

Dear Student:
Our name says it all: the goal of the DeMYSTiFieD series is to help you master confusing

subjects, understand complex textbooks, and succeed in your studies.

How can DeMYSTiFieD help you? It’s a no-brainer!

• �Study with the best—all DeMYSTiFieD authors are experts

in their fields of study.

• �Learn by doing—all DeMYSTiFieD books are packed

with examples and practice opportunities.

• �Grasp the critical concepts right away with

highlighted chapter objectives.

• �Get un-stuck with help from the “Still Struggling?”

feature. We all need a little help sometimes.

• �Grade your own progress with a “Final Exam”at the end

of each book and avoid the red pencil of doom.

• �Move easily from subject to subject with a “Curriculum Guide”

that gives a logical path.

DeMYSTiFieD is the series you’ll turn to again and again to help you untangle confusing

subjects, become confident in your knowledge, and achieve your goals. No matter what

subject—algebra, college Spanish, business-school accounting, specialized nursing

courses, and everything in between—DeMYSTiFieD is true to its motto:

Hard stuff made easy™

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 /

Curriculum Guide
. Beginning Level .

Introduction to Relational Database
Management Systems

Introduction to SQL

Programming Language Courses
(C, Perl, Java, etc.)

. Intermediate Level .

Advanced Database
Concepts

Advanced SQL Query
Writing

Integrating SQL with
Programming Languages
(C, Perl, Java, VBA, etc.)

Web Database
Development

DBMS Product-Specifi c
Courses (Oracle, MySQL,
SQL Server, DB2, Access, etc.)

. Advanced Level .

Data Modeling and
Database Design

Designing Business
Intelligence Systems

Designing, Building,
and Using Databases

Systems Analysis
and Design

Building Database
Systems

. Beginning Level .

Introduction to
Data Processing

Introduction to
Programming

Data Structures

Introduction to Database
Management Systems

Introduction to
Data Languages

. Intermediate Level .

Algorithm Design and Analysis

Logic and Computation

Computer Architecture

Operating Systems

Computer Networks and
Data Communications

Human-Computer
Interaction Design

Advanced Query Design

Software Testing

Security and Privacy
Issues and Solutions

. Advanced Level .

Data Modeling and
Database Design

Compiler Design

Systems Analysis

Artifi cial
Intelligence Systems

Real-Time
Computing

Computer Graphics
and Multimedia

Database Management Systems Certifi cate Courses

Computer Science Degree Courses

799_Curriculum.indd 1 10/6/10 5:41:21 PM

Databases
DeMYSTiFieD®

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

DeMYSTiFieD® Series

Advanced Statistics Demystified

Algebra Demystified, 2e

Alternative Energy Demystified

ASP.NET 2.0 Demystified

Astronomy Demystified

Biology Demystified

Biophysics Demystified

Biotechnology Demystified

Business Calculus Demystified

Business Math Demystified

Business Statistics Demystified

Calculus Demystified, 2e

Chemistry Demystified

College Algebra Demystified

Data Structures Demystified

Databases Demystified, 2e

Differential Equations Demystified

Digital Electronics Demystified

Earth Science Demystified

Electricity Demystified

Electronics Demystified

Environmental Science Demystified

Everyday Math Demystified

Forensics Demystified

Genetics Demystified

Geometry Demystified

HTML & XHTML Demystified

Java Demystified

JavaScript Demystified

Lean Six Sigma Demystified

Linear Algebra Demystified

Logic Demystified

Macroeconomics Demystified

Math Proofs Demystified

Math Word Problems Demystified

Mathematica Demystified

Matlab Demystified

Microbiology Demystified

Microeconomics Demystified

Nanotechnology Demystified

OOP Demystified

Operating Systems Demystified

Organic Chemistry Demystified

Pharmacology Demystified

Physics Demystified, 2e

Physiology Demystified

Pre-Algebra Demystified, 2e

Precalculus Demystified

Probability Demystified

Project Management Demystified

Quality Management Demystified

Quantum Mechanics Demystified

Relativity Demystified

Robotics Demystified

Signals and Systems Demystified

SQL Demystified

Statistical Process Control Demystified

Statistics Demystified

Technical Analysis Demystified

Technical Math Demystified

Trigonometry Demystified

UML Demystified

Visual Basic 2005 Demystified

Visual C# 2005 Demystified

Web Design Demystified

XML Demystified

The Demystified Series publishes more than 125 titles in all areas of academic study. For a complete list of

titles, please visit www.mhprofessional.com.

www.mhprofessional.com

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Databases
DeMYSTiFieD®
Second Edition

andy Oppel

New York Chicago San Francisco Lisbon London Madrid Mexico City
Milan New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.

ISBN: 978-0-07-174800-1

MHID: 0-07-174800-8

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174799-8,
MHID: 0-07-174799-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, DeMYSTiFieD®, and related trade dress are trademarks or registered
trademarks of The McGraw-Hill Companies and/or its affi liates in the United States and other countries and may not be used without written
permission. All other trademarks are the property of their respective owners. The McGraw-Hill Companies is not associated with any
product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, dis-
tribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated
if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant
or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

The DeMYSTiFieD series helps students master complex and difficult subjects.
Each book is filled with chapter quizzes, final exams, and user friendly content.
Whether you want to master Spanish or get an A in Chemistry, DeMYSTiFieD will
untangle confusing subjects, and make the hard stuff understandable.

PRE-ALGEBRA DeMYSTiFied, 2e
Allan G. Bluman

ISBN-13: 978-0-07-174252-8 • $20.00

ALGEBRA DeMYSTiFied, 2e
Rhonda Huettenmueller

ISBN-13: 978-0-07-174361-7 • $20.00

CALCULUS DeMYSTiFied, 2e
Steven G. Krantz

ISBN-13: 978-0-07-174363-1 • $20.00

PHYSICS DeMYSTiFied, 2e
Stan Gibilisco

ISBN-13: 978-0-07-174450-8 • $20.00

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

To Laurie, Keith, and Luke

About the Author

Andrew J. (Andy) Oppel is a proud graduate of The Boys’ Latin School of
Maryland and of Transylvania University (Lexington, Kentucky), where he
earned a BA in computer science in 1974. Since then, he has been continuously
employed in a wide variety of information technology positions, including
programmer, programmer/analyst, systems architect, project manager, senior
database administrator, database group manager, consultant, database designer,
data modeler, and data architect. In addition, he has served as a part-time
instructor with the University of California, Berkeley, Extension for more than
25 years and received the Honored Instructor Award for the year 2000. His
teaching work included developing three courses for UC Berkeley Extension:
“Concepts of Database Management Systems,” “Introduction to Relational
Database Management Systems,” and “Data Modeling and Database Design.”
He also earned his Oracle 9i Database Associate certification in 2003. He is
currently employed as a lead data modeler for Blue Shield of California. In
addition to computer systems, Andy enjoys music (guitar and vocals), amateur
radio, and soccer (referee instructor, U.S. Soccer).
 Andy has designed and implemented hundreds of databases for a wide range
of applications, including medical research, banking, insurance, apparel manu-
facturing, telecommunications, wireless communications, and human resources.
He is the author of SQL Demystified (McGraw-Hill Professional, 2005), Data-
bases: A Beginner’s Guide (McGraw-Hill Professional, 2009), and Data Model-
ing: A Beginner’s Guide (McGraw-Hill Professional, 2009) and is co-author of
SQL: A Beginner’s Guide, Third Edition (McGraw-Hill Professional, 2008), and
SQL: The Complete Reference, Third Edition (McGraw-Hill Professional, 2009).
His database product experience includes IMS, DB2, Sybase ASE, Microsoft
SQL Server, Microsoft Access, MySQL, and Oracle.
 If you have any comments, please contact Andy at andy@andyoppel.com.

About the Technical Editor

Aaron Davenport is a principal and senior technical consultant at LCS
Technologies Inc., a database and application consulting company based in
Sacramento, California. Aaron has been working with RDBMS technologies for
over 12 years, with a focus on Oracle and MySQL platforms. Prior to joining
LCS, Aaron had tenures at IBM, Gap Inc., and Yahoo!

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

vii

Contents
Acknowledgments xiii
Introduction xv

chapter 1 Database Fundamentals 1
Properties of a Database 2

The Database Management System (DbMS) 3
Layers of Data Abstraction 3
Physical Data Independence 6
Logical Data Independence 8

Prevalent Database Models 8
Flat Files 9
The Hierarchical Model 12
The Network Model 14
The Relational Model 16
The Object-Oriented Model 18
The Object-Relational Model 20

A brief History of Databases 20
Why Focus on Relational? 23
Summary 23

chapter 2 Exploring Relational Database Components 27
Conceptual Database Design Components 28

Entities 29
Attributes 29
Relationships 30
business Rules 37

Logical/Physical Database Design Components 37
Tables 38
Columns and Data Types 40

viii Data b ases Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Constraints	 42
Integrity Constraints	 49
Views	 52

Summary	 54

chapter 3	 Forms-Based Database Queries	 57
QBE: The Roots of Forms-Based Queries	 58
Getting Started in Microsoft Access	 59

Getting Started with the Video Store
  Sample Database	 59
Exploring Microsoft Access	 63

The Microsoft Access Relationships Panel	 67
The Microsoft Access Table Design View	 69
Creating Queries in Microsoft Access	 72

Example 3-1: List All Movies	 75
Example 3-2: Choose Columns to Display	 76
Example 3-3: Sorting Results	 78
Example 3-4: Advanced Sorting	 79
Example 3-5: Choosing Rows to Display	 81
Example 3-6: Compound Row Selection	 83
Example 3-7: Using Not Equal To	 84
Example 3-8: Joining Tables	 87
Example 3-9: Limiting Join Results	 90
Example 3-10: Outer Joins	 91
Example 3-11: Microsoft Access SQL	 95
Example 3-12: Multiple Joins and Calculated Columns	 97
Example 3-13: Aggregate Functions	 101
Example 3-14: Self-Joins	 104

Summary	 107

chapter 4	 Introduction to SQL	 111
The History of SQL	 113
Getting Started with MySQL	 114
Where’s the Data?	 116

Finding Database Objects Using Catalog Views	 116
Viewing Database Objects Using Toad for MySQL	 117

Data Query Language (DQL): The SELECT Statement	 118
Example 4-1: Listing Everything in a Table	 119
Example 4-2: Limiting Columns to Display	 120
Example 4-3: Sorting Results	 121
Choosing Rows to Display	 122
Joining Tables	 128
Aggregate Functions	 136

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Contents ix

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Data Manipulation Language (DML)	 139
Transaction Support (COMMIT and ROLLBACK)	 139
The INSERT Statement	 140
The UPDATE Statement	 142
The DELETE Statement	 142

Data Definition Language (DDL) Statements	 143
The CREATE TABLE Statement	 143
The ALTER TABLE Statement	 144
The CREATE VIEW Statement	 147
The CREATE INDEX Statement	 147
The DROP Statement	 147

Data Control Language (DCL) Statements	 148
The GRANT Statement	 149
The REVOKE Statement	 149
Summary	 150

chapter 5	 The Database Life Cycle 	 153
The Traditional Method	 154

Planning	 156
Requirements Gathering	 157
Conceptual Design	 160
Logical Design	 161
Physical Design	 161
Construction	 162
Implementation and Rollout	 163
Ongoing Support	 164

Nontraditional Methods	 165
Prototyping	 165
Rapid Application Development (RAD)	 166
Agile Software Development	 167

Summary	 167

chapter 6	 Logical Database Design Using Normalization	 171
Overview of Normalization	 172
The Need for Normalization	 173

Insert Anomaly	 174
Delete Anomaly	 174
Update Anomaly	 175

Applying the Normalization Process	 175
Choosing a Primary Key	 178
First Normal Form: Eliminating Repeating Data	 180
Second Normal Form: Eliminating Partial
  Dependencies	 183

x Data b ases Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Third Normal Form: Eliminating Transitive
  Dependencies	 186
Beyond Third Normal Form	 189

Denormalization	 192
Practice Problems	 193

TLA University Academic Tracking	 193
Computer Books Company	 199

Summary	 202

chapter 7	 Data and Process Modeling	 205
Entity Relationship Modeling	 206

ERD Formats	 206
Supertypes and Subtypes	 215
Guidelines for Drawing ERDs	 220

Process Models	 221
The Flowchart	 222
The Function Hierarchy Diagram	 225
The Swim Lane Diagram	 226
The Data Flow Diagram	 227
Process Modeling with UML	 229

Relating Entities and Processes	 231
Summary	 232

chapter 8	 Physical Database Design	 235
Designing Tables	 236

Implementing Supertypes and Subtypes	 240
Naming Conventions	 244

Integrating Business Rules and Data Integrity	 248
NOT NULL Constraints	 250
Primary Key Constraints	 250
Referential (Foreign Key) Constraints	 251
Unique Constraints	 251
Check Constraints	 253
Data Types, Precision, and Scale	 253
Triggers	 254

Designing Views	 254
Adding Indexes for Performance	 256
Summary	 257

chapter 9	 Connecting Databases to the Outside World 	 261
Deployment Models	 262

Centralized Model	 262
Distributed Model	 263
Client/Server Model	 265

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Contents xi

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

Connecting Databases to the Web	 270
Introduction to the Internet and the Web	 271
Components of the Web “Technology Stack”	 274
Invoking Transactions from Web Pages	 275

Connecting Databases to Applications	 276
Connecting Databases via ODBC	 277
Connecting Databases to Java Applications	 278

Summary	 279

chapter 10	 Database Security	 283
Why Is Security Necessary?	 284
Database Server Security	 285

Physical Security	 285
Network Security	 286
System-Level Security	 292

Database Client and Application Security	 293
Login Credentials	 293
Data Encryption	 294
Other Client Considerations	 295

Database Access Security	 297
Database Security Architectures	 297
Schema Owner Accounts	 304
System Privileges	 305
Object Privileges	 306
Roles	 307
Views	 308

Security Monitoring and Auditing	 309
Summary	 309

chapter 11	 Database Implementation	 313
Cursor Processing	 314
Transaction Management	 316

What Is a Transaction?	 316
DBMS Support for Transactions	 318
Locking and Transaction Deadlock	 321

Performance Tuning	 326
Tuning Database Queries	 327
Tuning DML Statements	 329

Change Control	 331
Summary	 332

xii DATA b A S E S DeMYSTiFieD

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front MatterDeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

chapter 12 Databases for Online Analytical Processing 335
Data Warehouses 336

Data Warehouse Architecture 337
Data Marts 344
Data Mining 346
Summary 347

chapter 13 Integrating XML Documents and
 Objects into Databases 351
The basics of XML 352
SQL/XML 355

The XML Data Type 356
SQL/XML Functions 358

Object-Oriented Applications 360
Object-Oriented Programming 360
Object-Oriented Languages 360
Object Persistence 362

Object-Relational Databases 367
Summary 369

Final Exam 373
Answers to Quizzes and Final Exam 397
APPENDIX: Video Store Sample Database 399
Index 415

xiii

Acknowledgments
My thanks to all the people involved in the development of Databases

DeMYSTiFieD®, Second Edition. First, the editors and staff at McGraw-Hill, many
of whom I do not know by name, provided untold hours of support for this proj-
ect. In particular, I thank Editorial Director Roger Stewart for all the useful guid-
ance and encouragement, Editorial Supervisor Jody McKenzie for smoothing out
the rough spots, and Acquisitions Coordinator Joya Anthony for keeping the
processes moving. A special thanks to Technical Editor Aaron Davenport for all
your input—it really helped to make this a better book. And it was wonderful to
again work with Jan Jue, whose consistency and attention to detail proved once
again that she is simply the best copy editor around. And thanks to Project Man-
ager Vasundhara Sawhney and all the people at Glyph International who worked
on production of the book. Finally, thanks to my family for their understanding
and support.

This page intentionally left blank

xv

Introduction
Thirty-five years ago, databases were found only in special research labora-

tories, where computer scientists struggled with ways to make them efficient
and useful, publishing their findings in countless research papers. Today data-
bases are a ubiquitous part of the information technology (IT) industry and of
business in general. We directly and indirectly use databases every day—bank-
ing transactions, travel reservations, employment relationships, web site searches,
online and offline purchases, and most other transactions are recorded in and
served by databases.

As is the case with many fast-growing technologies, industry standards have
lagged behind the development of database technology, resulting in myriad com-
mercial products, each following a particular software vendor’s vision. Moreover,
a number of different database models have emerged, with the relational model
being the most prevalent. Databases DeMYSTiFieD®, Second Edition, examines
all of the major database models, including hierarchical, network, relational,
object oriented, and object relational. This book concentrates heavily on the
relational and object-relational models, however, because these are the main-
stream of the IT industry and will likely remain so in the foreseeable future.

The most significant challenge in implementing a database is correctly
designing the structure of the database. Without a thorough understanding of the
problem the database is intended to solve, and without knowledge of the best
practices for organizing the required data, the implemented database becomes an
unwieldy beast that requires constant attention. Databases DeMYSTiFieD®,
Second Edition, focuses on the transformation of requirements into a working data
model with special emphasis on a process called normalization, which has proven

xvi Data b ases Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Front Matter

to be an effective technique for designing relational databases. In fact, normalization
can be applied successfully to other database models. And, in keeping with the
notion that you cannot design an automobile if you have never driven one, you’re
introduced to the Structured Query Language (SQL) so that you can “drive” a
database before delving into the details of designing one.

I’ve drawn on my extensive experience as a database designer, administrator,
and instructor to provide you with this self-help guide to the fascinating and com-
plex world of database technology. Examples are included using both Microsoft
Access and MySQL. I included Microsoft Access because it offers an excellent
graphical query tool and is widely used in both business and personal computing
settings. For SQL examples, I chose MySQL because its SQL is the most compli-
ant to the ISO/ANSI SQL standard, and because it can be run on Windows, Mac
OS, Linux, and several versions of Unix.

 1

c h a p t e r 1
Database
Fundamentals

This chapter introduces fundamental concepts and definitions regarding data-
bases, including properties common to databases, prevalent database models, a
brief history of databases, and the rationale for focusing on the relational
model.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the properties of a database and terms commonly used to •
describe databases.

Identify the prevalent database models.•
Understand the history of databases.•
Explain why a focus on relational databases makes sense.•

2 DATA b A S E S DeMYSTiFieD

properties of a Database
A database is a collection of interrelated data items that are managed as a single
unit. This definition is deliberately broad because there is so much variety
across the various software vendors that provide database systems. Microsoft
Access places the entire database in a single data file, so an Access database can
be defined as the file that contains the data items. Oracle Corporation defines
their database as a collection of physical files that are managed by an instance
of their database software product. A file is a collection of related records that
are stored as a single unit by an operating system. An instance is a copy of the
database software running in memory. Microsoft SQL Server and Sybase define
a database as a collection of data items that have a common owner, and mul-
tiple databases are typically managed by a single instance of the database man-
agement software. This can be quite confusing if you work with multiple
products because, for example, a database as defined by Microsoft SQL Server
and Sybase is exactly what Oracle calls a schema.

A database object is a named data structure that is stored in a database. The
specific types of database objects supported in a database vary from vendor to
vendor and from one database model to another. Database model refers to the way

Still Struggling
Given the unfortunately similar definitions of files and databases, how can we
make a distinction? A number of Unix operating system vendors call their
password file a “database,” yet database experts will quickly point out that it is not.
Clearly, we need a bit more rigor in our definitions. The answer lies in an under-
standing of certain characteristics or properties that databases possess that ordi-
nary files do not, including management by a database management system
(DbMS), layers of data abstraction, physical data independence, and logical data
independence. These characteristics are discussed in subsections of this chapter.

?
A database is a collection of interrelated data items that are managed as a single
unit.

Chapter 1 D ata b a s e F u n d a m e n ta l s 3

in which a database organizes its data to pattern the real world. The most common
database models are presented in “Prevalent Database Models,” later in this
chapter.

The properties of databases are discussed in the following subsections.

The Database Management System (DBMS)
The Database Management System (DBMS) is software provided by the data-
base vendor. Software products such as Microsoft Access, Oracle, Microsoft
SQL Server, Sybase, DB2, Ingres, and MySQL are all DBMSs. (If it seems odd
to you that the acronym used is “DBMS” instead of merely “DMS,” keep in mind
that the term “database” was originally written as two words and by convention
has become a single compound word.)

The DBMS provides all the basic services required to organize and maintain
the database, including the following:

Moving data to and from the physical data files as needed•	

Managing concurrent data access by multiple users including provisions •	

to prevent simultaneous updates from conflicting with one another

Managing transactions so that each transaction’s database changes are an •	

all-or-nothing unit of work. In other words, if the transaction succeeds, all
database changes made by it are recorded in the database; if the transac-
tion fails, none of the changes it made are recorded in the database

Support for a •	 query language, which is a system of commands that a data-
base user employs to retrieve data from the database

Provisions for backing up the database and recovering from failures•	

Security mechanisms to prevent unauthorized data access and modifi-•	

cation

Layers of Data Abstraction
What is unique about databases is that although they store the underlying data
only once, they can present multiple users of the data with multiple distinct
views of that data. These views are collectively called user views. A user in this
context is any person or application that signs onto the database for the pur-
pose of storing and/or retrieving data. An application is a set of computer pro-
grams designed to solve a particular business problem, such as an order-entry
system, a payroll-processing system, or an accounting system.

4 DATA b A S E S DemystifieD

In contrast to a database, when an electronic spreadsheet application such as
Microsoft Excel is used, all users must share a common view of the data that
must match the way the data is physically stored in the underlying data file. If
a user hides some columns in a spreadsheet, reorders the rows, and saves the
spreadsheet, the next user who opens it will have the data presented in the
manner in which the first user saved it. An alternative, of course, is for users to
save their own copy in separate physical files, but then as one user applies
updates, the other users’ data becomes out of date. With database systems, we
can present each user a view of the same data, but the views can be tailored to
the needs of the individual users, even though the views all come from one
commonly stored copy of the data. Because views store no actual data, they
automatically reflect any data changes made to the underlying database objects.
This is all possible through layers of abstraction, as shown in Figure 1-1.

TERMS: user Views
User views are abstractions provided by the DbMS that permit different users of
the database to use customized presentations of the same data that are tailored
to their exact needs. This property is one of the fundamental benefits that data-
bases provide over simple file systems.

Figure 1-1 • Database layers of abstraction

Internal Schema
(Logical Schema)

Logical Data
Independence

Physical Data
Independence

External
Layer

Logical
Layer

Physical
Layer

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

View 1 View 2 View n

Chapter 1 D ata b a s e F u n d a m e n ta l s 5

The architecture shown in Figure 1-1 was first developed by ANSI/SPARC
(American National Standards Institute Standards Planning and Requirements
Committee) in the 1970s and quickly became a foundation for much of the
database research and development efforts that followed. Most modern DBMSs
follow this architecture, which is composed of three primary layers: the physi-
cal layer, the logical layer, and the external layer. The original architecture
included a conceptual layer, which has been omitted here because none of the
modern database vendors implemented it.

The Physical Layer
The physical layer contains the data files that hold all the data for the database.
Nearly all modern DBMSs allow the database to be stored in multiple data files,
which are usually spread out over multiple physical disk drives. With this ar-
rangement, the disk drives can work in parallel for maximum performance. A
notable exception is Microsoft Access, which stores the entire database in a
single physical file. This arrangement limits the ability of the DBMS to scale to
accommodate many concurrent users of the database, making it inappropriate
as a solution for large enterprise systems, while simplifying database use on a
single-user personal computer system.

The user of the database does not need to have any knowledge of how the
data is actually stored within these files, or even which file contains the data
item(s) of interest. In most organizations, a technician known as a database
administrator (DBA) handles the details of installing and configuring the data-
base software and data files and making the database available to the database
users. The DBMS works with the computer’s operating system to automati-
cally manage the data files, including all file opening, closing, reading, and
writing operations. The database user should not be required to refer to
physical data files when using a database, which is in sharp contrast with
spreadsheets and word processing, where the user must consciously save the
document(s) and choose filenames and storage locations. Many of the per-
sonal computer-based DBMSs are exceptions to this tenet because the user is
required to locate and open a physical file as part of the process of signing
onto the DBMS. In contrast, with server-based DBMSs (such as Oracle,
Sybase, Microsoft SQL Server, and so on), the physical files are managed
automatically, and the database user never needs to refer to them when using
the database.

6 Data b a s e s Demystified

The Logical Layer
The logical layer or logical model is the first of two layers of abstraction in the
database. We say this because the physical layer has a concrete existence in the
operating system files, whereas the logical layer exists only as abstract data
structures assembled from the physical layer as needed. The DBMS transforms
the data in the data files into a common structure. This layer is sometimes
called the schema, a term used for the collection of all the data items stored in
a particular database. (In some architectures, databases support multiple sche-
mas. In this case, schema refers to all data items owned by a particular user ac-
count.) Depending on the particular DBMS, this can be a set of 2-D
(two-dimensional) tables, a hierarchical structure similar to a company’s orga-
nization chart, or some other structure. The “Prevalent Database Models” sec-
tion later in this chapter describes the possible structures in more detail.

The External Layer
The external layer or external model is the second layer of abstraction in the
database. This layer is composed of the user views discussed earlier, which are
collectively called the subschema. This is the layer where users and application
programs that access the database connect and issue queries against the data-
base. Ideally, only the DBA deals with the physical layer, and only the DBA,
developers, and other IT staff deal with the logical layers. The DBMS handles
the transformation of selected items from one or more data structures in the
logical layer to form each user view. The user views in this layer can be pre-
defined and stored in the database for reuse, or they can be temporary items
that are built by the DBMS to hold the results of a single ad hoc database query
until no longer needed by the database user. By ad hoc, we mean a query that
was not preconceived and one that is not likely to be reused. Views are dis-
cussed in more detail in Chapter 2.

Physical Data Independence
The ability to alter the physical file structure of a database without disrupting
existing users and processes is known as physical data independence. As shown
earlier in Figure 1-1, it is the separation of the physical layer from the logical
layer that provides physical data independence in a DBMS. It is essential to
understand that physical data independence is not a “have or have not” property,
but rather one where a particular DBMS might have more or less data indepen-
dence than another. The measure, sometimes called the degree of physical data
independence, is how much change can be made in the file system without

Chapter 1 D ata b a s e F u n D a m e n ta l s 7

impacting the logical layer. Prior to systems that offered data independence,
even the slightest change to the way data was stored required the programming
staff to make changes to every computer program that used the data, an expen-
sive and time-consuming process.

All modern computer systems have some degree of physical data indepen-
dence. For example, a spreadsheet on a personal computer will continue to work
properly if copied from a hard disk to a USB thumb drive or if burned onto a CD.
The fact that the performance (speed) of these devices varies is not the point, but
rather that the devices have entirely different physical construction. Yet the oper-
ating system on the personal computer will automatically handle the differences
and present the data in the file to the application (that is, the spreadsheet pro-
gram, such as Microsoft Excel), and therefore to the user, in exactly the same way.
However, on most personal systems, users must still remember where they placed
the file so they can locate it when they need it again.

DBMSs expand greatly on the physical data independence provided by the
computer system in that they allow database users to access database objects (for
example, tables in a relational DBMS) without having to reference the physical
data files in any way. The DBMS catalog keeps track of where the objects are
physically stored. Here are some examples of physical changes that may be made
in a data-independent manner:

Moving a database data file from one device or directory to another•	

Splitting or combining database data files•	

Renaming database files•	

Moving a database object from one data file to another•	

Adding new database objects or data files•	

Note that we have made no mention of deleting things. It should be obvious
that deleting a database object will cause anything that uses that object to fail.
However, everything else should be unaffected.

TERMS: Physical Data independence
Physical data independence is the ability to alter the physical file structure of a
database without disrupting existing users and processes; such as moving data-
base objects from one physical file to another.

8 Data b a s e s DemystifieD

Logical Data Independence
The ability to make changes to the logical layer without disrupting existing
users and processes is called logical data independence. Figure 1-1, earlier in the
chapter, shows that it is the transformation between the logical layer and the
external layer that provides logical data independence. As with physical data
independence, there are degrees of logical data independence. It is important
to understand that most logical changes also involve a physical change. For
example, you cannot add a new database object (such as a table in a relational
DBMS) without physically storing the data somewhere; hence, there is a cor-
responding change in the physical layer. Moreover, deletion of objects in the
logical layer will cause anything that uses those objects to fail, but should not
affect anything else.

Here are some examples of changes in the logical layer that can be safely
made thanks to logical data independence:

Adding a new database object•	

Adding data items to an existing object•	

Any change where a view can be placed in the external model that re-•	

places (and processes the same as) the original object in the logical layer,
such as combining or splitting existing objects

Prevalent Database Models
A database model is essentially the architecture that the DBMS uses to store
objects within the database and to relate them to one another. (Be careful not
to confuse the term “database model” with the term data model, which refers
to the design of a particular database. You may find it helpful to think of data-
base models as architectures used by the DBMS to store data, while data mod-
els are designs of specific databases such as order entry and payroll systems.)

TERMS: Logical Data independence
logical data independence is the ability to make changes to the logical layer with-
out disrupting existing users and processes, such as adding a new database ob-
ject or adding a column to an existing database table.

Chapter 1 D ata b a s e F u n D a m e n ta l s 9

The most prevalent database models are presented here in the order of their
evolution. A brief history of relational databases appears in the next section to
help put things in a chronological perspective.

Flat Files
Flat files are “ordinary” operating system files in that records in the file contain
no information to communicate the file structure or any relationship among
the records to the application that uses the file. Any information about the
structure or meaning of the data in the file must be included in each applica-
tion that uses the file or must be known to each human who reads the file. In
essence, flat files are not databases at all because they do not meet any of the
criteria previously discussed. However, it is important to understand them for
two reasons. First, flat files are often used to store database information. In
this case, the operating system is still unaware of the contents and structure
of the files, but the DBMS has metadata that allows it to translate between
the flat files in the physical layer and the database structures in the logical
layer. Metadata, which literally means “data about data,” is the term used for
the information that the database stores in its catalog to describe the data
stored in the database and the relationships among the data. The metadata for
a customer, for example, might include a list of all the data items collected
about the customer, along with the length, minimum and maximum data
values, and a brief description of each data item. Second, flat files existed
before databases, and the earliest database systems evolved from the flat file
systems that preceded them.

still struggling
a bit more elaboration may help you understand the difference between data-
base models and data models. a database model defines the architecture used
by the Dbms much like a building code contains the regulations for construct-
ing buildings. a data model, on the other hand, is a description of the design of
an individual database, using both diagrams and text definitions, much like the
blueprint for an individual building.

?

10 Data b a s e s Demystified

Figure 1-2 shows a sample flat file system, a subset of the data in the Micro-
soft Northwind sample database in this case. Northwind Traders is a supplier of
international food items. Keep in mind that the column titles (Customer ID,
Company Name, and so on) are included for illustration purposes only—only
the data records would be stored in the actual files. Customer data is stored in
a Customer file, with each record representing a Northwind customer. Each
employee of Northwind has a record in the Employee file, and each product
sold by Northwind has a record in the Product file. Order data (orders placed
with Northwind by its customers) is stored in two other flat files. The Order
file contains one record for each customer order with data about the orders,
such as the customer ID of the customer who placed the order and the name
of the employee who accepted the order from the customer. The Order Detail
file contains one record for each line item on an order (an order can contain
multiple line items, one for each product ordered), including data such as the
unit price and quantity.

An application program is a unit of computer program logic that performs a
particular function within an application system. Northwind has an application
program that prints a listing of all the orders. This application must correlate

Figure 1-2 • Flat file order system

Customer File

Product File

Order File

Order Detail File

Employee File

Customer ID Company Name

Title

Job TitleContact Last NameContact First Name

Employee ID First Name Last Name

Order ID

Product Code Quantity Per UnitCategoryProduct NameProduct ID

QuantityUnit PriceProduct IDOrder ID

Shipping FeeShipped DateOrder DateEmployee IDCustomer ID

26
6

Accounting Assistant
Purchasing Manager

Liu
Pérez-Olaeta

Run
Francisco

Company Z
Company F

Hellung-Larsen
Thrope

Anne
Steven

9
5

Vice President, SalesCenciniAndrew2

8

50 – 300 g pkgs.
10 pkgs.
12 – 12 oz cans
24 – 4 oz tins
12 – 1 lb pkgs.
36 boxes

Dried Fruit & Nuts
Candy
Soups
Canned Meat
Dried Fruit & Nuts
Oil

Northwind Traders Dried Apples
Northwind Traders Chocolate
Northwind Traders Clam Chowder
Northwind Traders Crab Meat
Northwind Traders Dried Pears
Northwind Traders Olive Oil

51
48
41
40

7
5

14
20

2
21
15

$53.00
$30.00
$12.75
$18.40
$9.65

51
7

48
40
41

5

79
79
56
51
51
51

79
56
51

6
6

26

2
2
9

6/23/2010
4/3/2010
4/5/2010

6/23/2010
4/3/2010
4/5/2010

$0.00
$0.00

$60.00

Sales Representative
Sales Manager

$21.35

NWTO-5

NWTDFN-51
NWTCA-48
NWTSO-41
NWTCM-40
NWTDFN-7

List Price

$53.00
$12.75
$9.65

$18.40
$30.00
$21.35

Chapter 1 D ata b a s e F u n d a m e n ta l s 11

the data between the five files by reading an order and performing the follow-
ing steps:

Use the customer ID to find the name of the customer in the Customer 1.	
file.

Use the employee ID to find the name of the related employee in the 2.	
Employee file.

Use the order ID to find the corresponding line items in the Order Detail 3.	
file.

For each line item, use the product ID to find the corresponding product 4.	
name in the Product file.

This is rather complicated given that we are just trying to print a simple list-
ing of all the orders, yet this is the best possible data design for a flat file
system.

One alternative design would be to combine all the information into a single
data file. Although this would greatly simplify data retrieval, consider the rami-
fications of repeating all the customer data on every single order line item. You
might not be able to add a new customer until they have an order ready to
place. Also, if someone deletes the last order for a customer, you would lose all
the information about the customer. But the worst situation is when customer
information changes, because you have to find and update every record where
the customer data is repeated. We will explore these issues much more deeply
when we explore logical database design in Chapter 7.

Another alternative approach often used in flat file–based systems is to com-
bine closely related files, such as the Order file and Order Detail file, into a
single file, with the line items for each order following each order header record,
and a Record Type data item added to help the application distinguish between
the two types of records. Although this approach makes correlating the order
data easier, it does so by adding the complexity of mixing two different kinds
of records into the same file, so there is no net gain in either simplicity or faster
application development.

Overall, the worst problem with the flat file approach is that the definition
of the contents of each file and the logic required to correlate the data from
multiple flat files have to be included in every application program that requires
those files, thus adding to the expense and complexity of the application pro-
grams. It was this problem that provided computer scientists of the day with
the incentive to find a better way to organize data.

12 Data b a s e s Demystified

The Hierarchical Model
The earliest databases followed the hierarchical model. The model evolved
from the file systems that the databases replaced, with records arranged in a
hierarchy much like an organization chart. Each file from the flat file system
became a record type, or node in hierarchical terminology, but we will use the
term record here for simplicity. Records were connected using pointers that
contained the address of the related record. Pointers told the computer system
where the related record was physically located, much as a street address di-
rects us to a particular building in a city or a URL directs us to a particular web
page or file on the Internet. Each pointer establishes a parent-child relationship,
also called a one-to-many relationship, where one parent may have many chil-
dren, but each child may have only one parent. This is similar to the situation
in a traditional business organization, where each manager may have many
employees as direct reports, but each employee may have only one manager.
The obvious problem with the hierarchical model is that there is data that does
not exactly fit this strict hierarchical structure, such as an order that must have
the customer who placed the order as one parent and the employee who ac-
cepted the order as another. Data relationships are presented in more detail in
Chapter 2. The most popular hierarchical database was Information Manage-
ment System (IMS) from IBM.

Figure 1-3 shows the hierarchical structure of the hierarchical model for the
Northwind database. You will recognize the Customer, Employee, Product,
Order, and Order Detail record types introduced previously. Comparing the
hierarchical structure with the flat file system shown in Figure 1-2, note that
the Employee and Product records are
shown in the hierarchical structure
with dotted lines because they cannot
be connected to the other records via
pointers. These illustrate the most
severe limitation of the hierarchical
model that was the main reason for its
early demise: no record may have more
than one parent. Therefore, we cannot
connect the Employee records with the
Order records because the Order
records already have the Customer
record as their parent. Similarly, the
Product records cannot be related to

Figure 1-3 • Hierarchical model structure for
Northwind

Customer

Product

Employee

Order Detail

Order

Chapter 1 D ata b a s e F u n d a m e n ta l s 13

the Order Detail records because the Order Detail records already have the
Order record as their parent. Database technicians had to work around this
shortcoming either by relating the “extra” parent records in application pro-
grams, much as was done with flat file systems, or by repeating all the records
under each parent, which of course was very wasteful of then-precious disk
space. Neither of these was really an acceptable solution, so IBM modified IMS
to allow for multiple parents per record. The resultant database model was
dubbed the “Extended Hierarchical” model, which closely resembled the net-
work database model in function, discussed in the next section.

Figure 1-4 shows the contents of selected records within the hierarchical
model design for Northwind. For simplicity, only the identifiers of the records
are shown, but a look back at Figure 1-2 should make the entire contents of
each record clear to you. The record for Customer 6 has a pointer to its first
order (ID 56), and that order has a pointer to the next order (ID 79). We know
that Order 79 is the last order for the customer because it does not have a
pointer to a subsequent order. Looking at the next layer in the hierarchy, Order
56 has a pointer to its only Order Detail record (for Product 48), while Order
79 has a pointer to its first Order Detail record (for Product 7), and that record
has a pointer to the next detail record (for Product 51), and so forth. There is
one additional important distinction between the flat file system and the hier-
archical—the key (identifier) of the parent record is removed from the child
records in the hierarchical model because the pointers handle the relationships
among the records. Therefore, the Customer ID and Employee ID are removed
from the Order record, and the Product ID is removed from the Order Detail
record. Leaving them in is not a good idea because this could allow contradictory

Figure 1-4 • Hierarchical model record contents for Northwind

Customer:
6

(to next customer)

Order:
56

Order:
79

Order Detail:
Product 48

Order Detail:
Product 7

Order Detail:
Product 51

(from previous customer)

14 Data b a s e s Demystified

information in the database, such as an order that is pointed to by one customer
and yet contains the ID of a different customer.

The Network Model
The network database model evolved at around the same time as the hierarchi-
cal database model. A committee of industry representatives was formed to
essentially build a better mousetrap. A cynic would say that a camel is a horse
that was designed by a committee, and that may be accurate in this case. The
most popular database based on the network model was the Integrated Data-
base Management System (IDMS), originally developed by Cullinane (later
renamed Cullinet). The product was enhanced with relational extensions,
named IDMS/R, and eventually sold to Computer Associates.

As with the hierarchical model, record types (or simply “records”) depict
what would be separate files in a flat file system, and those records are related
using one-to-many relationships, called owner-member relationships or sets in
network model terminology. We’ll stick with the terms parent and child, again
for simplicity. As with the hierarchical model, physical address pointers are
used to connect related records, and any identification of the parent record(s)
is removed from each child record to avoid possible inconsistencies. In contrast
with the hierarchical model, the relationships are named so the programmer
can direct the database to use a particular relationship to navigate from one
record to another in the database, thus allowing a record type to participate as
the child in multiple relationships. The network model provided greater flexi-
bility, but as is often the case with computer systems, at the expense of greater
complexity.

The network model structure for
Northwind, as shown in Figure 1-5, has
all the same records as the equivalent
hierarchical model structure that
appeared in Figure 1-3. By convention,
the arrowhead on the lines points from
the parent record to the child record.
Note that the Customer and Employee
records now have solid lines in the struc-
ture diagram because they can be directly
implemented.

In the network model contents exam-
ple shown in Figure 1-6, each parent-child

Figure 1-5 • Network model structure for
Northwind

Customer

Product

Employee

Order Detail

Order

Chapter 1 D ata b a s e F u n d a m e n ta l s 15

relationship is depicted with a different type of line, illustrating that each has a
different name. This difference is important because it points out the largest
downside of the network model, which is complexity. Instead of a single path
that may be used for processing the records, there are now many paths. For
example, if we start with the record for Employee 2 and use it to find the first
order (ID 56), we land in the chain of orders that belong to Customer 6. We
happen to land on the first order belonging to Customer 6, but this is merely by
chance—had there been orders for Customer 6 that were taken by other employ-
ees, we could have landed in the middle of the chain. To find all the other orders
for this customer, there must be a way to work forward from where we are to
the end of the chain and then wrap around to the beginning and forward from
there until we return to the order from which we started. It is to satisfy this
processing need that all pointer chains in network model databases are circular.
As you might imagine, these circular pointer chains can easily result in an infi-
nite loop (that is, a process that never ends) should database users not keep
careful track of where they are in the database and how they got there.
The structure of the Web loosely parallels a network database in that each web
page has links to other related web pages, and circular references are not
uncommon.

Figure 1-6 • Network model record contents for Northwind

Customer:
6

(to next
customer)

Order:
56

Order:
79

Order Detail:
Product 28

Employee:
2

(Other
Employee
2 Orders)

Order Detail:
Product 7

Order Detail:
Product 51

(from previous
customer)

16 Data b a s e s DemystifieD

The process of navigating through a network database was called “walking
the set” because it involved choosing paths through the database structure
much like choosing walking paths through a forest when there can be multiple
ways to get to the same destination. Without an up-to-date map, it is easy to
get lost, or worse yet, to find a dead end where you cannot get to the desired
destination record. The complexity of this model and the expense of the small
army of technicians required to maintain it were key factors in its eventual
demise.

The Relational Model
In addition to complexity, the network and hierarchical database models share
another common problem—they are inflexible. You must follow the precon-
ceived paths through the data in order to process the data efficiently. Ad hoc
queries, such as finding all the orders shipped in a particular month, could re-
quire scanning the entire database to find them all. Computer scientists were
still looking for a better way. Rarely in the history of computers has a develop-
ment been truly revolutionary, but the research work of Dr. E.F. Codd that led
to the relational model was clearly just that.

The relational model is based on the notion that any preconceived path
through a data structure is too restrictive a solution, especially in light of ever-
increasing demands to support ad hoc requests for information. Database users
simply cannot think of every possible use of the data before the database is
created; therefore, imposing predefined paths through the data merely creates
a “data jail.” The relational model therefore provides the ability to relate records
as needed rather than predefining them when the records are first stored in the
database. Moreover, the relational model is constructed such that queries can
work with sets of data (for example, all the customers who have an outstanding
balance) rather than one record at a time, as with the network and hierarchical
models.

TERMS: relational Model
the relational model is a database model that presents data in 2-D tables using
common data to link tables. For example, a Customer ID stored in an order table
can be used to link orders to the Customer table that contains information about
the customers that placed the orders.

Chapter 1 D ata b a s e F u n d a m e n ta l s 17

The relational model presents data in familiar 2-D tables, much like a spread-
sheet does. Unlike with a spreadsheet, the data is not necessarily stored in tabu-
lar form, and the model also permits combining (joining in relational terminology)
tables to form views, which are also presented as 2-D tables. In short, it follows
the ANSI/SPARC model and therefore provides healthy doses of physical and
logical data independence. Instead of linking related records together with
physical address pointers, as is done in the hierarchical and network models, a
common data item is stored in each table, just as was done in flat file systems.

Figure 1-7 shows the relational model design for Northwind. A look back at
Figure 1-2 will confirm that each file in the flat file system has been mapped
to a table in the relational model. As you will learn in Chapter 6, this one-to-
one correspondence between flat files and relational tables will not always hold
true, but it is quite common. In Figure 1-7, lines are drawn between the tables
to show the one-to-many relationships, with the single-line end denoting the
“one” side and the line end that splits into three parts (called a “crow’s foot”)
denoting the “many” side. For example, merely by inspecting the lines that con-
nect these tables, you can see that “one” customer is related to “many” orders
and that “one” order is related to “many” order details. The diagramming tech-
nique shown here, called the entity-relationship diagram (ERD), will be covered
in more detail in Chapter 7.

In Figure 1-8, three of the five tables have been represented with sample data
in selected columns. In particular, note that the Customer ID column is stored in
both the Customer table and the Order table. When the customer ID of a row in
the Order table matches the customer ID of a row in the Customer table, you
know that the order belongs to that particular customer. Similarly, the Employee ID

Figure 1-7 • Relational model structure for Northwind

Customer

Product

Employee

Order Detail

Order

18 Data b a s e s Demystified

column is stored in both the Employee and Order tables to indicate the employee
who accepted each order.

The elegant simplicity of the relational model and the ease with which peo-
ple can learn and understand it has been the main factor in its universal accep-
tance. The relational model is the main focus of this book because it is ubiquitous
in today’s information technology systems and will likely remain so for many
years to come.

The Object-Oriented Model
The object-oriented (OO) model actually had its beginnings in the 1970s, but
it did not see significant commercial use until the 1990s. This sudden emer-
gence came from the inability of then-existing RDBMSs (Relational Database
Management Systems) to deal with complex data types such as images, com-
plex drawings, and audio-video files. The sudden explosion of the Internet and
the Web created a sharp demand for mainstream delivery of complex data.

An object is a logical grouping of related data and program logic that repre-
sents a real-world thing, such as a customer, employee, order, or product. Indi-
vidual data items, such as customer ID and customer name, are called variables
in the OO model and are stored within each object. In OO terminology, a
method is a piece of application program logic that operates on a particular
object and provides a finite function, such as checking a customer’s credit limit
or updating a customer’s address. Among the many differences between the
OO model and the models already presented, the most significant is that vari-
ables may only be accessed through methods. This property is called
encapsulation.

Figure 1-8 • Relational table contents for Northwind

Customer Table

Order Table

Employee Table

Customer ID Company Name Job TitleContact Last NameContact First Name

26
6

Accounting Assistant
Purchasing Manager

Liu
Pérez-Olaeta

Run
Francisco

Company Z
Company F

Order ID Shipping FeeShipped DateOrder DateEmployee IDCustomer ID

79
56
51

6
6

26

2
2
9

6/23/2010
4/3/2010
4/5/2010

6/23/2010
4/3/2010
4/5/2010

$0.00
$0.00

$60.00

TitleEmployee ID First Name Last Name

Hellung-Larsen
Thrope

Anne
Steven

9
5

Vice President, SalesCenciniAndrew2

Sales Representative
Sales Manager

Chapter 1 D ata b a s e F u n d a m e n ta l s 19

The strict definition of object used here applies only to the OO model. The
general term database object, as used earlier in this chapter, refers to any named
item that might be stored in a non-OO database (for example, a table, index,
or view). As OO concepts have found their way into relational databases, so has
the terminology, although often with less precise definitions.

Figure 1-9 shows the Customer object as an example of OO implementa-
tion. The circle of methods around the central core of variables is to remind us
of encapsulation. In fact, you can think of an object much like an atom with an
electron field of methods and a nucleus of variables. Each customer for North-
wind would have its own copy of the object structure, called an object instance,
much as each customer has a copy of the customer record structure in the flat
file system.

At a glance, the OO model looks horribly inefficient because it seems that
each instance requires that the methods and the definition of the variables be
redundantly stored. However, this is not at all the case. Objects are organized
into a class hierarchy so that the common methods and variable definitions need
only be defined once and then inherited by other members of the same class.

Figure 1-9 • The anatomy of an object

Company ID
Company Name
Contact Name
Address
City
Country
Phone
...

Add Customer

Update
Contact

Update
Address

Print
Mailing Label

Change
Status

List
Customer

Check
Credit Limit

Update
Contact

Customer Object

MethodsVariables

20 Data b a s e s Demystified

OO concepts have such benefit that they have found their way into nearly
every aspect of modern computer systems. For example, the Microsoft Win-
dows Registry has a class hierarchy.

The Object-Relational Model
Although the OO model provided some significant benefits in encapsulating
data to minimize the effects of system modifications, the lack of ad hoc query
capability has relegated it to a niche market where complex data is required,
but ad hoc querying is not. However, some of the vendors of relational data-
bases noted the significant benefits of the OO model and added object-like
capability to their relational DBMS products with the hopes of capitalizing on
the best of both models. The original name given to this type of database was
“universal database,” and although the marketing folks loved the term, it never
caught on in technical circles, so the preferred name for the model became
object-relational (OR). Through evolution, the Oracle, DB2, and Informix da-
tabases can all be said to be OR DBMSs to varying degrees.

To fully understand the OR model, a more detailed knowledge of the rela-
tional and OO models is required.

A Brief History of Databases
Space exploration projects led to many significant developments in the science
and technology industries, including information technology. As part of the
NASA Apollo moon project, North American Aviation (NAA) built a hierar-
chical file system named Generalized Update Access Method (GUAM) in 1964.
IBM joined NAA to develop GUAM into the first commercially available hier-
archical model database, called Information Management System (IMS), re-
leased in 1966.

Also in the mid-1960s, General Electric internally developed the first data-
base based on the network model, under the direction of prominent computer
scientist Charles W. Bachman, and named it Integrated Data Store (IDS). In
1967, the Conference on Data Systems Languages (CODASYL), an industry
group, formed the Database Task Group (DBTG) and began work on a set of
standards for the network model. In response to criticism of the “single parent”
restriction in the hierarchical model, IBM introduced a version of IMS that
circumvented the problem by allowing records to have one “physical” parent
and multiple “logical” parents.

Chapter 1 D ata b a s e F u n d a m e n ta l s 21

In June 1970, E.F. (Ted) Codd, an IBM researcher (later an IBM fellow),
published a research paper titled “A Relational Model of Data for Large Shared
Data Banks” in Communications of the ACM, the Journal of the Association for
Computing Machinery, Inc. The publication can be easily found on the Internet.
In 1971, the CODASYL DBTG published their standards, which were over
three years in the making. This began five years of heated debate over which
model was the best.

The CODASYL DBTG advocates argued the following:

The relational model was too mathematical.•	

An efficient implementation of the relational model could not be built.•	

Application systems need to process data one record at a time.•	

The relational model advocates argued the following:

Nothing as complicated as the DBTG proposal could possibly be the cor-•	

rect way to manage data.

Set-oriented queries were too difficult in the DBTG language.•	

The network model had no formal underpinnings in mathematical theory.•	

The debate came to a head at the 1975 ACM SIGMOD (Special Interest
Group on Management of Data) conference. Ted Codd and two others debated
against Charles Bachman and two others over the merits of the two models. At
the end, the audience was more confused than beforehand. In retrospect, this hap-
pened because every argument proffered by the two sides was completely correct!
However, interest in the network model waned markedly in the late 1970s. It was
the evolution of database and computer technology that followed that proved the
relational model was the better choice, including these significant developments:

Query languages such as SQL emerged that were not so mathematical.•	

Experimental implementations of the relational model proved that rea-•	

sonable efficiency could be achieved, although never as efficient as an
equivalent network model database. Also, computer systems continued to
drop in price, and flexibility became more important than efficiency.

Provisions were added to the SQL language to permit processing of a set •	

of data using a record-at-a-time approach.

Advanced tools made the relational model even easier to use.•	

Codd’s research led to the development of a new discipline in mathemat-•	

ics known as relational calculus.

22 Data b a s e s Demystified

In the mid-1970s, database research and development was at full steam. A
team of 15 IBM researchers in San Jose, California, under the direction of Frank
King, worked from 1974 to 1978 to develop a prototype relational database
called System R. System R was built commercially and became the basis for HP
ALLBASE and IDMS/SQL. Larry Ellison and a company that later became
known as Oracle independently implemented the external specifications of
System R. It is now common knowledge that Oracle’s first customer was the
CIA. With some rewriting, IBM developed System R into SQL/DS and then
into DB2, which remains their flagship database to this day.

A pickup team of University of California, Berkeley, students under the
direction of Michael Stonebraker and Eugene Wong worked from 1973 to 1977
to develop the Ingres DBMS. Ingres also became a commercial product and was
quite successful. It is still available today as an open source solution.

In 1976, Dr. Peter Chen presented the entity-relationship (ER) model. His
work bolstered the modeling weaknesses in the relational model and became
the foundation of many modeling techniques that followed. If Ted Codd is
considered the “father” of the relational model, then we must consider Peter
Chen the “father” of the ER diagram. We explore ER diagrams in Chapter 7.

Sybase, which had a successful RDBMS deployed on Unix servers, entered
into a joint agreement with Microsoft to develop the next generation of Sybase
(to be called System 10) with a version available on Windows servers. For rea-
sons not publicly known, the relationship soured before the products were com-
pleted, but each party walked away with all the work developed up to that
point. Microsoft finished the Windows version and marketed the product as
Microsoft SQL Server, whereas Sybase rushed to market with Sybase System 10.
The products were so similar that instructors for Microsoft were known to use
the more mature Sybase manuals in class rather than first-generation Microsoft
documentation. The product lines have diverged considerably over the years, but
Microsoft SQL Server’s Sybase roots are still evident in the product.

Relational technology took the market by storm in the 1980s. Object-oriented
databases, which first appeared in the 1970s, were also commercially successful
during the 1980s. In the 1990s, object-relational systems emerged, with Informix
being the first to market, followed relatively quickly by Oracle and IBM.

Not only did the relational technology of the day move around, but the peo-
ple did also. Michael Stonebraker left UC Berkeley to found Illustra, an object-
relational database vendor, and became chief science officer of Informix when it
merged with Illustra. He is currently an adjunct professor at MIT, where he is
involved in the development of a number of advanced database systems projects.
Bob Epstein, who worked on the Ingres project with Stonebraker, moved to

Chapter 1 D ata b a s e F u n d a m e n ta l s 23

the commercial company along with the Ingres product. From there he went to
Britton-Lee (subsequently absorbed by NCR) to work on early database machines
(computer systems with hardware and software specialized to run only data-
bases) and then to start up Sybase, where he was the chief science officer for a
number of years. Database machines, incidentally, died on the vine because they
were so expensive compared with the combination of an RDBMS running on a
general-purpose computer system. However, several vendors, including Oracle,
Teradata, and Netezza, currently market database machines that use specialized
software for running databases, but with industry-standard hardware. The San
Francisco Bay Area was an exciting place for database technologists in that era,
because all the great relational products started there, more or less in parallel,
with the explosive growth of “Silicon Valley.” Others have moved on, but Oracle
and Sybase are still largely based in the Bay Area.

Why Focus on Relational?
The remainder of this book will focus on the relational model, with some cov-
erage of the object-oriented and object-relational models. Aside from the rela-
tional model being the most prevalent of all the database models in modern
business systems, there are other important reasons for this focus, especially for
those learning about databases for the first time:

Definition, maintenance, and manipulation of data storage structures •	

is easy.

Data is retrieved through simple ad hoc queries.•	

Data is well protected.•	

Well-established ANSI (American National Standards Institute) and ISO •	

(International Organization for Standardization) standards exist.

There are many vendors from which to choose.•	

Conversion between vendor implementations is relatively easy.•	

RDBMSs are mature and stable products.•	

Summary
In this chapter, you learned the properties of databases, terms used to describe
databases, the prevalent database models, a brief history of databases, and the
reasoning behind a focus on relational databases. In Chapter 2, we will explore
the components of relational databases.

24 Data b a s e s Demystified

Quiz
Choose the correct responses in each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

Some of the properties of a database are1.	
It provides less logical data independence than the file systems it replaced.A.	
It provides both physical and logical data independence.B.	
Data items are stored exactly the way they are presented to the database user.C.	
It provides layers of database abstraction.D.	
Databases are always managed by a Database Management System.E.	

Flat file systems:2.	
Require the user or application program to relate one file to anotherA.	
Require the user or application to know the contents of each fileB.	
Are not really databases by themselves, even though some vendors call them C.	
that
Provide no logical data independence when used directly by application D.	
programs
Can be used to store the database objects for a databaseE.	

The hierarchical database model:3.	
Stores data and methods together in the databaseA.	
Was first developed by Dr. Peter ChenB.	
In its pure form, permits only one parent for any given recordC.	
Connects data in a hierarchical structure using physical address pointersD.	
Allows the processing of sets of database recordsE.	

The network database model:4.	
Allows the processing of sets of database recordsA.	
Allows multiple parents for any given database recordB.	
Was first proposed by Dr. E.F. CoddC.	
Is known for its simplicity of useD.	
Connects database records using physical address pointersE.	

The object-oriented model:5.	
Was first invented in the 1980sA.	
Stores data as variables along with application logic modules called “methods”B.	
Restricts access to variables through encapsulationC.	
Provides for freeform ad hoc querying of variablesD.	
Provides better support for complex data types than the relational modelE.	

Chapter 1 D ata b a s e F u n d a m e n ta l s 25

The physical layer of the ANSI/SPARC model:6.	
Provides physical data independenceA.	
Contains the physical files that comprise the databaseB.	
Contains files that are read and written by the DBMS independently of the C.	
computer’s operating system
Is normally invisible to the database userD.	
Supplies data to the logical layerE.	

The logical layer of the ANSI/SPARC model:7.	
Contains database objects that are assembled by the DBMS from data in the A.	
physical layer
Contains the database schemaB.	
Lies between the physical and external layersC.	
Provides logical data independenceD.	
Is referenced by the external layerE.	

According to advocates of the relational model, the problems with the CODASYL 8.	
model are

Set-oriented queries are too difficult.A.	
An efficient implementation cannot be built.B.	
It is too mathematical.C.	
It is too complicated.D.	
It lacks generally accepted standards.E.	

According to the advocates of the network model, the problems with the 9.	
relational model are

An efficient implementation cannot be built.A.	
Record-at-a-time processing is poorly supported.B.	
It has no formal mathematical underpinnings.C.	
It is too complicated.D.	
It lacks generally accepted standards.E.	

Important historic events in database development are10.	
Early relational databases were built by both IBM and UC Berkeley.A.	
Nearly all the commercial relational databases are descendents of either System R B.	
or Ingres.
GUAM was the first commercially available database.C.	
Dr. E.F. Codd published his famous research paper in 1970.D.	
General Electric’s IDS was the first known network database.E.	

This page intentionally left blank

 27

c h a p t e r 2
Exploring Relational
Database Components

In this chapter, we explore the conceptual, logical, and physical components
that the relational model comprises. The processes involved in database design
are covered in Chapter 5. In the sections that follow, we explore first the com-
ponents of a conceptual database design, and then the components of a logical
and physical design.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand conceptual database design components, including entities, •
attributes, relationships, and business rules.

Understand logical/physical database design components, including tables, •
columns and data types, constraints, and views.

28 Data b a s e s Demystified

Conceptual Database Design Components
Conceptual database design involves studying and modeling the data in a
technology-independent manner. The conceptual data model that results can be
theoretically implemented on any database, or even on a flat file system. The
person who performs conceptual database design is often called a data modeler.

Figure 2-1 shows part of the conceptual design for Northwind. The labeled
items (Entity, Attribute, Relationship, Business Rule, and Intersection Data)

Conceptual database design is the process that creates a technology-
independent data model that can be implemented on any database, or even on
a flat file system.

Figure 2-1 • Conceptual database design for Northwind

Last Name
First Name
Job Title

Note:
Customers
with overdue
amounts may
not book new
orders.

Customer

Customer ID

Company Name
Address
City
State/Province
Country/Region
Business Phone

Order

Order ID

Customer ID (FK)
Employee ID (FK)
Order Date
Shipped Date
Ship Address
Ship City
Shipping Fee

Unit Price
Quantity
Discount

Account Receivable

Account Number

Credit Score
Balance Due
Due Date
Overdue Amount
Customer ID (FK)

Employee

Employee ID

Product

Product ID

Product Name
Product Code
Description
List Price
Quantity Per Unit
Category

Entity

Attribute

Relationship

Business Rule

Intersection Data

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 29

are the basic components that make up a conceptual database design. Each is
presented in sections that follow, except for intersection data, which is pre-
sented in “Many-to-Many Relationships.”

Entities
An entity is a person, place, thing, event, or concept about which data is
collected. In other words, entities are the real-world things in which we have
sufficient interest to capture and store data about them in a database. An entity
is represented as a rectangle on the diagram. Just about anything that can be
named with a noun can be an entity. However, to avoid designing everything
on the planet into our database, we restrict ourselves to entities of interest to
the people who will use our database. Each entity shown in the conceptual
model represents the entire class for that entity. For example, the Customer
entity represents the collection of all Northwind customers. The individual
customers are called instances of the entity.

An external entity is an entity with which our database exchanges data (send-
ing data to, receiving data from, or both), but about which we collect no data.
For example, most businesses that set up credit accounts for customers pur-
chase credit reports from one or more credit bureaus. They send a customer’s
identifying information to the credit bureau and receive back a credit report,
but all this data is about the customer rather than the credit bureau itself.
Assuming there is no compelling reason for the database to store data about the
credit bureau, such as the mailing address of their office, the credit bureau will
not appear in the conceptual database design as an entity. In fact, external enti-
ties are seldom shown in database designs, but they commonly appear in data
flow diagrams as a source or destination of data. These diagrams are discussed
in Chapter 7.

Attributes
An attribute is a unit fact that characterizes or describes an entity in some way.
These are represented on the conceptual design diagram shown in Figure 2-1

An entity is a person, place, thing, event, or concept about which data
is collected.

30 Data b a s e s Demystified

as names inside the rectangle that represents the entity to which they belong.
The attribute (or attributes) that appears at the top of the rectangle (above the
horizontal line) is the unique identifier for the entity. A unique identifier, as the
name suggests, provides a unique value for each instance of the entity. For ex-
ample, the Customer ID attribute is the unique identifier for the Customer
entity, so each customer must have a unique value for that attribute. Keep in
mind that a unique identifier can be composed of multiple attributes, but when
this happens, it is still considered just one unique identifier.

We say attributes are a unit fact because they should be atomic, meaning they
cannot be broken down into smaller units in any meaningful way. An attribute
is therefore the smallest named unit of data that appears in a database system.
In this sense, Address should be considered a suspect entity because it could
easily be broken down into Address Line 1 and Address Line 2, as is commonly
done in business systems. This change would add meaning because it makes it
easier to print address labels, for example. On the other hand, database design
is not an exact science, and judgment calls must be made. Although it is possible
to break the Contact Name attribute into component attributes, such as First
Name, Middle Initial, and Last Name, we must ask ourselves whether such a
change adds meaning or value. There is no right or wrong answer here, so we
must rely on the people who will be using the database, or perhaps those who
are funding the database project, to help us with such decisions. Always remem-
ber that an attribute must describe or characterize the entity in some way (for
example, size, shape, color, quantity, location).

Relationships
Relationships are the associations among the entities. Because databases are all
about storing related data, the relationships become the glue that holds the da-
tabase together. Relationships are shown on the conceptual design diagram
(refer to Figure 2-1) as lines connecting one or more entities. Each end of a rela-
tionship line shows the maximum cardinality of the relationship, which is the
maximum number of instances of one entity that can be associated with the
entity on the opposite end of the line. The maximum cardinality may be one

An attribute is a unit fact that characterizes or describes an entity in some way.

Chapter 2 E x p l o r i N g r E l at i o N a l D ata b a s E C o m p o N E N t s 31

(where the line has no special symbol on its end) or many (where the line has a
crow’s foot on the end). Just short of the end of the line is another symbol that
shows the minimum cardinality, which is the minimum number of instances of
one entity that can be associated with the entity on the opposite end of the line.
The minimum cardinality may be zero, denoted with a circle drawn on the line,
or one, denoted with a short vertical line or tick mark drawn across the relation-
ship line. Many data modelers use two vertical lines to mean “one and only one.”

Learning to read relationships takes practice, and learning to define and draw
them correctly takes a lot of practice. The trick is to think about the association
between the entities in one direction and then to reverse your perspective to
think about it in the opposite direction. For the relationship between Customer
and Order, for example, we must ask two questions: “Each customer can have
how many orders?” followed by “Each order can have how many customers?”
Relationships may thus be classified into three types: one-to-one, one-to-many, and
many-to-many, as discussed in the following sections. Some people will say many-
to-one is also a relationship type, but in reality, it is only a one-to-many relationship
looked at with a reverse perspective. Relationship types are best learned by exam-
ple. Getting the relationships right is essential to a successful design.

Relationships are the associations among the entities. They can be considered the
glue that binds the relational model’s entities together.

still struggling
if you are having difficulty absorbing the different types of relationships, try
writing out some examples of physical tables with rows of data in them. For
example, if you draw tables for the Customer and order entities like those shown
in Figure 2-1 and include some sample data rows, it should be become clear that
an order can belong to only one customer because the identifier of the cus-
tomer is included in the order data and has only one value per order. Conversely,
a customer row contains one value of the Customer iD, but that value can
appear in multiple rows in the Order table. With some practice you will be able
to visualize the physical tables without having to write out the examples.

?

32 Data b a s e s Demystified

One-to-One Relationships
A one-to-one relationship is an association where an instance of one entity can
be associated with at most one instance of the other entity, and vice versa. In
Figure 2-1, the relationship between the Customer and Account Receivable
entities is one-to-one. This means that a customer can have at most one associ-
ated account receivable, and an account can have at most one associated
customer. The relationship is also mandatory in both directions, meaning that a
customer must have at least one account receivable associated with it, and an
account receivable must have at least one customer associated with it. Putting
this all together, we can read the relationship between the Customer and
Account Receivable entities as “one customer has one and only one associated
account receivable, and one account receivable has one and only one associated
customer.”

Another important concept is transferability. A relationship is said to be
transferable if the parent can be changed over time—or, said another way, if
the child can be reassigned to a different parent. In this case, the relationship
between Customer and Account Receivable is obviously not transferable
because we would never take one customer’s account and transfer it to
another customer (it would be horribly bad accounting practice to do so).
Unfortunately, no widely accepted symbol is available for showing transfer-
ability on data models, but it is an important consideration in some cases,
particularly with one-to-one relationships that are mandatory in both
directions.

One-to-one relationships are surprisingly rare among entities. In practice,
one-to-one relationships that are mandatory in both directions and not transfer-
able represent a design flaw that should be corrected by combining the two
entities. After all, isn’t an account receivable merely more information about
the customer? We’re not going to collect data about an account receivable, but
rather the information in the Account Receivable entity is data we collect about
the customer. On the other hand, if we buy our financial software from an
independent software vendor (a common practice), the software would almost
certainly come with a predefined database that it supports, so we may have no
choice but to live with this situation. We won’t be able to modify the vendor’s
database design to add additional customer data of interest to us, and at the
same time, we won’t be able to get the vendor’s software to recognize anything
that we store in our own database.

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 33

Figure 2-2 shows a different
“flavor” of one-to-one relationship,
one that is optional (some say
conditional) in both directions.
Suppose we are designing the data-
base for an automobile dealership.
The dealership issues automobiles
to some employees, typically sales
staff, for them to drive for a finite time. They obviously don’t issue all the auto-
mobiles to employees (if they did, they would have none to sell). We can read
the relationship between the Employee and Automobile entities as follows: “At
any point in time, each employee can have zero or one automobile issued to
him or her, and each automobile can be assigned to zero or one employee.”
Note the clause “At any point in time.” If an automobile is taken back from one
employee and then reassigned to another (that is, if the relationship is transfer-
able), this would still be a one-to-one relationship. This is because when we
consider relationships, we are always thinking in terms of a snapshot taken at
an arbitrary point in time.

One-to-Many Relationships
A one-to-many relationship is an association between two entities where any
instance of the first entity may be associated with one or more instances of the
second, and any instance of the second entity may be associated with at most
one instance of the first. Figure 2-1, shown earlier in this chapter, has two such
relationships: the one between the Customer and Order entities, and the one
between the Employee and Order entities. The relationship between Customer
and Order, which is mandatory in only one direction, is read as follows: “At any
point in time, each customer can have zero to many orders, and each order
must have one and only one owning customer.”

