
Ingres 10.0

Release Summary

ING-10-RS-03

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD-
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2010 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: DBMS Server Enhancements in Ingres 10 5
Ingres for 64-bit Windows .. 5
Multiversion Concurrency Control (MVCC) ... 5
Scalar Subqueries ... 7
Data at Rest Encryption ... 9
Long Identifiers .. 10
Renaming Tables and Columns.. 12
Bulk Loading Improvements ... 13
Batch Query Execution... 14
BOOLEAN Data Type.. 15
New SQL Functions ... 18
Terminal Monitor Silent Mode.. 19
Daitch-Mokotoff Soundex Function... 20
Check Digit Functions .. 21
Recovery Server Error Handling .. 22
Hash Join and Hash Aggregation Improvements .. 23
Query Execution Improvements Related to Partitioned Tables.. 24
Direct I/O Improvements (UNIX)... 25
File Allocation Improvements (UNIX) ... 26
Standard Compression Performance Improvements ... 26
Miscellaneous Changes .. 27

Chapter 2: Connectivity Enhancements in Ingres 10 29
JDBC 4.0 Support ... 29
64-bit ODBC Driver ... 29
ODBC Driver Names .. 29
IngresType.IngresDate Parameter Type in .NET Data Provider ... 30
Named Parameters in Parameterized Queries in .NET Data Provider.. 31
Positional Parameter Support in Drivers.. 31
TCP/IP for Local Communications on Windows... 32
Performance Improvements to Communications Protocol Drivers on Windows 32

Chapter 3: Supportability Enhancements in Ingres 10 33
Process ID (PID) for GCF Servers Displayed in iimonitor ... 33
OpenAPI Writing of DBMS Trace Messages to File... 34

Contents iii

Chapter 4: Usability Enhancements in Ingres 10 35
Improved Visual Tools Dialogs .. 35
Terminal Monitor Usability Enhancements ... 35

Index 37

iv Release Summary

Chapter 1: DBMS Server Enhancements in
Ingres 10

This section contains the following topics:

Ingres for 64-bit Windows (see page 5)
Multiversion Concurrency Control (MVCC) (see page 5)
Scalar Subqueries (see page 7)
Data at Rest Encryption (see page 9)
Long Identifiers (see page 10)
Renaming Tables and Columns (see page 12)
Bulk Loading Improvements (see page 13)
Batch Query Execution (see page 14)
BOOLEAN Data Type (see page 15)
New SQL Functions (see page 18)
Terminal Monitor Silent Mode (see page 19)
Daitch-Mokotoff Soundex Function (see page 20)
Check Digit Functions (see page 21)
Recovery Server Error Handling (see page 22)
Hash Join and Hash Aggregation Improvements (see page 23)
Query Execution Improvements Related to Partitioned Tables (see page 24)
Direct I/O Improvements (UNIX) (see page 25)
File Allocation Improvements (UNIX) (see page 26)
Standard Compression Performance Improvements (see page 26)
Miscellaneous Changes (see page 27)

Ingres for 64-bit Windows

Ingres is ported to pure 64-bit Windows.

Multiversion Concurrency Control (MVCC)

MVCC provides concurrent access to the database without locking the data.
This feature improves the performance of database applications in a multiuser
environment. Applications will no longer hang because a read cannot acquire a
lock.

MVCC provides each user connected to the database with a "snapshot" of the
data to work with. The data is consistent with a point in time. Other users of
the database see no changes until the transaction is committed. The snapshot
can be taken at the start of a transaction, or at the start of each statement, as
determined by the isolation level setting.

DBMS Server Enhancements in Ingres 10 5

Multiversion Concurrency Control (MVCC)

This release provides full MVCC support, in which readers do not block writers,
and writers do not block readers.

The user invokes MVCC protocols for a session or table with the SQL
statement:

SET LOCKMODE session | ON table_name WHERE LEVEL = MVCC

The alterdb command has two new options, -disable_mvcc and -enable_mvcc,
which disable and enable MVCC, respectively. By default, MVCC is enabled for
all existing and newly created databases.

Using MVCC is optional. Your existing applications that do not use MVCC will
execute in the same manner they worked previously. The overhead of MVCC is
the cost of maintaining multiple versions of database pages.

For the system administrator, MVCC may require additional buffer manager
memory because Consistent Read pages occupy cache space that otherwise
might be used by database pages.

The MVCC feature changes the format of many log records, which means that
after running upgradedb, previous journals and checkpoints will be invalid.

For details about this feature, see the following:

 The chapters "Understanding the Locking System" and "Understanding
Multiversion Concurrency Control" in the Database Administrator Guide

 The SET LOCKMODE and SET SESSION ISOLATION LEVEL statements in
the SQL Reference Guide

 The alterdb command in the Command Reference Guide

6 Release Summary

Scalar Subqueries

Scalar Subqueries

A scalar subquery (or scalar subselect) is a subquery that selects only one
column or expression and returns one row.

Ingres has supported scalar subqueries in "expression comparison_op scalar
subquery" syntax in a WHERE, ON, or HAVING clause. This enhancement
provides full scalar subquery support. It allows scalar subqueries to be used
anywhere in an SQL query that a column or expression can be used. For
example, it can appear in the select-list, in a WHERE or ON clause of a
containing query, or as an operand in any expression.

