are covered here briefly.

These keywords are SELECT, FROM, and WHERE. SELECT is the main command

used to initiate a query in SQL. FROM is a clause in the query that specifies

the names of tables in which the target data should be found. The WHERE

clause, also part of the query, is places conditions on the query. A condition

is a way of placing criteria on data affected by an SQL statement. A sample

condition might state this: WHERE NAME = ‘SMITH’. These three keywords are

covered extensively during Hour 7 and Hour 8, “Using Operators to

Categorize Data.”

The following example uses a simple query to view all data in the

PRODUCTS_TBL table. SELECT * tells the database server that you want infor-

mation on all columns of the table. Because no WHERE clause is used, you see

all records in the table as well.

select * from products_tbl;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

Now insert values into the PRODUCTS_TMP table based on the preceding query.

You can see that 11 rows are created in the temporary table.

78 HOUR 5: Manipulating Data

insert into products_tmp

select * from products_tbl;

11 rows created.

You must ensure that the columns returned from the SELECT query are in

the same order as the columns that you have in your table or INSERT state-

ment. Additionally, double-check that the data from the SELECT query is

compatible with the data type of the column that it is inserting into the

table. For example, trying to insert a VARCHAR field with ’ABC’ into a numer-

ic column would cause your statement to fail.

The following query shows all data in the PRODUCTS_TMP table that you just

inserted:

select * from products_tmp;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

Inserting NULL Values

Inserting a NULL value into a column of a table is a simple matter. You

might want to insert a NULL value into a column if the value of the column

in question is unknown. For instance, not every person carries a pager, so it

would be inaccurate to enter an erroneous pager number—not to mention,

you would not be budgeting space. You can insert a NULL value into a col-

umn of a table using the keyword NULL.

The syntax for inserting a NULL value follows:

insert into schema.table_name values

(‘column1’, NULL, ‘column3’);

Use the NULL keyword in the proper sequence of the associated column that

exists in the table. That column does not have data in it for that row if you

Populating Tables with New Data 79

enter NULL. In the syntax, a NULL value is being entered in the place of

COLUMN2.

Study the two following examples:

insert into orders_tbl (ord_num,cust_id,prod_id,qty,ORD_DATE)

values (‘23A16’,’109’,’7725’,2,NULL);

1 row created.

In this example, all columns in which to insert values are listed, which also

happen to be every column in the ORDERS_TBL table. You insert a NULL value

for the ORD_DATE column, meaning that you either do not know the order

date, or there is no order date at this time. Now look at the second example:

insert into orders_tbl

values (‘23A16’,’109’,’7725’,2);

1 row created.

The second example contains two differences from the first statement, but

the results are the same. First, there is not a column list. Remember that a

column list is not required if you are inserting data into all columns of a

table. Second, instead of inserting the value NULL into the ORD_DATE column,

you simply leave off the last value, which signifies that a NULL value should

be added. Remember that a NULL value signifies an absence of value from a

field and is different from an empty string.

Lastly, consider an example where our PRODUCTS_TBL table allowed NULL val-

ues and you wanted to insert values into the PRODUCTS_TMP table using it:

select * from products_tb;l

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 NULL 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

insert into products_tmp

select * from products_tbl;

11 rows created.

80 HOUR 5: Manipulating Data

In this case the NULL values would be inserted without intervention needed

on your part as long as the column that the data is being inserted into

allowed NULL values. Later this book addresses the need to specify a DEFAULT

value for a column that allows you to automatically substitute a value for

any NULLs that are inserted.

Updating Existing Data
You can modify pre-existing data in a table using the UPDATE command.

This command does not add new records to a table, nor does it remove

records—UPDATE simply updates existing data. The update is generally used

to update one table at a time in a database, but you can use it to update

multiple columns of a table at the same time. An individual row of data in

a table can be updated, or numerous rows of data can be updated in a sin-

gle statement, depending on what’s needed.

Updating the Value of a Single Column

The most simple form of the UPDATE statement is its use to update a single

column in a table. Either a single row of data or numerous records can be

updated when updating a single column in a table.

The syntax for updating a single column follows:

update table_name

set column_name = ‘value’

[where condition];

The following example updates the QTY column in the ORDERS_TBL table to

the new value 1 for the ORD_NUM 23A16, which you have specified using the

WHERE clause:

update orders_tbl

set qty = 1

where ord_num = ‘23A16’;

1 row updated.

The following example is identical to the previous example, except for the

absence of the WHERE clause:

update orders_tbl

set qty = 1;

11 rows updated.

Updating Existing Data 81

Test Your UPDATE and DELETE Statements

Use extreme caution when using the UPDATE statement without a WHERE clause.

The target column is updated for all rows of data in the table if conditions are not

designated using the WHERE clause. In most situations, the use of the WHERE

clause with a DML command is appropriate.

Watch
Out!

Updating Multiple Columns in One or More

Records

Next, you see how to update multiple columns with a single UPDATE state-

ment. Study the following syntax:

update table_name

set column1 = ‘value’,

[column2 = ‘value’,]

[column3 = ‘value’]

[where condition];

Notice the use of the SET in this syntax—there is only one SET, but multiple

columns. Each column is separated by a comma. You should start to see a

trend in SQL. The comma usually separates different types of arguments in

SQL statements. In the following code, a comma separates the two columns

being updated. Again, the WHERE clause is optional, but it’s usually necessary.

update orders_tbl

set qty = 1,

cust_id = ‘221’

where ord_num = ‘23A16’;

1 row updated.

Notice that in this example, 11 rows of data were updated. You set the QTY

to 1, which updated the quantity column in the ORDERS_TBL table for all

rows of data. Is this really what you wanted to do? Perhaps in some cases,

but rarely do you issue an UPDATE statement without a WHERE clause. An

easy way to check to see whether you are going to be updating the correct

dataset is to write a SELECT statement for the same table with your WHERE

clause that you are using in the INSERT statement. Then you can physically

verify that these are the rows you want to update.

When to Use the SET Keyword

The SET keyword is used only once for each UPDATE statement. If more than one

column is to be updated, use a comma to separate the columns to be updated.

By the
Way

82 HOUR 5: Manipulating Data

Deleting Data from Tables
The DELETE command removes entire rows of data from a table. It does not

remove values from specific columns; a full record, including all columns,

is removed. Use the DELETE statement with caution—because it works all

too well.

Don’t Omit the WHERE Clause

If the WHERE clause is omitted from the DELETE statement, all rows of data are

deleted from the table. As a general rule, always use a WHERE clause with the

DELETE statement. Additionally, test your WHERE clause with a SELECT state-

ment first.

Also, remember that the DELETE command might have a permanent effect on the

database. Ideally, it should be possible to recover erroneously deleted data via a

backup, but in some cases, it might be difficult or even impossible to recover

data. If you cannot recover data, you must re-enter it into the database—trivial if

dealing with only one row of data, but not so trivial if dealing with thousands of

rows of data. Hence, the importance of the WHERE clause.

Watch
Out!

Later in this book you learn how to write more complex statements so you

can update values in one table using values from one or more outside

tables through a construct known as a JOIN.

To delete a single record or selected records from a table, use the DELETE

statement with the following syntax:

delete from table_name

[where condition];

delete from orders_tbl

where ord_num = ‘23A16’;

1 row deleted.

Notice the use of the WHERE clause. It is an essential part of the DELETE state-

ment if you are attempting to remove selected rows of data from a table.

You rarely issue a DELETE statement without the use of the WHERE clause. If

you do, your results are similar to the following example:

delete from orders_tbl;

11 rows deleted.

Q&A 83

The temporary table that was populated from the original table earlier in

this hour can be useful for testing the DELETE and UPDATE commands before

issuing them against the original table. Also, remember the technique dis-

cussed earlier when we talked about the UPDATE command. Write a SELECT

statement using the same WHERE clause that you are attempting to use for

the DELETE statement. That way you can verify that the data being deleted

is actually the data you want.

Summary
You have learned the three basic commands in DML: the INSERT, UPDATE,

and DELETE statements. As you have seen, data manipulation is a powerful

part of SQL, allowing the database user to populate tables with new data,

update existing data, and delete data.

An important lesson when updating or deleting data from tables in a data-

base is sometimes learned when neglecting the use of the WHERE clause.

Remember that the WHERE clause places conditions on an SQL statement—

particularly in the case of UDPATE and DELETE operations, when you are

specifying specific rows of data that are affected during a transaction. All

target table data rows are affected if the WHERE clause is not used, which

could be disastrous to the database. Protect your data, and be cautious dur-

ing data manipulation operations.

Q&A
Q. With all the warnings about DELETE and UPDATE, I’m a little afraid to use

them. If I accidentally update all the records in a table because I didn’t use

the WHERE clause, can I reverse the changes?

A. There is no reason to be afraid, because there is not much you can do

to the database that cannot be corrected, although considerable time

and work might be involved. Hour 6, “Managing Database Transac-

tions,” discusses the concepts of transactional control, which allows

data manipulation operations to be finalized or undone.

Q. Is the INSERT statement the only way to enter data into a table?

A. No, but remember that the INSERT statement is ANSI standard. The vari-

ous implementations have their tools to enter data into tables. For exam-

ple, Oracle has a utility called SQL*Loader. Also, many of the various

implementations have utilities called IMPORT that can insert data. There

are many good books on the market that expand on these utilities.

84 HOUR 5: Manipulating Data

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Use the EMPLOYEE_TBL with the following structure:

Column data type (not)null

last_name varchar2(20) not null

first_name varchar2(20) not null

ssn char(9) not null

phone number(10) null

LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923

ROBERTS LISA 232118857 3175452321

SMITH SUE 443221989 3178398712

PIERCE BILLY 310239856 3176763990

What would happen if the following statements were run?

a.
insert into employee_tbl

(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

b.
insert into employee_tbl values

(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

c.
insert into employee_tbl values

(‘MILLER’, ‘DANIEL’, ‘230980012’, NULL);

d.
insert into employee_tbl values

(‘TAYLOR’, NULL, ‘445761212’, ‘3179221331’);

e.
delete from employee_tbl;

Workshop 85

f.
delete from employee_tbl

where last_name = ‘SMITH’;

g.
delete from employee_tbl

where last_name = ‘SMITH’

and first_name = ‘JOHN’;

h.
update employee_tbl

set last_name = ‘CONRAD’;

i.
update employee_tbl

set last_name = ‘CONRAD’

where last_name = ‘SMITH’;

j.
update employee_tbl

set last_name = ‘CONRAD’,

first_name = ‘LARRY’;

k.
update employee_tbl

set last_name = ‘CONRAD’

first_name = ‘LARRY’

where ssn = ‘313546078’;

Exercises

1. Go to Appendix E, “INSERT Statements for Data in Book Examples.”

Invoke your RDBMS query editor as you have done in previous exer-

cises.

Now you need to insert the data into the tables that you created in

Hour 3, “Managing Database Objects.” Carefully type and execute

each of the INSERT statements in Appendix E to populate your tables.

After you have executed all the commands for this hour in Appendix

E, your tables will be populated with data, and you can proceed with

the exercises in the rest of this book.

2. Use the PRODUCTS_TBL for this exercise.

Add the following products to the product table:

PROD_ID PROD_DESC COST

301 FIREMAN COSTUME 24.99

302 POLICEMAN COSTUME 24.99

303 KIDDIE GRAB BAG 4.99

86 HOUR 5: Manipulating Data

Write DML to correct the cost of the two costumes added. The cost

should be the same as the witch costume.

Now we have decided to cut our product line, starting with the new

products. Remove the three products you just added.

Before you executed the statements to remove the products you added,

what should you have done to ensure that you only delete the desired

rows?

[(H3F)] 87

HOUR 6

Managing Database
Transactions

What You’ll Learn in This Hour:

. The definition of a transaction

. The commands used to control transactions

. The syntax and examples of transaction commands

. When to use transactional commands

. The consequences of poor transactional control

In this hour, you learn the concepts behind the management of database

transactions.

What Is a Transaction?
A transaction is a unit of work that is performed against a database.

Transactions are units or sequences of work accomplished in a logical

order, whether in a manual fashion by a user or automatically by some

sort of a database program. In a relational database using SQL, transac-

tions are accomplished using the Data Manipulation Language (DML) com-

mands that were discussed during Hour 5, “Manipulating Data,” (INSERT,

UPDATE, and DELETE). A transaction is the propagation of one or more

changes to the database. For instance, you are performing a transaction if

you perform an UPDATE statement on a table to change an individual’s

name.

A transaction can either be one DML statement or a group of statements.

When managing transactions, each designated transaction (group of

DML statements) must be successful as one entity, or none of them will be

successful.

The following list describes the nature of transactions:

88 HOUR 6: Managing Database Transactions

. All transactions have a beginning and an end.

. A transaction can be saved or undone.

. If a transaction fails in the middle, no part of the transaction can

be saved to the database.

Controlling Transactions

Transactions Are Implementation Specific

Starting or executing transactions is implementation specific. You must check

your particular implementation for how to begin transactions.

By the
Way

Transactional control is the capability to manage various transactions that

might occur within a relational database management system (RDBMS). When

you speak of transactions, you are referring to the INSERT, UPDATE, and

DELETE commands, which were covered during the previous hour.

When a transaction is executed and completes successfully, the target table

is not immediately changed, although it might appear so according to the

output. When a transaction successfully completes, transactional control

commands are used to finalize the transaction, either saving the changes

made by the transaction to the database or reversing the changes made by

the transaction.

Three commands are used to control transactions:

. COMMIT

. ROLLBACK

. SAVEPOINT

Each of these is discussed in detail in the following sections.

Controlling Transactions 89

By the
Way

When Can You Use Transactions

Transactional control commands are only used with the DML commands INSERT,

UPDATE, and DELETE. For example, you do not issue a COMMIT statement after cre-

ating a table. When the table is created, it is automatically committed to the data-

base. Likewise, you cannot issue a ROLLBACK statement to replenish a table that

was just dropped. Also, there are other commands such as TRUNCATE that are not

logged and cannot be recovered from. So please make sure you check your

RDBMS’s documentation before executing new commands to ensure you under-

stand how they implement their transaction support.

When a transaction has completed, the transactional information is stored either

in an allocated area or in a temporary rollback area in the database. All changes

are held in this temporary rollback area until a transactional control command is

issued. When a transactional control command is issued, changes are either

made to the database or discarded; then the temporary rollback area is emptied.

Figure 6.1 illustrates how changes are applied to a relational database.

The syntax for this command is

commit [work];

The keyword COMMIT is the only mandatory part of the syntax, along with

the character or command that terminates a statement according to each

implementation. WORK is a keyword that is completely optional; its only pur-

pose is to make the command more user-friendly.

Temporary

Buffer

Changes

Written to

TARGET

TABLE

COMMIT

Transaction
Changes

Changes

Discarded

ROLLBACK

FIGURE 6.1

Rollback area.

The COMMIT Command

The COMMIT command is the transactional command used to save changes

invoked by a transaction to the database. The COMMIT command saves all

transactions to the database since the last COMMIT or ROLLBACK command.

90 HOUR 6: Managing Database Transactions

In the following example, you begin by selecting all data from the

PRODUCT_TMP table:

SELECT * FROM PRODUCTS_TMP;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

Next, you delete all records from the table where the product cost is less

than $14.00.

DELETE FROM PRODUCTS_TMP

WHERE COST < 14;

8 rows deleted.

A COMMIT statement is issued to save the changes to the database, complet-

ing the transaction.

COMMIT;

Commit complete.

Frequent COMMIT statements in large loads or unloads of the database are

highly recommended; however, too many COMMIT statements cause the job to

take a lot of extra time to complete. Remember that all changes are sent to

the temporary rollback area first. If this temporary rollback area runs out of

space and cannot store information about changes made to the database,

the database will probably halt, disallowing further transactional activity.

You should realize that when an UPDATE, INSERT, or DELETE is issued, most

RDBMSs are using a form of transaction in the background so that if the

query is cancelled or runs into an error, changes are not committed. So issu-

ing a transaction is more of an action to ensure that a set of transactions

are run as what is commonly referred to as a unit of work. So in a real-world

example, you might be processing a bank transaction at an ATM with a

Controlling Transactions 91

Watch
Out!Some Implementations Treat the COMMIT Differently

In some implementations, transactions are committed without issuing the COMMIT

command—instead, merely signing out of the database causes a commit to

occur. However, in some implementations, such as MySQL, after you perform a

SET TRANSACTION command, the auto-commit functionality does not resume until

it has received a COMMIT or ROLLBACK statement. Additionally, in other implemen-

tations such as Microsoft SQL Server, statements are auto-committed unless a

transaction is specifically used. So ensure that you check the documentation of

your particular RDBMS to understand exactly how transactions and committing of

statements are handled.

Once again, as in the COMMIT statement, the WORK keyword is an optional

part of the ROLLBACK syntax.

In the following example, you begin by selecting all records from the

PRODUCTS_TMP table since the previous deletion of 14 records:

SELECT * FROM PRODUCTS_TMP;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

2345 OAK BOOKSHELF 59.99

3 rows selected.

The ROLLBACK Command

The ROLLBACK command is the transactional control command that undoes

transactions that have not already been saved to the database. You can

only use the ROLLBACK command to undo transactions since the last COMMIT

or ROLLBACK command was issued.

The syntax for the ROLLBACK command is as follows:

rollback [work];

client wanting to withdraw money. In such a situation, you need to both

insert a transaction for the money being withdrawn as well as update the

client’s balance to reflect the new total. Obviously, we would want either

both of these statements to be successful or both of them to fail. Otherwise,

our system’s data integrity is compromised. So in this instance, you would

wrap your unit of work in a transaction to ensure that you could control

the outcome of both statements.

92 HOUR 6: Managing Database Transactions

Next, you update the table, changing the product cost to $39.99 for the

product identification number 11235:

update products_tmp

set cost = 39.99

where prod_id = ‘11235’;

1 row updated.

If you perform a quick query on the table, the change appears to have

occurred:

select * from products_tmp;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 39.99

90 LIGHTED LANTERNS 14.5

2345 OAK BOOKSHELF 59.99

3 rows selected.

Now issue the ROLLBACK statement to undo the last change:

rollback;

Rollback complete.

Finally, verify that the change was not committed to the database:

select * from products_tmp;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

2345 OAK BOOKSHELF 59.99

3 rows selected

The SAVEPOINT Command

A savepoint is a point in a transaction where you can roll the transaction

back to this point without rolling back the entire transaction.

The syntax for the SAVEPOINT command is

savepoint savepoint_name

This command serves only to create a savepoint among transactional

statements. The ROLLBACK command undoes a group of transactions. The

savepoint is a way of managing transactions by breaking large numbers

of transactions into smaller, more manageable groups.

Controlling Transactions 93

Microsoft SQL Server uses a slightly different syntax. In SQL Server, you

would use the statement SAVE TRANSACTION instead of SAVEPOINT, as is shown

in the statement that follows:

save transaction savepoint_name

Otherwise, the procedure works exactly as the other implementations.

The ROLLBACK TO SAVEPOINT Command

The syntax for rolling back to a savepoint is as follows:

ROLLBACK TO SAVEPOINT_NAME;

In this example, you are going to delete the remaining three records from

the PRODUCTS_TMP table. You want to issue a SAVEPOINT command before

each delete, so you can issue a ROLLBACK command to any savepoint at any

time to return the appropriate data to its original state:

savepoint sp1;

Savepoint created.

delete from products_tmp where prod_id = ‘11235’;

1 row deleted.

savepoint sp2;

Savepoint created.

delete from products_tmp where prod_id = ‘90’;

1 row deleted.

savepoint sp3;

Savepoint created.

delete from products_tmp where prod_id = ‘2345’;

1 row deleted.

SAVEPOINT Names Need to Be Unique

The SAVEPOINT name must be unique to the associated group of transactions.

However, it can have the same name as a table or other object. Refer to specific

implementation documentation for more details on naming conventions. Other-

wise, savepoint names are a matter of personal preference and are used only by

the database application developer to manage groups of transactions.

By the
Way

94 HOUR 6: Managing Database Transactions

Now that the three deletions have taken place, let’s say you have changed

your mind and decided to issue a ROLLBACK command to the savepoint that

you identified as SP2. Because SP2 was created after the first deletion, the

last two deletions are undone:

rollback to sp2;

Rollback complete.

Notice that only the first deletion took place because you rolled back to SP2:

select * from products_tmp;

PROD_ID PROD_DESC COST

90 LIGHTED LANTERNS 14.5

2345 OAK BOOKSHELF 59.99

2 rows selected.

Remember, the ROLLBACK command by itself rolls back to the last COMMIT or

ROLLBACK statement. You have not yet issued a COMMIT, so all deletions are

undone, as in the following example:

rollback;

Rollback complete.

select * from products_tmp;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

2345 OAK BOOKSHELF 59.99

3 rows selected.

The RELEASE SAVEPOINT Command

The RELEASE SAVEPOINT command removes a savepoint that you have creat-

ed. After a savepoint has been released, you can no longer use the ROLLBACK

command to undo transactions performed since the savepoint. You might

want to issue a RELEASE SAVEPOINT command to avoid the accidental roll-

back to a savepoint that is no longer needed.

RELEASE SAVEPOINT savepoint_name;

Transactions Control and Database Performance 95

Microsoft SQL Server does not support the RELEASE SAVEPOINT syntax;

instead, all SAVEPOINTs are released when the transaction is completed. This

is either by the COMMIT or the ROLLBACK of the transaction. Remember this

point when you are structuring your transactions within your environment.

The SET TRANSACTION Command

You can use the SET TRANSACTION command to initiate a database transac-

tion. This command specifies characteristics for the transaction that

follows. For example, you can specify a transaction to be read-only or

read/write:

SET TRANSACTION READ WRITE;

SET TRANSACTION READ ONLY;

READ WRITE is used for transactions that are allowed to query and manipu-

late data in the database. READ ONLY is used for transactions that require

query-only access. READ ONLY is useful for report generation and for increas-

ing the speed at which transactions are accomplished. If a transaction is

READ WRITE, the database must create locks on database objects to maintain

data integrity if multiple transactions are happening concurrently. If a

transaction is READ ONLY, no locks are established by the database, thereby

improving transaction performance.

Other characteristics can be set for a transaction, but these are out of the

scope of this book. MySQL supports this syntax for setting an isolation level

for the transaction but in slightly different syntax. For more information,

see the documentation for your implementation of SQL.

Transactional Control and Database

Performance
Poor transactional control can hurt database performance and even bring

the database to a halt. Repeated poor database performance might be due

to a lack of transactional control during large inserts, updates, or deletes.

Large batch processes also cause temporary storage for rollback informa-

tion to grow until either a COMMIT or a ROLLBACK command is issued.

When a COMMIT is issued, rollback transactional information is written to

the target table, and the rollback information in temporary storage is

cleared. When a ROLLBACK is issued, no changes are made to the database

and the rollback information in the temporary storage is cleared. If neither

96 HOUR 6: Managing Database Transactions

a COMMIT nor ROLLBACK is issued, the temporary storage for rollback informa-

tion continues to grow until there is no more space left, thus forcing the

database to stop all processes until space is freed. Although space usage is

ultimately controlled by the database administrator (DBA), a lack of transac-

tional control can still cause database processing to stop, sometimes forcing

the DBA to take action that might consist of killing running user processes.

Summary
During this hour, you learned the preliminary concepts of transactional

management through the use of three transactional control commands:

COMMIT, ROLLBACK, and SAVEPOINT. You use COMMIT to save a transaction to the

database. You use ROLLBACK to undo a transaction you performed. You use

SAVEPOINT to break a transaction or transactions into groups, which allows

you to roll back to specific logical points in transaction processing.

Remember that you should frequently use the COMMIT and ROLLBACK com-

mands when running large transactional jobs to keep space free in the

database. Also, keep in mind that these transactional commands are used

only with the three DML commands (INSERT, UPDATE, and DELETE).

Q&A
Q. Is it necessary to issue a commit after every INSERT statement?

A. No, absolutely not. If you were inserting a few hundred thousand rows

into a table, a COMMIT would be recommended every 5,000–10,000

rows, depending on the size of the temporary rollback area. (Seek the

advice of your database administrator.) Remember that the database

might freeze up or not function properly when the rollback area fills

up.

Q. How does the ROLLBACK command undo a transaction?

A. The ROLLBACK command clears all changes from the rollback area.

Q. If I issue a transaction and 99% of the transaction completes but the other

1% errs, will I be able to redo only the error part?

A. No, the entire transaction must succeed; otherwise, data integrity is

compromised.

Workshop 97

Q. A transaction is permanent after I issue a COMMIT, but can’t I change data

with an UPDATE command?

A. The word permanent used in this matter means that it is now a part of

the database. You can always use the UPDATE statement to make modi-

fications or corrections to the data.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. True or false: If you have committed several transactions, have several

more transactions that have not been committed, and issue a ROLL-

BACK command, all your transactions for the same session are

undone.

2. True or false: A SAVEPOINT command actually saves transactions after a

specified number of transactions have executed.

3. Briefly describe the purpose of each one of the following commands:

COMMIT, ROLLBACK, and SAVEPOINT.

4. What are some differences in the implementation of transactions in

Microsoft SQL Server?

5. What are some performance implications when using transactions?

Exercises

1. Take the following transactions and create a SAVEPOINT or a SAVE

TRANSACTION command after the first three transactions. Then create a

ROLLBACK statement for your savepoint at the end. Try to determine

what the CUSTOMER_TBL will look like after you are done.

98 HOUR 6: Managing Database Transactions

INSERT INTO CUSTOMER_TBL VALUES(615,’FRED WOLF’,’109 MEMORY
LANE’,’PLAINFIELD’,’IN’,46113,’3175555555’,NULL);

INSERT INTO CUSTOMER_TBL VALUES(559,’RITA THOMPSON’,’125
PEACHTREE’,’INDIANAPOLIS’,’IN’,46248,’3171111111’,NULL);

INSERT INTO CUSTOMER_TBL VALUES(715,’BOB DIGGLER’,’1102 HUNTINGTON
ST’,’SHELBY’,’IN’,41234,’3172222222’,NULL);

UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;

UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’ WHERE
CUST_ID=’615’;

UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;

2. Take the following group of transactions and create a savepoinpt after

the first three transactions.

Then place a COMMIT statement at the end, followed by a ROLLBACK

statement to your savepoint. What do you think should happen?

UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;

UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’ WHERE
CUST_ID=’615’;

UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’559’;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;

What Is a Query? 99

HOUR 7

Introduction to the
Database Query

What You’ll Learn in This Hour:

. What a database query is

. How to use the SELECT statement

. Adding conditions to queries using the WHERE clause

. Using column aliases

. Selecting data from another user’s table

In this seventh hour, you learn about database queries, which involve the

use of the SELECT statement. The SELECT statement is the most frequently

used of all SQL commands after a database’s establishment. The SELECT

statement enables you to view data that is stored in the database.

What Is a Query?
A query is an inquiry into the database using the SELECT statement. A query

is used to extract data from the database in a readable format according to

the user’s request. For instance, if you have an employee table, you might

issue an SQL statement that returns the employee who is paid the most.

This request to the database for usable employee information is a typical

query that can be performed in a relational database.

Introduction to the SELECT Statement
The SELECT statement, the command that represents Data Query Language

(DQL) in SQL, is the basic statement used to construct database queries. The

SELECT statement is not a standalone statement, which means that one or

more additional clauses (elements) are required for a syntactically correct

query. In addition to the required clauses, there are optional clauses that

100 HOUR 7: Introduction to the Database Query

increase the overall functionality of the SELECT statement. The SELECT state-

ment is by far one of the most powerful statements in SQL. The FROM clause

is a mandatory clause and must always be used in conjunction with the

SELECT statement.

There are four keywords, or clauses, that are valuable parts of a SELECT

statement. These keywords are as follows:

. SELECT

. FROM

. WHERE

. ORDER BY

Each of these keywords is covered in detail during the following sections.

The SELECT Statement

The SELECT statement is used in conjunction with the FROM clause to extract

data from the database in an organized, readable format. The SELECT part

of the query is for selecting the data you want to see according to the

columns in which they are stored in a table.

The syntax for a simple SELECT statement is as follows:

SELECT [* | ALL | DISTINCT COLUMN1, COLUMN2]

FROM TABLE1 [, TABLE2];

The SELECT keyword in a query is followed by a list of columns that you

want displayed as part of the query output. The asterisk (*) denotes that all

columns in a table should be displayed as part of the output. Check your

particular implementation for its usage. The ALL option displays all values

for a column, including duplicates. The DISTINCT option suppresses dupli-

cate rows from being displayed in the output. The ALL option is considered

an inferred option. It is thought of as the default; therefore, it does not nec-

essarily need to be used in the SELECT statement. The FROM keyword is fol-

lowed by a list of one or more tables from which you want to select data.

Notice that the columns following the SELECT clause are separated by com-

mas, as is the table list following the FROM clause.

Use Commas to Separate List Items

Commas separate arguments in a list in SQL statements. Arguments are values

that are either required or optional to the syntax of a SQL statement or command.

Some common lists include lists of columns in a query, lists of tables to be

selected from in a query, values to be inserted into a table, and values grouped

as a condition in a query’s WHERE clause.

By the
Way

Introduction to the SELECT Statement 101

Explore the basic capabilities of the SELECT statement by studying the fol-

lowing examples. First, perform a simple query from the PRODUCTS_TBL table:

SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

The asterisk represents all columns in the table, which, as you can see, are

displayed in the form PROD_ID, PROD_DESC, and COST. Each column in the out-

put is displayed in the order that it appears in the table. There are 11

records in this table, identified by the feedback 11 rows selected. This feed-

back differs among implementations; for example, another feedback for the

same query would be 11 rows affected. Although the asterisk is a helpful

piece of shorthand when writing SQL queries, it is considered best practice

to explicitly name your columns that you are returning.

Now select data from another table, CANDY_TBL. Create this table in the

image of the PRODUCTS_TBL table for the following examples. List the column

name after the SELECT keyword to display only one column in the table:

SELECT PROD_DESC FROM CANDY_TBL;

PROD_DESC

CANDY CORN

CANDY CORN

HERSHEYS KISS

SMARTIES

4 rows selected.

Four records exist in the CANDY_TBL table. The next statement uses the ALL

option to show you that the ALL is optional and redundant. There is never a

need to specify ALL; it is a default option.

SELECT ALL PROD_DESC

FROM CANDY_TBL;

102 HOUR 7: Introduction to the Database Query

PROD_DESC

CANDY CORN

CANDY CORN

HERSHEYS KISS

SMARTIES

4 rows selected.

The DISTINCT option is used in the following statement to suppress the dis-

play of duplicate records. Notice that the value CANDY CORN is printed only

once in this example.

SELECT DISTINCT PROD_DESC

FROM CANDY_TBL;

PROD_DESC

CANDY CORN

HERSHEYS KISS

SMARTIES

3 rows selected.

You can also use DISTINCT and ALL with parentheses enclosing the associat-

ed column. Parentheses are often used in SQL—as well as many other

languages—to improve readability.

SELECT DISTINCT(PROD_DESC)

FROM CANDY_TBL;

PROD_DESC

CANDY CORN

HERSHEYS KISS

SMARTIES

3 rows selected.

The FROM Clause

The FROM clause must be used in conjunction with the SELECT statement. It is

a required element for any query. The FROM clause’s purpose is to tell the

database what table(s) to access to retrieve the desired data for the query.

The FROM clause may contain one or more tables. The FROM clause must

always list at least one table.

The syntax for the FROM clause is as follows:

from table1 [, table2]

Introduction to the SELECT Statement 103

The WHERE Clause

A condition is part of a query that displays selective information as specified

by the user. The value of a condition is either TRUE or FALSE, thereby limiting

the data received from the query. The WHERE clause places conditions on a

query by eliminating rows that would normally be returned by a query

without conditions.

There can be more than one condition in the WHERE clause. If there is more

than one condition, the conditions are connected by the AND and OR opera-

tors, which are discussed during Hour 8, “Using Operators to Categorize

Data.” As you also learn during the next hour, several conditional opera-

tors exist that can be used to specify conditions in a query. This hour deals

with only a single condition for each query.

An operator is a character or keyword in SQL that combines elements in an

SQL statement.

The syntax for the WHERE clause is as follows:

select [all | * | distinct column1, column2]

from table1 [, table2]

where [condition1 | expression1]

[and | OR condition2 | expression2]

The following is a simple SELECT statement without conditions specified by

the WHERE clause:

SELECT *

FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

Now add a condition for the same query:

SELECT * FROM PRODUCTS_TBL

WHERE COST < 5;

104 HOUR 7: Introduction to the Database Query

PROD_ID PROD_DESC COST

13 FALSE PARAFFIN TEETH 1.1

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

5 rows selected.

The only records displayed are those that cost less than $5.

In the following query, you want to display the product description and cost

that matches product identification 119:

SELECT PROD_DESC, COST

FROM PRODUCTS_TBL

WHERE PROD_ID = ‘119’;

PROD_DESC COST

ASSORTED MASKS 4.95

1 row selected.

The ORDER BY Clause

You usually want your output to have some kind of order. Data can be sort-

ed by using the ORDER BY clause. The ORDER BY clause arranges the results of

a query in a listing format you specify. The default ordering of the ORDER BY

clause is an ascending order; the sort displays in the order A–Z if it’s sorting

output names alphabetically. A descending order for alphabetical output

would be displayed in the order Z–A. Ascending order for output for numer-

ic values between 1 and 9 would be displayed 1–9; descending order would

be displayed as 9–1.

The syntax for the ORDER BY clause is as follows:

select [all | * | distinct column1, column2]

from table1 [, table2]

where [condition1 | expression1]

[and | OR condition2 | expression2]

ORDER BY column1 | integer [ASC | DESC]

Begin your exploration of the ORDER BY clause with an extension of one of

the previous statements. You order the product description in ascending

order, or alphabetical order. Note the use of the ASC option. You can specify

ASC after any column in the ORDER BY clause.

Introduction to the SELECT Statement 105

By the
Way

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY PROD_DESC ASC;

PROD_DESC PROD_ID COST

--

ASSORTED COSTUMES 15 10

ASSORTED MASKS 119 4.95

CANDY CORN 9 1.35

FALSE PARAFFIN TEETH 13 1.1

LIGHTED LANTERNS 90 14.5

PLASTIC PUMPKIN 18 INCH 222 7.75

PLASTIC SPIDERS 87 1.05

PUMPKIN CANDY 6 1.45

8 rows selected.

Rules for Sorting

SQL sorts are ASCII, character-based sorts. The numeric values 0–9 would be

sorted as character values and sorted before the characters A–Z. Because

numeric values are treated like characters during a sort, the following list of

numeric values would be sorted in the following order: 1, 12, 2, 255, 3.

You can use DESC, as in the following statement, if you want the same out-

put to be sorted in reverse alphabetical order:

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY PROD_DESC DESC;

PROD_DESC PROD_ID COST

--

PUMPKIN CANDY 6 1.45

PLASTIC SPIDERS 87 1.05

PLASTIC PUMPKIN 18 INCH 222 7.75

LIGHTED LANTERNS 90 14.5

FALSE PARAFFIN TEETH 13 1.1

CANDY CORN 9 1.35

ASSORTED MASKS 119 4.95

ASSORTED COSTUMES 15 10

8 rows selected.

There Is a Default for Ordering

Because ascending order for output is the default, you do not have to specify ASC.

Did You
Know?

106 HOUR 7: Introduction to the Database Query

Shortcuts do exist in SQL. A column listed in the ORDER BY clause can be

abbreviated with an integer. The integer is a substitution for the actual col-

umn name (an alias for the purpose of the sort operation), identifying the

position of the column after the SELECT keyword.

An example of using an integer as an identifier in the ORDER BY clause

follows:

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY 1;

PROD_DESC PROD_ID COST

--

ASSORTED COSTUMES 15 10

ASSORTED MASKS 119 4.95

CANDY CORN 9 1.35

FALSE PARAFFIN TEETH 13 1.1

LIGHTED LANTERNS 90 14.5

PLASTIC PUMPKIN 18 INCH 222 7.75

PLASTIC SPIDERS 87 1.05

PUMPKIN CANDY 6 1.45

8 rows selected.

In this query, the integer 1 represents the column PROD_DESC. The integer 2

represents the PROD_ID column, 3 represents the COST column, and so on.

You can order by multiple columns in a query, using either the column

name or the associated number of the column in the SELECT:

ORDER BY 1,2,3

Columns in an ORDER BY clause are not required to appear in the same

order as the associated columns following the SELECT, as shown by the fol-

lowing example:

ORDER BY 1,3,2

The order in which the columns are specified within the ORDER BY clause is

the manner in which the ordering process is done. So the statement that fol-

lows first orders by the PROD_DESC column and then by the COST column:

ORDER BY PROD_DESC,COST

Case Sensitivity

Case sensitivity is an important concept to understand when coding with

SQL. Typically, SQL commands and keywords are not case sensitive, which

Introduction to the SELECT Statement 107

enables you to enter your commands and keywords in either uppercase or

lowercase—whatever you prefer. The case may also be mixed (both upper-

case and lowercase for a single word or statement), which is often referred to

as camel case. See Hour 5, “Manipulating Data,” on case sensitivity.

Collation is the mechanism that determines how the relational database man-

agement system (RDBMS) interprets data. This includes methods of ordering

the data as well as case sensitivity. Case sensitivity in relation to your data

is important because it determines how your WHERE clauses, among other

things, interpret matches. You need to check with your specific RDBMS

implementation to determine what the default collation is on your system.

Some systems, such as MySQL and Microsoft SQL Server, have a default col-

lation that is case insensitive. This means that it matches strings without

considering their case. Other systems, such as Oracle, have a default colla-

tion that is case sensitive. This means that strings are matched with case

taken into account, as described next. Because case sensitivity is a factor at

the database level, its importance as a factor in your queries varies.

Use a Standard Case in Your Queries

It is a good practice to use the same case in your query as the data that is stored

in your database. Moreover, it is good to implement a corporate policy to ensure

that data entry is handled in the same manner across an enterprise.

Watch
Out!

Case sensitivity is, however, a factor in maintaining data consistency within

your RDBMS. For instance, your data would not be consistent if you arbi-

trarily entered your data using random case:

SMITH

Smith

smith

If the last name was stored as smith and you issued a query as follows in an

RDBMS such as Oracle, which is case sensitive, no rows would be returned:

SELECT *

FROM EMPLOYEE_TBL

WHERE LAST_NAME = ‘SMITH’;

SELECT *

FROM EMPLOYEE_TBL

WHERE UPPER(LAST_NAME) = UPPER(‘Smith’);

108 HOUR 7: Introduction to the Database Query

Overcoming Case-Sensitive Issues

In systems that are case sensitive, once again like Oracle, you can overcome the

case sensitivity by either ensuring that your data is entered in the same case

every time or using SQL functions, which are discussed in later lessons, to modify

the case. Following is an example of using the UPPER function to change the

cases of the data used in the WHERE clause:

By the
Way

Select all records from a table and display a specified column. You can enter

code on one line or use a carriage return as desired:

SELECT EMP_ID FROM EMPLOYEE_TBL;

Select all records from a table and display multiple columns separated by

commas:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL;

Display data for a given condition:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘333333333’;

Ensure That Your Queries Are Constrained

When selecting all rows of data from a large table, the results could return a sub-

stantial amount of data.

By the
Way

Display data for a given condition and sort the output:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

Examples of Simple Queries
This section provides several examples of queries based on the concepts

that have been discussed. The hour begins with the simplest query you can

issue and builds upon the initial query progressively. You use the

EMPLOYEE_TBL table.

Select all records from a table and display all columns:

SELECT * FROM EMPLOYEE_TBL;

Select all records from a table and display a specified column:

SELECT EMP_ID

FROM EMPLOYEE_TBL;

Examples of Simple Queries 109

WHERE CITY = ‘INDIANAPOLIS’

ORDER BY EMP_ID;

Display data for a given condition and sort the output on multiple

columns, one column sorted in reverse order. In the instance that follows,

the EMP_ID column is sorted in ascending order, whereas the LAST_NAME col-

umn is sorted in descending order:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’

ORDER BY EMP_ID, LAST_NAME DESC;

Display data for a given condition and sort the output using an integer in

the place of the spelled-out column name:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’

ORDER BY 1;

Display data for a given condition and sort the output by multiple columns

using integers. The order of the columns in the sort is different from their

corresponding order after the SELECT keyword:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’

ORDER BY 2, 1;

Counting the Records in a Table

You can issue a simple query on a table to get a quick count of the number

of records in the table or the number of values for a column in the table. A

count is accomplished by the function COUNT. Although functions are not

discussed until later in this book, this function should be introduced here

because it is often a part of one of the simplest queries that you can create.

The syntax of the COUNT function is as follows:

SELECT COUNT(*)

FROM TABLE_NAME;

The COUNT function is used with parentheses, which enclose the target col-

umn to count or the asterisk to count all rows of data in the table.

110 HOUR 7: Introduction to the Database Query

Counting the number of records in the PRODUCTS_TBL table:

SELECT COUNT(*) FROM PRODUCTS_TBL;

COUNT(*)

9

1 row selected.

Counting the number of values for PROD_ID in the PRODUCTS_TBL table:

SELECT COUNT(PROD_ID) FROM PRODUCTS_TBL;

COUNT(PROD_ID)

9

1 row selected.

If you want to count only the unique values that show up within a table,

you would use the DISTINCT syntax within the COUNT function. For example,

if you want to get the distinct states represented in the STATE column of the

EMPLOYEE_TBL, use a query such as the one that follows:

SELECT COUNT(DISTINCT PROD_ID) FROM PRODUCTS_TBL;

COUNT(DISTINCT PROD_ID)

1

Selecting Data from Another User’s Table

Permission must be granted to a user to access another user’s table. If no

permission has been granted, access is not allowed. You can select data

from another user’s table after access has been granted (the GRANT com-

mand is discussed in Hour 20, “Creating and Using Views and Synonyms”).

To access another user’s table in a SELECT statement, precede the table name

with the schema name or the username that owns (created) the table, as in

the following example:

SELECT EMP_ID

FROM SCHEMA.EMPLOYEE_TBL;

Counting Basics

Counting the number of values for a column is the same as counting the number

of records in a table if the column being counted is NOT NULL (a required col-

umn). However, COUNT(*) is typically used for counting the number of rows for a

table.

Did You
Know?

Examples of Simple Queries 111

Using Column Aliases

Column aliases are used to temporarily rename a table’s columns for the

purpose of a particular query. The following syntax illustrates the use of col-

umn aliases:

SELECT COLUMN_NAME ALIAS_NAME

FROM TABLE_NAME;

The following example displays the product description twice, giving the

second column an alias named PRODUCT. Notice the column headers in the

output.

select prod_desc,

prod_desc product

from products_tbl;

PROD_DESC PRODUCT

WITCH COSTUME WITCH COSTUME

PLASTIC PUMPKIN 18 INCH PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH FALSE PARAFFIN TEETH

LIGHTED LANTERNS LIGHTED LANTERNS

ASSORTED COSTUMES ASSORTED COSTUMES

CANDY CORN CANDY CORN

PUMPKIN CANDY PUMPKIN CANDY

PLASTIC SPIDERS PLASTIC SPIDERS

ASSORTED MASKS ASSORTED MASKS

KEY CHAIN KEY CHAIN

OAK BOOKSHELF OAK BOOKSHELF

11 rows selected.

Using Synonyms in Queries

If a synonym exists in the database for the table to which you desire access, you

do not have to specify the schema name for the table. Synonyms are alternate

names for tables, which are discussed in Hour 21, “Working with the System

Catalog.”

By the
Way

Column aliases can be used to customize names for column headers and

reference a column with a shorter name in some SQL implementations.

Aliasing a Column in a Query

When a column is renamed in a SELECT statement, the name is not a permanent

change. The change is only for that particular SELECT statement.

Did You
Know?

112 HOUR 7: Introduction to the Database Query

Summary
You have been introduced to the database query, a means for obtaining

useful information from a relational database. The SELECT statement,

which is known as the Data Query Language (DQL) command, creates

queries in SQL. You must include the FROM clause with every SELECT state-

ment. You have learned how to place a condition on a query using the

WHERE clause and how to sort data using the ORDER BY clause. You have also

learned the fundamentals of writing queries. After a few exercises, you

should be prepared to learn more about queries during the next hour.

Q&A
Q. Why won’t the SELECT clause work without the FROM clause?

A. The SELECT clause merely tells the database what data you want to see.

The FROM clause tells the database where to get the data.

Q. When I use the ORDER BY clause and choose the option descending, what

does that really do to the data?

A. Say that you use the ORDER BY clause and have selected last_name from

the EMPLOYEE_TBL. If you use the descending option, the order starts

with the letter Z and finishes with the letter A. Now, let’s say that you

have used the ORDER BY clause and have selected the salary from the

EMPLOYEE_PAY_TBL. If you use the descending option, the order starts

with the largest salary and goes down to the lowest salary.

Q. What advantage is there to renaming columns?

A. The new column name could fit the description of the returned data

more closely for a particular report.

Q. What would be the ordering of the following statement:

SELECT PROD_DESC,PROD_ID,COST FROM PRODUCTS_TBL

ORDER BY 3,1

A. The query would be ordered by the COST column, and then by the

PROD_DESC column. Because no ordering preference was specified, they

would both be in ascending order.

Workshop 113

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Name the required parts for any SELECT statement.

2. In the WHERE clause, are single quotation marks required for all the

data?

3. Under what part of the SQL language does the SELECT statement (data-

base query) fall?

4. Can multiple conditions be used in the WHERE clause?

5. What is the purpose of the DISTINCT option?

6. Is the ALL option required?

7. How are numeric characters treated when ordering based upon a char-

acter field?

8. How does Oracle handle its default case sensitivity different from

MySQL and Microsoft SQL Server?

Exercises

1. Invoke your RDBMS query editor on your computer. Using your learn-

sql database, enter the following SELECT statements. Determine

whether the syntax is correct. If the syntax is incorrect, make correc-

tions to the code as necessary. We are using the EMPLOYEE_TBL here.

a.
SELECT EMP_ID, LAST_NAME, FIRST_NAME,

FROM EMPLOYEE_TBL;

b.
SELECT EMP_ID, LAST_NAME

ORDER BY EMPLOYEE_TBL

FROM EMPLOYEE_TBL;

114 HOUR 7: Introduction to the Database Query

c.
SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY EMP_ID;

d.
SELECT EMP_ID SSN, LAST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY 1;

e.
SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY 3, 1, 2;

2. Does the following SELECT statement work?

SELECT LAST_NAME, FIRST_NAME, PHONE

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘333333333’;

3. Write a SELECT statement that returns the name and cost of each prod-

uct from the PRODUCTS_TBL. Which product is the most expensive?

4. Write a query that generates a list of all customers and their telephone

numbers.

5. Write a simple query to return a list of customers with a particular last

name. Try using a WHERE clause with the name in mixed case and

uppercase. What case sensitivity is your RDBMS set to?

What Is an Operator in SQL? 115

HOUR 8

Using Operators to
Categorize Data

What You’ll Learn in This Hour:

. What is an operator?

. An overview of operators in SQL

. How are operators used singularly?

. How are operators used in combinations?

Operators are used in conjunction with the SELECT command’s WHERE clause

to place extended constraints on data that a query returns. Various opera-

tors are available to the SQL user that support all data querying needs. In

this hour we will show you what operators are available for you to use as

well as how to utilize them properly within the WHERE clause.

What Is an Operator in SQL?
An operator is a reserved word or a character used primarily in an SQL

statement’s WHERE clause to perform operation(s), such as comparisons and

arithmetic operations. Operators are used to specify conditions in an SQL

statement and to serve as conjunctions for multiple conditions in a state-

ment.

The operators discussed during this hour are

. Comparison operators

. Logical operators

. Operators used to negate conditions

. Arithmetic operators

116 HOUR 8: Using Operators to Categorize Data

Comparison Operators
Comparison operators test single values in an SQL statement. The compari-

son operators discussed consist of =, <>, <, and >.

These operators are used to test

. Equality

. Non-equality

. Less-than values

. Greater-than values

Examples and the meanings of comparison operators are covered in the fol-

lowing sections.

Equality

The equal operator compares single values to one another in an SQL state-

ment. The equal sign (=) symbolizes equality. When testing for equality, the

compared values must match exactly, or no data is returned. If two values

are equal during a comparison for equality, the returned value for the com-

parison is TRUE; the returned value is FALSE if equality is not found. This

Boolean value (TRUE/FALSE) is used to determine whether data is returned

according to the condition.

You can use the = operator by itself or combine it with other operators.

Remember from the previous chapter that character data comparisons can

either be case sensitive or case insensitive depending on how your relational

database management system (RDBMS) is set up. So remember to check to

ensure that you understand how exactly your values are compared by the

query engine.

The following example shows that salary is equal to 20000:

WHERE SALARY = ‘20000’

The following query returns all rows of data where the PROD_ID is equal to

2345:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = ‘2345’;

PROD_ID PROD_DESC COST

2345 OAK BOOKSHELF 59.99

1 row selected.

Comparison Operators 117

Non-Equality

For every equality, there are multiple non-equalities. In SQL, the operator

used to measure non-equality is <> (the less than sign combined with the

greater than sign). The condition returns TRUE if the condition finds non-

equality; FALSE is returned if equality is found.

The following example shows that salary is not equal to 20000:

WHERE SALARY <> ‘20000’

Options for Non-Equality

Another option comparable to <> is !=. Many of the major implementations have

adopted != to represent not-equal. Microsoft SQL Server, MySQL, and Oracle sup-

port both versions of the operator. Oracle actually supports a third, ^= , as

another version, but it is rarely used because most people are accustomed to

using the earlier two versions.

Did You
Know?

The following example shows all the product information from the PRODUCTS

table that do not have the product ID of 2345:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID <> ‘2345’;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

Once again, remember that your collation and specifically whether your

system is set up as case sensitive or case insensitive plays a critical role in

these comparisons. If your system is case sensitive, then KEY CHAIN, Key

Chain, and key chain would be considered different values, which might or

might not be your intention.

118 HOUR 8: Using Operators to Categorize Data

Less Than, Greater Than

You can use the symbols < (less than) and > (greater than) by themselves or

in combination with each other or other operators.

The following examples show that salary is less than or greater than 20000:

WHERE SALARY < ‘20000’

WHERE SALARY > ‘20000’

In the first example, anything less than and not equal to 20000 returns

TRUE. Any value of 20000 or more returns FALSE. Greater than works the

opposite of less than.

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 20;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

2345 OAK BOOKSHELF 59.99

2 rows selected.

In the next example, notice that the value 29.99 was not included in the

query’s result set. The less than operator is not inclusive.

SELECT *

FROM PRODUCTS_TBL

WHERE COST < 29.99;

PROD_ID PROD_DESC COST

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

9 rows selected.

Combinations of Comparison Operators

The equal operator can be combined with the less than and greater than

operators.

Logical Operators 119

The following example shows that salary is less than or equal to 20000:

WHERE SALARY <= ‘20000’

The next example shows that salary is greater than or equal to 20000:

WHERE SALARY >= ‘20000’

Less than or equal to 20000 includes 20000 and all values less than 20000.

Any value in that range returns TRUE; any value greater than 20000 returns

FALSE. Greater than or equal to also includes the value 20000 in this case and

works the same as the <= operator.

SELECT *

FROM PRODUCTS_TBL

WHERE COST <= 29.99;

PROD_ID PROD_DESC COST

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

11235 WITCH COSTUME 29.99

10 rows selected.

Logical Operators
Logical operators are those operators that use SQL keywords to make com-

parisons instead of symbols. The logical operators covered in the following

subsections are

. IS NULL

. BETWEEN

. IN

. LIKE

. EXISTS

120 HOUR 8: Using Operators to Categorize Data

. UNIQUE

. ALL and ANY

IS NULL

The NULL operator is used to compare a value with a NULL value. For exam-

ple, you might look for employees who do not have a pager by searching

for NULL values in the PAGER column of the EMPLOYEE_TBL table.

The following example compares a value to a NULL value; here, salary has

no value:

WHERE SALARY IS NULL

The following example demonstrates finding all the employees from the

EMPLOYEE table who do not have a pager:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NULL;

EMP_ID LAST_NAM FIRST_NA PAGER

311549902 STEPHENS TINA

442346889 PLEW LINDA

220984332 WALLACE MARIAH

443679012 SPURGEON TIFFANY

4 rows selected.

Understand that the literal word null is different from a NULL value. Examine

the following example:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER = ‘NULL’;

no rows selected.

BETWEEN

The BETWEEN operator is used to search for values that are within a set of

values, given the minimum value and the maximum value. The minimum

and maximum values are included as part of the conditional set.

The following example shows that salary must fall between 20000 and

30000, including the values 20000 and 30000:

WHERE SALARY BETWEEN ‘20000’ AND ‘30000’

Logical Operators 121

The following example shows all the products that cost between $5.95 and

$14.50:

SELECT *

FROM PRODUCTS_TBL

WHERE COST BETWEEN 5.95 AND 14.5;

PROD_ID PROD_DESC COST

222 PLASTIC PUMPKIN 18 INCH 7.75

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

1234 KEY CHAIN 5.95

4 rows selected.

Notice that the values 5.95 and 14.5 are included in the output.

IN

The IN operator compares a value to a list of literal values that have been

specified. For TRUE to be returned, the compared value must match at least

one of the values in the list.

The following example shows that salary must match one of the values

20000, 30000, or 40000:

WHERE SALARY IN(‘20000’, ‘30000’, ‘40000’)

Proper Use of Between

BETWEEN is inclusive and therefore includes the minimum and maximum values in

the query results.

Did You
Know?

The following example shows using the IN operator to match all the prod-

ucts that have a product ID within a certain range of values:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID IN (‘13’,’9’,’87’,’119’);

PROD_ID PROD_DESC COST

119 ASSORTED MASKS 4.95

87 PLASTIC SPIDERS 1.05

9 CANDY CORN 1.35

13 FALSE PARAFFIN TEETH 1.1

4 rows selected.

122 HOUR 8: Using Operators to Categorize Data

Using the IN operator can achieve the same results as using the OR operator

and can return the results more quickly.

LIKE

The LIKE operator is used to compare a value to similar values using wild-

card operators. There are two wildcards used in conjunction with the LIKE

operator:

. The percent sign (%)

. The underscore (_)

The percent sign represents zero, one, or multiple characters. The under-

score represents a single number or character. The symbols can be used in

combinations.

To find any values that start with 200:

WHERE SALARY LIKE ‘200%

To find any values that have 200 in any position:

WHERE SALARY LIKE ‘%200%’

To find any values that have 00 in the second and third positions:

WHERE SALARY LIKE ‘_00%’

To find any values that start with 2 and are at least three characters in

length:

WHERE SALARY LIKE ‘2_%_%’

To find any values that end with 2:

WHERE SALARY LIKE ‘%2’

To find any values that have a 2 in the second position and end with a 3:

WHERE SALARY LIKE ‘_2%3’

To find any values in a five-digit number that start with 2 and end with 3:

WHERE SALARY LIKE ‘2___3’

The following example shows all product descriptions that end with the let-

ter S in uppercase:

Logical Operators 123

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC LIKE ‘%S’;

PROD_DESC

LIGHTED LANTERNS

ASSORTED COSTUMES

PLASTIC SPIDERS

ASSORTED MASKS

4 rows selected.

The following example shows all product descriptions whose second charac-

ter is the letter S in uppercase:

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC LIKE ‘_S%’;

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

2 rows selected.

EXISTS

The EXISTS operator is used to search for the presence of a row in a specified

table that meets certain criteria.

The following example searches to see whether the EMP_ID 3333333333 is in

EMPLOYEE_TBL:

WHERE EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE EMPLOYEE_ID
=’333333333’)

The following example is a form of a subquery, which is further discussed

during Hour 14, “Using Subqueries to Define Unknown Data”:

SELECT COST

FROM PRODUCTS_TBL

WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST > 100);

No rows selected.

124 HOUR 8: Using Operators to Categorize Data

There were no rows selected because no records existed where the cost was

greater than 100.

Consider the following example:

SELECT COST

FROM PRODUCTS_TBL

WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 100);

COST

29.99

7.75

1.1

14.5

10

1.35

1.45

1.05

4.95

5.95

59.99

11 rows selected.

The cost was displayed for records in the table because records existed

where the product cost was less than 100.

ALL, SOME, and ANY Operators

The ALL operator is used to compare a value to all values in another value

set.

The following example tests salary to see whether it is greater than all

salaries of the employees living in Indianapolis:

WHERE SALARY > ALL SALARY (SELECT FROM EMPLOYEE_TBL WHERE CITY =
‘INDIANAPOLIS’)

The following example shows how the ALL operator is used in conjunction

with subquery:

SELECT *

FROM PRODUCTS_TBL

WHERE COST > ALL (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 10);

Logical Operators 125

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

2345 OAK BOOKSHELF 59.99

4 rows selected.

In this output, five records had a cost greater than the cost of all records

having a cost less than 10.

The ANY operator compares a value to any applicable value in the list

according to the condition. SOME is an alias for ANY, so you can use them

interchangeably.

The following example tests salary to see whether it is greater than any of

the salaries of employees living in Indianapolis:

WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE_TBL WHERE CITY =
‘INDIANAPOLIS’)

The following example shows the use of the ANY operator used in conjunc-

tion with a subquery:

SELECT *

FROM PRODUCTS_TBL

WHERE COST > ANY (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 10);

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

10 rows selected.

In this output, more records were returned than when using ALL because the

cost only had to be greater than any of the costs that were less than 10. The

one record that was not displayed had a cost of 1.05, which was not greater

than any of the values less than 10 (which was, in fact, 1.05). It should also

126 HOUR 8: Using Operators to Categorize Data

be noted that ANY is not a synonym for IN because the IN operator can take

an expression list of the form shown below, while ANY cannot:

IN (<Item#1>,<Item#2>,<Item#3>)

Additionally, the negation of IN, discussed in the section “Negative

Operators,” would be NOT IN, and its alias would be <>ALL instead of <>ANY.

Conjunctive Operators
What if you want to use multiple conditions to narrow data in an SQL

statement? You must be able to combine the conditions, and you would do

this with conjunctive operators. These operators are

. AND

. OR

Conjunctive operators provide a means to make multiple comparisons with

different operators in the same SQL statement. The following sections

describe each operator’s behavior.

AND

The AND operator allows the existence of multiple conditions in an SQL

statement’s WHERE clause. For an action to be taken by the SQL statement,

whether it be a transaction or query, all conditions separated by the AND

must be TRUE.

The following example shows that the EMPLOYEE_ID must match 333333333

and the salary must equal 20000:

WHERE EMPLOYEE_ID = ‘333333333’ AND SALARY = ‘20000’

The following example shows the use of the AND operator to find the prod-

ucts with a cost between two limiting values:

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 10

AND COST < 30;

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

2 rows selected.

Conjunctive Operators 127

In this output, the value for cost had to be both greater than 10 and less

than 30 for data to be retrieved.

This statement retrieves no data because each row of data has only one

product identification:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = ‘7725’

AND PROD_ID = ‘2345’;

no rows selected

OR

The OR operator combines multiple conditions in an SQL statement’s WHERE

clause. For an action to be taken by the SQL statement, whether it is a

transaction or query, at least one of the conditions that are separated by OR

must be TRUE.

The following example shows that salary must match either 20000 or 30000:

WHERE SALARY = ‘20000’ OR SALARY = ‘30000’

The following example shows the use of the OR operator to limit a query on

the PRODUCTS table:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = ‘90’

OR PROD_ID = ‘2345’;

PROD_ID PROD_DESC COST

--

2345 OAK BOOKSHELF 59.99

90 LIGHTED LANTERNS 14.5

2 rows selected.

In this output, either one of the conditions had to be TRUE for data to be

retrieved.

Comparison Operators Can Be Stacked

Each of the comparison and logical operators can be used singularly or in combi-

nation with each other.

By the
Way

Two records that met either one or the other condition were found.

128 HOUR 8: Using Operators to Categorize Data

Group Your Queries to Make Them Easily Understandable

When using multiple conditions and operators in an SQL statement, you might

find that using parentheses to separate statements into logical groups improves

overall readability. However, be aware that the misuse of parentheses could

adversely affect your output results.

Did You
Know?

The cost in this output had to be greater than 10, and the product identifi-

cation had to be any one of the three listed. A row was not returned for

PROD_ID 222 because the cost for this identification was not greater than 10.

Parentheses are not used just to make your code more readable but to

ensure that logical grouping of conjunctive operators is evaluated properly.

By default, operators are parsed from left to right in the order that they are

listed. For example, you want to return all the products in a table whose

cost is greater than 5 and whose PRODUCT_ID is in the range of values 222, 90,

11235, and 13. Try the following query to see the result set it returns:

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 5

AND (PROD_ID = ‘222’

OR PROD_ID = ‘90’

OR PROD_ID = ‘11235’

OR PROD_ID = ‘13’);

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

90 LIGHTED LANTERNS 14.50

3 rows in set

In the next example, notice the use of the AND and two OR operators. In

addition, notice the logical placement of the parentheses to make the state-

ment more readable.

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 10

AND (PROD_ID = ‘222’

OR PROD_ID = ‘90’

OR PROD_ID = ‘11235’);

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

90 LIGHTED LANTERNS 14.5

2 rows selected.

Negative Operators 129

If you remove the parentheses, you can see how the result is much different:

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 5

AND PROD_ID = ‘222’

OR PROD_ID = ‘90’

OR PROD_ID = ‘11235’

OR PROD_ID = ‘13’;

PROD_ID PROD_DESC COST

11235 WITCH COSTUME 29.99

13 FALSE PARAFFIN TEETH 1.10

222 PLASTIC PUMPKIN 18 INCH 7.75

90 LIGHTED LANTERNS 14.50

3 rows in set

FALSE PARAFFIN TEETH gets returned now because this SQL query asks to

return a PROD_ID equal to 222 and COST greater than 5 or any rows with

PROD_ID equal to 90, 11235, or 13. Use parentheses properly within your

WHERE clause to ensure that you are returning the correct logical result set.

Otherwise, remember that your operators are evaluated in a certain order,

which is normally from left to right.

Negative Operators
Of all the conditions tested by the logical operators discussed here, there is a

way to negate each one of these operators to change the condition’s view-

point.

The NOT operator reverses the meaning of the logical operator with which it

is used. The NOT can be used with other operators to form the following

methods:

. <>, != (NOT EQUAL)

. NOT BETWEEN

. NOT IN

. NOT LIKE

. IS NOT NULL

. NOT EXISTS

. NOT UNIQUE

130 HOUR 8: Using Operators to Categorize Data

Remember How BETWEEN Works

Remember that BETWEEN is inclusive; therefore, in the previous example, any rows

that equal 5.95 or 14.50 are not included in the query results.

Watch
Out!

NOT BETWEEN

Check Your Implementation

Check your particular implementation for the use of the exclamation mark to

negate the inequality operator. The other operators mentioned are almost always

the same if compared between different SQL implementations.

By the
Way

The BETWEEN operator is negated as follows:

WHERE Salary NOT BETWEEN ‘20000’ AND ‘30000’

The value for salary cannot fall between 20000 and 30000 or include the val-

ues 20000 and 30000. Let’s see how this works on PRODUCTS_TBL:

SELECT *

FROM PRODUCTS_TBL

WHERE COST NOT BETWEEN 5.95 AND 14.5;

Each method is discussed in the following sections. First, let’s look at how to

test for inequality.

NOT EQUAL

You have learned how to test for inequality using the <> operator.

Inequality is worth mentioning in this section because to test for it, you are

actually negating the equality operator. Here we cover a second method for

testing inequality available in some SQL implementations.

The following examples show that salary is not equal to 20000:

WHERE SALARY <> ‘20000’

WHERE SALARY != ‘20000’

In the second example, you can see that the exclamation mark negates the

equality comparison. The use of the exclamation mark is allowed in addi-

tion to the standard operator for inequality <> in some implementations.

Negative Operators 131

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

13 FALSE PARAFFIN TEETH 1.1

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

2345 OAK BOOKSHELF 59.99

7 rows selected.

NOT IN

The IN operator is negated as NOT IN. All salaries in the following example

that are not in the listed values, if any, are returned:

WHERE SALARY NOT IN (‘20000’, ‘30000’, ‘40000’)

The following example demonstrates using the negation of the IN operator:

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID NOT IN (119,13,87,9);

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

6 PUMPKIN CANDY 1.45

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

7 rows selected.

In this output, records were not displayed for the listed identifications after

the NOT IN operator.

NOT LIKE

The LIKE, or wildcard, operator is negated as NOT LIKE. When NOT LIKE is

used, only values that are not similar are returned.

To find values that do not start with 200:

WHERE SALARY NOT LIKE ‘200%’

To find values that do not have 200 in any position:

WHERE SALARY NOT LIKE ‘%200%’

132 HOUR 8: Using Operators to Categorize Data

To find values that do not have 00 starting in the second position:

WHERE SALARY NOT LIKE ‘_00%’

To find values that do not start with 2 and have a length of 3 or greater:

WHERE SALARY NOT LIKE ‘2_%_%’

The following example demonstrates using the NOT LIKE operator to display

a list of values:

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC NOT LIKE ‘L%’;

PROD_DESC

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

ASSORTED MASKS

KEY CHAIN

OAK BOOKSHELF

10 rows selected.

In this output, the product descriptions starting with the letter L were not

displayed.

IS NOT NULL

The IS NULL operator is negated as IS NOT NULL to test for values that are

not NULL. The following example only returns NOT NULL rows:

WHERE SALARY IS NOT NULL

The following example demonstrates using the IS NOT NULL operator to

retrieve a list of employees whose page number is NOT NULL:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NOT NULL;

EMP_ID LAST_NAM FIRST_NA PAGER

213764555 GLASS BRANDON 3175709980

313782439 GLASS JACOB 8887345678

2 rows selected.

Arithmetic Operators 133

NOT EXISTS

EXISTS is negated as NOT EXISTS.

The following example searches to see whether the EMP_ID 3333333333 is not

in EMPLOYEE_TBL:

WHERE NOT EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE EMP_ID =
‘3333333333’)

The following example demonstrates the use of the NOT EXISTS operator in

conjunction with a subquery:

SELECT MAX(COST)

FROM PRODUCTS_TBL

WHERE NOT EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST > 100);

MAX(COST)

59.99

The maximum cost for the table is displayed in this output because no

records contained a cost greater than 100.

Arithmetic Operators
Arithmetic operators perform mathematical functions in SQL—the same as in

most other languages. The four conventional operators for mathematical

functions are

. + (addition)

. - (subtraction)

. * (multiplication)

. / (division)

Addition

Addition is performed through the use of the plus (+) symbol.

The following example adds the SALARY column with the BONUS column for a

total for each row of data:

SELECT SALARY + BONUS FROM EMPLOYEE_PAY_TBL;

134 HOUR 8: Using Operators to Categorize Data

This example returns all rows where the total of the SALARY and BONUS

columns together is greater than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY + BONUS > ‘40000’;

Subtraction

Subtraction is performed using the minus (-) symbol.

The following example subtracts the BONUS column from the SALARY column

for the difference:

SELECT SALARY - BONUS FROM EMPLOYEE_PAY_TBL;

This example returns all rows where the SALARY minus the BONUS is greater

than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY - BONUS > ‘40000’;

Multiplication

Multiplication is performed by using the asterisk (*) symbol.