One-to-many relationships are quite common. In fact, they are the funda-
mental building block of the relational database model in that all relationships
in a relational database are implemented as if they are one-to-many. It is
rare for them to be optional on the “one” side and even more rare for them to
be mandatory on the “many” side, but these situations do occur. Consider the
examples shown in Figure 2-3. When a customer account closes, we record
the reason it was closed using an account closure reason code. Because some

Figure 2-2 • Employee-to-automobile relationship

Employee

Employee ID

First Name
Last Name
Job Title

Automobile

VIN

Make
Model
Year
Color
Employee ID (FK)

34 Data b a s e s Demystified

accounts are open at any point in time, this
is an optional code. We read the relation-
ship this way: “At any given point in time,
each account closure reason code value can
have zero, one, or many customers assigned
to it, and each customer can have either
zero or one account closure reason code
assigned to them.” Let us next suppose that
as a matter of company policy, no customer
account can be opened without first obtain-
ing a credit report, and that all credit reports
are kept in the database, meaning that any
customer may have more than one credit
report in the database. This makes the rela-
tionship between the Customer and Credit
Report entities one-to-many, and manda-
tory in both directions. We read the rela-
tionship thus: “At any given point in time,
each customer can have one or many credit
reports, and each credit report belongs to one and only one customer.”

Many-to-Many Relationships
A many-to-many relationship is an association between two entities where any
instance of the first entity may be associated with zero, one, or more instances
of the second, and vice versa. Back in Figure 2-1, the relationship between
Order and Product is many-to-many. We read the relationship thus: “At any
given point in time, each order contains zero to many products, and each prod-
uct appears on zero to many orders.”

This particular relationship has data associated with it as shown in the dia-
mond on the diagram. Data that belongs to a many-to-many relationship is
called intersection data. The data doesn’t make sense unless you associate it with
both entities at the same time. For example, Quantity (the number of units
ordered) doesn’t make sense unless you know who (which customer) ordered
what (which product). In Figure 2-4, you will recognize this data as the Order
Detail table from Northwind’s relational model, which was previously shown
in Figure 1-7 in the last chapter. So, why isn’t Order Detail just shown as an
entity in the conceptual model shown in Figure 2-1? The answer is simple: It
doesn’t fit the definition of an entity. We are not collecting data about the line

Figure 2-3 • One-to-many relationships

Account Closure Reason

Account Closure Reason Code

Description

Customer

Customer ID

Company Name
Address
City
State/Province
Country/Region
Business Phone
Account Closure Reason Code (FK)

Credit Report

Credit Report Number

Report Date
Credit Score
Notes
Customer ID (FK)

Chapter 2 E x p l o r i N g r E l at i o N a l D ata b a s E C o m p o N E N t s 35

items on the order, but rather the line items on the order are merely more data
about the order.

Many-to-many relationships are quite common, and most of them will have
intersection data. The bad news is that the relational model does not directly
support many-to-many relationships. There is no problem with having many-
to-many relationships in a conceptual design because such a design is indepen-
dent of any particular technology. However, if the database is going to be
relational, some changes have to be made as we map the conceptual model to
the corresponding logical model. The solution is to map the intersection data
to a separate table (an intersection table) and the many-to-many relationship to
two one-to-many relationships, with the intersection table in the middle and
on the “many” side of both relationships. Figure 2-4 shows this outcome. The
process for recognizing and dealing with the many-to-many problem is covered
in detail in Chapter 6.

Figure 2-4 • relational model structure for Northwind

Customer

Product

Employee

Order Detail

Order

TERMS: intersection Table
an intersection table is placed in the middle of a many-to-many relationship to
hold the data that is common to the intersection of the two entities. once placed,
the intersection table transforms the many-to-many relationships into two
one-to-many relationships with the intersection table on the “many” side of both
relationships.

36 Data b a s e s DemystifieD

Recursive Relationships
So far we have covered relationships between entities of two different types.
However, relationships can exist between entity instances of the same type.
These are called recursive relationships. Any one of the relationship types al-
ready presented (one-to-one, one-to-many, or many-to-many) can be a recur-
sive relationship. Figure 2-5 and the following list show examples of each:

One-to-one•	 If we were to track which employees have other employees
as spouses, we would expect each to be married to either zero or one
other employee.

One-to-many•	 It is very common to track the employment “food chain”
of who reports to whom. In most organizations, people have only one
supervisor or manager. Therefore, we normally expect to see each em-
ployee reporting to zero or one other employee, and employees who are
managers or supervisors to have one or more direct reports.

Many-to-many•	 In manufacturing, a common relationship has to do with
parts that make up a finished product. If you think about the CD-ROM
drive in a personal computer, for example, you can easily imagine that it
is made of multiple parts, and yet, it is only one part of your personal
computer. So, any part can be made of many other parts, and at the same
time, any part can be a component of many other parts.

TERMS: Defining recursive relationship
a recursive relationship is a relationship between instances of the same entity
such as an employee who reports to another employee or a product part
composed of other product parts.

Figure 2-5 • recursive relationship examples

Employee
Employee ID

Last Name
First Name
Job Title
Spouse Employee ID (FK)

One-to-one: Each
employee can be married
to another employee or not.

Employee
Employee ID

Last Name
First Name
Job Title
Manager Employee ID (FK)

One-to-many: An
employee can manage
other employees.

Part

Part ID
Description

Many-to-many: Each part
can contain other parts;
each part can be a component
of many other parts.

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 37

Business Rules
A business rule is a policy, procedure, or standard that an organization has ad-
opted. Business rules are very important in database design because they dictate
controls that must be placed upon the data. In Figure 2-1, we see a business
rule that states that orders will be accepted only from customers who do not
have a past-due balance. Most business rules can be enforced through manual
procedures that employees are directed to follow or through logic placed in the
application programs. However, each of these can be circumvented—employees
may forget or may choose not to follow a manual procedure, and databases can
be updated directly by authorized people, bypassing the controls included in
the application programs. The database can serve nicely as the last line of de-
fense. Business rules can be implemented in the database as constraints, which
are formally defined rules that restrict the data values in the database in some
way. More information on constraints can be found in the “Constraints” section
later in this chapter. Note that business rules are not normally shown on a con-
ceptual data model diagram, as was done in Figure 2-1 for easy illustration. It
is far more common to include them in a text document that accompanies the
diagram.

Logical/Physical Database Design Components
Logical database design is the process of translating, or mapping, the conceptual
design into a logical design that fits the chosen database model (relational,
object-oriented, object-relational, and so on). A specialist who performs logical
database design is called a database designer, but often the data modeler or da-
tabase administrator (DBA) performs this design step. The final design step is
physical database design, which involves mapping the logical design to one or
more physical designs—each tailored to the particular DBMS that will manage
the database and the particular computer system on which the database will
run. The person who performs physical database design is usually the DBA.

The logical database design is implemented in the logical layer of the ANSI/
SPARC model discussed in Chapter 1. The physical design is implanted in the
ANSI/SPARC physical layer. However, we work through the DBMS to imple-
ment the physical layer, making it difficult to separate the two layers. For exam-
ple, when we create a table, we can optionally include a clause in the CREATE
TABLE command that tells the DBMS where we wish to place it and how

38 Data b a s e s Demystified

much space to allocate for it. In most DBMS implementations, defaults are
used if the location and space allocation are not explicitly specified. Because so
much of the physical implementation is buried in the DBMS definitions of the
logical structures, we have elected not to try to separate them here. During
logical database design, physical storage properties (filename, storage location,
and sizing information) may be assigned to each database object as we map
them from the conceptual model, or they may be omitted at first and added
later in a physical design step that follows logical design. For time efficiency,
most data modelers and DBAs perform the two design steps (logical and
physical) in parallel.

Tables
The primary unit of storage in the relational model is the table, which is a 2-D
structure composed of rows and columns. Each row represents one occurrence
of the entity that the table represents, and each column represents one attribute
for that entity. The process of mapping the entities in the conceptual design to
tables in the logical design is called normalization and is covered in detail in
Chapter 6. Often, an entity in the conceptual model maps to exactly one table
in the conceptual model, but this is not always the case. For reasons you will
learn with the normalization process, entities are commonly split into multiple
tables, and in rare cases, multiple entities may be combined into one table.

Figure 2-6 shows a listing of part of the Northwind Orders table.
It is important to remember that a relational table is a logical storage struc-

ture and usually does not exist in tabular form in the physical layer. In most
DBMS products, the DBA assigns a table to a logical structure called a tablespace,
and each tablespace is implemented using one or more operating system files
in the physical layer. It is quite common for multiple tables to be placed in a
single tablespace. However, large tables may be placed in their own tablespace
or split across multiple tablespaces, which is called partitioning. This flexibility
typically does not exist in personal computer–based RDBMSs such as Microsoft
Access.

A relational database table is a 2-D structure composed of rows and columns. It is
the primary unit of storage in the relational model.

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 39

Each table must be given a unique name by the DBA who creates it. The
maximum length for these names varies a lot among RDBMS products, from as
few as 18 characters to as many as 255. Table names should be descriptive and
should reflect the name of the real-world entity they represent. By convention,
some DBAs always name entities in the singular and tables in the plural, and you
will see this convention used in the Northwind database. I prefer that both be
named in the singular, but obviously there are other learned professionals with
counter opinions. It is essential to establish naming standards at the outset so
that names are not assigned in a haphazard manner, which only leads to confu-
sion later. As a case in point, Microsoft Access permits embedded spaces in table
and column names, which is counter to industry standards. Moreover, Microsoft
Access, Sybase, and Microsoft SQL Server allow mixed-case names, such as
OrderDetails, whereas Oracle, DB2, and others force all names to be uppercase
letters. Because table names such as ORDERDETAILS are not very readable,

Figure 2-6 • Northwind Orders table (partial listing)

A tablespace is a logical structure used to store relational tables. It is usually imple-
mented using one or more operating system files in the physical layer.

40 Data b a s e s Demystified

the use of an underscore to separate words per industry standards is a much
better choice. You may wish to set standards that forbid the use of names with
embedded spaces and names in mixed case because such names are nonstandard
and make any conversion between database vendors that much more difficult.

Columns and Data Types
As already mentioned, each column in a relational table represents an attribute
from the conceptual model. The column is the smallest named unit of data that
can be referenced in a relational database. Each column must be assigned a
unique name (within the table) and a data type. A data type is a category for the
format of a particular column. Data types provide several valuable benefits:

Restricting the data in the column to characters that make sense for the •	

data type (for example, all numeric digits or only valid calendar dates).

Providing a set of behaviors useful to the database user. For example, •	

if you subtract a number from another number, you get a number as a
result; but if you subtract a date from another date, you get a number
representing the elapsed days between the two dates as a result.

Assisting the RDBMS in efficiently storing the column data. For example, •	

numbers can often be stored in an internal numeric format that saves space,
compared with merely storing the numeric digits as a string of characters.

Figure 2-7 shows the table definition of the Northwind Orders table from
Microsoft Access (the same table listed in Figure 2-6). The data type for each
column is listed in the second column from the left. The data type names are
usually self-evident, but if you find any of them confusing, you can find defini-
tions of each in the Microsoft Access help pages.

NOTE  If you compare Figure 2-6 with Figure 2-7, you will notice that Figure 2-6
shows the employee name (Employee), customer name (Customer), and shipping
company name (Ship Via) instead of Employee ID, Customer ID, and Shipper ID,
as shown in Figure 2-7. This is not an error, but rather a feature of Microsoft
Access, as explained in the “Referential Constraints” section later in this chapter.

The column is the smallest named unit of data that can be referenced in a relational
database. Each column must be assigned a name and a data type.

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 41

It is most unfortunate that industry standards lagged behind RDBMS devel-
opment. Most vendors did their own thing for many years before sitting down
with other vendors to develop standards, and this is no more evident than in
the wide variation of data type options across the major RDBMS products.
Today there are ANSI standards for relational data types, and the major vendors
support all or most of the standard types. However, each vendor has their own
“extensions” to the standards, largely in support of data types they developed
before there were standards. One could say (in jest) that the greatest thing
about database standards is that there are so many from which to choose (each
vendor having their own). In terms of industry standards for relational data-
bases, Microsoft Access is probably the least compliant and MySQL the most
compliant of the most popular products. Given the many levels of standards

Figure 2-7 • Table definition of the Northwind Orders table (Microsoft Access)

42 Data b a s e s DemystifieD

compliance and all the vendor extensions, the DBA must have a detailed knowl-
edge of the data types available on the particular DBMS that is in use in order
to successfully deploy the database. And, of course, great care must be taken
when converting logical designs from one vendor to another.

Table 2-1 shows data types from different RDBMS vendors that are roughly
equivalent. As always, the devil is in the details, meaning that these are not
identical data types, merely equivalent. For example, the VARCHAR2 type in
Oracle can be up to 4,000 characters in length (2,000 characters in versions
prior to Oracle8i), but the equivalent MEMO type in Microsoft Access can be up
to 64,000 characters.

Constraints
A constraint is a rule placed on a database object (typically a table or column)
that restricts the allowable data values for that database object in some way.
Constraints are most important in relational databases because constraints are
the way we implement both the relationships and business rules specified in
the logical design. Each constraint is assigned a unique name to permit it to be
referenced in error messages and subsequent database commands. It is a good

TABLE 2-1 equivalent Data types in Major RDbMs Products

Data Type
Microsoft
Access

Microsoft SQL
Server Oracle MySQL

Fixed-length
character

TEXT CHAR CHAR CHAR

Variable-length
character

MEMO VARCHAR VARCHAR2 VARCHAR

Long text MEMO TEXT CLOB or LONG
(deprecated)

TEXT or MEDIUMTEXT
or LONGTEXT

Integer INTEGER
or LONG
INTEGER

INTEGER or
SMALLINT or
TINYINT

NUMBER INT or
BIGINT or MEDIUMINT
or SMALLINT or
TINYINT

Decimal NUMBER DECIMAL or
NUMERIC

NUMBER DECIMAL or NUMERIC

Currency CURRENCY MONEY or SMALL-
MONEY

None, use
NUMBER

None, use DECIMAL or
NUMERIC

Date/time DATE/TIME DATETIME or
SMALLDATETIME

DATE or
TIMESTAMP

DATE or DATETIME or
TIMESTAMP

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 43

habit for DBAs to supply the constraint names because names generated auto-
matically by the RDBMS are never very descriptive.

Primary Key Constraints
A primary key is a column or a set of columns that uniquely identifies each row
in a table. A unique identifier in the conceptual design is thus implemented as a
primary key in the logical design. The small icon that looks like a door key to the
left of the Order ID field name in Figure 2-7 indicates that this column has been
defined as the primary key of the Orders table. When we define a primary key,
the RDBMS implements it as a primary key constraint to guarantee that no two
rows in the table will ever have duplicate values in the primary key column(s).
Note that for primary keys composed of multiple columns, each column by itself
may have duplicate values in the table, but the combination of the values for the
primary key columns must be unique among all rows in the table.

Primary key constraints are nearly always implemented by the RDBMS using
an index, which is a special type of database object that permits fast searches of
column values. As new rows are inserted into the table, the RDBMS automati-
cally searches the index to make sure the value for the primary key of the new
row is not already in use in the table, rejecting the insert request if it is. Indexes
can be searched much faster than tables; therefore, the index on the primary
key is essential in tables of any size so that the search for duplicate keys on
every insert doesn’t create a performance bottleneck.

Referential Constraints
To understand how the RDBMS enforces relationships using referential con-
straints, we must first understand the concept of foreign keys. When one-to-
many relationships are implemented in tables, the column or set of columns
that is stored in the child table (the table on the “many” side of the relation-
ship), to associate it with the parent table (the table on the “one” side), is called
a foreign key. It gets its name from the column(s) copied from another (foreign)
table. In the Orders table definition shown earlier in Figure 2-7, the Employee
ID column is a foreign key to the Employees table, the Customer ID column is

A primary key is a column or a set of columns that uniquely identifies each row in
a table.

44 Data b a s e s Demystified

a foreign key to the Customers table, and the Shipper ID column is a foreign
key to the Shippers table.

In most relational databases, the foreign key must either be the primary key
of the parent table or a column or set of columns for which a unique index is
defined. This again is for efficiency. Most people prefer that the foreign key
column(s) have names identical to the corresponding primary key column(s),
but again there are counter opinions, especially because like-named columns
are a little more difficult to use in query languages. It is best to set some stan-
dards up front and stick with them throughout your database project.

Each relationship between entities in the conceptual design becomes a ref-
erential constraint in the logical design. A referential constraint (sometimes
called a referential integrity constraint) is a constraint that enforces a relationship
among tables in a relational database. By “enforces,” we mean that the RDBMS
automatically checks to ensure that each foreign key value in a child table
always has a corresponding primary key value in the parent table.

Microsoft Access provides a very nice feature for foreign key columns, but it
takes a bit of getting used to. When you define a referential constraint, you can
define an automatic lookup of the parent table rows, as was done throughout
the Northwind database. In Figure 2-7, the second column in the table is listed
as Employee ID. However, in Figure 2-6, you will notice that the second col-
umn of the Orders table displays the employee name and is labeled “Employee.”
If you click in the Employee column for one of the rows, a pull-down menu
appears to allow the selection of a valid employee (from the Employees table)
to be the parent (owner) of the selected Orders table row. Similarly, the Cus-
tomer column of the table displays the customer name, and the Ship Via col-
umn displays the shipping company name. This is a convenient and easy feature
for the database user, and it prevents a nonexistent customer, employee, or ship-
per from being associated with an order. However, it hides the foreign key in
such a way that Figure 2-6 isn’t very useful for illustrating how referential con-
straints work under the covers. Figure 2-8 lists the Orders table with the look-
ups removed so you can see the actual foreign key values in the Employee ID,
Customer ID, and Shipper ID columns.

A foreign key is the column or set of columns that is stored in a child table (the
table on the “many” side of the relationship), to associate it with its parent table
(the table on the “one” side of the relationship).

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 45

When we update the Orders table, as shown in Figure 2-8, the RDBMS must
enforce the referential constraints we have defined on the table. The beauty of
database constraints is that they are automatic and therefore cannot be circum-
vented unless the DBA disables or removes them. Here are the particular events
that the RDBMS must handle when enforcing referential constraints:

When we try to insert a new row into the child table, the insert request is •	

rejected if the corresponding parent table row does not exist. For example,
if we insert a row into the Orders table with an Employee ID value of
12345, the RDBMS must check the Employees table to see if a row for
Employee ID 12345 already exists. If it doesn’t exist, the insert request is
rejected.

When we try to update a foreign key value in the child table, the update •	

request is rejected if the new value for the foreign key does not already
exist in the parent table. For example, if we attempt to change the Em-
ployee ID for Order 30 from 9 to 12345, the RDBMS must again check
the Employees table to see if a row for Employee ID 12345 already exists.
If it doesn’t exist, the update request is rejected.

Figure 2-8 • Northwind Orders table (with foreign key values displayed)

46 Data b a s e s Demystified

When we try to delete a row from a parent table, and that parent row has •	

related rows in one or more child tables, either the child table rows must
be deleted along with the parent row, or the delete request must be re-
jected. Most RDBMSs provide the option of automatically deleting the
child rows, called a cascading delete. At first, you probably wondered why
anyone would ever want automatic deletion of child rows. Consider the
Orders and Order Details tables. If an order is to be deleted, why not
delete the order and the line items that belong to it in one easy step?
However, with the Employee table, we clearly would not want that op-
tion. If we attempt to delete Employee 9 from the Employee table (per-
haps because he or she is no longer an employee), the RDBMS must
check for rows assigned to Employee ID 9 in the Orders table and reject
the delete request if any are found. It would make no business sense to
have orders automatically deleted when an employee left the company.

In most relational databases, an SQL statement is used to define a referential
constraint. SQL is introduced in Chapter 4. SQL (Structured Query Language)
is the language used in relational databases to communicate with the database.
Many vendors also provide GUI (graphical user interface) panels for defining
database objects such as referential constraints. In Oracle and SQL Server, these
GUI panels are located within their respective Enterprise Manager tools. For
Microsoft Access, Figure 2-9 shows the Relationships panel that is used for
defining referential constraints.

For simplicity, only the Orders table and its immediate parent and child
tables are shown in Figure 2-9. The Customers, Shippers, and Employees tables
are considered parent tables because they are on the “one” side of the one-to-
many relationships with the Orders table. Conversely, the Order Details and
Invoices table are considered child tables because they are on the “many” side
to the one-to-many relationships with the Orders table. The referential con-
straints are shown as bold lines with the numeric symbol “1” near the parent
table (the “one” side) and the mathematical symbol for “infinity” near the child
table (the “many” side). These constraints are defined by simply dragging the
name of the primary key in the parent table to the name of the foreign key in
the child table. A pop-up window is then automatically displayed to allow the
definition of options for the referential constraint, as shown in Figure 2-10.

At the top of the Edit Relationships panel, the two table names appear
with the parent table on the left and the child table on the right. If you forget
which is which, the Relationship Type field, near the bottom of the panel,

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 47

should remind you. Under each table name,
are rows for selection of the column names
that constitute the primary key and the for-
eign key. Figure 2-10 shows the primary
key column as ID in the Customers table
and foreign key column as Customer ID in
the Orders table. The check boxes provide
some options:

Enforce Referential Integrity•	   If the
box is checked, the constraint is en-
forced; unchecking the box turns off
constraint enforcement.

Figure 2-9 • Microsoft Access Relationships panel

Figure 2-10 • Microsoft Access Edit Relationships
panel

48 Data b a s e s Demystified

Cascade Update Related Fields•	   If the box is checked, any update to the
primary key value in the parent table will cause automatic like updates to
the related foreign key values. An update of primary key values is a rare
situation.

Cascade Delete Related Records•	   If the box is checked, a delete of a par-
ent table row will cause the automatic cascading deletion of the related
child table rows. Think carefully here. There are times to use this, such as
the constraint between Orders and Order Details, and times when the
option can lead to the disastrous unwanted loss of data, such as deleting
an employee (perhaps accidentally) and having all the orders that
employee handled automatically deleted from the database.

Intersection Tables
The discussion of many-to-many relationships earlier in this chapter pointed
out that relational databases cannot implement these relationships directly and
that an intersection table is formed to establish them. Figure 2-11 shows the
implementation of the Order Details intersection table in Microsoft Access.

Figure 2-11 • Order Details intersection table (Microsoft Access)

Chapter 2 E x p l o r i N g r E l at i o N a l D ata b a s E C o m p o N E N t s 49

The many-to-many relationship between orders and products in the concep-
tual design becomes an intersection table (Order Details) in the logical design.
The relationship is then implemented as two one-to-many relationships with
the intersection table on the “many” side of each. The Order ID column is the
foreign key to the Orders table, and the Product ID column is the foreign key
to the Products table. The combination of Order ID and Product ID should be
unique, but the designer of this database chose to add a separate column, ID, as
the primary key of the Order Details table.

Integrity Constraints
As already mentioned, business rules from the conceptual design become con-
straints in the logical design. An integrity constraint is a constraint (as defined
earlier) that promotes the accuracy of the data in the database. The key benefit

still struggling
take a moment to examine the contents of the intersection table and the two
referential constraints. Understanding this arrangement is fundamental to un-
derstanding how relational databases work. Here are some points to consider:

each row in the Order Details intersection table belongs to the •	

intersection of one product and one order. it would not make
sense to put product Name in this table because that name is
the same every time the product appears on an order. also, it
would not make sense to put Customer iD in the order Details
table because all line items on the same order belong to the
same customer.

each Products table row may have many related Order •	

Details rows (one for each order line item on which the product
was ordered), but each order Details row belongs to one and only
one Products table row.

Each orders table row may have many related order Details rows (one for each
line item for that particular order), but each order Details row belongs to one
and only one Orders table row.

?

50 Data b a s e s Demystified

is that these constraints are invoked automatically by the RDBMS and cannot
be circumvented (unless you are a DBA) no matter how you connect to the
database. The major types of integrity constraints are NOT NULL constraints,
CHECK constraints, and constraints enforced with triggers.

NOT NULL Constraints
As we define columns in database tables, we have the option of specifying
whether null values are permitted for the column. A null value in a relational
database is a special code that can be placed in a column that indicates that the
value for that column in that row is unknown. A null value is not the same as
a blank, an empty string, or a zero—it is indeed a special code that has no other
meaning in the database.

A uniform way to treat null values is an ANSI standard for relational data-
bases. However, there has been much debate over the usefulness of the option
because the database cannot tell you why the value is unknown. If we leave the
value for Job Title null in the Northwind Employees table, for example, we
don’t know whether it is null because it is truly unknown (we know employees
must have a job title, but we do not know what it is), it doesn’t apply (perhaps
some employees do not get job titles), or it is unassigned (they will get a job
title eventually, but their manager hasn’t figured out which title to use just yet).
The other dilemma is that null values are not equal to anything, including other
null values, which introduces three-valued logic into database searches. With
nulls in use, a search can return the condition true (the column value matches),
false (the column value does not match), or unknown (the column value is null).
The developers who write the application programs have to handle null values
as a special case. You’ll see more about nulls when SQL is introduced.

In Microsoft Access, the NOT NULL constraint is controlled by the Required
option on the Table Tools | Design panel. Figure 2-12 shows the definition of
the Order Date column of the Orders table. Note that the column is not
required because the Required option is set to No. In SQL definitions of tables,
we simply include the keyword NULL or NOT NULL with the column
definition.

CHECK Constraints
A CHECK constraint uses a simple logic statement to validate a column value.
The outcome of the statement must be a logical true or false, with an outcome
of true allowing the column value to be placed in the table, and a value of false
causing the column value to be rejected with an appropriate error message.

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 51

In Figure 2-12, notice that >=Date() appears in the Validation Rule option for
the Order Date column. This rule prevents order dates from the past (dates
earlier than the current date) from being entered by making sure that the value
supplied for the column is greater than or equal to the current date. It is impor-
tant to understand that CHECK constraints are tested only when the row is
initially created or when the column’s data value is modified. If this were not
the case, a constraint like this one would cause error conditions anytime an old
row was retrieved from the database.

Although the syntax of the option will vary for other databases, the concept
remains the same. In Microsoft SQL Server SQL, it would be written this way:

CHECK (ORDER_DATE >= GETDATE())

Figure 2-12 • Orders table definition panel, Order Date column

52 Data b a s e s Demystified

Constraint Enforcement Using Triggers
Some constraints are too complicated to be enforced using the declarations. For
example, the business rule contained in Figure 2-1 (“Customers with overdue
amounts may not book new orders”) falls into this category because it involves
more than one table. If we choose to implement this constraint in the database,
as opposed to leaving it up to application logic, we need the database to prevent
new rows from being added to the Orders table if the Account Receivable row
for the customer has an overdue amount that is greater than zero. A trigger is a
module of programming logic that “fires” (executes) when a particular event in
the database takes place. In this example, we want the trigger to fire whenever
a new row is inserted into the Orders table. The trigger obtains the overdue
amount for the customer from the Account Receivable table (or wherever the
column is physically stored). If this amount is greater than zero, the trigger will
raise a database error that stops the insert request and causes an appropriate
error message to be displayed.

In Microsoft Access, triggers may be written as macros using the Microsoft
Visual Basic for Applications language. Some RDBMSs provide a special lan-
guage for writing program modules such as triggers: PL/SQL in Oracle, and
Transact SQL in Microsoft SQL Server and Sybase. In other RDBMSs, a gener-
al-purpose programming language may be used. For example, DB2 triggers may
be written in C, and Oracle triggers may be written in Java.

Views
A view is a stored database query that provides a database user with a custom-
ized subset of the data from one or more tables in the database. Said another
way, a view is a virtual table because it looks like a table and for the most part
behaves like a table, yet it stores no data (only the defining query is stored). The
user views form the external layer in the ANSI/SPARC model. During logical
design, each view is created using an appropriate method for the particular
database. In many RDBMSs, a view is defined using SQL. In Microsoft Access,
views are called queries and are created using the Query panel. Figure 2-13
shows the Microsoft Access definition of a simple view (query) that lists active
products.

The view defined in Figure 2-13 contains only four columns of a table that
contains more than ten columns. Rows for discontinued products are not dis-
played in the view by virtue of the “No” in the criteria row for the Discontinued
column. Furthermore, the Discontinued column will not appear in the query

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 53

results because the check box for the “Show:” line is unchecked. (If it were dis-
played, all the values would be “Yes”, so displaying it is pointless.) Figure 2-14
shows a portion of the query results. We explore the Microsoft Access Query
panel in detail in Chapter 3.

Views serve a number of useful functions:

Hiding columns that the user does not need to see (or should not be •	

allowed to see)

Hiding rows from tables that a user does not need to see (or should not •	

be allowed to see)

Hiding complex database operations such as table joins•	

Improving query performance (in some RDBMSs, such as Microsoft SQL •	

Server)

Figure 2-13 • Microsoft Access query, list of active products

54 Data b a s e s Demystified

Summary
In this chapter, you learned about conceptual database components such as
entities, attributes, relationships, and business rules. You also learned about
logical/physical database components, including tables, columns and data types,
constraints, and views. In Chapter 3, we’ll look at how to query the database
using a forms-based query tool.

Figure 2-14 • Microsoft Access query results, list of active products

Chapter 2 E x p l o r i n g Re l at i o n a l D ata b a s e C o m p o nen t s 55

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

An item in the external level of the ANSI/SPARC model becomes which type of 1.	
database object in the logical model?

TableA.	
ColumnB.	
ViewC.	
Referential constraintD.	
IndexE.	

A primary key constraint is implemented using which type of object in the 2.	
logical design?

TableA.	
ColumnB.	
ViewC.	
Referential constraintD.	
IndexE.	

On a relationship line, the cardinality of “zero, one, or more” is denoted as3.	
A circle and a vertical tick mark near the end of the lineA.	
A circle near the end of the line and a crow’s foot at the end of the lineB.	
A vertical tick mark near the end of the line and a crow’s foot at the line endC.	
Two vertical tick marks near the end of the lineD.	
The mathematical symbol for “infinity” above the end of the lineE.	

Valid types of relationships among entities are4.	
One-to-oneA.	
One-to-manyB.	
One-to-many-to-oneC.	
None-to-manyD.	
Many-to-manyE.	

Examples of a business rule are5.	
An employee must be at least 18 years old.A.	
Employees below pay grade 6 are not permitted to modify orders.B.	
Every order may belong to only one customer, but each customer may have C.	
many orders.
A referential constraint must refer to the primary key of the parent table.D.	
A database query that eliminates columns an employee should not see.E.	

56 Data b a s e s Demystified

A primary key constraint:6.	
Must be defined for every database tableA.	
Must reference one or more columns in a single tableB.	
Guarantees that no two rows in a table have duplicate primary key valuesC.	
Is usually implemented using an indexD.	
Enforces referential integrity constraintsE.	

Major types of integrity constraints are7.	
NOT NULL constraintsA.	
CHECK constraintsB.	
IndexesC.	
Constraints enforced with triggersD.	
One-to-one relationshipsE.	

A referential constraint is defined:8.	
Using a database triggerA.	
Using the Relationships panel in Microsoft AccessB.	
Using SQL in most relational databasesC.	
Using the referential data type for the foreign key column(s)D.	
In a viewE.	

A relational table:9.	
Appears in the conceptual database designA.	
Is composed of rows and columnsB.	
Is the primary unit of storage in the relational modelC.	
Must be assigned a data typeD.	
Must be assigned a unique nameE.	

A data type:10.	
May be selected based on business rules for an attributeA.	
Provides a set of behaviors for a column that assists the database userB.	
Restricts the data that may be stored in a viewC.	
Assists the DBMS in storing data efficientlyD.	
Restricts characters allowed in a database columnE.	

 57

c h a p t e r 3
Forms-Based
Database Queries

This chapter provides an overview of forming and running database queries using
the forms-based query tool in Microsoft Access. Even if you never intend to use
Microsoft Access or another forms-based database query product, at least give
this chapter a quick read because it will help you visualize database concepts.
Also keep in mind that Chapter 4 introduces SQL, the standard query language
for all modern relational databases.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the basics of forms-based queries.•
Be able to use Microsoft Access and the video store sample database to create •
and run queries.

58 data B a s e s DemystifieD

QBe: The roots of Forms-Based Queries
A forms-based query language uses a GUI panel for the creation of a query. The
database user defines queries by entering sample data values directly into a
query template to represent the result that the database is to achieve. An alter-
native query method uses a command-based query language, in which queries
are written as text commands. SQL is the ubiquitous command-based query
language for relational databases. The emphasis with both forms-based and
command-based query languages is on what the result should be rather than
how the results are achieved. The difference between the two is in the way the
user describes the desired result—similar to the difference between using Mi-
crosoft Windows Explorer to copy a file versus using the MS-DOS copy com-
mand (in the DOS command window) to do the same thing.

A command-based query language such as SQL requires queries to be entered by
the database user as text commands.

The first well-known forms-based query tool was Query By Example (QBE),
which was developed by IBM in the 1970s. Personal computers, Microsoft Win-
dows, the mouse, and many other modern computing amenities were unheard
of then, but the interface was still graphical in nature. A form was displayed,
and database users typed sample data and simple commands in boxes, where
today they would click an onscreen button using a mouse. SQL, also initially
developed by IBM, was new in the 1970s. IBM conducted a controlled study to
determine whether QBE or SQL was preferred by database users of the day.
IBM learned that most users preferred to use the method they learned first—
human nature, it seems.

TERMS: Forms-based Query Language
a forms-based query language uses a Gui panel on which database users define
queries by entering sample data values directly into a query template to repre-
sent the result that the database query is to achieve.

Experience has shown us that both methods are useful to know. Forms-based
queries lend themselves well to individuals who are more accustomed to GUI

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 59

environments than to touch-typing commands. However, database users familiar
with command syntax and possessing reasonable typing skills can enter command-
based queries more quickly than their GUI equivalents, and command-based
queries can be directly used within a programming language such as Java or C.

Getting Started in Microsoft Access
I am using Microsoft Access to present database query concepts that will pro-
vide a foundation for the database design theory that follows later in this book.
I will provide enough basic information about using Access so you can follow
along on your computer as you explore forms-based queries.

The queries used in this chapter all feature a video store sample database
available from the McGraw-Hill web site, as explained in Appendix C. You will
have the best learning experience if you try the queries presented in this chap-
ter as you read. If you don’t have Microsoft Access 2007 or 2010 available, you
can download a free 60-day trial of Microsoft Access from the Access product
page: http://office.microsoft.com/en-us/access. (As of this writing, Access 2010
is in beta testing and the beta version is available for download from http://
www.microsoft.com/office/2010, but it should be available on the Access prod-
uct page as soon as the beta test period is over.)

Getting Started with the Video Store Sample Database
This topic contains two sets of instructions: The first set is for using the sample
database using Microsoft Access 2007; the second is for using the sample data-
base using Microsoft Access 2010. Both versions of Access use the same format
database (MDB) file, which is the same format used in Access 2000. Follow the
steps in the procedure that applies to you.

Opening the Video Store Sample Database by Using Microsoft Access 2007
Follow this procedure if you have Microsoft Access 2007 installed.

If you have not already done so, follow the instructions in Appendix C for 1.	
downloading the sample database file.

Start Microsoft Access 2007 from your Start menu with no databases 2.	
open. The Getting Started panel, shown in Figure 3-1, is displayed.

Click the Office button in the upper-left corner of the Getting Started 3.	
panel (the round button with the Microsoft Office 2007 logo on it), and
then click Open.

http://office.microsoft.com/en-us/access
http://www.microsoft.com/office/2010
http://www.microsoft.com/office/2010

60 Data b a s e s Demystified

In the Open dialog box, navigate to where you stored the video store access 4.	
database (the video_store_Access_2000.mdb file) and double-click it.

The Microsoft Access 2007 main panel is displayed with the video store 5.	
database tables listed along the left margin, as shown in Figure 3-2. Note
the following:

You must respond to the Security Warning shown on Figure 3-2. Micro-•	

soft Access automatically disables application code such as Visual Basic
macros when a database is opened. The sample database does not con-
tain any such code, so you can also simply close the message by clicking
the Close button (the X) to the far right of the Security Warning mes-
sage. (Do not click the X at the upper-right corner of your screen; that
will close Microsoft Access, and you will have to start all over.) You will
need to repeat this step every time you open the database.

An alternate way to start Microsoft Access and the video store database •	

is to find the file using Windows Explorer (Start | Documents in Win-
dows Vista and Windows 7) and to double-click the filename. Windows
will then launch Microsoft Access and open the database file in one
continuous operation.

Figure 3-1 • Microsoft Access 2007 Getting Started panel

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 61

Opening the Video Store Sample Database by Using Microsoft Access 2010
Follow this procedure if you have Microsoft Access 2010 installed:

Start Microsoft Access from your Start menu with no databases open. The 1.	
File panel is displayed as shown in Figure 3-3.

Along the left margin, click Open.2.	

In the Open dialog box, navigate to where you stored the video store Access 3.	
database (the video_store_Access_2000.mdb file) and double-click it.

Once connected to the database, a screen like the one shown in Figure 3-4 4.	
will be displayed. Note the following:

The first time you open the sample database, you must respond to the •	

Security Warning like the one shown on Figure 3-4. Microsoft Access
2010 automatically disables content such as Visual Basic macros when
databases are opened for the first time. The sample database has no such
content, so it is safe to click the Enable Content button. A side benefit
of doing this is that you will not have to repeat this step if you close the
database and subsequently reopen it. Alternatively, you can click the

Figure 3-2 • Microsoft Access 2007 Main panel with video store database open

62 Data b a s e s Demystified

Figure 3-3 • Microsoft Access 2010 File panel

Figure 3-4 • Microsoft Access 2010 Main panel with video store database open

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 63

Close button (the X) to the far right of the Security Warning message.
(Do not click the X at the upper-right corner of your screen; that will
close Microsoft Access, and you will have to start all over.)

An alternate way to start Microsoft Access and the video store database •	

is to find the file using Windows Explorer (Start | Documents in Win-
dows Vista and Windows 7) and to double-click the filename. Windows
will then launch Microsoft Access and open the database file in one
continuous operation.

Exploring Microsoft Access
Throughout the remainder of this chapter, I use Microsoft Access 2010. How-
ever, Access 2007 is similar enough that you should have no difficulty following
along while using it. You will learn the most if you try the examples in this
chapter as you read. Appendix C contains an overview of the video store sam-
ple database, including an ERD (entity-relationship diagram). I have also in-
cluded a PDF file of the ERD so you can print it for easy reference as you work
the examples.

Should you need to close Microsoft Access before completing this chapter,
you can simply launch it later, and pick up where you left off. If you do so, you
will see a startup screen like the one shown in Figure 3-1 or 3-3, and the video
store database should be listed on it because you have previously opened it. For
Access 2007, look for the database under the Open Recent Database heading
on the right; for side of the panel Access 2010, look for it along the left side of
the panel, or click the Recent option to display the Recent Databases panel.
Simply click the listed filename to open the database. If the database is not
listed, you can download it by following the procedure in the previous topic.

Keep in mind that it is easy to update the database accidentally when using
Microsoft Access, and no simple “undo” function is available. However, if this
happens, you can just download the database again.

Once you have started Access and connected to the video store database, the
main panel is displayed with the Home ribbon selected, as shown in Figure 3-4.

NOTE  Like most PC-based database tools, Access provides not only a database,
but also a complete programming environment that supports the creation of
screens, reports, and application logic in the form of macros. The development of
applications using Access is well beyond the scope of this book. This chapter
focuses on those components that are directly related to defining data structures
and to managing the data stored in them.

64 Data b a s e s Demystified

The area along the top of the panel that contains all the options you can use
in Access is called the ribbon. This user interface was new with Office 2007
(Access is part of the Office suite of applications) and is a radical departure
from previous versions that used a series of drop-down menus. If you are accus-
tomed to using the old interface, it takes a while to adapt to this new one. On
the top line of the ribbon is the Quick Access Toolbar, which has options for
Save, Undo Typing, and Repeat Typing. A final option allows you to customize
the toolbar. The icons are reasonably intuitive, but you can allow your cursor
pointer to hover over each one for a second or two, and see the names of the
options. These options are common to most Microsoft Office applications.

Directly below the Quick Access Toolbar are tabs for the major groupings of
ribbon options available within Access. In previous versions, these were used to
open drop-down menus; in Access 2007 and beyond, they are tabs that change
the ribbon of options that appears immediately below the tabs. Figure 3-5
shows the Home ribbon, for example. Many of the Home ribbon options are
related to building application components within Access (forms, reports, and
so forth), which are beyond the scope of database work. However, you will use
the View option often, because it allows you to switch between the Design
View, which shows the metadata that defines a database object, and the
Datasheet View, which shows the data that is stored in the database object in
rows and columns.

The Create ribbon, shown in Figure 3-6, provides options for creating tem-
plates, tables, forms, reports, and other types of objects. We won’t be using
templates, forms, or reports because these are application programming func-
tions rather than database functions. As you can see, the Tables group of options
allows you to create relational tables using various tools. The Macros & Code
group at the right side of the ribbon contains options for queries. These options

Figure 3-5 • Access main panel, Home ribbon

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 65

let you create, run, and store database queries, which closely resemble what
most other DBMSs and the ISO/ANSI SQL standard call views.

Figure 3-7 shows the External Data ribbon, which contains options for
importing or linking data from external sources, exporting to external file for-
mats, including most of the other Office applications, collecting data from
e-mail, and linking to data lists on web pages. While you will find these options
very useful in practice, we won’t need them for this tour of features because
we are using a sample database that is already populated for us.

The Database Tools ribbon, shown in Figure 3-8, contains various tools that
assist in managing the database. The most important of these in terms of database
design is the Relationships option, which you will study in the next section. First,
though, we need to cover another important navigation feature in Access.

You might have noticed the Navigation Pane along the left side of the panels
we have examined thus far. This is an essential feature of Access because it
provides a common method of organizing, listing, and opening (accessing) the
objects stored in the database. If you need more real estate on your screen, you
can shutter the Navigation Pane (minimize it to the left) by clicking the double

Figure 3-6 • Access main panel, Create ribbon

Figure 3-7 • Access main panel, External Data ribbon

66 Data b a s e s Demystified

arrowhead that points to the left, as shown in Figure 3-4. Once minimized, as
shown in Figures 3-5 through 3-8, you can maximize it by again clicking the
double arrowhead (pointing to the right this time).

You can right-click the top of the pane to change the way it organizes the
listed objects. In the video store database, the default organization is Object
Type, with only tables displayed. To switch to an organization other than Object
Type, right-click the top of the pane, and click Category and then the organiza-
tion you desire. The choices include Tables And Related Views, Object Type,
Created Date, and Modified Date. However, you’ll find the Object Type orga-
nization the most useful for database work, and I use it throughout this chapter.
To show other object types, click the label “Tables,” and then click the object
type you wish to display. For the exercises in this chapter to make sense, you
should select either Tables or All Access Objects. You can expand any category
as needed to view the list of objects in that category, and of course, minimize
the categories that are not of current interest. Note that Access does not display
headings for categories that have no objects in them.

If you have used older versions of Access, the object types should be familiar
because they appeared on the main panel of those older versions. Briefly, the
supported object types can be defined as follows:

Tables•	  Relational tables. These hold the actual database data in rows and
columns.

Queries•	  Stored database queries. These are called views in nearly all
other relational databases.

Forms•	  GUI forms for data entry and/or display within Microsoft Access.

Reports•	  Reports based on database queries.

Figure 3-8 • Access main panel, Database Tools ribbon

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 67

Macros•	   Sets of actions that each perform a particular operation, such as
opening a form or printing a report.

Modules•	   Collections of Visual Basic for Applications (VBA) program-
ming language components that are stored as a unit.

As noted earlier, Microsoft Access is not only a database, but also a complete
development environment for building and running applications. The enter-
prise-class database products that usually run on larger, shared computer sys-
tems called servers typically do not come with application-development
environments. Learning to build application programs is well outside the scope
of this book, so we will not deal with the Forms, Reports, Macros, and Modules
types at all. We will focus only on the Tables and Queries types in Microsoft
Access.

Maintenance of the objects in the database can be performed from this panel,
including the following tasks:

To add a new object, use the Create ribbon and click the appropriate icon. •	

For example, you can create a new table by clicking the Table or Table
Design icon on the Create ribbon.

To delete an existing object, right-click its name in the Navigation Pane •	

and choose the Delete option.

To open an object, double-click its name in the Navigation Pane.•	

To display the definition (design) of an object, right-click its name in the •	

Navigation Pane, and choose the Design View option.

The Microsoft Access Relationships Panel
Microsoft Access provides the Relationships panel, shown in Figure 3-9, for the
definition and maintenance of referential constraints between the relational
tables. To display this panel, click the Relationships option on the Database
Tools ribbon.

NOTE  If you are following along with your own copy of the video store database,
you will see that Figure 3-9 shows only part of the Relationships panel for the
database.

68 Data b a s e s Demystified

The Relationships panel graphically displays tables, shown as rectangles, and
one-to-many relationships, shown as lines between the rectangles. Technically,
these are referential constraints (relationships being only a conceptual term),
but because Microsoft calls them relationships on this panel, I will also use this
term for consistency. The number 1 shows the “one” side of each relationship,
whereas the infinity symbol (similar to the number 8 on its side) shows the
“many” side of each relationship.

The relationships can be maintained as follows:

To•	 add tables that are not displayed, click the Show Table icon (the table
with a bold yellow plus sign) on the ribbon, and select the tables from the
pop-up window.

To•	 remove a table from the display, click to select it, and then press delete
(on your keyboard). Note that this does not delete the table or any rela-
tionships in which the table participates; it merely removes the table from
the panel.

To add a relationship,•	 drag the primary key in one table to the matching
foreign key in another. For recursive relationships, the table must be added
to the display a second time, and the relationship must be created between

Figure 3-9 • The Microsoft Access Relationships panel

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 69

one displayed copy of the table and the other. This looks odd at first, but
it serves to facilitate the drag-and-drop method of creating the relation-
ship. A table shown multiple times on the panel still exists only one time
in the database. The video store database contains a recursive relationship
defined on the EMPLOYEE table, but it is not shown in Figure 3-9. We’ll
have a closer look at this relationship later in the chapter.

To delete a relationship,•	 click the narrow part (the middle section) of its
line and press delete. Selecting relationships can be tricky in Microsoft
Access because clicking only the narrow part of the line will work, and
you might have to stretch short lines by moving a table on the panel to
expose the narrow part of the line.

To edit a relationship,•	 double-click the narrow part of its line. A pop-up
window can be used to change various options about the relationship,
including toggling enforcement of the relationship as a referential con-
straint on and off (that is, enabling and disabling the constraint).

still struggling
Constraints can be a little confusing because they can be defined in the data-
base and then toggled on (enabled) or off (disabled). When a referential con-
straint is disabled, the dBms will allow inserts, updates, and deletes to create
“orphan” foreign key values (foreign key values that have no matching primary
key values in the parent table). the dBms will not, however, permit a constraint
to be enabled if orphan foreign key values exist in the child table.

?

To close the Relationships panel, you can either click the Close button (X)
at the upper-right corner of the panel or right-click the Relationships tab and
choose Close.

The Microsoft Access Table Design View
A table can be selected by double-clicking its name on the Navigation Pane. The
default display, called the Datasheet View, is shown in Figure 3-10. (I shuttered
the Navigation Pane so you can see more of the table data.) The data in the
table is displayed in the familiar tabular form, and the data can be updated if

70 Data b a s e s Demystified

desired, including the insertion and deletion of rows. Be careful because there
is no undo feature—once you move the cursor from one row to another, any
changes you have made cannot be easily reversed.

You can get to the Design View, which shows the definition of the table, in
several ways. You can right-click the tab with the name of the table and choose
Design View. Or you can select the Home ribbon (if not already selected), click
the View icon, and choose the Design View option. Or you can right-click the
table name in the Navigation Pane and select the Design View option. Finally,
there is a Design View icon on the status bar near the bottom right of the panel.
Figure 3-11 shows the Design View for the MOVIE table.

The Design View for a table displays information such as the following:

Field Name•	   The name of the column.

Data Type•	   The data type for the column.

Description•	   A description of the column, typically provided by a DBA.

Field Size•	   A subtype within the data type. For example, Integer and
Long Integer apply to the more general Number data type.

Required•	   Indicates whether the column is optional (that is, whether it
may have null values).

Figure 3-10 • Datasheet View (MOVIE table)

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 71

Indexed•	 Indicates whether the column has an index.

Primary Key•	 Denoted with a small key icon next to the field name (or
names) that make up the primary key.

Hopefully, you recognized that everything on this panel is metadata. Many
more options are available but not noted here, and Microsoft Access is very
clever about hiding and exposing options so that only the applicable ones are
displayed. Notice that help text automatically displays in the blue area in the
lower-right corner of the panel as you move the cursor from one option to
another.

TERMS: Metadata
metadata is a word adapted from Greek that literally means “data about data.”
the term applies to the information that describes the structure and contents of
a database, but not to the actual business data stored in the database.

FiGure 3-11 • Design View (MOVIE table)

72 Data b a s e s Demystified

Creating Queries in Microsoft Access
As mentioned, Microsoft Access queries closely resemble what most DBMSs call
views, because a view is defined in the SQL standard as a stored database query.
A key similarity is that Access queries, like views, do not store any data; instead,
the data is stored in the underlying tables. However, Access queries have some
capabilities not found in views, such as the ability to tailor a query to perform
inserts to or updates of data rows in the database. On the Navigation Pane,
expanding the Queries category
lists all the queries stored in this
database. However, recall that the
video store database as down-
loaded from the web site has no
queries to display.

Although Microsoft Access
offers several ways to create a new
query, the Query Design option is
the easiest for beginners to under-
stand. When you click the Query
Design icon (in the Macros & Code
area of the Create ribbon), Access
displays the Show Table dialog box,
as shown in Figure 3-12.

For every new query, Access opens the Show Table dialog box to allow you
to select the tables and/or queries on which the query will be based (that is, the
tables or queries that are to be the source of the data that will be displayed).
As tables and queries are added, they appear on the Query Design panel, which
allows for the entry of the specification for the desired query. Figure 3-13 shows
the Query Design panel with the MOVIE table added.

The Query Design panel has the following components:

In the open area at the top of the panel (light blue background), a graph-•	

ical representation of the query’s source tables, queries, and their relation-
ships for the query is shown. Any relationships defined for the tables are
automatically inherited here.

In the grid area in the lower part of the panel, each column represents a •	

column of data that is to be returned in the result set when the query is
executed. Lines (rows) in the grid area define various options to be applied

Figure 3-12 • Show Table dialog box

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 73

to the corresponding columns. Usage examples are provided in the sections
that follow. The basic options available are

Field•	   The specification for the source of the column. This is normally
a table or query column name, but it can also be a constant or an expres-
sion similar to calculations used in spreadsheets.

Table•	   The source table or query name for the column.

Sort•	   The specification for any sort sequencing for the column (As-
cending, Descending, or None).

Show•	   A check box that controls display of the column. If the box is
not checked, the column can be used in forming the query, but does not
appear in the query results.

Criteria•	   The specification that determines which rows of data are to
appear in the query results. All conditions placed on the same line must
be met for a row of data to be displayed in the query results. Conditions
placed on subsequent lines (labeled “Or:” on the panel) are alternative
sets of conditions that will also cause a matching data row to be dis-
played in the results. Use of these will likely not make sense until you
see the examples that follow, but in short, conditions placed on one line
are connected with a logical AND operator, and each new line of criteria
is connected with all the other lines by using a logical OR operator. Said
another way, any row that matches the specifications that appear on any
one of the criteria lines will be displayed in the query results.

Figure 3-13 • Query Design panel (with MOVIE table added)

74 Data b a s e s Demystified

The Criteria entry is the most complicated and thus requires a bit more
explanation. Conditions are usually written using a comparison operator and
one or more data values. However, the equal to (=) operator may be omitted.
For example, if you want to select only rows in which a column value is equal
to 0, you can enter =0 or just 0. Character values are enclosed in either single
or double quotes, but if you leave them out, Access will assume they are there
based on the data type of the column. For example, if you want to select only
rows containing a column value of M, you can enter the condition in any of the
following ways: M, ‘M’, “M”, =M, =‘M’, or =“M”. When you enter dates, you
might notice that Access delimits date values using the pound sign (#), but you
need not worry about doing so yourself. As you might guess, you can use other
comparison operations in addition to equal to (=). The following table shows
all the supported comparison operators:

Operator Description Values
= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal

to
<> Not equal to

Once the specification is complete, clicking the Run icon (the exclamation
point in the Results group of the Design ribbon) runs the query and displays
the results using the Datasheet View like the one shown in Figure 3-10. To go
back to the Query Design panel, simply click the View icon (the ruler, pencil,
and triangle icon in the Views group of the Home ribbon). For most queries,
data updates can be entered directly in the Datasheet View table, and they are
applied directly to the source tables for the query. If a column in the query
results cannot be mapped to a single table column—perhaps because it was
calculated in some way—then it cannot be updated in the query results.

If all this seems confusing, that’s because the best way to learn how to create
queries in Microsoft Access is by trying them for yourself. Therefore, the remain-
der of this chapter will use a series of examples to demonstrate the powerful
features of the Microsoft Access Queries tool. To reduce the amount of work

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 75

required to complete each one, these examples build on one another. Each exam-
ple offers a description of the result desired and the steps required to create the
specification for the query on the Query Design panel, along with a figure con-
taining a screen shot showing the completed Query Design panel, and another
figure showing the results when the query is executed.

Example 3-1: List All Movies
In this example, you will simply list the entire MOVIE table (all rows and all
columns). Follow these steps:

On the Create ribbon, click Query Design.1.	

Perform the following actions in the Show Table dialog box:2.	

Click MOVIE to select the MOVIE table.•	

Click the Add button.•	

Click the Close button.•	

On the Query Design panel, double-click the asterisk in the MOVIE table 3.	
template (near the top of the panel).

Click the Run icon on the ribbon (the exclamation point) to run your 4.	
query. The completed panel is shown in Figure 3-14 with the query results
shown in Figure 3-15.

Figure 3-14 • Example 3-1 (List All Movies), query design

76 Data b a s e s Demystified

To get ready for the next exercise, do the following:5.	

Return to the Query Design panel by clicking the View icon (the tri-•	

angle, ruler, and pencil) just below the File tab.

On the Query Design panel (Figure 3-14), clear the existing query spec-•	

ification by clicking the slim gray strip just above the field name
MOVIE.* (which changes the entire column to a black background).
Then press delete to remove the column.

Example 3-2: Choose Columns to Display
Instead of displaying all columns, here you’ll specify only the ones that you
want to see. You will list the MOVIE_GENRE_CODE, MPAA_RATING_
CODE, and MOVIE_TITLE columns for all movies (all rows in the MOVIE
table). Follow these steps:

You should already have the Query Design panel open with the MOVIE 1.	
table added to the query.

For each desired column (MOVIE_GENRE_CODE, MPAA_RATING_2.	
CODE, and MOVIE_TITLE), double-click the column name in the table
shown at the top of the form. An alternative method is to drag-and-drop
the column name from the table shown at the top of the form to the grid
in the lower part of the form.

Figure 3-15 • Example 3-1 (List All Movies), query results

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 77

Click the Run icon on the ribbon to run your query. The completed panel 3.	
is shown in Figure 3-16 with the query results shown in Figure 3-17.

To get ready for the next exercise, return to the Query Design panel 4.	
by clicking the View icon (the triangle, ruler, and pencil) just below the
File tab.

Figure 3-16 • Example 3-2 (Choose Columns to Display), query design

Figure 3-17 • Example 3-2 (Choose Columns to Display), query results

78 Data b a s e s Demystified

Example 3-3: Sorting Results
In any RDBMS, rows are returned in no particular order unless you request
otherwise. Microsoft Access uses the Sort specification to determine the order
in which rows are returned in query results. You will modify Example 3-2 so
that rows are sorted in ascending order by MOVIE_GENRE_CODE, MPAA_
RATING_CODE, and MOVIE_TITLE. Follow these steps:

You should already have the Query Design panel open with the query you 1.	
created in Example 3-2 displayed.

On the Sort line in the MOVIE_GENRE_CODE column, click in the blank 2.	
space and select Ascending from the pull-down list (see Figure 3-18).

Do the same for the MPAA_RATING_CODE column. A simple alterna-3.	
tive method is to type A (for ascending) in the Sort specification and press
enter.

Do the same for the MOVIE_TITLE column.4.	

Click the Run icon on the ribbon to run your query. The completed panel 5.	
is shown in Figure 3-18 with the query results shown in Figure 3-19.

To get ready for the next exercise, return to the Query Design panel 6.	
by clicking the View icon (the triangle, ruler, and pencil) just below the
File tab.

Figure 3-18 • Example 3-3 (Sorting Results), query design

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 79

Example 3-4: Advanced Sorting
Looking at the results of Example 3-3, suppose we have a requirement to pro-
duce the same result set, but sorted by MPAA_RATING_CODE first, then by
MOVIE_GENRE_CODE, and finally by MOVIE_TITLE. Another way to say
this is sorting by MOVIE_TITLE within MOVIE_GENRE_CODE within
MPAA_RATING_CODE. However, Access works from left to right when han-
dling sort requests, so how can we accomplish our goal? We can place the
MOVIE_GENRE_CODE and MOVIE_TITLE columns in the query a second
time, use the second copies for sorting, but omit them from the query results
by clearing the Show check box.

In this example, you modify Example 3-3 so that rows are sorted as dis-
cussed. Follow these steps:

You should already have the Query Design panel open with the query you 1.	
created in Example 3-3 displayed.

Remove the Sort specifications on the existing MOVIE_GENRE_CODE 2.	
column by doing the following:

Click in the Sort line of the query specification for the column.•	

Click the downward-facing arrow to display the pull-down menu.•	

Select the (Not Sorted) option from the list.•	

Do the same for the MOVIE_TITLE column.3.	

Figure 3-19 • Example 3-3 (Sorting Results), query results

80 Data b a s e s Demystified

Add the MOVIE_GENRE_CODE column to the query specification a 4.	
second time by double-clicking its name in the MOVIE table.

Do the same for the MOVIE_TITLE column.5.	

Add the ascending sort specification to the MOVIE_GENRE_CODE and 6.	
MOVIE_TITLE columns that you just added (the rightmost columns in the
query specification column).

Remove the check mark in the Show line for the MOVIE_GENRE_CODE 7.	
and MOVIE_TITLE columns that you just added. This will prevent the
data in them from displaying a second time in your query results.

Since this exercise is a bit complicated, I suggest you compare your Query 8.	
Design panel with the one shown in Figure 3-20 to make sure you did
everything correctly.

Click the Run icon on the ribbon to run your query. The completed panel 9.	
is shown in Figure 3-20 with the query results shown in Figure 3-21. Note
that most languages are read from left to right, so we naturally expect tabu-
lar listings to be sorted moving from left to right, starting with the leftmost
column. It is unusual, and perhaps poor human engineering, to sort columns
another way. But should you ever need to do so, you now know how.

To get ready for the next exercise, do the following:10.	

Return to the Query Design panel by clicking the View icon (the tri-•	

angle, ruler, and pencil) just below the File tab.

Figure 3-20 • Example 3-4 (Advanced Sorting), query design

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 81

To simplify the upcoming examples, put the query specification back to •	

the way it was at the end of Example 3-3.

Remove the additional MOVIE_GENRE_CODE and MOVIE_TITLE •	

columns you added to the sort specification by clicking the slim gray
strip above the field name (which changes the entire column to a black
background) and pressing delete to remove the column.

Add the Ascending sort specification to the remaining MOVIE_GENRE_•	

CODE and MOVIE_TITLE columns by clicking in the Sort line for
each, typing the letter A, and pressing enter. This should add “Ascend-
ing” to each column.

Example 3-5: Choosing Rows to Display
Thus far you have been displaying all 20 rows in the MOVIE table in every
query. However, displaying rows you do not need to see can be confusing and
can waste system resources, especially if you are sorting them. Suppose you
want to see rows only for movies where the movie genre is ActAd (Action-
Adventure) and the rating is PG-13. You can add conditions using the Criteria
line on the Query Design panel to filter the rows so that only those you want
are included. Keep in mind that for a row to be displayed in the results, all the
conditions on at least one of the Criteria lines need to evaluate to True.

Figure 3-21 • Example 3-4 (Advanced Sorting), query results

82 Data b a s e s Demystified

In this exercise, you modify the query specification from Example 3-3 to
filter the results to include only Action-Adventure movies rated PG-13. Follow
these steps:

You should be starting with a query specification matching the one shown 1.	
in Figure 3-18.

On the Criteria line, enter 2.	 =“ActAD” in the MOVIE_GENRE_CODE
column.

On the same Criteria line, enter 3.	 =“PG-13” in the MPAA_RATING_CODE
column.

Click the Run icon on the ribbon to run your query. The completed panel 4.	
is shown in Figure 3-22 with the query results shown in Figure 3-23.

To get ready for the next exercise, simply return to the Query Design 5.	
panel by clicking the View icon just below the File tab.

Note  Microsoft Access pays no attention to case when selecting data in queries.
For example, in the preceding query, you could have used any of the following
criteria in the MOVIE_GENRE_CODE column and achieved the same results:
=”ACTAD”, =”actad”, =”AcTaD”. Note that character constants used in an RDBMS
are normally enclosed in quotation marks. However, Microsoft Access knows
which columns have a character data type, and it will add the quotes automati-
cally should you leave them out.

Figure 3-22 • Example 3-5 (Choosing Rows to Display), query design

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 83

Example 3-6: Compound Row Selection
Suppose you now want to select all movies rated PG in addition to the PG-13
action-adventure movies selected in the previous example. You must add the
new criteria on a different line of the Query Design panel.

In this example, you modify Example 3-5 to include the additional movies.
Follow these steps:

You should be starting with the query specification from Example 3-5, as 1.	
shown in Figure 3-22.

On the Or line, enter 2.	 PG in the MPAA_RATING_CODE column. (If you
leave out the comparison operator, Access will assume the equal to [=]
operator.) Note that for a row to appear in the query results, it must have
a value of either PG-13 or PG in the MPAA_RATING_CODE column,
and if the rating is PG-13, it must also have a value of ActAd in the
MOVIE_GENRE_CODE column. Criteria on the same line are connected
with a logical AND, while the criteria lines themselves are connected with
a logical OR.

Click the Run icon on the ribbon to run your query. The completed panel 3.	
is shown in Figure 3-24 with the query results shown in Figure 3-25.

To get ready for the next exercise, simply return to the Query Design 4.	
panel by clicking the View icon just below the File tab.

Figure 3-23 • Example 3-5 (Choosing Rows to Display), query results

84 Data b a s e s Demystified

Figure 3-24 • Example 3-6 (Compound Row Selection), query design

Figure 3-25 • Example 3-6 (Compound Row Selection), query results

Example 3-7: Using Not Equal To
Thus far we have looked at search criteria that assumes the equal to (=) com-
parison operator. However, several other comparison operators can be used, as
shown earlier in this chapter. Suppose, for example, you want to list all the
movies that are neither action-adventure (ActAd) nor comedy (Comdy). The
easiest way to do this is to use the not equal to (<>) operator.

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 85

As queries become more complex, you’ll often find that you can write the
same query specification multiple ways, and that is the case here. One way is
to type <>ActAd AND <>Comdy in a single MOVIE_GENRE_CODE col-
umn. Another way is to add the MOVIE_GENRE_CODE column to the query
a second time, unchecking the Show box like you did in Example 3-4, and typ-
ing <>ActAd in one of the MOVIE_GENRE_CODE columns and <>Comdy
on the same Criteria line in the other MOVIE_GENRE_CODE column.

In this exercise, you will modify the query from Example 3-6 to find all the
movies which are neither action-adventure (ActAd) nor comedy (Comdy).
Follow these steps:

You should be starting with a query specification matching the one shown 1.	
in Figure 3-24.

Clear all the existing conditions on the Criteria lines by selecting each one 2.	
(dragging your cursor over them while holding down the left button on
your mouse or other pointing device) and then pressing delete.

On one of the Criteria lines in the MOVIE_GENRE_CODE column, 3.	
enter this condition: <>ActAd AND <>Comdy. Note that Access may
reformat it somewhat if you select something else on the Query Design
panel, but the result will still be logically the same.

Click the Run icon on the ribbon to run your query. The completed panel 4.	
is shown in Figure 3-26 with the query results shown in Figure 3-27.

Figure 3-26 • Example 3-7 (Using Not Equal To), query design

86 data B a s e s DemystifieD

To get ready for the next exercise, do the following:5.

Return to the Query Design panel by clicking the View icon just below •	

the File tab.

Click the MOVIE table at the top of the Query Design panel (the rect-•	

angle that shows the table name along with a listing of some of the
column names) and then press delete. This will clear out the form so it
contains no tables, columns, or criteria.

still struggling
When you’re first starting out writing database queries, it might seem odd to use
the AND logical operator here, but if you used OR instead, you’d end up select-
ing every row in the MOVIE table (except those with a NULL value in the MOVIE_
GENRE_CODE column). Here’s why. If the criteria were <>ActAd OR <>Comdy,
then all the action-adventure (actad) rows would be selected because actad is
not equal to Comdy (the condition on the right side of the or would evaluate
to true), all the comedy (Comdy) rows would be selected because Comdy is not
equal to actad (the condition on the left side of the or would evaluate to true),
and all other rows with a non-null MOVIE_GENRE_CODE value would be selected
because the conditions on both sides of the or would evaluate to true.

?

FiGure 3-27 • Example 3-7 (Using Not Equal To), query results

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 87

Example 3-8: Joining Tables
In this exercise, you want to display two columns from the MOVIE table along
with one column from the MOVIE_GENRE table, displaying the MOVIE_
GENRE_DESCRIPTION with each movie instead of the MOVIE_GENRE_
CODE that was displayed in the preceding examples. In relational databases,
combining data from more than one table is called joining. Because the relation-
ship between movie genres and movies is one-to-many, whenever a movie genre
has multiple movies, the same information about the movie genre will be re-
peated in the query results for each row returned.

TERMS: Join
a join is a relational database operation that combines data from multiple tables
by placing columns from each table side by side in the query results. usually the
primary key in one table and the foreign key in the other table are used to match
up the rows of data. Joins are the fundamental building blocks for relational da-
tabase queries.

Understanding joins is essential to understanding relational databases. Just as
one-to-many relationships (implemented in the database as referential con-
straints) are the fundamental building blocks for relational databases, joins are the
fundamental building blocks for relational database queries. Follow these steps:

You should be starting with an empty Query Design panel (no tables, 1.
columns, criteria, and so on, are displayed). If this is not the case, select
(click) each table shown and press delete to remove it from the query.

Click the Show Table icon (with the yellow plus sign) to display the Show 2.
Table dialog box, like the one shown in Figure 3-12.

Select the name of the MOVIE table, and then click Add to add it to the 3.
query.

Do the same for the MOVIE_GENRE table, and then close the Add Table 4.
dialog box. Notice the line connecting the two tables on the Query Design
panel. This tells you that Access already knows how to match up rows in
these two tables (foreign key MOVIE_GENRE_CODE in the MOVIE
table matched to primary key MOVIE_GENRE_CODE in the MOVIE_
GENRE table) based on the metadata supplied by the database designer
on the Relationships panel.

88 data B a s e s DemystifieD

TERMS: Cartesian Product
a join that matches each row in one table with every row in the other table is
called a Cartesian product, named after French mathematician rené descartes.
Cartesian products are seldom the desired result and they can be avoided by
carefully specifying the join conditions (also called predicates) that the dBms uses
to match rows between the tables being joined.

still struggling
avoiding Cartesian products can be challenging at first. microsoft access has a nice
feature where a query inherits the relationship between the two tables from the
one specified on the relationships panel at a much earlier time. if the join condition
were not included, you would get a Cartesian product as a result (every row in one
table combined with every row in the other—the product of multiplying the two
tables together) unless you add the condition by dragging your pointer from the
foreign key column to the primary key column (the method in access for manually
adding a join condition). You clearly do not want your query results to look like
every movie is assigned to every single genre (for example), so Microsoft Access
helps you do the right thing by automatically inheriting the join condition.

?

In the MOVIE table, double-click the MOVIE_ID and MOVIE_TITLE 5.
columns to add them to the query specification.

In the MOVIE_GENRE table, double-click MOVIE_GENRE_DESCRIP-6.
TION to add this column to the query specification. Notice that you don’t
have to select the MOVIE_GENRE_CODE column even though the join
criteria will use it to find the matching row in the MOVIE_GENRE table.

