
Ingres 10.0

Object Management Extension User
Guide

ING-10-OME-01

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD-
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2010 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction 7
Audience..7
In This Guide..7
System-specific Text in This Guide...8
Terminology Use in This Guide ..8
Syntax Conventions Used in This Guide ..8

Chapter 2: Introducing Object Management Extension 9
What Is Object Management Extension? ...9

Structure and Symbol Definitions ...9
Demonstration Data Types .. 10

How You Add Data Types and Functions.. 10
Required Contents of the Code... 10
Data Type Definitions ... 11
Function Definitions.. 11
Function Instance Definitions... 11
Coercion Routines .. 12
Installation and Testing of the New Code... 13

Object Management Extension Restrictions ... 13

Chapter 3: Understanding DBMS Server Requirements for User-Defined Data
Types 15
How the DBMS Server Uses the Code ... 15
Requirements for User-written Code... 16
Requirements for Data Type Coercion... 17
IDs for Data Types and Functions .. 18
User-defined Data Types and the Copy Statement.. 18
Large Objects ... 19

Chapter 4: Defining Data Types 21
Data Type Definition .. 21
Structure IIADD_DT_DFN Fields .. 22
Required Routines for Data Type Definition ... 24

Function Parameters .. 25
Structure scb_error .. 26
Structure II_DATA VALUE ... 27

Contents iii

The Structure of db_data .. 27
compare Routine—Compare Two Data Elements .. 29
dbtoev Routine—Determine External Data Type ... 30
dhmax Routine—Create Default Maximum Histogram Value ... 32
dhmin Routine—Create Default Minimum Histogram Value .. 33
getempty Routine—Get an Empty Value.. 34
hashprep Routine—Prepare Value for Hash Key.. 35
helem Routine—Create a Histogram Element for Data Value .. 36
hg_dtln Routine—Provide Type and Length for Histogram Value ... 37
hmax Routine—Create Histogram Value for Maximum Value .. 39
hmin Routine—Create Histogram Value for Minimum Value.. 40
keybuild Routine—Build a Key from the Value.. 41
length_check Routine—Check for Valid Length ... 45
minmaxdv Routine—Provide Min/Max Values and Lengths ... 46
seglen Routine—Determine Length of Each Long Segment... 49
tmcvt Routine—Convert Data Type to Displayable Format ... 50
tmlen Routine—Determine Display Length... 51
value_check Routine—Check for Valid Values .. 52
xform Routine—Transform Long Types into Segments... 53

Chapter 5: Defining Functions 55
Required Definitions... 55
Structure IIADD_FO_DFN ... 55

Chapter 6: Defining Function Instances 57
Function Instance Definition.. 57
Structure IIADD_FI_DFN .. 58
Length Definition of Result Data Type... 61
External Lenspec Routine—Return Result Length of Specified Value .. 62
Complementary Function Instances.. 62
Sorting of the Function Instance Definition Array.. 63
Methods for Defining Function Instances for Large Objects .. 63
Ingres-supplied Filter Functions ... 64

Direct Manipulation of Large Objects... 66
II_INFORMATION Operation—Return Maximum Length of Peripheral Object Segments 68
II_GET Operation—Get Next Segment .. 69
II_PUT Operation—Add a New Segment.. 71
II_COPY Operation—Move a Peripheral Object ... 73

iv Object Management Extension User Guide

Chapter 7: Passing Definitions to the DBMS Server 75
IIudadt_register Routine .. 75
Structure IIADD_DEFINITION Fields... 76
Server Routines Provided ... 78

The ii_cb_trace Routine—Output Provided Trace Messages... 78
The ii_error_fcn Routine—Place Error Information in Status Control Block 79
The ii_lo_handler_fcn Routine—Move Through Large Object Segments 79
The ii_init_filter_fcn Routine—Set Up Filter Function ... 79
The ii_filter_fcn Routine—Perform Operation by Calling a User Routine 80

Chapter 8: Installing and Testing Data Types 81
How You Install New Data Types in a Windows Environment .. 81
How You Install New Data Types in a VMS Environment .. 81

Template Command File—Create the Shared Image .. 82
II_USERADT Logical—Set Disk Location of the Shared Image ... 83

How You Install New Data Types in a UNIX Environment ... 84
Testing the New Data Type Code ... 85

Chapter 9: Using Abstract Spatial Data Types 87
Use of Spatial Data Types, Operators, and Functions .. 87
Spatial Data Types in the Spatial Object Library... 88

Point Data Type ... 89
Box Data Type... 90
Lseg Data Type ... 91
Line Data Type .. 92
Long Line Data Type... 93
Polygon Data Type ... 94
Long Polygon Data Type ... 95
Circle Data Type .. 96
Ipoint Data Type.. 97
Ibox Data Type.. 98
Ilseg Data Type ... 99
Iline Data Type.. 100
Ipolygon Data Type.. 101
Icircle Data Type ... 102
Nbr Data Type... 103
Spatial Data Types Storage Formats ... 103

Spatial Operators .. 104
Equality Operators ... 105
Binary Spatial Operators ... 105
Overlaps Operator.. 109

Contents v

Nbr Function ... 110
Hilbert Function ... 110

Functions that Support the Spatial Operators... 110
Spatial Functions ... 111
Spatial Conversion Functions ... 111

Support Routines for Spatial Data Types ... 116
Ordering of Spatial Data Types.. 119
Polygon Length Limits .. 120
How You Install Spatial Data Types in UNIX or Linux Environments... 121
How You Install Spatial Data Types in a VMS Environment... 124
How You Install Spatial Data Types in a Windows Environment .. 125

Chapter 10: Writing Aggregate Functions 127
Aggregate Function ... 127
Function Definitions for Aggregates.. 128
Code for an Aggregate Function... 129

Appendix A: Checklist for Creating Data Types 131
How You Create Data Types in Windows ... 131
How You Create Data Types in UNIX .. 132
How You Create Data Types in VMS ... 133

Index 135

vi Object Management Extension User Guide

Chapter 1: Introduction
This section contains the following topics:

Audience (see page 7)
In This Guide (see page 7)
System-specific Text in This Guide (see page 8)
Terminology Use in This Guide (see page 8)
Syntax Conventions Used in This Guide (see page 8)

This guide provides you with the instructions for using Object Management
Extension to add data types and SQL functions to Ingres® and provides the
requirements for creating the required source code and procedures for
installing your code.

Audience
This guide assumes that you are an experienced programmer, familiar with the
C programming language.

In This Guide

This guide introduces Object Management Extension and contains information
on the following topics:

 Interaction of new data types and SQL functions with the DBMS Server

 Requirements for defining a new data type

 Requirements for defining a new SQL function

 Requirements for defining function instances to support your new data
types and functions

 Description of the routine used by the DBMS Server to access the code for
new data types and functions

 Instructions for installing and testing your code

 Description of spatial data types

An appendix contains a checklist for defining, installing, and testing a new data
type or SQL function.

Introduction 7

System-specific Text in This Guide

System-specific Text in This Guide

This guide provides information that is specific to your operating system, as in
these examples:

UNIX: This information is specific to the UNIX operating system.

VMS: This information is specific to the UNIX operating system.

When necessary for clarity, the symbol is used to indicate the end of the
system-specific text.

For sections that pertain to one system only, the system is indicated in the
section title.

Terminology Use in This Guide

The documentation uses the following terminology:

A command is an operation that you execute at the operating system level.

A statement is an operation that you embed within a program or execute
interactively from a terminal monitor.

A statement can be written in Ingres 4GL, a host programming language (such
as C), or a database query language (SQL or QUEL).

Syntax Conventions Used in This Guide

This guide uses the following conventions to describe syntax:

Convention Usage

Monospace Indicates keywords, symbols, or punctuation that you
must enter as shown

Italics Represent a variable name for which you must supply an
actual value

[] (brackets) Indicate an optional item

{ } (braces) Indicate an optional item that you can repeat as many
times as appropriate

| (vertical bar) Separates items in a list and indicates that you must
choose one item

8 Object Management Extension User Guide

What Is Object Management Extension?

Chapter 2: Introducing Object
Management Extension

This section contains the following topics:

What Is Object Management Extension? (see page 9)
How You Add Data Types and Functions (see page 10)
Object Management Extension Restrictions (see page 13)

This chapter introduces Object Management Extension and outlines the general
tasks you must perform to add data types and functions to Ingres.

What Is Object Management Extension?

Object Management Extension is an option that enables you to add data types
and SQL functions to the DBMS Server.

You can use a user-defined data type in any context in which you can use a
standard Ingres data type, including with Ingres Star. You can use user-
defined SQL functions in queries to manipulate both user-defined data types
and standard SQL data types. To support your new data types and functions,
you can add new capabilities to existing SQL comparison and arithmetic
operators.

Structure and Symbol Definitions

You must write all the code that defines and manipulates your new data types.
The header file, IIADD.H, which you can include in your C program, contains
the structure and symbol definitions that the DBMS Server requires. IIADD.H is
located in the following directories:

Windows: %II_SYSTEM%\ingres\files\iiadd.h

UNIX: $II_SYSTEM/ingres/files/iiadd.h

VMS: II_SYSTEM:[INGRES.FILES]IIADD.H

Introducing Object Management Extension 9

How You Add Data Types and Functions

Demonstration Data Types

Object Management Extension includes two demonstration data types:

 ord_pair

This demo creates an ordered pair data type, which consists of a simple
pair of x and y coordinates. The code is located in the following files:

Windows: %II_SYSTEM%\ingres\demo\udadts\op.c

UNIX: $II_SYSTEM/ingres/demo/udadts/op.c

VMS: II_SYSTEM:[INGRES.DEMO.UDADTS]OP.C

 int_list

This demo creates a data type consisting of a variable-length list of 4-byte
integers. The code is located in the following files:

Windows: %II_SYSTEM%\ingres\demo\udadts\intlist.c

UNIX: $II_SYSTEM/ingres/demo/udadts/intlist.c

VMS: II_SYSTEM:[INGRES.DEMO.UDADTS]INTLIST.C

How You Add Data Types and Functions

To add data types and functions you must:

 Write the code that tells the DBMS Server what the new data type or
function is and how to manipulate it

 Install the code in a test installation and debug the code

 Install the code in the target installation

Required Contents of the Code

You must write the code that the DBMS Server uses to manipulate a new data
type or SQL function. This code consists of

 Data type or function definition

 Function instance definitions

 Required coercion routines

10 Object Management Extension User Guide

How You Add Data Types and Functions

Data Type Definitions

A data type definition consists of:

 Name of the data type

 Internal data type identifier (a 2-byte integer)

 Data type status flags

 An underlying data type (if necessary)

 Routines required by the DBMS Server to manipulate the data type

Function Definitions

A function definition specifies the names of the functions that are used to
invoke operations. The definition of a function consists of:

 Function name

 Function identifier (a 2-byte integer)

 Type of operation invoked by the function

Function Instance Definitions

A function instance definition defines the use of a function or operator in a
particular context. Because the same function can be used differently with
different data types, each instance of use must be defined. For example,
different function instances exist for the + operator: one to add integers, one
to concatenate text, one to add money, and so on.

When you are defining a new data type, you must also define a function
instance for each function or operator that you use with the new data type. If,
for example, you want to add two values of the new data type, you must first
define a function instance for the + operator used with the new data types.
When you define a new SQL function, you must define a function instance for
its use with each data type with which it is used.

Introducing Object Management Extension 11

How You Add Data Types and Functions

The definition of a function instance is composed of:

 Function instance identifier (a 2-byte integer)

 Function instance complement identifier (if this instance is a comparison)

 Operator or function identifier for which this is an instance

 Operator type

 Function instance status flags

 Number of arguments and their data types

 Workspace length

 Data type of the result

 Length of the result

 Address of the routine that performs the instance

Note: Object Management Extension does not allow you to redefine the use of
the standard operators with existing SQL data types and functions. If you try
to do this, you do not receive an error, but the code is ignored.

Coercion Routines

You must provide the data type coercion routines that support your new data
type. For a list and discussion of the required coercion routines, see the
chapter "User-Defined Data Types and the DBMS Server Environment."

12 Object Management Extension User Guide

Object Management Extension Restrictions

Installation and Testing of the New Code

After you have written all of the routines necessary to define and manipulate
the new data types and functions, you must create the routine
IIudadt_register.

Windows: After IIudadt_register is created, you must rebuild the
IILIBUDT.DLL. The IIudadt_register function serves as the entry point to the
IILIBUDT Dynamic Linked Library that gives the DBMS Server access to the
new data types and functions.

UNIX: After IIudadt_register is created, you must relink the images to give
the DBMS Server access to the new data types and functions.

VMS: IIudadt_register serves as the entry point to the shared image that the
various components of the DBMS Server use to access the new data types and
functions.

For information about these steps in the procedure, see the chapter "Passing
Definitions to the DBMS Server" and the chapter “Installing and Testing Data
Types.”

Install your new code in a test installation and test it thoroughly before moving
it to the target installation.

Object Management Extension Restrictions

The following restrictions apply to Object Management Extension:

 You can add a maximum of 128 new data types.

 You cannot export user-defined data types from the DBMS Server.

For this reason, the Ingres user interfaces (such as Query-By-Forms or Report-
By-Forms) cannot manipulate user-defined data types in their “natural” state.
You must choose a standard SQL data type to represent the new data types for
the user interface programs and write the necessary coercion routines.

Note: The copy statement allows the byte representation of the data to be
exported. However, copy handles this data as char. To avoid errors caused by
network character translation, avoid moving the data to a different machine
using Ingres Net.

Introducing Object Management Extension 13

Chapter 3: Understanding DBMS Server
Requirements for User-Defined Data
Types

This section contains the following topics:

How the DBMS Server Uses the Code (see page 15)
Requirements for User-written Code (see page 16)
Requirements for Data Type Coercion (see page 17)
IDs for Data Types and Functions (see page 18)
User-defined Data Types and the Copy Statement (see page 18)
Large Objects (see page 19)

This chapter describes general requirements for the coding of your user-
defined data types.

How the DBMS Server Uses the Code

The code that supports a user-defined data type or SQL function runs as part
of the DBMS Server and is available to the entire installation. The DBMS
Server, Recovery, and Archiver processes access this code after the code has
been properly installed.

Important! A bug in your code—a memory access violation, in particular—can
damage the integrity of data or the operating environment of the DBMS
Server.

Understanding DBMS Server Requirements for User-Defined Data Types 15

Requirements for User-written Code

Requirements for User-written Code

The routines that you write must be written in a language which conforms to
the calling and operational conventions of the C language. If you use a
language other than C, be sure that the structures you build have the same
structure, on a field-by-field basis, as those defined in the header file,
IIADD.H. For the location of this header file, see the chapter "Introducing
Object Management Extension."

To avoid problems, your code must follow these guidelines:

The code must not make any system calls or perform any other operation,
such as generating exceptions or signals, which alter the flow of control within
the server.

The code must not perform any operations such as memory allocations or
operations such as disk I/O, which cause the process to be suspended.

The code must perform only computations on the data provided by the DBMS
Server.

User-defined data types are visible only to the DBMS Server. When a user-
defined data type is returned to an Ingres tool such as Query-By-Forms, the
DBMS Server must convert your new data type to a standard SQL data type.
To specify the external data type, use the dbtoev routine. For more
information, see dbtoev in the "Defining Data Types" chapter.

16 Object Management Extension User Guide

Requirements for Data Type Coercion

Requirements for Data Type Coercion

When you define a new data type, you must also define the coercion routines
that support the data type. The following coercion routines are required:

 A coercion from any data type to the same data type.

This coercion routine is used by the DBMS Server in variety of instances,
for example, during retrieve into and create table as select statements or
when changing the length of a data type.

 A coercion from the new data type to the SQL data type that represents
this data in user interface applications (such as Query-By-Forms or Report-
By-Forms).

User interface applications do not accept user-defined data types directly.
Therefore, you must provide a coercion routine to convert your data type
to a standard SQL data type for external representation. This coercion
routine must be compatible with the input coercion routine as follows:

The output of this coercion routine must be acceptable as input to the
input coercion routine. The output of the input coercion routine must be
acceptable as input to this coercion routine.

An example of a coercion routine for converting from an internal to an
external representation is shown here:

sprintf(obuffer, "(%11.3f, %11.3f)", point.x,point.y);

 An input coercion.

This coercion must convert data coming from an SQL insert or update
query to internal representation. Data represented as character strings in
Embedded SQL is sent to the DBMS Server as the varchar data type. At
least one input coercion routine, which converts varchar to your data type,
is required. The input coercion routine must be compatible with the
external coercion routine as follows:

The output of this coercion routine must be acceptable as input to the
output coercion routine. The output of the output coercion routine must be
acceptable as input to this coercion routine.

An example of a coercion routine for converting from an external to an
internal representation is shown here:

sscanf(inbuffer, "(%F, %F%1s %1s", &point.x, &point.y,
 end_paren,junk);

 Coercions to and from the II_LONGTEXT data type.

This data type is similar to varchar but is used in different contexts. For
example, it is used to display data from various utility programs, such as
auditdb.

Understanding DBMS Server Requirements for User-Defined Data Types 17

IDs for Data Types and Functions

IDs for Data Types and Functions

You must assign an identification number to all data types, functions, and
function instances when they are created. The ID numbers for each type of
object (data types, functions, and function instances) occupy a number space
that is unique for that object type. An object's ID must be unique within the
same class of objects, but does not have to be unique across object classes.
For example, a new data type cannot have an ID that is the same as another
data type, but it can have an ID number that is the same as a new function's
ID number.

Note: For upward compatibility, make identification numbers for all objects
unique across machines.

Identification numbers are stored in system catalogs in databases. You cannot
change an ID number without first removing all references to both the ID and
the object it represents from the catalogs. All tables, views, database
procedures, grants, permits, integrities, and rules that refer to the object must
also be destroyed.

Following are the ranges of values that are reserved for IDs and the
corresponding data types:

SQL data types: 1 to 8191
Spatial data types: 8192 to 16383
User-defined data types: 16384 to 32767

User-defined Data Types and the Copy Statement

When you use the SQL copy statement with user-defined data type, be aware
of the following points:

 The copy statement interprets user-defined data types using the char data
type.

 Copying user-defined data types across different machines can produce
unexpected results.

 Use bulk copy statement or a field format that specifies the length of the
user-defined field. Copying user-defined data types using a format other
than fixed or bulk format can produce unexpected results.

 Do not use character delimiters such as colon, newline, or tab with user-
defined data types.

18 Object Management Extension User Guide

Large Objects

Large Objects

Object Management Extension allows you to create data types that can
accommodate objects that exceed the size limits for native data types. These
objects are called large objects or peripheral objects. The name peripheral
object indicates that these objects are stored outside of the table in which they
are declared.

Large objects are stored as a number of segments, each of which is of some
simple and small data type. This type is called the underlying data type for the
large object. See Structure IIADD_DT_DFN Fields. Operations performed on
large objects generally operate on a segment at a time.

Large objects can be up to two gigabytes in size. The code does not attempt to
materialize the entire object in memory—rather, large objects are represented
in memory using the II_PERIPHERAL data structure. The II_PERIPHERAL
structure contains two fields. The first field is the tag and it contains the “style”
of the large object. The style can be either real data or coupon. If the tag is
seen by the Object Management Extension routines, the value indicates that
the large object is a coupon. The coupon status indicates that only the
information necessary to find and collect the object is present. At other times
during the tag's life, it can contain different values, but these are not seen by
the Object Management Extension code. (For example, the tag can have a
variety of values that indicate how it is transmitted across the communication
link.) The second field contains the length of the object. This field is an eight
byte integer, although only four bytes are currently used (per_length1).

