
Ingres 10.0

Security Guide

ING-10-SG-03

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD-
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2010 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction to Ingres Security 7
Security Features.. 7
Level of Security ... 8
Understanding Ingres Security Mechanisms .. 8
Directory and File Permissions .. 9
User Authentication... 9

Remote Users ... 9
Authorization Identifiers... 10
Subject Privileges.. 10
Object Permissions.. 11
Security Alarms .. 11
Security Auditing .. 11
Database Procedures ... 11
Data at Rest Encryption ... 12

Chapter 2: Understanding Directory and File Permissions 13
Directory and File Permissions .. 13

File Permissions on Windows ... 13
File Permissions on UNIX .. 14

Chapter 3: Security Features on UNIX 15
Ingvalidpw Program (Password Validation).. 15

Create Password Validation Program (UNIX) .. 16
Ingvalidpam Program (Password Validation Through PAM) .. 16
Access Control with Setuid (UNIX) ... 16

Use Chmod to Set the Setuid Bit.. 17
Example: Refer to Setuid in an Embedded SQL Application .. 18

Chapter 4: Authorizing User Access 21
Common Types of Ingres Users... 22
Ingres Users and the DBA .. 23
How to Establish User Access.. 23
Users and Profiles ... 24

Working with User Objects .. 24
Working with Profile Objects.. 29

Groups and Roles.. 31

Contents iii

Groups... 31
Roles ... 35

Chapter 5: Assigning Privileges and Granting Permissions 39
Subject Privileges.. 39

Auditor Privilege .. 40
Createdb Privilege ... 40
Maintain_Audit Privilege ... 41
Maintain_Locations Privilege.. 41
Maintain_Users Privilege... 42
Operator Privilege.. 43
Security Privilege... 44
Trace Privilege .. 44
Sets of Privileges Associated with a Session... 45

Object Permissions.. 46
Working with Grants .. 47
Database Grants ... 49
Table and View Grants ... 53
Table Grant Examples .. 54
Procedure Grants... 55
Database Event Grants... 55
Role Grants .. 55
How Grants Restrict Data Access ... 56

Grant Overhead .. 57
Multiple Permission Checks ... 57
How Privileges for a Session Are Determined ... 58
How Database Privileges for a Session Are Determined ... 60
Dbmsinfo—View Permissions for Current Session.. 61

Chapter 6: Implementing Security Auditing 63
Security Alarms .. 63

Working with Security Alarm Objects .. 64
How to Implement a Security Alarm ... 65
Security Alarm Example ... 66

Security Auditing .. 66
Audit Focus... 67
How to Enable Security Auditing .. 67
Security Auditing Configuration Parameters ... 69
Security Audit Statements .. 70
Security Audit Levels for Users and Roles .. 70
Changes to Security Audit Status During a Session... 71

iv Security Guide

Access to the Security Audit Log .. 71

Chapter 7: Controlling Access through Database Procedures 75
Database Procedures ... 75
Working with Procedure Objects .. 75
How to Implement a Database Procedure ... 76

Database Procedure Example .. 76
Access Control through Database Procedures .. 77

Chapter 8: Implementing PAM in Ingres 79
What Is PAM? ... 79
The Ingvalidpam Program .. 79
Requirements for Using PAM... 80
Build the Ingvalidpam Program ... 80
How to Implement Standard Linux or UNIX Security Using PAM ... 81

Ingres PAM Configuration File (For Linux or UNIX) .. 82
How to Implement LDAP Authentication Using PAM .. 82

LDAP Requirements ... 83
The ldap.conf File—Configure LDAP Daemon (slapd) ... 83
The Ingres PAM Configuration File (for LDAP)... 84
Active Directory Configuration ... 85

How to Implement Kerberos Authentication Using PAM ... 86
Ingres Kerberos Driver versus Ingvalidpam ... 87
The krb5.conf File—Configure Kerberos... 87
The Ingres PAM Configuration File (for Kerberos) ... 88

Netutil Entries for Ingvalidpam.. 88
Test Ingvalidpam .. 89

Chapter 9: Using Data at Rest Encryption 91
What Is Data at Rest Encryption? .. 91
How Encryption Works ... 92
The Power of Encryption .. 92
Transparent vs. Function-based Encryption ... 93
Transparent Column Encryption (DBMS Server-level Encryption).. 94

Enable Access to Encrypted Data ... 95
Disable Access to Encrypted Data... 95
Change the Passphrase .. 96

Function-based Encryption (Application-level Encryption).. 96
Encryption Information Displayed with HELP TABLE.. 99
How to Compute the Width of Encrypted Data ..100

Contents v

Data at Rest Encryption Restrictions ...101
Implications of Data Encryption for Database Design and Operations ...102
Understanding Salt...103
Indexing Encrypted Columns ...104
Encryption and Copydb/Unloaddb Considerations..104
Optimizedb Considerations for Data at Rest Encryption..105
Encrypted Data in Log Records and Auditdb Output...106

Appendix A: Configuring Ingres to Use Kerberos 109
Kerberos...109
Kerberos Configuration in the Enterprise..110

Kerberos Configuration Files—Configure Kerberos for Ingres ...112
The Ingres Service Principal—Authorize Client Connections ..113
How to Configure Ingres to Use Kerberos ..115
iisukerberos Command—Perform Basic Kerberos Configuration ...116
Ingres Configuration Options for Kerberos ...117

Basic Configuration for Kerberos ...117
remote_mechanism Parameter—Configure Client in a Homogeneous Kerberos Environment118
vnode Connection Attributes—Configure Client in a Heterogeneous Kerberos Environment119
Encryption Parameters—Enable Kerberos Encryption..120
How Name Server Delegation Works ...121

Service Principal Host Name Resolution ...122
VMS Considerations ..123

Glossary 125

Index 127

vi Security Guide

Chapter 1: Introduction to Ingres Security
This section contains the following topics:

Security Features (see page 7)
Level of Security (see page 8)
Understanding Ingres Security Mechanisms (see page 8)
Directory and File Permissions (see page 9)
User Authentication (see page 9)
Authorization Identifiers (see page 10)
Subject Privileges (see page 10)
Object Permissions (see page 11)
Security Alarms (see page 11)
Security Auditing (see page 11)
Database Procedures (see page 11)
Data at Rest Encryption (see page 12)

Security Features

Data security is a concern for everyone. The need to ensure the safety of
personal information and to protect vital corporate assets stored electronically
is of paramount importance.

Ingres has a built-in hierarchical security system that any privileged user can
use to fully control access to the database.

Security in Ingres is provided through the following features:

 Directory and file permissions

 User-related security features, including:

– Users

– Groups

– Roles

– Profiles

– Subject privileges

 Object permissions

 Security alarms

 Security auditing

 Database procedures

 Data at rest encryption

Introduction to Ingres Security 7

Level of Security

Level of Security

Ingres installations can be administered in compliance with the C2 security
standard, as defined by the United States Government National Computer
Security Council (NCSC). Level C2 security requires individual logon with
password and an audit mechanism.

(B1 security level requires Department of Defense clearance. B1 security is not
included in Ingres Open Source.)

Understanding Ingres Security Mechanisms

Ingres supports four security methods (mechanisms). These mechanisms are
listed under the Security component in Configuration-By-Forms (or
Configuration Manager, if available). The default configuration setting for
security mechanisms rarely needs to be changed. Multiple mechanisms are
supported concurrently.

Valid mechanisms are:

Null

Allows users to authenticate without providing passwords or other types of
authentication. Use of the Null security mechanism is strongly
discouraged.

System

Allows authentication through user name and either OS-level passwords or
installation passwords. The System security mechanism is provided for
backward compatibility with pre-Ingres 9.0 releases.

Ingres

(Default) Allows user authentication against the operating system. The
Ingres security mechanism is the preferred standard (static) mechanism.
It provides better protection against malicious servers, and employs a
more secure encryption mechanism than the System security mechanism.

Kerberos

Allows access through private key and requires a trusted third party.
Kerberos is a dynamic mechanism because it uses third-party software and
is loaded into the Ingres executable image at runtime. Kerberos is a highly
secure alternative to OS security, and optionally allows encryption of the
entire data stream between the DBMS Server and the client.

8 Security Guide

Directory and File Permissions

Directory and File Permissions

Databases are protected from user access by the permissions on the
directories containing the database files and the permissions on the database
files themselves. Users cannot look at the files in a database except through
Ingres. Even in Ingres, files are protected from access except from the
privileged accounts. The binary files are in a special format, making decoding
of any information difficult.

User Authentication

Ingres authenticates users through the operating system account and
password together with a corresponding user object definition in the Ingres
master database. Additional passwords can also be set on users and roles.

Remote Users

Ingres Net allows access to databases on local or remote nodes. Users can
only access data for which they are authorized.

Ingres Net can be configured to allow users access to remote nodes directly
(through an installation password) or through local accounts.

Ingres Net encrypts the password entered in the netutil utility (or the Network
Utility visual tool) and compares it with the encrypted password in
“/etc/password” or in a similar password file of the specific machine.

Installation Passwords

Ingres Net allows you to set up an Installation Password to authorize access to
a server installation from a remote client installation without setting up an
operating system account on the server; the user retains his identity as
defined on the client instance.

The main advantage of using installation passwords is that users on the client
do not require a login account on the server.

A valid Ingres user object must be created in the Ingres master database
using the same operating system user ID as on the remote client. OS
authentication is done on the remote client, where the user must have a login
and password.

For details of Ingres Net setup, see the Connectivity Guide.

Introduction to Ingres Security 9

Authorization Identifiers

The ingvalidpw Utility (UNIX)

In some environments, Ingres uses the ingvalidpw program (see page 15) to
validate user passwords. Ingvalidpw is used depending on the requirements of
the platform where the password is validated. For example, the Ingres DBMS
Server uses the ingvalidpw program to validate shadow passwords on UNIX or
to enforce C2 security in some UNIX environments.

Authorization Identifiers

Access can be granted to four authorization identifiers.

Identifiers are listed here from highest to lowest precedence, which
determines the privilege enforced for a session if a particular privilege is
defined for more than one authorization identifier associated with a session.

 Role

Roles simplify access to the database by associating subject privileges and
permissions with an application. Roles can be created with the option of an
additional password. The EXTERNAL_PASSWORD option allows a role’s
password to be passed to an external authentication server for
authentication.

 User

For each valid Ingres user, a user object must be created in the Ingres
master database iidbdb. The user object specifies the user name, default
group, default profile, subject privileges, and other attributes.

 Group

Groups simplify the managing of permissions because individual users can
be added or removed from groups as required. Being a member of a group
does not automatically give the user the permissions granted to the group.
The user must have the group specified as default group or specify the
group name in the session startup.

 Public

Granting permissions on objects to PUBLIC allows any user, group, or role
access to those objects. The use of grants to PUBLIC should be limited.

Subject Privileges

Subject privileges define the operations a user can perform, and are assigned
to a user or a role. Subject privileges include: Auditor, Create Database,
Maintain Audit, Maintain Locations, Maintain Users, Operator, Security, and
Trace.

10 Security Guide

Object Permissions

Object Permissions

Data access can be restricted through the granting of permissions on objects.
Permissions can be granted on the following objects: database, table, view,
procedure, database event, role, and current installation.

Security Alarms

Security alarms can be set up to monitor events against a database or
individual tables. Such triggers on important databases and tables are useful
in detecting unauthorized access.

Security alarms can monitor success or failure of connecting or disconnecting
from a database, and selecting, deleting, inserting, or updating data in a table.

Security alarms can raise a database event (dbevent), which can be monitored
by background programs that respond accordingly. Security alarms can be
assigned to specific authorization identifiers to limit the monitoring to selected
users, groups, or roles.

Security Auditing

Security events can be recorded for the entire Ingres installation. All objects or
certain classes of objects can be targeted. Information in the audit logs can
grow quickly, so you should carefully plan what events to audit.

Database Procedures

Database procedures provide an extra level of control over data access and
modification. Database procedures can be used with security alarms to
enhance security auditing.

Introduction to Ingres Security 11

Data at Rest Encryption

Data at Rest Encryption

Specific database table columns can be encrypted to enhance data security,
ensure privacy, and protect media that contains database records holding
sensitive information. Data in the protected columns is stored on disk or other
media in encrypted form and can only be accessed if the encryption
passphrase is known.

Data at rest encryption protects table information, transaction information,
and full database backups.

12 Security Guide

Chapter 2: Understanding Directory and
File Permissions

This section contains the following topics:

Directory and File Permissions (see page 13)

Directory and File Permissions

Databases are protected from user access by the permissions on the
directories containing the database files and the permissions on the database
files themselves. Users cannot look at the files in a database except through
Ingres. Even in Ingres, files are protected from access except from the
privileged accounts. The binary files are in a special format, making decoding
of any information difficult.

File Permissions on Windows

The Ingres database supports the special security features of the NTFS file
systems. The appropriate file security and permissions are set using the
setperm utility. During the installation process, only the installation owner is
given access to utilities with powerful abilities such as the Interactive
Performance Monitor (IPM). Permissions can be modified to allow access to
less privileged users, but doing so can compromise the security and integrity
of the database.

Understanding Directory and File Permissions 13

Directory and File Permissions

File Permissions on UNIX

Ingres is installed with the required file permissions to operate efficiently. The
installation process creates the subdirectories with the appropriate file
permissions and ownership.

Many of the files under the $II_SYSTEM directory are critical to the proper
functioning of Ingres. Do not delete or alter any files that the installation
process places in the $II_SYSTEM directory and its subdirectories. No other
files or directories should be created in this directory or its subdirectories.

Important! Do not alter the permissions on the $II_SYSTEM directory,
subdirectories, or any files in these directories; otherwise, the security and
integrity of the database can be compromised.

Although it is possible to set more restrictive file permissions, you should do
so only with extreme caution. The more restrictive file permissions will have to
be tested extensively in a test environment that matches the production
setup. Furthermore, such a change deviates from the Ingres standard and
modified permissions could be overwritten when installing patches or when
upgrading.

14 Security Guide

Chapter 3: Security Features on UNIX
This section contains the following topics:

Ingvalidpw Program (Password Validation) (see page 15)
Ingvalidpam Program (Password Validation Through PAM) (see page 16)
Access Control with Setuid (UNIX) (see page 16)

Ingvalidpw Program (Password Validation)

In some environments, Ingres uses the ingvalidpw program to validate user
passwords. The passwords may originate from any local application or from a
remote application coming through Ingres Net or the Data Access Server.

Ingvalidpw is used depending on the requirements of the platform where the
password is validated. For example, the Ingres DBMS Server uses the
ingvalidpw program to validate shadow passwords on UNIX or to enforce C2
security in some UNIX environments.

(To see if your UNIX environment requires the ingvalidpw executable to
enforce C2 security, refer to the Ingres platform-specific readme for your
Ingres release.)

Security Features on UNIX 15

Ingvalidpam Program (Password Validation Through PAM)

Create Password Validation Program (UNIX)

On UNIX, the Ingres DBMS Server uses the ingvalidpw program to validate
shadow passwords. This executable is created at installation time or loaded
from the distribution media.

The mkvalidpw script tries to recompile the ingvalidpw program if your
machine has a C compiler available; otherwise it copies the supplied
ingvalidpw program to the $II_SYSTEM/ingres/bin directory. The mkvalidpw
script also sets the II_SHADOW_PWD variable in the Ingres symbol.tbl to
enable shadow password validation.

To create the ingvalidpw program

1. Log in as root.

2. Set the II_SYSTEM and PATH variables to the same values as those for the
user account that owns the installation.

3. Run the mkvalidpw script, located in the directory $II_SYSTEM/ingres/bin,
as follows:

mkvalidpw

The ingvalidpw executable is created.

4. Shut down and restart the Name Server.

The ingvalidpw program is ready for operation.

Ingvalidpam Program (Password Validation Through
PAM)

In Linux and UNIX environments, the ingvalidpam program can be used
instead of ingvalidpw to validate passwords through pluggable authentication
modules (PAM). For more information, see the chapter "Implementing PAM in
Ingres."

Access Control with Setuid (UNIX)

The UNIX Setuid bit can be used to control access to data, without needing to
issue grants to specific users or the public. This technique allows a user to
operate on the data, but only when the user has accessed it through a specific
application program. The data is otherwise inaccessible to the user. After the
user has exited the program, the user cannot access this same data using any
Ingres utility.

16 Security Guide

Access Control with Setuid (UNIX)

Use Chmod to Set the Setuid Bit

After an embedded SQL application program has been created, the
permissions of the program file can be set so that it can run with the effective
user ID set to that of the owner of the file. If, for example, the owner of the
file is the DBA, any user executing the program is recognized as the DBA—and
has the same access to objects and data as the DBA—for the life of the
program.

The UNIX chmod command issued at the operating system prompt is used to
change the mode of a file. The following format of this command changes the
mode of the specified file name to give “set user id on execution” and
“execute” permission to everyone. The 4 sets the Setuid bit:

chmod 4711 filename

For example, if the following command is executed:

chmod 4711 app1prog

The resulting file permissions looks like this:

-rws--x--x 1 dba 7584 Mar 30 app1prog

Using this technique, the DBA (or other user, such as an application
developer) can allow any user to temporarily become the effective user id for
controlled access to specific application programs. The effective user ID is
recognized when a connection is made to the Ingres DBMS Server.

Note: Only the application owner or the root user can run the chmod
operating system command.

Security Features on UNIX 17

Access Control with Setuid (UNIX)

Example: Refer to Setuid in an Embedded SQL Application

An example is shown here that can be used in embedded SQL application
programs that are made accessible by the Setuid bit. It checks that the
connections are in place before allowing the program to be run.

The program requires that the login of the program owner be known (in this
case, fred, defined in line 2. It uses the UNIX getpwnam function to fetch the
effective user ID from the passwd structure. For details, see the UNIX
documentation.

The program checks to see if the caller can access the database, printing an
error message if not. This can occur, for example, if a chmod command has
not been issued on the application program, as described in the previous
section.