Click the Run icon on the ribbon to run your query. The completed panel is 7.
shown in Figure 3-28 with the query results shown in Figure 3-29. Note the
record count at the bottom of the query results. All 20 movies are displayed.
However, if you scroll through the results, you will see that only 5 genre
descriptions are displayed even though there are 16 rows in the MOVIE_
GENRE description. When a genre is assigned to multiple movies, the genre

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 89

description is repeated for each of those movies. However, if a genre is not
used by any movies, it will not appear in the results because, by default, this
query uses an inner join—where only matched rows are displayed. You’ll try
an outer join, where unmatched rows are included, in Example 3-10.

To get ready for the next exercise, simply return to the Query Design 8.	
panel by clicking the View icon just below the File tab.

Figure 3-28 • Example 3-8 (Joining Tables), query design

Figure 3-29 • Example 3-8 (Joining Tables), query results

90 Data b a s e s Demystified

Example 3-9: Limiting Join Results
In Example 3-8, you joined the MOVIE and MOVIE_GENRE tables, but the
results contain all movies and all genres that are assigned to at least one movie. If
you don’t want to see all the movies, you can use conditions to limit the rows in
the query results, just as you did in earlier exercises. In this example, you will limit
the rows to include only movies with a retail DVD price that is less than $20.00.
(Be aware that currency symbols cannot be entered into query conditions – cur-
rency values must be entered as ordinary numbers.) As in Example 3-8, you will
use an inner join, meaning that the results will only include genre descriptions
that are assigned to one or more of the selected movies. Follow these steps:

You should be starting with the query specification from Example 3-8, as 1.	
shown in Figure 3-28.

In the MOVIE table, double-click the RETAIL_PRICE_DVD column to 2.	
add it to the query results.

On the Criteria line, enter 3.	 <20 in the RETAIL_PRICE_DVD column.
Note that RETAIL_PRICE_DVD is a numeric column, so literals like 20
in the selection criteria are not enclosed in quotes.

Click the Run icon on the ribbon to run your query. The completed panel 4.	
is shown in Figure 3-30 with the query results shown in Figure 3-31.

To get ready for the next exercise, return to the Query Design panel by 5.	
clicking the View icon just below the File tab.

Figure 3-30 • Example 3-9 (Limiting Join Results), query design

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 91

Example 3-10: Outer Joins
As described in Example 3-9, the join technique you have used thus far is the
inner join. As mentioned, some genres have no movies assigned to them, and
thus data for those genres did not appear in the Example 3-9 results. If you
want to include all genres in the results, regardless of whether they have movies
assigned to them, you must use an outer join (also called an inclusive join). An
outer join returns all rows from one (or both) of the tables, regardless of whether
matching rows are found in the joined tables. Any data to be displayed from the
table where no matching row is found is set to NULL in the query results. (For
Microsoft Access, NULL columns appear blank, but if you click the column data,
you will see that the column contains no characters of data.) For example, for
the genre that has no matching movies, all the columns from the MOVIE table
would be NULL in the results. Keep in mind that the returned data rows are still
filtered by other search criteria (in this case, only movies with a DVD price
under 20), but whether the filtering occurs before, during, or after the join
operation is immaterial, so long as the unwanted rows are eliminated from the
query results. Remember, you only describe the result you want, not how it is
achieved.

Figure 3-31 • Example 3-9 (Limiting Join Results), query results

92 data B a s e s DemystifieD

TERMS: inner Join
An inner join returns only rows that are matched in both tables. For example, if
you join MOVIE and MOVIE_GENRE tables using an inner join, the only rows in-
cluded in the results are those where a row in the MOVIE table has a matching
row in the MOVIE_GENRE table. Movies with no matching genres and genres with
no matching movies are excluded from the results.

TERMS: Outer Join
an outer join returns all rows from one (or both) of the tables, regardless of
whether matching rows are found in the joined tables. unmatched rows can be
included from either the first table named in the join (a left outer join), the sec-
ond table named in the join (a right outer join) or both tables (a full outer join).

Three types of outer joins can be used, and unfortunately, the industry has
settled on potentially confusing names for them:

Left Outer Join•	 An outer join for which all rows are returned from the
left-hand table in the join, and data from any matching rows found in the
right-hand table is also returned.

Right Outer Join•	 An outer join for which all the rows are returned from
the right-hand table in the join, and data from any matching rows found
in the left-hand table is also returned.

Full Outer Join•	 An outer join
for which all rows are returned
from both tables, regardless of
whether matching data is found
between them. Microsoft Ac-
cess does not currently support
this type of join.

Figure 3-32 shows the Join Prop-
erties dialog box that is used in
Access to specify the desired type of
join.

FiGure 3-32 •Join Properties dialog box

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 93

In this example, you will change the query from Example 3-9 into an outer
join so that all MOVIE_GENRE table rows are displayed, regardless of whether
there are any matching movies in the query results. Follow these steps:

You should be starting with the query specification from Example 3-9, as 1.
shown in Figure 3-30.

To access the Join Properties dialog box (shown in Figure 3-32), double-2.
click somewhere in the middle of the line between the two tables dis-
played on the Query Design panel, or as an alternative, right-click the line.
As with the Relationships panel, it can be tricky to get the cursor pointer
in exactly the right place on the line, but practice and a bit of patience
always prevail.

In the Join Properties dialog box, select the option “Include ALL records 3.
from ‘MOVIE_GENRE’ and only those records from ‘MOVIE’ where the
joined fields are equal.” It is most likely option 2, but if you added the
tables to the query in the reverse order, it could have ended up as option
3. Click OK to close the dialog box.

Since you have a condition on the RETAIL_PRICE_DVD column from 4.
the MOVIE table, you need to change it to allow for null values. For genres
that have no matching movies, the value in the RETAIL_PRICE_DVD
column will be null, and therefore the criteria on the column (<20) will
filter those rows out of the results unless you change it to allow for null
values. Add the condition OR IS NULL (which can also be written as Or
Is Null) to the condition on the RETAIL_PRICE_DVD column to allow
nulls to be included in the results.

still struggling
People are often confused by the use of left and right in the names of the join
types. All you have to do is reverse the order of the tables in any existing query,
and you are essentially switching it from a left outer join to a right outer join, or
vice versa. However, Microsoft Access does not make this distinction, so all its
joins are simply called outer joins. Instead, Access uses a dialog box named Join
Properties, shown in Figure 3-32, to specify the type of join you want to use, with
an inner join as the default.

?

94 Data b a s e s Demystified

Since you will be listing all genres regardless of whether matching movies 5.	
are found, the results will be easier to read and understand if you move
the MOVIE_GENRE_DESCRIPTION column to the leftmost column of
the results and sort the results by genre. To do this, follow these steps:

1.	Clear the existing MOVIE_GENRE_DESCRIPTION column by drag-
ging your mouse pointer over the slim gray strip above the column (just
above the Field: label). The column will display as black (reverse video)
as it is selected. Then press delete to remove it from the query.

2.	Drag the MOVIE_GENRE_DESCRIPTION column from the MOVIE_
GENRE table in the upper part of the panel, and drop it on top of the
MOVIE_ID column in the query specification in the lower part of the
panel. This will cause all the existing columns in the specification to shift
one position to the right and the MOVIE_GENRE_DESCRIPTION col-
umn to become the first (leftmost) column in the query results.

3.	In the Sort line under the MOVIE_GENRE_DESCRIPTION column,
change the specification to sort it in Ascending sequence.

The completed panel is shown in Figure 3-33. Notice the arrow on the line 6.	
between the two tables that points toward the MOVIE table. This is the
way Access alerts you to the fact that the join is an outer join.

Figure 3-33 • Example 3-10 (Outer Joins), query design

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 95

Click the Run icon on the ribbon to run your query. The query results are 7.	
shown in Figure 3-34.

To get ready for the next exercise, return to the Query Design panel by 8.	
clicking the View icon just below the File tab.

Example 3-11: Microsoft Access SQL
SQL is discussed in Chapter 4; however, since Microsoft Access automatically
generates SQL for queries defined on the Query Design panel, a quick preview
of SQL is in order. In this example, you will display the SQL for the query cre-
ated in Example 3-10. Follow these steps:

You should be starting with a query specification from Example 3-10, as 1.	
shown in Figure 3-33.

On the Query Design panel, click the arrow below the View icon (under 2.	
the File tab) to expand the options. Select the SQL View option, as shown
in the top of Figure 3-35. Alternatively, you can click the SQL icon on the
status bar at the lower-right corner of the panel.

The SQL for the current query will be displayed as shown in the lower 3.	
part of Figure 3-36. The SELECT keyword is followed by a list of the col-
umns to be displayed in the query results. The FROM keyword is followed
by the two tables and their outer join condition. Next is the WHERE key-
word, followed by the conditions that limit rows to movies with DVD

Figure 3-34 • Example 3-10 (Outer Joins), query results

96 Data b a s e s Demystified

Figure 3-35 • Example 3-11 (Microsoft Access SQL), query design

Figure 3-36 • Example 3-11 (Microsoft Access SQL), generated SQL query

retail prices that are either NULL or less than 20. And last is the ORDER BY
clause that specifies the ordering of the rows in the result set. This is a
great product feature because you can use it not only to help you learn
SQL, but once you know SQL, you also can work back and forth between
the Query Design View and the SQL View to develop your queries quickly.
(Incidentally, Access SQL is the least standards-compliant of all the mod-
ern RDBMSs because object names can have embedded spaces.)

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 97

To get ready for the next exercise, do the following:4.

Return to the Query Design panel by clicking the View icon below the •	

File tab.

Clear all the selected columns and criteria by dragging your mouse •	

pointer over the slim gray strips above each column (just above the
Field: label). The columns will display as black (reverse video) as they
are selected. Then press delete to remove them from the query.

Change the join between the MOVIE and MOVIE_GENRE tables back •	

to an inner join. To do this, double-click the thin part of the line be-
tween the two tables displayed on the Query Design panel to display
the Join Properties dialog box. Then select option 1 and click OK.

Example 3-12: Multiple Joins and Calculated Columns
When you need information from more than two tables in the same query re-
sult, you can simply add more tables, and therefore more join operations, to the
query. The beauty of relational databases is that you need not be concerned
with which join is best processed first and other such implementation details.
You can trust the RDBMS to make those decisions for you.

For this example, consider another scenario: The video store wants to liqui-
date all the VHS movie copies, and therefore you need to list all movies, sorted
by genre, for which there are VHS copies in the inventory along with a sale
price that is half of the list price. If you look at the Relationships panel (see
Figure 3-9), the solution becomes obvious: you need the MOVIE_COPY to
find the movies for which the store has VHS copies. It should be clear from this
example that an overall diagram of all your tables and relationships is an essen-
tial document because it gives you the roadmap you need when forming
queries.

TERMS: Calculated (Derived) Column
a calculated column (also called a derived column) is a column in the query re-
sults that is formed using some form of transformation or calculation. this can be
as simple as supplying a literal value or a simple arithmetic calculation to more
complex transformations using database functions. (Functions are introduced in
Example 3-13 later in this chapter.)

98 Data b a s e s Demystified

This example also requires a calculated column (also called a derived column),
which is formed by multiplying the values in the RETAIL_PRICE_VHS by 0.5
to calculate the sale price for each VHS copy. Just about any formula that you
can use in a spreadsheet can be used in a relational database query. Follow these
steps:

You should be starting with a query specification that joins the MOVIE 1.	
and MOVIE_GENRE tables with a join specification (a line between
them) and no other conditions, like the one shown in Example 3-8 (Figure
3-28), but with no columns included in the query results. Be certain that
the join between MOVIE and MOVIE_GENRE is an inner join and that
no columns are currently included in the query specification.

Add the MOVIE_COPY table to the query by clicking the Show Table 2.	
icon and selecting the table from the list in the Show Table dialog box.

In the MOVIE_GENRE table, add the MOVIE_GENRE_DESCRIPTION 3.	
column to the query by double-clicking its name. Alternatively, you can
drag-and-drop the column name to the column in the query specification.

Change the Sort line for the MOVIE_GENRE_DESCRIPTION so that 4.	
the query results will be sorted Ascending on the genre description.

In the MOVIE table, add the MOVIE_TITLE column to the query.5.	

In the MOVIE_COPY table, add the COPY_NUMBER and MEDIA_6.	
FORMAT columns to the query by either double-clicking them or drag-
ging and dropping them into the query specification.

On the Criteria line for the MEDIA_FORMAT column, enter 7.	 V so that
only VHS movie copies are selected. You should also uncheck the box on
the Show line. (There is no point in displaying a column where every row
in the results is guaranteed to have the same data value.)

To add the calculated column, enter the following into the Field line of the 8.	
empty column to the right of the MEDIA_FORMAT column.

SALE_PRICE: Round((RETAIL_PRICE_VHS * 0.5), 2)

		 The first part of the entry (SALE_PRICE:) is a label for the new column.
Every column in your results must have a unique name, and if you don’t
name it, Microsoft Access will. Default column names are usually not very

Chapter 3 F o r m s - B a s e d d ata B a s e Q u e r i e s 99

meaningful and sometimes are just plain ugly, so it is always best to supply
a column label (name) for calculated columns. The Round function is used
to round the results to two decimal places since the price is supposed to
be in dollars and cents. Without it, the results would have additional deci-
mal places, which would make the results more difficult to understand. To
help you understand the syntax, here is how it would look with the mul-
tiplication operation removed:

Round(RETAIL_PRICE_VHS, 2)

 Note that spaces on each side of the multiplication operator (*) in the field
specifications do not matter, so you could have left them out. Chances are
that Microsoft Access will rewrite your column specification by removing
the spaces and placing square brackets around the other column name, so
don’t be surprised if you see what you entered change on the panel when
you move the cursor to another location. The square brackets help Access
deal with column names that contain spaces by marking the beginning and
end of each name. The removal of spaces helps Access parse the statement
for correct syntax.

Click the Run icon on the ribbon to run your query. The completed panel 9.
is shown in Figure 3-37 with the query results shown in Figure 3-38.

To get ready for the next exercise, return to the Query Design panel by 10.
clicking the View icon just below the File tab.

still struggling
You may find it easier to enter complex specifications on the Field line if you ex-
pand the width of the column in the query form. to do so, place the cursor over
the line that separates the column from the next column near the top of the
column (where the gray strips over the columns are). the cursor will change to a
vertical bar with left and right arrows protruding from it. then click and drag the
edge of the column to the right to expand the column to an appropriate size.

?

100 Data b a s e s Demystified

Figure 3-37 • Example 3-12 (Multiple Joins and Calculated Columns), query design

Figure 3-38 • Example 3-12 (Multiple Joins and Calculated Columns), query results

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 101

Example 3-13: Aggregate Functions
The Example 3-12 results contain five rows. All the details are here, but at a
glance, it’s not easy to get a sense of the total amount that the video store can
expect to collect for each genre if all the VHS movie copies are sold at the sale
price. (It would obviously be more difficult if the results contained many more
rows.) If the store’s accountant wants to know this, then what you really need
to do is sum up the SALE_PRICE column for each customer. In relational da-
tabases, this is done with the SUM function.

A function is a special type of program that returns a single value each time it is in-
voked, named for the mathematical concept of a function.

A function is a special type of program that returns a single value each time
it is invoked, named for the mathematical concept of a function. (You saw the
Round function used in Example 3-12.) Because you will use the function to
operate on a column, it will be invoked for each row and therefore will return
a single value for each row the query handles. Sometimes the term column func-
tion is used to remind you that the function is being applied to a table or view
column. An example of an ordinary column function is ROUND (or Round),
which can be used to round numbers in various ways. Special classes of func-
tions that combine multiple rows together into one row are called aggregate
functions. The following table shows aggregate functions that are commonly
used in relational databases:

Function Name Description

AVG Calculates the average value for a column
COUNT Counts the number of values found in a column
MAX Finds the maximum value in a column
MIN Finds the minimum value in a column
SUM Sums (totals up) the values in a column

If you use an aggregate function by itself in a query, you get one row back
for the entire query. This makes sense, because there is no way for the RDBMS
to know what other result you might want. So, if you want the aggregate result
to be for groups of rows in the query, you need to include a GROUP BY speci-
fication to tell the RDBMS to group the rows by the values in one or more

102 data B a s e s DemystifieD

columns, and to apply the aggregate function to each group. This is much like
asking for subtotals instead of a grand total for a list of numbers.

For this exercise, you want the RDBMS to provide a total of the calculated
column SALE_PRICE for each movie genre. In other words, you want to group
the rows by genre, and for each group, display a single row containing the genre
and the total sale price dollar amount.

The MOVIE_TITLE and COPY_NUMBER columns are unnecessary
because we need a total for each genre regardless of which movie copies are
included in the details. They illustrate an important concept that most new-
comers to relational databases have a difficult time understanding:

PROBLEM 3-1
If you select the MOVIE_GENRE_DESCRIPTION, MOVIE_TITLE, COPY_NUM-
BER, and calculated SALE_PRICE columns, telling the RDBMS the formula
for calculating the total price and asking it to group the rows in the result
by genre, there is a hidden logic problem that will cause an error to be re-
turned by the RDBMS. You have essentially asked the RDBMS to return the
values of MOVIE_TITLE and COPY_NUMBER for every row in the query re-
sults, but, at the same time, to aggregate rows by MOVIE_GENRE_DESCRIP-
TION and provide the calculated total for each aggregate. It is illogical to
ask for some rows to be aggregated and others not. To make matters worse,
the resulting error message is rather cryptic. Small wonder that we often
hear aggregate functions called “aggravating” functions.

SOLUTION
Remember this rule: Whenever a query includes an aggregate function,
then every column in the query results must either be formed using an ag-
gregate function or be named in the GROUP BY column list.

In Microsoft Access, the Totals icon (Σ) on the ribbon toggles (hides and
exposes) a line called Total on the Query View panel. It is the total line that lets
you specify aggregate functions and groupings for our query. Follow these
steps:

You should be starting with a query specification from Example 3-12 as 1.
shown in Figure 3-37.

Remove the MOVIE_TITLE and COPY_NUMBER columns by clicking 2.
in the slim gray strip above the field names and pressing delete.

PROBLEM
If you select the MOVIE_GENRE_DESCRIPTION, MOVIE_TITLE, COPY_NUM-
BER, and calculated SALE_PRICE columns, telling the RDBMS the formula

PROBLEM
If you select the MOVIE_GENRE_DESCRIPTION, MOVIE_TITLE, COPY_NUM-

SOLUTION
Remember this rule: Whenever a query includes an aggregate function,

✔

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 103

Change the label on the SALE_PRICE column to TOTAL_SALE_PRICE. 3.	
This column name will make more sense in the results.

Click the Totals icon on the ribbon to expose the Total line in the query 4.	
specification. By default, each column will initially have Group By speci-
fied on that line.

In the TOTAL_SALE_PRICE column, click in the Total line and use the 5.	
pull-down list to select the Sum function.

In the MEDIA_FORMAT column, click the Total line and use the pull-6.	
down list to select the Where specification. This tells Access that the col-
umn is only used to filter rows and will not appear in the query results.

Click the Run icon on the ribbon to run your query. The completed panel 7.	
is shown in Figure 3-39 with the query results shown in Figure 3-40.

To complete this exercise, close the Query Design panel either by clicking 8.	
the Close button in the upper-right corner of the panel (being careful not
to click the button at the upper-right of your Microsoft Access screen,
because that will completely close the Access database), or by right-clicking
the tab that shows the query name (most likely Query1) and choosing
Close. When asked about saving the query, click No.

Figure 3-39 • Example 3-13 (Aggregate Functions), query design

104 Data b a s e s Demystified

Example 3-14: Self-Joins
When tables have a recursive relationship built into them, you must use a self-join
(joining a table to itself) to resolve the relationship. In the video store database,
the EMPLOYEE table contains such a relationship where SUPERVISOR_PER-
SON_ID is a foreign key to the primary key PERSON_ID. The row for each
employee can then contain the identifier of another row in the EMPLOYEE table
which contains the information regarding their immediate supervisor.

In this example, suppose the store owner needs a report showing employees
and a comparison of the hourly rate paid to employees and their supervisors.
You will create a query that lists the ID, first name, last name, and hourly rate
for each employee along with the manager’s hourly rate. To get the manager’s
hourly rate, you will have to join the EMPLOYEE table to itself so that Access
can match the SUPERVISOR_PERSON_ID (foreign key) to the row in the
EMPLOYEE table that contains the manager’s hourly rate. Follow these steps:

Create a new query by opening the Create ribbon and then clicking the 1.	
Query Design icon.

When the Show Table dialog box opens, add the EMPLOYEE table to 2.	
the query twice. This may seem odd at first, but this is the only way to tell
Microsoft Access that you want to match each row in the EMPLOYEE

Figure 3-40 • Example 3-13 (Aggregate Functions), query results

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 105

table with a different row (the manager’s row) in the same table. Note
that the tables are named EMPLOYEE and EMPLOYEE_1 on the panel,
even though both are really two representations of the same table.

Also using the Show Table dialog box, add the PERSON table to the 3.	
query. The PERSON table contains the names of all people associated with
the video store, including employees.

You can minimize the Navigation Pane if you want (to reduce the visual 4.	
clutter on the screen).

In the EMPLOYEE table, find the SUPERVISOR_PERSON_ID column. 5.	
Click its name and (while holding down the mouse button) drag-and-drop
the name onto the PERSON_ID column in the EMPLOYEE_1 table. This
tells Access how to join the EMPLOYEE table to itself. The table on the
left represents the employees, and the one on the right is where you will
find each employee’s manager. Don’t be overly concerned if this still seems
confusing—we will revisit recursive relationships in subsequent chapters
in this book.

You want the supervisor’s row to display, but since he has no manager in 6.	
the table (this video store has only one supervisor), you need to change the
join to an outer join to see his row. Double-click in the line between the
two copies of the EMPLOYEE table, select option 2 in the Join Properties
dialog box, and click OK.

From the PERSON table, select the PERSON_ID, PERSON_GIVEN_7.	
NAME, and PERSON_FAMILY_NAME columns by double-clicking each.

From the EMPLOYEE table, select the EMPLOYEE_HOURLY_RATE 8.	
column by double-clicking its name.

From the EMPLOYEE_1 table, select the EMPLOYEE_HOURLY_RATE 9.	
column by double-clicking its name.

At this point, you have two columns in the query named EMPLOYEE_10.	
HOURLY_RATE. You need to change one of them to avoid confusion and
to comply with the RDBMS principle that every column have a unique
name. In the EMPLOYEE_HOURLY_RATE column from the
EMPLOYEE_1 table (the rightmost column in the query specification),
click just to the left of the column name and enter MANAGER_HOURLY_
RATE:, which assigns an alias name to the query column.

Click the Run icon on the ribbon to run your query. The completed panel 11.	
is shown on Figure 3-41 with the query results shown in Figure 3-42.

106 Data b a s e s Demystified

Figure 3-41 • Example 3-14 (Self-Joins), query design

Figure 3-42 • Example 3-14 (Self-Joins), query results

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 107

Your results should be similar, but since you didn’t specify a sort order, the
order of rows in your results may be different.

To complete this exercise, close the Query Design panel either by clicking 12.	
the Close box in the upper-right corner of the panel, or by right-clicking
the tab that shows the query name (most likely Query1) and choosing
Close. When asked about saving the query, click No. You can then close
Microsoft Access if you want.

Summary
In the 14 examples in this chapter, you explored Microsoft Access queries in a
manner intended to demonstrate the basic features that you will use the most.
Obviously, there are many more features to explore. But it is time to move on
to SQL, the topic of the next chapter.

108 Data b a s e s Demystified

Quiz
Choose the correct responses to each of the multiple-choice and fill-in-the-blank
questions. Note that there may be more than one correct response to each question.

A forms-based query language:1.	
Resembles SQLA.	
Describes how a query should be processed rather than what the results should beB.	
Was first developed by IBM in the 1980sC.	
Was shown to be clearly superior in controlled studiesD.	
Uses a GUI (graphical user interface)E.	

The object types in Microsoft Access that relate strictly to database manage-2.	
ment (as opposed to application development) are

ModulesA.	
MacrosB.	
FormsC.	
QueriesD.	
TablesE.	

When a table is deleted from the Microsoft Access Relationships panel, what 3.	
happens next?

It is immediately deleted from the database.A.	
It remains unchanged in the database and is merely removed from the Relation-B.	
ships panel.
It remains in the database, but all data rows are deleted.C.	
Relationships belonging to the table are also deleted.D.	

A column in the results of a Microsoft Access query can be formed from:4.	
A table columnA.	
A calculationB.	
A constantC.	
A query columnD.	
All of the aboveE.	

Relationships on the Microsoft Access Relationships panel represent which ob-5.	
ject type in the database?

QueriesA.	
TablesB.	
Primary keysC.	
Referential constraintsD.	
IndexesE.	

Chapter 3 F o r m s - B a s e d D ata b a s e Q u e r i e s 109

A Cartesian product:6.	
Results when a join between two tables in a query is not definedA.	
Results when a join between two tables in a query is incorrectly definedB.	
Results whenever a table is joined to itselfC.	
Results when each row in one table is joined to every row in another tableD.	
Can never happen in a Microsoft Access queryE.	

In a query, the search criteria MPAA_RATING_CODE NOT = “PG” OR MPAA_RAT-7.	
ING_CODE NOT =“PG-13” will display:

An error messageA.	
All the rows in the table except those in which the MPAA_RATING_CODE is “PG” B.	
or “PG-13”
All the rows in the tableC.	
All the rows in the table except those in which MPAA_RATING_CODE is D.	 NULL
Only the rows in which MPAA_RATING_CODE is equal to “PG” or “PG-13”E.	

When an outer join is used, column data from tables (or views) in which no 8.	
matching rows were found will contain:

Underscores (_)A.	
Asterisks (*)B.	
NULLC.	 values
SpacesD.	
XsE.	

The join connector between tables in a Microsoft Access query may:9.	
Cause a Cartesian product if not defined between two tables or views in the A.	
query
Be altered to define left, right, and full outer joinsB.	
Be manually created by dragging a column from one table or view to a column C.	
of another table or view
Be inherited from the metadata defined on the Relationships panelD.	
All of the aboveE.	

Criteria on different lines in a Microsoft Access query are connected with which 10.	
logical operator?
GREATER THANA.	
LESS THANB.	
ANDC.	
ORD.	
NOTE.	

This page intentionally left blank

 111

c h a p t e r 4
Introduction to SQL

This chapter introduces SQL, which has become the universal language for
relational databases in that nearly every DBMS in modern use supports it. The
reason for this wide acceptance is clearly the time and effort that went into the
development of language features and standards, making SQL highly portable
across different RDBMS products.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the history of SQL.•
Learn how to write Data Query Language (DQL) statements in SQL to select •
data from database tables and views.

Learn how to write Data Manipulation Language (DML) statements in SQL to •
update data in database tables.

Understand how transactions support concurrent database access.•
Learn how to write Data Definition Language (DDL) statements in SQL to •
define, alter, and drop database objects.

Learn how to write Data Control Language (DCL) statements to control •
database privileges.

112 Data b a s e s Demystified

SQL (Structured Query Language) is a computer language designed for managing
data in relational database management systems (RDMSs).

The video store database described in Appendix C is used to demonstrate
SQL in this chapter. Appendix C also includes instructions for downloading the
SQL statements required to create the video store database on MySQL, Micro-
soft SQL Server, and Oracle DBMSs, as well as an equivalent Microsoft Access
2000 database file. Throughout this chapter, I use MySQL to demonstrate SQL.
The MySQL Community Server edition, with versions for Windows, Mac OS
X, several versions of Linux, and several versions of Unix, is available free of
charge from http://www.mysql.com/downloads. Except as noted in the exam-
ples, every command and feature demonstrated meets current SQL standards
and therefore should work correctly in MySQL, SQL Server, Oracle, or any
other DBMS that supports SQL. However, you may have to modify the down-
loaded SQL statements to run them on other DBMSs.

By convention, all the SQL statements are shown in uppercase. However,
DBMS products are rarely case sensitive for SQL commands, so you may type
the commands in uppercase, lowercase, or mixed case as you follow along on
your own computer. However, do keep in mind that object names such as
table names are case sensitive in some DBMS products. For example, MySQL
is case sensitive for object names on platforms that are case sensitive, such as
Linux and Unix. Moreover, data in many SQL DBMS implementations is case
sensitive, so whenever you type a data value that is to be stored in the data-
base or that is to be used to find data in the database, you must type it in the
proper case.

As stated in the previous chapter, SQL is a command-based language. SQL
statements are formed in clauses using keywords and parameters. The key-
words used are usually reserved words for the DBMS, meaning they cannot
be used for the names of database objects. The clauses usually have to be in a
prescribed sequence. In most DBMS products, SQL statements must end with
a semicolon (;). Although some RDBMSs are more forgiving, MySQL and
Oracle, for example, will not run an SQL statement unless it ends with a
semicolon. (Oracle allows a slash to be substituted for the semicolon.) Beyond
these restrictions, the language is freeform, with one or more spaces separat-
ing language elements, and line breaks permitted between any two elements

http://www.mysql.com/downloads

Chapter 4 I n t r od u c t io n t o S Q L 113

(but not in the middle of elements). SQL statements may be divided into the
following categories:

Data Query Language (DQL)•	   Statements that query the database but
do not alter any data or database objects. This category contains the SE-
LECT statement. Not all vendors make a distinction here; many lump
DQL into DML, as defined next.

Data Manipulation Language (DML)•	   Statements that modify data
stored in database objects (that is, tables). This category contains the
INSERT, UPDATE, and DELETE statements.

Data Definition Language (DDL)•	   Statements that create and modify
database objects. Whereas DML and DQL work with the data in the da-
tabase objects, DDL works with the database objects themselves. Said
another way, DDL manages the data containers, whereas DML manages
the data inside the containers. This category includes the CREATE, ALTER,
and DROP statements.

Data Control Language (DCL)•	   Statements that manage privileges that
database users have regarding the database objects. This category includes
the GRANT and REVOKE statements.

Representative statements in each of these categories are presented in the
sections that follow. But first, we’ll cover a little bit of the history of the
language.

The History of SQL
The forerunner of SQL, which was called SEQUEL (for Structured English
Query Language), first emerged in the specifications for System R, IBM’s ex-
perimental relational database, in the late 1970s. However, two other products,
with various names for their query language, beat IBM to the marketplace with
the first commercial relational database products: Relational Software’s Oracle
and Relational Technology’s Ingres. IBM released SQL/DS in 1982, with the
query language name shortened to “SQL” after IBM discovered that “SEQUEL”
was a trademark of the Hawker-Siddeley Aircraft Company. When IBM re-
leased its next generation RDBMS, called DB2, the SQL acronym remained. To
this day, you will hear the name pronounced as an acronym (S-Q-L) and as a
word (see-quel), and both are considered correct pronunciations.

114 Data b a s e s Demystified

SQL standards committees were formed by ANSI (American National Stan-
dards Institute) in 1986 and ISO (International Organization for Standardization)
in 1987. Fortunately, the two committees have collaborated well, so the ANSI
and ISO standards are virtually identical. Two years later, the first standard
specification, known as SQL-89, was published. The standard was expanded
three years later into SQL-92, which weighed in at roughly 600 pages. The third
generation was called SQL-99, or SQL3. Additional revisions were published
in 2003 (SQL:2003), 2006 (SQL:2006), 2008 (SQL:2008), and work contin-
ues on the standard. The revisions published in 1999 and later incorporate
many of the object features required for SQL to operate on an object-relational
database, as well as language extensions to make SQL computationally com-
plete (adding looping, branching, and case constructs) and additional features
such as Extensible Markup Language (XML). Most current RDBMS products
comply with the standard to one degree or another.

Nearly every vendor has added extensions to SQL, partly because they
wanted to differentiate their products, and partly because market demands
pressed them into implementing features before there were standards for them.
One case in point is support for the DATE and TIMESTAMP data types. Dates
are highly important in business data processing, but the developers of the
original RDBMS products were computer scientists and academics, not busi-
ness computing specialists, so such a need was unanticipated. As a result, the
early SQL dialects did not have any special support for dates. As commercial
products emerged, vendors responded to pressure from their biggest customers
by hurriedly adding support for dates. Unfortunately, this led to each doing so
in their own way. Whenever you migrate SQL statements from one vendor to
another, beware of the SQL dialect differences. SQL is highly compatible and
portable across vendor products, but complete database systems can seldom be
moved without some adjustments.

Getting Started with MySQL
MySQL provides a simple command-line client tool for submitting SQL state-
ments and viewing results. Other client tools are on the market, many requiring
a license fee, but the command-line tool should work fine for our purposes.

The examples in this chapter focus on MySQL. However, if you are using a
different RDBMS, there will be client tools for it as well, usually provided by
the RDBMS vendor. For example, Sybase has a tool called iSQL, whereas
Microsoft SQL Server has a GUI tool called Management Studio as well as

Chapter 4 I n t r od u c t io n t o S Q L 115

a command-line tool called oSQL. Oracle has several GUI tools available as well
as a command-line implementation called SQL*Plus. There are also a number
of third-party query tools that work with popular RDBMS products. For exam-
ple, Quest Software markets versions of Toad for Oracle, SQL Server, DB2, and
MySQL, and also provides freeware versions that have reduced functionality
(see www.toadsoft.com). If you are using a DBMS installed on a system other
than a personal computer, you may require the assistance of a DBA or system
administrator while properly setting up a database account so you can access a
database and run the various SQL statements demonstrated in this chapter.

Follow this simple procedure to start the MySQL command-line query tool
and connect to the database. (The procedure for installing the video store sam-
ple database on MySQL is located in Appendix C.)

Launch the MySQL Command Line Client. On Windows systems, you 1.	
will find it on the Start menu under MySQL and then MySQL Server x.y
(x.y being the version number, such as 5.1).

Enter the MySQL root password when prompted. (The root password is 2.	
entered during the MySQL installation process.)

To connect to the video_store database, enter the following command. (As 3.	
mentioned, on some platforms such as Windows, object names like
VIDEO_STORE are not case sensitive.)
use VIDEO_STORE

Figure 4-1 shows the MySQL command-line window after successful con-
nection to the database.

Figure 4-1 • MySQL command-line window after successful connection

www.toadsoft.com

116 Data b a s e s Demystified

Where’s the Data?
You probably noticed that while command-line SQL clients help you format
and run SQL statements, they don’t provide an easy way for you to see the
names and definitions of the database objects available to you. This is a typical
arrangement for an RDBMS. If you are not familiar with the database schema
you are using, you can obtain some basic information from one of three sources:
documentation provided by the database designer or DBA, catalog views (spe-
cial views provided by the RDBMS that present database metadata that de-
scribes the database contents), or a tool such as Toad for MySQL. You may have
noticed that I included a PDF file of the ERD for the video store database in
the ZIP file that you can download from the web site (see Appendix C) as a
way of documenting the sample database.

Catalog views are special views provided by the RDBMS that present database
metadata and describe database contents.

Finding Database Objects Using Catalog Views
MySQL supports a set of catalog views called the information_schema (as de-
fined in the ANSI/ISO SQL standard) that may be queried to show the names
and definitions of all database objects available to a database user. Most other
RDBMSs have a similar capability, but of course, the names of the views vary.
By issuing a SELECT statement against any of these views, you may display in-
formation about your database objects. The SQL SELECT statement is described
in more detail a little further along in this chapter. Consult the MySQL Reference
Manual (available from www.mysql.com) for complete information on the avail-
able information_schema views. Here are the most useful ones for people writ-
ing SQL queries (many of the others are intended for use in managing the
database):

TABLES•	   Contains one row of information for each table. This view con-
tains a lot of columns, but fortunately only a few of them are of interest
when writing queries. Figure 4-2 shows a query (including the query re-
sults) that selects the table name and number of rows for the tables in the
VIDEO_STORE schema.

COLUMNS•	   Contains one row of information for each column in each
database table. In addition to the schema name, table name, and column

www.mysql.com

Chapter 4 I n t r od u c t io n t o S Q L 117

name, the information includes the column’s data type, length, precision,
scale, and so forth.

TABLE_CONSTRAINTS•	   Contains one row of information for each
constraint placed on a table.

KEY_COLUMN_USAGE•	   Contains one row of information for each
table column that participates in a unique or primary key constraint on
that table.

VIEWS•	   Contains one row of information for each view defined in the
database.

Viewing Database Objects Using Toad for MySQL
For those less inclined to type SQL commands, GUI tools are available from
RDBMS vendors as well as from third parties. Although MySQL offers a free
version of MySQL Workbench, I have found it more useful for database de-
sign than for viewing existing database objects. Therefore, I prefer Toad for
MySQL (available from www.toadsoft.com) over MySQL Workbench for this
purpose. It is also a very good GUI client for running SQL statements and
viewing results.

Figure 4-2 • Select table name and number of rows for the VIDEO_STORE
schema

www.toadsoft.com

118 Data b a s e s Demystified

Figure 4-3 shows Toad for MySQL, listing the tables in the VIDEO_STORE
database along the left margin and information about the columns in the
CUSTOMER_ACCOUNT table to the right.

You’ve seen a little bit of the SQL SELECT statement so far. In the next
section, we take a detailed look at SQL.

Data Query Language (DQL): The SELECT Statement
The SELECT statement retrieves data from the database. The clauses of the
statement, as demonstrated in the following sections, are as follows:

SELECT•	   Lists the columns that are to be returned in the results

FROM•	   Lists the tables or views from which data is to be selected

WHERE•	   Provides conditions for the selection of rows in the results

ORDER BY•	   Specifies the order in which rows are to be returned

GROUP BY•	   Groups rows for various aggregate functions

Although it is customary in SQL to write keywords in uppercase, this is not
necessary in most implementations. The RDBMS SQL interpreter will usually
recognize keywords written in uppercase, lowercase, or mixed case. As men-
tioned, MySQL is case sensitive on platforms that are case sensitive (Linux and
Unix), but not on other platforms such as Windows. In fact, you may have

Figure 4-3 • Toad for MySQL showing column information for the CUSTOMER_ACCOUNT table

Chapter 4 I n t r od u c t io n t o S Q L 119

noticed that even though I used uppercase names for all the database objects
in the script that creates them, the names are shown as lowercase within
MySQL. Be careful with other RDMS products, however. For example, Oracle
is always case insensitive for object names (and it shifts all lowercase names to
uppercase in its catalog tables—just the opposite of what MySQL has done on
my Windows laptop), but both Sybase and MS SQL Server can be set to a case-
sensitive mode where object names written in different cases are treated as
different objects. In case-sensitive mode, the following names would be consid-
ered different tables: MOVIE, Movie, movie.

Example 4-1: Listing Everything in a Table
The asterisk (*) symbol may be used in place of a column list in order to select
all columns in a table or view. This is a useful feature for quickly listing data,
but it should be avoided in statements that will be reused—it compromises
logical data independence because any new column will be automatically se-
lected the next time the statement is run. Note also that in SQL syntax, tables,
views, and synonyms (an alias for a table or view) are all referenced in the same
way. It should follow that the names of these come for the same namespace,
meaning that a name of a table, for example, must be unique among all tables,
views, and synonyms defined in a particular schema. Figure 4-4 shows the query
and query results using Toad.

Figure 4-4 • Query listing entire MOVIE table

120 Data b a s e s Demystified

I used Toad for this example because a command-line interface wraps query
result lines when they are wider than the command window. This makes the
results of a query like the one in this example very difficult to read.

Example 4-2: Limiting Columns to Display
To specify the columns to be selected, provide a comma-separated list following
the SELECT keyword. Keep in mind that the list actually provides expressions
that describe the columns desired in the query results, and although many times
these expressions are merely column names from tables or views, they may also
be any constant or formula that SQL can interpret and form into data values for
the column. The examples that follow show you how to use formulas and con-
stants to form query columns. Following is a query that selects only the MOVIE_
GENRE_CODE and MOVIE_TITLE columns from the MOVIE table.

SELECT MOVIE_GENRE_CODE, MOVIE_TITLE
 FROM MOVIE;

+--------------+---+
| MOVIE_GENRE_CODE | MOVIE_TITLE |
+------------------+---+
Drama	Crash
ActAd	The Dark Knight
Comdy	Little Miss Sunshine
ActAd	Casino Royale
ActAd	Blood Diamond
ActAd	Pirates of the Caribbean:  The Curse of the Black Pearl
Drama	The Curious Case of Benjamin Button
ActAd	Iron Man
ActAd	Into the Wild
Drama	The Departed
Rmce	The Lake House
Comdy	The Bucket List
Comdy	Stranger Than Fiction
Drama	Gran Torino
Drama	Charlie Wilson's War
Comdy	The Devil Wears Prada
Rmce	13 Going on 30
Drama	Monster
ActAd	Live Free or Die Hard (Die Hard 4)
Forgn	Das Boot
+------------------+---+
20 rows in set (0.00 sec)

The last line shown in the result set, known as feedback, shows whether the SQL
statement processed successfully along with other information such as row counts
or error messages. The format varies from one RDBMS product to another.

Chapter 4 I n t r od u c t io n t o S Q L 121

Example 4-3: Sorting Results
Just as in Microsoft Access, SQL has no guarantee as to the sequence of the
rows in the query results unless the desired sequence is specified in the query.
In SQL, providing a comma-separated list following the ORDER BY keyword
does this. In the previous example, the query results would be more useful if
they were sorted by the movie genre and then the movie title. Following is a
query that does just that.

SELECT MOVIE_GENRE_CODE, MOVIE_TITLE
 FROM MOVIE
 ORDER BY MOVIE_GENRE_CODE, MOVIE_TITLE;

+------------------+---+
| MOVIE_GENRE_CODE | MOVIE_TITLE |
+------------------+---+
ActAd	Blood Diamond
ActAd	Casino Royale
ActAd	Into the Wild
ActAd	Iron Man
ActAd	Live Free or Die Hard (Die Hard 4)
ActAd	Pirates of the Caribbean: The Curse of the Black Pearl
ActAd	The Dark Knight
Comdy	Little Miss Sunshine
Comdy	Stranger Than Fiction
Comdy	The Bucket List
Comdy	The Devil Wears Prada
Drama	Charlie Wilson's War
Drama	Crash
Drama	Gran Torino
Drama	Monster
Drama	The Curious Case of Benjamin Button
Drama	The Departed
Forgn	Das Boot
Rmce	13 Going on 30
Rmce	The Lake House
+------------------+---+
20 rows in set (0.00 sec)

Also note the following points:

Ascending sequence is the default for each column named in the •	 ORDER

BY clause, but the keyword ASC may be added after the column name for
ascending sequence, and DESC may be added for descending sequence.

The column(s) named in the •	 ORDER BY list do not have to be included
in the query results (that is, the SELECT list). However, this is not the best
human engineering.

122 Data b a s e s Demystified

Instead of column names, the relative position of the columns in the results •	

may be listed. The number provided has no correlation with the column
position in the source table or view, however. This option is frowned upon
in formal SQL (and no longer supported in the SQL standard) because
someone changing the query at a later time might shuffle columns around
in the SELECT list and not realize that, in doing so, they are changing the
columns used for sorting results. In Example 4-3, the following ORDER BY
clause achieves the same query results: ORDER BY 1, 2.

Choosing Rows to Display
SQL uses the WHERE clause for the selection of rows to display. Without a
WHERE clause, all rows found in the source tables and/or views are displayed.
When a WHERE clause is included, the rules of Boolean algebra, named for logi-
cian George Boole, are used to evaluate the WHERE clause for each row of data.
Only rows for which the WHERE clause evaluates to a logical “True” are dis-
played in the query results.

As you will see in the examples that follow, individual tests of conditions
must evaluate to either “True” or “False.” The conditional operators supported
are the same ones shown in Chapter 3 in Example 3-7 (=, <, <=, >, >=, and <>).
If multiple conditions are tested in a single WHERE clause, the outcomes of these
conditions can be combined together using logical operators such as AND, OR,
and NOT. Parentheses may be (and should be) added to complex statements for
clarity and to control the logical order in which the conditions are evaluated. A
rather complicated order of precedence is used when multiple logical operators
appear in one statement. However, it is far simpler to remember that conditions
inside a pair of parentheses are always evaluated first, and to simply include
enough sets of parentheses so there can be no doubt as to the order in which
the conditions are evaluated.

Example 4-4: A Simple WHERE Clause
The following query shows a simple WHERE clause that selects only rows where
RETAIL_PRICE_DVD is less than or equal to 20.00. Notice that the column(s)
used to filter rows do not have to be included in the query results. However, in
many cases it may be a good idea to include them so you can check your results
for correctness.

SELECT MOVIE_GENRE_CODE, MOVIE_TITLE
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD <= 20.00

Chapter 4 I n t r od u c t io n t o S Q L 123

 ORDER BY MOVIE_GENRE_CODE, MOVIE_TITLE;

+------------------+-------------------------------------+
| MOVIE_GENRE_CODE | MOVIE_TITLE |
+------------------+-------------------------------------+
ActAd	Casino Royale
ActAd	The Dark Knight
Comdy	Stranger Than Fiction
Comdy	The Bucket List
Drama	Charlie Wilson's War
Drama	Crash
Drama	The Curious Case of Benjamin Button
Drama	The Departed
Forgn	Das Boot
Rmce	The Lake House
+------------------+-------------------------------------+
10 rows in set (0.00 sec)

Example 4-5: The BETWEEN Operator
SQL provides the BETWEEN operator to assist in finding ranges of values. The
endpoints are included in the returned rows. The following query shows the use
of the BETWEEN operator to find all rows where RETAIL_PRICE_DVD is
greater than or equal to 15.00 and RETAIL_PRICE_DVD is less than or equal
to 20.00:

SELECT MOVIE_GENRE_CODE, MOVIE_TITLE
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD BETWEEN 15.00 AND 20.00
 ORDER BY MOVIE_GENRE_CODE, MOVIE_TITLE;

+------------------+-------------------------------------+
| MOVIE_GENRE_CODE | MOVIE_TITLE |
+------------------+-------------------------------------+
ActAd	Casino Royale
ActAd	The Dark Knight
Comdy	Stranger Than Fiction
Comdy	The Bucket List
Drama	Crash
Drama	The Curious Case of Benjamin Button
Forgn	Das Boot
+------------------+-------------------------------------+
7 rows in set (0.00 sec)

Here’s an alternative way to write the equivalent WHERE clause:

 WHERE RETAIL_PRICE_DVD >= 15.00
 AND RETAIL_PRICE_DVD <= 20.00

124 Data b a s e s Demystified

Example 4-6: The LIKE Operator
For searching character columns, SQL provides the LIKE operator, which com-
pares the character string in the column to a pattern, returning a logical “True”
if the column matches the pattern, and “False” if not. The underscore character
(_) may be used as a positional wildcard, meaning it matches any character in
that position of the character string being evaluated. The percent sign (%) may
be used as a nonpositional wildcard, meaning it matches any number of char-
acters for any length. Note that Microsoft Access has a similar feature, but the
wildcard characters are different (they match those in DOS and Visual Basic):
the question mark (?) is the positional wildcard, and the asterisk (*) is the non-
positional wildcard. The following table provides some examples:

Pattern Interpretation
%Now Matches any character string that ends with “Now”
Now% Matches any character string that begins with “Now”
%Now% Matches any character string that contains “Now” (whether

at the beginning, the end, or in the middle)
N_w Matches any string of exactly three characters, where the

first character is “N” and the third character is “w”
%N_w% Matches any string that contains the character “N” followed

by any character, which is in turn followed by the character
“w” and continues with any number of characters

Suppose we are searching for a person named Steven, but we are not sure if his
first name is written as Steve, Steven, or Stephen in the database. The following
query finds all persons whose first name begins with “Ste”.

SELECT PERSON_ID, PERSON_GIVEN_NAME, PERSON_FAMILY_NAME
 FROM PERSON
 WHERE PERSON_GIVEN_NAME LIKE 'Ste%';

+-----------+-------------------+--------------------+
| PERSON_ID | PERSON_GIVEN_NAME | PERSON_FAMILY_NAME |
+-----------+-------------------+--------------------+
| 12 | Steven | Bernstein |
+-----------+-------------------+--------------------+
1 row in set (0.00 sec)

Example 4-7: Compound Conditions Using OR
As stated earlier, multiple conditions may be combined using the OR operator.
The following query shows a WHERE clause that selects rows having either

Chapter 4 I n t r od u c t io n t o S Q L 125

a PERSON_GIVEN_NAME column beginning with “Ste” or a PERSON_
ADDRESS_CITY column equal to “Los Angeles”.

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME, PERSON_ADDRESS_CITY
 FROM PERSON
 WHERE PERSON_GIVEN_NAME LIKE 'Ste%'
 OR PERSON_ADDRESS_CITY = 'Los Angeles';
+-------------------+--------------------+---------------------+
| PERSON_GIVEN_NAME | PERSON_FAMILY_NAME | PERSON_ADDRESS_CITY |
+-------------------+--------------------+---------------------+
Gerald	Bernstein	Los Angeles
Rose	Bernstein	Los Angeles
Steven	Bernstein	Los Angeles
+-------------------+--------------------+---------------------+
3 rows in set (0.00 sec)

The next query changes the OR operator from Example 4-7 to the AND
operator. Note that only one row is returned now because both conditions must
be true for a row to appear in the query results.

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME, PERSON_ADDRESS_CITY
 FROM PERSON
 WHERE PERSON_GIVEN_NAME LIKE 'Ste%'
 AND PERSON_ADDRESS_CITY = 'Los Angeles';

+-------------------+--------------------+---------------------+
| PERSON_GIVEN_NAME | PERSON_FAMILY_NAME | PERSON_ADDRESS_CITY |
+-------------------+--------------------+---------------------+
| Steven | Bernstein | Los Angeles |
+-------------------+--------------------+---------------------+
1 row in set (0.00 sec)

Example 4-8: The Subquery
A very powerful feature of SQL is the subquery (or subselect), which, as the
name implies, refers to a SELECT statement that contains a subordinate
SELECT statement. This can be a very flexible way of selecting data.

A subquery refers to a query (SELECT statement) that is contained in, and thus is
subordinate to, another query.

Let’s assume that we want to list the customer account ID for Steven Bern-
stein, but we don’t know his Person ID. We could run one query to find his
Person ID (the primary key of the PERSON table) and then run another one

126 Data b a s e s Demystified

to find the CUSTOMER_ACCOUNT table rows that include his Person ID.
However, it’s much simpler to do both steps in a single query like the following.
Note that SQL syntax requires the subquery to be enclosed in a pair of
parentheses.

SELECT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_ACCOUNT_PERSON
 WHERE PERSON_ID =
 (SELECT PERSON_ID
 FROM PERSON
 WHERE PERSON_GIVEN_NAME = 'Steven'
 AND PERSON_FAMILY_NAME = 'Bernstein');

+---------------------+
| CUSTOMER_ACCOUNT_ID |
+---------------------+
| 7 |
+---------------------+
1 row in set (0.00 sec)

The main query is sometimes called the outer query, and the subquery (the
one enclosed in parentheses) is sometimes called the inner query. For this query,
the SQL engine will run the inner query first and then use its result set to filter
rows when it runs the outer query. Note that I used the equal-to operator in
the outer query to compare the PERSON_ID in the CUSTOMER table with
the result from the inner query. This works fine if the inner query never returns
more than a single value. However, if the inner query returns multiple values,
the SQL statement will fail with an error condition. Given that people’s names
are never guaranteed to be unique, it’s safer in a situation like this to use the IN
operator instead of the equal-to operator. The difference is that IN returns a
Boolean “True” if any value in the result set returned by the inner query matches
whatever we are comparing it with in the outer query. Here is the same query
changed to use the IN operator:

SELECT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_ACCOUNT_PERSON
 WHERE PERSON_ID IN
 (SELECT PERSON_ID
 FROM PERSON
 WHERE PERSON_GIVEN_NAME = 'Steven'
 AND PERSON_FAMILY_NAME = 'Bernstein');

This subquery is called a noncorrelated subquery because the inner query
does not refer to any values from the outer query. This is why the SQL engine

Chapter 4 I n t r od u c t io n t o S Q L 127

can run the inner query just once to obtain the result set and then can use that
result set to run the outer query. Let’s look at another query using a subquery.
The video store manager is looking at the effect of a recent price increase, and
needs a list of transactions (TRANSACTION_IDs) where the customer paid
more than the average fee (RENTAL_FEE) for a movie. Here is the query:

SELECT DISTINCT TRANSACTION_ID
 FROM MOVIE_RENTAL
 WHERE RENTAL_FEE >
 (SELECT AVG(RENTAL_FEE)
 FROM MOVIE_RENTAL);

+----------------+
| TRANSACTION_ID |
+----------------+
| 9 |
| 10 |
+----------------+
2 rows in set (0.00 sec)

The inner query finds the average rental fee and then the outer query finds
all rows in the MOVIE_RENTAL table with a RENTAL_FEE that exceeds the
average. Hopefully you recognized the AVG function, which was introduced in
Example 3-12 in Chapter 3. We will review using aggregate functions in an
upcoming SQL example. While IN and NOT IN are the most common operators
used to connect subqueries to outer queries, in this case the subquery returns
only one row, and therefore we can use the greater than (>) operator for com-
parison. The DISTINCT keyword eliminates any duplicate transaction IDs.

Unlike a noncorrelated subquery, a correlated subquery is a subquery where
the inner select refers to values provided by the outer select. These are far less
efficient than noncorrelated subqueries because the inner query must be
invoked for each row found by the outer query. Recall that with a noncorrelated
subquery, the inner query is only run once.

A correlated subquery is a subquery where the inner select refers to values provided
by the outer select.

Suppose the video store wishes to mail a discount coupon to any customer
who paid more than $15 in rental fees in any single rental transaction. To do
this we must find the transactions in the CUSTOMER_TRANSACTION table

128 Data b a s e s Demystified

where the sum of rental fees for the transaction in the MOVIE_RENTAL table
is greater than 15. Here is the query:

SELECT DISTINCT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_TRANSACTION A
 WHERE 15 <
 (SELECT SUM(RENTAL_FEE)
 FROM MOVIE_RENTAL B
 WHERE A.TRANSACTION_ID = B.TRANSACTION_ID);

+---------------------+
| CUSTOMER_ACCOUNT_ID |
+---------------------+
| 2 |
| 7 |
| 9 |
+---------------------+
3 rows in set (0.00 sec)

Note the aliases (A and B) assigned to the table names in the inner and outer
queries and the use of them in the WHERE clause in the inner query. This is the
hallmark of a correlated subquery. (Table aliases are explained fully in Example
4-12 later in this chapter.) The outer select finds a distinct list of CUSTOMER_
ACCOUNT_ID values in the CUSTOMER_TRANSACTION_TABLE. For
each value found, the value is passed to the inner query, which is run to find
the sum of rental fees for that transaction. If the sum of rental fees is greater
than 15 (actually expressed in the query as “if 15 is less than the sum of rental
fees”), then the WHERE clause in the outer select evaluates to “True,” and the
corresponding CUSTOMER_ID is added to the result set.

Joining Tables

Example 4-9: The Cartesian Product
As you learned previously in Example 3-8 in Chapter 3, we need to join tables
(or views) whenever we need data from more than one table in our query re-
sults. In SQL, you specify joins by listing the tables or views to be joined in a
comma-separated list in the FROM clause of the SELECT statement. However,
SQL is not going to remind you to tell the RDBMS how to match rows in the
tables (or views) being joined. If you forget, you will get a Cartesian product,
as shown in the following query:

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION, MOVIE_TITLE
 FROM MOVIE, MOVIE_GENRE

Chapter 4 I n t r O D u C t I O n t O s Q L 129

 ORDER BY MOVIE_ID;

+----------+-----------------------------+-----------------+
| MOVIE_ID | MOVIE_GENRE_DESCRIPTION | MOVIE_TITLE |
+----------+-----------------------------+-----------------+
1	Children and Family	Crash
1	Music and Musicals	Crash
1	Foreign	Crash
1	Thrillers	Crash
1	Comedy	Crash
1	Science Fiction and Fantasy	Crash
1	Anime and Animation	Crash
1	Independent	Crash
1	Drama	Crash
1	Sports	Crash
1	Classics	Crash
1	Romance	Crash
1	Action and Adventure	Crash
1	Horror	Crash
1	Documentary	Crash
1	Special Interest	Crash
2	Comedy	The Dark Knight
2	Science Fiction and Fantasy	The Dark Knight
2	Anime and Animation	The Dark Knight
2	Independent	The Dark Knight
2	Drama	The Dark Knight
2	Sports	The Dark Knight
2	Classics	The Dark Knight
2	Romance	The Dark Knight
2	Action and Adventure	The Dark Knight
2	Horror	The Dark Knight
2	Documentary	The Dark Knight
2	Special Interest	The Dark Knight
2	Children and Family	The Dark Knight
2	Music and Musicals	The Dark Knight
2	Foreign	The Dark Knight
2	Thrillers	The Dark Knight

+----------+-----------------------------+-----------------+
320 rows in set (0.00 sec)

PROBLEM 4-1
Whenever you write a new query, you should apply a “reasonableness” test
to the results. Example 4-9 looks fine on the surface, but when you con-
sider that there are only 20 movies in the sample database, you realize
something is horribly wrong. How could we possibly get 320 rows simply
by joining the MOVIE and MOVIE_GENRE tables?

PROBLEM
Whenever you write a new query, you should apply a “reasonableness” test
to the results. Example 4-9 looks fine on the surface, but when you con-

PROBLEM
Whenever you write a new query, you should apply a “reasonableness” test

130 Data b a s e s DemystifieD

SOLUTION
We failed to include a join specification, so the RDBMS created a Cartesian
product for us, joining each movie with every genre, and 20 movies × 16
genres = 320 rows. Oops!

Example 4-10: The Inner Join of Two Tables
The following query shows the correction, which involves adding a JOIN clause
that tells the DBMS to match the MOVIE_GENRE_CODE column in the
MOVIE table (the foreign key) to the MOVIE_GENRE_CODE column in the
MOVIE_GENRE table (the primary key). Now we get a much more reasonable
result with 20 rows.

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE, MOVIE_TITLE
 FROM MOVIE JOIN MOVIE_GENRE
 ON MOVIE.MOVIE_GENRE_CODE = MOVIE_GENRE.MOVIE_GENRE_CODE
 ORDER BY MOVIE_ID;

+----------+----------------------+--
| MOVIE_ID | GENRE | MOVIE_TITLE |
+----------+----------------------+---------------------------------------+
1	Drama	Crash
2	Action and Adventure	The Dark Knight
3	Comedy	Little Miss Sunshine
4	Action and Adventure	Casino Royale
5	Action and Adventure	Blood Diamond
6	Action and Adventure	Pirates of the Caribbean: The Curse of
7	Drama	The Curious Case of Benjamin Button
8	Action and Adventure	Iron Man
9	Action and Adventure	Into the Wild
10	Drama	The Departed
11	Romance	The Lake House
12	Comedy	The Bucket List
13	Comedy	Stranger Than Fiction
14	Drama	Gran Torino
15	Drama	Charlie Wilson's War
16	Comedy	The Devil Wears Prada
17	Romance	13 Going on 30
18	Drama	Monster
19	Action and Adventure	Live Free or Die Hard (Die Hard 4)
20	Foreign	Das Boot
+----------+----------------------+---------------------------------------+
20 rows in set (0.14 sec)

SOLUTION
We failed to include a join specification, so the RDBMS created a Cartesian

✔

Chapter 4 I n t r od u c t io n t o S Q L 131

You may see queries where the join logic is included in the WHERE clause.
This is an older way of writing joins in SQL that predates the introduction of
the JOIN clause. I prefer the JOIN clause because it separates the join logic
from predicates (row selection conditions) in the WHERE clause intended to
filter (eliminate) rows from the result set. Also, as you will see shortly, the JOIN
clause permits us to write outer joins using the same syntax as inner joins—this
had to be done using vendor proprietary syntax in the days before the introduc-
tion of the JOIN clause.

Example 4-11: Outer Join
In the previous example, notice that of the 16 different genres, only 5 of them
show up in the query results. The explanation for this lies in the fact that we
performed an inner (or standard) join. Rows were returned only when a match-
ing movie row was found for a genre—and there are 11 movie genres for which
the sample database has no movies listed. We can correct this problem by
changing our inner join to an outer join. In this case, we want all rows from the
MOVIE_GENRE table, even if no matching row is found in the MOVIE table
for some employees.

An outer join is a join between two tables where the query results contain both
matched and unmatched rows.

The following query lists all the movie genre descriptions, along with movies
that match them. For genres that have no matching movies, any data selected
from the MOVIE table for that row will have no value and thus be set to NULL
in the query results.

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE, MOVIE_TITLE
 FROM MOVIE_GENRE LEFT OUTER JOIN MOVIE
 ON MOVIE_GENRE.MOVIE_GENRE_CODE = MOVIE.MOVIE_GENRE_CODE
 ORDER BY MOVIE_GENRE_DESCRIPTION;

An inner join is a join of two tables where the query results contain only rows that
were matched in both of the tables being joined.

132 Data b a s e s Demystified

+-----------------------------+---+
| GENRE | MOVIE_TITLE |
+-----------------------------+---+
Action and Adventure	The Dark Knight
Action and Adventure	Casino Royale
Action and Adventure	Blood Diamond
Action and Adventure	Pirates of the Caribbean: The Curse of the
Action and Adventure	Iron Man
Action and Adventure	Into the Wild
Action and Adventure	Live Free or Die Hard (Die Hard 4)
Anime and Animation	NULL
Children and Family	NULL
Classics	NULL
Comedy	Little Miss Sunshine
Comedy	The Bucket List
Comedy	Stranger Than Fiction
Comedy	The Devil Wears Prada
Documentary	NULL
Drama	Crash
Drama	The Curious Case of Benjamin Button
Drama	The Departed
Drama	Gran Torino
Drama	Charlie Wilson's War
Drama	Monster
Foreign	Das Boot
Horror	NULL
Independent	NULL
Music and Musicals	NULL
Romance	The Lake House
Romance	13 Going on 30
Science Fiction and Fantasy	NULL
Special Interest	NULL
Sports	NULL
Thrillers	NULL
+-----------------------------+---+
31 rows in set (0.00 sec)

Notice that the MySQL command-line client displays the word “NULL”
whenever null values appear in query result sets. However, always keep in mind
that nulls have no value whatsoever and are not equal to anything else, includ-
ing other null values.

There are actually three types of outer joins:

LEFT OUTER JOIN•	   Returns all rows in the left-hand table (the one
named first, or leftmost in the JOIN clause) along with any rows in the
right-hand table that can be matched.

RIGHT OUTER JOIN•	   Returns all rows in the right-hand table (the one
named second, or rightmost in the JOIN clause) along with any rows in

Chapter 4 I n t r od u c t io n t o S Q L 133

the left-hand table that can be matched. Essentially, a left outer join may
be rewritten as a right outer join simply by reversing the order of the table
names and changing the keyword “LEFT” to “RIGHT”. For example, the
following two JOIN clauses are logically equivalent:
MOVIE_GENRE LEFT OUTER JOIN MOVIE
 ON MOVIE_GENRE.MOVIE_GENRE_CODE = MOVIE.MOVIE_GENRE_CODE

MOVIE RIGHT OUTER JOIN MOVIE_GENRE
 ON MOVIE_GENRE.MOVIE_GENRE_CODE = MOVIE.MOVIE_GENRE_CODE

FULL OUTER JOIN •	 Returns all rows from both tables. This join is the
least likely to be supported by your SQL implementation because the
standard syntax for it is newer than the other two. It is essential to under-
stand that this is not the same as a Cartesian product, which joins every
row in one table with every row in the other. A full outer join, on the other
hand, joins each row in one table with either no rows or all matching rows
in the other table. In reality, you won’t find an occasion to use a full outer
join very often, but it can come in handy if there is a relationship between
two tables that is optional in both directions.

Example 4-12: Limiting Join Results
Additional conditions can easily be added to the WHERE clause to limit rows
returned from a query that also involves joins. Therefore, we can add conditions
to the previous query that will filter out some of the movies or some of the
genres or both. One interesting twist is to use the fact that unmatched genres
in the previous example return null values for all the columns in the movie
table. We can use that to filter out the matched rows, leaving only the genres
for which there are no matching movies in the result set. Here is the query:

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE
 FROM MOVIE_GENRE A LEFT OUTER JOIN MOVIE B
 ON A.MOVIE_GENRE_CODE = B.MOVIE_GENRE_CODE
 WHERE B.MOVIE_ID IS NULL
 ORDER BY MOVIE_GENRE_DESCRIPTION;

+-----------------------------+
| GENRE |
+-----------------------------+
| Anime and Animation |
| Children and Family |
| Classics |
| Documentary |
| Horror |
| Independent |

134 Data b a s e s Demystified

| Music and Musicals |
| Science Fiction and Fantasy |
| Special Interest |
| Sports |
| Thrillers |
+-----------------------------+
11 rows in set (0.00 sec)

Note the following:

I used table aliases in the •	 FROM clause, assigning the MOVIE_GENRE
table an alias of A and the MOVIE table an alias of B. These aliases are
then used instead of the table names in all other places in the query.
They don’t change the logic of the query in any way, but they reduce the
amount of typing required because each table name is only spelled out
one time. In fact, whenever you define a table alias in a query, you must
use the alias instead of the table name everywhere else in that query.
However, remember that you have to qualify only column names that
are ambiguous.

I removed the MOVIE_TITLE column from the query results. There is no •	

point in displaying anything from the MOVIE table in the results because
all of it will be null.

I used the primary key (MOVIE_ID) to test for null values because it can-•	

not possibly be null in a real table row. When finding unmatched rows in
joins, you must be sure to always test for null values using a column that
cannot be null in a real row of data in the table. Otherwise your results
could be incorrect.

Note that you cannot use the equal-to condition when testing for null •	

values. A value of NULL is never equal to anything, so we must use the
keywords IS NULL or IS NOT NULL to test for the presence or absence
of null values.

Example 4-13: The Self-Join
When a table has a recursive relationship, we need to join the table to itself in
order to follow the relationship in our query results. The EMPLOYEES table
has such a relationship in that the SUPERVISOR_PERSON_ID column con-
tains the PERSON_ID value of the employee to whom each employee reports.

Chapter 4 I n t r od u c t io n t o S Q L 135

The following query shows the values of PERSON_ID and SUPERVISOR_
PERSON_ID in the EMPLOYEE table:

SELECT PERSON_ID, EMPLOYEE_HOURLY_RATE, SUPERVISOR_PERSON_ID
 FROM EMPLOYEE;

+-----------+----------------------+----------------------+
| PERSON_ID | EMPLOYEE_HOURLY_RATE | SUPERVISOR_PERSON_ID |
+-----------+----------------------+----------------------+
1	15.00	NULL
2	9.75	1
10	9.75	1
+-----------+----------------------+----------------------+
3 rows in set (0.00 sec)

Only three employees are in the sample database. Person 1 is the owner of
the store and thus has no supervisor (SUPERVISOR_PERSON_ID is NULL),
and the other two employees report to Person 1. Suppose we need to produce
a report showing the pay difference between employees and their supervisors.
With so few employees, we could obviously do the calculation in our heads, but
let’s assume that we want to use this at other stores that have more employees.
The easiest way to do the calculation is to join each employee in the EMPLOYEE
table to their supervisor’s row in the EMPLOYEE table. This will seem confus-
ing at first, but it’s really just like any other join, except the primary key and
foreign key used in the join logic happen to be columns in the same table. Here
is the previous query with the self-join and the calculated column added. Notice
that I used an inner (standard) join because we don’t need to see the data for
employees that have no supervisor.