A scalar subquery can be used in the following contexts:

 The select list of a query (that is, the expressions between the SELECT and
FROM keywords)

 The JOIN clause of a query

 A WHERE clause that contains CASE, IF, COALESCE, and NULLIF
expressions

 The source to an UPDATE statement when the subquery refers to more
than the modified table

 A qualifier to a DELETE statement where the subquery identifies the rows
to delete

 The VALUES clause of an INSERT statement

DBMS Server Enhancements in Ingres 10 7

Scalar Subqueries

Scalar subqueries can be used to compute several different types of
aggregations (max and avg) all in the same SQL statement. The following
query uses both scalar subqueries and in-line views:

SELECT
 (SELECT MAX(salary) FROM emp) AS highest_salary,
 emp_name AS employee_name,
 (SELECT AVG(bonus) FROM commission) AS avg_comission,
 dept_name
FROM emp, (SELECT dept_name FROM dept WHERE dept = ‘finance’);

Scalar subqueries can also be used for inserting into tables, based on values
from other tables. The following example uses scalar subquery to compute the
maximum credit for Bill and insert this value into a max_credit table.

INSERT INTO max_credit (name,max_credit) VALUES (
 ‘Bill’,
 SELECT MAX(credit) FROM credit_table WHERE name = ‘Bill’
);

INSERT INTO emp_salary_summary
(sum_salaries, max_salary,min_salary, avg_salary)
VALUES (
 (SELECT SUM(salary) from emp),
 (SELECT MAX(salary) from emp),
 (SELECT MIN(salary) from emp),
 (SELECT AVG(salary) from emp));

To be a valid scalar subquery, the subquery must produce at most a single
value. That is, the result should consist of zero or one row of one column. If
more than one row results, a cardinality error occurs.

For more information, see these sections in the SQL Reference Guide:

 Scalar Subqueries

 Subqueries in the Target List, SET, and VALUES Clauses

 Example Query Using Derived Tables and Scalar Subquery

 Scalar Subquery Feature Can Change Behavior of Existing Subqueries

8 Release Summary

Data at Rest Encryption

Data at Rest Encryption

Specific database table columns can be encrypted to enhance data security,
ensure privacy, and protect media that contains database records holding
sensitive information. This feature ensures that data in an Ingres database is
stored on disk or other media in such a way that protected columns are
unreadable without knowledge of the encryption passphrase. Ingres functions
AES_ENCRYPT and AES_DECRYPT provide explicit encryption and decryption.
Table-level encryption is not provided.

Encryption "at rest" refers to data on physical media recorded in a persistent
form. This includes stored database records, the transaction log, journals, and
checkpoints. Encrypted columns are stored in the database files using 128-,
192-, or 256-bit Advanced Encryption Standard (AES) encryption.

When encryption has been enabled for a table that contains encrypted
columns, the encryption is transparent to the applications accessing the data.
Only minimal changes, if any, are required at the application level.

Note: Data is readable in DBMS buffers when a client is communicating with
the DBMS Server. Data is also not protected when copied out of the database
to flat files.

You specify encryption by using options on the CREATE TABLE statement. For
example, the following statement creates a table with an encrypted column:

CREATE TABLE socsectab
(
 fname CHAR(10),
 lname CHAR(20),
 socsec CHAR(11) ENCRYPT
)
 WITH ENCRYPTION=AES128,
 PASSPHRASE='this is a secret';

At the column level, you can specify the encryption option NOSALT to override
the default encryption, which is done with salt (extra random bits).

To enable access to data in an encrypted table, you must know the
passphrase, which is specified on the MODIFY statement:

MODIFY socsectab ENCRYPT
 WITH PASSPHRASE='this is a secret';

To revoke access, specify an empty passphrase string using the MODIFY
statement:

MODIFY socsectab ENCRYPT
 WITH PASSPHRASE='';

DBMS Server Enhancements in Ingres 10 9

Long Identifiers

To change the passphrase, specify a new one on the MODIFY statement:

MODIFY socsectab ENCRYPT
 WITH PASSPHRASE='this is a secret',
 NEW_PASSPHRASE='we have a new secret';

Ingres servers that include this feature are compatible with other server
versions.

Note: Because of changes to the standard catalogs, you must run upgradedb
on existing installations.

For more information, see the Security Guide and SQL Reference Guide.

Long Identifiers

The maximum length of names for certain objects has increased from 32 to
256 bytes.

Names for the following objects can now be a maximum of 256 bytes:

 Table

 View

 Index

 Column

 Partition

 Procedure

 Procedure parameter

 Rule

 Sequence

 Synonym

 Object

 Constraint

 Integrity

10 Release Summary

Long Identifiers

The maximum length of names for the following objects remains at 32 bytes:

 Database

 Owner

 User

 Group

 Profile

 Role

 Schema

 Location

 Event

 Alarm

 Node

The maximum length of a collation sequence name is 64 bytes.

The maximum length for names of objects managed by Ingres tools such as
Query-By-Forms, Report-By-Forms, Vision, and Visual Forms Editor remains at
32 bytes. (Examples of these objects are Forms, JoinDefs, QBFnames, Graphs,
and Reports.) These tools may be unable to display and operate on objects
(such as tables and columns) with long names.

The size of related columns in the standard catalog interface has also
increased. For example, iitables.table_name, which is a view on iirelation.relid,
has increased from 32 to 256.

The Long Identifiers feature changes the catalogs and the format of many log
records, which means that after running upgradedb, previous journals and
checkpoints will be invalid.

Pre-Ingres-10 databases must be upgraded with upgradedb before they can be
accessed. Alternatively, you can unload your database before installing Ingres
10 and then reload the database after installing Ingres 10.

An older version (such as 9.2) client can access an Ingres 10 database if you
limit names to a maximum of 32 bytes.

Migration Note: If an application is using dynamic SQL and is dynamically
linked against libq, you must recompile the application to properly access the
SQL Descriptor Area because of changes in the IISQLVAR structure for Long
Identifiers.