Large objects cannot be used as table keys, do not have histograms computed,
and cannot be sorted. You must specify these restrictions as data type
attributes along with the PERIPHERAL attribute at the time the data type is
declared. See the dtd_attributes field in Structure IIADD_DT_DFN Fields.

Because of these restrictions, only a few of the required functions are
necessary for peripheral objects. Only the length_check, getempty, tmlen,
tmcvt, dbtoev, seglen, value_check, and xform routines must be provided.
However, these attributes are independent from the peripheral attribute in the
sense that the lack of histogram capability can be specified for non-peripheral
objects. If so specified, the histogram routines need not be provided.

Understanding DBMS Server Requirements for User-Defined Data Types 19

Chapter 4: Defining Data Types
This section contains the following topics:

Data Type Definition (see page 21)
Structure IIADD_DT_DFN Fields (see page 22)
Required Routines for Data Type Definition (see page 24)
compare Routine—Compare Two Data Elements (see page 29)
dbtoev Routine—Determine External Data Type (see page 30)
dhmax Routine—Create Default Maximum Histogram Value (see page 32)
dhmin Routine—Create Default Minimum Histogram Value (see page 33)
getempty Routine—Get an Empty Value (see page 34)
hashprep Routine—Prepare Value for Hash Key (see page 35)
helem Routine—Create a Histogram Element for Data Value (see page 36)
hg_dtln Routine—Provide Type and Length for Histogram Value (see page 37)
hmax Routine—Create Histogram Value for Maximum Value (see page 39)
hmin Routine—Create Histogram Value for Minimum Value (see page 40)
keybuild Routine—Build a Key from the Value (see page 41)
length_check Routine—Check for Valid Length (see page 45)
minmaxdv Routine—Provide Min/Max Values and Lengths (see page 46)
seglen Routine—Determine Length of Each Long Segment (see page 49)
tmcvt Routine—Convert Data Type to Displayable Format (see page 50)
tmlen Routine—Determine Display Length (see page 51)
value_check Routine—Check for Valid Values (see page 52)
xform Routine—Transform Long Types into Segments (see page 53)

This chapter describes the data type definition and the routines that are
required for a data type.

Data Type Definition
The DBMS Server requires a data type definition for each user-defined abstract
data type. This definition specifies the name, length, and ID of the new data
type. The definition also points to the routines that manage and manipulate
the new data type.

Defining Data Types 21

Structure IIADD_DT_DFN Fields

Structure IIADD_DT_DFN Fields

The fields of the structure IIADD_DT_DFN compose the data type definition.
The first five fields specify the name, length, ID of the new data type, its
underlying type, and its attributes. These fields are as follows:

dtd_object_type

Contains the value (hex 210) specified by II_O_DATATYPE.

dtd_name

Specifies the name of the new data type. The name must be a character
string with a maximum length of 32 bytes. If the string is less than 32
bytes, it must be null terminated. For example, the data type char is
specified as 'char\0'.

dtd_id

Specifies the data type identifier. It is a 2-byte integer field. The ID must
be a value between the values represented by ADD_LOW_USER and
ADD_HIGH_USER, 16384 and 16511 respectively. This field cannot be
altered once the data type is in use.

dtd_underlying_id

Specifies the data type ID, used to store large object segments. This field
is used only when the II_DT_PERIPHERAL attribute is set.

dtd_attributes

Specifies the attributes of the data type. If none of the attributes are
necessary or appropriate, then set this field to II_DT_NOBITS (bits are
described in the following table).

22 Object Management Extension User Guide

Structure IIADD_DT_DFN Fields

Large objects do not have any inherent sort order, cannot be used as keys
for tables, and cannot have histograms. To specify the attributes in the
dtd_attributes field, use the constants listed here:

II_DT_NOBITS

Indicates that the data type has no specific attributes.

II_DT_NOKEY

Indicates that the data type cannot be specified as a key column in a
modify or create index statement.

II_DT_NOSORT

Indicates that the data type cannot be specified as the target of a sort
by or order by clause in a query, nor can the DBMS Server sort on this
data type during the execution of a query. Data types tagged with this
bit may have no inherent sort order. They are simply marked as
“different” by the sort comparison routine.

II_DT_NOHISTOGRAM

Indicates that histograms cannot be constructed for this data type.

II_DT_PERIPHERAL

Indicates that the data type is stored outside of the basic table format.
This means that the table itself can contain either the full data element
or it can contain a “coupon” that can be redeemed later to obtain the
actual data type.

The data representing a peripheral data type is always represented by
an II_PERIPHERAL structure. This structure represents the union of the
II_COUPON structure and a byte stream (an array of 1 byte/char). This
data structure also contains a flag indicating whether this is the real
thing or the coupon.

II_DT_VARIABLE_LEN

Indicates that the data type can be specified as occurring a maximum
number of times. If compressed, only the actual number of
occurrences is saved, thereby saving disk storage.

The remaining fields in the IIADD_DT_DFN structure are filled with the
addresses of the required routines that manipulate the data type. The Required
Routines for Data Type Definition section lists these routines and the common
characteristics that they share. The remainder of the chapter describes each
routine in detail.

Defining Data Types 23

Required Routines for Data Type Definition

Required Routines for Data Type Definition

For each data type that you add, you must provide the following routines:

 compare

 dbtoev

 dhmax

 dhmin

 getempty

 hashprep

 helem

 hg_dtln

 hmax

 hmin

 keybuild

 length_check

 minmaxdv

 seglen

 tmcvt

 tmlen

 value_check

 xform

These routines are called using the following syntax:

status = fid_routine(scb, [arg1 [, arg2]], result)

The routines must return a 4-byte integer of type II_STATUS whose value
represents the overall result of the function. A value of 0 (II_OK) means
successful completion. A value of 5 (II_ERROR) means an error. In the case of
an error, the query execution is terminated.

24 Object Management Extension User Guide

Required Routines for Data Type Definition

Function Parameters

Each function has from two to four parameters.

The first parameter must be a Session Control Block. This structure contains
information used by the upper layers of the DBMS data type subsystem. Inside
the Session Control Block is a structure named scb_error of the type
II_ERR_STRUCT. Scb_error (see page 26) must be filled in when the function
returns an error.

The last parameter must be a pointer to a result of some type. The result
structure can be a single element, such as an integer, containing some sort of
indicator, but most often it is an II_DATA_VALUE (defined below).

The result can contain valid data that specifies some portion of the work to be
done. This is often done when the routine is creating a portion of a value and
another portion of the value is created elsewhere. For example, this is done if
getempty() was providing the data and the actual type and length were being
created elsewhere.

The two optional parameters (arg1 and arg2) are pointers to II_DATA_VALUE
(see page 27) structures that describe the data values manipulated by the
routine. Each function uses II_DATA_VALUE structures.

Defining Data Types 25

Required Routines for Data Type Definition

Structure scb_error

A structure named scb_error of the type II_ERR_STRUCT is inside the Session
Control Block. Scb_error must be filled in whenever the function returns an
error.

The fields of the scb_error structure are as follows:

er_errcode

Contains the error code that identifies the error to the calling facility.

er_class

Contains the value II_EXTERNAL_ERROR (3).

er_usererr

Contains the user error code. This is the same value as that in er_errcode.

er_sqlstate_err

Must contain a valid SQLSTATE error code. For details about SQLSTATE,
see the SQL Reference Guide.

er_ebuflen

Sent by the DBMS Server to specify the size of the buffer pointed to by
er_errmsgp.

er_emsglen

Sent back to the DBMS Server to indicate the length of the formatted error
message that was placed in the buffer to which er_errmsgp points.

er_errmsgp

Contains a pointer to a buffer where a formatted message can be placed. If
this pointer is NULL (0), then no message can be provided.

26 Object Management Extension User Guide

Required Routines for Data Type Definition

Structure II_DATA VALUE

The fields in the II_DATA_VALUE structure describe the data values
manipulated by the routine. The fields are as follows:

db_datatype

Type identifier of the data.

db_length

Length of the data.

db_data

Pointer to the actual data (if appropriate). This data may not be aligned as
required by your machine, and you may need to align the data for correct
operation.

The structure of db_data will vary, as described in The Structure of
db_data (see page 27).

db_prec

Precision of the data value. For most data types, this is not needed, and
should be ignored on input and set to 0 for output.

For DECIMAL, the high order byte will represent the value's precision (total
number of significant digits), and the low order byte will hold the value's
scale (the number of these digits that are to the right of an implied
decimal point.)

The Structure of db_data

The db_data field in the II_DATA VALUE structure is a pointer to the data. The
exact structure of db_data will vary according to the data type. For standard
SQL data types it will be the equivalent C data structure (see the Embedded
SQL Companion Guide).

The decimal data type (db_datatype II_DECIIMAL) structure is described in
Internal Structure of a Decimal Value (see page 28).

Defining Data Types 27

Required Routines for Data Type Definition

Internal Structure of a Decimal Value

A DECIMAL of precision 'P' is an array of unsigned chars of size
(1+INT(Precision/2)) where the last nibble is the sign and preceding nibbles
are the digits of the number (0x0-0x9) including leading zeros.

The size of the array is defined for the declared size of the variable, not the
size actually used (leading and trailing zeros are stored). If there is an even
number of digits, the first nibble in the array is unused.

The position of the decimal point cannot be determined from the DECIMAL
data itself; it is specified in the metadata ('scale').

The Sign nibble uses values 0xa, 0xc, 0xe, and 0xf for positive numbers (0xc
being preferred) and 0xb and 0xd for negative numbers (0xd being preferred).

Here is a sample array:

28 Object Management Extension User Guide

compare Routine—Compare Two Data Elements

compare Routine—Compare Two Data Elements

This routine compares values of two user-defined data types. If the
II_DT_NOSORT attribute is provided in the dtd_attributes field, then the
compare routine is not necessary.

The input arguments are II_DATA_VALUE pointers to the two data elements
being compared. The data elements must be of the same type. The final
argument, result, must be set to be a negative number, 0, or a positive, non-
zero number depending on whether the first argument is less than, equal to, or
greater than the second argument. That is,

if arg1 < arg2, result is negative
else if arg1 == arg2 result equals 0
else result is non-zero, positive

The address of this routine must be placed in the dtd_compare_addr field of
the IIADD_DT_DFN structure.

Inputs

The inputs for this function are:

scb

Pointer to Session Control Block

op1

First operand. Pointer to a II_DATA_VALUE structures which contains the
values to be compared.

op2

Second operand. Pointer to a II_DATA_VALUE structures which contains
the values to be compared.

result

Pointer to integer to contain the result of the operation

Defining Data Types 29

dbtoev Routine—Determine External Data Type

Outputs

The outputs for this function are:

*result

Filled with the result of the operations. This routine is set *result as
follows:

< 0 if op1 < op2

> 0 if op1 > op2

= 0 if op1 is equal to op2

Returns

II_STATUS

dbtoev Routine—Determine External Data Type
The dbtoev routine determines the external data type to which a user-defined
data type is converted.

This routine returns the external type specification for the input data type. A
coercion (function instance) must be defined to convert the input data type to
the given output data type and length.

This routine is called by the DBMS Server to determine how to pass a non-
exportable data type to an Ingres tool as the result of a select or fetch
statement. This routine sets the ev_value field to the external data type and
length for the specified user-defined data type. You must place the address of
this routine in the dtd_dbtoev_addr field of the IIADD_DT_DFN structure.

The output data type (db_datatype) must be an SQL data type. Valid values
are:

 II_INTEGER

 II_DECIMAL

 II_FLOAT

 II_C

 II_CHAR

 II_VARCHAR

 II_TEXT

30 Object Management Extension User Guide

dbtoev Routine—Determine External Data Type

The copy SQL statement does not use this interface. User-defined (and other
non-exportable) data types are returned in their original state, as char data of
the appropriate length.

Inputs

The inputs for this function are:

scb

Pointer to an SCB

db_value

Ptr to II_DATA_VALUE for database type

ev_value

Ptr to II_DATA_VALUE for export type

Outputs

The outputs for this function are:

*ev_value

Filled in as follows:

db_datatype

Type of export value. See the description for a list of valid values for
this field.

db_length

Length of export value

db_prec

Must be 0

Returns

II_STATUS

Defining Data Types 31

dhmax Routine—Create Default Maximum Histogram Value

dhmax Routine—Create Default Maximum Histogram
Value

This routine creates the default maximum histogram value. The default
histogram values are used by the optimizer when no histogram data is present
in the system catalogs. For a discussion of creating a default histogram
routine, see dhmin Routine. If the II_DT_NOHISTOGRAM attribute is set, then
this routine is not necessary.

This routine and the hmax routine form a pair, similar to the pair hmin and
dhmin, except that hmax and dhmax deal with the maximum and default
maximums, respectively, instead of the minimums.

Place the address of this routine in the dtd_dhmax_addr field of the
IIADD_DT_DFN structure.

Inputs

The inputs for this function are:

scb

Pointer to an SCB

dv_from

Pointer to a datavalue containing the type for the value

dv_histogram

Pointer to a datavalue for the histogram

Outputs

The outputs for this function are:

*(dv_histogram-db_data)

Filled with the histogram value

Returns

II_STATUS

32 Object Management Extension User Guide

dhmin Routine—Create Default Minimum Histogram Value

dhmin Routine—Create Default Minimum Histogram Value

This routine creates the minimum default histogram value. You must place the
address of this routine in the dtd_dhmin_addr field of the IIADD_DT_DFN
structure. If the II_DT_NOHISTOGRAM attribute is present, then this routine is
not necessary.

The default histogram values are used by the optimizer when no histogram
data is present in the system catalogs. (Optimizedb, which creates statistics
for use in histograms, cannot be run on user-defined data types.)

This routine differs from the hmin routine in that hmin provides the histogram
for the smallest possible value, whereas dhmin provides the histogram for the
smallest “usual” value.

No values are provided to this routine-you must determine what the minimum
and maximum default values are. For example, if a data type is being used to
store temperatures, a valid range is probably absolute 0 to some very high
number. However, a reasonable default minimum and maximum, indicating
the range used by most queries, is probably -20 degrees (F) to +120 degrees
(F) for temperatures in the continental US.

Inputs

The inputs for this function are:

scb

Pointer to a SCB

dv_from

Pointer to a datavalue containing the type and length for the value

dv_histogram

Pointer to a datavalue for the histogram

Outputs

The outputs for this function are:

*(dv_histogram-db_data)

Filled with the histogram value

Returns

II_STATUS

Defining Data Types 33

getempty Routine—Get an Empty Value

getempty Routine—Get an Empty Value

This routine constructs the given empty value for this data type. 'Empty value'
refers to the default value for a data type. (For example, the getempty routine
for an integer creates the value 0.) NULLs are handled transparently, outside
of this routine.

Place the address of this routine in the dtd_getempty_addr field of the
IIADD_DT_DFN structure.

Inputs

The inputs for this function are:

scb

Pointer to a SCB.

empty_dv

Pointer to II_DATA_VALUE in which to place the empty data value:

db_datatype

The data type for the empty data value.

db_length

The length for the empty data value.

db_data

Pointer to location to place the db_data field for the empty data value.
Note that this is often a pointer into a tuple.

Outputs

The outputs for this function are:

*(empty_dv-> db_data)

The data for the empty data value is entered.

Returns

II_STATUS

34 Object Management Extension User Guide

hashprep Routine—Prepare Value for Hash Key

hashprep Routine—Prepare Value for Hash Key

This routine prepares a data value for becoming a hash key. Place the address
of this routine in the dtd_hashprep_addr field of the IIADD_DT_DFN structure.
If the II_DT_NOKEY attribute is present, then this routine is not necessary.

For most data types, hash key preparation is a simple copy operation, copying
the input data to the output. However, some data types may require more
processing. For example, character data types may require blank removal or
case translation.

The DBMS Server hash algorithm treats the hash key as a simple byte stream.
It does not make allowances for the special characteristics of a data type. You
must normalize any variable-length data types within this routine. Unused
space must be initialized to some known value. For example, character strings
are typically padded with blanks. You must also ensure that there are no
compiler-generated holes in your data type. Holes can occur when a compiler
pads a structure definition for alignment.

This routine must transform any two values of a data type that compare as
equal (using the compare routine) into identical byte streams.

Inputs

The inputs for this function are:

scb

Pointer to a SCB

dv_from

Pointer to an II_DATA_VALUE for value to be keyed upon.

dv_key

Pointer to an II_DATA_VALUE that contains the key.

Outputs

The outputs for this function are:

*dv_key

db_length

The length of the key

db_data

The key value

Returns

II_STATUS

Defining Data Types 35

helem Routine—Create a Histogram Element for Data Value

helem Routine—Create a Histogram Element for Data
Value

This routine creates a histogram value for a data element. Place the address of
this routine in the dtd_helem_addr field of the IIADD_DT_DFN structure. If the
II_DT_NOHISTOGRAM attribute is present, then this routine is not necessary.

A histogram value is a representation of the data element. The DBMS query
optimizer uses histogram values in the evaluation of query plans. The
optimizer restricts the length of the histogram value to 8.

The comparison of the histograms of two values must match the comparison of
their respective values, because the histogram value definition (if a < b, then
h(a) < h(b)) assumes that 'a < b' uses the same compare routine. Histograms
values have a type-for details, see the description hg_dtln Routine.

Inputs

The inputs for this function are:

scb

Pointer to SCB

dv_from

Value for which a histogram is desired

dv_histogram

Pointer to data value into which to place the histogram value

db_datatype

Contains the type of the histogram value

db_length

Contains the length of the histogram value

db_data

Pointer to space of (db_length) bytes into which the histogram value is
placed

Outputs

The outputs for this function are:

*(dv_histogram-> db_data)

Contains the histogram value

Returns

36 Object Management Extension User Guide

hg_dtln Routine—Provide Type and Length for Histogram Value

II_STATUS

hg_dtln Routine—Provide Type and Length for Histogram
Value

The hg_dtln routine provides the data type and length for a histogram value
for a given data type.

This routine builds a datavalue, dv_histogram, which describes the data type
and length of the histogram value for the data type specified in the input
dv_from. Place the address of this routine in the dtd_hg_dtln_addr field of the
IIADD_DT_DFN structure. If the II_DT_NOHISTOGRAM attribute is present,
then this routine is not necessary.

Inputs

The inputs for this function are:

scb

Pointer to an SCB

dv_from

Datavalue describing the data type:

db_datatype

Data type name

db_length

Length of the data type

dv_histogram

Pointer to the datavalue provided to describe the histogram value

Defining Data Types 37

hg_dtln Routine—Provide Type and Length for Histogram Value

Outputs

The outputs for this function are:

dv_histogram

Filled with the required type and length

db_datatype

The data type

db_length

The data length

db_prec

Must be 0

Returns

II_STATUS

38 Object Management Extension User Guide

hmax Routine—Create Histogram Value for Maximum Value

hmax Routine—Create Histogram Value for Maximum
Value

This routine is used by the optimizer to obtain the histogram value for the
largest value of a type. Place the address of this routine in the dtd_hmax_addr
field of the IIADD_DT_DFN structure. If the II_DT_NOHISTOGRAM attribute is
present, then this routine is not necessary.

Inputs

The inputs for this function are:

scb

Pointer to an SCB

dv_from

Pointer to a datavalue describing the type and length of the desired
histogram value

dv_histogram

Pointer to a datavalue for the histogram

Outputs

The outputs for this function are:

*(dv_histogram-db_data)

Contains the histogram value

Returns

II_STATUS

Defining Data Types 39

hmin Routine—Create Histogram Value for Minimum Value

hmin Routine—Create Histogram Value for Minimum
Value

This routine is used by the optimizer to obtain the histogram value for the
smallest value of a type. For a discussion of histograms, see helem Routine.