SELECT A.PERSON_ID, A.EMPLOYEE_HOURLY_RATE AS HOURLY_RATE,
 B.EMPLOYEE_HOURLY_RATE AS SUPV_HOURLY_RATE,
 (B.EMPLOYEE_HOURLY_RATE – A.EMPLOYEE_HOURLY_RATE)
 AS RATE_DIFFERENCE
 FROM EMPLOYEE A JOIN EMPLOYEE B
 ON A.SUPERVISOR_PERSON_ID = B.PERSON_ID;

+-----------+-------------+------------------+-----------------+
| PERSON_ID | HOURLY_RATE | SUPV_HOURLY_RATE | RATE_DIFFERENCE |
+-----------+-------------+------------------+-----------------+
| 2 | 9.75 | 15.00 | 5.25 |
| 10 | 9.75 | 15.00 | 5.25 |
+-----------+-------------+------------------+-----------------+
2 rows in set (0.05 sec)

136 Data b a s e s Demystified

Aggregate Functions

Example 4-14: Simple Aggregate Functions
As you will recall from Example 3-12 in the previous chapter, aggregate func-
tions combine multiple rows. The following table lists aggregate functions that
are available in most SQL implementations:

Function Name Description
AVG Calculates the average value for a column or expression.
COUNT Counts the number of values found in a column. The DISTINCT

keyword can be used to count the number of unique values in-
stead of the total number of values (rows) in a column.

MAX Finds the maximum value in a column.
MIN Finds the minimum value in a column.
SUM Sums (totals up) the values in a column.

In the following query, aggregate functions are used to find the minimum,
maximum, and average rental fee for all movie rentals along with a count of the
total number of rentals. Because there is no GROUP BY clause to group rows
(discussed in the next example), the entire table is considered one group, so
only one row is returned in the result set.

SELECT MIN(RENTAL_FEE) AS MINIMUM, MAX(RENTAL_FEE) AS MAXIMUM,
 AVG(RENTAL_FEE) AS AVERAGE, COUNT(*) AS NUM_RENTALS
 FROM MOVIE_RENTAL;

+---------+---------+----------+-------------+
| MINIMUM | MAXIMUM | AVERAGE | NUM_RENTALS |
+---------+---------+----------+-------------+
| 6.00 | 6.25 | 6.075000 | 20 |
+---------+---------+----------+-------------+
1 row in set (0.00 sec)

Chapter 4 I n t r O D u C t I O n t O s Q L 137

Example 4-15: Mixed Aggregate and Normal Columns (Error)
The following query is an attempt to count the number of movies in the
MOVIE table by genre:

SELECT MOVIE_GENRE_CODE, COUNT(*) AS NUM_MOVIES
 FROM MOVIE;
+------------------+------------+
| MOVIE_GENRE_CODE | NUM_MOVIES |
+------------------+------------+
| ActAd | 20 |
+------------------+------------+
1 row in set (0.00 sec)

PROBLEM 4-2
The result set produced by MySQL 5.1 is incorrect. The results fail the rea-
sonableness check I suggested earlier. We know that we have 20 movies,
but we also know that only some of them are in the ActAd (Action-Adven-
ture) genre. Every other RDBMS I have used (Sybase, Oracle, SQL Server,
DB2, etc.) would have returned an error in this situation, but MySQL allows
it by default. The result is basically worthless because the value selected for
each named column that is not part of the GROUP BY is indeterminate
(that is, there is no way of predicting the row from which the value will be
taken). You can change the default behavior in MySQL using the ONLY_
FULL_GROUP_BY parameter.

SOLUTION
The problem with the query is that our request is illogical. We asked the
SQL engine to list all the genre codes and to give us a single count of all the
rows in the MOVIE table. What we wanted was a count of the number of
movies in each genre, but we didn’t tell the SQL engine to do that. The fol-
lowing example shows the corrected query.

Example 4-16: Aggregate Functions with GROUP BY
To remedy the situation, we must tell the RDBMS that we wish to group
the rows by MOVIE_GENRE_CODE, and for each group display the

PROBLEM
The result set produced by MySQL 5.1 is incorrect. The results fail the rea-
sonableness check I suggested earlier. We know that we have 20 movies,

PROBLEM
The result set produced by MySQL 5.1 is incorrect. The results fail the rea-

SOLUTION
The problem with the query is that our request is illogical. We asked the

✔

138 Data b a s e s Demystified

MOVIE_GENRE_CODE along with the aggregate column results (the count
of the number of movies for the genre). The corrected statement follows:

SELECT MOVIE_GENRE_CODE, COUNT(*) AS NUM_MOVIES
 FROM MOVIE
 GROUP BY MOVIE_GENRE_CODE;

+------------------+------------+
| MOVIE_GENRE_CODE | NUM_MOVIES |
+------------------+------------+
ActAd	7
Comdy	4
Drama	6
Forgn	1
Rmce	2
+------------------+------------+
5 rows in set (0.00 sec)

The GROUP BY clause causes returned rows to be automatically ordered by
the columns listed because the DBMS must perform a sort in order to group
the rows. However, an ORDER BY may also be included to return the rows in
an alternate sequence. If the ORDER BY clause must include calculated col-
umns, just use the expression for the column—you cannot use any alias name
for the column because the alias is assigned to the column in the query results
and therefore does not exist at the time the query runs. (However, there are
SQL implementations that can handle sorting by a column alias.) Here is a ver-
sion of the query that sorts descending on the number of movies:

SELECT MOVIE_GENRE_CODE, COUNT(*) AS NUM_MOVIES
 FROM MOVIE
 GROUP BY MOVIE_GENRE_CODE
 ORDER BY COUNT(*) DESC;

+------------------+------------+
| MOVIE_GENRE_CODE | NUM_MOVIES |
+------------------+------------+
ActAd	7
Drama	6
Comdy	4
Rmce	2
Forgn	1
+------------------+------------+
5 rows in set (0.00 sec)

Chapter 4 I n t r O D u C t I O n t O s Q L 139

still struggling
Mixing regular column expressions with aggregate functions in the same query
takes some getting used to. Whenever you use an aggregate function in a query,
remember that every column expression listed in the SELECT clause must be
either an aggregate function or named in the GROUP BY clause.

?

Data Manipulation Language (DML)
The DML statement types in SQL are INSERT, UPDATE, and DELETE. These
commands allow you to add, change, and remove rows of data in the tables.
Before we look at each of these statement types, you first need to understand
the concept of transactions and how the RDBMS supports them.

Transaction Support (COMMIT and ROLLBACK)
In terms of the RDBMS, a transaction is a series of one or more SQL statements
that are treated as a single unit. A transaction must completely work or com-
pletely fail, meaning that any database changes a transaction makes must be made
permanent when the transaction successfully completes. On the other hand,
these changes must be entirely removed from the database if the transaction fails
before completion. For example, we could start a transaction at the beginning of
a process that creates a new order and then, at the end of the process when all
the order information has been entered, complete the transaction. It is important
that other database users not see fragments of an incomplete order until it has
been completely entered and confirmed.

In an RDBMS, a transaction is a series of SQL statements that are treated as a single
unit that must completely work or completely fail.

SQL provides support for transactions with the COMMIT and ROLLBACK
statements. Some variation occurs in the syntax and handling of these com-
mands across different RDBMS vendors. Most vendors require no argument

140 Data b a s e s Demystified

with the COMMIT or ROLLBACK statement, so the statement is just the keyword
followed by the semicolon that ends every SQL statement.

In Oracle, a transaction is automatically started for each database user session
as soon as the user connects to the database. At any time, the database user can
issue a COMMIT, which makes all the database changes completed up to that
point permanent and therefore visible to any other database user. The user can
also issue a ROLLBACK, which reverses any changes made to the database. The
COMMIT and ROLLBACK statements not only end one transaction, but they also
begin a new one. There is one more wrinkle to remember: in Oracle, an auto-
matic commit occurs before any DDL statement. (DDL statements are covered
later in this chapter.)

By contrast, in Sybase and Microsoft SQL Server, transaction support is not
as automatic. The database user must issue a BEGIN TRANSACTION statement
to start a transaction. Once a transaction is started, changes made to the data-
base can be made permanent with a COMMIT TRANSACTION statement, or
they can be reversed using a ROLLBACK TRANSACTION statement. As of ver-
sion 5.1, MySQL supports the COMMIT and ROLLBACK statements, but it takes
no action when it processes them unless you first set autocommit=0 and then
use the START TRANSACTION statement to begin a new transaction. Some
RDBMSs, such as Microsoft Access, provide no transaction support at all.

The INSERT Statement
The INSERT statement in SQL is used to add new rows of data to tables. An
INSERT statement may also insert rows via a view, provided the following
conditions are met:

If the view joins multiple tables, the columns referenced by the •	 INSERT
statement must all be from the same table. Said another way, an INSERT
can only affect one table.

The view must include all the mandatory table columns in the base table. •	

If there are columns with NOT NULL constraints (and without default
values) that do not appear in the view, it is impossible to provide values
for those columns and therefore impossible to use the view to perform an
insert.

The INSERT statement takes two basic forms: one where column values are
provided in the statement itself, and the other where values are selected from
a table or view using a subquery. Let’s have a look at those two forms.

Chapter 4 I n t r od u c t io n t o S Q L 141

Example 4-17: INSERT with VALUES Clause
The INSERT with VALUES clause form of the INSERT statement can create
only one row each time it is run because the values for that one row of data are
provided in the statement itself. Here is an example of an INSERT statement
from the sample database script:

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (1, 'N', '2010-01-01', null, null ,'N', 'N');

Note the column list following the INSERT keyword. This comma-separated
list is optional, but if provided must always be enclosed in a pair of parentheses.
If you omit the list, the column values must be provided in the correct order
(that is, in the same order as the columns are physically ordered in the table),
and you cannot skip any column values. The statement may malfunction if
anyone adds columns to the table, even optional ones, so it is always a good idea
to provide the column list, even though it is more work to do so. Following the
column list is the keyword VALUES and then a list of the values for the col-
umns. This comma-separated list must also be enclosed in a pair of parentheses.
The items in the VALUES list have a one-to-one correspondence with the col-
umn list (if one was provided) or with the columns defined in the table or view
(if a column list was not provided). The keyword NULL (or null) may be used
to assign null values to columns in the list.

Example 4-18: INSERT with Subquery
The INSERT with subquery form of the INSERT statement creates one row in
the target table for each row retrieved from the source table or view. A sub-
query is used to retrieve the information that will be inserted. In the example
that follows, rows in an imaginary table called MOVIE_INPUT are used to
insert data into the MOVIE table:

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE, MOVIE_TITLE,
 RETAIL_PRICE_VHS, RETAIL_PRICE_DVD, YEAR_PRODUCED)
 SELECT MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE, MOVIE_TITLE,
 null, RETAIL_PRICE_DVD, YEAR_PRODUCED
 FROM MOVIE_INPUT;

If you wish to try this INSERT statement, you can find the statements used
to create the MOVIE_INPUT table in the Data Definition Language (DDL)

142 Data b a s e s Demystified

section later in this chapter. Notice that the RETAIL_PRICE_VHS column in
MOVIE is set to null because the literal null is used in the subquery instead of
a column name. This is necessary because the MOVIE_INPUT table does not
have a RETAIL_PRICE_VHS column. (VHS movies are being discontinued.)

The UPDATE Statement

Example 4-19: The UPDATE Statement
The UPDATE statement in SQL is used to update the data values for table (or
view) columns listed in the statement. A WHERE clause may be included to limit
the scope of the statement to rows matching its conditions; otherwise, the state-
ment attempts to update every row in the table (or view) named in the state-
ment. Here is an UPDATE statement that increases an employee’s hourly rate
by 5 percent, rounded to two decimal places:

UPDATE EMPLOYEE
 SET EMPLOYEE_HOURLY_RATE =
 ROUND((EMPLOYEE_HOURLY_RATE * 1.05),2)
 WHERE PERSON_ID = 2;

For each column to be updated, a SET clause is used to name the column
and the new value for the column. The new value provided may be a constant,
another column name, or any other expression that SQL can resolve to a col-
umn value. If the SET clause references multiple columns, the column names
and values must be in a comma-separated list. The UPDATE statement may
include a WHERE clause to limit the rows affected by the statement. If the
WHERE clause is omitted, the UPDATE statement will attempt to update every
row in the table (or view). If you forget this key point, remember our friend the
ROLLBACK statement, which can back out the results of the update in SQL
implementations that support it.

The DELETE Statement
The DELETE statement removes one or more rows from a table. The statement
may also reference a view, but only if the view is based on a single table (in other
words, views that join multiple tables cannot be referenced). A DELETE state-
ment does not reference columns because the statement automatically clears all
column data for any rows deleted. A WHERE clause may be included to limit the
rows affected by the DELETE statement; if the WHERE clause is omitted, the
statement attempts to delete all the rows in the referenced table. This statement
deletes all the rows in the EMPLOYEE table that have been terminated.

Chapter 4 I n t r od u c t io n t o S Q L 143

(It’s safe to run this statement because there are no terminated employees in the
sample database.)

DELETE FROM EMPLOYEE
 WHERE TERMINATION_DATE IS NOT NULL;

Data Definition Language (DDL) Statements
Data Definition Language (DDL) statements define the database objects but
do not insert or update any data stored within those objects (DML statements
serve that function). In SQL, there are three basic commands within DDL:

CREATE•	   Creates a new database object of the type named in the state-
ment

DROP•	   Drops (destroys) an existing database object of the type named in
the statement

ALTER•	   Changes the definition of an existing database object of the type
named in the statement

In the sections that follow, we look at the most commonly used DDL state-
ment types. DDL statements vary a lot across RDBMS vendors, so consult the
vendor’s documentation for more details.

The CREATE TABLE Statement
The CREATE TABLE statement adds a new table to the database. Here is an
example using the MOVIE_INPUT table:

CREATE TABLE MOVIE_INPUT (
MOVIE_ID INTEGER NOT NULL,
MOVIE_GENRE_CODE CHAR(5) NOT NULL,
MPAA_RATING_CODE CHAR(5) NOT NULL,
MOVIE_TITLE VARCHAR(100) NOT NULL,
RETAIL_PRICE_DVD NUMERIC(5,2) NULL,
YEAR_PRODUCED CHAR(4) NULL,
PRIMARY KEY (MOVIE_ID));

Note that a comma-separated list of columns is provided, along with the data
type and NULL or NOT NULL specification for each. You may recall that data
types were discussed in Chapter 2 and that there is a wide variation in sup-
ported data types across RDBMS vendors. The data types shown here apply to
MySQL and other databases that are fully compliant with the ANSI/ISO SQL
standard. The NULL / NOT NULL specification is optional, but if you omit it,

144 Data b a s e s Demystified

be sure you know the default that your SQL engine will assume. In most
RDBMSs, including MySQL and Oracle, NULL is the default. However, in oth-
ers, such as Sybase and Microsoft SQL Server, NOT NULL is the default unless
the default is changed at the database or server level. It is therefore safer, but
of course more work, to always specify either NULL or NOT NULL. Incidentally,
most RDBMSs require that primary key columns be explicitly specified as NOT
NULL. You’ll see how to create a primary key constraint on the EMPLOYEE_ID
column of this table in the “Primary Key Constraints” section a little further
along in this chapter.

This example shows the ANSI/ISO standard components of the CREATE
TABLE statement. There are many vendor extensions. For example, in Oracle,
the STORAGE clause may be included to specify the amount of physical space
that is to be allocated to the table, and a TABLESPACE clause may be included
to specify the tablespace that will hold the table’s data.

The ALTER TABLE Statement
The ALTER TABLE statement may be used to change many aspects of the
definition of a database table. Again, there is a wide variation in implementation
across RDBMS vendors, but generally speaking, the following types of changes
may be made using the ALTER TABLE statement:

Adding columns to the table•	

Removing columns from the table•	

Altering the data type for existing table columns•	

Changing physical storage attributes of the table•	

Adding, removing, or altering constraints•	

Because the implementation of constraints is the way we enforce business
rules in the database, we will take a closer look at them here. In many RDBMS
products, it is important to name the constraints because the names appear in
any error messages generated when constraint violations take place.

Referential Constraints
Here is an example of a referential constraint definition using the ALTER
TABLE statement:

ALTER TABLE MOVIE_INPUT
 ADD CONSTRAINT FK_MOVIE_INPUT_GENRE
 FOREIGN KEY (MOVIE_GENRE_CODE)
 REFERENCES MOVIE_GENRE (MOVIE_GENRE_CODE);

Chapter 4 I n t r od u c t io n t o S Q L 145

In this example, a referential constraint named FK_MOVIE_INPUT_GENRE
is added to the MOVIE_INPUT table to define the MOVIE_GENRE_CODE
column as a foreign key to the primary key column (MOVIE_GENRE_CODE)
of the MOVIE_GENRE table. This is the way we implement the relationships
we’ve identified in the logical database design.

In most SQL implementations, you can drop the foreign key constraint using
this syntax:

ALTER TABLE MOVIE_INPUT
 DROP CONSTRAINT FK_MOVIE_INPUT_GENRE;

However, MySQL uses a slightly different syntax:

ALTER TABLE MOVIE_INPUT
 DROP FOREIGN KEY FK_MOVIE_INPUT_GENRE;

Primary Key Constraints
Primary key constraints ensure that the column(s) designated as the primary
key for the table never have duplicate values. Nearly all RDBMSs create a
unique index to assist in enforcement of primary key constraints. An index is a
special database object containing the key value from one or more table col-
umns and pointers to the table rows that match the key value. Indexes can be
used for fast searching of a table based on the key value. Here is the definition
of the primary key constraint for the MOVIE_INPUT table:

ALTER TABLE MOVIE_INPUT
 ADD CONSTRAINT PK_EMPLOYEE_INPUT
 PRIMARY KEY (MOVIE_ID);

An index is a special database object containing the key value from one or more
table columns and pointers to the table rows that match the key value.

If you try to run this statement, it will fail because a primary key was already
defined in the CREATE TABLE statement for the MOVIE_INPUT table. How-
ever, if you wish to drop the existing primary key so you can run this statement,
you can do so using this statement:

ALTER TABLE MOVIE_INPUT
 DROP PRIMARY KEY;

Unique Constraints
In addition to using primary keys, we can force uniqueness of other column(s)
in a table using a unique constraint. A table may have only one primary key

146 Data b a s e s Demystified

constraint, but in addition it may have as many unique constraints as necessary.
Most RDBMSs use a unique index to assist with the enforcement of unique
constraints. For example, we can use a unique constraint to ensure that no two
employees have the same tax ID as follows:

ALTER TABLE EMPLOYEE
 ADD CONSTRAINT UNQ_EMPLOYEE_TAX_ID
 UNIQUE (EMPLOYEE_TAX_ID);

In most SQL implementations, you can drop the constraint using this
syntax:

ALTER TABLE EMPLOYEE
 DROP CONSTRAINT UNQ_EMPLOYEE_TAX_ID;

However, in MySQL, you must use the DROP INDEX option of the ALTER
TABLE statement to drop a unique constraint:

ALTER TABLE EMPLOYEE
 DROP INDEX UNQ_EMPLOYEE_TAX_ID;

Check Constraints
Check constraints can be used to enforce any business rule that can be applied
to a single column in a table. The condition included in the constraint must
always be true whenever a new row is added or the column data in an existing
row is updated, or else an error message is displayed. The following example
implements a check constraint that ensures that the EMPLOYEE_HOURLY_
RATE column in the EMPLOYEE table is always greater than zero:

ALTER TABLE EMPLOYEE
 ADD CONSTRAINT EMPLOYEE_CHK_RATE_MIN
 CHECK (EMPLOYEE_HOURLY_RATE > 0);

You can drop the check constraint using this syntax:

ALTER TABLE EMPLOYEES
 DROP CONSTRAINT EMPLOYEE_CHK_RATE_MIN;

NOTE  As of version 5.1, MySQL supports the syntax for adding a check constraint
as shown here, but it doesn’t actually create the constraint. Therefore, MySQL 5.1
provides no syntax support for dropping check constraints.

Chapter 4 I n t r od u c t io n t o S Q L 147

The CREATE VIEW Statement
Because a view is merely a stored query, any query that can be run using a SE-
LECT statement can be saved as a view in the database. View names must be
unique among all the tables, views, and synonyms in the database schema. In
Oracle, the OR REPLACE option may be included so that an existing view of
the same name will be replaced. The following example creates a view for the
movies with G, PG, and PG-13 ratings.

CREATE VIEW TAME_MOVIES AS
 SELECT MOVIE_ID, MOVIE_TITLE, MOVIE_GENRE_CODE
 FROM MOVIE
 WHERE MPAA_RATING_CODE IN ('G','PG','PG-13');

Running the following SQL statement will select the data from the view:

SELECT MOVIE_TITLE
 FROM TAME_MOVIES;

The CREATE INDEX Statement
The CREATE INDEX statement creates an index on one or more table columns.
As previously mentioned, indexes provide fast searching of a table based on one
or more key columns. Indexes on foreign keys can also greatly improve the
performance of joins. The RDBMS automatically maintains the index when
rows are added to or deleted from the database or when indexed column values
are updated. However, indexes take storage space and their maintenance takes
processing resources. The following example creates an index on the CUS-
TOMER_ACCOUNT_ID column in the CUSTOMER_TRANSACTION
table:

CREATE INDEX CUSTOMER_TRANSACTION_CUST_ID
 ON CUSTOMER_TRANSACTION (CUSTOMER_ACCOUNT_ID);

If the column values in the index will always be unique, the UNIQUE key-
word may be placed between the CREATE and INDEX keywords. As an alterna-
tive, a unique constraint may be added to the table, which indirectly creates the
unique index. Unique indexes are usually more efficient than non-unique
ones.

The DROP Statement
The DROP statement is used to remove database objects from the database when
they are no longer necessary. For table deletions, the CASCADE CONSTRAINTS

148 Data b a s e s Demystified

clause may be added in most SQL implementations to automatically remove
any referential constraints in which the table participates. When a table is
dropped, most objects depending on the table (indexes and constraints) are also
dropped. In most RDBMSs, however, views dependent on a dropped table re-
main, but are marked invalid so they cannot be used until the table is re-created.
Here are the DROP statements that remove the TAME_MOVIES view and the
MOVIE_INPUT table:

DROP VIEW TAME_MOVIES;
DROP INDEX CUSTOMER_TRANSACTION_CUST_ID; -- except MySQL
DROP INDEX CUSTOMER_TRANSACTION_CUST_ID
 ON CUSTOMER_TRANSACTION; -- MySQL syntax
DROP TABLE MOVIE_INPUT;

Data Control Language (DCL) Statements
A database privilege is the authorization to do something in the database. The
database user granting the privilege is called the grantor, and the database user
receiving the privilege is called the grantee.

A database privilege is the authorization to do something in the database.

Privileges fall into two broad categories:

System privileges•	   Permit the grantee to perform a general database func-
tion, such as creating new user accounts or connecting to the database

Object privileges•	   Permit the grantee to perform specific actions on spe-
cific objects, such as selecting from the EMPLOYEE table or updating the
MOVIE table

To reduce the tedium of managing privileges, most RDBMSs support storing
a group of privilege definitions as a single named object called a role. Roles may
then be granted to individual users, who then inherit all the privileges con-
tained in the role. RDBMSs that support roles also typically come with a num-
ber of predefined roles. Oracle, for example, has a role called DBA that contains
all the high-powered system and object privileges a database user needs in
administering a database. System privileges vary widely across SQL implemen-
tations, but object privileges are defined in a relatively common manner. There-
fore I will limit the examples in this topic to object privileges.

Chapter 4 I n t r od u c t io n t o S Q L 149

NOTE  Privileges are granted to database user accounts. The SQL statements in
this topic will run successfully only if the user account TEST exists in the DBMS. The
creation of user accounts varies widely across SQL implementations and there-
fore cannot be covered here.

The GRANT Statement
The following statement grants the select, insert, and update privileges on the
EMPLOYEE table to user TEST:

GRANT SELECT, INSERT, UPDATE ON EMPLOYEE TO TEST;

If an object referenced in an SQL statement exists in a schema other than
the one to which we are currently connected, we must qualify the object name
with the schema name. Here is the same statement qualified with the schema
name VIDEO_STORE:

GRANT SELECT, INSERT, UPDATE ON VIDEO_STORE.EMPLOYEE TO TEST;

Most RDBMSs that support privileges also provide syntax for giving the
grantee permission to grant the privilege to others. Most SQL implementations
support the WITH GRANT OPTION clause for object privileges. Oracle, how-
ever, uses the WITH ADMIN OPTION clause for system privileges, but still uses
the WITH GRANT OPTION for object privileges.

TIP   Even though most SQL products support giving grantees the privilege of
granting their privileges to others, I strongly recommend against doing so. It is
simply too easy to lose control of privileges when you allow people who have a
privilege to in turn grant it to others.

The REVOKE Statement
Granted privileges can be withdrawn using the REVOKE statement. For object
privileges, if WITH GRANT OPTION is exercised by the user, the revoke cas-
cades and everyone downstream loses the privilege as well. This is not neces-
sarily true for system privileges—consult your RDBMS manuals for details.
Better yet, if you never use the WITH GRANT OPTION and WITH ADMIN OP-
TION clauses, you will never have to worry about this problem. The privileges
shown in the previous section can be revoked with these commands:

REVOKE SELECT, INSERT, UPDATE ON EMPLOYEE FROM TEST;

150 Data b a s e s Demystified

Summary
In this chapter, you learned the history of SQL and the details of writing SQL
statements to select data (DQL); to modify data in database tables (DML);
to define, drop, and alter database objects (DDL); and to control database
privileges (DCL). In the next several chapters, you will learn how to design
databases.

Chapter 4 I n t r od u c t io n t o S Q L 151

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

SQL was first developed:1.	
In the 1970sA.	
In 1982B.	
By IBMC.	
By ANSID.	
Based on ANSI specificationsE.	

A SELECT without a WHERE clause:2.	
Always outputs results to a log fileA.	
Results in an error messageB.	
Selects all columns in the source table or viewC.	
Selects all rows in the source table or viewD.	
Lists only the definition of the table or viewE.	

A join without a WHERE clause or JOIN clause:3.	
Results in an outer joinA.	
Results in an error messageB.	
Returns no rows in the result setC.	
Returns only the rows in the first tableD.	
Results in a Cartesian productE.	

An UPDATE statement without a WHERE clause:4.	
Updates no rows in a tableA.	
Updates every row in a tableB.	
Results in an error messageC.	
Updates every column in a tableD.	
Results in a Cartesian productE.	

An INSERT statement:5.	
May contain a subqueryA.	
Must contain a VALUES listB.	
Must contain a column listC.	
May create multiple table rowsD.	
Creates a new tableE.	

152 Data b a s e s Demystified

The LIKE operator:6.	
Uses question marks as nonpositional wildcardsA.	
Uses underscores as nonpositional wildcardsB.	
Uses percent signs as nonpositional wildcardsC.	
Uses percent signs as positional wildcardsD.	
Uses underscores as positional wildcardsE.	

A self-join:7.	
Can be either an inner or outer joinA.	
Resolves recursive relationshipsB.	
May use a subquery to further limit returned rowsC.	
Involves two different tablesD.	
Can never result in a Cartesian productE.	

An SQL statement containing an aggregate function:8.	
Must contain a GROUP BY clauseA.	
May also include ordinary columnsB.	
May include either the GROUP BY clause or the ORDER BY clause, but not bothC.	
May also include calculated columnsD.	
Must not involve joining multiple tablesE.	

A COMMIT in Oracle:9.	
Is automatic just before any DDL statement is runA.	
Begins a new transactionB.	
Ends a transactionC.	
Causes changes made by a transaction to become permanentD.	
Makes changes effected by a transaction visible to all usersE.	

The WITH GRANT OPTION of the GRANT statement:10.	
Is highly recommended because it reduces the tedium of granting privilegesA.	
Is not recommended because of security risksB.	
Is supported by most SQL implementationsC.	
Allows users to grant the privilege to other usersD.	
Can only be used with system privilegesE.	

 153

c h a p t e r 5
The Database
Life Cycle

Before we delve into the particulars of database design, it is useful to under-
stand the framework in which the design takes place. The life cycle of a database
(or computer system) is the term we use for all the events that take place
between the time we first recognize a need for a database, continuing through
its development and deployment, and finally ending with the day it is retired
from service.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the framework (database life cycle) in which database design takes •
place.

Learn about the traditional development life cycle as well as nontraditional •
methods, including prototyping, Rapid Application Development (RAD), and
agile development.

154 Data b a s e s Demystified

Most businesses that develop computer systems have a formal process they fol-
low. The process ensures that development runs smoothly, is cost-effective, and
that the outcome is a complete computer system that meets expectations. Data-
bases are never designed and implemented in a vacuum—other components of
the complete system are always developed along with the database, such as the
user interface, application programs, and reports. All the work to be accom-
plished over the long term is typically divided into projects, with each project
having its own finite list of goals (sometimes called deliverables), an expected
timeframe for completion, and a project manager or leader who will be held
accountable for delivery of the project. To understand the database life cycle,
you must also understand the life cycle of the entire systems-development effort
and the way projects are organized and managed. In this chapter, we take a look
at both traditional and nontraditional systems-development processes.

Not all databases are built by businesses using formal projects and funding.
However, the disciplines outlined in this chapter can assist you in thinking
through your database project, asking the tough questions, before you embark
on an extended effort.

The Traditional Method
The traditional method for developing computer systems follows a process
called the system development life cycle (SDLC), which divides the work into
phases similar to the ones shown in Figure 5-1. There are perhaps as many
variations of the SDLC as there are authors, project management software ven-
dors, and companies that have elected to create their own methodology. How-
ever, they all have the basic components, and in that sense, are all cut from the
same cloth. I could argue the merits of one variation versus another, but that
would merely confuse matters when all we need is a basic overview. A good
textbook on systems analysis can provide greater detail should you need it.
Figure 5-1 shows the traditional SDLC steps in the left column, the basic project
activities in the middle column, and the database steps that support the project
activities in the right column. We will explore each step further in the sections
that follow. Note that the process is not always unidirectional—sometimes miss-
ing or incomplete information is discovered that requires you to go back one
phase and adjust the work done there. The dotted lines pointing back to prior
phases in Figure 5-1 serve as a reminder that a certain amount of rework is nor-
mal and expected during a project following the SDLC methodology.

Chapter 5 T h e D ata b a s e L i f e C ycl e 155

A systems development life cycle (SDLC) is a defined process for the development and
maintenance of computer systems.

Figure 5-1 • Traditional system development life cycle (SDLC)

Feasibility Study
Form Project Team

Collect Requirements
Analyze Requirements

Design Screens/forms/reports
Document Business Rules
Design Storyboards or Screen Flows

Specify Logical System Software
Specify Logical Hardware

Specify Physical System Software
Specify Physical Hardware

Construct Application Software
Build Application Development
and Test Environments

Create Production Environment
Install Application Components
Train Users
Rollout to Users

Respond to Reported Problems
Apply Mandated Changes
Respond to Change Requests

Database ActivitiesPhases Project Activities

Review DBMS Options
Assign Database Specialist to Team

Planning

Requirements
Gathering

Collect and Analyze User Views
Identify Preliminary Entities

Conceptual
Design

Develop Conceptual Data Model
Update Enterprise Conceptual Model

Logical Design Develop Logical Data Model
Perform Normalization

Physical Design Physical Database Design

Construction

Create Development and Test Databases
Test any Required Data Conversion

Implementation
and Rollout

Create Production Databases
Perform Required Data Conversion

Ongoing
Support

Database Performance Tuning
Database Software Patches
Schema Changes to Support
Application Changes

156 Data b a s e s Demystified

Planning
During the planning phase, the organization must reach a high-level under-
standing of where they are, where they want to be, and how they will reason-
ably approach or plan for getting from one place to the other. Planning often
covers a longer period than any one project. The overall information-systems
plan for the organization provides the basis from which projects should be
launched to achieve the overall objectives. For example, a long-range objective
in the plan might be “Increase profits by 15 percent.” In support of that objec-
tive, a project to develop an application system and database to track customer
profitability might be proposed.

Once a particular project is proposed, a feasibility study is usually launched
to determine if the project can be reasonably expected to achieve (or help
achieve) the objective and if preliminary estimates of time, staff, and materials
required for the project fit within the required timeframe and available budget.
Often a return on investment (ROI) or similar calculation is used to measure
the expected value of the proposed project to the organization. If the feasibility
study meets management approval, the project is placed on the overall sched-
ule for the organization, and the project team is formed. The composition of
the project team will change over the life of the project, with people added and
released as particular skill and staffing levels are needed. The one consistent
member of the project team will be the project manager (or project leader),
who is responsible for the overall management and execution of the project.

Many organizations assign a database specialist (database administrator or
data modeler) to projects at their inception, as shown in Figure 5-1. In a data-
driven approach, where the emphasis is on studying the data in order to discover
the processing that must take place to transform the data as required by the
project, early assignment of someone skilled at analyzing the data is essential. In
a process-driven approach, where the emphasis is on studying the processes
required in order to discover what the data should be, a database specialist is less
essential during the earliest phases of the project.

The database activities in this phase involve reviewing DBMS options and
determining whether the technologies currently in use meet the overall needs
of the project. Most organizations settle on one, or perhaps two, standard DBMS
products that they use for all projects. At this point, the goals of the project
should be compared with the current technology to ensure that the project can
reasonably be expected to be successful using that technology. If a newer version

Chapter 5 t h e D ata b a s e L i F e C Y C L e 157

of the DBMS is required, or if a completely different DBMS is required, now
is the time to find out so the acquisition and installation of the DBMS can be
started.

Requirements Gathering
During the requirements-gathering phase, the project team must gather and
document a high-level, yet precise, description of what the project is to accom-
plish. The focus must be on what rather than how; the “how” is developed dur-
ing the subsequent design phases. It is important for the requirements to include
as much as can be known about the existing and expected business processes,
business rules, and entities. The more work that is done in the early stages of a
project, the more smoothly the subsequent stages will proceed. On the other
hand, without some tolerance for the unknown (that is, those gray areas that
have no solid answers), analysis paralysis may occur, wherein the entire project
stalls while analysts spin their wheels looking for answers and clarifications that
are not forthcoming.

still struggling
there has been much debate over whether a process-driven or data-driven
approach works best. industry experience suggests that the very best results
are obtained by applying both a process-driven and a data-driven approach.
however, there is seldom time and staff to do so, so the next-best results for a
project involving databases come from the data-driven approach. Processes
still need to be designed, but if we study the data first, the required processes
become apparent. For example, in designing our customer profitability system,
if we have customer sales data and know that customers who place fewer,
larger orders are more profitable, then we can conclude that we need a process
to rank customers by order volume and size. On the other hand, if all we know
is that we need a process that ranks customers, it may take considerably more
work to arrive at the criteria we should use to rank them. Moreover, the data-
driven approach is much more likely to produce data structures that can be
shared by other current and future processes.

?

158 Data b a s e s Demystified

From a database design perspective, the items of most interest during require-
ments gathering are user views. Recall that a user view is the method employed
for presenting a set of data to the database user in a manner tailored to the
needs of that person or application. At this phase of development, user views
take the form of existing or proposed reports, forms, screens, web pages, and
the like.

Many techniques may be used in gathering requirements. The more com-
monly used ones are compared and contrasted here: interviews, a survey, obser-
vation, and document review. No particular technique is clearly superior to
another, and it is best to find a blend of techniques that works well for the
particular organization rather than to rely on one over the others. For example,
whether it is better to conduct a survey and follow up with interviews with key
people, or to start with interviews and use the interview findings to formulate
a survey, is often a question of what works best given the organization’s culture
and operating methods. The following subsections detail each technique, listing
some advantages and disadvantages to assist in decision making.

Conduct Interviews
Interviewing key individuals who have information about what the project is
expected to accomplish is a popular approach. One of the common errors,
however, is to interview only management. If representatives of the people who
are actually going to use the new application(s) and database(s) are not included,
the project may end up delivering something that is not practical because man-
agement may not fully understand the details of what is required to run the
business of the organization.

The advantages of requirements gathering by using interviews include

The interviewer can receive answers to questions that were not asked. •	

Side topics often come up that provide additional useful information.

The interviewer can learn a lot from the body language of the interviewee. •	

It is far easier to detect uncertainty and attempts at deception in person
rather than in written responses to questions.

The disadvantages include

Interviews take considerably more time than other methods.•	

Poorly skilled interviewers can “telegraph” the answers they are expecting •	

by the way they ask the questions or by their reaction to the answers re-
ceived.

Chapter 5 T h e D ata b a s e L i f e C ycl e 159

Conduct a Survey
Another popular approach is to write a survey seeking responses to key ques-
tions regarding the requirements for a project. The survey is sent to all the
decision makers and potential users of the application(s) and database(s) the
project is expected to deliver, and responses are analyzed for items to be
included in the requirements.

The advantages of requirements gathering by using surveys include

A lot of ground can be covered in a short time. Once the survey is written, it •	

takes little additional effort to distribute it to a wider audience if necessary.

Questions are presented in the same manner to every participant.•	

The disadvantages include

Surveys typically have very poor response rates. Consider yourself fortu-•	

nate if 10 percent respond without having to be prodded or threatened
with consequences.

Unbiased survey questions are surprisingly difficult to compose.•	

The project team does not get the benefit of the nonverbal clues that an •	

interview provides.

Observation
Observing the business operation and the people who will be using the new
application(s) and database(s) is another popular technique for gathering
requirements.

The advantages of requirements gathering through observation include

Assuming you watch in an unobtrusive manner, you get to see people fol-•	

lowing normal processes in everyday use. Note that these may not be the
processes that management believes are being followed, or even the ones
in existing documentation. Instead, you may observe adaptations that were
made so that the processes actually work or so they are more efficient.

You may observe events that people would not think (or dare) to mention •	

in response to questionnaires or interview questions.

The disadvantages include the following:

If the people know they are being watched, behavior changes, and you •	

may not get an accurate picture of their business processes. This is often
termed the Hawthorne effect after a phenomenon first noticed in the

160 Data b a s e s Demystified

Hawthorne Plant of Western Electric, where production improved not
because of improvements in working conditions but rather because man-
agement demonstrated interest in such improvements.

Unless enormous time is dedicated to observation, you may never see the •	

exceptions that subvert existing business processes. To bend an old anal-
ogy, you end up paving the cow path while cows are wandering on the
highway on the other side of the pasture due to a hole in the fence.

Travel to various business locations can add to project expense.•	

Document Review
This technique involves locating and reviewing all available documents for the
existing business units and processes that will be affected by the new program(s)
and database(s).

The advantages of requirements gathering through document review include

Document review is typically less time-consuming than any of the other •	

methods.

Documents often provide an overview of the system that is better thought •	

out compared with the introductory information you receive in an
interview.

Pictures and diagrams really are worth a thousand words each.•	

The disadvantages are

The documents may not reflect actual practices. Documents often deal •	

with what should happen rather than what really happens.

Documentation is often out of date.•	

Conceptual Design
The conceptual design phase involves designing the externals of the
application(s) and database(s). In fact, many methodologies use the term exter-
nal design for this project phase. The layout of reports, screens, forms, web
pages, and other data entry and presentation vehicles is finalized during this
phase. In addition, the flow of the external application is documented in the
form of a flowchart, storyboard, or screen flow diagram. This helps the project
team understand the logical flow of the system. Process-diagramming tech-
niques are discussed further in Chapter 7.

During this phase, the database specialist (DBA or data modeler) assigned to
the project updates the enterprise conceptual data model, which is usually

Chapter 5 T h e D ata b a s e L i f e C ycl e 161

maintained in the form of an entity-relationship diagram (ERD). New or
changed entities discovered are added to the ERD, and any additional or
changed business rules are also noted. The user views, entities, and business
rules are essential for the successful logical database design that follows in the
next phase.

Logical Design
During logical design, the bulk of the technical design of the application(s) and
database(s) included in the project is carried out. Many methodologies call this
phase internal design because it involves the design of the internals of the proj-
ect that the business users will never see.

The work to be accomplished by the application(s) is segmented into mod-
ules (individual units of application programming that will be written and
tested together), and a detailed specification is written for each unit. The speci-
fication should be complete enough that any programmer with the proper
programming skills can write the module and test it with little or no additional
information. Diagrams such as data flow diagrams or flowcharts (an older tech-
nique) are often used to document the logic flow between modules. Process
modeling is covered in more detail in Chapter 7.

From the database perspective, the major effort in this phase is normaliza-
tion, a technique developed by Dr. E.F. Codd for designing relational database
tables that are best for transaction-based systems (that is, those that insert,
update, and delete data in the relational database tables). Normalization is cov-
ered in great detail in Chapter 6. Normalization is the single most important
topic in this entire book. Once normalization is completed, the overall logical
data model for the enterprise (assuming one exists) is updated to reflect any
newly discovered entities.

Normalization is a technique developed by Dr. E.F. Codd for designing relational data-
base tables that are best for transaction-based systems.

Physical Design
During the physical design phase, the logical design is mapped or converted to
the actual hardware and systems software that will be used to implement the
application(s) and database(s). From the process side, there may be little or

162 Data b a s e s Demystified

nothing to do if the application specifications were written in a manner that
can be directly implemented. However, there is much work to be done in
specifying the hardware on which the application(s) and database(s) will be
installed, including capacity estimates for the processors, disk devices, and net-
work bandwidth on which the system will run.

On the database side, the normalized relations that were designed in the
prior logical design phase are implemented in the relational DBMS(s) to be
used. In particular, DDL is coded or generated to define the database objects,
including the SQL clauses that define the physical storage of the tables and
indexes. Preliminary analysis of required database queries is conducted to iden-
tify any additional indexes that may be necessary to achieve acceptable data-
base performance. An essential outcome of this phase is the DDL for creation
of the development database objects that the developers will need for testing
the application programs during the construction phase that follows. Physical
database design is covered in more detail in Chapter 8.

Construction
During the construction phase, the application developers code and test the
individual programming units. Tested program units are promoted to a system
test environment where the entire application and database system is assembled
and tested from end to end. Figure 5-2 shows the environments that are typi-
cally used as an application system is developed, tested, and implemented. Each
environment is a complete hardware and software environment that includes
all the components necessary to run the application system. Once system test-
ing is completed, the system is promoted to a quality assurance (QA) environ-
ment. Most medium and large organizations have a separate QA department
that tests the application system to ensure that it conforms to the stated require-
ments. Some organizations also have business users test the system to make sure

Figure 5-2 • Development hardware/software environments

Live Use of the Application(s)
and Database(s)

Development System Test Qa Test Staging Production

Programming
Unit Testing

System Testing Quality Assurance
Testing

User Acceptance
Testing

Stress Testing
User Training
Support Trouble
Shooting

Chapter 5 T h e D ata b a s e L i f e C ycl e 163

it also meets their needs. The sooner errors are found in a computer system, the
less expensive they are to repair. After QA has passed the application system,
it is promoted to a staging environment. It is important that the staging envi-
ronment be as near a duplicate of the production environment as possible. In
this environment, stress testing is conducted to ensure that the application and
database will perform reasonably when deployed into live production use.
Often final user training is conducted here as well because it will be most like
the live environment they will soon use.

Quality Assurance (QA) is a program for the systematic monitoring and evaluation
of a computer system to ensure that standards of quality are being met.

Again, the environments and usages shown in Figure 5-2 are typical, but
there are often variances from one organization to another. For example, stress
testing is sometimes called performance testing, and in some organizations, it is
conducted in the QA environment or in a separate environment dedicated to
performance testing.

The major work of the database designer is already complete by the time
construction begins. However, as each part of the application system is migrated
from one environment to the next, the database components needed by the
application must also be migrated, so the DBA is still involved. Hopefully, a
script is written that deploys the database components to the development
environment, and that script is reused in each subsequent environment. How-
ever, it is more complicated when an existing database is being enhanced or an
older data storage system is being replaced, because data must be converted
from the old storage structures to the new. Data transcends systems. Therefore,
data conversion between old and new versions of systems is quite common-
place, ranging from simply adding new tables and columns, to complex conver-
sions that require extensive programming efforts in and of themselves.

Implementation and Rollout
Implementation is the process of installing the new application system’s compo-
nents (application programs, forms or web pages, reports, database objects, and
so on) into the live system and carrying out any required data conversions.
Rollout is the process of placing groups of business users on the new application.

164 Data b a s e s DemystifieD

Sometimes a new project is implemented cold turkey, meaning everyone is
placed on the new version at the same time. However, with more complicated
applications or those involving large numbers of users, a phased implementa-
tion is often used to reduce risk. The old and new versions of the application
must run in parallel for a time while groups of users—often partitioned by
physical work location or by department—are trained and migrated over to the
new application. This method is often humorously referred to as the chicken
method (in contrast to the cold turkey method).

Ongoing Support
Once a new application system and database have been implemented in a pro-
duction environment, support of the application is often turned over to a pro-
duction support team. This team must be prepared to isolate and respond to
any issues that may arise, which could include performance issues, abnormal or
unexpected results, complete failures, or the inevitable requests for enhance-
ments. With enhancements, it is best to categorize and prioritize them and then
fold them into future projects. However, genuine errors found in the existing
application or database (called bugs in IT slang) must be fixed more immedi-
ately. Each bug fix becomes a mini-project, where all the SDLC phases must
be revisited. At the very least, documentation must be updated as changes are
made. As noted in Figure 5-2, the staging environment provides an ideal place
for verifying errors and the fixes for them, and makes it possible to fix errors in
parallel with the next major enhancement to the application system, which
may have already been started in the development environment.

still struggling
there is often confusion when business users encounter problems with a
computer system regarding which are defects versus enhancement requests.
You must go back to the requirements for the system to make the determination.
if the system does not perform to the stated requirements, then a defect has
been found; else the solution to the problem should be classified as an
enhancement request.

?

Chapter 5 T h e D ata b a s e L i f e C ycl e 165

Assuming no gross errors were made during database design, the database
support required during this phase is usually minor. Here are some of the tasks
that may be required:

Patches must be applied when the problems turn out to be bugs in the •	

vendor’s RDBMS software.

Performance tuning, such as moving data files or adding indexes, may be •	

necessary to circumvent performance problems.

Space must be monitored and storage added as the database grows.•	

Some application bug fixes may require new table columns or alterations •	

to existing columns. If testing was done well, gross errors that require
extensive database changes simply will not occur. Some application
changes are required by statutory or regulatory changes beyond the con-
trol of the organization, and those changes can lead to extensive modifica-
tions to application(s) and database(s).

Nontraditional Methods
In response to the belief that SDLC projects take too much time and too many
resources, some nontraditional methods have come into routine use in some
organizations. The most prevalent of these are prototyping, Rapid Application
Development (RAD), and agile software development.

Prototyping
Prototyping involves rapid development of the application by using iterative sets
of design, development, and implementation steps to determine user require-
ments. Extensive business user involvement is required throughout the devel-
opment process. In its extreme form, a meeting is held during the business day
to review the latest iteration of the application, followed by a development
team working through the evening and often late into the night. The next
iteration is then reviewed during the following workday.

Some prototyping techniques carry all the way through to a production ver-
sion of the application and database. In this variation, iterations have increasing
levels of detail added to them until they become completely functional applica-
tions. If this path is chosen, prototyping never ends, and even after implementa-
tion and rollout, any future enhancements fall right back into more prototyping.

166 Data b a s e s Demystified

The most common downside to this implementation technique is development
team burnout. Other common downsides include application code quality
issues and poor performance.

Another variation of prototyping restricts the effort to only the definition of
requirements. Once requirements and the user-facing parts of the conceptual
design (that is, user views) are determined, a traditional SDLC methodology is
used to complete the project. IBM introduced a version of this methodology
called Joint Application Design (JAD), which was highly successful in situations
where user requirements could not be determined using more traditional tech-
niques. The biggest exposure for this variant of prototyping is in not setting and
maintaining expectations with the business sponsors of the project. The proto-
type is more or less a façade, much like a movie set where the buildings look real
from the front, but have no substance beyond that. Nontechnical audiences have
no understanding of what it takes to develop the logic and data storage structures
that form the inner workings of the application, and they become most disap-
pointed when they realize that what looked like a complete, functional applica-
tion system was really just an empty shell. However, when done correctly, this
technique can be remarkably successful in determining user requirements that
describe precisely the application system the business users want and need.

Joint Application Design (JAD) is a prototyping process used to collect business
requirements for new information systems.

Rapid Application Development (RAD)
Rapid Application Development (RAD) is a software development process that
allows functioning application systems to be built in as little as 60–90 days.
Compromises are often made using the 80/20 rule, which assumes that
80 percent of the required work can be completed in 20 percent of the time.
Complicated exception handling, for example, can be omitted in the interest
of delivering a working system sooner. If the process is repeated on the same
set of requirements, the system is ultimately built out to meet 100 percent of
the requirements in a manner similar to prototyping.

RAD is not useful in controlling project schedules or budgets, and in fact,
requires a project manager who is highly skilled at managing schedules and
controlling costs. It is most useful in situations where a rapid schedule is more
important than product quality (measured in terms of conforming to all known
requirements).

Chapter 5 T h e D ata b a s e L i f e C ycl e 167

Agile Software Development
Agile software development methodologies prescribe a disciplined project
management process for iterative development where requirements and solu-
tions evolve through the collaborative efforts of cross-functional teams with
emphasis placed on face-to-face communication among team members. The
methodology promotes frequent review of completed work, rapid adaptation
of changes, teamwork, individual accountability, and a business philosophy that
aligns development with the needs and goals of the organization and its busi-
ness partners.

While many agile methodologies are available, one of the common themes
is to break tasks down into small increments with minimal planning. Iterations
are short periods that typically span one to four weeks. Each iteration consists
of a full software development cycle, including planning, requirements, analysis,
design, construction, and testing. Iterations usually conclude with the demon-
stration of a working product for the business stakeholders. Feedback from
demonstrations must be segregated into both bug fixes, which must be resolved
for the iteration to be considered complete, and enhancement requests, which
will be considered for inclusion in subsequent iterations. The emphasis on
working software as the most important measure of progress reduces the need
to document requirements and designs prior to construction.

Summary
In this chapter, you learned about the systems development life cycle, including
traditional and nontraditional methods. In the next chapter, you will learn about
logical database design using the normalization process.

168 Data b a s e s Demystified

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

During the planning phase of an SDLC project:1.	
Prototyping takes place.A.	
A database specialist may be assigned to the project.B.	
The database design is normalized.C.	
A feasibility study is often conducted.D.	
Interviews are conducted.E.	

The advantages of conducting interviews are2.	
Interviews take less time than other methods.A.	
Entities are more easily discovered.B.	
A lot can be learned from nonverbal responses.C.	
Questions are presented more objectively compared with survey techniques.D.	
Answers may be obtained for unasked questions.E.	

During the conceptual design phase:3.	
New entities may be discovered.A.	
Web pages may be designed.B.	
The conceptual data model is updated.C.	
Application program modules are specified.D.	
Normalization takes place.E.	

During the logical design phase:4.	
Program modules are written.A.	
Program specifications are written.B.	
The internal components of the application are designed.C.	
System testing takes place.D.	
Normalization takes place.E.	

During the physical design phase:5.	
DDL is written or generated to define database objects.A.	
Hardware capacity planning takes place.B.	
Additional hardware is added as the database grows.C.	
Additional database indexes may be added.D.	
Application programs are written.E.	

Chapter 5 T h e D ata b a s e L i f e C ycl e 169

During the construction phase:6.	
Data conversion for production deployment takes place.A.	
DBA work may be limited to merely running deployment scripts.B.	
Application programs are tested.C.	
Quality assurance testing takes place.D.	
New entities are discovered.E.	

During implementation and rollout:7.	
Quality assurance testing takes place.A.	
Users are placed on the live system.B.	
Enhancements are designed.C.	
The old and new applications may be run in parallel.D.	
User training takes place.E.	

During ongoing support:8.	
The staging environment is no longer required.A.	
Bug fixes may take place.B.	
Patches may be applied if needed.C.	
Enhancements are immediately implemented.D.	
Storage for the database may require expansion.E.	

The database is initially constructed in the:9.	
Development environment.A.	
System test environment.B.	
Quality assurance environment.C.	
Staging environment.D.	
Production environment.E.	

Agile software development includes10.	
Iterations that run from 7 to 14 days.A.	
Frequent review of completed software.B.	
Thorough project planning before construction begins.C.	
Expanded requirements gathering.D.	
Face-to-face communication among team members.E.	

This page intentionally left blank

 171

c h a p t e r 6
Logical Database
Design Using
Normalization

In this chapter, you will learn how to perform logical database design using a
process called normalization. In terms of understanding relational database
technology, this is the most important topic in this book because it is normal-
ization that teaches you how to best organize your data into tables.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the normalization process.•
Apply the normalization process during logical database design.•
Build normalization skills using two practice design problems.•

172 Data b a s e s Demystified

Overview of Normalization
Normalization is a technique for producing a set of relations that possess cer-
tain properties. Dr. E.F. (Ted) Codd, the father of the relational database, devel-
oped the process in 1972, introducing three normal forms. The name was a bit
of a political gag at the time. President Nixon was “normalizing” relations with
China, so Codd figured if you could normalize relations with a country, you
should be able to “normalize” data relations as well. Additional normal forms
were added later, as discussed toward the end of this chapter.

The normalization process is shown in Figure 6-1. On the surface, it is quite
simple and straightforward to understand, but it takes considerable practice to
execute the process consistently and correctly. Briefly, we take any relation (data
represented logically in a two-dimensional [2-D] format using rows and col-
umns) and choose a unique identifier for the entity that the relation represents.
Then, through a series of steps that apply various rules, we reorganize the rela-
tion into continuously more progressive normal forms. The definitions of each
of these normal forms and the process required to arrive at each one are cov-
ered in the sections that follow.

Throughout the normalization process, we will use the logical terms for
everything. For example, Codd used the term tuple for a collection of related
data items that form one logical record. The more familiar physical term is a

Figure 6-1 • The normalization process

Unnormalized
Relation

Remove Repeating and
Multivalued Attributes

First Normal
form Relation

Remove Partially
Dependent Attributes

Second Normal
form Relation

Remove Transitively
Dependent Attributes

Third Normal
form Relation

Apply Additional
Normal forms (?)

Fully Normalized
Relation

Chapter 6 L O g i C a L D ata b a s e D e s i g n U s i n g n O r M a L i z at i O n 173

row of data. The following table may help you remember the correspondence
between the logical and physical terms:

Logical Term Physical Term
Relation Table
Unique identifier Primary key
Attribute Column
Tuple Row

The Need for Normalization
In his early work with relational database theory, Codd discovered that un-
normalized relations presented certain problems when attempts were made
to update the data in them. He used the term anomalies for these problems.
The reason we normalize the relations is to remove these anomalies from the
data. These anomalies are essential to understand because they also tell us
when it is acceptable to bend the rules during physical design by “denormalizing”
the relations. Denormalization is covered in a section near the end of this
chapter. To bend the rules, you have to understand why the rules exist in the
first place.

still struggling
For beginners, it is often easier to think in terms of the physical objects that will
eventually be created from our logical design. this is because learning to think
of databases at the conceptual and logical levels of abstraction instead of the
physical level is, in fact, a very difficult discipline for your mind to master. if you
find yourself thinking of tables instead of relations, and primary keys instead of
unique identifiers, you need to break the habit as soon as possible. those who
think only physically while attempting to normalize tables run into difficulties
later because there is not necessarily a one-to-one correspondence between
normalized relations and tables. in fact, it is physical database design that trans-
forms the normalized relations into relational tables, and there is some latitude
in mapping normalized relations to physical tables.

?

174 Data b a s e s Demystified

Figure 6-2 shows an invoice from Acme Industries, a fictitious company. The
invoice contains attributes that are typical for a printed invoice from a supply
company. Conceptually, the invoice is a user view. We will use this invoice
example throughout our exploration of the normalization process.

Insert Anomaly
The term insert anomaly refers to a situation where you cannot insert a new
tuple into a relation because of an artificial dependency on another relation.
The error that has caused the anomaly is that attributes of two different entities
are mixed into the same relation. Referring to Figure 6-2, we see that the num-
ber (identifier), name, and address of the customer are included in the invoice
view. Were we to merely make a relation from this view as it is, and eventually
make a table from the relation, we would soon discover that we could not insert
a new customer into the database unless they had bought something. This is
because all the customer data is embedded in the invoice.

An insert anomaly is a situation where you cannot insert a new tuple into a relation
because of an artificial dependency on another relation.

Delete Anomaly
The delete anomaly is just the opposite of the insert anomaly. It refers to a situ-
ation where a deletion of data about one particular entity causes unintended
loss of data that characterizes another entity. In the case of the Acme Industries

Figure 6-2 • Invoice from Acme Industries

Acme Industries
INVOICE

Customer Number: 1454837
Customer: W.Coyote
 General Deliver
 Falling Rocks, AZ 84211
 (599) 555-9345y

Terms: Net 30
Ship Via: USPS

Order Date: 09/01/2010

Product No. Description Quantity Unit Price Extended Amount

TOTAL ORDER AMOUNT: $ 128,321.28

SPR-2290
STR-67
HLM-45
SFR-1
ELT-1

Super Strength Springs
Foot Straps,leather
Deluxe Crash Helmet
Rocket, solidfuel
Emergency Location Transmitter

24.00
2.50

67.88
128,200.40

79.88

$48.00
$ 5.00
$67.88

$ 128,200.40
** FREE GIFT **

2
2
1
1
1

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 175

invoice, if we delete the last invoice that belongs to a particular customer, we
lose all the data related to that customer. Again, this is because data from two
entities (customers and invoices) would be incorrectly mixed into a single rela-
tion if we merely implemented the invoice as a table without applying the
normalization process to the relation.

A delete anomaly is a situation where a deletion of data about one particular entity
causes unintended loss of data that characterizes another entity.

Update Anomaly
The update anomaly refers to a situation where an update of a single data value
requires multiple tuples (rows) of data to be updated. In our invoice example,
if we wanted to change the customer’s address, we would have to change it on
every single invoice for the customer. This is because the customer address
would be redundantly stored in every invoice for the customer. To make mat-
ters worse, redundant data provides the golden opportunity to update many
copies of the data, but to miss a few of them, which results in inconsistent data.
The mantra of the skilled database designer is, For each attribute, capture it
once, store it once, and use that one copy everywhere.

An update anomaly is a situation where an update of a single data value
requires multiple tuples (rows) of data to be updated.

Applying the Normalization Process
The normalization process is applied to each user view collected during earlier
design stages. Some people find it easier to apply the first step (choosing a pri-
mary key) to each user view, then to apply the next step (converting to first
normal form), and so forth. Other people prefer to take the first user view and
apply all the normalization steps to it, then the next user view, and so forth.
With practice, you’ll know which one works best for you, but whichever you
do, you must be very systematic in your approach, lest you miss something. Our
example has only one user view (the Acme Industries invoice), so this may
seem a moot point, but two practice problems toward the end of the chapter

176 Data b a s e s Demystified

contain several user views each, so you will be able to try this out soon enough.
Using dry-erase markers or chalk on a wall-mounted board is most helpful be-
cause you can easily erase and rewrite relations as you go.

We start with each user view being a relation, which means we represent it
as if it is a 2-D table. As you work through the normalization process, you will
be rewriting existing relations and creating new ones. Some find it useful to
draw the relations with sample tuples (rows) of data in them to assist in visual-
izing the work. If you take this approach, be certain that your data represents
real-world situations. For example, you might not have thought of two custom-
ers having exactly the same name in our invoice example, so then your normal-
ization results could be incorrect. Therefore, always think of as many possibilities
as you can when using this approach. Figure 6-3 shows the information from
our invoice example (Figure 6-2) represented in tabular form. Only one invoice
is shown here, but many more could be filled in to show examples of multiple
invoices per customer, multiple customers, the same product on multiple
invoices, and so on.

You probably noticed that each invoice has many line items. This will be
essential information when we get to first normal form. In Figure 6-3, multiple
values are placed in the cells for the columns that hold data from the line items.
We call these multivalued attributes because they have multiple values for at
least some tuples (rows) in the relation. If we were to construct an actual data-
base table in this manner, our ability to use a language such as SQL to query
those columns would be very limited. For example, finding all orders that con-
tained a particular product would require us to parse the column data with a
LIKE operator. Updates would be equally awkward because SQL was not
designed to handle multivalued columns. Worst of all, a delete of one product
from an invoice would require an SQL UPDATE instead of a DELETE because

Figure 6-3 • Acme Industries invoice represented in tabular form

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 177

we would not want to delete the entire invoice. As we look at first normal form
later in this chapter, you will see how to mitigate this problem.

Figure 6-4 shows another way we could organize a relation using the invoice
shown in Figure 6-2. Here, the multivalued column data has been placed in
separate rows, and the other columns’ data has been repeated to match. The
obvious problem here is all the repeated data. For example, the customer’s
name and address are repeated for each line item on the invoice, which is not
only wasteful of resources, but also exposes us to inconsistencies whenever the
data is not maintained in the same way (for example, we update the city for
one line item but not all the others).

Rewriting user views into tables with representative data is a tedious and
time-consuming process. For this reason, we’ll simply write the attributes as a
list and visualize them in our minds as 2-D tables. This takes some practice and
some training of the mind, but once mastered, it speeds your ability to normal-
ize relations several-fold over writing out exhaustive examples. Here is the list
for the invoice example from Figure 6-2:

INVOICE: Customer Number, Customer Name, Customer Address,
 Customer City, Customer State, Customer Zip Code,
 Customer Phone, Terms, Ship Via, Order Date,
 Product Number, Product Description, Quantity,
 Unit Price, Extended Amount, Total Order Amount

For clarity, a name for the relation has been added, with the relation name
in all capital letters and separated from the attributes with a colon. This is the

Figure 6-4 • Acme Industries invoice represented without multivalued attributes

178 Data b a s e s Demystified

convention I will use for the remainder of this chapter. However, if another
technique works better for you, by all means use it. The best news of all is that
no matter which representation we use (Figure 6-3, Figure 6-4, or the preced-
ing list), if we properly apply the normalization process and its rules, we will
arrive at the same database design.

Choosing a Primary Key
As we normalize, we consider each user view as a relation. In other words, we
conceptualize each view as if it is already implemented in a 2-D table. The first
step in normalization is to choose a primary key from among the unique iden-
tifiers we find in the relation.

Recall that a unique identifier is a collection of one or more attributes that
uniquely identifies each occurrence of a relation. In many cases, a single attri-
bute can be found. In our example, the customer number on the invoice
uniquely identifies the customer data within the invoice, but because a cus-
tomer may have multiple invoices, it is inadequate as an identifier for the entire
invoice.

When no single attribute can be found to use for a unique identifier, we
can concatenate several attributes to form the unique identifier. You will see
this happen with our invoice example when we split the line items from the
invoice as we normalize it. It is very important to understand that when a
unique identifier is composed of multiple attributes, the attributes them-
selves are not combined—they still exist as independent attributes and will
become individual columns in the table(s) created from our normalized
relations.

In a few cases, there is no reasonable set of attributes in a relation that can
be used as the unique identifier. When this occurs, we must invent a unique
identifier, often with values assigned sequentially or randomly as we add entity
occurrences to the database. This technique (some might say “act of despera-
tion”) is the source of such unique identifiers as social security numbers,
employee IDs, and vehicle identification numbers. We call unique identifiers
that have real-world meaning natural identifiers and call those that do not
(which of course includes the ones we must invent) surrogate or artificial
identifiers. Our invoice example appears to have no natural unique identifier
for the relation. We could try using customer number combined with order
date, but if a customer has two invoices on the same date, this would not be
unique. Therefore, it would be much better to invent one, such as an invoice
number.

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g N o r m a l i z at i o n 179

A surrogate identifier is an identifier that has no real-world meaning and is used in
place of the natural identifier.

Whenever we choose a unique identifier for a relation, we must be certain
that the identifier will always be unique. If there is only one case where it is not
unique, we cannot use it. People’s names, for example, make lousy unique iden-
tifiers. You may have never met someone with exactly your name, but other
people out there have completely identical names. As an example of the harm
poorly chosen unique identifiers cause, consider the case of the Brazilian gov-
ernment when it started registering voters in 1994 to reduce election fraud.
Father’s name, mother’s name, and date of birth were chosen as the unique
identifier. Unfortunately, this combination is only unique for siblings born on
different dates, so as a result, when siblings born on the same date (twins, trip-
lets, and so on) tried to register to vote, the first one that showed up was
allowed to register, and the rest were turned away. Sound impossible? It’s not—
this really happened. And to make matters worse, citizens are required to vote
in Brazil and sometimes have to prove they voted in order to get a job. Someone
should have spent more time thinking about the uniqueness of the chosen
“unique” identifier.

Sometimes a relation will have more than one possible unique identifier.
When this occurs, we call each possibility a candidate. Once we have identified
all the possible candidates for a relation, we must choose one of them to be the
primary key for the relation. Choosing a primary key is essential to the normal-
ization process because all the normalization rules refer to the primary key. The
criteria for choosing the primary key from among the candidates is as follows
(in order of precedence, most important first):

If there is only one candidate, choose it.•	

Choose the candidate least likely to have its value change.•	 Changing primary
key values once we store the data in tables is a complicated matter be-
cause the primary key can appear as a foreign key in many other tables.
Incidentally, surrogate keys are almost always less likely to change com-
pared with natural keys.

Choose the simplest candidate.•	 The one that is composed of the fewest at-
tributes is considered the simplest.

180 Data b a s e s Demystified

Choose the shortest candidate.•	 This is purely an efficiency consideration.
However, when a primary key can appear in many tables as a foreign key,
it is often worth it to save some space with each one.

When there are multiple possible unique identifiers for a relation, we call each a can-
didate identifier.

For our invoice example, we have elected to add a surrogate primary identi-
fier called Invoice Number. This gives us a simple primary key for the Acme
Industries invoices that is guaranteed unique because we can have the database
automatically assign sequential numbers to new invoices as they are generated.
This will likely make Acme’s accountants happy at the same time, because it
gives them a simple tracking number for the invoices. There are many conven-
tions for signifying the primary key as we write the contents of relations. Using
capital letters causes confusion because we tend to write acronyms such as
DOB (date of birth) that way, and those attributes are not always the primary
key. Likewise, underlining and bolding the attribute names can be troublesome
because these may not always display in the same way. Therefore, we’ll settle
on the use of a pound sign (#) preceding the attribute name(s) of the primary
key. Rewriting our invoice relation in list form with the primary key added, we
get the following:

INVOICE: # Invoice Number, Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone, Terms,
 Ship Via, Order Date, Product Number,
 Product Description, Quantity, Unit Price,
 Extended Amount, Total Order Amount

First Normal Form: Eliminating Repeating Data
A relation is said to be in first normal form when it contains no multivalued at-
tributes. That is, every intersection of a row and column in the relation must
contain at most one data value (saying “at most” allows for missing or null val-
ues). Sometimes, we will find a group of attributes that repeat together, as with
the line items on the invoice. Each attribute in the group is multivalued, but
several attributes are so closely related that their values repeat together. This is
called a repeating group, but in reality, it is just a special case of the multivalued
attribute problem.

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 181

A relation is said to be in first normal form when it contains no multivalued
attributes.

By convention, we enclose repeating groups and multivalued attributes in
pairs of parentheses. Rewriting our invoice in this way to show the line item
data as a repeating group, we get this:

INVOICE: # Invoice Number, Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone, Terms,
 Ship Via, Order Date, (Product Number,
 Product Description, Quantity, Unit Price,
 Extended Amount), Total Order Amount

It is essential to understand that although we know there are many custom-
ers of Acme Industries, there is only one customer for any given invoice, so the
customer data on the invoice is not a repeating group. You may have noticed
that the customer data for a given customer is repeated on every invoice for
that customer, but this is a problem that we will address when we get to third
normal form. Because there is only one customer per invoice, the problem is
not addressed when we transform the relation to first normal form.

To transform unnormalized relations into first normal form, we must move
multivalued attributes and repeating groups to new relations. Because a repeat-
ing group is a set of attributes that repeat together, all attributes in a repeating
group should be moved to the same new relation. However, a multivalued
attribute (individual attributes that have multiple values) should be moved to
its own new relation rather than combined with other multivalued attributes
in the new relation. As you will see later, this technique avoids fourth normal
form problems. The procedure for moving a multivalued attribute or repeating
group to a new relation is as follows:

Create a new relation with a meaningful name. Often, it makes sense to 1.	
include all or part of the original relation’s name in the new relation’s
name.

Copy the primary key from the original relation to the new one. The data 2.	
depended on this primary key in the original relation, so it must still de-
pend on this key in the new relation. The copied primary key now be-
comes a foreign key to the original relation. As you apply normalization to

182 Data b a s e s Demystified

a database design, always keep in mind that eventually you will have to
write SQL to reproduce the original user view from which you started. So,
having foreign keys to join things back together is essential.