The application code appears between the CONNECT and DISCONNECT
statements. In the sample code that follows, the action of the program is to
print the effective user ID:

#include <pwd.h>
#define DBA "fred"
/* Example to demonstrate how to run an embedded SQL program
** in such a way that there is no requirement for the users to have
** privileges on the tables accessed by the program.
**
** This example assumes the program will access tables owned by the
** DBA, but this scheme could be used for any user. Additionally, assume
** the DBA has granted no privileges.
**
** This program checks that it is running setuid to the DBA.
** If it is, it does a database connect.
** If it is not running setuid to the DBA,
** it gives an error message to the user and exits.
** This check is done simply as a convenience to the user.
** If this check isn’t done and the user is a valid INGRES user,
** he or she can still connect to the database,
** but will not be able to access any of the data.
** This would be frustrating to the user,
** so the program stops them before they get connected.
**
** For this scheme to work, the executable MUST be setuid to the DBA.
*/

main()
{
 EXEC SQL begin declare section;
 char username[32];
 char dbname[32];
 EXEC SQL end declare section;

 int user;
 int ret_val = 0;

 struct passwd *getpwnam();

18 Security Guide

Access Control with Setuid (UNIX)

 struct passwd *password_entry;

 password_entry = getpwnam(DBA);

 /* Check to see if the user interface is running setuid
 ** to the dba (fred).
 ** If not, give the user a message and abort.
 ** If so, connect to the database.
 */
 if ((user = geteuid()) != (password_entry->pw_uid))
 {
 printf("Error starting application. Contact the DBA.\n");
 ret_val = 1;
 exit(ret_val);
 }

 EXEC SQL connect dbname;

 /* The following query will demonstrate that the dbms connection
 ** was done by user fred, not the actual user.
 */

EXEC SQL select username() into :username;
 printf("User is %s\n", username);

 EXEC SQL disconnect;

}

Security Features on UNIX 19

Chapter 4: Authorizing User Access
This section contains the following topics:

Common Types of Ingres Users (see page 22)
Ingres Users and the DBA (see page 23)
How to Establish User Access (see page 23)
Users and Profiles (see page 24)
Groups and Roles (see page 31)

Authorizing User Access 21

Common Types of Ingres Users

Common Types of Ingres Users

In most installations, there are four types of users:

Installation Owner

The installation owner is typically an account named "ingres", but the
ingres name is not required.

By default, this user has the Security privilege and most of the other
privileges. Some of the privileges, however, can be revoked from this user
and the system will still operate correctly. In a good production system,
this user performs only administrative tasks on the system (such as
startup and shutdown).

System Administrator

The system administrator is sometimes the "root" account. This account is
commonly owned by the Information Technology (IT) department, but is
also commonly owned by a user who has been defined as the Ingres
System Administrator.

In a large production environment, there may be one or a few of these
users. These users have the Security privilege, which allows them to use
the -u flag on commands to imitate other users, and usually possess other
privileges such as Maintain_locations and Maintain_users; if security
auditing is enabled, they will also typically have Auditor and
Maintain_audit privileges. The responsibility of this user is to perform
administrative tasks that affect the entire Ingres instance such as creating
and destroying Ingres users, allowing Ingres to use new disk drives, and
monitoring the Ingres security audit logs.

In smaller environments, the system administrator and the installation
owner may be the same user.

Database Administrator (DBA)

The DBA typically has only the Createdb privilege. DBAs can use the -u
flag in their own databases only.

Typically, the DBA is not the installation owner, and in a good production
system, does not have the Security privilege. The definition of the primary
DBA for any given database is the user who ran the createdb command to
create that database. Additional DBAs can be defined for a database by
granting (see page 48) them the Db_admin privilege for that database.

End User

The end user typically has no privileges and cannot create a database.

22 Security Guide

Ingres Users and the DBA

Ingres Users and the DBA

Ingres is designed for a wide variety of users, from database management
experts who create and maintain databases, to end users who only examine or
update data. Moreover, users can have multiple roles. For example, a user can
be the database administrator of one Ingres database and the end user of
another.

One company, for example, can have a single database administrator who
controls all access to databases, whereas another company has a primary
database administrator at its corporate headquarters and a local database
administrator at each of its satellite sites. In the latter case, the primary
database administrator controls access to corporate databases, such as sales,
inventory, payroll, and human resources; and the local database
administrators are responsible for authorizing access to production or research
databases.

Regardless of the type of enterprise, if you are a database administrator who
has been granted the maintain_users privilege, you are able to add new users
to an Ingres database.

How to Establish User Access

The process of establishing access to Ingres is as follows:

1. The system administrator defines user accounts in the operating system.

Accounts are needed for local users and for remote users who access the
product through a local account.

Note: This step is optional if an installation password is defined, in which
case users access Ingres directly, without having to go through a local
account.

All accounts can be set up before or after Ingres is installed (except for the
installation owner account, which is set up during installation, belongs to
the system administrator, and is assigned maximum Ingres privileges to
perform all operations).

2. The database administrator defines user objects.

After the accounts are set up, a database administrator or system
administrator starts Ingres and defines user objects. Part of the user
object definition is a user ID, which corresponds to the user ID used to log
on to the operating system.

Typically, the system administrator sets up a user object for the database
administrator, who in turn sets up user objects for other users.

Authorizing User Access 23

Users and Profiles

Users and Profiles

Users are defined using user objects and, optionally, profile objects.

A user object is a definition that specifies the user’s name, default group,
default profile, subject privileges, and several other attributes.

A profile is a template that defines a set of subject privileges and other
attributes that can be applied to one or more users. The user authorization
process can be streamlined by using profiles.

Working with User Objects

You can perform the following basic operations on user objects:

 Create and alter user objects

 View existing user objects, including the detailed properties of each object

 Drop user objects

These tasks can be accomplished using the accessdb forms-based utility.

In SQL, you can use the CREATE USER, ALTER USER, and DROP USER
statements when working in a session connected to the iidbdb database. For
details, see the SQL Reference Guide.

In VDBA, use the Users branch in the Database Object Manager window. For
detailed steps, see VDBA online help.

Note: Many of the features associated with a user object, such as subject
privileges, password, expiration date, and security auditing, are security-
related features, described later in this guide.

24 Security Guide

Users and Profiles

Create a New User with Accessdb

You must have maintain_users permission to authorize users. Using the
accessdb utility, you can add, modify, or delete users and grant them
database access permissions.

To authorize a new user

1. Start accessdb by issuing the following command at the operating system
prompt:

accessdb

The accessdb main menu appears.

2. Select Users from the accessdb main menu.

The Users Catalog screen appears.

3. Select Create.

The Create a User screen appears.

Authorizing User Access 25

Users and Profiles

4. Type the user information into the following fields:

User Name

Login name of the user. The name can be a regular or delimited
identifier.

For example, to use a numeric user ID, the name must be delimited
(enclosed in double quotes, as in "888282").

(For details on delimited identifiers, see the SQL Reference Guide.)

Profile for User

(Optional) Default profile for the user.

Default Group

(Optional) Default group (see page 31) the user is assigned to.

Expire Date

(Optional) User expiration date (see page 27).

Note: After you save the user definition, you can assign a User Password
(see page 27). User passwords are optional.

5. In the Permissions section, change the default subject privilege settings
for the user by tabbing to the desired field and typing the appropriate
value:

y

 Grants the privilege

n

 Denies the privilege

r

Makes the privilege requestable. For details on requestable privileges,
see SET SESSION in the SQL Reference Guide.

6. Select Save from the menu.

The user entry is saved.

7. Repeat steps 3-6 for each new user you want to authorize.

8. Select End twice.

You are returned to the accessdb main menu.

9. Select Quit.

Note: If you do not see the Quit function listed, press ESC to scroll
through the menu options.

The accessdb utility ends.

26 Security Guide

Users and Profiles

User Expiration Date

The user expiration date is an optional part of the user definition. It
determines the date after which the user can no longer access Ingres.

An expiration date can be specified as any valid Ingres date or as a date or
time interval. For example, you might specify an interval of ‘1 month’ or ‘1
year,’ or an absolute date, such as ‘5-jan-2007.’

The user expiration date is checked each time the user connects to the Ingres
DBMS Server. If the expiration date has passed, then access is denied.

To enable an expired user to connect, the associated user (or profile) object
must be modified to reset the expiration date.

User Password

A password can be specified as part of the user definition.

Note: If the Ingres DBMS Server is located on a remote node, this user
password is in addition to the login password or installation password that the
user must specify as part of the vnode definition.

When a session requires a password and one is not specified, a prompt
requests a password anytime Ingres makes a connection between an Ingres
tool and the DBMS. For security reasons, a password prompt is issued if either
a required password is missing or the user name is unknown or illegal. This
behavior is consistent with that of operating systems during logon.

If the connection specifies a password directly, as is the case with an
application, no prompt is issued. This must be done if the application cannot
prompt for a password. If the application can prompt for a password, it does.
Then it passes the value entered using the DBMS_PASSWORD clause of the
CONNECT statement.

User passwords are validated directly by the Ingres DBMS Server or by an
external authentication mechanism, depending on how the user object is
configured.

Note: If a user with the Security privilege starts a session using the –u flag to
impersonate another user, the real user’s password—not the impersonator’s—
is required.

Any user is permitted to change their own password; to do so, however, they
must supply their old password. Any user with the maintain_users privilege
can change the password of another user, in addition to changing the method
of password validation or removing the password altogether.

Note: Passwords also apply to roles.

Authorizing User Access 27

Users and Profiles

Authorize Multiple Users with SQLscript

sing accessdb you can create a file of the users at your installation and their
corresponding permissions. This file is useful for copying installations.

To create a file of users

1. From the accessdb main menu choose Users.

The Users Catalog screen appears.

2. Choose the SQLscript menu item.

The accessdb utility creates an SQL script and displays an SQLscript
message indicating the file location.

3. Press Return.

The message is cleared from the screen.

4. Select End.

Note: If you do not see the End function listed, press ESC to scroll
through the menu options.

You are returned to the accessdb main menu.

Note: The SQLscript function creates users only, not the profiles, groups, or
roles associated with each user. Roles and groups must be unloaded and
reloaded for the script to generate the expected results.

28 Security Guide

Users and Profiles

Working with Profile Objects

You can perform the following basic operations on profile objects:

 Create and alter user objects

 View existing user objects, including the detailed properties of each object

 Drop user objects

In SQL, you can use the CREATE PROFILE, ALTER PROFILE, and DROP
PROFILE statements when working in a session connected to the iidbdb
database. For details, see the SQL Reference Guide.

In VDBA, use the Profiles branch in the Database Object Manager window. For
detailed steps, see VDBA online help.

Authorizing User Access 29

Users and Profiles

Example of Using a Profile

After a profile is created, it can be associated with a new or existing user
object as the default profile for that user. By doing so, the attributes defined in
the profile are associated with the user, and the user’s attributes are updated
whenever the profile is modified.

Attributes can also be set directly at the user level to override settings at the
profile level.

For example, a company conducts an analysis of the tasks and responsibilities
of its database operators at multiple sites. They find three tasks that are
common to this type of user: database and file location maintenance,
debugging, and database backups.

They create a profile for maintaining databases called dbop (database
operator) with the appropriate subject privileges:

 maintain_locations

 trace

 operator

Whenever the company hires a new database operator, the database
administrator can associate the dbop profile with that new user. Doing so
automatically assigns the maintain_locations, trace, and operator privileges to
the user.

If the company alters the dbop profile to include the maintain_users privilege,
the change automatically affects any user currently using the profile.

Because the dbop profile did not specify the option to audit the query text
associated with user queries, users associated with this profile are not audited
for query text. To audit the query text for only one of the users associated
with the dbop profile, this option can be turned on at the user level (by using
the ALTER USER statement or Alter User dialog in VDBA). This overrides the
default for that particular user, without affecting any other users of the dbop
profile.

30 Security Guide

Groups and Roles

Default Profile

A default profile is the profile initially assigned to a user if one is not explicitly
assigned.

The default profile specifies the following:

 No default group

 No subject privileges or default privileges

 No expiration date

 No security audit options (that is, default events are audited)

Note: You can alter the default profile but you cannot drop it.

Note: Altering the default profile will alter privilege attributes of all users that
have not been given a specific profile.

In SQL, you can change the default profile using the ALTER DEFAULT PROFILE
statement. For more information, see the SQL Reference Guide.

In VDBA, the default profile is indicated as (default profile) in the Profiles
branch in the Database Object Manager window. For more information, see
VDBA online help topic Altering a Profile.

Groups and Roles

Groups and roles can simplify control of database access. Groups are used to
apply permissions to a list of users, while roles are used to associate subject
privileges and permissions with an application.

Groups

A group is an identifier that can be used to apply permissions to a list of users
associated with the identifier.

A group allows multiple users to be referenced by a single name.

For example, a company has an accounting group to identify the accounting
department employees as a whole, and a payroll group to identify the payroll
department employees as a whole. To define these groups, the DBA creates
the groups and adds all the users in the associated departments to their
respective groups. The groups can be easily maintained by adding and
dropping users as they join or leave the departments.

Note: A user can be a member of more than one group.

Authorizing User Access 31

Groups and Roles

Working with Group Objects

You can perform the following basic operations on group objects:

 Create and alter group objects

 View existing group objects, including the detailed properties of each
individual object

 Drop group objects

In SQL, you can accomplish these tasks with the CREATE GROUP, ALTER
GROUP, and DROP GROUP statements when working in a session connected to
the iidbdb database. For details, see the SQL Reference Guide.

In VDBA, use the Groups branch in the Database Object Manager window. For
details, see the VDBA online help.

32 Security Guide

Groups and Roles

Example: Creating, Altering, and Dropping a Group using SQL Statements

To create a new group, specify a user-defined group ID in a CREATE GROUP
statement, and then list the users in the group on the WITH USERS clause.
The group can be amended later by ADD USERS or DROP USERS clauses on
the ALTER GROUP statement. The group can be deleted with the DROP GROUP
statement.

Here are examples of using the CREATE GROUP, ALTER GROUP, and DROP
GROUP statements:

1. Create a group identifier for a company’s telephone sales force and put the
salespersons’ user IDs in the group user list:

CREATE GROUP tel_sales
 WITH USERS = (harryk, joanb, jerryw, arlenep);

2. Create the group identifier and_muchmuchmore and reserve it for later
use. This is done by omitting the WITH USERS clause:

CREATE GROUP and_muchmuchmore;

3. Add two users to the group tel_sales and drop three users.

The adding and dropping must be done in separate ALTER statements:

ALTER GROUP tel_sales
 ADD USERS (dannyh, helent);

ALTER GROUP tel_sales
 DROP USERS (harryk, joanb, arlenep);

4. Drop all users from the group researchers. Then drop the group. The DROP
ALL option should be run prior to dropping a group, since a group cannot
be dropped if its user list has any members.

ALTER GROUP researchers DROP ALL;
DROP GROUP researchers;

If a user is dropped from a group but is currently active in a session, that
session continues to have the group’s permissions until it terminates.
“Currently active” means that the user is currently connected to a
database. If a group is dropped, all the permissions assigned to the group
are dropped.

Authorizing User Access 33

Groups and Roles

Groups and Permissions

After a group is created, you can associate permissions with it. When you
grant permission to a group, you are, in effect, granting that same permission
to each user in the group.

Groups are a convenient way to give the same permissions to many users at
once.

Groups also make managing the permissions easy by allowing you to add
users to (and remove users from) the group. For example, grant the payroll
group insert, delete, and select permissions on the payroll tables, which gives
all the users in the group those permissions. If an employee leaves the payroll
department, or if a new employee joins, you simply have to drop or add a user
from the group, without modifying the permissions. Similarly, if you find that
the group needs fewer or more permissions, revoke or grant the permissions
once, for the entire group, rather than individually for each member of the
group.

Being a member of a group, however, does not automatically give a user the
permissions granted to the group. Users must specifically identify themselves
as part of a group to be allowed the associated permissions.

A user can be identified as part of a group in two ways:

 Specifying a group ID at session startup

 Specifying a default group for the user. A default group is specified for a
user using the SQL statements CREATE USER or ALTER USER.

Specifying Group ID at Session Startup

When starting a session, a user can specify a group identifier, as follows:

 On the –G flag for many system commands. For details, see the Command
Reference Guide.

 With the CONNECT statement as part of an application.

 As part of the connection profile for an OpenROAD session. For more
information, see online help for the Create Connection Profile dialog in
OpenROAD.

34 Security Guide

Groups and Roles

Roles

A role is an identifier that can be used to associate permissions with
applications.

A role is typically associated with one or more applications to grant
permissions to those applications.

For example, a company uses a restricted application that performs certain
checks before updating the payroll tables to ensure that these tables are
updated correctly. The DBA defines a role, for example update_payroll, and
later assigns appropriate permissions for the necessary tables. The application
developer associates the role with the application.

Note: When defining a role, the DBA normally works with the application
developer, so that they can agree on what role identifier and password to use
for specific applications.

For further security, a role password can be specified. The role password is
optional.

Working with Role Objects

You can perform the following basic operations on roles:

 Create and alter role objects

Note: Passwords can be associated with role objects as well as with user
objects. The section User Password (see page 27) contains more
information on passwords.

 View existing role objects, including the detailed properties of each object

 Drop role objects

In SQL, you implement roles with the CREATE ROLE, ALTER ROLE, and DROP
ROLE statements when working in a session connected to the iidbdb database.
For details, see the SQL Reference Guide.

In VDBA, roles are implemented using the Roles branch in the Database
Object Manager window. For details, see VDBA online help.

Authorizing User Access 35

Groups and Roles

Example: Creating, Altering, and Dropping a Role using SQL Statements

Here are examples of using the CREATE ROLE, ALTER ROLE, and DROP ROLE
statements:

1. Create a role identifier and password for an inventory application for a
bookstore:

CREATE ROLE bks_onhand
WITH PASSWORD = ’hgwells’;

Note: Enclose any special characters or blanks in the roll password in
single quotes. Blanks are not significant in passwords—for example, ’a b c’
is equivalent to ’abc’. The password can be up to 24 characters in length.
(You should choose long passwords that cannot be easily guessed.) If no
password is assigned, then all users that have been granted access to that
role have access to the role identifier and its associated permissions. (See
the GRANT ROLE statement in the SQL Reference Guide.) If a password is
assigned, then the user or application must additionally use the password
to access the role.

2. Create a role identifier with no password for the daily sales application for
a bookstore:

CREATE ROLE dly_sales WITH NOPASSWORD;

3. Create dual role IDs (these function as synonyms) and password for a
recommended list application for a bookstore:

CREATE ROLE sclemens, mtwain
WITH PASSWORD = ’goodluck’;

4. Change the password for the existing role identifier new_accounts to
eggbasket:

ALTER ROLE new_accounts
WITH PASSWORD = eggbasket;

5. Drop the existing role identifier sales_report:

DROP ROLE sales_report;

Roles and Permissions

After a role is created, you can then associate permissions with it and create
grants to it for individual users. For example, for the associated application to
execute properly, grant update permission to all payroll tables for the
update_payroll role. For details, see Object Permissions.