The following example multiplies the SALARY column by 10:

SELECT SALARY * 10 FROM EMPLOYEE_PAY_TBL;

The next example returns all rows where the product of the SALARY multi-

plied by 10 is greater than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY * 10 > ‘40000’;

The pay rate in the following example is multiplied by 1.1, which increases

the current pay rate by 10%:

SELECT EMP_ID, PAY_RATE, PAY_RATE * 1.1

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

EMP_ID PAY_RATE PAY_RATE*1.1

442346889 14.75 16.225

220984332 11 12.1

443679012 15 16.5

3 rows selected.

Arithmetic Operators 135

Division

Division is performed through the use of the slash (/) symbol.

The following example divides the SALARY column by 10:

SELECT SALARY / 10 FROM EMPLOYEE_PAY_TBL;

This example returns all rows that are greater than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY > ‘40000’;

This example returns all rows where the salary divided by 10 is greater than

40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE (SALARY / 10) > ‘40000’;

Arithmetic Operator Combinations

You can use the arithmetic operators in combination with one another.

Remember the rules of precedence in basic mathematics. Multiplication and

division operations are performed first, and then addition and subtraction

operations. The only way the user has control over the order of the mathe-

matical operations is through the use of parentheses. Parentheses surround-

ing an expression cause that expression to be evaluated as a block.

Precedence is the order in which expressions are resolved in a mathematical

expression or with embedded functions in SQL. The table that follows shows

some simple examples of how operator precedence can affect the outcome

of a calculation:

In the following examples, notice that the placement of parentheses in an

expression does not affect the outcome if only multiplication and division

are involved. Precedence is not a factor in these cases. Although it might

not appear to make sense, it is possible that some implementations of SQL

do not follow the ANSI standard in cases like this; however, this is unlikely.

Expression Result

1 + 1 * 5 6

(1 + 1) * 5 10

10 – 4 / 2 + 1 9

(10 – 4) / (2 + 1) 2

136 HOUR 8: Using Operators to Categorize Data

The following are some more examples:

SELECT SALARY * 10 + 1000

FROM EMPLOYEE_PAY_TBL

WHERE SALARY > 20000;

SELECT SALARY / 52 + BONUS

FROM EMPLOYEE_PAY_TBL;

SELECT (SALARY - 1000 + BONUS) / 52 * 1.1

FROM EMPLOYEE_PAY_TBL;

And here’s a rather wild example:

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY < BONUS * 3 + 10 / 2 - 50;

Because parentheses are not used, mathematical precedence takes effect,

altering the value for BONUS tremendously for the condition.

Summary
You have been introduced to various operators available in SQL. You have

learned the hows and whys of operators. You have also seen examples of

operators being used by themselves and in various combinations with one

another, using the conjunctive-type operators AND and OR. You have learned

the basic arithmetic functions: addition, subtraction, multiplication, and

division. Comparison operators test equality, inequality, less than values,

and greater than values. Logical operators include BETWEEN, IN, LIKE,

Ensure That Your Math Is Correct

When combining arithmetic operators, remember to consider the rules of prece-

dence. The absence of parentheses in a statement could render inaccurate

results. Although the syntax of an SQL statement is correct, a logical error might

result.

Watch
Out!

Expression Result

4 * 6 / 2 12

(4 * 6) / 2 12

4 * (6 / 3) 12

Workshop 137

EXISTS, ANY, and ALL. You are already experiencing how elements are added

to SQL statements to further specify conditions and better control the pro-

cessing and retrieving capabilities provided with SQL.

Q&A
Q. Can I have more than one AND in the WHERE clause?

A. Yes. In fact, you can use all the operators multiple times. An example

would be

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY > 20000

AND BONUS BETWEEN 1000 AND 3000

AND POSITION = ‘VICE PRESIDENT’

Q. What happens if I use single quotation marks around a NUMBER data type in

a WHERE clause?

A. Your query still processes. Quotation marks are not necessary for

NUMBER fields.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall understand-

ing of the current material. The practical exercises are intended to afford you

the opportunity to apply the concepts discussed during the current hour, as

well as build upon the knowledge acquired in previous hours of study. Please

take time to complete the quiz questions and exercises before continuing.

Refer to Appendix C, “Answers to Quizzes and Exercises,” for answers.

Quiz

1. True or false: Both conditions when using the OR operator must be

TRUE.

2. True or false: All specified values must match when using the IN

operator.

3. True or false: The AND operator can be used in the SELECT and the WHERE

clauses.

138 HOUR 8: Using Operators to Categorize Data

4. True or false: The ANY operator can accept an expression list.

5. What is the logical negation of the IN operator?

6. What is the logical negation of the ANY and ALL operators?

7. What, if anything, is wrong with the following SELECT statements?

a.
SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN 20000, 30000

b.
SELECT SALARY + DATE_HIRE

FROM EMPLOYEE_PAY_TBL

c.
SELECT SALARY, BONUS

FROM EMPLOYEE_PAY_TBL

WHERE DATE_HIRE BETWEEN 2009-09-22

AND 2009-11-23

AND POSITION = ‘SALES’

OR POSITION = ‘MARKETING’

AND EMPLOYEE_ID LIKE ‘%55%

Exercises

1. Using the following CUSTOMER_TBL, write a SELECT statement that

returns customer IDs and customer names (alpha order) for customers

who live in Indiana, Ohio, Michigan, or Illinois and whose names

begin with the letters A or B:

DESCRIBE CUSTOMER_TBL;

Name Null? Type

--

CUST_ID NOT NULL VARCHAR (10)

CUST_NAME NOT NULL VARCHAR (30)

CUST_ADDRESS NOT NULL VARCHAR (20)

CUST_CITY NOT NULL VARCHAR (12)

CUST_STATE NOT NULL VARCHAR (2)

CUST_ZIP NOT NULL VARCHAR (5)

CUST_PHONE VARCHAR (10)

CUST_FAX VARCHAR (10)

Workshop 139

2. Using the following PRODUCTS_TBL, write a SELECT statement that

returns the product ID, product description, and product cost. Limit the

product cost to between $1.00 and $12.50:

DESCRIBE PRODUCTS_TBL

Name Null? Type

PROD_ID NOT NULL VARCHAR (10)

PROD_DESC NOT NULL VARCHAR (25)

COST NOT NULL DECIMAL(6,2)

3. Assuming that you used the BETWEEN operator in Exercise 2, rewrite

your SQL statement to achieve the same results using different opera-

tors. If you did not use the BETWEEN operator, do so now.

4. Write a SELECT statement that returns products that are either less than

1.00 or greater than 12.50. There are two ways to achieve the same

results.

5. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, and 5% sales tax for

each product. List the products in order from most to least expensive.

6. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, 5% sales tax for each

product, and total cost with sales tax. List the products in order from

most to least expensive. There are two ways to achieve the same

results. Try both.

7. Pick three items from the PRODUCTS_TBL. Now write a query to return

the rows of data from the table associated with those three items. Now

rewrite the query to return everything but those three items. For your

query use combinations of equality operators and conjunctive opera-

tors.

8. Rewrite the queries you wrote in Exercise 7 using the IN operator.

Which statement is more efficient? Which one is more readable?

9. Write a query to return all the products that start with the letter P.

Now write a query to return all products that do not start with the

letter P.

This page intentionally left blank

What Are Aggregate Functions? 141

HOUR 9

Summarizing Data Results
from a Query

What You’ll Learn in This Hour:

. What functions are

. How functions are used

. When to use functions

. Using aggregate functions

. Summarizing data with aggregate functions

. Results from using functions

In this hour, you learn about SQL’s aggregate functions. You can perform a

variety of useful functions with aggregate functions, such as getting the

highest total of a sale or counting the number of orders processed on a

given day. The real power of aggregate functions will be discussed in the

next hour when we tackle the GROUP BY clause.

What Are Aggregate Functions?
Functions are keywords in SQL used to manipulate values within columns

for output purposes. A function is a command normally used in conjunction

with a column name or expression that processes the incoming data to pro-

duce a result. SQL contains several types of functions. This hour covers

aggregate functions. An aggregate function provides summarization infor-

mation for an SQL statement, such as counts, totals, and averages.

The basic set of aggregate functions discussed in this hour are

. COUNT

. SUM

. MAX

142 HOUR 9: Summarizing Data Results from a Query

. MIN

. AVG

The following queries show the data used for most of this hour’s examples:

SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST

--

11235 WITCH COSTUME 29.99

222 PLASTIC PUMPKIN 18 INCH 7.75

13 FALSE PARAFFIN TEETH 1.1

90 LIGHTED LANTERNS 14.5

15 ASSORTED COSTUMES 10

9 CANDY CORN 1.35

6 PUMPKIN CANDY 1.45

87 PLASTIC SPIDERS 1.05

119 ASSORTED MASKS 4.95

1234 KEY CHAIN 5.95

2345 OAK BOOKSHELF 59.99

11 rows selected.

The following query lists the employee information from the EMPLOYEE_TBL

table. Note that some of the employees do not have pager numbers

assigned.

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL;

EMP_ID LAST_NAM FIRST_NA PAGER

311549902 STEPHENS TINA

442346889 PLEW LINDA

213764555 GLASS BRANDON 3175709980

313782439 GLASS JACOB 8887345678

220984332 WALLACE MARIAH

443679012 SPURGEON TIFFANY

6 rows selected.

COUNT

You use the COUNT function to count rows or values of a column that do not

contain a NULL value. When used within a query, the COUNT function returns

a numeric value. You can also use the COUNT function with the DISTINCT

command to only count the distinct rows of a dataset. ALL (opposite of

DISTINCT) is the default; it is not necessary to include ALL in the syntax.

What Are Aggregate Functions? 143

DISTINCT Can Only Be Used in Certain Circumstances

You cannot use the DISTINCT command with COUNT(*), only with COUNT

(column_name).

By the
Way

The syntax for the COUNT function is as follows:

COUNT [(*) | (DISTINCT | ALL)] (COLUMN NAME)

This example counts all employee IDs:

SELECT COUNT(EMPLOYEE_ID) FROM EMPLOYEE_PAY_ID

This example counts only the distinct rows:

SELECT COUNT(DISTINCT SALARY)FROM EMPLOYEE_PAY_TBL

This example counts all rows for SALARY:

SELECT COUNT(ALL SALARY)FROM EMPLOYEE_PAY_TBL

This final example counts all rows of the EMPLOYEE table:

SELECT COUNT(*) FROM EMPLOYEE_TBL

COUNT(*) is used in the following example to get a count of all records in

the EMPLOYEE_TBL table. There are six employees.

SELECT COUNT(*)

FROM EMPLOYEE_TBL;

COUNT(*)

6

COUNT(*) Is Different from Other Versions

COUNT(*) produces slightly different calculations than other count variations. This

is because when the COUNT function is used with the asterisk, it counts the rows

in the returned result set without regard to duplicates and NULL values. This is an

important distinction. If you need your query to return a count of a particular field

and include NULLs, you need to use a function such as ISNULL to replace the

NULL values.

Watch
Out!

Duplicate rows are counted if DISTINCT is not specified. One other option

with the COUNT function is to use it with an asterisk. COUNT(*) counts all the

rows of a table including duplicates, whether a NULL value is contained in a

column or not.

144 HOUR 9: Summarizing Data Results from a Query

COUNT(EMP_ID) is used in the next example to get a count of all the employ-

ee identification IDs that exist in the table. The returned count is the same

as the last query because all employees have an identification number.

SELECT COUNT(EMP_ID)

FROM EMPLOYEE_TBL;

COUNT(EMP_ID)

6

COUNT(PAGER) is used in the following example to get a count of all the

employee records that have a pager number. Only two employees had

pager numbers.

SELECT COUNT(PAGER)

FROM EMPLOYEE_TBL;

COUNT(PAGER)

2

The ORDERS_TBL table is shown next:

SELECT *

FROM ORDERS_TBL;

ORD_NUM CUST_ID PROD_ID QTY ORD_DATE_

56A901 232 11235 1 22-OCT-99

56A917 12 907 100 30-SEP-99

32A132 43 222 25 10-OCT-99

16C17 090 222 2 17-OCT-99

18D778 287 90 10 17-OCT-99

23E934 432 13 20 15-OCT-99

90C461 560 1234 2

7 rows selected.

This example obtains a count of all distinct product identifications in the

ORDERS_TBL table.

SELECT COUNT(DISTINCT PROD_ID)

FROM ORDERS_TBL;

COUNT(DISTINCT PROD_ID)

6

The PROD_ID 222 has two entries in the table, thus reducing the distinct values

from 7 to 6.

What Are Aggregate Functions? 145

Data Types Do Not COUNT

Because the COUNT function counts the rows, data types do not play a part. The

rows can contain columns with any data type.

By the
Way

SUM

SUM Must Be Numeric

The value of an argument must be numeric to use the SUM function. You cannot

use the SUM function on columns having a data type other than numeric, such as

character or date.

Watch
Out!

The SUM function returns a total on the values of a column for a group of

rows. You can also use the SUM function in conjunction with DISTINCT.

When you use SUM with DISTINCT, only the distinct rows are totaled, which

might not have much purpose. Your total is not accurate in that case because

rows of data are omitted.

The syntax for the SUM function is as follows:

SUM ([DISTINCT] COLUMN NAME)

This example totals the salaries:

SELECT SUM(SALARY) FROM EMPLOYEE_PAY_TBL

This example totals the distinct salaries:

SELECT SUM(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

In the following query, the sum, or total amount, of all cost values is being

retrieved from the PRODUCTS_TBL table:

SELECT SUM(COST)

FROM PRODUCTS_TBL;

SUM(COST)

163.07

Observe the way the DISTINCT command in the following example skews

the previous results. This is why it is rarely useful:

SELECT SUM(DISTINCT COST)

FROM PRODUCTS_TBL;

146 HOUR 9: Summarizing Data Results from a Query

SUM(COST)

72.14

The following query demonstrates that, although some aggregate functions

require numeric data, this is only limited to the type of data. Here the PAGER

column of the EMPLOYEE_TBL table shows that the implicit conversion of the

CHAR data to a numeric type is supported:

SELECT SUM(PAGER)

FROM EMPLOYEE_TBL;

SUM(PAGER)

12063055658

When you use a type of data that cannot be implicitly converted to a

numeric type, such as the LAST_NAME column, it returns a result of 0.

SELECT SUM(LAST_NAME)

FROM EMPLOYEE_TBL;

SUM(LAST_NAME)

0

AVG Must Be Numeric

The value of the argument must be numeric for the AVG function to work.

By the
Way

AVG

The AVG function finds the average value for a given group of rows. When

used with the DISTINCT command, the AVG function returns the average of

the distinct rows. The syntax for the AVG function is as follows:

AVG ([DISTINCT] COLUMN NAME)

This example returns the average salary:

SELECT AVG(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the distinct average salary:

SELECT AVG(DISTINCT SALARY) EMPLOYEE_PAY_TBL

The average value for all values in the PRODUCTS_TBL table’s COST column is

being retrieved in the following example:

What Are Aggregate Functions? 147

Sometimes Your Data Is Truncated

In some implementations, the results of your query might be truncated to the pre-

cision of the data type.

Watch
Out!

The next example uses two aggregate functions in the same query. Because

some employees are paid hourly and others are on salary, you want to

retrieve the average value for both PAY_RATE and SALARY.

SELECT AVG(PAY_RATE), AVG(SALARY)

FROM EMPLOYEE_PAY_TBL;

AVG(PAY_RATE) AVG(SALARY)

------------- ---------

13.5833333 30000

MAX

The MAX function returns the maximum value from the values of a column

in a group of rows. NULL values are ignored when using the MAX function.

The DISTINCT command is an option. However, because the maximum

value for all the rows is the same as the distinct maximum value, DISTINCT

is useless.

The syntax for the MAX function is

MAX([DISTINCT] COLUMN NAME)

This example returns the highest salary:

SELECT MAX(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the highest distinct salary:

SELECT MAX(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

The following example returns the maximum value for the COST column in

the PRODUCTS_TBL table:

SELECT MAX(COST)

FROM PRODUCTS_TBL;

SELECT AVG(COST)

FROM PRODUCTS_TBL;

AVG(COST)

13.5891667

148 HOUR 9: Summarizing Data Results from a Query

MAX(COST)

----------29.99

SELECT MAX(DISTICNT COST)

FROM PRODUCTS_TBL;

MAX(COST)

29.99

You can also use aggregate functions such as MAX and MIN on character data.

In the case of these values, collation of your database comes into play again.

Most commonly your database collation is set to a dictionary order, so the

results are ranked according to that. For example, say we performed a MAX on

the PRODUCT_DESC column of the products table:

SELECT MAX(PRODUCT_DESC)

FROM PRODUCTS_TBL;

MAX(PRODUCT_DESC)

WITCH COSTUME

In this instance, the function returned the largest value according to a dic-

tionary ordering of the data in the column.

MIN

The MIN function returns the minimum value of a column for a group of

rows. NULL values are ignored when using the MIN function. The DISTINCT

command is an option. However, because the minimum value for all rows

is the same as the minimum value for distinct rows, DISTINCT is useless.

The syntax for the MIN function is

MIN([DISTINCT] COLUMN NAME)

This example returns the lowest salary:

SELECT MIN(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the lowest distinct salary:

SELECT MIN(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

The following example returns the minimum value for the COST column in

the PRODUCTS_TBL table:

SELECT MIN(COST)

FROM PRODUCTS_TBL;

What Are Aggregate Functions? 149

MIN(COST)

1.05

SELECT MIN(DISTINCT COST)

FROM PRODUCTS_TBL;

MIN(COST)

1.05

DISTINCT and Aggregate Functions Don’t Always Mix

One important thing to keep in mind when using aggregate functions with the

DISTINCT command is that your query might not return the desired results. The

purpose of aggregate functions is to return summarized data based on all rows of

data in a table.

By the
Way

As with the MAX function, the MIN function can work against character data

and returns the minimum value according to the dictionary ordering of the

data.

SELECT MINPRODUCT_DESC)

FROM PRODUCTS_TBL;

MIN(PRODUCT_DESC)

ASSORTED COSTUMES

The final example combines aggregate functions with the use of arithmetic

operators:

SELECT COUNT(ORD_NUM), SUM(QTY),

SUM(QTY) / COUNT(ORD_NUM) AVG_QTY

FROM ORDERS_TBL;

COUNT(ORD_NUM) SUM(QTY) AVG_QTY

-------------- -------- ---------

7 160 22.857143

You have performed a count on all order numbers, figured the sum of all

quantities ordered, and, by dividing the two figures, derived the average

quantity of an item per order. You also created a column alias for the

computation—AVG_QTY.

150 HOUR 9: Summarizing Data Results from a Query

Summary
Aggregate functions can be useful and are quite simple to use. You have

learned how to count values in columns, count rows of data in a table, get

the maximum and minimum values for a column, figure the sum of the

values in a column, and figure the average value for values in a column.

Remember that NULL values are not considered when using aggregate func-

tions, except when using the COUNT function in the format COUNT(*).

Aggregate functions are the first functions in SQL that you have learned,

but more follow. You can also use aggregate functions for group values,

which are discussed during the next hour. As you learn about other func-

tions, you see that the syntaxes of most functions are similar to one another

and that their concepts of use are relatively easy to understand.

Q&A
Q. Why are NULL values ignored when using the MAX or MIN function?

A. A NULL value means that nothing is there.

Q. Why don’t data types matter when using the COUNT function?

A. The COUNT function only counts rows.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. True or false: The AVG function returns an average of all rows from a

SELECT column, including any NULL values.

2. True or false: The SUM function adds column totals.

Workshop 151

3. True or false: The COUNT(*) function counts all rows in a table.

4. Will the following SELECT statements work? If not, what fixes the

statements?

a.
SELECT COUNT *

FROM EMPLOYEE_PAY_TBL;

b.
SELECT COUNT(EMPLOYEE_ID), SALARY

FROM EMPLOYEE_PAY_TBL;

c.
SELECT MIN(BONUS), MAX(SALARY)

FROM EMPLOYEE_PAY_TBL

WHERE SALARY > 20000;

d.
SELECT COUNT(DISTINCT PROD_ID) FROM PRODUCTS_TBL;

e.
SELECT AVG(LAST_NAME) FROM EMPLOYEE_TBL;

f.
SELECT AVG(PAGER) FROM EMPLOYEE_TBL;

Exercises

1. Use EMPLOYEE_PAY_TBL to construct SQL statements to solve the follow-

ing exercises:

A. What is the average salary?

B. What is the maximum bonus?

C. What are the total salaries?

D. What is the minimum pay rate?

E. How many rows are in the table?

2. Write a query to determine how many employees are in the company

whose last names begin with a G.

3. Write a query to determine the total dollar amount for all the orders in

the system. Rewrite the query to determine the total dollar amount if

we set the price of each item as $10.00.

4. Write two sets of queries to find the first employee name and last

employee name when they are listed in alphabetical order.

5. Write a query to perform an AVG function on the employee names.

Does the statement work? Determine why it is that you got that result.

This page intentionally left blank

Why Group Data? 153

HOUR 10

Sorting and Grouping Data

What You’ll Learn in This Hour:

. Why you would want to group data

. The GROUP BY clause

. Group value functions

. The how and why of group functions

. Grouping by columns

. GROUP BY versus ORDER BY

. The HAVING clause

You have learned how to query the database and return data in an organ-

ized fashion. You have also learned how to sort data from a query. During

this hour, you learn how to break returned data from a query into groups

for improved readability.

Why Group Data?
Grouping data is the process of combining columns with duplicate values in

a logical order. For example, a database might contain information about

employees; many employees live in different cities, but some employees live

in the same city. You might want to execute a query that shows employee

information for each particular city. You are grouping employee informa-

tion by city and creating a summarized report.

Or perhaps you want to figure the average salary paid to employees accord-

ing to each city. You can do this by using the aggregate function AVG on the

SALARY column, as you learned in the previous hour, and by using the GROUP

BY clause to group the output by city.

154 HOUR 10: Sorting and Grouping Data

Grouping data is accomplished through the use of the GROUP BY clause of a

SELECT statement (query). In Hour 9, “Summarizing Data Results from a

Query,” you learned how to use aggregate functions. In this lesson, you see

how to use aggregate functions in conjunction with the GROUP BY clause to

display results more effectively.

The GROUP BY Clause
The GROUP BY clause is used in collaboration with the SELECT statement to

arrange identical data into groups. This clause follows the WHERE clause in a

SELECT statement and precedes the ORDER BY clause.

The position of the GROUP BY clause in a query is as follows:

SELECT

FROM

WHERE

GROUP BY

ORDER BY

The following is the SELECT statement’s syntax, including the GROUP BY

clause:

SELECT COLUMN1, COLUMN2

FROM TABLE1, TABLE2

WHERE CONDITIONS

GROUP BY COLUMN1, COLUMN2

ORDER BY COLUMN1, COLUMN2

This ordering normally takes a little getting used to when writing your first

queries with the GROUP BY clause; however, it is logical. The GROUP BY clause is

normally a much more CPU-intensive operation, and if we do not constrain

the rows provided to it we are grouping unnecessary data that would later be

discarded. So we intentionally reduce the data set with the WHERE clause so

that we perform our grouping only on the rows we need.

You can use the ORDER BY statement, but normally the relational database

management system (RDBMS) also orders the results by the column ordering

in the GROUP BY clause, which is discussed more in depth later in this hour.

So unless you need to order the values in a different pattern than the GROUP

BY clause, the ORDER BY clause is redundant. However, sometimes it is pro-

vided because you are using aggregate functions in the SELECT statement

The GROUP BY Clause 155

that are not in the GROUP BY clause or because your particular RDBMS func-

tions slightly differently from the standard.

The following sections give examples and explanations of the GROUP BY

clause’s use in a variety of situations.

Group Functions

Typical group functions—those that the GROUP BY clause uses to arrange

data in groups—include AVG, MAX, MIN, SUM, and COUNT. These are the aggre-

gate functions that you learned about in Hour 9. Remember that the aggre-

gate functions were used for single values in Hour 9; now you use the

aggregate functions for group values.

Grouping Selected Data

Grouping data is simple. The selected columns (the column list following

the SELECT keyword in a query) are the columns you can reference in the

GROUP BY clause. If a column is not in the SELECT statement, you cannot use

it in the GROUP BY clause. How can you group data on a report if the data is

not displayed?

If the column name has been qualified, the qualified name must go into

the GROUP BY clause. The column name can also be represented by a num-

ber, which is discussed later in the “Representing Column Names with

Numbers” section. When grouping the data, the order of columns grouped

does not have to match the column order in the SELECT clause.

Creating Groups and Using Aggregate Functions

The SELECT clause has conditions that must be met when using GROUP BY.

Specifically, whatever columns are selected must appear in the GROUP BY

clause, except for any aggregate values. The columns in the GROUP BY

clause do not necessarily have to be in the same order as they appear in

the SELECT clause. Should the columns in the SELECT clause be qualified, the

qualified names of the columns must be used in the GROUP BY clause. Some

examples of syntax for the GROUP BY clause are shown next.

The following SQL statement selects the EMP_ID and the CITY from the

EMPLOYEE_TBL and groups the data returned by CITY and then EMP_ID:

SELECT EMP_ID, CITY

156 HOUR 10: Sorting and Grouping Data

FROM EMPLOYEE_TBL

GROUP BY CITY, EMP_ID;

This SQL statement returns the EMP_ID and the total of the SALARY column.

Then it groups the results by both the salaries and employee IDs:

SELECT EMP_ID, SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY, EMP_ID;

This SQL statement returns the total of all the salaries from

EMPLOYEE_PAY_TBL:

SELECT SUM(SALARY) AS TOTAL_SALARY

FROM EMPLOYEE_PAY_TBL;

TOTAL_SALARY

90000.00

1 row selected

This SQL statement returns the totals for the different groups of salaries:

SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY;

SUM(SALARY)

(null)

20000.00

30000.00

40000.00

4 rows selected

Practical examples using real data follow. In this first example, you can see

three distinct cities in the EMPLOYEE_TBL table:

SELECT CITY

FROM EMPLOYEE_TBL;

Column Ordering in the Group By Statement Matters

Note the order of the columns selected, versus the order of the columns in the

GROUP BY clause.

By the
Way

CITY

GREENWOOD

INDIANAPOLIS

WHITELAND

The GROUP BY Clause 157

In the following example, you select the city and a count of all records for

each city. You see a count on each of the three distinct cities because you

are using a GROUP BY clause:

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY;

CITY COUNT(*)

-------------- --------

GREENWOOD 1

INDIANAPOLIS 4

WHITELAND 1

3 rows selected.

The following is a query from a temporary table created based on

EMPLOYEE_TBL and EMPLOYEE_PAY_TBL. You soon learn how to join two tables

for a query:

SELECT *

FROM EMP_PAY_TMP;

CITY LAST_NAM FIRST_NA PAY_RATE SALARY

------------ -------- --------- -------- ------

GREENWOOD STEPHENS TINA 30000

INDIANAPOLIS PLEW LINDA 14.75

WHITELAND GLASS BRANDON 40000

INDIANAPOLIS GLASS JACOB 20000

INDIANAPOLIS WALLACE MARIAH 11

INDIANAPOLIS SPURGEON TIFFANY 15

6 rows selected.

In the following example, you retrieve the average pay rate and salary on

each distinct city using the aggregate function AVG. There is no average pay

rate for GREENWOOD or WHITELAND because no employees living in those cities

are paid hourly:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

GROUP BY CITY;

CITY AVG(PAY_RATE) AVG(SALARY)

------------ ------------- -----------

GREENWOOD 30000

INDIANAPOLIS 13.5833333 20000

INDIANAPOLIS

INDIANAPOLIS

INDIANAPOLIS

6 rows selected.

158 HOUR 10: Sorting and Grouping Data

WHITELAND 40000

3 rows selected.

In the next example, you combine the use of multiple components in a

query to return grouped data. You still want to see the average pay rate and

salary, but only for INDIANAPOLIS and WHITELAND. You group the data by

CITY—you have no choice because you are using aggregate functions on the

other columns. Lastly, you want to order the report by 2 and then 3, which

are the average pay rate and then average salary, respectively. Study the

following details and output:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

WHERE CITY IN (‘INDIANAPOLIS’,’WHITELAND’)

GROUP BY CITY

ORDER BY 2,3;

CITY AVG(PAY_RATE) AVG(SALARY)

------------ ------------- -----------

INDIANAPOLIS 13.5833333 20000

WHITELAND 40000

Values are sorted before NULL values; therefore, the record for INDIANAPOLIS is

displayed first. GREENWOOD is not selected, but if it was, its record would have

been displayed before the WHITELAND record because the average salary for

GREENWOOD is $30,000. (The second sort in the ORDER BY clause was on aver-

age salary.)

The last example in this section shows the use of the MAX and MIN aggregate

functions with the GROUP BY clause:

SELECT CITY, MAX(PAY_RATE), MIN(SALARY)

FROM EMP_PAY_TMP

GROUP BY CITY;

CITY MAX(PAY_RATE) MIN(SALARY)

------------ ------------- -----------

GREENWOOD 30000

INDIANAPOLIS 15 20000

WHITELAND 40000

3 rows selected.

Representing Column Names with Numbers

Like the ORDER BY clause, you can order the GROUP BY clause by using an

integer to represent the column name. The following is an example of rep-

resenting column names with numbers:

GROUP BY Versus ORDER BY 159

SELECT YEAR(DATE_HIRE) as YEAR_HIRED, SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY 1;

YEAR_HIRED SUM(SALARY)

----------- -------------

1999 40000.00

2000

2001

2004 30000.00

2006

2007 20000.00

6 rows selected.

This SQL statement returns the SUM of the employee salaries grouped by the

year in which the employees were hired. The GROUP BY clause is performed

on the entire result set. The order for the groupings is 1, representing EMP_ID.

GROUP BY Versus ORDER BY
You should understand that the GROUP BY clause works the same as the

ORDER BY clause in that both sort data. Specifically, you use the ORDER BY

clause to sort data from a query. The GROUP BY clause also sorts data from a

query to properly group the data.

However, there are some differences and disadvantages of using GROUP BY

instead of ORDER BY for sorting operations:

. All nonaggregate columns selected must be listed in the GROUP BY

clause.

. The GROUP BY clause is generally not necessary unless you’re using

aggregate functions.

An example of performing sort operations utilizing the GROUP BY clause in

place of the ORDER BY clause is shown next:

SELECT LAST_NAME, FIRST_NAME, CITY

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME;

SELECT LAST_NAME, CITY

*

ERROR at line 1:

ORA-00979: not a GROUP BY expression

160 HOUR 10: Sorting and Grouping Data

In this example, an Oracle database server received an error stating that

FIRST_NAME is not a GROUP BY expression. Remember that all columns and

expressions in the SELECT statement must be listed in the GROUP BY clause,

with the exception of aggregate columns (those columns targeted by an

aggregate function).

In the next example, the previous problem is solved by adding all the

expressions in the SELECT statement to the GROUP BY clause:

SELECT LAST_NAME, FIRST_NAME, CITY

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME, FIRST_NAME, CITY;

LAST_NAME FIRST_NAME CITY

--------- ----------- ------------

GLASS BRANDON WHITELAND

GLASS JACOB INDIANAPOLIS

PLEW LINDA INDIANAPOLIS

SPURGEON TIFFANY INDIANAPOLIS

STEPHENS TINA GREENWOOD

WALLACE MARIAH INDIANAPOLIS

6 rows selected.

In this example, the same columns were selected from the same table, but

all columns in the GROUP BY clause are listed as they appeared after the

SELECT keyword. The results are ordered by LAST_NAME first, FIRST_NAME sec-

ond, and CITY third. These results could have been accomplished easier

with the ORDER BY clause; however, it might help you better understand

how the GROUP BY clause works if you can visualize how it must first sort

data to group data results.

The following example shows a SELECT statement from EMPLOYEE_TBL and

uses the GROUP BY clause to order by CITY:

SELECT CITY, LAST_NAME

FROM EMPLOYEE_TBL

GROUP BY CITY, LAST_NAME;

CITY LAST_NAME

------------ ----------

GREENWOOD STEPHENS

INDIANAPOLIS GLASS

INDIANAPOLIS PLEW

INDIANAPOLIS SPURGEON

Error Messages Differ

Different SQL implementations return errors in different formats.

By the
Way

CUBE and ROLLUP Expressions 161

INDIANAPOLIS WALLACE

WHITELAND GLASS

6 rows selected.

Notice the order of data in the previous results, as well as the LAST_NAME of

the individual for each CITY. In the following example, all employee records

in the EMPLOYEE_TBL table are now counted, and the results are grouped by

CITY but ordered by the count on each city first:

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY

ORDER BY 2,1;

CITY COUNT(*)

-------------- --------

GREENWOOD 1

WHITELAND 1

INDIANAPOLIS 4

3 rows selected.

Check out the order of the results. The results were first sorted by the count

on each city (1–4) and then sorted by city. The count for the first two cities

in the output is 1. Because the count is the same, which is the first expres-

sion in the ORDER BY clause, the city is then sorted; GREENWOOD is placed

before WHITELAND.

Although GROUP BY and ORDER BY perform a similar function, there is one

major difference. The GROUP BY clause is designed to group identical data,

whereas the ORDER BY clause is designed merely to put data into a specific

order. You can use GROUP BY and ORDER BY in the same SELECT statement, but

you must follow a specific order.

You Can’t Use the ORDER BY Clause in a View

You can use the GROUP BY clause in the CREATE VIEW statement to sort data, but

the ORDER BY clause is not allowed in the CREATE VIEW statement. The CREATE

VIEW statement is discussed in depth in Hour 20, “Creating and Using Views and

Synonyms.”

Did You
Know?

CUBE and ROLLUP Expressions
Sometimes it is advantageous to get summary totals within a certain

group. For instance, you might want to have a breakdown of the SUM of

sales per year, country, and product type but also want to see the totals in

162 HOUR 10: Sorting and Grouping Data

each year and country. Luckily, the ANSI SQL standard provides for such

functionality using the CUBE and ROLLUP expressions.

The ROLLUP expression is used to get subtotals, or what is commonly

referred to as super-aggregate rows, along with a grand total row. The ANSI

syntax is as follows:

GROUP BY ROLLUP(ordered column list of grouping sets)

The way the ROLLUP expression works is that, for every change in the LAST

column provided for the grouping set, an additional row is inserted into the

result set with a NULL value for that column and the subtotal of the values

in the set. Additionally, a row is inserted at the end of the result set with

NULL values for each of the group columns and a grand total for the aggre-

gate information. Both Microsoft SQL Server and Oracle follow the ANSI-

compliant format, but MySQL follows the following slightly different

format:

GROUP BY order column list of grouping sets WITH ROLLUP

Let’s first examine a result set of a simple GROUP BY statement in which we

examine average employee pay by CITY and ZIP:

SELECT CITY,ZIP, AVG(PAY_RATE), AVG(SALARY)

FROM EMPLOYEE_TBL E

INNER JOIN EMPLOYEE_PAY_TBL P

ON E.EMP_ID=P.EMP_ID

GROUP BY CITY,ZIP

ORDER BY CITY,ZIP;

CITY ZIP AVG(PAY_RATE) AVG(SALARY)

------------- -------- ----------------- ------------

GREENWOOD 47890 NULL 40000

INDIANAPOLIS 45734 NULL 20000

INDIANAPOLIS 46224 14.75 NULL

INDIANAPOLIS 46234 15.00 NULL

INDIANAPOLIS 46741 11.00 NULL

WHITELAND 47885 NULL 30000

6 rows selected.

The following is an example of using the ROLLUP expression to get subtotals

of sales:

SELECT CITY,ZIP, AVG(PAY_RATE), AVG(SALARY)

FROM EMPLOYEE_TBL E

INNER JOIN EMPLOYEE_PAY_TBL P

ON E.EMP_ID=P.EMP_ID

GROUP BY ROLLUP(CITY,ZIP);

CUBE and ROLLUP Expressions 163

CITY ZIP AVG(PAY_RATE) AVG(SALARY)

------------- --------- --------------- ------------

GREENWOOD 47890 NULL 40000

GREENWOOD NULL NULL 40000

INDIANAPOLIS 45734 NULL 20000

INDIANAPOLIS 46224 14.75 NULL

INDIANAPOLIS 46234 15.00 NULL

INDIANAPOLIS 46741 11.00 NULL

INDIANAPOLIS NULL 13.58 20000

WHITELAND 47885 NULL 30000

WHITELAND NULL NULL 30000

NULL NULL 13.58 30000

10 rows selected.

Notice how we now get an average super-aggregate row for each one of the

cities and an overall average for the entire set as the last row.

The CUBE expression is different. It returns a single row of data with every

combination of the columns in the column list along with a row for the

grand total of the whole set. The syntax for the CUBE expression is as fol-

lows:

GROUP BY CUBE(column list of grouping sets)

CUBE is often used to create crosstab reports due to its unique nature. For

instance, if we want to have sales use the following columns in the GROUP

BY CUBE expression list, CITY, STATE, REGION, we receive rows for each of the

following:

CITY

CITY, STATE

CITY, REGION

CITY, STATE, REGION

REGION

STATE,REGION

STATE

<grand total row>

This expression is supported in both Microsoft SQL Server and Oracle, but

as of the time of this writing it is not available in MySQL. The following

statement shows an example of using the CUBE expression:

SELECT CITY,ZIP, AVG(PAY_RATE), AVG(SALARY)

FROM EMPLOYEE_TBL E

INNER JOIN EMPLOYEE_PAY_TBL P

ON E.EMP_ID=P.EMP_ID

GROUP BY CUBE(CITY,ZIP);

164 HOUR 10: Sorting and Grouping Data

CITY ZIP AVG(PAY_RATE) AVG(SALARY)

------------- ------- -------------- ------------

INDIANAPOLIS 45734 NULL 20000

NULL 45734 NULL 20000

INDIANAPOLIS 46224 14.75 NULL

NULL 46224 14.75 NULL

INDIANAPOLIS 46234 15.00 NULL

NULL 46234 15.00 NULL

INDIANAPOLIS 46741 11.00 NULL

NULL 46741 11.00 NULL

WHITELAND 47885 NULL 30000

NULL 47885 NULL 30000

GREENWOOD 47890 NULL 40000

NULL 47890 NULL 40000

GREENWOOD NULL NULL 40000

INDIANAPOLIS NULL 13.58 20000

WHITELAND NULL NULL 30000

NULL NULL 13.58 30000

16 rows selected.

Now you can see that with the CUBE expression, there are even more rows

because the statement needs to return each combination of columns within

the column set that we provided.

The HAVING Clause
The HAVING clause, when used in conjunction with the GROUP BY clause in a

SELECT statement, tells GROUP BY which groups to include in the output.

HAVING is to GROUP BY as WHERE is to SELECT. In other words, the WHERE clause

places conditions on the selected columns, and the HAVING clause places

conditions on groups created by the GROUP BY clause. Therefore, when you

use the HAVING clause, you are effectively including or excluding, as the

case might be, whole groups of data from the query results.

The following is the position of the HAVING clause in a query:

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

The following is the syntax of the SELECT statement, including the HAVING

clause:

SELECT COLUMN1, COLUMN2

FROM TABLE1, TABLE2

Summary 165

WHERE CONDITIONS

GROUP BY COLUMN1, COLUMN2

HAVING CONDITIONS

ORDER BY COLUMN1, COLUMN2

In the following example, you select the average pay rate and salary for all

cities except GREENWOOD. You group the output by CITY, but you only want to

display those groups (cities) that have an average salary greater than

$20,000. You sort the results by average salary for each city:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

WHERE CITY <> ‘GREENWOOD’

GROUP BY CITY

HAVING AVG(SALARY) > 20000

ORDER BY 3;

CITY AVG(PAY_RATE) AVG(SALARY)

----------- -------------- ------------

WHITELAND 40000

1 row selected.

Why was only one row returned by this query?

. The city GREENWOOD was eliminated from the WHERE clause.

. INDIANAPOLIS was deducted from the output because the average

salary was 20000, which is not greater than 20000.

Summary
You have learned how to group the results of a query using the GROUP BY

clause. The GROUP BY clause is primarily used with aggregate SQL functions,

such as SUM, AVG, MAX, MIN, and COUNT. The nature of GROUP BY is like that of

ORDER BY in that both sort query results. The GROUP BY clause must sort data

to group results logically, but you can also use it exclusively to sort data.

However, an ORDER BY clause is much simpler for this purpose.

The HAVING clause, an extension to the GROUP BY clause, places conditions

on the established groups of a query. The WHERE clause places conditions on

a query’s SELECT clause. During the next hour, you learn a new arsenal of

functions that enable you to further manipulate query results.

166 HOUR 10: Sorting and Grouping Data

Q&A
Q. Is using the GROUP BY clause mandatory when using the ORDER BY clause in

a SELECT statement?

A. No. Using the GROUP BY clause is strictly optional, but it can be helpful

when used with ORDER BY.

Q. What is a group value?

A. Take the CITY column from the EMPLOYEE_TBL. If you select the

employee’s name and city and then group the output by city, all the

cities that are identical are arranged together.

Q. Must a column appear in the SELECT statement to use a GROUP BY clause on

it?

A. Yes, a column must be in the SELECT statement to use a GROUP BY clause

on it.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Will the following SQL statements work?

a.

SELECT SUM(SALARY), EMP_ID

FROM EMPLOYEE_PAY_TBL

GROUP BY 1 and 2;

b.

SELECT EMP_ID, MAX(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY, EMP_ID;

Workshop 167

c.

SELECT EMP_ID, COUNT(SALARY)

FROM EMPLOYEE_PAY_TBL

ORDER BY EMP_ID

GROUP BY SALARY;

d.

SELECT YEAR(DATE_HIRE) AS YEAR_HIRED,SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY 1

HAVING SUM(SALARY)>20000;

2. True or false: You must also use the GROUP BY clause when using the

HAVING clause.

3. True or false: The following SQL statement returns a total of the

salaries by groups:

SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL;

4. True or false: The columns selected must appear in the GROUP BY clause

in the same order.

5. True or false: The HAVING clause tells the GROUP BY which groups to

include.

Exercises

1. Invoke the database and enter the following query to show all cities in

EMPLOYEE_TBL:

SELECT CITY

FROM EMPLOYEE_TBL;

2. Enter the following query and compare the results to the query in Exer-

cise 2:

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY;

168 HOUR 10: Sorting and Grouping Data

3. The HAVING clause works like the WHERE clause in that it enables the user

to specify conditions on data returned. The WHERE clause is the main fil-

ter on the query, and the HAVING clause is the filter used after groups of

data have been established using the GROUP BY clause. Enter the follow-

ing query to see how the HAVING clause works:

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY

HAVING COUNT(*) > 1;

4. Modify the query in Exercise 3 to order the results in descending order,

from highest count to lowest.

5. Write a query to list the average pay rate and salary by position from

the EMPLOYEE_PAY_TBL table.

6. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL table where the average salary is greater than 20000.

ANSI Character Functions 169

HOUR 11

Restructuring the
Appearance of Data

What You’ll Learn in This Hour:

. Introduction to character functions

. How and when to use character functions

. Examples of ANSI SQL functions

. Examples of common implementation-specific functions

. Overview of conversion functions

. How and when to use conversion functions

In this hour, you learn how to restructure the appearance of output results

using some American National Standards Institute (ANSI) standard functions,

other functions based on the standard, and several variations used by some

major SQL implementations.

The ANSI Standard Is Not Rigid

The ANSI concepts discussed in this book are just that—concepts. Standards

provided by ANSI are simply guidelines for how the use of SQL in a relational

database should be implemented. With that thought, keep in mind that the spe-

cific functions discussed in this hour are not necessarily the exact functions that

you might use in your particular implementation. Yes, the concepts are the same,

and the way the functions work are generally the same, but function names and

actual syntax might differ.

By the
Way

ANSI Character Functions
Character functions are functions that represent strings in SQL in formats

different from the way they are stored in the table. The first part of this

hour discusses the concepts for character functions as covered by ANSI.

170 HOUR 11: Restructuring the Appearance of Data

JOHN concatenated with SMITH produces JOHN SMITH.

The concept of substring is the capability to extract part of a string, or a

“sub” of the string. For example, the following values are substrings of

JOHNSON:

. J

. JOHN

. JO

. ON

. SON

The TRANSLATE function translates a string, character by character, into

another string. There are normally three arguments with the TRANSLATE

function: the string to be converted, a list of the characters to convert, and a

list of the substitution characters. Implementation examples are shown in

the next part of this hour.

Common Character Functions
You use character functions mainly to compare, join, search, and extract

a segment of a string or a value in a column. Several character functions

are available to the SQL programmer.

The following sections illustrate the application of ANSI concepts in some of

the leading implementations of SQL, such as Microsoft SQL Server, MySQL,

and Oracle.

The CONCAT Function

The CONCAT function, along with most other functions, is represented slightly

differently among various implementations. The following examples show

the use of concatenation in Oracle and SQL Server.

The second part of this hour shows real-world examples using functions

that are specific to various SQL implementations. The most common forms

of ANSI character functions deal with operations for concatenation, sub-

strings, and TRANSLATE.

Concatenation is the process of combining two strings into one. For exam-

ple, you might want to concatenate an individual’s first and last names

into a single string for the complete name.

Common Character Functions 171

Let’s say you want to concatenate JOHN and SON to produce JOHNSON. In

Oracle, your code looks like this:

SELECT ‘JOHN’ | | ‘SON’

In SQL Server, your code appears as follows:

SELECT ‘JOHN’ + ‘SON’

In MySQL, your code looks like this:

SELECT CONCAT(‘JOHN’ , ‘SON’)

Now for an overview of the syntaxes. The syntax for Oracle is

COLUMN_NAME | | [‘’ | |] COLUMN_NAME [COLUMN_NAME]

The syntax for SQL Server is

COLUMN_NAME + [‘’ +] COLUMN_NAME [COLUMN_NAME]

The syntax for MySQL is

CONCAT(COLUMN_NAME , [‘’ ,] COLUMN_NAME [COLUMN_NAME])

Both MySQL as well as Oracle employ the CONCAT function. You can use it to

get the concatenation of pairs of strings just like the shortened syntax of +

for SQL Server and the double pipe (| |) for Oracle. The main difference

between the two versions is that the Oracle version is limited to two values

to be concatenated, whereas you can use the MySQL version for large num-

bers of values. In addition, remember that, because this operation is for

string values, any numeric values must be converted to strings before con-

catenation. Unfortunately, Microsoft SQL Server does not support the CONCAT

function. Some examples of utilizing concatenation in its various formats

are shown next.

This SQL Server statement concatenates the values for city and state into

one value:

SELECT CITY + STATE FROM EMPLOYEE_TBL;

This Oracle statement concatenates the values for city and state into one

value, placing a comma between the values for city and state:

SELECT CITY | |’, ‘| | STATE FROM EMPLOYEE_TBL;

Alternatively for Oracle, if you wanted to use the CONCAT statement to

achieve the preceding result, you would be unable to do so because you are

concatenating more than two values.

172 HOUR 11: Restructuring the Appearance of Data

This SQL Server statement concatenates the values for city and state into

one value, placing a space between the two original values:

SELECT CITY + ‘’ + STATE FROM EMPLOYEE_TBL;

This SQL Server statement concatenates the last name with the first name

and inserts a comma between the two original values:

SELECT LAST_NAME + ‘, ‘ + FIRST_NAME NAME

FROM EMPLOYEE_TBL;

NAME

STEPHENS, TINA

PLEW, LINDA

GLASS, BRANDON

GLASS, JACOB

WALLACE, MARIAH

SPURGEON, TIFFANY

6 rows selected.

The TRANSLATE Function

The TRANSLATE function searches a string of characters and checks for a spe-

cific character, makes note of the position found, searches the replacement

string at the same position, and then replaces that character with the new

value. The syntax is

TRANSLATE(CHARACTER SET, VALUE1, VALUE2)

The next SQL statement substitutes every occurrence of I in the string with

A, every occurrence of N with B, and all occurrences of D with C:

SELECT TRANSLATE (CITY,’IND’,’ABC’ FROM EMPLOYEE_TBL) CITY_TRANSLATION

The following example illustrates the use of TRANSLATE with real data:

SELECT CITY, TRANSLATE(CITY,’IND’,’ABC’)

FROM EMPLOYEE_TBL;

CITY CITY_TRANSLATION

---------- -----------------

Use of Quotation Marks for Special Characters

Notice the use of single quotation marks and a comma in the preceding SQL

statement. Most characters and symbols are allowed if they’re enclosed by single

quotations marks. Some implementations might use double quotation marks for

literal string values.

By the
Way

Common Character Functions 173

GREENWOOD GREEBWOOC

INDIANAPOLIS ABCAABAPOLAS

WHITELAND WHATELABC

INDIANAPOLIS ABCAABAPOLAS

INDIANAPOLIS ABCAABAPOLAS

INDIANAPOLIS ABCAABAPOLAS

6 rows selected.

Notice in this example that all occurrences of I were replaced with A, N with

B, and D with C. In the city INDIANAPOLIS, IND was replaced with ABC, but in

GREENWOOD, D was replaced with C. Also notice how the value WHITELAND was

translated.

Both MySQL and Oracle support the use of the TRANSLATE function.

Microsoft SQL Server does not currently support the use of TRANSLATE.

The REPLACE Function

The REPLACE function replaces every occurrence of a character or string with

another specified character or string. The use of this function is similar to

the TRANSLATE function except only one specific character or string is

replaced within another string. The syntax is

REPLACE(’VALUE’, ’VALUE’, [NULL] ’VALUE’)

This statement returns all the first names and changes any occurrence of

T to B:

SELECT REPLACE(FIRST_NAME,’T’, ‘B’) FROM EMPLOYEE_TBL

This statement returns all the cities in EMPLOYEE_TBL and returns the same

cities with each I replaced with a Z:

SELECT CITY, REPLACE(CITY,’I’,’Z’)

FROM EMPLOYEE_TBL;

CITY REPLACE(CITY)

------------ -------------

GREENWOOD GREENWOOD

INDIANAPOLIS ZNDZANAPOLZS

WHITELAND WHZTELAND

INDIANAPOLIS ZNDZANAPOLZS

INDIANAPOLIS ZNDZANAPOLZS

INDIANAPOLIS ZNDZANAPOLZS

6 rows selected.

Microsoft SQL Server, MySQL, and Oracle all support the ANSI version of

the syntax.

174 HOUR 11: Restructuring the Appearance of Data

The UPPER Function

Most implementations have a way to control the case of data by using

functions. The UPPER function converts lowercase letters to uppercase letters

for a specific string.

The syntax is as follows:

UPPER(character string)

This SQL statement converts all characters in the column to uppercase:

SELECT UPPER(CITY)

FROM EMPLOYEE_TBL;

UPPER(CITY)

GREENWOOD

INDIANAPOLIS

WHITELAND

INDIANAPOLIS

INDIANAPOLIS

INDIANAPOLIS

6 rows selected.

Microsoft SQL Server, MySQL, and Oracle all support this syntax.

Additionally, MySQL supports a synonym for the UPPER function by using

UCASE. Because both functions accomplish the same task, you are better

served to follow the ANSI syntax.

The LOWER Function

The converse of the UPPER function, the LOWER function, converts uppercase

letters to lowercase letters for a specific string.

The syntax is as follows:

LOWER(character string)

This SQL statement converts all characters in the column to lowercase:

SELECT LOWER(CITY)

FROM EMPLOYEE_TBL;

LOWER(CITY)

greenwood

indianapolis

whiteland

indianapolis

indianapolis

indianapolis

6 rows selected.

Common Character Functions 175

The LOWER function is supported in Microsoft SQL Server, Oracle, and MySQL.

Like the UPPER function, MySQL supports a synonym LCASE, but as discussed

with the UPPER function, it is often better to follow the ANSI standard.

The SUBSTR Function

Taking an expression’s substring is common in most implementations of

SQL, but the function name might differ, as shown in the following Oracle

and SQL Server examples.

The syntax for Oracle is

SUBSTR(COLUMN NAME, STARTING POSITION, LENGTH)

The syntax for SQL Server is

SUBSTRING(COLUMN NAME, STARTING POSITION, LENGTH)

The only difference between the two implementations is the spelling of the

function name.

This SQL statement returns the first three characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,1,3) FROM EMPLOYEE_TBL

This SQL statement returns the fourth and fifth characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,4,2) FROM EMPLOYEE_TBL

This SQL statement returns the sixth through the ninth characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,6,4) FROM EMPLOYEE_TBL

The following is an example that is compatible with Microsoft SQL Server

and MySQL:

SELECT EMP_ID, SUBSTRING(EMP_ID,1,3)

FROM EMPLOYEE_TBL;

EMP_ID

311549902 311

442346889 442

213764555 213

313782439 313

220984332 220

443679012 443

6 rows affected.

176 HOUR 11: Restructuring the Appearance of Data

The following SQL statement is what you use for Oracle:

SELECT EMP_ID, SUBSTR(EMP_ID,1,3)

FROM EMPLOYEE_TBL;

EMP_ID

311549902 311

442346889 442

213764555 213

313782439 313

220984332 220

443679012 443

6 rows selected.

Output Statements Differ Between Implementations

Notice the difference in the feedback of the two queries. The first example

returns the feedback 6 rows affected, and the second returns 6 rows

selected. You will see differences such as this between the various implementa-

tions.

By the
Way

This SQL statement looks for the first occurrence of the letter A in the

PROD_DESC column:

SELECT PROD_DESC,

INSTR(PROD_DESC,’A’,1,1)

FROM PRODUCTS_TBL;

PROD_DESC INSTR(PROD_DESC,’A’,1,1)

----------------------- ------------------------

WITCH COSTUME 0

PLASTIC PUMPKIN 18 INCH 3

FALSE PARAFFIN TEETH 2

LIGHTED LANTERNS 10

ASSORTED COSTUMES 1

CANDY CORN 2

The INSTR Function

The INSTR function searches a string of characters for a specific set of char-

acters and reports the position of those characters. The syntax is as follows:

INSTR(COLUMN NAME, ‘SET’,

[START POSITION [, OCCURRENCE]]);

This SQL statement returns the position of the first occurrence of the letter I

for each state in EMPLOYEE_TBL:

SELECT INSTR(STATE,’I’,1,1) FROM EMPLOYEE_TBL;

Common Character Functions 177

PUMPKIN CANDY 10

PLASTIC SPIDERS 3

ASSORTED MASKS 1

KEY CHAIN 7

OAK BOOKSHELF 2

11 rows selected.

Notice that if the searched character A is not found in a string, the value 0 is

returned for the position.

The INSTR function is specific to the MySQL and Oracle implementations,

although you can use a similar function, CHARINDEX, for Microsoft SQL

Server implementations.

The LTRIM Function

The LTRIM function is another way of clipping part of a string. This function

and SUBSTRING are in the same family. LTRIM trims characters from the left

of a string. The syntax is

LTRIM(CHARACTER STRING [,’set’])

This SQL statement trims the characters LES from the left of all names that

are LESLIE:

SELECT LTRIM(FIRST_NAME,’LES’) FROM CUSTOMER_TBL WHERE FIRST_NAME
=’LESLIE’;

This SQL statement returns the position of the employee with the word

SALES trimmed from the left side of the character string:

SELECT POSITION, LTRIM(POSITION,’SALES’)

FROM EMPLOYEE_PAY_TBL;

POSITION LTRIM(POSITION,

------------- ----------------

MARKETING MARKETING

TEAM LEADER TEAM LEADER

SALES MANAGER MANAGER

SALESMAN MAN

SHIPPER HIPPER

SHIPPER HIPPER

6 rows selected.

The S in SHIPPER was trimmed off, even though SHIPPER does not contain

the string SALES. The first four characters of SALES were ignored. The

searched characters must appear in the same order of the search string and

178 HOUR 11: Restructuring the Appearance of Data

must be on the far left of the string. In other words, LTRIM trims off all char-

acters to the left of the last occurrence in the search string.

The LTRIM function is supported in Microsoft SQL Server, MySQL, and

Oracle.

The RTRIM Function

Like LTRIM, the RTRIM function trims characters, but this time from the right

of a string. The syntax is

RTRIM(CHARACTER STRING [,’set’])

This SQL statement returns the first name BRANDON and trims the ON, leaving

BRAND as a result:

SELECT RTRIM(FIRST_NAME, ‘ON’) FROM EMPLOYEE_TBL WHERE FIRST_NAME =
‘BRANDON’;

This SQL statement returns a list of the positions in PAY_TBL as well as the

positions with the letters ER trimmed from the right of the character string:

SELECT POSITION, RTRIM(POSITION,’ER’)

FROM EMPLOYEE_PAY_TBL;

POSITION RTRIM(POSITION,

------------- ---------------

MARKETING MARKETING

TEAM LEADER TEAM LEAD

SALES MANAGER SALES MANAG

SALESMAN SALESMAN

SHIPPER SHIPP

SHIPPER SHIPP

6 rows selected.

The string ER was trimmed from the right of all applicable strings.

The RTRIM function is supported in Microsoft SQL Server, MySQL, and

Oracle.

The DECODE Function

The DECODE function is not ANSI—at least not at the time of this writing—

but its use is shown here because of its great power. This function is used

mainly in Oracle and PostgreSQL implementations. DECODE searches a string

for a value or string; if the string is found, an alternative string is displayed

as part of the query results.

Miscellaneous Character Functions 179

The syntax is

DECODE(COLUMN NAME, ’SEARCH1’, ’RETURN1’,[’SEARCH2’, ’RETURN2’, ‘DEFAULT
VALUE’])

This query searches the value of all last names in EMPLOYEE_TBL; if the value

SMITH is found, JONES is displayed in its place. Any other names are dis-

played as OTHER, which is called the default value:

SELECT DECODE(LAST_NAME,’SMITH’,’JONES’,’OTHER’) FROM EMPLOYEE_TBL;

In the following example, DECODE is used on the values for CITY in

EMPLOYEE_TBL:

SELECT CITY,

DECODE(CITY,’INDIANAPOLIS’,’INDY’,

’GREENWOOD’,’GREEN’,’OTHER’)

FROM EMPLOYEE_TBL;

CITY DECOD

------------ ------

GREENWOOD GREEN

INDIANAPOLIS INDY

WHITELAND OTHER

INDIANAPOLIS INDY

INDIANAPOLIS INDY

INDIANAPOLIS INDY

6 rows selected.

The output shows the value INDIANAPOLIS displayed as INDY, GREENWOOD dis-

played as GREEN, and all other cities displayed as OTHER.

Miscellaneous Character Functions
The following sections show a few other character functions worth mention-

ing. Once again, these are functions that are fairly common among major

implementations.

The LENGTH Function

The LENGTH function is a common one that finds the length of a string,

number, date, or expression in bytes. The syntax is

LENGTH(CHARACTER STRING)

This SQL statement returns the product description and its corresponding

length:

180 HOUR 11: Restructuring the Appearance of Data

SELECT PROD_DESC, LENGTH(PROD_DESC)

FROM PRODUCTS_TBL;

PROD_DESC LENGTH(PROD_DESC)

------------------------ -----------------

WITCH COSTUME 15

PLASTIC PUMPKIN 18 INCH 23

FALSE PARAFFIN TEETH 19

LIGHTED LANTERNS 16

ASSORTED COSTUMES 17

CANDY CORN 10

PUMPKIN CANDY 13

PLASTIC SPIDERS 15

ASSORTED MASKS 14

KEY CHAIN 9

OAK BOOKSHELF 13

11 rows selected.

The LENGTH function is supported in both MySQL and Oracle. Microsoft SQL

Server uses a shortened version LEN instead, but the functionality is the same.

The IFNULL Function (NULL Value Checker)

The IFNULL function returns data from one expression if another expression

is NULL. You can use IFNULL with most data types; however, the value and

the substitute must be the same data type. The syntax is

IFNULL(’VALUE’, ’SUBSTITUTION’)

This SQL statement finds NULL values and substitutes 9999999999 for them:

SELECT PAGER, IFNULL(PAGER,9999999999)

FROM EMPLOYEE_TBL;

PAGER IFNULL(PAGER,

---------- -------------

9999999999

9999999999

3175709980 3175709980

8887345678 8887345678

9999999999

9999999999

6 rows selected.

Only NULL values were represented as 9999999999.

IFNULL is supported only in the MySQL implementation. However, Microsoft

SQL Server uses a similar function, ISNULL, that achieves the same result.

Oracle utilizes the COALESCE function.

Miscellaneous Character Functions 181

The COALESCE Function

The COALESCE function is similar to the IFNULL function in that it specifically

replaces NULL values within the result set. The COALESCE function, however, can

accept a whole set of values and checks each one in order until it finds a non-

NULL result. If a non-NULL result is not present, COALESCE returns a NULL value.

The following example demonstrates the COALESCE function by giving us the

first non-NULL value of BONUS, SALARY, and PAY_RATE:

SELECT EMP_ID, COALESCE(BONUS,SALARY,PAY_RATE)

FROM EMPLOYEE_PAY_TBL;

EMP_ID COALESCE(BONUS,SALARY,PAY_RATE)

---------- --

213764555 2000.00

220984332 11.00

311549902 40000.00

313782439 1000.00

442346889 14.75

443679012 15.00

6 rows selected.

The COALESCE function is supported in Microsoft SQL Server, MySQL, and

Oracle.

The LPAD Function

LPAD (left pad) is used to add characters or spaces to the left of a string. The

syntax is

LPAD(CHARACTER SET)

The following example pads periods to the left of each product description,

totaling 30 characters between the actual value and padded periods:

SELECT LPAD(PROD_DESC,30,’.’) PRODUCT

FROM PRODUCTS_TBL;

PRODUCT

.................WITCH COSTUME

.......PLASTIC PUMPKIN 18 INCH

..........FALSE PARAFFIN TEETH

..............LIGHTED LANTERNS

.............ASSORTED COSTUMES

....................CANDY CORN

.................PUMPKIN CANDY

...............PLASTIC SPIDERS

................ASSORTED MASKS

182 HOUR 11: Restructuring the Appearance of Data

.....................KEY CHAIN

.................OAK BOOKSHELF

11 rows selected.

The LPAD function is supported in both MySQL and Oracle. Unfortunately,

no alternative is available for Microsoft SQL Server.

The RPAD Function

The RPAD (right pad) function adds characters or spaces to the right of a

string. The syntax is

RPAD(CHARACTER SET)

The following example pads periods to the right of each product descrip-

tion, totaling 30 characters between the actual value and padded periods:

SELECT RPAD(PROD_DESC,30,’.’) PRODUCT

FROM PRODUCTS_TBL;

PRODUCT

WITCH COSTUME.................

PLASTIC PUMPKIN 18 INCH.......

FALSE PARAFFIN TEETH..........

LIGHTED LANTERNS..............

ASSORTED COSTUMES.............

CANDY CORN....................

PUMPKIN CANDY.................

PLASTIC SPIDERS...............

ASSORTED MASKS................

KEY CHAIN.....................

OAK BOOKSHELF.................

11 rows selected.

The RPAD function is available in both MySQL and Oracle. Unfortunately, no

substitute is available for Microsoft SQL Server.

The ASCII Function

The ASCII function returns the ASCII representation of the leftmost character

of a string. The syntax is

ASCII(CHARACTER SET)

The following are some examples:

. ASCII(‘A’) returns 65

Conversion Functions 183

. ASCII(‘B’) returns 66

. ASCII(‘C’) returns 67

. ASCII(‘a’) returns 97

For more information, you may refer to the ASCII chart located at www.

asciitable.com.

The ASCII function is supported in Microsoft SQL Server, MySQL, and

Oracle.

Mathematical Functions
Mathematical functions are standard across implementations. Mathematical

functions enable you to manipulate numeric values in a database accord-

ing to mathematical rules.

The most common functions include the following:

. Absolute value (ABS)

. Rounding (ROUND)

. Square root (SQRT)

. Sign values (SIGN)

. Power (POWER)

. Ceiling and floor values (CEIL(ING), FLOOR)

. Exponential values (EXP)

. SIN, COS, TAN

The general syntax of most mathematical functions is

FUNCTION(EXPRESSION)

All the mathematical functions are supported in Microsoft SQL Server,

MySQL, and Oracle.

Conversion Functions
Conversion functions convert a data type into another data type. For exam-

ple, perhaps you have data that is normally stored in character format, but

occasionally you want to convert the character format to numeric to make

www.asciitable.com
www.asciitable.com

184 HOUR 11: Restructuring the Appearance of Data

Converting to Numeric Values

For a character string to be converted to a number, the characters must typically

be 0 through 9. The addition symbol (+), minus symbol (–), and period (.) can also

be used to represent positive numbers, negative numbers, and decimals. For

example, the string STEVE cannot be converted to a number, whereas an individ-

ual’s Social Security number can be stored as a character string but can easily be

converted to a numeric value via use of a conversion function.

. You can use arithmetic expressions and functions on numeric values.

. Numeric values are right-justified in the output results, whereas

character string data types are left-justified.

When a character string is converted to a numeric value, the value takes on

the two attributes just mentioned.

Some implementations might not have functions to convert character

strings to numbers, whereas others have such conversion functions. In

either case, consult your implementation documentation for specific syntax

and rules for conversions.

By the
Way

calculations. Mathematical functions and computations are not allowed on

data that is represented in character format.

The following are general types of data conversions:

. Character to numeric

. Numeric to character

. Character to date

. Date to character

The first two types of conversions are discussed in this hour. The remaining

conversion types are discussed in Hour 12, “Understanding Dates and

Times.”

Converting Character Strings to Numbers

You should notice two things regarding the differences between numeric

data types and character string data types:

Conversion Functions 185

Some Systems Do the Conversions for You

Some implementations might implicitly convert data types when necessary. This

means that the system makes the conversion for you when changing between

data types. In these cases, the use of conversion functions is unnecessary.

Check your implementation’s documentation to see which types of implicit conver-

sions are supported.

By the
Way

The following is an example of a numeric conversion using an Oracle con-

version function:

SELECT EMP_ID, TO_NUMBER(EMP_ID)

FROM EMPLOYEE_TBL;

EMP_ID TO_NUMBER(EMP_ID)

--------- -----------------

311549902 311549902

442346889 442346889

213764555 213764555

313782439 313782439

220984332 220984332

443679012 443679012

6 rows selected.

The employee identification is right-justified following the conversion.

Converting Numbers to Character Strings

Converting numeric values to character strings is precisely the opposite of

converting characters to numbers.

The following is an example of converting a numeric value to a character

string using a Transact-SQL conversion function for Microsoft SQL Server:

SELECT PAY = PAY_RATE, NEW_PAY = STR(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

PAY NEW_PAY

---------- -------

17.5 17.5

14.75 14.75

18.25 18.25

12.8 12.8

11 11

15 15

6 rows affected.

186 HOUR 11: Restructuring the Appearance of Data

Combining Character Functions
You can combine most functions in an SQL statement. SQL would be far too

limited if function combinations were not allowed. The following example

combines two functions in the query (concatenation with substring). By

pulling the EMP_ID column apart into three pieces, you can concatenate those

pieces with dashes to render a readable Social Security number. This example

uses the CONCAT function to combine the strings for output:

SELECT CONCAT(LAST_NAME,’, ‘,FIRST_NAME) NAME,

CONCAT(SUBSTR(EMP_ID,1,3),’-’,

SUBSTR(EMP_ID,4,2),’-’,

SUBSTR(EMP_ID,6,4)) AS ID

FROM EMPLOYEE_TBL;

NAME ID

------------------ -----------

STEPHENS, TINA 311-54-9902

PLEW, LINDA 442-34-6889

GLASS, BRANDON 213-76-4555

GLASS, JACOB 313-78-2439

WALLACE, MARIAH 220-98-4332

SPURGEON, TIFFANY 443-67-9012

6 rows selected.