DBMS Server Enhancements in Ingres 10 11

Renaming Tables and Columns

Renaming Tables and Columns

Tables and columns can be renamed using the following statements new to
Ingres 10:

[EXEC SQL] ALTER TABLE [schema.]table_name RENAME TO new_table_name

[EXEC SQL] ALTER TABLE [schema.]table_name RENAME [COLUMN] old_column_name TO
new_column_name

[EXEC SQL] RENAME TABLE [schema.]table_name TO new_table_name

These commands update the core catalogs to reflect the new table or column
name. If a table name or column name is referred to in views, procedures,
constraints, rules or other dependent objects, then the table name or column
name is not allowed to be renamed; if renaming is attempted, appropriate
error messages are given for each case. Ingres deals with each of the
dependencies in the following ways:

 Indexes, grants, comments, synonyms, sequences, partitions, and
extension tables are automatically transferred to the newly renamed table
or column. For grants, query text is updated to reflect the new table and
column names.

 A renaming operation on a table is not allowed if any views, procedures,
rules, integrities, check or referential constraints, non-grant permits, or
security alarms are dependent on the table being renamed. Dependencies
for each case will be listed in the error log. Primary key and unique
constraints will be transferred to the new table name.

 A renaming operation on a column is not allowed if any views, constraints,
or integrities are dependent on the column being renamed or there are
any procedures, rules, referential or check constraints, non-grant permits,
or security alarms dependent on the table that contains the column being
renamed. Dependencies on the column will be listed for each case in the
error log.

 Any forms, join definitions, or reports that refer to the old table or column
name will be invalidated; these must be recreated and reloaded.

 Any copydb (unloaddb) scripts generated before renaming the table or
column will no longer be usable for reload operations.

Notes:

 The new SQL renaming syntax works only with Ingres 10.

 The ALTER TABLE RENAME or RENAME TABLE operation can be rolled
back.

 Procedures are not permitted to execute ALTER TABLE RENAME or
RENAME TABLE statements.

12 Release Summary

Bulk Loading Improvements

 Ingres Star does not support ALTER TABLE RENAME or RENAME TABLE
statements for renaming tables and columns.

For more information:

 About statement syntax and examples, and complete rules and restrictions
for renaming tables and columns, see the SQL Reference Guide.

 About registering renamed tables or columns with Ingres Star, see
Register Table as Link Statement—Define Table to Ingres Star and
Register Tables with StarView in the Star User Guide.

 About updating the dd_regist_columns and dd_regist_tables tables with
updated table and column names, see those sections and Reregistering
Renamed Tables and Tables with Renamed Columns in the Replicator User
Guide.

Bulk Loading Improvements

Several improvements make it easier to bulk load data:

 The CSV and SSV delimiters allow the COPY statement to read and write
files with comma-separated values (CSV).

 COPY FROM an ordinary text data file is up to two times faster.

 A COPY FROM that loads a partitioned table can now perform bulk-load
into partitions that satisfy the standard bulk-load criteria.

A related feature, Batch Query Execution (see page 14), improves the
efficiency of loading data from a client interface.

For more information, see these sections in the SQL Reference Guide:

 Delimiters in the Data File

 CSV and SSV Delimiters

DBMS Server Enhancements in Ingres 10 13

Batch Query Execution

Batch Query Execution

Queries now can be executed in batch. Batch statement execution improves
communication performance between the client and the DBMS Server. Batched
statements that are run against an Ingres Star server may see less
performance benefit.

A group of statements can be sent to the server, where they are executed,
and then the correct number of responses are sent back to the client. This
feature is restricted to queries that return either a response or a row count,
but no data.

Statements allowed in batched queries include INSERT, DELETE, and
statements that return no data, such as CREATE TABLE. SELECT statements
and row-producing procedures are not allowed in batched queries.

To take advantage of batch query execution, Java programmers can use the
addBatch and executeBatch methods, which are supported in Ingres JDBC.
OpenAPI programmers can use the new function, IIapi_batch().

Batched statements that use repeated dynamic INSERT statements (for
example, through Java-based Extract Transfer and Load tools) are specially
optimized to improve performance.

If the DBMS does not support batch processing, the Ingres JDBC driver detects
it and automatically executes the statements individually.

Even for servers that support batch processing, if you discover a difference in
behavior between individual statement execution and batch execution and you
want to force individual statement execution, you can use the
ingres.jdbc.batch.enabled system property to disable batch query execution.
For more information, see the ingres.jdbc.batch.enabled property in the
Connectivity Guide.

We recommend not using autocommit with batch execution. If batch execution
is used with autocommit, and you cancel the batch execution, it is impossible
to tell which statements were committed.

Note: Embedded SQL does not yet support batch query execution.

For more information, including guidelines on how to boost performance using
this feature, see the Connectivity Guide and OpenAPI User Guide.

14 Release Summary

BOOLEAN Data Type

BOOLEAN Data Type

BOOLEAN can be used as a data type when defining a column in a table or a
variable in a database procedure. Support for the BOOLEAN data type helps
migrations from other database products.

Boolean columns accept as input the SQL literals FALSE and TRUE. In addition,
due to automatic coercion rules, the strings 'FALSE' and 'TRUE' and the
integers 0 and 1 are also acceptable for use in a Boolean column or variable.
Input is not case sensitive.

The IS Boolean operator can be used in expressions. IS TRUE is true for a
BOOLEAN TRUE, IS FALSE is true for a BOOLEAN FALSE, IS UNKNOWN is true
for an Unknown (NULL) value. IS UNKNOWN is a synonym for IS NULL when
dealing with Boolean values.

ORDER BY BOOLEAN results in grouping rows in this order: FALSE, TRUE,
NULL.

The CREATE INDEX statement allows an index to be created on BOOLEAN
columns.

Terminal Monitor output for a BOOLEAN column shows the literals FALSE and
TRUE as unquoted strings.