Move the repeating group or multivalued attribute to the new relation. 3.	
(The word “move” is used because these attributes are “removed” from the
original relation.)

Make the primary key (as copied from the original relation) unique by 4.	
adding attributes from the repeating group to it. If you move a multival-
ued attribute, which is basically a repeating group of only one attribute, it
is that attribute that is added to the primary key. This will seem odd at
first, but the primary key attribute (or set of attributes) that you copied
from the original table is a foreign key in the new relation. It is quite normal
for part of a primary key to also be a foreign key. One additional point: It
is perfectly acceptable to have a relation where all the attributes are part
of the primary key (that is, there are no “non-key” attributes). This is rela-
tively common in intersection tables.

Optionally, you may choose to replace the primary key with a single sur-5.	
rogate key attribute. If you do so, you must keep the attributes that make
up the natural primary key formed in steps 2 and 4.

For our Acme Industries invoice example, here is the result of converting the
original relation to first normal form:

INVOICE: # Invoice Number, Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone, Terms,
 Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
 Product Description, Quantity, Unit Price,
 Extended Amount

Note the following:

The Invoice Number attribute was copied from INVOICE to INVOICE •	

LINE ITEM, and Product Number was added to it to form the primary
key of the INVOICE LINE ITEM relation.

The entire repeating group (Product Number, Product Description, Quan-•	

tity, Unit Price, and Extended Amount) was removed from the INVOICE
relation.

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 183

Invoice Number is still the primary key in INVOICE, and it now also •	

serves as a foreign key in INVOICE LINE ITEM as well as being part of
the primary key of INVOICE LINE ITEM.

There are no repeating groups or multivalued attributes in the relations, •	

so they are therefore in first normal form.

An interesting consequence of composing a natural primary key for the
INVOICE LINE ITEM relation is that we cannot put the same product on a
given invoice more than one time. While preventing a product from appearing
on an invoice more than once might be desirable, it could also restrict Acme
Industries. We have to understand their business rules to know. If Acme Indus-
tries wants the option of putting multiple line items on the same invoice for
the same product (perhaps with different prices), we should make up a surro-
gate key instead. Moreover, some believe that primary keys composed of mul-
tiple attributes are undesirable, along with software products that simply do not
support them. The alternative is to make up a surrogate primary key for the
INVOICE LINE ITEM relation. If we choose to do so, the relation may be
rewritten this way:

INVOICE LINE ITEM: # Invoice Line Item Number,
 Invoice Number, Product Number,
 Product Description, Quantity,
 Unit Price, Extended Amount

I am going to use the previous form (the one with the compound primary
key made up of Invoice Number and Product Number, often called the natural
key) as we continue with normalization.

Second Normal Form: Eliminating Partial Dependencies
Before we explore second normal form, you must understand the concept of
functional dependence. For this definition, we’ll use two arbitrary attributes, clev-
erly named “A” and “B.” Attribute B is functionally dependent on attribute A if at
any moment in time no more than one value of attribute B is associated with a
given value of attribute A. Lest you wonder what planet I lived on before this
one, let me try to make the definition more understandable. First, if we say that
attribute B is functionally dependent on attribute A, what we are also saying is
that attribute A determines attribute B, or that A is a determinant (unique iden-
tifier) of attribute B. Second, let’s look again at the first normal form relations
in our Acme Industries example:

184 Data b a s e s Demystified

INVOICE: # Invoice Number, Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone, Terms,
 Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
 Product Description, Quantity, Unit Price,
 Extended Amount

Functional dependence is the term used when an attribute (or set of attributes) deter-
mines another attribute.

In the INVOICE relation, we can easily see that Customer Number is func-
tionally dependent on Invoice Number because at any point in time, there can
be only one value of Customer Number associated with a given value of Invoice
Number. The very fact that the Invoice Number uniquely identifies the Cus-
tomer Number in this relation means that, in return, the Customer Number is
functionally dependent on the Invoice Number.

In the INVOICE LINE ITEM relation, we can also say that Product Descrip-
tion is functionally dependent on Product Number because, at any point in
time, there is only one value of Product Description associated with the Prod-
uct Number. However, the fact that the Product Number is only part of the key
of the INVOICE LINE ITEM is the very issue addressed by second normal
form.

A relation is said to be in second normal form if it meets both the following
criteria:

The relation is in first normal form.•	

All non-key attributes are functionally dependent on the •	 entire primary
key.

A relation is in second normal form if it is in first normal form and all non-key attri-
butes are functionally dependent on the entire primary key.

If we look again at Product Description, it should be easy to see that Product
Number alone determines the value. Said another way, if the same product
appears as a line item on many different invoices, the Product Description is

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 185

the same regardless of the Invoice Number. Or we can say that Product Descrip-
tion is functionally dependent on only part of the primary key, meaning it
depends only on Product Number and not on the combination of Invoice Num-
ber and Product Number.

It should also be clear by now that second normal form only applies to rela-
tions where we have concatenated primary keys (that is, those made up of
multiple attributes). If we have a primary key composed of only a single attri-
bute, as we do with the first normal form version of the INVOICE relation, and
the primary key is atomic (that is, has no subparts that make sense by them-
selves), as all attributes should be, then it is simply not possible for anything to
depend on part of the primary key. It follows, then, that any first normal form
relation that has only a single attribute for its primary key is automatically in
second normal form.

Looking at the INVOICE LINE ITEM relation, however, second normal form
violations should be readily apparent: Product Description and Unit Price depend
only on the Product Number instead of the combination of Invoice Number and
Product Number. But not so fast! What about price changes? If Acme decides to
change their prices, how could we possibly want that change to be retroactive
for every invoice we have ever created? After all, an invoice is an official record
that we must maintain for seven years, per current tax laws. This is a common
dilemma with fast-changing attributes such as prices. Either we must be able to
recall the price at any point in time, or we must store the price with the invoice
so we can reproduce the invoice as needed (that is, when the friendly tax audi-
tors come calling). For simplicity, we have elected to store the price in two
places, one being the current selling price, and the other being the price at the
time the sale was made. Because the latter is a snapshot at a point in time that is
not expected to change, there are no anomalies to this seemingly redundant stor-
age. An alternative would be to store a date-sensitive price history somewhere
that we could use to reconstruct the correct price for any invoice. That is a prac-
tical alternative here, but you would never be able to do that with stock or com-
modities market transactions, for example. The point is that while the sales price
looks redundant, there are no anomalies to the additional attribute, so it does
no harm. Notice that we adjusted the attribute names so their meaning is
abundantly clear.

Once we find a second normal form violation, the solution is to move the
attribute (or set of attributes) that is partially dependent to a new relation
where it depends on the entire key instead of part of the key. Here is our invoice
example rewritten into second normal form:

186 Data b a s e s Demystified

INVOICE: # Invoice Number, Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone, Terms,
 Ship Via, Order Date, Total Order Amount

INVOICE LINE ITEM: # Invoice Number, # Product Number,
 Quantity, Sale Unit Price, Extended Amount

PRODUCT: # Product Number, Product Description,
 List Unit Price

The improvement from our first normal form solution is that maintenance
of the Product Description now has no anomalies. We can set up a new product
independent of there being an invoice for the product. If we wish to change the
Product Description, we may do so by merely changing one value in one row
of data. Also, should the last invoice for a particular product be deleted from
the database for whatever reason, we won’t lose its description (it will still be
in the row in the Product relation). Always remember that the reason we are
normalizing is to eliminate these anomalies.

Third Normal Form: Eliminating Transitive Dependencies
To understand third normal form, you must first understand transitive depen-
dency. An attribute that depends on another attribute that is not the primary
key of the relation is said to be transitively dependent. Looking at our INVOICE
relation in second normal form, you can clearly see that Customer Name is
dependent on Invoice Number (each Invoice Number has only one Customer
Name value associated with it), but at the same time, Customer Name is also
dependent on Customer Number. The same can be said of the rest of the cus-
tomer attributes as well. The problem here is that attributes of another entity
(Customer) have been included in our INVOICE relation.

A relation is said to be in third normal form if it meets both the following
criteria:

The relation is in second normal form.•	

There is no transitive dependence (that is, all the non-key attributes •	

depend only on the primary key).

A relation is in third normal form if it is in second normal form and has no transitive
dependence.

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 187

To transform a second normal form relation into third normal form, simply
move any transitively dependent attributes to relations where they depend only
on the primary key. Be careful to leave the attribute on which they depend in
the original relation as a foreign key. You will need it to reconstruct the original
user view via a join.

If you have been wondering about easily calculated attributes such as
Extended Amount in the INVOICE LINE ITEM relation, it is actually third
normal form that forbids them, but it takes a subtle interpretation of the
rule. Because the Extended Amount is calculated by multiplying Sale Unit
Price by Quantity, it follows that Extended Amount is determined by the
combination of Sale Unit Price and Quantity and therefore is transitively
dependent on those two attributes. Thus, it is third normal form that tells us
to remove easily calculated attributes. And in this case, they are simply
removed. Using similar logic, we also removed the Total Order Amount from
the INVOICE relation because we can simply sum the INVOICE LINE
ITEM relation to reproduce the value. A good designer will make a note in
the documentation specifying the formula for the calculated attribute so that
its value can be reproduced when needed. Another effective alternative is to
always write the SQL that reproduces the original views when you complete
a normalization process. It’s an excellent way to test your normalization
because you can use the SQL to prove that the original user views can be
easily reproduced.

Here is the Acme Industries invoice data rewritten into third normal form:

INVOICE: # Invoice Number, Customer Number, Terms,
 Ship Via, Order Date

INVOICE LINE ITEM: # Invoice Number, # Product Number,
 Quantity, Sale Unit Price

PRODUCT: # Product Number, Product Description,
 List Unit Price

CUSTOMER: # Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone

Did you notice one more possible third normal form violation? If we have
the complete nine-digit ZIP code for the customer, doesn’t that determine the
Customer City and State? Yes, but it must be the complete nine-digit ZIP code
(called “zip plus 4” by the U.S. Postal Service). In the past there have been

188 Data b a s e s DemystifieD

five-digit ZIP codes in the United States that actually cross state lines. Moreover,
there are thousands of examples of different cities and towns sharing the same
five-digit ZIP codes. So be careful when you assume things. The U.S. Postal
Service will be the first to tell you that they are not responsible for aligning
their zoning system with political boundaries. By the way, ZIP is actually an
acronym for Zone Improvement Plan, introduced in 1963.

Should we then make a Zip Code relation and normalize the City and State
out of all our addresses? Or would that be considered overdesign? The question
can be answered by going back to the anomalies, because removal of the insert,
update, and delete anomalies is the entire reason we normalize data in the first
place:

If a new city is formed, do we need to add it to our database even if we •	

have no customers located there? (This is an insert anomaly.)

If a city is dissolved, do we need to delete its information without losing •	

other data? (This is a delete anomaly.)

If a city changes its name (this rarely occurs, but it has happened), is it a •	

burden to us to find all the customers in that city and to change their ad-
dress accordingly?

If you answered yes to any of the above, then you should normalize the City
and State attributes into a table with a primary key of Zip Code. In fact, you
can purchase that data on a regular basis from the U.S. Postal Service or other
sources. Furthermore, if you maintain other data by ZIP code, such as shipping
rates, you have all the more reason to normalize it. But if not, the Zip Code
example is a valuable lesson in why we normalize and when it may not be as
important. Common sense must prevail at all times.

still struggling
Here is an easy way to remember the rules of first, second, and third normal
form: in a third normal form relation, every non-key attribute must depend on
the key, the whole key, and nothing but the key, so help me Codd.

?

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 189

Beyond Third Normal Form
Since the original introduction of normalization, various researchers and au-
thors have offered advanced versions. Third normal form will cover well over
90 percent of the cases you will see in business information systems, and it’s
considered the “gold standard” in business systems. Once you have mastered
third normal form, additional normal forms are worth knowing.

Boyce-Codd Normal Form
Boyce-Codd normal form (BCNF) is a stronger version of third normal form.
It addresses anomalies that occur when a non-key attribute is a determinant of
an attribute that is part of the primary key (that is, when an attribute that is
part of the primary key is functionally dependent on a non-key attribute).

As an example, let’s assume that Acme Industries assigns multiple product
support specialists to each customer, and each support specialist handles only
one particular product line. Following is a relation that assigns specialists to
customers. In reality, we would use Customer ID and Support Specialist
(Employee) ID instead of the customer and support specialist names, but their
names are used here for better illustration of the issue.

Customer Product Line Support Specialist
W. Coyote Springs R. E. Coil
W. Coyote Straps B. Brown
W. Coyote Helmets C. Bandecoot
W. Coyote Rockets R. Goddard
USAF Rockets R. Goddard
S. Gonzalez Springs R. E. Coil
S. Gonzalez Straps B. Brown
S. Gonzalez Rockets E. John
L. Armstrong Helmets S. D. Osborne

In this example, we must concatenate the Customer and Product Line attri-
butes to form a primary key. However, because a given support specialist only
supports one product line, it is also true that the Support Specialist attribute
determines the Product Line attribute. If we had chosen a surrogate primary
key instead of combining Customer and Product Line for the primary key, the
third normal form violation—a non-key attribute determining another non-key
attribute (Support Specialist determining Product Line in this case)—would be

190 Data b a s e s Demystified

obvious. However, we masked the normalization error by making Product Line
part of the primary key. This is why BCNF is considered a stronger version of
third normal form.

The Boyce-Codd normal form has two requirements:

The relation must be in third normal form.•	

No determinants exist that are not either the primary key or a candidate key •	

for the table. That is, a non-key attribute may not uniquely identify (determine)
any other attribute, including one that participates in the primary key.

The solution is to split the unwanted determinant to a different table, just as
you would with a third normal form violation. The BCNF version of this
relation is shown here:

SUPPORT SPECIALIST ASSIGNMENT: # CUSTOMER ID,
 SUPPORT SPECIALIST ID

SUPPORT SPECIALIST SPECIALTY: # SUPPORT SPECIALIST ID,
 PRODUCT LINE

In tabular form, the relations and data look like this (again, names have been
substituted for the IDs to make the data easier to visualize):

Customer Support Specialist
W. Coyote R. E. Coil
W. Coyote B. Brown
W. Coyote C. Bandecoot
W. Coyote R. Goddard
USAF R. Goddard
S. Gonzalez R. E. Coil
S. Gonzalez B. Brown
S. Gonzalez E. John
L. Armstrong S. D. Osborne

Support Specialist Product Line
B. Brown Straps
C. Bandecoot Helmets
E. John Rockets
R. E. Coil Springs
R. Goddard Rockets
S. D. Osborne Helmets

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 191

Fourth Normal Form
An additional anomaly surfaces when two or more multivalued attributes are
included in the same relation. Suppose, for example, that we wish to track both
office skills and language skills for our employees. We might come up with a
relation such as this one:

Employee ID Office Skill Language Skill
1001 Typing, 40 wpm Spanish
1001 10 key French
1002 Spreadsheets Spanish
1002 10 key German

We can form a primary key for this relation by choosing the combination of
either Employee ID and Office Skill, or Employee ID and Language Skill. That
leaves us with either of these two alternatives for third normal form relations:

EMPLOYEE SKILL: # EMPLOYEE ID, # OFFICE SKILL,
 LANGUAGE SKILL

EMPLOYEE SKILL: # EMPLOYEE ID, # LANGUAGE SKILL,
 OFFICE SKILL

Both the alternatives shown are in third normal form, and in fact, both
pass Boyce-Codd normal form as well. The problem, of course, is that there
is an implied relationship between office skills and language skills. Does the
first tuple for employee 1001 imply that he or she can only type in Spanish?
And does the second tuple imply he or she can only work a French
10-Key pad?

Relations such as these are rare in real life because when experienced design-
ers resolve multivalued attribute problems to satisfy first normal form, they
move each multivalued attribute to its own relation rather than combining
them as shown here. So, with some strict interpretation of first normal form
procedures, this can be avoided altogether. However, should you encounter a
fourth normal form violation, the remedy is simply to put each multivalued
attribute in a separate relation, such as these:

EMPLOYEE OFFICE SKILL: # EMPLOYEE ID, # OFFICE SKILL

EMPLOYEE LANGUAGE SKILL: # EMPLOYEE ID, # LANGUAGE SKILL

192 Data b a s e s Demystified

Fifth Normal Form
Fifth normal form is very easy to understand. You simply keep splitting rela-
tions, stopping only when one of the following conditions is true:

Any further splitting would lead to relations where the original view can-•	

not be reconstructed with joins.

The only splits left are trivial. •	 Trivial splits occur when resulting relations
have a primary key consisting only of the primary key or candidate key of
the other relation.

While fifth normal form seems to forbid all three-way relationships, some of
these are legitimate. Problems arise only when the entities can be split into
simpler, more fundamental relationships.

To most practitioners, fifth normal form is synonymous with fully normalized.
However, in recent years, database management guru C.J. (Chris) Date has
proposed a sixth normal form that deals with temporal and interval data. It
remains to be seen whether it will be widely adopted.

Domain-Key Normal Form (DKNF)
Ron Fagin introduced domain-key normal form (DKNF) in a research paper
published in 1981. The theory is that a relation is in DKNF if and only if every
constraint on the relation is a result of the definitions of domains and keys.
Although Fagin was able to prove that relations in DKNF have no modification
anomalies, he provided no procedure or step-by-step rules to achieve it. The
dilemma then is that designers have no solid indication of when DKNF has
been achieved for a relation. This is likely why DKNF is not in widespread use
and is not generally expected in the design of databases for business applica-
tions.

Denormalization
As you have seen, normalization leads to more relations, which translates to more
tables and more joins. When database users suffer performance problems that
cannot be resolved by other means, such as tuning the database or upgrading the
hardware on which the RDBMS runs, then denormalization may be required.
Most database experts consider denormalization a last resort, if not an act of des-
peration. With continuous improvements in hardware and RDBMS efficiencies,
denormalization has become far less necessary than in the earlier days of relational

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 193

databases. The most essential point is that denormalization is not the same as not
bothering to normalize in the first place. Once a normalized database design has
been achieved, adjustments can be made with the potential consequences (anom-
alies) in mind. Possible denormalization steps include the following:

Recombining relations that were split to satisfy normalization rules•	

Storing redundant data in tables•	

Storing summarized data in tables•	

Note also that normalization is intended to remove anomalies from data-
bases that are used for online transaction-processing systems. Databases that
store historical data used solely for analytical purposes are not as subject to
insert, update, and delete anomalies. Chapter 12 contains more information on
databases that hold historical information.

Practice Problems
This section contains two practice problems with solutions so you can try nor-
malization for yourself. These are very narrow, scaled-down case problems that
most readers should be able to solve in about an hour each. As you work them,
you will be more successful if you focus just on the views presented and do not
worry about other business processes and data that might be needed. For each
case problem, the intent is for you to produce third normal form relations that
support the views presented and then to draw an ERD for the normalized rela-
tions. As you draw the ERDs, keep in mind that they are quite easy to do once
normalization is complete—you simply create a rectangle for each normalized
relation and then draw relationships everywhere the entire primary key in one
relation is used as a foreign key in another (or the same) relation. These should
all be one-to-many relationships, and the foreign key must always be on the many
side of the relationship. Each problem concludes with the author’s solution.

TLA University Academic Tracking
The University of Three-Letter Acronyms (UTLA) is a small academic facility
offering undergraduate and continuing adult education. Most of the
recordkeeping is either manual or done by individuals using personal tools
such as spreadsheets. A modernization effort is underway, which includes
building integrated application and database systems to perform basic business
functions.

194 Data b a s e s Demystified

The User Views
UTLA wishes to construct a system to track their academic activities, including
course offerings, instructor qualifications for the courses, course enrollment,
and student grades. The following illustrations show the desired output reports
with sample data (these are the user views that should be normalized):
Student report:
Student Report:

ID Name Mailing Address Home Phone
4567 Helen Wheels

Barry Bookworm
Carla Coed

127 Essex Drive
P.O. Box45
South Hall #23

Hayward CA 94545
Oakland CA 94601
Berkeley CA 94623

510-555-2859
510-555-9403
510-555-8742

4953
6758

Course report:
Course Report:

ID Title No. Credits Prerequisite Courses Description

X100
X301
X302
X422
X408

Concepts of Data Proc.
C Programming I
C Programming II
Systems Analysis
Concepts of DBMS

4
4
6
6
6

None
X100
X301
X301
X301,X422

This course...
Students learn...
Continuation of...
Introduction to...
The main focus...

Instructor report:
Instructor Report:

ID Name Home Address Home Phone Office Phone Courses
756 Werdna Leppo 12 Main St.

Alameda CA 94501
510-555-1234 x-7463 X408, X422

795 Cora Coder 32767 Binary Way
Abend CA 21304

510-555-1010 x-5328 X301, X302

801 Tillie Talker 123Forms Rd.
Paperwork CA 95684

510-555-2829 408-555-2047 X100, X422

Section report:
Section Report:

Year: 2010 Semester: Spr Building: Evans Room: 70 Day(s): Tu Time(s): 7-10

Instructor: 756, Werdna Leppo Course: X408 Credits: 6

Student ID Student Name Grade
4567
6758

Helen Wheels
CarlaCoed

A
B+

Year: 2010 Semester: Spr Building: SFO Room: 7 Day(s): We Time(s): 7-10

Instructor: 756, Werdna Leppo Course: X408 Credits: 6

Year: 2010 Semester: Spr Building: Evans Room: 70 Day(s): M,Fr Time(s): 7-9

Instructor: 801, Tillie Talker Course: X100 Credits: 4

Student ID Student Name Grade
4973
6758

Barry Bookworm
CarlaCoed

B+
A-

Student ID Student Name Grade

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 195

We cannot design a database without some knowledge of the business rules
and processes of an organization. Here are a few such items to keep in mind:

Only one mailing address and one contact phone number are kept for •	

each student.

Each course has a fixed number of credits (that is, there are no variable-•	

credit courses).

Each course may have one or more prerequisite courses. The list of all •	

prerequisite courses for each course is shown in the Course report.

Only one mailing address, one home phone number, and one office phone •	

number are kept for each instructor.

A qualifications committee must approve instructors before they are per-•	

mitted to teach a particular course. The qualifications (that is, the courses
that the committee has determined the instructor is qualified to teach)
are then added to the instructor’s records, as shown in the Instructor re-
port. The list of qualified courses does not imply that the instructor has
ever actually taught the course, only that he or she is qualified to do so.

Based on demand, any course may be offered multiple times, even in the •	

same year and semester. Each offering is called a “section,” as shown in the
Section report.

A section exists even if no students have enrolled in it, as shown in the last •	

section in the Section report.

Students enroll in a particular section of a course and receive a grade for •	

their participation in that course offering. Should they take the course
again later, they receive another grade, and both grades are part of their
permanent academic record.

Although the day, time, building, and room for each section are noted in •	

the Section report, this is done merely to facilitate registering students.
The scheduling of classrooms is out of scope for this project.

The day(s) and time(s) attributes on the Section report are merely text •	

descriptions of the meeting schedule. The building of a meeting calendar
for sections is out of scope for this project.

As a convenience, here are the attributes rewritten using our relation-listing
method, with repeating groups and multivalued attributes enclosed in
parentheses:

196 Data b a s e s Demystified

STUDENT REPORT: # ID, NAME, STREET ADDRESS, CITY, STATE,
 ZIP CODE, HOME PHONE

COURSE REPORT: # ID, TITLE, NUMBER OF CREDITS,
 (PREREQUISITE COURSES), DESCRIPTION

INSTRUCTOR REPORT: # ID, NAME, STREET ADDRESS, CITY, STATE,
 ZIP CODE, HOME PHONE, OFFICE PHONE,
 (QUALIFIED COURSES)

SECTION REPORT: YEAR, SEMESTER, BUILDING, ROOM, DAYS,
 TIMES, INSTRUCTOR ID, INSTRUCTOR NAME,
 COURSE ID, NUMBER OF CREDITS,
 (STUDENT ID, STUDENT NAME, GRADE)

Author’s Solution
Database design is not an exact science, so there is some latitude for alternative
solutions. However, all must meet the criteria for third normal form. Here are
the normalized relations, with the pound sign (#) denoting primary key attri-
butes:

COURSE: # COURSE ID, TITLE, DESCRIPTION, NUMBER OF CREDITS

INSTRUCTOR: # INSTRUCTOR ID, NAME, HOME ADDRESS STREET,
 HOME ADDRESS CITY, HOME ADDRESS STATE,
 HOME ADDRESS ZIP CODE, HOME PHONE, OFFICE PHONE

COURSE SECTION: # SECTION ID, YEAR, SEMESTER, COURSE ID,
 BUILDING, ROOM, MEETING DAY, MEETING TIME,
 INSTRUCTOR ID

STUDENT: # STUDENT ID, NAME, HOME ADDRESS, CITY, STATE,
 ZIP CODE, PHONE

STUDENT SECTION: # STUDENT ID, # SECTION ID, GRADE

COURSE PREREQUISITE: COURSE ID, PREREQUISITE COURSE ID

COURSE INSTRUCTOR QUALIFIED: INSTRUCTOR ID, COURSE ID

A few notes on this particular solution are in order:

There was no simple natural key for the Course Section relation, so a sur-•	

rogate key was added.

The Course Prerequisite relation can be quite confusing. This is the inter-•	

section relation for a many-to-many recursive relationship. A course can

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 197

have many prerequisites, which may be found by joining COURSE ID in
the COURSE relation with COURSE ID in the COURSE PREREQUISITE
relation. At the same time, any course may be a prerequisite for many
other courses. These may be found by joining COURSE ID in the COURSE
relation with PREREQUISITE COURSE ID in the COURSE PREREQ-
UISITE relation. This means that there are two relationships between the
COURSE and COURSE PREREQUISITE: one where COURSE ID is the
foreign key and another where PREREQUISITE COURSE ID is the for-
eign key. Comparing the upcoming illustrations for the COURSE and
COURSE_PREREQUISITE tables should help make this point clear.

To assist you in visualizing how all this works, the following illustrations
show each of the tables as implemented in a Microsoft Access database, each
loaded with the data from the original user view (report) examples. The last
illustration shows the ERD for the solution, using the Microsoft Relationships
panel as the presentation media.

COURSE table:

INSTRUCTOR table:

COURSE_SECTION table:

198 Data b a s e s Demystified

STUDENT table:

STUDENT_SECTION table:

COURSE_PREREQUISITE table:

COURSE_INSTRUCTOR_QUALIFIED table:

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 199

UTLA ERD:

Computer Books Company
The Computer Books Company (CBC) buys books from publishers and sells
them to individuals via mail and telephone orders. They are looking to expand
their services by offering online ordering via the Internet, and in doing so, have
a compelling need to build a database to hold their business information.

The User Views
Throughout these user views, “sale” and “price” refer to the retail sale of a book
to a CBC customer, whereas “purchase” and “cost” refer to the purchase of
books from a publisher (CBC supplier). Each user view is described briefly with
a list of the attributes in the view following each description. Per our conven-
tion, multivalued attributes and repeating groups are enclosed in parentheses.

The Book Catalog lists all the books that CBC has for sale. Each book is
uniquely identified by its International Standard Book Number (ISBN).
Although an ISBN uniquely identifies a book, it is essentially a surrogate key,
so there is no way to tell what edition a particular book is simply by looking at
the ISBN. When new editions come out, CBC typically has leftover stock of
prior editions and offers them at a reduced price. The previous edition code in
the Book Catalog is intended to help the buyer find the prior edition, if there
is one. Books are organized by subject, with each book having only one subject.

200 Data b a s e s Demystified

Any book may have multiple authors. (Although the catalog shows only author
names, keep in mind that people’s names are seldom unique, and nothing would
stop two people with the same name from both writing books.) Here is the
information in the Book Catalog:

BOOK CATALOG: SUBJECT CODE, SUBJECT DESCRIPTION, BOOK TITLE,
 BOOK ISBN, BOOK PRICE, PREVIOUS EDITION ISBN,
 PREVIOUS EDITION PRICE, (BOOK AUTHORS),
 PUBLISHER NAME

The Book Inventory Report helps the warehouse manager control the inven-
tory in the warehouse. The Recommended Quantity is the reorder point, mean-
ing when on-hand inventory falls below the recommended quantity, it is time
to order more books of that title.

BOOK INVENTORY REPORT: BOOK ISBN, BOOK EDITION CODE, COST,
 SELLING PRICE, QUANTITY ON HAND,
 QUANTITY ON ORDER, RECOMMENDED QUANTITY

The Customer Book Orders view shows the orders placed by CBC custom-
ers for purchases of books:

CUSTOMER BOOK ORDERS: CUSTOMER ID, CUSTOMER NAME,
 STREET ADDRESS, CITY, STATE,
 ZIP CODE (ISBN, BOOK EDITION CODE,
 QUANTITY, PRICE), ORDER DATE,
 TOTAL PRICE

CBC bills customers as books are shipped. An invoice is created for each
shipment. (An order can have zero, one, or more invoices, but each invoice
belongs to only one order.) The Book Sales Invoice looks like this:

BOOK SALES INVOICE: SALES INVOICE NUMBER, CUSTOMER ID,
 CUSTOMER NAME, CUSTOMER STREET ADDRESS,
 CUSTOMER CITY, CUSTOMER STATE,
 CUSTOMER ZIP CODE, (BOOK ISBN, TITLE,
 EDITION CODE, (BOOK AUTHORS), QUANTITY,
 PRICE, PUBLISHER NAME),
 SHIPPING CHARGES, SALES TAX

The Master Billing Report helps the Collections and Customer Service
departments manage customer accounts. A system for recording customer pay-
ments against invoices is out of scope for the current project, but the CBC
project sponsors do want to keep a running balance showing what each cus-
tomer owes CBC. As invoices are generated, a database trigger will be used to

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g N o r m a l i z at i o n 201

add invoice totals to the Balance Due. As payments are received, the CBC staff
will manually adjust the Balance Due. The Master Billing Report attributes are
as follows:

MASTER BILLING REPORT: CUSTOMER ID, NAME, STREET ADDRESS,
 CITY, STATE, ZIP CODE, PHONE,
 BALANCE DUE

Each time CBC buys books from a publisher, the publisher sends an invoice
to CBC. To assist in managing inventory cost, CBC wishes to store the Purchase
Invoice information and report it using this view:

PURCHASE INVOICE: PUBLISHER ID, PUBLISHER NAME,
 STREET ADDRESS, CITY, STATE, ZIP CODE,
 PURCHASE INVOICE NUMBER, INVOICE DATE,
 (BOOK ISBN, EDITION CODE, TITLE,
 QUANTITY, COST EACH, EXTENDED COST),
 TOTAL COST

Note  Extended Cost is calculated as Cost Each × Quantity.

Author’s Solution
As before, there is some room for alternative solutions, provided all relations
are in third normal form. The normalized relations in this solution follow, with
primary keys noted with a pound sign (#):

BOOK: # ISBN, BOOK TITLE, SUBJECT CODE, PUBLISHER ID,
 EDITION CODE, COST, SELLING PRICE, QUANTITY ON HAND,
 QUANTITY ON ORDER, RECOMMENDED QUANTITY,
 PREVIOUS EDITION ISBN

CUSTOMER ORDER: # CUSTOMER ORDER NUMBER, CUSTOMER ID,
 ORDER DATE

CUSTOMER ORDER BOOK: # CUSTOMER ORDER NUMBER, # ISBN,
 QUANTITY, BOOK PRICE

SUBJECT: # SUBJECT CODE, DESCRIPTION

AUTHOR: # AUTHOR ID, AUTHOR NAME

BOOK-AUTHOR: # AUTHOR ID, # ISBN

CUSTOMER: # CUSTOMER ID, NAME, STREET ADDRESS, CITY, STATE,
 ZIP CODE, PHONE, BALANCE DUE

202 Data b a s e s Demystified

PUBLISHER: # PUBLISHER ID, NAME, STREET ADDRESS, CITY,
 STATE, ZIP CODE, AMOUNT PAYABLE

RECEIVABLE (SHIPPED) ORDER: # SALES INVOICE NUMBER,
 CUSTOMER ORDER NUMBER, SALES TAX, SHIPPING CHARGES

RECEIVABLE ORDER BOOK: # SALES INVOICE NUMBER, # ISBN,
 QUANTITY

PAYABLE (PURCHASES): # PURCHASE INVOICE NUMBER,
 PUBLISHER ID, INVOICE DATE, INVOICE AMOUNT

PAYABLE BOOK: # PURCHASE INVOICE NUMBER, # ISBN, QUANTITY,
 COST EACH

The following illustration shows the complete design implemented in Micro-
soft Access:

Summary
In this chapter, you learned about the normalization process and various normal
forms. You also honed your normalization skills using two practice problems. In
the next chapter, we look at data and process modeling.

Chapter 6 L o g i c a l D ata b a s e D e s i g n U s i n g No r m a l i z at i o n 203

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

Normalization:1.	
Was developed by E.F. CoddA.	
First appeared in 1972B.	
Provides a set of rules for each normal formC.	
Provides a procedure for converting relations to each normal formD.	
Was first introduced with five normal formsE.	

The insert anomaly refers to a situation where:2.	
Data must be inserted before it can be deleted.A.	
Data must be deleted before it can be inserted.B.	
Too many inserts cause the table to fill up.C.	
A required insert cannot be done due to duplicate data.D.	
A required insert cannot be done due to an artificial dependency.E.	

The update anomaly refers to a situation where:3.	
Data cannot be updated because it does not exist in the database.A.	
Data cannot be updated due to lack of privileges.B.	
Data cannot be updated due to an existing referential constraint.C.	
A simple update requires updates to multiple rows of data.D.	
Data cannot be updated due to an existing unique constraint.E.	

Writing sample user views with representative data in them is4.	
A tedious and time-consuming processA.	
An effective way to understand the data being normalizedB.	
The only way to successfully normalize the user viewsC.	
A widely used normalization techniqueD.	
Only as good as the examples shown in the sample dataE.	

First normal form resolves anomalies caused by:5.	
Join dependenciesA.	
Multivalued attributesB.	
Repeating groupsC.	
Partial dependency on the primary keyD.	
Transitive dependenciesE.	

204 Data b a s e s Demystified

Third normal form resolves anomalies caused by:6.	
Join dependenciesA.	
Multivalued attributesB.	
Repeating groupsC.	
Partial dependency on the primary keyD.	
Transitive dependenciesE.	

Boyce-Codd normal form deals with anomalies caused by:7.	
Join dependenciesA.	
Multivalued attributesB.	
Determinants that are not primary or candidate keysC.	
Constraints that are not the result of the definitions of domains and keysD.	
Transitive dependenciesE.	

Fourth normal form deals with anomalies caused by:8.	
Join dependenciesA.	
Multivalued attributesB.	
Determinants that are not primary or candidate keysC.	
Constraints that are not the result of the definitions of domains and keysD.	
Transitive dependenciesE.	

Fifth normal form deals with anomalies caused by:9.	
Multivalued attributesA.	
Determinants that are not primary or candidate keysB.	
Transitive dependenciesC.	
Constraints that are not the result of the definitions of domains and keysD.	
Join dependenciesE.	

Domain key normal form deals with anomalies caused by:10.	
Multivalued attributesA.	
Determinants that are not primary or candidate keysB.	
Transitive dependenciesC.	
Constraints that are not the result of the definitions of domains and keysD.	
Join dependenciesE.	

 205

c h a p t e r 7
Data and Process
Modeling

As you saw in Chapter 5, data and process modeling are major undertakings
that are part of the logical design stage of an application system development
project. You have seen the rudiments of data modeling when you used entity-
relationship diagrams (ERDs) in preceding chapters. In this chapter, we will
look at ERDs and data modeling in more detail. Process modeling, on the other
hand, is less important to a database designer because application processes are
designed by application designers and seldom directly involve the database
designer. However, because the database designer must work closely with the
application designer in gathering data requirements and in supplying a database
design that will support the processes being designed, the database designer
should at least be familiar with the basic concepts. For this reason, the second
part of this chapter includes a high-level survey of process design concepts
and diagramming techniques.

206 Data b a s e s Demystified

C h a p t e r O b j e c t i v e s
In this chapter, the reader should:

Understand the fundamentals of entity-relationship modeling, including •	
Chen’s format, the relational format, the information engineering (IE) format,
the IDEF1X format, Unified Modeling Language (UML), and methods of depict-
ing supertypes and subtypes.

Understand basic process-modeling techniques, including the flowchart, the •	
function hierarchy diagram, the swim lane diagram, the data flow diagram, and
UML process-modeling diagrams.

Know how to correlate entities with processes using the CRUD (Create, Read, •	
Update, and Delete) matrix.

Entity Relationship Modeling
Entity relationship modeling is the process of visually representing entities,
attributes, and relationships to produce the ERD. The process is iterative in
nature because entities are discovered throughout the design process. The chief
advantage of ERDs is that they can be understood by nontechnical people
while still providing great value to technical people. Done correctly, ERDs are
platform independent and can even be used for nonrelational databases
if desired.

ERD Formats
Peter Chen developed the original ERD format in 1976. Since then, vendors,
computer scientists, and academics have developed many variations, all of them
conceptually the same. You should understand the most commonly used varia-
tions because you are likely to encounter them actively used in IT organizations.
Here are the elements common to all ERD formats:

Entities are represented as rectangles or boxes.•	

Relationships are represented as lines.•	

Line ends (or symbols next to them) indicate the maximum cardinality of •	

the relationship (that is, one or many).

Chapter 7 D ata A n d P roc e s s M od e li n g 207

Symbols near the line ends (in most ERD formats) indicate the minimum •	

cardinality of the relationship (that is, whether participation in the rela-
tionship is mandatory or optional).

Attributes may be optionally included (the format for displaying attri-•	

butes varies quite a bit).

Chen’s Format
For simplicity, we’ll use the normalized solution for the Acme Industries invoice
application from Chapter 6 for the examples in this chapter. Figure 7-1 shows
the ERD using Chen’s format.

Here are the particulars of the Chen format:

Relationship lines contain a diamond in which a word or short phrase •	

describes the relationship. For example, the relationship between Invoice
and Product may be read as “An invoice contains many products.” Some
variations permit another word or phrase, separated with a slash, to be
used in reading the relationship in the other direction. If the diamond read
“Contains/Appears on,” then the relationship from Product to Invoice
would be read as “A product appears on many invoices.”

For many-to-many relationships that require an intersection table in an •	

RDBMS, such as the one between Invoice and Product, a rectangle is often
drawn around the diamond.

Maximum cardinality of each relationship is shown using the symbol •	 1 for
“one” or M for “many.”

Minimum cardinality is not shown.•	

Attributes, when shown, appear in ellipses (elongated circles) connected •	

with a line to the entity or relationship to which they belong.

Quantity Sale Unit
Price

Invoice

Responsible For

Customer

Contains

Quantity
Sale Unit

Price

Product
M

M

M

1

Figure 7-1 • Acme Industries logical ERD format in Chen’s format

208 Data b a s e s Demystified

In practice, Chen ERDs are cumbersome for complicated data models. The
diamonds take up a lot of space on the diagrams for the little added value they
provide. Also, any ERD that includes many attributes becomes very difficult to
read. Notwithstanding, we owe Chen a lot for his pioneering work, which laid
the foundation for the techniques that followed.

The Relational Format
Over time, an ERD format known generically as the relational format evolved.
It is available as an option in several of the better-known data modeling software
tools, including PowerDesigner from Sybase and ER/Studio from Embarcadero
Technologies, and in popular general drawing tools such as Visio from Microsoft.
Figure 7-2 shows the ERD from Figure 7-1 converted to the relational format.
In this example, the ERD is represented at a physical level, meaning that phys-
ical table names are shown instead of logical entity names, and physical column
names are shown instead of logical attribute names. Also, intersection tables are
shown to resolve many-to-many relationships. As the logical data model is trans-
formed into a physical database design, it is essential to have a physical ERD
that the project team can use in developing the application system. The begin-
nings of the physical model are shown here to help make that point.

Here are the particulars of the relational ERD format:

Relationship cardinality is shown with an arrowhead on the line end to •	

signify “one” and nothing on the line end to signify “many.” This will seem

INVOICE

PK

TERMS
SHIP_VIA
ORDER_DATE
CUSTOMER_NUMBERFK1

INVOICE_NUMBER

PRODUCT

PK

DESCRIPTION
LIST_UNIT_PRICE

PRODUCT_NUMBER

INVOICE_LINE_ITEM

PK, FK1
PK, FK2

QUANTITY
SALE_UNIT_PRICE

PRODUCT_NUMBER
INVOICE_NUMBER

CUSTOMER

PK

NAME
ADDRESS
CITY
STATE
ZIP_CODE
PHONE

CUSTOMER_NUMBER

Figure 7-2 • Acme Industries physical ERD, relational format

Chapter 7 D ata A n d P roc e s s M od e li n g 209

odd at first, but it aligns nicely with object diagrams, so this format is fa-
vored by object-oriented designers and developers.

Attributes are shown inside the rectangle that represents each entity.•	

Unique identifier attributes are shown above a horizontal line within the •	

rectangle and are usually also shown with PK in bold type (for primary
key) in the margin to the left of the attribute name.

Attributes that are foreign keys are shown with •	 FK and a number in the
margin to the left of the attribute name.

The Information Engineering Format
The information engineering (IE) format was originally developed by Clive
Finkelstein in Australia in the late 1970s. In the early 1980s he collaborated
with James Martin to publicize it in the United States and Europe, including
coauthoring the Savant Institute Report titled Information Engineering, pub-
lished in 1981. Martin went on to be highly associated with the format, and in
collaboration with Carma McClure, published a book on the subject in 1984
(Diagramming Techniques for Analysis and Programmers, Prentice-Hall). Finkel-
stein later published his own version in 1989 (An Introduction to Information
Engineering, Addison-Wesley), which has some minor notation variations com-
pared with Martin’s version. Figure 7-3 shows our sample ERD converted to IE
notation. You will notice that except for relationship lines, it is strikingly similar
to the relational format.

Figure 7-3 • Acme Industries physical ERD, IE format

INVOICE

INVOICE_NUMBER

TERMS
SHIP_VIA
ORDER_DATE
CUSTOMER_NUMBER (FK)

INVOICE_LINE_ITEM

INVOICE_NUMBER (FK)
PRODUCT_NUMBER (FK)

QUANTITY
SALE_UNIT_PRICE

PRODUCT

PRODUCT_NUMBER

DESCRIPTION
LIST_UNIT_PRICE

CUSTOMER

CUSTOMER_NUMBER

NAME
ADDRESS
CITY
STATE
ZIP_CODE
PHONE

contains
is part of

is for
appears on

is responsible for is sent to

210 Data b a s e s Demystified

Here are some of the ways that IE notation varies from the relational
format:

Identifying relationships•	   Shown with a solid line are those for which the
foreign key is part of the child entity’s primary key.

Non-identifying relationships•	   Shown with a dotted line are those
for which the foreign key is a non-key attribute in the child entity. In
Figure 7-3, the relationship between PRODUCT and INVOICE_LINE_
ITEM is identifying, but the one between CUSTOMER and INVOICE is
non-identifying.

Maximum relationship cardinality•	   Shown with a short perpendicular
line across the relationship near its line end to signify “one” and with a
“crow’s foot” on the line end to signify “many.” This is best understood in
combination with minimum cardinality, described next.

Minimum relationship cardinality•	   Shown with a small circle near the
end of the line to signify “zero” (participation in the relationship is op-
tional) or with a short perpendicular line across the relationship line to
signify “one” (participation in the relationship is mandatory). Figure 7-3
shows a few combinations of minimum and maximum cardinality. For
example:

A PRODUCT•	   May have zero to many associated INVOICE_LINE_
ITEM occurrences (shown as a circle and a crow’s foot); an INVOICE_
LINE_ITEM must have one and only one associated PRODUCT
(shown as two vertical bars).

An INVOICE•	   Must have one or more associated INVOICE_LINE_
ITEM occurrences (shown as a vertical bar and a crow’s foot); an IN-
VOICE_LINE_ITEM must have one and only one associated INVOICE
(shown as two vertical bars).

Dependent entities•	   Shown with the corners of the rectangle rounded,
they have an existence dependency on one or more other entities (that is,
those that cannot exist without the existence of another). For example,
the INVOICE_LINE_ITEM entity depends on both the PRODUCT and
INVOICE entities. Therefore, you cannot delete either an invoice or a
product unless you somehow deal with any related invoice line items. This
is valuable information during physical database design because you must
consider the options for handling situations when the application attempts
to delete table rows when dependent entities exist.

Chapter 7 D ata a n D P R O C e s s M O D e L I n g 211

The IE format is by far the most popular. Therefore, I use it for the majority
of the diagrams in this book.

The IDEF1X Format
The Computer Systems Laboratory of the National Institute of Standards and
Technology (NIST) released the IDEF1X standard for data modeling in FIPS
Publication 184, first published in December 1993. The standard covers both
a method for data modeling as well as the format for the ERDs produced dur-
ing the modeling effort. It is widely used and understood across the information
technology industry and is the mandatory standard for many branches of the
U.S. government. Thanks to its underlying standard, it has few variants.
Figure 7-4 shows our sample ERD converted to the IDEF1X standard format.

still struggling
You may have noticed the two short perpendicular lines at some of the line ends
in Figure 7-3. the one nearest the line end indicates a maximum cardinality of 1
while the one just to the left indicates a minimum cardinality of 1. therefore,
when used together in this way, the pair of short perpendicular lines can be read
to mean “one and only one.”

?

Figure 7-4 	•	Acme	Industries	physical	ERD,	IDEF1X	format

INVOICE

INVOICE_NUMBER

TERMS
SHIP_VIA
ORDER_DATE
CUSTOMER_NUMBER(FK)

INVOICE_LINE_ITEM

INVOICE_NUMBER(FK)
PRODUCT_NUMBER(FK)

QUANTITY
SALE_UNIT_PRICE

PRODUCT

PRODUCT_NUMBER

DESCRIPTION
LIST_UNIT_PRICE

CUSTOMER

CUSTOMER_NUMBER

NAME
ADDRESS
CITY
STATE
ZIP_CODE
PHONE

P

contains
is part of

is for
appears on

is responsible for is sent to

212 Data b a s e s Demystified

The differences between IE and IDEF1X notation are largely isolated to
relationships. Here are some key points:

As in the IE format, a solid line indicates that the foreign key is part of the •	

dependent entity’s primary key, while a broken line indicates that the
foreign key will be a non-key attribute.

A solid circle next to an entity generally means zero, one, or more occur-•	

rences of that entity, as shown on the “many” end of the line between
PRODUCT and INVOICE_LINE_ITEM. However, there are excep-
tions:

Adding the symbol •	 P near the solid circle makes the relationship
mandatory, signifying that the cardinality must be one or more. In
Figure 7-4, the relationship from INVOICE to INVOICE_LINE_ITEM
is one-to-many and mandatory, meaning that every invoice must have
at least one line item.

Adding the symbol •	 1 also makes the relationship mandatory. However,
this changes the cardinality of the relationship to one. Said another way,
it changes the meaning of the solid circle from “may be one or more”
to “must be one and only one.”

Absence of a solid circle at the end of the relationship line means that only •	

one occurrence of the entity is involved. For example, the absence of any
symbol on the end of the line next to CUSTOMER means “one and only
one.” It may be modified for optionality as well:

If no symbol appears next to the entity at that end of the line, the entity •	

is mandatory in the relationship. Therefore an INVOICE_LINE_ITEM
must be related to one and only one PRODUCT.

If a small diamond symbol appears next to the entity, the entity is op-•	

tional. Were we to add a diamond next to the CUSTOMER end of the
relationship between INVOICE and CUSTOMER, it would mean that
each INVOICE may have zero or one related CUSTOMER occur-
rences.

Entity Relationship Modeling with Unified Modeling Language
With the rising popularity of object programming languages, the Unified Model-
ing Language (UML) has also become more popular. UML is a standardized
visual specification language for object modeling that includes a graphical
notation used to create an abstract model of a system, which is known as

Chapter 7 D ata a n D P R O C e s s M O D e L I n g 213

a UML model. The Rational Unified Process (RUP), developed by Rational
Software Corporation (now a division of IBM), uses UML exclusively. UML has
13 types of diagrams that can be used to model the behavior and structure of
the system. However, the one of interest to data modelers is the class diagram.
Figure 7-5 shows our sample model converted to a UML class diagram.

While the differences in notation are strikingly obvious, an individual skilled
in reading ER diagrams can easily adapt. I have used so-called camelcase names
in the diagram, meaning names with the first letter of each word capitalized

still struggling
Many beginners to database design find the IDeF1X format confusing. Unlike
other formats, relationship symbols in IDeF1X are asymmetrical. each set of sym-
bols describes a combination of optionality and cardinality, and thus the sym-
bols used for optionality vary depending on the cardinality of the relationship.
said another way, optionality is shown differently for the “many” and “one” sides
of a relationship.

?

Figure 7-5 	•	UML	class	diagram	for	Acme	Industries

contains appears on

is responsible for

<<Entity>>
Product

+ ProductNumber: Integer
+ Description: String
+ ListUnitPrice: Number

<<Entity>>
InvoiceLineItem

+ Quantity: Integer
+ SaleUnitPrice: Number

<<Entity>>
Invoice

+ InvoiceNumber: Integer
+ Terms: String
+ ShipVia: String
+ OrderDate: Date

<<Entity>>
Customer

+ CustomerNumber: Integer
+ Name: String
+ Address: String
+ City: String
+ State: String
+ ZipCode: String
+ Phone: String

1*1 1..*

*

1

214 Data b a s e s Demystified

and no delimiters between words, because nearly all UML modelers do so. Here
are some key points regarding modeling entities using UML class diagrams:

Each entity is shown as an object class in a rectangle. The symbol •	

<<Entity>> is included with the class name to denote the type of class.

Unique identifiers (primary keys) are not shown in class diagrams; they •	

are specified elsewhere within the UML model.

Foreign keys are not shown because they are not used in object-oriented •	

systems. I discuss object-oriented technology in Chapter 13.

Attributes are shown with a name and a type (separated with a colon). •	

The type is very much like a relational data type. Attributes in entities are
preceded by the symbol +, which means they are public (visible through-
out the entire model).

Relationships are shown with lines.•	

Cardinality and optionality are shown with a combined symbol near the •	

end of the line. Available symbols include those shown in the following
table:

Symbol Meaning
1 One and only one
* Zero, one, or more
1..* One or more
x..y Between x and y occurrences. Also

x•	 can be 0 or any positive integer
y•	 can be any positive integer or * to denote “or more”
y•	 must be greater than x (if y and x are the same, then y is
simply omitted)

The diamond symbol on the end of a relationship line, as shown in Figure 7-5 •	

on the “one” end of the two relationships connected to InvoiceLineItem,
denotes what UML calls an aggregation. An aggregation is a dependency
between two entity types that is required for the existence of the dependent
entity. In this case, a line item cannot exist without both the product and the
invoice. If the dependency is always a single entity, the diamond is shown as
a solid diamond instead of a hollow one.

Generalization and specialization (supertypes and subtypes) are denoted •	

using a line between the two entities with a hollow arrow pointing toward
the general class (the supertype).

Chapter 7 D ata a n D P R O C e s s M O D e L I n g 215

In UML models, an aggregation is a dependency between two entity types that is
required for the existence of the dependent entity.

Supertypes and Subtypes
Some entities can be broken down into more specific categories or types. When
this occurs, we call the more detailed entities subtypes and the more general
entity to which they belong a supertype. In object terminology, the supertype is
called a superclass or base class, and the subtypes are called subclasses of the
superclass. It is essential that you understand that subtypes break down entities
by type rather than by state, meaning their mode or condition. An easy way to
distinguish between the two is to realize that existing entities can change state,
but they seldom, if ever, change type. For example, a motor vehicle entity can
logically be broken down by type into automobile, bus, truck, motorcycle, and
so on. However, the distinction between vehicles that are new or used, or
between those that are operable or inoperable, is one of state rather than type
because new vehicles become used once they are sold, and vehicles change
between inoperable and operable states as they break down and are subse-
quently repaired.

TERMS: supertype and subtype
supertypes and subtypes always go together—you can’t have one without the
other. a supertype is a more general classification that is broken down into two
or more subtypes. For example, circle, square and rectangle are subtypes of a
supertype called geometric shape.

The decisions involved in which entities should be broken down into sub-
types and how detailed the subtypes should be revolve around the trade-off
between specialization and generalization. Unfortunately, there are no firm
rules for resolving the trade-off. Therefore, generalization versus specialization
becomes one of the topics that prevent database design from becoming
an exact science. The physical design trade-offs involved are addressed in
Chapter 8. Here, we will focus on the logical design trade-offs.

216 Data b a s e s DemystifieD

Let’s look at an example. Assume for a moment that the database design
shown in Figure 7-3 has been implemented, and now the Customer Service
Department at Acme Industries has requested database and application
enhancements that will allow it to record and track more information about
customers. In particular, the department is interested in knowing the type of
customer (such as individual person, sole proprietorship, partnership, or corpo-
ration) so that correspondence can be addressed appropriately for each type.
Figure 7-6 shows the logical data model that was developed based on the new
requirements.

In IE notation, the type or category is shown using a symbol that looks like
a circle with a line under it. Therefore, you know that Individual Customer
and Commercial Customer are subtypes of Customer because of the symbol
that appears in the line that connects them. Also note that they share the same
primary key and that in the subtypes, the primary key of the entity is also a
foreign key to the supertype entity. This makes perfect sense when you con-
sider that an Individual Customer entity is a Customer, meaning that any
occurrence of the Individual Customer entity would have a tuple in the Cus-
tomer relation as well as a matching tuple in the Individual Customer entity.
Usually, an attribute in the supertype entity indicates which subtype is assigned
to each entity occurrence (tuple). Once this is implemented in tables, database
users can use the type attribute to know where to look for (that is, which
subtype table contains) the remainder of the information about each entity

still struggling
If you are having difficulty deciding when to specialize or generalize a database
design (that is when to split an entity into subtypes versus when to combine
subtypes into a supertype), you are not alone. this topic has been the source of
many debates (some of the heated) among even seasoned professionals. the
general guideline to follow (in addition to common sense) is that the more
the various subtypes share common attributes and relationships, the more the
designer should be inclined to combine the subtypes into the supertype.

?

Chapter 7 D ata A n d P roc e s s M od e li n g 217

occurrence (each row). Such an attribute is called the type discriminator and is
named next to the type symbol on the ERD. Therefore, Customer Type is the
type discriminator that indicates whether a given Customer is an Individual
Customer or a Commercial Customer. Similarly, Company Type is the type
discriminator that indicates whether a given Commercial Customer is a sole
proprietorship, partnership, or corporation.

A type discriminator is an attribute in a supertype entity that indicates which subtype
applies to each entity occurrence (row).

As you might imagine, this IE notation is not the only format used in ERDs
for supertypes and subtypes. However, it is the most commonly used method.
Another popular format is to draw the subtype entities within the supertype

Figure 7-6 • Customer subclasses

CUSTOMER

CUSTOMER NUMBER

CUSTOMER TYPE
ADDRESS
CITY
STATE
ZIP CODE
PHONE

CUSTOMER NUMBER (FK)

OWNER NAME

CUSTOMER NUMBER (FK)

CEO NAME
BOARD CHAIR NAME

CUSTOMER NUMBER (FK)

PARTNER NAME 1
PARTNER NAME 2

CUSTOMER NUMBER (FK)

COMPANY NAME
TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

CUSTOMER NUMBER (FK)

FIRST NAME
MIDDLE INITIAL
LAST NAME
DATE OF BIRTH
ANNUAL HOUSEHOLD INCOME

COMPANY TYPE

CUSTOMER TYPE

INDIVIDUAL CUSTOMER COMMERCIAL CUSTOMER

SOLE PROPRIETORSHIP CORPORATIONPARTNERSHIP

218 Data b a s e s DemystifieD

entity (that is, subtype entity rectangles drawn inside the corresponding super-
type entity’s rectangle). Although this format makes it visually clear that the
subtypes really are just a part of the supertype, it has practical limitations when
the entities are broken down into many levels.

PROBLEM 7-1
As mentioned, finding the right level of specialization is a significant data-
base design challenge. In reviewing the logical design as proposed in Fig-
ure 7-6, the database design team noticed something: The only difference
among the Sole Proprietorship, Partnership, and Corporation subtypes is
in the way that the names of key people in those types of companies ap-
pear as attributes. Moreover, the use of two nearly identical attributes for
the names of the co-owners in the Partnership subtype could be consid-
ered a repeating attribute, and therefore a first normal form violation.

SOLUTION
The design team elected to generalize these names into the Commercial
Customer entity, but in doing so, they recognized the first normal form
problems and decided to place them into a separate relation called
Commercial Customer Principal. This led to the ERD shown in Figure 7-7.

Clearly, this is a simpler design that will result in fewer tables when it is
physically implemented. It offers a very big win because not only is there no
loss of function when you consolidate the subtypes into the supertype, but also
you actually have more function available because you can add as many names
as you want to any type of commercial customer.

PROBLEM 7-2
Further study by the design team helped them realize the similarity
between the name attributes now contained in the Commercial Customer
Principal entity and those contained in the Individual Customer entity. In
discussing options further with the Customer Service Department, the
design team uncovered a few cases for which it would be desirable for mul-
tiple contact names to be recorded for individual customers as well as for
commercial customers. For example, customers that have legal disputes
often request that all contact go through an attorney.

PROBLEM
As mentioned, finding the right level of specialization is a significant data-
base design challenge. In reviewing the logical design as proposed in Fig-
ure 7-6, the database design team noticed something: The only difference

PROBLEM
As mentioned, finding the right level of specialization is a significant data-

SOLUTION
The design team elected to generalize these names into the Commercial

✔

PROBLEM
Further study by the design team helped them realize the similarity
between the name attributes now contained in the Commercial Customer
Principal entity and those contained in the Individual Customer entity. In

PROBLEM
Further study by the design team helped them realize the similarity

Chapter 7 D ata a n D P R O C e s s M O D e L I n g 219

SOLUTION
Based on the preceding information, the design team decided to general-
ize these names and move Commercial Customer Principal up to be a child
of Customer and to name it Customer Contact so that it could be used to
hold the information about either a principal (owner, co-owner, partner,
officer) of the customer or any other contact person for the customer that
the Customer Service Department might find useful. The design team fur-
ther realized that contact names would be more useful if a phone number
were included. The Phone attribute was left in the Customer entity because
it is intended to hold the general phone number for the customer.
The phone number in the Customer Contact entity is intended to hold
the phone for an individual contact person. The resultant logical design is
shown in Figure 7-8.

SOLUTION
Based on the preceding information, the design team decided to general-

✔

Figure 7-7 	•	Customer	subtypes,	version	2

CUSTOMER

CUSTOMER NUMBER

CUSTOMER TYPE
ADDRESS
CITY
STATE
ZIP CODE
PHONE

COMMERCIAL CUSTOMER

CUSTOMER NUMBER (FK)

COMPANY NAME
TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

INDIVIDUAL CUSTOMER

CUSTOMER NUMBER (FK)

FIRST NAME
MIDDL EINITIAL
LAST NAME
DATE OF BIRT
ANNUAL HOUSE HOLD INCOME

CUSTOMER TYPE

COMMERCIAL CUSTOMER PRINCIPAL

COMMERCIAL CUSTOMER PRINCIPAL ID

CUSTOMER NUMBER (FK)
FIRST NAME
MIDDLEINITIAL
LAST NAME
TITLE

220 Data b a s e s Demystified

The fact that all three of the designs presented (Figures 7-6, 7-7, and 7-8)
are workable should underscore the generalization-versus-specialization
dilemma: no one “right” answer exists. The art to database design, then, is to
arrive at the design that best fits what is known about the expected uses of the
database. This is best done by comparing the relative strengths and weaknesses
of each alternative design. And there is no better vehicle for communicating
the alternatives than the ERD. However, if you are more accustomed to UML,
Figure 7-9 shows the ERD from Figure 7-8 converted to UML.

Guidelines for Drawing ERDs
Here are some general guidelines to follow when constructing ERDs:

Do not try to relate every entity to every other entity. Entities should be •	

related only when the entire primary key in one entity appears as a foreign
key in another.

Except for subtypes, avoid relationships involving more than two entities. •	

Although drawing fewer lines might seem simpler, it is far too easy to
misinterpret relationships drawn from one parent entity to multiple child
entities using a single line.

Be consistent with entity and attribute names. Develop a naming conven-•	

tion and stick with it.

Figure 7-8 • Customer subtypes, version 3

CUSTOMER

CUSTOMER NUMBER

CUSTOMER TYPE
ADDRESS
CITY
STATE
ZIP CODE
PHONE

COMMERCIAL CUSTOMER

CUSTOMER NUMBER (FK)

COMPANY NAME
TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

INDIVIDUAL CUSTOMER

CUSTOMER NUMBER (FK)

DATE OF BIRTH
ANNUAL HOUSEHOLD INCOME

CUSTOMER TYPE

CUSTOMER CONTACT

CUSTOMER CONTACT ID

CUSTOMER NUMBER (FK)
FIRST NAME
MIDDLE INITIAL
LAST NAME
TITLE
PHONE

Chapter 7 D ata A n d P roc e s s M od e li n g 221

Use abbreviations in names only when absolutely necessary, and in those •	

cases, use a standard list of abbreviations.

Name primary keys and foreign keys consistently. Most experts prefer that •	

the foreign key attributes (columns) have exactly the same name as the
corresponding primary key attributes (columns).

When relationships are named, strive for action words, avoiding nonde-•	

scriptive terms such as “has,” “belongs to,” “is associated with,” and so on.

Process Models
As mentioned, process design is seldom the responsibility of the database
designer or DBA, but understanding the basics helps the DBA communicate
with the process designers and ensure that the database design supports the
process design. Therefore, this section presents a brief survey of common
process-model-diagram techniques. If you want more detail about these or
other process model techniques, find a good book on systems analysis and
design.

Figure 7-9 • Customer subtypes, version 3, converted to UML

<<Entity>>
Customer

+ CustomerNumber: Integer
+ Customer Type: String
+Address: String
+ City: String
+ ZipCode: String
+ Phone: String

<<Entity>>
CustomerContact

+ CustomerContactID: Integer
+ FirstName: String
+ MiddleInitial: String
+ LastName: String
+ Title: String
+ Phone: String

<<Entity>>
Individual Customer

+ DateOfBirth: Date
+ AnnualHouseholdIncome: Number

<<Entity>>
Commercial Customer

+ CompanyName: String
+ TaxIdentificationNumber: Integer
+ Address: String
+ AnnualGrossRevenue: Number
+ CompanyType: String

1 *

222 Data b a s e s Demystified

Throughout, this section uses as an example the Acme Industries order-
fulfillment process, a very simple business process. This process has the follow-
ing steps:

Find all unshipped orders in the database.1.	

For each order, do the following:2.	

Check for available inventory. If sufficient inventory for the order is not •	

available, skip to the next order.

Check the customer’s credit to make sure they are not over their credit •	

limit and do not have some other credit problem, such as overdue pay-
ments. This would typically occur at the time the order is entered, but
it needs to occur again here because a customer’s credit status with
Acme Industries can change at any time. If a credit problem is found,
skip to the next order.

Generate the documents required to pack and ship the order (packing slip, •	

shipping labels, and so on), and route them to the Shipping Department.

When the Shipping Department has finished with the order, create the •	

invoice for the order and bill the customer accordingly.

Obviously, this process could be a lot more complicated in a large company,
but here it has been reduced to the basics to make it easier to illustrate process
models.

The Flowchart
The flowchart (or structure chart) is probably the oldest form of computer sys-
tems documentation. Some believe that flowcharts are so old that anyone who still
uses them is a dinosaur. Levity aside, flowcharts are often considered outmoded,
but they still have much to offer in certain circumstances and are still widely used.
Figure 7-10 shows the flowchart for our sample order-fulfillment process.

Here are the basic components of the flowchart:

Process steps are shown with rectangles.•	

Decision points are shown with diamonds. At each decision point, the •	

logic branches are based on the outcome of the decision. For example, a
decision might be “Is today Friday?” with a “Yes” outcome going in one
direction and a “No” outcome going in another.

Chapter 7 D ata A n d P roc e s s M od e li n g 223

Lines with arrows show the flow of control through the diagram. When •	

one process completes, it hands over control to the next process or
decision point.

Start and endpoints are shown with either ellipses or rounded rectangles. •	

Flowcharts can be used to show perpetual processes that have no start and
no end, but more often they are used to show finite processes with spe-
cific beginning and ending points.

Connector symbols that look like home plates on a baseball diamond (not •	

shown in Figure 7-10) can be used to connect lines to processes or deci-
sion points on the same or another page. Usually these are given a refer-
ence letter, with a control flow line assumed between any two connectors
that have the same reference letter.

Figure 7-10 • Flowchart of Acme Industries order-fulfillment process

Get Next
Unshipped

Order
Begin

Order
Found?

End

Inventory
Available?

Customer
Credit OK?

Pack and Ship
Order

Create
Invoice

No No

Yes

Yes

Yes

224 Data b a s e s Demystified

Figure 7-10 shows a very straightforward loop process flow. It begins with
a process step that gets the next unshipped order from the database. A deci-
sion is added after it to stop the loop (end the flow) if we don’t find an
unshipped order. If we do find the order, the process continues with decision
points that check for available inventory and acceptable customer credit, with
a “No” outcome going back to the top of the loop (the “Get next unshipped
order” process), which essentially skips the order and moves on to find the
next one. If we get a “Yes” outcome from all the decision points, the “Pack and
ship order” process is invoked next, followed by “Create invoice.” After the
“Create invoice” process completes, control goes back to “Get next unshipped
order,” at the top of the loop. The loop continues until no more unshipped
orders are found.

Flowcharts have the following strengths:

Procedural language programmers find them naturally easy to learn and •	

use. A procedural language is a programming language by which the pro-
grammer must describe the process steps required to do something, as
opposed to a nonprocedural language, such as SQL, with which the pro-
grammer merely describes the desired results. The most commonly used
procedural language today is probably C and its variants (C++, C#, and so
on), but others, such as PL/1, FORTRAN and COBOL, still see some use.
Also, specialized procedural languages for relational databases, including
PL/SQL for Oracle and Transact SQL for Sybase and Microsoft SQL
Server, are heavily used.

Flowcharts are applicable to procedures outside of a programming con-•	

text. For example, flowcharts are often used to walk repair technicians
through troubleshooting procedures for the equipment they service.

Flowcharts are useful for spotting reusable (common) components. The •	

designer can easily find any process that appears multiple times in the
flowcharts for a particular application system.

Flowcharts may be easily modified and can evolve as requirements •	

change.

On the other hand, flowcharts present these weaknesses:

They are not applicable to nonprocedural or object-oriented languages.•	

They cannot easily model some situations, such as recursive processes •	

(processes that invoke themselves).

Chapter 7 D ata a n D P R O C e s s M O D e L I n g 225

TERMS: procedural language
a procedural language is a programming language by which the programmer
must describe the process steps required to do something, as opposed to a non-
procedural language, such as sQL, with which the programmer merely describes
the desired results.

The Function Hierarchy Diagram
The function hierarchy diagram, as the name suggests, shows all the functions of
a particular application system or business process, organized into a hierarchical
tree. Figure 7-11 shows this type of process model diagram from our sample
order-fulfillment process.

Because the function hierarchy for a single process makes little sense out of
context, two other processes have been added to the hierarchy: Order Entry
and History Management. To be effective, a function hierarchy must contain all
the processes required to carry out the function it describes. Figure 7-11
attempts to show all the processes required for the Order Management func-
tion at Acme Industries. Order entry is intended to cover all the process steps
involved in a customer placing an order and having it recorded in Acme’s data-
base. History Management is intended to cover all the steps required to archive

Figure 7-11 	•	Function	hierarchy	of	the	Acme	order-fulfillment	process

Order Management

Order Entry Order Fulfillment

Check Inventory Check Customer Credit

Pack and Ship Order Create Invoice

History Management

226 Data b a s e s Demystified

and purge old (historical) orders and any required reporting on order history.
Both of these processes need to be expanded by adding process steps below
them (as was done with Order Fulfillment) to make this a complete diagram.
Under Order Fulfillment, the four main process steps involved in fulfilling
orders have been added.