Note: The smallest value for the given data type is expected to be known
implicitly by the routine.

Place the address of this routine in the dtd_hmim_addr field of the
IIADD_DT_DFN structure. If the II_DT_NOHISTOGRAM attribute is present,
then this routine is not necessary.

Inputs

The inputs for this function are:

scb

Pointer to SCB

dv_from

Pointer to a datavalue describing the type and length of the user-typed
value.

dv_histogram

Pointer to a datavalue for the histogram

Outputs

The outputs for this function are:

*(dv_histogram-db_data)

Contains the histogram value

Returns

II_STATUS

40 Object Management Extension User Guide

keybuild Routine—Build a Key from the Value

keybuild Routine—Build a Key from the Value

The keybuild routine builds an isam, B-tree, or hash key from the value.

This routine constructs a key pair for use by the system. Place the address of
this routine in the dtd_keybld_addr field of the IIADD_DT_DFN structure. If the
II_DT_NOKEY attribute is present, then this routine is not necessary.

A key pair consists of a high-key/low-key combination whose values represent
the largest and smallest values that match the key, respectively. The key pair
that results from this routine is based upon the type of key desired.

The DBMS query optimizer uses this operation for building keys for traversing
hash, isam, or B-tree tables. Whenever the DBMS Server must look up a value
in a table using an ordered index (either hash, isam, or B-tree), it uses that
value to form two other values. These two values represent the 'key', that is,
the upper and lower limits of the search space. It is not guaranteed that all
values in the relation matching the value are between the upper and lower
limits produced by keybuild().

Along with the value being keyed on, the caller of keybuild must specify the
comparison operator being used (for example, '<'). One of the input
parameters for this routine, .adc_opkey, represents the type of operation for
which this key is being built. The possible values for this parameter and the
operators they represent are:

 II_EQ_OP ('=')

 II_NE_OP ('!=')

 II_LT_OP ('<')

 II_LE_OP ('<=')

 II_GT_OP ('>')

 II_GE_OP ('>=')

Keybuild's main purpose is to build the upper and lower values of the search
space. These values are called the high key and low key, respectively. In
addition, keybuild returns the type of key that was formed, which tells what
type of search must be performed.

The value returned in adc_tykey determines whether or not a key pair is built
and, if built, whether the pair is the high or low key. If you are interested only
in what type of key is built and not in the actual search space, then set the
db_data field (in the II_DATA_VALUE structure pointed to by adc_lokey and/or
adc_hikey) to point to a zero address.

Defining Data Types 41

keybuild Routine—Build a Key from the Value

The following are the values returned in adc_tykey and their interpretations:

II_KNOMATCH

No values in the table match, so no scan of the table is done. In this case,
the low key is set to maximum value for the data type and length of the
column being keyed and the high key is set to the minimum.

II_KEXACTKEY

Only a single value from the table matchs. The low and high keys are set
to the same value. The execution phase seeks to this point and scans
forward until it is sure that it has exhausted all possible matching values.

II_KRANGEKEY

All values in the table that match lay within a range. The low key is set to
represent the lowest matching value in the table and the high key is set to
represent the highest matching value. The execution phase seeks to the
point matching the low key and scans forward until it has exhausted all
values that might be less than or equal to the high key.

II_KHIGHKEY

All values in the table that match lie at the low end of the table; they are
less than or equal to some value. In this case, the high key is set to that
value (the upper bound) and the low key is set to the minimum value for
the data type and length of the column being keyed (unbounded). The
execution phase starts at the beginning of the table and seeks forward
until it has exhausted all values that might be less than or equal to the
high key.

II_KLOWKEY

All values in the table that match lie at the high end of the table; they are
greater than or equal to some value. In this case, the low key is set to that
value (the lower bound) and the high key is set to the maximum value for
the data type and length of the column being keyed (unbounded). The
execution phase seeks to the point of the low key and scans forward from
there.

II_KALLMATCH

All values in the table may match. The low key is set to minimum value for
the data type and length of the column being keyed and the high key is set
to the maximum value. A full scan of the table must be performed.

The most likely combinations are:

 II_EQ_OP ('=') returns II_KEXACTKEY, low_key == value provided

 II_NE_OP ('!=') returns II_KALLMATCH, no key provided

 II_LT_OP ('<') and II_LE_OP ('<=') return II_KHIGHKEY, with the
high_key == value provided

 II_GT_OP ('>') and II_GE_OP ('>=') return II_KLOWKEY, with the low_key
== value provided

42 Object Management Extension User Guide

keybuild Routine—Build a Key from the Value

Although there is fairly strong correlation between the key operator and the
type of key built, you cannot use the key operator to predict with certainty the
type of key built. For example, assume that you are keying on an i2 column
with the '<' operator but the supplied key value is an i4 whose value is 50000.
The key that is built is II_KALLMATCH, not II_KHIGHKEY, as might be
expected. Do not rely on the key operator to tell you what type of key is built.

Note: The data type of the datavalue in the .adc_kdv may not be same type
as the required key resulting from this routine. If it is not, you must supply a
coercion to change it to the required data type.

Inputs

The inputs for this function are:

scb

Pointer to SCB

key_block

Pointer to key block data structure:

adc_kdv

Datavalue for which to build a key.

This datavalue does not need to be of the same type as the required
key.

adc_opkey

Operator type for which key is being built

adc_lokey

Pointer to area for key. If 0, do not build key.

adc_hikey

Pointer to area for key. If 0, do not build key.

adc_lokey, adc_hikey, and adc_kdv

Point to II_DATA_VALUEs

Defining Data Types 43

keybuild Routine—Build a Key from the Value

Outputs

The outputs for this function are:

*key_block

Key block filled with following:

adc_tykey

Type key provided.

adc_lokey

Pointer to area for key. If 0, do not build key. If adc_tykey is
II_KEXACTKEY or II_KLOWKEY, this is key built.

adc_hikey

Pointer to area for key. If 0, do not build key. If adc_tykey is
II_KEXACTKEY or II_KHIGHKEY, this is the key built.

Returns

II_STATUS

44 Object Management Extension User Guide

length_check Routine—Check for Valid Length

length_check Routine—Check for Valid Length

The length_check routine checks that the specified length for the data type is
valid. If the specified length is user specified, the routine returns the
corresponding internal length. If the length is not user specified, it returns a
user length corresponding to internal length.

Place the address of this routine in the dtd_lenchk_addr field of the
IIADD_DT_DFN structure.

If the value of user_specified is not 0, then the length is a value specified by a
user or user program-for example, 4 if user typed 'varchar(4)'. If the value of
user_specified is 0, then the length is the internal length, for example, 6 for
varchar(4).

If you specify result_dv, then it must be set to the valid length regardless of
the success or failure of the routine. If user_specified is non-zero, then
result_dv must specify the corresponding internal length. Conversely, if user-
specified is zero, then result_dv must specify the user length corresponding to
the provided internal length.

Inputs

The inputs for this function are:

scb

Pointer to SCB.

user_specified

0 if not user specified, non-zero otherwise.

dv

Pointer to datavalue to be checked. If user_specified is non-zero, then the
length field refers to the length specified by the user. Otherwise, it refers
to an internal length.

result_dv

Pointer to an II_DATA_VALUE into which to place the correct length. This
parameter can be NULL (0). When this is the case, simply return success
or error status.

Outputs

The outputs for this function are:

result_dv->db_length

Contains the valid length. If the user_specified field is non-zero, this field
must be set to the corresponding internal length. If the user_specified field
is 0, then set this to the corresponding user length.

Defining Data Types 45

minmaxdv Routine—Provide Min/Max Values and Lengths

Returns

II_STATUS

minmaxdv Routine—Provide Min/Max Values and Lengths

The minmaxdv routine provides the minimum and maximum values and
lengths for a data type.

Place the address of this routine in the dtd_minmaxdv_addr field of the
IIADD_DT_DFN structure. If the II_DT_NOHISTOGRAM attribute is present,
then this routine is not necessary.

Depending on the input parameters, the routine returns one or both of the
following:

 Its minimum and/or maximum value

 Its minimum and/or maximum length

The two input parameters are min_dv and max_dv; both are pointers to
II_DATA_VALUEs. The lengths specified (db_length) for each may be different,
but their data types (db_datatype) must be the same.

The routine uses the following rules to process these inputs:

If an input is NULL, then processing for that input is not performed. This allows
the caller who is interested in only the maximum value or only the minimum to
use this routine more efficiently.

If the db_length field of an input is supplied as II_LEN_UNKNOWN, no
corresponding value is built and placed at the output's db_data field. Instead,
the routine returns the valid internal length to the db_length field.

If the db_data field of an input is NULL, then no value is built and placed at the
corresponding output's db_data field.

If none of rules 1-3 apply to an input, then the value for the data type and
length is built and placed at db_data.

46 Object Management Extension User Guide

minmaxdv Routine—Provide Min/Max Values and Lengths

Inputs

The inputs for this function are:

scb

Pointer to an SCB.

min_dv

Pointer to II_DATA_VALUE for the 'min'. If this is NULL, 'min' processing is
skipped:

db_datatype

Its data type. Must be the same as data type for 'max'.

db_length

The length to build the 'min' value for, or II_LEN_UNKNOWN, if the
'min' length is requested.

db_data

Pointer to location to place the 'min' non-null value, if requested. If
this is NULL no 'min' value is created.

max_dv

Pointer to II_DATA_VALUE for the 'max'. If this is NULL, 'max' processing
is skipped:

db_datatype

Its data type. Must be the same as data type for 'min'.

db_length

The length to build the 'max' value for, or II_LEN_UNKNOWN, if the
'max' length is requested.

db_data

Pointer to location to place the 'max' non-null value, if requested. If
this is NULL no 'max' value is created.

Outputs

The outputs for this function are:

min_dv

If this was supplied as NULL, 'min' processing is skipped.

db_length

If this was supplied as II_LEN_UNKNOWN, the 'min' valid internal
length for this data type is returned.

Defining Data Types 47

minmaxdv Routine—Provide Min/Max Values and Lengths

db_data

If this was supplied as NULL, or if the db_length field was supplied as
II_LEN_UNKNOWN, nothing is returned. Otherwise, the 'min' non-null
value for this data type and length is built and placed at the location
pointed to by db_data.

max_dv

If this was supplied as NULL, 'max' processing is skipped.

db_length

If this was supplied as II_LEN_UNKNOWN, the 'max' valid internal
length for this data type is returned.

db_data

If this was supplied as NULL, or if the db_length field was supplied as
II_LEN_UNKNOWN, nothing is returned. Otherwise, the 'max' non-null
value for this data type and length is built and placed at the location
pointed to by db_data.

Returns

II_STATUS

48 Object Management Extension User Guide

seglen Routine—Determine Length of Each Long Segment

seglen Routine—Determine Length of Each Long Segment

This routine returns the maximum number of bytes that can fit into a segment.
For a peripheral like long line, it is the number of points that can fit in the
input length times the size of a point plus the size of a line's overhead.

Inputs

The inputs for this function are:

scb

Pointer to a SCB

dt_id

Data type ID of peripheral object

result_dv

Pointer to an II_DATA_VALUE with the maximum size of the segment in
the length field

Outputs

The outputs for this function are:

result_dv

Pointer to an II_DATA_VALUE that receives the underlying data type, the
maximum length of the underlying data type, and the precision of the
underlying data type.

Returns

II_STATUS

Defining Data Types 49

tmcvt Routine—Convert Data Type to Displayable Format

tmcvt Routine—Convert Data Type to Displayable Format

The tmcvt routine converts data of a user-defined data type from an internal
format to a displayable format. (This displayable format is used by a terminal
monitor when user-defined data types are sent without conversion to a
terminal monitor.) Place the address of this routine in the dtd_tmcvt_addr field
of the IIADD_DT_DFN structure.

This routine is used by the DBMS Server to format various trace statements
and error messages.

Inputs

The inputs for this function are:

scb

Pointer to a SCB.

from_dv

Pointer to a datavalue containing the data to be displayed

to_dv

Pointer to a datavalue that provides the output space. The datavalue's
db_data field points to an area of db_length bytes.

Outputs

The outputs for this function are:

to_dv->db_data

Filled with the output

*output_length

Filled with the number of characters placed in to_dv->db_data

Returns

II_STATUS

50 Object Management Extension User Guide

tmlen Routine—Determine Display Length

tmlen Routine—Determine Display Length

The tmlen routine determines the display length of the data type.

This routine returns the default and worst-case lengths for a data type if it
were to be printed as text, for example, by a terminal monitor. Although user-
defined data types are not returned to a terminal monitor as the user-defined
types, this routine is needed by various trace flags and error formatting within
the DBMS Server.

Place the address of this routine in the dtd_tmlen_addr field of the
IIADD_DT_DFN structure.

Inputs

The inputs for this function are:

scb

Pointer to a SCB

dv_from

Pointer to the datavalue for which the call is being made

Outputs

The outputs for this function are:

def_width

Pointer to a 2-byte integer into which the default width was placed

largest_width

Pointer to a 2-byte integer in which the largest (worst case) width was
placed

Returns

II_STATUS

Defining Data Types 51

value_check Routine—Check for Valid Values

value_check Routine—Check for Valid Values

The value_check routine checks for valid values.

For some data types, only certain characters or bit patterns might be valid.
This routine checks the patterns for validity. For example, this routine which
rejects C data type values which contain null characters.

Place the address of this routine in the dtd_valchk_addr field of the
IIADD_DT_DFN structure.

Inputs

The inputs for this function are:

scb

Pointer to a SCB

dv

Pointer to data value in question

Outputs

This function has no outputs. The return value (II_OK or II_ERROR)
determines correctness.

Returns

II_STATUS

52 Object Management Extension User Guide

xform Routine—Transform Long Types into Segments

xform Routine—Transform Long Types into Segments

This xform routine transforms a long data type into its component segments.
Place the address of this routine in the dtd_xform_addr field of the
IIADD_DT_DFM structure.

The shd_exp_action contains the instructions for this routine. ADW_START is
the first call. Thereafter, it is examined at the return of this routine to
determine the caller's next action. Set ADV_GET_DATA to have the caller
provide the next section of data. If the caller receives ADW_GET_DATA and
there is no more data, then it flushes any current data and does not return to
this routine. ADW_FLUSH_SEGMENT indicates that the caller disposes of the
output segment, and supplies a new, empty one on the next call.
ADW_CONTINUE indicates that the routine is to be called again. ADW_STOP
indicates that there is a problem and the process has failed; the routine is not
called again.

Inputs

The inputs for this function are:

scb

Pointer to a SCB.

workspace

Pointer to the workspace for peripheral operations (II_LO_WKSP). This
workspace contains fields for the: data type being transformed; the action
for this call; the pointer to, length of, and amount used of the input area;
and the pointer to, length of, and amount used of the output area.

Outputs

The outputs for this function are:

workspace

shd_exp_action

Modified to give caller action

shd_i_used, shd_o_used

Modified as used by the routine

Returns

II_STATUS

Defining Data Types 53

Chapter 5: Defining Functions
This section contains the following topics:

Required Definitions (see page 55)
Structure IIADD_FO_DFN (see page 55)

This chapter describes how to define functions.

Required Definitions
To create a new SQL function, you must provide the DBMS Server with the
function definition and function instance definitions that describe the use of the
function. To specify the function definition information, you must use the
structure IIADD_FO_DFN, described in this chapter.

Structure IIADD_FO_DFN

To define a new function, use the data structure IIADD_FO_DFN, included in
the header file, IIADD.H. For the location of this file, see the chapter
"Introducing Object Management Extension."

The fields in this structure are as follows:

fod_object_type

Specifies the object type. It must contain the constant II_O_OPERATION.

fod_name

Specifies the name of the function. The name can be up to 32 bytes in
length and must be a valid database object name. If the name is shorter
than 32 bytes, the name must be null terminated. For example, if the
name is “op,” the field must contain “op\0." If the name is 32 bytes, omit
the null terminator.

fod_id

Specifies the function number. Function numbers must be greater than or
equal to 16384. Function numbers are symbolically identified in the header
file by II_OPSTART.

fod_type

Specifies the type of operation invoked by the function or operator-must
contain the value II_NORMAL.

Defining Functions 55

Chapter 6: Defining Function Instances
This section contains the following topics:

Function Instance Definition (see page 57)
Structure IIADD_FI_DFN (see page 58)
Length Definition of Result Data Type (see page 61)
External Lenspec Routine—Return Result Length of Specified Value (see page
62)
Complementary Function Instances (see page 62)
Sorting of the Function Instance Definition Array (see page 63)
Methods for Defining Function Instances for Large Objects (see page 63)
Ingres-supplied Filter Functions (see page 64)
II_INFORMATION Operation—Return Maximum Length of Peripheral Object
Segments (see page 68)
II_GET Operation—Get Next Segment (see page 69)
II_PUT Operation—Add a New Segment (see page 71)
II_COPY Operation—Move a Peripheral Object (see page 73)

This chapter describes how to define function instances.

Function Instance Definition
Functions and operators (jointly referred to in this chapter as “functions”) can
be used in many contexts. For example, you can use the operator “+” to add
numbers, concatenate strings, or to add two user-defined data type values.
The use of a function within a given context is called a function instance.

The definition of a function instance links a function definition and the
function's arguments to a procedure (user-written executable procedure, not a
database procedure) and a result (type and length). For every new function
that you define, you must provide the DBMS Server with function instance
definitions for its use. You must also provide the function instance definitions
that define the use of your new data type with the functions with which you
intend to use it.

Defining Function Instances 57

Structure IIADD_FI_DFN

Structure IIADD_FI_DFN

Function instances are defined by filling in the structure IIADD_FI_DFN, once
for each instance. IIADD_FI_DFN is included in the header file provided with
Object Management Extension. The fields in this structure are as follows:

fid_object_type

Must contain the constant II_O_FUNCTION_INSTANCE.

fid_id

Must contain a valid function instance identifier. This is a 2-byte integer,
starting at 16384 (II_FISTART). The DBMS Server uses this number
internally to identify the function instance.

fid_cmplmnt

If you have defined fid_type as II_COMPARISON, this field must contain
the fid_opid of this function instance's complement. For more information,
see Complementary Function Instances (see page 62).

fid_opid

Contains the function identifier used to invoke this function instance. The
function id can be a constant identifying a standard SQL operator or the
identifier of a new function that was defined using the IIADD_FO_DFN
structure.

If the function instance that you are defining is a data type coercion (that
is, fid_optype = II_COERCION), this value must be II_NOOP.

fid_optype

Contains the operation type invoked by the operator. The legal values for
this field are:

II_COMPARISON

II_OPERATOR

II_NORMAL

II_COERCION

fid_attributes

Specifies how the function instance behaves.

II_FID_F0_NOFLAGS

II_FID_F4_WORKSPACE

II_FID_F8_INDIRECT

fid_wslength

Specifies the length of the workspace. Valid only if II_FID_F4_WORKSPACE
is set.

58 Object Management Extension User Guide

Structure IIADD_FI_DFN

fid_numargs

Number of arguments for this function. The fid_numargs field is a 4-byte
integer. Values in this field are related to the values in the fid_optype field.
If fid_optype is II_COMPARISON or II_OPERATION, this value must be 2. If
it is II_COERCION, this value must be 1. If fid_optype is II_NORMAL,
fid_numargs can be 0, 1, or 2.

fid_args

Pointer to an array of data types, which are the data types of the
arguments for the function instance. Each array element is a 2-byte
integer. The first element in the array must point to the first argument, the
second element to the second argument, and so on. If the function
instance has no arguments, set this pointer to 0.