CASE expressions can be used with BOOLEAN columns or literals. For
example:

CASE expr WHEN cond1 THEN expr2

and

CASE WHEN search_cond1 THEN expr1

accept FALSE or TRUE in condN or search_condN or part thereof, and exprN
can include BOOLEAN columns or literals.

DBMS Server Enhancements in Ingres 10 15

BOOLEAN Data Type

The CAST operator supports casting BOOLEAN to and from character types and
from the integer values 0 and 1. For example:

 CAST (BOOLEAN AS character_type) is allowed.

 CAST(character_type AS BOOLEAN) is accepted if the character type is the
string 'FALSE' or 'TRUE', regardless of case.

 CAST(integer_constant AS BOOLEAN) is accepted for values 0 and 1.

 CAST(integer_expression AS BOOLEAN) is accepted if the integer
expression has the value 0 or 1.

(Casting from 0 and 1 is an Ingres extension to the SQL standard, which does
not allow it.)

For casting to strings, the data type must be of sufficient length (for example,
CHAR(5) for FALSE) or silent truncation occurs (unless -string_truncation=fail
is used at connect time). The shortcut CHAR(expr) returns a single character
(that is, 'F' or 'T') because it is interpreted as CAST(expr AS CHAR(1)).

Internally, the BOOLEAN type is stored as a single-byte integer that can take
only the values 0 and 1.

This feature adds to or changes the syntax of many statements, including
ALTER TABLE, COPY TABLE, CREATE INTEGRITY, CREATE TABLE, CREATE
TABLE…AS SELECT, DECLARE GLOBAL TEMPORARY TABLE, INSERT INTO,
REGISTER TABLE, SELECT, UPDATE, WHERE clause of SELECT, DELETE,
UPDATE, and JOIN source ON search_condition.

The BOOLEAN data type is supported in Ingres Star, Ingres Replicator,
OpenAPI, embedded SQL, and by Ingres connectivity drivers.

Note: A pre-10.0 client will get an error if it tries to retrieve a result that
includes a BOOLEAN column from a 10.0 or higher server.

Here are examples of using the BOOLEAN data type when creating a table or
procedure:

CREATE TABLE example (column1 BOOLEAN NOT NULL);

CREATE PROCEDURE example_proc (flag BOOLEAN NOT NULL) AS
DECLARE
 var1 BOOLEAN;
BEGIN
 ...
END;

16 Release Summary

BOOLEAN Data Type

Here is an example of using the literals FALSE and TRUE in an SQL context:

INSERT INTO example VALUES (FALSE);
UPDATE example SET column1 = TRUE;
SELECT * FROM example WHERE column1 IS TRUE;
 ...
var1 = TRUE;
WHILE var1 IS NOT FALSE
 ...

For more information, see these sections in the SQL Reference Guide:

 BOOLEAN Data Type

 Storage Formats of Data Types

 BOOLEAN Literals

 Data Type Conversion Functions

 IS TRUE, IS FALSE, IS UNKNOWN Predicates

 Default Clause

DBMS Server Enhancements in Ingres 10 17

New SQL Functions

New SQL Functions

New SQL functions provide compatibility with and ease migration from other
database products. The new functions are as follows:

NVL

Specifies a value other than a null that is returned to your application
when a null is encountered. For example in NVL(a,b), if 'a' is NULL then
return 'b' else return 'a'.

This function is an alias for the IFNULL function.

NVL2

Returns different values based on whether the input value is NULL. For
example, in NVL2(a,b,c), if 'a' is not null then return 'b' else return 'c'.

GREATEST

Returns the greatest of values in v1 through vN. Return type is that of the
first parameter. If all of v1 through vN are NULL, then it returns NULL.

LEAST

Returns the least of values v1 through vN. Return type is that of the first
parameter. If all of the values v1 through vN are NULL, then it returns
NULL.

GREATER

Returns the greatest of values in v1 through vN. Return type is that of the
first parameter. If any of v1 through vN are NULL, then it returns NULL.

LESSER

Returns the least of values v1 through vN. Return type is that of the first
parameter. If any of the values v1 through vN are NULL, then it returns
NULL.

For details, see the following sections in the SQL Reference Guide:

 NVL Function

 NVL2 Function

 IFNULL, NVL, NVL2 Result Data Types

 GREATEST, GREATER, LEAST, LESSER Functions

18 Release Summary

Terminal Monitor Silent Mode

Terminal Monitor Silent Mode

The line-based terminal monitor for SQL can be run in silent mode. Silent
mode shows only query output; it suppresses header and footer text, column
titles, separators, and row counts.

In addition, the terminal monitor has new commands, which include:

\[no]silent

Switches silent mode on and off.

\[no]titles

Switches column titles on and off.

\[no]trim

Trims or does not trim spaces around column data.

\vdelimiter

Specifies the vertical separator character or resets it to the default. The
character can also be set to SPACE, TAB, or NONE.

This feature allows simple reports to be created as SQL scripts and then run
without having to edit the output.

To start the Terminal Monitor in silent mode use the –S flag on the sql
command. For example:

sql –S demodb

To invoke silent mode while in a script use \silent. For example:

sql demodb
\silent

Each command issues a confirmation message when in non-silent mode.

For details, see the Terminal Monitor appendix in the SQL Reference Guide.

DBMS Server Enhancements in Ingres 10 19

Daitch-Mokotoff Soundex Function

Daitch-Mokotoff Soundex Function

The SOUNDEX_DM function uses the Daitch-Mokotoff phonetic algorithm for
finding similar sounding strings.