The strengths of function hierarchy diagrams are as follows:

They are quick and easy to learn and use.•	

They can quickly document the bulk of the function (they get to 80 percent •	

of the processes quickly).

They provide a good overview at high and medium levels of detail.•	

And here are the weaknesses of function hierarchy diagrams:

Checking quality is difficult and subjective.•	

They cannot handle complex interactions between functions.•	

They do not clearly show the sequence of process steps or dependencies •	

between steps.

They are not an effective presentation tool for large hierarchies or at very •	

detailed levels.

The Swim Lane Diagram
The swim lane diagram gets its name from the vertical lanes in the diagram,
which resemble the lanes in a swimming pool. Each lane represents an organi-
zational unit such as a department, with process steps placed in the lane for the
unit that is responsible for the step. Lines with arrows show the sequence or
control flow of the process steps. Figure 7-12 shows the swim lane diagram for
our sample order-fulfillment process.

Strengths of the swim lane diagram include

It has the unmatched ability to show who does what in the organization.•	

It’s excellent for identifying inefficiencies in existing processes and lends •	

itself well to business process reengineering efforts.

Its weaknesses include

It does not represent complicated processes (those with many steps or •	

with complex step dependencies) well.

It does not show error and exception handling.•	

Chapter 7 D ata A n d P roc e s s M od e li n g 227

The Data Flow Diagram
The data flow diagram (DFD) is the most data-centric of all the process dia-
grams. Instead of showing a control flow through a series of process steps, it
focuses on the data that flows through the process steps. By combining dia-
grams hierarchically, the DFD combines the best of the flowchart and the func-
tion diagram. DFDs became immensely popular in the late 1970s and early
1980s, largely due to the work of Chris Gane and Trish Sarson. Each process on
a DFD can be broken down using another complete page until the desired level
of detail is reached. Figure 7-13 shows one page of the DFD for the Acme
Industries order-fulfillment process.

The components of a DFD are simple:

Processes are represented with rounded rectangles. Processes are typically •	

numbered hierarchically. The first page of a DFD might have processes num-
bered 1, 2, 3, and 4. The next page might break down process number 1 and
would have processes numbered 1.1, 1.2, and so forth. If process 1.2 were
broken down on yet another page, the processes on that page would be
numbered 1.2.1, 1.2.2, and so forth.

Data stores are represented with an open-ended rectangle. A •	 data store is
a generic representation of data that is made persistent through being

Figure 7-12 • Swim lane diagram for the Acme Industries order-fulfillment process

Shipping

Get Unshipped Order

Pack and Ship Order

Inventory Control

Check Inventory

Accounting

Check Customer Credit

Create Invoice

228 Data b a s e s Demystified

stored somewhere such as a file, database, or even a written document.
The term was chosen so that no particular type of storage is implied. Be-
cause we already have an ERD for our example, we should closely align
the data stores with the entities we have already identified.

Sources and destinations of data (“external entities” in relational terminol-•	

ogy) are shown using squares. Figure 7-13 shows the Customer as the
destination of the invoice data flow (in addition to a local data store that
will hold the invoice data). Try not to confuse data flows with material
flows. Yes, the invoice is printed and mailed to the customer, but the data
flow is attempting to show that the data is sent to the customer with no
regard for the medium used to send it.

Figure 7-13 • Data flow diagram page for the Acme Industries order-fulfillment process

1.2 Check
Inventory

1.3 Check
Customer Credit

1.1 Get
Unshipped Order

1.4 Pack and
Ship Order

Unshipped Order

Inventory

Order with Inventory

Order

Credit Limit,
Current Balance

Approved Order

Decremented inventory Shipped Status

Billing Info.

1.5 Create
Invoice

Invoice

Invoice
Customer

Product

Customer

Order

Invoice

Chapter 7 D ata A n d P roc e s s M od e li n g 229

Flows of data are shown using lines with arrowheads indicating the direc-•	

tion of flow. Each flow line is accompanied by a description of the content
of the data being sent. Bidirectional flows are permissible but are usually
shown as separate flows because the data is seldom exactly the same in
both directions.

The strengths of the data flow diagram are as follows:

It easily shows the overall structure of the system without sacrificing detail •	

(details are shown on subsequent pages that expand on the higher-level
processes).

It’s good for top-down design work.•	

It’s good for presentation of systems designs to management and business •	

users.

And here are the weaknesses of the data flow diagram:

It’s time-consuming and labor-intensive to develop for complex •	

systems.

Top-down design has proved to be ineffective for situations in which •	

requirements are sketchy and continuously evolving during the life of the
project.

It’s poor at showing complex logic, but the lowest level diagrams can •	

easily be supplemented with other documents such as narratives or
decision tables.

Process Modeling with UML
UML 2.x offers 13 different diagrams, 6 of which are structure diagrams that
emphasize what things must be in the system being modeled, and 7 of which
are behavior diagrams that emphasize what must happen in the system being
modeled. Of these, the class diagram is covered earlier in this chapter. There’s
not enough space in this book to cover all the diagrams, but you’ll find lots of
information on the Internet and in books on the subject. The following table
provides a summary description of each UML diagram:

230 Data b a s e s Demystified

Type Name Description

Structure Class diagram Shows a collection of static model elements
such as classes and types, their contents,
and their relationships

Structure Component
diagram

Depicts the components that make up an
application, system, or enterprise

Structure Composite
structure diagram

Depicts that internal structure of a classifier
(such as a class, component, or use case),
including the classifier’s interaction points to
other parts of the system (added in UML 2.x)

Structure Deployment
diagram

Shows the execution architecture of systems,
including nodes, hardware/software
environments, and the middleware that
connects them

Structure Object diagram Depicts objects and their relationships at a
point in time

Structure Package diagram Shows how model elements are assembled
into packages as well as the dependencies
between packages

Behavior Activity diagram Depicts high-level business processes,
including data flow

Behavior State machine
diagram

Describes the states an object or interaction
may be in, and the transitions between
states

Behavior Use case diagram Shows actors, use cases, and their
interactions

Behavior Communication
diagram

Shows instances of classes, their
interrelationships, and the message
flow between them

Behavior Interaction
overview diagram

A variant of an activity diagram that depicts
an overview of the control flow within a
system or business process (added in
UML 2.x)

Behavior Sequence diagram Depicts the time ordering of messages
between classifiers, essentially showing the
sequential logic of the system

Behavior Timing diagram Depicts the change in state or condition of
a classifier instance or role over time
(added in UML 2.x)

Note that some references show a subtype of Interaction diagram under
Behavior diagram, containing the Sequence, Interaction Overview,
Communication, and Timing diagrams.

Chapter 7 D ata A n d P roc e s s M od e li n g 231

Relating Entities and Processes
Once the database designer has completed logical database design and an ERD
for the proposed database and, in parallel, the process designers have completed
their process model, how can we have any confidence that the two will be able
to work together in solving the business problem the new project is supposed
to address? Part of the answer lies in a charting technique intended to show
how the entities and processes interact, known as the CRUD matrix.

Fortunately, CRUD is not slang for a lousy design but rather an acronym
formed from the first letters for the words Create, Read, Update, and Delete,
which are the letters used in the body of the diagram. The concept of the
CRUD matrix is very simple:

One axis of the matrix represents the major processes of the application •	

system.

The other axis represents the major entities used by the application •	

system.

In each cell of the matrix, the appropriate combination of letters is •	

written:

C,•	 if the process creates new occurrences of the entity

R,•	 if the process reads information about the entity from a data
source

U,•	 if the process updates one or more attributes for the entity

D,•	 if the process deletes occurrences of the entity

Here is a sample CRUD matrix for the order-management function at Acme
Industries, following the major processes shown in the function hierarchy dia-
gram (refer to Figure 7-11). To be effective, only high-level processes and super-
type entities should be shown in the matrix. Too much detail clouds the effect
of the diagram.

ENTITY:
Product Order Customer Invoice

PROCESS: Order Entry R CRU RU
Order Fulfillment RU RU R C
History Management RD R

232 Data b a s e s Demystified

The CRUD matrix is valuable for verifying the consistency of the process
and data (entity) designs. At a glance, we can find the following potential
problems:

Entities that have no Create process•	

Entities that have no Delete process•	

Entities that are never updated•	

Entities that are never read•	

Processes that delete or update entities without reading them•	

Processes that only read (no Create, Delete, or Update actions)•	

Our example has multiple problems, which proves only that our process
design is incomplete (that is, we are probably missing some key processes for
the application system). At the conclusion of the logical design phase of a proj-
ect, the CRUD matrix is an excellent vehicle for a final review of the work
completed.

Summary
In this chapter, we have explored various entity relationship and process mod-
eling techniques that can be used during the logical design step in the database
life cycle. The next step in the database life cycle is to complete the physical
database design, which is discussed in Chapter 8.

Chapter 7 D ata A n d P roc e s s M od e li n g 233

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

Peter Chen’s ERD format:1.	
Shows minimum cardinality with vertical linesA.	
May optionally include attributesB.	
Uses a crow’s foot to represent “many”C.	
Represents entities as rectangles or boxesD.	
Was developed in 1976E.	

The diamond in Chen’s ERD format:2.	
Shows the cardinality of the relationshipA.	
Contains a word or phrase that describes the relationshipB.	
Contains the name of an entityC.	
Represents an attributeD.	
Represents an entityE.	

In the relational ERD format:3.	
A crow’s foot is used to signify “many.”A.	
Relationship lines have an arrowhead that points at the “child” entity.B.	
Attributes are shown in ellipses connected to the entity with a line.C.	
Foreign key attributes are marked with “FK” in the margin.D.	
Unique identifier attributes are marked with “PK” in the margin.E.	

The IE ERD format shows4.	
Minimal cardinality using a combination of small circles and vertical lines shown A.	
on the relationship line
Maximum cardinality using a combination of small vertical lines and crow’s feet B.	
drawn on the relationship line
Independent entities with rounded corners on the rectangleC.	
Identifying relationships with a solid lineD.	
Dependent entities with squared corners on the rectangleE.	

In IE notation, subtypes:5.	
Usually have the same primary key as the supertypeA.	
May be shown using a crow’s footB.	
May be shown with a type discriminator attribute nameC.	
Have the primary key of the subtype shown as a foreign key in the supertypeD.	
May be connected to the supertype via a symbol composed of a circle with a line E.	
under it

234 Data b a s e s Demystified

The basic components of a flowchart are6.	
Connector symbols for connecting lines on the same page or across pagesA.	
Process steps shown as diamondsB.	
Ellipses or rounded rectangles showing starting and ending pointsC.	
Decision points shown as rectanglesD.	
Lines with arrows showing the flow of controlE.	

The basic components of a function hierarchy diagram are7.	
Diamonds to show decision pointsA.	
Rectangles to show process functionsB.	
Ellipses to show attributesC.	
A hierarchy to show which functions are subordinate to othersD.	
Lines connecting the processes in order of executionE.	

The basic components of a swim lane diagram are8.	
Vertical lanes to show the organization units that carry out process stepsA.	
Ellipses to show process stepsB.	
Lines with arrows to show the sequence of process stepsC.	
Open-ended rectangles to show data storesD.	
Diamonds to show decision pointsE.	

The components of the DFD are9.	
Lines with arrowheads to show flows of dataA.	
Diamonds to show sources and destinations of dataB.	
Dotted lines to show the flow of controlC.	
Squares to show data storesD.	
Rounded rectangles to show processesE.	

The components of the CRUD matrix are10.	
Major entities shown on the other axisA.	
Major processes shown on one axisB.	
Letters to show the operations that processes carry out on entitiesC.	
Ellipses to show attributesD.	
Reference numbers to show the hierarchy of processesE.	

 235

c h a p t e r 8
Physical Database
Design

As introduced in Chapter 5 in Figure 5-1, once the logical design phase of a
project is complete, it is time to move on to physical design. We will focus on
the database designer’s physical design work, which is transforming the logical
database design into one or more physical database designs. The sections that
follow cover each of the major steps involved in physical database design.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the process of designing physical tables, including the alternatives •
for handling supertypes and subtypes.

Understand the techniques for integrating business rules and data integrity •
into physical database designs, including alternatives for implementing
constraints.

Know the basic concepts of designing views and adding indexes to improve •
performance.

236 Data b a s e s Demystified

Designing Tables
In situations where an application system is being developed for internal use, it
is normal to have only one physical database design for each logical design.
However, if the organization is a software vendor, for example, the application
system must run on all the various platform and RDBMS versions that the
vendor’s customers use, and that requires multiple physical designs.

The first step in physical database design is to map the normalized relations
shown in the logical design to tables. The importance of this step should be
obvious because tables are the primary unit of storage in relational databases.
However, if adequate work was put into the logical design, then translation to
a physical design is that much easier. As you work through this chapter, keep in
mind that Chapter 2 contains an introduction to each component in the physi-
cal database model, and Chapter 4 contains the SQL syntax for the DML com-
mands required to create the various physical database components (tables,
constraints, indexes, views, and so on). Briefly, the process goes as follows:

Each normalized relation becomes a table. A common exception to this is 1.	
when supertypes and subtypes are involved, a situation we will look at in
more detail in the next section.

Each attribute within the normalized relation becomes a column in the 2.	
corresponding table. Keep in mind that the column is the smallest division
of meaningful data in the database, so columns should not have subcom-
ponents that make sense by themselves. For each column, the following
must be specified:

A unique column name within the table. •	 Generally, the attribute name
from the logical design should be adapted as closely as possible. How-
ever, adjustments may be necessary to work around database reserved
words and to conform to naming conventions for the particular RDBMS
being used. You may notice some column name differences between
the Customer relation and the CUSTOMER table in the example that
follows. The reason for this change is discussed in the “Naming Conven-
tions” section later in this chapter.

A data type, and for some data types, a length or a precision and scale•	 .
Data types vary from one RDBMS to another, so different physical
designs are needed for each RDBMS to be used.

Whether column values are required. •	 This takes the form of a NULL or
NOT NULL clause for each column. Be careful with defaults—they can

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 237

fool you. For example, when this clause is not specified, Oracle assumes
NULL, but Sybase and Microsoft SQL Server might assume NOT NULL
depending on the configuration. It’s always better to specify such things
and to be certain of what you are getting.

Check constraints.•	 These may be added to columns to enforce simple
business rules. For example, a business rule requiring that the unit price
on an invoice must always be greater than or equal to zero can be im-
plemented with a check constraint, but a business rule requiring the
unit price to be lower in certain states cannot be. Generally, a check
constraint is limited to a comparison of a column value with a single
value, with a range or list of values, or with other column values in the
same row of table data. (Constraints are described in detail later in this
chapter.)

The unique identifier of the relation is defined as the primary key of the 3.	
table. Columns participating in the primary key must be specified as NOT
NULL, and in most RDBMSs, the definition of a primary key constraint
causes automatic definition of a unique index on the primary key
column(s). Foreign key columns should have a NOT NULL clause if the re-
lationship is mandatory; otherwise, they may have a NULL clause.

Any other sets of columns that must be unique within the table may have 4.	
a unique constraint defined. As with primary key constraints, unique con-
straints in most RDBMSs cause automatic definition of a unique index on
the unique column(s). However, unlike primary key constraints, a table
may have multiple unique constraints, and the columns in a unique con-
straint may contain null values (that is, they may be specified with the
NULL clause).

Relationships among the normalized relations become referential con-5.	
straints in the physical design. For those rare situations where the logical
model contains a one-to-one relationship, you can implement it by placing
the primary key of one of the tables as a foreign key in the other (do this
for only one of the two tables) and placing a unique constraint on the for-
eign key to prevent duplicate values. For example, Figure 2-2 in Chapter 2
shows a one-to-one relationship between Employee and Automobile, and
I chose to place EMPLOYEE_ID as a foreign key in the AUTOMOBILE
table. We should also place a unique constraint on EMPLOYEE_ID in the
AUTOMOBILE table so that an employee may be assigned to only one
automobile at any point in time.

238 Data b a s e s Demystified

In most cases, large tables (that is, those that exceed several gigabytes in 6.	
total size) should be partitioned if the RDBMS being used supports it.
Partitioning is a database feature that permits a table to be broken into
multiple physical components, often with each partition stored in separate
data files, in a manner that is transparent to the database user. Typical
methods of breaking tables into partitions use a range or list of values for
a particular table column (called the partitioning column) or use a random-
izing method known as hashing that evenly distributes table rows across
available partitions. The benefits of breaking large tables into partitions are
easier administration (particularly for backup and recovery operations)
and improved performance, achieved when the RDBMS can run an SQL
query in parallel against multiple partitions and then combine the results.
Partitioning is solely a physical design issue that is never addressed in log-
ical designs. After all, a partitioned table really is still one table. There is
wide variation in the way database vendors have implemented partitioning
in their products, so you need to consult your RDBMS documentation for
more details.

Partitioning is a database feature that permits a table to be broken into multiple
physical components, often with each partition stored in separate data files, in a
manner that is transparent to the database user.

The logical model may be for a complete database system, whereas the 7.	
current project may be an implementation of a subset of that entire sys-
tem. When this occurs, the physical database designer will select and im-
plement only the subset of tables required to fulfill current needs.

Here is the logical design for Acme Industries from Chapter 6:

PRODUCT: # Product Number, Product Description,
 List Unit Price

CUSTOMER: # Customer Number, Customer Name,
 Customer Address, Customer City, Customer State,
 Customer Zip Code, Customer Phone

INVOICE: # Invoice Number, Customer Number, Terms,
 Ship Via, Order Date

INVOICE LINE ITEM: # Invoice Number, # Product Number,
 Quantity, Sale Unit Price

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 239

And here is the physical table design I created from the logical design, shown
in the form of SQL DDL statements. These statements are written for MySQL
and may require some modification, mostly of data types, to work on other
RDBMSs:

CREATE TABLE PRODUCT
 (PRODUCT_NUMBER VARCHAR(10) NOT NULL,
 PRODUCT_DESCRIPTION VARCHAR(100) NOT NULL,
 LIST_UNIT_PRICE NUMERIC(7,2) NOT NULL);

ALTER TABLE PRODUCT
 ADD CONSTRAINT PK_PRODUCT
 PRIMARY KEY (PRODUCT_NUMBER);

CREATE TABLE CUSTOMER
 (CUSTOMER_NUMBER NUMERIC(5) NOT NULL,
 NAME VARCHAR(25) NOT NULL,
 ADDRESS VARCHAR(255) NOT NULL,
 CITY VARCHAR(50) NOT NULL,
 STATE CHAR(2) NOT NULL,
 ZIP_CODE VARCHAR(10));

ALTER TABLE CUSTOMER
 ADD CONSTRAINT PK_CUSTOMER
 PRIMARY KEY (CUSTOMER_NUMBER);

CREATE TABLE INVOICE
 (INVOICE_NUMBER NUMERIC(7) NOT NULL,
 CUSTOMER_NUMBER NUMERIC(5) NOT NULL,
 TERMS VARCHAR(20) NULL,
 SHIP_VIA VARCHAR(30) NULL,
 ORDER_DATE DATE NOT NULL);

ALTER TABLE INVOICE
 ADD CONSTRAINT PK_INVOICE
 PRIMARY KEY (INVOICE_NUMBER);

ALTER TABLE INVOICE
 ADD CONSTRAINT FK_INVOICE_CUSTOMER
 FOREIGN KEY (CUSTOMER_NUMBER)
 REFERENCES CUSTOMER (CUSTOMER_NUMBER);

CREATE TABLE INVOICE_LINE_ITEM
 (INVOICE_NUMBER NUMERIC(7) NOT NULL,
 PRODUCT_NUMBER VARCHAR(10) NOT NULL,
 QUANTITY NUMERIC(5) NOT NULL,
 SALE_UNIT_PRICE NUMERIC(7,2) NOT NULL);

240 Data b a s e s Demystified

ALTER TABLE INVOICE_LINE_ITEM
 ADD CONSTRAINT PK_INVOICE_LINE_ITEM
 PRIMARY KEY (INVOICE_NUMBER, PRODUCT_NUMBER);

ALTER TABLE INVOICE_LINE_ITEM
 ADD CONSTRAINT CK_INVOICE_SALE_UNIT_PRICE
 CHECK (SALE_UNIT_PRICE >= 0);

ALTER TABLE INVOICE_LINE_ITEM
 ADD CONSTRAINT FK_INVOICE_LINE_ITEM_INVOICE
 FOREIGN KEY (INVOICE_NUMBER)
 REFERENCES INVOICE (INVOICE_NUMBER);

ALTER TABLE INVOICE_LINE_ITEM
 ADD CONSTRAINT FK_INVOICE_LINE_ITEM_PRODUCT
 FOREIGN KEY (PRODUCT_NUMBER)
 REFERENCES PRODUCT (PRODUCT_NUMBER);

Implementing Supertypes and Subtypes
Most data modelers tend to specify every conceivable subtype in the logical
data model. This is not really a problem because the logical design is supposed
to encompass not only where things currently stand, but also where things are
likely to end up in the future. The designer of the physical database therefore
has some decisions to make in choosing to implement or not implement the
supertypes and subtypes depicted in the logical model. The driving motivators
here should be reasonableness and common sense. These, along with input from
the application designers about their intended uses of the database, will lead to
the best decisions.

From Chapter 7, recall that we ended up with two subtypes for our Customer
entity: Individual Customer and Commercial Customer in Figure 7-8, reproduced
here as Figure 8-1. There are basically three choices for physically implementing
such a logical design, and we will explore each in the subsections that follow.

Implementing Subtypes As Is
This solution involves creating one table for the supertype and one table for
each of the subtypes (two in this example). This design is most appropriate
when many attributes and/or relationships are particular to individual subtypes.
In our example, only two attributes are particular to the Individual Customer
subtype (Date of Birth and Annual Household Income), and four are particular
to the Commercial Customer subtype. Figure 8-2 shows the physical design for
this alternative.

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 241

CUSTOMER

CUSTOMER NUMBER

CUSTOMER TYPE
ADDRESS
CITY
STATE
ZIP CODE
PHONE

COMMERCIAL CUSTOMER

CUSTOMER NUMBER (FK)

COMPANY NAME
TAX IDENTIFICATION NUMBER
ANNUAL GROSS REVENUE
COMPANY TYPE

INDIVIDUAL CUSTOMER

CUSTOMER NUMBER (FK)

DATE OF BIRTH
ANNUAL HOUSE HOLD INCOME

CUSTOMER TYPE

CUSTOMER CONTACT

CUSTOMER CONTACTID

CUSTOMER NUMBER (FK)
FIRST NAME
MIDDLE INITIAL
LAST NAME
TITLE
PHONE

Figure 8-1 • Customer subtypes final solution (from Figure 7-8)

Figure 8-2 • Customer subclasses: physical design with subtypes as is

CUSTOMER

CUSTOMER_NUMBER

CUSTOMER_TYPE
ADDRESS
CITH
STATE
ZIP_CODE
PHONE

COMMERCIAL_CUSTOMER

CUSTOMER_NUMBER(FK)

COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE

INDIVIDUAL_CUSTOMER

CUSTOMER_NUMBER (FK)

DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

CUSTOMER_CONTACT

CUSTOMER_CONTACT_ID

CUSTOMER_NUMBER (FK)
FIRST_NAME
MIDDLE_INITIAL
LAST_NAME
TITLE
PHONE

242 Data b a s e s Demystified

This design alternative is favored when there are many common attributes
and/or relationships (defined in the supertype table) as well as many attributes
and/or relationships particular to one subtype or another (located in the sub-
type tables). In one sense, this design is simpler than the other alternatives
because no one has to remember which attributes and relationships apply to
which subtype. On the other hand, it is also more complicated to use because
the database user must join the CUSTOMER table to either the INDIVID-
UAL_CUSTOMER table or the COMMERCIAL_CUSTOMER table, depend-
ing on the value of CUSTOMER_TYPE. The data-modeling purists on your
project team are guaranteed to favor this approach, but the application pro-
grammers who must write the SQL to access the tables may likely take a coun-
ter position.

Implementing Each Subtype as a Discrete Table
This solution involves creating one table for each subtype and including all the
columns from the supertype table in each subtype, as well as defining any rela-
tionships from the supertype on each subtype. At first, this may appear to
involve redundant data, but there is no redundant storage because a given cus-
tomer can be only one of the two subtypes. However, some columns are redun-
dantly defined. Figure 8-3 shows the physical design for this alternative.

This alternative is favored when very few attributes and relationships are
common between the subtypes (that is, when the supertype table contains very
few attributes and participates in few relationships). In our example shown in
Figure 8-2, the situation is complicated because of the CUSTOMER_CON-
TACT table, which is a child of the supertype table (CUSTOMER). You cannot
(or at least should not) make a table the child of two different parents based on
the same foreign key. Therefore, if we eliminate the CUSTOMER table, we
must create two versions of the CUSTOMER_CONTACT table—one as a
child of INDIVIDUAL_CUSTOMER (named INDV_CUST_CONTACT) and
the other as a child of COMMERCIAL_CUSTOMER (named COMM_CUST_
CONTACT), as shown in Figure 8-3. Although this alternative may be a viable
solution in some situations, the complication of the CUSTOMER_CONTACT
table makes it a poor choice in this case.

Collapsing Subtypes into the Supertype Table
This solution involves creating a single table that encompasses the supertype
and both subtypes. Figure 8-4 shows the physical design for this alternative.
Check constraints are required to enforce the optional columns. For the

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 243

Figure 8-3 • Customer subclasses: two-table physical design

INDIVIDUAL_CUSTOMER

CUSTOMER_NUMBER

ADDRESS
CITY
STATE
ZIP_CODE
PHONE
DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

COMMERCIAL_CUSTOMER

CUSTOMER_NUMBER

ADDRESS
CITY
STATE
ZIP_CODE
PHONE
COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE

COMM_CUST_CONTACT

COMM_CUST_CONTACT_ID

CUSTOMER_NUMBER (FK)
FIRST_NAME
MIDDLE_INITIAL
LAST_NAME
TITLE
PHONE

INDV_CUST_CONTACT

INDV_CUST_CONTACT_ID

CUSTOMER_NUMBER (FK)
FIRST_NAME
MIDDLE_INITIAL
LAST_NAME
TITLE
PHONE

Figure 8-4 • Customer subclasses: one-table physical design

CUSTOMER

CUSTOMER_NUMBER

CUSTOMER_TYPE
ADDRESS
CITY
STATE
ZIP_CODE
PHONE
COMPANY_NAME
TAX_IDENTIFICATION_NUMBER
ANNUAL_GROSS_REVENUE
COMPANY_TYPE
DATE_OF_BIRTH
ANNUAL_HOUSEHOLD_INCOME

CUSTOMER_CONTACT

CUSTOMER_CONTACT_ID

CUSTOMER_NUMBER (FK)
FIRST_NAME
MIDDLE_INITIAL
LAST_NAME
TITLE
PHONE

244 Data b a s e s Demystified

CUSTOMER_TYPE value that signifies “Individual,” DATE_OF_BIRTH and
ANNUAL_HOUSEHOLD_INCOME would be allowed to (or required to)
contain values, and COMPANY_NAME, TAX_IDENTIFICATION_NUMBER,
ANNUAL_GROSS_REVENUE, and COMPANY_TYPE would be required to
be null. For the CUSTOMER_TYPE value that signifies “Commercial,” the
behavior required would be just the opposite.

This alternative is favored when relatively few attributes and/or relationships
are particular to any given subtype. In terms of data access, it is clearly the
simplest alternative because no joins are required. However, it is perhaps more
complicated in terms of logic because you must always keep in mind which
attributes apply to which subtype (that is, which value of CUSTOMER_TYPE
in this example). With only two subtypes, and a total of six subtype-determined
attributes between them, this seems a very attractive alternative for this
example.

Naming Conventions
Naming conventions are important because they help promote consistency in
the names of tables, columns, constraints, indexes, and other database objects.
Every organization should develop a standard set of naming conventions (with
variations as needed when multiple RDBMSs are in use), publish it, and enforce
its use. The conventions offered here are suggestions based on current industry
best practices.

Table-Naming Conventions
Here are some suggested naming conventions for database tables:

Table names should be based on the name of the entity they represent. •	

They should be descriptive, yet concise.

Table names should be unique across the entire organization (that is, •	

across all databases), except where the table really is an exact duplicate of
another (that is, a replicated copy). If this isn’t feasible, at least have
unique table names within each database or schema.

Some designers prefer singular words for table names, whereas others pre-•	

fer plural names (for example, CUSTOMER versus CUSTOMERS). Or-
acle Corporation recommends singular names for entities and plural
names for tables. I have always preferred singular words for both entity
and table names. However, it doesn’t matter which convention you adopt

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 245

as long as you are consistent across all your tables, so do set one or the
other as your standard.

Do not include words such as “table” or “file” in table names.•	

Use only uppercase letters, and use an underscore to separate words. Not •	

all RDBMSs have case-sensitive object names, so mixed-case names limit
applicability across multiple vendors. This is bound to be a controversial
topic for organizations using DBMSs, such as MySQL, SQL Server, and
Sybase, that fully support mixed-case names. However, mixed-case names
present an issue of portability: if you implement a database design with
mixed-case names on a DBMS that folds all object names to uppercase,
such as Oracle and DB2, then a table named OrderLineItem, for example,
instantly becomes ORDERLINEITEM, which clearly isn’t easy to read
and use.

Use abbreviations when necessary to shorten names that are longer than •	

the RDBMS maximum (typically 30 characters or so). Actually, it is a
good idea to stay a few characters short of the RDBMS maximum to allow
for suffixes when necessary. All abbreviations should be placed on a stan-
dard list and the use of nonstandard abbreviations discouraged.

Avoid limiting names such as WEST_SALES. Some organizations add a •	

two- or three-character prefix to table names to denote the part of the
organization that owns the data in the table. However, this is not consid-
ered a best practice because it can lead to a lack of data sharing. Moreover,
placing geographic or organizational unit names in table names plays
havoc every time the organization changes.

Column-Naming Conventions
Here are some suggested naming conventions for table columns:

Column names should be based on the attribute name as shown in the •	

logical data model. They should be descriptive, yet concise.

Column names must be unique within the table, but where possible, it is •	

best if they are unique across the entire organization. Some conventions
make exceptions for common attributes such as City, which might describe
several entities such as Customer, Employee, and Company Location.

Use only uppercase letters, and use an underscore to separate words. Not •	

all RDBMSs have case-sensitive object names, so mixed-case names limit
applicability across multiple vendors.

246 Data b a s e s Demystified

Prefixing column names with entity names is a controversial issue. Some •	

prefer prefixing names. For example, in the CUSTOMER table, they
would use column names such as CUSTOMER_NUMBER, CUSTOMER_
NAME, CUSTOMER_ADDRESS, CUSTOMER_CITY, and so forth.
Others (this author included) prefer to prefix only the primary key col-
umn name (for example, CUSTOMER_NUMBER), which leads easily to
primary key and matching foreign key columns having exactly the same
names. Still others prefer no prefixes at all and end up with a column
name such as ID for the primary key of every single table.

Use abbreviations when necessary to shorten names that are longer than •	

the RDBMS maximum (typically 30 characters or so). All abbreviations
should be placed on a standard list and the use of nonstandard abbrevia-
tions discouraged.

Regardless of any other convention, most experts prefer that foreign key •	

columns always have exactly the same name as their matching primary
key column. This helps other database users understand which columns
to use when coding joins in SQL.

Constraint-Naming Conventions
In most RDBMSs the error message generated when a constraint is violated
contains the constraint name. Unless you want to field questions from database
users every time one of these messages shows up, you should name the con-
straints in a standard way that is easily understood by the database users. Most
database designers prefer a convention similar to the one presented here.

Constraint names should be in the format TYPE_TNAME_CNAME,
where:

TYPE is the type of constraint:•	

PK•	 for primary key constraints.

FK•	 for foreign key constraints.

UQ•	 for unique constraints.

CK•	 for check constraints.

TNAME is the name of the table on which the constraint is defined, ab-•	

breviated if necessary.

CNAME is the name of the column on which the constraint is defined, •	

abbreviated if necessary. For constraints defined across multiple columns,

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 247

another descriptive word or phrase may be substituted if the column names
are too long (even when abbreviated) to make sense. Also, the column
name can be omitted for primary key constraints because it is not needed
for uniqueness, since each table can have only one such constraint.

Index-Naming Conventions
Indexes that are automatically defined by the RDBMS to support primary key
or unique constraints are typically given the same name as the constraint name,
so you seldom have to worry about them. For other types of indexes, it is wise
to have a naming convention so that you know the table and column(s) on
which they are defined without having to look up anything. The following is a
suggested convention.

Index names should be in the format TYPE_TNAME_CNAME, where:

TYPE is the type of index:•	

UX•	 for unique indexes.

IX•	 for non-unique indexes.

TNAME is the name of the table on which the index is defined, abbrevi-•	

ated if necessary.

CNAME is the name of the column on which the index is defined, ab-•	

breviated if necessary. For indexes defined across multiple columns, an-
other descriptive word or phrase may be substituted if the column names
are too long (even when abbreviated) to make sense.

Also, any abbreviations used should be documented in the standard abbre-
viations list.

View-Naming Conventions
View names present an interesting dilemma. The object names used in the FROM
clause of SQL statements can be for tables, views, or synonyms. A synonym is
an alias (nickname) for a table or view. So how does the DBMS know whether
an object name in the FROM clause is a table or view or synonym? It doesn’t,
until it looks up the name in a metadata table that catalogs all the objects in
the database. This means, of course, that the names of tables, views, and syn-
onyms must come from the same namespace, or list of possible names. Therefore,
a view name must be unique among all table, view, and synonym names.

Because it is useful for some database users to know if they are referencing a
table or a view, and as an easy way to ensure that names are unique, it is common

248 Data b a s e s Demystified

practice to give views distinctive names by employing a standard that appends
VW to the beginning or end of each name, with a separating underscore. Again,
the exact convention chosen matters a lot less than picking one convention and
sticking to it for all your view names. Here is a suggested convention:

All view names should end with •	 _VW so they are easily distinguishable
from table names.

View names should contain the name of the most significant base table •	

included in the view, abbreviated if necessary.

View names should describe the purpose of the views or the kind of data •	

included in them. For example, CALIFORNIA_CUSTOMERS_VW and
CUSTOMERS_BY_ZIP_CODE_VW are both reasonably descriptive
view names, whereas CUSTOMER_LIST_VW and CUSTOMER_JOIN_
VW are much less meaningful.

Any abbreviations used should be documented in the standard abbrevia-•	

tions list.

Integrating Business Rules and Data Integrity
Business rules determine how an organization operates and utilizes its data.
Business rules exist as a reflection of an organization’s policies and operational
procedures and because they provide control. Data integrity is the process of
ensuring that data is protected and stays intact through defined constraints
placed on the data. We call these database constraints because they prevent
changes to the data that would violate one or more business rules. The principal
benefit of enforcing business rules using data integrity constraints in the data-
base is that database constraints cannot be circumvented. Unlike business rules
enforced by application programs, database constraints are enforced no matter
how someone connects to the database. The only way around database con-
straints is for the DBA to remove or disable them.

A database constraint is a control defined in the database that limits data values in
some way.

Business rules are implemented in the database as follows:

NOT NULL •	 constraints

Primary key constraints•	

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 249

Referential (foreign key) constraints•	

Unique constraints•	

Check constraints•	

Data types, precision, and scale•	

Triggers•	

The subsections that follow discuss each of these implementation techniques
and the effect the constraints have on database processing. Throughout this
topic, we will use the following table definition as an example. A comment
(comments in SQL begin with at least two hyphens) has been placed above
each component to help you identify it. Note that the INVOICE table used
here has a column difference—TERMS is replaced with CUSTOMER_PO_
NUMBER, which is needed to illustrate some key concepts. A DROP statement
is included to drop the INVOICE table in case you created it when following
previous examples.

-- Drop Tables (in case they already exist)
DROP TABLE INVOICE_LINE_ITEM;
DROP TABLE INVOICE;
DROP TABLE CUSTOMER;
DROP TABLE PRODUCT;

-- Create Customer Table
CREATE TABLE CUSTOMER
 (CUSTOMER_NUMBER NUMERIC(5) NOT NULL,
 NAME VARCHAR(25) NOT NULL,
 ADDRESS VARCHAR(255) NOT NULL,
 CITY VARCHAR(50) NOT NULL,
 STATE CHAR(2) NOT NULL,
 ZIP_CODE VARCHAR(10));

-- Create Primary Key Constraint
ALTER TABLE CUSTOMER
 ADD CONSTRAINT PK_CUSTOMER
 PRIMARY KEY (CUSTOMER_NUMBER);

-- Create Invoice Table
CREATE TABLE INVOICE
 (INVOICE_NUMBER NUMERIC(7) NOT NULL,
 CUSTOMER_NUMBER NUMERIC(5) NOT NULL,
 CUSTOMER_PO_NUMBER VARCHAR(10) NULL,
 SHIP_VIA VARCHAR(30) NULL,
 ORDER_DATE DATE NOT NULL);

250 Data b a s e s Demystified

-- Create Primary Key Constraint
ALTER TABLE INVOICE
 ADD CONSTRAINT PK_INVOICE
 PRIMARY KEY (INVOICE_NUMBER);

-- Create Referential Constraint
ALTER TABLE INVOICE
 ADD CONSTRAINT FK_INVOICE_CUSTOMER
 FOREIGN KEY (CUSTOMER_NUMBER)
 REFERENCES CUSTOMER (CUSTOMER_NUMBER);

-- Create Unique Constraint
ALTER TABLE INVOICE
 ADD CONSTRAINT UNQ_INVOICE_CUST_NUMB_PO
 UNIQUE (CUSTOMER_NUMBER, CUSTOMER_PO_NUMBER);

-- Create CHECK Constraint
ALTER TABLE INVOICE
 ADD CONSTRAINT INVOICE_CK_TERMS
 CHECK (TERMS IN ('EOM', 'Net 30', 'Cash Account'));

NOT NULL Constraints
As you have already seen, business rules that state which attributes are required
translate into NOT NULL clauses on the corresponding columns in the table
design. In fact, the NOT NULL clause is how we define a NOT NULL constraint on
table columns. Primary keys must always be specified as NOT NULL (Oracle will
automatically do this for you, but most other RDBMSs will not). And, as already
mentioned, any foreign keys that participate in a mandatory relationship should
also be specified as NOT NULL.

In our example, if we attempt to insert a row in the INVOICE table and fail
to provide a value for any of the columns that have NOT NULL constraints (that
is, the INVOICE_NUMBER, CUSTOMER_NUMBER, and ORDER_DATE
columns), the insert will fail with an error message indicating the constraint
violation. Also, if we attempt to update any existing row and set one of those
columns to a NULL value, the update statement will fail.

Primary Key Constraints
Primary key constraints require that the column(s) that make up the primary
key contain unique values for every row in the table. In addition, primary key
columns must be defined with NOT NULL constraints. A table may have only one
primary key constraint. The RDBMS will automatically create an index to assist
in enforcing the primary key constraint.

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 251

In our sample INVOICE table, if we attempt to insert a row without specify-
ing a value for the INVOICE_NUMBER column, the insert will fail because of
the NOT NULL constraint on the column. If we instead try to insert a row with
a value for the INVOICE_NUMBER column that already exists in the INVOICE
table, the insert will fail with an error message that indicates a violation of the
primary key constraint. This message usually contains the constraint name,
which is why it is such a good idea to give constraints meaningful names. Finally,
assuming the RDBMS in use permits updates to primary key values (some do
not), if we attempt to update the INVOICE_NUMBER column for an existing
row and we provide a value that is already used by another row in the table, the
update will fail.

Referential (Foreign Key) Constraints
The referential constraint on the INVOICE table defines CUSTOMER_NUMBER
as a foreign key to the CUSTOMER table. It takes some getting used to, but
referential constraints are always defined on the child table (that is, the table
on the “many” side of the relationship). The purpose of the referential con-
straint is to make sure that foreign key values in the rows in the child table
always have matching primary key values in the parent table.

In our INVOICE table example, if we try to insert a row without providing
a value for CUSTOMER_NUMBER, the insert will fail due to the NOT NULL
constraint on the column. However, if we try to insert a row and provide a value
for CUSTOMER_NUMBER that does not match the primary key of a row in
the CUSTOMER table, the insert will fail due to the referential constraint. Also,
if we attempt to update the value of CUSTOMER_NUMBER for an existing
row in the INVOICE table and the new value does not have a matching row in
the CUSTOMER table, the update will fail, again due to the referential
constraint.

Unique Constraints
Like primary key constraints, unique constraints ensure that no two rows in the
table have duplicate values for the column(s) named in the constraint. How-
ever, there are two important differences:

Although a table may have only one primary key constraint, it may have •	

as many unique constraints as necessary.

Columns participating in a unique constraint do not have to have •	 NOT

NULL constraints on them.

252 Data b a s e s DemystifieD

As with a primary key constraint, an index is automatically created to assist
the DBMS in efficiently enforcing the constraint.

As with the primary key constraint, if we attempt to insert a row with values
for the CUSTOMER_NUMBER and PO_NUMBER columns that are already
in use by another row, the insert will fail. Similarly, we cannot update a row in
the INVOICE table if the update would result in the row having a duplicate
combination of CUSTOMER_NUMBER and PO_NUMBER.

still struggling
always keep in mind that referential constraints work in both directions, so they
can prevent a child table row from becoming an “orphan,” meaning it has a value
that does not match a primary key value in the parent table. therefore, if we at-
tempt to delete a row in the CUstOMeR table that has inVOiCe rows referring to
it (or if we attempt to update the primary key value of such a row), the statement
will fail because it would cause child table rows to violate the constraint. how-
ever, many RDbMss provide a feature with referential constraints written as On
Delete CasCaDe, which causes referencing child table rows to be automatically
deleted when the parent row is deleted. Of course, this option is not appropriate
in all situations, but it is nice to have when you need it.

?

still struggling
in our example, a unique constraint is defined on the CUstOMeR_nUMbeR and
CUstOMeR_PO_nUMbeR columns, to enforce a business rule that states that
customers may only use a PO (purchase order) number once. It is important to
understand that it is the combination of the values in the two columns that must
be unique. there can be many invoices for any given CUstOMeR_nUMbeR, and
there can be multiple rows in the INVOICE table with the same PO_NUMBER (we
cannot prevent two customers from using the same PO number, nor do we wish
to). However, no two rows for the same customer number may have the same
PO number.

?

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 253

Check Constraints
Check constraints are used to enforce business rules that restrict a column to a
list or range of values or to some condition that can be verified using a simple
comparison to a constant, calculation, or a value of another column in the same
row. Check constraints may not be used to compare column values between
different rows, whether in the same table or not. Check constraints are written
as conditional statements that must always be true. The term comes from the
fact that the database must always “check” the condition to make sure it evalu-
ates to true before allowing an insert or update to a row in the table.

In our example, we have a check constraint that requires the TERMS to be
one of the following values: EOM, Net 30, or Cash Account. This enforces a
business rule that restricts the invoice terms to a finite list of values. Alterna-
tively, we could accomplish the same thing (perhaps more flexibly) with a
lookup table and referential constraint. Keep in mind that the condition is only
checked when we insert or update a row in the INVOICE table, so it will not
be applied to existing rows as the terms change. With the constraint in force, if
we attempt to insert or update a row with TERMS set to a value not included
in the list, the statement will fail.

Data Types, Precision, and Scale
The data type assigned to the table columns automatically constrains the data to
values that match the data type. For example, anything placed in a column with a
date format must be a valid date. You cannot put nonnumeric characters in numeric
columns. However, you can put just about anything in a character column.

For numeric data types that support the specification of the precision (maxi-
mum size) and scale (positions to the right of the decimal point), these specifica-
tions also constrain the data. You cannot put a number larger than the maximum
size for the column into the database. Nor can you specify decimal positions beyond
those allowed for in the scale of a number. For character data types, the length
prevents character data that is too long from being placed into the column.

In our example, CUSTOMER_NUMBER must contain only numeric digits
and cannot be larger than 99,999 (five digits) or smaller than –99,999 (again,
five digits). Also, because the scale is 0, it cannot have decimal digits (that is, it
must be an integer). It may seem silly to allow negative values for CUSTOMER_
NUMBER, but there is no SQL data type that restricts a column to only positive
integers. However, it is easy enough to restrict a column to only positive num-
bers by using a check constraint if needed.

254 Data b a s e s Demystified

Triggers
As you may recall, a trigger is a unit of program code that executes automati-
cally based on some event that takes place in the database, such as inserting,
updating, or deleting data in a particular table. Triggers must be written in a
language supported by the RDBMS. For Oracle, this is either a proprietary
extension to SQL called PL/SQL (Procedural Language/SQL) or Java (avail-
able in Oracle8i or later). For Sybase and Microsoft SQL Server, the supported
language is Transact-SQL. Some RDBMSs have no support for triggers, whereas
others support a more general programming language such as C. Trigger code
must either end normally, which lets the SQL statement that caused the trigger
to fire end normally, or must raise a database error, which lets the SQL state-
ment that caused the trigger to fire fail.

Triggers can enforce business rules that cannot be enforced via database con-
straints. Because they are written using a full-fledged programming language, they
can do just about anything that can be done with a database and a program (some
RDBMSs do place some restrictions on triggers). Whether a business rule should
be enforced in normal application code or through the use of a trigger is not
always an easy decision. Application developers typically want control of such
things, but on the other hand, the main benefit of triggers is that they run auto-
matically and cannot be circumvented (unless the DBA removes or disables them),
even if someone connects directly to the database, bypassing the application.

A common use of triggers in RDBMSs that do not support ON DELETE CASCADE
in referential constraints is to carry out the cascading delete. For example, if we
want invoice line items to be automatically removed from the INVOICE_LINE_
ITEM table when the corresponding invoice in the INVOICE table is deleted, we
could write a trigger that carries that out. The trigger would be set to fire when a
delete from the INVOICE table takes place. It would then issue a delete for all
the child rows related to the parent invoice (those matching the primary key
value of the invoice being deleted) and then end normally, which would permit
the original invoice delete to complete. (Because the referencing child rows will
be done by this time, the delete will not violate the referential constraint.)

Designing Views
As covered in Chapter 2, views can be thought of as virtual tables. They are,
however, merely stored SQL statements that do not themselves contain any
data. Data can be selected from views just as it can from tables, and with some

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 255

restrictions, data can be inserted into, updated in, and deleted from views. Here
are the restrictions:

For views containing joins, any DML (that is, insert, update, or delete) •	

statement issued against the view must reference only one table.

Inserts are not possible using views where any required (•	 NOT NULL) col-
umn has been omitted.

Any update against a view may reference only columns that directly map •	

to base table columns. Calculated and derived columns may not be up-
dated.

Appropriate privileges are required (just as with base tables).•	

There are various other product-specific restrictions to using views, so •	

always consult the RDBMS documentation.

Views can be designed to provide the following advantages:

In some RDBMSs, views provide a performance advantage over ordinary •	

SQL statements. Views are precompiled, so the resources required to
parse and bind the statement are saved when views are repeatedly refer-
enced. However, there is no such advantage with RDBMSs that provide
an automatic SQL statement cache, as Oracle does. Moreover, poorly
written SQL can be included in a view, so putting SQL in a view is not a
magic answer to performance issues.

Views may be tailored to individual department needs, providing only the •	

rows and columns needed, and perhaps renaming columns using terms
more readily understood by the particular audience.

Because views hide the real table and column names from their users, they •	

insulate users from changes to those names in the base tables.

Data usage can be greatly simplified by hiding complicated joins and cal-•	

culations from the database users. For example, views can easily calculate
ages based on birth dates, and they can summarize data in nearly any way
imaginable.

Security needs can be met by filtering rows and columns that users are not •	

supposed to see. Some RDBMS products permit column-level security,
where users are granted privileges by column as well as by table, but using
views is far easier to implement and maintain. Moreover, a WHERE clause
in the view can filter rows easily.

256 Data b a s e s Demystified

Once created, views must be managed like any other database object. If
many members of a database project are creating and updating views, it is very
easy to lose control. Moreover, views can become invalid as maintenance is car-
ried out on the database, so their status must be reviewed periodically. Finally,
while views can be referenced in additional views, if views are nested in too
many layers, there can be significant performance consequences because the
DBMS has to peel back all the layers when the view is referenced.

Adding Indexes for Performance
Indexes provide a fast and efficient means of finding data rows in tables, much like
the index at the back of a book helps you in quickly finding specific references.
Although the implementation in the database is more complicated than this, it’s
easiest to visualize an index as a table with one column containing the key value
and another containing a pointer to where the row with that key value physically
resides in the table, in the form of a row ID or a relative block address (RBA). For
non-unique indexes, the second column contains a list of matching pointers.

Indexes provide faster searches than scanning tables for two reasons. First,
index entries are considerably shorter than typical table rows, so many more
index entries fit per physical file block than the corresponding table rows.
Therefore, when the database must scan the index sequentially looking for
matching rows, it can get a lot more index entries with a single read to the file
on disk than with a corresponding read to the file holding the table. Second,
unlike table rows, index entries are always maintained in key sequence, often
with a hierarchical tree structure to organize the entries. The RDBMS software
can take advantage of this by using binary search techniques that remarkably
reduce search times and the resources required for searching.

There are no free lunches, however—indexes take up space and must be
maintained. Storage space seems less of an issue with every passing day because
storage devices keep getting cheaper. However, they still cost something, and
they require maintenance and must be backed up. Most RDBMS vendors pro-
vide tools to help calculate the storage space required for indexes. These will
assist you in estimating storage requirements. The more important consideration
is maintenance of the index. Whenever a row is inserted into a table, every index
defined on that table must have a new entry inserted as well. As rows are deleted,
index entries must also be removed. And when columns that have an index
defined on them are updated, the index must be updated as well. It’s easy to
forget this point because the RDBMS does this work automatically, but every

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 257

index has a detrimental effect on the performance of inserts, updates, and deletes
to table data. In essence, this is a typical trade-off, sacrificing a bit of DML state-
ment performance for considerable gains in SELECT statement performance.

Here are some general guidelines regarding the use of indexes:

Keep in mind that primary key constraints and unique constraints auto-•	

matically create indexes on the key columns.

Indexes on foreign keys can markedly improve the performance of joins.•	

Consider using indexes on columns that are frequently referenced in •	

WHERE clauses.

The larger the table, the less you want any database query to have to scan •	

the entire table (in other words, the more you want every query to use an
index).

The more a table is updated, the fewer the number of indexes you should •	

have on the table, particularly on the columns that are updated most
often.

For relatively small tables (less than 1,000 rows or so), sequential table •	

scans are probably more efficient than indexes. Most RDBMSs have opti-
mizers that decide when an index should be used when processing a par-
ticular SQL statement, and typically they will choose a table scan over an
index until there are at least a few hundred rows in the table.

For tables with relatively short rows that are most often accessed using the •	

primary key, consider the use of an index organized table (on RDBMSs that
support such a table), where all the table data is stored in the index. This
can be a highly efficient structure for lookup tables (tables containing
little more than code and description columns).

Consider the performance consequences carefully before you define more •	

than two or three indexes on a single table.

Summary
In this chapter, we covered the essentials of physical database design, including
designing tables, alternatives for handling supertypes and subtypes, techniques
for integrating business rules and data integrity using constraints, designing
views, and adding indexes for performance. In Chapter 9, we’ll look at how
databases can be connected to the outside world.

258 Data b a s e s Demystified

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

When you’re designing tables:1.	
Unique identifiers become triggers.A.	
Each attribute in the relation becomes a table column.B.	
Each normalized relation becomes a table.C.	
Primary key columns must be defined as D.	 NOT NULL.
Relationships become check constraints.E.	

Physical database design:2.	
Immediately follows the logical design stageA.	
Immediately follows the requirements-gathering stageB.	
Is done in parallel with the definition of the hardware and system software re-C.	
quired for the application system
Can be done without a corresponding logical designD.	
Includes the design of application programsE.	

Supertypes and subtypes:3.	
Only apply to the logical designA.	
Usually have the same primary key in the physical tablesB.	
Must be implemented exactly as specified in the logical designC.	
May have the supertype columns folded into each subtype in the physical de-D.	
sign
May be collapsed in the physical database designE.	

Relationships in the logical model:4.	
Are enforced with triggers in the physical designA.	
Require a B.	 NOT NULL constraint in the physical model
Become check constraints in the physical modelC.	
Become a primary key in the parent table and a foreign key in the child tableD.	
Become referential constraints in the physical modelE.	

Unique constraints:5.	
May only be defined once per tableA.	
Force column values to be unique within the tableB.	
Are usually implemented using an indexC.	
Are identical to primary key constraintsD.	
Require columns that have E.	 NOT NULL constraints

Chapter 8 P h y s i c a l D ata b a s e D e s i g n 259

Check constraints:6.	
May be used to force a column to match another column in the same rowA.	
May be used to force a column to match a list of valuesB.	
May be used to force a column to match a range of valuesC.	
May be used to enforce a foreign key constraintD.	
May be used to force a column to match a column in another tableE.	

Referential constraints:7.	
Should have descriptive namesA.	
Are always defined on the parent tableB.	
Define relationships identified in the logical modelC.	
Name the parent and child tables and the foreign key columnD.	
Require that foreign keys be defined as E.	 NOT NULL

Precision and scale:8.	
Apply to all data typesA.	
Can be used to prevent negative numbers in numeric columnsB.	
Can be used to prevent decimal digits in columns that should contain only inte-C.	
gers
Can be used to prevent numbers that are too small from being stored in a col-D.	
umn
Can be used to prevent numbers that are too large from being stored in a col-E.	
umn

View restrictions include9.	
If a view omits a mandatory column that has no default, inserts to the view are A.	
not possible.
Any update involving a view may only reference columns from one table.B.	
Privileges are required in order to update data using views.C.	
Views containing joins can never be updated.D.	
Updates to calculated columns in views are prohibited.E.	

Indexes:10.	
Are slower to sequentially scan than corresponding tablesA.	
Are usually smaller than the tables they referenceB.	
May be used to assist with primary key constraintsC.	
May be used to improve insert, update, and delete performanceD.	
May be used to improve query performanceE.	

This page intentionally left blank

 261

c h a p t e r 9
Connecting Databases
to the Outside World

We begin this chapter with a look at the evolution of database deployment
models. We see the ways databases have been connected with their users and
with the other computer systems within the enterprise computing infrastruc-
ture (the internal structure of all the computing resources of an enterprise). We
then explore the methods used to connect databases to applications that use a
web browser as the primary user interface, which is the way many modern
application systems are constructed. Finally, we look at current methods for
connecting databases to applications, namely using ODBC connections (for
most programming languages) and various methods for connecting databases
to applications written in Java.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Learn database deployment models.•
Understand how to connect databases to the outside world.•
Understand how to connect databases to applications.•

262 Data b a s e s Demystified

Deployment Models
The history of the information technology (IT) industry is interesting because it
clearly proves the old adage that history repeats itself. Nowhere is this truer than
in the ways that we have deployed databases, and computer systems in general,
on enterprise networks. The subsections that follow outline the major deploy-
ment models that have been used. Most of these models are still in active use.

Centralized Model
The centralized model, shown in Figure 9-1, was the original method used to
connect databases to the enterprise computing infrastructure. Database users
were equipped with what are now called “dumb” terminals, meaning that there
was very little processing power or intelligent programming in the device. The
only functions the terminals had were to present screens of data that came
across the network, move the cursor about the screen, and capture user key-
strokes, sending those back across the network. On the other end of the net-
work was a mainframe or other large, centralized server that housed all the
other functions, including the business logic (in application programs), the
database, and any advanced presentation features, such as composing graphs
and charts and selecting colors to display (if color terminals were connected).

The infrastructure is the internal structure of all the computing resources of
an enterprise, including databases, applications, computer hardware, and the
network.

Database
Business Logic
Database
Presentation (advanced)

Presentation (basic)

Terminal Terminal Terminal Terminal

Mainframe/Central
Server

Figure 9-1 • The centralized deployment model

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 263

Today, people often scoff at this seemingly primitive arrangement. Keep in
mind, however, that personal computers had not been invented yet. When they
came on the scene, some of their first uses were to replace the dumb terminals,
thereby giving computer users a desktop device that they could at least use for
other purposes, such as word processing (or perhaps playing those early com-
puter games). Programs called terminal emulators on the early personal comput-
ers took care of the network connection in such a way that the mainframe still
thought it was connected to the original dumb terminal.

The benefits of the centralized model are as follows:

Very easy administration•	   Upgrades and maintenance were straightfor-
ward because all the application logic and the database were centralized.

Lower development labor costs•	   Fewer specialists were required because
everything ran on one platform.

Potentially higher data input productivity•	   Studies have shown that the
fancy GUI screens that appeared later actually slowed down experienced
users who were performing repetitive tasks. Many an experienced Win-
dows user can perform some tasks much more quickly using the com-
mand prompt (DOS command window) instead of the available GUI
tools. Much of this is due to the time required to move one hand between
keys used for typing and the pointing device (mouse, trackball, and so on).
If we all had a third hand, or if we could somehow use something else to
control the pointing device (for example, our feet or eye movements),
perhaps this could be overcome.

Here are the drawbacks:

The mainframe or centralized server is a single point of failure.•	

Graphical displays were quite primitive, limiting the user interface.•	

Until the advent of the personal computer, the dumb terminal took a lot •	

of desktop space for the purpose it served.

Distributed Model
As computer networks became more readily available in the late 1970s and
early 1980s, the IT industry became enamored with the concept of distributed
databases and distributed applications. In this case, distributed means the parti-
tioning (dividing up) of the application and/or database into parts and the
placement of different parts on different computing devices, all connected by

264 Data b a s e s Demystified

a network. Done correctly, the distribution is transparent to the users, meaning
that the system hides the distribution details from the users, making everything
appear to be from a single source. Figure 9-2 shows a simple distributed model,
using two centralized servers.

A distributed database is a database with processing or data or both divided into
different parts that are deployed on multiple computing devices.

Unfortunately, the marketing hype attached to the initial appearance of the
distributed model never played out due to high costs, along with performance
and reliability issues. Among other things, network technology was not mature
enough to reliably handle the load. In many ways, the early versions were solu-
tions in need of problems to solve. Much like the Ford Edsel, the implementa-
tion of the new ideas was simply ahead of its time. This architecture has reap-
peared since the advent of more advanced networks, including the Internet, and
is now successfully used for backup data centers, data warehouses, departmen-
tal computer systems, and much more. In some object-oriented architectures,
an agent known as an object request broker manages objects distributed across a
network so applications can access objects without regard to their location.
Moreover, the current trends in grid computing can be easily seen as extensions
to the original distributed model. History really does repeat itself.

The benefits of the distributed deployment model are as follows:

Improved fault tolerance, because any component deployed on more than •	

one device is no longer a single point of failure

Potential performance improvement by placing data and application logic •	

closer to the users that need them (that is, departmental computer systems)

Terminal Terminal Terminal

Business Logic
Database
Presentation (advanced)

Presentation (basic)

Terminal Terminal Terminal

Mainframe/Central
Server

Mainframe/Central
Server

Communications Link
DatabaseDatabase

Figure 9-2 • The distributed deployment model

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 265

Here are the drawbacks:

Much more complicated•	

Potential performance issues related to synchronizing data updates for any •	

redundantly stored data

More expensive than the centralized model•	

Lack of guidelines and best practices for how to partition data and appli-•	

cations across the available computing devices

Client/Server Model
The client/server model involves one or more shared computers, called servers,
that are connected by a network to the individual users’ workstations, called
clients. Client/server computing arrived in the 1980s, riding a wave of marketing
hype from hardware and software vendors the likes of which had never been
seen in the IT industry. The original model used is now called the two-tier client/
server model, which later evolved into what we call the three-tier client/server
model, and finally into the N-tier client/server model, which is also known as the
Internet computing model. Each of these models is discussed in the following
subsections.

Two-Tier Client/Server Model
The two-tier client/server model, shown in Figure 9-3, is almost the opposite
of the centralized model in that all the business and presentation logic is placed
on the client workstation, which typically is a high-powered personal computer
system. The only thing remaining on a centralized server is the database.

Business Logic
Presentation

Database

Database Server

Workstations Workstations Workstations

Database

Workstations

Figure 9-3 • The two-tier client/server deployment model

266 Data b a s e s DemystifieD

The notion was to take advantage of the superior presentation and user
interface capabilities of the modern workstation. However, the marketing hype
of the day promised faster development of better application systems at a lower
cost. It didn’t pan out this way, nor is it ever likely to do so. However, the ven-
dors were offering a “silver bullet” solution, and business managers of the day
were far too willing to believe them.

The white lie of the time was in cost comparisons between mainframes and
central servers and workstations. The vendors typically showed cost compari-
sons in dollars per millions of instructions per second (MIPS). The problem was
that a given instruction on the personal computers of the day did far less than
a given instruction on a mainframe or high-powered server. So it really was
comparing apples and oranges. Cynics of the day defined MIPS as “meaningless
indicator of processor speed,” and they were not far wrong. The other factor
that was largely ignored was that at that time personal computers did not read
from and write to their disks at anywhere near the rates achieved by main-
frames and high-powered servers. So although moving all the application pro-
grams (business logic) to the client workstations appeared to be a much less
expensive solution, it was a false economy.

Nearly every two-tier client/server project finished late and well over bud-
get. Moreover, there were sobering failures. For example, the California
Department of Motor Vehicles spent $44 million on a vehicle-registration
system that ended up being far slower and less functional than the centralized
model system that it was supposed to replace. It was eventually scrapped at a
total loss—even the hardware was so specialized that it could not be used for

still struggling
Among the variables of delivery time, number of defects, and cost, you can
minimize only two of the three. If you think of the three as the legs of a triangle
and the area inside the triangle as the amount of work required to complete the
system, it becomes clear that you cannot shrink all three legs of the triangle and
hold the area inside the triangle the same.

?

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 267

any other purpose, so it went on the junk pile. There were some successes,
however. For example, PeopleSoft built a two-tier client/server human
resources system that was successfully deployed by many large enterprises.
Incidentally, PeopleSoft subsequently migrated their applications to the N-tier
client/server model with no code running on the client workstations aside
from a standard web browser. (PeopleSoft was acquired by Oracle Corpora-
tion in December 2004.)

The benefits of the two-tier client/server model include the following:

It greatly improved the user interface compared with systems using dumb •	

terminals.

It offered the potential for improved performance because the worksta-•	

tion processor did all the work and did not have to be shared with anyone
else.

Here are the drawbacks:

Very expensive client workstations were required because all the applica-•	

tion logic ran on the client. Client workstation costs in the $10,000–
$20,000 range were not unusual.

Administrative nightmares mounted because the application was installed •	

on every client workstation, and all had to be updated with a new soft-
ware release at the same time.

Much more complicated (and often more expensive) development re-•	

sulted because the database server and the client workstation were almost
always completely different platforms that required a different set of
skills.

Three-Tier Client/Server Model
The many failures of the two-tier client/server model led to some serious
rethinking. The result was the three-tier client/server model, which essentially
moved the application logic from the client workstation back to a centralized
server, now dubbed the application server. Figure 9-4 shows this architecture,
which proved very workable.

An application server is a computing device devoted to running application logic.

268 Data b a s e s Demystified

The benefits of the three-tier client/server model include the following:

It solved the administrative issues of the two-tier model by centralizing •	

application logic on the application server.

It improved scalability because multiple application servers can be added •	

as needed. (The same can be done with database servers, but that requires
distributed database technology to synchronize any data updates across all
copies of the data.)

It retained the user interface advantages of the two-tier model.•	

The client workstations were far less expensive (standard personal com-•	

puters could easily do the job).

Here are the drawbacks:

It was still more complicated compared with the centralized model.•	

Custom presentation methods and logic added to expense and limited •	

portability across client platforms.

The N-Tier Client/Server (Internet Computing) Model
As web browsers became ubiquitous, business computer systems migrated to
using web pages as the primary presentation method. The N-tier client/server
model (which some call the Internet computing model ) is shown in Figure 9-5.

Figure 9-4 • The three-tier client/server deployment model

Business Logic

Presentation

Database

Application Server

Database Server

Workstations Workstations Workstations

Database

Workstations

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 269

The evolution from three-tier to N-tier involved adding a web server to
handle responding to client requests and the rendering (composing) of web
pages, as well as swapping proprietary display logic on the workstation to a
standard web browser. The interaction between the client and the web server
goes something like this:

Using the web browser, the client submits a request in the form of a URL 1.	
(Uniform Resource Locator).

The web server processes the request, renders the requested web page, and 2.	
sends it to the client.

The user at the client workstation works with the web page and eventually 3.	
submits a new request to the web server, and then the cycle repeats.

Figure 9-5 • The N-tier client/server (Internet computing) deployment model

Business Logic

Presentation

User Interface
(using web browser)

Database

Web Server

Application Server

Database Server

Workstations Workstations Workstations

Database

Workstations

270 Data b a s e s Demystified

This architecture has been wildly successful in deployment of modern busi-
ness systems. The benefits of the N-tier client/server model are as follows:

It offers an industry-standard presentation method using web pages.•	

The same architecture can be used for internal (intranet) and external •	

(Internet) applications.

It retains all the benefits of the three-tier client/server model.•	

Client workstations can be scaled all the way down to so-called network
computing devices that do not even have a disk drive—a “smart” version of the
original “dumb” terminals, if you will. Is this evolution or is it history repeating
itself?

A network computing device is a small scale desktop system, usually without any
disc drives, that is designed to function as a client workstation in the N-tier client/
server model.

Here are the drawbacks of the N-tier client/server model:

Security challenges exist because the Internet and the Web were not de-•	

signed with security in mind.

The N-tier client/server model potentially necessitates larger development •	

project teams because each layer requires a specialist.

The model potentially requires more hardware (at a higher overall cost). •	

It is possible to combine some of the servers onto common devices, but
this is seldom a recommended approach because separation by function
improves security.

Increased cost to administer the larger technology stack.•	

Connecting Databases to the Web
The “technology stack” required to deploy an application system and corre-
sponding database on the Internet is extensive. The basic components are shown
in Figure 9-6. For completeness, we’ll review each component. However, our
focus is on the database, so you may wish to consult other publications for more
detail on other components.

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 271

Introduction to the Internet and the Web
The Internet is a worldwide collection of interconnected computer networks. It
began in the late 1960s and early 1970s as the U.S. Department of Defense
(DoD) ARPANET (Advanced Research Projects Agency Network), intended

Intranet

HTTP over TCP/IP

“DMZ”

Web

Web Server

Application Server

Database Server

Firewall

Database

Firewall

Firewall

Router

Workstations

Internet

Figure 9-6 • Web-connected databases

272 Data b a s e s Demystified

as a way of connecting DoD facilities with the colleges and universities that had
DoD research grants. TCP/IP (Transmission Control Protocol/Internet Proto-
col) was adopted as a standard in 1982. Other protocols include FTP (File
Transfer Protocol), SMTP (Simple Mail Transfer Protocol), Telnet (remote login
protocol), DNS (Domain Name System), and POP (Post Office Protocol).

An intranet is a segment of a network, including a web site or group of web
sites, that is accessible only to members of an organization. An extranet is an
intranet that is accessible to authorized outsiders. Both are typically protected
by a firewall, which is a dedicated gateway that applies security precautions
such that only network traffic that meets certain criteria is allowed to pass
through.

An intranet is a segment of a network, including a web site or group of web sites,
that is accessible only to members of an organization.

An extranet is an intranet that is accessible to authorized outsiders.

The Web (formerly known as the World Wide Web) is a hypermedia-based
system that provides a simple “point and click” means of browsing information
on the Internet by using hyperlinks. Hyperlinks allow users to navigate pages in
a nonsequential manner. Clients use a web browser to present pages. The web
server hosts (stores and renders) pages and responds to client requests. Web
pages may be static (always the same) or dynamic (custom built for a particular
request). Dynamic pages are of a special interest in the database world because
they are the vehicles for sending requested data from the database to the busi-
ness user. Typically, a dynamic page has a static portion (title, help text, data
field labels) and a dynamic portion in the form of placeholders where current
and applicable data content (customer number, customer name) will be placed
when serving a specific request from the client.