When you grant an object permission or a subject privilege to a role, you are,
in effect, granting that same permission or privilege to any session that is
started using that role.

36 Security Guide

Groups and Roles

Specifying Role ID at Session Startup

When starting a session, you must specify a role identifier, which puts into
effect the associated permissions and subject privileges. For example:

 On the –R flag for many system commands. For details, see the Command
Reference Guide.

 With the CONNECT statement as part of an application.

 For an application image as part of the connection profile for an
OpenROAD session. For more information, see online help for the Create
Connection Profile dialog in OpenROAD.

For the DBA or a user (such as the system administrator) who has the security
privilege, neither role identifier nor password is validated. For any other user,
the specified role must exist, the user must be granted permission to use the
role, and any required password must be specified correctly; otherwise, the
connection is refused.

Authorizing User Access 37

Chapter 5: Assigning Privileges and
Granting Permissions

This section contains the following topics:

Subject Privileges (see page 39)
Object Permissions (see page 46)
Grant Overhead (see page 57)

Subject Privileges

A subject privilege defines the type of operations permissible in a user session.
Subject privileges are assigned to a user (subject).

Subject privileges are typically assigned when a user object is created or
modified. Subject privileges can also be assigned to roles, as discussed in
Groups and Roles (see page 31).

To set or change subject privileges for a user, you must have the
maintain_users privilege.

Important! Subject privileges allow many trusted operations to be performed.
Therefore, assign privileges with care, especially the Security privilege.

The subject privileges are as follows:

auditor

Enables the user to query the security audit log

createdb

Enables the user to create and destroy databases

maintain_audit

Enables the user to control what information is written to the security
audit log

maintain_locations

Enables the user to manage database and file locations

maintain_users

Enables the user to perform various user-related functions, such as
creating users and roles

Assigning Privileges and Granting Permissions 39

Subject Privileges

operator

Enables the user to perform database backups and other maintenance
operations

security

Enables the user to perform security-related operations, including
impersonating other users, and to avoid certain security checks, such as
database privilege checks

trace

Enables the user access to tracing and debugging features

Auditor Privilege

The Auditor privilege allows a user to obtain information from the audit log.

A user with this privilege can:

 Register the audit log file to a virtual table using the REGISTER TABLE
statement (or perform the equivalent operation in VDBA).

 Remove the registration for an audit log file using the REMOVE TABLE
statement (or perform the equivalent operation in VDBA).

 Query the audit log once it has been registered as a virtual table.

 Obtain the audit log file name by calling dbmsinfo(‘security_audit_log’).

Related Information

Maintain_Audit Privilege (see page 41)
Security Auditing (see page 66)

Createdb Privilege

The createdb privilege gives the user the ability to create databases.

This privilege is required to use the createdb system command or to use the
equivalent operation in Visual DBA, as described in the "Creating Databases"
chapter of the Database Administrator Guide.

40 Security Guide

Subject Privileges

Maintain_Audit Privilege

The maintain_audit privilege allows a user to manage auditing features,
including determining the security audit activity level for profiles, users, and
roles, and the ability to turn security auditing on and off.

The maintain_audit privilege is typically assigned to the system administrator,
the database administrator, or a separate security administrator.

A user with this privilege can:

 Issue the ENABLE and DISABLE SECURITY_AUDIT statements (or perform
the equivalent operations in VDBA).

 Change the current audit state using the ALTER SECURITY_AUDIT
statement (or perform the equivalent operation in VDBA).

 Specify the SECURITY_AUDIT clause for ALTER/CREATE PROFILE,
ALTER/CREATE USER, and ALTER/CREATE ROLE statements (or similarly
determine the security audit activity level when working with profile, user,
and role objects in VDBA).

Related Information

Auditor Privilege (see page 40)
Security Auditing (see page 66)
Maintain_Users Privilege (see page 42)

Maintain_Locations Privilege

The maintain_locations privilege allows a user to control the allocation of disk
space, create new locations or allow new locations to be created, and allow
existing locations to be modified or removed.

This privilege is needed to issue the CREATE, ALTER, and DROP LOCATION
statements (or to perform the equivalent operations on location objects in
VDBA).

Assigning Privileges and Granting Permissions 41

Subject Privileges

Maintain_Users Privilege

The maintain_users privilege allows a user to perform various user-related
functions.

A user with this privilege can:

 Issue CREATE/ALTER/DROP PROFILE statements to maintain profiles (or
perform the equivalent operations on profile objects in VDBA).

 Issue CREATE/ALTER/DROP USER statements to maintain users (or
perform the equivalent operations on user objects in VDBA).

 Issue CREATE/ALTER/DROP GROUP statements to maintain groups (or
perform the equivalent operations on group objects in VDBA).

 Issue CREATE/ALTER/DROP ROLE statements to maintain roles (or
perform the equivalent operations on role objects in VDBA).

Related Information

Maintain_Audit Privilege (see page 41)

42 Security Guide

Subject Privileges

Operator Privilege

The Operator privilege allows a user to run the following system commands:

 ckpdb

 rollforwarddb

 auditdb

 sysmod

 verifydb

 relocatedb

 fastload

 alterdb

 infodb

A user who is responsible for running Ingres requires the Operator privilege.

These system commands can alternatively be run through the Remote
Command (rmcmd) Server by a (client) user who has the rmcmd privileges
rather than the Operator privilege (assuming that the user who launched
rmcmd on the server side has the Operator privileges). The sysmod command,
however, requires the client user to have the security privilege or be the user
who launched rmcmd on the server side. For details, see Grant Access to
Remote Users and How Remote Commands Are Executed in the System
Administration Guide.

Assigning Privileges and Granting Permissions 43

Subject Privileges

Security Privilege

The Security privilege allows a user to monitor the security of the system and
the activities of its users. The Security privilege and all other privileges are
automatically bestowed on the installation owner.

A user with this privilege can:

 Use the -u flag on commands to impersonate other users (or perform the
equivalent using the Users branch of the Virtual Nodes toolbar in VDBA).

 Connect to any database with unlimited database privileges. (In effect,
database privileges are not enforced for users with the Security privilege.)

 Issue CREATE/DROP SECURITY_ALARM statements to configure database
and installation security alarms (or perform the equivalent operations in
VDBA).

Important! The Security privilege is powerful because it allows the holder to
impersonate any other user. At least one user with the Security privilege is
required, but the privilege can be restricted as tightly as possible so that your
system security is not compromised.

Note: The security privilege does not allow a user to bypass granted
permissions on a database object; unless permission is granted to the user
they are impersonating, they will not be able to access the object.

Trace Privilege

The Trace privilege allows a user to perform tracing, troubleshooting, and
debugging operations. It enables the user to set the debugging trace flags
using the following statements:

 SET[NO]PRINTQRY

 SET[NO]RULES

 SET[NO]PRINTRULES

 SET[NO]IO_TRACE

 SET[NO]LOCK_TRACE

 SET[NO]LOG_TRACE

 SET TRACE POINT

The Trace privilege permits access to possibly confidential information, so it
should be enabled for the installation owner or security administrator only.

For details on tracing, see the System Administrator Guide.

44 Security Guide

Subject Privileges

Sets of Privileges Associated with a Session

In addition to assigning subject privileges to a user, Ingres lets you define a
default set of subject privileges that will be available at session startup.

In addition, any privilege assigned to the user can be added or dropped during
the life of the session; this capability effectively applies the principle of least
privilege.

The principle of least privilege asserts that a subject must have the minimum
privileges required to perform an operation, and that these privileges must be
active for the minimum amount of time necessary to perform that operation.

Thus, a session has three sets of privileges associated with it:

 The default privilege set contains those privileges that become active when
an Ingres connection is initiated.

 The working privilege set contains those privileges that are active at any
particular time (at session startup, the working privilege set is equivalent
to the default privilege set).

 The maximum privilege set contains all privileges that a particular user is
allowed to have.

The working privilege set is determined during the life of the session, when
privileges can be made active as necessary to allow a privileged operation to
be performed and made inactive on completion of the task.

The working privilege set is specified using the SET SESSION statement
(described in the SQL Reference Guide). Using SET SESSION, you can:

 Add allowed privileges to the working privilege set

 Drop privileges from the working privilege set

 Replace the working privilege set with specified allowed privileges

 Set the working privilege set to all allowed privileges

 Reset the working privilege set to the default privilege set

 Remove all privileges from the working privilege set

In VDBA, the maximum privilege set consists of all the privileges enabled in
the Users column of the Create User or Alter User dialog. The default privilege
set, which is a subset of the maximum privilege set, consists of all the
privileges enabled in the Default column of the Create User or Alter User
dialog.

Assigning Privileges and Granting Permissions 45

Object Permissions

Object Permissions

An object permission defines a capability related to a specific object, such as a
database or a table. Object permissions are assigned to selected groups, roles,
or users. Object permissions are also called grants, permits, or object
privileges.

The owner of the object can grant and revoke object permissions and can
grant other users the privilege to grant permission on the object. The granting
of permissions is typically the responsibility of the DBA.

Using permissions, data access can be restricted in several ways. Grants on
objects can range from general to specific.

Permissions are classified according to the type of objects they affect. Object
types include:

 Database

 Table

 View

 Procedure

 Database event

 Role

 Current installation

46 Security Guide

Object Permissions

Working with Grants

You can perform the following basic operations on grants (object permissions):

 Grant any permission allowed for a particular object type to any group,
role, or user (including public, which encompasses all current and future
users)

 View all types of object permissions granted to a particular group, role, or
user, or view the permissions granted for a particular object type

 Revoke a previously granted permission

In SQL, you can accomplish these tasks using the GRANT and REVOKE
statements.

In VDBA, you can access grants in a number of ways using the Database
Object Manager. For example, if you expand the branch for a group, role, or
user object, there is a Grants sub-branch where you can access all permissions
that have been granted to that particular group, role, or user. You can also
expand the branch for other object types, such as a database or a table, and
use the associated Grantees… sub-branch to access all groups, roles, and
users that have been granted each permission allowed for that type of object.
For the detailed steps for performing these procedures, see online help.

Object Ownership and Granting Object Permissions

When you create an object, you become the owner of that object.

As the owner, you are automatically entitled to grant and revoke permissions
for the object (with views, you must also own the base tables). When you
grant permissions for an object (other than a database) to another user, you
can also grant permission for that user to grant permissions for the object to
other users, and you can likewise revoke that permission if necessary.

Assigning Privileges and Granting Permissions 47

Object Permissions

The GRANT Statement

The GRANT statement is used to grant permissions. This statement has the
general form:

GRANT privilege ON object TO whom

The full syntax of a GRANT statement is:

GRANT ALL [PRIVILEGES] | privilege {, privilege}
 [ON [object_type] [schema.]object_name {, [schema.]object_name}]
 TO PUBLIC | [authorization_type] auth_id {, auth_id} [WITH GRANT OPTION];

The default object type is TABLE, which is used for any table or view. The
default authorization type is USER.

Authorization identifiers specify who is receiving the permissions.
Authorizations can be specified for:

 Individual users

Permissions defined by a particular GRANT statement can be issued to one
or more end users, specifying the login user identifier.

 The key word PUBLIC, which includes all users. The authorization type
PUBLIC is not followed by any auth_ids.

For example: Grant all query permissions for the games table to all
sessions:

GRANT ALL ON games TO PUBLIC;

 A defined group

 A defined role

Authorizations for the individual user and PUBLIC are always in effect but can
be adjusted by group and role permissions.

For complete information on the GRANT statement, see the SQL Reference
Guide.

48 Security Guide

Object Permissions

Database Grants

Database permissions are defined on the database as a whole. They set a
number of limits that affect the authorization identifiers (that is, groups, roles,
users, or public) specified when the grant is defined.

Most of the database permissions are prohibiting permissions—if not specified,
the default is no restrictions. Prohibiting permissions, even if defined, are not
enforced for the owner of the database or for any user with the security
privilege, such as the system administrator.

Note: To override the default for database permission, create a grant for the
permission that specifies the grantee as public.

The valid database permissions are as follows:

Access

Enables grantees to connect to the database.

Default: All authorization identifiers can connect to all public databases.

Private databases can be accessed only by users who are explicitly granted
permission to access them. Permission to access a private database can be
granted in the following ways:

 Using a database grant

 Enabling the database under Access to Non-Granted Databases in the
appropriate dialog (for example, the Create User dialog)

Connect_time_limit

Specifies the maximum time (in seconds) that a session can consume.

Default: No connect time limit

Create_procedure

Enables grantees to create database procedures in the database.

Default: All authorization identifiers can create database procedures.

Create_table

Enables grantees to create tables in the database.

Default: All authorization identifiers can create tables.

Db_admin

Gives grantees unlimited database privileges for the database and the
ability to impersonate another user (using the -u flag).

Default: Granted to the owner of the database and to any user with the
security privilege, such as the system administrator. For all other users,
the default is not to allow unlimited database privileges.

Assigning Privileges and Granting Permissions 49

Object Permissions

Idle_time_limit

Specifies the maximum time that a session can take between issuing
statements.

Default: No idle time limit

Lockmode

Enables grantees to issue the set lockmode statement.

Default: All authorization identifiers can issue the set lockmode statement.

Query_cost_limit

Specifies the maximum cost per query on the database, in terms of disk
I/O and CPU usage.

Default: All authorization identifiers are allowed an unlimited cost per
query.

Query_cpu_limit

Specifies the maximum CPU usage per query on the database.

Default: All authorization identifiers are allowed unlimited CPU usage per
query.

Query_io_limit

Specifies the maximum number of I/O requests per query on the
database.

Default: All authorization identifiers are allowed an unlimited number of
I/O requests.

The database privileges query_io_limit and query_row_limit are enforced
based on estimates from the Ingres query optimizer. If the optimizer
predicts that a query can require more I/O operations or return more rows
than are allowed for the session, the query is aborted prior to execution.
This prevents resource consumption by queries that are not likely to
succeed.

Query_page_limit

Specifies the maximum number pages per query on the database.

Default: All authorization identifiers are allowed an unlimited number of
pages per query.

Query_row_limit

Specifies the maximum number of rows returned per query on the
database.

Default: All authorization identifiers are allowed an unlimited number of
rows per query.

50 Security Guide

Object Permissions

Select_syscat

Allows a session to query system catalogs to determine schema
information.

Default: Sessions are allowed to query the system catalogs.

Session_priority

Determines whether a session is allowed to change its priority, and if so
what its initial and highest priority can be.

Default: A session cannot change its priority.

Table_statistics

Allows grantees to view and create database table statistics.

Default: All authorization identifiers can view and create table statistics.

Update_syscat

Allows grantees to update system catalogs.

Default: No authorization identifier can update system catalogs.

Preventing Permissions—Each permission has a corresponding preventing
permission to specifically disallow the permission. For example, to prevent
access to the database, specify the Noaccess permission.

How Database Permissions for a Session are Determined

The database permissions for a session are calculated when the session
connects to the database and remain in effect for the duration of the session.
If, after a session connects to a database, the database permissions for one of
that session’s authorization identifiers are changed, the active session is not
affected. Any new sessions that are established with the same authorization
identifiers are subject to the revised database permissions.

Assigning Privileges and Granting Permissions 51

Object Permissions

Database Grant Examples

Here are examples of granting permissions on a database:

1. Define a query row limit of 100 rows on the new_accts database for user
Ralph:

GRANT QUERY_ROW_LIMIT 100
ON DATABASE new_accts TO ralph;

2. Prohibit group prodrams from creating tables and database procedures in
the new_accts database:

GRANT NOCREATE_TABLE, NOCREATE_PROCEDURE
ON DATABASE new_accts TO prodrams;

3. A database privilege can be superseded by issuing a subsequent GRANT
statement for the user authorization. For example, assume that user
karenk has been granted a query row limit of 1000 rows on the customers
database:

GRANT QUERY_ROW_LIMIT 1000
ON DATABASE customers TO karenk;

Her job changes and she does not need to access so much of the
database, so the DBA issues a new GRANT statement giving her a query
row limit of 250:

GRANT QUERY_ROW_LIMIT 250
ON DATABASE customers TO karenk;

This new privilege replaces the old 1000-row privilege. If the DBA
subsequently revokes the new limit:

GRANT NOQUERY_ROW_LIMIT
ON DATABASE customers TO karenk;

karenk’s query row limit privilege for the database becomes undefined (the
old limit of 1000 is not re-established). At this point if no value for
QUERY_ROW_LIMIT has been defined for any of the other authorization
identifiers associated with karenk’s session, then the number of rows that
her session’s queries can return is unrestricted.

52 Security Guide

Object Permissions

Table and View Grants

Ingres allows data sharing and updating if users have been issued grant
permissions on the tables or views used in the query.

Table and view permissions are enabling permissions—if no permission is
granted, the default is to prohibit access. Table and view permissions are not
enforced for the owner of the table or view.

Permissions on Tables and Views

The following query permissions can be granted on both tables and views:

Select

Enables grantees to select rows from the table or view, for example using
a SELECT statement or a WHERE clause.

Insert

Enables grantees to add rows to the table or view, for example using an
INSERT statement.

Delete

Enables grantees to delete rows from the table or view, for example using
a DELETE statement.

Update

Enables grantees to change existing rows in the table or view, for example
using an UPDATE statement. An update grant can apply to all columns in
the table or view, or only to specific columns.

Permissions on Tables

The following query permissions can be granted on tables only:

Copy_into

Enables grantees to copy the contents of the table to a data file, for
example using the INTO clause of the COPY statement.

Copy_from

Enables grantees to copy the contents of a file to the table, for example
using the FROM clause of the COPY statement.

References

Enables grantees to create tables that reference the table. A references
grant can apply to all columns in the table, or only to specific columns.

If a user is not the owner and does not have the references permission on
a table, that user cannot create a referential constraint that references the
table.