The Daitch-Mokotoff soundex function can return multiple soundex codes for a
name. It returns one or more six-character codes in a comma-separated
varchar string, up to a maximum of 16 codes. For example:

Name Codes Returned

Moskowitz 645740

Peterson 739460,734600

Jackson 154600,454600,145460,445460

The function syntax is:

SOUNDEX_DM('string')

For details, see the SOUNDEX_DM section under String Functions in the SQL
Reference Guide.

20 Release Summary

Check Digit Functions

Check Digit Functions

Two SQL functions are used to generate and validate a check digit.

The function GENERATE_DIGIT generates a check digit for a specified string.
The check digit can be used to help determine if a string, such as a credit card
number, has been entered correctly.

The function VALIDATE_DIGIT tests if the check digit is valid.

Syntax for these functions is:

GENERATE_DIGIT('scheme', 'string')

which returns the check digit as a character.

VALIDATE_DIGIT('scheme', 'string')

which returns 1 for valid, 0 for invalid.

The scheme can be one of the following check digit schemes:

 LUHN or LUHN_A

 VERHOEFF or VERHOEFFNR

 ISBN

 ISBN_13

 ISSN

 UPC, UPC_A, or EAN_12

 UPC_E

 EAN, EAN_13, GTIN_13, or JAN

 EAN_8 or GTIN_8

For details, see the GENERATE_DIGIT and VALIDATE_DIGIT sections under
String Functions in the SQL Reference Guide.

DBMS Server Enhancements in Ingres 10 21

Recovery Server Error Handling

Recovery Server Error Handling

New options are provided for handling errors during recovery redo and undo
processing.

Offline redo/undo processing occurs during installation startup if the
installation previously shut down abnormally. Before other servers start, the
Recovery Server processes the log file. It first re-does all updates in the log
from the last consistency point, then un-does any open transactions.

Online undo processing occurs when the Recovery Server is performing pass-
abort of transaction (after a rollback failure by a DBMS Server).

Previously, if an error occurred during this processing, recovery of the
database was stopped, the database was marked inconsistent, and the
Recovery Server startup was halted. The only option left to the DBA in such a
situation was to roll forward the database. This feature provides additional
options for handling such errors.

Two new Recovery Server parameters in CBF allow additional options for
handling Recovery Server redo/undo errors:

 offline_error_action

 online_error_action

Note: You should use the new configuration parameters instead of the
unsupported environment variable II_DMFRCP_STOP_ON_INCONS_DB. If
II_DMFRCP_STOP_ON_INCONS_DB is set, the configuration parameters are
ignored.

For more information about these configuration options, see the following
sections in the Database Administrator Guide:

 Recovery Server Offline Error Handling

 Recovery Server Online Error Handling

22 Release Summary

Hash Join and Hash Aggregation Improvements

Hash Join and Hash Aggregation Improvements

Improvements to hash join and hash aggregation enable faster queries and
better concurrent query capability. Environments that will benefit are those
with moderate to heavy concurrency (where memory usage is a potential
problem), or in which the hash join or hash aggregation cannot fit in memory
and is therefore spilled to disk before completing.

This feature adds five new configuration parameters to the DBMS Server
component:

qef_hash_rbsize

The size in bytes of a read buffer for a hash operation (join or
aggregation). There is one read buffer per hash operation, so we
recommend relatively large values.

Default: 128 KB

qef_hash_wbsize

The size in bytes of a write buffer for a hash operation (join or
aggregation). There are many write buffers per hash operation, and in the
hash join case, the write buffer size interacts with the number of hash
“buckets.” Larger buffers can mean fewer (and therefore larger) buckets.
Smaller buffers mean less room for rows in memory and more spillage.
Installations must balance spill write efficiency (large qef_hash_wbsize)
against memory usage and the ability to fit many buckets in memory
(small qef_hash_wbsize).

Default: 16 KB

qef_hash_cmp_threshold

The minimum size of the compressible (non-key) part of a row to be
considered for run-length compression. Run-length compression allows
more hash-join rows to fit in memory, and reduces the size of hash join or
hash aggregation spill to disk, at the expense of some extra CPU
overhead.

Default: 128 bytes

qef_hashjoin_min

The minimum allocation, in bytes, for a hash join. Most installations do not
need to change qef_hashjoin_min unless the optimizer underestimates the
size of hash joins, causing excessive spillage.

Default: 0 (no minimum)

DBMS Server Enhancements in Ingres 10 23

Query Execution Improvements Related to Partitioned Tables

qef_hashjoin_max

The maximum allocation, in bytes, for a hash join. Most installations do
not need to change qef_hashjoin_max unless the optimizer frequently
over-estimates the size of hash joins, taking memory away from needier
hash joins.

Default: 0 (which means use qef_hash_mem)

The qef_hash_rbsize and qef_hash_wbsize parameters may need to be
changed to suit your environment. The qef_hashjoin_min and
qef_hashjoin_max parameters will rarely need to be changed, since they are
for preventing problems in extreme situations.

The Ingres upgrade process adds these parameters to an existing config.dat.
If for some reason any parameters are missing from config.dat, the default
values are used.

For details about the parameters, see the online help for Configuration-By-
Forms (or the equivalent visual tool).

Query Execution Improvements Related to Partitioned
Tables

Enhancements to the optimizer improve execution times for queries against
partitioned tables, especially queries used in data warehousing applications.

Query optimization involving partitioned tables previously included partition
pruning against constant predicates, and partition-compatible joining. The
enhancements include:

 More complete analysis of partition pruning opportunities

 Join-time partition pruning

 Nested partition-compatible joining

 Partition-compatible aggregation

24 Release Summary

Direct I/O Improvements (UNIX)

Direct I/O Improvements (UNIX)

Performance improvements were made to Ingres direct I/O capability in UNIX
environments, including Linux.