The proprietary Ingres data types, date and money are not currently
supported for user manipulation.

The specified argument data types can be user-defined data types or
standard SQL data types. To specify a user-defined data type, use the
value in the dtd_id field of the IIADD_DT_DFN structure for that data type.

To specify a data type, use one of the following values:

II_INTEGER

II_DECIMAL

II_FLOAT

II_CHAR

II_C

II_VARCHAR

II_TEXT

II_LONGTEXT

To specify a spatial data type, use the following values:

PNT_TYPE

BOX_TYPE

LSEG_TYPE

LINE_TYPE

POLY_TYPE

CIRCLE_TYPE

LLINE_TYPE

LPOLY_TYPE

IPNT_TYPE

IBOX_TYPE

Defining Function Instances 59

Structure IIADD_FI_DFN

ILSEG_TYPE

ILINE_TYPE

IPOLY_TYPE

ICIRCLE_TYPE

NBR_TYPE

fid_result

The data type of the function instance result.

fid_rltype

Set this field to one of the following values to specify the method used to
determine the length of the function instance's result. Note that the
arguments referred to are the arguments to the routines that perform the
operation defined by the function instance. Valid values:

II_RES_FIXED

II_RES_FIRST

II_RES_SECOND

II_RES_LONGER

II_RES_SHORTER

II_RES_KNOWN

II_RES_EXTERN

fid_rlength

Set this field to the length of the function instance's result if the fid_rltype
field is II_RES_FIXED. Otherwise, set this field to II_LEN_UNKNOWN (-1).

fid_rprec

Precision of the data value. For most data types, this is not needed and
should be set to 0. However, for DECIMAL, the high order byte will
represent the value's precision (total number of significant digits), and the
low order byte will hold the value's scale (the number of these digits that
are to the right of an implied decimal point). Calculate this value and set
accordingly.

fid_routine

Address of the routine that performs the function instance.

lenspec_routine

Address of the routine that can be called to compute the result length.

60 Object Management Extension User Guide

Length Definition of Result Data Type

Length Definition of Result Data Type

The length of a result data type is defined by fid_rlength in II_ADD_FI_DFN or
an external lenspec routine. This length is used by the DBMS Server when
manipulating values internally. The length component of the actual data value
(II_DATA_VALUE db_length) should not be changed within the function itself.
If the length defined by fid_rlength or the lenspec routine differs from the data
value’s db_length, then errors may result or data values may be incorrectly
interpreted.

The same is true of scale and precision in the case of DECIMAL. In this case,
the fid_rprec or lenspec is used and the db_prec of the data value should not
be changed.

The following macros, defined in $II_SYSTEM/ingres/files/iiadd.h, can be used
to manipulate DECIMAL length values:

DB_PS_ENCODE_MACRO(p,s)

Given a precision p and scale s, returns the two-byte value combining the
two. This macro could be used, for example, when setting db_prec value
within a user-defined lenspec routine.

DB_P_DECODE_MACRO(ps)

Given a two-byte combined value for precision and scale (db_prec) of ps,
returns the precision part.

DB_S_DECODE_MACRO(ps)

Given a two-byte combined value for precision and scale (db_prec) of ps,
returns the scale part.

DB_PREC_TO_LEN_MACRO(prec)

Given a precision of prec, returns the length needed for such a decimal.
This macro could be used when setting the db_length within a user-defined
lenspec routine.

Defining Function Instances 61

External Lenspec Routine—Return Result Length of Specified Value

External Lenspec Routine—Return Result Length of
Specified Value

The lenspec routine returns the result length for the specified value in the
db_length field of the dvr parameter. This routine is called by the DBMS Server
when a function instance's fid_rltype field is set to II_RES_EXTERN. Lenspec
also returns II_STATUS.

The parameters for the lenspec routine are as follows:

scb

Points to the session control block for error processing.

opid

Points to the operator being invoked.

dv1, dv2

Pointers to II_DATA_VALUE. These pointers specify the inputs to the
operator. If the function instance does not use one of the operands, that
pointer is zero.

dvr

Pointer to an II_DATA_VALUE whose length is filled in by this routine.

The II_DATA_VALUE parameters are used only to pass type and length
information. The db_data field in the II_DATA_VALUE structure must be
ignored.

On return from the routine, dvr->db_length must contain a positive value, and
the routine should not raise any errors other than 0x22022.

Complementary Function Instances

To optimize query performance, the DBMS Server often inverts the sense of a
comparison operation. To make this possible, you must define a
complementary function instance for every function instance of fid_optype
II_COMPARISON that you define.

For example, if you define a function instance for the equals (=) operator, you
must also define a function instance for its complement, not equals (!=). Note
that the complement of “>=” is “<“, and the complement of “<=” is “>".

Complementing function instance definitions must agree. That is, if A is a
function instance whose complement is B (A's fid_cmplmnt = B's fid_opid), the
complement of B must be A (B's fid_cmplmnt = A's fid_opid).

62 Object Management Extension User Guide

Sorting of the Function Instance Definition Array

Sorting of the Function Instance Definition Array

For the DBMS Server to merge the new function instance definitions with
existing function instance definitions, the array of function instance definitions
that you create must be specified in sorted order.

The array must be sorted by the number value of the fid_optype field. All
comparisons (fid_optype = II_COMPARISON) must be first, followed by all
operators (fid_optype = II_OPERATOR), normal functions (fid_type =
II_NORMAL), and finally, the coercion functions (fid_optype = II_COERCION).

In each operator type, sort the function instances by the numeric value of the
fid_opid field. For example, with the operator type II_COMPARISON, the
function instances are sorted in the following order:

1. 'not equal' function instances

2. 'less than' function instances

3. 'less than/equal to' function instances

4. 'equal' function instances

5. 'greater than' function instances

6. 'greater than/equal to' function instances

Methods for Defining Function Instances for Large
Objects

Object Management Extension provides two ways to define function instances
for large objects. You can use the Ingres-supplied filter functions or you can
manipulate the large objects directly.

Defining Function Instances 63

Ingres-supplied Filter Functions

Ingres-supplied Filter Functions

Of the callback functions, two have been paired to allow for function instances
that must traverse a large object. Ingres provides skeleton code that allows
you to pass the object through your filter.

To use a filter function, the calling instance sets up the workspace by calling
the function supplied to initialize the workspace. This function does all the
work necessary to allow for the simple traversal of the input object. After this,
your filter function is called for each segment and is passed an
II_DATA_VALUE, which provides space for manipulation of the input and
output segments, a function to call for each segment, a workspace to be used
by this routine, and a continuation indicator.

The continuation indicator states whether this is the first or last call to the
filter. The indicator is specified by the use of the II_C_BEGIN_MASK and the
II_C_END_MASK, indicating that this is the beginning or end of the resulting
object.

The function to be called is called with pointers to II_DATA_VALUE, which
describes input and output segments. The routine is expected to convert the
input into the output segment. When processing the data, the function
indicates the disposition of the current segment by filling in the value of the
adw_shared.shd_exp_action field of the workspace.

As the routine moves through the object, it is expected to keep the
adw_shared.shd_l1_chk field filled with the current length of the large object
that is the result. The routine that is called back does not necessarily know if it
will be called again.

The expected action indicator conveys information between the filter routine
and the function instance routine. The indicator is set to ADW_START before
the first segment routine call. Thereafter, the indicator is examined at the
return of the call to determine the next action necessary for the function
instance routine to perform.

The possible values and responses are as follows:

ADW_CONTINUE

The calling routine disposes of the current segment, get a new segment,
and recall the routine.

ADW_GET_DATA

The function instance routine obtains the next segment of data to be
processed by the routine. The output segment remains unchanged.

64 Object Management Extension User Guide

Ingres-supplied Filter Functions

ADW_FLUSH_SEGMENT

The function instance routine is expected to dispose of the current
(presumably “full”) output segment, and provide a new, empty one for the
routine to deal with. The input segment is untouched.

ADW_FLUSH_STOP

The function flushes the current segment and stop.

ADW_STOP

The routine stops without flushing the current output segment.

If the routine returns ADW_GET_DATA and there is no more data to get, the
function instance routine disposes of the current segment and assumes that
the work of the routine is complete. The routine is not called again.

This calling sequence means that the routine never knows if it will be called
again. For this reason, the adw_l0_chk and adw_l1_chk values must be
correct, and the output segment from your filter must always be a valid
segment, even when the filter is not complete.

Of the fields in the workspace, only those in the shared section are interpreted
by the filter function. The shd_exp_action, shd_l0_chk, and shd_l1_chk fields
must be set as described above. The other fields in the II_SHARED structure
must be left unchanged.

The remaining fields in the workspace are available for each function instance's
use.

Defining Function Instances 65

Ingres-supplied Filter Functions

Direct Manipulation of Large Objects

In some cases, (for example, two-pass algorithms,) defining a function
instance does not work. For these situations, your code can get the peripheral
object segments directly through the use of the large object handler. The
handler routine performs a variety of operations on large objects.

The handler is called with two arguments. The first is the operation code,
which tells the handler which operation to perform. The second argument is a
peripheral object control block, II_POP_CB. This control block structure is used
to pass information to and from the caller of the handler. The first part of this
structure is a standard header used in the DBMS Server.

The exact description of this control block structure can be found in the iiadd.h
header file.

 pop_next

 pop_prev

 pop_length

 pop_type

 pop_s_reserved

 pop_l_reserved

 pop_ascii_id

The pop_type field must always be set to II_POP_TYPE. The pop_length field
must always be set to the size of the structure. The pop_s_reserved and
pop_l_reserved fields must not be set or altered. These fields are used by the
DBMS Server memory management routines. You can set the other fields as
required.

The rest of the II_POP_CB control block consists of the following fields:

pop_error

The err_code field of this structure contains any error that results from the
requested operation. The II_E_NOMORE error indicates that there are no
more segments to get. Other errors indicate coding errors.

pop_continuation

Tells the handler routine whether this is the first and/or last invocation of
this routine. The use of this field varies by function (refer to the operations
that follow for specific use). This field is a mask, so a single operation can
be the first (II_C_BEGIN_MASK), the last (II_C_END_MASK), neither (0),
or both (II_C_BEGIN_MASK | II_C_END_MASK).

66 Object Management Extension User Guide

Ingres-supplied Filter Functions

pop_temporary

Indicates the lifetime of the object being created (through an II_PUT
operation). A value of II_POP_SHORT_TEMP indicates that the object must
be destroyed at the end of the current query. There are no other valid
values.

pop_underdv

Contains information about the underlying data type for the operation. The
underlying data type describes the segment being manipulated. The field is
partially filled in by the caller (db_datatype) and partially by the
II_INFORMATION operation (db_length). Because the length allowed can
change in future releases of the software, using the information operation
as described aids in upward compatibility. The db_data field is unused.

pop_coupon, pop_segment

Pointers to II_DATA_VALUES that describe the overall object (the
pop_coupon field) being manipulated, and the individual segment being
worked on (pop_segment).

pop_user_arg

Provided for the handler's use. This field must not be touched by your code
between the first and last call in a series to the handler (that is, between
the II_C_BEGIN_MASK instance and the II_C_END_MASK instance). The
handler uses this field to maintain a context. This is necessary due to the
multi-threaded nature of the DBMS Server.

Defining Function Instances 67

II_INFORMATION Operation—Return Maximum Length of Peripheral Object Segments

II_INFORMATION Operation—Return Maximum Length of
Peripheral Object Segments

This operation returns the maximum length (in bytes) for each segment of a
peripheral object.

Inputs

The input fields for the II_INFORMATION operation are the parts of the
peripheral control block structure that tell the DBMS Server what information
to pass and how to pass the information. The inputs are as follows:

op_code

The value of II_INFORMATION

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_coupon

The coupon about which the information is required.

Outputs

The output fields for the II_INFORMATION operation describe the results the
DBMS Server returns. The outputs are as follows:

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_underdv.db_length

Maximum length for underlying portions of the data type.

pop_error

The DBMS Server fills this field with the error value, if there is any.

Returns

II_STATUS

68 Object Management Extension User Guide

II_GET Operation—Get Next Segment

II_GET Operation—Get Next Segment

This operation gets the next segment of some object. The object is
represented to II_GET by a coupon. This operation makes use of the saved
information in the peripheral control block, which is passed in the pop_cb's
user argument parameter.

Inputs

The input fields for the II_GET operation are the parts of the peripheral control
block structure that tell the DBMS Server what and how to pass the
information. The inputs are as follows:

op_code

The value of II_GET.

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_continuation

Continuation indicator. On the first call II_C_BEGIN_MASK is passed;
otherwise, zero (0) is passed.

pop_coupon

Pointer to II_DATA_VALUE, contains the coupon used to retrieve the
object.

pop_segment

Pointer to II_DATA_VALUE to receive the output of II_GET. An error
occurs if the size of the output is insufficient. For size determination,
see II_INFORMATION Operation (see page 68).

pop_user_arg

Server's internal state. This is set on the first call and must be
presented unchanged for subsequent calls.

Outputs

The output fields for the II_GET operation describe the results the DBMS
Server returns. The outputs are as follows:

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_segment->db_data

The DBMS Server fills this field with the next segment.

Defining Function Instances 69

II_GET Operation—Get Next Segment

pop_user_arg

The DBMS Server fills this field, if appropriate.

pop_error

The DBMS Server fills this field with the error value, if there is any.

Returns

II_STATUS

70 Object Management Extension User Guide

II_PUT Operation—Add a New Segment

II_PUT Operation—Add a New Segment

This operation adds a new segment to the end of a new peripheral object. This
operation takes, as input, the segments of a peripheral object, and returns a
completed coupon. When there are multiple segments in an object, the coupon
is not complete until the last invocation of the II_PUT operation.

The underlying data type must be provided by the caller, and describes how
the underlying data must be represented. See the pop_underdv field in the
table below. For example, long varchar objects are stored as varchar
segments.

Inputs

The input fields for the II_PUT operation are the parts of the peripheral control
block structure that tell the DBMS Server what and how to pass the
information. The inputs are as follows:

op_code

The value of II_PUT.

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_continuation

Indicates the state of the object. On the first call of a multicall
operation, II_C_BEGIN_MASK is set. On the last call, II_C_END_MASK
is set. A single call can be either the first call, last call, both, or
neither.

pop_coupon

Pointer to the coupon to be created.

pop_segment

A pointer to a data area from which data is taken (to be put into the
large object).

pop_underdv

A pointer to a II_DATA_VALUE that describes the data type to be used
for each segment.

pop_temporary

Must be II_POP_SHORT_TEMP.

pop_user_arg

Workspace area used by the server. The caller knows nothing of the
contents here, but is expected to preserve its contents across
multipass calls. Failure to do so results in errors.

Defining Function Instances 71

II_PUT Operation—Add a New Segment

Outputs

The output fields for the II_PUT operation describe the results returned by the
DBMS Server. The outputs are as follows:

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_coupon

For temporaries, are completely filled. This portion cannot be complete
until the last call of a multipass operation is completed.

pop_user_arg

Is filled in with server specific information to be preserved and
returned by the caller if II_PUT is not a coupon and pop_continuation
is not II_C_END_MASK.

pop_error

The DBMS Server fills this field with the error value, if there is any.

Returns

II_STATUS

72 Object Management Extension User Guide

II_COPY Operation—Move a Peripheral Object

II_COPY Operation—Move a Peripheral Object

This operation moves a peripheral object by performing gets and puts.

Inputs

The input fields for the II_COPY operation are the parts of the peripheral
control block structure that tell the DBMS Server what and how to pass the
information. The inputs are as follows:

op_code

The value of II_COPY.

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_segment

A pointer to the input object. In this case, pop_segment and the input
object are both coupons.

pop_coupon

A pointer to an II_DATA_VALUE that describes the area to be filled
with the coupon for the copied object.

Outputs

The output fields for the II_COPY operation describe the results returned by
the DBMS Server. The outputs are as follows:

pop_cb

A pointer to the peripheral operations control block, II_POP_CB (for
calling).

pop_coupon

The DBMS Server fills this field with the coupon for the copied object.

pop_error

The DBMS Server fills this field with the error value, if there is any.

Returns

II_STATUS

Defining Function Instances 73

Chapter 7: Passing Definitions to the
DBMS Server

This section contains the following topics:

IIudadt_register Routine (see page 75)
Structure IIADD_DEFINITION Fields (see page 76)
Server Routines Provided (see page 78)

This chapter describes how definitions are passed to the DBMS Server.

IIudadt_register Routine

The DBMS Server accesses user-written code for new data types, functions,
and operator capabilities by calling the routine IIudadt_register. This routine,
which you must provide, is called at system startup. It fills in a pointer to a
data structure that contains the definitions of any user-written data types,
functions and function instances. The DBMS Server checks the definitions to
ensure that they are correct and merges them with the existing data type
manipulation objects.

This routine is called using the following syntax:

status=IIudadt_register(add_block);

Status has the data type II_STATUS. Add_block is a pointer to a field that
must be set to point to a data structure of type IIADD_DEFINITION if you are
adding new data types, functions, or function instances. If you are not adding
new data types (or functions or function instances), set this pointer to zero.
This is the default.

Note: If provided, IIADD_DEFINITION exists as a compiler-generated data
area. Do not dynamically allocate this data area or place it on the stack.

Passing Definitions to the DBMS Server 75

Structure IIADD_DEFINITION Fields

Structure IIADD_DEFINITION Fields

The fields in the IIADD_DEFINITION data structure are as follows:

add_risk_consistency

This field, if set to IIADD_INCONSISTENT, tells the DBMS Server to start
even if the values of the current add_major_id and add_minor_id fields do
not agree with those in use by the Ingres recovery system. Setting this
field is very dangerous and must only be done in test installations.

If the add_risk_consistency field is set, the DBMS Server ignores any
disagreements between the major and minor ID fields of the support
processes and the system. This is very dangerous in a production
environment.

add_major_id and add_minor_id

The DBMS Server uses these values to ensure that all support processes
know about all the data types in the system, ensuring recoverability across
the installation. When a support process starts up, it checks the major and
minor ID values in this block against the major and minor ID values known
to the system. If the major_id values are not equal and the process'
minor_id is not equal to or greater than the system's, the process not does
start.

The add_major_id field represents the high order 4 bytes and the
add_minor_id, the low order 4 bytes of an 8-byte value. The initial values
of the major and minor IDs, representing Ingres in the original state, are
0x80000000 and 0, respectively.

To display the current values for these fields, run the lockstat utility. Look
for a lock with the key SYS_CONTROL II_DATATYPE_LEVEL. This key has
an 8-byte value associated with it. The high order 4 bytes of this value
represent the major_id and the low order 4 bytes, the minor_id. For
example, the value associated with this key for the default data type level
is '8000000000000000', representing the major_id of 0x80000000 and the
minor_id of 0 which is Ingres in the original state.

Increment the add_major_id field each time you add a new user-defined
data type. User values for this field must be greater than 0. Minor_id must
be greater than or equal to 0. Reset the add_minor_id field to 0 whenever
the add_major_id is changed.

add_l_user_string

Specifies the length of the character string pointed to by add_user_string.

add_user_string

Pointer to a character string that is included in the system log.

76 Object Management Extension User Guide

Structure IIADD_DEFINITION Fields

add_trace

4-byte integer that can be filled with a bitmask to set trace functions to be
provided during system startup. There are two bits used by trace
functions:

IIADD_T_LOG_MASK (1) directs the DBMS Server to place a number of
trace messages in the various trace logs which exist in the system. While
operating the DBMS Server, defining II_DBMS_LOG to a file causes the
DBMS Server to place copies of the system error log messages in that file.
If the IIADD_T_LOG_MASK bit is set, user-defined abstract data type
initialization places status and error messages in this file.