Assigning Privileges and Granting Permissions 53

Object Permissions

Table Grant Examples

Here are examples of granting permissions on tables:

1. Grant select permission on the employee table to user freddy:

GRANT SELECT ON employee TO freddy;

2. Grant select permission on the employee and department_table tables to
individual users sally and ralph:

GRANT SELECT ON employee, department_table
TO sally, ralph;

3. Grant both select and update permissions on the employee table to user
rollin. Note that you must be able to select values to update them:

GRANT SELECT, UPDATE ON employee TO rollin;

4. Grant select and update permissions on the columns empname and
empaddress in the employee table to users joank and gerryr:

GRANT SELECT, UPDATE (empname, empaddress)
ON employee TO joank, gerryr;

5. Grant references permission on the “address” table to user “joe”:

GRANT REFERENCES ON address TO joe;

6. Grant references permission on selected columns of the “finder” table to
user “joe”:

GRANT REFERENCES ON finder (lname, finit, state)
TO joe;

User “joe” can then create a referential constraint on table “address” or
the specified columns of table “finder.” Note that he does not need the
select permission to create the referential constraint.

7. Grant all query permissions (select, insert, update, delete, and references)
on the phonelist table to all users:

GRANT ALL ON phonelist TO PUBLIC;

54 Security Guide

Object Permissions

Procedure Grants

For database procedures, the only valid permission is the Execute permission,
which allows the grantees to execute the procedure.

Granting permission to execute a procedure makes database queries contained
in the procedure code available to grantees. Granting execute permission to a
database procedure also allows grantees to create rules that trigger the
procedure.

The Execute permission is an enabling permission. By default, execution is
prohibited unless the permission is specifically granted. This permission is not
enforced for the owner of the procedure.

Permission to create procedures in the database is described in Database
Grants (see page 49).

Database Event Grants

The valid database event permissions are summarized below:

Raise

Allows grantees to raise the database event (using the RAISE DBEVENT
statement).

Register

Allows grantees to register to receive the database event (using the
REGISTER DBEVENT statement).

These are enabling permissions—by default, execution is prohibited unless the
permission is specifically granted. Database event permissions are not
enforced for the owner of the event.

Role Grants

When a role is created, an implicit grant is issued on the role to the user
creating the role.

Role access must be granted to other users (or public) before they can use the
role. Role access is an enabling permission—by default, access to the role is
prohibited unless the permission is specifically granted.

Assigning Privileges and Granting Permissions 55

Object Permissions

How Grants Restrict Data Access

Grants allow for data access to be restricted in the following ways:

 Operational restrictions (for example, Select, Insert, Update and Delete
permissions applied to some or all of the columns of a table)

 Data value restrictions (data restrictions), which are implemented through
views.

 Resource restrictions, which are permissions defined for the database as a
whole, rather than individual tables or columns.

In a session where permissions are in effect, when you issue a query (for
example, from an application or the SQL Scratchpad window in VDBA) the
query is passed to the Ingres DBMS Server. Ingres then evaluates the grants
on the tables involved in the query. If an operation does not pass an
operational restriction, an error message is returned.

If an operation does not pass a data restriction, it means that views are being
used and grants have been placed on the views, but the user authorization
does not pass the grants on the data. In this case no error is returned, but the
number of rows returned is affected. For example, if Mary is accessing a view
that returns rows only from the Shoe department, then if she asks for
information from the Toy department, no rows are returned.

56 Security Guide

Grant Overhead

Grant Overhead

Grants can affect query processing time. Queries for a table or view have
overhead if:

 Permissions have been granted on the table or view

 Column-specific permissions are granted

 Many permissions are granted in general in the database

For the following, however, there is no overhead:

 For the table owner

 On certain public grants:

– In select operations

– Any operation for which all allowed permissions are specified for public

 If no permissions qualify (the query is simply aborted)

There is additional overhead during session initialization to evaluate database
privileges for the authorization identifiers associated with the session. Because
session initialization must read the catalogs in which groups, roles, and
database privileges are stored, certain operations issued by the DBA or system
administrator that write to these catalogs can be committed or rolled back as
soon as possible. These operations include:

 Granting or revoking database privileges

 Creating, altering, or dropping a group

 Creating, altering, or dropping a role

Multiple Permission Checks

Multiple permissions can apply to the same query, because the system catalog
is scanned for all possible permissions that apply. Generally, this means the
broadest grant applies. The hierarchy of evaluation is described in more detail
below, but the hierarchy is generally not something the DBA needs to formally
consider.

For example, assume that grants have been created to allow all permissions
on the employee table to public, and that a grant has been created to allow a
particular user, Susan, the select privilege on the employee table. Susan, as
part of the public, can perform all operations on the employee table, even
though her individual grant was only for select permission.

Note: If you want more restrictive grants to apply, the solution is to drop the
inclusive grants to public, and define specific grants for specified groups or
users.

Assigning Privileges and Granting Permissions 57

Grant Overhead

How Privileges for a Session Are Determined

In any session, the privileges in effect for that session are derived from the
privileges granted to the authorization identifiers (role, user, group, and
public) associated with the session, and any applicable defaults. If a particular
privilege is defined for more than one authorization identifier associated with a
session, then a hierarchy is used to determine which defined privilege is
enforced for that session.

The authorization hierarchy, in order of highest to lowest precedence, is:

1. role

2. user

3. group

4. public

For each accessed object in a session, there is a search for a defined privilege
that specifies that object and the desired access characteristics (for example,
Select, Insert, Execute, and so on).

Access to Tables, Views, or Procedures and the Authorization Hierarchy

If the specified object attempting to be accessed is a table, view, or database
procedure, then one of the authorization identifiers in effect for the session
must have the required privilege for that object in order for the session to
access that object. In the case of these granted privileges that are otherwise
restricted, the authorization identifiers are searched for one that gives the
required authorization.

For example, to insert into a specified table, one of the authorization
identifiers associated with the session must have the Insert permission defined
for the specified table. If none of the authorization identifiers associated with
the session has this permission and the user does not own the table, then the
internal default is used. In this case, because the internal default for the Insert
permission is not to allow inserts, inserts are not allowed into the specified
table.

Access to Databases and the Authorization Hierarchy

When the specified object attempting to be accessed is the database, the
authorization hierarchy is also important because the privileges defined on the
database can be defined with different values for different authorization
identifiers. When a database privilege is defined at differing levels, the
hierarchy is used to determine which privilege to enforce.

58 Security Guide

Grant Overhead

For example, assume that query row limits have been defined differently for
each authorization level as follows:

Authorization Identifier Query Row Limit

The role identifier 1700

The user 1500

The group identifier 2000

The public 1000

If a user starts a session and specifies both group and role identifiers, the limit
defined for the role is enforced because it has the highest order of precedence
in the hierarchy, giving the session a query row limit of 1700.

Several other possible scenarios are described below:

 If no query row limit was defined for role, then the query row limit defined
for that user is enforced, which is 1500 rows. This is also the case if the
user had not specified a role identifier.

 If no query row limit was defined for that user, then the query row limit
defined for the group (2000 rows) is enforced.

 If no query row limit was defined for group, or if the user had not specified
a group identifier, then the query row limit defined for public (1000 rows)
is enforced.

 If none of the identifiers had a query row limit defined, the internal default
is enforced, which in this case is an unlimited numbers of rows.

Note: In cases where multiple authorizations apply, the resource limit
associated with the highest order of precedence applies, not necessarily the
one that grants the most resources.

Assigning Privileges and Granting Permissions 59

Grant Overhead

How Database Privileges for a Session Are Determined

The authorization hierarchy (see page 58) is used to determine the session’s
database privileges. The hierarchy includes the privileges granted to the
authorization identifiers in effect for the session, and the internal defaults.

When a user begins a session:

 The privileges in effect for that session are derived from the privileges
defined for the user identifier and for public. For example, while you might
have the privilege to select all the tables in the database, you might only
have the update permission on a limited number of those tables. If the
user includes the -G or -R flag, or both, on the command line when
beginning the session, then the privileges for the specified group or role
identifier are also in effect for the session.

 If the user has a default group identifier defined for the user ID, when the
user begins a session without specifying a group identifier, the default
group identifier is automatically applied to the session. A default group
identifier can be specified for a user when a user object is created or
modified.

For more information on the command line flags, -G and -R, see the
Command Reference Guide.

60 Security Guide

Grant Overhead

Dbmsinfo—View Permissions for Current Session

You can use the dbmsinfo function to obtain the current value of any database
privilege in effect for the current session.

To issue a dbmsinfo request, use the following syntax:

select dbmsinfo('request_name');

The request_name can be any of the following parameters:

connect_time_limt

The session’s value for the connect time limit, or -1 if none

create_procedure

"Y" if the session has create procedure privileges or "N" if not

create_table

"Y" if the session has create table privileges or "N" if not

db_admin

"Y" if the session has the db_admin privilege or "N" if not

idle_time_limit

The session's value for the idle time limit or -1 if none

lockmode

"Y" if the session can issue the set lockmode statement or "N" if not

query_cost_limit

The session's value for the query cost limit or -1 if none

query_cpu_limit

The session's value for the CPU limit or -1 if none

query_io_limit

The session's value for the query I/O limit or -1 if none

query_page_limit

The session's value for the query page limit or -1 if none

query_row_limit

The session's value for the query row limit or -1 if none

session_priority

The session's current priority or -1 if none

Assigning Privileges and Granting Permissions 61

Grant Overhead

select_syscat

"Y" if the session has the select_syscat privilege or "N" if not

table_statistics

"Y" if the session has the table_statistics privilege or "N" if not

update_syscat

"Y" if the session has the update_syscat privilege or "N" if not

Example: Return the Value of Query Row Limit for Current Session

Assuming the Query_row_limit permission for the current session is 50, the
following query returns the value “50” in x:

select x = dbmsinfo('query_row_limit') as x;

Note: The dbmsinfo function allows other request_name values relating to
other aspects of the current session. For details, see the chapter “Transactions
and Error Handling” in the SQL Reference Guide.

62 Security Guide

Chapter 6: Implementing Security
Auditing

This section contains the following topics:

Security Alarms (see page 63)
Security Auditing (see page 66)

Security Alarms

Security alarms allow you to specify the events to be recorded in the security
audit log for individual tables and databases. Using them, you can place
triggers on important databases and tables to detect when users attempt to
perform access operations that are not normally expected.

For tables, you can monitor the success or failure of any of the following
events:

 Select

 Delete

 Insert

 Update

For databases, you can monitor the success or failure of these events:

 Connect

 Disconnect

Security alarm events are considered successful if the user succeeds in
performing the specified type of access. If a particular query triggers a
security alarm event, however, it does not necessarily mean that the query
completed successfully. It simply means that the security access tests for the
specified types of events (for example, select, delete, insert, and update) were
passed.

Failure of a security alarm event means that the user attempted to perform
the associated operation and failed for some security-related reason. For
example, a user can fail to gain access to a table or a database because he or
she lacks the required permissions. A query or database operation might fail
for other reasons, unrelated to security, but these failures do not trigger the
associated security alarm event.

Implementing Security Auditing 63

Security Alarms

Security alarms can be assigned to specific authorization identifiers (individual
users or the public, and groups and roles) so that you can limit monitoring to
certain users. You can also specify a database event to be raised when a
security alarm is triggered. Database Event Grants (see page 55) describes
the database event permissions required to raise an event.

Working with Security Alarm Objects

When working with security alarms, you can do the following:

 Create security alarm objects of various types for specific tables and
databases

 View existing security alarm objects, including the detailed properties of
each individual object

 Drop security alarm objects

You can accomplish these tasks using the SQL statements CREATE
SECURITY_ALARM, HELP SECURITY_ALARM, and DROP SECURITY_ALARM. For
complete details on these statements, see the SQL Reference Guide.

In VDBA, use the Security Alarm branch in the Database Object Manager
window. For detailed steps, see the Procedures section of VDBA online help.

64 Security Guide

Security Alarms

How to Implement a Security Alarm

To implement a security alarm, follow these basic steps:

1. Create the security alarm. Issue the CREATE SECURITY_ALARM statement
to define the conditions that will trigger the alarm. For example:

CREATE SECURITY_ALARM ON TABLE employees IF FAILURE;

(In VDBA, use the appropriate Security Alarm branch in the Database
Object Manager window.)

2. Have an authorized user issue the ENABLE SECURITY_AUDIT ALARM
statement to enable auditing of security alarms. You can also use ENABLE
SECURITY_AUDIT (see page 66) to specify other types of auditing.

When user access to the specified database or table triggers the alarm, a
record is written to the audit log and the associated database event, if any
is defined, is raised.

To drop a security alarm

1. Issue a HELP SECURITY_ALARM statement to obtain the security alarm
number. For example:

HELP SECURITY_ALARM employees;

Security alarms on employees are:

Security alarm 2:
create security_alarm on table employees if failure

2. Issue a DROP SECURITY_ALARM statement. For example:

DROP SECURITY_ALARM ON employees 2;

Implementing Security Auditing 65

Security Auditing

Security Alarm Example

A typical scenario is to audit all accesses to databases and security-relevant
events (such as the creation and deletion of users and the granting of special
privileges). The Ingres security administrator, however, may decide that
although access to certain tables should be monitored, imposing a general
auditing control on all tables is not desired.

In this example assume that:

 Table “addresses” contains a list of addresses is to be audited. Updates or
changes to existing information are to be recorded in the audit log.

 Table “all_summary”, a large database table, is used infrequently.
Accesses are to be audited to determine whether it should be archived and
deleted.

The following statements could be issued to audit security-related events:

ENABLE SECURITY_AUDIT SECURITY;
ENABLE SECURITY_AUDIT USER;

CREATE SECURITY_ALARM ON TABLE addresses
WHEN INSERT, UPDATE, DELETE;

CREATE SECURITY_ALARM ON TABLE all_summary;

Security Auditing

Security auditing is the recording of all or specified classes of security events
for the entire Ingres installation.

Selected classes of events, such as use of database procedures or access to
tables, can be recorded in the security audit log file for later analysis. Criteria
can be selected that apply to a single object or across an entire class of
installation objects.

Security auditing is controlled by a user with the maintain_audit privilege.

Related Information

Auditor Privilege (see page 40)
Maintain_Audit Privilege (see page 41)

66 Security Guide

Security Auditing

Audit Focus

The information in the audit log can quickly grow in volume. You can achieve
maximum benefit of security auditing by focusing the audit information
produced by the system.

Security auditing has an impact on resource consumption. Audit records are
recorded in a shared buffer before being written to the audit page and then to
the log file. The performance impact of security auditing should be tested
thoroughly before implementation.

Focusing the audit information both reduces resource consumption and makes
it easier to examine the logs for possible security infringements.

The coarse and fine selection criteria can be used together to create a suitable
security-auditing environment that meets the needs of any security
administrator.

How to Enable Security Auditing

By default, security auditing is disabled. You must enable security auditing by
setting the security_auditing configuration parameter. In addition, you must
specify the level of auditing using the ENABLE SECURITY_AUDIT statement.

To enable security auditing follow these steps:

1. In CBF, select Security, Configure, Auditing.

The Configure Security Auditing screen appears.

2. Scroll to security_auditing. Select Edit to toggle the setting to ON.

3. (Optional) Tab to the Audit log files and use the Edit function to change
the location and names of the security audit log files.

4. Connect to the Ingres master database iidbdb as the installation owner or
security administrator.

5. Issue statements similar to the following to enable the level of security
auditing.

 To enable security auditing on all operations by all users, installation
wide:

ENABLE SECURITY_AUDIT ALL

 To enable query text auditing by a specific user:

ALTER USER username WITH SECURITY_AUDIT=(QUERY_TEXT)

Implementing Security Auditing 67

Security Auditing

How to Verify Security Auditing Levels

You can verify security auditing levels by querying the appropriate system
catalog.

To check that security auditing was enabled on all operations by all users,
installation wide, follow these steps:

1. Log on as the installation owner.

2. Connect to Ingres master database iidbdb.

Query the system catalog iisecurity_state by issuing the following
command:

SELECT STATE FROM iisecurity_state
 WHERE NAME = 'All';

The value returned should be E (enabled).

To check that query text auditing was enabled by a specific user, follow these
steps:

1. Log on as the installation owner.

2. Connect to Ingres master database iidbdb.

3. Query the system catalog iiusers by issuing the following command:

SELECT AUDIT_QUERY_TEXT FROM iiusers
WHERE USER_NAME = ‘username’;

The value returned should be Y.

68 Security Guide

Security Auditing

Security Auditing Configuration Parameters

A security audit log file is created as part of the installation process. Audit
records are recorded in a shared buffer before being written to the audit page
and then to the log file. The auditing derived parameters will affect
performance so concurrent performance testing is advised before
implementing security auditing.

The security auditing configuration parameters are as follows (for more detail,
see the online help for CBF or Configuration Manager):

audit_mechanism

Used for the auditing destination.

Default: INGRES

log_page_size

Specifies the page size of each audit log page

max_log_size

Specifies the maximum log size in kilobytes

on_error

Specifies the audit action to take on an error, either SHUTDOWN or
STOPAUDIT

on_log_full

Specifies the audit action to take on “log full” condition, either SHUTDOWN
or STOPAUDIT

on_switch_log

Specifies the full path of the utility to execute when an audit log is full or
before a new log is initialized

security_auditing

Specifies whether security auditing is ON or OFF

Audit log files

Specify the full path of each audit log

Implementing Security Auditing 69

Security Auditing

Security Audit Statements

Levels of security auditing are enabled and disabled with the SQL statements
ENABLE SECURITY_AUDIT and DISABLE SECURITY_AUDIT.

To use these statements, you must have the maintain_audit privilege and be
connected to the iidbdb database.

Keywords on these statements allow you to specify the types of security
events you want to audit. For example:

 DATABASE—to control logging of database access

 PROCEDURE—to control logging of procedure access

 ALL—to control logging of all possible security events

The events specified using these statements are known as the default events,
which is a term that applies when specifying auditing levels for users, profiles,
and roles, as described in the next section.

For complete syntax and keywords for these statements, see the SQL
Reference Guide.

Security Audit Levels for Users and Roles

Security audit levels can also be specified for individual users (directly or
through a profile) and for roles (requires the maintain_audit privilege). You
can specify the security audit level whenever you create or modify the user,
profile, or role.

By default, users are audited for default events (as specified by the security
audit statements). However, you can specify that a user be audited for all
events and even that the query text associated with the user’s queries be
audited.

Important! Because query text auditing is detailed and takes up a lot of
space in the security log file, it must be explicitly enabled at the user level and
using ENABLE SECURITY_AUDIT QUERY_TEXT. Otherwise, no query text
auditing can take place.