Control of direct I/O is now configured at the system rather than DBMS level.
Administrators can select direct I/O independently for tables, the transaction
log, and build files (tables being loaded). Direct I/O is beneficial in large data
warehouse environments, when the OS file system cache is ineffective
(because of large sequential scans). OLTP-oriented installations may run
better with direct I/O OFF, making use of the OS file system cache.

New direct I/O configuration parameters were added to Ingres:

ii.$.config.direct_io

Enables direct I/O for tables.

Default: OFF

ii.$.config.direct_io_log

Enables direct I/O for the transaction log.

Default: OFF

ii.$.config.direct_io_load

Enables direct I/O when writing bulk-load files for (bulk-load) COPY FROM,
CREATE TABLE AS SELECT, MODIFY, and CREATE INDEX. Typically,
direct_io_load ON is recommended only in cases where normal mode
floods the operating system file cache.

Default: OFF

Note: If the platform or file system does not support direct I/O, the direct I/O
parameters are ignored.

The configuration parameters dbms.*.direct_io and recovery.direct_io are now
obsolete. During upgrade, if dbms.*.direct_io is ON in the old version, then
config.direct_io and config.direct_io_log are set to ON.

You can set the new direct I/O parameters using the iisetres command.

DBMS Server Enhancements in Ingres 10 25

File Allocation Improvements (UNIX)

File Allocation Improvements (UNIX)

Ingres can now take advantage of the "fallocate" function of certain file
systems, which reserves (pre-allocates) disk space as files are written. When
applied to table files, pre-allocation may slow creation of the table somewhat,
but subsequent reading of the table may be faster, since the table is more
likely to be allocated sequentially on disk. The improvement is most likely to
be seen when table scans are common, such as in data warehousing
installations with large tables.

To take advantage of pre-allocation, the table should be created with the
ALLOCATION= and EXTEND= parameters set to reflect the expected table
size. The default allocation and extend values are too small to be useful for
pre-allocation.

This improvement adds a new configuration parameter to the DBMS Server
component:

fallocate

Enables use of file pre-allocation through fallocate. If the file system does
not support fallocate or an equivalent, the parameter setting does not
matter (is OFF).

Default: OFF

Standard Compression Performance Improvements

Internal changes to the DMF data structures improve the performance of
standard compression, especially for tables with many columns. (Standard
compression is specified by using the WITH COMPRESSION=DATA clause on
the MODIFY or the DECLARE GLOBAL TEMPORARY TABLE statement.)

Compression makes rows smaller and is useful in I/O intensive applications,
such as data warehousing.

26 Release Summary

Miscellaneous Changes

Miscellaneous Changes

The following miscellaneous changes are included in Ingres 10.

New Way to Specify Unicode Literals

To specify a Unicode literal value within a non-Unicode command string
compatible with Microsoft SQL server, the following syntax is now available:

N'unicode_string'

For more information, see Unicode Literals in the SQL Reference Guide.

New Terminal Type Added

The PuTTY terminal type is added. For more information, see Terminal Names
in the Character-based Querying and Reporting Tools User Guide.

ingstop -f Command Parameter Updated

The –f (force immediate shutdown) parameter of the ingstop command (to
shut down an Ingres instance) is updated to be more effective. This parameter
typically is used with the –k (kill instance) parameter.

For more information about the ingstop –f parameter, see the ingstop
command description in the Command Reference Guide.

IPM Lock List Display More_Info Screen Updated

The Interactive Performance Monitor Lock List Display More_Info screen now
displays the following new information for a selected lock list:

 Internal session ID number

 External operating system process ID number

For more information about the updates to this screen, see Lock List Display
More_Info Screen in the Interactive Performance Monitor User Guide.

CBF and VCBF Log Writer Update

In Configuration-By-Forms or Visual Configuration-By-Forms, the Recovery
Server will accept a configuration of log_writer=0. A useful setup to ensure
that there is only one log writer in the installation for log write optimization
configures the DBMS log_writer=1 and the Recovery Server log_writer=0.

DBMS Server Enhancements in Ingres 10 27

Miscellaneous Changes

Type and Function Names Logged in II_DBMS_LOG

If the DBMS Server is linked with user-defined types or functions, the type or
function names are logged in the DBMS log (II_DBMS_LOG).

dmf_tcb_limit Parameter Extended

The dmf_tcb_limit parameter in config.dat extends to all Table Control Blocks
(TCBs), including partition TCBs. The default dmf_tcb_limit is now 10,000.

This is documented in Partitioning Schemes in the SQL Reference Guide.

28 Release Summary

Chapter 2: Connectivity Enhancements in
Ingres 10

This section contains the following topics:

JDBC 4.0 Support (see page 29)
64-bit ODBC Driver (see page 29)
ODBC Driver Names (see page 29)
IngresType.IngresDate Parameter Type in .NET Data Provider (see page 30)
Named Parameters in Parameterized Queries in .NET Data Provider (see page
31)
Positional Parameter Support in Drivers (see page 31)
TCP/IP for Local Communications on Windows (see page 32)
Performance Improvements to Communications Protocol Drivers on Windows
(see page 32)

JDBC 4.0 Support

The Ingres JDBC driver is JDBC 4.0 compliant and requires Java Runtime
Environment 1.6.

For more information about JDBC 4.0 support, see the Connectivity Guide.

64-bit ODBC Driver

Ingres 10 provides a 64-bit ODBC driver as part of the Ingres port to 64-bit
Windows.

ODBC Driver Names

The Ingres instance ID, rather than the Ingres version, is now used to identify
Ingres ODBC drivers. The Ingres ODBC driver is installed with the driver
names "Ingres" and "Ingres xx," where "xx" is the value of II_INSTALLATION.