IIADD_T_FAIL_MASK (2) directs the system to shut down if there are
failures while initializing the user-defined data types. This is useful in test
situations.

By default, the system ignores any errors encountered in processing new
data type information and continues startup as if no user information was
provided.

add_count

Must be set to the sum of the add_dt_cnt, add_fo_cnt, and add_fi_cnt
fields.

add_dt_cnt

A 4-byte integer field that must be set to the count of data types to be
added.

add_dt_dfn

This field must point to an array of IIADD_DT_DFN structures that define
new data types. (For instructions on filling in the IIADD_DT_DFN
structures, see the chapter "Defining Data Types.") If the add_dt_cnt field
is zero, set add_dt_dfn to zero.

add_fo_cnt

This field is a 4-byte integer that must be set to the count of functions to
be added.

add_fo_dfn

This field must point to an array of IIADD_FO_DFN structures that define
new functions. For details, see the chapter “Defining Functions.” If the
add_fo_cnt field is zero, set add_fo_dfn to zero.

add_fi_cnt

This field is a 4-byte integer that must be set to the count of function
instances to be added.

Passing Definitions to the DBMS Server 77

Server Routines Provided

add_fi_dfn

This field must point to an array of IIADD_FI_DFN structures that define
new function instances. For details, see the chapter “Defining Function
Instances.” If the add_fi_cnt field is zero, set add_fi_dfn to zero.

Server Routines Provided

A number of routines are provided for you to use through the callback block.
When you use one of these functions, save the addresses of the routines used
in your code before IIudadt_register() returns. After IIudadt_register()
completes, the call_back_block address is no longer valid.

These routines all return II_STATUS values that specify their completion
status.

The ii_cb_trace Routine—Output Provided Trace Messages

The ii_cb_trace routine outputs trace messages provided to it. The parameters
for this routine are as follows:

dispose_mask

Specifies how to dispose of the message:

II_TRACE_FE_MASK

Indicates that the string must be sent to the front end

II_TRACE_ELOG_MASK

Indicates that the string must be sent to the error log

II_TRACE_TLOG_MASK

Indicates that the string must go to the trace log only (II_DBMS_LOG)

length

Specifies the length of the string

string

Pointer to the string to be traced

Note: If II_DBMS_LOG is defined, messages going to the error log also appear
in the trace log.

78 Object Management Extension User Guide

Server Routines Provided

The ii_error_fcn Routine—Place Error Information in Status Control Block

This routine places error information in the status control block (scb). As a
result, you do not need to know the internal scb format. The parameters for
this routine are as follows:

scb

A pointer to the scb into which the error must be placed.

err_num

The error number to include in the message that goes to the scb.

text

A pointer to the character string to include in the message that goes to the
scb. The message should be in the format "datetime
stringE_XXNNNNmessage text".

An alternate method of placing error information in the scb is to use the
routine us_error, as defined in the demo UDTs. See
$II_SYSTEM/ingres/demo/udadts/common.c. No special format for the error
message is required for this routine.

The ii_lo_handler_fcn Routine—Move Through Large Object Segments

You can use this routine to move through large object segments. It is called
with two arguments: an operation code, and a pointer to a pop_cb (peripheral
operations control block). For details, see Large Objects and the Methods for
Defining Function Instances for Large Objects.

The ii_init_filter_fcn Routine—Set Up Filter Function

This routine sets up the filter function for large objects. It is called with three
arguments: a pointer to an scb, a pointer to an II_DATA_VALUE that describes
the large object being input, and a pointer to an II_DATA_VALUE that
describes the workspace provided. For details, see Large Objects and Methods
for Defining Function Instances for Large Objects.

Passing Definitions to the DBMS Server 79

Server Routines Provided

The ii_filter_fcn Routine—Perform Operation by Calling a User Routine

This routine performs an operation by calling back a user routine for each
segment in the input object. It is called with the following arguments:

 A pointer to an scb

 Pointers to the II_DATA_VALUE's for the input and output segments

 Pointer to a function to be called

 A pointer to a workspace to be used (previously initialized by a call to the
initialization function)

 A continuation indicator indicating whether this is the first time this has
been used.

For details, see Large Objects (see page 19) and Methods for Defining Function
Instances for Large Objects (see page 63).

80 Object Management Extension User Guide

Chapter 8: Installing and Testing Data
Types

This section contains the following topics:

How You Install New Data Types in a Windows Environment (see page 81)
How You Install New Data Types in a VMS Environment (see page 81)
How You Install New Data Types in a UNIX Environment (see page 84)
Testing the New Data Type Code (see page 85)

This chapter contains instructions for installing and testing spatial and user-
defined data types. Install and debug your code in a test environment before
you install in the production environment. The installation process builds both
the local server and the Star Server with user-defined data types (because
both these servers are defined as the same image).

How You Install New Data Types in a Windows
Environment

Ingres processes access the new data types and functions by means of a
dynamic linked library (DLL), whose entry point is the routine
IIudadt_register().

Installing a new data type or function consists of building the IILIBUDT.DLL
using the User Defined Data Type Linker (iilink.exe) and copying the DLL into
the %II_SYSTEM%\ingres\bin directory. The User Defined Data Type Linker
prompts for the location of the source and library files to be used and backs up
the existing DLL before replacing it.

Optionally, spatial objects or demo user defined data types can be installed
using the User Defined Data Type Linker.

How You Install New Data Types in a VMS Environment

Ingres processes access the new data types and functions by means of a
shared image, whose entry point is the routine IIudadt_register(). Installing a
new data type or function consists of building the shared image and defining
II_USERADT to point to the location of the shared image.

Installing and Testing Data Types 81

How You Install New Data Types in a VMS Environment

Template Command File—Create the Shared Image

Ingres provides a template command file for building the shared image for use
in a test installation. The template is located in the following file:

II_SYSTEM:[INGRES.LIBRARY]II_USERADT_BUILD.COM

This template, with comments, follows:

$ inst := 'f$trnlnm("II_INSTALLATION")
$ if inst .eqs. ""
 then
$ inst_code := <production>
$ else
$ inst_code = inst
$ endif
$ Write sys$output "Building Sharable Image for User Defined Datatypes for
''inst_code' installation"
$ if f$getsyi("hw_model") .lt. 1024
$ then
$!
$! VAX version
$!
$ macro/object=ii_system:[ingres.library]ii_useradt_xfer.obj -
 ii_system:[ingres.library]ii_useradt_xfer.mar
$ link/share=ii_system:[ingres.library]iiuseradt'inst'/sysshr -
 sys$input/opt /nodebug 'p1'
!
! This CLUSTER statement forces the transfer vector to the beginning of
! the shared image. It should not be removed.
!
 Cluster = TRANSFER_VECTOR,,,ii_system:[ingres.library]ii_useradt_xfer.obj
ii_system:[ingres.library]iiclsadt.obj
!
! Replace the object module below with the object modules
! defining Installation Datatypes
!
 ii_system:[ingres.library]iiuseradt.obj
!
! End of object modules defining datatypes.
!
 NAME = IIUSERADT
!
! Note that the shared image id should not be changed. INGRES expects this
! level. The shared image ID can be changed ONLY by the product vendor.
!
 IDENTIFICATION = "v2-000"
GSMATCH=LEQUAL, 2, 0
$ exit
$!
$ else
$!
$! Alpha version
$!
$ link/share/notrace/nodebug/ -
exe=ii_system:[ingres.library]iiuseradt'inst' SYS$INPUT/OPTION
ii_system:[ingres.library]iiclsadt.obj -

82 Object Management Extension User Guide

How You Install New Data Types in a VMS Environment

,ii_system:[ingres.library]iiuseradt.obj
NAME = IIUSERADT
IDENTIFICATION = "V2-000"
GSMATCH=LEQUAL, 2, 0
SYMBOL_VECTOR = (iiudadt_register = PROCEDURE)
 SYMBOL_VECTOR = (iiclsadt_register = PROCEDURE)
 $ exit
$ endif

The transfer vector for the shared image is built by the following file:

ii_system:[ingres.library]ii_useradt_xfer.mar

If it is necessary to add additional entry points to the transfer vector, add
them after the IIudadt_register entry point defined in this file. If you do not,
the resulting shared image does not operate correctly with Ingres.

In a production environment, remove the /debug flag and link the shared
image NOTRACEBACK. Install it using the VMS Install Utility. For additional
information about creating and maintaining shareable images, see the VMS
documentation (in particular, the Guide to Creating Modular Procedures).

II_USERADT Logical—Set Disk Location of the Shared Image

II_USERADT points to the location of the shared image. By default,
II_USERADT points to the following executable:

ii_system:[ingres.library]iiuseradt.exe

This location is overwritten during installations of new releases of Ingres. To
avoid conflicts, place your shared image in another location and redefine
II_USERADT.

System Level Installation

$define/system/exec II_USERADT II_SYSTEM.[ingres.library]iiuseradt.exe

Group Level Installation

$define/group/exec II_USERADT II_SYSTEM.[ingres.library]iiuseradtxx.exe

where xx = the two-character installation code

By default, if the logical II_USERADT is not defined, Ingres looks for the
following shared image:

SYS$SHARE:II_USERADT.EXE

Installing and Testing Data Types 83

How You Install New Data Types in a UNIX Environment

Definition of II_USERADT in a Test Installation

Because various Ingres programs are installed with privilege, II_USERADT
must be defined at EXECUTIVE mode to be visible to these installed images.
This requirement presents a problem in Ingres test installations, because
logical names are not defined at a SYSTEM level in test installations and the
current release of VMS only sees SYSTEM-level EXECUTIVE mode logical
names when invoking privileged images.

To change this behavior, you must redefine the logical name LNM$FILE_DEV at
EXECUTIVE mode to include the logical name tables in which to look.

To run the test installation, issue the following command:

$ define/exec/table = lnm$process_directory- lnm$file_dev lnm$process,lnm$job,-
lnm$group,lnm$system

Consult your system manager and the VMS documentation for more details.

How You Install New Data Types in a UNIX Environment

To install your user-defined data types, the DBMS, RCP, and JSP executables
must be relinked (loaded) using the iilink command. The iilink command
prompts for the object modules to be linked into these executables. At the
prompt, specify a list of object modules, an archive library, or, if your system
supports it, a shared object.

On systems which support shared object access, avoid the -l form of shared
object access. The executables being linked are setuid programs, and the
combination of shared objects with setuid programs leads to a number of
complications in dealing with multiple installations.

For the purpose of testing, you can link only the DBMS by specifying the -dbms
flag when you issue the iilink command. When you link to create your
production executable, omit the -dbms flag.

The iilink utility prompts for an extension for the executable filename. The
default is to create standard executables. For test purposes you can add an
extension to the file names. For example, if you specify “test” as the
extension, iilink creates the executable iidbms.test instead of iidbms.

The iilink command can only be run by the ingres user.

Optionally, spatial objects or demo user-defined data types can be installed
using the iilink utility.

84 Object Management Extension User Guide

Testing the New Data Type Code

Testing the New Data Type Code

Because your code runs as part of the DBMS Server, any bugs in your code
can have severe consequences to the system. To avoid damaging production
data, run your code in a test installation before you install it in the production
installation.

Symbols within the DBMS Server are not available for customer use.

Because it is inconvenient during testing to have to shut down and restart an
entire installation to check out the system, Ingres has provided the field
add_risk_consistency in the IIADD_DEFINITION structure. If set to the value
IIADD_INCONSISTENT, this flag allows the system to startup when a newly
started process does not agree with the remainder of the Ingres installation.

Caution! Running with the add_risk_consistency set to IIADD_INCONSISTENT
risks the data integrity of all databases in that installation. If failures occur, it
is possible that the DBMS Server cannot back out transactions from any
database. This flag must be used with extreme care and must never be used in
a production environment.

Installing and Testing Data Types 85

Chapter 9: Using Abstract Spatial Data
Types

This section contains the following topics:

Use of Spatial Data Types, Operators, and Functions (see page 87)
Spatial Data Types in the Spatial Object Library (see page 88)
Spatial Operators (see page 104)
Functions that Support the Spatial Operators (see page 110)
Support Routines for Spatial Data Types (see page 116)
Ordering of Spatial Data Types (see page 119)
Polygon Length Limits (see page 120)
How You Install Spatial Data Types in UNIX or Linux Environments (see page
121)
How You Install Spatial Data Types in a VMS Environment (see page 124)
How You Install Spatial Data Types in a Windows Environment (see page
125)

This chapter describes the use of spatial data types in SQL statements. It also
describes spatial operators and functions.

Use of Spatial Data Types, Operators, and Functions

The Ingres Spatial Object Library provides spatial data types that enable you
to manipulate spatial data using Ingres. Although spatial data types represent
data that is more complex than the basic SQL data types, you can use them in
any appropriate context within an SQL statement.

Spatial operators and functions enable you to perform complex operations on
spatial data stored in tables.

Using Abstract Spatial Data Types 87

Spatial Data Types in the Spatial Object Library

Spatial Data Types in the Spatial Object Library

The Spatial Object Library contains the following data types:

 point

 box

 lseg

 line and long line

 polygon and long polygon

 circle

In addition, there are integer variations of these data types:

 ipoint

 ibox

 ilseg

 iline

 ipolygon

 icircle

Finally, there is another data type that is used in rtree index processing: nbr
(normalized bounding region).

88 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Point Data Type

The point data type consists of an x and a y coordinate value. Each coordinate
value is specified using a floating point number (float8). The point data type is
the major component of the other spatial data types. The format of the float
literal in the point data type is as follows:

<x:b1>d.dddddddddddddddE+eee

with 16-decimal digit precision and a 3-digit exponent. This enables the point
data type to support Ingres float representation (-1.0e-38 to +1.0e+38 with
16-digit precision). If your hardware supports the IEEE standard for floating
point numbers, the float type is accurate to 15-decimal precision and ranges
from -10**308 to +10**308.

The point data type is specified using two floats:

(x_value, y_value)

For example:

(3,4)

The following example creates and populates a table with point values. Points
can be real or integer values.

create table point_table (id char(2), obj point);
 insert into point_table values ('AA','(1,1)');
 insert into point_table values ('BA','(0.0, 12.237)');
 insert into point_table values ('GH','(1603452, -20321)');

Using Abstract Spatial Data Types 89

Spatial Data Types in the Spatial Object Library

Box Data Type

A box is defined as a rectangle whose sides are parallel to the coordinate
system axis. Boxes do not have to be square. The box data type is specified as
two points:

 Lower-left corner point

 Upper-right corner point

The string representation of the box data type is:

(lower_left_point, upper_right_point)

For example:

((1,2.25), (5,6))

All boxes must contain two different points. Identical points generate a box
with both a width and height of zero.

The following example creates and populates a table with boxes.

create table box_table (id char(2), obj box);
 insert into box_table values ('A', '((0,0), (2, 2)) ');
 insert into box_table values ('B', '((-40.345, -40.123), (4.0, 4.0))');
 insert into box_table values ('I', '((-160, -660), (60,60))');

90 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Lseg Data Type

The lseg (line segment) data type contains two parts:

 Begin point

 End point

The string representation of the lseg data type is:

(begin_point, end_point)

For example:

((1,2), (3.46,-4.0))

The begin and end points of the line segment cannot be identical. Identical
points generate a zero length for the line segment.

The following example creates and populates a table with lseg attributes.

create table lseg_table (id char(2), obj lseg);
 insert into lseg_table values ('A', '((0,0), (1,2))');
 insert into lseg_table values ('B', '((120,160), (60,160))');
 insert into lseg_table values ('I', '((-160,-660), (60,60))');

Using Abstract Spatial Data Types 91

Spatial Data Types in the Spatial Object Library

Line Data Type

The line data type contains two parts:

 Number of points (npoints)

 An array of points

The npoints field is a 4-byte integer containing the number of points in the
points array. The points array is an array of the point data type. Each array
entry contains 16 bytes (an x and a y float value).

Line literals are specified as list of points. For example:

((1,2), (3,4), (5,6), (6,6), (7,9))

Each (x,y) pair must conform to the literal representation of the point data
type. All lines must contain at least two points.

Tables are divided into 2048 byte pages. Of this total, 2000 bytes are available
for data storages. This limits the total number of points available for the line
(and polygon) data structure. Each point in the line requires 16 bytes.

Windows and UNIX: The npoints field is padded to 8 bytes.

Because the maximum row size is 2000, and 8 + 124*16 = 1992, the
maximum user-specified line size is 124 points. If the line size is 125, the row
size is 2008, which is too big. The row cannot exceed the page boundary.

When you create line columns in tables, you specify the maximum number of
points in the line (for example, line(10)). If shorter lines are inserted into the
column, the same amount of storage space is consumed as for lines of the
maximum (declared) size.

The following example creates and populates a table with line values.

create table line_table (id char(2), obj line(3));
 insert into line_table values ('A', '((0,0), (1,1), (1,2)) ');
 insert into line_table values ('B', '((60, 180), (120, 180), (90,130))');
 insert into line_table values('C','((120,160),(60,160))');

92 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Long Line Data Type

The long line data type has the same characteristics as the line data type, but
can accommodate up to 2G (gigabytes) of data (approximately 100 million
points). Long line data is stored in one or more 2048-byte segments. Each
segment contains an integer indicating the number of points in the segment,
followed by an array of points specified as pairs of 8-byte floating point values.

The long line data type can be inserted into and selected from tables using the
varchar or long varchar data type-for details, see the SQL Reference Guide.

The long line data type is subject to the following restrictions:

 Long line columns cannot be part of a table key

 Long line columns cannot be part of a secondary index

 Long line columns cannot be used in the order by clause of a select
statement

 Long line columns cannot have query optimization statistics

 Long line columns cannot be directly compared (must be coerced)

The following example creates a table with a long line column and inserts rows
into it. Note that the long line column specification in the create table
statement omits a length specifier.

create table long_line_table (id char(2), obj long line);
 insert into long_line_table values ('A', '((0,0), (1,1),
(1,2), (60, 180), (120, 180), (90,130), (120,160), (60,160))');

Using Abstract Spatial Data Types 93

Spatial Data Types in the Spatial Object Library

Polygon Data Type

The polygon data type contains two parts:

 Number of points (npoints)

 An array of points

The npoints part is a long integer containing the number of points in the points
array. The polygon data type is identical to the line data type, except that
polygon data type implies closure. The string representation of the polygon
data type is a list of points:

((x1,y1), (x2,y2), (x3,y3),..., (xN,yN))

For example:

((1,2), (3,4), (5,6), (6,6), (8,3))

Each (x,y) pair conforms to the string representation of the point data type. All
polygons must have a non-zero area, must not be self-intersecting, and must
not contain duplicate points. A polygon data type can be either concave or
convex.

Windows and UNIX: The npoints field is padded to 8 bytes.

The polygon data type contains a 4-byte integer npoints field and an array of a
variable number of points. Because the maximum row size is 2000, and 8 +
124*16 = 1992, the maximum number of vertices is 124 and the minimum
number of vertices is 3 (at least 3 points are required to form a polygon).

When you create polygon columns, you specify the maximum number of points
in the polygon-for example, “mypoly polygon(11)”. Every polygon you insert
into the table consumes the maximum space required for a polygon of the
declared length, even if the polygon has fewer points than the column can
accommodate.