Different Data Is Output in Different Ways

The data’s justification is the simplest way to identify a column’s data type.

Did You
Know?

The following is the same example using an Oracle conversion function:

SELECT PAY_RATE, TO_CHAR(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

PAY_RATE TO_CHAR(PAY_RATE)

---------- -----------------

17.5 17.5

14.75 14.75

18.25 18.25

12.8 12.8

11 11

15 15

6 rows selected.

Summary 187

How Embedded Functions Are Resolved

When embedding functions within functions in an SQL statement, remember that

the innermost function is resolved first, and then each function is subsequently

resolved from the inside out.

By the
Way

Summary
You have been introduced to various functions used in an SQL statement—

usually a query—to modify or enhance the way output is represented.

Those functions include character, mathematical, and conversion func-

tions. It is important to realize that the ANSI standard is a guideline for

how SQL should be implemented by vendors, but it does not dictate the

exact syntax or necessarily place limits on vendors’ innovations. Most ven-

dors have standard functions and conform to the ANSI concepts, but each

vendor has its own specific list of available functions. The function name

might differ and the syntax might differ, but the concepts with all functions

are the same.

This example uses the LENGTH function and the addition arithmetic operator

(+) to add the length of the first name to the length of the last name for each

column; the SUM function then finds the total length of all first and last

names:

SELECT SUM(LENGTH(LAST_NAME) + LENGTH(FIRST_NAME)) TOTAL

FROM EMPLOYEE_TBL;

TOTAL

71

1 row selected.

188 HOUR 11: Restructuring the Appearance of Data

Q&A
Q. Are all functions in the ANSI standard?

A. No, not all functions are exactly ANSI SQL. Functions, like data types,

are often implementation dependent. Most implementations contain

supersets of the ANSI functions; many have a wide range of functions

with extended capability, whereas other implementations seem to be

somewhat limited. Several examples of functions from selected imple-

mentations are included in this hour. However, because so many

implementations use similar functions (although they might slightly

differ), check your particular implementation for available functions

and their usage.

Q. Is the data actually changed in the database when using functions?

A. No. Data is not changed in the database when using functions.

Functions are typically used in queries to manipulate the output’s

appearance.

Workshop
The following workshop is composed of a series of quiz questions and

practical exercises. The quiz questions are designed to test your overall

understanding of the current material. The practical exercises are intended

to afford you the opportunity to apply the concepts discussed during the

current hour, as well as build upon the knowledge acquired in previous

hours of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Match the descriptions with the possible functions.

Description Function

a. Used to select a portion of a character string | |

b. Used to trim characters from either the right or left

of a string
RPAD

c. Used to change all letters to lowercase LPAD

d. Used to find the length of a string RTRIM

Workshop 189

Description Function

e. Used to combine strings UPPER

LTRIM

LENGTH

LOWER

SUBSTR

2. True or false: Using functions in a SELECT statement to restructure the

appearance of data in output also affects the way the data is stored in

the database.

3. True or false: The outermost function is always resolved first when

functions are embedded within other functions in a query.

Exercises

1. Type the following code at the mysql> prompt to concatenate each

employee’s last name and first name:

SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME)

FROM EMPLOYEE_TBL;

How would the same statement be applied in Oracle and SQL Server?

2. Type the following MySQL code to print each employee’s concatenated

name and his or her area code:

SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME), SUBSTRING(PHONE, 1, 3)

FROM EMPLOYEE_TBL;

Try writing the same code in SQL Server and Oracle.

3. Write an SQL statement that lists employee email addresses. Email is

not a stored column. The email address for each employee should be

as follows:

FIRST.LAST@PERPTECH.COM

For example, John Smith’s email address is JOHN.SMITH@PERPTECH.COM.

190 HOUR 11: Restructuring the Appearance of Data

4. Write an SQL statement that lists each employee’s name, employee ID,

and phone number in the following formats:

a. The name should be displayed as SMITH, JOHN.

b. The employee ID should be displayed as 999-99-9999.

c. The phone number should be displayed as (999)999-9999.

[(H3F)] 191

HOUR 12

Understanding Dates and
Times

What You’ll Learn in This Hour:

. Understanding dates and time

. How date and time are stored

. Typical date and time formats

. How to use date functions

. How to use date conversions

In this hour, you learn about the nature of dates and time in SQL. Not only

does this hour discuss the DATETIME data type in more detail, but you also

see how some implementations use dates, how to extract the date and time

in a desired format, and some of the common rules.

Variations in the SQL Syntax

As you know by now, there are many different SQL implementations. This book

shows the American National Standards Institute (ANSI) standard and the most

common nonstandard functions, commands, and operators. MySQL is used for

the examples. Even in MySQL, the date can be stored in different formats. You

must check your particular implementation for the date storage. No matter how it

is stored, your implementation should have functions that convert date formats.

By the
Way

How Is a Date Stored?
Each implementation has a default storage format for the date and time.

This default storage often varies among different implementations, as do

other data types for each implementation. The following sections begin by

reviewing the standard format of the DATETIME data type and its elements.

Then you see the data types for date and time in some popular implemen-

tations of SQL, including Oracle, MySQL, and Microsoft SQL Server.

Databases Handle Leap Years

Date variances such as leap seconds and leap years are handled internally by the

database if the data is stored in a DATETIME data type.

192 HOUR 12: Understanding Dates and Times

Did You
Know?

DATETIME Element Valid Ranges

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00.000... to 61.999...

Standard Data Types for Date and Time

There are three standard SQL data types for date and time (DATETIME) stor-

age:

. DATE—Stores date literals. DATE is formatted as YYYY-MM-DD and

ranges from 0001-01-01 to 9999-12-31.

. TIME—Stores time literals. TIME is formatted as HH:MI:SS.nn... and

ranges from 00:00:00... to 23:59:61.999....

. TIMESTAMP—Stores date and time literals. TIMESTAMP is formatted as

YYYY-MM-DD HH:MI:SS.nn... and ranges from 0001-01-01 00:00:00...

to 9999-12-31 23:59:61.999....

DATETIME Elements

DATETIME elements are those elements pertaining to date and time that are

included as part of a DATETIME definition. The following is a list of the con-

strained DATETIME elements and a valid range of values for each element:

Each of these elements is an element of time that we deal with on a daily

basis. Seconds can be represented as a decimal, allowing the expression of

tenths of a second, hundredths of a second, milliseconds, and so on. You

might question the fact that a minute can contain more than 60 seconds.

According to the ANSI standard, this 61.999 seconds is due to the possible

insertion or omission of a leap second in a minute, which in itself is a rare

occurrence. Refer to your implementation on the allowed values because

date and time storage might vary widely.

As with other data types, each implementation provides its own representa-

tion and syntax. Table 12.1 shows how three products (Microsoft SQL Server,

MySQL, and Oracle) have been implemented with date and time.

Date Functions 193

Even Date and Time Types Can Differ

Each implementation has its own specific data type(s) for date and time informa-

tion. However, most implementations comply with the ANSI standard in the fact

that all elements of the date and time are included in their associated data types.

The way the date is internally stored is implementation dependent.

TABLE 12.1 DATETIME Types Across Platforms

Product Data Type Use

Oracle DATE Stores both date and time information

SQL Server DATETIME Stores both date and time information

SMALLDATETIME Same as DATETIME except it has a

small range

DATE Stores a date value

TIME Stores a time value

MySQL DATETIME Stores both date and time information

TIMESTAMP Stores both date and time information

DATE Stores a date value

TIME Stores a time value

YEAR One byte type that represents the year

Date Functions

Did You
Know?

Date functions are available in SQL depending on the options with each

specific implementation. Date functions, similar to character string func-

tions, are used to manipulate the representation of date and time data.

Available date functions are often used to format the output of dates and

time in an appealing format, compare date values with one another, com-

pute intervals between dates, and so on.

Implementation-Specific Data Types

194 HOUR 12: Understanding Dates and Times

The Current Date

You might have already raised the question, “How do I get the current date

from the database?” The need to retrieve the current date from the data-

base might originate from several situations, but the current date is nor-

mally returned either to compare it to a stored date or to return the value

of the current date as some sort of timestamp.

The current date is ultimately stored on the host computer for the database

and is called the system date. The database, which interfaces with the

appropriate operating system, has the capability to retrieve the system date

for its own purpose or to resolve database requests, such as queries.

Take a look at a couple of methods of attaining the system date based on

commands from two different implementations.

Microsoft SQL Server uses a function called GETDATE() to return the system

date. This function is used in a query as follows. The output is what would

return if today’s current date were New Year’s Eve for 2010.

SELECT GETDATE()

Dec 31, 2010

MySQL uses the NOW function to retrieve the current date and time. NOW is

called a pseudocolumn because it acts as any other column in a table and

can be selected from any table in the database although it is not actually

part of the table’s definition.

The following MySQL statement returns the output if today were New

Year’s Eve before 2011:

SELECT NOW ();

31-DEC-11 13:41:45

Oracle uses a function known as SYSDATE and looks like this if using the

DUAL table, which is a dummy table in Oracle:

SELECT SYSDATE FROM DUAL;

31-DEC-11 13:41:45

Time Zones

The use of time zones might be a factor when dealing with date and time

information. For instance, a time of 6:00 p.m. in the central United States

does not equate to the same time in Australia, although the actual point in

time is the same. Some of us who live within the daylight saving time zone

Date Functions 195

are used to adjusting our clocks twice a year. If time zones are considera-

tions when maintaining data in your case, you might find it necessary to

consider time zones and perform time conversions, if available with your

SQL implementation.

The following are some common time zones and their abbreviations.

Abbreviation Time Zone

AST, ADT Atlantic standard time, Atlantic daylight time

BST, BDT Bering standard time, Bering daylight time

CST, CDT Central standard time, Central daylight time

EST, EDT Eastern standard time, Eastern daylight time

GMT Greenwich mean time

HST, HDT Alaska/Hawaii standard time, Alaska/Hawaii daylight time

MST, MDT Mountain standard time, Mountain daylight time

NST Newfoundland standard time, Newfoundland daylight time

PST, PDT Pacific standard time, Pacific daylight time

YST, YDT Yukon standard time, Yukon daylight time

The following table shows examples of time zone differences based on a

given time.

Time Zone Time

AST June 12, 2010 at 1:15 p.m.

BST June 12, 2010 at 6:15 a.m.

CST June 12, 2010 at 11:15 a.m.

EST June 12, 2010 at 12:15 p.m.

GMT June 12, 2010 at 5:15 p.m.

HST June 12, 2010 at 7:15 a.m.

MST June 12, 2010 at 10:15 a.m.

NST June 12, 2010 at 1:45 p.m.

PST June 12, 2010 at 9:15 a.m.

YST June 12, 2010 at 8:15 a.m.

196 HOUR 12: Understanding Dates and Times

Handling Time Zones

Some implementations have functions that enable you to deal with different time

zones. However, not all implementations support the use of time zones. Be sure

to verify the use of time zones in your particular implementation, as well as the

need to deal with them in the case of your database.

Adding Time to Dates

Days, months, and other parts of time can be added to dates for the purpose

of comparing dates to one another or to provide more specific conditions in

the WHERE clause of a query.

Intervals can be used to add periods of time to a DATETIME value. As defined

by the standard, intervals can manipulate the value of a DATETIME value, as

in the following examples:

DATE ‘2010-12-31’ + INTERVAL ‘1’ DAY

‘2011-01-01’

DATE ‘2010-12-31’ + INTERVAL ‘1’ MONTH

‘2011-01-31’

By the
Way

The following is an example using the SQL Server function DATEADD:

SELECT DATE_HIRE, DATEADD(MONTH, 1, DATE_HIRE)

FROM EMPLOYEE_PAY_TBL;

DATE_HIRE ADD_MONTH

--------- ---------

23-MAY-99 23-JUN-99

17-JUN-00 17-JUL-00

14-AUG-04 14-SEP-04

28-JUN-07 28-JUL-07

22-JUL-06 22-AUG-06

14-JAN-01 14-FEB-01

6 rows affected.

The following example uses the Oracle function ADD_MONTHS:

SELECT DATE_HIRE, ADD_MONTHS(DATE_HIRE,1)

FROM EMPLOYEE_PAY_TBL;

DATE_HIRE ADD_MONTH

--------- ---------

23-MAY-99 23-JUN-99

Date Functions 197

17-JUN-00 17-JUL-00

14-AUG-04 14-SEP-04

28-JUN-07 28-JUL-07

22-JUL-06 22-AUG-06

14-JAN-01 14-FEB-01

6 rows selected.

To add one day to a date in Oracle, use the following:

SELECT DATE_HIRE, DATE_HIRE + 1

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘311549902’;

DATE_HIRE DATE_HIRE

--------- ---------

23-MAY-99 24-MAY-99

1 row selected.

If you wanted to do the same query in MySQL, you would use the ANSI

standard INTERVAL command, as follows. Otherwise, MySQL would convert

the date to an integer and try to perform the operation.

SELECT DATE_HIRE, DATE_ADD(DATE_HIRE, INTERVAL 1 DAY), DATE_HIRE + 1

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘311549902’;

DATE_HIRE DATE_ADD DATE_HIRE+1

--------- --------------- ----------------

23-MAY-99 24-MAY-99 1990524

1 row selected.

Notice that these examples in MySQL, SQL Server, and Oracle, although

they differ syntactically from the ANSI examples, derive their results based

on the same concept as described by the SQL standard.

Miscellaneous Date Functions

Table 12.2 shows some powerful date functions that exist in the implemen-

tations for SQL Server, Oracle, and MySQL.

198 HOUR 12: Understanding Dates and Times

TABLE 12.2 Date Functions by Platform

Product Date Function Use

SQL Server DATEPART Returns the integer value of a DATEPART for a

date

DATENAME Returns the text value of a DATEPART for a

date

GETDATE() Returns the system date

DATEDIFF Returns the difference between two dates for

specified date parts, such as days, minutes, and

seconds

Oracle NEXT_DAY Returns the next day of the week as specified (for

example, FRIDAY) since a given date

MONTHS_BETWEEN Returns the number of months between two given

dates

MySQL DAYNAME(date) Displays day of week

DAYOFMONTH(date) Displays day of month

DAYOFWEEK(date) Displays day of week

DAYOFYEAR(date) Displays day of year

Date Conversions
The conversion of dates can take place for any number of reasons.

Conversions are mainly used to alter the data type of values defined as a

DATETIME value or any other valid data type of a particular implementa-

tion.

Typical reasons for date conversions are as follows:

. To compare date values of different data types

. To format a date value as a character string

. To convert a character string into a date format

Date Conversions 199

The ANSI CAST operator converts data types into other data types. The basic

syntax is as follows:

CAST (EXPRESSION AS NEW_DATA_TYPE)

Specific syntax examples of some implementations are illustrated in the

following subsections, covering

. The representation of parts of a DATETIME value

. Conversions of dates to character strings

. Conversions of character strings to dates

Date Pictures

A date picture is composed of formatting elements used to extract date and

time information from the database in a desired format. Date pictures

might not be available in all SQL implementations.

Without the use of a date picture and some type of conversion function, the

date and time information is retrieved from the database in a default for-

mat, such as

2010-12-31

31-DEC-10

2010-12-31 23:59:01.11

...

What if you want the date to be displayed as the following?

December 31, 2010

You would have to convert the date from a DATETIME format into a charac-

ter string format. This is accomplished by implementation-specific func-

tions for this very purpose, further illustrated in the following sections.

Table 12.3 displays some of the common date parts used in various imple-

mentations. This aids you in using the date picture in the following sections

to extract the proper DATETIME information from the database.

200 HOUR 12: Understanding Dates and Times

TABLE 12.3 Continued

Product Syntax Date Part

SQL Server yy Year

qq Quarter

mm Month

dy Day of year

wk Week

dw Weekday

hh Hour

mi Minute

ss Second

ms Millisecond

Oracle AD Anno Domini

AM Ante meridian

BC Before Christ

CC Century

D Number of the day in the week

DD Number of the day in the month

DDD Number of the day in the year

DAY The day spelled out (MONDAY)

Day The day spelled out (Monday)

day The day spelled out (monday)

DY The three-letter abbreviation of the day (MON)

Dy The three-letter abbreviation of the day (Mon)

dy The three-letter abbreviation of the day (mon)

HH Hour of the day

HH12 Hour of the day

HH24 Hour of the day for a 24-hour clock

J Julian days since 12-31-4713 B.C.

MI Minute of the hour

Date Conversions 201

TABLE 12.3 Continued

Product Syntax Date Part

MM The number of the month

MON The three-letter abbreviation of the month (JAN)

Mon The three-letter abbreviation of the month (Jan)

mon The three-letter abbreviation of the month (jan)

MONTH The month spelled out (JANUARY)

Month The month spelled out (January)

month The month spelled out (january)

PM Post meridian

Q The number of the quarter

RM The Roman numeral for the month

RR The two digits of the year

SS The second of a minute

SSSSS The seconds since midnight

SYYYY The signed year; if B.C. 500, B.C. = –500

W The number of the week in a month

WW The number of the week in a year

Y The last digit of the year

YY The last two digits of the year

YYY The last three digits of the year

YYYY The year

YEAR The year spelled out (TWO-THOUSAND-TEN)

Year The year spelled out (Two-Thousand-Ten)

year The year spelled out (two-thousand-ten)

MySQL SECOND Seconds

MINUTE Minutes

HOUR Hours

Continued

202 HOUR 12: Understanding Dates and Times

TABLE 12.3 Continued

Product Syntax Date Part

DAY Days

MONTH Months

YEAR Years

MINUTE_SECOND Minutes and seconds

HOUR_MINUTE Hours and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

HOUR_SECOND Hours, minutes, and seconds

DAY_MINUTE Days and minutes

DAY_SECOND Days and seconds

Converting Dates to Character Strings

DATETIME values are converted to character strings to alter the appearance

of output from a query. A conversion function achieves this. Two examples

of converting date and time data into a character string as designated by a

query follow. The first uses SQL Server:

SELECT DATE_HIRE = DATENAME(MONTH, DATE_HIRE)

FROM EMPLOYEE_PAY_TBL;

DATE_HIRE

May

June

August

June

July

January

6 rows affected.

The second example is an Oracle date conversion using the TO_CHAR func-

tion:

SELECT DATE_HIRE, TO_CHAR(DATE_HIRE,’Month dd, yyyy’) HIRE

FROM EMPLOYEE_PAY_TBL;

DATE_HIRE HIRE

---------- ---------------

Date Conversions 203

Date Parts in MySQL

These are some of the most common date parts for MySQL. Other date parts

might be available depending on the version of MySQL.

23-MAY-99 May 23, 1999

17-JUN-00 June 17, 2000

14-AUG-04 August 14, 2004

28-JUN-07 June 28, 2007

22-JUL-06 July 22, 2006

14-JAN-01 January 14, 2001

6 rows selected.

By the
Way

Converting Character Strings to Dates

The following example illustrates a method from a MySQL or Oracle imple-

mentation of converting a character string into a date format. When the

conversion is complete, the data can be stored in a column defined as hav-

ing some form of a DATETIME data type.

SELECT STR_TO_DATE(‘01/01/2010 12:00:00 AM’, ‘%m/%d/%Y %h:%i:%s %p’) AS

FORMAT_DATE

FROM EMPLOYEE_PAY_TBL;

FORMAT_DATE

01-JAN-10

01-JAN-10

01-JAN-10

01-JAN-10

01-JAN-10

01-JAN-10

6 rows selected.

You might be wondering why six rows were selected from this query when

only one date value was provided. It’s because the conversion of the literal

string was selected from the EMPLOYEE_PAY_TBL, which has six rows of data.

Hence, the conversion of the literal string was selected against each record

in the table.

In Microsoft SQL Server we instead use the CONVERT function:

SELECT CONVERT(DATETIME,’02/25/2010 12:00:00 AM’) AS FORMAT_DATE

FROM EMPLOYEE_PAY_TBL;

FORMAT_DATE

2010-02-25 00:00:00.000

2010-02-25 00:00:00.000

204 HOUR 12: Understanding Dates and Times

2010-02-25 00:00:00.000

2010-02-25 00:00:00.000

2010-02-25 00:00:00.000

2010-02-25 00:00:00.000

6 rows selected.

Summary
You have an understanding of DATETIME values based on the fact that ANSI

has provided a standard. However, as with many SQL elements, most imple-

mentations have deviated from the exact functions and syntax of standard

SQL commands, although the concepts remain the same as far as the basic

representation and manipulation of date and time information. In Hour 11,

“Restructuring the Appearance of Data,” you saw how functions varied

depending on each implementation. This hour, you have seen some of the

differences between date and time data types, functions, and operators. Keep

in mind that not all examples discussed in this hour work with your particu-

lar implementation, but the concepts of dates and times are the same and

should be applicable to any implementation.

Q&A
Q. Why do implementations choose to deviate from a single standard set of

data types and functions?

A. Implementations differ as far as the representation of data types and

functions mainly because of the way each vendor has chosen to inter-

nally store data and provide the most efficient means of data retrieval.

However, all implementations should provide the same means for

the storage of date and time values based on the required elements

prescribed by ANSI, such as the year, month, day, hour, minute,

second, and so on.

Q. What if I want to store date and time information differently than what is

available in my implementation?

A. Dates can be stored in nearly any type of format if you choose to

define the column for a date as a variable length character. The main

thing to remember is that when comparing date values to one

another, you are usually required to first convert the character string

representation of the date to a valid DATETIME format for your

implementation—that is, if appropriate conversion functions are

available.

Workshop 205

Workshop
The following workshop is composed of a series of quiz questions and

practical exercises. The quiz questions are designed to test your overall

understanding of the current material. The practical exercises are intended

to afford you the opportunity to apply the concepts discussed during the

current hour, as well as build upon the knowledge acquired in previous

hours of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. From where is the system date and time normally derived?

2. What are the standard internal elements of a DATETIME value?

3. What could be a major factor concerning the representation and com-

parison of date and time values if your company is an international

organization?

4. Can a character string date value be compared to a date value defined

as a valid DATETIME data type?

5. What would you use in SQL Server, MySQL, and Oracle to get the cur-

rent date and time?

Exercises

1. Type the following SQL code into the sql prompt in each of the imple-

mentations to display the current date from the database:

a. MySQL : SELECT CURRENT_DATE;
b. SQL Server : SELECT GETDATE();
c. Oracle : SELECT SYSDATE FROM DUAL;

2. Type the following SQL code to display each employee’s hire date:

SELECT EMP_ID, DATE_HIRE

FROM EMPLOYEE_PAY_TBL;

3. In MySQL, dates can be displayed in various formats using the EXTRACT

function in conjunction with the MySQL date pictures. Type the follow-

ing code to display the year that each employee was hired:

SELECT EMP_ID, EXTRACT(YEAR FROM DATE_HIRE)

FROM EMPLOYEE_PAY_TBL;

4. Try the following similar syntax in Microsoft SQL Server:

SELECT EMP_ID, YEAR(DATE_HIRE)

FROM EMPLOYEE_PAY_TBL;

5. Type in a statement similar to this MySQL implementation to display

each of the employees’ hire dates along with today’s date:

SELECT EMP_ID, DATE_HIRE, CURRENT_DATE

FROM EMPLOYEE_PAY_TBL;

6. On what day of the week was each employee hired?

7. What is today’s Julian date (day of year)?

8. Type in three SQL statements. The first to get the current system

DATETIME as you did in Exercise 1, the second to convert the system

DATETIME to a date value, and the third to convert the system DATETIME

to a pure time value.

206 HOUR 12: Understanding Dates and Times

Selecting Data from Multiple Tables 207

HOUR 13

Joining Tables in Queries

What You’ll Learn in This Hour:

. An introduction to the table joins

. The different types of joins

. How and when joins are used

. Numerous practical examples of table joins

. The effects of improperly joined tables

. Renaming tables in a query using an alias

To this point, all database queries you have executed have extracted data

from a single table. During this hour, you learn how to join tables in a

query so you can retrieve data from multiple tables.

Selecting Data from Multiple Tables
Having the capability to select data from multiple tables is one of SQL’s

most powerful features. Without this capability, the entire relational data-

base concept would not be feasible. Single-table queries are sometimes

quite informative, but in the real world, the most practical queries are

those whose data is acquired from multiple tables within the database.

As you witnessed in Hour 4, “The Normalization Process,” a relational

database is broken into smaller, more manageable tables for simplicity and

the sake of overall management ease. As tables are divided into smaller

tables, the related tables are created with common columns—primary keys

and foreign keys. These keys are used to join related tables to one another.

You might ask why you should normalize tables if, in the end, you are only

going to rejoin the tables to retrieve the data you want. You rarely select all

data from all tables, so it is better to pick and choose according to the

needs of each query. Although performance might suffer slightly due to a

208 HOUR 13: Joining Tables in Queries

normalized database, overall coding and maintenance are much simpler.

Remember that you generally normalize the database to reduce redundan-

cy and increase data integrity. Your overreaching task as a database

administrator is to ensure the safeguarding of data.

Understanding Joins
A join combines two or more tables to retrieve data from multiple tables.

Although different implementations have many ways of joining tables, you

concentrate on the most common joins in this lesson. The types of joins

that you learn are

. Equijoins or inner joins

. Non-equijoins

. Outer joins

. Self joins

Component of a Join Condition

As you have learned from previous hours, both the SELECT and FROM clauses

are required SQL statement elements; the WHERE clause is a required element

of an SQL statement when joining tables. The tables being joined are listed

in the FROM clause. The join is performed in the WHERE clause. Several opera-

tors can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE,

and NOT. However, the most common operator is the equal symbol.

Joins of Equality

Perhaps the most used and important of the joins is the equijoin, also

referred to as an inner join. The equijoin joins two tables with a common

column in which each is usually the primary key.

The syntax for an equijoin is

SELECT TABLE1.COLUMN1, TABLE2.COLUMN2...

FROM TABLE1, TABLE2 [, TABLE3]

WHERE TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME

[AND TABLE1.COLUMN_NAME = TABLE3.COLUMN_NAME]

Look at the following example:

SELECT EMPLOYEE_TBL.EMP_ID,

EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL,

Understanding Joins 209

EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

This SQL statement returns the employee identification and the employee’s

date of hire. The employee identification is selected from EMPLOYEE_TBL

(although it exists in both tables, you must specify one table), and the hire

date is selected from EMPLOYEE_PAY_TBL. Because the employee identification

exists in both tables, you must justify both columns with the table name.

By justifying the columns with the table names, you tell the database serv-

er where to get the data.

Using Indentation in SQL Statements

Take note of the sample SQL statements. Indentation is used in the SQL state-

ments to improve overall readability. Indentation is not required; however, it is rec-

ommended.

By the
Way

Data in the following example is selected from EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL because desired data resides in each of the two tables. An

equijoin is used.

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_TBL.LAST_NAME,

EMPLOYEE_PAY_TBL.POSITION

FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

EMP_ID LAST_NAM POSITION

--------- -------- -------------

311549902 STEPHENS MARKETING

442346889 PLEW TEAM LEADER

213764555 GLASS SALES MANAGER

313782439 GLASS SALESMAN

220984332 WALLACE SHIPPER

443679012 SPURGEON SHIPPER

6 rows selected.

Notice that each column in the SELECT clause is preceded by the associated

table name to identify each column. This is called qualifying columns in a

query. Qualifying columns is only necessary for columns that exist in more

than one table referenced by a query. You usually qualify all columns for

consistency and to avoid questions when debugging or modifying SQL code.

Additionally, the SQL syntax provides for a more readable version of the

previous syntax by introducing the JOIN syntax. The JOIN syntax is as fol-

lows:

SELECT TABLE1.COLUMN1, TABLE2.COLUMN2...

FROM TABLE1

INNER JOIN TABLE2 ON TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME

210 HOUR 13: Joining Tables in Queries

As you can see, the join operator is removed from the WHERE clause and

instead replaced with the JOIN syntax. The table being joined is added after

the JOIN syntax, and then the JOIN operators are placed after the ON qualifi-

er. In the following example, the previous query for employee identification

and hire date is rewritten to use the JOIN syntax:

SELECT EMPLOYEE_TBL.EMP_ID,

EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL

INNER JOIN EMPLOYEE_PAY_TBL

ON EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

Notice that this query returns the same set of data as the previous version,

even though the syntax is different. So you may use either version of the

syntax without fear of coming up with different results.

Using Table Aliases

You use table aliases to rename a table in a particular SQL statement. The

renaming is a temporary; the actual table name does not change in the

database. As you learn later in the “Self Joins” section, giving the tables

aliases is a necessity for the self join. Giving tables aliases is most often for

saving keystrokes, which results in a shorter and easier-to-read SQL state-

ment. In addition, fewer keystrokes means fewer keystroke errors. Also, pro-

gramming errors are typically less frequent if you can refer to an alias,

which is often shorter in length and more descriptive of the data with which

you are working. Giving tables aliases also means that the columns being

selected must be qualified with the table alias. The following are some

examples of table aliases and the corresponding columns:

SELECT E.EMP_ID, EP.SALARY, EP.DATE_HIRE, E.LAST_NAME

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.SALARY > 20000;

The tables have been given aliases in the preceding SQL statement.

EMPLOYEE_TBL has been renamed E. EMPLOYEE_PAY_TBL has been renamed EP.

The choice of what to rename the tables is arbitrary. The letter E is chosen

because EMPLOYEE_TBL starts with E. Because EMPLOYEE_PAY_TBL also begins

with the letter E, you cannot use E again. Instead, the first letter (E) and the

first letter of the second word in the name (PAY) are used as the alias. The

selected columns were justified with the corresponding table alias. Note that

SALARY was used in the WHERE clause and must be justified with the table

alias.

Understanding Joins 211

Joins of Non-Equality

A non-equijoin joins two or more tables based on a specified column value

not equaling a specified column value in another table. The syntax for the

non-equijoin is

FROM TABLE1, TABLE2 [, TABLE3]

WHERE TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME

[AND TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME]

An example is as follows:

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID != EMPLOYEE_PAY_TBL.EMP_ID;

The preceding SQL statement returns the employee identification and the

date of hire for all employees who do not have a corresponding record in

both tables. The following example is a join of non-equality:

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P

WHERE E.EMP_ID <> P.EMP_ID;

EMP_ID LAST_NAM POSITION

--------- -------- ------------

442346889 PLEW MARKETING

213764555 GLASS MARKETING

313782439 GLASS MARKETING

220984332 WALLACE MARKETING

443679012 SPURGEON MARKETING

311549902 STEPHENS TEAM LEADER

213764555 GLASS TEAM LEADER

313782439 GLASS TEAM LEADER

220984332 WALLACE TEAM LEADER

443679012 SPURGEON TEAM LEADER

311549902 STEPHENS SALES MANAGER

442346889 PLEW SALES MANAGER

313782439 GLASS SALES MANAGER

220984332 WALLACE SALES MANAGER

443679012 SPURGEON SALES MANAGER

311549902 STEPHENS SALESMAN

442346889 PLEW SALESMAN

213764555 GLASS SALESMAN

220984332 WALLACE SALESMAN

443679012 SPURGEON SALESMAN

311549902 STEPHENS SHIPPER

442346889 PLEW SHIPPER

213764555 GLASS SHIPPER

313782439 GLASS SHIPPER

443679012 SPURGEON SHIPPER

212 HOUR 13: Joining Tables in Queries

Non-Equijoins Can Add Data

When using non-equijoins, you might receive several rows of data that are of no

use to you. Check your results carefully.

You might be curious why 30 rows were retrieved when only 6 rows exist in

each table. Every record in EMPLOYEE_TBL has a corresponding record in

EMPLOYEE_PAY_TBL. Because non-equality was tested in the join of the two

tables, each row in the first table is paired with all rows from the second

table, except for its own corresponding row. This means that each of the 6

rows is paired with 5 unrelated rows in the second table; 6 rows multiplied

by 5 rows equals 30 rows total.

In the earlier section’s test for equality example, each of the six rows in the

first table were paired with only one row in the second table (each row’s cor-

responding row); six rows multiplied by one row yields a total of six rows.

Outer Joins

Join Syntax Varies Widely

You must check your particular implementation for exact usage and syntax of the

outer join. The (+) symbol is used by some major implementations, but it is non-

standard. In fact, this varies somewhat between versions of implementations. For

example, Microsoft SQL Server 2000 supports this type of join syntax, but SQL

Server 2005 and newer versions do not. Be sure to carefully consider using this

syntax before implementing.

Watch
Out!

An outer join returns all rows that exist in one table, even though correspon-

ding rows do not exist in the joined table. The (+) symbol denotes an outer

join in a query. The (+) is placed at the end of the table name in the WHERE

clause. The table with the (+) should be the table that does not have

matching rows. In many implementations, the outer join is broken into

joins called left outer join, right outer join, and full outer join. The outer join in

these implementations is normally optional.

The general syntax for an outer join is

FROM TABLE1

{RIGHT | LEFT | FULL} [OUTER] JOIN

ON TABLE2

Use of Outer Joins

You can use the outer join on only one side of a JOIN condition; however, you can

use an outer join on more than one column of the same table in the JOIN condition.

Did You
Know?

Watch
Out!

Understanding Joins 213

The Oracle syntax is

FROM TABLE1, TABLE2 [, TABLE3]

WHERE TABLE1.COLUMN_NAME[(+)] = TABLE2.COLUMN_NAME[(+)]

[AND TABLE1.COLUMN_NAME[(+)] = TABLE3.COLUMN_NAME[(+)]]

The concept of the outer join is explained in the next two examples. In the

first example, the product description and the quantity ordered are selected;

both values are extracted from two separate tables. One important factor to

keep in mind is that there might not be a corresponding record in

ORDERS_TBL for every product. A regular join of equality is performed:

SELECT P.PROD_DESC, O.QTY

FROM PRODUCTS_TBL P,

ORDERS_TBL O

WHERE P.PROD_ID = O.PROD_ID;

PROD_DESC QTY

----------------------------------- -----------

PLASTIC PUMPKIN 18 INCH 2

LIGHTED LANTERNS 10

PLASTIC SPIDERS 30

LIGHTED LANTERNS 20

FALSE PARAFFIN TEETH 20

PUMPKIN CANDY 10

FALSE PARAFFIN TEETH 10

WITCH COSTUME 5

CANDY CORN 45

LIGHTED LANTERNS 25

PLASTIC PUMPKIN 18 INCH 25

WITCH COSTUME 30

FALSE PARAFFIN TEETH 15

PLASTIC SPIDERS 50

PLASTIC PUMPKIN 18 INCH 25

PLASTIC PUMPKIN 18 INCH 25

WITCH COSTUME 1

17 rows selected.

Only 17 rows were selected with only 7 products listed, but there are 9 dis-

tinct products. You want to display all products, whether they have been

placed on order or not.

The next example accomplishes the desired output through the use of an

outer join. Oracle’s syntax is used here:

SELECT P.PROD_DESC, O.QTY

FROM PRODUCTS_TBL P,

ORDERS_TBL O

WHERE P.PROD_ID = O.PROD_ID(+);

214 HOUR 13: Joining Tables in Queries

PROD_DESC QTY

------------------------------------- ----------

WITCH COSTUME 5

WITCH COSTUME 30

WITCH COSTUME 1

ASSORTED MASKS NULL

FALSE PARAFFIN TEETH 20

FALSE PARAFFIN TEETH 10

FALSE PARAFFIN TEETH 15

ASSORTED COSTUMES NULL

PLASTIC PUMPKIN 18 INCH 2

PLASTIC PUMPKIN 18 INCH 25

PLASTIC PUMPKIN 18 INCH 25

PLASTIC PUMPKIN 18 INCH 25

PUMPKIN CANDY 10

PLASTIC SPIDERS 30

PLASTIC SPIDERS 50

CANDY CORN 45

LIGHTED LANTERNS 10

LIGHTED LANTERNS 20

LIGHTED LANTERNS 25

19 rows selected.

You can also use the more verbose standard join syntax discussed earlier to

achieve the same result. The following code achieves the same result but

uses the more verbose version of the join syntax, which makes it easier to

read.

SELECT P.PROD_DESC, O.QTY

FROM PRODUCTS_TBL P

LEFT OUTER JOIN ORDERS_TBL O

ON P.PROD_ID = O.PROD_ID;

PROD_DESC QTY

-------------------------------------- ----------

WITCH COSTUME 5

WITCH COSTUME 30

WITCH COSTUME 1

ASSORTED MASKS NULL

FALSE PARAFFIN TEETH 20

FALSE PARAFFIN TEETH 10

FALSE PARAFFIN TEETH 15

ASSORTED COSTUMES NULL

PLASTIC PUMPKIN 18 INCH 2

PLASTIC PUMPKIN 18 INCH 25

PLASTIC PUMPKIN 18 INCH 25

PLASTIC PUMPKIN 18 INCH 25

PUMPKIN CANDY 10

PLASTIC SPIDERS 30

PLASTIC SPIDERS 50

CANDY CORN 45

Understanding Joins 215

LIGHTED LANTERNS 10

LIGHTED LANTERNS 20

LIGHTED LANTERNS 25

19 rows selected.

All products were returned by the query, even though they might not have

had a quantity ordered. The outer join is inclusive of all rows of data in

PRODUCTS_TBL, whether a corresponding row exists in ORDERS_TBL or not.

Self Joins

The self join joins a table to itself, as if the table were two tables, temporari-

ly renaming at least one table in the SQL statement using a table alias. The

syntax is as follows:

SELECT A.COLUMN_NAME, B.COLUMN_NAME, [C.COLUMN_NAME]

FROM TABLE1 A, TABLE2 B [, TABLE3 C]

WHERE A.COLUMN_NAME = B.COLUMN_NAME

[AND A.COLUMN_NAME = C.COLUMN_NAME]

The following is an example:

SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME

FROM EMPLOYEE_TBL A,

EMPLOYEE_TBL B

WHERE A.LAST_NAME = B.LAST_NAME;

The preceding SQL statement returns the employees’ first names for all the

employees with the same last name from EMPLOYEE_TBL. Self joins are useful

when all the data you want to retrieve resides in one table, but you must

somehow compare records in the table to other records in the table.

You may also use the alternate INNER JOIN syntax as shown here to obtain

the same result:

SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME

FROM EMPLOYEE_TBL A

INNER JOIN EMPLOYEE_TBL B

ON A.LAST_NAME = B.LAST_NAME;

Another common example used to explain a self join follows: Suppose you

have a table that stores an employee identification number, the employee’s

name, and the employee identification number of the employee’s manager.

You might want to produce a list of all employees and their managers’

names. The problem is that the manager name does not exist as a category

in the table:

216 HOUR 13: Joining Tables in Queries

SELECT * FROM EMP;

ID NAME MGR_ID

--- ------ --------

1 JOHN 0

2 MARY 1

3 STEVE 1

4 JACK 2

5 SUE 2

In the following example, we have included the table EMP twice in the FROM

clause of the query, giving the table two aliases for the purpose of the

query. By providing two aliases, it is as if you are selecting from two distinct

tables. All managers are also employees, so the JOIN condition between the

two tables compares the value of the employee identification number from

the first table with the manager identification number in the second table.

The first table acts as a table that stores employee information, whereas the

second table acts as a table that stores manager information:

SELECT E1.NAME, E2.NAME

FROM EMP E1, EMP E2

WHERE E1.MGR_ID = E2.ID;

NAME NAME

------- -------

MARY JOHN

STEVE JOHN

JACK MARY

SUE MARY

Joining on Multiple Keys

Most join operations involve the merging of data based on a key in one

table and a key in another table. Depending on how your database has

been designed, you might have to join on more than one key field to accu-

rately depict that data in your database. You might have a table that has a

primary key that is composed of more than one column. You might also

have a foreign key in a table that consists of more than one column, which

references the multiple column primary key.

Consider the following Oracle tables that are used here for examples only:

SQL> desc prod

Name Null? Type

-- ------- -----------------------

SERIAL_NUMBER NOT NULL NUMBER(10)

VENDOR_NUMBER NOT NULL NUMBER(10)

PRODUCT_NAME NOT NULL VARCHAR2(30)

Join Considerations 217

COST NOT NULL NUMBER(8,2)

SQL> desc ord

Name Null? Type

--------------------------------------- ------- -----------------------

ORD_NO NOT NULL NUMBER(10)

PROD_NUMBER NOT NULL NUMBER(10)

VENDOR_NUMBER NOT NULL NUMBER(10)

QUANTITY NOT NULL NUMBER(5)

ORD_DATE NOT NULL DATE

The primary key in PROD is the combination of the columns SERIAL_NUMBER

and VENDOR_NUMBER. Perhaps two products can have the same serial number

within the distribution company, but each serial number is unique per ven-

dor.

The foreign key in ORD is also the combination of the columns

SERIAL_NUMBER and VENDOR_NUMBER.

When selecting data from both tables (PROD and ORD), the join operation

might appear as follows:

SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY

FROM PROD P, ORD O

WHERE P.SERIAL_NUMBER = O.SERIAL_NUMBER

AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

Similarly, if you were using the INNER JOIN syntax, you would merely list

the multiple join operations after the ON keyword, as shown here:

SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY

FROM PROD P,

INNER JOIN ORD O ON P.SERIAL_NUMBER = O.SERIAL_NUMBER

AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

Join Considerations
You should consider several things before using joins: what columns(s) to

join on, whether there is no common column to join on, and what the per-

formance issues are. More joins in a query means the database server has

to do more work, which means that more time is taken to retrieve data. You

cannot avoid joins when retrieving data from a normalized database, but it

is imperative to ensure that joins are performed correctly from a logical

standpoint. Incorrect joins can result in serious performance degradation

and inaccurate query results. Performance issues are discussed in more

detail in Hour 18, “Managing Database Users.”

218 HOUR 13: Joining Tables in Queries

Using a Base Table

What should you join on? Should you have the need to retrieve data from

two tables that do not have a common column to join, you must join on

another table that has a common column or columns to both tables. That

table becomes the base table. A base table joins one or more tables that

have common columns, or joins tables that do not have common columns.

Use the following three tables for an example of a base table:

CUSTOMER_TBL

CUST_ID VARCHAR(10) NOT NULL primary key

CUST_NAME VARCHAR(30) NOT NULL

CUST_ADDRESS VARCHAR(20) NOT NULL

CUST_CITY VARCHAR(15) NOT NULL

CUST_STATE VARCHAR(2) NOT NULL

CUST_ZIP INTEGER(5) NOT NULL

CUST_PHONE INTEGER(10)

CUST_FAX INTEGER(10)

ORDERS_TBL

ORD_NUM VARCHAR(10) NOT NULL primary key

CUST_ID VARCHAR(10) NOT NULL

PROD_ID VARCHAR(10) NOT NULL

QTY INTEGER(6) NOT NULL

ORD_DATE DATETIME

PRODUCTS_TBL

PROD_ID VARCHAR(10) NOT NULL primary key

PROD_DESC VARCHAR(40) NOT NULL

COST DECIMAL(6,2) NOT NULL

Say you have a need to use CUSTOMERS_TBL and PRODUCTS_TBL. There is no

common column in which to join the tables. Now look at ORDERS_TBL.

ORDERS_TBL has a CUST_ID column to join with CUSTOMERS_TBL, which also

has a CUST_ID column. PRODUCTS_TBL has a PROD_ID column, which is also in

ORDERS_TBL. The JOIN conditions and results look like the following:

SELECT C.CUST_NAME, P.PROD_DESC

FROM CUSTOMER_TBL C,

PRODUCTS_TBL P,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID

AND P.PROD_ID = O.PROD_ID;

CUST_NAME PROD_DESC

------------------------------ -----------------------

LESLIE GLEASON WITCH COSTUME

SCHYLERS NOVELTIES PLASTIC PUMPKIN 18 INCH

WENDY WOLF PLASTIC PUMPKIN 18 INCH

GAVINS PLACE LIGHTED LANTERNS

Join Considerations 219

Using Aliases on Tables and Columns

Note the use of table aliases and their use on the columns in the WHERE clause.

By the
Way

The Cartesian product is a result of a Cartesian join or “no join.” If you select

from two or more tables and do not join the tables, your output is all possi-

ble rows from all the tables selected. If your tables were large, the result

could be hundreds of thousands, or even millions, of rows of data. A WHERE

clause is highly recommended for SQL statements retrieving data from two

or more tables. The Cartesian product is also known as a cross join.

The syntax is

FROM TABLE1, TABLE2 [, TABLE3]

WHERE TABLE1, TABLE2 [, TABLE3]

The following is an example of a cross join, or the dreaded Cartesian prod-

uct:

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P;

EMP_ID LAST_NAM POSITION

--------- -------- --------------

311549902 STEPHENS MARKETING

442346889 PLEW MARKETING

213764555 GLASS MARKETING

313782439 GLASS MARKETING

220984332 WALLACE MARKETING

443679012 SPURGEON MARKETING

311549902 STEPHENS TEAM LEADER

442346889 PLEW TEAM LEADER

213764555 GLASS TEAM LEADER

313782439 GLASS TEAM LEADER

220984332 WALLACE TEAM LEADER

443679012 SPURGEON TEAM LEADER

311549902 STEPHENS SALES MANAGER

442346889 PLEW SALES MANAGER

213764555 GLASS SALES MANAGER

313782439 GLASS SALES MANAGER

220984332 WALLACE SALES MANAGER

SCOTTYS MARKET FALSE PARAFFIN TEETH

ANDYS CANDIES KEY CHAIN

6 rows selected.

The Cartesian Product

220 HOUR 13: Joining Tables in Queries

443679012 SPURGEON SALES MANAGER

311549902 STEPHENS SALESMAN

442346889 PLEW SALESMAN

213764555 GLASS SALESMAN

313782439 GLASS SALESMAN

220984332 WALLACE SALESMAN

443679012 SPURGEON SALESMAN

311549902 STEPHENS SHIPPER

442346889 PLEW SHIPPER

213764555 GLASS SHIPPER

313782439 GLASS SHIPPER

220984332 WALLACE SHIPPER

443679012 SPURGEON SHIPPER

311549902 STEPHENS SHIPPER

442346889 PLEW SHIPPER

213764555 GLASS SHIPPER

313782439 GLASS SHIPPER

220984332 WALLACE SHIPPER

443679012 SPURGEON SHIPPER

36 rows selected.

Data is being selected from two separate tables, yet no JOIN operation is

performed. Because you have not specified how to join rows in the first

table with rows in the second table, the database server pairs every row in

the first table with every row in the second table. Because each table has 6

rows of data each, the product of 36 rows selected is achieved from 6 rows

multiplied by 6 rows.

To fully understand exactly how the Cartesian product is derived, study the

following example:

SQL> SELECT X FROM TABLE1;

X

-

A

B

C

D

4 rows selected.

SQL> SELECT V FROM TABLE2;

X

-

A

B

C

D

Summary 221

4 rows selected.

SQL> SELECT TABLE1.X, TABLE2.X

2* FROM TABLE1, TABLE2;

X X

- -

A A

B A

C A

D A

A B

B B

C B

D B

A C

B C

C C

D C

A D

B D

C D

D D

16 rows selected.

Ensure That All Tables Are Joined

Be careful to join all tables in a query. If two tables in a query have not been

joined and each table contains 1,000 rows of data, the Cartesian product con-

sists of 1,000 rows multiplied by 1,000 rows, which results in a total of

1,000,000 rows of data returned. Cartesian products, when dealing with large

amounts of data, can cause the host computer to stall or crash in some cases,

based on resource usage on the host computer. Therefore, it is important for the

database administrator (DBA) and system administrator to closely monitor for

long-running queries.

Watch
Out!

Summary
You have been introduced to one of the most robust features of SQL—the

table join. Imagine the limits if you were not able to extract data from

more than one table in a single query. You were shown several types of

joins, each serving its own purpose depending on conditions placed on the

query. Joins are used to link data from tables based on equality and non-

equality. Outer joins are powerful, allowing data to be retrieved from one

table, even though associated data is not found in a joined table. Self joins

222 HOUR 13: Joining Tables in Queries

Q&A
Q. When joining tables, must they be joined in the same order that they appear

in the FROM clause?

A. No, they do not have to appear in the same order; however, perform-

ance might benefit depending on the order of tables in the FROM clause

and the order in which tables are joined.

Q. When using a base table to join unrelated tables, must I select any columns

from the base table?

A. No, the use of a base table to join unrelated tables does not mandate

that columns from the base table be selected.

Q. Can I join on more than one column between tables?

A. Yes, some queries might require you to join on more than one column

per table to provide a complete relationship between rows of data in

the joined tables.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

are used to join a table to itself. Beware of the cross join, more commonly

known as the Cartesian product. The Cartesian product is the resultset of a

multiple table query without a join, often yielding a large amount of

unwanted output. When selecting data from more than one table, be sure

to properly join the tables according to the related columns (normally pri-

mary keys). Failure to properly join tables could result in incomplete or

inaccurate output.

Workshop 223

Quiz

1. What type of join would you use to return records from one table,

regardless of the existence of associated records in the related table?

2. The join conditions are located in which parts of the SQL statement?

3. What type of join do you use to evaluate equality among rows of

related tables?

4. What happens if you select from two different tables but fail to join the

tables?

5. Use the following tables:

ORDERS_TBL

ORD_NUM VARCHAR(10) NOT NULL primary key

CUST_ID VARCHAR(10) NOT NULL

PROD_ID VARCHAR(10) NOT NULL

QTY Integer(6) NOT NULL

ORD_DATE DATETIME

PRODUCTS_TBL

PROD_ID VARCHAR(10) NOT NULL primary key

PROD_DESC VARCHAR(40) NOT NULL

COST DECIMAL(,2) NOT NULL

Is the following syntax correct for using an outer join?

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM

FROM CUSTOMER_TBL C, ORDERS_TBL O

WHERE C.CUST_ID(+) = O.CUST_ID(+)

What would the query look like if you used the verbose JOIN syntax?

Exercises

1. Type the following code into the database and study the resultset

(Cartesian product):

SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP;

2. Type the following code to properly join EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL:

SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID;

224 HOUR 13: Joining Tables in Queries

3. Rewrite the SQL query from Exercise 2, using the INNER JOIN

syntax.

4. Write an SQL statement to return the EMP_ID, LAST_NAME, and

FIRST_NAME columns from EMPLOYEE_TBL and SALARY and BONUS

columns from EMPLOYEE_PAY_TBL. Use both types of INNER JOIN tech-

niques. Once that’s completed, use the queries to determine what

the average employee salary per city is.

5. Write a few queries with join operations on your own.

What Is a Subquery? 225

HOUR 14

Using Subqueries to Define
Unknown Data

What You’ll Learn in This Hour:

. What a subquery is

. The justifications of using subqueries

. Examples of subqueries in regular database queries

. Using subqueries with data manipulation commands

. Embedded subqueries

In this hour, you are introduced to the concept of subqueries. Using sub-

queries enables you to more easily preform complex queries.

What Is a Subquery?
A subquery, also known as a nested query, is a query embedded within the

WHERE clause of another query to further restrict data returned by the query.

A subquery returns data that is used in the main query as a condition to

further restrict the data to be retrieved. Subqueries are employed with the

SELECT, INSERT, UPDATE, and DELETE statements.

You can use a subquery in some cases in place of a join operation by indi-

rectly linking data between the tables based on one or more conditions.

When you have a subquery in a query, the subquery is resolved first, and

then the main query is resolved according to the condition(s) resolved by

the subquery. The results of the subquery process expressions in the WHERE

clause of the main query. You can use the subquery either in the WHERE

clause or the HAVING clause of the main query. You can use logical and rela-

tional operators, such as =, >, <, <>,!=, IN, NOT IN, AND, OR, and so on, within

the subquery as well as to evaluate a subquery in the WHERE or HAVING

clause.

226 HOUR 14: Using Subqueries to Define Unknown Data

Did You
Know?

The Rules of Using Subqueries

The same rules that apply to standard queries also apply to subqueries. You can

use join operations, functions, conversions, and other options within a subquery.

Use Indentation for Neater Statement Syntax

Notice the use of indentation in our examples. The use of indentation is merely

for readability. The neater your statements are, the easier it is to read and find

syntax errors.

Subqueries must follow a few rules:

. Subqueries must be enclosed within parentheses.

. A subquery can have only one column in the SELECT clause, unless

multiple columns are in the main query for the subquery to com-

pare its selected columns.

. You cannot use an ORDER BY clause in a subquery, although the

main query can use an ORDER BY clause. You can use the GROUP BY

clause to perform the same function as the ORDER BY clause in a

subquery.

. You can only use subqueries that return more than one row with

multiple value operators, such as the IN operator.

. The SELECT list cannot include references to values that evaluate to

a BLOB, ARRAY, CLOB, or NCLOB.

. You cannot immediately enclose a subquery in a SET function.

. You cannot use the BETWEEN operator with a subquery; however, you

can use the BETWEEN operator within the subquery.

The basic syntax for a subquery is as follows:

SELECT COLUMN_NAME

FROM TABLE

WHERE COLUMN_NAME = (SELECT COLUMN_NAME

FROM TABLE

WHERE CONDITIONS);

The following examples show how you can and cannot use the BETWEEN

operator with a subquery. Here is an example of a correct use of BETWEEN in

the subquery:

SELECT COLUMN_NAME

FROM TABLE_A

By the
Way

What Is a Subquery? 227

WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME

FROM TABLE_B)

WHERE VALUE BETWEEN VALUE)

You cannot use BETWEEN as an operator outside the subquery. The following

is an example of an illegal use of BETWEEN with a subquery:

SELECT COLUMN_NAME

FROM TABLE_A

WHERE COLUMN_NAME BETWEEN VALUE AND (SELECT COLUMN_NAME

FROM TABLE_B)

Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement, although

you can use them within a data manipulation statement as well. The sub-

query, when employed with the SELECT statement, retrieves data for the

main query to use.

The basic syntax is as follows:

SELECT COLUMN_NAME [, COLUMN_NAME]

FROM TABLE1 [, TABLE2]

WHERE COLUMN_NAME OPERATOR

(SELECT COLUMN_NAME [, COLUMN_NAME]

FROM TABLE1 [, TABLE2]

[WHERE])

The following is an example:

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE < (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘443679012’);

The preceding SQL statement returns the employee identification, last

name, first name, and pay rate for all employees who have a pay rate

greater than that of the employee with the identification 443679012. In this

case, you do not necessarily know (or care) what the exact pay rate is for

this particular employee; you only care about the pay rate for the purpose

of getting a list of employees who bring home more than the employee

specified in the subquery.

Using Subqueries for Unknown Values

Subqueries are frequently used to place conditions on a query when the exact

conditions are unknown. The pay rate for 220984332 was unknown, but the sub-

query was designed to do the footwork for you.

Did You
Know?

228 HOUR 14: Using Subqueries to Define Unknown Data

The next query selects the pay rate for a particular employee. This query is

used as the subquery in the following example.

SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘220984332’;

PAY_RATE

11

1 row selected.

The previous query is used as a subquery in the WHERE clause of the follow-

ing query:

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘220984332’);

EMP_ID LAST_NAME FIRST_NAME PAY_RATE

--------- --------- ----------- ---------

442346889 PLEW LINDA 14.75

443679012 SPURGEON TIFFANY 15

2 rows selected.

The result of the subquery is 11 (shown in the last example), so the last con-

dition of the WHERE clause is evaluated as

AND EP.PAY_RATE > 11

You did not know the value of the pay rate for the given individual when

you executed the query. However, the main query was able to compare

each individual’s pay rate to the subquery results.

Subqueries with the INSERT Statement

Always Remember to COMMIT Your DML

Remember to use the COMMIT and ROLLBACK commands when using DML com-

mands such as the INSERT statement.

By the
Way

You can also use subqueries in conjunction with Data Manipulation Language

(DML) statements. The INSERT statement is the first instance you examine. It

uses the data returned from the subquery to insert into another table. You

What Is a Subquery? 229

can modify the selected data in the subquery with any of the character,

date, or number functions.

The basic syntax is as follows:

INSERT INTO TABLE_NAME [(COLUMN1 [, COLUMN2])]

SELECT [* | COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE VALUE OPERATOR]

The following is an example of the INSERT statement with a subquery:

INSERT INTO RICH_EMPLOYEES

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘220984332’);

2 rows created.

This INSERT statement inserts the EMP_ID, LAST_NAME, FIRST_NAME, and

PAY_RATE into a table called RICH_EMPLOYEES for all records of employees who

have a pay rate greater than the pay rate of the employee with identifica-

tion 220984332.

Subqueries with the UPDATE Statement

You can use subqueries in conjunction with the UPDATE statement to update

single or multiple columns in a table. The basic syntax is as follows:

UPDATE TABLE

SET COLUMN_NAME [, COLUMN_NAME)] =

(SELECT]COLUMN_NAME [, COLUMN_NAME)]

FROM TABLE

[WHERE]

Examples showing the use of the UPDATE statement with a subquery follow.

The first query returns the employee identification of all employees who

reside in Indianapolis. You can see that four individuals meet this criterion.

SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’;

EMP_ID

442346889

313782439

220984332

230 HOUR 14: Using Subqueries to Define Unknown Data

443679012

4 rows selected.

The first query is used as the subquery in the following statement; it proves

how many employee identifications are returned by the subquery. The fol-

lowing is the UPDATE with the subquery:

UPDATE EMPLOYEE_PAY_TBL

SET PAY_RATE = PAY_RATE * 1.1

WHERE EMP_ID IN (SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’);

4 rows updated.

As expected, four rows are updated. One important thing to notice is that,

unlike the example in the first section, this subquery returns multiple rows

of data. Because you expect multiple rows to be returned, you use the IN

operator instead of the equal sign. Remember that IN compares an expres-

sion to values in a list. If you had used the equal sign, an error would have

been returned.

Subqueries with the DELETE Statement

You can also use subqueries in conjunction with the DELETE statement. The

basic syntax is as follows:

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME

FROM TABLE_NAME)

[WHERE)]

In the following example, you delete the BRANDON GLASS record from

EMPLOYEE_PAY_TBL. You do not know Brandon’s employee identification num-

ber, but you can use a subquery to get his identification number from

EMPLOYEE_TBL, which contains the FIRST_NAME and LAST_NAME columns.

DELETE FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = (SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE LAST_NAME = ‘GLASS’

AND FIRST_NAME = ‘BRANDON’);

1 row deleted.

Embedded Subqueries 231

Embedded Subqueries

Check the Limits of Your System

You must check your particular implementation for limits on the number of sub-

queries, if any, that you can use in a single statement. It might differ between

vendors.

By the
Way

You can embed a subquery within another subquery, just as you can embed

the subquery within a regular query. When a subquery is used, that sub-

query is resolved before the main query. Likewise, the lowest level subquery

is resolved first in embedded or nested subqueries, working out to the main

query.

The basic syntax for embedded subqueries is as follows:

SELECT COLUMN_NAME [, COLUMN_NAME]

FROM TABLE1 [, TABLE2]

WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME

FROM TABLE

WHERE COLUMN_NAME OPERATOR

(SELECT COLUMN_NAME

FROM TABLE

[WHERE COLUMN_NAME OPERATOR VALUE]))

The following example uses two subqueries, one embedded within the other.

You want to find out what customers have placed orders in which the quan-

tity multiplied by the cost of a single order is greater than the sum of the

cost of all products.

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY + P.COST < (SELECT SUM(COST)

FROM

PRODUCTS_TBL));

CUST_ID CUST_NAME

---------- ------------------

090 WENDY WOLF

232 LESLIE GLEASON

287 GAVINS PLACE

43 SCHYLERS NOVELTIES

432 SCOTTYS MARKET

560 ANDYS CANDIES

6 rows selected.

232 HOUR 14: Using Subqueries to Define Unknown Data

Always Use a WHERE Clause

Do not forget the use of the WHERE clause with the UPDATE and DELETE state-

ments. All rows are updated or deleted from the target table if the WHERE clause

is not used. You can utilize a SELECT statement with the WHERE clause first to

ensure that you are modifying the correct rows. See Hour 5, “Manipulating Data.”

Watch
Out!

Six rows that meet the criteria of both subqueries were selected.

The following two examples show the results of each of the subqueries to

aid your understanding of how the main query was resolved:

SELECT SUM(COST) FROM PRODUCTS_TBL;

SUM(COST)

138.08

1 row selected.

SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY + P.COST > 138.08;

CUST_ID

43

287

2 rows selected.

In essence, the main query, after the substitution of the second subquery, is

evaluated as shown in the following example:

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY + P.COST > 138.08);

The following shows how the main query is evaluated after the substitution

of the first subquery:

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (287,43);

The following is the final result:

Correlated Subqueries 233

CUST_ID CUST_NAME

---------- ------------------

43 SCHYLERS NOVELTIES

287 GAVINS PLACE

2 rows selected.

Multiple Subqueries Can Cause Problems

The use of multiple subqueries results in slower response time and might result in

reduced accuracy of the results due to possible mistakes in the statement coding.

Watch
Out!

Correlated Subqueries
Correlated subqueries are common in many SQL implementations. The con-

cept of correlated subqueries is discussed as an ANSI-standard SQL topic and

is covered briefly in this hour. A correlated subquery is a subquery that is

dependent upon information in the main query. This means that tables in a

subquery can be related to tables in the main query.

In the following example, the table join between CUSTOMER_TBL and

ORDERS_TBL in the subquery is dependent on the alias for CUSTOMER_TBL (C)

in the main query. This query returns the name of all customers who have

ordered more than 10 units of one or more items.

SELECT C.CUST_NAME

FROM CUSTOMER_TBL C

WHERE 10 < (SELECT SUM(O.QTY)

FROM ORDERS_TBL O

WHERE O.CUST_ID = C.CUST_ID);

CUST_NAME

SCOTTYS MARKET

SCHYLERS NOVELTIES

MARYS GIFT SHOP

3 rows selected.

You can extract and slightly modify the subquery from the previous state-

ment in the next statement to show you the total quantity of units ordered

for each customer, allowing the previous results to be verified:

SELECT C.CUST_NAME, SUM(O.QTY)

FROM CUSTOMER_TBL C,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID

GROUP BY C.CUST_NAME;

234 HOUR 14: Using Subqueries to Define Unknown Data

CUST_NAME SUM(O.QTY)

----------------------- ----------

ANDYS CANDIES 1

GAVINS PLACE 10

LESLIE GLEASON 1

MARYS GIFT SHOP 100

SCHYLERS NOVELTIES 25

SCOTTYS MARKET 20

WENDY WOLF 2

7 rows selected.

The GROUP BY clause in this example is required because another column is

being selected with the aggregate function SUM. This gives you a sum for

each customer. In the original subquery, a GROUP BY clause is not required

because SUM achieves a total for the entire query, which is run against the

record for each customer.

Subquery Performance
Subqueries do have performance implications when used within a query.

You must consider those implications prior to implementing them in a pro-

duction environment. Consider that a subquery must be evaluated prior to

the main part of the query, so the time that it takes to execute the subquery

has a direct effect on the time it takes for the main query to execute. Let’s

look at our previous example:

Proper Use of Correlated Subqueries

In the case of a correlated subquery, you must reference the table in the main

query before you can resolve the subquery.

By the
Way

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY + P.COST < (SELECT SUM(COST)

FROM

PRODUCTS_TBL));

Imagine what would happen if PRODUCTS_TBL contained a couple thousand

product lines and ORDERS_TBL contained a few million lines of customer

orders. The resulting effect of having to do a SUM across PRODUCTS_TBL and

then join it with ORDERS_TBL could slow the query down quite considerably.

So always remember to evaluate the effect that using a subquery has on

Q&A 235

performance when deciding on a course of action to take for getting infor-

mation out of the database.

Summary
By simple definition and general concept, a subquery is a query that is per-

formed within another query to place further conditions on a query. You

can use a subquery in an SQL statement’s WHERE clause or HAVING clause.

Queries are typically used within other queries (Data Query Language), but

you can also use them in the resolution of DML statements such as INSERT,

UPDATE, and DELETE. All basic rules for DML apply when using subqueries

with DML commands.

The subquery’s syntax is virtually the same as that of a standalone query,

with a few minor restrictions. One of these restrictions is that you cannot

use the ORDER BY clause within a subquery; you can use a GROUP BY clause,

however, which renders virtually the same effect. Subqueries are used to

place conditions that are not necessarily known for a query, providing

more power and flexibility with SQL.

Q&A
Q. In the examples of subqueries, I noticed quite a bit of indentation. Is this nec-

essary in the syntax of a subquery?

A. Absolutely not. The indentation is used merely to break the statement

into separate parts, making the statement more readable and easier to

follow.

Q. Is there a limit on the number of embedded subqueries that can be used in a

single query?

A. Limitations such as the number of embedded subqueries allowed and

the number of tables joined in a query are specific to each implemen-

tation. Some implementations might not have limits, although the

use of too many embedded subqueries could drastically hinder SQL

statement performance. Most limitations are affected by the actual

hardware, CPU speed, and system memory available, although there

are many other considerations.

Q. It seems that debugging a query with subqueries can prove to be confusing,

especially with embedded subqueries. What is the best way to debug a query

with subqueries?

236 HOUR 14: Using Subqueries to Define Unknown Data

A. The best way to debug a query with subqueries is to evaluate the query

in sections. First evaluate the lowest-level subquery, and then work

your way to the main query (the same way the database evaluates the

query). When you evaluate each subquery individually, you can sub-

stitute the returned values for each subquery to check your main

query’s logic. An error with a subquery often results from the use of the

operator that evaluates the subquery, such as (=), IN, >, <, and so on.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. What is the function of a subquery when used with a SELECT

statement?

2. Can you update more than one column when using the UPDATE

statement in conjunction with a subquery?

3. Do the following have the correct syntax? If not, what is the correct

syntax?

a.

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID =

(SELECT CUST_ID

FROM ORDERS_TBL

WHERE ORD_NUM = ‘16C17’);

b.

SELECT EMP_ID, SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN ‘20000’

AND (SELECT SALARY

FROM EMPLOYEE_ID

WHERE SALARY = ‘40000’);

Workshop 237

c.

UPDATE PRODUCTS_TBL

SET COST = 1.15

WHERE CUST_ID =

(SELECT CUST_ID

FROM ORDERS_TBL

WHERE ORD_NUM = ‘32A132’);

4. What would happen if you ran the following statement?

DELETE FROM EMPLOYEE_TBL

WHERE EMP_ID IN

(SELECT EMP_ID

FROM EMPLOYEE_PAY_TBL);

Exercises

1. Write the SQL code for the requested subqueries, and compare your

results to ours. Use the following tables to complete the exercises:

EMPLOYEE_TBL

EMP_ID VARCHAR(9) NOT NULL primary key

LAST_NAME VARCHAR(15) NOT NULL

FIRST_NAME VARCHAR(15) NOT NULL

MIDDLE_NAME VARCHAR(15)

ADDRESS VARCHAR(30) NOT NULL

CITY VARCHAR(15) NOT NULL

STATE VARCHAR(2) NOT NULL

ZIP INTEGER(5) NOT NULL

PHONE VARCHAR(10)

PAGER VARCHAR(10)

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR(9) NOT NULL primary key

POSITION VARCHAR(15) NOT NULL

DATE_HIRE DATETIME

PAY_RATE DECIMAL(4,2) NOT NULL

DATE_LAST_RAISE DATETIME

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID_ REFERENCES

EMPLOYEE_TBL (EMP_ID)

CUSTOMER_TBL

CUST_ID VARCHAR(10) NOT NULL primary key

CUST_NAME VARCHAR(30) NOT NULL

CUST_ADDRESS VARCHAR(20) NOT NULL

CUST_CITY VARCHAR(15) NOT NULL

CUST_STATE VARCHAR(2) NOT NULL

CUST_ZIP INTEGER(5) NOT NULL

CUST_PHONE INTEGER(10)

CUST_FAX INTEGER(10)

238 HOUR 14: Using Subqueries to Define Unknown Data

ORDERS_TBL

ORD_NUM VARCHAR(10) NOT NULL primary key

CUST_ID VARCHAR(10) NOT NULL

PROD_ID VARCHAR(10) NOT NULL

QTY INTEGER(6) NOT NULL

ORD_DATE DATETIME

PRODUCTS_TBL

PROD_ID VARCHAR(10) NOT NULL primary key

PROD_DESC VARCHAR(40) NOT NULL

COST DECIMAL(6,2) NOT NULL

2. Using a subquery, write an SQL statement to update CUSTOMER_TBL.

Find the customer with the order number 23E934, contained in the

field ORD_NUM, and change the customer name to DAVIDS MARKET.