A URL (Uniform Resource Locator) is a string of alphanumeric characters
that represents the location or address of a resource on the Internet and how
the resource should be accessed. It ultimately must translate to an IP address,
port, and a protocol (for example, HTTP). The general format of a URL is

<protocol>://<host>[:<port>]/<absolute path> [?arguments]

Chapter 9 C O n n e C t i n g D ata b a s e s t O t h e O u t s i D e W O r l D 273

A URL (Uniform Resource Locator) is a string of alphanumeric characters that
represents the location or address of a resource on the Internet and how the
resource should be accessed.

In most browsers, the protocol is understood to be HTTP if omitted. The
host can be an IP address, but is more commonly a host name (for example,
www.MySQL.com) that is resolved by looking up the corresponding IP address
for the host using the Domain Name System (DNS). If the port is omitted, it
takes the default for the protocol (80 for HTML). The absolute path identifies
the specific page (or other resource) requested, and the web server selects a
default if it is omitted. Arguments are variables passed to the web server and
are considered optional.

HTTP (Hypertext Transfer Protocol) is the protocol used to transfer web pages
through the Internet. It uses a request-based paradigm that is “stateless,” mean-
ing that each request is treated as an independent transaction. Statelessness
makes it difficult to support the concept of a session, which is essential to basic
DBMS transactions. Typically, data must be hidden in the web page or in argu-
ments in the URL for the page to assist the web and application servers in
distinguishing between pages from one user session versus another.

HTML (Hypertext Markup Language) is the document-formatting language
used to design most web pages. The HTML system for marking up or tagging a

still struggling
Various RDBMS vendors now directly support XML as a data type, and there are
also several proprietary XML databases on the market. However, businesses
have been reluctant to abandon relational databases and undergo a major par-
adigm shift in the way they organize and store data. So, thus far, XML is most
widely used for exchanging data between organizations in industry-standard
XML formats. Standards committees are working on standard XML vocabularies
(that is, data tags, schema structures, and conventions for using them) for spe-
cific data areas; for example, HR-XML Consortium, Inc., works solely on human
resources (HR) data.

?

www.MySQL.com

274 Data b a s e s Demystified

document for publication on the Web was derived from the Standardized Gen-
eral Markup Language (SGML), a 1986 ISO standard.

XML (Extensible Markup Language) is a general-purpose specification for
creating custom markup languages for use in creating documents. While HTML
describes presentation using a fixed set of tags, XML describes content and
allows developers to create their own tags. Although XML and HTML are not
at all the same language, some refer to XML as “HTML on steroids.” Among the
features XML offers is the ability to define an XML schema, which allows data
to be stored in a hierarchical tree of XML tags within the XML document.

Components of the Web “Technology Stack”
Here’s a list of the components shown in Figure 9-6 (starting at the bottom of
the figure) and what they do:

The client •	 workstation runs a web browser and communicates on the In-
ternet using HTTP over TCP/IP.

The •	 web server (site) sits behind a router, which forwards packets between
networks, and a firewall. The router makes decisions on which packets are
transferred between the Internet and the subnetwork on which the web
server resides. Although some routers do rudimentary filtering, the addi-
tional firewall protection is considered the best way to protect the web
server from intruders.

A router is specialized software, often running on a dedicated hardware device,
that inconnects two or more computer networks and selectively exchanges packets
between them.

The web server is responsible for hosting and rendering web pages.•	

URLs handled by the web server may cause transactions to be run on the •	

application server. There is more on web transactions, in the following
Invoking Transactions from Web Pages topic. The application server typically
resides between a pair of firewalls to isolate it from both the web server
and the intranet, where the database server typically resides. This area is
commonly called the DMZ, a term borrowed from buffer zones between
two countries in dispute.

The application server submits SQL (or similar language) requests to the •	

database server when data from the database is required.

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 275

Invoking Transactions from Web Pages
Information in a web request received by the web server can invoke a transac-
tion on the application server in several ways. These methods are detailed in the
following subsections.

CGI (Common Gateway Interface)
CGI (Common Gateway Interface) is a specification for transferring informa-
tion between a web server and a CGI program. The CGI script (sometimes
called a “CGI program”) runs on either the web server or application server.
CGI defines how scripts communicate with web servers. The URL points to the
CGI script, and the server launches it. The actual script can be written in a
variety of languages, such as Perl, PHP, and Visual Basic. In essence, instead of
the URL in the incoming request pointing directly to an HTML document, it
points to a script. This script is run, and the output from the script is an HTML
document that is then returned to the client in response to the request.

The advantages of CGI include the following:

Simplicity•	

Language and web server independence•	

Wide acceptance•	

Here are the disadvantages:

The web server is always between the client and the database.•	

No transaction support (stateless).•	

Not intended for long exchanges.•	

Each CGI execution spawns a new process (or thread), which presents •	

resource issues.

CGI is not inherently secure.•	

Server-Side Includes
Server-Side Includes (SSI) are commands embedded in a document that cause
the web server to execute a program (as with CGI) and to incorporate the
output into the document. Essentially, an SSI is an HTML macro. The URL in
the request points to an HTML document, but the web server parses the docu-
ment and handles any SSI commands before returning the document to the

276 Data b a s e s Demystified

requesting client. SSI solves some of the CGI performance issues, but it offers
few other advantages or disadvantages.

Non-CGI Gateways
Non-CGI gateways work like CGI gateways, except that each is a proprietary
extension to a specific vendor’s web server. The two most popular choices dur-
ing the “dot-com” era were the Netscape Server API and Active Server Pages
(ASP), part of the Microsoft Internet Information Server (IIS) API. The
Netscape Server API was subsequently acquired by Sun Microsystems and
incorporated into their product line. Since 2002, Microsoft has offered a gate-
way within its .NET framework.

The advantages of non-CGI gateways include the following:

Improved performance over CGI.•	

Additional features and functions.•	

They run in the server address space instead of as new processes or •	

threads.

Here are the disadvantages:

Proprietary solution that is not portable to another vendor’s web •	

server

Potential instability•	

Much more complex compared with CGI•	

Connecting Databases to Applications
Now that you have seen how the web layer interacts with the application server
layer, you need to understand how applications on the application server con-
nect to and interact with the database. Most connections between the applica-
tion server and remote databases (that is, those running on another server) use
a standard API.

An API (application programming interface) is a set of calling conventions by
which an application program accesses services. Such services can be provided
by the operating system or by other software products such as the DBMS. The
API provides a level of abstraction that allows the application to be portable
across various operating systems and vendors.

Chapter 9 C O n n e C t i n g D ata b a s e s t O t h e O u t s i D e W O r l D 277

An aPi (application programming interface) is a set of calling conventions by
which an application program accesses services.

Connecting Databases via ODBC
ODBC (Open Database Connectivity) is a standard API for connecting appli-
cation programs to DBMSs. ODBC is based on a Call Level Interface (CLI, a
convention that defines the way calls to services are made), which was first
defined by the SQL Access Group and released in September 1992. Although
Microsoft was the first company to release a commercial product based on
ODBC, it is not a Microsoft standard, and versions are now available for Unix,
Macintosh, and other platforms.

ODBC is independent of any particular language, operating system, or data-
base system. An application written to the ODBC API can be ported to another
database or operating system merely by changing the ODBC driver. It is the
ODBC driver that binds the API to the particular database and platform, and
a definition known as the ODBC data source contains the information neces-
sary for a particular application to connect with a database service. On Win-
dows systems, the most popular ODBC drivers are shipped with the operating
system, as is a utility program to define ODBC data sources (found on the
Control Panel or Administrative Tools Panel, depending on the version of
Windows).

Most commercial software products and most commercial databases support
ODBC, which makes it far easier for software vendors to market and support
products across a wide variety of database systems. One notable exception is
applications written in Java. They use a different API known as JDBC, which is
covered in the next section.

PROBLEM 9-1
A common dilemma is that relational database vendors do not handle
advanced functions in the same way.

SOLUTION
This problem can be circumvented using an escape clause that tells the
ODBC driver to pass the proprietary SQL statements through the ODBC API
untouched. The downside of this approach, of course, is that applications

PROBLEM
A common dilemma is that relational database vendors do not handle
advanced functions in the same way.

PROBLEM
A common dilemma is that relational database vendors do not handle

SOLUTION
This problem can be circumvented using an escape clause that tells the

✔

278 Data b a s e s Demystified

written this way are not portable to a different vendor’s database (and
sometimes not even to a different version of the same vendor’s
database).

Connecting Databases to Java Applications
Java started as a proprietary programming language (originally named Oak)
that was developed by Sun Microsystems. It rapidly became the de facto stan-
dard programming language for web computing, at least in non-Microsoft envi-
ronments. Java is a type-safe, object-oriented programming language that can
be used to build client components (applets) as well as server components
(servlets). It has a machine-independent architecture, making it highly portable
across hardware and operating system platforms.

You may also run across the terms JavaScript and JScript. These are scripting
languages with a Java-like syntax that are intended to perform simple functions
on client systems, such as editing dates. They are not full-fledged implementa-
tions of Java and are not designed to handle database interactions, but they can
perform the same function as a CGI script if desired.

JDBC (Java Database Connectivity)
JDBC (Java Database Connectivity) is an API, modeled after ODBC, for con-
necting Java applications to a wide variety of relational DBMS products. Some
JDBC drivers translate the JDBC API to corresponding ODBC calls and thus
connect to the database via an ODBC data source. Other drivers translate
directly to the proprietary client API of the particular relational database, such
as the Oracle Call Interface (OCI). As with ODBC, an escape clause is available
for passing proprietary SQL statements through the interface. The JDBC API
offers the following features:

Embedded SQL for Java•	   The Java programmer codes SQL statements
as string variables, the strings are passed to Java methods, and an embed-
ded SQL processor translates the Java SQL to JDBC calls.

Direct mapping of RDBMS tables to Java classes•	   The results of SQL
calls are automatically mapped to variables in Java classes. The Java
programmer may then operate on the returned data as native Java
objects.

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 279

JSQL (Java SQL)
JSQL (Java SQL) is a method of embedding SQL statements in Java without
having to do special coding to put the statements into Java strings. It is an
extension of the ISO/ANSI standard for SQL embedded in other host lan-
guages, such as C. A special program called a precompiler is run on the source
program that automatically translates the SQL statements written by the Java
programmer into pure Java. This method can save a considerable amount of
development effort.

Middleware Solutions
Middleware can be thought of as software that mediates the differences between
an application program and the services available on a network, or between two
disparate application programs. In the case of Java database connections, mid-
dleware products such as JRB (Java Relational Binding) from Unidata can make
the RDBMS look as if it is an object-oriented database running on a remote
server. The Java programmer then accesses the database using standard Java
methods, and the middleware product takes care of the translation between
objects and relational database components.

Middleware can be thought of as software that mediates the differences between
an application program and the services available on a network, or between two
disparate application programs.

Summary
In this chapter, you learned about database implementation details, including
database deployment models, connecting databases to the outside world, and
connecting databases to applications. In Chapter 10, we’ll take a detailed look
at how to secure database environments.

280 Data b a s e s Demystified

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

In the three-tier client/server model:1.	
A web server hosts the web pages.A.	
The client workstation handles all presentation logic.B.	
The database is hosted on a centralized server.C.	
All application logic runs on an application server.D.	
Client workstations must be high-powered systems.E.	

In the N-tier client/server model:2.	
Client workstations must be high-powered systems.A.	
All application logic runs on an application server.B.	
The client workstation handles all presentation logic.C.	
A web server hosts the web pages.D.	
The database is hosted on a centralized server.E.	

In the centralized deployment model:3.	
There are no single points of failure.A.	
A “dumb” terminal is used as the client workstation.B.	
Administration is quite easy because everything is centralized.C.	
Develop costs are often very high.D.	
A web server hosts all web pages.E.	

The Internet:4.	
Supports multiple protocols, including HTTP, FTP, and TelnetA.	
Is a worldwide collection of interconnected computer networksB.	
Always used TCP/IP as a standardC.	
Began as the U.S. Department of Education’s ARPANETD.	
Dates back to the late 1960s and early 1970sE.	

An extranet is5.	
Available to authorized outsidersA.	
Available to anyone on the InternetB.	
Available to authorized (internal) members of an organizationC.	
Typically connected to the InternetD.	
Protected by a firewallE.	

Chapter 9 C o n n e c t i n g D ata b a s e s To T h e O u t s i d e W o r l d 281

HTTP is6.	
A document-formatting languageA.	
A protocol used to transfer web pagesB.	
The Hypertext Transmission ProtocolC.	
A stateless protocolD.	
Used for remote database connectionsE.	

The advantages of CGI are7.	
Language and server independentA.	
StatelessnessB.	
SimplicityC.	
Widely acceptedD.	
Inherently secureE.	

The advantages of a non-CGI gateway are8.	
Simpler than CGIA.	
Proprietary solutionB.	
Known for stabilityC.	
Runs in server address spaceD.	
Improved security over CGI solutionsE.	

Server-Side Includes (SSI):9.	
Are commands embedded in a web documentA.	
Are inherently secureB.	
Are non-CGI gatewaysC.	
Solve some of the CGI performance issuesD.	
Are HTML macrosE.	

JSQL is10.	
A middleware solutionA.	
Independent of any particular language, operating system, or DBMSB.	
A Sun Microsystems standardC.	
An extension of an ISO/ANSI standardD.	
A method of embedding SQL statements in JavaE.	

This page intentionally left blank

 283

c h a p t e r 10
Database Security

Security has become an essential consideration in modern systems. In addition
to the potential damage from database security breaches, nothing can be more
embarrassing to an organization than a media story regarding sensitive data or
trade secrets that were electronically stolen from their computer systems. In
this chapter, we will discuss the need for security, the security considerations
for deploying database servers and clients that access those servers, and meth-
ods for implementing database access security. We conclude with a discussion
of security monitoring and auditing.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Know why security is necessary.•
Understand database server security issues and precautions, including physical •
security, network security, and server-level security.

Understand database client and application security issues and precautions, •
including login credentials and data encryption.

Understand the database security architectures of MySQL, Microsoft SQL •
Server, Sybase, and Oracle.

Know how system and object privileges are implemented in most relational •
DBMS products.

284 Data b a s e s Demystified

Why Is Security Necessary?
Murphy’s Law states that anything that can go wrong will go wrong. Seasoned
IT security professionals will tell you that Murphy was an optimist. Servers
placed on the Internet with default configurations and passwords have been
compromised within minutes. Default database passwords and common secu-
rity vulnerabilities are widely known. In early 2003, the Slammer worm infected
tens of thousands of Microsoft SQL Server databases that had been set up with
a default SA (System Administrator) account that had no password. Oddly,
thanks to a software defect in the payload that the Slammer worm carried, the
worst damage done by this worm was in loss of service when infected comput-
ers sent out hundreds of thousands of packets on the network in search of other
computers to infect. If you think this cannot happen to you, think again. Here
are some reasons why security must be designed into your computer systems:

Databases connected to the Internet, or to any other network, are vulner-•	

able to hackers and other criminals who are determined to damage or steal
the data. These include the following:

Spies from competitors who are after your secrets.•	

Hackers seeking notoriety from penetrating your systems.•	

Individuals interested in whatever they can obtain that has economic •	

value.

Disgruntled employees. It seems odd that we never hear of gruntled •	

employees (“gruntle” means “to make happy”), but only of disgruntled
ones.

Zealots interested in making a political statement at the expense of •	

your organization.

The emotionally unbalanced, and just plain evil people.•	

Fraud attempts. Any bank auditor will tell you that 80 percent of fraud is •	

committed by employees. So, don’t assume your system is immune just
because the database is not accessible from the Internet.

Honest mistakes by authorized users can cause security exposures, loss of •	

data, and processing errors.

Security controls keep people honest in the same way that locks on homes •	

and offices do.

Chapter 10 D ata b a s e S e c u r i t y 285

Database Server Security
This section focuses on the security considerations for the database server.
When you’re considering security, it is best to start at one end of the network
or the other (that is, at either the database user’s client workstation or at the
database server) and to work systematically through all the components in the
path. This is the only way you can be sure you don’t miss something. In this
case, we’ll start with the database server and work out from there.

Physical Security
Physically securing the server to prevent theft of the server or the disk drives is
an essential ingredient. The server and other components should be in a locked
room where only authorized personnel have access. Once thieves make off with
the hardware, they have all the time and privacy they need to hack away at the
system until they are finally able to access the data. Moreover, systems are
easier to compromise using the server console than remotely; therefore,
“hands-on” access to servers must be tightly controlled. Depending on the sen-
sitivity of the data in the database, the following additional measures might be
needed:

Video surveillance system.•	

Token•	 security devices, where administrators must possess the device in
order to gain access. Tokens range from cards or keys that must be inserted
into the server in order to gain access, to crypto devices where a PIN must
be entered in order to obtain a password. Some of these devices are syn-
chronized with satellites and change the encryption key used for generat-
ing passwords every minute or so.

Biometric devices, where administrators must pass a fingerprint or retinal •	

scan in order to obtain access.

Policy provisions that always require at least two employees in the room •	

whenever anyone is directly working on the server.

Policy provisions regarding removal of hardware and software from the •	

workplace. I once worked at a financial institution where employees were
searched whenever they left the premises. The removal of any hardware
or materials, for example, computer listings, microfilmed documents, or
media such as tapes and disks was strictly prohibited. However, there was
a laughable loophole. A person could put anything in an envelope addressed

286 Data b a s e s Demystified

to their home (or anywhere else) and drop it in the outbound mail bins.
Not only would the envelope go out without inspection, the firm would
even pay the postage, no questions asked. Before you get the wrong idea,
the only time I saw this technique used was to send some home-grown
computer games offsite, but the security exposure was enormous.

Network Security
It should be obvious that physical security is not enough when the database
server is accessible via a network. Intruders who manage to obtain a network
connection to the server can work from outside the server room or, for servers
connected to the Internet, from anywhere in the world. Moreover, because
clients or other servers (such as the application server) are able to connect to
the database server, we must take a holistic approach to network security and
not only ensure that the network is secure, but also that every computer system
attached to that network is equally secure.

Complete details in how to secure a network are well outside the scope of
this book. However, the sections that follow compose a summary of the net-
work security issues that must be considered. Note that the term enterprise
network is used to mean the private network that connects the computing
resources for the business enterprise.

An enterprise network is a private network that connects the computing resources
for the business enterprise.

Isolate the Enterprise Network from the Internet
If the enterprise network is connected to the Internet, it must be isolated so
that hackers on the Internet cannot see the internals of the enterprise network
or easily gain access to it. Measures to consider include the following:

The router that connects the enterprise network to the Internet must be •	

properly configured. Recall that a router is a device that forwards data
packets between networks using rules contained in a routing table. A packet
is merely a piece of a message that is transmitted over a network. Network
devices divide messages into uniformly sized packets for efficient handling.
The router must be configured so that only appropriate packets of data
are routed from the Internet to the local network. Some routers can do
limited filtering of packets, but typically they do not look at the contents

Chapter 10 D ata b a s e S e c u r i t y 287

of data packets beyond the destination IP address, contained in the packet
header, making decisions on the best way to route the packet based on the
destination address and the routing table.

Each layer in the enterprise network should be protected by a firewall, •	

with the security rules applied by the firewall getting progressively tighter
with each layer. In Chapter 9, Figure 9-6 shows this arrangement. A fire-
wall can be implemented using software on a general-purpose computer
or using a specialized hardware device that comes with its own operating
system and filtering software. The purpose of the firewall is to prevent
unauthorized access to the network segment that it protects (that is, com-
puter resources connected to the part of the network that is inside the
firewall). All data packets passing from the network outside the firewall
to the network segment (often called a subnet) inside the firewall must
pass the security criteria imposed by the firewall, or they are simply re-
jected. Here are some of the methods the firewall may use:

Packet filtering•	   The contents of each packet entering or leaving the
network are inspected to make sure user-defined rules are met. Al-
though packet filtering is effective, it is subject to IP spoofing, where a
hacker masquerades as a legitimate user by planting a legitimate IP ad-
dress that is acceptable to the firewall in an otherwise illegitimate mes-
sage. To prevent your network from being used to launch so-called
zombie attacks, your firewall should always be configured to reject out-
bound packets that have a return IP address that is not a legitimate
address for the enterprise network. A zombie attack occurs when an
intruder plants a rogue program on one or more of your servers, which
at an appointed time, wakes up and starts sending hundreds or thou-
sands of packets per second at a target system—typically the web
browser of an enterprise that the attacker has some grudge against—in
an attempt to clog their system, rendering it useless. This type of attack
(that is, flooding the target with useless packets) is called a denial of
service (DOS) attack.

IP spoofing is a security breach attempt where the hacker masquerades as a legiti-
mate user by planting a legitimate IP address that is acceptable to the firewall in an
otherwise illegitimate message.

288 Data b a s e s DemystifieD

A denial of service (DOS) attack is an attempt to clog an enterprise network by send-
ing hundreds or thousands of useless data packets per second to a target system.

Application gateway•	 Different network applications (HTTP, FTP, Tel-
net, and so on) use different default ports. For example, HTTP uses port
80 as a default. Ports that are not needed should be shut down. Always
configure firewalls to open only the ports that are absolutely required for
your normal business.

Circuit-level gateway•	 For efficiency, this feature applies security
mechanisms when a connection is established; then, after the connec-
tion is established, it allows packets to flow freely for that established
connection. A firewall should normally be configured so that connec-
tions can only be established from inside the firewall—attempts made
from outside the firewall to establish connections with resources inside
the firewall should be rejected.

Proxy server•	 Firewalls can translate all the IP addresses used in the
protected network into different addresses as packets pass through,
typically assigning each a different port so that any responses to those
packets can be sorted out and passed back to the originator. This fea-
ture, known as network address translation (NAT), hides the internal
network from the outside world.

Network address translation (NAT) is a process that translates IP addresses in packet
headers as the packets are moved from one network to another by a routing device.

Consider using a secure network connection such as secure sockets layer •	

(SSL) for all connections between user client systems and database serv-
ers, and also between application servers and database servers.

PROBLEM 10-1
Employees working from home present a special risk. If they are connected
to a broadband Internet service such as DSL or cable, they essentially re-
side on a local area network (LAN) with many other users of that particular
service. Therefore, if these employees merely plug their personal comput-
ers directly into the DSL or cable modem without other precautions, any

PROBLEM
Employees working from home present a special risk. If they are connected
to a broadband Internet service such as DSL or cable, they essentially re-
side on a local area network (LAN) with many other users of that particular

PROBLEM
Employees working from home present a special risk. If they are connected

Chapter 10 D ata b a s e s e C u r i t Y 289

shared devices they may have (disk drives, printers, and so forth) are now
automatically shared by all their neighbors on the same LAN. All the in-
truder has to know is how to click Network Neighborhood and then Entire
Network, and all the unprotected systems on the LAN will be there ripe for
picking.

SOLUTION

Two precautions can circumvent the problem:

A security device, typically a combination router/hub/firewall, should •
be placed between the DSL or cable modem and any computers used
in the home. A side benefit here is that the user can hook multiple
computers to the high-speed service while only paying for one IP ad-
dress with their ISP. The device automatically “NATs” any IP address
inside the home network to the single IP address assigned by the ISP
for the broadband connection, using different ports to differentiate
between different connections. I have such a device on my home In-
ternet cable service and have seen firsthand the attempts by hackers
to scan ports and to ping resources inside the home network. A port
scan is a technique commonly used to by hackers where they launch a
special program that tries every conceivable port on an IP address,
recording which ones are active so they can try to use the active ports
to break into the target system. Intrusion attempts happen with alarm-
ing frequency, sometimes several times in a single hour. If you install
an unprotected home network, your network will likely be penetrated
within hours of it being activated. Note that all Microsoft Windows ver-
sions from XP on come with a built-in configurable software firewall.
However, most security experts prefer an external firewall on a dedi-
cated hardware device because it offers better protection.
A secure network technique known as a • virtual private network (VPN)
can be used when connecting from the Internet to the enterprise net-
work. This approach encrypts all data packets and applies other mea-
sures to make sure that the packets are useless to any unauthorized
party that intercepts them, and that they cannot be altered and re-
transmitted by hackers. Usually, this technique is implemented using
special software from a commercial software vendor in concert with a
small device that the remote user employs to generate a unique

SOLUTION

Two precautions can circumvent the problem:

✔

290 Data b a s e s Demystified

password each time they connect remotely to the enterprise network.
Without the device in their possession (and typically a PIN that goes
with the device), the would-be hacker has no chance of penetrating
the enterprise network using the VPN.

Secure Any Wireless Network Access
Wireless access points are network devices that receive radio signals from com-
puter devices equipped with wireless network adapters, connecting them to the
wired network in the office. Most wireless networks adhere to a version of the net-
work standard protocol known as 802.11. Wireless access points have become
inexpensive (prices as low as $30) and therefore prolific because people like to
be able to freely move around their home or office without having to drag a
network cable with them. However, wireless access points require special atten-
tion because an intruder can access your network from outside your premises
without going through the routers and firewalls that you have carefully set up
to prevent such an intrusion. Horror stories abound in IT trade publications
about an unknowing user bringing an unauthorized wireless access point into an
office, plugging it into the nearest network jack, and giving everyone within
75 to 150 feet open access to the network. By default, many of these devices,
particularly the older ones, have absolutely no encryption or other access controls
enabled, thus providing access to anyone with a wireless-capable computer in a
neighboring office, out in the parking lot, or even in a building across the street.
Worst of all is that once intruders connect, they are on the intranet, completely
inside all the firewalls and other controls you so carefully implemented to pro-
tect your network from intruders.

If you think this cannot happen to you, here are just a few real-life
examples:

On a recent trip to a medical office, I found that my laptop, which is •	

equipped with an 802.11g wireless network adapter, automatically con-
nected to a wireless network in an adjoining doctor’s office from the wait-
ing room. I didn’t look to see what I might have been able to access in
terms of computers, shared disks, files, and the like, but the office staff was
totally unaware that anyone could connect to their wireless network. They
didn’t understand that walls don’t stop wireless networks. Incidentally, a
quick look at the wireless adapter’s site survey showed two other vulner-
able networks accessible from the same waiting room. One of those even

Chapter 10 D ata b a s e S e c u r i t y 291

had the default network name that comes with the wireless access point,
so we can easily assume that the password to the router would also be the
factory default. An intruder could reconfigure their entire network before
they knew what happened.

On a recent drive down Market Street in San Francisco, I discovered that •	

the wireless adapter in the same laptop detected at least three wireless
networks in every block, a surprising number of them wide open to any-
one who would want to connect.

An IT manager once told me that after they discovered that an unauthor-•	

ized wireless access point was connected to their company’s network, they
went hunting for it, failing to find it in several attempts. Finally, they
brought in a consultant who had a device to track down the rogue signal.
(Believe it or not, an antenna inside a potato chip tube covered with alu-
minum foil makes an excellent directional antenna for “sniffing out” wire-
less access points.) They found it hidden in the suspended ceiling of a
conference room. The person who installed it knew it was against the
rules, but just didn’t want to bother to cable-connect their laptop to a
nearby outlet. Needless to say, that person lost their job, but who knows
what the intruders got before the unauthorized access point was shut
down?

Here are some countermeasures you can put in place to help secure your
wireless network:

Policy•	   Your organization’s security policy should address wireless con-
nections, forbidding anyone other than trained network administrators
from installing them, and setting standards for their proper installation.

Mandatory encryption•	   Standards should mandate that encryption be
enabled on every wireless access point. All the access points on the market
have encryption capability built into them, and it only takes a few minutes
to enable the feature and to input a passphrase that any device trying to
connect must supply in order to gain access to the network.

Disable SSID broadcasting •	 Each wireless network access point is as-
signed an SSID (Service Set Identifier) when it is configured. It is the
SSID that is displayed on client systems when users are given the list of
wireless networks that have been detected within range. If the SSID is not
broadcast, then (at least in theory) the user must know it and input it in
order to connect to the wireless network. However, this is a controversial

292 Data b a s e s Demystified

security measure. Some experts say that disabling the SSID broadcast does
nothing to enhance security and may actually increase network vulnera-
bility. For example, in Windows XP and Windows Server 2003, clients
send probes that include the SSIDs in the preferred network client list
even when the network is not in range, so those SSIDs are easily detect-
able. This situation has been remedied with a new option in subsequent
versions of Windows, but keep in mind that obfuscation is not the same
as security. I recommend you read up on this topic on the Web before you
decide to disable SSID broadcasting.

MAC address list•	   Every network device currently manufactured has a
unique MAC (Media Access Control) address assigned to it by the manu-
facturer. Most wireless access points permit the entry of a MAC address
list that restricts network access to only the devices that appear in the list.
Alternatively, the MAC address list can list devices that are not allowed to
connect. However, MAC addresses are sent over the wireless network in
plain text (they aren’t encrypted), so it is not all that difficult to counter
this precaution.

System-Level Security
Once the network is as secure as we can make it, the next area of focus is the
system that will run the DBMS. A poorly secured database server can provide
many unchecked paths for intruders to use. Here are some measures worth
considering:

Installing minimal operating system software•	   Particularly on a produc-
tion server, install only the minimal software components to get the job
done. Avoid default or “typical” installation options, and use the “custom”
installation option to choose only the components needed. For example,
on production Unix servers, you should be in the habit of removing the
“make” utility and C language compilers after you complete an installa-
tion. Hackers have a very difficult time installing things when the tools
needed to perform software installations do not exist on the server.

Using minimal operating system services•	   Shut down or remove operating
system services that are not required. In particular, communications ser-
vices such as FTP (File Transfer Protocol) should not be running unless they
are expressly required. On Windows systems, it’s a good idea to set Startup
Type to “Disabled” for services that are not required. This makes it impos-
sible to start these services unless you have Administrator privileges.

Chapter 10 D ata b a s e S e c u r i t y 293

Installing minimal DBMS software•	   The fewer the features of the DBMS
that you have installed, the less exposure you’ll have to problems such as
buffer overflow vulnerabilities. The DBA should work with the applica-
tion developers to create a consolidated list of the DBMS functions
needed. Once you have the list, use the custom installation option for the
DBMS and perform only minimal installations.

Run the DBMS using an account with appropriate privileges •	 It is most
unwise to use a superuser account, such as root in Unix or Administrator
in Windows, to run the database software. Doing so gives hackers full ac-
cess to the server should they manage to compromise the DBMS security
system. Also, require all user accounts that can access the database to have
passwords.

Applying security patches in a timely manner•	   Establish a program where
security alerts are reviewed as they are announced and where counter-
measures, including patches and workarounds, are applied in a timely
manner. Patches should be shaken down in a development environment
for a finite period before being applied to a production environment.

Changing all default passwords•	   These should be changed to new ones
that are difficult to guess or discover via brute force, a method that repeat-
edly tries possibilities until access is finally achieved.

Database Client and Application Security
A database client is any computer system that signs on directly to the database
server. Therefore, the application server is nearly always a database client, along
with the client workstation of any person in the organization who has sign-on
privileges with the database. Typically, the DBMS requires installation of client
software on these systems to facilitate communication between the database
client and the DBMS using any specialized communications mechanisms
required by the DBMS.

Login Credentials
Every database user who connects to the database must supply appropriate
credentials to establish the connection. Typically, this is in the form of a user ID
(or login ID) and a password. Care must be taken to establish credentials that
are not easily compromised. Here are some considerations:

294 Data b a s e s Demystified

Credentials must not be shared by multiple database users.•	

Passwords should not be easy to guess. A security policy should establish •	

minimum standards for password security, including minimum length, the
mixture of upper/lowercase letters, numbers and special characters re-
quired, avoiding words that can be found in a dictionary, and the like.

Passwords should be changed on a regular basis, such as every 30 or •	

45 days.

Any exposed password should be immediately changed.•	

Passwords should never be written down and must be encrypted when-•	

ever they are electronically stored.

Data Encryption
Encryption is the translation of data into a secret code that cannot be read with-
out the use of a password or secret key. Unencrypted data is called plain text,
whereas encrypted data is called cipher text.

Some encryption schemes use a symmetric key, which means that a single key
is used to both encrypt plain text and to decrypt cipher text. This form is con-
sidered less secure compared with the use of asymmetric keys, where a pair of
keys is used—one called the public key and the other the private key. What the
public key encrypts, the private key can decrypt, and vice versa. The names
come from the expected use of the keys—the public key is given to anyone an
enterprise does business with, and the private key remains confidential and
internal to the enterprise.

Here are some guidelines to follow regarding encryption:

Encryption keys should be a minimum of 128 bits in length. The longer •	

the key, the more secure it is considered to be.

The loss of an encryption key should be treated with the same seriousness •	

as the loss of the data that it was used to encrypt.

Sensitive data should be encrypted whenever permanently stored. Which •	

data is considered sensitive is a judgment call that should be made by the
businesspeople who own the data, not by the DBA. In general, however,
any personal data (such as social security numbers) that can be used for
identity theft should be considered sensitive.

All data not considered public knowledge should be encrypted whenever •	

transported electronically across network connections that are not

Chapter 10 D ata b a s e S e c u r i t y 295

otherwise encrypted. For example, if a company sends a purchase order
file to a trading partner via FTP, the file should be encrypted. There is no
guarantee that the bad guys are not monitoring public networks.

E-mail is not considered secure, so any sensitive information to be sent via •	

e-mail should be in an encrypted attachment instead of in the main body
of the e-mail message.

Other Client Considerations
Database clients require special scrutiny in terms of security precautions
because, if compromised, they provide an easy pathway for the intruder to gain
access to data in the database. Here are some additional client considerations:

Web browser security level•	   Modern web browsers allow the setting of a
security level for the browser. For Microsoft Internet Explorer, the security
settings are controlled using the Security tab on the Internet Options
panel, which is accessible using the Tools option on the main toolbar. This
security level should be set to the highest possible level that still permits
normal use of the database applications. Here are two considerations re-
lated to the web browser:

Cookies•	 provide the ability for the web browser to store textual infor-
mation on the client, which can be automatically retrieved later by the
web browser and sent to the web server that requested them. Cookies
are not very secure and can be used to spy on users of the client system.
Furthermore, there is no guarantee that unauthorized persons and soft-
ware will have no access to information in cookies. The organization’s
security policy should address this issue and set a clear standard for
cookie use, which is one of the facilities controlled by the web brows-
er’s security level. Also, it is not wise to design application systems that
require cookies because they are not supported by all web browsers and
not permitted by all users. In Microsoft Internet Explorer, options for
cookies are controlled using the Privacy tab on the Internet Options
panel.

Scripting languages such as VBScript, JavaScript, and JScript provide •	

nice features for assisting with a user’s interaction with a web page.
However, they can be and have been used for injecting malicious code
into systems, so take care when allowing such languages to be used on

296 Data b a s e s Demystified

the client. VBScript is especially notorious for its misuse and has been
used to transport viruses in e-mail attachments.

Minimal use of other software•	   Software that is not required for the nor-
mal functioning of the client should not be installed. Security policy
should forbid employees from installing unauthorized software.

Virus scanner•	   All computer systems running operating systems that are
susceptible to computer viruses should have appropriate virus-scanning
software installed. Virus scanners that automatically update their virus
profiles on a regular basis offer the most effective protection.

Test application exposures•	   Web-based applications should be thor-
oughly tested using a client configured just the way your real business
users’ client workstations will be configured. Hacker tricks such as the
following should be attempted to verify that the exposures do not exist:

SQL injection•	   SQL statements can be entered along with data in one
or more web page data fields in such a way that the application server
or web server hands them off to the database for processing. For ex-
ample, if there is a web page field that allows entry of an employee ID
that is placed directly in an SQL statement, if the user enters only em-
ployee ID 1234, the result is an SQL statement as the developer in-
tended it to be:
SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE_ID = 1234;

However, if the user enters 1234 OR 1=1, the additional predicate
shown in the following SQL statement makes the search condition true
for all rows (1 is always equal to 1, so the predicate is always true), and
the user sees every employee row instead of just one.
SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE_ID = 1234 OR 1=1;

URL spoofing•	   The URL in the web browser is manually overtyped in
such a way that unauthorized data is revealed. Designs where session
IDs are assigned sequentially by the application server and then passed
back to the web browser as an argument in the URL are especially sus-
ceptible to this approach. If you can guess another user’s session ID, you
can hijack their session just by overtyping the session ID in the URL.

Buffer overflows•	   Published exposures such as buffer overflows should
be thoroughly tested once the vendor’s patch has been installed to ensure
that the problem really was corrected.

Chapter 10 D ata b a s e s e C u r i t Y 297

Database Access Security
With the confidence that our clients, servers, and network are now secure, we
can focus on database access. The goal here is to determine precisely the data
that each database user needs to conduct their business, and what they are
permitted to do with the data (that is, select, insert, update, or delete). Each
database user should be given exactly the privileges they need—nothing more
and nothing less. Recall that an application program with database access is a
database user just as an employee who directly queries the database is. In terms
of database security, all database users should be treated in the same way (that
is, the same standards should be applied to all), whether the database user is
software or “liveware.” In this section, we will explore the options and chal-
lenges related to securing access to the database and its data.

Database Security Architectures
For DBAs who support databases from multiple vendors, one of the challenges
is that, with the exception of Microsoft SQL Server and Sybase, no two data-
bases have the same architecture for database security. And of course, this is a
side effect of the overall database architectures being different. The only reason
that Microsoft SQL Server and Sybase have such similar architectures is that
the former was derived from the latter. Because MySQL, Microsoft SQL Server,
and Oracle are among the most popular databases today, let’s have a quick look
at how each implements database security.

still struggling
those skilled at sQL injection can add entirely new sQL statements and compro-
mise a database in just minutes. there are several techniques available for mak-
ing sure user input is not interpreted as sQL, but their effectiveness varies across
DbMss and operating systems. the best thing to do is to always test for the
vulnerability in all fields where users can enter data.

?

298 Data b a s e s Demystified

Database Security in MySQL
With MySQL, once the DBMS software is installed on the server (or on a per-
sonal computer), a database server is created. This is a confusing term, of course,
because we call the hardware a “server.” In this case, the term server is a copy of
the DBMS software running in memory as a set of processes (also called “ser-
vices” in Windows environments) with related control information that is stored
in special catalog tables in a database named mysql. In this architecture, each
server manages many databases, with each database representing a logical
grouping of data as determined by the database designer. Figure 10-1 shows a
simplified view of the security architecture for MySQL, including the follow-
ing:

User•	   This is a user account defined in the MySQL server’s User table.
MySQL identifies a user with the combination of the user identifier
(login) from the user’s host system and the name of the host system. This
arrangement allows the same user account name to be used to connect to
the MySQL server from different host systems, even if those account
names belong to different individuals. However, the MySQL user name
does not have to be the same as the user’s account name on their host
Windows, Linux, or Unix system. Note that once a login is defined in the
MySQL server, the database user may connect to the server, but a login

Figure 10-1 • Security in MySQL

MySQL Server Dev1

User Mgr125

Database Employees

Table T1

Table T2Gran
t d

ata
base

 priv
ileg

es

Gran
t se

rver
priv

ileg
es

Database Products

Table T3

Table T4

Gran
t objec

t priv
ileg

es

Grant object privileges

Chapter 10 D ata b a s e S e c u r i t y 299

alone does not give them access to any database information. The user
account must be granted privileges at the server, database, or database
object level before it can be used to perform any sort of operation on the
database. However, a root user is automatically created when the server is
installed, and like the Unix root user, it has full privileges across the server
and all the databases and objects therein. For all other user accounts,
MySQL supports a CREATE USER statement to set up new user ac-
counts, but user accounts may also be implicitly created when they are
referenced in a GRANT statement. In addition, MySQL offers a most
unusual alternative: users with administrator privileges, such as the
MySQL root user, can use SQL INSERT, UPDATE, and DELETE state-
ments to directly modify the User table and other tables that control user
access and privileges. Figure 10-1 shows only one user login, called
Mgr125.

Database•	   A database is a logical collection of database objects (tables,
views, indexes, and so on) as defined by the database designer. Figure 10-1
shows two databases: Employees and Products. It is important to under-
stand that a user is allowed to connect to a database only after the user
has been granted that privilege by an administrator. In addition to data-
bases holding user data, a special database named mysql is created (not
shown in Figure 10-1) and is used by the DBMS to manage the MySQL
server. Among the tables in the mysql database, the ones that control se-
curity are

user•	   Contains one row for each user and host system combination
allowed to access the MySQL server

db •	 Contains one row for each database privilege granted to a MySQL
user

tables_priv •	 Contains one row for each table privilege granted to a
MySQL user

columns_priv•	   Contains one row for each column privilege granted to
a MySQL user

procs_priv •	 Contains one row for each stored routine privilege granted
to a MySQL user

Server privileges •	 These are general privileges applied across the entire
MySQL server, such as CREATE USER, SHOW DATABASES, and

300 Data b a s e s Demystified

SHUTDOWN. Each server privilege is represented as a column in the
users table that contains a Y if the user is granted the privilege or an N if
not.

Database privileges •	 These privileges, such as CREATE and DROP, are
applied across a particular database. Each database privilege is imple-
mented as a row in the db table. Database privileges and server privileges
are often collectively known as system privileges. System privileges work in
a similar manner across all relational databases and are therefore covered
in the “System Privileges” section that follows a little later in this
chapter.

Object privileges•	   These privileges allow specific actions on a specific
object, such as allowing select and update on Table T1. Figure 10-1 con-
tains arrows that show the granting of object privileges on Table T1 in the
Employees database, and on Table T4 in the Products database to user
Mgr125. These privileges work in much the same way across all relational
databases, thanks to ANSI standards, and are therefore covered in the
“Object Privileges” section that follows a little later in this chapter.

Database Security in Microsoft SQL Server and Sybase
With Microsoft SQL Server and Sybase, once the DBMS software is installed
on the server, a database server is created. As with MySQL, the term server or
SQL server is a copy of the DBMS software running in memory as a set of
processes (also called “services” in Windows environments) with related con-
trol information that is stored in a special database on the SQL server. In this
architecture, each SQL server manages many databases, with each database
representing a logical grouping of data as determined by the database designer.
Figure 10-2 shows a simplified view of the security architecture for Microsoft
SQL Server and Sybase.

Login•	   This is a user account on the SQL server, also called a user login.
This is not the same as any operating system account the user may have
on the database server. However, on database servers running Microsoft
Windows, the login can use Windows authentication, meaning the Win-
dows operating system stores the credentials (login name and password)
and authenticates users when they connect to the SQL server. An obvious
advantage to Windows authentication is that user access to the various
SQL servers in the enterprise can be centrally managed through the Win-
dows account, rather than locally managed on each SQL server. Note that

Chapter 10 D ata b a s e S e c u r i t y 301

once a login is defined in the SQL server, the database user may connect
to the SQL server, but a login alone does not give them access to any da-
tabase information. There is, however, a master login called “sa” (system
administrator) that, similar to root in Unix and Administrator in Microsoft
Windows, has full privileges to everything in the SQL Server environ-
ment. Figure 10-2 shows only one user login, called Mgr125.

Database•	   A database is a logical collection of database objects (tables,
views, indexes, and so on) as defined by the database designer. Figure 10-2
shows two databases: Employees and Products. It is important to under-
stand that a login is allowed to connect to a database only after it has been
granted that privilege by an administrator (discussed next). In addition to
databases holding system data, some special databases are created when
the SQL server is created (not shown in Figure 10-2) and are used by the
DBMS to manage the SQL server. Among these are the following data-
bases:

master•	   The master database contains system-level information, ini-
tialization settings, configuration settings, login accounts, the list of da-
tabases configured in the SQL server, and the location of primary
database data files.

tempdb•	   The tempdb database contains temporary tables and tempo-
rary stored procedures.

Figure 10-2 • Security in Microsoft SQL Server and Sybase

SQL Server Dev1

Login Mgr125

Grant database

permissions

Gran
t d

ata
base

perm
iss

ions

Database Employees

User A

User B

User C

Grant object
privileges

Grant object
privileges

User D

Table T2

Table T1

Table T3

Table T4

Database Products

Gran
t se

rver

perm
iss

ions

302 Data b a s e s Demystified

model•	   The model database contains a template for all other databases
created on the system.

msdb•	   In Microsoft SQL Server databases only, the msdb database
contains information used for scheduling jobs and alerts.

User•	   Each database has a set of users assigned to it. Each database user
maps to a login, so each user is a pseudo-account that is an alias to an SQL
Server login account. User accounts do not necessarily have to have the
same user name as their corresponding login accounts. When an adminis-
trator grants access to a database for a particular login account, the user
account corresponding to the login account is created by the DBMS. In
Figure 10-2, the Mgr125 login corresponds to user A in the Employees
database and to user D in the Products database. These privileges permit
the login to connect to the database(s), but do not give the user any
privileges against objects in those databases. Each user may be granted any
number of permissions (described next). (While most DBMS vendors use
the term privileges, Microsoft seems to prefer the term permissions.)

Server permissions•	   These are privileges that can be applied at the server
level. Microsoft SQL Server divides these into server privileges, which in-
clude such permissions as starting up, shutting down, and backing up the
SQL server, and statement privileges, which include such permissions as
creating a database and creating a table.

System permissions •	 These are privileges that can be applied at the da-
tabase level. Many of these overlap with server permissions. (A general
discussion of system privileges appears in a topic later in this chapter.)

Object privileges•	   These allow specific actions on a specific object, such
as allowing select and update on Table T1. Figure 10-2 contains arrows
that show the granting of object privileges on Table T1 to user A in the
Employees database, and on Table T4 to user D in the Products database.
These privileges work in much the same way across all relational data-
bases, thanks to ANSI standards. (A general discussion of object privileges
appears in a topic later in this chapter.)

Database Security in Oracle
Oracle’s security architecture, shown in Figure 10-3, is markedly different com-
pared with that of SQL Server. The differences between the two are highlighted
as each component is introduced:

Chapter 10 D ata b a s e S e c u r i t y 303

Instance•	   This is a copy of the Oracle DBMS software running in mem-
ory. Each instance manages only one database.

Database•	   This is the collection of files managed by a single Oracle in-
stance (or cluster of instances in the case of Oracle Real Application Clus-
ters, a configuration that enhances scalability and availability). Taken
together, the Oracle instance and database compose what MySQL, Micro-
soft SQL Server, and Sybase call the SQL server. Figure 10-3 depicts the
Dev1 database.

User•	   Each database account is called a user. As with MySQL, Microsoft
SQL Server, and Sybase, the user account may be authenticated externally
(that is, by the operating system) or internally (by the DBMS). Each user
is automatically allocated a schema (defined next), and this user is the
owner of that schema, meaning it automatically has full privileges over any
object in the schema. The following predefined users are created auto-
matically when the database is created (not shown in Figure 10-3):

The SYS user is the owner of the Oracle instance and database and •	

contains objects that Oracle uses to manage them. This user is equiva-
lent to the root user in MySQL and the “sa” user in Microsoft SQL
Server and Sybase.

Figure 10-3 • Database security in Oracle

Database Dev1

Schema Mgr125

Synonym for Employees.T1

Synonym for Products.T4

Schema (User)
Employees

Table T1

Table T2

Table T3

Table T4

Schema (User)
Products

Grant object privileges

Grant object privileges

304 Data b a s e s Demystified

The SYSTEM user is automatically created and assigned the DBA role •	

during Oracle installation. This user is similar to the mysql database in
MySQL and the master database in Microsoft SQL Server and
Sybase.

Many Oracle database options create their own user accounts when •	

those options are installed.

Schema•	   This is the collection of database objects that belong to a spe-
cific Oracle user. The Oracle schema is equivalent to what Microsoft SQL
Server and Sybase call a database. Figure 10-3 shows the Employees, Prod-
ucts, and Mgr125 schemas, which are owned by the Employees, Products,
and Mgr125 users, respectively. Schema and user names are always identi-
cal in Oracle. Mgr125 is a workaround to a special challenge we face with
Oracle’s security architecture, as discussed in the “Schema Owner Ac-
counts” section that follows.

Privileges•	   As with MySQL, Microsoft SQL Server, and Sybase, privileges
are divided into system and object privileges. These are covered in the
“System Privileges” section later in this chapter.

Schema Owner Accounts
With all databases, we want to avoid giving database users more privileges than
they need to do their job. This not only prevents errors made by humans
(including those contained in the application programs and database queries
they write) from becoming data disasters, but it also keeps people honest.

In Microsoft SQL Server and Sybase, we want to avoid having database users
connect as the “sa” user. We want to create database logins that have the mini-
mal privileges required. Sadly, this is often not done, and applications connect
as “sa” or to a database with a user account that has the DBO (database owner)
or DBA (database administrator) role. Roles are a collection of privileges and
are discussed in the upcoming “Roles” section. Whether done out of lack of
understanding or out of laziness, using highly privileged user accounts for appli-
cation and business user connections represents a huge security exposure that
should be forbidden as a matter of policy.

In Figure 10-3, note that the Mgr125 user owns no tables but does have
some privileges granted to it by the Employees and Products users. This is to
work around a fundamental challenge with Oracle’s security architecture. If we
allowed a database user to connect to the database using a user such as

Chapter 10 D ata b a s e S e c u r i t y 305

Employees or Products, the user would automatically have full privileges to
every object in the schema, including insert, delete, and update against any
table, and also the ability to create and alter tables without restriction. This is
fundamentally the same issue as allowing use of the “sa” user or the DBO and
DBA roles in Microsoft SQL Server and Sybase. The Mgr125 user mimics the
behavior of the login with the same name, as shown in Figure 10-1. With the
right system privileges, we can prevent the Mgr125 user in Oracle from being
able to create any tables of its own.

You may have noticed the synonyms for user Mgr125 in Figure 10-3. A syn-
onym is merely an alias or nickname for a database object. The synonyms are
for the convenience of the user so that names do not have to be qualified with
their schema name. To select from the T1 tables in the Employees schema
directly, user Mgr125 would have to refer to the table name as Employees.T1
in the SQL statement. This not only is inconvenient, but also can cause no end
of problems if we ever decide to change the name of the Employees user. By
creating a synonym called T1 in the Mgr125 schema that points to Employees.
T1, the user may now refer to the table as just T1. Incidentally, you may recall
that all user and object names in Oracle are case insensitive, so the use of mixed
case here is only for illustration. The syntax for creating this synonym is as
follows:

CREATE SYNONYM T1 FOR EMPLOYEES.T1;

System Privileges
As stated earlier, system privileges are general permissions to perform functions
in managing the server and the database(s). Hundreds of permissions are sup-
ported by each database vendor, with most of those being system privileges. As
with object privileges, system privileges are granted using the SQL GRANT
statement and rescinded using the SQL REVOKE statement. Some of the most
commonly used ones are listed in the sections that follow. Complete details
may be found in vendor-supplied documentation.

MySQL System (Server and Database) Privilege Examples
Here are some commonly used MySQL system privileges:

CREATE USER•	   Provides the ability to create new user accounts

RELOAD•	   Provides the ability to reload privileges, which causes changes
made directly in the security tables to take immediate effect

306 Data b a s e s Demystified

SHOW DATABASES•	   Provides the ability to show (display) all data-
bases

SHUTDOWN•	   Provides the ability to shut down the server

CREATE•	   Provides the ability to create databases, tables, and indexes

DROP•	   Provides the ability to drop databases, tables, and indexes

Microsoft SQL Server System (Server and Statement) Privilege Examples
Here are some commonly used Microsoft SQL Server system privileges:

SHUTDOWN•	   Provides the ability to issue the server shutdown com-
mand

CREATE DATABASE•	   Provides the ability to create new databases on
the SQL server

BACKUP DATABASE•	   Provides the ability to run backups of the data-
bases on the SQL server

Oracle System Privilege Examples
Here are some commonly used Oracle system privileges:

CREATE SESSION•	   Provides the ability to connect to the database.

CREATE TABLE•	   Provides the ability to create tables in your own
schema. Similar privileges exist for other object types, such as indexes,
synonyms, procedures, and so on.

CREATE ANY TABLE•	   Provides the ability to create tables in any user’s
schema. Similar privileges are available for other object types, such as
indexes, synonyms, procedures, and so on.

CREATE USER•	   Provides the ability to create new users in the
database.

Object Privileges
Object privileges are granted to users with the SQL GRANT statement and
revoked with the REVOKE statement. The database user (login) who receives
the privileges is called the grantee. These statements are also covered in
Chapter 6. The GRANT statement may include a WITH GRANT OPTION

Chapter 10 D ata b a s e S e c u r i t y 307

clause that allows the recipient to then grant the privilege to others. If the
privilege is subsequently revoked, a cascading revoke takes place if this user has,
in turn, granted the permission to anyone else. I do not recommend use of the
WITH GRANT OPTION clause because it is far too easy to lose control over
who has which privileges.

The general syntax of the GRANT statement is shown here, along with some
examples:

GRANT <privilege list> ON <object> TO <grantee list>
 [WITH GRANT OPTION];

GRANT SELECT, UPDATE, INSERT ON T1 TO Mgr125;

GRANT SELECT ON T2 TO User1, User2, User3;

REVOKE <privilege list> ON <object> FROM <grantee list>;

REVOKE SELECT, UPDATE, INSERT ON T1 FROM Mgr125;

REVOKE SELECT ON T2 FROM User1, User2, User3;

Roles
A role is a named collection of privileges that can, in turn, be granted to one or
more users. Most RDBMS systems, including SQL Server, Sybase, and Oracle,
have predefined roles that come with the system, and database users with the
CREATE ROLE privilege may create their own. However, as of version 5.2,
MySQL does not support roles.

A role is a named collection of database privileges.

Roles have the following advantages:

Roles may exist before user accounts do.•	 For example, we can create a role
that contains all the privileges required to work on a particular develop-
ment project. When a new hire joins the project team, one GRANT state-
ment gives their new user account all the permissions they need.

Roles relieve the administrator of a lot of tedium.•	 Many privileges may be
granted with a single command when a role is used.

308 Data b a s e s Demystified

Roles survive when user accounts are dropped.•	 In cases where the DBA must
drop and re-create a user account, it can be a lot of work to reinstate all
the privileges, which is simplified if all the privileges are assembled into
one role.

For administrators, a common role is DBA, which conveys a lot of powerful
privileges (over 125 separate privileges in Oracle). Obviously, such a high-
powered privilege must be granted judiciously.

Views
One of the common security issues to be addressed is how to allow database
users access to some rows and columns in a table while preventing access to
other rows and columns. Views are an excellent way to accomplish this. Here
are some of the benefits of using views to accomplish security objectives:

Columns that a database user does not require may be omitted from the view.•	
Assuming the user has been granted access to the view rather than the
underlying table, this method totally prevents them from seeing the infor-
mation in the columns that were omitted from the view.

A WHERE clause may be included in the view to limit returned rows.•	 Joins
may be included to match to other tables as a way of limiting rows. For
example, the view could limit Product table rows to only those products
for a Division ID that matches the division in which the employee
works.

Joins to “lookup” tables can be used to replace code values in a table with their •	

corresponding descriptions. A lookup table typically contains a list of code
values (for example, department codes, transaction codes, status codes)
and their descriptions, and it’s used to “look up” the descriptions for the
codes. Although this is a minor point, employees trying to hack database
records during fraud attempts have a much more difficult time if they
cannot see the codes used to categorize the transactions. Furthermore,
employees trying to do their best usually have a better time reading and
understanding code descriptions than the corresponding code values.

Chapter 10 D ata b a s e S e c u r i t y 309

Security Monitoring and Auditing
Security policies and controls are typically not enough to ensure compliance.
There must be a monitoring system to detect security breaches so that correc-
tive measures can be taken. Multiple intrusion-detection tools are on the mar-
ket that are capable of monitoring a server and detecting unauthorized changes
to files stored in the file system. Also, most of the major RDBMS products have
provisions for setting up auditing so that selected actions in the database are
silently logged, typically into audit tables that may subsequently be used for
reporting. Consult your RDBMS documentation for a full description of these
auditing features.

It is also a good idea to have an independent auditor review your organiza-
tion’s security policies and procedures when they are initially written, and at
periodic intervals thereafter. Furthermore, it is wise to have your auditors, or a
consultant who specializes in information systems security, perform an onsite
audit, including testing the site for vulnerabilities that have not yet been
addressed. System intrusions, including fraud, can cost you many times more
than a system audit, which may also save you any embarrassment before your
employees and customers.

Summary
In this chapter, you have learned about the need for security, database server
security issues and precautions, database client and application security issues
and precautions, database access security, including the security architectures
of MySQL, Microsoft SQL Server, Sybase, and Oracle, and an overview of
security monitoring and auditing. In Chapter 11, we look at implementing
databases.

310 Data b a s e s Demystified

Quiz

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

In MySQL, Microsoft SQL Server, and Sybase, a login (user login):1.	
Can be authenticated by the operating systemA.	
Can be authenticated by the DBMSB.	
Can connect to any number of databasesC.	
Owns a database schemaD.	
Automatically has database access privilegesE.	

In MySQL, Microsoft SQL Server, and Sybase, a database:2.	
May have one or more users assigned to itA.	
Is owned by a loginB.	
Is a logical collection of database objectsC.	
May be granted privilegesD.	
May contain system data (for example, master data) or user (application) dataE.	

In Oracle, a user account:3.	
Can connect to (log into) any number of databasesA.	
Can use operating system authenticationB.	
Can be authenticated by the Oracle DBMSC.	
Owns a database schemaD.	
Automatically has database privilegesE.	

In Oracle, a database:4.	
Is the same as a schemaA.	
Is owned by a userB.	
Is managed by an Oracle instanceC.	
May contain system data (for example, system schema) and user (application) D.	
data
May have one or more user accounts defined in itE.	

Security is necessary because:5.	
80 percent of fraud is committed by outside hackers.A.	
Honest people make mistakes.B.	
Security controls keep people honest.C.	
Application security controls alone are inadequate.D.	
Databases connected to the Internet are vulnerable to hackers.E.	

Chapter 10 D ata b a s e S e c u r i t y 311

Wireless networks need to be secured because:6.	
Employees may use the wireless network to secretly communicate with A.	
hackers.
Inexpensive wireless access points are readily available.B.	
Radio waves may carry to public roads outside the building.C.	
Radio waves penetrate walls to adjoining offices.D.	
Anyone with a wireless network adapter can connect to an unprotected net-E.	
work.

Client security considerations include:7.	
Granting only database table privileges that are absolutely necessaryA.	
Web browser security levelB.	
MAC address listsC.	
Testing of application exposuresD.	
Use of a virus scannerE.	

Object privileges:8.	
Are granted using the SQL GRANT statementA.	
Are granted in a similar way in Oracle, Sybase, and Microsoft SQL ServerB.	
Are specific to a database objectC.	
Allow the grantee to perform certain administrative functions on the server, D.	
such as shutting it down
Are rescinded using the SQL REMOVE statementE.	

Roles:9.	
May contain any number of object privilegesA.	
May contain only one object privilegeB.	
May exist before users doC.	
May be assigned to only one userD.	
May be shared by many usersE.	

Using the WITH GRANT OPTION when granting object privileges:10.	
Gives the grantee DBA privileges on the entire databaseA.	
Can lead to security issuesB.	
Allows the grantee to grant the privilege to othersC.	
Will cascade if the privilege is subsequently revokedD.	
Is a highly recommended practice because it is so convenient to useE.	

This page intentionally left blank

 313

c h a p t e r 11
Database
Implementation

In this chapter, we cover some considerations regarding the implementation of
a database system. These include cursor processing, transaction management,
performance tuning, and change control.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Know how to use cursors in database applications.•
Understand database transactions and how to implement them.•
Understand database performance-tuning concepts.•

314 Data b a s e s Demystified

Cursor Processing
Before we embark on transaction management, which includes a discussion of
the locking mechanisms required to support concurrent updates of the data-
base, we must explore the way application programs handle database queries.
The collection of rows returned by the execution of a database query is called
the result set. When you’re selecting data from the database, application pro-
gramming languages such as C and Java present a dilemma when the result set
contains multiple rows of data. These programming languages are designed to
handle one record at a time (one object instance at a time in the case of Java).
So there is a mismatch that must be addressed.

A result set is the collection of rows returned by the DBMS when a database query
has been executed.

To overcome the mismatch, most relational databases support the concept
of a cursor, which is merely a pointer to a single row in the result set. In Oracle,
cursor support is included in a procedural language SQL extension called
PL/SQL (Procedural Language/SQL) and similarly is included in Transact-SQL
in Sybase and Microsoft SQL Server. For MySQL, cursors are only supported
within stored procedures and functions. The examples in this chapter use
MySQL, which closely follows the ANSI/ISO SQL standard syntax; however,
some of them may require minor modification before they will work on other
RDBMS products. The use of a cursor parallels the use of a traditional flat file
in that the cursor must be defined and opened before it may be used, it may be
read from by fetching rows in a programming loop, and it should be closed
when the program no longer needs it.

Following is an example of a cursor declaration. For clarity, all the keywords
are shown in uppercase and database object names in lowercase.

DECLARE ny_customers CURSOR FOR
 SELECT customer_number, name, address, city, zip_code
 FROM customer
 WHERE state = 'NY';

Again, there are dialect differences between various SQL implementations.
For example, in Oracle PL/SQL, the first line of the preceding declaration must
be changed to:

DECLARE CURSOR ny_customers IS

Chapter 11 D ata b a s e I m p l e m e n tat io n 315

You may recognize the customer table from Chapter 8. If you ignore the first
line, the statement looks like any ordinary SQL query—it selects some columns
from a table, and in this case, has a WHERE clause to limit the rows returned to
only those from New York state. This is very nice because it means we can test
the query using any interactive SQL client tool before we paste it into a pro-
gram and turn it into a cursor declaration. The DECLARE CURSOR clause defines
the cursor for us, which we have named ny_customers. Cursor declarations are
not executable statements, meaning that when they are processed by the
RDBMS, they do nothing but set up a definition that may be subsequently
referenced. The declaration is checked for syntax and some other internal
details, but the database does not need to access any table rows until the cursor
is opened.

The cursor must be opened before it can be used. In this example, the
RDBMS may not have to retrieve any rows when we open the cursor, but for
efficiency, it might decide to retrieve some number of rows and place them in
a buffer for us. A buffer is merely an area of computer memory used to tempo-
rarily hold data. It is far more efficient to use a buffer to hold some number of
prefetched rows rather than going to the database files for every single row,
because computers can access memory so much faster than files in the file
system. In some cases, however, the RDBMS must fetch all the rows matching
a query and sort them before the first row may be returned to the application
program. You may have guessed that these are queries containing an ORDER BY
to sequence the returned rows for us. If there is no index on the column(s) we
use for sequencing, then the RDBMS must find and sort all of them before it
knows which one is the correct one to return as the first row (the one that sorts
first in the requested sequence). Although a lot goes on when we open a cursor,
the statement itself is quite simple. Here is the OPEN statement for our
example:

OPEN ny_customers;

Each time our program requires a new row from the result set, we simply
issue a FETCH command against the cursor. This is very much like reading the
next record from a file in an older flat file system. Remember that the cursor is
merely a pointer into the result set. Every time a fetch is issued, the row cur-
rently pointed to is returned to the calling program (that is, the program that
issued the FETCH), and the cursor is advanced one row to point to the next row
to be returned. If there are no more rows in the result set, a code is returned to
the calling program to indicate this. Another detail handled by the fetch is

316 Data b a s e s Demystified

mapping the columns returned to programming language variables (called host
language variables, or just host variables). This is done with the INTO clause, and
naturally the syntax of the variable names will vary from one programming
language to another. Our example uses very simple names to stay away from
programming language issues, but in real life you would want the names to be
as descriptive as possible. It’s also good programming practice to use names that
are not exactly the same as the database column names, so as to avoid confusion
when someone else reads the program. The variable names in this example are
prefixed with v_ (for variable) for this reason. Here is the fetch of the ny_cus-
tomers cursor:

FETCH ny_customers
 INTO v_customer_number, v_name, v_address, v_city,
 v_zip_code;

Notice that the FETCH statement refers only to the cursor name and the host
variables. The cursor declaration ties the cursor to the table(s) and column(s)
being referenced. As stated, we should always close the cursor when the pro-
gram no longer needs it because this frees up any resources the cursor has used,
including memory for buffers. The CLOSE statement is as simple as the OPEN
statement:

CLOSE my_customers;

The topic of cursor processing has been introduced before the discussion of
transaction management because cursors play a key role in some transaction
events.

Transaction Management
To successfully support the database users, the DBMS must include provisions
to manage the transactions carried out by the application systems using the
database.

What Is a Transaction?
A transaction is a discrete series of actions that must be either completely pro-
cessed or not processed at all. Some call a transaction a unit of work as a way of
further emphasizing its all-or-nothing nature.

Chapter 11 D ata b a s e I M p l e M e n tat I O n 317

A transaction, also known as a unit of work, is a discrete series of actions that must
be either completely processed or not processed at all.

Transactions have properties that can be easily remembered using the acro-
nym ACID (Atomicity, Consistency, Isolation, Durability):

Atomicity•	 A transaction must remain whole. That is, it must completely
succeed or completely fail. When it succeeds, all changes that were made
by the transaction must be preserved by the system. Should a transaction
fail, all changes that were made by it must be completely undone. In da-
tabase systems, we use the term rollback for the process that backs out any
changes made by a failed transaction, and we use the term commit for the
process that makes transaction changes permanent.

Consistency•	 A transaction should transform the database from one con-
sistent state to another. For example, a transaction that creates an invoice
for an order transforms the order from a shipped order to an invoiced order,
including all the appropriate database changes.

Isolation•	 Each transaction should carry out its work independently of
any other transaction that might occur at the same time.

Durability•	 Changes made by completed transactions should remain per-
manent, even after a subsequent shutdown or failure of the database or
other critical system component. In object terminology, the term persis-
tence is used for permanently stored data.

still struggling
“permanent” here can be confusing because nothing seems to ever stand still
for long in an Oltp (online transaction processing) database. Just keep in mind
that permanent (persistent) means the change will not disappear when the da-
tabase is shut down or fails—it does not mean that the data is in a permanent
state that can never be changed again.

?

318 Data b a s e s Demystified

DBMS Support for Transactions
Aside from personal computer database systems, most DBMSs provide transac-
tion support. This includes provisions in SQL for identifying the beginning and
end of each transaction, along with a facility for logging all changes made by
transactions so that a rollback may be performed when necessary. As you might
guess, standards lagged behind the need for transaction support, so support for
transactions varies a bit across RDBMS vendors. As examples, let’s look at trans-
action support in MySQL, Microsoft SQL Server, and Oracle, followed by dis-
cussion of transaction logs.

Transaction Support in MySQL
MySQL supports transactions with its InnoDB storage engine. MySQL offers sev-
eral choices for storage engines that can be selected during table creation. Tables
using different storage engines can be mixed and matched within a MySQL data-
base. (The differences among the various MySQL storage engines are beyond the
scope of this book. Consult your MySQL documentation for details. The MySQL
5.5 manual has conflicting information about which storage engine is the default,
so it’s best to explicitly specify InnoDB if you need transaction support.)

InnoDB provides ACID-compliant transaction support with commit, roll-
back, and crash recovery capabilities. Locking is at the row level, with select
statements performing a consistent non-locking read similar to what Oracle
provides. MySQL supports three transaction modes: autocommit, explicit, and
implicit. Here is a description of each:

Autocommit mode•	   By default, MySQL runs with the autocommit mode
enabled. In autocommit mode, each SQL statement is automatically com-
mitted as it completes. Essentially, this makes every SQL statement a
discrete transaction.

Explicit mode•	   In explicit mode, each transaction is started with a START
TRANSACTION statement and ended with either a COMMIT statement (for
successful completion) or a ROLLBACK statement (for unsuccessful com-
pletion). This mode is used most often in application programs, stored
procedures, and scripts. The syntax for the very simple SQL statements
that control explicit transactions in MySQL is
START TRANSACTION [WITH CONSISTENT SNAPSHOT];
COMMIT;
ROLLBACK;

Chapter 11 D ata b a s e I m p l e m e n tat io n 319

The WITH CONSISTENT SNAPSHOT clause starts a consistent read for stor-
age engines that are capable of it (currently only InnoDB). The effect is
the same as issuing a START TRANSACTION statement followed by a SELECT
from any InnoDB table.