The following example creates and populates a table with polygon attributes.

create table polygon_table (id char(2), obj polygon(3));
 insert into polygon_table values ('Z','((0,0),(2,1),(1,2)) ');
 insert into poly_table values ('A', '((-20, -20), (-20, 20), (20,20))');
 insert into poly_table values ('B', '((-40, -40), (-40, 40), (40,40))');
 insert into poly_table values ('C', '((-60, -60), (-60, 60), (60,60))');

94 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Long Polygon Data Type

The long polygon data type has the same characteristics as the polygon data
type, but can accommodate up to 2G (gigabytes) of data (approximately 100
million points). Long polygon data is stored in one or more 2048-byte
segments. Each segment contains an integer indicating the number of points in
the segment, followed by an array of points specified as pairs of 8-byte floating
point values.

The long polygon data type can be inserted into and selected from tables using
the varchar or long varchar data type-for details, see the SQL Reference
Guide.

The long polygon data type is subject to the following restrictions:

 Long polygon columns cannot be part of a table key

 Long polygon columns cannot be part of a secondary index

 Long polygon columns cannot be used in the order by clause of a select
statement

 Long polygon columns cannot have query optimization statistics

 Long polygon columns cannot be directly compared (must be coerced)

The following example creates a table with a long polygon column and inserts
rows into it. Note that the long polygon column specification in the create table
statement omits a length specifier.

create table long_poly_table (id char(2), obj long polygon);
 insert into long_poly_table values ('Z', '((0,1), (1,1),
(1,2), (160, 280), (220, 340), (190,930), (120,260), (60,160))');

Using Abstract Spatial Data Types 95

Spatial Data Types in the Spatial Object Library

Circle Data Type

The circle data type is composed of two parts:

 Center point

 Radius

The center point is of type point. The radius is a floating point number
(double). The literal representation of the circle data type is:

(center_point, radius)

For example:

((1.25,4.32), 5.1)

The following example creates a table with a circle column and inserts rows.

create table circle_table (id char(2), obj circle);
 insert into circle_table values ('S', '((1,1),1)');
 insert into circle_table values ('A', '((0, 0),20)');
 insert into circle_table values ('B','((0, 0),40)');
 insert into circle_table values ('C','((0,0),60)');

96 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Ipoint Data Type

The ipoint data type consists of an x and a y coordinate value. Each coordinate
value is specified using an integer number (integer4). The ipoint data type is
the major component of the other spatial data types. The format of the integer
literal in the ipoint data type is as follows:

<x:b1>dddddddddd

with 10-digit precision. This enables the ipoint data type to support Ingres
integer representation (-2,147,483,648 to +2,147,483,647).

The ipoint data type is specified using two integers:

(x_value, y_value)

For example:

(3, 4)

The following example creates and populates a table with ipoint values. Ipoints
can only be integer values.

create table ipoint_table (id char(2), obj ipoint);
 insert into ipoint_table values ('AA','(1,1)');
 insert into ipoint_table values ('BB','(4233, 133333)');
 insert into ipoint_table values ('CC','(1603452, -20321)');

Using Abstract Spatial Data Types 97

Spatial Data Types in the Spatial Object Library

Ibox Data Type

An ibox is a box of ipoints.

An ibox is defined as a rectangle whose sides are parallel to the coordinate
system axis. Iboxes do not have to be square. The ibox data type is specified
as two points:

 Lower-left corner point

 Upper-right corner point

The string representation of the ibox data type is:

(lower_left_point, upper_right_point)

For example:

((1,2), (5,6))

All iboxes must contain two different points, because identical points generate
a box with both a width and height of zero.

The following example creates and populates a table with iboxes.

create table ibox_table (id char(2), obj ibox);
 insert into ibox_table values ('A', '((0,0), (2, 2)) ');
 insert into ibox_table values ('B', '((-40, -40), (4, 4))');
 insert into ibox_table values ('I', '((-160, -160), (60,60))');

98 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Ilseg Data Type

An ilseg is an lseg of ipoints.

The ilseg (integer line segment) data type contains two parts:

 Begin point

 End point

The string representation of the ilseg data type is:

(begin_point, end_point)

For example:

((1,2), (3,4))

The begin and end points of the line segment cannot be identical, because
identical ipoints generate a zero length for the integer line segment.

The following example creates and populates a table with ilseg values.

create table ilseg_table (id char(2), obj ilseg);
 insert into ilseg_table values ('A', '((0,0), (1,2))');
 into liseg_table values ('B', '((120,160), (60,160))');
 insert into ilseg_table values ('I', '((-160,-660), (60,60))');

Using Abstract Spatial Data Types 99

Spatial Data Types in the Spatial Object Library

Iline Data Type

An iline is a line of ipoints.

The iline data type contains two parts:

 Number of points (npoints)

 An array of ipoints

The npoints field is a 4-byte integer containing the number of ipoints in the
ipoints array. The ipoints array is an array of the ipoint data type. Each array
entry is 8 bytes (an x and a y integer value).

Iline literals are specified as list of ipoints, for example:

((1, 2), (3, 4), (5, 6), (6, 6), (7, 9))

Each (x,y) pair must conform to the literal representation of the ipoint data
type. All ilines must contain at least two points, must not be self-intersecting,
and must not contain duplicate points.

Columns are limited to 2000 bytes in Ingres. This limits the total number of
ipoints available for the iline (and ipolygon) data structure. Each ipoint in the
iline requires 8 bytes.

For example, a table with an iline column defined as “iline(10)” requires 84
bytes:

iline(10) = 4 bytes (npoints) + 10*8 bytes (ipoints array) = 84 bytes

Because the maximum column size is 2000, and 4+ 249*8 = 1992, the
maximum user-specified iline size is 249 ipoints. If the iline size is 250, the
row size is 2004, which is too big. The row cannot exceed the column
boundary.

When you create iline columns in tables, you specify the maximum number of
ipoints in the iline (for example, iline(10)). If shorter lines are inserted into the
column, the same amount of storage space is consumed as for lines of the
maximum (declared) size. If the table is compressed, the actual storage
consumed by iline(10) with 3 points is less than with 4 or more points.

The following example creates and populates a table with iline values.

create table iline_table (id char(2), obj iline(3));
 insert into iline_table values ('A', '((0,0), (1,1), (1,2))');
 insert into iline_table values ('B', '((60,180), (120,180),
 (90,130))');
 insert into iline_table values('C','((120,160), (60,160))');

100 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Ipolygon Data Type

An ipolygon is a polygon of ipoints.

The ipolygon data type contains two parts:

 Number of ipoints (npoints)

 An array of ipoints

The npoints part is a 4-byte integer containing the number of ipoints in the
ipoints array. The ipolygon data type is identical to the iline data type, except
that ipolygon data type implies closure. The string representation of the
ipolygon data type is a list of points:

((x1,y1), (x2,y2), (x3,y3),..., (xN,yN))

For example:

((1,2), (3,4), (5,6), (6,6), (8,3))

Each (x,y) pair conforms to the string representation of the ipoint data type.
All ipolygons must have a non-zero area, must not be self-intersecting, and
must not contain duplicate points. An ipolygon data type can be either concave
or convex.

Each ipoint in the ipolygon requires 8 bytes. For example, a table created with
an ipolygon defined as “ipolygon(11)” requires 92 bytes:

ipolygon(11) = 4 bytes (for npoints) + 11*8 bytes (points array) = 92 bytes

The ipolygon data type contains a 4-byte integer npoints field and an array of
a variable number of ipoints. Because the maximum row size is 2000, and 4 +
249*8 = 1996, the maximum number of vertices is 249 and the minimum
number of vertices is three (at least three points are required to form a
polygon).

When you create ipolygon columns, you specify the maximum number of
points in the ipolygon-for example, “myipoly ipolygon(11)”. Every ipolygon you
insert into the table consumes the maximum space required for a ipolygon of
the declared length, even if the ipolygon has fewer points than the column can
accommodate. If the table is compressed, the actual storage consumed by
ipolygon(11) with 3 points is less than with 4 or more points.

Using Abstract Spatial Data Types 101

Spatial Data Types in the Spatial Object Library

The following example creates and populates a table with ipolygon attributes.

create table ipolygon_table (id char(2), obj ipolygon(3));
 insert into ipolygon_table values ('Z', '((0,0), (2,1), (1,2))');
 insert into ipoly_table values ('A', '((-20, -20), (-20, 20,
 (20,20))');
 insert into ipoly_table values ('B', '((-40, -40), (-40, 40)
 (40,40))');
 insert into ipoly_table values ('C', '((-60, -60), (-60, 60),
 (60,60))');

Icircle Data Type

An icircle is a circle with an ipoint center and an integer radius.

The icircle data type is composed of two parts:

 Center point

 Radius

The center point is of type ipoint. The radius is a 4-byte number. The literal
representation of the icircle data type is:

(center_point, radius)

For example:

((1,2), 5)

The following example creates a table with an icircle column and inserts rows.

create table icircle_table (id char(2), obj icircle);
 insert into icircle_table values ('S', '((1,1), 1)');
 insert into icircle_table values ('A', '((0,0), 20)');
 insert into icircle_table values ('B', '((0,0), 40)');
 insert into icircle_table values ('C', '((0,0), 60)');

102 Object Management Extension User Guide

Spatial Data Types in the Spatial Object Library

Nbr Data Type

An nbr is similar to an ibox. It is comprised of four 3-byte integers in a lower-
left and upper-right arrangement like a box or an ibox. However, an nbr can
have the same lower-left and upper-right coordinates, like a point has, or the
same x or y coordinates, like a line has.

An nbr is defined as a rectangle whose sides are parallel to the coordinate
system axis. Further, the nbr is normalized within a coordinate system. The
nbr coordinate values are normalized to values from (0,0). An nbr cannot be
specified; it must be derived from a spatial object and a range, for example,
nbr(object,range). The range is either a box or an ibox. The range describes
the entire region that contains all objects. In other words, the range is the
smallest x, y values as the lower-left corner, and the largest x, y as the upper-
right corner. For instance, the range of latitude and longitude is ((-180,-
90),(180,90)).

Spatial Data Types Storage Formats

Spatial data is stored as shown in the following table:

Notation Storage Format Range

point 2 8-byte floats -1.0e+38 to +1.0e+38
(16 digit precision)

lseg 2 points (begin_point,
end_point)

-1.0e+38 to +1.0e+38
(16 digit precision)

line 1 integer

1 array of points

(2-124)

-1.0e+38 to +1.0e+38
(16 digit precision)

box 2 points (lower_left, upper_right) -1.0e+38 to +1.0e+38
(16 digit precision)

polygon 1 integer

1 array of points

(3-124)

-1.0e+38 to +1.0e+38
(16 digit precision)

circle 1 point (center_point)

1 float (radius)

-1.0e+38 to +1.0e+38
(16 digit precision)

same as float

(must have a value >
0.0)

ipoint 2 4-byte integers -2,147,483,648 to
+2,147,483,647

Using Abstract Spatial Data Types 103

Spatial Operators

Notation Storage Format Range

ilseg 2 ipoints (begin_point,
end_point)

-2,147,483,648 to
+2,147,483,647

iline 1 4-byte integer

1 array of ipoints

2 to 249

-2,147,483,648 to
+2,147,483,647

ibox 2 ipoints (lower_left,
upper_right)

-2,147,483,648 to
+2,147,483,647

ipolygon 1 4-byte integer

1 array of points

3 to 249

-2,147,483,648 to
+2,147,483,647

icircle 1 ipoint (center_point)

1 4-byte integer (radius)

-2,147,483,648 to
+2,147,483,647

1 to +2,147,483,647

nbr 4 3-byte integers 1 to +16,777,215

Note: If your hardware supports the IEEE standard for floating point numbers,
the float type is accurate to 15-decimal precision and ranges from -10**308 to
+10**308. This also applies to the spatial data types.

Spatial Operators

Spatial operators let you perform complex operations on spatial data stored in
tables. The spatial operators that can be used with spatial data types are as
follows:

 Equality operators

 Binary spatial operators

 Overlaps operators

104 Object Management Extension User Guide

Spatial Operators

Equality Operators

The equality operator (=) compares the internal representation of two
operands and determines whether they represent identical values. This
operator is valid only when comparing operands of the same type. You cannot
compare a box to a polygon, for example.

You can also compare spatial data types for inequality, using the “<>” (not
equal to) comparison operator. All comparisons are performed on a point-by-
point basis (except for the circle data type), and similar but unequal operands
fail this test. For example, when testing line segments:

((1,2), (3,4)) <> ((3,4), (1,2))

Binary Spatial Operators

There are three binary spatial operators:

Inside–Determines whether an object of a particular data type is inside
another spatial object

Intersects–Determines whether an object of a particular data type intersects
another spatial object

Overlaps–Determines whether two spatial data objects have any points in
common

Prefix and postfix notation is supported for these operators. The prefix notation
for these operators is “operator(operand1, operand2)”. By contrast, the
comparison (==, <>, >, <, <=, >=) and logical (and, or, not) operators
support infix notation, which is not available for binary spatial operators.

Using Abstract Spatial Data Types 105

Spatial Operators

Inside Operators

The inside spatial operators determine whether one operand is contained
within the boundary of another operand, as shown in the following example,
where B is inside A:

An operand that shares a line segment, a portion of a line segment, or even a
single point with another operand (congruency) and meets the other
qualifications for inside, satisfies the definition of inside. Boundaries, therefore,
are considered to be inside.

If the result of inside is true, the inside operator returns a value of 1,
otherwise it returns a value of 0. Prefix and postfix notation is supported, so
the inside operator is defined as:

inside (spat_type1, spat_type2) = 1

or:

spat_type1 inside spat_type2

106 Object Management Extension User Guide

Spatial Operators

The following table shows the combinations of spatial data types for which
inside spatial operators are supported:

point box lseg line

and
long
line

polygon
and
long
polygon

circle

point N Y N N Y Y

box N Y N N Y Y

lseg N Y N N Y Y

line and long line N Y N N Y Y

polygon and long
polygon

N Y N N Y Y

circle N Y N N Y Y

Using Abstract Spatial Data Types 107

Spatial Operators

Intersects Operator

The intersects spatial operator determines whether one operand intersects one
or more points or edges (boundaries) of another operand. In the following
illustration, B intersects A, C intersects A, and D intersects A:

If the result of intersects is true, the intersects operator returns a value of 1;
otherwise the value returned is zero.

Prefix and postfix notation is supported-the intersects operator is specified as
follows:

intersects (spat_type1, spat_type2) = 1

or:

spat_type1 intersects spat_type2

You can use the intersects operator with all of the spatial data types.

108 Object Management Extension User Guide

Spatial Operators

Overlaps Operator

The overlaps spatial operator determines whether on operand is wholly
contained within the boundary of another operand or if one operand intersects
one or more points or edges of another spatial object. Hence, object A
overlaps object B if there are any common points between A and B. In the
following illustration, B overlaps A, C overlaps A, D overlaps A, and E overlaps
A:

Note that B, C, and D both overlap and intersect A, however, E, which is
wholly contained in A, only overlaps A.

If the result of overlaps is true, the overlaps operator returns a value of 1;
otherwise the value returned is zero.

Prefix and postfix notation is supported-the overlaps function can be specified
as follows:

overlaps (spat_type1, spat_type2) = 1

or:

spat_type1 overlaps spat_type2

You can use the overlaps function with all of the spatial data types.

Using Abstract Spatial Data Types 109

Functions that Support the Spatial Operators

Nbr Function

The nbr spatial function produces an nbr data type from a spatial object and a
box or an ibox. The box or ibox specifies the range of values that the object
can take on. The nbr is a normalized bounding region for the object. The nbr
can be thought of as a concise bounding box. Note that bbox(point) is not
supported, but an nbr(point,box) is supported.

The nbr result is a pair of two 3-byte coordinates, for a total of 12 bytes. It is
stored in lower-left x, y and upper-right x, y sequence, similar to a box.

The nbr is used by the hilbert function:

nbr_typ1 = nbr (spat_type, box_of_range_type1)

You can use the nbr function with all the spatial data types. The range must be
specified as a box or an ibox.

Hilbert Function

The Hilbert spatial function produces a 6-byte field from an nbr. The Hilbert
value has the property that objects with close Hilbert values are spatially close.
However, it is possible to find two spatially close objects that have very
different Hilbert numbers. With the Hilbert value you can spatially cluster
tables for better performing spatial queries and spatial joins by storing the
rows in Hilbert sequence.

Hilbert values are not unique; it is possible for two close spatial objects to
generate the same Hilbert value.

The Hilbert result is a 6-byte binary value:

hilbert_value = hilbert (nbr_type1)

This can be used with the nbr and box functions:

hilbert_value = hilbert (nbr(spat_type1, box(range_type1)))

Functions that Support the Spatial Operators

Spatial functions let you perform complex operations on spatial data stored in
tables. There are three types of functions that support the spatial operators:

 Spatial functions

 Spatial conversion functions

 Type conversion functions

110 Object Management Extension User Guide

Functions that Support the Spatial Operators

Spatial Functions

You can use the spatial functions to perform calculations on the spatial data
types. These functions all return floating point (double) values as a result.
There are four spatial functions:

Area–calculates the area of a box, circle, polygon, long polygon, ibox, icircle,
or ipolygon

Length–calculates the length of a line, long line, lseg, iline, or ilseg

Perimeter–calculates the perimeter of a box, circle, polygon, long polygon,
ibox, icircle, or ipolygon

Distance–calculates the distance between two points or two ipoints

The distance function differs from the other functions because it requires two
operands (points) as arguments.

Spatial Conversion Functions

The four spatial conversion functions accept a spatial data type and return
either a point value or a floating point (double) value corresponding to either
the x or y value of the point. These functions are:

 Point_x

 Point_y

 Box_ll

 Box_ur

The box_ll and box_ur functions each accept a box data type as input and
return a point value corresponding to either the lower-left or upper-right
corner point. Similarly, these functions also accept an ibox and return an ipoint
value.

Using Abstract Spatial Data Types 111

Functions that Support the Spatial Operators

The following table lists the explicit type conversion functions available for the
spatial data types:

Name First
Operand

Second
Operand

Result
Type

Description

bbox lseg
line
long line
polygon
long polygon
circle

 box Converts any of the defined
operands to internal box
representation. Bounding
box limits are defined as the
minimum and maximum
values found in any x,y data
pair in the data type being
converted.

bbox iline
ilseg
ipolygon
icircle

 ibox Converts any of the defined
operands to internal ibox
representation.

box char
varchar

 box Converts a char or varchar
string to internal box
representation.

box ibox box Converts an ibox to a box.

box point point box Converts two points to an
internal box representation.

box_ll ibox ipoint Returns the lower-left
coordinate of an ibox.

box_ur ibox ipoint Returns the upper-right
coordinate of an ibox.

box_ll box point Returns the lower-left
coordinate of a box.

box_ur box point Returns the upper-right
coordinate of a box.

char point
lseg
box
line
polygon
circle
ipoint
ilseg
ibox
iline
ipolygon
icircle

 char Converts the spatial data
type to its character
representation.

112 Object Management Extension User Guide

Functions that Support the Spatial Operators

Name First
Operand

Second
Operand

Result
Type

Description

nbr

circle char
varchar

 circle Converts a char or varchar
string to internal circle
representation.

circle icircle circle Converts an icircle to a
circle.

circle point float circle Converts a point and a float
to an internal circle
representation.

hilbert nbr varbyte Calculates the hilbert value
for an nbr. The hilbert is half
as long as the nbr.

ibox char
varchar

 ibox Converts a char or varchar
string to internal ibox
representation.

ibox ipoint ipoint ibox Converts two ipoints to an
internal ibox representation.

icircle char
varchar

 icircle Converts a char or varchar
string to internal icircle
representation.

icircle ipoint integer icircle Converts an ipoint and an
integer to an internal icircle
representation.

iline char
varchar

 iline Converts a char or varchar
string to an internal iline
representation.

ilseg char
varchar

 ilseg Converts a char or varchar
string to an internal ilseg
representation.

ilseg ipoint ipoint ilseg Converts two ipoints to an
internal ilseg representation.

ipoint char
varchar

 ipoint Converts a char or varchar
string to internal ipoint
representation.

ipoint integer integer ipoint Converts two integers to an
internal ipoint
representation.