3. Using a subquery, write a query that returns the names of all

employees who have a pay rate greater than JOHN DOE, whose

employee identification number is 343559876.

4. Using a subquery, write a query that lists all products that cost

more than the average cost of all products.

Single Queries Versus Compound Queries 239

HOUR 15

Combining Multiple Queries
into One

What You’ll Learn in This Hour:

. An overview of the operators that combine queries

. When to use the commands to combine queries

. Using the GROUP BY clause with the compound operators

. Using the ORDER BY clause with the compound operators

. How to retrieve accurate data

In this hour, you learn how to combine SQL queries by using the UNION, UNION

ALL, INTERSECT, and EXCEPT operators. Once again, you must check your par-

ticular implementation for any variations in the use of these operators.

Single Queries Versus Compound

Queries
The single query is one SELECT statement, whereas the compound query

includes two or more SELECT statements.

You form compound queries by using some type of operator to join the two

queries. The UNION operator in the following examples joins two queries.

A single SQL statement could be written as follows:

SELECT EMP_ID, SALARY, PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE SALARY IS NOT NULL OR

PAY_RATE IS NOT NULL;

240 HOUR 15: Combining Multiple Queries into One

By the
Way

This is the same statement using the UNION operator:

SELECT EMP_ID, SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY IS NOT NULL

UNION

SELECT EMP_ID, PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

The previous statements return pay information for all employees who are

paid either hourly or on a salary.

Compound operators are used to combine and restrict the results of two

SELECT statements. You can use these operators to return or suppress the

output of duplicate records. Compound operators can bring together simi-

lar data that is stored in different fields.

How UNION Works

If you executed the second query, the output has two column headings: EMP_ID

and SALARY. Each individual’s pay rate is listed under the SALARY column. When

using the UNION operator, column headings are determined by column names or

column aliases used in the first SELECT statement.

Compound queries enable you to combine the results of more than one

query to return a single set of data. Compound queries are often simpler to

write than a single query with complex conditions. Compound queries also

allow for more flexibility regarding the never-ending task of data retrieval.

Compound Query Operators
The compound query operators vary among database vendors. The

American National Standards Institute (ANSI) standard includes the UNION,

UNION ALL, EXCEPT, and INTERSECT operators, all of which are discussed in the

following sections.

The UNION Operator

The UNION operator combines the results of two or more SELECT statements

without returning duplicate rows. In other words, if a row of output exists in

the results of one query, the same row is not returned, even though it exists

in the second query. To use the UNION operator, each SELECT statement must

have the same number of columns selected, the same number of column

Compound Query Operators 241

expressions, the same data type, and the same order—but they do not have

to be the same length.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

UNION

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

Look at the following example:

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL;

Those employee IDs that are in both tables appear only once in the results.

This hour’s examples begin with a simple SELECT statement from two tables:

SELECT PROD_DESC FROM PRODUCTS_TBL;

PROD_DESC

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

ASSORTED MASKS

KEY CHAIN

OAK BOOKSHELF

11 rows selected.

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

242 HOUR 15: Combining Multiple Queries into One

By the
Way

ASSORTED MASKS

KEY CHAIN

OAK BOOKSHELF

11 rows selected.

Now, combine the same two queries with the UNION operator, making a com-

pound query:

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

CANDY CORN

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PUMPKIN CANDY

WITCH COSTUME

KEY CHAIN

OAK BOOKSHELF

11 rows selected.

Where the PRODUCTS_TMP Table Came From

The PRODUCTS_TMP table was created in Hour 3, “Managing Database Objects.”

Refer to Hour 3 if you need to re-create this table.

In the first query, eleven rows of data were returned, and eleven rows of

data were returned from the second query. Eleven rows of data are returned

when the UNION operator combines the two queries. Only eleven rows are

returned because duplicate rows of data are not returned when using the

UNION operator.

The following code shows an example of combining two unrelated queries

with the UNION operator:

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT LAST_NAME FROM EMPLOYEE_TBL;

Compound Query Operators 243

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

CANDY CORN

FALSE PARAFFIN TEETH

GLASS

KEY CHAIN

LIGHTED LANTERNS

OAK BOOKSHELF

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PLEW

PUMPKIN CANDY

SPURGEON

STEPHENS

WALLACE

WITCH COSTUME

16 rows selected.

The PROD_DESC and LAST_NAME values are listed together, and the column

heading is taken from the column name in the first query.

The UNION ALL Operator

You use the UNION ALL operator to combine the results of two SELECT state-

ments, including duplicate rows. The same rules that apply to UNION apply

to the UNION ALL operator. The UNION and UNION ALL operators are the same,

although one returns duplicate rows of data where the other does not.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

UNION ALL

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

The following SQL statement returns all employee IDs from both tables and

shows duplicates:

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION ALL

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

244 HOUR 15: Combining Multiple Queries into One

The following is the same compound query in the previous section with the

UNION ALL operator:

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION ALL

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

ASSORTED MASKS

KEY CHAIN

OAK BOOKSHELF

WITCH COSTUME

PLASTIC PUMPKIN 18 INCH

FALSE PARAFFIN TEETH

LIGHTED LANTERNS

ASSORTED COSTUMES

CANDY CORN

PUMPKIN CANDY

PLASTIC SPIDERS

ASSORTED MASKS

KEY CHAIN

OAK BOOKSHELF

22 rows selected.

Notice that there were 22 rows returned in this query (11+11) because dupli-

cate records are retrieved with the UNION ALL operator.

The INTERSECT Operator

You use the INTERSECT operator to combine two SELECT statements, but it

returns only rows from the first SELECT statement that are identical to a row

in the second SELECT statement. The same rules apply when using the

INTERSECT operator as when you used the UNION operator. Currently, the

INTERSECT operator is not supported by MySQL 5.0 but is supported by both

SQL Server and Oracle.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

Compound Query Operators 245

INTERSECT

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

The following SQL statement returns the customer identification for those

customers who have placed an order:

SELECT CUST_ID FROM CUSTOMER_TBL

INTERSECT

SELECT CUST_ID FROM ORDERS_TBL;

The following example illustrates the INTERSECT operator using the two orig-

inal queries in this hour:

SELECT PROD_DESC FROM PRODUCTS_TBL

INTERSECT

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

CANDY CORN

FALSE PARAFFIN TEETH

KEY CHAIN

LIGHTED LANTERNS

OAK BOOKSHELF

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PUMPKIN CANDY

WITCH COSTUME

11 rows selected.

Only 11 rows are returned because only 11 rows were identical between the

output of the two single queries.

The EXCEPT Operator

The EXCEPT operator combines two SELECT statements and returns rows from

the first SELECT statement that are not returned by the second SELECT state-

ment. Once again, the same rules that apply to the UNION operator also

apply to the EXCEPT operator. The EXCEPT operator is not currently supported

in MySQL. In Oracle the EXCEPT operator is referenced by using the term

MINUS but performs the same functionality.

246 HOUR 15: Combining Multiple Queries into One

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

EXCEPT

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

Study the following example, which would work in an SQL Server

implementation:

SELECT PROD_DESC FROM PRODUCTS_TBL

EXCEPT

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PUMPKIN CANDY

3 rows selected.

According to the results, three rows of data were returned by the first query

that were not returned by the second query.

The following example demonstrates the use of the MINUS operator as a

replacement for the EXCEPT operator:

SELECT PROD_DESC FROM PRODUCTS_TBL

MINUS

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PUMPKIN CANDY

3 rows selected.

Using ORDER BY with a Compound Query
You can use the ORDER BY clause with a compound query. However, you can

only use the ORDER BY clause to order the results of both queries. Therefore,

there can be only one ORDER BY clause in a compound query, even though

the compound query might consist of multiple individual queries or SELECT

Using ORDER BY with a Compound Query 247

statements. The ORDER BY clause must reference the columns being ordered

by an alias or by the column number.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

OPERATOR{UNION | EXCEPT | INTERSECT | UNION ALL}

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

[ORDER BY]

The following SQL statement returns the employee ID from EMPLOYEE_TBL

and EMPLOYEE_PAY_TBL, but it does not show duplicates and it orders by

EMP_ID:

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

ORDER BY 1;

Using Numbers in the ORDER BY Clause

The column in the ORDER BY clause is referenced by the number 1 instead of the

actual column name.

By the
Way

The results of the compound query are sorted by the first column of each

query. Sorting compound queries lets you easily recognize duplicate records.

The following example shows the use of the ORDER BY clause with a com-

pound query. You can use the column name in the ORDER BY clause if the col-

umn sorted by has the same name in all individual queries of the statement.

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TBL

ORDER BY PROD_DESC;

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

CANDY CORN

FALSE PARAFFIN TEETH

KEY CHAIN

LIGHTED LANTERNS

OAK BOOKSHELF

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

248 HOUR 15: Combining Multiple Queries into One

The following query uses a numeric value in place of the actual column

name in the ORDER BY clause:

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TBL;

PROD_DESC

ASSORTED COSTUMES

ASSORTED MASKS

CANDY CORN

FALSE PARAFFIN TEETH

KEY CHAIN

LIGHTED LANTERNS

OAK BOOKSHELF

PLASTIC PUMPKIN 18 INCH

PLASTIC SPIDERS

PUMPKIN CANDY

WITCH COSTUME

11 rows selected.

Using GROUP BY with a Compound Query
Unlike ORDER BY, you can use GROUP BY in each SELECT statement of a com-

pound query, but you also can use it following all individual queries. In

addition, you can use the HAVING clause (sometimes used with the GROUP BY

clause) in each SELECT statement of a compound statement.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

[GROUP BY]

[HAVING]

OPERATOR {UNION | EXCEPT | INTERSECT | UNION ALL}

SELECT COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE]

[GROUP BY]

[HAVING]

[ORDER BY]

PUMPKIN CANDY

WITCH COSTUME

11 rows selected.

Using GROUP BY with a Compound Query 249

In the following example, you select a literal string to represent customer

records, employee records, and product records. Each query is simply a

count of all records in each appropriate table. The GROUP BY clause groups

the results of the entire report by the numeric value 1, which represents the

first column in each query.

SELECT ‘CUSTOMERS’ TYPE, COUNT(*)

FROM CUSTOMER_TBL

UNION

SELECT ‘EMPLOYEES’ TYPE, COUNT(*)

FROM EMPLOYEE_TBL

UNION

SELECT ‘PRODUCTS’ TYPE, COUNT(*)

FROM PRODUCTS_TBL

GROUP BY 1;

TYPE COUNT(*)

----------- --------

CUSTOMERS 15

EMPLOYEES 6

PRODUCTS 9

3 rows selected.

The following query is identical to the previous query, except that the ORDER

BY clause is used as well:

SELECT ‘CUSTOMERS’ TYPE, COUNT(*)

FROM CUSTOMER_TBL

UNION

SELECT ‘EMPLOYEES’ TYPE, COUNT(*)

FROM EMPLOYEE_TBL

UNION

SELECT ‘PRODUCTS’ TYPE, COUNT(*)

FROM PRODUCTS_TBL

GROUP BY 1

ORDER BY 2;

TYPE COUNT(*)

----------- --------

EMPLOYEES 6

PRODUCTS 9

CUSTOMERS 15

3 rows selected.

This is sorted by column 2, which was the count on each table. Hence, the

final output is sorted by the count from least to greatest.

250 HOUR 15: Combining Multiple Queries into One

Bad Data Results

Incomplete data returned by a query qualifies as incorrect data.

Retrieving Accurate Data
Be cautious when using the compound operators. Incorrect or incomplete

data might be returned if you use the INTERSECT operator and you use the

wrong SELECT statement as the first individual query. In addition, consider

whether you want duplicate records when using the UNION and UNION ALL

operators. What about EXCEPT? Do you need any of the rows that the sec-

ond query did not return? As you can see, the wrong compound query

operator or the wrong order of individual queries in a compound query can

easily cause misleading data to be returned.

Summary
This hour introduced you to compound queries. All SQL statements previ-

ous to this hour have consisted of a single query. Compound queries allow

multiple individual queries to be used together as a single query to achieve

the data resultset desired as output. The compound query operators dis-

cussed included UNION, UNION ALL, INTERSECT, and EXCEPT (MINUS). UNION

returns the output of two single queries without displaying duplicate rows

of data. UNION ALL simply displays all output of single queries, regardless of

existing duplicate rows. INTERSECT returns identical rows between two

queries. EXCEPT (the same as MINUS) returns the results of one query that do

not exist in another query. Compound queries provide greater flexibility

when trying to satisfy the requirements of various queries, which, without

the use of compound operators, could result in complex queries.

Q&A
Q. How are the columns referenced in the GROUP BY clause in a compound query?

A. The columns can be referenced by the actual column name or by the

number of the column placement in the query if the column names

are not identical in the two queries.

Watch
Out!

Workshop 251

Q. I understand what the EXCEPT operator does, but would the outcome change

if I were to reverse the SELECT statements?

A. Yes. The order of the individual queries is important when using the

EXCEPT or MINUS operator. Remember that all rows are returned from

the first query that are not returned by the second query. Changing

the order of the two individual queries in the compound query could

definitely affect the results.

Q. Must the data type and the length of columns in a compound query be the

same in both queries?

A. No. Only the data type must be the same. The length can differ.

Q. What determines the column names when using the UNION operator?

A. The first query set determines the column names for the data returned

when using a UNION operator.

Workshop
The following workshop is composed of a series of quiz questions and

practical exercises. The quiz questions are designed to test your overall

understanding of the current material. The practical exercises are intended

to afford you the opportunity to apply the concepts discussed during the

current hour, as well as build upon the knowledge acquired in previous

hours of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

Refer to the syntax covered in this hour for the following quiz questions

when referring to the INTERSECT and EXCEPT operators. Remember that

MySQL does not currently support these two operators.

1. Is the syntax correct for the following compound queries? If not, what

would correct the syntax? Use EMPLOYEE_TBL and EMPLOYEE_PAY_TBL as

follows:

EMPLOYEE_TBL

EMP_ID VARCHAR(9) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

252 HOUR 15: Combining Multiple Queries into One

Statement Operator

a. Show duplicates UNION

b. Return only rows from the first query that

match those in the second query

INTERSECT

c. Return no duplicates UNION ALL

d. Return only rows from the first query not

returned by the second

EXCEPT

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE VARCHAR(2) NOT NULL,

ZIP INTEGER(5) NOT NULL,

PHONE VARCHAR(10),

PAGER VARCHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR(9) NOT NULL primary key,

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

DATE_LAST_RAISE DATE,

SALARY DECIMAL(8,2),

BONUS DECIMAL(6,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)

REFERENCES EMPLOYEE_TBL (EMP_ID)

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID, POSITION, DATE_HIRE

FROM EMPLOYEE_PAY_TBL;

b. SELECT EMP_ID FROM EMPLOYEE_TBL

UNION ALL

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

ORDER BY EMP_ID;

c. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

INTERSECT

SELECT EMP_ID FROM EMPLOYEE_TBL

ORDER BY 1;

2. Match the correct operator to the following statements.

Workshop 253

Exercises

Refer to the syntax covered in this hour for the following exercises. You

might have to write your queries by hand because MySQL does not support

some of the operators covered in this hour. When you are finished, com-

pare your results to ours.

Use CUSTOMER_TBL and ORDERS_TBL as listed:

CUSTOMER_TBL

CUST_IN VARCHAR(10) NOT NULL primary key,

CUST_NAME VARCHAR(30) NOT NULL,

CUST_ADDRESS VARCHAR(20) NOT NULL,

CUST_CITY VARCHAR(15) NOT NULL,

CUST_STATE VARCHAR(2) NOT NULL,

CUST_ZIP INTEGER(5) NOT NULL,

CUST_PHONE INTEGER(10),

CUST_FAX INTEGER(10)

ORDERS_TBL

ORD_NUM VARCHAR(10) NOT NULL primary key,

CUST_ID VARCHAR(10) NOT NULL,

PROD_ID VARCHAR(10) NOT NULL,

QTY INTEGER(6) NOT NULL,

ORD_DATE DATETIME

1. Write a compound query to find the customers who have placed an

order.

2. Write a compound query to find the customers who have not placed

an order.

This page intentionally left blank

What Is an Index? 255

HOUR 16

Using Indexes to Improve
Performance

What You’ll Learn in This Hour:

. How indexes work

. How to create an index

. The different types of indexes

. When to use indexes

. When not to use indexes

In this hour, you learn how to improve SQL statement performance by cre-

ating and using indexes. You begin with the CREATE INDEX command and

learn how to use indexes that have been created on tables.

What Is an Index?
Simply put, an index is a pointer to data in a table. An index in a database

is similar to an index in the back of a book. For example, if you want to ref-

erence all pages in a book that discuss a certain topic, you first refer to the

index, which lists all topics alphabetically, and it refers you to one or more

specific page numbers. An index in a database works the same way in that

a query is pointed to the exact physical location of data in a table. You are

actually being directed to the data’s location in an underlying file of the

database, but as far as you are concerned, you are referring to a table.

Which would be faster, looking through a book page by page for some

information or searching the book’s index and getting a page number? Of

course, using the book’s index is the most efficient method. It can save a lot

of time, especially if the book is large. If you have a book of just a few

pages, however, it might be faster to check the pages for the information

than to flip back and forth between the index and pages of the book.

When a database does not use an index, it is performing what is typically

256 HOUR 16: Using Indexes to Improve Performance

called a full table scan, the same as flipping through a book page by

page. Full table scans are discussed in Hour 17, “Improving Database

Performance.”

An index is typically stored separately from the table for which the index

was created. An index’s main purpose is to improve the performance of

data retrieval. Indexes can be created or dropped with no effect on the

data. However, after an index is dropped, performance of data retrieval

might be slowed. Indexes do take up physical space and can often grow

larger than the table. Therefore, you should consider them when estimating

your database storage needs.

How Do Indexes Work?
When an index is created, it records the location of values in a table that

are associated with the column that is indexed. Entries are added to the

index when new data is added to the table. When a query is executed

against the database and a condition is specified on a column in the WHERE

clause that is indexed, the index is first searched for the values specified in

the WHERE clause. If the value is found in the index, the index returns the

exact location of the searched data in the table. Figure 16.1 illustrates the

functioning of an index.

Suppose the following query was issued:

SELECT *

FROM TABLE_NAME

WHERE NAME = ‘SMITH’;

Data Location

GLASS 6

JONES 2

JONES 9

PLEW 5

SMITH 1

SMITH 3

SMITH 7

SMITH 100,000

WALLACE 8

WILLIAMS 4

...

INDEX

Location Data

1 SMITH

2 JONES

3 SMITH

4 WILLIAMS

5 PLEW

6 GLASS

7 SMITH

8 WALLACE

8 JONES

...

100,000 SMITH

TABLEFIGURE 16.1

Table access

using an index.

The CREATE INDEX Command 257

By the
Way

As shown in Figure 16.1, the NAME index is referenced to resolve the location

of all names equal to SMITH. After the location is determined, the data can

quickly be retrieved from the table. The data, in this case, names is alpha-

betized in the index.

Variations of Index Creation

Indexes can be created during table creation in certain implementations. Most

implementations accommodate a command, aside from the CREATE TABLE com-

mand, used to create indexes. Check your particular implementation for the exact

syntax for the command, if any, that is available to create an index.

A full table scan occurs if there is no index on the table and the same query

is executed, which means that every row of data in the table is read to

retrieve information pertaining to all individuals with the name SMITH.

An index is faster because it typically stores information in an orderly tree-

like format. Consider if we have a list of books upon which we place an

index. The index has a root node, which is the beginning point of each

query. Then it is split into branches. Maybe in our case there are two

branches, one for letters A–L and the other for letters M–Z. Now if you ask for

a book with a name that starts with the letter M, you enter the index at the

root node and immediately travel to the branch containing letters M–Z. This

effectively cuts your time to find the book by eliminating close to half the

possibilities.

The CREATE INDEX Command
The CREATE INDEX statement, as with many other statements in SQL, varies

greatly among different relational database vendors. Most relational data-

base implementations use the CREATE INDEX statement:

CREATE INDEX INDEX_NAME ON TABLE_NAME

The syntax is where the vendors start varying greatly on the CREATE INDEX

statement options. Some implementations allow the specification of a stor-

age clause (as with the CREATE TABLE statement), ordering (DESC | | ASC), and

the use of clusters. You must check your particular implementation for its

correct syntax.

258 HOUR 16: Using Indexes to Improve Performance

Types of Indexes

Best Places for Single-Column Indexes

Single-column indexes are most effective when used on columns that are fre-

quently used alone in the WHERE clause as query conditions. Good candidates for

a single-column index are an individual identification number, a serial number, or a

system-assigned key.

Did You
Know?

You can create different types of indexes on tables in a database, all of

which serve the same goal: to improve database performance by expediting

data retrieval. This hour discusses single-column indexes, composite index-

es, and unique indexes.

Single-Column Indexes

Indexing on a single column of a table is the simplest and most common

manifestation of an index. Obviously, a single-column index is one that is

created based on only one table column. The basic syntax is as follows:

CREATE INDEX INDEX_NAME

ON TABLE_NAME (COLUMN_NAME)

For example, if you want to create an index on EMPLOYEE_TBL for employees’

last names, the command used to create the index looks like the following:

CREATE INDEX NAME_IDX

ON EMPLOYEE_TBL (LAST_NAME);

Unique Indexes

You use unique indexes for performance and data integrity. A unique index

does not allow duplicate values to be inserted into the table. Otherwise, the

unique index performs the same way a regular index performs. The syntax

is as follows:

CREATE UNIQUE INDEX INDEX_NAME

ON TABLE_NAME (COLUMN_NAME)

If you want to create a unique index on EMPLOYEE_TBL for an employee’s last

name, the command used to create the unique index looks like the following:

CREATE UNIQUE INDEX NAME_IDX

ON EMPLOYEE_TBL (LAST_NAME);

The only problem with this index is that every individual’s last name in

EMPLOYEE_TBL must be unique, which is impractical. However, a unique

Types of Indexes 259

index should be created for a column, such as an individual’s Social

Security number, because that number would be unique for each individual.

You might be wondering, “What if an employee’s Social Security number is

the primary key for a table?” An index is usually implicitly created when

you define a primary key for a table. However, a company can use a ficti-

tious number for an employee ID but maintain each employee’s Social

Security number for tax purposes. You probably want to index this column

and ensure that all entries into this column are unique values.

When working with objects such as unique indexes, it is often beneficial to

create the indexes on empty tables during the creation of the database

structure. This ensures that the data going into the structure already meets

the demand of the constraints you want to place on it. If you are working

with existing data, you will want to analyze the impact of whether the data

needs to be adjusted to be able to properly apply the index.

Composite Indexes

A composite index is an index on two or more columns of a table. You

should consider performance when creating a composite index, because the

order of columns in the index has a measurable effect on the data retrieval

speed. Generally, the most restrictive value should be placed first for opti-

mum performance. However, the columns that are always specified in your

queries should be placed first. The syntax is as follows:

CREATE INDEX INDEX_NAME

ON TABLE_NAME (COLUMN1, COLUMN2)

An example of a composite index follows:

CREATE INDEX ORD_IDX

ON ORDERS_TBL (CUST_ID, PROD_ID);

In this example, you create a composite index based on two columns in the

ORDERS_TBL: CUST_ID and PROD_ID. You assume that these two columns are

frequently used together as conditions in the WHERE clause of a query.

Unique Index Constraints

You can only create a unique index on a column in a table whose values are

unique. In other words, you cannot create a unique index on an existing table with

data that already contains records on the indexed key that are nonunique. Simi-

larly, you cannot create a unique index on a column that allows for NULL values. If

you attempt to create a unique index on a column that violates one of these prin-

ciples, the statement fails.

Did You
Know?

260 HOUR 16: Using Indexes to Improve Performance

In deciding whether to create a single-column index or a composite index,

consider the column(s) that you might use frequently in a query’s WHERE

clause as filter conditions. If only one column is used, choose a single-

column index. If two or more columns are frequently used in the WHERE

clause as filters, a composite index would be the best choice.

Implicit Indexes

Implicit indexes are indexes that are automatically created by the database

server when an object is created. Indexes are automatically created for pri-

mary key constraints and unique constraints.

Why are indexes automatically created for these constraints? Imagine that

you are the database server. A user adds a new product to the database.

The product identification is the primary key on the table, which means

that it must be a unique value. To efficiently make sure the new value is

unique among hundreds or thousands of records, the product identifications

in the table must be indexed. Therefore, when you create a primary key or

unique constraint, an index is automatically created for you.

Best Places for Composite Indexes

Composite indexes are most effective on table columns that are used together

frequently as conditions in a query’s WHERE clause.

Did You
Know?

When Should Indexes Be Considered?
Unique indexes are implicitly used in conjunction with a primary key for

the primary key to work. Foreign keys are also excellent candidates for an

index because you often use them to join the parent table. Most, if not all,

columns used for table joins should be indexed.

Columns that you frequently reference in the ORDER BY and GROUP BY clauses

should be considered for indexes. For example, if you are sorting on an

individual’s name, it is quite beneficial to have an index on the name col-

umn. It renders an automatic alphabetical order on every name, thus sim-

plifying the actual sort operation and expediting the output results.

Furthermore, you should create indexes on columns with a high number of

unique values, or columns that, when used as filter conditions in the WHERE

clause, return a low percentage of rows of data from a table. This is where

trial and error might come into play. Just as you should always test produc-

tion code and database structures before implementing them into produc-

tion, so should you test indexes. Your testing should center on trying

When Should Indexes Be Avoided? 261

different combinations of indexes, no indexes, single-column indexes, and

composite indexes. There is no cut-and-dried rule for using indexes. The

effective use of indexes requires a thorough knowledge of table relation-

ships, query and transaction requirements, and the data itself.

When Should Indexes Be Avoided?

Plan for Indexing Accordingly

You should plan your tables and indexes. Don’t assume that because an index

has been created, all performance issues are resolved. The index might not help

at all (it might actually hinder performance) and might just take up disk space.

By the
Way

Although indexes are intended to enhance a database’s performance, some-

times you should avoid them. The following guidelines indicate when you

should reconsider using an index:

. You should not use indexes on small tables. This is because indexes

have an overhead associated with them in terms of query time to

access them. In the case of small tables, it is usually faster for the

query engine to do a quick scan over the table rather than look at

an index first.

. You should not use indexes on columns that return a high percent-

age of data rows when used as a filter condition in a query’s WHERE

clause. For instance, you would not have an entry for the words the

or and in the index of a book.

. You can index tables that have frequent, large batch update jobs

run. However, the batch job’s performance is slowed considerably by

the index. You can correct the conflict of having an index on a

table that is frequently loaded or manipulated by a large batch

process by dropping the index before the batch job and then re-

creating the index after the job has completed. This is because the

indexes are also updated as the data is inserted, causing additional

overhead.

. You should not use indexes on columns that contain a high num-

ber of NULL values. This is because indexes operate best on columns

that have a higher uniqueness of the data between rows. If there

are a lot of NULL values, the index will be skewed toward the NULL

values and might affect performance.

262 HOUR 16: Using Indexes to Improve Performance

. You should not index columns that are frequently manipulated.

Maintenance on the index can become excessive.

You can see in Figure 16.2 that an index on a column, such as gender,

might not prove beneficial. For example, suppose the following query was

submitted to the database:

SELECT *

FROM TABLE_NAME

WHERE GENDER = ‘FEMALE’;

By referring to Figure 16.2, which is based on the previous query, you can

see that there is constant activity between the table and its index. Because a

high number of data rows is returned for WHERE GENDER = ‘FEMALE’ (or

’MALE’), the database server constantly has to read the index, and then the

table, and then the index, and then the table, and so on. In this case, it

might be more efficient for a full table scan to occur because a high per-

centage of the table must be read anyway.

Indexes Can Sometimes Lead to Performance Problems

Caution should be taken when creating indexes on a table’s extremely long keys

because performance is inevitably slowed by high I/O costs.

Watch
Out!

Location Data

 1 MALE

 2 MALE

 3 FEMALE

 4 MALE

 5 FEMALE

 6 MALE

 7 FEMALE

 8 FEMALE

 9 FEMALE

10 MALE

11 MALE

12 FEMALE

13 FEMALE

14 MALE

 ...

TABLE

Data Location

FEMALE 3

FEMALE 5

FEMALE 7

FEMALE 8

FEMALE 9

FEMALE 12

FEMALE 13

MALE 1

MALE 2

MALE 4

MALE 6

MALE 10

MALE 11

MALE 14

...

INDEXFIGURE 16.2

An example of

an ineffective

index.

As a general rule, do not use an index on a column used in a query’s condi-

tion that returns a high percentage of data rows from the table. In other

words, do not create an index on a column such as gender, or any column

Dropping an Index 263

that contains few distinct values. This is often referred to as a column’s

cardinality, or the uniqueness of the data. High cardinality means very

unique and therefore describes things such as identification numbers. Low-

cardinality values are not very unique and refer to columns such as the

gender example.

Altering an Index
You can alter an index after it has been created using syntax that is similar

to the CREATE INDEX syntax. The types of alterations that you can manage

with the statement differ between implementations but handle all the basic

variations of an index in terms of columns, ordering, and such. The syntax

is as follows:

ALTER INDEX INDEX_NAME

You should take care when altering an existing index on production sys-

tems. This is because in most cases the index is immediately rebuilt, which

obviously creates an overhead in terms of resources. Additionally, on most

basic implementations, while the index is being rebuilt it cannot be utilized

for queries that might put an additional hindrance upon the performance

of your system.

Dropping an Index
An index can be dropped rather simply. Check your particular implemen-

tation for the exact syntax, but most major implementations use the DROP

command. You should take care when dropping an index because perform-

ance might be slowed drastically (or improved!). The syntax is as follows:

DROP INDEX INDEX_NAME

MySQL uses a slightly different syntax; you also specify the table name of

the table that you are dropping the index from:

DROP INDEX INDEX_NAME ON TABLE_NAME

The most common reason for dropping an index is an attempt to improve

performance. Remember that if you drop an index, you can re-create it later.

You might need to rebuild an indexes to reduce fragmentation. It is often

necessary to experiment with the use of indexes in a database to determine

the route to best performance, which might involve creating an index, drop-

ping it, and eventually re-creating it, with or without modifications.

264 HOUR 16: Using Indexes to Improve Performance

Be Careful with Your Indexes

Indexes are often good for performance, but that’s not always true. Refrain from

creating indexes on columns that contain few unique values, such as gender and

state of residence.

Watch
Out!

Differences in How to Drop Indexes

MySQL uses the ALTER TABLE command to drop indexes. However, you can still

use the DROP INDEX syntax and MySQL maps it to an appropriate ALTER TABLE

statement. Again, different SQL implementations might vary widely in syntax,

especially when dealing with indexes and data storage.

By the
Way

You have learned that you can use indexes to improve the overall perform-

ance of queries and transactions performed within the database. Database

indexes, like an index of a book, enable specific data to be quickly refer-

enced from a table. The most common method for creating indexes is

through use of the CREATE INDEX command. Different types of indexes are

available among SQL implementations. Unique indexes, single-column

indexes, and composite indexes are among those types of indexes. You

need to consider many factors when deciding on the index type that best

meets the needs of your database. The effective use of indexes often

requires some experimentation, a thorough knowledge of table relation-

ships and data, and a little patience—but patience when you create an

index can save minutes, hours, or even days of work later.

Q&A
Q. Does an index actually take up space the way a table does?

A. Yes. An index takes up physical space in a database. In fact, an index

can become much larger than the table for which the index was

created.

Q. If you drop an index so a batch job can complete faster, how long does it

take to re-create the index?

A. Many factors are involved, such as the size of the index being dropped,

the CPU usage, and the machine’s power.

Summary

Workshop 265

Q. Should all indexes be unique?

A. No. Unique indexes allow no duplicate values. There might be a need

for the allowance of duplicate values in a table.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. What are some major disadvantages of using indexes?

2. Why is the order of columns in a composite important?

3. Should a column with a large percentage of NULL values be indexed?

4. Is the main purpose of an index to stop duplicate values in a table?

5. True or false: The main reason for a composite index is for aggregate

function usage in an index.

6. What does cardinality refer to? What is considered a column of high-

cardinality?

Exercises

1. For the following situations, decide whether an index should be used

and, if so, what type of index should be used.

a. Several columns, but a rather small table

b. Medium-sized table; no duplicates should be allowed

c. Several columns, very large table, several columns used as filters

in the WHERE clause

d. Large table, many columns, a lot of data manipulation

266 HOUR 16: Using Indexes to Improve Performance

2. Write the SQL statement to create an index called EP_POSITION in

EMPLOYEE_PAY_TBL on the POSITION column.

3. Create a statement to alter the index you just created to make it

unique. What do you need to do to create a unique index on the

SALARY column? Write the SQL statements that you need to run them

in the sequence.

4. Study the tables used in this book. What are some good candidates for

indexed columns based on how a user might search for data?

5. Create a multicolumn index on ORDERS_TBL. Include the following

columns: CUST_ID, PROD_ID, and ORD_DATE.

6. Create some additional indexes on your tables as desired.

What Is SQL Statement Tuning? 267

HOUR 17

Improving Database
Performance

What You’ll Learn in This Hour:

. What SQL statement tuning is

. Database tuning versus SQL statement tuning

. Formatting your SQL statement

. Properly joining tables

. The most restrictive condition

. Full table scans

. Invoking the use of indexes

. Avoiding the use of OR and HAVING

. Avoiding large sort operations

In this hour, you learn how to tune your SQL statement for maximum per-

formance using some simple methods.

What Is SQL Statement Tuning?
SQL statement tuning is the process of optimally building SQL statements to

achieve results in the most effective and efficient manner. SQL tuning

begins with the basic arrangement of the elements in a query. Simple for-

matting can play a rather large role in the optimization of a statement.

SQL statement tuning mainly involves tweaking a statement’s FROM and

WHERE clauses. It is mostly from these two clauses that the database server

decides how to evaluate a query. To this point, you have learned the FROM

and WHERE clauses’ basics. Now it is time to learn how to fine-tune them for

better results and happier users.

268 HOUR 17: Improving Database Performance

By the
Way

Database Tuning Versus SQL Statement

Tuning
Before this hour continues with your SQL statement tuning lesson, you

need to understand the difference between tuning a database and tuning

the SQL statements that access the database.

Database tuning is the process of tuning the actual database, which encom-

passes the allocated memory, disk usage, CPU, I/O, and underlying data-

base processes. Tuning a database also involves the management and

manipulation of the database structure, such as the design and layout of

tables and indexes. In addition, database tuning often involves the modifi-

cation of the database architecture to optimize the use of the hardware

resources available. You need to consider many other things when tuning a

database, but the database administrator (DBA) in conjunction with a system

administrator normally accomplishes these tasks. The objective of database

tuning is to ensure that the database has been designed in a way that best

accommodates expected activity within the database.

SQL tuning is the process of tuning the SQL statements that access the data-

base. These SQL statements include database queries and transactional

operations, such as inserts, updates, and deletes. The objective of SQL state-

ment tuning is to formulate statements that most effectively access the

database in its current state, taking advantage of database and system

resources and indexes. The objective is to reduce the operational overhead

of executing the query on the database.

Tuning Is Not One Dimensional

You must perform both database tuning and SQL statement tuning to achieve

optimal results when accessing the database. A poorly tuned database might ren-

der your efforts in SQL tuning as wasted, and vice versa. Ideally, it is best to first

tune the database, ensure that indexes exist where needed, and then tune the

SQL code.

Formatting Your SQL Statement
Formatting your SQL statement sounds like an obvious task, but it is worth

mentioning. A newcomer to SQL will probably neglect to consider several

things when building an SQL statement. The upcoming sections discuss the

following considerations; some are common sense, others are not so obvious:

Formatting Your SQL Statement 269

Did You
Know?

. The format of SQL statements for readability

. The order of tables in the FROM clause

. The placement of the most restrictive conditions in the WHERE clause

. The placement of join conditions in the WHERE clause

Formatting a Statement for Readability

It’s All About the Optimizer

Most relational database implementations have what is called an SQL optimizer,

which evaluates an SQL statement and determines the best method for executing

the statement based on the way an SQL statement is written and the availability

of indexes in the database. Not all optimizers are the same. Check your imple-

mentation or consult the database administrator to learn how the optimizer reads

SQL code. You should understand how the optimizer works to effectively tune an

SQL statement.

Formatting an SQL statement for readability is fairly obvious, but many

SQL statements have not been written neatly. Although the neatness of a

statement does not affect the actual performance (the database does not

care how neat the statement appears), careful formatting is the first step in

tuning a statement. When you look at an SQL statement with tuning inten-

tions, making the statement readable is always the first priority. How can

you determine whether the statement is written well if it is difficult to read?

Some basic rules for making a statement readable include

. Always begin a new line with each clause in the statement. For

example, place the FROM clause on a separate line from the SELECT

clause. Then place the WHERE clause on a separate line from the FROM

clause, and so on.

. Use tabs or spaces for indentation when arguments of a clause in

the statement exceed one line.

. Use tabs and spaces consistently.

. Use table aliases when multiple tables are used in the statement.

The use of the full table name to qualify each column in the state-

ment quickly clutters the statement and makes reading it difficult.

. Use remarks sparingly in SQL statements if they are available with-

in your specific implementation. Remarks are great for documenta-

tion, but too many of them clutter a statement.

270 HOUR 17: Improving Database Performance

. Begin a new line with each column name in the SELECT clause if

many columns are being selected.

. Begin a new line with each table name in the FROM clause if many

tables are being used.

. Begin a new line with each condition of the WHERE clause. You can

easily see all conditions of the statement and the order in which

they are used.

The following is an example of a statement that would be hard for you to

decipher:

SELECT CUSTOMER_TBL.CUST_ID, CUSTOMER_TBL.CUST_NAME,

CUSTOMER_TBL.CUST_PHONE, ORDERS_TBL.ORD_NUM, ORDERS_TBL.QTY

FROM CUSTOMER_TBL, ORDERS_TBL

WHERE CUSTOMER_TBL.CUST_ID = ORDERS_TBL.CUST_ID

AND ORDERS_TBL.QTY > 1 AND CUSTOMER_TBL.CUST_NAME LIKE ‘G%’

ORDER BY CUSTOMER_TBL.CUST_NAME;

CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY

---------- ------------------------------ ---------- ----------------- ---

287 GAVINS PLACE 3172719991 18D778 10

1 row selected.

Here the statement has been reformatted for improved readability:

SELECT C.CUST_ID,

C.CUST_NAME,

C.CUST_PHONE,

O.ORD_NUM,

O.QTY

FROM ORDERS_TBL O,

CUSTOMER_TBL C

WHERE O.CUST_ID = C.CUST_ID

AND O.QTY > 1

AND C.CUST_NAME LIKE ‘G%’

ORDER BY 2;

CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY

---------- ------------------------------ ---------- ----------------- ---

287 GAVINS PLACE 3172719991 18D778 10

1 row selected.

Both statements have the same content, but the second statement is much

more readable. It has been greatly simplified through the use of table alias-

es, which have been defined in the query’s FROM clause. In addition, the sec-

ond statement aligns the elements of each clause with spacing, making

each clause stand out.

Formatting Your SQL Statement 271

By the
Way

By the
Way

Again, making a statement more readable does not directly improve its per-

formance, but it assists you in making modifications and debugging a

lengthy and otherwise complex statement. Now you can easily identify the

columns being selected, the tables being used, the table joins being per-

formed, and the conditions being placed on the query.

Check for Performance When Using Multiple Tables

Check your particular implementation for performance tips, if any, when listing

multiple tables in the FROM clause.

Arranging Tables in the FROM Clause

The arrangement or order of tables in the FROM clause might make a differ-

ence, depending on how the optimizer reads the SQL statement. For exam-

ple, it might be more beneficial to list the smaller tables first and the larger

tables last. Some users with lots of experience have found that listing the

larger tables last in the FROM clause is more efficient.

The following is an example of the FROM clause:

FROM SMALLEST TABLE,

LARGEST TABLE

Always Establish Standards

It is especially important to establish coding standards in a multiuser program-

ming environment. If all code is consistently formatted, shared code and modifica-

tions to code are much easier to manage.

Ordering Join Conditions

As you learned in Hour 13, “Joining Tables in Queries,” most joins use a

base table to link tables that have one or more common columns on which

to join. The base table is the main table that most or all tables are joined to

in a query. The column from the base table is normally placed on the right

side of a join operation in the WHERE clause. The tables being joined to the

base table are normally in order from smallest to largest, similar to the

tables listed in the FROM clause.

If a base table doesn’t exist, the tables should be listed from smallest to

largest, with the largest tables on the right side of the join operation in the

WHERE clause. The join conditions should be in the first position(s) of the

WHERE clause followed by the filter clause(s), as shown in the following:

FROM TABLE1, Smallest table

TABLE2, to

TABLE3 Largest table, also base table

272 HOUR 17: Improving Database Performance

Watch
Out!

WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition

AND TABLE2.COLUMN = TABLE3.COLUMN Join condition

[AND CONDITION1] Filter condition

[AND CONDITION2] Filter condition

Be Restrictive with Your Joins

Because joins typically return a high percentage of rows of data from the table(s),

you should evaluate join conditions after more restrictive conditions.

In this example, TABLE3 is used as the base table. TABLE1 and TABLE2 are

joined to TABLE3 for both simplicity and proven efficiency.

The Most Restrictive Condition

The most restrictive condition is typically the driving factor in achieving

optimal performance for an SQL query. What is the most restrictive condi-

tion? The condition in the WHERE clause of a statement that returns the

fewest rows of data. Conversely, the least restrictive condition is the condi-

tion in a statement that returns the most rows of data. This hour is con-

cerned with the most restrictive condition simply because it filters the data

that is to be returned by the query the most.

It should be your goal for the SQL optimizer to evaluate the most restrictive

condition first, because a smaller subset of data is returned by the condi-

tion, thus reducing the query’s overhead. The effective placement of the

most restrictive condition in the query requires knowledge of how the opti-

mizer operates. The optimizers, in some cases, seem to read from the bot-

tom of the WHERE clause up. Therefore, you want to place the most restrictive

condition last in the WHERE clause, which is the condition that the optimizer

reads first. The following example shows how to structure the WHERE clause

based on the restrictiveness of the conditions and the FROM clause on the size

of the tables:

FROM TABLE1, Smallest table

TABLE2, to

TABLE3 Largest table, also base table

WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition

AND TABLE2.COLUMN = TABLE3.COLUMN Join condition

[AND CONDITION1] Least restrictive

[AND CONDITION2] Most restrictive

The following is an example using a phony table:

Formatting Your SQL Statement 273

Watch
Out!

Table: TEST

Row count: 95,867

Conditions: WHERE LAST_NAME = ‘SMITH’

returns 2,000 rows

WHERE CITY = ‘INDIANAPOLIS’

returns 30,000 rows

Most restrictive condition: WHERE LAST_NAME = ‘SMITH’

Always Test Your WHERE Clauses

If you do not know how your particular implementation’s SQL optimizer works, the

DBA does not know, or you do not have sufficient documentation, you can execute

a large query that takes a while to run and then rearrange conditions in the WHERE

clause. Be sure to record the time it takes the query to complete each time you

make changes. You should only have to run a couple of tests to figure out

whether the optimizer reads the WHERE clause from the top to bottom or bottom

to top. Turn off database caching during the testing for more accurate results.

The following is the first query:

SELECT COUNT(*)

FROM TEST

WHERE LAST_NAME = ‘SMITH’

AND CITY = ‘INDIANAPOLIS’;

COUNT(*)

1,024

The following is the second query:

SELECT COUNT(*)

FROM TEST

WHERE CITY = ‘INDIANAPOLIS’

AND LAST_NAME = ‘SMITH’;

COUNT(*)

1,024

Suppose that the first query completed in 20 seconds, whereas the second

query completed in 10 seconds. Because the second query returned faster

results and the most restrictive condition was listed last in the WHERE clause,

it is safe to assume that the optimizer reads the WHERE clause from the

bottom up.

274 HOUR 17: Improving Database Performance

By the
Way

Did You
Know?

Full Table Scans

Try to Use Indexed Columns

It is a good practice to use an indexed column as the most restrictive condition in

a query. Indexes generally improve a query’s performance.

A full table scan occurs when an index is not used by the query engine or

there is no index on the table(s) being used. Full table scans usually return

data much slower than when an index is used. The larger the table, the

slower that data is returned when a full table scan is performed. The query

optimizer decides whether to use an index when executing the SQL state-

ment. The index is used—if it exists—in most cases.

Some implementations have sophisticated query optimizers that can decide

whether to use an index. Decisions such as this are based on statistics that

are gathered on database objects, such as the size of an object and the esti-

mated number of rows that are returned by a condition with an indexed

column. Refer to your implementation documentation for specifics on the

decision-making capabilities of your relational database’s optimizer.

You should avoid full table scans when reading large tables. For example, a

full table scan is performed when a table that does not have an index is

read, which usually takes a considerably longer time to return the data. An

index should be considered for the majority of larger tables. On small tables,

as previously mentioned, the optimizer might choose the full table scan over

using the index, if the table is indexed. In the case of a small table with an

index, you should consider dropping the index and reserving the space that

was used for the index for other needy objects in the database.

There Are Simple Ways to Avoid Table Scans

The easiest and most obvious way to avoid a full table scan—outside of ensuring

that indexes exist on the table—is to use conditions in a query’s WHERE clause to

filter data to be returned.

The following is a reminder of data that should be indexed:

. Columns used as primary keys

. Columns used as foreign keys

. Columns frequently used to join tables

Other Performance Considerations 275

Did You
Know?

. Columns frequently used as conditions in a query

. Columns that have a high percentage of unique values

Table Scans Are Not Always Bad

Sometimes full table scans are good. You should perform them on queries

against small tables or queries whose conditions return a high percentage of

rows. The easiest way to force a full table scan is to avoid creating an index on

the table.

Other Performance Considerations
There are other performance considerations that you should note when tun-

ing SQL statements. The following concepts are discussed in the next sections:

. Using the LIKE operator and wildcards

. Avoiding the OR operator

. Avoiding the HAVING clause

. Avoiding large sort operations

. Using stored procedures

. Disabling indexes during batch loads

Using the LIKE Operator and Wildcards

The LIKE operator is a useful tool that places conditions on a query in a flex-

ible manner. Using wildcards in a query can eliminate many possibilities of

data that should be retrieved. Wildcards are flexible for queries that search

for similar data (data that is not equivalent to an exact value specified).

Suppose you want to write a query using EMPLOYEE_TBL selecting the EMP_ID,

LAST_NAME, FIRST_NAME, and STATE columns. You need to know the employee

identification, name, and state for all the employees with the last name

Stevens. Three SQL statement examples with different wildcard placements

serve as examples.

The following is Query 1:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘STEVENS’;

276 HOUR 17: Improving Database Performance

By the
Way

By the
Way

Next is Query 2:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘%EVENS%’;

Here is the last query, Query 3:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘ST%’;

The SQL statements do not necessarily return the same results. More than

likely, Query 1 will return fewer rows than the other two queries and will

take advantage of indexing. Query 2 and Query 3 are less specific as to the

desired returned data, thus making them slower than Query 1. Additionally,

Query 3 is probably faster than Query 2 because the first letters of the string

for which you are searching are specified (and the column LAST_NAME is like-

ly to be indexed). So Query 3 could potentially take advantage of an index.

Try to Account for Differences in the Data

With Query 1, you might retrieve all individuals with the last name Stevens; but

can’t Stevens be spelled different ways? Query 2 picks up all individuals with the

last name Stevens and its various spellings. Query 3 also picks up any last name

starting with ST; this is the only way to ensure that you receive all the Stevens (or

Stephens).

Rewriting the SQL statement using the IN predicate instead of the OR opera-

tor consistently and substantially improves data retrieval speed. Your imple-

mentation tells you about tools you can use to time or check the perform-

ance between the OR operator and the IN predicate. An example of how to

rewrite an SQL statement by taking the OR operator out and replacing the

OR operator with the IN predicate follows.

How to Use OR and IN

Refer to Hour 8, “Using Operators to Categorize Data,” for the use of the OR oper-

ator and the IN predicate.

The following is a query using the OR operator:

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = ‘INDIANAPOLIS’

Avoiding the OR Operator

Other Performance Considerations 277

OR CITY = ‘BROWNSBURG’

OR CITY = ‘GREENFIELD’;

The following is the same query using the IN operator:

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE CITY IN (‘INDIANAPOLIS’, ‘BROWNSBURG’,

‘GREENFIELD’);

The SQL statements retrieve the same data; however, through testing and

experience, you find that the data retrieval is measurably faster by replac-

ing OR conditions with the IN predicate, as in the second query.

Avoiding the HAVING Clause

The HAVING clause is a useful clause for paring down the result of a GROUP

BY clause; however, you can’t use it without cost. Using the HAVING clause

gives the SQL optimizer extra work, which results in extra time. Not only

will the query be concerned with grouping result sets, it also will be con-

cerned with parsing those result sets down via the restrictions of the HAVING

clause. For example, observe the following statement:

SELECT C.CUST_ID, C.CUST_NAME, P.PROD_DESC,

SUM(O.QTY) AS QTY, SUM(P.COST) AS COST,

SUM(O.QTY * P.COST) AS TOTAL

FROM CUSTOMER_TBL AS C

INNER JOIN ORDERS_TBL AS O ON C.CUST_ID = O.CUST_ID

INNER JOIN PRODUCTS_TBL AS P ON O.PROD_ID = P.PROD_ID

WHERE PROD_DESC LIKE (‘P%’)

GROUP BY C.CUST_ID, C.CUST_NAME, P.PROD_DESC

HAVING SUM(O.QTY * P.COST)>25.00

Here we are trying to determine which customers have sales of specific

products over the total of $25.00. Although this query is fairly simple and

our sample database is small, the addition of the HAVING clause introduces

some overhead, especially when the HAVING clause has more complex logic

and a higher number of groupings to be applied. If possible, you should

write SQL statements without using the HAVING clause or design the HAVING

clause restrictions so they are as simple as possible.

Avoiding Large Sort Operations

Large sort operations mean using the ORDER BY, GROUP BY, and HAVING claus-

es. Subsets of data must be stored in memory or to disk (if there is not

enough space in allotted memory) whenever sort operations are performed.

You must sort data often. The main point is that these sort operations affect

278 HOUR 17: Improving Database Performance

an SQL statement’s response time. Because you cannot always avoid large

sort operations, it is best to schedule queries with large sorts as periodic

batch processes during off-peak database usage so that the performance of

most user processes is not affected.

Using Stored Procedures

You should create stored procedures for SQL statements executed on a reg-

ular basis—particularly large transactions or queries. Stored procedures are

simply SQL statements that are compiled and permanently stored in the

database in an executable format.

Normally, when an SQL statement is issued in the database, the database

must check the syntax and convert the statement into an executable for-

mat within the database (called parsing). The statement, after it is parsed, is

stored in memory; however, it is not permanent. This means that when

other operations need memory, the statement might be ejected from memo-

ry. In the case of stored procedures, the SQL statement is always available

in an executable format and remains in the database until it is dropped

like any other database object. Stored procedures are discussed in more

detail in Hour 22, “Advanced SQL Topics.”

Disabling Indexes During Batch Loads

When a user submits a transaction to the database (INSERT, UPDATE, or

DELETE), an entry is made to both the database table and any indexes asso-

ciated with the table being modified. This means that if there is an index

on the EMPLOYEE table, and a user updates the EMPLOYEE table, an update

also occurs to the index associated with the EMPLOYEE table. In a transac-

tional environment, having a write to an index occur every time a write to

the table occurs is usually not an issue.

During batch loads, however, an index can actually cause serious perform-

ance degradation. A batch load might consist of hundreds, thousands, or

millions of manipulation statements or transactions. Because of their vol-

ume, batch loads take a long time to complete and are normally scheduled

during off-peak hours—usually during weekends or evenings. To optimize

performance during a batch load—which might equate to decreasing the

time it takes the batch load to complete from 12 hours to 6 hours—it is rec-

ommended that the indexes associated with the table affected during the

load are dropped. When you drop the indexes, changes are written to the

tables much faster, so the job completes faster. When the batch load is

complete, you should rebuild the indexes. During the rebuild, the indexes

Cost-Based Optimization 279

are populated with all the appropriate data from the tables. Although it

might take a while for an index to be created on a large table, the overall

time expended if you drop the index and rebuild it is less.

Another advantage to rebuilding an index after a batch load completes is

the reduction of fragmentation that is found in the index. When a data-

base grows, records are added, removed, and updated, and fragmentation

can occur. For any database that experiences a lot of growth, it is a good

idea to periodically drop and rebuild large indexes. When you rebuild an

index, the number of physical extents that comprise the index is decreased,

there is less disk I/O involved to read the index, the user gets results more

quickly, and everyone is happy.

Cost-Based Optimization
Often you inherit a database that is in need of SQL statement tuning atten-

tion. These existing systems might have thousands of SQL statements exe-

cuting at any given time. To optimize the amount of time spent on per-

formance tuning, you need a way to determine what queries are most ben-

eficial to concentrate on. This is where cost-based optimization comes into

play. Cost-based optimization attempts to determine which queries are

most costly in relation to the overall system resources spent. For instance,

say we measure cost by execution duration and we have the following two

queries with their corresponding run times:

SELECT * FROM CUSTOMER_TBL

WHERE CUST_NAME LIKE ‘%LE%’ 2 sec

SELECT * FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘G%’; 1 sec

At first, it might appear that the first statement is the one you need to con-

centrate your efforts on. However, what if the second statement is executed

1,000 times an hour but the first is performed only 10 times in the same

hour? Doesn’t this make a huge difference in how you allocate your time?

Cost-based optimization ranks SQL statements in order of total computa-

tional cost. Computational cost is easily determined based on some meas-

ure of query execution (duration, number of reads, and so on) multiplied

by the number of executions over a given period:

Total Computational Cost = Execution Measure * (number of executions)

280 HOUR 17: Improving Database Performance

This is important because you get the most overall benefit from tuning the

queries with the most total computational cost first. Looking at the previ-

ous example, if we are able to cut each statement execution time in half,

you can easily figure out the total computational savings:

Statement #1: 1 sec * 10 executions = 10 sec of computational savings

Statement #2: .5 sec * 1000 executions = 500 sec of computational savings

Now it is much easier to understand why your valuable time should be

spent on the second statement instead of the first. Not only have you

worked to optimize your database, but you’ve optimized your time as well.

Performance Tools
Many relational databases have built-in tools that assist in SQL statement

database performance tuning. For example, Oracle has a tool called

EXPLAIN PLAN that shows the user the execution plan of an SQL statement.

Another tool in Oracle that measures the actual elapsed time of an SQL

statement is TKPROF. In SQL Server, the Query Analyzer has several options

to provide you with an estimated execution plan or statistics from the exe-

cuted query. Check with your DBA and implementation documentation for

more information on tools that might be available to you.

Summary
You have learned the meaning of tuning SQL statements in a relational

database. You have learned that there are two basic types of tuning: data-

base tuning and SQL statement tuning—both of which are vital to the effi-

cient operation of the database and SQL statements within it. Each is

equally important and cannot be optimally tuned without the other.

You have read about methods for tuning an SQL statement, starting with a

statement’s actual readability, which does not directly improve performance

but aids the programmer in the development and management of state-

ments. One of the main issues in SQL statement performance is the use of

indexes. There are times to use indexes and times to avoid using them. For

all measures taken to improve SQL statement performance, you need to

understand the data itself, the database design and relationships, and the

users’ needs as far as accessing the database.

Workshop 281

Q&A
Q. By following what I have learned about performance, what realistic perform-

ance gains, as far as data retrieval time, can I really expect to see?

A. Realistically, you could see performance gains from fractions of a sec-

ond to minutes, hours, or even days.

Q. How can I test my SQL statements for performance?

A. Each implementation should have a tool or system to check perform-

ance. Oracle7 was used to test the SQL statements in this book. Oracle

has several tools for checking performance. Some of these tools include

the EXPLAIN PLAN, TKPROF, and SET commands. Check your particular

implementation for tools that are similar to Oracle’s.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Would the use of a unique index on a small table be of any benefit?

2. What happens when the optimizer chooses not to use an index on a

table when a query has been executed?

3. Should the most restrictive clause(s) be placed before the join condi-

tion(s) or after the join conditions in the WHERE clause?

282 HOUR 17: Improving Database Performance

Exercises

1. Rewrite the following SQL statements to improve their performance.

Use EMPLOYEE_TBL and EMPLOYEE_PAY_TBL as described here:

EMPLOYEE_TBL

EMP_ID VARCHAR(9) NOT NULL Primary key,

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE VARCHAR(2) NOT NULL,

ZIP INTEGER(5) NOT NULL,

PHONE VARCHAR(10),

PAGER VARCHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR(9) NOT NULL primary key,

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

DATE_LAST_RAISE DATETIME,

SALARY DECIMAL(8,2),

BONUS DECIMAL(8,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)

REFERENCES EMPLOYEE_TBL (EMP_ID)

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,

PHONE

FROM EMPLOYEE_TBL

WHERE SUBSTRING(PHONE, 1, 3) = ‘317’ OR

SUBSTRING(PHONE, 1, 3) = ‘812’ OR

SUBSTRING(PHONE, 1, 3) = ‘765’;

b. SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘%ALL%;

c. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,

EP.SALARY

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE LAST_NAME LIKE ‘S%’

AND E.EMP_ID = EP.EMP_ID;

Workshop 283

2. Add another table called EMPLOYEE_PAYHIST_TBL that contains a large

amount of pay history data. Use the table that follows to write the

series of SQL statements to address the following problems:

EMPLOYEE_PAYHIST_TBL

PAYHIST_ID VARCHAR(9) NOT NULL primary key,

EMP_ID VARCHAR(9) NOT NULL,

START_DATE DATETIME NOT NULL,

END_DATE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

SALARY DECIMAL(8,2) NOT NULL,

BONUS DECIMAL(8,2) NOT NULL,

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)

REFERENCES EMPLOYEE_TBL (EMP_ID)

What steps did you take to ensure that the queries you wrote

perform well?

a. Find the SUM of the salaried versus nonsalaried employees by the

year in which their pay started.

b. Find the difference in the yearly pay of salaried employees

versus nonsalaried employees by the year in which their pay

started. Consider the nonsalaried employees to be working full

time during the year (PAY_RATE * 52 * 40).

c. Find the difference in what employees make now versus what

they made when they started with the company. Again, consider

the nonsalaried employees to be full-time. Also consider that the

employees’ current pay is reflected in the EMPLOYEE_PAY_TBL as

well as the EMPLOYEE_PAYHIST_TBL. In the pay history table, the

current pay is reflected as a row with the END_DATE for pay equal

to NULL.

This page intentionally left blank

User Management in the Database 285

HOUR 18

Managing Database Users

What You’ll Learn in This Hour:

. Types of users

. User management

. The user’s place in the database

. The user versus the schema

. User sessions

. Altering a user’s attributes

. User profiles

. Dropping users from the database

. Tools utilized by users

In this hour, you learn about one of the most critical administration func-

tions for any relational database: managing database users. Managing

users ensures that your database is available to the required people and

application while keeping external entities out. Considering the amount of

sensitive commercial and personal data that is stored in databases, this

hour is definitely one that you should pay careful attention to.

User Management in the Database
Users are the reason for the season—the season of designing, creating,

implementing, and maintaining any database. Their needs are considered

when the database is designed, and the final goal in implementing a data-

base is making the database available to users, who in turn utilize the

database that you, and possibly many others, have had a hand in

developing.

Some believe that if there were no users, nothing bad would ever happen to

the database. Although this statement reeks with truth, the database was

actually created to hold data so users could function in their day-to-day jobs.

286 HOUR 18: Managing Database Users

By the
Way

Although user management is often the database administrator’s implicit

task, other individuals sometimes take a part in the user management

process. User management is vital in the life of a relational database and is

ultimately managed through the use of SQL concepts and commands,

although they vary from vendor to vendor. The ultimate goal of the data-

base administrator in terms of user management is to strike the proper bal-

ance between giving users access to the data they need and maintaining

the integrity of the data within the system.

Roles Vary Widely

Titles, roles, and duties of users vary widely (and wildly) from workplace to work-

place, depending on the size of each organization and each organization’s specific

data processing needs. One organization’s database administrator might be

another organization’s “computer guy.”

Types of Users

There are several types of database users:

. Data entry clerks

. Programmers

. System engineers

. Database administrators

. System analysts

. Developers

. Testers

. Managers

. End users

Each type of user has a unique set of job functions (and problems), all of

which are critical to the user’s daily survival and job security. Furthermore,

each type of user has different levels of authority and a special place in the

database.

Who Manages Users?

A company’s management staff is responsible for the day-to-day manage-

ment of users; however, the database administrator (DBA) or other assigned

User Management in the Database 287

Make Sure You Follow a Systematic Approach to User Management

User account management is vital to the protection and success of any data-

base; when not managed systematically, it often fails. User account manage-

ment is one of the simplest database management tasks, theoretically, but it is

often complicated by politics and communication problems.

By the
Way

individuals are ultimately responsible for the management of users within

the database.

The DBA usually handles creating the database user accounts, roles, privi-

leges, and profiles, as well as dropping those user accounts from the data-

base. Because it can become an overwhelming task in a large and active

environment, some companies have a security officer who assists the DBA

with the user management process.

The security officer, if one is assigned, is usually responsible for the paper-

work, relaying to the DBA a user’s job requirements and letting the DBA

know when a user no longer requires access to the database.

The system analyst, or system administrator, is usually responsible for the

operating system security, which entails creating users and assigning appro-

priate privileges. The security officer also might assist the system analyst in

the same way he does the database administrator.

Maintaining an orderly way in which to assign and remove permissions as

well as to document the changes makes the process much easier to main-

tain. Documentation also enables you to have a paper trail to point to when

the security of your system needs to be audited either internally or external-

ly. We expand on the user management system throughout this hour.

The User’s Place in the Database

A user should be given the roles and privileges necessary to accomplish her

job. No user should have database access that extends beyond the scope of

her job duties. Protecting the data is the entire reason for setting up user

accounts and security. Data can be damaged or lost, even if unintentional-

ly, if the wrong user has access to the wrong data. When the user no longer

requires database access, that user’s account should be either removed from

the database or disabled as quickly as possible.

All users have their place in the database, yet some have more responsibili-

ties and duties than others. Database users are like parts of a human

body—all work together in unison to accomplish some goal.

288 HOUR 18: Managing Database Users

By the
Way

How Does a User Differ from a Schema?

A database’s objects are associated with database user accounts, called

schemas. A schema is a collection of database objects that a database user

owns. This database user is called the schema owner. Often schemas logically

group like objects in a database and then assign them to a particular

schema owner to manage. You could think of it in terms of possibly group-

ing all the personnel tables under a schema called HR for human resources.

The difference between a regular database user and a schema owner is that

a schema owner owns objects within the database, whereas most users do

not own objects. Most users are given database accounts to access data that

is contained in other schemas. Because the schema owner actually owns

these objects, he has complete control over them.

Microsoft SQL Server actually goes one step further by having a database

owner. The database owner basically owns all objects within the database

and has complete control over everything stored within. Within the data-

base are one or more schemas. The default schema is always dbo and is

normally the default for the database owner. There may be as many

schemas as necessary to logically group the database objects and assign

schema owners.

User Creation and Management Varies Between Systems

You must check your particular implementation for the creation of users. Also

refer to company policies and procedures when creating and managing users. The

following section compares the user creation processes in Oracle, MySQL, and

Microsoft SQL Server.

The Management Process
A stable user management system is mandatory for data security in any

database system. The user management system starts with the new user’s

immediate supervisor, who should initiate the access request and then go

through the company’s approval authorities. If management accepts the

request, it is routed to the security officer or database administrator, who

takes action. A good notification process is necessary; the supervisor and

the user must be notified that the user account has been created and that

access to the database has been granted. The user account password should

only be given to the user, who should immediately change the password

upon initial login to the database.

The Management Process 289

Creating Users

The creation of database users involves the use of SQL commands within

the database. There is no one standard command for creating database

users in SQL; each implementation has a method for doing so. The basic

concept is the same, regardless of the implementation. There are several

graphical user interface (GUI) tools on the market that can be used for user

management.

When the DBA or assigned security officer receives a user account request,

the request should be analyzed for the necessary information. The informa-

tion should include your particular company’s requirements for establishing

a user account.

Some items that should be included are Social Security number, full name,

address, phone number, office or department name, assigned database,

and, sometimes, a suggested user account name.

Syntactical examples of creating users compared among the different imple-

mentations are shown in the following sections.

Creating Users in Oracle

Following are the steps for creating a user account in an Oracle database:

1. Create the database user account with default settings.

2. Grant appropriate privileges to the user account.

The following is the syntax for creating a user:

CREATE USER USER_ID

IDENTIFIED BY [PASSWORD | EXTERNALLY]

[DEFAULT TABLESPACE TABLESPACE_NAME]

[TEMPORARY TABLESPACE TABLESPACE_NAME]

[QUOTA (INTEGER (K | M) | UNLIMITED) ON TABLESPACE_NAME]

[PROFILE PROFILE_TYPE]

[PASSWORD EXPIRE |ACCOUNT [LOCK | UNLOCK]

If you are not using Oracle, do not overly concern yourself with some of the

options in this syntax. A tablespace is a logical area managed by the DBA

that houses database objects, such as tables and indexes. The DEFAULT TABLE-

SPACE is the tablespace in which objects created by the particular user reside.

The TEMPORARY TABLESPACE is the tablespace used for sort operations (table

joins, ORDER BY, GROUP BY) from queries the user executes. The QUOTA is the

space limit placed on a particular tablespace to which the user has access.

PROFILE is a particular database profile that has been assigned to the user.

290 HOUR 18: Managing Database Users

The following is the syntax for granting privileges to the user account:

GRANT PRIV1 [, PRIV2, ...] TO USERNAME | ROLE [, USERNAME]

Even the CREATE USER Command Has Differences

You can use the preceding syntax for creating users to add a user to an Oracle

database, as well as a few other major relational database implementations.

MySQL does not support the CREATE USER command. Users can be managed

using the mysqladmin tool. After a local user account is set up on a Windows

computer, a login is not required. However, you should set up a user for each

user requiring access to the database in a multiuser environment using

mysqladmin.