By default, roles are audited according to the settings for the individuals using
the role. However, because a role can give a user privileges the user does not
otherwise have, you can specify that anyone who uses a role be audited for all
events while using the role, regardless of that user’s audit state.

Note: Default auditing levels (as well as other default user and role attributes)
are determined by the default profile. If the default profile is modified, the
defaults stated in this section do not apply.

70 Security Guide

Security Auditing

Changes to Security Audit Status During a Session

The security status for a session is determined at the time of initial connection.
Thereafter, during the session:

 If the auditing level of a user, profile, or role is changed from default
auditing to auditing all events, or vice versa, the change in status can
apply only to new sessions connecting after the change has been made.

 All other security-auditing related changes take effect immediately.

Access to the Security Audit Log

Access to the security audit log is established through registering the security
audit log file as a virtual table. After it has been successfully registered, the
security audit log file can be queried as any other table.

Implementing Security Auditing 71

Security Auditing

Registering the Security Audit Log File

To access the security audit log file contents with SQL query statements, you
must first register the audit log file as a virtual table using the REGISTER
TABLE statement with the DBMS=SXA clause.

The following statements, for example, make a subset of the security audit log
file sal1.log available through the table sal1:

REGISTER TABLE sal1(
 database CHAR(24) NOT NULL,
 audittime DATE NOT NULL,
 user_name CHAR(24) NOT NULL,
 auditstatus CHAR(1) NOT NULL,
 auditevent CHAR(24) NOT NULL,
 objecttype CHAR(24) NOT NULL,
 objectname CHAR(24) NOT NULL,
 description CHAR(80) NOT NULL
)
 AS IMPORT FROM 'sal1.log'
 WITH DBMS = SXA;

The REGISTER TABLE statement, when used to register the security audit log
file, requires the auditor privilege.

When the virtual table is no longer needed, a user with the auditor privilege
can use the REMOVE TABLE statement, specifying the name of the virtual table
created using REGISTER TABLE.

To display information on registered objects, use the HELP REGISTER
statement.

For the complete syntax (including specifications for the security log audit file
format) for the REGISTER TABLE and REMOVE TABLE statements, see the SQL
Reference Guide.

72 Security Guide

Security Auditing

Querying the Registered Virtual Table

After the security audit log is registered, any user with the auditor privilege
can perform queries on the registered virtual table to view its contents.

For example, to obtain all events by the user spy against the database
securedb, query the table sal1 as follows:

SELECT audittime, auditstatus, auditevent,
 objecttype, objectname, description
 FROM sal1
 WHERE DATABASE = 'securedb' AND user_name = 'spy'
 ORDER BY audittime;

The result of the query might be similar to the following:

 audittime auditstatus auditevent objecttype objectname descrpt
01-Jan-2008 01:00 N SELECT TABLE salaries Attempt to
 access a TABLE
 01-Jan-2008

Obtain the Current Audit File Name

The dbmsinfo function can be used to find the name of the audit log file. You
must have the auditor privilege to use this call.

To obtain the name of the current security audit log file

Issue the following statement:

dbmsinfo('security_audit_log')

The function returns the file name only, not the full file specification.

Alternatively, you can access the current file through the iiaudit system
catalog, in the iidbdb system database.

Implementing Security Auditing 73

Chapter 7: Controlling Access through
Database Procedures

This section contains the following topics:

Database Procedures (see page 75)
Working with Procedure Objects (see page 75)
How to Implement a Database Procedure (see page 76)
Access Control through Database Procedures (see page 77)

Database Procedures

A database procedure is a set of SQL statements and control statements in a
begin/end block that are stored as a unit in the database. It usually contains
at least one query into the database, which is stored in compiled form with a
Query Execution Plan.

A database procedure can have the Execute permission granted on it.

Database procedures provide the following security benefits:

 They provide an extra level of control over data access and modification.

 They can be used with security alarms to enhance the security-auditing
features.

Working with Procedure Objects

You can perform the following basic operations on database procedures:

 Create database procedures

Note: By default, any user can create a database procedure, but this
ability can be restricted using database permissions.

 View existing database procedures, including the detailed properties of
each individual object

 Drop database procedures

In SQL, you can accomplish these tasks using the CREATE PROCEDURE, HELP
PROCEDURE, and DROP PROCEDURE statements. For details on these
statements, see the SQL Reference Guide.

In VDBA, database procedures are implemented using the Procedures branch
for a particular database in the Database Object Manager window. For detailed
steps, see the Procedures section of online help.

Controlling Access through Database Procedures 75

How to Implement a Database Procedure

How to Implement a Database Procedure

To implement a database procedure, follow these basic steps:

1. Create the procedure using the CREATE PROCEDURE statement. You can
do this interactively or in Embedded SQL. (In VBDA, use the appropriate
Procedures branch in the Database Object Manager window.)

2. Grant Execute permission on the database procedure to specified users,
groups, or roles, as described in Object Permissions (see page 46).

3. Invoke the database procedure by issuing an EXECUTE PROCEDURE
statement, firing a rule, or triggering a security alarm. Any user who has
been granted Execute permission can perform this step.

Database Procedure Example

The following database procedure accepts as input an employee ID number.
The employee matching that ID is moved from the employee table and added
to the emptrans table.

CREATE PROCEDURE move_emp
 (id INTEGER NOT NULL) AS
BEGIN
 INSERT INTO emptrans
 SELECT * FROM employee
 WHERE id = :id;
 DELETE FROM employee
 WHERE id = :id;
END;

76 Security Guide

Access Control through Database Procedures

Access Control through Database Procedures

Database procedures provide the DBA with greater control over database
access.

The DBA can grant permission to execute a database procedure even if the
user has no direct access to the underlying tables referenced in the procedure.
With Execute permissions, the DBA can give users limited, specific access to
tables without needing to give the users full query grants (such as SELECT) on
the tables. In this way, the DBA controls exactly what operations a user can
perform on a database.

For example, both tables used in the previous example can be inaccessible to
users except through the procedure. The DBA grants Execute permission, as in
the following example, to allow users in the acctg group to access the tables
for this procedure only:

GRANT EXECUTE ON PROCEDURE move_emp TO acctg

When the procedure is invoked, the executing application passes a single
integer parameter.

For example, the following statement calls the move_emp procedure for the
employee ID “56742”:

EXEC SQL EXECUTE PROCEDURE move_emp (id = 56742);

Controlling Access through Database Procedures 77

Chapter 8: Implementing PAM in Ingres
This section contains the following topics:

What Is PAM? (see page 79)
The Ingvalidpam Program (see page 79)
Requirements for Using PAM (see page 80)
Build the Ingvalidpam Program (see page 80)
How to Implement Standard Linux or UNIX Security Using PAM (see page 81)
How to Implement LDAP Authentication Using PAM (see page 82)
How to Implement Kerberos Authentication Using PAM (see page 86)
Netutil Entries for Ingvalidpam (see page 88)
Test Ingvalidpam (see page 89)

What Is PAM?

The Pluggable Authentication Module (PAM) allows applications (in this case,
Ingres) to authenticate users with a plug-in mechanism, as an alternative to
the default authentication mechanism of a Linux or UNIX environment. Each
plug-in is a shared library that is dynamically loaded into the PAM module.

PAM provides plug-ins for authentication at the operating system level or using
third-party solutions, such as LDAP or Kerberos.

PAM allows applications such as Ingres to authenticate users transparently,
regardless of the underlying authentication mechanism. Applications do not
have to be recompiled or reconfigured if your authentication mechanism
changes.

The Ingvalidpam Program

The Ingres ingvalidpam program supports authentication through PAM.

Ingvalidpam is a password validation program that can be used instead of the
ingvalidpw program. Like ingvalidpw, ingvalidpam is used only in Linux and
UNIX environments. If the DBMS Server runs on Linux or UNIX, the Ingres
client can run on any platform and PAM can be used to authenticate.

Implementing PAM in Ingres 79

Requirements for Using PAM

Requirements for Using PAM

The following are required to use PAM in Ingres:

 You must have root access to edit configuration files.

 Your machine must have PAM installed.

You can download PAM from the vendor site for your operating system. For
example, for Solaris see http://sun.com/software/solaris/pam.

You may need to build and install PAM if no binaries are available for your
operating system. If your machine does not have a robust C compiler, you
may need to download and build gcc from http://gcc.gnu.org/releases.html.
As a prerequisite to gcc, you may also need to download gmake from
http://gnu.org/software/make.

Build the Ingvalidpam Program

The invalidpam executable and source is included in the Ingres distribution. In
most cases, the executable works fine as delivered, but it can be built from the
source, if necessary.

The following .c and .h files, which are required to build the ingvalidpam
executable, are available in the directory $II_SYSTEM/ingres/files/iipwd:

 ingvalidpam.c

 ingpwutil.c

 ingpwutil.h

To build the invalidpam executable

1. Change directory as follows:

cd $II_SYSTEM/ingres/files/iipwd

2. Issue the following command:

cc -o $II_SYSTEM/ingres/bin/ingvalidpam ingvalidpam.c inpwutil.c –lpam

The ingvalidpam executable is created.

To enable password validation through the ingvalidpam program

1. Change directory:

cd $II_SYSTEM/ingres/bin

2. Log in as root.

80 Security Guide

How to Implement Standard Linux or UNIX Security Using PAM

3. Change the group ownership of the ingvalidpam file:

chgrp shadow ingvalidpam

4. Change permissions on the ingvalidpam file:

chmod g+s ingvalidpam

5. Set the II_SHADOW_PWD environment variable to ingvalidpam:

ingsetenv II_SHADOW_PWD $II_SYSTEM/ingres/bin/ingvalidpam

Shadow password validation through PAM is enabled.

6. Ensure the PAM configuration file named "ingres" exists at this location:

Linux: /etc/pam.d

UNIX: /etc/pam.conf

How to Implement Standard Linux or UNIX Security Using
PAM

To use the ingvalidpam program for standard operating system user
authentication on Linux or UNIX, you can either use the supplied ingvalidpam
program or compile the program, if necessary.

If using the supplied ingvalidpam program

Follow the steps under "To enable password validation through the
ingvalidpam program" in Build the ingvalidpam Program (see page 80) to
enable shadow password validation through PAM. The ingvalidpam executable
is located in $II_SYSTEM/ingres/bin.

If compiling ingvalidpam.c

Follow all steps in Build the ingvalidpam Program (see page 80).

Implementing PAM in Ingres 81

How to Implement LDAP Authentication Using PAM

Ingres PAM Configuration File (For Linux or UNIX)

The contents of the PAM configuration file for some UNIX environments are
shown here. (For field descriptions, refer to the PAM documentation.)

SuSE Linux

% cat /etc/pam.d/ingres
#%PAM-1.0
auth include common-auth
account include common-account

Redhat Linux

$ cat /etc/pam.d/ingres
#%PAM-1.0
auth required pam_unix.so
account required pam_unix.so

HP-UX and Solaris

The service name OTHER can be used or "ingres" can be added to
/etc/pam.conf, which will use the pam_unix.1 module.

% cat /etc/pam.conf
#ident "@(#)pam.conf 1.19 95/11/30 SMI"

PAM configuration

Authentication management

OTHER auth required /usr/lib/security/libpam_unix.1
OTHER account required /usr/lib/security/libpam_unix.1

How to Implement LDAP Authentication Using PAM

The LDAP module of PAM authenticates clients using the TLS (Transport Layer
Security) protocol. The TLS protocol uses encrypted keys and certificates
instead of cleartext user names and passwords for authentication.

Follow this process to implement LDAP authentication through PAM:

1. Update the ldap.conf file with the appropriate entries.

2. Update the ingres PAM configuration file with the appropriate entries.

3. Update netutil with the ingvalidpam user names and passwords.

82 Security Guide

How to Implement LDAP Authentication Using PAM

LDAP Requirements

Your LDAP environment must have a working slapd server and directory of
users. Your LDAP environment must also support LDAP version 3.

The ldap.conf File—Configure LDAP Daemon (slapd)

For the LDAP module to know how LDAP authentication is to be performed,
client LDAP processes must refer to an ldap.conf file. In this case, the
ingvalidpam program is the only client process that references the ldap.conf
file, therefore, the ldap.conf file needs to be configured on the server side
only. Client machines do not need to configure ldap.conf.

By default, ldap.conf resides in the /etc directory, but you can override the
path and file name of ldap.conf with the LDAPCONF environment variable.

By default, the PAM LDAP module searches the slapd database for object
classes of posixAccount. A Distinguished Name for a posixAccount user might
look like this:

uid=johnDoe,ou=people,dc=myDomain,dc=com

In ldap.conf, you define a BASE attribute of:

ou=people,dc=myHost,dc=com

This shorthand allows you to define only "johnDoe" as the user name in netutil
instead of the entire Distinguished Name.

The only other attribute required is the HOST, which is defined as the FQDN
(fully qualified domain name) of the server as defined by TCP/IP. Therefore,
your ldap.conf file would look like this:

HOST myHost.myDomain.com
BASE ou=people,dc=myDomain,dc=com

Note: PAM expects ldap.conf to reside in /etc, and ignores the LDAPCONF
variable. So if your ldap.conf directory resides elsewhere, set up a symbolic
link:

ln -s /etc/openldap/ldap.conf /etc/ldap.conf

Implementing PAM in Ingres 83

How to Implement LDAP Authentication Using PAM

Browse slapd Database

To see the format of the Distinguished Names in the user database, you can
browse the database using the ldapsearch command.

To list the contents of the slapd database

Issue the following command:

ldapsearch '(objectclass=*)' -H ldap://myHost.mydomain.com:389 -b
"dc=myDomain,dc=com" -x

Note: You need to know the root domain name of the slapd database, defined
above as "dc=myDomain,dc=com". In many cases, it corresponds to the
domain and domain suffix of your host name. If this approach does not work,
consult your system administrator.

The Ingres PAM Configuration File (for LDAP)

The PAM component of the ingvalidpam program references a service
configuration file named /etc/pam.d/ingres. For PAM over LDAP, the following
entries are required:

auth sufficient pam_ldap.so
auth sufficient pam_nologin.so
account sufficient pam_ldap.so

Note: The ldap.conf and ingres files are owned by root, but must be world-
readable. Execute chmod 644 on these files to ensure they have the correct
permissions.

84 Security Guide

How to Implement LDAP Authentication Using PAM

Active Directory Configuration

The Active Directory authentication is configured almost the same way as
slapd, but with a few additions.

By default, the PAM LDAP module binds anonymously and looks for login
attributes of type "uid". The previously described ldap.conf configuration may
work for Active Directory servers if the AD server allows anonymous binds and
that the authentication accounts of interest are of type "posixAccount", or at
least an object with a "uid" attribute.

Often, Active Directory servers do not allow anonymous binding, and the
object classes of the user database do not include "posixAccount". So, the
ldap.conf file must include a user name and password for binding purposes
and a directive to look for an attribute other than "uid".

Adding these entries allows ingvalidpam to authenticate against the Active
Directory, assuming they have the login attribute sAMAccountName:

binddn CN=proxySearch,OU=myCity,OU=USA,OU=Americas,DC=myDomain,DC=com
bindpw mySecretPassword
pam_login_attribute sAMAccountName

Since the bind domain and password are presented in cleartext in a world-
readable file, the user "proxySearch" is created to perform the Active Directory
lookup. The permissions on "proxySearch" can be set so that the
"proxySearch" user can only search the Active Directory. You can use your
own user name and password for testing purposes.

Implementing PAM in Ingres 85

How to Implement Kerberos Authentication Using PAM

Browse Active Directory Database

To find the format of Distinguished Names, you may have to browse the Active
Directory database.

The ldapsearch command lists all of the contents of the Active Directory
database.

To browse the Active Directory database

1. Issue the following command:

ldapsearch -V -Y DIGEST-MD5 -H ldap://myHost.myDomain.com:389
'(objectclass=*)'

You can use the objectclass filter without wildcards to limit the search.

You are prompted for a password.

2. Enter the password of your own Active Directory account.

Example—The following ldapsearch command browses the Active Directory for
user "johnDoe@myDomain.com" with a sAMAccountName of "johnDoe" and
can serve as a test of the ldap.conf configuration:

ldapsearch -x -W -D "johnDoe@myDomain.com" -LLL "(sAMAccountName=johnDoe)"

How to Implement Kerberos Authentication Using PAM

If your enterprise has no access to an Active Directory, you must configure
and populate a Kerberos KDC (Key Distribution Center). For details, see
http://web.mit.edu/Kerberos.

Follow this process to implement Kerberos authentication through PAM:

1. Update the krb5.conf file with the appropriate entries.

2. Update the ingres PAM configuration file with the appropriate entries.

3. Update netutil with the ingvalidpam user names and passwords.

86 Security Guide

How to Implement Kerberos Authentication Using PAM

Ingres Kerberos Driver versus Ingvalidpam

Use of PAM with Kerberos is less secure than the Ingres Kerberos driver and
loses the single sign-on capability. The ingvalidpam environment uses
Kerberos merely as an alternative to operating-system user names and
passwords. The Ingres Kerberos driver, in contrast, is a more complete
approach to using Kerberos for authentication. (For details on the Ingres
Kerberos driver, see the chapter "Configuring Ingres to Use Kerberos.")

In the Kerberos driver environment, the process running the application must
be recognized as a valid Kerberos service principal and be pre-authenticated
with Kerberos tickets. The netutil database requires no user names and
passwords for Kerberos connection targets.

In the ingvalidpam environment, you must specify the Kerberos user name
and password in the netutil database. The process owner does not need to be
pre-authenticated through Kerberos, and does not have to be recognized as a
valid Kerberos service principal.

The krb5.conf File—Configure Kerberos

The krb5.conf file tells Kerberos clients where the Kerberos server is on the
network. On Linux and UNIX machines, krb5.conf typically resides on /etc.

The following krb5.conf file contains the minimum configuration for a Kerberos
or Active Directory server on myHost.myDomain.com:

[libdefaults]
 default_realm = MYDOMAIN.COM

[realms]
 INGRES.PRV = {
 kdc = MYHOST.MYDOMAIN.COM
 admin_server = MYHOST.MYDOMAIN.COM
 }

[domain_realm]
 myDomain.com = MYDOMAIN.COM
 .mydomain.com = MYDOMAIN.COM

Note: The Kerberos realm defined by MYDOMAIN.COM happens to be the
same as the network domain name and extension, but the realm can have a
different name.