Using Abstract Spatial Data Types 113

Functions that Support the Spatial Operators

Name First
Operand

Second
Operand

Result
Type

Description

ipolygon char
varchar

 ipolygon Converts a char or varchar
string to internal ipolygon
representation.

line char
varchar

 line Converts a char or varchar
string to internal line
representation.

long_line char
varchar

 long line Converts a char or varchar
string to internal long line
representation.

long_ polygon char
varchar

 line Converts a char or varchar
string to internal long
polygon representation.

lseg char
varchar

 lseg Converts a char or varchar
string to internal lseg
representation.

lseg ilseg lseg Converts an ilseg to an lseg.

lseg point point lseg Converts two points to an
internal lseg representation.

nbr point
box
lseg
line
polygon
circle
ipoint
ibox
ilseg
iline
ipolygon
icircle

box
ibox

nbr Converts a spatial data type
with a range specified by a
box or an ibox to an internal
nbr representation.

The nbr function supports
the integer spatial types
only when the second
parameter is ibox and float
spatial types only when the
second parameter is box.

point char
varchar

 point Converts a char or varchar
string to internal point
representation.

point float float point Converts two floats to an
internal point
representation.

point_x ipoint integer Returns the x coordinate of
an ipoint.

point_y ipoint integer Returns the y coordinate of
an ipoint.

114 Object Management Extension User Guide

Functions that Support the Spatial Operators

Name First
Operand

Second
Operand

Result
Type

Description

polygon char
varchar

 polygon Converts a char or varchar
string to internal polygon
representation.

varbyte point
box
lseg
line
polygon
circle
ipoint
ibox
ilseg
iline
ipolygon
icircle
nbr

 varbyte Copies a spatial data type in
its binary form to a varbyte
representation.

varchar point
box
lseg
line
polygon
circle
ipoint
ibox
ilseg
iline
ipolygon
icircle
nbr

 varchar Converts a spatial data type
to its character
representation in varchar
form.

Using Abstract Spatial Data Types 115

Support Routines for Spatial Data Types

Support Routines for Spatial Data Types

The routines in the following tables can be used with the spatial data types to
perform an explicit type conversion between SQL data types and spatial data
types. Each routine returns a zero for success and a non-zero value for failure.

To call these routines you must include the following files in your source code:

 spatialc.h

 spcirf.h

 spplyf.h

 splinf.h

 spsegf.h

 spboxf.h

 sppntf.h

The following table describes the support routines for all the spatial data types:

Routine Name and
Description

Inputs Outputs Implementation

POINT_TO_CHAR

Converts point data types
to character
representation.

Pointer to a point

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of a
point

int POINT_TO_CHAR
(POINT *pnt, char*buf)

CHAR_TO_POINT

Converts character string
to point data type.

Pointer to null-
terminated
character string

Pointer to point to
be filled

Point variable filled
with point value

int CHAR_TO_POINT
(char*str, POINT*pnt)

BOX_TO_CHAR

Converts box data type to
character representation.

Pointer to a box

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of box

int BOX_TO_CHAR
(BOX *the_box, char*
buf)

CHAR_TO_BOX

Converts character string
to box data type.

Pointer to null-
terminated
character string

Pointer to box to
be filled

Box variable filled
with box value

int CHAR_TO_BOX
(char *str, BOX*
the_box)

LSEG_TO_CHAR

Converts lseg data type
to character

Pointer to an lseg

Pointer to a 2000
char buffer

Buffer filled with null-
terminated
character
representation of

int LSEG_TO_CHAR
(LSEG *the_lseg, char
*buf)

116 Object Management Extension User Guide

Support Routines for Spatial Data Types

Routine Name and
Description

Inputs Outputs Implementation

representation. lseg

CHAR_TO_LSEG

Converts character string
to lseg data type.

Pointer to null-
terminated
character string

Pointer to lseg to
be filled

Lseg variable filled
with lseg value

int CHAR_TO_LSEG
(char *str, LSEG
*the_lseg)

LINE_TO_CHAR

Converts line data type to
character representation.

Pointer to a line

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of line

int LINE_TO_CHAR
(LINE *lin, char *buf)

CHAR_TO_LINE

Converts character string
to line data type.

Pointer to null-
terminated
character string

Pointer to line to
be filled maximum
number of points
in line

Line variable filled
with line points

int CHAR_TO_LINE
(char *str, LINE *lin,
long max_points)

POLYGON_TO_CHAR

Converts polygon data
type to character
representation.

Pointer to a
polygon

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
polygon

int POLYGON_TO_CHAR
(POLYGON *poly, char
*buf)

CHAR_TO_POLYGON

Converts character string
to polygon data type.

Pointer to null-
terminated
character string

Pointer to polygon
to be filled

Maximum number
of points in
polygon

Polygon variable
filled with polygon
vertices

int CHAR_TO_POLYGON
(char *str, POLYGON
*poly, long max_points)

CIRCLE_TO_CHAR

Converts circle data type
to character
representation.

Pointer to a circle

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
circle

int CIRCLE_TO_CHAR
(CIRCLE *the_circle, char
*buf)

CHAR_TO_CIRCLE

Converts character string
to circle data type.

Pointer to null-
terminated
character string

Pointer to circle to
be filled

Circle variable filled
with circle value

int CHAR_TO_CIRCLE
(char *str, CIRCLE
*the_circle)

IPOINT_TO_CHAR Pointer to a ipoint Buffer filled with null- int IPOINT_TO_CHAR

Using Abstract Spatial Data Types 117

Support Routines for Spatial Data Types

Routine Name and
Description

Inputs Outputs Implementation

Converts ipoint data
types to character
representation.

Pointer to a 2000
char buffer

terminated character
representation of an
ipoint

(IPOINT* ipnt, char* buf)

CHAR_TO_IPOINT

Converts character string
to ipoint data type.

Pointer to null-
terminated
character string

Pointer to ipoint to
be filled

Point variable filled
with ipoint value

int CHAR_TO_IPOINT
(char* str, IPOINT* ipnt)

IBOX_TO_CHAR

Converts ibox data type
to character
representation.

Pointer to an ibox

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
ibox

int IBOX_TO_CHAR
(IBOX* ibox, char* buf)

CHAR_TO_IBOX

Converts a character
string to ibox data type.

Pointer to null-
terminated
character string

Pointer to ibox to
be filled

Box variable filled
with ibox value

int CHAR_TO_IBOX
(char* str, IBOX ibox)

ILSEG_TO_CHAR

Converts lseg data type
to character
representation.

Pointer to an ilseg

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
ilseg

int ILSEG_TO_CHAR
(ILSEG* ilseg, char* buf)

CHAR_TO_ILSEG

Converts a character
string to ilseg data type.

Pointer to null-
terminated
character string

Pointer to ilseg to
be filled

Ilseg variable filled
with lseg value

int CHAR_TO_ILSEG
(char* str, ILSEG ilseg)

ILINE_TO_CHAR

Converts iline data type
to character
representation.

Pointer to an iline

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
iline

int ILINE_TO_CHAR
(ILINE* iline, char* buf)

CHAR_TO_ILINE

Converts a character
string to iline data type.

Pointer to null-
terminated
character string

Pointer to iline to
be filled maximum
number of points
in iline

Line variable filled
with iline points

int CHAR_TO_ILINE
(char* str, ILINE iline)

118 Object Management Extension User Guide

Ordering of Spatial Data Types

Routine Name and
Description

Inputs Outputs Implementation

IPOLYGON_TO_CHAR

Converts ipolygon data
type to character
representation.

Pointer to an
ipolygon

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
ipolygon

int IPOLYGON_TO_CHAR
(IPOLYGON* ip, char*
buf)

CHAR_TO_IPOLYGON

Converts character string
to ipolygon data type.

Pointer to null-
terminated
character string

Pointer to ipolygon
to be filled

Maximum number
of points in
ipolygon

Ipolygon variable
filled with ipolygon
vertices

int CHAR_TO_IPOLYGON
(char* str, IPOLYGON*
ip)

ICIRCLE_TO_CHAR

Converts icircle data type
to character
representation.

Pointer to a icircle

Pointer to a 2000
char buffer

Buffer filled with null-
terminated character
representation of
icircle

int ICIRCLE_TO_CHAR
(ICIRCLE* icirc, char*
buf)

CHAR_TO_ICIRCLE

Converts character string
to icircle data type.

Pointer to null-
terminated
character string

Pointer to icircle to
be filled

Circle variable filled
with icircle value

int CHAR_TO_ICIRCLE
(char* str, ICIRCLE icirc)

Ordering of Spatial Data Types

You can specify spatial data type columns in the order by clause of select
statements, and as key columns in create index statements. However, the
order in which spatial data is returned (as the result of a query) is not
guaranteed to have any particular geometric meaning.

Using Abstract Spatial Data Types 119

Polygon Length Limits

Polygon Length Limits

Polygon, line, ipolygon, and iline columns can contain a variable number of
points or ipoints. Ipoints are stored as two 4-byte integer values, whereas
points are stored as two 8-byte floating point values.

The number of points that can be stored in a column is limited to 2000.

The maximum number of ipoints that can be stored in an ipolygon or an iline is
249. The maximum number of points that can be stored in a polygon or line is
124.

120 Object Management Extension User Guide

How You Install Spatial Data Types in UNIX or Linux Environments

How You Install Spatial Data Types in UNIX or Linux
Environments

The spatial object package is included in the standard distribution on UNIX and
Linux. The spatial object files are installed by default during an RPM install on
Linux or a full ingbuild install on UNIX.

Custom ingbuild installs allow you to install spatial objects at a later time than
the initial install. Before you can use spatial data types in your applications,
you must install the spatial object package and relink the server.

Follow these steps to install the package and relink the server:

1. Shut down the existing Ingres installation by issuing the following
command:

ingstop

2. Install the spatial data types library from the distribution.

For UNIX environments, the package can be installed using ingbuild.

To install the package using ingbuild

a. Change to $II_SYSTEM/ingres/install directory, and start the forms-
based Ingres installation utility:

 ingbuild

b. Respond to the installation utility dialogs. Select and install the Spatial
Objects package from the custom install screen.

The spatial data types library is installed on your system.

3. Invoke the iilink utility by issuing the following command:

iilink

The iilink utility enables you to link in spatial data types or other user-
defined data types. You can specify an extension for the file name of the
server created by iilink so that the existing server file (iimerge) is not
overwritten.

4. Restart the DBMS Server using the ingstart command.

You can now use spatial data types.

Using Abstract Spatial Data Types 121

How You Install Spatial Data Types in UNIX or Linux Environments

The following example illustrates the process of linking the DBMS Server to
include spatial data types:

$ iilink

Loading INGRES merged server program ...
Using Shared Libraries ...

| |
| INGRES Spatial Objects consist of six spatial datatypes: POINT, BOX |
| LINE, LINE SEGMENT, CIRCLE and POLYGON, as well as a number of |
| spatial operators that operate on these spatial datatypes. |
| INGRES Spatial Objects have been installed and configured and |
| will automatically be included in the INGRES installation. |
| To prevent the inclusion of the INGRES Spatial Object |
| library re-run iilink with the -nosol option. |

| |
| These INGRES binaries are loaded to allow you to add User Defined |
| Data Types (UDTs) to this INGRES installation. |
| |
| You should now enter the modules where your User Defined Data Types |
| are defined. You can either enter the name of an object file(s) |
| or the name of a library. |
| Examples are: |
| /project1/obj/*.o |
| /project1/obj/filename.o |
| /project1/lib/myuadt.a |
| $II_SYSTEM/ingres/demo/udadts/libdemoudt.1.so |
| |
| If you don't have any User Defined Data Types created, press RETURN, |
| and the default object file will be used to load the INGRES binaries. |

Enter the full pathname of the object file or library to be loaded, or press
RETURN for the default object file:

| |
| An extension may be supplied at this time to differentiate your test |
| binaries from the existing ones. |
| |
| For example, if you enter the extension "test", the DBMS binary is |
| created at: |
| |
| $II_SYSTEM/ingres/bin/iimerge.test |
| |
| Otherwise, the DBMS binary is created at: |
| |
| $II_SYSTEM/ingres/bin/iimerge |
| |
| where it overrides the existing DBMS binary. |
| |

122 Object Management Extension User Guide

How You Install Spatial Data Types in UNIX or Linux Environments

Enter the file extension for the test binaries:
Loading iimerge ...

Done loading iimerge:
-rwsr-xr-x 1 ingres users 18911 2007-07-10 12:06
/install/ingres/bin/iimerge
Creating links to iimerge...
/install/ingres/bin/cacheutil linked to iimerge
/install/ingres/bin/dmfacp linked to iimerge
/install/ingres/bin/dmfjsp linked to iimerge
/install/ingres/bin/dmfrcp linked to iimerge
/install/ingres/bin/iidbms linked to iimerge
/install/ingres/bin/iishowres linked to iimerge
/install/ingres/bin/iistar linked to iimerge
/install/ingres/bin/lartool linked to iimerge
/install/ingres/bin/lockstat linked to iimerge
/install/ingres/bin/logdump linked to iimerge
/install/ingres/bin/logstat linked to iimerge
/install/ingres/bin/rcpconfig linked to iimerge
/install/ingres/bin/rcpstat linked to iimerge
/install/ingres/bin/repstat linked to iimerge
Links to iimerge have been created.

Using Abstract Spatial Data Types 123

How You Install Spatial Data Types in a VMS Environment

How You Install Spatial Data Types in a VMS Environment

Ingres processes access the spatial objects and user-defined data types by
means of shared images. The entry point is the routine IIudadt_register() for
user-defined data types and IIclsadt_register() for Ingres spatial objects.
Installing user-defined data types or Ingres spatial objects requires:

1. Building the shared image. This shared image is by default placed in
II_SYSTEM:[INGRES.LIBRARY] and given the name iiuseradt xx.exe where
xx is the two-character installation code.

2. Defining II_USERADT to point to the location of the shared image. This
step is only necessary if you chose to place your spatial objects and user-
defined data types in a location other than the default of
II_SYSTEM:[INGRES.LIBRARY].

3. Ensuring that the proper version of II_USERADT is installed.

4. Starting up Ingres server processes.

Ingres provides the template command files for building the shared image for
use in a test and production installation. The templates are located in:

II_SYSTEM:[INGRES.LIBRARY]II_USERADT_BUILD.COM

II_SYSTEM:[INGRES.LIBRARY]II_CLSADT_BUILD.COM

II_SYSTEM:[INGRES.LIBRARY]II_ALLADT_BUILD.COM

Note: II_CLSADT_BUILD.COM and II_ALLADT_BUILD.COM are only installed if
the spatial objects package isinstalled during the VMSINSTAL process.

The II_USERADT_BUILD.COM creates a shared image for user defined data
types only; II_CLSADT_BUILD.COM creates a shared image for Ingres spatial
objects only; and II_ALLADT_BUILD.COM creates a shared image for both
Ingres spatial objects and user-defined data types. These scripts build
"skeleton" versions of the respective shared images. For example code which
can be used in an II_USERADT image, see the files in
II_SYSTEM:[INGRES.DEMO.UDADTS].

Follow the regular Ingres installation procedures to bring up the server
processes.

If the installation was not completely shut down while the user built the
II_USERADTxx image (that is, they only shut down the servers), the new
image must be installed before bringing the servers up. The command to do
this (from a suitably privileged account) is:

$ INSTALL replace II_USERADT

124 Object Management Extension User Guide

How You Install Spatial Data Types in a Windows Environment

When you build the server after adding a spatial data type, you can see
multiple occurrences of the following linker message:

%LINK-I-UNALIGNRELO, unaligned longword relocation generated at location
%XXXXXXXXX

This message is informational and does not require any action on your part.

How You Install Spatial Data Types in a Windows
Environment

Before you can use spatial data types in your applications, you must relink the
IILIBUDT.DLL, as described in this section. To link the server, use the iilink
utility.

1. Stop Ingres by using Ingres Visual Manager, Ingres Service Manager, or
the ingstop command.

2. Invoke the User Defined Data Type Linker Wizard.

The User Defined Data Type Linker utility enables you to link in spatial data
types or other user-defined data types. You can specify an extension for
the file name of the server created by the wizard so that the existing
dynamic link library (IILIBUDT.DLL) is not overwritten.

To install Spatial Data Types, choose the Include Spatial Objects checkbox
in the User Defined Data Type Linker dialog.

3. Restart Ingres through Ingres Visual Manager, Ingres Service Manager, or
the ingstart command. You can now use spatial data types.

Using Abstract Spatial Data Types 125

Chapter 10: Writing Aggregate Functions
This section contains the following topics:

Aggregate Function (see page 127)
Function Definitions for Aggregates (see page 128)
Code for an Aggregate Function (see page 129)

This chapter gives a brief overview of writing aggregate functions for user-
defined data types.

Aggregate Function
Aggregate functions take a collection of values as input (contrasted with scalar
functions, which take a single input). Aggregate functions are used to perform
a summary operation on the set of input values.

The GROUP BY clause in SQL provides the basis for identifying the sets of
parameter values. The set of rows with the same values for the GROUP BY
columns produces the input parameters for each execution of the aggregate
function, or in the absence of a GROUP BY clause, all rows from the query
produce a single set of input parameters to the aggregate.

SQL supports the following aggregate functions for its intrinsic data types:

 count

 max

 min

 sum

 avg

 variance

 standard deviation

 correlation and regression analysis

Writing Aggregate Functions 127

Function Definitions for Aggregates

Function Definitions for Aggregates

Functions for user-defined types require the following:

 A function definition (using the IIADD_FO_DFN structure) to define the
function name

 A function instance definition (using the IIADD_FI_DFN structure) to define
the functions that will perform the operations

Function definitions for count(), max(), min() and sum() are already included
in Ingres, in the same sense that arithmetic and comparison operations are
pre-defined for user-defined data types; however, avg() is NOT pre-defined.
Users can also code their own aggregate functions with distinct function
names. The IIADD_FO_DFN structure instance must define “fod_type” to be
II_AGGREGATE in this case.

Like all functions on user-defined data types, aggregate functions must also
include definitions of each function instance for the function on a specific user-
defined type. These are defined by IIADD_FI_DFN structure instances, and for
aggregate functions they must include an “fid_optype” of II_AGGREGATE.

The instances of the function instance structure must be in a particular sorted
sequence. Function instances with fid_optype of II_AGGREGATE must be
placed between those for II_OPERATOR and II_NORMAL. If the function
instance is for one of the standard Ingres aggregates, the “fid_opid” field must
be set to the appropriate code (II_COUNT_OP for COUNT, II_MAX_OP for MAX,
II_MIN_OP for MIN, II_SUM_OP for SUM). If the function instance is for a user-
defined aggregate function, the fid_opid field must contain the value from the
“fod_id” field of the corresponding IIADD_FO_DFN structure instance.

Note: The function instance definitions must not use the II_RES_EXTERN
value for the “fid_rltype” field.

128 Object Management Extension User Guide

Code for an Aggregate Function

Code for an Aggregate Function

The code generated into a query plan by Ingres for the evaluation of an
aggregate function consists of three parts.