By the
Way

The GRANT statement can grant one or more privileges to one or more users

in the same statement. The privilege(s) can also be granted to a role, which

in turn can be granted to a user(s).

In MySQL, the GRANT command can grant users access on the local comput-

er to the current database. For example:

GRANT USAGE ON *.* TO USER@LOCALHOST IDENTIFIED BY ‘PASSWORD’;

Additional privileges can be granted to a user as follows:

GRANT SELECT ON TABLENAME TO USER@LOCALHOST;

For the most part, multiuser setup and access for MySQL is required only in

multiuser environments.

Creating Users in Microsoft SQL Server

The steps for creating a user account in a Microsoft SQL Server database

follow:

1. Create the login user account for SQL Server, and assign a password

and a default database for the user.

2. Add the user to the appropriate database(s) so that a database user

account is created.

3. Grant appropriate privileges to the database user account.

The following is the syntax for creating the user account:

SP_ADDLOGIN USER_ID ,PASSWORD [, DEFAULT_DATABASE]

The Management Process 291

By the
Way

There’s a Lot More to Assigning Privileges

The discussion of privileges within a relational database is further elaborated on

in Hour 19, “Managing Database Security.”

The following is the syntax for adding the user to a database:

SP_ADDUSER USER_ID [, NAME_IN_DB [, GRPNAME]]

As you can see, SQL Server distinguishes between a login account that is

granted access to log into the SQL Server instance and a database user

account that grants access to database objects. You can view this for your-

self by looking at the security folders in SQL Server Management Studio

after you have created the login account and then at the database level

when you issue the SP_ADDUSER command. This is an important distinction

with SQL Server because you can create a login account that does not have

access to any of the databases on the instance.

A common error when creating accounts on SQL Server is forgetting to

assign them access to their default database. So when you set up accounts,

ensure that they have access to at least their default database or you might

be setting up the users to receive an error when logging into your system.

The following is the syntax for granting privileges to the user account:

GRANT PRIV1 [, PRIV2, ...] TO USER_ID

Creating Users in MySQL

The steps for creating a user account in MySQL follow:

1. Create the user account within the database.

2. Grant the appropriate privileges to the user account.

The syntax for creating the user account is similar to the syntax used in

Oracle:

SELECT USER user [IDENTIFIED BY [PASSWORD] ’password’]

The syntax for granting the user’s privileges is also similar to the Oracle

version:

GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ...

ON [object_type]

{tbl_name | * | *.* | db_name.* | db_name.routine_name}

TO user

292 HOUR 18: Managing Database Users

Creating Schemas

Schemas are created via the CREATE SCHEMA statement.

The syntax is as follows:

CREATE SCHEMA [SCHEMA_NAME] [USER_ID]

[DEFAULT CHARACTER SET CHARACTER_SET]

[PATH SCHEMA NAME [,SCHEMA NAME]]

[SCHEMA_ELEMENT_LIST]

The following is an example:

CREATE SCHEMA USER1

CREATE TABLE TBL1

(COLUMN1 DATATYPE [NOT NULL],

COLUMN2 DATATYPE [NOT NULL]...)

CREATE TABLE TBL2

(COLUMN1 DATATYPE [NOT NULL],

COLUMN2 DATATYPE [NOT NULL]...)

GRANT SELECT ON TBL1 TO USER2

GRANT SELECT ON TBL2 TO USER2

[OTHER DDL COMMANDS ...]

The following is the application of the CREATE SCHEMA command in one

implementation:

CREATE SCHEMA AUTHORIZATION USER1

CREATE TABLE EMP

(ID NUMBER NOT NULL,

NAME VARCHAR2(10) NOT NULL)

CREATE TABLE CUST

(ID NUMBER NOT NULL,

NAME VARCHAR2(10) NOT NULL)

GRANT SELECT ON TBL1 TO USER2

GRANT SELECT ON TBL2 TO USER2;

Schema created.

The AUTHORIZATION keyword is added to the CREATE SCHEMA command. This

example was performed in an Oracle database. This goes to show you, as

you have also seen in this book’s previous examples, that vendors’ syntax

for commands often varies in their implementations.

Implementations that do support the creation of schemas often assign a

default schema to a user. Most often this is aligned with the user’s account.

So a user with the account BethA2 normally has a default schema of

BethA2. This is important to remember because objects are created in the

user’s default schema unless otherwise directed by providing a schema

The Management Process 293

Watch
Out!

By the
Way

name at the time of creation. If we issue the following CREATE TABLE state-

ment using BethA2’s account, it is created in the BethA2 schema:

CREATE TABLE MYTABLE(

NAME VARCHAR(50) NOT NULL);

This might not be the desired location. If this is SQL Server, we might have

permissions to the dbo schema and want to create it there. In that case, we

need to qualify our object with the schema as shown here:

CREATE TABLE DBO.MYTABLE(

NAME VARCHAR(50) NOT NULL):

It is important to remember these caveats when creating users and assign-

ing them permissions so that you can maintain proper order within your

database systems without having unintended consequences.

Dropping a Schema

CREATE SCHEMA Is Not Always Supported

Some implementations might not support the CREATE SCHEMA command. How-

ever, schemas can be implicitly created when a user creates objects. The CREATE

SCHEMA command is simply a single-step method of accomplishing this task. After

a user creates objects, the user can grant privileges that allow access to the

user’s objects to other users.

MySQL does not support the CREATE SCHEMA command. A schema in MySQL is

considered to be a database. So you use the CREATE DATABASE command to

essentially create a schema to populate with objects.

You can remove a schema from the database using the DROP SCHEMA state-

ment. You must consider two things when dropping a schema: the RESTRICT

option and the CASCADE option. If RESTRICT is specified, an error occurs if

objects currently exist in the schema. You must use the CASCADE option if

any objects currently exist in the schema. Remember that when you drop a

schema, you also drop all database objects associated with that schema.

The syntax is as follows:

DROP SCHEMA SCHEMA_NAME { RESTRICT | CASCADE }

There Are Different Ways to Remove a Schema

The absence of objects in a schema is possible because objects, such as tables,

can be dropped using the DROP TABLE command. Some implementations have a

294 HOUR 18: Managing Database Users

procedure or command that drops a user and can also drop a schema. If the

DROP SCHEMA command is not available in your implementation, you can remove a

schema by removing the user who owns the schema objects.

Altering Users

An important part of managing users is the ability to alter a user’s attributes

after user creation. Life for the DBA would be a lot simpler if personnel with

user accounts were never promoted, never left the company, or if the addi-

tion of new employees was minimized. In the real world, high personnel

turnover and changes in users’ responsibilities are a reality and a significant

factor in user management. Nearly everyone changes jobs or job duties.

Therefore, user privileges in a database must be adjusted to fit a user’s needs.

The following is Oracle’s example of altering the current state of a user:

ALTER USER USER_ID [IDENTIFIED BY PASSWORD | EXTERNALLY |GLOBALLY AS
‘CN=USER’]

[DEFAULT TABLESPACE TABLESPACE_NAME]

[TEMPORARY TABLESPACE TABLESPACE_NAME]

[QUOTA INTEGER K|M |UNLIMITED ON TABLESPACE_NAME]

[PROFILE PROFILE_NAME]

[PASSWORD EXPIRE]

[ACCOUNT [LOCK |UNLOCK]]

[DEFAULT ROLE ROLE1 [, ROLE2] | ALL

[EXCEPT ROLE1 [, ROLE2 | NONE]]

You can alter many of the user’s attributes in this syntax. Unfortunately,

not all implementations provide a simple command that allows the manip-

ulation of database users.

MySQL, for instance, uses several means to modify the user account. For

example, you use the following syntax to reset the user’s password in MySQL:

UPDATE mysql.user SET Password=PASSWORD(‘new password’)

WHERE user=’username’;

Additionally, you might want to change the username for the user. You

could accomplish this with the following syntax:

RENAME USER old_username TO new_username;

Some implementations also provide GUI tools that enable you to create,

modify, and remove users.

The Management Process 295

By the
Way

Some Databases and Tools Obscure the Underlying Commands

Remember that the syntax varies between implementations. In addition, most

database users do not manually issue the commands to connect or disconnect

from the database. Most users access the database through a vendor-provided or

third-party tool that prompts the user for a username and password, which in turn

connects to the database and initiates a database user session.

User Sessions

A user database session is the time that begins at database login and ends

when a user logs out. During the user session, the user can perform various

actions that have been granted, such as queries and transactions.

Upon the establishment of the connection and the initiation of the session,

the user can start and perform any number of transactions until the con-

nection is disconnected; at that time, the database user session terminates.

Users can explicitly connect and disconnect from the database, starting and

terminating SQL sessions, using commands such as the following:

CONNECT TO DEFAULT | STRING1 [AS STRING2] [USER STRING3]

DISCONNECT DEFAULT | CURRENT | ALL | STRING

SET CONNECTION DEFAULT | STRING

User sessions can be—and often are—monitored by the DBA or other per-

sonnel having interest in user activities. A user session is associated with a

particular user account when a user is monitored. A database user session

is ultimately represented as a process on the host operating system.

Removing User Access

You can remove a user from the database or disallow a user’s access

through a couple of simple commands. Once again, however, variations

among implementations are numerous, so you must check your particular

implementation for the syntax or tools to accomplish user removal or

access revocation.

Following are methods for removing user database access:

. Change the user’s password

. Drop the user account from the database

. Revoke appropriate previously granted privileges from the user

296 HOUR 18: Managing Database Users

You can use the DROP command in some implementations to drop a user

from the database:

DROP USER USER_ID [CASCADE]

The REVOKE command is the counterpart of the GRANT command in many

implementations, allowing privileges that have been granted to a user to

be revoked. An example syntax for this command for SQL Server, Oracle,

and MySQL is as follows:

REVOKE PRIV1 [,PRIV2, ...] FROM USERNAME

Tools Utilized by Database Users
Some people say that you do not need to know SQL to perform database

queries. In a sense, they are correct; however, knowing SQL definitely helps

when querying a database, even when using GUI tools. Even though GUI

tools are good and should be used when available, it is most beneficial to

understand what is happening behind the scenes so you can maximize the

efficiency of utilizing these user-friendly tools.

Many GUI tools that aid the database user automatically generate SQL

code by navigating through windows, responding to prompts, and selecting

options. There are reporting tools that generate reports. Forms can be creat-

ed for users to query, update, insert, or delete data from a database. There

are tools that convert data into graphs and charts. Certain database

administration tools monitor database performance, and others allow

remote connectivity to a database. Database vendors provide some of these

tools, whereas others are provided as third-party tools from other vendors.

Summary
All databases have users, whether one or thousands. The user is the reason

for the database.

There are three necessities for managing users in the database. First, you

must be able to create database user accounts for the proper individuals

and services. Second, you must be able to grant privileges to the accounts to

accommodate the tasks that must be performed within the database.

Finally, you must be able to either remove a user account from the database

or revoke certain privileges within the database from an account.

Workshop 297

Some of the most common tasks of managing users have been touched on;

much detail is avoided here, because most databases differ in how users are

managed. However, it is important to discuss user management due to its

relationship with SQL. The American National Standards Institute (ANSI)

has not defined or discussed in detail many of the commands to manage

users, but the concept remains the same.

Q&A
Q. Is there an SQL standard for adding users to a database?

A. ANSI provides some commands and concepts, although each imple-

mentation and each company has its own commands, tools, and rules

for creating or adding users to a database.

Q. Can user access be temporarily suspended without removing the user ID

completely from the database?

A. Yes. You can temporarily suspend user access by simply changing the

user’s password or revoking privileges that allow the user to connect to

the database. You can reinstate the functionality of the user account

by changing and issuing the password to the user or granting privi-

leges to the user that might have been revoked.

Q. Can a user change his own password?

A. Yes, in most major implementations. Upon user creation or addition to

the database, a generic password is given to the user, who must change

it as quickly as possible to a password of his choice. After the user

changes his password, even the DBA does not know the new password.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

298 HOUR 18: Managing Database Users

Quiz

1. Which command establishes a session?

2. Which option drops a schema that still contains database objects?

3. Which command in MySQL creates a schema?

4. Which statement removes a database privilege?

5. Which command creates a grouping or collection of tables, views, and

privileges?

6. What is the difference in SQL Server between a login account and a

database user account?

Exercises

1. Describe how you would create a new user ’John’ in your learnsql

database.

2. How would you grant access to the Employee_tbl to your new user

’John’?

3. Describe how you would assign permissions to all objects within the

learnsql database to ’John’.

4. Describe how you would revoke the previous privileges from ’John’

and then remove his account.

What Is Database Security? 299

HOUR 19

Managing Database
Security

What You’ll Learn in This Hour:

. Database security

. Security versus user management

. Database system privileges

. Database object privileges

. Granting privileges to users

. Revoking privileges from users

. Security features in the database

In this hour, you learn the basics of implementing and managing security

within a relational database using SQL and SQL-related commands. Each

major implementation differs on syntax with its security commands, but

the overall security for the relational database follows the same basic

guidelines discussed in the ANSI standard. You must check your particular

implementation for syntax and any special guidelines for security.

What Is Database Security?
Database security is simply the process of protecting the data from unautho-

rized usage. Unauthorized usage includes data access by database users

who should have access to part of the database, but not all parts. This pro-

tection also includes the act of policing against unauthorized connectivity

and distribution of privileges. Many user levels exist in a database, from

the database creator to individuals responsible for maintaining the data-

base (such as the database administrator [DBA]) to database programmers to

end users. Although end users have the most limited access, they are the

300 HOUR 19: Managing Database Security

By the
Way

users for which the database exists. A user should be granted the fewest

number of privileges needed to perform his particular job.

You might be wondering what the difference between user management

and database security is. After all, the previous hour discussed user man-

agement, which seems to cover security. Although user management and

database security are definitely related, each has its own purpose, and the

two work together to achieve a secure database.

A well-planned and maintained user management program goes hand in

hand with the overall security of a database. Users are assigned user

accounts and passwords that give them general access to the database. The

user accounts within the database should be stored with information, such

as the user’s actual name, the office and department in which the user

works, a telephone number or extension, and the database name to which

the user has access. Personal user information should only be accessible to

the DBA. A DBA or security officer assigns an initial password for the data-

base user; the user should change this password immediately. Remember

that the DBA does not need, and should not want to know, the individual’s

password. This ensures a separation of duties and protects the DBA’s

integrity should problems with a user’s account arise.

If a user no longer requires certain privileges granted to her, those privi-

leges should be revoked. If a user no longer requires access to the database,

the user account should be dropped from the database.

Generally, user management is the process of creating user accounts, remov-

ing user accounts, and keeping track of users’ actions within the database.

Database security is going a step further by granting privileges for specific

database access, revoking certain privileges from users, and taking meas-

ures to protect other parts of the database, such as the underlying database

files.

There Are More Aspects to Database Security Than Privileges

Because this is an SQL book, not a database book, it focuses on database privi-

leges. However, you should keep in mind other aspects to database security, such

as the protection of underlying database files, which holds equal importance with

the distribution of database privileges. High-level database security can become

complex and differs immensely among relational database implementations. If

you would like to learn more about database security, you can find information on

The Center for Internet Security’s web page: www.cisecurity.org/.

www.cisecurity.org/

What Are Privileges? 301

What Are Privileges?
Privileges are authority levels used to access the database, access objects

within the database, manipulate data in the database, and perform various

administrative functions within the database. Privileges are issued via the

GRANT command and are taken away via the REVOKE command.

Just because a user can connect to a database does not mean that the user

can access data within a database. Access to data within the database is

handled through these privileges. The two types of privileges are system

privileges and object privileges.

System Privileges

System privileges are those that allow database users to perform administra-

tive actions within the database, such as creating a database, dropping a

database, creating user accounts, dropping users, dropping and altering

database objects, altering the state of objects, altering the state of the data-

base, and other actions that could result in serious repercussions if not care-

fully used.

System privileges vary greatly among the different relational database ven-

dors, so you must check your particular implementation for all the avail-

able system privileges and their correct usage.

The following are some common system privileges in SQL Server:

. CREATE DATABASE—Allows for the creation of a new database

. CREATE PROCEDURE—Allows for the creation of stored procedures

. CREATE VIEW—Allows for the creation of views

. BACKUP DATABASE—Allows the user to control backup of the data-

base system

. CREATE TABLE—Allows the user to create new tables

. CREATE TRIGGER—Allows the user to create triggers on tables

. EXECUTE—Allows the user to execute given stored procedures within

the specific database

The following are some common system privileges in Oracle:

. CREATE TABLE—Allows the user to create new tables in the speci-

fied schema

302 HOUR 19: Managing Database Security

By the
Way

. CREATE ANY TABLE—Allows the user to create tables in any schema

. ALTER ANY TABLE—Allows the user to alter table structure in any

schema

. DROP TABLE—Allows the user to drop table objects in the specified

schema

. CREATE USER—Allows the user to create other user accounts

. DROP USER—Allows the user to drop existing user accounts

. ALTER USER—Allows the user to make alterations to existing user

accounts

. ALTER DATABASE—Allows the user to alter database properties

. BACKUP ANY TABLE—Allows the user to backup data from any table

in any schema

. SELECT ANY TABLE—Allows the user to perform a select on any table

from any schema

The following are some common global (system) privileges in MySQL:

. CREATE—Allows the user to create a specific object type such as a

database, table, or index

. DROP—Allows the user to delete a specific object type

. GRANT—Allows the user to grant permissions on specific object types

. RELOAD—Allows the user to perform a FLUSH operation to purge

items such as log files

. SHUTDOWN—Allows the user to shut down the MySQL instance

There Can Be Many Layers of Privileges

MySQL has global privileges and object privileges. Global privileges, similar to

system privileges, deal with user access to all database objects.

Object Privileges

Object privileges are authority levels on objects, meaning you must have

been granted the appropriate privileges to perform certain operations on

database objects. For example, to select data from another user’s table, the

user must first grant you access to do so. Object privileges are granted to

users in the database by the object’s owner. Remember that this owner is

also called the schema owner.

What Are Privileges? 303

Some Privileges Are Granted Automatically

The owner of an object has been automatically granted all privileges that relate to

the objects owned. These privileges have also been granted with the GRANT

OPTION, which is a nice feature available in some SQL implementations. This fea-

ture is discussed in the “GRANT OPTION” section later this hour.

Did You
Know?

Most implementations of SQL adhere to the standard list of object privileges

for controlling access to database objects.

You should use these object-level privileges to grant and restrict access to

objects in a schema. These privileges can protect objects in one schema from

database users who have access to another schema in the same database.

A variety of object privileges are available among different implementa-

tions not listed in this section. The capability to delete data from another

user’s object is another common object privilege available in many imple-

mentations. Be sure to check your implementation documentation for all

the available object-level privileges.

Who Grants and Revokes Privileges?

The DBA is usually the one who issues the GRANT and REVOKE commands,

although a security administrator, if one exists, might have the authority to

do so. The authority on what to grant or revoke would come from manage-

ment and normally should be carefully tracked to ensure that only author-

ized individuals are allowed access to these types of permissions.

The ANSI standard for privileges includes the following object privileges:

. USAGE—Authorizes usage of a specific domain.

. SELECT—Allows access to a specific table.

. INSERT(column_name)—Allows data insertion to a specific column of

a specified table.

. INSERT—Allows insertion of data into all columns of a specific table.

. UPDATE(column_name)—Allows a specific column of a specified table

to be updated.

. UPDATE—Allows all columns of a specified table to be updated.

. REFERENCES(column_name)—Allows a reference to a specified column

of a specified table in integrity constraints; this privilege is required

for all integrity constraints.

. REFERENCES—Allows references to all columns of a specified table.

304 HOUR 19: Managing Database Security

The owner of an object must grant privileges to other users in the database

on the object. Even the DBA cannot grant database users privileges on

objects that do not belong to the DBA, although there are ways to work

around that.

Controlling User Access
User access is primarily controlled by a user account and password, but that

is not enough to access the database in most major implementations. The

creation of a user account is only the first step in allowing and controlling

access to the database.

After the user account has been created, the database administrator, securi-

ty officer, or designated individual must be able to assign appropriate

system-level privileges to a user for that user to be allowed to perform actu-

al functions within the database, such as creating tables or selecting from

tables. Furthermore, the schema owner usually needs to grant database

users access to objects in the schema so that the user can do his job.

Two commands in SQL allow database access control involving the assign-

ment of privileges and the revocation of privileges. The GRANT and REVOKE com-

mands distribute both system and object privileges in a relational database.

The GRANT Command

The GRANT command grants both system-level and object-level privileges to

an existing database user account.

The syntax is as follows:

GRANT PRIVILEGE1 [, PRIVILEGE2][ON OBJECT]

TO USERNAME [WITH GRANT OPTION | ADMIN OPTION]

Granting one privilege to a user is as follows:

GRANT SELECT ON EMPLOYEE_TBL TO USER1;

Grant succeeded.

Granting multiple privileges to a user is as follows:

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1;

Grant succeeded.

Notice that when granting multiple privileges to a user in a single state-

ment, each privilege is separated by a comma.

Controlling User Access 305

By the
Way

Be Sure to Understand the Feedback the System Is Giving You

Notice the phrase Grant succeeded, denoting the successful completion of each

grant statement. This is the feedback that you receive when you issue these state-

ments in the implementation used for the book examples (Oracle). Most imple-

mentations have some sort of feedback, although the phrase used might vary.

Granting privileges to multiple users is as follows:

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1, USER2;

Grant succeeded.

GRANT OPTION

GRANT OPTION is a powerful GRANT command option. When an object’s owner

grants privileges on an object to another user with GRANT OPTION, the new

user can also grant privileges on that object to other users, even though the

user does not actually own the object. An example follows:

GRANT SELECT ON EMPLOYEE_TBL TO USER1 WITH GRANT OPTION;

Grant succeeded.

ADMIN OPTION

ADMIN OPTION is similar to GRANT OPTION in that the user who has been

granted the privileges also inherits the ability to grant those privileges to

another user. GRANT OPTION is used for object-level privileges, whereas ADMIN

OPTION is used for system-level privileges. When a user grants system privi-

leges to another user with ADMIN OPTION, the new user can also grant the

system-level privileges to any other user. An example follows:

GRANT CREATE TABLE TO USER1 WITH ADMIN OPTION;

Grant succeeded.

The REVOKE Command

Dropping a User Can Drop Granted Privileges

When a user who has granted privileges using either GRANT OPTION or ADMIN

OPTION has been dropped from the database, the privileges that the user granted

are disassociated with the users to whom the privileges were granted.

Watch
Out!

The REVOKE command removes privileges that have been granted to data-

base users. The REVOKE command has two options: RESTRICT and CASCADE.

When the RESTRICT option is used, REVOKE succeeds only if the privileges

306 HOUR 19: Managing Database Security

specified explicitly in the REVOKE statement leave no other users with aban-

doned privileges. The CASCADE option revokes any privileges that would oth-

erwise be left with other users. In other words, if the owner of an object

granted USER1 privileges with GRANT OPTION, USER1 granted USER2 privileges

with GRANT OPTION, and then the owner revokes USER1’s privileges, CASCADE

also removes the privileges from USER2.

Abandoned privileges are privileges that are left with a user who was granted

privileges with the GRANT OPTION from a user who has been dropped from

the database or had her privileges revoked.

The syntax for REVOKE is as follows:

REVOKE PRIVILEGE1 [, PRIVILEGE2] [GRANT OPTION FOR] ON OBJECT

FROM USER { RESTRICT | CASCADE }

The following is an example:

REVOKE INSERT ON EMPLOYEE_TBL FROM USER1;

Revoke succeeded.

Controlling Access on Individual Columns

Instead of granting object privileges (INSERT, UPDATE, or DELETE) on a table as

a whole, you can grant privileges on specific columns in the table to restrict

user access, as shown in the following example:

GRANT UPDATE (NAME) ON EMPLOYEES TO PUBLIC;

Grant succeeded.

The PUBLIC Database Account

The PUBLIC database user account is a database account that represents all

users in the database. All users are part of the PUBLIC account. If a privilege

is granted to the PUBLIC account, all database users have the privilege.

Likewise, if a privilege is revoked from the PUBLIC account, the privilege is

revoked from all database users, unless that privilege was explicitly granted

to a specific user. The following is an example:

GRANT SELECT ON EMPLOYEE_TBL TO PUBLIC;

Grant succeeded.

Groups of Privileges

Some implementations have groups of privileges in the database. These

groups of permissions are referred to with different names. Having a group of

privileges allows simplicity for granting and revoking common privileges to

Controlling User Access 307

and from users. For example, if a group consists of ten privileges, the group

can be granted to a user instead of individually granting all ten privileges.

Oracle has groups of privileges that are called roles. Oracle includes the fol-

lowing groups of privileges with their implementations:

. CONNECT—Allows a user to connect to the database and perform

operations on any database objects to which the user has access.

Database Privilege Groups Vary Between Systems

Each implementation differs on the use of groups of database privileges. If avail-

able, this feature should be used for ease of database security administration.

By the
Way

. RESOURCE—Allows a user to create objects, drop objects he owns,

grant privileges to objects he owns, and so on.

. DBA—Allows a user to perform any function within the database.

The user can access any database object and perform any operation

with this group.

PUBLIC Privileges Can Grant Unintended Access

Use extreme caution when granting privileges to PUBLIC; all database users

acquire the privileges granted. Therefore, by granting permissions to PUBLIC, you

might unintentionally give access to data to users who have no business access-

ing it. For example, giving PUBLIC access to SELECT from the employee salary

table would give everyone who has access to the database the rights to see what

everyone in the company is being paid!

Watch
Out!

An example for granting a group of privileges to a user follows:

GRANT DBA TO USER1;

Grant succeeded.

SQL Server has several groups of permissions at the server level and the database level.

Some of the database level permission groups are

. DB_DDLADMIN

. DB_DATAREADER

. DB_DATAWRITER

The DB_DDLADMIN role allows the user to manipulate any of the objects with-

in the database through any legal data definition language command. The

DB_DATAREADER role allows the user to select from any of the tables within the

database from which it is assigned.

308 HOUR 19: Managing Database Security

The DB_DATAWRITER role allows the user to perform any data manipulation

syntax—INSERT, UPDATE, or DELETE—on any of the tables within the database.

Controlling Privileges Through Roles
A role is an object created in the database that contains group-like privi-

leges. Roles can reduce security maintenance by not having to grant explicit

privileges directly to a user. Group privilege management is much easier to

handle with roles. A role’s privileges can be changed, and such a change is

transparent to the user.

If a user needs SELECT and UPDATE table privileges on a table at a specified

time within an application, a role with those privileges can temporarily be

assigned until the transaction is complete.

When a role is created, it has no real value other than being a role within a

database. It can be granted to users or other roles. Let’s say that a schema

named APP01 grants the SELECT table privilege to the RECORDS_CLERK role on

the EMPLOYEE_PAY table. Any user or role granted the RECORDS_CLERK role now

would have SELECT privileges on the EMPLOYEE_PAY table.

Likewise, if APP01 revoked the SELECT table privilege from the RECORDS_CLERK

role on the EMPLOYEE_PAY table, any user or role granted the RECORDS_CLERK

role would no longer have SELECT privileges on that table.

When assigning permissions in a database, ensure that you think through

what permissions a user needs and if other users need the same sets of per-

missions. For example, a set of accounting tables might need to be accessed

by several members of an accounting team. In this case, unless they each

need drastically different permissions to these tables, it is far easier to set up

a role, assign the role the appropriate conditions, and then assign the users

to the role.

If a new object is created and needs to have permissions granted now to the

accounting group, you can do it in one location instead of having to update

each account. Likewise, if the accounting team brings on a new member or

decides someone else needs the same access to its tables, you only have to

assign the role to the new user and you are good to go. Roles are an excel-

lent tool to enable the DBA to work smarter and not harder when dealing

with complex database security protocols.

The CREATE ROLE Statement

A role is created with the CREATE ROLE statement.

CREATE ROLE role_name;

Controlling Privileges Through Roles 309

By the
Way

By the
Way

Granting privileges to roles is the same as granting privileges to a user.

Study the following example:

CREATE ROLE RECORDS_CLERK;

Role created.

GRANT SELECT, INSERT, UPDATE, DELETE ON EMPLOYEE_PAY TO RECORDS_CLERK;

Grant succeeded.

GRANT RECORDS_CLERK TO USER1;

Grant succeeded.

The DROP ROLE Statement

A role is dropped using the DROP_ROLE statement:

DROP ROLE role_name;

The following is an example:

DROP ROLE RECORDS_CLERK;

Role dropped.

Roles Are Not Supported in MySQL

MySQL does not support roles. The lack of role usage is a weakness in some

implementations of SQL.

The SET ROLE Statement

A role can be set for a user SQL session using the SET_ROLE statement:

SET ROLE role_name;

The following is an example:

SET ROLE RECORDS_CLERK;

Role set.

You can set more than one role at once:

SET ROLE RECORDS_CLERK, ROLE2, ROLE3;

Role set.

SET ROLE Is Not Always Used

In some implementations, such as Microsoft SQL Server and Oracle, all roles

granted to a user are automatically default roles, which means they are set and

available to the user as soon as the user logs in to the database. The SET ROLE

syntax here is shown so that you can understand what the ANSI standard for

setting a role is.

310 HOUR 19: Managing Database Security

Summary
You were shown the basics on implementing security in an SQL database or

a relational database. You learned the basics of managing database users.

The first step in implementing security at the database level for users is to

create the user. Then the user must be assigned certain privileges that allow

her access to specific parts of the database. ANSI allows the use of roles as

discussed during this hour. Privileges can be granted to users or roles.

The two types of privileges are system and object. System privileges are

those that allow the user to perform various tasks within the database, such

as actually connecting to the database, creating tables, creating users, and

altering the state of the database. Object privileges are those that allow a

user access to specific objects within the database, such as the ability to

select data or manipulate data in a specific table.

Two commands in SQL allow a user to grant and revoke privileges to and

from other users or roles in the database: GRANT and REVOKE. These two com-

mands control the overall administration of privileges in the database.

Although there are many other considerations for implementing security in

a relational database, this hour discussed the basics that relate to the lan-

guage of SQL.

Q&A
Q. If a user forgets her password, what should she do to gain access to the

database again?

A. The user should go to her immediate management or an available

help desk. A help desk should be able to reset a user’s password. If not,

the DBA or security officer can reset the password. The user should

change the password to a password of her choosing as soon as the

password is reset and the user is notified. Sometimes the DBA can

affect this by setting a specific property that forces the user to change

her password on the next login. Check your particular implementa-

tion’s documentation for specifics.

Q. What can I do if I want to grant CONNECT to a user, but the user does not

need all the privileges that are assigned to the CONNECT role?

A. You would simply not grant CONNECT, but only the privileges required.

Should you ever grant CONNECT and the user no longer needs all the

privileges that go with it, simply revoke CONNECT from the user and

grant the specific privileges required.

Workshop 311

Q. Why is it so important for the new user to change the password when

received from whoever created the new user?

A. An initial password is assigned upon creation of the user ID. No one,

not even the DBA or management, should know a user’s password.

The password should be kept a secret at all times to prevent another

user from logging on to the database under another user’s account.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. What option must a user have to grant another user privileges on an

object not owned by the user?

2. When privileges are granted to PUBLIC, do all database users acquire

the privileges, or only specified users?

3. What privilege is required to look at data in a specific table?

4. What type of privilege is SELECT?

5. What option revokes a user’s privilege to an object as well as the other

users that they might have granted privileges to by use of the GRANT

option?

Exercises

1. Log in to your database instance and switch the database instance to

use the learnsql database if it is not set as your default.

312 HOUR 19: Managing Database Security

2. Type the following at the database prompt to get a list of the default

tables depending on your implementation:

MySQL: SHOW TABLES;

SQL Server: SELECT NAME FROM SYS.TABLES;

Oracle: SELECT * FROM USER_TABLES;

3. Create a new database user as follows:

Username: Steve
Password: Steve123
Access: learnsql database, SELECT on all tables

4. Get a list of all database users by typing the following depending on

your implementation:

MySQL: SELECT * FROM USER;

SQL Server: SELECT * FROM SYS.DATABSE_PRINCIPALS WHERE TYPE=’S’;

Oracle: SELECT * FROM DBA_USERS;

What Is a View? 313

HOUR 20

Creating and Using Views
and Synonyms

What You’ll Learn in This Hour:

. What views are

. How views are used

. Views and security

. Storing views

. Creating views

. Joining views

. Data manipulation in a view

. Performance of nested views

. What synonyms are

. Managing synonyms

. Creating synonyms

. Dropping synonyms

In this hour, you learn about performance, as well as how to create and

drop views, how to use views for security, and how to provide simplicity in

data retrieval for end users and reports. This hour also includes a discus-

sion on synonyms.

What Is a View?
A view is a virtual table. That is, a view looks like a table and acts like a

table as far as a user is concerned, but it doesn’t require physical storage. A

view is actually a composition of a table in the form of a predefined query,

314 HOUR 20: Creating and Using Views and Synonyms

Watch
Out!

SQL

Query

TABLE

data

VIEW

reflects data

in table based

on query.

FIGURE 20.1

The view.

which is stored in the database. For example, you can create a view from

EMPLOYEE_TBL that contains only the employee’s name and address, instead

of all columns in EMPLOYEE_TBL. A view can contain all rows of a table or

select rows from a table. You can create a view from one or many tables.

When you create a view, a SELECT statement is actually run against the

database, which defines the view. The SELECT statement that defines the

view might simply contain column names from the table, or it can be more

explicitly written using various functions and calculations to manipulate or

summarize the data that the user sees. Study the illustration of a view in

Figure 20.1.

A view is considered a database object, although the view takes up no stor-

age space on its own. The main difference between a view and a table is

that data in a table consumes physical storage, whereas a view does not

require physical storage because it is actually referring to data from a table.

A view is used in the same manner that a table is used in the database,

meaning that data can be selected from a view as it is from a table. Data

can also be manipulated in a view, although there are some restrictions.

The following sections discuss some common uses for views and how they

are stored in the database.

Dropping Tables Used by Views

If a table that created a view is dropped, the view becomes inaccessible. You

receive an error when trying to query against the view.

Utilizing Views to Simplify Data Access

Sometimes, through the process of normalizing your database or just as a

process of database design, the data might be contained in a table format

What Is a View? 315

Did You
Know?

that does not easily lend itself to querying by end users. In this instance,

you could create a series of views to make the data simpler for your end

users to query. Your users might need to query the employee salary infor-

mation from the learnsql database. However, they might not totally under-

stand how to create joins between EMPLOYEE_TBL and EMPLOYEE_PAY_TBL. To

bridge this gap, you create a view that contains the join and gives the end

users the right to select from the view.

Utilizing Views as a Form of Security

Views Can Be Used as a Form of Security

Views can restrict user access to particular columns in a table or to rows in a

table that meet specific conditions as defined in the WHERE clause of the view def-

inition.

Views can be utilized as a form of security in the database. Let’s say you

have a table called EMPLOYEE_TBL. EMPLOYEE_TBL includes employee names,

addresses, phone numbers, emergency contacts, department, position, and

salary or hourly pay. You have some temporary help come in to write a

report of employees’ names, addresses, and phone numbers. If you give

access to EMPLOYEE_TBL to the temporary help, they can see how much each

of your employees receives in compensation—you do not want this to hap-

pen. To prevent that, you have created a view containing only the required

information: employee name, address, and phone numbers. You can then

give the temporary help access to the view to write the report without giving

them access to the compensation columns in the table.

Utilizing Views to Maintain Summarized Data

If you have a summarized data report in which the data in the table or

tables is updated often and the report is created often, a view with summa-

rized data might be an excellent choice.

For example, suppose that you have a table containing information about

individuals, such as city of residence, gender, salary, and age. You could cre-

ate a view based on the table that shows summarized figures for individuals

for each city, such as the average age, average salary, total number of

males, and total number of females. To retrieve this information from the

base table(s) after the view is created, you can simply query the view

instead of composing a SELECT statement that might, in some cases, turn

out to be very complex.

316 HOUR 20: Creating and Using Views and Synonyms

Did You
Know?

The only difference between the syntax for creating a view with summa-

rized data and creating a view from a single or multiple tables is the use of

aggregate functions. Review Hour 9, “Summarizing Data Results from a

Query,” for the use of aggregate functions.

A view is stored in memory only. It takes up no storage space—as do other

database objects—other than the space required to store the view definition.

The view’s creator or the schema owner owns the view. The view owner

automatically has all applicable privileges on that view and can grant priv-

ileges on the view to other users, as with tables. The GRANT command’s GRANT

OPTION privilege works the same as on a table. See Hour 19, “Managing

Database Security,” for more information.

Creating Views
Views are created using the CREATE VIEW statement. You can create views

from a single table, multiple tables, or another view. To create a view, a

user must have the appropriate system privilege according to the specific

implementation.

The basic CREATE VIEW syntax is as follows:

CREATE [RECURSIVE]VIEW VIEW_NAME

[COLUMN NAME [,COLUMN NAME]]

[OF UDT NAME [UNDER TABLE NAME]

[REF IS COLUMN NAME SYSTEM GENERATED |USER GENERATED | DERIVED]

[COLUMN NAME WITH OPTIONS SCOPE TABLE NAME]]

AS

{SELECT STATEMENT}

[WITH [CASCADED | LOCAL] CHECK OPTION]

The following subsections explore different methods for creating views using

the CREATE VIEW statement.

ANSI SQL Has No ALTER VIEW Statement

There is no provision for an ALTER VIEW statement in ANSI SQL, although most

database implementations do provide for that capability. For example, in older ver-

sions of MySQL, you use REPLACE VIEW to alter a current view. However, the

newest versions of MySQL, SQL Server, and Oracle support the ALTER VIEW

statement. Check with your specific database implementation’s documentation to

see what is supported.

Creating a View from a Single Table

You can create a view from a single table.

Creating Views 317

The syntax is as follows:

CREATE VIEW VIEW_NAME AS

SELECT * | COLUMN1 [, COLUMN2]

FROM TABLE_NAME

[WHERE EXPRESSION1 [, EXPRESSION2]]

[WITH CHECK OPTION]

[GROUP BY]

The simplest form for creating a view is one based on the entire contents of

a single table, as in the following example:

CREATE VIEW CUSTOMERS_VIEW AS

SELECT *

FROM CUSTOMER_TBL;

View created.

The next example narrows the contents for a view by selecting only speci-

fied columns from the base table:

CREATE VIEW EMP_VIEW AS

SELECT LAST_NAME, FIRST_NAME, MIDDLE_NAME

FROM EMPLOYEE_TBL;

View created.

The following is an example of how columns from the base table can be

combined or manipulated to form a column in a view. The view column is

titled NAMES by using an alias in the SELECT clause.

CREATE VIEW NAMES AS

SELECT LAST_NAME || ’, ‘ ||FIRST_NAME || ’ ‘ || MIDDLE_NAME NAME

FROM EMPLOYEE_TBL;

View created.

Now you select all data from the NAMES view that you created:

SELECT *

FROM NAMES;

NAME

STEPHENS, TINA D

PLEW, LINDA C

GLASS, BRANDON S

GLASS, JACOB

WALLACE, MARIAH

SPURGEON, TIFFANY

6 rows selected.

The following example shows how to create a view with summarized data

from one or more underlying tables:

318 HOUR 20: Creating and Using Views and Synonyms

CREATE VIEW CITY_PAY AS

SELECT E.CITY, AVG(P PAY_RATE) AVG_PAY

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P

WHERE E.EMP_ID = P.EMP_ID

GROUP BY E.CITY;

View created.

Now you can select from your summarized view:

SELECT *

FROM CITY_PAY;

CITY AVG_PAY

--------------- -------

GREENWOOD

INDIANAPOLIS 13.33333

WHITELAND

3 rows selected.

By summarizing a view, SELECT statements that might occur in the future

are simplified against the underlying table of the view.

Creating a View from Multiple Tables

You can create a view from multiple tables by using a JOIN in the SELECT

statement. The syntax is as follows:

CREATE VIEW VIEW_NAME AS

SELECT * | COLUMN1 [, COLUMN2]

FROM TABLE_NAME1, TABLE_NAME2 [, TABLE_NAME3]

WHERE TABLE_NAME1 = TABLE_NAME2

[AND TABLE_NAME1 = TABLE_NAME3]

[EXPRESSION1][, EXPRESSION2]

[WITH CHECK OPTION]

[GROUP BY]

The following is an example of creating a view from multiple tables:

CREATE VIEW EMPLOYEE_SUMMARY AS

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION, P.DATE_HIRE, P.PAY_RATE

FROM EMPLOYEE_TBL E,

EMPLOYEE PAY_TBL P

WHERE E.EMP_ID = P.EMP_ID;

View created.

Remember that when selecting data from multiple tables, the tables must

be joined by common columns in the WHERE clause. A view is nothing more

than a SELECT statement; therefore, tables are joined in a view definition the

same as they are in a regular SELECT statement. Recall the use of table alias-

es to simplify the readability of a multiple-table query.

Creating Views 319

VIEW3 VIEW4 VIEW5

TABLE

VIEW1 VIEW2

VIEW DEPENDENCIES

FIGURE 20.2

View

dependencies.

A view can also be joined with tables and with other views. The same prin-

ciples apply to joining views with tables and other views that apply to join-

ing tables to other tables. Review Hour 13, “Joining Tables in Queries,” for

more information.

Creating a View from a View

You can create a view from another view using the following format:

CREATE VIEW2 AS

SELECT * FROM VIEW1

You can create a view from a view many layers deep (a view of a view of a

view, and so on). How deep you can go is implementation specific. The only

problem with creating views based on other views is their manageability.

For example, suppose that you create VIEW2 based on VIEW1 and then create

VIEW3 based on VIEW2. If VIEW1 is dropped, VIEW2 and VIEW3 are no good. The

underlying information that supports these views no longer exists.

Therefore, always maintain a good understanding of the views in the data-

base and on which other objects those views rely (see Figure 20.2).

Figure 20.2 shows the relationship of views that are dependent not only on

tables, but on other views. VIEW1 and VIEW2 are dependent on the TABLE.

VIEW3 is dependent on VIEW1. VIEW4 is dependent on both VIEW1 and VIEW2.

VIEW5 is dependent on VIEW2. Based on these relationships, the following can

be concluded:

. If VIEW1 is dropped, VIEW3 and VIEW4 are invalid.

. If VIEW2 is dropped, VIEW4 and VIEW5 are invalid.

. If the TABLE is dropped, none of the views is valid.

320 HOUR 20: Creating and Using Views and Synonyms

Choose Carefully How You Implement Your Views

If a view is as easy and efficient to create from the base table as from another

view, preference should go to the view being created from the base table.

By the
Way

WITH CHECK OPTION
WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of WITH

CHECK OPTION is to ensure that all UPDATE and INSERT commands satisfy the

condition(s) in the view definition. If they do not satisfy the condition(s), the

UPDATE or INSERT returns an error. WITH CHECK OPTION actually enforces refer-

ential integrity by checking the view’s definition to see that it is not violated.

The following is an example of creating a view with WITH CHECK OPTION:

CREATE VIEW EMPLOYEE_PAGERS AS

SELECT LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NOT NULL

WITH CHECK OPTION;

View created.

WITH CHECK OPTION in this case should deny the entry of any NULL values in

the view’s PAGER column because the view is defined by data that does not

have a NULL value in the PAGER column.

Try to insert a NULL value into the PAGER column:

INSERT INTO EMPLOYEE PAGERS

VALUES (‘SMITH’,’JOHN’,NULL);

insert into employee_pagers

*

ERROR at line 1:

ORA-01400: mandatory (NOT NULL) column is missing or NULL during insert

When you choose to use WITH CHECK OPTION during creation of a view from a

view, you have two options: CASCADED and LOCAL. CASCADED is the default and

is assumed if neither is specified. CASCADED is the ANSI standard for the syn-

tax, however, Microsoft SQL Server and Oracle use the slightly different key-

word CASCADE. The CASCADED option checks all underlying views, all integrity

constraints during an update for the base table, and against defining condi-

tions in the second view. The LOCAL option checks only integrity constraints

against both views and the defining conditions in the second view, not the

underlying base table. Therefore, it is safer to create views with the CASCADED

option because the base table’s referential integrity is preserved.

Creating a Table from a View 321

By the
Way

Did You
Know?

Creating a Table from a View
You can create a table from a view, just as you can create a table from

another table (or a view from another view).

The syntax is as follows:

CREATE TABLE TABLE_NAME AS

SELECT {* | COLUMN1 [, COLUMN2]

FROM VIEW_NAME

[WHERE CONDITION1 [, CONDITION2]

[ORDER BY]

Subtle Differences Between Tables and Views

Remember that the main difference between a table and a view is that a table

contains actual data and consumes physical storage, whereas a view contains no

data and requires no storage other than to store the view definition (the query).

First, create a view based on two tables:

CREATE VIEW ACTIVE_CUSTOMERS AS

SELECT C.*

FROM CUSTOMER_TBL C,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID;

View created.

Next, create a table based on the previously created view:

CREATE TABLE CUSTOMER_ROSTER_TBL AS

SELECT CUST_ID, CUST_NAME

FROM ACTIVE_CUSTOMERS;

Table created.

Defer the Use of the GROUP BY Clause in Your Views

Using the ORDER BY clause in the SELECT statement that is querying the view is

better and simpler than using the GROUP BY clause in the CREATE VIEW statement.

Finally, select data from the table, the same as any other table:

SELECT *

FROM CUSTOMER_ROSTER_TBL;

CUST_ID CUST_NAME

---------- ------------------

232 LESLIE GLEASON

12 MARYS GIFT SHOP

43 SCHYLERS NOVELTIES

322 HOUR 20: Creating and Using Views and Synonyms

090 WENDY WOLF

287 GAVINS PLACE

432 SCOTTYS MARKET

6 rows selected.

Views and the ORDER BY Clause
You cannot use the ORDER BY clause in the CREATE VIEW statement; however,

the GROUP BY clause has the same effect as an ORDER BY clause when it’s used

in the CREATE VIEW statement.

The following is an example of a GROUP BY clause in a CREATE VIEW statement:

CREATE VIEW NAMES2 AS

SELECT LAST_NAME || ’, ‘ || FIRST_NAME || ’ ‘ ||MIDDLE_NAME NAME

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME || ’, ‘ || FIRST_NAME || ’ ‘ || MIDDLE_NAME;

View created.

If you select all data from the view, the data is in alphabetical order

(because you grouped by NAME):

SELECT *

FROM NAMES2;

NAME

GLASS, BRANDON S

GLASS, JACOB

PLEW, LINDA C

SPURGEON, TIFFANY

STEPHENS, TINA D

WALLACE, MARIAH

6 rows selected.

Updating Data Through a View
You can update the underlying data of a view under certain conditions:

. The view must not involve joins.

. The view must not contain a GROUP BY clause.

. The view must not contain a UNION statement.

. The view cannot contain a reference to the pseudocolumn ROWNUM.

. The view cannot contain group functions.

Performance Impact of Using Nested Views 323

. The DISTINCT clause cannot be used.

. The WHERE clause cannot include a nested table expression that

includes a reference to the same table as referenced in the FROM

clause.

. This means that the view can perform INSERTS, UPDATES, and

DELETES as long as they honor these caveats.

Review Hour 14, “Using Subqueries to Define Unknown Data,” for the

UPDATE command’s syntax.

Dropping a View
You use the DROP VIEW command to drop a view from the database. The two

options for the DROP VIEW command are RESTRICT and CASCADE. If a view is

dropped with the RESTRICT option and other views are referenced in a con-

straint, the DROP VIEW errs. If the CASCADE option is used and another view or

constraint is referenced, the DROP VIEW succeeds and the underlying view or

constraint is dropped. An example follows:

DROP VIEW NAMES2;

View dropped.

Performance Impact of Using Nested

Views
Views adhere to the same performance characteristics as tables when they

are used in queries. As such, you need to be cognizant of the fact that hid-

ing complex logic behind a view does not negate the fact that the data

must be parsed and assembled by the system querying the underlying

tables. Views must be treated as any other SQL statement in terms of per-

formance tuning. If the query that makes up your view is not preformant,

the view itself experiences performance issues.

Additionally, some users employ views to break down complex queries into

multiple units of views and views that are created on top of other views.

Although this might seem to be an excellent idea to break down the logic

into simpler steps, it can present some performance degradation. This is

because the query engine must break down and translate each sublayer of

view to determine what exactly it needs to do for the query request.

324 HOUR 20: Creating and Using Views and Synonyms

By the
Way

The more layers you have, the more the query engine has to work to come

up with an execution plan. In fact, most query engines do not guarantee

that you get the best overall plan but merely that you get a decent plan in

the shortest amount of time. So it is always best practice to keep the levels

of code in your query as flat as possible and to test and tune the statements

that make up your views.

Synonyms Are Not ANSI SQL Standard

Synonyms are not American National Standards Institute (ANSI) SQL standard;

however, because several major implementations use synonyms, it is best we dis-

cuss them briefly here. You must check your particular implementation for the

exact use of synonyms, if available. Note, however, that MySQL does not support

synonyms. However, you might be able to implement the same type of functional-

ity using a view instead.

What Is a Synonym?
A synonym is merely another name for a table or a view. Synonyms are usu-

ally created so a user can avoid having to qualify another user’s table or

view to access the table or view. Synonyms can be created as PUBLIC or

PRIVATE. Any user of the database can use a PUBLIC synonym; only the

owner of a database and any users that have been granted privileges can

use a PRIVATE synonym.

Either a database administrator (or another designated individual) or indi-

vidual users manage synonyms. Because there are two types of synonyms,

PUBLIC and PRIVATE, different system-level privileges might be required to

create one or the other. All users can generally create a PRIVATE synonym.

Typically, only a DBA or privileged database user can create a PUBLIC syn-

onym. Refer to your specific implementation for required privileges when

creating synonyms.

Creating Synonyms

The general syntax to create a synonym is as follows:

CREATE [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME FOR TABLE|VIEW

You create a synonym called CUST, short for CUSTOMER_TBL, in the following

example. This frees you from having to spell out the full table name.

CREATE SYNONYM CUST FOR CUSTOMER_TBL;

Synonym created.

SELECT CUST_NAME

Summary 325

FROM CUST;

CUST_NAME

LESLIE GLEASON

NANCY BUNKER

ANGELA DOBKO

WENDY WOLF

MARYS GIFT SHOP

SCOTTYS MARKET

JASONS AND DALLAS GOODIES

MORGANS CANDIES AND TREATS

SCHYLERS NOVELTIES

GAVINS PLACE

HOLLYS GAMEARAMA

HEATHERS FEATHERS AND THINGS

RAGANS HOBBIES INC

ANDYS CANDIES

RYANS STUFF

15 rows selected.

It is also common for a table owner to create a synonym for the table to

which you have been granted access so you do not have to qualify the

table name by the name of the owner:

CREATE SYNONYM PRODUCTS_TBL FOR USER1.PRODUCTS_TBL;

Synonym created.

Dropping Synonyms

Dropping synonyms is like dropping almost any other database object. The

general syntax to drop a synonym is as follows:

DROP [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME

The following is an example:

DROP SYNONYM CUST;

Synonym dropped.

Summary
This hour discusses two important features in SQL: views and synonyms. In

many cases, these features are not used when they could aid in the overall

functionality of relational database users. Views were defined as virtual

tables—objects that look and act like tables but do not take physical space

like tables. Views are actually defined by queries against tables and possi-

ble other views in the database. Administrators typically use views to

326 HOUR 20: Creating and Using Views and Synonyms

restrict data that a user sees and to simplify and summarize data. You can

create views from views, but take care not to embed views too deeply to

avoid losing control over their management. There are various options

when creating views; some are implementation specific.

Synonyms are objects in the database that represent other objects. They sim-

plify the name of another object in the database, either by creating a syn-

onym with a short name for an object with a long name or by creating a

synonym on an object owned by another user to which you have access.

There are two types of synonyms: PUBLIC and PRIVATE. A PUBLIC synonym is

one that is accessible to all database users, whereas a PRIVATE synonym is

accessible to a single user. A DBA typically creates a PUBLIC synonym,

whereas each user normally creates her own PRIVATE synonyms.

Q&A
Q. How can a view contain data but take no storage space?

A. A view does not contain data. A view is a virtual table or a stored

query. The only space required for a view is for the actual view cre-

ation statement, called the view definition.

Q. What happens to the view if a table from which a view was created is

dropped?

A. The view is invalid because the underlying data for the view no longer

exists.

Q. What are the limits on naming the synonym when creating synonyms?

A. This is implementation specific. However, the naming convention for

synonyms in most major implementations follows the same rules that

apply to the tables and other objects in the database.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

Workshop 327

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Can you delete a row of data from a view that you created from multi-

ple tables?

2. When creating a table, the owner is automatically granted the appro-

priate privileges on that table. Is this true when creating a view?

3. Which clause orders data when creating a view?

4. Which option can you use when creating a view from a view to check

integrity constraints?

5. You try to drop a view and receive an error because of one or more

underlying views. What must you do to drop the view?

Exercises

1. Write a statement to create a view based on the total contents of

EMPLOYEE_TBL.

2. Write a statement that creates a summarized view containing the

average pay rate and average salary for each city in EMPLOYEE_TBL.

3. Create another view for the same summarized data, except use the

view you created in Exercise 1 instead of the base EMPLOYEE_TBL. Com-

pare the two results.

4. Use the view in Exercise 2 to create a table called

EMPLOYEE_PAY_SUMMARIZED. Verify that the view and the table contain

the same data.

5. Write a statement that drops the table and the three views that you

created.

This page intentionally left blank

What Is the System Catalog? 329

HOUR 21

Working with the System
Catalog

What You’ll Learn in This Hour:

. What the system catalog is

. How the system catalog is created

. What data is contained in the system catalog

. Examples of system catalog tables

. Querying the system catalog

. Updating the system catalog

In this hour, you learn about the system catalog, commonly referred to as

the data dictionary in some relational database implementations. By the

end of this hour, you will understand the purpose and contents of the sys-

tem catalog and will be able to query it to find information about the data-

base based on commands that you have learned in previous hours. Each

major implementation has some form of a system catalog that stores infor-

mation about the database. This hour shows examples of the elements con-

tained in a few of the different system catalogs for the implementations dis-

cussed in this book.

What Is the System Catalog?
The system catalog is a collection of tables and views that contain important

information about a database. A system catalog is available for each data-

base. Information in the system catalog defines the structure of the data-

base and information on the data contained therein. For example, the

Data Definition Language (DDL) for all tables in the database is stored in the

330 HOUR 21: Working with the System Catalog

As you can see in Figure 21.1, the system catalog for a database is actually

part of the database. Within the database are objects, such as tables, index-

es, and views. The system catalog is basically a group of objects that con-

tain information that defines other objects in the database, the structure of

the database, and various other significant information.

The system catalog for your implementation might be divided into logical

groups of objects to provide tables that are accessible by the Database

Administrator (DBA) and any other database user. For example, a user might

need to view the particular database privileges that she has been granted

but doesn’t care how this is internally structured in the database. A user

typically queries the system catalog to acquire information on the user’s

own objects and privileges, whereas the DBA needs to be able to inquire

about any structure or event within the database. In some implementa-

tions, system catalog objects are accessible only to the DBA.

The system catalog is crucial to the DBA or any other database user who

needs to know about the database’s structure and nature. It is especially

important in those instances in which the database user is not presented

with a Graphical User Interface (GUI). The system catalog allows orders to be

kept, not only by the DBA and users, but by the database server.

Database System Catalogs Vary

Each implementation has its own naming conventions for the system catalog’s

tables and views. The naming is not important; however, learning what the system

catalog does is important, as is what it contains and how and where to retrieve

the information.

Did You
Know?

DATABASE

Tables

Other

Objects

SYSTEM

CATALOG

Views Indexes

FIGURE 21.1

The system

catalog.

system catalog. See Figure 21.1 for an example of the system catalog within

the database.

How Is the System Catalog Created? 331

How Is the System Catalog Created?
The system catalog is created either automatically with the creation of the

database, or by the DBA immediately following the creation of the data-

base. For example, a set of predefined, vendor-provided SQL scripts in

Oracle is executed, which builds all the database tables and views in the sys-

tem catalog that are accessible to a database user.

The system catalog tables and views are system-owned and not specific to

any one schema. In Oracle, for example, the system catalog owner is a user

account called SYS, which has full authority in the database. In Microsoft

SQL Server, the system catalog for the SQL server is located in the master

database. In MySQL the database is contained in the mysql system data-

base. Check with your specific vendor documentation to find where the

system catalogs are stored.

What Is Contained in the System

Catalog?
The system catalog contains a variety of information accessible to many

users and is sometimes used for different specific purposes by each of

those users.

The system catalog contains information such as the following:

. User accounts and default settings

. Privileges and other security information

. Performance statistics

. Object sizing

. Object growth

. Table structure and storage

. Index structure and storage

. Information on other database objects, such as views, synonyms,

triggers, and stored procedures

. Table constraints and referential integrity information

. User sessions

. Auditing information

332 HOUR 21: Working with the System Catalog

. Internal database settings

. Locations of database files

The database server maintains the system catalog. For example, when a

table is created, the database server inserts the data into the appropriate

system catalog table or view. When a table’s structure is modified, appropri-

ate objects in the data dictionary are updated. The following sections

describe, by category, the types of data that are contained in the system

catalog.

User Data

All information about individual users is stored in the system catalog: the

system and object privileges a user has been granted, the objects a user

owns, and the objects not owned by the user to which the user has access.

The user tables or views are accessible to the individual to query for infor-

mation. See your implementation documentation on the system catalog

objects.

Security Information

The system catalog also stores security information, such as user identifica-

tions, encrypted passwords, and various privileges and groups of privileges

that database users utilize to access the data. Audit tables exist in some

implementations for tracking actions that occur within the database, as

well as by whom, when, and so on. Database user sessions can be closely

monitored through the use of the system catalog in many implementations.

Database Design Information

The system catalog contains information regarding the actual database.

That information includes the database’s creation date, name, object sizing,

size and location of data files, referential integrity information, indexes that

exist in the database, and specific column information and column attrib-

utes for each table in the database.

Performance Statistics

Performance statistics are typically maintained in the system catalog as

well. Performance statistics include information concerning the perform-

ance of SQL statements, both elapsed time and the execution method of an

SQL statement taken by the optimizer. Other information for performance

concerns memory allocation and usage, free space in the database, and

System Catalog Tables by Implementation 333

TABLE 21.1 Major Implementation System Catalog Objects

Microsoft SQL Server

Table Name Information On...

SYSUSERS Database users

SYS.DATABASES All database segments

SYS.DATABASE_PERMISSIONS All database permissions

SYS.DATABASE_FILES All database files

SYSINDEXES All indexes

SYSCONSTRAINTS All constraints

SYS.TABLES All database tables

SYS.VIEWS All database views

Oracle

ALL_TABLES Tables accessible by a user

USER_TABLES Tables owned by a user

DBA_TABLES All tables in the database

DBA_SEGMENTS Segment storage

DBA_INDEXES All indexes

DBA_USERS All users of the database

DBA_ROLE_PRIVS Roles granted

DBA_ROLES Roles in the database

DBA_SYS_PRIVS System privileges granted

DBA_FREE_SPACE Database free space

information that allows table and index fragmentation to be controlled

within the database. You can use this performance information to properly

tune the database, rearrange SQL queries, and redesign methods of access

to data to achieve better overall performance and SQL query response time.

System Catalog Tables by

Implementation
Each implementation has several tables and views that compose the system

catalog, some of which are categorized by user level, system level, and DBA

level. For your particular implementation, you should query these tables and

read your implementation’s documentation for more information on system

catalog tables. Table 21.1 has examples of six major implementations.

334 HOUR 21: Working with the System Catalog

These are just a few of the system catalog objects from the main relational

database implementations that we cover in the book. Many of the system

catalog objects that are similar between implementations are shown here,

but this hour strives to provide some variety. Overall, each implementation

is specific to the organization of the system catalog’s contents.

Querying the System Catalog
The system catalog tables or views are queried as any other table or view in

the database using SQL. A user can usually query the user-related tables

but might be denied access to various system tables accessible only by privi-

leged database user accounts, such as the DBA.

You create an SQL query to retrieve data from the system catalog just as

you create a query to access any other table in the database. For example,

the following query returns all rows of data from the Microsoft SQL Server

table SYS.TABLES:

SELECT * FROM SYS.TABLES;

GO

The following query lists all user accounts in the database and is run from

the MySQL system database:

TABLE 21.1 Major Implementation System Catalog Objects

Microsoft SQL Server

Table Name Information On...

V$DATABASE The creation of the database

V$SESSION Current sessions

MySQL

COLUMNS_PRIV Column privileges

DB Database privileges

FUNC The management of user-defined functions

HOST Hostnames related to MySQL

TABLES_PRIV Table privileges

USER User information

Continued

Querying the System Catalog 335

By the
Way

Watch
Out!

SELECT USER

FROM ALL_USER;

USER

ROOT

SYSTEM

RYAN

SCOTT

DEMO

RON

USER1

USER2

8 rows selected.

A Word About the Following Examples

The following examples use MySQL’s system catalog. MySQL is chosen for no par-

ticular reason other than to give you some examples from one of the database

implementations talked about in the book.

The following query lists all tables within our learnsql schema and is run

from the Information_schema:

SELECT TABLE_NAME

FROM TABLES WHERE TABLE_SCHEMA=’learnsql’;

TABLE_NAME

CUSTOMER_TBL

EMPLOYEE_PAY_TBL

EMPLOYEE_TBL

PRODUCTS_TBL

ORDERS_TBL

5 rows selected.

Manipulating System Catalog Tables Can Be Dangerous

Never directly manipulate tables in the system catalog in any way (only the DBA

has access to manipulate system catalog tables). Doing so might compromise

the database’s integrity. Remember that information concerning the structure of

the database, as well as all objects in the database, is maintained in the system

catalog. The system catalog is typically isolated from all other data in the data-

base. Some implementations, such as Microsoft SQL Server, do not allow the

user to manipulate the system catalog directly in order to maintain the integrity of

the system.

The next query returns all the system privileges that have been granted to

the database user BRANDON:

SELECT GRANTEE, PRIVILEGE_TYPE

FROM USER_PRIVILEGES

WHERE GRANTEE = ‘BRANDON’;

336 HOUR 21: Working with the System Catalog

By the
Way

DATABASE

CREATE

TABLE

Statement

Database Server

System

Catalog

Database

User

FIGURE 21.2

Updates to the

system catalog.

GRANTEE PRIVILEGE

---------------------- --------------------

BRANDON SELECT

BRANDON INSERT

BRANDON UPDATE

BRANDON CREATE

4 rows selected.

These Are Just a Few of the System Catalog Tables Available

The examples shown in this section are a drop in the bucket compared to the

information that you can retrieve from any system catalog. You might find it

extremely helpful to dump data dictionary information using queries to a file that

can be printed and used as a reference. Refer to your implementation documen-

tation for specific system catalog tables and columns within those available

tables.

Updating System Catalog Objects
The system catalog is used only for query operations—even when the DBA

is using it. The database server makes updates to the system catalog auto-

matically. For example, a table is created in the database when a database

user issues a CREATE TABLE statement. The database server then places the

DDL that created the table in the system catalog under the appropriate sys-

tem catalog table.

There is never a need to manually update a table in the system catalog

even though you might have the power to do so. The database server for

each implementation performs these updates according to actions that

occur within the database, as shown in Figure 21.2.

Q&A 337

Summary
You have learned about the system catalog for a relational database. The

system catalog is, in a sense, a database within a database. The system cat-

alog is essentially a database that contains all information about the data-

base in which it resides. It is a way of maintaining the database’s overall

structure, tracking events and changes that occur within the database, and

providing the vast pool of information necessary for overall database man-

agement. The system catalog is only used for query operations. Database

users should not make changes directly to system tables. However, changes

are implicitly made each time a change is made to the database structure

itself, such as the creation of a table. The database server makes these

entries in the system catalog automatically.

Q&A
Q. As a database user, I realize I can find information about my objects. How

can I find information about other users’ objects?

A. Users can employ sets of tables and views to query in most system cat-

alogs. One set of these tables and views includes information on what

objects you have access to. To find out about other users’ access, you

need to check the system catalogs containing that information. For

example, in Oracle you could check the DBA_TABLES and DBA_USERS sys-

tem catalogs.

Q. If a user forgets his password, is there a table that the DBA can query to get

the password?

A. Yes and no. The password is maintained in a system table, but it is typ-

ically encrypted so that even the DBA cannot read the password. The

password has to be reset if the user forgets it, which the DBA can easily

accomplish.

Q. How can I tell which columns are in a system catalog table?

A. You can query the system catalog tables as you query any other table.

Simply query the table holding that particular information.

338 HOUR 21: Working with the System Catalog

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. In some implementations, the system catalog is also known as what?

2. Can a regular user update the system catalog?

3. Which Microsoft SQL Server system table retrieves information about

views that exist in the database?

4. Who owns the system catalog?

5. What is the difference between the Oracle system objects ALL_TABLES

and DBA_TABLES?

6. Who makes modifications to the system tables?

Exercises

1. In Hour 19, “Managing Database Security,” you looked at the tables in

your learnsql database. Now find some of the system tables that we

discussed earlier in this chapter. Review them.

2. At the prompt, type in queries to bring up each of the following:

. Information on all the tables

. Information on all the views

. All the usernames in the database

3. Write a query using multiple system tables to retrieve all the users and

their associated privileges in your learnsql database.

Cursors 339

By the
Way

HOUR 22

Advanced SQL Topics

What You’ll Learn in This Hour:

. What cursors are

. Using stored procedures

. What triggers are

. Basics of dynamic SQL

. Using SQL to generate SQL

. Direct SQL versus embedded SQL

. Call-level interface

In this hour, you are introduced to some advanced SQL topics that extend

beyond the basic operations that you have learned so far, such as querying

data from the database, building database structures, and manipulating

data within the database. By the end of the hour, you should understand

the concepts behind cursors, stored procedures, triggers, dynamic SQL,

direct versus embedded SQL, and SQL generated from SQL. These advanced

topics are features available in many implementations, all of which pro-

vide enhancements to the parts of SQL discussed so far.

Some Topics Are Not ANSI SQL Related

Not all topics are ANSI SQL, so you must check your particular implementation for

variations in syntax and rules. A few major vendors’ syntax is shown in this hour

for comparison.

Cursors
Normally, database operations are commonly referred to as set-based oper-

ations. This means that the majority of ANSI SQL commands are geared

toward working on a block of data. A cursor, on the other hand, is typically

used to retrieve a subset of data from the database in a row-based

340 HOUR 22: Advanced SQL Topics

operation. Thereby, each row in the cursor can be evaluated by a program,

one row at a time. Cursors are normally used in SQL that is embedded in

procedural-type programs. Some cursors are created implicitly by the data-

base server, whereas others are defined by the SQL programmer. Each SQL

implementation might define the use of cursors differently.

This section shows syntax examples from three popular implementations

that we have tracked throughout the book: MySQL, Microsoft SQL Server,

and Oracle.