Implementing PAM in Ingres 87

Netutil Entries for Ingvalidpam

The Ingres PAM Configuration File (for Kerberos)

The contents of the Ingres PAM file are very similar to the LDAP configuration,
except Kerberos libraries are substituted for the LDAP libraries. The following
configuration will work equally well for Active Directory and Kerberos KDS
servers:

auth sufficient pam_krb5.so
auth sufficient pam_nologin.so
account sufficient pam_krb5.so

Note: The krb5.conf and ingres files are owned by root, but must be world-
readable. Execute chmod 644 on these files to ensure they have the correct
permissions.

Netutil Entries for Ingvalidpam

After you have the appropriate authentication mechanism configured with
PAM, you can convert your clients to use the user names and passwords for
ingvalidpam instead of the system or Ingres installation passwords, if they are
different.

To update netutil with the ingvalidpam user names and passwords

1. Ensure that II_SHADOW_PWD is defined as
$II_SYSTEM/ingres/bin/ingvalidpam using the following command:

ingprenv II_SHADOW_PWD

2. Redefine II_SHADOW_PWD, if necessary:

ingsetenv II_SHADOW_PWD $II_SYSTEM/ingres/bin/ingvalidpam

Stop and then restart the Name Server, as follows:

ingstop -iigcn

ingstart -iigcn

3. Add user names and passwords appropriate to the authentication method
in the netutil database. (For details, see the Connectivity Guide.)

The Name Server will use ingvalidpam to authenticate.

88 Security Guide

Test Ingvalidpam

Test Ingvalidpam

If you have problems authenticating after you have updated netutil with the
user names and passwords, you can use the II_INGVALIDPW_LOG
environment variable to troubleshoot.

To turn on logging to troubleshoot the connection

1. Stop the Name Server by issuing the following command:

ingstop -iigcn

2. Set the II_INGVALIDPW_LOG environment variable to an appropriate path
name:

C shell:

setenv II_INGVALIDPW_LOG /tmp/ingvalidpam.log

3. Restart the Name Server:

ingstart -iigcn

The results of ingvalidpam are listed in /tmp/ingvalidpam.log (or the path
you defined).

4. Turn off logging when you are finished testing:

C shell:

unsetenv II_INGVALIDPW_LOG

Implementing PAM in Ingres 89

Chapter 9: Using Data at Rest Encryption
This section contains the following topics:

What Is Data at Rest Encryption? (see page 91)
How Encryption Works (see page 92)
The Power of Encryption (see page 92)
Transparent vs. Function-based Encryption (see page 93)
Transparent Column Encryption (DBMS Server-level Encryption) (see page
94)
Function-based Encryption (Application-level Encryption) (see page 96)
Encryption Information Displayed with HELP TABLE (see page 99)
How to Compute the Width of Encrypted Data (see page 100)
Data at Rest Encryption Restrictions (see page 101)
Implications of Data Encryption for Database Design and Operations (see
page 102)
Understanding Salt (see page 103)
Indexing Encrypted Columns (see page 104)
Encryption and Copydb/Unloaddb Considerations (see page 104)
Optimizedb Considerations for Data at Rest Encryption (see page 105)
Encrypted Data in Log Records and Auditdb Output (see page 106)

What Is Data at Rest Encryption?

Data "at rest" refers to data on physical media recorded in a persistent form in
Ingres database table, transaction log, journal, and checkpoint files.

Data at rest encryption allows specific database table columns to be
encrypted. Data in the protected columns is stored on disk or other media in
encrypted form and can only be accessed if the encryption passphrase is
known.

Encrypted columns are stored in the database files using 128-, 192-, or 256-
bit Advanced Encryption Standard (AES) encryption. A single AES key protects
any data in a table that contains encrypted columns. The encryption is
transparent to the applications accessing the data.

Using Data at Rest Encryption 91

How Encryption Works

Data at rest encryption does not protect data outside of the database, which
includes:

 Data passed back and forth to applications

 Transactions that implement data replication at a logical (vs. binary,
journal application) level

 Files created using copydb

Note: If the security of data transmitted over a network is important, you can
implement protection using other mechanisms such as public key encryption.
Flat files containing sensitive information that is encrypted in the database
should be stored in encrypted files or on encrypted media.

How Encryption Works

When an encrypted table is created, an AES key is randomly generated (or can
be specified with the AESKEY= option). The key is then encrypted using an
AES key derived from the specified PASSPHRASE. The AES encryption specified
for the user data encryption (AES128, AES192, or AES256) is also used for the
passphrase protection of the internal catalog-stored key.

After an encrypted table is created, access to the encrypted data must be
enabled through a MODIFY statement that specifies the correct passphrase. At
this point, an in-memory-only decrypted key is created for use by the
encryption and decryption code. At server shutdown, this decrypted key is
cleared and the encrypted data is effectively locked. At server startup, the
MODIFY must be issued again to access the encrypted data.

The Power of Encryption

While the data at rest encryption feature does not secure data in all aspects of
its life cycle, do not underestimate its power. Without proper care of the
passphrase, the data owner himself can be locked out of the data!

With the passphrase, which unlocks the internal AES key, the data is
transparently accessible. Without the passphrase, the logical data is
unreadable, meaningless bit patterns.

Important! If you lose the passphrase, encrypted data remains inaccessible.

92 Security Guide

Transparent vs. Function-based Encryption

Transparent vs. Function-based Encryption

Column values can be encrypted at either of the following levels:

 Transparent column encryption (see page 94), done at the DBMS Server
level

If you want the Ingres server to handle encryption for the application and
be assured that data at rest is encrypted, declare the columns as
encrypted on the CREATE TABLE statement, where you also define an
encryption passphrase.

The passphrase applies to all encrypted rows and columns in the table.

 Function-based encryption (see page 96), done at the application level

If you want to control the process and provide the passphrase at the
application level, use the Ingres SQL functions AES_ENCRYPT and
AES_DECRYPT.

The passphrase can apply to one row.

You can combine the two levels, declaring encrypted columns on CREATE
TABLE, and then storing application-encrypted data in them.

Using Data at Rest Encryption 93

Transparent Column Encryption (DBMS Server-level Encryption)

Transparent Column Encryption (DBMS Server-level
Encryption)

To use DBMS Server-level encryption, use the CREATE TABLE statement to
encrypt column values and define the encryption passphrase. To enable access
to the table, use the MODIFY statement.

For syntax details, see the SQL Reference Guide.

The following example creates an encrypted table, enables access to it, inserts
rows, and then selects them:

CREATE TABLE socsec1
 (fname char(10),
 lname char(20),
 socsec char(11) encrypt nosalt
 WITH ENCRYPTION=AES256,
 PASSPHRASE='transparent encryption example';

MODIFY socsec1 ENCRYPT
 WITH PASSPHRASE='transparent encryption example';

SET TRACE POINT DM805;

INSERT INTO socsec1 VALUES ('John', 'Smith', '012-33-4567');

INSERT INTO socsec1 VALUES ('Lois', 'Lane', '010-40-1234');

INSERT INTO socsec1 VALUES ('Charlie', 'Brown', '012-44-9876');

SELECT * FROM socsec1;

The following results are returned:

+----------+--------------------+-----------+
|fname |lname |socsec |
+----------+--------------------+-----------+
John	Smith	012-33-4567
Lois	Lane	010-40-1234
Charlie	Brown	012-44-9876
+----------+--------------------+-----------+
(3 rows)

The encryption is transparent to the application (in this case, the Ingres SQL
terminal monitor), as evidenced by the plain text values in the socsec column.

94 Security Guide

Transparent Column Encryption (DBMS Server-level Encryption)

The SET TRACE POINT DM805 statement sends a dump of encrypted buffers
immediately after the encryption processing to II_DBMS_LOG. Trace point
DM806 sends a dump of encrypted buffers immediately before decryption
processing. The log shows the values that are stored for the social security
numbers:

AES 256-bit encrypt blocks:
 1C90492C913D7D9195FED8507F0D1BFE >,I...}=.P.......<
AES 256-bit encrypt blocks:
 FF24FB9037A156F6D4CE57921F0EFD07 >..$..V.7.W......<
AES 256-bit encrypt blocks:
 94EE866C722BEA0AF096EF3D64347271 >l.....+r=...qr4d<

For transparent encryption, the value stored includes salt (see page 103) (if
any) and a verifying hash, in addition to the user data itself.

Enable Access to Encrypted Data

Access to encrypted data in a table that contains encrypted columns is
possible only when it is enabled after server startup with the MODIFY
statement:

MODIFY socsec1 ENCRYPT
 WITH PASSPHRASE='transparent encryption example';

Disable Access to Encrypted Data

Perhaps a sensitive table is needed only during regular work hours, even
though the DBMS runs continually. Disabling encryption and decryption at the
end of the work day would prevent unauthorized access during the night shift.

To make the encrypted data inaccessible, disable the passphrase.

To disable the passphrase

Use the MODIFY statement, specifying an empty string for the passphrase:

MODIFY tablename ENCRYPT WITH PASSPHRASE='';

An attempt to access the data will result in the following message:

E_US24BF A query has been issued against an encrypted table for which encryption
is not enabled. Please contact your system administrator.

Using Data at Rest Encryption 95

Function-based Encryption (Application-level Encryption)

Change the Passphrase

The circle of trust for the table may change, or the law may require that the
passphrase change periodically.

To change the passphrase for encrypted data, use the NEW_PASSPHRASE
option on the MODIFY statement.

To change the passphrase

1. Issue the MODIFY statement with the following options:

MODIFY tablename ENCRYPT
 WITH PASSPHRASE='encryption passphrase',
 NEW_PASSPHRASE='new encryption passphrase';

2. Issue another MODIFY statement to enable the table with the new phrase:

MODIFY tablename ENCRYPT WITH PASSPHRASE = 'new encryption passphrase';

Issuing the second MODIFY re-enables access to encrypted data and
ensures that the changed passphrase was typed correctly. We recommend
doing this immediately, and before a COMMIT is issued. If a problem
occurs, ROLLBACK to the old passphrase and try again.

Function-based Encryption (Application-level Encryption)

The SQL functions AES_ENCRYPT and AES_DECRYPT allow AES 128-bit
encryption at the application (rather than the DBMS Server) level, by using
encryption options on DML such as SELECT, INSERT, and UPDATE statements.

This example creates table socsec2 to store function-encrypted data and insert
the data from table socsec1.

CREATE TABLE socsec2
 (fname char(10),
 lname char(20),
 socsec byte(16));

INSERT INTO socsec2 SELECT
 fname, lname,
 AES_ENCRYPT(socsec,'user function encryption')
 FROM socsec1;

The stored data is encrypted, even though Ingres does not regard table
socsec2 as encrypted. There is no need to MODIFY socsec2 to enable
encryption.

96 Security Guide

Function-based Encryption (Application-level Encryption)

A SELECT on the table shows that the data is not plain text:

SELECT fname, lname, HEX(socsec) AS socsec FROM socsec2
Executing . . .

+----------+--------------------+--------------------------------+
|fname |lname |socsec |
+----------+--------------------+--------------------------------+
John	Smith	5722A4EEDA081CB25955E826DDFA2A3F
Lois	Lane	814ACE20D419A8F36944625941155709
Charlie	Brown	40CD699016608827C7A9A4E7CDB161DF
+----------+--------------------+--------------------------------+
(3 rows)

For AES_ENCRYPT, the data is stored as a variable length byte string that
encrypts both the contents and length of the value being encrypted.

To be able to read the data, use the AES_DECRYPT function, supplying the
secret passphrase:

SELECT fname, lname,
 AES_DECRYPT(socsec,'user function encryption') AS socsec
 FROM socsec2
Executing . . .

+----------+--------------------+----------------+
|fname |lname |socsec |
+----------+--------------------+----------------+
John	Smith	012-33-4567
Lois	Lane	010-40-1234
Charlie	Brown	012-44-9876
+----------+--------------------+----------------+
(3 rows)

With function-based encryption, the application decides what byte values are
saved in the column. Data in a single column can be unencrypted, encrypted
with different passphrases, doubly encrypted, and so on.

In this example we change the passphrase for just one row in the table.

UPDATE socsec2 SET socsec =
 AES_ENCRYPT(AES_DECRYPT(socsec,'user function encryption'),'Smith socsec')
 WHERE lname='Smith';

SELECT AES_DECRYPT(socsec,'Smith socsec') FROM socsec2 WHERE lname='Smith'
Executing . . .

+----------------+
|col1 |
+----------------+
|012-33-4567 |
+----------------+
(1 row)

Using Data at Rest Encryption 97

Function-based Encryption (Application-level Encryption)

If we then select all rows from the table, supplying the original passphrase,
decryption of the row for 'Smith' fails, and a blank string is returned for that
row.

SELECT AES_DECRYPT(socsec,'user function encryption') FROM socsec2
Executing . . .

+----------------+
|col1 |
+----------------+
| |
|010-40-1234 |
|012-44-9876 |
+----------------+
(3 rows)

Function-based decryption with the wrong passphrase typically returns an
empty string, but may return random data. If necessary, the application can
add a scheme for sanity checking returned data. (Such sanity checking is built
into transparent encryption through a hash validation value that is stored with
the encrypted data.)

98 Security Guide

Encryption Information Displayed with HELP TABLE

Encryption Information Displayed with HELP TABLE

The HELP TABLE statement displays encryption information for tables that
contain encrypted columns.

For example, column encryption of the socsec1 table is defined at the DBMS
level. Here is an excerpt from the output from HELP TABLE socsec1:

Column Information:
 Key
Column Name Type Length Nulls Defaults Seq
fname char 10 yes null
lname char 20 yes null
socsec char 11 yes null

Secondary indexes: none

Column encryption: AES256
Alter table totwidth: 48
Encrypted width: 48

Encrypted Column Name Type Width Salt
socsec char 16 no

Encryption-related fields are:

Column encryption

Encryption type

Alter table totwidth

Physical width of encrypted columns

Encrypted width

Physical width of the table

Encrypted Column Name…Width

Physical width of the named column

In this example, the logical width of the table (width as seen by applications)
is 44, which is the sum of the column widths including the NULL bytes. Since
AES is a block encryption algorithm, encrypted column widths as stored on
disk will always be a multiple of 16. The NULL byte and a data verification
hash value are included in the encrypted data. In this case, the socsec column
with NULL (12 bytes) plus verifying hash (4 bytes) exactly fits in one AES
block. Partial AES blocks are padded as needed in cases where the user data is
not an exact fit.

Using Data at Rest Encryption 99

How to Compute the Width of Encrypted Data

In contrast, the socsec2 table is used to store encrypted data, but encryption
is defined at the application level with the AES_ENCRYPT function. Here is an
excerpt from the output of HELP TABLE socsec2:

Column Information:
 Key
Column Name Type Length Nulls Defaults Seq
fname char 10 yes null
lname char 20 yes null
socsec byte 16 yes null

Secondary indexes: none

No encryption information is shown because there is nothing special about the
table. The application has the responsibility to ensure that the encrypted data
fits in the BYTE column that is used for that purpose. In this case, the sum of
the VARBYTE length for the encrypted data (2) plus that data itself (11) fits
within one AES block, which is stored in the BYTE(16) column.

How to Compute the Width of Encrypted Data

Encrypted data takes up more room than unencrypted data for the following
reasons:

1. AES is a block cipher that operates only on 16-byte chunks, so padding is
often necessary.

2. At-rest encrypted data includes a 4-byte hash to validate decryption
processing.

3. Adding SALT to guarantee the unique encryption of each row of an
encrypted column adds 16-bytes of overhead.

The HELP TABLE command displays the physical width of encrypted columns in
an encryption section (see page 99) of the report.

Use the following algorithm to calculate the width of an encrypted column:

1. Start with the natural width of the column.

2. Add 1 for nullable columns.

3. Add 4 for the verification hash.

4. Round up to the nearest multiple of 16.

100 Security Guide

Data at Rest Encryption Restrictions

The goal of encryption is to make meaningful data appear to be a random
series of bits until the encryption algorithm in combination with the encryption
key is used to restore the data to its original state. One result is that
encrypted data does not compress well, so Ingres does not compress
encrypted columns.

Thus, the net effect on disk storage needs of encryption is a combination of
the expansion of the encrypted rows for necessary overhead, and the loss of
compressibility of the encrypted columns.

The AES_ENCRYPT function accepts as input a string of type VARBYTE and
encrypts the entire string, including the 2-byte prefix that holds the VARBYTE
length.

To compute the length of the encrypted output of the AES_ENCRYPT function,
use the following algorithm:

1. Start with the length of the input as VARBYTE (that is, after casting to that
data type if the original input is of another type).

2. Add 2 for the length prefix.

3. Round up to the nearest multiple of 16.

If you store AES_ENCRYPT encrypted data in a database table, be sure to
allocate sufficient space for the full encrypted data length. Truncated
encrypted data cannot be decrypted successfully.

Data at Rest Encryption Restrictions

Restrictions for encrypting columns are as follows:

 An encrypted column cannot be part of a table key.

 An encrypted column can be indexed, but the column must be defined with
NOSALT, the index must be on the one column only (no composite
indexes) and the index must be of type HASH.

Note: Due to the nature of encrypted data, only exact lookups are
possible using the index. Because range and pattern queries cannot use
the index, they would typically require a full table scan; such queries may
be prohibitively costly.

 Long data types (LOBs) cannot be encrypted.

Using Data at Rest Encryption 101

Implications of Data Encryption for Database Design and Operations

Implications of Data Encryption for Database Design and
Operations

When an encrypted table is created, an AES key is created (either generated
randomly or according to the key bit pattern specified on AESKEY=). The AES
key—not the passphrase—controls the encrypted binary representation of
data, and is stored in the catalog at the table level.

The passphrase is used to derive another AES key (not stored), which secures
the catalog-stored AES key. The passphrase is essentially a lockbox for the
encrypted AES key.

The fact that there is one AES key that encrypts the user data and another
passphrase-derived key that protects the first AES key has the following
implications for database design and operations:

 When the passphrase is changed, database backups before this point in
time must be accessed using the old passphrase. Subsequent backups
must be accessed using the new passphrase. When changing the
passphrase, it is not necessary to suspend use of the table by rebuilding it
(though the encryption access will be momentarily suspended until the
new passphrase is confirmed with a second MODIFY command).