The first part is executed for each new set of GROUP BY column values. In the
current implementation, Ingres builds a work field that contains either the
“empty” value (as generated by the “getempty” method of the type definition)
or if the function is max or min, the minimum or maximum value for the type
as generated by the “minmaxdv” method. Each successive set of GROUP BY
column values calls this code again to reset the work field to the initialization
value.

The second part of code is executed for each row of a particular set of GROUP
BY column values and invokes the function variable defined in the aggregate
function instance definition. This function variable is passed the parameters
defined for the function instance. The first parameter defines the result of the
function execution and the second-through-nth-parameters describe the
parameters of the aggregate function invocation syntax. Each parameter to the
function variable is a pointer to a II_DATA_VALUE structure instance that
describes and addresses the corresponding value. Since the function variable is
called with each row to be aggregated, it is assumed that it will perform the
aggregation into the result parameter. The result parameter is the same work
field whose initialization is described in the preceding paragraph.

So, for example, an implementation of the function variable for the “max”
aggregate might simply compare the current value of the aggregate parameter
with the value in the work field, replacing it if the new value is “larger”
(remember, that the work field will be initialized to the minimum value for the
data type for each new group of rows). Likewise, an implementation of the
function variable for the “sum” aggregate might add the current parameter
value to the value in the work field, accumulating the sum in the work field.

The last part of code is executed after each group of rows (defined by a
distinct set of GROUP BY column values) is processed. Ingres simply copies the
current contents of the work field to the result location (based on the
assumption that the aggregate is accumulated in the work field).

Example—Function to perform the “sum” operation on the ORD_PAIR
type

/*
** Name: usop_sum() - sum a set of ord_pair's (just sums each element).
**
** Description:
**
** Inputs:
** scb Pointer to a session control block.
** rdv Pointer to II_DATA_VALUE to hold
** resulting summed result.
** dv1 Pointer to II_DATA_VALUE of the first

Writing Aggregate Functions 129

Code for an Aggregate Function

** operand, which is a ORD_PAIR datatype.
**
** Outputs:
** rdv
** .db_data Pointer to resulting currency value.
**
** Returns:
** II_STATUS
**
History:
19-oct-05 (inkdo01)
Written as proof of concept for UDT aggregation.
*/
II_STATUS
usop_sum(
II_SCB *scb,
II_DATA_VALUE *rdv,
II_DATA_VALUE *dv1)
{
 ORD_PAIR *ival, *rval;

 ival = (ORD_PAIR *)dv1->db_data;
 rval = (ORD_PAIR *)rdv->db_data;

 /* Simply accumulate the sums of the x & y values
 in the result work field. */
 rval->op_x += ival->op_x;
 rval->op_y += ival->op_y;

 return(II_OK);
}

Note: Ingres currently does not support the AVG operator for user-defined
types because Ingres assumes a division operator is not generally available for
user-defined types. (AVG is compiled as a SUM divided by a COUNT.) Users,
however, can implement a SUM operator and explicitly code “sum(abc) /
count(abc) as “avg(abc)” in a query. Also, users can code type-specific
functions to perform AVG (for example, avg_op, to compute the average of a
set of ordered pairs) using an algorithm appropriate to the type.

130 Object Management Extension User Guide

Appendix A: Checklist for Creating Data
Types

This section contains the following topics:

How You Create Data Types in Windows (see page 131)
How You Create Data Types in UNIX (see page 132)
How You Create Data Types in VMS (see page 133)

This appendix summarizes the process of defining, installing, and testing a new
data type or SQL function.

How You Create Data Types in Windows

The general procedure for defining and installing user-defined data types and
functions in a Windows environment is as follows:

1. Design and code the routines needed to perform the functions necessary to
manipulate the new or existing data types.

2. Establish a test installation in which to test the new data types and
functions.

3. Create the IIudadt_register() routine.

4. Relink the IILIBUDT.DLL using the User Defined Data Type Linker Utility.

5. Build module tests that call all routines in the prescribed manner to test
the basic functionality outside of the complexity of the Ingres system. It is
advisable to verify that all sections of code are reached.

6. Start a new DBMS server or Star server and test the new functionality.
Testing must involve a large variety of query types to ensure full coverage
of the code.

7. Once you are confident that the server works, shut down and restart your
entire test installation to verify that the support processes (the Recovery,
Archiver, Star, and Remote Command) operate correctly. You can verify
this through Ingres Visual Manager.

Checklist for Creating Data Types 131

How You Create Data Types in UNIX

8. When the code has been fully tested, make sure that the
add_risk_consistency field of the IIADD_DEFINITION data structure is set
to IIADD_CONSISTENT. For more information about this field, see
Structure IIADD_DEFINITION Fields (see page 76).

9. Install the new code in the target system.

Move all of your code to the desired location for your target system. Once your
code is in place, you must shut down and restart your installation so that the
support processes recognize the new code.

How You Create Data Types in UNIX

The general procedure for defining and installing user-defined data types and
functions in a UNIX environment is as follows:

1. Design and code the routines necessary to perform the functions necessary
to manipulate the new or existing data types.

2. Establish a test installation in which to test the new data types and
functions.

3. Create the IIudadt_register() routine.

4. Relink the images by running the iilink script.

5. Build module tests which call all routines in the prescribed manner to test
the basic functionality outside of the complexity of the Ingres system. It is
advisable to verify that all sections of code are reached.

6. Start a new DBMS server or Star server and test the new functionality.
Testing must involve a large variety of query types to ensure full coverage
of the code.

7. Once you are confident that the server works, shut down and restart your
entire test installation to verify that the support processes (the Recovery,
Archiver, and cluster server) operate correctly. You can verify this by
checking the following error logs:

$II_SYSTEM/ingres/files/errlog.log

$II_SYSTEM/ingres/files/ii_rcp.log,

$II_SYSTEM/ingres/files/ii_acp.log

Note: If your system is configured for Ingres Cluster Solution, each node
in the Ingres cluster maintains a separate Archiver and Recovery error log.
Each log is distinguished by having _nodename appended to the base log
name, where nodename is the Ingres node name for the host machine as
returned by iipmhost.

132 Object Management Extension User Guide

How You Create Data Types in VMS

8. When the code has been fully tested, make sure that the
add_risk_consistency field of the IIADD_DEFINITION data structure is set
to IIADD_CONSISTENT. For more information about this field, see
Structure IIADD_DEFINITION Fields (see page 76).

9. Install the new code in the target system.

Move all of your code to the desired location for your target system. Once your
code is in place, you must shutdown and restart your installation so that the
support processes recognize the new code.

How You Create Data Types in VMS

The general procedure for defining and installing user-defined data types and
functions in the VMS environment is as follows:

1. Design and code the routines necessary to perform the functions necessary
to manipulate the new or existing data types.

2. Establish a test installation in which to test the new data types and
functions.

3. Create the IIudadt_register() routine.

4. Create the shared image by adding object module descriptions to the
template command files found in
II_SYSTEM:[INGRES.LIBRARY]II_USERADT_BUILD.COM.

5. Define the logical name II_USERADT to point to this shared image.

6. Build module tests which call all routines in the prescribed manner to test
the basic functionality outside of the complexity of the Ingres system. It is
advisable to verify that all sections of code are reached.

7. Start a new DBMS server or Star server and test the new functionality.
Testing must involve a large variety of query types to ensure full coverage
of the code.

8. Once you are confident that the server works, shutdown and restart your
entire test installation to verify that the support processes (the Recovery,
Archiver, and cluster server) operate correctly. You can verify this by
checking the error logs:

ii_config:errlog.log

ii_config:ii_rcp.log

ii_config:ii_acp.log

Note: If your system is configured for Ingres Cluster Solution, each node
in the Ingres cluster maintains a separate Archiver and Recovery error log.
Each log is distinguished by having _nodename appended to the base log
name, where nodename is the Ingres node name for the host machine as
returned by iipmhost.

Checklist for Creating Data Types 133

How You Create Data Types in VMS

9. When the code has been fully tested, make sure that the
add_risk_consistency field of the IIADD_DEFINITION data structure is set
to IIADD_CONSISTENT. For more information about this field, see
Structure IIADD_DEFINITION Fields (see page 76).

10. Install the new code in the target system.

Move all of your code to the desired location for your target system and
repointing the II_USERADT logical if necessary. Once your code is in place, you
must shutdown and restart your installation so that the support processes
recognize the new code.

134 Object Management Extension User Guide

Index
box (spatial data type) • 90

(
C

(braces) • 8
circle (spatial data type) • 96

[coercion
defining a new data type • 17

[] (brackets) • 8 routines • 17
compare routine • 29 |
conventions

syntax • 8 | (vertical bar) • 8

D A
data type coercion • 17 abstract spatial data type
data type definition • 11 box • 90

adding abstract data types • 21 circle • 96
IIADD_DT_DFN • 22 functions • 87
required routines • 24 hilbert function • 110

dbtoev routine • 19, 30 ibox • 98
demonstration data types • 10 icircle • 102
dhmax routine • 32 iline • 100
dhmin routine • 33 ilseg (line segment) • 99
dispose mask intersects spatial operator • 108

ii_cb_trace routine • 78 ipoint • 97
distance function • 111 ipolygon • 101

E key columns • 119
line • 92
long line • 93 err_num
long polygon • 95 ii_error_fcn routine • 79
lseg (line segment) • 91

F nbr function • 110
operators • 87
overlaps spatial operator • 109 filter functions
point • 89 using • 64
polygon • 94 function definition • 11
spatial conversion functions • 111 IIADD_FO_DFN • 55
spatial operators • 104 requirements • 55
storage formats • 103 function instance definition • 11, 57
support routines • 116 IIADD_FI_DFN • 58

area function • 111 function instances
defining for large objects • 63

B functions
spatial operators • 110

binary spatial operators • 105
bold typeface • 8

Index 135

G iline (spatial data type) • 100
ilseg (spatial data type) • 99
Ingres Cluster Solution • 132, 133 getempty routine • 19, 34
input coercion routine • 17

H inside operator • 106
installation

handler routine • 66 II_USERADT • 81
hashprep routine • 35 shared image template • 82
header file shared image transfer vector • 82

IIADD.H • 9 testing • 84
helem routine • 36 installing data types and functions
hg_dtln routine • 37 unix • 84
hilbert spatial function • 110 VMS • 81
hmax routine • 39 Windows • 81
hmin routine • 40 int_list data type • 10

intersects operator • 108 I ipoint (spatial data type) • 97
ipolygon (spatial data type) • 101

ibox (spatial data type) • 98 italics • 8
icircle (spatial data type) • 102

K identifiers
data type • 18
function • 18 keybuild routine • 41
function instance • 18

L ii_cb_trace routine • 78
II_COPY operation • 73

large objects II_COUPON • 22
defining function instances • 63 II_DATA_VALUE • 24
description • 19 II_DT_PERIPHERAL • 22
manipulating directly • 66 ii_error_fcn routine • 79
using filter functions • 64 ii_filter_fcn routine • 80

length II_GET operation • 69
ii_cb_trace routine • 78 II_INFORMATION operation • 68

length function • 111 ii_init_filter_fcn routine • 79
length_check routine • 19, 45 ii_lo_handler_fcn routine • 79
line (spatial data type) • 92 II_PERIPHERAL • 22
long line (spatial data type) • 93 description • 19
long polygon (spatial data type) • 95 II_PUT operation • 71
lseg (spatial data type) • 91 II_USERADT

shared image • 81, 83 M
IIADD.H

location • 9
minmaxdv routine • 46

IIADD_DEFINITION • 76

N IIADD_DT_DFN
description of fields • 22

IIADD_FI_DFN • 58 nbr spatial function • 110
IIADD_FO_DFN • 55

O iilink (command) • 84
IIudadt_register • 75

Object Management Extension calling syntax • 75

136 Object Management Extension User Guide

S description • 9
restrictions • 13

operators scb
spatial data type • 104 ii_error_fcn routine • 79

ord_pair data type • 10 scb_error • 24
output coercion routine • 17 seglen routine • 49
overlaps operator • 109 server routines • 78

shared image P
disk location • 83
template • 82

perimeter function • 111
transfer vector • 82

Peripheral Object Control Block (POP_CB)
spatial functions • 111

structure • 66
spatial operators

peripheral objects
functions • 110

description • 19
Star Server

point (spatial data type) • 89
installation process • 81

polygon (spatial data type) • 94
statement syntax • 8

maximum number of points • 120
storage formats

procedure checklist
spatial data types • 103

UNIX • 132
string

VMS • 133
ii_cb_trace routine • 78

Windows • 131
support routines

R spatial data type • 116
syntax

conventions • 8 required routines
syntax descriptions • 8 calling syntax • 24

common characteristics • 24 T
compare • 29
dbtoev • 30

testing
dhmax • 32

data type code • 85
dhmin • 33

tmcvt routine • 19, 50
getempty • 34

tmlen routine • 19, 51
hashprep • 35

transfer vector for shared image • 82
helem • 36

U hg_dtln • 37
hmax • 39
hmin • 40 underlying data type
IIudadt_register • 75 description • 19
keybuild • 41 UNIX
length_check • 45 installing and testing new code • 13
minmaxdv • 46 installing data types • 84
tmcvt • 50 procedure checklist • 132
tmlen • 51 user-defined data types
value_check • 52 copying • 18

restrictions, OME • 13 DBMS Server and • 15
routines guidelines • 16

list of server • 78 language requirements • 16

Index 137

V

value_check routine • 19, 52
VMS

installing and testing new code • 13
installing data types and functions • 81
procedure checklist • 133

W

Windows
installing and testing new code • 13
installing data types and functions • 81
procedure checklist • 131

X

xform routine • 53

138 Object Management Extension User Guide

	Bookshelf
	Ingres Object Management Extension User Guide
	Contents
	1: Introduction
	Audience
	In This Guide
	System-specific Text in This Guide
	Terminology Use in This Guide
	Syntax Conventions Used in This Guide

	2: Introducing Object Management Extension
	What Is Object Management Extension?
	Structure and Symbol Definitions
	Demonstration Data Types

	How You Add Data Types and Functions
	Required Contents of the Code
	Data Type Definitions
	Function Definitions
	Function Instance Definitions
	Coercion Routines
	Installation and Testing of the New Code

	Object Management Extension Restrictions

	3: Understanding DBMS Server Requirements for User-Defined Data Types
	How the DBMS Server Uses the Code
	Requirements for User-written Code
	Requirements for Data Type Coercion
	IDs for Data Types and Functions
	User-defined Data Types and the Copy Statement
	Large Objects

	4: Defining Data Types
	Data Type Definition
	Structure IIADD_DT_DFN Fields
	Required Routines for Data Type Definition
	Function Parameters
	Structure scb_error
	Structure II_DATA VALUE
	The Structure of db_data
	Internal Structure of a Decimal Value

	compare Routine--Compare Two Data Elements
	Inputs
	Outputs
	Returns

	dbtoev Routine--Determine External Data Type
	Inputs
	Outputs
	Returns

	dhmax Routine--Create Default Maximum Histogram Value
	Inputs
	Outputs
	Returns

	dhmin Routine--Create Default Minimum Histogram Value
	Inputs
	Outputs
	Returns

	getempty Routine--Get an Empty Value
	Inputs
	Outputs
	Returns

	hashprep Routine--Prepare Value for Hash Key
	Inputs
	Outputs
	Returns

	helem Routine--Create a Histogram Element for Data Value
	Inputs
	Outputs
	Returns

	hg_dtln Routine--Provide Type and Length for Histogram Value
	Inputs
	Outputs
	Returns

	hmax Routine--Create Histogram Value for Maximum Value
	Inputs
	Outputs
	Returns

	hmin Routine--Create Histogram Value for Minimum Value
	Inputs
	Outputs
	Returns

	keybuild Routine--Build a Key from the Value
	Inputs
	Outputs
	Returns

	length_check Routine--Check for Valid Length
	Inputs
	Outputs
	Returns

	minmaxdv Routine--Provide Min/Max Values and Lengths
	Inputs
	Outputs
	Returns

	seglen Routine--Determine Length of Each Long Segment
	Inputs
	Outputs
	Returns

	tmcvt Routine--Convert Data Type to Displayable Format
	Inputs
	Outputs
	Returns

	tmlen Routine--Determine Display Length
	Inputs
	Outputs
	Returns

	value_check Routine--Check for Valid Values
	Inputs
	Outputs
	Returns

	xform Routine--Transform Long Types into Segments
	Inputs
	Outputs
	Returns

	5: Defining Functions
	Required Definitions
	Structure IIADD_FO_DFN

	6: Defining Function Instances
	Function Instance Definition
	Structure IIADD_FI_DFN
	Length Definition of Result Data Type
	External Lenspec Routine--Return Result Length of Specified Value
	Complementary Function Instances
	Sorting of the Function Instance Definition Array
	Methods for Defining Function Instances for Large Objects
	Ingres-supplied Filter Functions
	Direct Manipulation of Large Objects

	II_INFORMATION Operation--Return Maximum Length of Peripheral Object Segments
	Inputs
	Outputs
	Returns

	II_GET Operation--Get Next Segment
	Inputs
	Outputs
	Returns

	II_PUT Operation--Add a New Segment
	Inputs
	Outputs
	Returns

	II_COPY Operation--Move a Peripheral Object
	Inputs
	Outputs
	Returns

	7: Passing Definitions to the DBMS Server
	IIudadt_register Routine
	Structure IIADD_DEFINITION Fields
	Server Routines Provided
	The ii_cb_trace Routine--Output Provided Trace Messages
	The ii_error_fcn Routine--Place Error Information in Status Control Block
	The ii_lo_handler_fcn Routine--Move Through Large Object Segments
	The ii_init_filter_fcn Routine--Set Up Filter Function
	The ii_filter_fcn Routine--Perform Operation by Calling a User Routine

	8: Installing and Testing Data Types
	How You Install New Data Types in a Windows Environment
	How You Install New Data Types in a VMS Environment
	Template Command File--Create the Shared Image
	II_USERADT Logical--Set Disk Location of the Shared Image
	Definition of II_USERADT in a Test Installation

	How You Install New Data Types in a UNIX Environment
	Testing the New Data Type Code

	9: Using Abstract Spatial Data Types
	Use of Spatial Data Types, Operators, and Functions
	Spatial Data Types in the Spatial Object Library
	Point Data Type
	Box Data Type
	Lseg Data Type
	Line Data Type
	Long Line Data Type
	Polygon Data Type
	Long Polygon Data Type
	Circle Data Type
	Ipoint Data Type
	Ibox Data Type
	Ilseg Data Type
	Iline Data Type
	Ipolygon Data Type
	Icircle Data Type
	Nbr Data Type
	Spatial Data Types Storage Formats

	Spatial Operators
	Equality Operators
	Binary Spatial Operators
	Inside Operators
	Intersects Operator

	Overlaps Operator
	Nbr Function
	Hilbert Function

	Functions that Support the Spatial Operators
	Spatial Functions
	Spatial Conversion Functions

	Support Routines for Spatial Data Types
	Ordering of Spatial Data Types
	Polygon Length Limits
	How You Install Spatial Data Types in UNIX or Linux Environments
	How You Install Spatial Data Types in a VMS Environment
	How You Install Spatial Data Types in a Windows Environment

	10: Writing Aggregate Functions
	Aggregate Function
	Function Definitions for Aggregates
	Code for an Aggregate Function

	A: Checklist for Creating Data Types
	How You Create Data Types in Windows
	How You Create Data Types in UNIX
	How You Create Data Types in VMS

	Index