The syntax to declare a cursor in MySQL is as follows:

DECLARE CURSOR_NAME CURSOR

FOR SELECT_STATEMENT

The syntax to declare a cursor for Microsoft SQL Server is as follows:

DECLARE CURSOR_NAME CURSOR

FOR SELECT_STATEMENT

[FOR [READ ONLY | UPDATE {[COLUMN_LIST]}]

The syntax for Oracle is as follows:

DECLARE CURSOR CURSOR_NAME

IS {SELECT_STATEMENT}

The following cursor contains the result subset of all records from

EMPLOYEE_TBL:

DECLARE CURSOR EMP_CURSOR IS

SELECT * FROM EMPLOYEE_TBL

{ OTHER PROGRAM STATEMENTS }

According to the ANSI standard, you use the following operations to access

a cursor after it has been defined:

. OPEN: Opens a defined cursor

. FETCH: Fetches rows from a cursor into a program variable

. CLOSE: Closes the cursor when operations against the cursor are

complete

Opening a Cursor

You cannot access a cursor until you have opened it. When a cursor is

opened, the specified cursor’s SELECT statement is executed, and the results

of the query are stored in a staging area in memory.

Cursors 341

The syntax to open a cursor in MySQL and Microsoft SQL Server is as follows:

OPEN CURSOR_NAME

The syntax in Oracle is as follows:

OPEN CURSOR_NAME [PARAMETER1 [, PARAMETER2]]

To open the EMP_CURSOR, use the following statement:

OPEN EMP_CURSOR

Fetching Data from a Cursor

You can retrieve the contents of the cursor (results from the query) through

the FETCH statement after you have opened the cursor.

The syntax for the FETCH statement in Microsoft SQL Server is as follows:

FETCH NEXT FROM CURSOR_NAME [INTO FETCH_LIST]

The syntax for Oracle is as follows:

FETCH CURSOR_NAME {INTO : HOST_VARIABLE

[[INDICATOR] : INDICATOR_VARIABLE]

[, : HOST_VARIABLE

[[INDICATOR] : INDICATOR_VARIABLE]]

| USING DESCRIPTOR DESCRIPTOR] }

The syntax for MySQL is as follows:

FETCH CURSOR_NAME into VARIABLE_NAME,[VARIABLE_NAME] ...

To fetch the contents of EMP_CURSOR into a variable called EMP_RECORD, your

FETCH statement might appear as follows:

FETCH EMP_CURSOR INTO EMP_RECORD

When fetching data from a cursor, note that at some time you will come to

the end of the cursor. Each implementation has a different way to set up

handling of this so that you can gracefully close the cursor without receiv-

ing an error. Following are pseudocode examples from MySQL, Microsoft

SQL Server, and Oracle on how to handle these situations. The syntax is

meant to give you a feel for the process of handling cursors.

The syntax for MySQL is as follows:

BEGIN

DECLARE done INT DEFAULT 0;

DECLARE custname VARCHAR(30);

DECLARE namecursor CURSOR FOR SELECT CUST_NAME FROM TBL_CUSTOMER;

342 HOUR 22: Advanced SQL Topics

OPEN namecursor;

read_loop: LOOP

FETCH namecursor INTO custname;

IF done THEN

LEAVE read_loop;

END IF;

-- Do something with the variable

END LOOP;

CLOSE namecursor;

END;

The syntax for Microsoft SQL Server is as follows:

BEGIN

DECLARE @custname VARCHAR(30);

DECLARE namecursor CURSOR FOR SELECT CUST_NAME FROM TBL_CUSTOMER;

OPEN namecursor;

FETCH NEXT FROM namecursor INTO @custname

WHILE (@@FETCH_STATUS<>-1)

BEGIN

IF (@@FETCH_STATUS<>-2)

BEGIN

-- Do something with the variable

END

FETCH NEXT FROM namecursor INTO @custname

END

CLOSE namecursor

DEALLOCATE namecursor

END;

The syntax for Oracle is as follows:

custname varchar(30);

CURSOR namecursor

IS

SELECT CUST_NAME FROM TBL_CUSTOMER;

BEGIN

OPEN namecursor;

FETCH namecursor INTO custname;

IF namecursor%notfound THEN

-- Do some handling as you are at the end of the cursor

END IF;

-- Do something with the variable

CLOSE namecursor;

END;

Closing a Cursor

You can obviously close a cursor if you can open one. After it’s closed, it is

no longer available to user programs. Closing a cursor is quite simple.

Stored Procedures and Functions 343

By the
Way

By the
Way

The Microsoft SQL Server syntax for the closing of a cursor and the deallo-

cation of a cursor is as follows:

CLOSE CURSOR_NAME

DEALLOCATE CURSOR CURSOR_NAME

When a cursor is closed in Oracle, the resources and name are released

without the DEALLOCATE statement. The syntax for Oracle is as follows:

CLOSE CURSOR_NAME

The same is true for the MySQL cursor. There is no DEALLOCATE statement

available because the resources are released when the cursor is closed. The

syntax for MySQL is as follows:

CLOSE CURSOR_NAME

More Variations Exist in Advanced Features

As you can see from the previous examples, variations among the implementa-

tions are extensive, especially with advanced features of and extensions to SQL,

which are covered in Hour 24, “Extensions to Standard SQL.” You must check

your particular implementation for the exact usage of a cursor.

Stored Procedures and Functions

You Need to Deallocate a Cursor to Free Its Resources

Closing a cursor does not necessarily free the memory associated with the cur-

sor. In some implementations, the memory used by a cursor must be deallocated

by using the DEALLOCATE statement. When the cursor is deallocated, the associ-

ated memory is freed, and the name of the cursor can then be reused. In other

implementations, memory is implicitly deallocated when the cursor is closed.

Memory is available for other operations, such as opening another cursor, when

space used by a cursor is reclaimed. If you do not deallocate the memory a cur-

sor uses, the database could hold onto that memory even if other processes

need it. This normally leads to poor performance as the system fights over limited

computing resources.

Stored procedures are groupings of related SQL statements—commonly

referred to as functions and subprograms—that allow ease and flexibility for

a programmer. This ease and flexibility are derived from the fact that a

stored procedure is often easier to execute than a number of individual SQL

statements. Stored procedures can be nested within other stored procedures.

344 HOUR 22: Advanced SQL Topics

That is, a stored procedure can call another stored procedure, which can

call another stored procedure, and so on.

Stored procedures allow for procedural programming. The basic SQL DDL

(Data Definition Language), DML (Data Manipulation Language), and DQL

(Data Query Language) statements (CREATE TABLE, INSERT, UPDATE, SELECT, and

so on) allow you the opportunity to tell the database what needs to be

done, but not how to do it. By coding stored procedures, you tell the data-

base engine how to go about processing the data.

A stored procedure is a group of one or more SQL statements or functions

that are stored in the database, compiled, and ready to be executed by a

database user. A stored function is the same as a stored procedure, but a

function returns a value.

Functions are called by procedures. When a function is called by a proce-

dure, parameters can be passed into a function like a procedure, a value is

computed, and then the value is passed back to the calling procedure for

further processing.

When a stored procedure is created, the various subprograms and functions

that compose the stored procedure are actually stored in the database. These

stored procedures are preparsed and are immediately ready to execute when

the user invokes them.

The MySQL syntax for creating a stored procedure is as follows:

CREATE [OR REPLACE] PROCEDURE PROCEDURE_NAME

[(ARGUMENT [{IN | OUT | IN OUT}] TYPE,

ARGUMENT [{IN | OUT | IN OUT}] TYPE)] { AS}

PROCEDURE_BODY

The Microsoft SQL Server syntax for creating a stored procedure is as follows:

CREATE PROCEDURE PROCEDURE_NAME

[[(] @PARAMETER_NAME

DATATYPE [(LENGTH) | (PRECISION] [, SCALE])

[= DEFAULT][OUTPUT]]

[, @PARAMETER_NAME

DATATYPE [(LENGTH) | (PRECISION [, SCALE])

[= DEFAULT][OUTPUT]] [)]]

[WITH RECOMPILE]

AS SQL_STATEMENTS

The syntax for Oracle is as follows:

CREATE [OR REPLACE] PROCEDURE PROCEDURE_NAME

[(ARGUMENT [{IN | OUT | IN OUT}] TYPE,

ARGUMENT [{IN | OUT | IN OUT}] TYPE)] {IS | AS}

PROCEDURE_BODY

Stored Procedures and Functions 345

An example of a simple stored procedure to insert new rows into the

PRODUCTS_TBL table is as follows:

CREATE PROCEDURE NEW_PRODUCT

(PROD_ID IN VARCHAR2, PROD_DESC IN VARCHAR2, COST IN NUMBER)

AS

BEGIN

INSERT INTO PRODUCTS_TBL

VALUES (PROD_ID, PROD_DESC, COST);

COMMIT;

END;

Procedure created.

The syntax for executing a stored procedure in Microsoft SQL Server is as

follows:

EXECUTE [@RETURN_STATUS =]

PROCEDURE_NAME

[[@PARAMETER_NAME =] VALUE |

[@PARAMETER_NAME =] @VARIABLE [OUTPUT]]

[WITH RECOMPILE]

The syntax for Oracle is as follows:

EXECUTE [@RETURN STATUS =] PROCEDURE NAME

[[@PARAMETER NAME =] VALUE | [@PARAMETER NAME =] @VARIABLE [OUTPUT]]]

[WITH RECOMPILE]

The syntax for MySQL is as follows:

CALL PROCEDURE_NAME([PARAMETER[,…….]])

By the
Way

Basic SQL Commands Are Often the Same

You might find distinct differences between the allowed syntax used to code

proce-dures in different implementations of SQL. The basic SQL commands

should be the same, but the programming constructs (variables, conditional

statements, cursors, loops) might vary drastically among implementations.

Now execute the procedure you have created:

CALL NEW_PRODUCT ('9999','INDIAN CORN',1.99);

PL/SQL procedure successfully completed.

Stored procedures provide several distinct advantages over individual SQL

statements exe-cuted in the database. Some of these advantages include

the following:

. The statements are already stored in the database.

. The statements are already parsed and in an executable format.

346 HOUR 22: Advanced SQL Topics

. Stored procedures support modular programming.

. Stored procedures can call other procedures and functions.

. Stored procedures can be called by other types of programs.

. Overall response time is typically better with stored procedures.

. Stored procedures increase the overall ease of use.

Triggers
A trigger is a compiled SQL procedure in the database that performs actions

based on other actions occurring within the database. A trigger is a form of

a stored procedure that is executed when a specified DML action is per-

formed on a table. The trigger can be executed before or after an INSERT,

DELETE, or UPDATE statement. Triggers can also check data integrity before an

INSERT, DELETE, or UPDATE statement. Triggers can roll back transactions, and

they can modify data in one table and read from another table in another

database.

Triggers, for the most part, are very good functions to use; they can,

however, cause more I/O overhead. Triggers should not be used when a

stored procedure or a program can accomplish the same results with less

overhead.

The CREATE TRIGGER Statement

You can create a trigger using the CREATE TRIGGER statement.

The ANSI standard syntax is

CREATE TRIGGER TRIGGER NAME

[[BEFORE | AFTER] TRIGGER EVENT ON TABLE NAME]

[REFERENCING VALUES ALIAS LIST]

[TRIGGERED ACTION

TRIGGER EVENT::=

INSERT | UPDATE | DELETE [OF TRIGGER COLUMN LIST]

TRIGGER COLUMN LIST ::= COLUMN NAME [,COLUMN NAME]

VALUES ALIAS LIST ::=

VALUES ALIAS LIST ::=

OLD [ROW] ´ OLD VALUES CORRELATION NAME |

NEW [ROW] ´ NEW VALUES CORRELATION NAME |

OLD TABLE ´ OLD VALUES TABLE ALIAS |

NEW TABLE ´ NEW VALUES TABLE ALIAS

OLD VALUES TABLE ALIAS ::= IDENTIFIER

NEW VALUES TABLE ALIAS ::= IDENTIFIER

TRIGGERED ACTION ::=

Triggers 347

[FOR EACH [ROW | STATEMENT] [WHEN SEARCH CONDITION]]

TRIGGERED SQL STATEMENT

TRIGGERED SQL STATEMENT ::=

SQL STATEMENT | BEGIN ATOMIC [SQL STATEMENT;]

END

The MySQL syntax to create a trigger is as follows:

CREATE [DEFINER={user | CURRENT_USER }]

TRIGGER TRIGGER_NAME

{BEFORE | AFTER }

{ INSERT | UPDATE | DELETE [, ..]}

ON TABLE_NAME

AS

SQL_STATEMENTS

The Microsoft SQL Server syntax to create a trigger is as follows:

CREATE TRIGGER TRIGGER_NAME

ON TABLE_NAME

FOR { INSERT | UPDATE | DELETE [, ..]}

AS

SQL_STATEMENTS

[RETURN]

The basic syntax for Oracle is as follows:

CREATE [OR REPLACE] TRIGGER TRIGGER_NAME

[BEFORE | AFTER]

[DELETE | INSERT | UPDATE]

ON [USER.TABLE_NAME]

[FOR EACH ROW]

[WHEN CONDITION]

[PL/SQL BLOCK]

The following is an example trigger written in the Oracle syntax:

CREATE TRIGGER EMP_PAY_TRIG

AFTER UPDATE ON EMPLOYEE_PAY_TBL

FOR EACH ROW

BEGIN

INSERT INTO EMPLOYEE_PAY_HISTORY

(EMP_ID, PREV_PAY_RATE, PAY_RATE, DATE_LAST_RAISE,

TRANSACTION_TYPE)

VALUES

(:NEW.EMP_ID, :OLD.PAY_RATE, :NEW.PAY_RATE,

:NEW.DATE_LAST_RAISE, ‘PAY CHANGE’);

END;

/

Trigger created.

Triggers Cannot Be Altered

You cannot alter the body of a trigger. You must either replace or re-create the trig-

ger. Some implementations allow a trigger to be replaced (if the trigger with the

same name already exists) as part of the CREATE TRIGGER statement.

Did You
Know?

You can drop a trigger using the DROP TRIGGER statement. The syntax for

dropping a trigger is as follows:

DROP TRIGGER TRIGGER_NAME

The FOR EACH ROW Statement

Triggers in MySQL also have another piece of syntax that allows them to be

scoped. The FOR EACH ROW syntax allows the developer to have the procedure

fire for each row that is affected by the SQL statement or once for the state-

ment as a whole. The syntax is as follows:

CREATE TRIGGER TRIGGER_NAME

ON TABLE_NAME FOR EACH ROW SQL_STATEMENT

The difference is how many times the trigger is executed. If you create a

regular trigger and execute a statement against the table that affects 100

rows, the trigger is executed once. If instead you create the trigger with the

FOR EACH ROW syntax and execute the statement again, the trigger is execut-

ed 100 times—once for each row that the statement affects.

Dynamic SQL
Dynamic SQL allows a programmer or end user to create an SQL state-

ment’s specifics at runtime and pass the statement to the database. The

database then returns data into the program variables, which are bound at

SQL runtime.

To comprehend dynamic SQL, review static SQL. Static SQL is what this

book has discussed thus far. A static SQL statement is written and not meant

348 HOUR 22: Advanced SQL Topics

The preceding example shows the creation of a trigger called EMP_PAY_TRIG.

This trigger inserts a row into the EMPLOYEE_PAY_HISTORY table, reflecting the

changes made every time a row of data is updated in EMPLOYEE_PAY_TBL.

The DROP TRIGGER Statement

Call-Level Interface 349

to be changed. Although static SQL statements can be stored as files ready

to be executed later or as stored procedures in the database, static SQL does

not quite offer the flexibility that is allowed with dynamic SQL.

The problem with static SQL is that even though numerous queries might

be available to the end user, there is a good chance that none of these

“canned” queries will satisfy the users’ needs on every occasion. Dynamic

SQL is often used by ad hoc query tools, which allow an SQL statement to

be created on-the-fly by a user to satisfy the particular query requirements

for that particular situation. After the statement is customized according to

the user’s needs, the statement is sent to the database, checked for syntax

errors and privileges required to execute the statement, and compiled in the

database where the database server carries out the statement. Dynamic

SQL can be created by using a call-level interface, which is explained in the

next section.

By the
Way

Dynamic SQL Is Not Always the Most Performant

Although dynamic SQL provides more flexibility for the end user’s query needs,

the performance might not compare to that of a stored procedure whose code

has already been analyzed by the SQL optimizer.

Call-Level Interface

A call-level interface (CLI) embeds SQL code in a host program, such as ANSI

C. Application programmers should be familiar with the concept of a CLI. It

is one of the methods that allows a programmer to embed SQL in different

procedural programming languages. When using a CLI, you simply pass

the text of an SQL statement into a variable using the rules of the host pro-

gramming language. You can execute the SQL statement in the host pro-

gram through the use of the variable into which you passed the SQL text.

EXEC SQL is a common host programming language command that enables

you to call an SQL statement (CLI) from within the program.

The following are examples of programming languages that support CLI:

. ANSI C

. C#

. VB.NET

. Java

350 HOUR 22: Advanced SQL Topics

. Pascal

. Fortran

Using SQL to generate SQL is a valuable time-budgeting method of writing

SQL statements. Assume you have 100 users in the database already. A

new role, ENABLE (a user-defined object that is granted privileges), has been

created and must be granted to those 100 users. Instead of manually creat-

ing 100 GRANT statements, the following SQL statement generates each of

those statements for you:

SELECT ‘GRANT ENABLE TO ‘|| USERNAME||’;’

FROM SYS.DBA_USERS;

This example uses Oracle’s system catalog view (which contains informa-

tion for users).

Notice the use of single quotation marks around GRANT ENABLE TO. The use

of single quotation marks allows whatever is between the marks (including

spaces) to be literal. Remember that literal values can be selected from

tables, the same as columns from a table. USERNAME is the column in the

system catalog table SYS.DBA_USERS. The double pipe signs (||) concatenate

the columns. The use of double pipes followed by ; concatenates the semi-

colon to the end of the username, thus completing the statement.

The results of the SQL statement look like the following:

GRANT ENABLE TO RRPLEW;

GRANT ENABLE TO RKSTEP;

You should spool these results to a file, which can be sent to the database.

The database, in turn, executes each SQL statement in the file, saving you

many keystrokes and much time. The GRANT ENABLE TO USERNAME statement

is repeated once for every user in the database.

The next time you are writing SQL statements and have repeated the same

statement several times, allow your imagination to take hold, and let SQL

do the work for you.

CLIs Are Platform Specific

Refer to the syntax of the host programming language with which you are using

CLI options. The CLI programming language is always platform specific. So an

Oracle CLI will not work with an SQL Server CLI.

By the
Way

Using SQL to Generate SQL

Windowed Table Functions 351

Direct Versus Embedded SQL
Direct SQL is where an SQL statement is executed from some form of an

interactive terminal. The SQL results are returned directly to the terminal

that issued the statement. Most of this book has focused on direct SQL.

Direct SQL is also referred to as interactive invocation or direct invocation.

Embedded SQL is SQL code used within other programs, such as Pascal,

Fortran, COBOL, and C. SQL code is actually embedded in a host program-

ming language, as discussed previously, with a call-level interface.

Embedded SQL statements in host programming language codes are com-

monly preceded by EXEC SQL and terminated by a semicolon. Other termi-

nation characters include END-EXEC and the right parenthesis.

The following is an example of embedded SQL in a host program, such as

the ANSI C language:

{HOST PROGRAMMING COMMANDS}

EXEC SQL {SQL STATEMENT};

{MORE HOST PROGRAMMING COMMANDS}

Windowed Table Functions
Windowed table functions allow calculations to operate over a window of the

table and return a value based upon that window. This allows for the cal-

culation of values such as a running sum, ranks, and moving averages.

The syntax for the table valued function follows:

ARGUMENT OVER ([PARTITION CLAUSE] [ORDER CLAUSE] [FRAME CLAUSE])

Almost all aggregate functions can act as windowed table functions. They

provide five new windowed table functions:

. RANK() OVER

. DENSE_RANK() OVER

. PERCENT_RANK() OVER

. CUME_DIST() OVER

. ROW_NUMBER() OVER

Normally, it would be difficult to calculate something such as an individ-

ual’s ranking within his pay year. Windowed table function would make

this calculation a little easier, as seen in the following example for

Microsoft SQL Server:

352 HOUR 22: Advanced SQL Topics

SELECT EMP_ID, SALARY, RANK() OVER (PARTITION BY YEAR(DATE_HIRE)

ORDER BY SALARY DESC) AS RANK_IN_DEPT

FROM EMPLOYEE_PAY_TBL;

Not all RDBM implementations currently support windowed table functions,

so it is best to check the documentation of your specific implementation.

Working with XML
The ANSI standard presented an XML-related features section in its 2003

version. Since then, most database implementations have tried to support

at least part of the released feature set. For example, one part of the ANSI

standard is to provide for the output of XML-formatted output from a

query. SQL Server provides such a method by using the FOR XML statement,

as shown in the following example:

SELECT EMP_ID, HIRE_DATE, SALARY FROM

EMPLOYEE_TBL FOR XML AUTO

Another important feature of the XML feature set is being able to retrieve

information from an XML document or fragment. MySQL provides this

functionality through the EXTRACTVALUE function. This function takes two

arguments. The first is an XML fragment, and the second is the locator,

which returns the first value of the tags matched by the string. The syntax

is shown here:

ExtractValue([XML Fragment],[locator string])

The following is an example of using the function to extract the value in

the node a:

SELECT EXTRACTVALUE(‘<a>Red<//a>Blue’,’/a’) as ColorValue;

ColorValue

Red

It is important to check with your individual database’s documentation to

see exactly what XML support is provided. Some implementations, such as

SQL Server and Oracle, have advanced functionality such as specific XML

data types. For example, Oracle’s XMLTYPE provides a specific API to handle

the most used functions with XML data, such as finding and extracting val-

ues. Microsoft SQL Server’s XML data type allows for the application of tem-

plates to ensure that the XML data input into the column is complete.

Q&A 353

Summary
Some advanced SQL concepts were discussed in this hour. Although this

hour did not go into a lot of detail, it did provide you with a basic under-

standing of how you can apply the fundamental concepts that you have

learned up to this point. You start with cursors, which pass a data set select-

ed by a query into a location in memory. After a cursor is declared in a

program, you must open it for accessibility. Then the contents of the cursor

are fetched into a variable, at which time the data can be used for program

processing. The resultset for the cursor is contained in memory until the

cursor is closed and the memory is deallocated.

Stored procedures and triggers were covered next. Stored procedures are

basically SQL statements that are stored together in the database. These

statements, along with other implementation-specific commands, are com-

piled in the database and are ready for a database user to execute at any

given time. Stored procedures typically provide better performance benefits

than individual SQL statements.

This chapter also discussed dynamic SQL, using SQL to generate other SQL

statements, and the differences between direct SQL and embedded SQL.

Dynamic SQL is SQL code that a user dynamically creates during runtime,

unlike static SQL.

Lastly, we discussed Windowed Table Functions and XML. These features

may not yet be supported in your database version because they are rela-

tively new but are good to know for future reference. The concepts of some

of the advanced topics discussed during this hour illustrate the application

of SQL in an enterprise, covered in Hour 23, “Extending SQL to the Enter-

prise, the Internet, and the Intranet.”

Q&A
Q. Can a stored procedure call another stored procedure?

A. Yes. The stored procedure being called is referred to as being nested.

Q. How do I execute a cursor?

A. Simply use the OPEN CURSOR statement. This sends the results of the cur-

sor to a staging area.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Can a trigger be altered?

2. When a cursor is closed, can you reuse the name?

3. Which command retrieves the results after a cursor has been opened?

4. Are triggers executed before or after an INSERT, DELETE, or UPDATE

statement?

5. Which MySQL function retrieves information from an XML fragment?

6. Why do Oracle and MySQL not support the DEALLOCATE syntax for

cursors?

7. Why is a cursor not considered a set-based operation?

Exercises

1. Enter a command similar to the one that follows for MySQL to write

out SQL statements to DESCRIBE each table in the database:

SELECT CONCAT(‘DESCRIBE ‘,TABLE_NAME,’;’) FROM TABLES_PRIV;

2. Write a SELECT statement that generates the SQL code to count all rows

in each of your tables. (Hint: It is similar to Exercise 1.)

3. Write a series of SQL commands to create a cursor that prints each cus-

tomer name and the customer’s total sales. Ensure that the cursor is

properly closed and deallocated based on which implementation you

are using.

HOUR 22: Advanced SQL Topics354

[(H3F)] 355

HOUR 23

Extending SQL to the
Enterprise, the Internet, and
the Intranet

What You’ll Learn in This Hour:

. SQL and the enterprise

. Front-end and back-end applications

. Accessing a remote database

. SQL and the Internet

. SQL and the intranet

The previous hour covered some advanced SQL topics. These topics build

on earlier hours in the book and show you practical applications for the

SQL you have learned. In this hour, you focus on the concepts behind

extending SQL to the enterprise, which involve SQL applications and mak-

ing data available to all appropriate members of a company for daily use.

SQL and the Enterprise
Many commercial enterprises have specific data available to other enter-

prises, customers, and vendors. For example, the enterprise might have

detailed information on its products available for customers to access in

hopes of acquiring more purchases. Enterprise employee needs are included

as well. For example, employee-specific data can be made available, such

as for timesheet logs, vacation schedules, training schedules, company poli-

cies, and so on. A database can be created, and customers and employees

can be allowed easy access to an enterprise’s important data via SQL and

an Internet language.

The tools available for developers today are user friendly and object orient-

ed, by way of icons, wizards, and dragging and dropping with the mouse.

Some of the popular tools to port applications to the Web include Borland’s

356 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

There Are Many Different Layers to an Application

The front-end application promotes simplicity for the database end user. The

underlying database, code, and events that occur within the database are trans-

parent to the user. The front-end application is developed to relieve the end user

from guesswork and confusion, which might otherwise be caused by having to be

too intuitive to the system. The new technologies allow the applications to be

more intuitive, enabling the end users to focus on the true aspects of their partic-

ular jobs, thereby increasing overall productivity.

Did You
Know?

The Back-End Application

The heart of any application is the back-end application. This is where

things happen behind the scenes, transparent to the database end user. The

back-end application includes the actual database server, the data sources,

and the appropriate middleware that connects an application to the Web

or a remote database on the local network.

Determining your database implementation is typically the first step in

deploying any application, either to the enterprise through a local area net-

work (LAN), to the enterprise’s own intranet, or to the Internet. Deploying

describes the process of implementing an application in an environment

that is available for use. The database server should be established by an

onsite database administrator (DBA) who understands the company’s needs

and the application’s requirements.

The middleware for the application includes a web server and a tool capa-

ble of connecting the web server to the database server. The main objective

is to have an application that can communicate with a corporate database.

The Front-End Application

The front-end application is the part of an application with which an end

user interacts. The front-end application is either a commercial, off-the-

shelf software product that a company purchases or an application that is

developed in-house using other third-party tools. Commercial software can

include applications that utilize a web browser to display content. In the

Web environment, web browsers such as Firefox and Internet Explorer are

often used to access database applications. This allows users to have access

to the database without having to install special software.

Accessing a Remote Database 357

Server

Machine

Client

Machine

Middleware

Network

DATABASE

Underlying

Files, Programs

GUI or

Character-Based

User Tool

Back End Front End FIGURE 23.1

A database

application.

C++Builder and IntraBuilder and Microsoft’s Visual Studio. Other popular

applications used to develop corporate-based applications on a LAN include

PowerBuilder by Powersoft, Oracle Forms by Oracle Corporation, Visual

Studio by Microsoft, and Delphi by Borland.

Figure 23.1 illustrates the back-end and front-end components of a data-

base application. The back end resides on the host server, where the data-

base resides. Back-end users include developers, programmers, DBAs, system

administrators, and system analysts. The front-end application resides on

the client machine, which is typically each end user’s PC. End users are the

vast audience for the front-end component of an application, which can

include users such as data entry clerks and accountants. The end user is

able to access the back-end database through a network connection—either

a LAN or a wide area network (WAN). Some type of middleware (such as an

ODBC driver) provides a connection between the front and back ends

through the network.

Accessing a Remote Database
Sometimes the database you are accessing is a local one to which you are

directly connected. For the most part, you will probably access some form

of a remote database. A remote database is one that is nonlocal, or located

on a server other than the server to which you are currently connected,

meaning that you must utilize the network and some network protocol to

interface with the database.

You can access a remote database in several ways. From a broad perspec-

tive, a remote database is accessed via the network or Internet connection

using a middleware product. (Both ODBC and JDBC, standard middleware,

are discussed in the next section.) Figure 23.2 shows three scenarios for

accessing a remote database.

358 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

MiddlewareNetwork

Remote

Database

Server

Local

Database

Server

Local

Front-End

Application

Local

Host

Server

Local Components

Nonlocal

Components

FIGURE 23.2

Scenarios for

accessing a

remote data-

base.

Figure 23.2 shows access to a remote server from another local database

server, a local front-end application, and a local host server. The local data-

base server and local host server are often the same because the database

normally resides on a local host server. However, you can usually connect

to a remote database from a local server without a current local database

connection. For the end user, the front-end application is the most typical

method of remote database access. All methods must route their database

requests through the network.

ODBC

Open Database Connectivity (ODBC) allows connections to remote databases

through a library driver. A front-end application uses an ODBC driver to

interface with a back-end database. A network driver might also be

required for a connection to a remote database. An application calls the

ODBC functions, and a driver manager loads the ODBC driver. The ODBC

driver processes the call, submits the SQL request, and returns the results

from the database.

As a part of ODBC, all the relational database management system (RDBMS)

vendors have an application programming interface (API) with their database.

JDBC

JDBC is Java Database Connectivity. Like ODBC, JDBC allows connections

to remote databases through a Java library driver. A front-end Java appli-

cation uses the JDBC driver to interface with a back-end database.

Accessing a Remote Database 359

OLE DB

OLE DB is a set of interfaces written using the Component Object Model

(COM) by Microsoft as a replacement for ODBC. The implementation of OLE

DB attempts to extend the feature set of ODBC and address connectivity not

only to various database implementations but to nondatabase data stored

such as spreadsheets.

Vendor Connectivity Products

In addition to drivers or an API, many vendors have their own products

that allow a user to connect to a remote database. Each of these vendor

products is specific to the particular vendor implementation and might not

be portable to other types of database servers.

Oracle Corporation has a product called Oracle Fusion Middleware that

allows connectivity to the Oracle database as well as other applications.

Microsoft produces several products for interacting with its database, such

as Microsoft SharePoint Server and SQL Server Reporting Services.

Accessing a Remote Database Through a Web

Interface

Accessing a remote database through a web interface is similar to accessing

one through a local network. The main difference is that all requests to the

database from the user are routed through the web server (see Figure 23.3).

You can see in Figure 23.3 that an end user accesses a database through a

web interface by first invoking a web browser. The web browser connects to

a particular URL, determined by the location of the web server. The web

server authenticates user access and sends the user request, perhaps a

query, to the remote database, which might also verify user authenticity.

The database server then returns the results to the web server, which dis-

plays the results on the user’s web browser. Using a firewall can control

unauthorized access to a particular server.

Be Mindful of Security Concerns with the Internet

Be careful what information you make available on the Web. Always take precau-

tions to properly implement security at all appropriate levels; that might include

the web server, the host server, and the remote database. Be especially careful

with Privacy Act data, such as individuals’ Social Security numbers; protect that

data, and don’t broadcast it over the Web.

Watch
Out!

360 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

A firewall is a security mechanism that ensures against unauthorized con-

nections to and from a server. One or multiple firewalls can be enabled to

patrol access to a database or server.

Additionally, certain database implementations allow you to restrict access

to them via IP address. This provides another layer of protection, because

you can limit your traffic that has access to the database to the actual set of

web servers that are acting as the application layer.

SQL and the Internet
You can embed SQL or use it in conjunction with programming languages

such as C# and Java. You can also embed SQL in Internet programming

languages, such as Java and ASP.NET. Text from Hypertext Markup Language

(HTML), another Internet language, can be translated into SQL to send a

query to a remote database from a Web front end. After the database

resolves the query, the output is translated back into HTML and displayed

on the web browser of the individual executing the query. The following

sections discuss the use of SQL on the Internet.

Making Data Available to Customers Worldwide

With the advent of the Internet, data became available to customers and

vendors worldwide. The data is normally available for read-only access

through a front-end tool.

Remote

Database

Server

User

Web Browser

Interface

Web

Server

Applications on the

World Wide Web

Application

IP Address/URL

Local Client

IP Address

Input

IP Address

Input

Output

Output

FIGURE 23.3

A web interface

to a remote

database.

SQL and the Intranet 361

The data that is available to customers can contain general customer infor-

mation, product information, invoice information, current orders, back

orders, and other pertinent information. Private information, such as cor-

porate strategies and employee information, should not be available.

Home web pages on the Internet have become nearly a necessity for com-

panies that want to keep pace with their competition. A web page is a pow-

erful tool that can tell surfers all about a company—its services, products,

and other information—with little overhead.

Making Data Available to Employees and

Privileged Customers

A database can be made accessible, through the Internet or a company’s

intranet, to employees or its customers. Using Internet technologies is a

valuable communication asset for keeping employees informed about com-

pany policies, benefits, training, and so on. However, you must be careful

when making information available to web users. Confidential corporate or

individual information should not be accessible on the Web if possible.

Additionally, only a subset, or copy of a subset of a database, should be

accessible online. The main production database(s) should be protected at

all costs.

Internet Security Is a Far Less Stable Platform

Database security is much more stable than security on the Internet because

database security can be fine-tuned down to the specific levels of the data con-

tained in the system. Although you can implement some security features for data

access through the Internet, these are generally limited and not as easily

changed as those on the database. Always be sure to use the security features

available to you through your database server.

Did You
Know?

SQL and the Intranet
IBM originally created SQL for use between databases located on main-

frame computers and the users on client machines. The users were connect-

ed to the mainframes via a LAN. SQL was adopted as the standard lan-

guage of communication between databases and users. An intranet is basi-

cally a small Internet. The main difference is that an intranet is for a single

organization’s use, whereas the Internet is accessible to the general public.

The user (client) interface in an intranet remains the same as that in a

362 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

client/server environment. SQL requests are routed through the web server

and languages (such as HTML) before being directed to the database for

evaluation. An intranet is primarily used for inner-corporate applications,

documents, forms, web pages, and email.

SQL requests made through the Internet must be extremely cognizant of

performance. In these scenarios, not only must the data be retrieved from

the database, but it must be presented to the user through her browser. This

normally involves transforming the data into some kind of HTML-compli-

ant code to be displayed on the user’s browser. The web connection might

be slower than a normal intranet connection; therefore, the sending of the

data back and forth might be slower as well.

Security should play an important role in a database implementation that

is exposed via the web. A couple of considerations must be taken into

account to ensure that your data is protected. First, if the data is exposed

over public networks, you must try to ensure that the data is protected from

outside sources that may try to pick up that traffic. Normally, data is trans-

ferred in plain text format so that anyone can read it. You might consider

as part of your security implementation use of Secure Socket Layer (SSL) to

protect the communication. This method uses a certificate to encrypt the

data between the client and the application and is typically identified by a

website beginning with HTTPS, with the S on the end standing for secure.

Another typical consideration is protecting against unintended data entry

through data validation. This can be simply from the user or application

entering the wrong type of data into the wrong field or something more

nefarious such as an SQL injection attack, where a hacker tries to inject his

own SQL code onto the database to be run.

The best way to protect against these types of problems is to restrict access

for the user accounts accessing the database from the application. A good

way to accomplish this is trying to use stored procedures and functions

whenever possibly for the calls against the database. This gives you more

control over how the data gets out of the system and how the data gets in.

Additionally, it allows you to perform whatever data validation steps may

be necessary from the DBA’s point of view to ensure that the data remains

consistent.

Summary
Some concepts behind deploying SQL and database applications to the

Internet were discussed in this hour. Companies need to remain competitive.

To keep up with the rest of the world, it has proven beneficial—almost

Workshop 363

mandatory—to obtain a presence on the World Wide Web. In establishing

this presence, applications must be developed and even migrated from

client/server systems to the Internet on a web server. One of the greatest con-

cerns when publishing any kind or any amount of corporate data on the

Web is security. Security must be considered, adhered to, and strictly enforced.

This hour discussed accessing remote databases across local networks as well

as over the Internet. Each major method for accessing any type of a remote

database requires the use of the network and protocol adapters used to

translate requests to the database. This has been a broad overview of the

application of SQL over local networks, company intranets, and the Inter-

net. After digesting a few quiz and exercise questions, you should be ready

to venture into the last hour of your journey through SQL.

Q&A
Q. Why is it important to know if your data is accessed over a public network

via the Internet?

A. The data that is sent between a client and a web application is often

just plain text. That means that anyone could intercept the traffic and

be able to see exactly what the individual saw, such as sensitive data

like Social Security numbers or account numbers. You need to encrypt

data whenever possible.

Q. Is a back-end database for a web application any different from a back-end

database for a client/server system?

A. The back-end database itself for a web application is not necessarily

different from that of a client/server system. However, other require-

ments must be met to implement a web-based application. For exam-

ple, a web server is used to access the database with a web application.

With a web application, end users do not typically connect directly to

the database.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

364 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Can a database on a server be accessed from another server?

2. What can a company use to disseminate information to its own

employees?

3. Products that allow connections to databases are called what?

4. Can SQL be embedded into Internet programming languages?

5. How is a remote database accessed through a web application?

Exercises

1. Connect to the Internet and look at various companies’ home pages. If

your own company has a home page, compare it to the competition’s

home pages. Ask yourself these questions about the pages:

. Does any of the page content appear to be dynamic?

. What pages or areas on pages might be data from a back-end

database?

. Do there appear to be security mechanisms on the web page?

Can a login be entered to access data that might be stored in a

database?

. Most modern browsers enable you to view the source code of the

page returned. Use your web browser to view the source code. Is

there any code that would give you a hint as to what the back-

end database is?

. If you uncovered any information in the page’s code, such as a

server name or a database username, would you consider this a

security flaw?

Workshop 365

2. Visit the following websites and browse through the content, latest

technologies, and companies’ use of data on the Web (data that

appears to be derived from a database):

. www.amazon.com

. www.informit.com

. www.mysql.com

. www.oracle.com

. www.ebay.com

. www.google.com

www.amazon.com
www.informit.com
www.mysql.com
www.oracle.com
www.ebay.com
www.google.com

This page intentionally left blank

Various Implementations 367

HOUR 24

Extensions to Standard SQL

What You’ll Learn in This Hour:

. Various implementations

. Differences between implementations

. Compliance with ANSI SQL

. Interactive SQL statements

. Using variables

. Using parameters

This hour covers extensions to American National Standards Institute (ANSI)-

standard SQL. Although most implementations conform to the standard,

many vendors have provided extensions to standard SQL through various

enhancements.

Various Implementations
Numerous SQL implementations are released by various vendors. All the

relational database vendors could not possibly be mentioned; a few of the

leading implementations, however, are discussed. The implementations dis-

cussed here are MySQL, Microsoft SQL Server, and Oracle. Other popular

vendors providing database products include Sybase, IBM, Informix,

Progress, PostgreSQL, and many more.

Differences Between Implementations

Although the implementations listed here are relational database products,

there are specific differences between each. These differences stem from the

design of the product and the way data is handled by the database engine;

however, this book concentrates on the SQL aspect of the differences. All

368 HOUR 24: Extensions to Standard SQL

Vendors Purposely Break with the ANSI Standard

Differences in SQL have been adopted by various vendors to enhance ANSI SQL

for performance considerations and ease of use. Vendors also strive to make

enhancements that provide them with advantages over other vendors, making

their implementation more attractive to the customer.

Did You
Know?

Now that you know SQL, you should have little problem adjusting to the

differences in SQL among the various vendors. In other words, if you can

write SQL in a Sybase implementation, you should be able to write SQL in

Oracle. Besides, knowing SQL for various vendors improves your résumé.

The following sections compare the SELECT statement’s syntax from a few

major vendors to the ANSI standard.

The following is the ANSI standard:

SELECT [DISTINCT] [* | COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE SEARCH_ CONDITION]

GROUP BY [TABLE_ALIAS | COLUMN1 [, COLUMN2]

[HAVING SEARCH_CONDITION]]

[ALL]

[CORRESPONDING [BY (COLUMN1 [, COLUMN2])]

QUERY_SPEC | SELECT * FROM TABLE | TABLE_CONSTRUCTOR]

[ORDER BY SORT_LIST]

The following is the syntax for Microsoft SQL Server:

[WITH <COMMON_TABLE_EXPRESSION>]

SELECT [DISTINCT][*| COLUMN1 [, COLUMN2, ..]

[INTO NEW_TABLE]

FROM TABLE1 [, TABLE2]

[WHERE SEARCH_CONDITION]

GROUP BY [COLUMN1, COLUMN2,...]

[HAVING SEARCH_CONDITION]

[{UNION | INTERSECT | EXCEPT}][ALL]

[ORDER BY SORT_LIST]

[OPTION QUERY_HINT]

The following is the syntax for Oracle:

SELECT [ALL | DISTINCT] COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]

[WHERE SEARCH_CONDITION]

[[START WITH SEARCH_CONDITION]

implementations use SQL as the language for communicating with the

database, as directed by ANSI. Many have some sort of extension to SQL

that is unique to that particular implementation.

Various Implementations 369

CONNECT BY SEARCH_CONDITION]

[GROUP BY COLUMN1 [, COLUMN2]

[HAVING SEARCH_CONDITION]]

[{UNION [ALL] | INTERSECT | MINUS} QUERY_SPEC]

[ORDER BY COLUMN1 [, COLUMN2]]

[NOWAIT]

As you can see by comparing the syntax examples, the basics are there. All

have the SELECT, FROM, WHERE, GROUP BY, HAVING, UNION, and ORDER BY clauses.

Each of these clauses works the same conceptually, but some have addition-

al options that might not be found in other implementations. These options

are called enhancements.

Compliance with ANSI SQL

Vendors do strive to comply with ANSI SQL; however, none is 100 percent

ANSI SQL-standard. Some vendors have added commands or functions to

ANSI SQL, and ANSI SQL has adopted many of these new commands or

functions. It is beneficial for a vendor to comply with the standard for

many reasons. One obvious benefit to standard compliance is that the ven-

dor’s implementation will be easy to learn, and the SQL code used is

portable to other implementations. Portability is definitely a factor when a

database is being migrated from one implementation to another.

For a database to be considered ANSI compliant, however, it only needs to

correspond to a small subset of the functionality of the ANSI standard. The

ANSI standard is written by a coalition of database companies. Therefore,

most implementations are considered ANSI compliant even though their

SQL implementations might vary widely between one another. Limiting

your code to only strict ANSI-compliant statements would improve portabil-

ity but would most likely severely limit database performance. So, in the

end, you need to balance the demands of portability with the performance

needs of your users. It is often best to forgo a lot of portability to ensure that

your applications are taking advantage of the specific platform you are

using to its full extent.

Extensions to SQL

Practically all the major vendors have an extension to SQL. An SQL exten-

sion is unique to a particular implementation and is generally not portable

between implementations. However, popular standard extensions are

reviewed by ANSI and are sometimes implemented as part of the new

standard.

370 HOUR 24: Extensions to Standard SQL

PL/SQL, which is a product of Oracle Corporation, and Transact-SQL, which

is used by both Sybase and Microsoft SQL Server, are two examples of robust

SQL extensions. Both extensions are discussed in relative detail for the

examples during this hour.

Example Extensions
Both PL/SQL and Transact-SQL are considered fourth-generation program-

ming languages. Both are procedural languages, whereas SQL is a non-

procedural language. We also briefly discuss MySQL.

The nonprocedural language SQL includes statements such as the

following:

. INSERT

. UPDATE

. DELETE

. SELECT

. COMMIT

. ROLLBACK

An SQL extension considered a procedural language includes all the preced-

ing statements, commands, and functions of standard SQL. In addition,

extensions include statements such as

. Variable declarations

. Cursor declarations

. Conditional statements

. Loops

. Error handling

. Variable assignment

. Date conversions

. Wildcard operators

. Triggers

. Stored procedures

Example Extensions 371

Did You
Know?

These statements allow the programmer to have more control over the way

data is handled in a procedural language.

Transact-SQL

Transact-SQL is a procedural language used by Microsoft SQL Server, which

means you tell the database how and where to find and manipulate data.

SQL is nonprocedural, and the database decides how and where to select

and manipulate data. Some highlights of Transact-SQL’s capabilities

include declaring local and global variables, cursors, error handling, trig-

gers, stored procedures, loops, wildcard operators, date conversions, and

summarized reports.

An example Transact-SQL statement follows:

IF (SELECT AVG(COST) FROM PRODUCTS_TBL) > 50

BEGIN

PRINT ‘LOWER ALL COSTS BY 10 PERCENT.’

END

ELSE

PRINT ‘COSTS ARE REASONABLE.’

This is a simple Transact-SQL statement. It states that if the average cost in

PRODUCTS_TBL is greater than 50, the text LOWER ALL COSTS BY 10 PERCENT.

will be printed. If the average cost is less than or equal to 50, the text COSTS

ARE REASONABLE. will be printed.

Notice the use of the IF...ELSE statement to evaluate conditions of data

values. The PRINT command is also a new command. These additional

options are not even a drop in the bucket of Transact-SQL capabilities.

SQL Is Not Considered a Procedural Language

Standard SQL is primarily a nonprocedural language, which means that you issue

statements to the database server. The database server decides how to optimally

execute the statement. Procedural languages allow the programmer to request

the data to be retrieved or manipulated and to tell the database server exactly

how to carry out the request.

PL/SQL

PL/SQL is Oracle’s extension to SQL. Like Transact-SQL, PL/SQL is a proce-

dural language. PL/SQL is structured in logical blocks of code. A PL/SQL

block contains three sections, two of which are optional. The first section is

372 HOUR 24: Extensions to Standard SQL

the DECLARE section, which is optional. The DECLARE section contains vari-

ables, cursors, and constants. The second section is called the PROCEDURE sec-

tion and is mandatory. The PROCEDURE section contains the conditional com-

mands and SQL statements. This section is where the block is controlled. The

third section is called the EXCEPTION section, and it is optional. The EXCEPTION

section defines the way the program should handle errors and user-defined

exceptions. Highlights of PL/SQL include the use of variables, constants, cur-

sors, attributes, loops, handling exceptions, displaying output to the pro-

grammer, transactional control, stored procedures, triggers, and packages.

An example PL/SQL statement follows:

DECLARE

CURSOR EMP_CURSOR IS SELECT EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME

FROM EMPLOYEE_TBL;

EMP_REC EMP_CURSOR%ROWTYPE;

BEGIN

OPEN EMP_CURSOR;

LOOP

FETCH EMP_CURSOR INTO EMP_REC;

EXIT WHEN EMP_CURSOR%NOTFOUND;

IF (EMP_REC.MIDDLE_NAME IS NULL) THEN

UPDATE EMPLOYEE_TBL

SET MIDDLE_NAME = ‘X’

WHERE EMP_ID = EMP_REC.EMP_ID;

COMMIT;

END IF;

END LOOP;

CLOSE EMP_CURSOR;

END;

Two out of the three sections are being used in this example: the DECLARE

section and the PROCEDURE section. First, a cursor called EMP_CURSOR is

defined by a query. Second, a variable called EMP_REC is declared, whose

values have the same data type (%ROWTYPE) as each column in the defined

cursor. The first step in the PROCEDURE section (after BEGIN) is to open the

cursor. After the cursor is opened, you use the LOOP command to scroll

through each record of the cursor, which is eventually terminated by END

LOOP. Update EMPLOYEE_TBL for all rows in the cursor. If the middle initial of

an employee is NULL, the update sets the middle initial to ’X’. Changes are

committed, and the cursor is eventually closed.

MySQL

MySQL is a multiuser, multithreaded SQL database client/server implemen-

tation. It consists of a server daemon, a terminal monitor client program,

and several client programs and libraries. The main goals of MySQL are

Interactive SQL Statements 373

speed, robustness, and ease of use. MySQL was originally designed to pro-

vide faster access to large databases.

MySQL is often considered one of the more ANSI-compliant database

implementations. From its beginnings, MySQL has been part of a semi-

open-source development environment that has deliberately tried to main-

tain close adherence to the ANSI standards. Since version 5.0, MySQL has

been available in both the open-source Community Edition as well as the

closed-source Enterprise Edition. In 2009, MySQL was acquired as part of a

deal in which Oracle bought Sun Microsystems, which was the original

owner of the platform.

Currently, MySQL does not contain major extensions like Oracle or

Microsoft SQL Server, but with its recent acquisition, this might change in

the near future. To be certain, check your version’s documentation for spe-

cific extensions that may become available.

Interactive SQL Statements
Interactive SQL statements ask you for a variable, parameter, or some form

of data before fully executing. Say you have an SQL statement that is inter-

active. The statement is used to create users in a database. The SQL state-

ment could prompt you for information such as user ID, name of user, and

phone number. The statement could be for one or many users and is exe-

cuted only once. Otherwise, each user has to be entered individually with

the CREATE USER statement. The SQL statement could also prompt you for

privileges. Not all vendors have interactive SQL statements; you must check

your particular implementation.

Another interesting aspect of using interactive SQL statements is the ability

to employ parameters. Parameters are variables that are written in SQL and

reside within an application. Parameters can be passed into an SQL state-

ment during runtime, allowing more flexibility for the user executing the

statement. Many of the major implementations allow use of these parame-

ters. The following sections show examples of passing parameters for

Oracle and SQL Server.

Parameters in Oracle can be passed into an otherwise static SQL statement,

as the following code shows:

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘&EMP_ID’

374 HOUR 24: Extensions to Standard SQL

The preceding SQL statement returns the EMP_ID, LAST_NAME, and FIRST_NAME

for whatever EMP_ID you enter at the prompt. The next statement prompts

you for the city and the state. The query returns all data for those employ-

ees living in the city and state that you entered.

SELECT *

FROM EMPLOYEE_TBL

WHERE CITY = ‘&CITY’

AND STATE = ‘&STATE’

Parameters in Microsoft SQL Server can also be passed into a stored proce-

dure:

CREATE PROC EMP_SEARCH

(@EMP_ID)

AS

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = @EMP_ID

Type the following to execute the stored procedure and pass a parameter:

SP_EMP_SEARCH “443679012”

Summary
This hour discussed extensions to standard SQL among vendors’ implemen-

tations and their compliance with the ANSI standard. After you learn SQL,

you can easily apply your knowledge—and your code—to other implemen-

tations of SQL. SQL is portable between vendors; implementations can use

most SQL code with a few minor modifications.

The last part of this hour was spent showing two specific extensions used by

three implementations. Microsoft SQL Server and Sybase use Transact-SQL,

and Oracle uses PL/SQL. You should have seen some similarities between

Transact-SQL and PL/SQL. One thing to note is that these two implementa-

tions have first sought their compliance with the standard, and then added

enhancements to their implementations for better overall functionality and

efficiency. Also discussed was MySQL, which was designed to increase per-

formance for large database queries. This hour’s intent was to make you

aware that many SQL extensions do exist and to teach the importance of a

vendor’s compliance to the ANSI SQL standard.

If you take what you have learned in this book and apply it (build your

code, test it, and build upon your knowledge), you are well on your way

to mastering SQL. Companies have data and cannot function without

Workshop 375

databases. Relational databases are everywhere—and because SQL is the

standard language with which to communicate and administer a relational

database, you have made an excellent decision by learning SQL. Good luck!

Q&A
Q. Why do variations in SQL exist?

A. Variations in SQL exist among the various implementations because of

the way data is stored, because of the various vendors’ ambition for

trying to get an advantage over competition, and because of new ideas

that surface.

Q. After learning basic SQL, will I be able to use SQL in different implementations?

A. Yes. However, remember that there are differences and variations

between the implementations. The basic framework for SQL is the

same among most implementations.

Workshop
The following workshop is composed of a series of quiz questions and practi-

cal exercises. The quiz questions are designed to test your overall under-

standing of the current material. The practical exercises are intended to

afford you the opportunity to apply the concepts discussed during the cur-

rent hour, as well as build upon the knowledge acquired in previous hours

of study. Please take time to complete the quiz questions and exercises

before continuing. Refer to Appendix C, “Answers to Quizzes and Exercises,”

for answers.

Quiz

1. Is SQL a procedural or nonprocedural language?

2. What are the three basic operations of a cursor, outside of declaring

the cursor?

3. Procedural or nonprocedural: With which does the database engine

decide how to evaluate and execute SQL statements?

376 HOUR 24: Extensions to Standard SQL

Exercises

1. Research the SQL variations among the various vendors. Go to the fol-

lowing websites and review the implementations of SQL that are

available:

www.oracle.com

www.sybase.com

www.microsoft.com

www.mysql.com

www.informix.com

www.pgsql.com

www.ibm.com

www.oracle.com
www.sybase.com
www.microsoft.com
www.mysql.com
www.informix.com
www.pgsql.com
www.ibm.com

SQL Statements 377

APPENDIX A

Common SQL Commands

This appendix details some of the most common SQL commands that you

will use. As we have stated throughout the book, check your database doc-

umentation, because some of the statements vary depending upon your

implementation.

SQL Statements

ALTER TABLE
ALTER TABLE TABLE_NAME

[MODIFY | ADD | DROP]

[COLUMN COLUMN_NAME][DATATYPE|NULL NOT NULL] [RESTRICT|CASCADE]

[ADD | DROP] CONSTRAINT CONSTRAINT_NAME]

Description: Alters a table’s columns.

COMMIT
COMMIT [TRANSACTION]

Description: Saves a transaction to the database.

CREATE INDEX
CREATE INDEX INDEX_NAME

ON TABLE_NAME (COLUMN_NAME)

Description: Creates an index on a table.

CREATE ROLE
CREATE ROLE ROLE NAME

[WITH ADMIN [CURRENT_USER | CURRENT_ROLE]]

Description: Creates a database role to which system and object privileges

can be granted.

378 APPENDIX A: Common SQL Commands

CREATE TABLE
CREATE TABLE TABLE_NAME

(COLUMN1 DATA_TYPE [NULL|NOT NULL],

COLUMN2 DATA_TYPE [NULL|NOT NULL])

Description: Creates a database table.

CREATE TABLE AS
CREATE TABLE TABLE_NAME AS

SELECT COLUMN1, COLUMN2,...

FROM TABLE_NAME

[WHERE CONDITIONS]

[GROUP BY COLUMN1, COLUMN2,...]

[HAVING CONDITIONS]

Description: Creates a database table based on another table.

CREATE TYPE
CREATE TYPE typename AS OBJECT

(COLUMN1 DATA_TYPE [NULL|NOT NULL],

COLUMN2 DATA_TYPE [NULL|NOT NULL])

Description: Creates a user-defined type that can define columns in a table.

CREATE USER
CREATE USER username IDENTIFIED BY password

Description: Creates a user account in the database.

CREATE VIEW
CREATE VIEW AS

SELECT COLUMN1, COLUMN2,...

FROM TABLE_NAME

[WHERE CONDITIONS]

[GROUP BY COLUMN1, COLUMN2,...]

[HAVING CONDITIONS]

Description: Creates a view of a table.

SQL Statements 379

DELETE
DELETE

FROM TABLE_NAME

[WHERE CONDITIONS]

Description: Deletes rows of data from a table.

DROP INDEX
DROP INDEX INDEX_NAME

Description: Drops an index on a table.

DROP TABLE
DROP TABLE TABLE_NAME

Description: Drops a table from the database.

DROP USER
DROP USER user1 [, user2, ...]

Description: Drops a user account from the database.

DROP VIEW
DROP VIEW VIEW_NAME

Description: Drops a view of a table.

GRANT
GRANT PRIVILEGE1, PRIVILEGE2, ... TO USER_NAME

Description: Grants privileges to a user.

INSERT
INSERT INTO TABLE_NAME [(COLUMN1, COLUMN2,...]

VALUES (’VALUE1’,’VALUE2’,...)

Description: Inserts new rows of data into a table.

380 APPENDIX A: Common SQL Commands

INSERT...SELECT
INSERT INTO TABLE_NAME

SELECT COLUMN1, COLUMN2

FROM TABLE_NAME

[WHERE CONDITIONS]

Description: Inserts new rows of data into a table based on data in another

table.

REVOKE
REVOKE PRIVILEGE1, PRIVILEGE2, ... FROM USER_NAME

Description: Revokes privileges from a user.

ROLLBACK
ROLLBACK [TO SAVEPOINT_NAME]

Description: Undoes a database transaction.

SAVEPOINT
SAVEPOINT SAVEPOINT_NAME

Description: Creates transaction savepoints in which to roll back if

necessary.

SELECT
SELECT [DISTINCT] COLUMN1, COLUMN2,...

FROM TABLE1, TABLE2,...

[WHERE CONDITIONS]

[GROUP BY COLUMN1, COLUMN2,...]

[HAVING CONDITIONS]

[ORDER BY COLUMN1, COLUMN2,...]

Description: Returns data from one or more database tables; used to create

queries.

UPDATE
UPDATE TABLE_NAME

SET COLUMN1 = ’VALUE1’,

COLUMN2 = ’VALUE2’,...

[WHERE CONDITIONS]

Description: Updates existing data in a table.

SQL Clauses 381

SQL Clauses

SELECT
SELECT *

SELECT COLUMN1, COLUMN2,...

SELECT DISTINCT (COLUMN1)

SELECT COUNT(*)

Description: Defines columns to display as part of query output.

FROM
FROM TABLE1, TABLE2, TABLE3,...

Description: Defines tables from which to retrieve data.

WHERE
WHERE COLUMN1 = ’VALUE1’

AND COLUMN2 = ’VALUE2’

...

WHERE COLUMN1 = ’VALUE1’

OR COLUMN2 = ’VALUE2’

...

WHERE COLUMN IN (’VALUE1’ [, ‘VALUE2’])

Description: Defines conditions (criteria) placed on a query for data to be

returned.

GROUP BY
GROUP BY GROUP_COLUMN1, GROUP_COLUMN2,...

Description: Divides output into logical groups; a form of sorting operation.

HAVING
HAVING GROUP_COLUMN1 = ’VALUE1’

AND GROUP_COLUMN2 = ’VALUE2’

...

Description: Places conditions on the GROUP BY clause; similar to the WHERE

clause.

382 APPENDIX A: Common SQL Commands

ORDER BY
ORDER BY COLUMN1, COLUMN2,...

ORDER BY 1,2,...

Description: Sorts a query’s results.

Windows Installation Instructions for MySQL 383

By the
Way

APPENDIX B

Using the Databases for
Exercises

The instructions for installing MySQL, Microsoft SQL Server, and Oracle

have been included in this appendix for your convenience for the Windows

operating system. MySQL and Oracle are available on other operating sys-

tems as well, such as MacOS and Linux. These instructions are accurate as

of the date this book was written. Neither the authors nor Sams Publishing

place any warranties on the software or the software support. For any

installation problems or to inquire about software support, refer to the par-

ticular implementation’s documentation or contact customer support for

the implementation.

MySQL Install Instructions

You might want to review the current documentation for MySQL. To get to the

online documentation, go to www.mysql.com and look under the Products cate-

gory link on the MySQL.com tab for the link to the documentation.

Windows Installation Instructions for

MySQL
Use the following instructions if you are installing MySQL on a computer

with Microsoft Windows:

1. Go to www.mysql.com to download MySQL. WinZip, or an equiva-

lent program, is required to unzip the download.

2. Select the Downloads (GA) tab on the website.

3. Select the latest stable version, currently MySQL Community Server

5.5.8. Find the appropriate msi download for your machine, and

download it.

www.mysql.com
www.mysql.com

384 APPENDIX B: Using the Databases for Exercises

FIGURE B.2

MySQL installa-

tion selection.

FIGURE B.1

MySQL

Installation wel-

come screen.

6. Select Install on the next screen to start the installation of the

application.

7. After installation has completed successfully, click Next to complete

the Setup Wizard.

8. On the Wizard Completed screen shown in Figure B.3, select the

check box to configure your installed instance. Then click Finish. It

4. Double-click the msi to start the installation process. Click Next on

the welcome screen shown in Figure B.1.

5. Select the Typical installation option shown in Figure B.2, and

click Next.

Windows Installation Instructions for MySQL 385

FIGURE B.3

MySQL installa-

tion completion

screen.

is much simpler to use the Configuration Wizard than try to manu-

ally configure yourself.

9. Select Next on the MySQL Server Instance Configuration Wizard

screen.

10. Select the option to Reconfigure Instance, and click Next. The

Reconfigure Instance option sets up a new instance.

11. Choose Standard Configuration, and click Next.

12. Check the box to include a path in your Windows installation to

the MySQL application, and click Next. This enables you to run

MySQL from the command line without having to know its exact

installation path.

13. Check Modify Security Settings. Enter and confirm a root (adminis-

trator) password, and click Next as shown in Figure B.4.

14. Click Execute, and the configuration update begins.

If all the preceding steps were successful, you are ready to use MySQL for

exercises in this book.

If you experience problems during the installation, uninstall MySQL and

repeat steps 1–14. If you are still unable to obtain or install MySQL, contact

MySQL for support and check the support forums at http://forums.mysql.

com.

http://forums.mysql.com
http://forums.mysql.com

386 APPENDIX B: Using the Databases for Exercises

Oracle Install Instructions

You might want to review the current documentation for Oracle. To access the

online documentation, go to www.oracle.com and look under Products and

Services for the link to the documentation.

By the
Way

1. Go to www.oracle.com and download the appropriate installation

package for your machine from the Downloads tab. You will be

using the Oracle 10g Express Edition for the examples in this book

because this is the free version of the application.

2. Double-click the installation file to start the installation, and on

the first screen click Next.

3. Click to agree to the license agreement, and click Next.

4. Select the default installation and install location on the screen

shown in Figure B.5, and click Next.

5. Enter and confirm a password for the SYSTEM (administrator)

account, as shown in Figure B.6, and select Next.

6. Click Install on the next screen. The installation process begins.

Windows Installation Instructions for

Oracle
Use the following instructions if you are installing Oracle on a computer

with Microsoft Windows:

FIGURE B.4

MySQL security

configuration.

www.oracle.com
www.oracle.com

Windows Installation Instructions for Oracle 387

FIGURE B.5

Oracle installa-

tion location.

FIGURE B.6

Setting the sys-

tem password.

If your installation is successful, you should see the completion screen

shown in Figure B.7.

If all the preceding steps were successful, you are ready to use Oracle for

exercises in this book.

If you experience problems during the installation, uninstall Oracle and

repeat steps 1–6. If you are still unable to obtain or install Oracle, contact

Oracle for support, and check the community support forums located on

www.oracle.com.

www.oracle.com

388 APPENDIX B: Using the Databases for Exercises

Windows Installation Instructions for

Microsoft SQL Server
Use the following instructions if you are installing Microsoft SQL Server on

a computer with Microsoft Windows:

1. Go to www.microsoft.com/sqlserver/2008/en/us/express.aspx, click

the Download button, and choose the appropriate installation

package to download for your machine.

2. Double-click the installation file. You should see the initial screen

shown in Figure B.8.

FIGURE B.8

SQL Server ini-

tial installation

screen.

FIGURE B.7

Oracle installa-

tion completion

screen.

www.microsoft.com/sqlserver/2008/en/us/express.aspx

Windows Installation Instructions for Microsoft SQL Server 389

By the
Way

Microsoft SQL Server Install Instructions

You might want to review the current documentation for Microsoft SQL Server. To

get to the online documentation, go to www.microsoft.com/sqlserver/2008/en/

us/default.aspx and look under the Product Information tab for the link to the

documentation.

4. Leave the radio button selected for a new installation, and click Next.

5. Accept the license terms, and click Next.

6. Select all of the features, and click Next.

7. Select Default instance, and click Next.

8. Click Next on the disk space requirements screen.

9. On the Database Engine Configuration screen, click the Add

Current User button to add yourself as an administrator of the

instance, and then click Next.

10. Click Next on the Error Reporting screen.

11. Click Next on the Installation Configuration Rules page to begin

the installation.

FIGURE B.9

SQL Server

installation

selection

screen.

3. Select the new installation option from the choices in the right

pane, as shown in Figure B.9. This begins installing some setup

and support files that are used during the main installation.

www.microsoft.com/sqlserver/2008/en/us/default.aspx
www.microsoft.com/sqlserver/2008/en/us/default.aspx

390 APPENDIX B: Using the Databases for Exercises

If all the preceding steps were successful, you should see a completion screen.

You will be ready to use Microsoft SQL Server for exercises in this book.

If you experience problems during the installation, uninstall SQL Server

and repeat steps 1–11. If you are still unable to obtain or install Microsoft

SQL Server, refer to the Microsoft website at www.microsoft.com.

www.microsoft.com

Hour 1, “Welcome to the World of SQL” 391

APPENDIX C

Answers to Quizzes and
Exercises

Hour 1, “Welcome to the World of SQL”

Quiz Answers

1. What does the acronym SQL stand for?

A. SQL stands for Structured Query Language.

2. What are the six main categories of SQL commands?

A. Data Definition Language (DDL)

Data Manipulation Language (DML)

Data Query Language (DQL)

Data Control Language (DCL)

Data administration commands (DAC)

Transactional control commands (TCC)

3. What are the four transactional control commands?

A. COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTIONS

4. What is the main difference between client/server and web tech-

nologies as they relate to database access?

A. The connection to the database is the main difference. Using

the client to connect means you log on to the server directly to

access the database. When using the Web, you log on to the

Internet to reach the database.

392 APPENDIX C: Answers to Quizzes and Exercises

5. If a field is defined as NULL, does something have to be entered into

that field?

A. No. If a column is defined as NULL, nothing has to be in the

column. If a column is defined as NOT NULL, something does

have to be entered.

Exercise Answers

1. Identify the categories in which the following SQL commands fall:

CREATE TABLE

DELETE

SELECT

INSERT

ALTER TABLE

UPDATE

A. CREATE TABLE—DDL, Data Definition Language

DELETE—DML, Data Manipulation Language

SELECT—DQL, Data Query Language

INSERT—DML, Data Manipulation Language

ALTER TABLE—DDL, Data Definition Language

UPDATE—DML, Data Manipulation Language

2. Study the following tables, and pick out the column that would be

a good candidate for the primary key.

EMPLOYEE_TBL INVENTORY_TBL EQUIPMENT_TBL

name item model

phone description year

start date quantity serial number

address item number equipment number

employee number location assigned to

Hour 2, “Defining Data Structures” 393

A. The primary key for EMPLOYEE_TBL is the employee number.

Each employee is assigned a unique employee number.

Employees could have the same name, phone, start date, and

address.

The primary key for INVENTORY_TBL is the item number. The

other columns could be duplicated.

The primary key for EQUIPMENT_TBL is the equipment number.

Once again, the other columns could be duplicated.

3. No answer required.

Hour 2, “Defining Data Structures”

Quiz Answers

1. True or false: An individual’s Social Security number, entered in the

format ’111111111’, can be any of the following data types: con-

stant length character, varying length character, or numeric.

A. True, as long as the precision is the correct length.

2. True or false: The scale of a numeric value is the total length

allowed for values.

A. False. The precision is the total length, where the scale repre-

sents the number of places reserved to the right of a decimal

point.

3. Do all implementations use the same data types?

A. No. Most implementations differ in their use of data types.

The data types prescribed by ANSI are adhered to but might

differ among implementations according to storage precau-

tions taken by each vendor.