When the passphrase is changed, the catalog-stored key is decrypted with
the old passphrase, re-encrypted with the new passphrase, and then
replaced in the catalog. The user data is not re-encrypted because only the
passphrase—not the underlying user key—has changed.

 If a backup or replication scheme works at the binary level by transferring
and applying journal records, the original table and the copy table must
use the same catalog-stored AES key. This will be the case if (1) the
catalogs were copied at the binary level or (2) the AESKEY= option was
used when the table was created.

Note: Tables that share an underlying AES key for encrypting user data
can be protected by different passphrases.

 Encrypted data is usually unique at the binary level for each stored
instance or at least in each stored table. It is therefore problematic to
protect it outside of the table in the same manner that it is protected in
the Ingres table files. When data is copied to a flat file, it is unprotected.
Such files should use a different protection scheme, such as password
encrypting the entire file, or writing it to an encrypted device or file
system.

102 Security Guide

Understanding Salt

Understanding Salt

The NOSALT column-level option overrides the default (SALT), which adds 16
bytes of random bits to data before encryption and strips them out after
decryption.

To understand salt, consider this example. A medical database contains a
column indicating the status for each patient: whether they have had a
particular medical test and, if so, whether they tested positive or negative for
the condition. A value of Y indicates a positive result, N indicates a negative
result, and NULL that the test has not been done. This data must be keep
confidential. If the column is encrypted, has the patient information been
protected?

If SALT is used the data is indeed protected. But if NOSALT is specified, the
data is essentially unprotected. Given identical input and an identical key,
encryption is repeatable. If Y is encrypted again and again with the same AES
key, the encrypted representation of each value is the same.

Someone working to "crack" the database can correlate the repeated patterns
with the easily learned frequency of positive and negative test results in the
general population. The secret is out without needing to crack the actual AES
encryption. The problem is that hiding the values Y and N does not hide the
information that Y and N represent.

If salt is added to the encryption, every row contains, in the indicator column,
a different encrypted value. Because the null indicator is included in the
encryption protection, it is impossible to know who has been tested or who has
tested positive for the condition. In fact, no statistical information can be
gleaned. Without the passphrase, which protects the AES key for the table, the
medical test result column appears to contain nothing but meaningless binary
noise, which is the goal of encryption.

But consider another column in the medical database that contains values that
do not repeat: the U.S. Social Security number of the patient. The encrypted
values in the column will be distinct, regardless of whether SALT or NOSALT is
specified. (Furthermore, the values are distinct from the same Social Security
number stored encrypted in another table, because the other table has a
different AES key, even if the tables are protected with the same passphrase.)

In the case of Social Security numbers, NOSALT still yields apparent
randomness in the encrypted values. The only information leaked is the fact
that Social Security numbers are different for each patient, which is common
knowledge.

Using SALT (the default):

 Provides further protection of the encrypted data.

 Hides column value repetitions (for example, Y, N, null).

Using Data at Rest Encryption 103

Indexing Encrypted Columns

 Provides a unique encrypted representation of each value (because a
different, random, salt prefix is generated for each encryption operation).
SALT renders the encryption non-repeatable.

NOSALT can be used:

 When you want to index a table on the encrypted value of the column

 When the column has values that are unique before encryption

 To use less disk storage. Salt adds one AES block (16 bytes) to the
column.

Note: The cost is a small price to pay for better protection, considering
the relatively low cost of storage.

Indexing Encrypted Columns

Because encryption randomizes data in a way that destroys alphabetical order,
an index build on an encrypted column is limited to “exact hit” lookups. The
index is built with a tuple ID pointer (tidp) that records the row in the base
table that contains the encrypted value.

The following restrictions apply to indexes on encrypted columns:

 Indexed encrypted columns must not use SALT.

 Indexes on tables that contain encrypted columns must be defined with
HASH storage structure.

 Because such an index only supports exact indexed value lookup, the cost
of doing a range lookup or string pattern match on encrypted columns is
much higher than a similar operation on an unencrypted column. In
general, such queries should be avoided for performance reasons.

Encryption and Copydb/Unloaddb Considerations

Data at rest encryption does not protect data outside the database, including
files created using the copydb and unloaddb commands.

The copydb command creates a copy.out file that writes the decryption-
enabled table to a flat file as plaintext. It is important that the resulting file be
encrypted with file or disk encryption facilities.

The corresponding copy.in file contains encryption syntax to recreate the
exported table with the original column encryption. The standard passphrase
'TEMPORARY PASSPHRASE' is encoded in the copy.in file. A good practice is to
use this or other temporary phrase to import the table, and then to MODIFY
the passphrase immediately after import.

104 Security Guide

Optimizedb Considerations for Data at Rest Encryption

Optimizedb Considerations for Data at Rest Encryption

When the optimizedb utility is used to create statistics for encrypted columns,
the histogram cells will contain unencrypted (plain text) data. The histogram
cells are statistical extracts, and cannot be linked back to any particular row in
the table (except when there is only a single table row). Nevertheless,
depending on the nature of the data and your business, this may be
considered a security breach.

By default, the optimizedb program skips encrypted columns, but they can be
included by specifying the -ze flag. Alternatively, the -r (relation) and -a
(attribute) flags can be used to specify exactly which tables and columns to
include.

You can verify which columns have had statistics generated for them with the
statdump command.

Note: For Ingres Star databases, optimizedb is not able to determine whether
or not a column is encrypted. To exclude encrypted columns, use the -r and -a
flags to specify the columns for which statistical data is gathered.

Using Data at Rest Encryption 105

Encrypted Data in Log Records and Auditdb Output

Encrypted Data in Log Records and Auditdb Output

UPDATE statements are recorded in the log file differently for encrypted tables
because:

 Encrypted changes are physically wider than the values of the decrypted
column values

 When SALT is used, each re-encryption of the data yields a different
physically stored value

Such characteristics of encrypted data in log and journal files can be seen in
the auditdb output, which displays encrypted records in hex format and
without decryption.

Consider this script, in which a table with two integer columns (only the
second of which is encrypted) is created, populated, and then updated:

CREATE TABLE auditdemo (c1 INT, c2 INT ENCRYPT)
WITH ENCRYPTION=AES256, PASSPHRASE='auditdb demo';
MODIFY auditdemo ENCRYPT WITH PASSPHRASE='auditdb demo';
INSERT INTO auditdemo VALUES (1,2);
UPDATE auditdemo SET c1=3 WHERE c1=1;
UPDATE auditdemo SET c1=4 WHERE c1=3;

Even in the hex display we can see that c1 starts off as value 1 and then is
updated to 3 and then to 4. But notice also that the remainder of these rows
change too, because each rewrite of the row causes a re-encryption that
produces a different value.

Audit for database aud
18-Aug-2010 12:50:03.59 Page 1

Begin : Transaction Id 00004c584d495a7e 18-Aug-2010 12:49:56.89
 Username ingres
 Create : Transaction Id 00004c584d495a7e Id (268,0) Table [auditdemo,ingres]
 Location $default
 Insert/Append : Transaction Id 00004c584d495a7e Id (268,0) Table [auditdemo,ingres]
 Record: 01000000006d8f35d1cff37f6e7eab7070403c13b785bc20e6e489f41731daa0230db78884
 Update/Replace : Transaction Id 00004c584d495a7e Id (268,0) Table [auditdemo,ingres]
 Old: 01000000006d8f35d1cff37f6e7eab7070403c13b785bc20e6e489f41731daa0230db78884
 New: 03000000006e954a05f5c9f8a5b73234ec957386c23bf686d8141cb180d190a4b8c7bc17f6
 Update/Replace : Transaction Id 00004c584d495a7e Id (268,0) Table [auditdemo,ingres]
 Old: 03000000006e954a05f5c9f8a5b73234ec957386c23bf686d8141cb180d190a4b8c7bc17f6
 New: 0400000000829e143ee15459d75aa0f8d3238a2b1ea1643a594b6dffb4792c5b59f8657bb5
End : Transaction Id 00004c584d495a7e 18-Aug-2010 12:49:56.90

106 Security Guide

Encrypted Data in Log Records and Auditdb Output

The SQL statements in the script do not update column c2. So, despite the
various encrypted incarnations of the record, the underlying value for column
c2 is the one that was specified when the row was first inserted:

SELECT * FROM auditdemo
Executing . . .

+-------------+-------------+
|c1 |c2 |
+-------------+-------------+
| 4| 2|
+-------------+-------------+
(1 row)

Using Data at Rest Encryption 107

Appendix A: Configuring Ingres to Use
Kerberos

This section contains the following topics:

Kerberos (see page 109)
Kerberos Configuration in the Enterprise (see page 110)
The Ingres Service Principal—Authorize Client Connections (see page 113)
How to Configure Ingres to Use Kerberos (see page 115)
iisukerberos Command—Perform Basic Kerberos Configuration (see page
116)
Ingres Configuration Options for Kerberos (see page 117)
Service Principal Host Name Resolution (see page 122)

Kerberos

The Kerberos authentication mechanism can be used as an alternative to the
Ingres or System security mechanisms. Kerberos is a network authentication
and encryption protocol that provides a highly secure alternative to operating
system-level password authentication, and optionally allows encryption of the
entire data stream exchanged between the DBMS server and client.

The Ingres and System security mechanisms are called “static” mechanisms,
because they are embedded in Ingres. The Kerberos security mechanism is
called a “dynamic” mechanism, because it depends on third-party software
that is dynamically loaded into Ingres executable images at runtime.

Kerberos is available as freeware from the Massachusetts Institute of
Technology at http://web.mit.edu/kerberos/. Kerberos is also available
commercially or may be available natively on certain operating systems, such
as Linux. The MIT site contains extensive documentation on Kerberos
installation and configuration.

The Ingres Kerberos driver references authentication and encryption routines
in the Kerberos environment, most notably, the shared library or DLL
containing GSS API authentication routines.

Configuring Ingres to Use Kerberos 109

Kerberos Configuration in the Enterprise

Kerberos Configuration in the Enterprise

Before using Kerberos with Ingres, Kerberos should be appropriately
configured in your enterprise.

A primary component of Kerberos is the Key Distribution Center (KDC). The
KDC is a server process that performs the core authentication. The
authentication protocol is a set of encrypted tickets that are passed from the
KDC to client processes or intermediate agents known as “service principals.”
For the sake of simplicity, let us assume that a single KDC will perform the
Kerberos authentication.

If the enterprise contains only one Ingres DBMS Server, a possible option is to
execute the KDC on the same machine as the DBMS Server:

110 Security Guide

Kerberos Configuration in the Enterprise

If enough resources are available, it is desirable to install the KDC on a
network node separate from the Ingres installation. In this way, security
restrictions can be imposed on the Kerberos node that may not be possible if
Kerberos resided on the same machine as an Ingres DBMS:

The example above demonstrates why Kerberos is sometimes referred to as
“distributed authentication.” The KDC performs authentication for all Ingres
nodes in the enterprise, even though the KDC itself resides on a separate
network node.

Note: The above example assumes all the Ingres nodes will use Kerberos for
authentication, but this is not a requirement; some nodes may continue to use
Ingres or System authentication.

Configuring Ingres to Use Kerberos 111

Kerberos Configuration in the Enterprise

Kerberos Configuration Files—Configure Kerberos for Ingres

Here are examples of Kerberos configuration files. These examples assume
that the KDC resides on the node foo.xyz.com and the Kerberos domain is
named MYDOMAIN.XYZ.COM,

The krb5.conf file may look like this:

[libdefaults]
 default_realm = MYDOMAIN.XYZ.COM

[realms]
 SSF.XYZ.COM = {
 kdc = foo.xyz.com
 admin_server = foo.xyz.com
 }

[domain_realm]
 .xyz.com = MYDOMAIN.XYZ.COM
 xyz.com = MYDOMAIN.XYZ.COM

[logging]
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmin.log
 default = FILE:/var/log/krb5lib.log

The kdc.conf file may look like this:

[kdcdefaults]
 kdc_ports = 88

[realms]
 MYDOMAIN.XYZ.COM = {
 kadmind_port = 749
 max_life = 12h 0m 0s
 max_renewable_life = 7d 0h 0m 0s
 master_key_type = des3-hmac-sha1
 supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal des-cbc-
crc:v4
 }

112 Security Guide

The Ingres Service Principal—Authorize Client Connections

The Ingres Service Principal—Authorize Client
Connections

A Kerberos principal is an entity to which credentials (validated tickets) may
be assigned. Most principals of concern to Ingres are simply those that
correspond to the login names of the Ingres users. For instance, for the
domain MYDOMAIN.XYZ.COM, a principal representing the “ingres” user is
“ingres@MYDOMAIN.XYZ.COM”.

Note: The credentials associated with the “ingres” user are valid for all
“ingres” logins in the Kerberos domain, regardless of the system passwords
associated with the “ingres” login name on each machine.

A KDC must define user principals for each Ingres user that exists in the
enterprise, and for each Ingres service principal. An Ingres service principal
does not correspond to a login user name. Instead, the Ingres service principal
represents an Ingres process that performs authentication on behalf of the
user.

User principals get tickets directly from the KDC through the kinit or Leash
Ticket Manager or Network Identify Manager programs, but an Ingres service
principal requires no such initialization. Instead, the Ingres service principal
relies on the Kerberos keytab file to establish its credentials.

An Ingres service principal definition is required for each node on the Kerberos
domain that has an Ingres installation. The KDC installation must define a
keytab file for all Ingres service principals in order to decrypt tickets received
from the KDC. A copy of the keytab file must be installed on each Ingres node
in the Kerberos domain. For the best security, set ownership of the keytab file
to “ingres” or the installation owner, and set read-only permissions to the
keytab file.

We strongly recommend that you define the KR5_KTNAME environment
variable as the full path and file name of the keytab file. On Windows, this is
mandatory.

The Ingres service principal uses the standard Kerberos
“primary/instance@realm” format, as follows:

$ingres/hostname@realm

hostname

Is the fully-qualified domain name of the host on which the Ingres
installation is running. To find the fully-qualified host name for your
machine, execute the iinethost utility.

realm

Is the Kerberos administrative domain name.

Configuring Ingres to Use Kerberos 113

The Ingres Service Principal—Authorize Client Connections

In the example host name foo.xyz.com, the Ingres service principal would be
named “$ingres/foo.xyz.com@MYDOMAIN.COM”.

Note: The fully-qualified host name is required when defining the Ingres
service principal. Thus, the name “$ingres.foo@MYDOMAIN.COM” is not a valid
Ingres service principal name. The “$ingres/” prefix is mandatory. A principal
name such as “ingres.foo@MYDOMAIN.COM” is invalid due to the missing
dollar sign ($).

114 Security Guide

How to Configure Ingres to Use Kerberos

How to Configure Ingres to Use Kerberos

The process for configuring Ingres to use Kerberos is as follows:

1. Set the basic configuration for using Kerberos by doing either of the
following:

 Run the iisukerberos utility (see page 116).

 Set parameters in Configuration-By-Forms, as described in Basic
Configuration for Kerberos (see page 117).

2. Set other parameters in Configuration-By-Forms, as needed, according to
your environment.

3. Obtain authorization tickets by using the kinit command (Windows, VMS
and UNIX), the Leash Utility (Windows), or the Network Identity Manager
(Windows).

4. Stop and restart Ingres.

Startup will be successful if the Kerberos GSS API library exists in your
LD_LIBRARY_PATH definition (UNIX and Linux), if the GSSAPI32.DLL file
resides in your system environment path (Windows), or if the file
SYS$LIBRARY:GSS$RTL32.EXE is installed (VMS).

5. Test your server using a loopback test.

To test a loopback connection using Kerberos, the local Name Server must
be configured for Kerberos authentication by using the iisukerberos utility
or by setting the “remote_mechanism” setting in the Name Server to
“kerberos” in the Configuration-By-Forms utility. In addition, your
loopback vnode entry, as defined in netutil, must have an attribute named
“authentication_mechanism” and an attribute value of “kerberos”, as
described in vnode Connection Attributes (see page 119).

If you do not want to define a loopback vnode, proceed to step 7.

6. Test your connection using the Terminal Monitor, as follows:

sql loopback::iidbdb

The loopback vnode should be as described in the preceding step.

7. Set up your clients. Your netutil definitions are almost the same as when
using os-level authentication, but you should leave the login/password
data blank.

Configuring Ingres to Use Kerberos 115

iisukerberos Command—Perform Basic Kerberos Configuration

iisukerberos Command—Perform Basic Kerberos
Configuration

The iisukerberos utility provides a simple interface for the most commonly-
used Kerberos configuration options.

This command has the following format:

UNIX, Linux, Windows:

iisukerberos

VMS:

@II_SYSTEM:[ingres.utility]iisukerberos.com

The iisukerberos utility configures Kerberos at the following levels:

 Client configuration

Client configuration enables this installation to use Kerberos to
authenticate against a remote installation that has been configured to use
Kerberos for authentication. This is the minimum level of Kerberos
authentication.

Note: You must add the "authentication_mechanism" attribute in netutil
for each remote node you wish to authenticate using Kerberos. The
"authentication_mechanism" attribute must be set to "kerberos". There is
no need to define users or passwords for vnodes using Kerberos
authentication.

 Name Server authentication

Name Server authentication allows the local Name Server to authenticate
using Kerberos.

 Server-level authentication

Server-level authentication forces all local servers, such as the DBMS
Server and the Communications Server, and applications to authenticate
against the Name Server using Kerberos.

You can select any combination of client, Name Server, and server-level
authentications.

116 Security Guide

Ingres Configuration Options for Kerberos

Ingres Configuration Options for Kerberos

To configure Ingres to use Kerberos, you must set certain parameters in
Configuration-By-Forms. In addition, connection attributes may be required
depending on the requirements of the enterprise.

The following system components in Configuration-By-Forms are relevant:

 Name Server

 Net Server

 Security, Configure, System

 Security, Configure, System, Mechanisms

Basic Configuration for Kerberos

When you configure Ingres to use Kerberos, you should first check the basic
configuration. The basic configuration consists of the mechanisms parameter
and the domain parameter in the Security component.

mechanisms Parameter—Specify Dynamic Mechanism

For Ingres to use Kerberos as a dynamic mechanism, the mechanism
parameter must be set to kerberos. In Configuration-By-Forms, the
mechanisms parameter is located in Security, Configure, System.

The setting should look similar to this:

Name Value Units

mechanisms kerberos mechanism list

Note: The ingres, system, or null mechanisms are invalid entries to this list,
since its purpose is to specify the dynamic authentication mechanisms.