This naming convention allows any number of Ingres instances to include
ODBC driver names specific to the instance. If you upgrade to a new release of
Ingres in the same installation path, the ODBC driver names are unaffected
and require no modifications to ODBC configuration or ODBC connection
strings.

For more information, see ODBC Driver Names in the chapter "Understanding
ODBC Connectivity" in the Connectivity Guide.

Connectivity Enhancements in Ingres 10 29

IngresType.IngresDate Parameter Type in .NET Data Provider

IngresType.IngresDate Parameter Type in .NET Data
Provider

The Ingres .NET Data Provider sends .NET DateTime parameter data to the
Data Access Server and the DBMS Server. A new IngresType.IngresDate
parameter type allows the application to specify that the DateTime parameter
data be sent to the DBMS with an INGRESDATE data type and format.

As of Ingres 9.1 (also know as Ingres 2006 Release 2), the Ingres .NET Data
Provider sends DateTime data as ANSI TIMESTAMP_WITH_TIMEZONE type,
rather than INGRESDATE type. In some cases, the change in data type can
produce unwanted effects after upgrading to new releases of Ingres.

The new parameter type directs the data provider to send the parameter data
as an INGRESDATE data type and format. This feature should be used only in
applications that access only INGRESDATE columns. Applications that access
ANSI DateTime columns may experience side effects of this feature due to loss
of fractional second information and time zone format differences when the
DateTime parameter data is sent as INGRESDATE.

Example:

IngresConnection conn = new IngresConnection();
IngresCommand cmd;
cmd = new IngresCommand();
cmd.CommandText = "INSERT INTO my_table VALUES (?)";
cmd.Connection = conn;
cmd.Parameters.Add(new IngresParameter("mydateparm", IngresType.IngresDate));
cmd.Parameters[0].Value = DateTime.Now;

For details about the IngresType.IngresDate parameter type, see the
Connectivity Guide.

30 Release Summary

Named Parameters in Parameterized Queries in .NET Data Provider

Named Parameters in Parameterized Queries in .NET Data
Provider

The Ingres .NET Data Provider now supports named parameters in queries.
Named parameters allow the parameter values to be set regardless of the
order that they appear in the SQL statement.

A named parameter marker consists of an initial character of question mark
(?), at-sign (@), or colon (:) followed by a name. The name is an
alphanumeric identifier or an integer. Although the recommended parameter
marker character is the question mark, the Ingres .NET Data Provider supports
all three characters to ease migrations from other database products.

Prior releases supported the unnamed (positional) parameter marker
placeholder syntax using the question mark (?), similar to ODBC and JDBC.

Using named and unnamed parameters in the same SQL statement is not
allowed.

For more information, see the Connectivity Guide.

Positional Parameter Support in Drivers

The Ingres JDBC Driver, ODBC Driver, and .NET Data Provider support
positional parameters in database procedure invocation.

The drivers use positional parameter support in the DBMS, when available.
This provides better performance when executing database procedures
because the driver does not need to query the database catalog to determine
parameter names and map ordinal position to named parameters.

In ODBC, no application changes are required.

Connectivity Enhancements in Ingres 10 31

TCP/IP for Local Communications on Windows

TCP/IP for Local Communications on Windows

TCP/IP (Ingres protocol tcp_ip) can now be used for local inter-process
communications (IPC) on Windows as an alternative to named pipes, which is
the default.

The default provides the best overall performance both locally and remotely
with Ingres Net. However, when the DBMS is accessed primarily from remote
clients that are “direct connect”-compatible with the server, using TCP/IP as
the local IPC and “direct connect” (vnode attribute connection_type = direct)
can improve response time.

To configure TCP/IP as the local IPC

1. Shut down Ingres.

2. Set Ingres environment variable II_GC_PROT:

ingsetenv II_GC_PROT tcp_ip

3. Start Ingres.

Note: Only protocol tcp_ip, not wintcp, is supported as a local IPC. If
II_GC_PROT is not set, then named pipes is used.

With named pipes, “direct connect” is supported only across Windows
machines. With the tcp_ip local IPC, “direct connect” is also supported to and
from Linux and UNIX on Intel-based machines.

Note: The Ingres environment variable II_GC_REMOTE must now be
configured on Windows servers (previously only required on UNIX and Linux)
to allow direct access. For configuration and compatibility requirements for
“direct connect,” see the Connectivity Guide.

Performance Improvements to Communications Protocol
Drivers on Windows

Various performance improvements have been made to the local and remote
Ingres protocol drivers (named pipes and tcp_ip). All changes are internal to
the drivers and require no configuration changes. The result should be slightly
improved response times for both local and remote access.

32 Release Summary

Chapter 3: Supportability Enhancements
in Ingres 10

This section contains the following topics:

Process ID (PID) for GCF Servers Displayed in iimonitor (see page 33)
OpenAPI Writing of DBMS Trace Messages to File (see page 34)

Process ID (PID) for GCF Servers Displayed in iimonitor

The iimonitor "show server" command output for the Communications Server
(GCC), Data Access Server (GCD), and Name Server (GCN) now displays the
process ID information. Also, the GCC and GCD servers display the actual
symbolic port address in the addr: field of the Protocols section.

Here is an example of the iimonitor show server command output, with new
fields shown in bold:

IIMONITOR> show server
 Server: 32874
 Class: COMSVR
 Object: *
 Pid: 25373

Connected Sessions (includes system and admin sessions)
 Current: 3

Active Sessions (includes user sessions only)
 Inbound sessions:
 Current: 0
 Limit: 64
 Outbound sessions:
 Current: 0
 Limit: 64

Protocols
 TCP_IP host:ingnet02 addr:MB3 port:23059
Registry Protocols
 Not Enabled

For more information about the iimonitor "show server" command, see the
iimonitor command description in the Command Reference Guide.