4. What are the precision and scale of the following?

DECIMAL(4,2)

DECIMAL(10,2)

DECIMAL(14,1)

A. DECIMAL(4,2)—Precision = 4, scale = 2

DECIMAL(10,2)—Precision = 10, scale = 2

DECIMAL(14,1)—Precision = 14, scale = 1

394 APPENDIX C: Answers to Quizzes and Exercises

5. Which numbers could be inserted into a column whose data type is

DECIMAL(4,1)?

a. 16.2

b. 116.2

c. 16.21

d. 1116.2

e. 1116.21

A. The first three fit, although 16.21 is rounded off to 16.2. The

numbers 1116.2 and 1116.21 exceed the maximum precision,

which was set at 4.

6. What is data?

A. Data is a collection of information stored in a database as

one of several different data types.

Exercise Answers

1. Take the following column titles, assign them to a data type, decide

on the proper length, and give an example of the data you would

enter into that column.

A. SSN—Constant-length character; ’111111111’

STATE—Varying-length character; ’INDIANA’

CITY—Varying-length character; ’INDIANAPOLIS’

PHONE_NUMBER—Constant-length character; ’(555)555-5555’

ZIP—Constant-length character; ’46113’

LAST_NAME—Varying-length character; ’JONES’

FIRST_NAME—Varying-length character; ’JACQUELINE’

MIDDLE_NAME—Varying-length character; ’OLIVIA’

SALARY—Numeric data type; 30000

HOURLY_PAY_RATE—Decimal; 35.00

DATE_HIRED—Date; ’01/01/2007’

2. Take the same column titles and decide if they should be NULL or

NOT NULL, realizing that in some cases where a column would nor-

mally be NOT NULL, the column could be NULL or vice versa, depend-

ing on the application.

Hour 3, “Managing Database Objects” 395

A. SSN—NOT NULL

STATE—NOT NULL

CITY—NOT NULL

PHONE_NUMBER—NULL

ZIP—NOT NULL

LAST_NAME—NOT NULL

FIRST_NAME—NOT NULL

MIDDLE_NAME—NULL

SALARY—NULL

HOURLY_PAY_RATE—NULL

DATE_HIRED—NOT NULL

2. Some individuals might not have a phone (however rare that

might be), and not everyone has a middle name, so these columns

should allow NULL values. In addition, not all employees are paid

an hourly rate.

3. No answer required.

Hour 3, “Managing Database Objects”

Quiz Answers

1. Does the following CREATE TABLE statement work? If not, what

needs to be done to correct the problem(s)? Are there limitations as

to what database implementation it works in (MySQL, Oracle, SQL

Server)?

CREATE TABLE EMPLOYEE_TABLE AS:

(SSN NUMBER(9) NOT NULL,

LAST_NAME VARCHAR2(20) NOT NULL,

FIRST_NAME VARCHAR(20) NOT NULL,

MIDDLE_NAME VARCHAR2(20) NOT NULL,

ST ADDRESS VARCHAR2(20) NOT NULL,

CITY CHAR(20) NOT NULL,

STATE CHAR(2) NOT NULL,

ZIP NUMBER(4) NOT NULL,

DATE HIRED DATE);

396 APPENDIX C: Answers to Quizzes and Exercises

A. The CREATE TABLE statement does not work because there are

several errors in the syntax. The corrected statement follows

and is given as an Oracle-specific version. A listing of what

was incorrect follows a corrected statement.

CREATE TABLE EMPLOYEE_TABLE

(SSN NUMBER() NOT NULL,

LAST_NAME VARCHAR2(20) NOT NULL,

FIRST_NAME VARCHAR2(20) NOT NULL,

MIDDLE_NAME VARCHAR2(20),

ST_ADDRESS VARCHAR2(30) NOT NULL,

CITY VARCHAR2(20) NOT NULL,

STATE CHAR(2) NOT NULL,

ZIP NUMBER(5) NOT NULL,

DATE_HIRED DATE);

The following needs to be done:

1. The AS: should not be in this CREATE TABLE statement.

2. A comma is missing after the NOT NULL for the LAST_NAME

column.

3. The MIDDLE_NAME column should be NULL because not

everyone has a middle name.

4. The column ST ADDRESS should be ST_ADDRESS. With two

words, the database looked at ST as being the column

name, which would make the database look for a valid

data type, where it would find the word ADDRESS.

5. The CITY column works, although it would be better to use

the VARCHAR2 data type. If all city names were a constant

length, CHAR would be okay.

6. The STATE column is missing a left parenthesis.

7. The ZIP column length should be (5), not (4).

8. The DATE HIRED column should be DATE_HIRED with an under-

score to make the column name one continuous string.

2. Can you drop a column from a table?

A. Yes. However, even though it is an ANSI standard, you must

check your particular implementation to see if it has been

accepted.

Hour 4, “The Normalization Process” 397

3. What statement would you issue to create a primary key constraint

on the preceding EMPLOYEE_TABLE?

A. ALTER TABLE EMPLOYEE_TBL

ADD CONSTRAINT EMPLOYEE_PK PRIMARY KEY(SSN);

4. What statement would you issue on the preceding EMPLOYEE_TABLE

to allow the MIDDLE_NAME column to accept NULL values?

A. ALTER TABLE EMPOYEE_TBL

MODIFY MIDDLE_NAME VARCHAR(20), NOT NULL;

5. What statement would you use to restrict the people added into the

preceding EMPLOYEE_TABLE to only reside in the state of New York

(’NY’)?

A. ALTER TABLE EMPLOYEE_TBL

ADD CONSTRAINT CHK_STATE CHECK(STATE=’NY’);

6. What statement would you use to add an auto-incrementing col-

umn called ’EMPID’ to the preceding EMPLOYEE_TABLE using both the

MySQL and SQL Server syntax?

A. ALTER TABLE EMPLOYEE_TBL

ADD COLUMN EMPID INT AUTO_INCREMENT;

Exercise Answers

No answer required.

Hour 4, “The Normalization Process”

Quiz Answers

1. True or false: Normalization is the process of grouping data into

logical related groups.

A. True.

2. True or false: Having no duplicate or redundant data in a data-

base, and having everything in the database normalized, is always

the best way to go.

A. False. Not always; normalization can and does slow perform-

ance because more tables must be joined, which results in

more I/O and CPU time.

398 APPENDIX C: Answers to Quizzes and Exercises

3. True or false: If data is in the third normal form, it is automatically

in the first and second normal forms.

A. True.

4. What is a major advantage of a denormalized database versus a

normalized database?

A. The major advantage is improved performance.

5. What are some major disadvantages of denormalization?

A. Having redundant and duplicate data takes up valuable

space; it is harder to code, and much more data maintenance

is required.

6. How do you determine if data needs to be moved to a separate

table when normalizing your database?

A. If the table has redundant groups of data, this data would be

a candidate to remove into a separate table.

7. What are the disadvantages of overnormalizing your database

design?

A. Overnormalization can lead to excess CPU and memory uti-

lization, which can put excess strain on the server.

Exercise Answers

1. You are developing a new database for a small company. Take the

following data and normalize it. Keep in mind that there would be

many more items for a small company than you are given here.

Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg,

Indiana, 47890, $9.50 hour, date started January 22, 1996, SSN is

323149669.

Jack Lee Nelson, salesman, 3334 N. Main St., Brownsburg, IN,

45687, 317-852-9901, salary of $35,000.00 year, SSN is 312567342,

date started 10/28/95.

Customers:

Robert’s Games and Things, 5612 Lafayette Rd., Indianapolis, IN,

46224, 317-291-7888, customer ID is 432A.

Hour 5, “Manipulating Data” 399

Reed’s Dairy Bar, 4556 W 10th St., Indianapolis, IN, 46245,

317-271-9823, customer ID is 117A.

Customer Orders:

Customer ID is 117A, date of last order is February 20, 1999, the

product ordered was napkins, and the product ID is 661.

A.

Employees Customers Orders

SSN CUSTOMER ID CUSTOMER ID

NAME NAME PRODUCT ID

STREET ADDRESS STREET ADDRESS PRODUCT

CITY CITY DATE ORDERED

STATE STATE

ZIP ZIP

PHONE NUMBER PHONE NUMBER

SALARY

HOURLY PAY

START DATE

POSITION

2. No answer required.

Hour 5, “Manipulating Data”

Quiz Answers

1. Use the EMPLOYEE_TBL with the following structure:

Column data type (not)null

last_name varchar2(20) not null

first_name varchar2(20) not null

ssn char(9) not null

phone number(10) null

LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923

ROBERTS LISA 232118857 3175452321

SMITH SUE 443221989 3178398712

PIERCE BILLY 310239856 3176763990

What would happen if the following statements were run?

a. INSERT INTO EMPLOYEE_TBL

(‘’JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

400 APPENDIX C: Answers to Quizzes and Exercises

A. The INSERT statement does not run because the keyword VALUES is

missing in the syntax.

b. INSERT INTO EMPLOYEE_TBL VALUES

(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

A. One row would be inserted into the EMPLOYEE_TBL.

c. INSERT INTO EMPLOYEE_TBL VALUES

(‘MILLER’, ‘DANIEL’, ‘230980012’, NULL);

A. One row would be inserted into the EMPLOYEE_TBL, with a NULL value

in the PHONE column.

d. INSERT INTO EMPLOYEE_TBL VALUES

(‘TAYLOR’, NULL, ‘445761212’, ‘3179221331’);

A. The INSERT statement would not process because the FIRST_NAME col-

umn is NOT NULL.

e. DELETE FROM RMPLOYEE_TBL;

A. All rows in EMPLOYEE_TBL would be deleted.

f. DELETE FROM EMPLOYEE_TBL

WHERE LAST_NAME = ‘SMITH’;

A. All employees with the last name of SMITH would be deleted from

EMPLOYEE_TBL.

g. DELETE FROM EMPLOYEE_TBL

WHERE LAST_NAME = ‘SMITH’

AND FIRST_NAME = ‘JOHN’;

A. Only JOHN SMITH would be deleted from the EMPLOYEE_TBL.

h. UPDATE EMPLOYEE_TBL

SET LAST_NAME – ‘CONRAD’;

A. All last names would be changed to CONRAD.

i. UPDATE EMPLOYEE_TBL

SET LAST_NAME = ‘CONRAD’

WHERE LAST_NAME = ‘SMITH’;

A. Both JOHN and SUE SMITH would now be JOHN and SUE CONRAD.

j. UPDATE EMPLOYEE_TBL

SET LAST_NAME = ‘CONRAD’,

FIRST_NAME = ‘LARRY’;

Hour 5, “Manipulating Data” 401

A. All employees are now LARRY CONRAD.

k. UPDATE EMPLOYEE_TBL

SET LAST_NAME = ‘CONRAD’,

FIRST_NAME = ‘LARRY’

WHERE SSN = ‘312456788’;

A. JOHN SMITH is now LARRY CONRAD.

Exercise Answers

1. No answer required.

2. Use PRODUCTS_TBL for the next exercise.

a. Add the following products to the product table:

PROD_ID PROD_DESC COST

301 FIREMAN COSTUME 24.99

302 POLICEMAN COSTUME 24.99

303 KIDDIE GRAB BAG 4.99

A. INSERT INTO PRODUCTS_TBL VALUES
(‘301’,’FIREMAN COSTUME’,24.99);
INSERT INTO PRODUCTS_TBL VALUES
(‘302’,’POLICEMAN COSTUME’,24.99);
INSERT INTO PRODUCTS_TBL VALUES
(‘303’,’KIDDIE GRAB BAG’,4.99);

b. Write DML to correct the cost of the two costumes added. The

cost should be the same as the witch costume.’

A. UPDATE PRODUCTS_TBL
SET COST = 29.99

WHERE PROD_ID = ‘301’;

UPDATE PRODUCTS_TBL

SET COST = 29.99

WHERE PROD_ID = ‘302’;

c. Now we have decided to cut our product line, starting with

the new products. Remove the three products you just added.

A. DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘301’;

DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘302’;

DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘303’;

d. Before you executed the statements to remove the products

you added, what should you have done to ensure that you

only delete the desired rows?

402 APPENDIX C: Answers to Quizzes and Exercises

A. To ensure that you are deleting exactly what you want to delete,

you need to perform a SELECT statement using the same FROM and

WHERE clause.

Hour 6, “Managing Database

Transactions”

Quiz Answers

1. True or false: If you have committed several transactions, have sev-

eral more transactions that have not been committed, and issue a

ROLLBACK command, all your transactions for the same session are

undone.

A. False. When a transaction is committed, the transaction can-

not be rolled back.

2. True or false: A SAVEPOINT command actually saves transactions

after a specified number of transactions have executed.

A. False. A SAVEPOINT is used only as a point for a ROLLBACK to

return to.

3. Briefly describe the purpose of each one of the following com-

mands: COMMIT, ROLLBACK, and SAVEPOINT.

A. COMMIT saves changes made by a transaction. ROLLBACK undoes

changes made by a transaction. SAVEPOINT creates logical

points in the transaction to which to roll back.

4. What are some differences in the implementation of transactions in

Microsoft SQL Server?

A. SQL Server auto-commits statements unless specifically placed

in a transaction and has a different syntax for SAVEPOINT. Also,

it does not support the RELEASE SAVEPOINT command.

5. What are some performance implications when using transactions?

A. Transactions have implications on temporary storage space

because the database server has to keep track of all the

changes until they are committed in case of a ROLLBACK.

Hour 6, “Managing Database Transactions” 403

Exercise Answers

1. Take the following transactions and create a SAVEPOINT or a SAVE

TRANSACTION command after the first three transactions. Then create

a ROLLBACK statement for your SAVEPOINT at the end. Try to deter-

mine what CUSTOMER_TBL will look like after you are done.

A. INSERT INTO CUSTOMER_TBL VALUES(615,’FRED WOLF’,’109 MEMORY

LANE’,’PLAINFIELD’,’IN’,46113,’3175555555’,NULL);

INSERT INTO CUSTOMER_TBL VALUES(559,’RITA THOMPSON’,

‘125PEACHTREE’,’INDIANAPOLIS’,’IN’,46248,’3171111111’,NULL);

INSERT INTO CUSTOMER_TBL VALUES(715,’BOB DIGGLER’,

‘1102 HUNTINGTON ST’,’SHELBY’,’IN’,41234,’3172222222’,NULL);

SAVEPOINT SAVEPOINT1;

UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE
CUST_ID=’559’;

UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’

WHERE CUST_ID=’615’;

UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;

ROLLBACK;

2. Take the following group of transactions and create a SAVEPOINT

after the first three transactions.

Then place a COMMIT statement at the end followed by a ROLLBACK

statement to your SAVEPOINT. What do you think should happen?

A. UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE
CUST_ID=’559’;

UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’

WHERE CUST_ID=’615’;

UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;

SAVEPOINT SAVEPOINT1;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’559’;

DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;

COMMIT;

ROLLBACK;

Because the statement is committed, the ROLLBACK statement doesn’t

have an effect.

404 APPENDIX C: Answers to Quizzes and Exercises

Hour 7, “Introduction to the Database

Query”

Quiz Answers

1. Name the required parts for any SELECT statement.

A. The SELECT and FROM keywords, also called clauses, are

required for all SELECT statements.

2. In the WHERE clause, are single quotation marks required for all the

data?

A. No. Single quotation marks are required when selecting

alphanumeric data types. Number data types do not require

single quotation marks.

3. Under what part of the SQL language does the SELECT statement

(database query) fall?

A. The SELECT statement is considered Data Query Language.

4. Can multiple conditions be used in the WHERE clause?

A. Yes. Multiple conditions can be specified in the WHERE clause of

SELECT, INSERT, UPDATE, and DELETE statements. Multiple condi-

tions are used with the operators AND and OR, which are thor-

oughly discussed in Hour 8, “Using Operators to Categorize

Data.”

5. What is the purpose of the DISTINCT option?

A. The DISTINCT option suppresses the display of duplicates.

6. Is the ALL option required?

A. No. Even though the ALL option can be used, it is not really

required.

7. How are numeric characters treated when ordering based upon a

character field?

A. They are sorted as ASCII characters. This means that numbers

would be ordered like this: 1, 12, 2, 222, 22222, 3, 33.

8. How does Oracle handle its default case sensitivity differently from

MySQL and Microsoft SQL Server?

A. Oracle by default performs matches as case sensitive.

Hour 7, “Introduction to the Database Query” 405

Exercise Answers

1. Invoke your RDBMS query editor on your computer. Using your

learnsql database, enter the following SELECT statements.

Determine whether the syntax is correct. If the syntax is incorrect,

make corrections to the code as necessary. We are using the

EMPLOYEE_TBL here.

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,

FROM EMPLOYEE_TBL;

A. This SELECT statement does not work because there is a comma

after the FIRST_NAME column that does not belong there. The correct

syntax follows:

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL;

b. SELECT EMP_ID, LAST_NAME

ORDER BY EMP_ID

FROM EMPLOYEE_TBL;

A. This SELECT statement does not work because the FROM and ORDER BY

clauses are in the incorrect order. The correct syntax follows:

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

ORDER BY EMP_ID;

c. SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY EMP_ID;

A. The syntax for this SELECT statement is correct.

d. SELECT EMP_ID SSN, LAST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY 1;

A. The syntax for this SELECT statement is correct. Notice that the

EMP_ID column is renamed SSN.

e. SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘213764555’

ORDER BY 3, 1, 2;

406 APPENDIX C: Answers to Quizzes and Exercises

A. The syntax for this SELECT statement is correct. Notice the

order of the columns in the ORDER BY. This SELECT statement

returns records from the database that are sorted by

FIRST_NAME, and then by EMP_ID, and finally by LAST_NAME.

2. Does the following SELECT statement work?

SELECT LAST_NAME, FIRST_NAME, PHONE

FROM EMPLOYEE_TBL

WHERE EMP_ID = ‘333333333’;

A. The syntax is correct and the statement worked, even though

no data was returned. No data was returned because there

was no row with an EMP_ID of 333333333.

3. Write a SELECT statement that returns the name and cost of each

product from the PRODUCTS_TBL. Which product is the most expen-

sive?

A. SELECT PROD_DESC,COST FROM PRODUCTS_TBL;

The witch costume is the most expensive.

4. Write a query that generates a list of all customers and their tele-

phone numbers.

A. SELECT CUST_NAME,CUST_PHONE FROM CUSTOMER_TBL;

5. Answers will vary.

Hour 8, “Using Operators to Categorize

Data”

Quiz Answers

1. True or false: Both conditions when using the OR operator must be

TRUE.

A. False. Only one of the conditions must be TRUE.

2. True or false: All specified values must match when using the IN

operator.

A. False. Only one of the values must match.

3. True or false: The AND operator can be used in the SELECT and the

WHERE clauses.

Hour 8, “Using Operators to Categorize Data” 407

A. False. The AND operator can only be used in the WHERE clause.

4. True or false: The ANY operator can accept an expression list.

A. False. The ANY operator cannot take an expression list.

5. What is the logical negation of the IN operator?

A. NOT IN.

6. What is the logical negation of the ANY and ALL operators?

A. <>ANY and <>ALL.

7. What, if anything, is wrong with the following SELECT statements?

a. SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN 20000, 30000;

A. The AND is missing between 20000, 30000. The correct syntax is

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN 20000 AND 30000;

b. SELECT SALARY + DATE_HIRE

FROM EMPLOYEE_PAY_TBL;

A. The DATE_HIRE column is a DATE data type and is in the incor-

rect format for arithmetic functions.

c. SELECT SALARY, BONUS

FROM EMPLOYEE_PAY_TBL

WHERE DATE_HIRE BETWEEN 1999-09-22

AND 1999-11-23

AND POSITION = ‘SALES’

OR POSITION = ‘MARKETING’

AND EMP_ID LIKE ‘%55%’;

A. The syntax is correct.

Exercise Answers

1. Using the following CUSTOMER_TBL, write a SELECT statement that

returns customer IDs and customer names (alpha order) for cus-

tomers who live in Indiana, Ohio, Michigan, and Illinois, and

whose names begin with the letters A or B:

408 APPENDIX C: Answers to Quizzes and Exercises

DESCRIBE CUSTOMER_TBL

Name Null? Type

------------------------------ --------- ------------

CUST_ID NOT NULL VARCHAR (10)

CUST_NAME NOT NULL VARCHAR (30)

CUST_ADDRESS NOT NULL VARCHAR (20)

CUST_CITY NOT NULL VARCHAR (12)

CUST_STATE NOT NULL VARCHAR (2)

CUST_ZIP NOT NULL VARCHAR (5)

CUST_PHONE VARCHAR (10)

CUST_FAX VARCHAR (10)

A. SELECT CUST_ID, CUST_NAME, CUST_STATE

FROM CUSTOMER_TBL

WHERE CUST_STATE IN (‘IN’, ‘OH’, ‘MI’, ‘IL’)

AND CUST_NAME LIKE ‘A%’

OR CUST_NAME LIKE ‘B%’

ORDER BY CUST_NAME;

2. Using the following PRODUCTS_TBL, write a SELECT statement that

returns the product ID, product description, and product cost. Limit

the product cost to between $1.00 and $12.50:

DESCRIBE PRODUCTS_TBL

Name Null? Type

------------------------------- -------- ------------

PROD_ID NOT NULL VARCHAR (10)

PROD_DESC NOT NULL VARCHAR (25)

COST NOT NULL DECIMAL(6,2)

A. SELECT *

FROM PRODUCTS_TBL

WHERE COST BETWEEN 1.00 AND 12.50;

3. Assuming that you used the BETWEEN operator in Exercise 2, rewrite

your SQL statement to achieve the same results using different

operators. If you did not use the BETWEEN operator, do so now.

A. SELECT *

FROM PRODUCTS_TBL

WHERE COST >= 1.00 AND COST <= 12.50;

SELECT *

FROM PRODUCTS_TBL

WHERE COST BETWEEN 1.00 AND 12.50;

4. Write a SELECT statement that returns products that are either less

than 1.00 or greater than 12.50. There are two ways to achieve the

same results.

Hour 8, “Using Operators to Categorize Data” 409

A. SELECT *

FROM PRODUCTS_TBL

WHERE COST < 1.00 OR COST > 12.50;

SELECT *

FROM PRODUCTS_TBL

WHERE COST NOT BETWEEN 1.00 AND 12.50;

Also keep in mind that BETWEEN is inclusive of the upper and

lower values, whereas NOT BETWEEN is not inclusive.

5. Write a SELECT statement that returns the following information

from PRODUCTS_TBL: product description, product cost, and 5% sales

tax for each product. List the products in order from most to least

expensive.

A. SELECT PROD_DESC, COST, COST * .05

FROM PRODUCTS_TBL

ORDER BY COST DESC;

6. Write a SELECT statement that returns the following information

from PRODUCTS_TBL: product description, product cost, 5% sales tax

for each product, and total cost with sales tax. List the products in

order from most to least expensive. There are two ways to achieve

the same results. Try both.

A. SELECT PROD_DESC, COST, COST * .05, COST + (COST * .05)

FROM PRODUCTS_TBL

ORDER BY COST DESC;

SELECT PROD_DESC, COST, COST * .05, COST * 1.05

FROM PRODUCTS_TBL

ORDER BY COST DESC;

7. Pick three items from the PRODUCTS table. Now write a query to

return the rows of data from the table associated with those three

items. Now rewrite the query to return everything but those three

items. For your query, use combinations of equality operators and

conjunctive operators.

A. SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID=11235

OR PROD_ID=119

OR PROD_ID=13;

SELECT *

FROM PRODUCTS_TBL

410 APPENDIX C: Answers to Quizzes and Exercises

WHERE PROD_ID<>11235

AND PROD_ID<>119

AND PROD_ID<>13;

8. Rewrite the queries you wrote in Exercise 7 using the IN operator.

Which statement is more efficient? Which one is more readable?

A. SELECT * FROM PRODUCT_TBL

WHERE PROD_ID IN (11235,119,13);

SELECT *

FROM PRODUCT_TBL

WHERE PROD_ID IN (11235,119,13);

9. Write a query to return all the products that start with the letter P.

Now write a query to return all products that do not start with the

letter P.

A. SELECT *

FROM PRODUCTS_TBL

WHERE PROD_DESC LIKE (‘P%’);

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_DESC NOT LIKE (‘P%’);

Hour 9, “Summarizing Data Results

from a Query”

Quiz Answers

1. True or False: The AVG function returns an average of all rows from

a SELECT column, including any NULL values.

A. False. The NULL values are not considered.

2. True or False: The SUM function adds column totals.

A. False. The SUM function returns a total for a group of rows.

3. True or False: The COUNT(*) function counts all rows in a table.

A. True.

4. Do the following SELECT statements work? If not, what fixes the

statements?

a. SELECT COUNT *

FROM EMPLOYEE_PAY_TBL;

Hour 9, “Summarizing Data Results from a Query” 411

A. This statement does not work because the left and right

parentheses are missing around the asterisk. The correct syn-

tax is

SELECT COUNT(*)

FROM EMPLOYEE_PAY_TBL;

b. SELECT COUNT(EMP_ID), SALARY

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY;

A. Yes, this statement works.

c. SELECT MIN(BONUS), MAX(SALARY)

FROM EMPLOYEE_PAY_TBL

WHERE SALARY > 20000;

A. Yes, this statement works.

d. SELECT COUNT(DISTINCT PROD_ID) FROM PRODUCTS_TBL;

A. Yes, this statement works.

e. SELECT AVG(LAST_NAME) FROM EMPLOYEE_TBL;

A. No, this statement does not work because LAST_NAME needs to

be a numeric value.

f. SELECT AVG(PAGER) FROM EMPLOYEE_TBL;

A. Yes, this statement works with the current set of data in the

database.

Exercise Answers

1. Use EMPLOYEE_PAY_TBL to construct SQL statements to solve the fol-

lowing exercises:

a. What is the average salary?

A. The average salary is $30,000.00. The SQL statement to return

the data is

SELECT AVG(SALARY)

FROM EMPLOYEE_PAY_TBL;

b. What is the maximum bonus?

A. The maximum bonus is $2000.00. The SQL statement to

return the data is

SELECT MAX(BONUS)

FROM EMPLOYEE_PAY_TBL;

412 APPENDIX C: Answers to Quizzes and Exercises

c. What are the total salaries?

A. The sum of all the salaries is $90,000.00. The SQL statement

to return the data is

SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL;

d. What is the minimum pay rate?

A. The minimum pay rate is $11.00 an hour. The SQL statement

to return the data is

SELECT MIN(PAY_RATE)

FROM EMPLOYEE_PAY_TBL;

e. How many rows are in the table?

A. The total row count of the table is six. The SQL statement to

return the data is

SELECT COUNT(*)

FROM EMPLOYEE_PAY_TBL;

2. Write a query to determine how many employees are in the com-

pany whose last names begin with a G.

A. We should get two employees using the following syntax:

SELECT COUNT(*)

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘G%’;

3. Write a query to determine the total dollar amount for all the

orders in the system. Rewrite the query to determine the total dollar

amount if we set the price of each item as $10.00.

A. SELECT SUM(COST*QTY)

FROM ORDERS_TBL,PRODUCTS_TBL

WHERE ORDERS_TBL.PROD_ID=PRODUCTS_TBL.PROD_ID;

SELECT SUM(QTY) * 10

FROM ORDERS_TBL;

4. Write two sets of queries to find the first employee name and last

employee name when they are listed in alphabetical order.

A. SELECT MIN(LAST_NAME) AS LAST_NAME FROM EMPLOYEE_TBL;

SELECT MAX(LAST_NAME) AS LAST_NAME

FROM EMPLOYEE_TBL;

Hour 10, “Sorting and Grouping Data” 413

5. Write a query to perform an AVG function on the employee names.

Does the statement work? Determine why it is that you got that

result.

A. SELECT AVG(LAST_NAME) AS LAST_NAME FROM EMPLOYEE_TBL;

It errors out because it is not a numeric value.

Hour 10, “Sorting and Grouping Data”

Quiz Answers

1. Will the following SQL statements work?

a. SELECT SUM(SALARY), EMP_ID

FROM EMPLOYEE_PAY_TBL

GROUP BY 1 AND 2;

A. No, this statement will not work. The and in the GROUP BY

clause does not belong there, and you cannot use an integer

in the GROUP BY clause. The correct syntax is

SELECT SUM(SALARY), EMP_ID

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY, EMP_ID;

b. SELECT EMP_ID, MAX(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY, EMP_ID;

A. Yes, this statement will work.

c. SELECT EMP_ID, COUNT(SALARY)

FROM EMPLOYEE_PAY_TBL

ORDER BY EMP_ID

GROUP BY SALARY;

A. No, this statement will not work. The ORDER BY clause and the

GROUP BY clause are not in the correct sequence. Also, the

EMP_ID column is required in the GROUP BY clause. The correct

syntax is

SELECT EMP_ID, COUNT(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY EMP_ID

ORDER BY EMP_ID;

414 APPENDIX C: Answers to Quizzes and Exercises

d. SELECT YEAR(DATE_HIRE) AS YEAR_HIRED,SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY 1

HAVING SUM(SALARY)>20000;

A. Yes, this statement will work.

2. True or false: You must also use the GROUP BY clause when using the

HAVING clause.

A. False. The HAVING clause can be used without a GROUP BY

clause.

3. True or false: The following SQL statement returns a total of the

salaries by groups:

SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL;

A. False. The statement cannot return a total of the salaries by

groups because there is no GROUP BY clause.

4. True or false: The columns selected must appear in the GROUP BY

clause in the same order.

A. False. The order of the columns in the SELECT clause can be in

a different order in the GROUP BY clause.

5. True or false: The HAVING clause tells the GROUP BY which groups to

include.

A. True.

Exercise Answers

1. No answer required.

2. No answer required.

3. No answer required.

4. Modify the query in Exercise 3 by ordering the results in descending

order, from highest count to lowest.

A. SELECT CITY, COUNT(*)FROM EMPLOYEE_TBL

GROUP BY CITY

ORDER BY 2 DESC;

Hour 11, “Restructuring the Appearance of Data” 415

5. Write a query to list the average pay rate by position from the

EMPLOYEE_PAY_TBL table.

A. SELECT POSITION, AVG(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

GROUP BY POSITION;

6. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL table where the average salary is greater than

20000.

A. SELECT POSITION, AVG(SALARY)

FROM EMPLOYEE_PAY_TBL

GROUP BY POSITION

HAVING AVG(SALARY)>20000;

Hour 11, “Restructuring the

Appearance of Data”

Quiz Answers

1. Match the descriptions with the possible functions.

A.

Description Function

a. Used to select a portion of a character string SUBSTR

b. Used to trim characters from either the right or

left of a string

LTRIM/RTRIM

c. Used to change all letters to lowercase LOWER

d. Used to find the length of a string LENGTH

e. Used to combine strings ||

2. True or false: Using functions in a SELECT statement to restructure

the appearance of data in output also affects the way the data is

stored in the database.

A. False.

416 APPENDIX C: Answers to Quizzes and Exercises

3. True or false: The outermost function is always resolved first when

functions are embedded within other functions in a query.

A. False. The innermost function is always resolved first when

embedding functions within one another.

Exercise Answers

1. No answer required.

2. No answer required.

3. Write an SQL statement that lists employee email addresses. Email

is not a stored column. The email address for each employee

should be as follows:

FIRST.LAST @PERPTECH.COM

For example, John Smith’s email address is

JOHN.SMITH@PERPTECH.COM.

A. SELECT CONCAT(FIRST_NAME, ‘.’, LAST_NAME, ‘@PERPTECH.COM’)
FROM EMPLOYEE_TBL;

4. Write an SQL statement that lists each employee’s name and

phone number in the following formats:

a. The name should be displayed as SMITH, JOHN.

b. The employee ID should be displayed as 999-99-9999.

c. The phone number should be displayed as (999)999-9999.

A. SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME),EMP_ID,
CONCAT(‘(‘,SUBSTRING(PHONE,1,3),’)’,SUBSTRING(PHONE,4,3),’-’,

SUBSTRING(PHONE,7,4))

FROM EMPLOYEE_TBL;

Hour 12, “Understanding Dates and

Times”

Quiz Answers

1. From where is the system date and time normally derived?

A. The system date and time are derived from the current date

and time of the operating system on the host machine.

Hour 12, “Understanding Dates and Times” 417

2. What are the standard internal elements of a DATETIME value?

A. YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

3. What could be a major factor concerning the representation and

comparison of date and time values if your company is an interna-

tional organization?

A. The awareness of time zones might be a concern.

4. Can a character string date value be compared to a date value

defined as a valid DATETIME data type?

A. A DATETIME data type cannot be accurately compared to a

date value defined as a character string. The character string

must first be converted to the DATETIME data type.

5. What would you use in SQL Server, MySQL, and Oracle to get the

current date and time?

A. NOW()

Exercise Answers

1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

5. No answer required.

6. On what day of the week was each employee hired?

A. Use the following statement to find the answer:

SELECT EMP_ID, DAYNAME(DATE_HIRE)

FROM EMPLOYEE_PAY_TBL;

7. What is today’s Julian date (day of year)?

A. Use the following statement to find the answer:

SELECT DAYOFYEAR(CURRENT_DATE);

8. No answer required.

418 APPENDIX C: Answers to Quizzes and Exercises

Hour 13, “Joining Tables in Queries”

Quiz Answers

1. What type of join would you use to return records from one table,

regardless of the existence of associated records in the related table?

A. You would use an outer join.

2. The JOIN conditions are located in what part of the SQL statement?

A. The JOIN conditions are located in the WHERE clause.

3. What type of JOIN do you use to evaluate equality among rows of

related tables?

A. You would use an equijoin.

4. What happens if you select from two different tables but fail to join

the tables?

A. You receive a Cartesian product by not joining the tables (this

is also called a cross join).

5. Use the following tables:

ORDERS_TBL

ORD_NUM VARCHAR2(10) NOT NULL primary key

CUST_ID VARCHAR2(10) NOT NULL

PROD_ID VARCHAR2(10) NOT NULL

QTY INTEGER NOT NULL

ORD_DATE DATE

PRODUCTS_TBL

PROD_ID VARCHAR2(10) NOT NULL primary key

PROD_DESC VARCHAR2(40) NOT NULL

COST DECIMAL(,2) NOT NULL

Is the following syntax correct for using an outer join?

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM

FROM CUSTOMER_TBL C, ORDERS_TBL O

WHERE C.CUST_ID(+) = O.CUST_ID(+)

A. No, the syntax is not correct. The (+) operator should only

follow the O.CUST_ID column in the WHERE clause. The correct

syntax is

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM

FROM CUSTOMER_TBL C, ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID(+)

Hour 13, “Joining Tables in Queries” 419

What would the query look like if you used the verbose JOIN syn-

tax?

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM

FROM CUSTOMER_TBL C LEFT OUTER JOIN ORDERS_TBL O

ON C.CUST_ID = O.CUST_ID

Exercise Answers

1. No answer required.

2. No answer required.

3. Rewrite the SQL query from Exercise 2 using the INNER JOIN syntax.

A. SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE

FROM EMPLOYEE_TBL E INNER JOIN

EMPLOYEE_PAY_TBL EP ON

E.EMP_ID = EP.EMP_ID;

4. Write an SQL statement to return the EMP_ID, LAST_NAME, and

FIRST_NAME columns from EMPLOYEE_TBL and SALARY and BONUS

columns from EMPLOYEE_PAY_TBL. Use both types of join techniques.

Once that’s completed, use the queries to determine what the aver-

age employee salary per city is.

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.SALARY, EP.BONUS

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID;

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.SALARY, EP.BONUS

FROM EMPLOYEE_TBL E INNER JOIN

EMPLOYEE_PAY_TBL EP

ON E.EMP_ID = EP.EMP_ID;

SELECT E.CITY, AVG(EP.SALARY) AVG_SALARY

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

GROUP BY E.CITY;

SELECT E.CITY, AVG(EP.SALARY) AVG_SALARY

FROM EMPLOYEE_TBL E INNER JOIN

EMPLOYEE_PAY_TBL EP

ON E.EMP_ID = EP.EMP_ID

GROUP BY E.CITY;

5. No answer required.

420 APPENDIX C: Answers to Quizzes and Exercises

Hour 14, “Using Subqueries to Define

Unknown Data”

Quiz Answers

1. What is the function of a subquery when used with a SELECT

statement?

A. The main function of a subquery when used with a SELECT

statement is to return data that the main query can use to

resolve the query.

2. Can you update more than one column when using the UPDATE

statement in conjunction with a subquery?

A. Yes, you can update more than one column using the same

UPDATE and subquery statement.

3. Do the following have the correct syntax? If not, what is the correct

syntax?

a. SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID =

(SELECT CUST_ID

FROM ORDERS_TBL

WHERE ORD_NUM = ‘16C17’);

A. Yes, this syntax is correct.

b. SELECT EMP_ID, SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN ‘20000’

AND (SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY = ‘40000’);

A. No. You cannot use the BETWEEN operator in this format.

c. UPDATE PRODUCTS_TBL

SET COST = 1.15

WHERE PROD_ID =

(SELECT PROD_ID

FROM ORDERS_TBL

WHERE ORD_NUM = ‘32A132’);

A. Yes, this syntax is correct.

Hour 14, “Using Subqueries to Define Unknown Data” 421

4. What would happen if you ran the following statement?

DELETE FROM EMPLOYEE_TBL

WHERE EMP_ID IN

(SELECT EMP_ID

FROM EMPLOYEE_PAY_TBL);

A. All rows that you retrieved from the EMPLOYEE_PAY_TBL would

be deleted from the EMPLOYEE_TBL. A WHERE clause in the sub-

query is highly advised.

Exercise Answers

1. No answer required.

2. Using a subquery, write an SQL statement to update CUSTOMER_TBL.

Find the customer with the order number 23E934, contained in the

field ORD_NUM, and change the customer name to DAVIDS MARKET.

A. UPDATE CUSTOMER_TBL

SET CUST_NAME = ‘DAVIDS MARKET’

WHERE CUST_ID =

(SELECT CUST_ID

FROM ORDERS_TBL

WHERE ORD_NUM = ‘23E934’);

3. Using a subquery, write a query that returns the names of all

employees who have a pay rate greater than JOHN DOE, whose

employee identification number is 343559876.

A. SELECT E.LAST_NAME, E.FIRST_NAME, E.MIDDLE_NAME

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P

WHERE P.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = ‘343559876’);

4. Using a subquery, write a query that lists all products that cost

more than the average cost of all products.

A. SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE COST > (SELECT AVG(COST)

FROM PRODUCTS_TBL);

422 APPENDIX C: Answers to Quizzes and Exercises

Hour 15, “Combining Multiple Queries

into One”

Quiz Answers

Refer to the syntax covered in this hour for the following quiz questions when refer-

ring to the INTERSECT and EXCEPT operators. Remember that MySQL does not cur-

rently support these two operators.

1. Is the syntax correct for the following compound queries? If not,

what would correct the syntax? Use EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL as follows:

EMPLOYEE_TBL

EMP_ID VARCHAR(9) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE VARCHAR(2) NOT NULL,

ZIP INTEGER(5) NOT NULL,

PHONE VARCHAR(10),

PAGER VARCHAR(10),

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR(9) NOT NULL, primary key

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

DATE_LASTRAISE DATE,

SALARY DECIMAL(8,2),

BONUS DECIMAL(6,2),

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID, POSITION, DATE_HIRE

FROM EMPLOYEE_PAY_TBL;

A. This compound query does not work because the data types

do not match. The EMP_ID columns match, but the LAST_NAME

and FIRST_NAME data types do not match the POSITION and

DATE_HIRE data types.

b. SELECT EMP_ID FROM EMPLOYEE_TBL

UNION ALL

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

ORDER BY EMP_ID;

Hour 15, “Combining Multiple Queries into One” 423

A. Yes, the statement is correct.

c. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

INTERSECT

SELECT EMP_ID FROM EMPLOYEE_TBL

ORDER BY 1;

A. Yes, this compound query works.

2. Match the correct operator to the following statements:

Statement Operator

a. Show duplicates UNION ALL

b. Return only rows from the first query that

match those in the second query

INTERSECT

c. Return no duplicates UNION

d. Return only rows from the first query not

returned by the second

EXCEPT

Exercise Answers

Refer to the syntax covered in this hour for the following exercises. You might have to

write your queries by hand because MySQL does not support some of the operators

covered in this hour. When you are finished, compare your results to ours.

Use CUSTOMER_TBL and ORDERS_TBL as listed:

CUSTOMER_TBL

CUST_IN VARCHAR(10) NOT NULL primary key

CUST_NAME VARCHAR(30) NOT NULL,

CUST_ADDRESS VARCHAR(20) NOT NULL,

CUST_CITY VARCHAR(15) NOT NULL,

CUST_STATE VARCHAR(2) NOT NULL,

CUST_ZIP INTEGER(5) NOT NULL,

CUST_PHONE INTEGER(10),

CUST_FAX INTEGER(10)

ORDERS_TBL

ORD_NUM VARCHAR(10) NOT NULL primary key

CUST_ID VARCHAR(10) NOT NULL,

PROD_ID VARCHAR(10) NOT NULL,

QTY INTEGER(6) NOT NULL,

ORD_DATE DATETIME

424 APPENDIX C: Answers to Quizzes and Exercises

1. Write a compound query to find the customers who have placed an

order.

A. SELECT CUST_ID FROM CUSTOMER_TBL

INTERSECT

SELECT CUST_ID FROM ORDERS_TBL;

2. Write a compound query to find the customers who have not

placed an order.

A. SELECT CUST_ID FROM CUSTOMER_TBL

EXCEPT

SELECT CUST_ID FROM ORDERS_TBL;

Hour 16, “Using Indexes to Improve

Performance”

Quiz Answers

1. What are some major disadvantages of using indexes?

A. Major disadvantages of an index include slowing batch jobs,

storage space on the disk, and maintenance upkeep on the

index.

2. Why is the order of columns in a composite important?

A. Because query performance is improved by putting the col-

umn with the most restrictive values first.

3. Should a column with a large percentage of NULL values be

indexed?

A. No. A column with a large percentage of NULL values should

not be indexed because the speed of accessing these rows

degrades when the value of a large percentage of rows is the

same.

4. Is the main purpose of an index to stop duplicate values in a table?

A. No. The main purpose of an index is to enhance data

retrieval speed, although a unique index stops duplicate val-

ues in a table.

Hour 16, “Using Indexes to Improve Performance” 425

5. True or false: The main reason for a composite index is for aggre-

gate function usage in an index.

A. False. The main reason for composite indexes is for two or

more columns in the same table to be indexed.

6. What does cardinality refer to? What is considered a column of

high-cardinality?

A. Cardinality refers to the uniqueness of the data within a col-

umn. The SSN column is an example of such a column.

Exercise Answers

1. For the following situations, decide whether an index should be

used and, if so, what type of index should be used.

a. Several columns, but a rather small table.

A. Being a very small table, no index is needed.

b. Medium-sized table; no duplicates should be allowed.

A. A unique index could be used.

c. Several columns, very large table, several columns used as fil-

ters in the WHERE clause.

A. A composite index on the columns used as filters in the

WHERE clause should be the choice.

d. Large table, many columns, a lot of data manipulation.

A. A choice of a single-column or composite index should be

considered, depending on filtering, ordering, and grouping.

For the large amount of data manipulation, the index

could be dropped and re-created after the INSERT, UPDATE,

or DELETE jobs were done.

2. No answer required.

3. Create a statement to alter the index you just created to make it

unique. What do you need to do to create a unique index on the

SALARY column? Write the SQL statements that you need to run

them in the sequence.

A. DROP INDEX EP_POSITON ON EMPLOYEE_PAY_TBL;

CREATE UNIQUE INDEX EP_POSITION

ON EMPLOYEE_TBL(POSITION);

426 APPENDIX C: Answers to Quizzes and Exercises

4. Study the tables used in this book. What are some good candidates

for indexed columns based on how a user might search for data?

A. EMPLOYEE_TBL.LAST_NAME

EMPLOYEE_TBL.FIRST_NAME

EMPLOYEE_TBL.EMP_ID

EMPLOYEE_PAY_TBL.EMP_ID

EMPLOYEE_PAY_TBL.POSITION

CUSTOMER_TBL.CUST_ID

CUSTOMER_TBL.CUST_NAME

ORDERS_TBL.ORD_NUM

ORDERS_TBL.CUST_ID

ORDERS_TBL.PROD_ID

ORDERS_TBL.ORD_DATE

PRODUCTS_TBL.PROD_ID

PRODUCTS_TBL.PROD_DESC

5. Create a multicolumn index on ORDERS_TBL. Include the following

columns: CUST_ID, PROD_ID, and ORD_DATE.

A. CREATE INDEX ORD_IDX ON ORDERS_TBL (CUST_ID, PROD_ID, ORD_DATE);

6. Answers will vary.

Hour 17, “Improving Database

Performance”

Quiz Answers

1. Would the use of a unique index on a small table be of any bene-

fit?

A. The index might not be of any use for performance issues, but

the unique index would keep referential integrity intact.

Referential integrity is discussed in Hour 3, “Managing

Database Objects.”

2. What happens when the optimizer chooses not to use an index on

a table when a query has been executed?

A. A full table scan occurs.

3. Should the most restrictive clause(s) be placed before the join condi-

tion(s) or after the join conditions in the WHERE clause?

Hour 17, “Improving Database Performance” 427

A. The most restrictive clause(s) should be evaluated before the

join condition(s) because join conditions normally return a

large number of rows.

Exercise Answers

1. Rewrite the following SQL statements to improve their perform-

ance. Use EMPLOYEE_TBL and EMPLOYEE_PAY_TBL as described here:

EMPLOYEE_TBL

EMP_ID VARCHAR(9) NOT NULL Primary key

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE VARCHAR(2) NOT NULL,

ZIP INTEGER(5) NOT NULL,

PHONE VARCHAR(10),

PAGER VARCHAR(10),

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR(9) NOT NULL primary key

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

DATE_LAST_RAISE DATETIME,

SALARY DECIMAL(8,2),

BONUS DECIMAL(8,2),

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,

PHONE

FROM EMPLOYEE_TBL

WHERE SUBSTRING(PHONE, 1, 3) = ‘317’ OR

SUBSTRING(PHONE, 1, 3) = ‘812’ OR

SUBSTRING(PHONE, 1, 3) = ‘765’;

A. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
PHONE

FROM EMPLOYEE_TBL

WHERE SUBSTRING(PHONE, 1, 3) IN (‘317’, ‘812’, ‘765’);

From our experience, it is better to convert multiple OR

conditions to an IN list.

b. SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘%ALL%’;

428 APPENDIX C: Answers to Quizzes and Exercises

A. SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE ‘WAL%’;

You cannot take advantage of an index if you do not

include the first character in a condition’s value.

c. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,

EP.SALARY

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE LAST_NAME LIKE ‘S%’

AND E.EMP_ID = EP.EMP_ID;

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,

EP.SALARY

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND LAST_NAME LIKE ‘S%’;

2. Add another table called EMPLOYEE_PAYHIST_TBL that contains a

large amount of pay history data. Use the table that follows to

write the series of SQL statements to address the following

problems.

EMPLOYEE_PAYHIST_TBL

PAYHIST_ID VARCHAR(9) NOT NULL primary key,

EMP_ID VARCHAR(9) NOT NULL,

START_DATE DATETIME NOT NULL,

END_DATE DATETIME,

PAY_RATE DECIMAL(4,2) NOT NULL,

SALARY DECIMAL(8,2) NOT NULL,

BONUS DECIMAL(8,2) NOT NULL,

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)

REFERENCES EMPLOYEE_TBL (EMP_ID)

What steps did you take to ensure that the queries you wrote per-

form well?

a. Find the SUM of the salaried versus nonsalaried employees by

the year in which their pay started.

A. SELECT START_YEAR,SUM(SALARIED) AS SALARIED,SUM(HOURLY) AS

HOURLY
FROM

(SELECT YEAR(E.START_DATE) AS START_YEAR,COUNT(E.EMP_ID)
AS SALARIED,0 AS HOURLY

FROM EMPLOYEE_PAYHIST_TBL E INNER JOIN

(SELECT MIN(START_DATE) START_DATE,EMP_ID

FROM EMPLOYEE_PAYHIST_TBL

GROUP BY EMP_ID) F ON E.EMP_ID=F.EMP_ID AND

Hour 17, “Improving Database Performance” 429

E.START_DATE=F.START_DATE

WHERE E.SALARY > 0.00

GROUP BY YEAR(E.START_DATE)

UNION

SELECT YEAR(E.START_DATE) AS START_YEAR,0 AS SALARIED,

COUNT(E.EMP_ID) AS HOURLY

FROM EMPLOYEE_PAYHIST_TBL E INNER JOIN

(SELECT MIN(START_DATE) START_DATE,EMP_ID

FROM EMPLOYEE_PAYHIST_TBL

GROUP BY EMP_ID) F ON E.EMP_ID=F.EMP_ID AND
E.START_DATE=F.START_DATE

WHERE E.PAY_RATE > 0.00

GROUP BY YEAR(E.START_DATE)

) A

GROUP BY START_YEAR

ORDER BY START_YEAR

b. Find the difference in the yearly pay of salaried employees

versus nonsalaried employees by the year in which their pay

started. Consider the nonsalaried employees to be working full

time during the year (PAY_RATE * 52 * 40).

A. SELECT START_YEAR,SALARIED AS SALARIED,HOURLY AS HOURLY,
(SALARIED - HOURLY) AS PAY_DIFFERENCE

FROM

(SELECT YEAR(E.START_DATE) AS START_YEAR,AVG(E.SALARY) AS
SALARIED,

0 AS HOURLY

FROM EMPLOYEE_PAYHIST_TBL E INNER JOIN

(SELECT MIN(START_DATE) START_DATE,EMP_ID

FROM EMPLOYEE_PAYHIST_TBL

GROUP BY EMP_ID) F ON E.EMP_ID=F.EMP_ID AND
E.START_DATE=F.START_DATE

WHERE E.SALARY > 0.00

GROUP BY YEAR(E.START_DATE)

UNION

SELECT YEAR(E.START_DATE) AS START_YEAR,0 AS SALARIED,

AVG(E.PAY_RATE * 52 * 40) AS HOURLY

FROM EMPLOYEE_PAYHIST_TBL E INNER JOIN

(SELECT MIN(START_DATE) START_DATE,EMP_ID

FROM EMPLOYEE_PAYHIST_TBL

GROUP BY EMP_ID) F ON E.EMP_ID=F.EMP_ID AND
E.START_DATE=F.START_DATE

WHERE E.PAY_RATE > 0.00

GROUP BY YEAR(E.START_DATE)

) A

GROUP BY START_YEAR

ORDER BY START_YEAR

c. Find the difference in what employees make now versus what

they made when they started with the company. Again, con-

sider the nonsalaried employees to be full-time. Also consider

430 APPENDIX C: Answers to Quizzes and Exercises

that the employees’ current pay is reflected in the

EMPLOYEE_PAY_TBL as well as the EMPLOYEE_PAYHIST_TBL. In the

pay history table, the current pay is reflected as a row with

the END_DATE for pay equal to NULL.

A. SELECT CURRENTPAY.EMP_ID,STARTING_ANNUAL_PAY,CURRENT_

ANNUAL_PAY,
CURRENT_ANNUAL_PAY - STARTING_ANNUAL_PAY AS PAY_DIFFERENCE

FROM

(SELECT EMP_ID,(SALARY + (PAY_RATE * 52 * 40)) AS
CURRENT_ANNUAL_PAY

FROM EMPLOYEE_PAYHIST_TBL

WHERE END_DATE IS NULL) CURRENTPAY

INNER JOIN

(SELECT E.EMP_ID,(SALARY + (PAY_RATE * 52 * 40)) AS
STARTING_ANNUAL_PAY

FROM EMPLOYEE_PAYHIST_TBL E

(SELECT MIN(START_DATE) START_DATE,EMP_ID

FROM EMPLOYEE_PAYHIST_TBL

GROUP BY EMP_ID) F ON E.EMP_ID=F.EMP_ID AND
E.START_DATE=F.START_DATE

) STARTINGPAY ON

CURRENTPAY.EMP_ID = STARTINGPAY.EMP_ID

Hour 18, “Managing Database Users”

Quiz Answers

1. What command establishes a session?

A. The CONNECT TO statement establishes this.

2. Which option drops a schema that still contains database objects?

A. The CASCADE option allows the schema to be dropped if there

are still objects under that schema.

3. Which command in MySQL creates a schema?

A. The CREATE SCHEMA command creates a schema.

4. Which statement removes a database privilege?

A. The REVOKE statement removes database privileges.

5. What command creates a grouping or collection of tables, views,

and privileges?

A. The CREATE SCHEMA statement.

Hour 19, “Managing Database Security” 431

6. What is the difference in SQL Server between a login account and a

database user account?

A. The login account grants access to the SQL Server instance to

log in and access resources. The database user account is

what gains access to the database and is assigned rights.

Exercise Answers

1. Describe how you would create a new user ’John’ in your learnsql

database.

A. USE LEARNSQL:

CREATE USER JOHN

2. How would you grant access to the EMPLOYEE_TBL to your new user

’John’?

A. GRANT SELECT ON TABLE EMPLOYEE_TBL TO JOHN;

3. Describe how you would assign permissions to all objects within the

learnsql database to ’John’.

A. GRANT SELECT ON TABLE * TO JOHN;

4. Describe how you would revoke the previous privileges from ’John’

and then remove his account.

A. DROP USER JOHN CASCADE;

Hour 19, “Managing Database Security”

Quiz Answers

1. What option must a user have to grant another user privileges to

an object not owned by the user?

A. GRANT OPTION

2. When privileges are granted to PUBLIC, do all database users

acquire the privileges, or only specified users?

A. All users of the database are granted the privileges.

3. What privilege is required to look at data in a specific table?

A. The SELECT privilege.

4. What type of privilege is SELECT?

A. An object-level privilege.

432 APPENDIX C: Answers to Quizzes and Exercises

5. What option revokes a user’s privilege to an object as well as the

other users that they might have granted privileges to by use of the

GRANT option?

A. The CASCADE option is used with the REVOKE statement to

remove other users’ access that was granted by the affected

user.

Exercise Answers

1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

Hour 20, “Creating and Using Views and

Synonyms”

Quiz Answers

1. Can you delete a row of data from a view that you created from

multiple tables?

A. No. You can only use the DELETE, INSERT, and UPDATE com-

mands on views you create from a single table.

2. When creating a table, the owner is automatically granted the

appropriate privileges on that table. Is this true when creating a

view?

A. Yes. The owner of a view is automatically granted the appro-

priate privileges on the view.

3. Which clause orders data when creating a view?

A. The GROUP BY clause functions in a view much as the ORDER BY

clause (or GROUP BY clause) does in a regular query.

4. Which option can you use when creating a view from a view to

check integrity constraints?

A. You can use the WITH CHECK OPTION.

Hour 20, “Creating and Using Views and Synonyms” 433

5. You try to drop a view and receive an error because of one or more

underlying views. What must you do to drop the view?

A. Re-execute your DROP statement with the CASCADE option. This

allows the DROP statement to succeed by also dropping all

underlying views.

Exercise Answers

1. Write a statement to create a view based on the total contents of

EMPLOYEE_TBL.

A. CREATE VIEW EMP_VIEW AS

SELECT * FROM EMPLOYEE_TBL;

2. Write a statement that creates a summarized view containing the

average pay rate and average salary for each city in EMPLOYEE_TBL.

A. CREATE VIEW AVG_PAY_VIEW AS

SELECT E.CITY, AVG(P.PAY_RATE), AVG(P.SALARY)

FROM EMPLOYEE_PAY_TBL P,

EMPLOYEE_TBL E

WHERE P.EMP_ID = E.EMP_ID

GROUP BY E.CITY;

3. Create another view for the same summarized data except use the

view you created in Exercise 1 instead of the base EMPLOYEE_TBL.

Compare the two results.

A. CREATE VIEW AVG_PAY_ALT_VIEW AS

SELECT E.CITY, AVG(P.PAY_RATE), AVG(P.SALARY)

FROM EMPLOYEE_PAY_TBL P,

EMP_VIEW E

WHERE P.EMP_ID = E.EMP_ID

GROUP BY E.CITY;

4. Use the view in Exercise 2 to create a table called

EMPLOYEE_PAY_SUMMARIZED. Verify that the view and the table contain

the same data.

A. SELECT * INTO EMPLOYEE_PAY_SUMMARIZED FROM AVG_PAY_VIEW;

5. Write statements that drop the three views that you created in

Exercises 1, 2, and 3.

A. DROP VIEW EMP_VIEW;

DROP VIEW AVG_PAY_VIEW;

DROP VIEW AVG_PAY_ALT_VIEW;

434 APPENDIX C: Answers to Quizzes and Exercises

Hour 21, “Working with the System

Catalog”

Quiz Answers

1. In some implementations, the system catalog is also known as

what?

A. The system catalog is also known as the data dictionary.

2. Can a regular user update the system catalog?

A. Not directly; however, when a user creates an object such as a

table, the system catalog is automatically updated.

3. Which Microsoft SQL Server system table retrieves information

about views that exist in the database?

A. SYSVIEWS is used.

4. Who owns the system catalog?

A. The owner of the system catalog is often a privileged database

user account called SYS or SYSTEM. The owner of the database

can also own the system catalog, but a particular schema in

the database does not ordinarily own it.

5. What is the difference between the Oracle system objects

ALL_TABLES and DBA_TABLES?

A. ALL_TABLES shows all tables that are accessible by a particular

user, whereas DBA_TABLES shows all tables that exist in the

database.

6. Who makes modifications to the system tables?

A. The database server makes these modifications.

Exercise Answers

1. No answer required.

2. No answer required.

3. No answer required.

Hour 22, “Advanced SQL Topics” 435

Hour 22, “Advanced SQL Topics”

Quiz Answers

1. Can a trigger be altered?

A. No, the trigger must be replaced or re-created.

2. When a cursor is closed, can you reuse the name?

A. This is implementation specific. In some implementations, the

closing of the cursor enables you to reuse the name and even

free the memory, whereas for other implementations you

must use the DEALLOCATE statement before you can reuse the

name.

3. Which command retrieves the results after a cursor has been

opened?

A. The FETCH command does this.

4. Are triggers executed before or after an INSERT, DELETE, or UPDATE

statement?

A. Triggers can be executed before or after an INSERT, DELETE, or

UPDATE statement. Many different types of triggers can be

created.

5. Which MySQL function retrieves information from an XML frag-

ment?

A. EXTRACTVALUE is used.

6. Why do Oracle and MySQL not support the DEALLOCATE syntax for

cursors?

A. They do not support the statement because they automatical-

ly deallocate the cursor resources when the cursor is closed.

7. Why is a cursor not considered a set-based operation?

A. Cursors are not considered set-based operations because they

operate on only one row at a time by fetching a row from

memory and performing some action with it.

Exercise Answers

1. No answer required.

436 APPENDIX C: Answers to Quizzes and Exercises

2. Write a SELECT statement that generates the SQL code to count all

rows in each of your tables. (Hint: It is similar to Exercise 1.)

A. SELECT CONCAT(‘SELECT COUNT(*) FROM ‘,TABLE_NAME,’;’) FROM
TABLES;

3. Write a series of SQL commands to create a cursor that prints each

customer name and the customer’s total sales. Ensure that the cur-

sor is properly closed and deallocated based on which implementa-

tion you are using.

A. An example using SQL Server might look similar to this:

BEGIN

DECLARE @custname VARCHAR(30);

DECLARE @purchases decimal(6,2);

DECLARE customercursor CURSOR FOR SELECT

C.CUST_NAME,SUM(P.COST*O.QTY) as SALES

FROM CUSTOMER_TBL C

INNER JOIN ORDERS_TBL O ON C.CUST_ID=O.CUST_ID

INNER JOIN PRODUCTS_TBL P ON O.PROD_ID=P.PROD_ID

GROUP BY C.CUST_NAME;

OPEN customercursor;

FETCH NEXT FROM customercursor INTO @custname,@purchases

WHILE (@@FETCH_STATUS<>-1)

BEGIN

IF (@@FETCH_STATUS<>-2)

BEGIN

PRINT @custname + ‘: $’ + CAST(@purchases AS
VARCHAR(20))

END

FETCH NEXT FROM customercursor INTO @custname,@purchases

END

CLOSE customercursor

DEALLOCATE customercursor

END;

Hour 23, “Extending SQL to the

Enterprise, the Internet, and the

Intranet”

Quiz Answers

1. Can a database on a server be accessed from another server?

A. Yes, by using a middleware product. This is called accessing a

remote database.

Hour 24, “Extensions to Standard SQL” 437

2. What can a company use to disseminate information to its own

employees?

A. An intranet.

3. Products that allow connections to databases are called what?

A. Middleware.

4. Can SQL be embedded into Internet programming languages?

A. Yes. SQL can be embedded in Internet programming lan-

guages, such as Java.

5. How is a remote database accessed through a web application?

A. Via a web server.

Exercise Answers

1. Answers will vary.

2. No answer required.

Hour 24, “Extensions to Standard SQL”

Quiz Answers

1. Is SQL a procedural or nonprocedural language?

A. SQL is nonprocedural, meaning that the database decides

how to execute the SQL statement. The extensions discussed

in this hour were procedural.

2. What are the three basic operations of a cursor, outside of declaring

the cursor?

A. OPEN, FETCH, and CLOSE.

3. Procedural or nonprocedural: With which does the database engine

decide how to evaluate and execute SQL statements?

A. Nonprocedural.

Exercise Answers

1. No answer required.

This page intentionally left blank

MySQL 439

APPENDIX D

CREATE TABLE Statements
for Book Examples

This appendix is useful because it not only lists the CREATE TABLE statements used

in the examples, but also gives you some of the syntax differences among the vari-

ous database platforms. You can use these statements to create your own tables for

performing hands-on exercises.

MySQL

EMPLOYEE_TBL
CREATE TABLE EMPLOYEE_TBL

(

EMP_ID VARCHAR(9) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE CHAR(2) NOT NULL,

ZIP INTEGER(5) NOT NULL,

PHONE CHAR(10),

PAGER CHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

);

EMPLOYEE_PAY_TBL
CREATE TABLE EMPLOYEE_PAY_TBL

(

EMP_ID VARCHAR(9) NOT NULL primary key,

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATE,

PAY_RATE DECIMAL(4,2),

DATE_LAST_RAISE DATE,

SALARY DECIMAL(8,2),

BONUS DECIMAL(6,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID)

);

440 APPENDIX D: CREATE TABLE Statements for Book Examples

CUSTOMER_TBL
CREATE TABLE CUSTOMER_TBL

(

CUST_ID VARCHAR(10) NOT NULL primary key,

CUST_NAME VARCHAR(30) NOT NULL,

CUST_ADDRESS VARCHAR(20) NOT NULL,

CUST_CITY VARCHAR(15) NOT NULL,

CUST_STATE CHAR(2) NOT NULL,

CUST_ZIP INTEGER(5) NOT NULL,

CUST_PHONE CHAR(10),

CUST_FAX INTEGER(10)

);

ORDERS_TBL
CREATE TABLE ORDERS_TBL

(

ORD_NUM VARCHAR(10) NOT NULL primary key,

CUST_ID VARCHAR(10) NOT NULL,

PROD_ID VARCHAR(10) NOT NULL,

QTY INTEGER(6) NOT NULL,

ORD_DATE DATE

);

PRODUCTS_TBL
CREATE TABLE PRODUCTS_TBL

(

PROD_ID VARCHAR(10) NOT NULL primary key,

PROD_DESC VARCHAR(40) NOT NULL,

COST DECIMAL(6,2) NOT NULL

);

Oracle and SQL Server

EMPLOYEE_TBL
CREATE TABLE EMPLOYEE_TBL

(

EMP_ID VARCHAR(9) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

FIRST_NAME VARCHAR(15) NOT NULL,

MIDDLE_NAME VARCHAR(15),

ADDRESS VARCHAR(30) NOT NULL,

CITY VARCHAR(15) NOT NULL,

STATE CHAR(2) NOT NULL,

Oracle and SQL Server 441

ZIP INTEGER NOT NULL,

PHONE CHAR(10),

PAGER CHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

);

EMPLOYEE_PAY_TBL
CREATE TABLE EMPLOYEE_PAY_TBL

(

EMP_ID VARCHAR(9) NOT NULL primary key,

POSITION VARCHAR(15) NOT NULL,

DATE_HIRE DATE,

PAY_RATE DECIMAL(4,2),

DATE_LAST_RAISE DATE,

SALARY DECIMAL(8,2),

BONUS DECIMAL(6,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID)

);

CUSTOMER_TBL
CREATE TABLE CUSTOMER_TBL

(

CUST_ID VARCHAR(10) NOT NULL primary key,

CUST_NAME VARCHAR(30) NOT NULL,

CUST_ADDRESS VARCHAR(20) NOT NULL,

CUST_CITY VARCHAR(15) NOT NULL,

CUST_STATE CHAR(2) NOT NULL,

CUST_ZIP INTEGER NOT NULL,

CUST_PHONE CHAR(10),

CUST_FAX VARCHAR(10)

);

ORDERS_TBL
CREATE TABLE ORDERS_TBL

(

ORD_NUM VARCHAR(10) NOT NULL primary key,

CUST_ID VARCHAR(10) NOT NULL,

PROD_ID VARCHAR(10) NOT NULL,

QTY INTEGER NOT NULL,

ORD_DATE DATE

);

442 APPENDIX D: CREATE TABLE Statements for Book Examples

PRODUCTS_TBL
CREATE TABLE PRODUCTS_TBL

(

PROD_ID VARCHAR(10) NOT NULL primary key,

PROD_DESC VARCHAR(40) NOT NULL,

COST DECIMAL(6,2) NOT NULL

);

MySQL and SQL Server 443

APPENDIX E

INSERT Statements for Data
in Book Examples

This appendix contains the INSERT statements that were used to populate the tables

that are listed in Appendix D, “CREATE TABLE Statements for Book Examples.”

These INSERT statements can populate the tables after you create them.