Configuring Ingres to Use Kerberos 117

Ingres Configuration Options for Kerberos

domain Parameter—Specify Domain Name

In addition to the mechanism parameter, the domain parameter must be set
to configure Ingres to use Kerberos.

In Configuration-By-Forms, the domain parameter is located in Security,
Configure, System, Mechanisms, Kerberos.

The domain parameter must contain the fully qualified host name of the local
installation. This name corresponds to the Ingres service principal name. For
example, for machine foo.xyz.com, the value for the domain parameter should
be “foo.xyz.com.” If the entry reads simply “foo,” edit and correct the entry.

The setting should look similar to this:

Name Value Units

domain foo.xyz.com hostname

remote_mechanism Parameter—Configure Client in a Homogeneous Kerberos
Environment

The Name Server can be configured to use Kerberos for authentication for all
remote targets. If so configured, connection attempts on non-Kerberos targets
will fail. Use the remote_mechanism parameter for this purpose.

In Configuration-By-Forms, the remote_mechanism parameter is located in
the Name Server component. Add kerberos to the mechanism list (if not
already added in the Security configuration), and specify kerberos as the value
on the remote_mechanism parameter.

The setting should look similar to this:

Name Value Units

remote_mechanism kerberos none, default, mechansim name

In a homogeneous Kerberos environment, it is not necessary to add
login/password information for the vnode definitions in netutil. They are
ignored at connect time.

118 Security Guide

Ingres Configuration Options for Kerberos

vnode Connection Attributes—Configure Client in a Heterogeneous Kerberos
Environment

Heterogeneous Kerberos environments are those in which both Kerberos and
non-Kerberos connection targets exist in the enterprise. In such an
environment, the Name Server settings in Configuration-By-Forms must
remain at their default values. The local client behavior must change,
depending on the connection target.

To configure the client in a heterogeneous Kerberos environment, specify
connection attributes for a vnode using the netutil utility.

Here is a sample vnode configuration in netutil:

Connection data for vnode 'newyork'

Type Net Address Protocol Listen Address

Global newyork-xp1. tcp_ip TS

Other attribute data for vnode 'newyork'

Type Attr_Name Attr_Value

Private authentication_mechanism kerberos

Note: The login/password entry for a Kerberos target should remain blank. A
login/password entry is not required because the local Kerberos user principal
is used for authentication, and the KDC authenticates using the ticket cache of
the local user, rather than the system password on the remote connection
target.

Note: Kerberos authentication requires a TCP/IP-compatible network protocol
on the local installation. On Windows, tcp_ip or win_tcp are acceptable
protocol settings. On VMS, dec_tcp is the TCP/IP specifier, and will work if
TCP/IP is supported through Multinet, TCP/IP, or TCP/IP over DECnet. Non-
TCP/IP protocols, such as DECnet, are not supported.

Configuring Ingres to Use Kerberos 119

Ingres Configuration Options for Kerberos

Encryption Parameters—Enable Kerberos Encryption

To specify encryption, the following options are available in Configuration-By-
Forms under the Net Server (also known as Communications Server)
component:

ib_encrypt_mech

Determine the encryption mechanism for inbound connections. Valid
values are

kerberos

Specifies that Kerberos be used.

*

Specifies that Kerberos will be used if included as an item on the
mechanism list.

ob_encrypt_mech

Determine the encryption mechanism for outbound connections. Valid
values are the same as for ib_encrypt_mech.

ib_encrypt_mode

Determines the encryption mode for the inbound data stream. Valid values
are as follows:

Off

Specifies that encryption be neither requested nor allowed.

Optional

Specifies that encryption may occur but is not requested.

On

Specifies that encryption is requested, if possible (if both ends support
it).

Required

Specifies that encryption must always occur.

ob_encrypt_mode

Determines the encryption mode for the outbound data stream. Valid
values are the same as for ib_encrypt_mode.

Outbound connection items may be configured as connection attributes in
netutil.

120 Security Guide

Ingres Configuration Options for Kerberos

The following example specifies Kerberos encryption for all inbound
connections:

Name Value Units

ib_incrypt_mech kerberos *, mechanism name

ib_incrypt_mode required off, optional, on, required

How Name Server Delegation Works

Delegation provides an alternate method of acquiring and forwarding
authentication. When delegation is configured, the Name Server generates
authentication certificates as if it were the client.

This method requires Kerberos to be configured as both the local and remote
authentication mechanism. The client process generates an authentication
certificate for the local Name Server. The local Name Server, in turn, uses its
delegation capabilities to generate an authentication certificate, and forwards
the certificate on behalf of the client to the remote Name Server.

If delegation is not enabled, or Kerberos is not configured as the local
authentication mechanism, then the Name Server cannot generate the remote
authentication certificate. Instead, the client acquires the authentication
certificate prior to making the remote connection. The client then forwards the
credentials directly to the remote Name Server. Either method is valid for
making secure connections through Kerberos.

Set Delegation

The process of acquiring and forwarding authentication can be delegated to
the Name Server.

To set delegation

1. Start Configuration-By-Forms and select Security, Configure, Mechanisms,
Kerberos.

2. Set the delegation parameter to on.

Configuring Ingres to Use Kerberos 121

Service Principal Host Name Resolution

Service Principal Host Name Resolution

The KDC will not resolve the fully qualified host name (FQDN) correctly (even
though you specify it on the Configuration-By-Forms domain parameter (see
page 118)) unless it resolves the host name passed from the client as the
FQDN.

The FQDN is picked up from your network configuration (rather than the
Ingres config.dat setting) when the Kerberos driver calls
gss.init.sec..context(). Often the unqualified host name is passed to the KDC,
and gss.init.sec..context() fails.

To ensure that the KDC can resolve the fully qualified host name

UNIX and Linux:

In environments other than Windows, edit the local host file with the FQDN
and not the alias for your local host as the first entry. On UNIX and Linux, the
file is /etc/hosts and often looks like this:

Syntax:

IP-Address Full-Qualified-Hostname Short-Hostname

127.0.0.1 localhost
nn.nn.nn.nn myhost.mydomain.com myhost

VMS: On VMS, use the TCPIP utility:

$ tcpip

TCPIP> show hosts

 LOCAL database

Host address Host name

127.0.0.1 localhost
nn.nn.nn.nn myhost.mydomain.com myhost

For details on configuration of the local hosts file, see your system
administrator.

122 Security Guide

Service Principal Host Name Resolution

VMS Considerations

Kerberos commands are accepted in uppercase by default (as in DCL
commands). Accordingly, principal names should be enclosed in double
quotes, as in the following example:

$ kinit "tingresxx"

If "tingresxx" had not been enclosed in double quotes, the KDC would have
looked for the principal "TINGRESXX" instead of "tingresxx". Creation of the
Kerberos principal "TINGRESXX" (all caps) will not help; the Ingres security
mechanism fails the authentication due to "TINGRESXX" not equating to
"tingresxx". The Ingres security mechanism is still in force as the default
authentication mechanism regardless of whether Kerberos is configured.

If server-to-server authentication is desired (CBF, Security, Configure,
user_mechanism), the VMS logical KRB$USER must be defined at the group
level. The SYS$MANAGER:KRB$SYMBOLS.COM script defines only at the
process level by default. Otherwise, security contexts will not be accepted and
the error "GSS-API error gss_init_sec_context: Credentials cache I/O
operation failed XXX" will appear in a GCS trace or the error log. This problem
occurs because servers run as detached processes. Detached processes run
without a CLI and have no visibility of logical definitions at the process level.

The following command file defines KRB$USER at the group level based on the
process-level definition, runs ingstart, and de-assigns KRB$USER:

$!
$! RINGSTART.COM - Run Ingstart with KRB$USER
$!
$ krb = F$TRNLNM("KRB$USER","LNM$PROCESS")
$ define/group/executive/translation=concealed KRB$USER 'krb'
$ ingstart
$ deassign/group/exec KRB$USER
$ exit

Configuring Ingres to Use Kerberos 123

Glossary
authorization identifier

An authorization identifier is an entity to which access to database objects can
be granted. The four authorization identifiers are: Role, User, Group, or
PUBLIC.

database procedure
A database procedure is a set of SQL statements and control statements in a
begin/end block that are stored as a unit in the database.

default group
A default group is the group assigned to a user when a user object is created
or modified.

default profile
A default profile is the profile initially assigned to a user if one is not explicitly
assigned.

grant

A grant is an object permission assigned to a group, role, or user.

group
A group is an identifier that can be used to apply permissions to a list of users
associated with the identifier.

object permission
An object permission defines a capability related to a specific object, such as a
database or a table. Object permissions are assigned to selected groups, roles,
or users. Object permissions are also called grants, permits, or object
privileges.

privileged user
A privileged user is any user with the necessary privileges to perform security-
related operations. The system administrator, database administrator, or
security administrator are privileged users.

profile
A profile is a template that defines a set of subject privileges and other
attributes that can be applied to one or more users. The user authorization
process can be streamlined by using profiles.

role
A role is an identifier that can be used to associate permissions with
applications.

Glossary 125

security alarm

A security alarm is an entity that can be created to monitor a security-related
event, such as connecting to a database or updating a table.

security auditing

Security auditing is the recording of all or specified classes of security events
for the entire Ingres installation.

subject privilege
A subject privilege defines the type of operations permissible in a user session.
Subject privileges are assigned to a user (subject).

user object
A user object is a definition that specifies the user’s name, default group,
default profile, subject privileges, and several other attributes.

126 Security Guide

Index

A G

access privilege • 49 grant (statement)
altering database • 49

group objects • 32 described • 46
role objects • 35 overhead • 57
user objects • 24 granting privileges • 47

auditor (privilege) • 40 grants
authorization hierarchy • 58 creating • 47
authorization identifiers • 10, 51, 60 database event • 55

evaluating • 56
C procedure • 55

role • 55
connect_time_limit (privilege) • 49, 61 group objects • 32
create_procedure (privilege) • 49, 61 groups • 31
create_table (privilege) • 49, 61

I creating
grants • 47
group objects • 32 idle_time_limit (privilege) • 49, 61
procedure objects • 75 ingvalidpam program • 16, 79, 80
profile objects • 24 ingvalidpw program • 15, 16
role objects • 35

K security alarms • 64
user objects • 24

Kerberos • 8 users • 23

L D

lockmode (privilege) • 49, 61 database access • 23
databases M

accessing • 23
destroying • 32, 35 maintain_audit (privilege) • 41
grants • 49 maintain_locations (privilege) • 41
procedures • 75, 76 maintain_users (privilege) • 42

db_admin (privilege) • 49, 61
O dbmsinfo • 61

default profile • 31
destroying objects • 24, 32, 35, 64, 75 objects
dropping destroying/dropping • 24, 32, 35, 64, 75

objects • 24, 32, 35, 64, 75 operator (privilege) • 43
overhead for grants • 57 E
P

encryption
column • 91, 94 PAM (pluggable authentication module) • 16,

79 Kerberos • 120

Index 127

permissions
examining • 61
hierarchy • 58
multiple • 57

pluggable authentication module (PAM) • 16,
79

privileges
access • 49
auditor • 40
classes • 46
connect time limit • 49
create procedure • 49
create table • 49
database admin • 49
default • 45
examining • 61
granting • 46
idle time limit • 49
lockmode • 49
maintain_audit • 41
maintain_locations • 41
maintain_users • 42
operator • 43
query limit • 49
security • 44
select syscat • 49
session priority • 49
table statistics • 49
trace • 44
update syscat • 49

procedure objects • 75
profile objects • 24

Q

query_cost_limit (privilege) • 49, 61
query_cpu_limit (privilege) • 49, 61
query_io_limit (privilege) • 49, 61
query_page_limit (privilege) • 49, 61
query_row_limit (privilege) • 49, 61

R

role
identifiers • 31
objects • 35

roles
defined • 35
purpose • 31

S

salt • 94, 103
security

alarm objects • 64
alarms • 63
audit log • 69, 71
audit statements • 70
auditing • 66
changes taking effect • 71
current audit file name • 73
events • 66
privilege • 44

select_syscat (privilege) • 49
session_priority (privilege) • 49, 61
sessions privileges • 60
setuid • 16

T

table_statistics (privilege) • 49
trace (privilege) • 44

U

update_syscat (privilege) • 49, 61
user

authorization • 23
objects • 24
privileges • 39

users
Ingres • 23

V

viewing
group objects • 32
procedure objects • 75
role objects • 35
security alarm objects • 64
user objects • 24

128 Security Guide

	Bookshelf
	Ingres Security Guide
	Contents
	1: Introduction to Ingres Security
	Security Features
	Level of Security
	Understanding Ingres Security Mechanisms
	Directory and File Permissions
	User Authentication
	Remote Users
	Installation Passwords
	The ingvalidpw Utility (UNIX)

	Authorization Identifiers
	Subject Privileges
	Object Permissions
	Security Alarms
	Security Auditing
	Database Procedures
	Data at Rest Encryption

	2: Understanding Directory and File Permissions
	Directory and File Permissions
	File Permissions on Windows
	File Permissions on UNIX

	3: Security Features on UNIX
	Ingvalidpw Program (Password Validation)
	Create Password Validation Program (UNIX)

	Ingvalidpam Program (Password Validation Through PAM)
	Access Control with Setuid (UNIX)
	Use Chmod to Set the Setuid Bit
	Example: Refer to Setuid in an Embedded SQL Application

	4: Authorizing User Access
	Common Types of Ingres Users
	Ingres Users and the DBA
	How to Establish User Access
	Users and Profiles
	Working with User Objects
	Create a New User with Accessdb
	User Expiration Date
	User Password
	Authorize Multiple Users with SQLscript

	Working with Profile Objects
	Example of Using a Profile
	Default Profile

	Groups and Roles
	Groups
	Working with Group Objects
	Example: Creating, Altering, and Dropping a Group using SQL Statements
	Groups and Permissions
	Specifying Group ID at Session Startup

	Roles
	Working with Role Objects
	Example: Creating, Altering, and Dropping a Role using SQL Statements
	Roles and Permissions
	Specifying Role ID at Session Startup

	5: Assigning Privileges and Granting Permissions
	Subject Privileges
	Auditor Privilege
	Createdb Privilege
	Maintain_Audit Privilege
	Maintain_Locations Privilege
	Maintain_Users Privilege
	Operator Privilege
	Security Privilege
	Trace Privilege
	Sets of Privileges Associated with a Session

	Object Permissions
	Working with Grants
	Object Ownership and Granting Object Permissions
	The GRANT Statement

	Database Grants
	How Database Permissions for a Session are Determined
	Database Grant Examples

	Table and View Grants
	Permissions on Tables and Views
	Permissions on Tables

	Table Grant Examples
	Procedure Grants
	Database Event Grants
	Role Grants
	How Grants Restrict Data Access

	Grant Overhead
	Multiple Permission Checks
	How Privileges for a Session Are Determined
	Access to Tables, Views, or Procedures and the Authorization Hierarchy
	Access to Databases and the Authorization Hierarchy

	How Database Privileges for a Session Are Determined
	Dbmsinfo--View Permissions for Current Session
	Example: Return the Value of Query Row Limit for Current Session

	6: Implementing Security Auditing
	Security Alarms
	Working with Security Alarm Objects
	How to Implement a Security Alarm
	Security Alarm Example

	Security Auditing
	Audit Focus
	How to Enable Security Auditing
	How to Verify Security Auditing Levels

	Security Auditing Configuration Parameters
	Security Audit Statements
	Security Audit Levels for Users and Roles
	Changes to Security Audit Status During a Session
	Access to the Security Audit Log
	Registering the Security Audit Log File
	Querying the Registered Virtual Table
	Obtain the Current Audit File Name

	7: Controlling Access through Database Procedures
	Database Procedures
	Working with Procedure Objects
	How to Implement a Database Procedure
	Database Procedure Example

	Access Control through Database Procedures

	8: Implementing PAM in Ingres
	What Is PAM?
	The Ingvalidpam Program
	Requirements for Using PAM
	Build the Ingvalidpam Program
	How to Implement Standard Linux or UNIX Security Using PAM
	Ingres PAM Configuration File (For Linux or UNIX)

	How to Implement LDAP Authentication Using PAM
	LDAP Requirements
	The ldap.conf File--Configure LDAP Daemon (slapd)
	Browse slapd Database

	The Ingres PAM Configuration File (for LDAP)
	Active Directory Configuration
	Browse Active Directory Database

	How to Implement Kerberos Authentication Using PAM
	Ingres Kerberos Driver versus Ingvalidpam
	The krb5.conf File--Configure Kerberos
	The Ingres PAM Configuration File (for Kerberos)

	Netutil Entries for Ingvalidpam
	Test Ingvalidpam

	9: Using Data at Rest Encryption
	What Is Data at Rest Encryption?
	How Encryption Works
	The Power of Encryption
	Transparent vs. Function-based Encryption
	Transparent Column Encryption (DBMS Server-level Encryption)
	Enable Access to Encrypted Data
	Disable Access to Encrypted Data
	Change the Passphrase

	Function-based Encryption (Application-level Encryption)
	Encryption Information Displayed with HELP TABLE
	How to Compute the Width of Encrypted Data
	Data at Rest Encryption Restrictions
	Implications of Data Encryption for Database Design and Operations
	Understanding Salt
	Indexing Encrypted Columns
	Encryption and Copydb/Unloaddb Considerations
	Optimizedb Considerations for Data at Rest Encryption
	Encrypted Data in Log Records and Auditdb Output

	A: Configuring Ingres to Use Kerberos
	Kerberos
	Kerberos Configuration in the Enterprise
	Kerberos Configuration Files--Configure Kerberos for Ingres

	The Ingres Service Principal--Authorize Client Connections
	How to Configure Ingres to Use Kerberos
	iisukerberos Command--Perform Basic Kerberos Configuration
	Ingres Configuration Options for Kerberos
	Basic Configuration for Kerberos
	mechanisms Parameter--Specify Dynamic Mechanism
	domain Parameter--Specify Domain Name

	remote_mechanism Parameter--Configure Client in a Homogeneous Kerberos Environment
	vnode Connection Attributes--Configure Client in a Heterogeneous Kerberos Environment
	Encryption Parameters--Enable Kerberos Encryption
	How Name Server Delegation Works
	Set Delegation

	Service Principal Host Name Resolution
	VMS Considerations
	

	Index

