
	 ;login:  APRIL 2011     29

Today there are more ways to access a database from the command line than there
are databases. Very few of them unify the access into a single URL and make it
possible to give the SQL command to run on the command line.

GNU SQL introduces DBURL and a common way to run queries on databases from
the command line.

Background

Around 2003 I was assigned to admin a MySQL database. I found it annoying that
I could not use my Web browser for simple browsing of the content of the database.
I was thinking that URLs more or less had the same information as was needed
for accessing a database: protocol, username, password, host, port, path, and query
ought to be enough to do at least simple database manipulation.

In 2007 I became admin of a forest of MySQL, PostGreSQL, and Oracle databases.
It was a nuisance to remember the different ways to log into the databases from the
command line. In discussions with my colleague Hans Schou, we came up with a
common way of addressing the databases as a URL, which we call DBURL. I wrote
a wrapper for the different command line tools that uses the same DBURL syntax
to access the different databases. This wrapper is today known as GNU SQL.

After developing the first versions of GNU SQL, I realized that others have been
thinking along the same lines: Drupal, SQLObject, SQLAlchemy, and Transifex all
use some sort of DBURL. I would encourage others to adopt DBURL as a con-
densed way of writing the information to access a database.

DBURL Syntax

A DBURL has the following syntax:

	 [sql:]vendor://[user[:password]@][host][:port]/[database][?sqlquery]

Ole Tange works in

bioinformatics in Copenhagen.

He is active in the free

software community and is

best known for his “patented Web shop” that

shows the dangers of software patents (http://

ole.tange.dk/swpat). He will be happy to go

to your conference to give a talk about GNU

Parallel and GNU SQL.

ole@tange.dk

GNU SQL
A Command Line Tool for Accessing Different Databases
Using DBURLs

O L E T A N G E

 sql : mysql  : //user:password@example.com:3306/my_database?select%20*%20from%20foo;
 _/  ____/  _________________________________/  ____________/   __________________________/

  | |  |   |  |

scheme vendor 	 authority path query

Figure 1

	30    ;login:  VOL. 36, NO. 2

Only vendor is required. The rest of the elements are optional, with the following
defaults:

Element Default value

sql: sql:

user your UNIX user name

password no password

host localhost

port the default port for the vendor

database your UNIX user name

sqlquery ““ = No query

The DBURL is modeled after the syntax from RFC3986 to resemble a normal URL
and is partitioned similarly (see Figure 1). Quoting of special characters is done
using %-quoting, thus space=%20 and /=%2F.

Aliases

To avoid having to write the full DBURL all the time aliases has been defined as
DBURLs starting with ‘:’. Aliases are defined in ~/.sql/aliases and are simply the
alias followed by the DBURL:

:myalias sql:mysql://user:password@example.com:3306/my_database

Logging in with GNU SQL

GNU SQL is part of GNU Parallel, which is available for most UNIX distributions.
See http://www.gnu.org/s/parallel if it is not obvious how to install it on your
system.

You get an interactive prompt by:

sql sql:oracle://scott:tiger@oracleserver:1521/xe

If the database runs on localhost, the database name is your login name and there
is no password. You can simply do:

sql postgresql:///

When the DBURL is working and you get an interactive prompt, set up an alias in
~/.sql/aliases. Substitute the DBURL with one that works for you.

:myalias mysql://user:pass@example.com/my_database

Then you can get your interactive prompt by:

sql :myalias

Executing a Query

GNU SQL lets you execute a query by putting it on the command line:

sql :myalias “DELETE FROM users WHERE name LIKE ‘%tange%’;”

If you want to run multiple queries you can put them as separate arguments:

	 ;login:  APRIL 2011   GNU SQL    31

sql :myoracle “SELECT 1 FROM dual;” “SELECT 2 FROM dual;”

or you can pipe the SQL commands into GNU SQL:

cat my_query.sql | sql :myalias

You can also execute the query by putting it in the DBURL:

sql :myalias?select%20*%20from%20foo\;

sql postgresql://user:pass@host/my_database?select%20*%20from%20foo\;

Using the Power of GNU Parallel

GNU Parallel is a good companion for GNU SQL. Using GNU Parallel it is easy to
empty all tables without dropping them. Here are two ways to do it:

sql -n mysql:/// ‘show tables’ | parallel sql mysql:/// DELETE FROM {}\;

sql -n --list-tables mysql:/// | parallel sql mysql:/// DELETE FROM {}\;

But if you want to drop the tables, that is easy, too. Here are two ways to drop all
tables in a PostgreSQL database:

sql -n pg:/// ‘\dt’ | parallel --colsep ‘\|’ -r sql pg:/// DROP TABLE {2}\;

sql -n --list-tables pg:/// | parallel --col-sep ‘\|’ -r sql pg:/// DROP TABLE {2}\;

Run as a Script

When running an SQL script on a database you often end up with two scripts: one
that does the connection to the database and one that contains the actual SQL
to run. With GNU SQL these can easily be combined using UNIX’s shebang (#!).
Instead of doing:

sql mysql:/// < file.sql

you can combine file.sql with the DBURL to make a UNIX script. Create a script
called demosql:

#!/usr/bin/sql -Y mysql:///

SELECT * FROM users;

Then do:

chmod +x demosql ; ./demosql

When Connections Fail

If the connection to the database is bad or the query is very long, the risk of the con-
nection breaking increases. If the access to the database fails occasionally, retries
can help make sure the query succeeds:

sql --retries 5 :myalias ‘SELECT * FROM really_big_table;’

Getting General Info about the Database

Database vendors have not only each chosen their own syntax for logging in, they
have also each chosen their own way of getting general information about the
database.

GNU SQL contains a wrapper for getting some of the info.

	32    ;login:  VOL. 36, NO. 2

Show how big the database is sql --db-size :myalias

List the tables sql --list-tables :myalias

List the size of the tables sql --table-size :myalias

List the running processes sql --show-processlist :myalias

See You on the Mailing List

I hope you have thought of situations where GNU SQL can be of benefit to you. If
you like GNU SQL, please let others know about it through email lists, forums,
blogs, and social networks. If GNU SQL saves you money, please donate (or have
your company donate) to the FSF: https://my.fsf.org/donate. If you have questions
about GNU SQL, join the mailing list at http://lists.gnu.org/mailman/listinfo/
parallel.