MySQL and SQL Server

EMPLOYEE_TBL
INSERT INTO EMPLOYEE_TBL VALUES

(‘311549902’, ‘STEPHENS’, ‘TINA’, ‘DAWN’,’RR 3 BOX 17A’, ‘GREENWOOD’,

‘IN’, ‘47890’, ‘3178784465’,NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘442346889’, ‘PLEW’, ‘LINDA’, ‘CAROL’, ‘3301 BEACON’, ‘INDIANAPOLIS’,

‘IN’, ‘46224’, ‘3172978990’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘213764555’, ‘GLASS’, ‘BRANDON’, ‘SCOTT’, ‘1710 MAIN ST’, ‘WHITELAND’,

‘IN’, ‘47885’, ‘3178984321’, ‘3175709980’);

INSERT INTO EMPLOYEE_TBL VALUES

(‘313782439’, ‘GLASS’, ‘JACOB’, NULL, ‘3789 WHITE RIVER BLVD’,

‘INDIANAPOLIS’, ‘IN’, ‘45734’, ‘3175457676’,’8887345678’);

INSERT INTO EMPLOYEE_TBL VALUES

(‘220984332’, ‘WALLACE’, ‘MARIAH’, NULL, ‘7889 KEYSTONE AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘46741’, ‘3173325986’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘443679012’, ‘SPURGEON’, ‘TIFFANY’, NULL, ‘5 GEORGE COURT’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3175679007’, NULL);

444 APPENDIX E: INSERT Statements for Data in Book Examples

EMPLOYEE_PAY_TBL
INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘311549902’, ‘MARKETING’, ‘1999-05-23’,NULL,’2009-05-01’,’40000’, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘442346889’, ‘TEAM LEADER’, ‘2000-06-17’, ‘14.75’, ‘2009-06-01’, NULL,
NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘213764555’, ‘SALES MANAGER’, ‘2004-08-14’,NULL, ‘2009-08-01’, ‘30000’,
‘2000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘313782439’, ‘SALESMAN’, ‘2007-06-28’,NULL, NULL, ‘20000’, ‘1000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘220984332’, ‘SHIPPER’, ‘2006-07-22’, ‘11.00’, ‘1999-07-01’, NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘443679012’, ‘SHIPPER’, ‘2001-01-14’, ‘15.00’, ‘1999-01-01’, NULL, NULL);

CUSTOMER_TBL
INSERT INTO CUSTOMER_TBL VALUES

(‘232’, ‘LESLIE GLEASON’, ‘798 HARDAWAY DR’, ‘INDIANAPOLIS’,

‘IN’, ‘47856’, ‘3175457690’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘109’, ‘NANCY BUNKER’, ‘APT A 4556 WATERWAY’, ‘BROAD RIPPLE’,

‘IN’, ‘47950’, ‘3174262323’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘345’, ‘ANGELA DOBKO’, ‘RR3 BOX 76’, ‘LEBANON’, ‘IN’, ‘49967’,

‘7658970090’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘090’, ‘WENDY WOLF’, ‘3345 GATEWAY DR’, ‘INDIANAPOLIS’, ‘IN’,

‘46224’, ‘3172913421’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘12’, ‘MARYS GIFT SHOP’, ‘435 MAIN ST’, ‘DANVILLE’, ‘IL’, ‘47978’,

‘3178567221’, ‘3178523434’);

INSERT INTO CUSTOMER_TBL VALUES

(‘432’, ‘SCOTTYS MARKET’, ‘RR2 BOX 173’, ‘BROWNSBURG’, ‘IN’,

‘45687’, ‘3178529835’, ‘3178529836’);

INSERT INTO CUSTOMER_TBL VALUES

(‘333’, ‘JASONS AND DALLAS GOODIES’, ‘LAFAYETTE SQ MALL’,

‘INDIANAPOLIS’, ‘IN’, ‘46222’, ‘3172978886’, ‘3172978887’);

MySQL and SQL Server 445

INSERT INTO CUSTOMER_TBL VALUES

(‘21’, ‘MORGANS CANDIES AND TREATS’, ‘5657 W TENTH ST’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3172714398’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘43’, ‘SCHYLERS NOVELTIES’, ‘17 MAPLE ST’, ‘LEBANON’, ‘IN’,

‘48990’, ‘3174346758’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘287’, ‘GAVINS PLACE’, ‘9880 ROCKVILLE RD’, ‘INDIANAPOLIS’,

‘IN’, ‘46244’, ‘3172719991’, ‘3172719992’);

INSERT INTO CUSTOMER_TBL VALUES

(‘288’, ‘HOLLYS GAMEARAMA’, ‘567 US 31 SOUTH’, ‘WHITELAND’,

‘IN’, ‘49980’, ‘3178879023’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘590’, ‘HEATHERS FEATHERS AND THINGS’, ‘4090 N SHADELAND AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘43278’, ‘3175456768’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘610’, ‘REGANS HOBBIES INC’, ‘451 GREEN ST’, ‘PLAINFIELD’, ‘IN’,

‘46818’, ‘3178393441’, ‘3178399090’);

INSERT INTO CUSTOMER_TBL VALUES

(‘560’, ‘ANDYS CANDIES’, ‘RR 1 BOX 34’, ‘NASHVILLE’, ‘IN’,

‘48756’, ‘8123239871’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘221’, ‘RYANS STUFF’, ‘2337 S SHELBY ST’, ‘INDIANAPOLIS’, ‘IN’,

‘47834’, ‘3175634402’, NULL);

ORDERS_TBL
INSERT INTO ORDERS_TBL VALUES

(‘56A901’, ‘232’, ‘11235’, ‘1’, ‘2009-10-22’);

INSERT INTO ORDERS_TBL VALUES

(‘56A917’, ‘12’, ‘907’, ‘100’, ‘2009-09-30’);

INSERT INTO ORDERS_TBL VALUES

(‘32A132’, ‘43’, ‘222’, ‘25’, ‘2009-10-10’);

INSERT INTO ORDERS_TBL VALUES

(‘16C17’, ‘090’, ‘222’, ‘2’, ‘2009-10-17’);

INSERT INTO ORDERS_TBL VALUES

(‘18D778’, ‘287’, ‘90’, ‘10’, ‘2009-10-17’);

INSERT INTO ORDERS_TBL VALUES

(‘23E934’, ‘432’, ‘13’, ‘20’, ‘2009-10-15’);

446 APPENDIX E: INSERT Statements for Data in Book Examples

PRODUCTS_TBL
INSERT INTO PRODUCTS_TBL VALUES

(‘11235’, ‘WITCH COSTUME’, ‘29.99’);

INSERT INTO PRODUCTS_TBL VALUES

(‘222’, ‘PLASTIC PUMPKIN 18 INCH’, ‘7.75’);

INSERT INTO PRODUCTS_TBL VALUES

(‘13’, ‘FALSE PARAFFIN TEETH’, ‘1.10’);

INSERT INTO PRODUCTS_TBL VALUES

(‘90’, ‘LIGHTED LANTERNS’, ‘14.50’);

INSERT INTO PRODUCTS_TBL VALUES

(‘15’, ‘ASSORTED COSTUMES’, ‘10.00’);

INSERT INTO PRODUCTS_TBL VALUES

(‘9’, ‘CANDY CORN’, ‘1.35’);

INSERT INTO PRODUCTS_TBL VALUES

(‘6’, ‘PUMPKIN CANDY’, ‘1.45’);

INSERT INTO PRODUCTS_TBL VALUES

(‘87’, ‘PLASTIC SPIDERS’, ‘1.05’);

INSERT INTO PRODUCTS_TBL VALUES

(‘119’, ‘ASSORTED MASKS’, ‘4.95’);

Oracle

EMPLOYEE_TBL
INSERT INTO EMPLOYEE_TBL VALUES

(‘311549902’, ‘STEPHENS’, ‘TINA’, ‘DAWN’,’RR 3 BOX 17A’, ‘GREENWOOD’,

‘IN’, ‘47890’, ‘3178784465’,NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘442346889’, ‘PLEW’, ‘LINDA’, ‘CAROL’, ‘3301 BEACON’, ‘INDIANAPOLIS’,

‘IN’, ‘46224’, ‘3172978990’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘213764555’, ‘GLASS’, ‘BRANDON’, ‘SCOTT’, ‘1710 MAIN ST’, ‘WHITELAND’,

‘IN’, ‘47885’, ‘3178984321’, ‘3175709980’);

INSERT INTO EMPLOYEE_TBL VALUES

(‘313782439’, ‘GLASS’, ‘JACOB’, NULL, ‘3789 WHITE RIVER BLVD’,

‘INDIANAPOLIS’, ‘IN’, ‘45734’, ‘3175457676’,’8887345678’);

Oracle 447

INSERT INTO EMPLOYEE_TBL VALUES

(‘220984332’, ‘WALLACE’, ‘MARIAH’, NULL, ‘7889 KEYSTONE AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘46741’, ‘3173325986’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘443679012’, ‘SPURGEON’, ‘TIFFANY’, NULL, ‘5 GEORGE COURT’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3175679007’, NULL);

EMPLOYEE_PAY_TBL
INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘311549902’, ‘MARKETING’, TO_DATE(‘1999-05-23’,’YYYY-MM-
DD’),NULL,TO_DATE(‘2009-05-01’,’YYYY-MM-DD’),’40000’, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘442346889’, ‘TEAM LEADER’, TO_DATE(‘2000-06-17’,’YYYY-MM-DD’), ‘14.75’,
TO_DATE(‘2009-06-01’,’YYYY-MM-DD’), NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘213764555’, ‘SALES MANAGER’, TO_DATE(‘2004-08-14’,’YYYY-MM-DD’),NULL,
TO_DATE(‘2009-08-01’,’YYYY-MM-DD’), ‘30000’, ‘2000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘313782439’, ‘SALESMAN’, TO_DATE(‘2007-06-28’,’YYYY-MM-DD’), NULL, NULL,
‘20000’, ‘1000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘220984332’, ‘SHIPPER’, TO_DATE(‘2006-07-22’,’YYYY-MM-DD’), ‘11.00’,
‘2009-07-01’, NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘443679012’, ‘SHIPPER’, TO_DATE(‘2001-01-14’,’YYYY-MM-DD’), ‘15.00’,
‘2009-01-01’, NULL, NULL);

CUSTOMER_TBL
INSERT INTO CUSTOMER_TBL VALUES

(‘232’, ‘LESLIE GLEASON’, ‘798 HARDAWAY DR’, ‘INDIANAPOLIS’,

‘IN’, ‘47856’, ‘3175457690’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘109’, ‘NANCY BUNKER’, ‘APT A 4556 WATERWAY’, ‘BROAD RIPPLE’,

‘IN’, ‘47950’, ‘3174262323’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘345’, ‘ANGELA DOBKO’, ‘RR3 BOX 76’, ‘LEBANON’, ‘IN’, ‘49967’,

‘7658970090’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘090’, ‘WENDY WOLF’, ‘3345 GATEWAY DR’, ‘INDIANAPOLIS’, ‘IN’,

‘46224’, ‘3172913421’, NULL);

448 APPENDIX E: INSERT Statements for Data in Book Examples

INSERT INTO CUSTOMER_TBL VALUES

(‘12’, ‘MARYS GIFT SHOP’, ‘435 MAIN ST’, ‘DANVILLE’, ‘IL’, ‘47978’,

‘3178567221’, ‘3178523434’);

INSERT INTO CUSTOMER_TBL VALUES

(‘432’, ‘SCOTTYS MARKET’, ‘RR2 BOX 173’, ‘BROWNSBURG’, ‘IN’,

‘45687’, ‘3178529835’, ‘3178529836’);

INSERT INTO CUSTOMER_TBL VALUES

(‘333’, ‘JASONS AND DALLAS GOODIES’, ‘LAFAYETTE SQ MALL’,

‘INDIANAPOLIS’, ‘IN’, ‘46222’, ‘3172978886’, ‘3172978887’);

INSERT INTO CUSTOMER_TBL VALUES

(‘21’, ‘MORGANS CANDIES AND TREATS’, ‘5657 W TENTH ST’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3172714398’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘43’, ‘SCHYLERS NOVELTIES’, ‘17 MAPLE ST’, ‘LEBANON’, ‘IN’,

‘48990’, ‘3174346758’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘287’, ‘GAVINS PLACE’, ‘9880 ROCKVILLE RD’, ‘INDIANAPOLIS’,

‘IN’, ‘46244’, ‘3172719991’, ‘3172719992’);

INSERT INTO CUSTOMER_TBL VALUES

(‘288’, ‘HOLLYS GAMEARAMA’, ‘567 US 31 SOUTH’, ‘WHITELAND’,

‘IN’, ‘49980’, ‘3178879023’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘590’, ‘HEATHERS FEATHERS AND THINGS’, ‘4090 N SHADELAND AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘43278’, ‘3175456768’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘610’, ‘REGANS HOBBIES INC’, ‘451 GREEN ST’, ‘PLAINFIELD’, ‘IN’,

‘46818’, ‘3178393441’, ‘3178399090’);

INSERT INTO CUSTOMER_TBL VALUES

(‘560’, ‘ANDYS CANDIES’, ‘RR 1 BOX 34’, ‘NASHVILLE’, ‘IN’,

‘48756’, ‘8123239871’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘221’, ‘RYANS STUFF’, ‘2337 S SHELBY ST’, ‘INDIANAPOLIS’, ‘IN’,

‘47834’, ‘3175634402’, NULL);

ORDERS_TBL
INSERT INTO ORDERS_TBL VALUES

(‘56A901’, ‘232’, ‘11235’, ‘1’, TO_DATE(‘2009-10-22’,’YYYY-MM-DD’));

INSERT INTO ORDERS_TBL VALUES

(‘56A917’, ‘12’, ‘907’, ‘100’, TO_DATE(‘2009-09-30’,’YYYY-MM-DD’));

Oracle 449

INSERT INTO ORDERS_TBL VALUES

(‘32A132’, ‘43’, ‘222’, ‘25’, TO_DATE(‘2009-10-10’,’YYYY-MM-DD’));

INSERT INTO ORDERS_TBL VALUES

(‘16C17’, ‘090’, ‘222’, ‘2’, TO_DATE(‘2009-10-17’,’YYYY-MM-DD’));

INSERT INTO ORDERS_TBL VALUES

(‘18D778’, ‘287’, ‘90’, ‘10’, TO_DATE(‘2009-10-17’,’YYYY-MM-DD’));

INSERT INTO ORDERS_TBL VALUES

(‘23E934’, ‘432’, ‘13’, ‘20’, TO_DATE(‘2009-10-15’,’YYYY-MM-DD’));

PRODUCTS_TBL
INSERT INTO PRODUCTS_TBL VALUES

(‘11235’, ‘WITCH COSTUME’, ‘29.99’);

INSERT INTO PRODUCTS_TBL VALUES

(‘222’, ‘PLASTIC PUMPKIN 18 INCH’, ‘7.75’);

INSERT INTO PRODUCTS_TBL VALUES

(‘13’, ‘FALSE PARAFFIN TEETH’, ‘1.10’);

INSERT INTO PRODUCTS_TBL VALUES

(‘90’, ‘LIGHTED LANTERNS’, ‘14.50’);

INSERT INTO PRODUCTS_TBL VALUES

(‘15’, ‘ASSORTED COSTUMES’, ‘10.00’);

INSERT INTO PRODUCTS_TBL VALUES

(‘9’, ‘CANDY CORN’, ‘1.35’);

INSERT INTO PRODUCTS_TBL VALUES

(‘6’, ‘PUMPKIN CANDY’, ‘1.45’);

INSERT INTO PRODUCTS_TBL VALUES

(‘87’, ‘PLASTIC SPIDERS’, ‘1.05’);

INSERT INTO PRODUCTS_TBL VALUES

(‘119’, ‘ASSORTED MASKS’, ‘4.95’);

This page intentionally left blank

alias Another name or term for a table

or column.

ANSI American National Standards

Institute. This institute is responsible for

issuing standards for a variety of topics.

This is where the SQL standard is pub-

lished.

application A set of menus, forms,

reports, and code that performs a busi-

ness function and typically uses a data-

base.

buffer An area in memory for editing

or execution of SQL.

Cartesian product The result of not

joining tables in the WHERE clause of an

SQL statement. When tables in a query

are not joined, every row in one table is

paired with every row in all other tables.

client The client is typically a PC, but it

can be server that is dependent on anoth-

er computer for data, services, or process-

ing. A client application enables a client

machine to communicate with a server.

column A part of a table that has a

name and a specific data type.

COMMIT Makes changes to data perma-

nent.

composite index An index that is com-

posed of two or more columns.

condition Search criteria in a query’s

WHERE clause that evaluates to TRUE or

FALSE.

constant A value that does not change.

constraint Restrictions on data that are

enforced at the data level.

cursor A work area in memory that

uses SQL statements to typically perform

row-based operations against a set of

data.

data dictionary Another name for the

system catalog. See system catalog.

data type Defines data as a type, such

as number, date, or character.

database A collection of data that is

typically organized into sets of tables.

Glossary

DBA Database administrator. An indi-

vidual who manages a database.

DDL Data Definition Language. The

part of the SQL syntax that specifically

deals with defining database objects such

as tables, views, and functions.

default A value used when no specifica-

tion has been made.

distinct Unique; used in the SELECT

clause to return unique values.

DML Data Manipulation Language. The

part of the SQL syntax that specifically

deals with manipulating data, such as

that used in update statements.

domain An object that is associated

with a data type to which constraints

may be attached; similar to a user-

defined type.

DQL Data Query Language. The part of

the SQL syntax that specifically deals

with querying data using the SELECT

statement.

end user Users whose jobs require them

to query or manipulate data in the data-

base. The end user is the individual for

which the database exists.

field Another name for a column in a

table. See column.

foreign key One or more columns

whose values are based on the primary

key column values in another table.

full table scan The search of a table

from a query without the use of an

index.

function An operation that is prede-

fined and can be used in an SQL state-

ment to manipulate data.

GUI Graphical user interface. This is

what an application interface is typically

referred to when it provides graphical ele-

ments for the user to interact with.

host The computer on which a data-

base is located.

index Pointers to table data that make

access to a table more efficient.

JDBC Java Database Connectivity.

Software that allows a Java program to

communicate with a database to process

data.

join Combines data from different

tables by linking columns. Used in the

WHERE clause of an SQL statement.

key A column or columns that identify

rows of a table.

normalization Designing a database to

reduce redundancy by breaking large

tables into smaller, more manageable

ones.

NULL value A value that is unknown.

objects Elements in a database, such as

triggers, tables, views, and procedures.

ODBC Open Database Connectivity.

Software that allows for standard com-

munication with a database. ODBC is

typically used for inter-database commu-

nication between different implementa-

tions and for communication between a

client application and a database.

452 DBA

operator A reserved word or symbol

that performs an operation, such as addi-

tion or subtraction.

optimizer Internal mechanism of the

database (consists of rules and code) that

decides how to execute an SQL statement

and return an answer.

parameter A value or range of values

to resolve a part of an SQL statement or

program.

primary key A specified table column

that uniquely identifies rows of the table.

privilege Specific permissions that are

granted to users to perform a specific

action in the database.

procedure A set of instructions that are

saved for repeated calling and execution.

public A database user account that

represents all database users.

query An SQL statement that retrieves

data from a database.

record Another name for a row in a

table. See row.

referential integrity Ensures the exis-

tence of every value of a column from a

parent that is referenced in another table.

This ensures that the data in your data-

base is consistent. Referential integrity is

normally used between two tables, but in

some tables it can be used so that a table

references itself. A self-referenced table is

referred to as a recursive relationship. In

databases, this is often referred to as a

foreign key relationship.

relational database A database that is

organized into tables that consist of rows,

which contain the same sets of data

items, where tables in the database are

related to one another through common

keys.

role A database object that is associat-

ed with a group of system or object privi-

leges, used to simplify security manage-

ment.

ROLLBACK A command that undoes all

transactions since the last COMMIT or

SAVEPOINT command was issued.

row Sets of records in a table.

savepoint A specified point in a trans-

action to which you can roll back or

undo changes.

schema A set of related objects in a

database owned by a single database

user.

security The process of ensuring that

data in a database is fully protected at all

times.

SQL Structured Query Language

designed for use with databases and used

to manage the data within those systems.

stored procedure SQL code that is

stored in a database and ready to exe-

cute.

subquery A SELECT statement embed-

ded within another SQL statement.

synonym Another name given to a

table or view.

synonym 453

syntax for SQL A set of rules that shows

mandatory and optional parts of an SQL

statement’s construction.

system catalog Collection of tables or

views that contain information about the

database.

table The basic logical storage unit for

data in a relational database.

transaction One or more SQL state-

ments that are executed as a single unit.

trigger A stored procedure that executes

upon specified events in a database, such

as before or after an update of a table.

user-defined type A data type that is

defined by a user, which can be used to

define table columns.

variable A value that does not remain

constant.

view A database object that is created

from one or more tables and can be used

the same as a table. A view is a virtual

table that has no storage requirements of

its own.

454 syntax for SQL

455

APPENDIX G

Bonus Exercises

The exercises in this appendix are bonus exercises that are specific to MySQL. We

provide an explanation or question and then provide sample MySQL-based SQL

code to execute. Remember that the SQL code can vary from implementation to

implementation, so some of these statements need to be adjusted depending on

what system you are working on. Study the question, code, and results carefully to

improve your knowledge of SQL.

1. Create a new database for bonus exercises and name it BONUS.

CREATE DATABASE BONUS;

2. Point MySQL to your new database.

USE BONUS;

3. Create a table to keep track of basketball teams.

CREATE TABLE TEAMS

(TEAM_ID INTEGER(2) NOT NULL,

NAME VARCHAR(20) NOT NULL);

4. Create a table to keep track of basketball players.

CREATE TABLE PLAYERS

(PLAYER_ID INTEGER(2) NOT NULL,

LAST VARCHAR(20) NOT NULL,

FIRST VARCHAR(20) NOT NULL,

TEAM_ID INTEGER(2) NULL,

NUMBER INTEGER(2) NOT NULL);

5. Create a table to keep track of players’ personal information.

CREATE TABLE PLAYER_DATA

(PLAYER_ID INTEGER(2) NOT NULL,

HEIGHT DECIMAL(4,2) NOT NULL,

WEIGHT DECIMAL(5,2) NOT NULL);

6. Create a table to keep track of games played.

CREATE TABLE GAMES

(GAME_ID INTEGER(2) NOT NULL,

GAME_DT DATETIME NOT NULL,

456 APPENDIX G: Bonus Exercises

HOME_TEAM_ID INTEGER(2) NOT NULL,

GUEST_TEAM_ID INTEGER(3) NOT NULL);

7. Create a table to keep track of each team’s score for each game.

CREATE TABLE SCORES

(GAME_ID INTEGER(2) NOT NULL,

TEAM_ID INTEGER(2) NOT NULL,

SCORE INTEGER(3) NOT NULL,

WIN_LOSE VARCHAR(4) NOT NULL);

8. View all the tables that you created.

SHOW TABLES;

9. Create records for the basketball teams.

INSERT INTO TEAMS VALUES (‘1’,’STRING MUSIC’);

INSERT INTO TEAMS VALUES (‘2’,’HACKERS’);

INSERT INTO TEAMS VALUES (‘3’,’SHARP SHOOTERS’);

INSERT INTO TEAMS VALUES (‘4’,’HAMMER TIME’);

10. Create records for the players.

INSERT INTO PLAYERS VALUES (‘1’,’SMITH’,’JOHN’,’1’,’12’);

INSERT INTO PLAYERS VALUES (‘2’,’BOBBIT’,’BILLY’,’1’,’2’);

INSERT INTO PLAYERS VALUES (‘3’,’HURTA’,’WIL’,’2’,’32’);

INSERT INTO PLAYERS VALUES (‘4’,’OUCHY’,’TIM’,’2’,’22’);

INSERT INTO PLAYERS VALUES (‘5’,’BYRD’,’ERIC’,’3’,’6’);

INSERT INTO PLAYERS VALUES (‘6’,’JORDAN’,’RYAN’,’3’,’23’);

INSERT INTO PLAYERS VALUES (‘7’,’HAMMER’,’WALLY’,’4’,’21’);

INSERT INTO PLAYERS VALUES (‘8’,’HAMMER’,’RON’,’4’,’44’);

INSERT INTO PLAYERS VALUES (‘11’,’KNOTGOOD’,’AL’,NULL,’0’);

11. Create records for the players’ personal data.

INSERT INTO PLAYER_DATA VALUES (‘1’,’71’,’180’);

INSERT INTO PLAYER_DATA VALUES (‘2’,’58’,’195’);

INSERT INTO PLAYER_DATA VALUES (‘3’,’72’,’200’);

INSERT INTO PLAYER_DATA VALUES (‘4’,’74’,’170’);

INSERT INTO PLAYER_DATA VALUES (‘5’,’71’,’182’);

INSERT INTO PLAYER_DATA VALUES (‘6’,’72’,’289’);

INSERT INTO PLAYER_DATA VALUES (‘7’,’79’,’250’);

INSERT INTO PLAYER_DATA VALUES (‘8’,’73’,’193’);

INSERT INTO PLAYER_DATA VALUES (‘11’,’85’,’310’);

12. Create records in the GAMES table based on games that have been scheduled.

INSERT INTO GAMES VALUES (‘1’,’2002-05-01’,’1’,’2’);

INSERT INTO GAMES VALUES (‘2’,’2002-05-02’,’3’,’4’);

INSERT INTO GAMES VALUES (‘3’,’2002-05-03’,’1’,’3’);

INSERT INTO GAMES VALUES (‘4’,’2002-05-05’,’2’,’4’);

INSERT INTO GAMES VALUES (‘5’,’2002-05-05’,’1’,’2’);

INSERT INTO GAMES VALUES (‘6’,’2002-05-09’,’3’,’4’);

Bonus Exercises 457

INSERT INTO GAMES VALUES (‘7’,’2002-05-10’,’2’,’3’);

INSERT INTO GAMES VALUES (‘8’,’2002-05-11’,’1’,’4’);

INSERT INTO GAMES VALUES (‘9’,’2002-05-12’,’2’,’3’);

INSERT INTO GAMES VALUES (‘10’,’2002-05-15’,’1’,’4’);

13. Create records in the SCORES table based on games that have been played.

INSERT INTO SCORES VALUES (‘1’,’1’,’66’,’LOSE’);

INSERT INTO SCORES VALUES (‘2’,’3’,’78’,’WIN’);

INSERT INTO SCORES VALUES (‘3’,’1’,’45’,’LOSE’);

INSERT INTO SCORES VALUES (‘4’,’2’,’56’,’LOSE’);

INSERT INTO SCORES VALUES (‘5’,’1’,’100’,’WIN’);

INSERT INTO SCORES VALUES (‘6’,’3’,’67’,’LOSE’);

INSERT INTO SCORES VALUES (‘7’,’2’,’57’,’LOSE’);

INSERT INTO SCORES VALUES (‘8’,’1’,’98’,’WIN’);

INSERT INTO SCORES VALUES (‘9’,’2’,’56’,’LOSE’);

INSERT INTO SCORES VALUES (‘10’,’1’,’46’,’LOSE’);

INSERT INTO SCORES VALUES (‘1’,’2’,’75’,’WIN’);

INSERT INTO SCORES VALUES (‘2’,’4’,’46’,’LOSE’);

INSERT INTO SCORES VALUES (‘3’,’3’,’87’,’WIN’);

INSERT INTO SCORES VALUES (‘4’,’4’,’99’,’WIN’);

INSERT INTO SCORES VALUES (‘5’,’2’,’88’,’LOSE’);

INSERT INTO SCORES VALUES (‘6’,’4’,’77’,’WIN’);

INSERT INTO SCORES VALUES (‘7’,’3’,’87’,’WIN’);

INSERT INTO SCORES VALUES (‘8’,’4’,’56’,’LOSE’);

INSERT INTO SCORES VALUES (‘9’,’3’,’87’,’WIN’);

INSERT INTO SCORES VALUES (‘10’,’4’,’78’,’WIN’)

14. Determine the average height of all players.

SELECT AVG(HEIGHT) FROM PLAYER_DATA;

15. Determine the average weight of all players.

SELECT AVG(WEIGHT) FROM PLAYER_DATA;

16. Create a list of player information as follows:

NAME=LAST NUMBER=N HEIGHT=N WEIGHT=N

SELECT CONCAT(‘NAME=’,P1.LAST,’ NUMBER=’,P1.NUMBER,’

HEIGHT=’,P2.HEIGHT,’ WEIGHT=’,P2.WEIGHT)

FROM PLAYERS P1,

PLAYER_DATA P2

WHERE P1.PLAYER_ID = P2.PLAYER_ID;

17. Create a team roster that looks like the following:

TEAM NAME LAST, FIRST NUMBER

SELECT T.NAME, CONCAT(P.LAST,’, ‘,P.FIRST), P.NUMBER

FROM TEAMS T,

PLAYERS P

WHERE T.TEAM_ID = P.TEAM_ID;

458 APPENDIX G: Bonus Exercises

18. Determine which team has scored the most points of all games.

SELECT T.NAME, SUM(S.SCORE)

FROM TEAMS T,

SCORES S

WHERE T.TEAM_ID = S.TEAM_ID

GROUP BY T.NAME

ORDER BY 2 DESC;

19. Determine the most points scored in a single game by one team.

SELECT MAX(SCORE)

FROM SCORES;

20. Determine the most points scored collectively by both teams in a single game.

SELECT GAME_ID, SUM(SCORE)

FROM SCORES

GROUP BY GAME_ID

ORDER BY 2 DESC;

21. Determine if there are any players who are not assigned to a team.

SELECT LAST, FIRST, TEAM_ID

FROM PLAYERS

WHERE TEAM_ID IS NULL;

22. Determine the number of teams.

SELECT COUNT(*) FROM TEAMS;

23. Determine the number of players.

SELECT COUNT(*) FROM PLAYERS;

24. Determine how many games were played on May 5, 2002.

SELECT COUNT(*) FROM GAMES

WHERE GAME_DT = ‘2002-05-05’;

25. Determine the tallest player.

SELECT P.LAST, P.FIRST, PD.HEIGHT

FROM PLAYERS P,

PLAYER_DATA PD

WHERE P.PLAYER_ID = PD.PLAYER_ID

ORDER BY 3 DESC;

OR

SELECT MAX(HEIGHT) FROM PLAYER_DATA;

SELECT P.LAST, P.FIRST, PD.HEIGHT

FROM PLAYERS P,

PLAYER_DATA PD

WHERE HEIGHT = 85;

Bonus Exercises 459

26. Remove Ron Hammer’s record from the database, and replace him with Al

Knotgood.

SELECT PLAYER_ID

FROM PLAYERS

WHERE LAST = ‘HAMMER’

AND FIRST = ‘RON’;

DELETE FROM PLAYERS WHERE PLAYER_ID = ‘8’;

DELETE FROM PLAYER_DATA WHERE PLAYER_ID = ‘8’;

SELECT PLAYER_ID

FROM PLAYERS

WHERE LAST = ‘KNOTGOOD’

AND FIRST = ‘AL’;

UPDATE PLAYERS

SET TEAM_ID = ‘4’

WHERE PLAYER_ID = ‘11’;

27. Determine Al Knotgood’s new teammate.

SELECT TEAMMATE.LAST, TEAMMATE.FIRST

FROM PLAYERS TEAMMATE,

PLAYERS P

WHERE P.TEAM_ID = TEAMMATE.TEAM_ID

AND P.LAST = ‘KNOTGOOD’

AND P.FIRST = ‘AL’;

28. Generate a list of all games and game dates. Also, list home and guest

teams for each game.

SELECT G.GAME_ID, HT.NAME, GT.NAME

FROM GAMES G,

TEAMS HT,

TEAMS GT

WHERE HT.TEAM_ID = G.HOME_TEAM_ID

AND GT.TEAM_ID = G.GUEST_TEAM_ID;

29. Create indexes for all names in the database. Names are often indexed

because you frequently search by name.

CREATE INDEX TEAM_IDX

ON TEAMS (NAME);

CREATE INDEX PLAYERS_IDX

ON PLAYERS (LAST, FIRST);

30. Determine which team has the most wins.

SELECT T.NAME, COUNT(S.WIN_LOSE)

FROM TEAMS T,

SCORES S

WHERE T.TEAM_ID = S.TEAM_ID

AND S.WIN_LOSE = ‘WIN’

GROUP BY T.NAME

ORDER BY 2 DESC;

460 APPENDIX G: Bonus Exercises

31. Determine which team has the most losses.

SELECT T.NAME, COUNT(S.WIN_LOSE)

FROM TEAMS T,

SCORES S

WHERE T.TEAM_ID = S.TEAM_ID

AND S.WIN_LOSE = ‘LOSE’

GROUP BY T.NAME

ORDER BY 2 DESC;

32. Determine which team has the highest average score per game.

SELECT T.NAME, AVG(S.SCORE)

FROM TEAMS T,

SCORES S

WHERE T.TEAM_ID = S.TEAM_ID

GROUP BY T.NAME

ORDER BY 2 DESC;

33. Generate a report that shows each team’s record. Sort the report by teams

with the most wins and then by teams with the fewest losses.

SELECT T.NAME, SUM(REPLACE(S.WIN_LOSE,’WIN’,1)) WINS,

SUM(REPLACE(S.WIN_LOSE,’LOSE’,1)) LOSSES

FROM TEAMS T,

SCORES S

WHERE T.TEAM_ID = S.TEAM_ID

GROUP BY T.NAME

ORDER BY 2 DESC, 3;

34. Determine the final score of each game.

SELECT G.GAME_ID,

HOME_TEAMS.NAME “HOME TEAM”, HOME_SCORES.SCORE,

GUEST_TEAMS.NAME “GUEST TEAM”, GUEST_SCORES.SCORE

FROM GAMES G,

TEAMS HOME_TEAMS,

TEAMS GUEST_TEAMS,

SCORES HOME_SCORES,

SCORES GUEST_SCORES

WHERE G.HOME_TEAM_ID = HOME_TEAMS.TEAM_ID

AND G.GUEST_TEAM_ID = GUEST_TEAMS.TEAM_ID

AND HOME_SCORES.GAME_ID = G.GAME_ID

AND GUEST_SCORES.GAME_ID = G.GAME_ID

AND HOME_SCORES.TEAM_ID = G.HOME_TEAM_ID

AND GUEST_SCORES.TEAM_ID = G.GUEST_TEAM_ID

ORDER BY G.GAME_ID;

A

ABS (absolute value), 183

accessing remote databases,

357-358

JDBC, 358

ODBC (Open Database

Connectivity), 358

OLE DB, 359

through web interfaces,

359-360

vendor connectivity products,

359

adding

auto-incrementing columns to

tables, 45

columns to tables, 44-45

time to dates, 196-197

addition, arithmetic operators,

133-134

ADMIN OPTION, 305

aggregate functions, 141-142

AVG, 146-147

COUNT, 142-145

creating groups, 155-158

MAX, 147-148

MIN, 148-149

SUM, 145-146

ALL, 124-126

ALTER ANY TABLE, 302

ALTER DATABASE, 302

ALTER TABLE, 44, 264, 377

ALTER USER, 302

altering

indexes, 263

users, 294-295

American National Standards

Institute. See ANSI (American

National Standards Institute)

AND, 126-127

ANSI (American National

Standards Institute), 2

ANSI character functions,

169-170

ANSI SQL, 2

compliance with, 369

ANSI standard, SELECT, 368

Index

ANY, 124-126

arithmetic operators, 133

addition, 133-134

combinations of, 135-136

division, 135

multiplication, 134

subtraction, 134

ASCII, 182-183

asterisks, 101

AUTHORIZATION keyword, 292

auto-incrementing columns,

adding to tables, 45

AVG, 146-147

avoiding

HAVING clause, 277

indexes, 261-263

large sort operations,

277-278

OR operator, performance,

276-277

B

back-end application, SQL and

enterprise, 356

BACKUP ANY TABLE, 302

BACKUP DATABASE, 301

base tables, joins, 218-219

batch loads, disabling indexes

during, 278-279

BETWEEN, 120-121

BOOLEAN values, 29

C

call-level interface (CLI), 349-350

Cartesian product, joins, 219-221

case sensitivity, 74

SELECT, 106-107

CEILING, 183

character functions, 170

ASCII, 182-183

COALESCE, 181

combining, 186-187

CONCAT, 170-172

DECODE, 178-179

IFNULL, 180

INSTR, 176-177

LENGTH, 179-180

LOWER, 174-175

LPAD, 181-182

LTRIM, 177-178

REPLACE, 173

RPAD, 182

RTRIM, 178

SUBSTR, 175-176

TRANSLATE, 172-173

UPPER, 174

character strings

converting numbers to,

185-186

converting to dates, 203-204

converting to numbers,

184-185

check constraints, 53

CLI (call-level interface), 349-350

client/server model, 5-6

CLOSE, 340

closing cursors, 342-343

COALESCE, 181

collation, 107

columns, 16, 40-41

adding to tables, 44-45

auto-incrementing columns,

adding to tables, 45

limited columns, inserting

data into, 75-76

modifying, 46

representing column names

with numbers, 158-159

updating

multiple columns in one or

more records, 81-82

value of a single column,

80-81

combining character functions,

186-187

comma separated arguments,

100

COMMIT, 11, 89-91, 377

comparison operators, 116

combinations of, 118-119

equality, 116

less than, greater than, 118

non-equality, 117

composite indexes, 259-260

compound queries

GROUP BY clause, 248-250

ORDER BY clause, 246-248

versus single queries,

239-240

compound query operators, 240

EXCEPT, 245-246

INTERSECT, 244-245

462

ANY

retrieving accurate data, 250

UNION, 240-243

UNION ALL, 243-244

CONCAT, 170-172

concatenation, 170

conjunctive operators, 126

AND, 126-127

OR, 127-129

CONNECT, 8, 307

constraints

dropping, 54

integrity constraints. See

integrity constraints

controlling

privileges, 308

CREATE ROLE, 308-309

DROP ROLE, 309

SET ROLE, 309

transactions, 88

COMMIT, 89-91

RELEASE SAVEPOINT,

94-95

ROLLBACK, 91-92

ROLLBACK TO SAVEPOINT,

93-94

SAVEPOINT, 92-93

SET TRANSACTION, 95

user access, 304

GRANT, 304-305

GRANT OPTION, 305

groups of privileges,

306-308

on individual columns,

306

PUBLIC database, 306

REVOKE, 305-306

conversion functions, 183-184

converting character strings

to numbers, 184-185

converting numbers to char-

acter strings, 185-186

converting

character strings to dates,

203-204

character strings to numbers,

184-185

dates to character strings,

202-203

numbers to character strings,

185-186

correlated subqueries, 233-234

COS, 183

cost-based optimization, perfor-

mance, 279-280

COUNT, 109, 142-145

COUNT(*), 143

CREATE, 302

CREATE ANY TABLE, 302

CREATE DATABASE, 301

CREATE INDEX257, 377

CREATE PROCEDURE, 301

CREATE ROLE, 308-309, 377

CREATE SCHEMA, 292-293

CREATE TABLE AS, 378

CREATE TABLE statement, 41-43,

301, 378

CREATE TRIGGER, 301, 346-348

CREATE TYPE,378

CREATE USER, 290, 302, 378

CREATE VIEW, 301, 316, 378

CUBE expression, 163-164

CUME_DIST() OVER, 351

current date, 194

cursors, 339-340

closing, 342-343

fetching data from, 341-342

opening, 340-341

CUSTOMER_TBL, 440-441,

444-445

Oracle,447-448

D

data

defined, 21

deleting from tables, 82-83

grouping, 153-154

CUBE expression,

163-164

GROUP BY clause,

154-155

GROUP BY clause versus

ORDER BY clause,

159-161

HAVING clause, 164-165

ROLLUP expression,

161-162

inserting

into limited columns of

tables, 75-76

NULL values, 78-80

from other tables, 76-78

into tables, 74-75

manipulating, 10, 73

retrieving, 250

selecting, 10

from multiple tables,

207-208

How can we make this index more useful? Email us at indexes@samspublishing.com

data

463

selecting data from another

user’s table, 110

updating, 80

multiple columns in one or

more records, 81-82

through views, 322-323

value of a single column,

80-81

used in this book, 13-15

data access, simplifying with

views, 314-315

data administration commands,

9, 11

Data Control Language. See DCL

(Data Control Language)

Data Definition Language. See

DDL (Data Definition Language)

Data Manipulation Language. See

DML (Data Manipulation

Language)

Data Query Language. See DQL

(Data Query Language)

data redundancy, logical data-

base design, normalization,

63-64

data types, 22

BOOLEAN values, 29

date and time data types, 27

DATETIME data types, 192

decimal values, 25-26

domains, 30

fixed-length strings, 23

floating-point decimals, 26-27

integers, 26

large object types, 24

limitations on, 43

literal strings, 28

NULL values, 28-29

numeric values, 24-25

user-defined types, 29-30

varying-length strings, 23

database administrator. See DBA

database design information, sys-

tem catalogs, 332

database management system.

See DBMS (database manage-

ment system)

database objects, 37

database performance, transac-

tional control and, 95-96

database security, 299-300

database structures, DDL (Data

Definition Language), 9-10

database tuning versus SQL

statement tuning, 268

database vendors, 7-8

databases

defined, 4-5

relational databases, 5

web-based database sys-

tems, 6-7

date conversions, 198-199

converting character strings

to dates, 203-204

converting dates to character

strings, 202-203

date pictures, 199-202

date functions, 193

adding time to dates,

196-197

current date, 194

miscellaneous, 197-198

time zones, 194-195

date pictures, 199-202

dates, converting to character

strings, 202-203

DATETIME data types, 27, 192

implementation-specific data

types, 193

DATETIME elements, 192

DB_DATAWRITER, 308

DB_DDLADMIN, 307

DBA (database administrator),

21, 300, 307

DBMS (database management

system), 1

DCL (Data Control Language), 9,

10-11

DDL (Data Definition Language),

9-10

decimal values, 25-26

floating-point decimals, 26-27

DECODE, 178-179

default storage, 191

DELETE statements, 82, 379

subqueries, 230

deleting data from tables, 82-83

denormalization, 69-70

DENSE_RANK() OVER, 351

direct SQL versus embedded SQL,

351

disabling indexes during batch

loads, 278-279

DISCONNECT, 8-9

DISTINCT

aggregate functions, 149

SELECT, 102

division, arithmetic operators,

135

464

data

DML (Data Manipulation

Language), 9-10

domains, data types, 30

DQL (Data Query Language),

9-10

DROP, 302

DROP INDEX, 379

DROP ROLE, 309

DROP TABLE, 302, 379

DROP TRIGGER, 348

DROP USER, 302, 379

DROP VIEW, 323, 379

dropping

constraints, 54

indexes, 263

schemas, 293-294

synonyms, 325

tables, 48-49

triggers, 348

views, 323

dynamic SQL, 348-349

E

embedded SQL versus direct SQL,

351

embedded subqueries, 231-233

EMPLOYEE_PAY_TBL, 439, 441,

444

Oracle, 447

EMPLOYEE_TBL, 439-440, 443

Oracle, 446-447

end user needs, logical database

design, normalization, 63

enterprises, SQL and, 355

back-end applications, 356

front-end applications,

356-357

equality, 116

equality of joins, 208-210

EXCEPT, 245-246

EXEC SQL, 349

EXECUTE, 301

EXISTS, 123-124

EXIT, 8-9

EXP (exponential values), 183

EXPLAIN PLAN, 280

extensions

implementations, 369-370

MySQL, 372-373

PL/SQL, 371-372

SQL extensions, 370

Transact-SQL, 371

F

FETCH, 340

fetching data from cursors,

341-342

fields, 15

first normal form, 64-65

fixed-length strings, 23

FLOAT, 26

floating-point decimals, 26-27

FLOOR, 183

FOR EACH ROW, triggers, 348

foreign key constraints, 51-52

formatting SQL statements,

268-269

arranging tables in FROM

clause, 271

ordering join conditions,

271-272

for readability, 269-271

restrictive conditions,

272-273

FROM clause, 381

arranging tables, 271

SELECT, 102

front-end applications, SQL and

enterprise, 356-357

full table scans, 257, 274-275

functions

aggregate functions. See

aggregate functions

ANSI character functions,

169-170

character functions, 170

ASCII, 182-183

COALESCE, 181

CONCAT, 170-172

DECODE, 178-179

IFNULL, 180

INSTR, 176-177

LENGTH, 179-180

LOWER, 174-175

LPAD, 181-182

LTRIM, 177-178

REPLACE, 173

RPAD, 182

RTRIM, 178

SUBSTR, 175-176

TRANSLATE, 172-173

UPPER, 174

conversion functions,

183-184

How can we make this index more useful? Email us at indexes@samspublishing.com

functions

465

date functions, 193

adding time to dates,

196-197

current date, 194

miscellaneous, 197-198

time zones, 194-195

mathematical functions, 183

stored procedures and,

343-346

TRANSLATE, 170

windowed table functions,

351-352

G-H

generating SQL with SQL, 350

GRANT, 302, 379

controlling user access,

304-305

GRANT OPTION, 305

granting privileges, 303-304

GROUP BY clause, 154-155, 381

compound queries, 248-250

creating groups with aggre-

gate functions, 155-158

group functions, 155

grouping selected data, 155

versus ORDER BY, 159-161

representing column names

with numbers, 158-159

group functions, GROUP BY

clause, 155

grouping

data, 153-154

CUBE expression,

163-164

GROUP BY clause,

154-155

GROUP BY clause versus

ORDER BY clause,

159-161

HAVING clause, 164-165

ROLLUP expression,

161-162

queries, 128

selected data, GROUP BY

clause, 155

groups, creating with aggregate

functions, 155-158

groups of privileges, controlling

user access, 306-308

GUI tools, 296

HAVING clause, 164-165, 381

avoiding, 277

I

IFNULL, 180

implementations, 367

compliance with ANSI SQL,

369

differences between, 367-369

extensions to SQL, 369-370

implementation-specific data

types, 193

implicit indexes, 260

IN, 121-122

indexes, 255-256

altering, 263

avoiding, 261-263

composite indexes, 259-260

considering, 260-261

creating groups, 258-257

creating with CREATE INDEX,

257

disabling indexes during

batch loads, 278-279

dropping, 263

how they work, 256-257

implicit indexes, 260

single-column indexes, 258

unique indexes, 258-259

INSERT, 303, 379

subqueries, 228-229

inserting data

into limited columns of

tables, 75-76

NULL values, 78-80

from other tables, 76-78

into tables, 74-75

INSERT...SELECT, 380

installing

Microsoft SQL Server,

388-390

MySQL, 383-385

Oracle, 386-387

INSTR, 176-177

integers, 26

integrity constraints, 49

check constraints, 53

foreign key constraints, 51-52

NOT NULL constraints, 52

primary key constraints,

49-50

unique constraints, 50-51

interactive SQL statements,

373-374

466

functions

International Standards

Organization (ISO), 2

Internet, SQL and, 360

making data available to cus-

tomers worldwide, 360-361

making data available to

employees and privileged

customers, 361

INTERSECT, 244-245

intranets, SQL and, 361-362

IS NOT NULL, 132

IS NULL, 120

ISO (International Standards

Organization), 2

J-K

JDBC (Java Database

Connectivity), 358

join conditions, ordering, 271-272

joins, 208

base tables, 218-219

Cartesian product, 219-221

components of a join condi-

tion, 208

equality of, 208-210

multiple keys, 216-217

non-equality, 211-212

outer joins, 212-215

self joins, 215-216

table aliases, 210

keywords

AUTHORIZATION, 292

SELECT, 100

L

large object types, 24

LENGTH, 179-180

less than, greater than, compari-

son operators, 118

LIKE, 122-123, 275-276

limitations on data types, 43

literal strings, 28

logical database design, normal-

ization, 62-63

data redundancy, 63-64

end user needs, 63

logical operators, 119-120

ALL, 124-126

ANY, 124-126

BETWEEN, 120-121

EXISTS, 123-124

IN, 121-122

IS NULL, 120

LIKE, 122-123

SOME, 124-126

LOWER, 174-175

LPAD, 181-182

LTRIM, 177-178

M

major implementation system

catalog objects, 333-334

managing users, 285-287

manipulating data, 10, 73

mathematical functions, 183

MAX, 147-148

Microsoft SQL Server

creating users, 290-291

cursors, 340

closing, 343

CUSTOMER_TBL, 441,

444-445

EMPLOYEE_PAY_TBL, 441,

444

EMPLOYEE_TBL, 440, 443

ORDERS_TBL, 441, 445

parameters, 374

PRODUCTS_TBL, 442, 446

SELECT, 368

stored procedures, 344-345

triggers, creating, 346

Windows installation instruc-

tions, 388-390

MIN, 148-149

modifying

columns in tables, 46

elements of tables, 44

multiple keys, joining, 216-217

multiplication, arithmetic opera-

tors, 134

MySQL

creating users, 291

cursors, 340

closing, 343

CUSTOMER_TBL, 440,

444-445

EMPLOYEE_PAY_TBL, 439,

444

EMPLOYEE_TBL, 439, 443

extensions, 372-373

ORDERS_TBL, 440, 445

PRODUCTS_TBL, 440, 446

How can we make this index more useful? Email us at indexes@samspublishing.com

MySQL

467

stored procedures, 344

triggers, creating, 346

Windows installation instruc-

tions, 383-385

N

naming conventions

normalization, 67

tables, 43

naming objects, 39

negative operators, 129

IS NOT NULL, 132

NOT BETWEEN, 130-131

NOT EQUAL, 130

NOT EXISTS, 133

NOT IN, 131

NOT LIKE, 131-132

nested views, performance,

323-324

non-equality

comparison operators, 117

joins, 211-212

normal forms, 64

first normal form, 64-65

second normal form, 65-66

third normal form, 67

normalization, 61-62

benefits of, 68-69

drawbacks of, 69

logical database design,

62-63

data redundancy, 63-64

end user needs, 63

naming conventions, 67

normal forms, 64

first normal form, 64-65

second normal form,

65-66

third normal form, 67

raw databases, 62

NOT BETWEEN, 130-131

NOT EQUAL, 130

NOT EXISTS, 133

NOT IN, 131

NOT LIKE, 131-132

NOT NULL constraints, 52

NULL value checker, 180

NULL values, 16, 28-29

inserting in tables, 78-80

numbers

converting character strings

to, 184-185

converting to character

strings, 185-186

numeric values, 24-25

O

object privileges, 302-303

objects, naming, 39

ODBC (Open Database

Connectivity), 358

OLE DB, 359

OPEN, 340

opening cursors, 340-341

operators, 115

arithmetic operators, 133

addition, 133-134

combinations, 135-136

division, 135

multiplication, 134

subtraction, 134

comparison operators, 116

combinations of, 118-119

equality, 116

less than, greater than,

118

non-equality, 117

conjunctive operators, 126

AND, 126-127

OR, 127-129

logical operators, 119-120

ALL, 124-126

ANY, 124-126

BETWEEN, 120-121

EXISTS, 123-124

IN, 121-122

IS NULL, 120

LIKE, 122-123

SOME, 124-126

negative operators, 129

IS NOT NULL, 132

NOT BETWEEN, 130-131

NOT EQUAL, 130

NOT EXISTS, 133

NOT IN, 131

NOT LIKE, 131-132

OR, 127-129

avoiding, 276-277

Oracle

creating users, 289-290

cursors, 340

closing, 343

468

MySQL

CUSTOMER_TBL,441,

447-448

EMPLOYEE_PAY_TBL, 441,

447

EMPLOYEE_TBL, 440,

446-447

ORDERS_TBL, 441, 448-449

parameters, 373

PRODUCTS_TBL, 442, 449

SELECT, 368-369

stored procedures, 344-345

triggers, creating, 346

Windows installation instruc-

tions, 386-387

Oracle Fusion Middleware, 359

ORDER BY clause,382

compound queries, 246-248

versus GROUP BY clause,

159-161

SELECT, 104-106

views, 322

ordering join conditions, 271-272

ORDERS_TBL, 440-441, 445

Oracle, 448-449

outer joins, 212-215

P

parameters

Microsoft SQL Server, 374

Oracle, 373

PERCENT_RANK() OVER, 351

performance

avoiding

HAVING clause, 277

large sort operations,

277-278

OR operator, 276-277

cost-based optimization,

279-280

disabling indexes during

batch loads, 278-279

full table scans, 274-275

LIKE operator, 275-276

nested views, 323-324

SQL statement tuning, 267

versus database tuning,

268

stored procedures, 278

subqueries, 234-235

wildcards, 275-276

performance statistics, system

catalogs, 332-333

performance tools, 280

PL/SQL, 370

extensions, 371-372

populating tables with new data,

74

POWER, 183

primary key constraints, 49-50

primary keys, 16

privileges, 301

controlling, 308

CREATE ROLE, 308-309

DROP ROLE, 309

SET ROLE, 309

granting, 303-304

object privileges, 302-303

revoking, 303-304

system privileges, 301-302

PRODUCTS_TBL, 440, 442, 446

Oracle, 449

PUBLIC database, 307

Q

queries, 99

compound queries

GROUP BY clause,

248-250

ORDER BY clause,

246-248

compound query operators,

240

EXCEPT, 245-246

INTERSECT, 244-245

UNION, 240-243

UNION ALL, 243-244

grouping, 128

simple queries

column aliases, 111

counting records in tables,

109-110

examples, 108-109

selecting data from anoth-

er user’s table, 110

single versus compound,

239-240

querying system catalogs,

334-336

How can we make this index more useful? Email us at indexes@samspublishing.com

querying system catalogs

469

R

RANK() OVER, 351

raw databases, normalization, 62

RDBMS (relational database

management system), 2

READ WRITE, 95

readability, formatting SQL state-

ments, 269-271

records, 15-16

counting records in tables,

simple queries, 109-110

REFERENCES, 303

relational database management

system. See RDBMS (relational

database management system)

relational databases, 5

RELEASE SAVEPOINT, 94-95

RELOAD, 302

remote databases, accessing,

357-358

JDBC, 358

ODBC (Open Database

Connectivity), 358

OLE DB, 359

through web interfaces,

359-360

vendor connectivity products,

359

removing user access, 295-296

REPLACE, 173

representing column names with

numbers, 158-159

RESOURCE, 307

restrictive conditions, SQL state-

ments, 272-273

retrieving data, 250

REVOKE, 380

controlling user access,

305-306

revoking privileges, 303-304

ROLLBACK, 11, 91-92, 380

ROLLBACK TO SAVEPOINT, 93-94

ROLLUP expression, 161-162

ROUND, 183

ROW_NUMBER() OVER, 351

rows, 41

rows of data, 15-16

RPAD, 182

RTRIM, 178

S

SAVEPOINT, 11, 92-93, 380

schemas, 37-39

creating, 292-293

dropping, 293-294

versus users, 288

second normal form, 65-66

security

controlling privileges, 308

CREATE ROLE, 308-309

DROP ROLE, 309

SET ROLE, 309

controlling user access, 304

GRANT, 304-305

GRANT OPTION, 305

groups of privileges,

306-308

on individual columns,

306

PUBLIC database, 306

REVOKE, 305-306

database security, 299-300

Internet, 361

privileges, 301

object privileges, 302-303

system privileges,

301-302

views, 315

security information, system cata-

logs, 332

SELECT, 10, 73, 99-102, 303,

380-381

ANSI standard, 368

case sensitivity, 106-107

FROM clause, 102

creating groups, 155-158

DISTINCT, 102

Microsoft SQL Server, 368

Oracle, 368-369

ORDER BY clause, 104-106

subqueries, 227-228

WHERE clause, 103-104

SELECT ANY TABLE, 302

selecting

data, 10

from multiple tables,

207-208

data from another table, 110

self joins, 215-216

SET ROLE, 309

SET TRANSACTION, 11, 95

SHUTDOWN, 302

SIGN (sign values), 183

470

RANK() OVER

simple queries

column aliases, 111

counting records in tables,

109-110

examples, 108-109

selecting data from another

user’s table, 110

simplifying data access with

views, 314-315

SIN, 183

single queries versus compound

queries, 239-240

single quotation marks, 74

single-column indexes, 258

SOME, 124-126

sort operations, avoiding,

277-278

SQL (Structured Query

Language), 2

direct versus embedded, 351

enterprises and, 355

back-end applications,

356

front-end applications,

356-357

generating SQL, 350

Internet and, 360

making data available to

customers worldwide,

360-361

making data available to

employees and privi-

leged customers, 361

intranets and, 361-362

SQL commands, 9

data administration com-

mands, 9, 11

DCL (Data Control Language),

10-11

DDL (Data Definition

Language), 9-10

DML (Data Manipulation

Language), 10

DQL (Data Query Language),

10

transaction control com-

mands, 9, 11

SQL extensions, 370

SQL sessions, 8

CONNECT, 8

DISCONNECT, 8-9

EXIT, 8-9

SQL statement tuning, 267

versus database tuning, 268

SQL statements

formatting, 268-269

arranging tables in FROM

clause, 271

ordering join conditions,

271-272

for readability, 269-271

restrictive conditions,

272-273

interactive SQL statements,

373-374

SQL-2008, 3-4

SQRT (square root), 183

standards, table-naming stan-

dards, 12-13

storage, default storage, 191

stored procedures

functions and, 343-346

performance, 278

strings

fixed-length strings, 23

literal strings, 28

varying-length strings, 23

Structured Query Language. See

SQL (Structured Query

Language)

subqueries, 225-227

correlated, 233-234

DELETE statements, 230

embedded, 231-233

INSERT statements, 228-229

performance, 234-235

SELECT statements, 227-228

UPDATE statements, 229-230

SUBSTR, 175-176

substrings, 170

subtraction, arithmetic operators,

134

SUM, 145-146

summarized data, maintaining

with views, 315-316

synonyms, 324

creating, 324-325

dropping, 325

simple queries, 111

SYS, 331

system catalog objects, updating,

336

system catalogs, 327-330

contents of, 331-332

creating, 331

database design information,

332

performance statistics,

332-333

How can we make this index more useful? Email us at indexes@samspublishing.com

system catalogs

471

querying, 334-336

security information, 332

tables by implementation,

333-334

user data, 332

system privileges, 301-302

T

table aliases, 210

table-naming standards, 12-13

tables, 15, 39

adding

auto-incrementing

columns, 45

columns, 44-45

ALTER TABLE, 44

arranging in FROM clause,

271

columns, 16, 40-41

modifying, 46

CREATE TABLE statement,

41-43

creating from existing tables,

46-48

creating from views, 321-322

data

deleting, 82-83

inserting, 74-75

dropping, 48-49

fields, 15

inserting data from another

table, 76-78

modifying elements of, 44

naming conventions, 43

NULL values, 16

populating with new data, 74

primary keys, 16

records, 15-16

rows, 41

TAN, 183

TEXT data type, 24

third normal form, 67

TIME, 192

time zones, date functions,

194-195

TIMESTAMP, 192

TKPROF, 280

tools, database users, 296

transaction control commands,

9, 11

transactional control, database

performance and, 95-96

transactions, 87-88

controlling, 88

COMMIT, 89-91

RELEASE SAVEPOINT,

94-95

ROLLBACK, 91-92

ROLLBACK TO SAVEPOINT,

93-94

SAVEPOINT, 92-93

SET TRANSACTION, 95

Transact-SQL, extensions, 371

TRANSLATE, 172-173

TRANSLATE function, 170

triggers, 346

creating, 346-348

dropping, 348

FOR EACH ROW, 348

U

UNION, 240-243

UNION ALL, 243-244

unique constraints, 50-51

unique indexes, 258-259

UPDATE statements, 303, 380

subqueries, 229-230

updating

data, 80

multiple columns in one or

more records, 81-82

through views, 322-323

value of a single column,

80-81

system catalog objects, 336

UPPER, 174

USAGE, 303

user access, controlling, 304

GRANT, 304-305

GRANT OPTION, 305

groups of privileges, 306-308

on individual columns, 306

PUBLIC database, 306

REVOKE, 305-306

user data, system catalogs, 332

user-defined types, 29-30

user management, 288

creating users, 289

in Microsoft SQL Server,

290-291

in MySQL, 291

in Oracle, 289-290

user sessions, 295

472

system catalogs

users

altering, 294-295

creating, 289

in Microsoft SQL Server,

290-291

in MySQL, 291

creating groups in Oracle,

289-290

managing, 285-287

place in databases, 287

removing access, 295-296

versus schemas, 288

types of, 286

V

varying-length strings, 23

vendor connectivity products, 359

vendors, database vendors, 7-8

views, 313-314

creating, 316

from multiple tables,

318-319

from a single table,

316-318

from views, 319-320

creating tables from, 321-322

dropping, 323

as a form of security, 315

maintaining summarized

data, 315-316

nested views, performance,

323-324

ORDER BY clause, 322

simplifying data access,

314-315

updating data, 322-323

WITH CHECK OPTION, 320

W–Z

web-based database systems, 6-7

web interfaces, accessing remote

databases, 359-360

WHERE, 82, 381

SELECT, 103-104

wildcards, performance, 275-276

windowed table functions,

351-352

Windows installation instructions

Microsoft SQL Server,

388-390

for MySQL, 383-385

for Oracle, 386-387

WITH CHECK OPTION, views, 320

XML, 352

How can we make this index more useful? Email us at indexes@samspublishing.com

XML

473

This page intentionally left blank

Whatever your need and whatever your time frame,

there’s a Sams Teach Yourself book for you. With a

Sams Teach Yourself book as your guide, you can

quickly get up to speed on just about any new

product or technology—in the absolute shortest

period of time possible. Guaranteed.

Learning how to do new things with your computer

shouldn’t be tedious or time-consuming. Sams

Teach Yourself makes learning anything quick,

easy, and even a little bit fun.

SharePoint Foundation 2010 in 24 Hours

Mike Walsh

ISBN-13: 9780672333163

SamsTeachYourself

When you only have time
for the answers™

C++ in 24 Hours,
Fifth Edition

Jesse Liberty

Rogers Cadenhead

ISBN-13: 9780672333316

the ADO.NET Entity
Framework in
24 Hours

Paul Kimmel

ISBN-13: 9780672330537

iPhone Application
Development in 24
Hours, Second Edition

John Ray

ISBN-13: 9780672332203

Windows Workflow
Foundation in
24 Hours

Robert Eisenberg

ISBN-13: 9780321486998

Sams Teach Yourself books are available at most retail and online bookstores. For more information
or to order direct, visit our online bookstore at informit.com/sams.

Online editions of all Sams Teach Yourself titles are available by subscription from Safari Books
Online at safari.informit.com.

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register

to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top

technology publishers, including Addison-Wesley Professional, Cisco Press,

O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,

Safari’s extensive collection of video tutorials lets you learn from the leading

video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst

to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content

created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Sams Teach Yourself SQL in 24 Hours includes access to a free online

edition for 45 days through the Safari Books Online subscription service. Nearly every

Sams book is available online through Safari Books Online, along with more than 5,000

other technical books and videos from publishers such as Addison-Wesley Professional,

Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, and Que.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste

code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: RJJHQVH.

STEP 2: New Safari users, complete the brief registration form.

Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,

please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Table of Contents
	Part I: An SQL Concepts Overview
	HOUR 1: Welcome to the World of SQL
	SQL Definition and History
	SQL Sessions
	Types of SQL Commands
	The Database Used in This Book
	Summary
	Q&A
	Workshop

	Part II: Building Your Database
	HOUR 2: Defining Data Structures
	What Is Data?
	Basic Data Types
	Summary
	Q&A
	Workshop

	HOUR 3: Managing Database Objects
	What Are Database Objects?
	What Is a Schema?
	Tables: The Primary Storage for Data
	Integrity Constraints
	Summary
	Q&A
	Workshop

	HOUR 4: The Normalization Process
	Normalizing a Database
	Denormalizing a Database
	Summary
	Q&A
	Workshop

	HOUR 5: Manipulating Data
	Overview of Data Manipulation
	Populating Tables with New Data
	Updating Existing Data
	Deleting Data from Tables
	Summary
	Q&A
	Workshop

	HOUR 6: Managing Database Transactions
	What Is a Transaction?
	Controlling Transactions
	Transactional Control and Database Performance
	Summary
	Q&A
	Workshop

	Part III: Getting Effective Results from Queries
	HOUR 7: Introduction to the Database Query
	What Is a Query?
	Introduction to the SELECT Statement
	Examples of Simple Queries
	Summary
	Q&A
	Workshop

	HOUR 8: Using Operators to Categorize Data
	What Is an Operator in SQL?
	Comparison Operators
	Logical Operators
	Conjunctive Operators
	Negative Operators
	Arithmetic Operators
	Summary
	Q&A
	Workshop

	HOUR 9: Summarizing Data Results from a Query
	What Are Aggregate Functions?
	Summary
	Q&A
	Workshop

	HOUR 10: Sorting and Grouping Data
	Why Group Data?
	The GROUP BY Clause
	GROUP BY Versus ORDER BY
	CUBE and ROLLUP Expressions
	The HAVING Clause
	Summary
	Q&A
	Workshop

	HOUR 11: Restructuring the Appearance of Data
	ANSI Character Functions
	Common Character Functions
	Miscellaneous Character Functions
	Mathematical Functions
	Conversion Functions
	Combining Character Functions
	Summary
	Q&A
	Workshop

	HOUR 12: Understanding Dates and Times
	How Is a Date Stored?
	Date Functions
	Date Conversions
	Summary
	Q&A
	Workshop

	Part IV: Building Sophisticated Database Queries
	HOUR 13: Joining Tables in Queries
	Selecting Data from Multiple Tables
	Understanding Joins
	Join Considerations
	Summary
	Q&A
	Workshop

	HOUR 14: Using Subqueries to Define Unknown Data
	What Is a Subquery?
	Embedded Subqueries
	Correlated Subqueries
	Subquery Performance
	Summary
	Q&A
	Workshop

	HOUR 15: Combining Multiple Queries into One
	Single Queries Versus Compound Queries
	Compound Query Operators
	Using ORDER BY with a Compound Query
	Using GROUP BY with a Compound Query
	Retrieving Accurate Data
	Summary
	Q&A
	Workshop

	Part V: SQL Performance Tuning
	HOUR 16: Using Indexes to Improve Performance
	What Is an Index?
	How Do Indexes Work?
	The CREATE INDEX Command
	Types of Indexes
	When Should Indexes Be Considered?
	When Should Indexes Be Avoided?
	Altering an Index
	Dropping an Index
	Summary
	Q&A
	Workshop

	HOUR 17: Improving Database Performance
	What Is SQL Statement Tuning?
	Database Tuning Versus SQL Statement Tuning
	Formatting Your SQL Statement
	Full Table Scans
	Other Performance Considerations
	Cost-Based Optimization
	Performance Tools
	Summary
	Q&A
	Workshop

	Part VI: Using SQL to Manage Users and Security
	HOUR 18: Managing Database Users
	User Management in the Database
	The Management Process
	Tools Utilized by Database Users
	Summary
	Q&A
	Workshop

	HOUR 19: Managing Database Security
	What Is Database Security?
	What Are Privileges?
	Controlling User Access
	Controlling Privileges Through Roles
	Summary
	Q&A
	Workshop

	Part VII: Summarized Data Structures
	HOUR 20: Creating and Using Views and Synonyms
	What Is a View?
	Creating Views
	WITH CHECK OPTION
	Creating a Table from a View
	Views and the ORDER BY Clause
	Updating Data Through a View
	Dropping a View
	Performance Impact of Using Nested Views
	What Is a Synonym?
	Summary
	Q&A
	Workshop

	HOUR 21: Working with the System Catalog
	What Is the System Catalog?
	How Is the System Catalog Created?
	What Is Contained in the System Catalog?
	System Catalog Tables by Implementation
	Querying the System Catalog
	Updating System Catalog Objects
	Summary
	Q&A
	Workshop

	Part VIII: Applying SQL Fundamentals in Today’s World
	HOUR 22: Advanced SQL Topics
	Cursors
	Stored Procedures and Functions
	Triggers
	Dynamic SQL
	Call-Level Interface
	Using SQL to Generate SQL
	Direct Versus Embedded SQL
	Windowed Table Functions
	Working with XML
	Summary
	Q&A
	Workshop

	HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet
	SQL and the Enterprise
	Accessing a Remote Database
	SQL and the Internet
	SQL and the Intranet
	Summary
	Q&A
	Workshop

	HOUR 24: Extensions to Standard SQL
	Various Implementations
	Example Extensions
	Interactive SQL Statements
	Summary
	Q&A
	Workshop

	Part IX: Appendixes
	APPENDIX A: Common SQL Commands
	SQL Statements
	SQL Clauses

	APPENDIX B: Using the Databases for Exercises
	Windows Installation Instructions for MySQL
	Windows Installation Instructions for Oracle
	Windows Installation Instructions for Microsoft SQL Server

	APPENDIX C: Answers to Quizzes and Exercises
	APPENDIX D: CREATE TABLE Statements for Book Examples
	APPENDIX E: INSERT Statements for Data in Book Examples
	APPENDIX F: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	APPENDIX G: Bonus Exercises

	INDEX
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-Z