Supportability Enhancements in Ingres 10 33

OpenAPI Writing of DBMS Trace Messages to File

OpenAPI Writing of DBMS Trace Messages to File

OpenAPI can redirect trace messages returned from the DBMS to a disk file.

The II_API_SET environment variable can be set to a value of PRINTTRACE to
enable writing of GCA_TRACE messages to the default output file iiprttrc.log.
Output can be directed to a specific file by adding the TRACEFILE argument.

Here are examples in the UNIX environment:

1. Enable OpenAPI tracing of GCA_TRACE messages to default output file
iiprttrc.c:

setenv II_API_SET printtrace

2. Enable OpenAPI tracing of GCA_TRACE messages to output file tracing.log:

setenv II_API_SET "printtrace; tracefile tracing.log"

Setting II_API_SET does not affect passing of trace information to the
application by OpenAPI.

34 Release Summary

Chapter 4: Usability Enhancements in
Ingres 10

This section contains the following topics:

Improved Visual Tools Dialogs (see page 35)
Terminal Monitor Usability Enhancements (see page 35)

Improved Visual Tools Dialogs

Certain dialogs and menus in Visual DBA, Ingres Import Assistant, and Ingres
Network Utility were redesigned to make these tools more intuitive and user
friendly. For example, the advanced features on many dialogs are now hidden.

The changes are designed to help new users more easily perform basic tasks
such as establishing a remote connection, creating a database, creating a
table, populating a table, generating statistics, backing up and restoring a
database, and creating a user.

Terminal Monitor Usability Enhancements

The following command:

ingres dbname

now connects the user to the named database and starts the line-based
Terminal Monitor for SQL. (In previous releases, it opened a QUEL session.)

When the terminal monitor session is started, a simple message displays
usage information helpful to new users (shown in bold here):

$ sql demodb
INGRES TERMINAL MONITOR Copyright 2010 Ingres Corporation
Ingres Linux Version II 10.0.0 (int.lnx/00)NPTL login
Thu Apr 22 06:24:54 2010
Enter \g to execute commands, "help help\g" for help, \q to quit

continue
*

Usability Enhancements in Ingres 10 35

Terminal Monitor Usability Enhancements

In addition, the history recall feature is now enabled by default in Linux and
UNIX environments. You can recall text previously entered in your terminal
monitor session by using the Up and Down arrow keys.

To disable this feature for the duration of the terminal monitor session, start
the terminal monitor with the -nohistory_recall flag.

You can enable or disable this feature for the instance by setting the new
configuration parameter ii.*.tm.history_recall.

Note: The -nohistory_recall flag is not applicable on Windows.

36 Release Summary

Index

6 J

64-bit ODBC driver • 29 JDBC • 29
64-bit Windows • 5

L
B

log_writer configuration parameter • 27
long identifiers • 10 batch query execution • 14

BOOLEAN data type • 15
M bulk loading • 13

C multiversion concurrency control (MVCC) • 5

O check digits functions • 21
compression • 26

ODBC • 29
D OpenAPI • 34

P Daitch-Mokotoff soundex function • 20
data at rest encryption • 9

parameterized queries • 31 direct I/0 • 25
partitioned tables • 24 dmf_tcb_limit parameter • 27
positional parameters • 31

F Process ID (PID) • 33
PuTTY terminal type • 27

file allocation • 26
Q

G
query execution • 14, 24

GENERATE_DIGIT function • 21
R

H
Recovery Server

error handling • 22 hash aggregation • 23
log_writer parameter • 27 hash join • 23

rename tables and columns • 12
I

S
II_DBMS_LOG • 27
iimonitor • 33 scalar subquery • 7
Ingres .NET Data Provider • 30, 31 SOUNDEX_DM function • 20
IngresType.IngresDate Parameter Type • 30 SQL functions • 18
ingstop -f flag • 27

T IPM Lock List display • 27

TCP/IP • 32
Terminal Monitor • 19, 35

Index 37

trace messages • 34

U

Unicode literals • 27

V

VALIDATE_DIGIT function • 21
visual tools • 35

38 Release Summary

	Bookshelf
	Ingres Release Summary
	Contents
	1: DBMS Server Enhancements in Ingres 10
	Ingres for 64-bit Windows
	Multiversion Concurrency Control (MVCC)
	Scalar Subqueries
	Data at Rest Encryption
	Long Identifiers
	Renaming Tables and Columns
	Bulk Loading Improvements
	Batch Query Execution
	BOOLEAN Data Type
	New SQL Functions
	Terminal Monitor Silent Mode
	Daitch-Mokotoff Soundex Function
	Check Digit Functions
	Recovery Server Error Handling
	Hash Join and Hash Aggregation Improvements
	Query Execution Improvements Related to Partitioned Tables
	Direct I/O Improvements (UNIX)
	File Allocation Improvements (UNIX)
	Standard Compression Performance Improvements
	Miscellaneous Changes

	2: Connectivity Enhancements in Ingres 10
	JDBC 4.0 Support
	64-bit ODBC Driver
	ODBC Driver Names
	IngresType.IngresDate Parameter Type in .NET Data Provider
	Named Parameters in Parameterized Queries in .NET Data Provider
	Positional Parameter Support in Drivers
	TCP/IP for Local Communications on Windows
	Performance Improvements to Communications Protocol Drivers on Windows

	3: Supportability Enhancements in Ingres 10
	Process ID (PID) for GCF Servers Displayed in iimonitor
	OpenAPI Writing of DBMS Trace Messages to File

	4: Usability Enhancements in Ingres 10
	Improved Visual Tools Dialogs
	Terminal Monitor Usability Enhancements

	Index