Implicit mode•	   If you are using transaction-safe tables, such as those pro-
vided by the InnoDB and BDB storage engines, you can disable autocom-
mit mode. Although MySQL does not use the term, most DBAs refer to
this as implicit mode. In implicit mode, a new transaction is started when-
ever an SQL statement that modifies table data is executed, including
DELETE, INSERT, and UPDATE, among others. Once a transaction is implic-
itly started, it continues until the transaction is either committed or rolled
back. If the database user disconnects before submitting a transaction-
ending statement, the transaction is automatically rolled back. The follow-
ing statement disables autocommit mode:
SET AUTOCOMMIT=0;

Transaction Support in Microsoft SQL Server
Microsoft SQL Server supports transactions in three modes: autocommit,
explicit, and implicit. All three modes are available when you’re connected
directly to the database using a client tool designed for this purpose. However,
if you plan to use an ODBC or JDBC driver, you should consult the driver’s
documentation for information on the transaction support it provides. Here’s a
description of the three modes:

Autocommit mode•	   In autocommit mode, each SQL statement is auto-
matically committed as it completes. Essentially, this makes every SQL
statement a discrete transaction. Every connection to Microsoft SQL
Server uses autocommit until either an explicit transaction is started or
the implicit transaction mode is set. In other words, autocommit is the
default transaction mode for each SQL Server connection.

Explicit mode•	   In explicit mode, each transaction is started with a BEGIN
TRANSACTION statement and ended with either a COMMIT TRANSACTION
statement (for successful completion) or a ROLLBACK TRANSACTION state-
ment (for unsuccessful completion). Savepoints provide a mechanism for
rolling back portions of transactions. The SAVE TRANSACTION statement
creates the savepoint, and the ROLLBACK TRANSACTION statement can then
reference the savepoint to roll back the transaction to the specific savepoint.

320 Data b a s e s Demystified

Explicit mode is used most often in application programs, stored proce-
dures, triggers, and scripts. The general syntax of these SQL statements
follows:
BEGIN TRAN[SACTION] [tran_name | @tran_name_variable]
SAVE TRAN[SACTION] (savepoint name | @savepoint_name_variable)
COMMIT [TRAN[SACTION] [tran_name | @tran_name_variable]]
ROLLBACK [TRAN[SACTION] [tran_name | @tran_name_variable |
 savepoint_name | @savepoint_name_variable]]

Implicit mode•	   Implicit transaction mode is toggled on or off with the
command SET IMPLICIT_TRANSACTIONS {ON | OFF}. When implicit
mode is on, a new transaction is started whenever any of a list of specific
SQL statements is executed, including DELETE, INSERT, SELECT, and
UPDATE, among others. Once a transaction is implicitly started, it continues
until the transaction is either committed or rolled back. If the database
user disconnects before submitting a transaction-ending statement, the
transaction is automatically rolled back.

Microsoft SQL Server records all transactions and the modifications made
by them in the transaction log. The before-and-after image of each database
modification made by a transaction is recorded in the transaction log. This
facilitates any necessary rollback because the before images can be used to
reverse the database changes made by the transaction. A transaction commit is
not complete until the commit record has been written to the transaction log.
Because database changes are not always written to disk immediately, the trans-
action log is sometimes the only means of recovery when there is a system
failure.

Transaction Support in Oracle
Oracle supports only two transaction modes: autocommit and implicit. As with
Microsoft SQL Server, support varies when ODBC and JDBC drivers are used,
so the driver vendor’s documentation should be consulted in those cases. Here’s
a description of these two modes in Oracle:

Autocommit mode•	   As with Microsoft SQL Server, each SQL statement
is automatically committed as it completes. Autocommit mode is toggled
on and off using the SET AUTOCOMMIT command, as shown here, and is off
by default:
SET AUTOCOMMIT ON
SET AUTOCOMMIT OFF

Chapter 11 D ata b a s e I m p l e m e n tat io n 321

Implicit mode•	   A transaction is implicitly started when the database user
connects to the database (that is, when a new database session begins).
This is the default transaction mode in Oracle. When a transaction ends
with a commit or rollback, a new transaction is automatically started.
Unlike in Microsoft SQL Server, nested transactions (transactions within
transactions) are not permitted. A transaction ends with a commit when
any of the following occurs: (1) the database user issues the SQL COMMIT
statement; (2) the database session ends normally (that is, the user issues
an EXIT or DISCONNECT command); (3) the database user issues an SQL
DDL statement (that is, a CREATE, DROP, or ALTER statement). A transac-
tion ends with a rollback when either of the following occurs: (1) the
database user issues the SQL ROLLBACK statement; (2) the database ses-
sions ends abnormally (that is, the client connection is canceled, or the
database crashes or is shut down using one of the shutdown options that
aborts client connections instead of waiting for them to complete).

Locking and Transaction Deadlock
Although the simultaneous sharing of data among many database users has
significant benefits, a serious drawback also can cause updates to be lost. Fortu-
nately, the database vendors have worked out solutions to the problem. This
section presents the concurrent update problem and various solutions.

The Concurrent Update Problem
Figure 11-1 illustrates the concurrent update problem that can occur when
multiple database sessions are allowed to concurrently update the same data.
Recall that a session is created every time a database user connects to the

Figure 11-1 • The concurrent update problem

Process
customer

invoice ($100)

Process
customer
payment
($100)

Database user A

Database user B

1. Retrieve customer balance
($200)

3. Update customer balance
($300)

2. Retrieve customer balance
($200)

4. Update customer balance
($100)

Customer
schema

322 Data b a s e s Demystified

database, which includes the same user connecting to the database multiple
times. The concurrent update problem happens most often between two dif-
ferent database users who are unaware that they are making conflicting updates
to the same data. However, database users with multiple connections can trip
themselves up if they apply updates using more than one of their database
sessions.

The scenario presented uses a fictitious company that sells products and cre-
ates an invoice for each order shipped, similar to Acme Industries in the
normalization examples from earlier chapters. Figure 11-1 illustrates User A, a
clerk in the Shipping department who is preparing an invoice for a customer,
which requires updating the customer’s data by adding to the customer’s bal-
ance due. At the same time, User B, a clerk in the Accounts Receivable depart-
ment, is processing a payment from the very same customer, which requires
updating the customer’s balance due by subtracting the amount they paid.
Here is the exact sequence of events, as illustrated in Figure 11-1:

User A queries the database and retrieves the customer’s balance due, 1.	
which is $200.

A few seconds later, User B queries the database and retrieves the same 2.	
customer’s balance, which is still $200.

In a few more seconds, User A applies her update, adding the $100 invoice 3.	
to the balance due, which makes the new balance $300 in the database.

Finally, User B applies his update, subtracting the $100 payment from the 4.	
balance due he retrieved from the database ($200), resulting in a new bal-
ance due of $100. He is unaware of the update made by User A and thus
sets the balance due (incorrectly) to $100.

The balance due for this customer should be $200, but the update made by
User A has been overwritten by the update made by User B. The company is
out $100 that either will be lost revenue or will take significant staff time to
uncover and correct. As you can see, allowing concurrent updates to the data-
base without some sort of control can cause updates to be lost. Most database
vendors implement a locking strategy to prevent concurrent updates to the
same data.

Locking Mechanisms
A lock is a control placed in the database to reserve data so that only one data-
base session may update it. When data is locked, no other database session can

Chapter 11 D ata b a s e I m p l e m e n tat i o n 323

update the data until the lock is released, which is usually done with a COMMIT
or ROLLBACK SQL statement. Any other session that attempts to update locked
data will be placed in a lock wait state, and the session will stall until the lock is
released. Some database products, such as IBM’s DB2, will time out a session
that waits too long and return an error instead of completing the requested
update. Others, such as Oracle, will leave a session in a lock wait state for an
indefinite period.

A lock is a control placed in the database to reserve data so that only one database
session may update it.

By now it should be no surprise that how locks are handled by different
database products varies significantly. A general overview is presented here with
the recommendation that you consult your database vendor’s documentation
for details on how locks are supported. Locks may be placed at various levels
(often called lock granularity), and some database products, including Sybase,
Microsoft SQL Server, and IBM’s DB2, support multiple levels with automatic
lock escalation, which raises locks to higher levels as a database session places
more and more locks on the same database objects. Locking and unlocking
small amounts of data requires significant overhead, so escalating locks to higher
levels can substantially improve performance. Typical lock levels are as
follows:

Database•	   The entire database is locked so that only one database session
may apply updates. This is obviously an extreme situation that should not
happen very often, but it can be useful when significant maintenance is
being performed, such as upgrading to a new version of the database soft-
ware. Oracle supports this level indirectly when the database is opened in
exclusive mode, which restricts the database to only one user session.

File•	   An entire database file is locked. Recall that a file can contain part
of a table, an entire table, or parts of many tables. This level is less favored
in modern databases because the data locked can be so diverse.

Table•	   An entire table is locked. This level is useful when you’re perform-
ing a table-wide change such as reloading all the data in the table, updat-
ing every row, or altering the table to add or remove columns. Oracle calls
this level a DDL lock, and it is used when DDL statements (CREATE, DROP,
and ALTER) are submitted against a table or other database object.

324 Data b a s e s Demystified

Block or page•	   A block or page within a database file is locked. A block is
the smallest unit of data that the operating system can read from or write
to a file. On most personal computers, the block size is called the sector
size. Some operating systems use pages instead of blocks. A page is a virtual
block of fixed size, typically 2K or 4K, which is used to simplify processing
when multiple storage devices support different block sizes. The operating
system can read and write pages and let hardware drivers translate the
pages to appropriate blocks. As with file locking, block (page) locking is
less favored in modern database systems because of the diversity of the
data that may happen to be written to the same block in the file.

Row•	   A row in a table is locked. This is the most common locking level,
with virtually all modern database systems supporting it.

Column•	   Some columns within a row in the table are locked. This
method sounds terrific in theory, but it’s not very practical because of the
resources required to place and release locks at this level of granularity.
Very sparse support for it exists in modern commercial database sys-
tems.

Locks are always placed when data is updated or deleted. Most RDBMSs also
support the use of a FOR UPDATE OF clause on a SELECT statement to allow locks
to be placed when the database user declares their intent to update something.
Some locks may be considered read-exclusive, which prevents other sessions
from even reading the locked data. Many RDBMSs have session parameters
that can be set to help control locking behavior. One of the locking behaviors
to consider is whether all rows fetched using a cursor are locked until the next
COMMIT or ROLLBACK, or whether previously read rows are released when the
next row is fetched. Consult your DBMS documentation for more details.

The main problem with locking mechanisms is that locks cause contention,
meaning that the placement of locks to prevent loss of data from concurrent
updates has the side effect of causing concurrent sessions to compete for the
right to apply updates. At the least, lock contention slows user processes as ses-
sions wait for locks. At the worst, competing lock requests can stall sessions
indefinitely, as you will see in the next section.

Deadlocks
A deadlock is a situation where two or more database sessions have locked some
data, and then each has requested a lock on data that another session has locked.
Figure 11-2 illustrates this situation.

Chapter 11 D ata b a s e I m p l e m e n tat io n 325

A deadlock is a situation where two or more database sessions have locked some
data, and then each has requested a lock on data that another session has locked.

This example again uses two users, cleverly named A and B, from our ficti-
tious company. User A is a customer representative in the Customer Service
department and is attempting to correct a payment that was credited to the
wrong customer account. He needs to subtract (debit) the payment from Cus-
tomer 1 and add (credit) it to Customer 2. User B is a database specialist in the
IT department, and she has written an SQL statement to update some of the
customer phone numbers with one area code to a new area code in response to
a recent area code split by the phone company. The statement has a WHERE
clause that limits the update to only those customers having a phone number
with certain prefixes in area code 510 and updates those phone numbers to the
new area code. User B submits her SQL UPDATE statement while User A is
working on his payment credit problem. Customers 1 and 2 both have phone
numbers that need to be updated. The sequence of events (all happening within
seconds of each other), as illustrated in Figure 11-2, takes place as follows:

User A selects the data from Customer 1 and applies an update to debit 1.	
the balance due. No commit is issued yet because this is only part of the
transaction that must take place. The row for Customer 1 now has a lock
on it due to the update.

The statement submitted by User B updates the phone number for 2.	
Customer 2. The entire SQL statement must run as a single transaction,
so there is no commit at this point, and thus User B holds a lock on the
row for Customer 2.

Figure 11-2 • The deadlock

Correct a
payment

posting error:
Debit

Customer 1
and credit

Customer 2

Split
telephone
area code

“510”

Database User A

Database User B

1. Select and update Customer 1
(locks the Customer 1 row)

3. Select and update Customer 2
(must wait due to user B lock)

2. Update Customer 2
(locks the Customer 2 row)

4. Update Customer 1
(must wait due to user A lock)

Customer
schema

326 Data b a s e s Demystified

User A selects the balance for Customer 2 and then submits an update to 3.	
credit the balance due (same amount as debited from Customer 1). The
request must wait because User B holds a lock on the row to be updated.

The statement submitted by User B now attempts to update the phone 4.	
number for Customer 1. The update must wait because User A holds a
lock on the row to be updated.

These two database sessions are now in deadlock. User A cannot continue
due to a lock held by User B, and vice versa. In theory, these two database ses-
sions will be stalled forever. Fortunately, modern DBMSs contain provisions to
handle this situation. One method is to prevent deadlocks. Few DBMSs have
this capability due to the considerable overhead this approach requires and the
virtual impossibility of predicting what an interactive database user will do
next. However, the theory is to inspect each lock request for the potential to
cause contention and not permit the lock to take place if a deadlock is possible.
The more common approach is deadlock detection, which aborts one of the
requests that caused the deadlock. This can be done either by timing lock waits
and giving up after a preset time interval, or by periodically inspecting all locks
to find two sessions that have each other locked out. In either case, one of the
requests must be terminated and the transaction’s changes rolled back in order
to allow the other request to proceed.

Deadlock detection is a technique that proactively finds deadlocks and automati-
cally resolves them by terminating one of the deadlocked transactions.

Performance Tuning
Any seasoned DBA will tell you that database performance tuning is a never-
ending task. It seems there is always something that can be tweaked to make
the database run more quickly and/or efficiently. The key to success is manag-
ing your time and the expectations of the database users, and setting the per-
formance requirements for an application before it is even written. Simple
statements such as “every database update must complete within 4 seconds” are
usually the best. With that done, performance tuning becomes a simple matter
of looking for things that do not conform to the performance requirement and
tuning them until they do. The law of diminishing returns applies to database

Chapter 11 D ata b a s e I m p l e m e n tat io n 327

tuning, and you can put lots of effort into tuning a database process for little or
no gain. The beauty of having a standard performance requirement is that you
can stop when the process meets the requirement and then move on to the
next problem.

Although components other than SQL statements can be tuned, these other
components are so specific to a particular DBMS that it is best not to attempt
to cover them here. Suffice it to say that memory usage, CPU utilization, and
file system I/O all must be tuned along with the SQL statements that access
the database. The tuning of SQL statements is addressed in the sections that
follow.

Tuning Database Queries
About 80 percent of database query performance problems can be solved by
adjusting the SQL statement. However, you must understand how the particu-
lar DBMS being used processes SQL statements in order to know what to
tweak. For example, placing SQL statements inside stored procedures can yield
remarkable performance improvement in Microsoft SQL Server and Sybase,
but the same is not true in Oracle.

A query execution plan is a description of how an RDBMS will process a
particular query, including index usage, join logic, and estimated resource cost.
It is important to learn how to use the “explain plan” utility in your DBMS, if
one is available, because it will show you exactly how the DBMS will process
the SQL statement you are attempting to tune. In Oracle, the EXPLAIN PLAN
statement analyzes an SQL statement and posts analysis results to a special plan
table. The plan table must be created exactly as specified by Oracle, so it is best
to use the script they provide for this purpose. After running the EXPLAIN PLAN
statement, you must then retrieve the results from the plan table using a SELECT
statement. Fortunately, Oracle’s Enterprise Manager has a GUI version avail-
able that makes query tuning a lot easier. The Microsoft SQL Server Manage-
ment Studio tool has a button labeled “Display Estimated Execution Plan” that
graphically displays how the SQL statement will be executed. This feature is
also accessible from the Query menu item as the option Show Execution Plan.
In versions prior to SQL Server 2005, this feature is included in the Query
Analyzer tool.

A query execution plan is a description of how an RDBMS will process a particular
query, including index usage, join logic, and estimated resource cost.

328 Data b a s e s Demystified

Following are some general tuning tips for SQL. You should consult a tuning
guide for the particular DBMS you are using because techniques, tips, and other
considerations vary by DBMS product.

Avoid table scans of large tables. For tables over 5,000 rows or so, scanning •	

all the rows in the table instead of using an index can be expensive in
terms of resources required. And, of course, the larger the table, the more
expensive a table scan becomes. Full table scans typically occur in the fol-
lowing situations:

The query does not contain a •	 WHERE clause to limit rows.

None of the columns referenced in the •	 WHERE clause match the leading
column of an index on the table.

Index and table statistics have not been updated. Most RDBMS query •	

optimizers use statistics to evaluate available indexes, and without sta-
tistics, a table scan may be seen as more efficient than using an index.

At least one column in the •	 WHERE clause does match the first column
of an available index, but the comparison used obviates the use of an
index. These cases include the following:

Use of the •	 NOT operator (for example, WHERE NOT CITY = 'New
York'). In general, indexes can be used to find what is in a table, but
cannot be used to find what is not in a table.

Use of the •	 NOT EQUAL operator (for example, WHERE CITY <> 'New
York').

Use of a wildcard in the first position of a comparison string (for •	

example, WHERE CITY LIKE '%York%').

Use of an SQL function in the comparison (for example, •	 WHERE

UPPER(CITY) = 'NEW YORK').

Create indexes that are selective. •	 Index selectivity is a ratio of the number
of distinct values a column has, divided by the number of rows in a table.
For example, if a table has 1,000 rows and a column has 800 distinct val-
ues, the selectivity of the index is 0.8, which is considered good. However,
a column such as gender that only has two distinct values (M and F) has
very poor selectivity (.002 in this case). Unique indexes always have a
selectivity ratio of 1.0, which is the best possible. With some RDBMSs
such as DB2, unique indexes are so superior that DBAs often add otherwise

Chapter 11 D ata b a s e I M p l e M e n tat I O n 329

unnecessary columns to an index just to make the index unique. However,
always keep in mind that indexes take storage space and must be main-
tained, so they are never a free lunch.

Evaluate join techniques carefully. Most RDBMSs offer multiple methods •	

for joining tables, with the query optimizer in the RDBMS selecting the
one that appears best based on table statistics. In general, creating indexes
on foreign key columns gives the optimizer more options from which to
choose, which is always a good thing. Run an explain plan and consult
your RDBMS documentation when tuning joins.

Pay attention to views. Because views are stored SQL queries, they can •	

present performance problems just like any other query.

Tune subqueries in accordance with your RDBMS vendor’s recommenda-•	

tions.

Limit use of remote tables. Tables connected remotely via database links •	

never perform as well as local tables.

still struggling
Very large tables require special attention. When tables grow to millions of rows
in size, any query can be a performance nightmare. evaluate every query care-
fully, and consider partitioning the table to improve query performance. table
partitioning is addressed in Chapter 8. Your RDbMs may offer other special fea-
tures for very large tables that will improve query performance.

?

Tuning DML Statements
DML (Data Manipulation Language) statements generally produce fewer per-
formance problems than query statements. However, if they contain a WHERE
clause with search predicates that specify the row(s) to be updated or deleted,
all of the query-tuning guidelines in the previous topic apply. Other consider-
ations are covered in this topic.

For INSERT statements, there are two main considerations:

Ensuring that there is adequate free space in the tablespaces to hold new rows.•	

Tablespaces that are short on space present problems as the DBMS

330 Data b a s e s Demystified

searches for free space to hold rows being inserted. Moreover, inserts do
not usually put rows into the table in primary key sequence because free
space usually isn’t available in exactly the right places. Therefore, reorga-
nizing the table, which is essentially a process of unloading the rows to a
flat file, re-creating the table, and then reloading the table, can improve
both insert and query performance.

Index maintenance.•	 Every time a row is inserted into a table, a correspond-
ing entry must be inserted into every index built on the table (except that
null values are never indexed). The more indexes there are, the more
overhead every insert will require. Index free space can usually be tuned
just as table free space can.

UPDATE statements have the following considerations:

Index maintenance.•	 If indexed columns are updated, the corresponding
index entries must also be updated. In general, updating primary key val-
ues has particularly bad performance implications because foreign key
values that reference the primary key must also be updated, so much so
that some RDBMSs prohibit it.

Row expansion.•	 When columns are updated in such a way that the row
grows significantly in size, the row may no longer fit in its original loca-
tion, and there may not be free space around the row for it to expand in
place (other rows might be right up against the one just updated). When
this occurs, the row must either be moved to another location in the data
file where it will fit, or be split with the expanded part of the row placed
in a new location, connected to the original location by a pointer. Both of
these situations are not only expensive when they occur, but are also det-
rimental to the performance of subsequent queries that touch those rows.
Table reorganizations can resolve the issue, but it is better to prevent the
problem by designing the application so that rows tend not to grow in size
after they are inserted.

DELETE statements are the least likely to present performance issues. How-
ever, a table that participates as a parent in a relationship that is defined with
the ON DELETE CASCADE option can perform poorly if there are many child rows
to delete.

Chapter 11 D ata b a s e I m p l e m e n tat io n 331

Change Control
Change control (also known as change management) is the process used to man-
age the changes that occur after a system is implemented. A change control
process has the following benefits:

It helps you understand when it is acceptable to make changes and when •	

it is not.

It provides a log of all changes that have been made to assist with trouble-•	

shooting when problems occur.

It can manage versions of software components so that a defective version •	

can be smoothly backed out.

Change is inevitable. Not only do business requirements change, but also
new versions of database and operating system software and new hardware
devices eventually must be incorporated. Technologists should devise a change
control method suitable to the organization, and management should approve
it as a standard. Anything less leads to chaos when changes are made without
the proper coordination and communication. Although terminology varies
among standard methods, they all have common features:

Version numbering•	   Components of an application system are assigned
version numbers, usually starting with 1 and advancing sequentially every
time the component is changed. Usually a revision date and the identifier
of the person making the change are carried with the version number.

Release (build) numbering•	   A release is a point in time at which all com-
ponents of an application system (including database components) are
promoted to the next environment (for example, from development to
system test) as a bundle that can be tested and deployed together. Some
organizations use the term build instead. Database environments are dis-
cussed in Chapter 5. As releases are formed, it is important to label each
component included with the release (or build) number. This allows us to
tell which version of each component was included in a particular re-
lease.

Prioritization•	   Changes may be assigned priorities to allow them to be
scheduled accordingly.

332 Data b a s e s DemystifieD

Change request tracking•	 Change requests can be placed into the change
control system, routed through channels for approval, and marked with
the applicable release number when the change is completed.

Check-out and check-in•	 When a developer or DBA is ready to apply
changes to a component, they should be able to check it out (reserve it),
which prevents others from making potentially conflicting changes to the
same component at the same time. When work is complete, the developer
or DBA checks the component back in, which essentially releases the
reservation.

still struggling
a number of commercial and freeware software products can be deployed to
assist with change control. However, it is important to establish the process be-
fore choosing tools. In this way, the organization can establish the best process
for their needs and find the tool that best fits that process rather than trying to
retrofit a tool to the process.

?

From the database perspective, the DBA should develop DDL statements to
implement all the database components of an application system and a script
that can be used to invoke all the changes, including any required conversions.
This deployment script and all the DDL statements should be checked into the
change control system and managed just like all the other software components
of the system.

Summary
In this chapter, we explored some considerations regarding the implementation
of a database system, including cursor processing, transaction management,
performance tuning, and change control. In Chapter 12, we take a detailed look
at databases for analytical procession, including data warehouses and data
marts.

Chapter 11 D ata b a s e I m p l e m e n tat io n 333

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

A cursor is1.	
The same as a result setA.	
A pointer into a result setB.	
The collection of rows returned by a database queryC.	
A method to analyze the performance of SQL statementsD.	
A buffer that holds rows retrieved from the databaseE.	

The 2.	 I in the ACID acronym stands for:
IconicA.	
InformationalB.	
ImmediateC.	
IntegratedD.	
IsolationE.	

Microsoft SQL Server supports the following transaction modes:3.	
ExplicitA.	
ImplicitB.	
AutocommitC.	
DurableD.	
AutomaticE.	

Oracle supports the following transaction modes:4.	
ExplicitA.	
ImplicitB.	
AutocommitC.	
DurableD.	
AutomaticE.	

The SQL statements (commands) that end a transaction are5.	
SAVEPOINTA.	
BEGIN TRANSACTIONB.	 (in SQL Server)
SET AUTOCOMMITC.	
COMMITD.	
ROLLBACKE.	

334 Data b a s e s Demystified

A deadlock:6.	
Can theoretically put two or more users in an endless lock wait stateA.	
Occurs when two database users each request a lock on data that is locked by B.	
the other
May be resolved by lock timeouts on some RDBMSsC.	
May be resolved by deadlock detection on some RDBMSsD.	
Is a lock that has timed out and is therefore no longer neededE.	

SQL query tuning:7.	
Usually involves using an explain plan facilityA.	
Only applies to SQL B.	 SELECT statements
Can be done in the same way for all relational database systemsC.	
Requires detailed knowledge of the RDBMS on which the query is to be runD.	
Always involves placing SQL statements in a stored procedureE.	

SQL practices that obviate the use of an index are8.	
Use of table joinsA.	
Use of theB.	 NOT EQUAL operator
Use of a C.	 WHERE clause
Use of wildcards in the first column of D.	 LIKE comparison strings
Use of a E.	 NOT operator

The main performance considerations for 9.	 INSERT statements are
Free space usageA.	
Any very large tables that are involvedB.	
Row expansionC.	
Subquery tuningD.	
Index maintenanceE.	

The main performance considerations for 10.	 UPDATE statements are
Subquery tuningA.	
Index maintenanceB.	
Any very large tables that are involvedC.	
Row expansionD.	
Free space usageE.	

 335

c h a p t e r 12
Databases for Online
Analytical Processing

Starting in the 1980s, businesses recognized the need for keeping historical data
and using it for analysis to assist in decision making. It was soon apparent that
storing significant amounts of history in an operational database (a database
designed to support the day-to-day transactions of an organization) could have
serious detrimental effects on performance. William H. (Bill) Inmon partici-
pated in pioneering work in a concept known as data warehousing, where his-
torical data is periodically trimmed from the operational database and moved
to a database specifically designed for analysis. It was Bill Inmon’s dedicated
promotion of the concept that earned him the title “father of data warehous-
ing.” E.F. (Ted) Codd added his endorsement to the data warehouse approach
and coined two important terms in 1993:

Online transaction processing (OLTP) • Systems designed to handle high
volumes of transactions that carry out the day-to-day activities of an or-
ganization

Online analytical processing (OLAP) • Analysis of data (often historical)
to identify trends that assist in making strategic decisions regarding the
business

336 Data b a s e s Demystified

C h a p t e r O b j e c t i v e s
In this chapter, the reader should:

Understand how online transaction processing (OLTP) databases differ from •	
online analytical processing (OLAP) databases.

Know the basic architectures used for OLAP databases, including data ware-•	
houses and data marts.

Understand the concept of data mining.•	

Data Warehouses
Inmon defines a data warehouse (DW) as a subject-oriented, integrated, time-
variant, and nonvolatile collection of data intended to support management
decision making. Up to this point, the chapters of this book have dealt almost
exclusively with OLTP databases. This chapter, on the other hand, is devoted
exclusively to OLAP database concepts.

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile
collection of data intended to support management decision making.

The popularity of the data warehouse approach grew with each success
story. In addition to Bill Inmon, others made significant contributions, notably
Ralph Kimball, who developed specialized database architectures for data
warehouses (covered in the “Data Warehouse Architecture” section, later in this
chapter).

Here are some important properties of a data warehouse:

Organized around major subject areas of an organization, such as sales, •	

customers, suppliers, and products. OLTP systems, on the other hand, are
typically organized around major processes, such as payroll, order entry,
billing, and so forth.

Integrated from multiple operational (OLTP) data sources.•	

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 337

Not updated in real time, but periodically, based on an established sched-•	

ule. Data is pulled from operational sources as often as needed, such as
daily, weekly, monthly, and so forth. Recent years have shown a trend
toward near real-time reporting of business analytics. Several approaches
are emerging, ranging from using a data warehouse staging area such as an
Operational Data Store (ODS) for reporting, to updating the data ware-
house in near real-time using high-speed data movement between disk
storage systems or using messaging systems that send changes as they
occur in the OLTP data sources.

The potential benefits of a well-constructed data warehouse are significant,
including the following:

Competitive advantage•	

Increased productivity of corporate decision makers•	

Potential high return on investment as the organization finds the best •	

ways to improve efficiency and/or profitability

However, there are significant challenges to creating an enterprise-wide data
warehouse, including the following:

Underestimation of the resources required to load the data•	

Hidden data integrity problems in the source data•	

Omitting data later found to be required•	

Ever-increasing end user demands (each new feature spawns ideas for •	

even more features)

Consolidating data from disparate data sources•	

High resource demands (huge amounts of storage; queries that process •	

millions of rows)

Ownership of the data•	

Difficulty in determining what the business really wants or needs to •	

analyze

“Big bang” projects that seem never-ending•	

338 Data b a s e s DemystifieD

Data Warehouse Architecture
Most data warehouses are implemented using general-purpose hardware and
DBMS components. However, specialized data warehouse appliances (combi-
nations of specialized hardware and software) have had some success in the
marketplace, including Teradata, Exdata, Neteeza, and others.

The two primary schools of thought as to the best way to organize OLTP
data into a data warehouse are the summary table approach and the star schema
approach. The following subsections take a look at each approach, along with
the benefits and drawbacks of each.

still struggling
Data warehouse systems and OLtP systems are fundamentally different. Here is
a comparison:

OLTP Systems Data Warehouse Systems
Hold current data. Hold historic data.
Store detailed data only. Store detailed data along with

lightly and highly summarized
data.

Data is dynamic. Data is static, except for periodic
additions.

Database queries are short-
running and access relatively few
rows of data.

Database queries are long-running
and access many rows of data.

High transaction volume. Medium to low transaction volume.
Repetitive processing; predictable
usage pattern.

Ad hoc and unstructured
processing; unpredictable usage
pattern.

Transaction driven; support
day-to-day operations.

Analysis driven; support strategic
decision making.

Process oriented. Subject oriented.
Serve a large number of
concurrent users.

Serve a relatively low number of
managerial users (decision
makers).

?

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 339

Summary Table Architecture
Bill Inmon originally developed the summary table data warehouse architec-
ture. This data warehouse approach involves storing data not only in detail
form, but also in summary tables so that analysis processes do not have to con-
tinually summarize the same data. This is an obvious violation of the principles
of normalization, but because the data is historical—and therefore is never
changed after it is stored—the data anomalies (insert, update, and delete) that
drive the need for normalization simply don’t exist. Figure 12-1 shows the sum-
mary table data warehouse architecture.

Data from one or more operational data sources (databases or flat file sys-
tems) is periodically moved into the data warehouse database. A major key to
success is determining the right level of detail that must be carried in the data-
base and anticipating the levels of summarization necessary. Using Acme Indus-
tries as an example, if the subject of the data warehouse is sales, it may be
necessary to keep every single invoice; or it may be necessary to only keep
invoices that exceed a certain amount; or perhaps only those that contain cer-
tain products. If requirements are not understood, then it is unlikely that the
data warehouse project will be successful. Failure rates of data warehouse

Figure 12-1 • Summary table data warehouse architecture

End-user
analysis tools

Data warehouse database

Metadata
tables

Highly
summarized

data
table(s)

Lightly
summarized

data
table(s)

Detailed
data

table(s)

Operational
data

source 1

Operational
data

source 2

Operational
data

source 3

340 Data b a s e s Demystified

projects are higher than most other types of IT projects, and the most common
cause of failure is poorly defined requirements.

In terms of summarization, we might summarize the transactions by month in
one summary table and by product in another. At the next level of summarization,
we might summarize the months by quarter in one table and the products by
department in another. An end user (the person using the analysis tools to obtain
results from the OLAP database) might look at sales by quarter and notice that
one particular quarter doesn’t look quite right. The user can expand the quarter
of concern and look at the months within it. This process is known as “drilling
down” to more detailed levels. The user may then pick out a particular month of
interest and drill down to the detailed transactions for that month.

The metadata (data about data) shown in Figure 12-1 is very important, and
unfortunately, often a missing link. Ideally, the metadata defines every data item
in the data warehouse, along with sufficient information so its source can be
tracked all the way back to the original record in the operational database. The
biggest challenge with metadata is that, lacking standards, each vendor of data
warehouse tools has stored metadata in their own way. When multiple analysis
tools are in use, metadata must usually be loaded into each one of them using
proprietary formats. For end user analysis tools (also called OLAP tools), you
can choose among dozens of commercial products, including Business Objects,
SAS, IBM Cognos, and Actuate.

Star Schema Data Warehouse Architecture
Ralph Kimball developed a specialized database structure known as the star
schema for storing data warehouse data. His contribution to OLAP data storage
is significant. Red Brick, the first DBMS devoted exclusively to OLAP data
storage, used the star schema. In addition, Red Brick offered SQL extensions
specifically for data analysis, including moving averages, this year vs. last year,
market share, and ranking. Informix acquired Red Brick’s technology, and later
IBM acquired Informix, so IBM now markets the Red Brick technology as part
of its data warehouse solution. Figure 12-2 shows the basic architecture of a
data warehouse using the star schema.

The star schema uses a single detailed data table, called a fact table, sur-
rounded by supporting reference data tables called dimension tables, forming a
star-like pattern. Compared with the summary table data warehouse architec-
ture, a fact table replaces each detailed data table, and dimension tables replace
the summary tables. A star schema is constructed for each fact table. Dimension
tables have a one-to-many relationship with the fact table, with the primary key

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 341

of the dimension table appearing as a foreign key in the fact table. However,
dimension tables are not necessarily normalized because they may have an
entire hierarchy, such as layers of an organization or different subcomponents
of time, compressed into a single table. The dimension tables may or may not
contain summary information such as totals. Star schemas can be represented
in popular spreadsheet tools by using pivot tables.

A fact table in a dimensional model contains the measurements, metrics, and facts
for a business process.

A dimension table is one of a set of companion tables to the fact table in a dimen-
sional model that contains reference data.

Using our prior Acme Industries sales example, the fact table would be the
invoice table, and typical dimension tables would be time (months, quarters,
and perhaps years), products, and organizational units (departments, divisions,

Figure 12-2 • Star schema data warehouse architecture

Dimension 1
table

Dimension 3
table

Dimension 4
table

Dimension 4
table

Fact table

Data warehouse database

Metadata
tables

Operational
data

source 1

Operational
data

source 2

Operational
data

source 3

End-user
analysis tools

342 Data b a s e s Demystified

and so forth). Time, product or service, and organizational units appear as
dimensions in most star schemas. As you might guess, the key to success in star
schema OLAP databases is getting the fact table right. Here’s a list of the con-
siderations that influence the design of the fact table:

The required time period (how often data will be added and how long •	

history must remain in the OLAP database)

Storing every transaction vs. statistical sampling•	

Columns in the source data table(s) that are not necessary for OLAP•	

Columns that can be reduced in size, such as taking only the first 25 char-•	

acters of a 200-character product description

The best uses of intelligent (natural) and surrogate (dumb) keys•	

Partitioning of the fact table•	

Over time, some variations to the star schema emerged:

Snowflake schema •	 A variant where dimensions are allowed to have di-
mensions of their own. The name comes from the ERD’s resemblance to
a snowflake. If you fully normalize all the dimensions of a star schema, you
end up with a snowflake schema. For example, the time dimension at the
first level could track weeks, with a dimension table above it to track
months, and one above that one to track quarters. Similar arrangements
could be used to depict the hierarchy of an organization (departments,
divisions, and so forth).

Starflake schema •	 A hybrid arrangement containing a mixture of (denor-
malized) star and (normalized) snowflake dimensions.

Multidimensional Databases
Multidimensional databases evolved from star schemas. They are sometimes
called multidimensional OLAP (MOLAP) databases. A number of specialized
multidimensional database systems are on the market, including Oracle
Express (acquired from IRI in 1995), Oracle Essbase (acquired from Hyperion
in 2007), MicroStrategy, and Cognos PowerPlay. MOLAP databases are best
visualized as cubes, where each dimension forms a side of the cube. To accom-
modate additional dimensions, the cube (or set of cubes) is simply repeated
for each one.

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 343

Figure 12-3 shows a four-column fact table for Acme Industries. Product
Line, Sales Department, and Quarter are dimensions, and they would be foreign
keys to a dimension table in a star schema. Quantity contains the number of
units sold for each combination of Product Line, Sales Department, and Quar-
ter. In most star schemas, fact tables contain only facts (columns that can be
easily accumulated) and foreign keys to dimension tables.

Figure 12-4 shows the multidimensional equivalent of the table shown in
Figure 12-3. Note that Sales Department, Product Line, and Quarter all become
edges of the cube, with the single fact Quantity stored in each grid square. The
dimensions displayed may be changed by simply rotating the cube.

Figure 12-3 • Four-column fact table for Acme Industries

Product Line Sales Department Quarter Quantity

Helmets Corporate Sales 1 2250

Helmets Corporate Sales 2 2107

Helmets Corporate Sales 3 5203

Helmets Corporate Sales 4 5806

Helmets Internet Sales 1 1607

Helmets Internet Sales 2 1812

Helmets Internet Sales 3 4834

Helmets Internet Sales 4 5150

Springs Corporate Sales 1 16283

Springs Corporate Sales 2 17422

Springs Corporate Sales 3 21288

Springs Corporate Sales 4 32768

Springs Internet Sales 1 12

Springs Internet Sales 2 24

Springs Internet Sales 3 48

Springs Internet Sales 4 48

Rockets Corporate Sales 1 65

Rockets Corporate Sales 2 38

Rockets Corporate Sales 3 47

Rockets Corporate Sales 4 52

Rockets Internet Sales 1 2

1

6

Rockets Internet Sales 2

Rockets Internet Sales 3

Rockets Internet Sales 4 9

344 Data b a s e s Demystified

Data Marts
A data mart is a subset of a data warehouse that supports the requirements of
a particular department or business function. In part, data marts evolved in
response to some highly visible multimillion-dollar data warehouse project fail-
ures. When an organization has little experience building OLTP systems and
databases, or when requirements are very sketchy, a scaled-down project such
as a data mart is a far less risky approach.

A data mart is a subset of a data warehouse that supports the requirements of a
particular department or business function.

Here are a few characteristics of data marts:

Focus on one department or business process•	

Do not normally contain any operational data•	

Figure 12-4 • Three-dimensional cube for Acme Industries

Sales
department

Product
line

Helmets

Springs

Rockets

Internet
sales

Corporate
sales

2250

16283

65

Q1

2107

17422

38

5203

21288

47

Q2 Q3

5806

32768

52

Q4

Quarter
(time period)

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 345

Contain much less information than a data warehouse•	

Typically implemented using star schemas•	

Here are some reasons for creating a data mart:

Data can be tailored to a particular department or business function.•	

Lower overall cost than a full data warehouse.•	

Lower-risk project than a full data warehouse project.•	

Limited (usually only one) end user analysis tool, allowing data to be tai-•	

lored to the particular tool to be used.

For departmental data marts, the database may be placed physically near •	

the department, reducing network delays.

There are three basic strategies for building data marts:

Build the enterprise-wide data warehouse first, and use it to populate data •	

marts. The problem with this approach is that you will never get to build
the data marts if the data warehouse project ends up being cancelled or
put on indefinite hold.

Build several data marts and build the data warehouse later, integrating the •	

data marts into the enterprise-wide data warehouse at that time. This is a
lower-risk strategy because the data marts do not depend on completion
of a major data warehouse project. However, it may cost more because of
the rework required to integrate the data marts after they have been im-
plemented. Moreover, if several data marts are built containing similar
data without a common data warehouse to integrate all the data, the same
query may yield different results depending on the data mart used. Imag-
ine the Finance Department quoting one revenue number and the Sales
Department another, only to find they are both correctly quoting their
data sources.

Build the data warehouse and data marts simultaneously.•	 This sounds great
on paper, but when you consider that the already complex and large data
warehouse project now has the data marts added to its scope, you ap-
preciate the enormity of the project. In fact, this strategy practically guar-
antees that the data warehouse effort will be the never-ending project
from hell.

346 Data b a s e s Demystified

Data Mining
Data mining is the process of extracting valid, previously unknown, comprehen-
sible, and actionable information from large databases and using it to make
crucial business decisions. The biggest benefit is that it can uncover correlations
in the data that were never suspected. The caveat is that it normally requires
very large data volumes in order to produce accurate results. Most commercial
OLAP tools include some data-mining features.

Data mining is the process of extracting valid, previously unknown, comprehensible,
and actionable information from large databases and using it to make crucial busi-
ness decisions.

One of the commonly cited stories of an early success with data mining
involves an NCR Corporation employee who produced a study for American
Stores’ Osco Drugs in 1992. The study noted that there was a correlation
between beer sales and diaper sales between 5 p.m. and 7 p.m., meaning that
the two items were found together in a single purchase more often than
pure randomness would suggest. This correlation was subsequently men-
tioned in a speech, and the “beer and diapers” story quickly became a bit of
an urban legend in data warehouse circles. Countless conference speakers
have related the story, often embellished well beyond the facts, of young
fathers sent out for diapers who grab a six-pack at the same time. However,
the story remains an excellent example of how unexpected the results of
data mining can be.

Once you discover a correlation, the organization must decide what
action to take to best capitalize on the new information. In the “beer and
diapers” example, the company could either place a stack of beer next to the
diapers display for that quick impulse sale, or perhaps strategically locate beer
and diapers at opposite corners of the store in hopes of more impulse buys
as the shopper picks up one item and heads across the store for the other.
For the newly found information to be of benefit, the organization must be
agile enough to take some action, so data mining itself isn’t a silver bullet
by any measure.

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 347

Summary
In this chapter, you learned about the differences between OLAP and OLTP
databases, the architectures used for OLAP databases, including data ware-
houses and data marts, and the concept of data mining. In Chapter 13, we will
explore integrating XML documents and objects into databases.

348 Data b a s e s Demystified

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

OLAP:1.	
Was coined by Ralph KimballA.	
Was coined by E.F. CoddB.	
May use data stored in a data warehouse databaseC.	
May use data stored in an operational databaseD.	
Handles high volumes of transactionsE.	

A data warehouse is2.	
Updated in real timeA.	
Organized around one department or business functionB.	
Subject orientedC.	
Integrated from multiple data sourcesD.	
Time variantE.	

Challenges with the data warehouse approach include3.	
Underestimation of required resourcesA.	
Updating operational data from the data warehouseB.	
Diminishing user demandsC.	
High resource demandsD.	
Large, complex projectsE.	

The summary table architecture:4.	
Includes lightly and highly summarized tablesA.	
Should include metadataB.	
Includes a fact tableC.	
Was originally developed by Bill InmonD.	
Includes dimension tablesE.	

The process of moving from more summarized data to more detailed data is 5.	
known as:

Data miningA.	
NormalizationB.	
DenormalizationC.	
Drilling upD.	
Drilling downE.	

Chapter 12 D ata b a s e s F o r O n l i n e A n a ly t i c a l P r oc e s s i n g 349

Factors to consider in designing the fact table include6.	
Partitioning the fact tableA.	
How long history must remain in itB.	
How often it must be updatedC.	
Reducing column sizes between the source and fact tablesD.	
Adding columns to the fact tableE.	

The starflake schema:7.	
Can be designed by fully normalizing all the dimension tablesA.	
Allows dimensions to have dimensions of their ownB.	
Does not use a fact tableC.	
Was developed by Bill InmonD.	
Is a hybrid containing both normalized and denormalized tablesE.	

Multidimensional databases:8.	
Use a fully normalized fact tableA.	
Are sometimes called MOLAP databasesB.	
Accommodate dimensions beyond the third by repeating cubes for each addi-C.	
tional dimension
Have fully normalized dimension tablesD.	
Are best visualized as cubesE.	

Reasons to create a data mart include9.	
It is more comprehensive than a data warehouse.A.	
Data may be tailored to a particular department or business function.B.	
It contains more data than a data warehouse.C.	
It is a potentially lower-risk project.D.	
The project has a lower overall cost than a data warehouse project.E.	

Data mining:10.	
Can be successful with small amounts of dataA.	
Usually requires large data volumes in order to produce accurate resultsB.	
Extracts previously unknown data correlations from the data warehouseC.	
Is most useful when the organization is agile enough to take action based on the D.	
information
Is a scaled-down data warehouseE.	

This page intentionally left blank

 351

c h a p t e r 13
Integrating XML
Documents and Objects
into Databases

Along with the explosive growth in the use of databases, particularly relational
databases, the need to store more complex data types has increased sharply.
This is especially true for databases that support web sites that render images
and formatted documents as well as sound and video clips. Furthermore, as the
use of object-oriented programming languages such as C++ and Java has grown,
so has the need to store the objects that these languages manipulate. (Objects
were briefly introduced in Chapter 1.) In this chapter, we’ll look at a number
of ways to integrate such content into databases.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the basics of XML and SQL/XML.•
Understand object-oriented applications and object-relational databases.•

352 DATA B A S E S DeMYSTiFieD

The Basics of XML
The Extensible Markup Language (XML) is a general-purpose markup lan-
guage used to describe data in a format that is convenient for display on web
pages and for exchanging data between different parties. In 2003, the specifica-
tions for storing XML data in SQL (relational) databases were added to the
ANSI/ISO SQL Standard as Part 14, named SQL/XML. Part 14 was expanded
further in 2006.

NOTE SQL/XML is not at all the same as Microsoft’s SQLXML, which is a proprietary
technology used in SQL Server. As you can imagine, the unfortunately similar
names have caused much confusion. Microsoft participated in the standards
proceedings for SQL/XML, but then chose not to implement the standard.

To understand SQL/XML, you must first understand the basics of XML.
While a complete explanation of XML is well beyond the scope of this book,
I’ll provide a brief overview. You can find a lot more information by searching
on the Internet.

You may already be familiar with HTML, the markup language used to
define web pages. If so, the syntax of XML will look familiar. This is because
both are based on the Standard Generalized Markup Language (SGML), which
itself is based on Generalized Markup Language (GML), developed by IBM in
the 1960s. A markup language is a set of annotations, often called tags, that are
used to describe how text is to be structured, formatted, or laid out. The tagged
text is intended to be human-readable. One of the fundamental differences
between HTML and XML is that HTML provides a predefined set of tags,
while XML lets authors create their own tags.

A markup language is a set of annotations, often called tags, that are used to
describe how text is to be structured, formatted, or laid out.

TERMS: XML
Extensible Markup Language (XML) is a general-purpose markup language used
to describe data in a format that is convenient for display on web pages and for
exchanging data between different parties.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 353

Let’s look at a sample XML document that contains the results of an SQL
query. Figure 13-1 shows a DEPARTMENT table containing two departments
and a COURSE table containing five educational courses offered by those
departments. As you learned in Chapter 4, the two tables can be easily joined
using an SQL SELECT statement like this one:

SELECT a.DEPT_NAME, b.COURSE_TITLE, b.COURSE_ID
 FROM DEPARTMENT a JOIN COURSE b
 ON a.DEPT_ID = b.DEPT_ID
 ORDER BY a.DEPT_NAME, b.COURSE_TITLE;

Note that I used the ORDER BY clause to specify the order of the rows in
the result set. The query results should look something like this:

DEPT_NAME COURSE_TITLE COURSE_ID
---------------------- -------------------------------- ---------
Business Accounting 101 101
Business Concepts of Marketing 102
Information Technology C Programming I 401
Information Technology C Programming II 402
Information Technology Introduction to Computer Systems 400

The query results are well suited for display or printing, but they are not in
a form that would be easy to display on a web page or to pass to another com-
puter application for further processing. One way to make this easier is to
convert the query results into XML, as shown here:

<departments>
 <department name="Business">
 <courses>
 <course title="Accounting 101"><id>101</id></course>
 <course title ="Concepts of Marketing">
 <id>102</id></course>

COURSE_ID

102

401

400

402

COURSE_TITLE

101

Concepts of Marketing

Introduction to Computer Systems

Accounting 101

C Programming II

C Programming I

DEPT_ID

BUS

IT

IT

IT

BUS

DEPT_NAME

Information Technology

Business

DEPT_ID

BUS

IT

COURSEDEPARTMENT

Figure 13-1 • The DEPARTMENT and COURSE tables

354 Data b a s e s Demystified

 </courses>
 </department>
 <department name="Information Technology">
 <courses>
 <course title="C Programming I"><id>401</id></course>
 <course title="C Programming II"><id>402</id></course>
 <course title="Introduction to Computer Systems">
 <id>400</id></course>
 </courses>
 </department>
 <!-- Additional departments available soon -->
</departments>

As you can see in the code listing, tags are enclosed in angle brackets (<>),
and each start tag has a matching end tag that is identical, except for the slash
(/) used in the end tag. (HTML uses an identical convention; however, HTML
is a lot more forgiving if you do something like omit an end tag.) For example,
the tag <departments> starts the list of academic departments, while the end
tag </departments> ends it. Within the list of departments, the information for
each individual department begins with the <department> tag, which includes
a data value for the name attribute, and ends with the </department> tag. It is
customary (and considered a best practice) to name a list using the plural of the
tag name used for each item in the list. Comments can be added using a special
tag that begins with <!-- and ends with -->, as shown in the next to last line of
the example.

Data items and values, such as those that would be stored in a relational table
column, can be coded as name and value pairs in one of two ways. The first way
is by using an XML attribute, by naming the attribute inside another tag, fol-
lowed by the equal sign and the data value enclosed in double quotation marks,
such as I did with the name and title attributes. The second way is by using an
XML element, creating a separate tag for the data item with the data value
sandwiched between the start and end tags, such as I did with the id attribute
within the course tag. The question of which form to use has been the subject
of much debate among XML developers. However, the general consensus is to
use elements whenever the data item might later be broken down into addi-
tional elements, such as splitting a person’s name into first name and last name,
or dividing a single data element containing a comma-separated list of prereq-
uisite course names into a list of elements. An additional consideration is
whether you want to allow the XML processor to ignore insignificant
whitespace, as it would do for attributes but not for elements.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 355

You probably noticed that, unlike the SQL result set, XML can show the
hierarchy of the data. In this case, the list of courses offered by each department
is nested within the information about the department. I have indented the
XML statements to make the nesting more obvious. While indentation of
nested tags is a best practice, it is not significant because whitespace between
tags is ignored when the XML is processed.

XML coding can be quite tedious. Fortunately, tools are available to help you
convert between XML and plain text, and SQL/XML functions (covered later
in this chapter) can be used to convert relational database data into XML. For
a time, specialized databases for storing and retrieving XML were gaining popu-
larity, but the major relational database vendors added features to permit native
XML to be stored directly in their databases. At the same time, the SQL stan-
dard was expanded to include provisions for XML data, as I discuss in the next
section of this chapter.

SQL/XML
As mentioned, XML is commonly used to represent data on web pages, and
that data often comes from relational databases. However, as you have seen, the
two models in use are quite different, in that relational data is stored in tables
where neither hierarchy nor sequence have any significance, while XML is
based on hierarchical trees in which order is considered significant. The term
forest is often used to refer to a collection of XML tree structures. XML is used
for web pages because its structure so closely matches the structure that would
be used to display the same data in HTML. In fact, many web pages are a mix-
ture of HTML for the static portions and XML for the dynamic data. It is
perhaps this widespread implementation that has led many of the major ven-
dors, including Oracle, Microsoft, and IBM, to support XML extensions. How-
ever, only Oracle and IBM’s DB2 UDB support the SQL/XML commands
covered in this topic. The Microsoft SQL Server XML extension is markedly
different, and I have not included it in this book because it is proprietary.

In XML, a forest is a collection of XML tree structures.

SQL/XML can be divided into three main parts: the XML data type, SQL/
XML functions, and SQL/XML mapping rules. I cover the XML data type and

356 Data b a s e s Demystified

SQL/XML functions as the major topics in the remainder of this chapter. The
SQL/XML mapping rules are too advanced a topic to include here.

The XML Data Type
The XML data type is handled in the same general way as all the other data
types discussed in Chapter 2. Storing data in XML format directly in the data-
base is not the only way to use SQL and XML together. However, it’s a very
simple way to get started because it’s a logical extension of the earliest imple-
mentations, where SQL developers simply stored the XML text in a column
defined with a general character data type such as CHARACTER VARYING
(VARCHAR). It is far better to tell the DBMS that the column contains XML
and the particular way the XML is coded, so that the DBMS can provide addi-
tional features tailored to the XML format.

The specification for the XML data type has this general format:
XML (<type modifier> {(<secondary type modifier>)})

The type modifier is required and must be enclosed in a pair of parentheses
as shown, while the secondary type modifier is optional and is not supported
for all type modifiers. The standard is not specific about how a particular SQL
implementation should treat the various types, but some conventions and syn-
tax rules are specified. The valid type modifiers are as follows:

DOCUMENT •	 The DOCUMENT type is intended for storage of text
documents formatted using XML. In general, the data values are expected
to be composed of human-readable characters such as letters, numbers,
and symbols as they would appear in an unstructured text document.

CONTENT •	 The CONTENT type is intended for more complex data
that can include binary data such as images and sound clips.

SEQUENCE •	 The SEQUENCE type is intended for XQuery documents,
which are often called XQuery sequences. XQuery is an advanced topic
that is beyond the scope of this book.

The secondary type modifier, used only with the DOCUMENT and CON-
TENT primary type modifiers, can have one of these values:

UNTYPED •	 The XML data is not of a particular type.

ANY •	 The XML data is of any of the types supported by the SQL imple-
mentation.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 357

XMLSCHEMA •	 The XMLSCHEMA type refers to a registered XML
schema that has been made known to the database server. The three most
common are shown in the following table:

Common Prefix Target Namespace URI (Uniform Resource Identifier)
Xs www.w3.org/2001/XMLSchema
Xsi www.w3.org/2001/XMLSchema-instance
Sqlxml standards.iso.org/iso/9075/2003/sqlxml

For SQL implementations that do not support the secondary type modifier,
ANY is assumed as a default.

NOTE  Because SQL/XML is a relatively new standard, vendor implementation
support varies. Instead of the XML type, Oracle supports an XMLType data type,
which can be used on a column in a regular table or at the table level so that the
entire table is stored as XML. IBM’s DB2 UDB supports an XML type, but without
the type modifiers. As mentioned, Microsoft SQL Server supports XML and an XML
data type, but in a manner a bit different from the SQL/XML standard. As of ver-
sion 5.1, MySQL provides no support for XML, but it is expected to be included in
a future release.

Suppose we want to add the course syllabus to our course table that can be
displayed on a web page. If the syllabus could come from several different
sources, and thus be formatted differently depending on the source, XML might
be a good way to store the data in our course table. In the following example, I
have added the column to the definition of the COURSE table that appears in
Figure 13-1:

CREATE TABLE COURSE
(COURSE_ID INT,
 COURSE_TITLE VARCHAR(60),
 DEPT_ID CHAR(3),
 COURSE_SYLLABUS XML(DOCUMENT(UNTYPED)));

NOTE  Although the ISO/ANSI SQL Standard specifies an XML data type in the
form shown here, no major SQL implementations seem to support this exact syn-
tax. However, the standard is quite new, so hopefully this syntax will be supported
in the near future.

www.w3.org/2001/XMLSchema
www.w3.org/2001/XMLSchema-instance

358 Data b a s e s DemystifieD

SQL/XML Functions
An SQL/XML function (also called an XML value function) is simply a func-
tion that returns a value as an XML type. For example, a query can be written
that selects non-XML data (that is, data stored in data types other than XML)
and formats the query results into XML suitable for inclusion in an XML
document that can be displayed on a web page or transmitted to some other
party. In other words, SQL/XML does not always format complete docu-
ments—sometimes additional elements must be added to wrap the XML
returned by the DBMS into a complete document. Table 13-1 shows the basic
SQL/XML functions.

More functions exist than are listed here, and all these SQL/XML functions
can be used in combinations to form extremely powerful (if not complicated)
queries. Also, the functions available vary across SQL implementations. Let’s

TABLE 13-1 sQl/Xml Functions

Function Value Returned

XMLAGG A single XML value containing an XML forest formed by
combining (aggregating) a collection of rows, each of which
contains a single XML value

XMLATTRIBUTES An attribute in the form name=value within an XMLELEMENT
XMLCOMMENT An XML comment
XMLCONCAT A concatenated list of XML values, creating a single value

containing an XML forest
XMLDOCUMENT An XML value containing a single document node
XMLELEMENT An XML element, which can be a child of a document node, with

the name specified in the name parameter
XMLFOREST An XML element containing a sequence of XML elements

formed from table columns, using the name of each column as
the corresponding element name

XMLPARSE An XML value formed by parsing the supplied string without
validating it

XMLPI An XML value containing an XML processing instruction
XMLQUERY The result of an XQuery expression (XQuery is a sublanguage

used to search XML stored in the database; it is beyond the
scope of this book)

XMLTEXT An XML value containing a single XML text node, which can be
a child of a document node

XMLVALIDATE An XML sequence that is the result of validating an XML value

Chapter 13 I n t e g r at I n g X m l D o C u m e n t s a n D o b j e C t s I n t o D ata b a s e s 359

look at a simple example to clarify how these functions can be used. This
example lists the courses for the Business Department using the DEPART-
MENT and COURSE tables shown in Figure 13-1. Here is the SQL statement,
using the XMLELEMENT and XMLFOREST functions:

SELECT XMLELEMENT("DepartmentCourse",
 XMLFOREST(a.DEPT_NAME as Department, a.DEPT_ID, b.COURSE_ID,
 b.COURSE_TITLE))
 FROM DEPARTMENT a JOIN COURSE b
 ON a.DEPT_ID = b.DEPT_ID
 WHERE a.DEPT_ID = 'BUS'
 ORDER BY b.COURSE_ID;

The results returned should look something like this:

<DepartmentCourse>
 <Department>Business</Department>
 <DEPT_ID>BUS</DEPT_ID>
 <COURSE_ID>101</COURSE_ID>
 <COURSE_TITLE>Accounting 101</COURSE_TITLE>
</DepartmentCourse>
<DepartmentCourse>
 <Department>Business</Department>
 <DEPT_ID>BUS</DEPT_ID>
 <COURSE_ID>102</COURSE_ID>
 <COURSE_TITLE>Concepts of Marketing</COURSE_TITLE>
</DepartmentCourse>

Notice that the XML element names are taken from the column names, in
uppercase with underscores as is customary in SQL. However, using the col-
umn alias, as I did for the DEPT_NAME column, you can change the column
names to just about anything you want.

PROBLEM 13-1
The result set in the previous example is not a complete document (an XML
developer would say the XML may not be “well formed”).

SOLUTION
To turn the XML in the last example into a complete document, at the very
least a root element is needed, along with its corresponding end tag. If we
were to add the element <DepartmentCourses> at the beginning of the
results and </DepartmentCourses> at the end of the results, we would
have a well-formed document.

PROBLEM
The result set in the previous example is not a complete document (an XML
developer would say the XML may not be “well formed”).

PROBLEM
The result set in the previous example is not a complete document (an XML

SOLUTION
To turn the XML in the last example into a complete document, at the very

�

360 Data b a s e s Demystified

Object-Oriented Applications
This section assumes that you have read and understood the section “The Object-
Oriented Model” in Chapter 1. You may want to review it before continuing.

Object-oriented (OO) applications are written in an object-oriented pro-
gramming language. These OO languages usually come with a predefined object
class structure and predefined methods—but, of course, the developers can
create their own classes and methods. Some applications come with a complete
development environment that includes not only the language elements, but
also an integrated OO database. It is important for you to understand that OO
applications can be created without an OO database, and an OO database can
exist (at least in theory) without an OO application to access it.

Object-Oriented Programming
Object-oriented programming uses messages as the vehicle for object interac-
tion. A message in the OO context is composed of the identifier of the object
that is to receive the message, the name of the method to be invoked by the
receiving object, and optionally, one or more parameters. You will recall from
Chapter 1 that a method is a piece of application program logic that operates
on a particular object and provides a finite function. The notion that all access
to an object’s variables is done via its methods is essential to the OO paradigm.
Therefore, OO programming involves writing methods that encompass the
behavior of the object (that is, what the object does) and crafting messages
within those methods whenever an object must interact with other objects. OO
application development includes object and class design in addition to the
aforementioned programming tasks.

The OO paradigm also supports complex objects, which are objects composed
of one or more other objects. Usually, this is implemented by using an object
reference, where one object contains the identifier for one or more other objects.
For example, a Customer object might contain a list of Order objects that the
customer has placed, and each Order object might contain the identifier of the
customer who placed the order. The unique identifier for an object is called the
object identifier (OID), the value of which is automatically assigned to each object
as it is created and is then invariant (that is, the value never changes).

Object-Oriented Languages
Let’s have a look at four of the most popular OO programming languages:
Smalltalk, C++, Java, and C#.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 361

Smalltalk
The pioneering OO system was Smalltalk, developed in 1972 by the Software
Concepts Group at the Xerox Palo Alto Research Center (PARC), led by Alan
Kay. It was Kay who coined the term object-oriented. Smalltalk includes a lan-
guage, a programming environment, an “image file system” to store objects and
methods (more or less a database), and an extensive object library. Smalltalk’s
innovations include a bitmap display, a windowing system, and the use of a
mouse. In an interesting twist of history, Xerox funded and owned the first
commercial OO programming environment, the original windowing system,
the mouse, and many other technical computing innovations. Yet Xerox never
figured out how to market any of them, so the company’s innovations fell into
other hands over time and were eventually “introduced” into the market by
other companies. Although not nearly as popular as it once was, Smalltalk is still
around today, and you can find much more about it at www.smalltalk.org.

C++
As the name suggests, C++ is based on the C programming language. In fact,
++ is the operator in C that increments a variable by 1, so C++ literally means
“C plus 1.” This superset of C was developed primarily by Bjarne Stroustrup at
AT&T Bell Laboratories in 1986. Classes are implemented as user-defined
types—a struct (structure) in C syntax. Methods are implemented as member
functions of a struct. Object purists frown upon C++, claiming it’s not an OO
language because programmers can ignore the object paradigm when they
choose to and can do such things as manipulate data directly using C language
commands. C++ aficionados, on the other hand, see this as a huge benefit
because it gives them a great deal of flexibility.

Java
Java is a simple, portable, general-purpose OO language that was developed by
Sun Microsystems around 1995. It took the market by storm immediately after
its introduction, largely because of its support for Internet programming in the
form of platform-independent “applets.” Another advantage of Java is that it can
run on very small computers due to the small size of its interpreter. Unlike
Smalltalk and C++, Java is an interpretive language, which means that each
statement is evaluated at runtime instead of being compiled ahead of time. A
compiler is a program that converts a computer program from the source lan-
guage the programmer wrote with to the machine language of the computer
on which it is to be run. Initially, the interpreter hampered performance com-

www.smalltalk.org

362 Data b a s e s Demystified

pared with compiled languages, but recent innovations, such as just-in-time
compilers, which compile statements just prior to their execution, have helped
performance enormously.

A compiler is a program that converts a computer program from the source
language the programmer wrote with to the machine language of the computer on
which it is to be run.

C#
Microsoft began development of C# (“C sharp”) in late 1999, when it chose not
to directly support Java. The initial language specification was released in
December 2001 with the first compiler available in January 2002. Like C++,
C# is a superset of C, with the name taken from the musical term sharp that
raises a pitch by one half step. Some view C# as a superset of C++, but the
underlying architecture and implementation is different enough that many
think of it as a separate language.

Like C++ and Java, C# is a general-purpose object-oriented language. How-
ever, it was developed within the .NET initiative to fit within the .NET frame-
work and is thus designed to comply with the Common Language Infrastruc-
ture (CLI). C# is intended to be suitable for hosted and embedded systems,
ranging from highly sophisticated operating systems all the way down to very
small dedicated functions.

Object Persistence
Persistence is the OO property that preserves the state of an object between
executions of an application and across the shutdown and startup of the com-
puter system itself. In most cases, a database is used to store objects perma-
nently, so it is the database that implements persistence. Objects must be loaded
into memory for an application to access them, and any changes must be saved
back to persistent storage when they are no longer required. Object loading into
memory is an indirect process, which means the application does not specifically
request that an object be loaded—the application environment works with the
database environment to load objects into memory automatically whenever
they are accessed by an application. This access is usually in the form of a mes-
sage that is sent to the object, but as discussed in the next subsection, it may
also occur when an object contains a reference to another object.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 363

Let’s look at two methods for implementing object persistence using a data-
base—the OO database and the relational database. In the next section, we
explore a hybrid approach that combines features of both object-oriented and
relational databases.

Persistence Using an OO Database
Figure 13-2 shows the retrieval of an object from persistent storage in an OO
database. For the purposes of illustration, the specific components that execute
each of the illustrated steps have been omitted, thereby showing what happens
without worrying about how it happens. This is actually a very good way to
think about OO databases, because a common property of OO systems is to
hide implementation details. As shown in Figure 13-2, the database contains
persistent copies of objects A1, A2, A3, B1, and C1. Assume that the first letter
denotes the object class to which the objects belong. Note that object B1 refer-
ences object C1, as illustrated using a broken line to connect them. This is a
typical arrangement in which one object, such as an order, contains the object

A3

Object-
oriented
DBMS

(OODBMS)

A2 A1

A3

C1
B1

Active object
(in memory)

Object reference
(active in memory)

Message

Object-oriented
(OO) database

Persistent (permanently
stored) object

Object reference
(stored with object)

Application environment

C1

B1

A2 A1
2. Object
references
“swizzled”

3. Object
made

available to
application

environment

Database environment

1. Referenced
object

retrieved from
storage by the

OODBMS

Figure 13-2 • Persistence using an OO database

364 Data b a s e s Demystified

ID (OID) of a related object, such as the customer who placed the order. In an
equivalent relational database, this relationship would be implemented using a
foreign key in the order.

As shown in Figure 13-2, the sequence of events when an object is first ref-
erenced by the application is as follows:

A request to retrieve the object is sent to the OO database, typically be-1.	
cause a message in the application environment referenced the object. The
OODBMS retrieves the object from persistent storage and passes it to the
application environment. If the object contains references to other objects,
the OODBMS may also automatically retrieve those objects, depending
on the architecture of the OODBMS.

If an object contains references to other objects, those references must be 2.	
changed into memory addresses when the objects are loaded into memory.
This process is known as swizzling the references. (The origin of the term
swizzle is unknown, but it may have been derived from swizzle sticks that
are used to stir drinks.) In persistent storage, the OID can be used as the
reference because other storage structures similar to indexes can be used
by the OODBMS to locate the related objects. For example, object B1
contains the OID of object C1, and the OODBMS has no difficulty using
the OID to locate the related object in the database’s persistent storage.
However, the OID is of little use in locating the related object once the
objects are loaded into memory because objects are loaded into any avail-
able memory location, which means there is no simple way to know the
locations they occupy. Therefore, the OID is translated (swizzled) into the
actual address that the related object occupies in memory to allow direct
access of the related object in memory. The original OID is retained within
the object because it will be needed when the object is stored back into
the database.

The object is made available to the application environment. That is, it is 3.	
placed in a memory location, and any messages addressed to the object are
routed to it. Usually, this also involves registering the object with the ap-
plication environment so it can easily be found in memory the next time
it is referenced.

The reverse process of storing an object back into the OO database when
the application no longer needs to access it is exactly that—a reverse of the
original process. The conditions that trigger moving the object back to persis-
tent storage vary from one OODBMS to another, but typically involve a least

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 365

recently used (LRU) algorithm. The LRU algorithm is a process that is invoked
when space must be freed up for the loading of more objects into memory
locations. The algorithm finds the objects that were accessed the longest time
ago (that is, least recently), and it removes those objects from memory. And, of
course, a request to shut down the database requires that every object in mem-
ory be made persistent before the database is shut down. The sequence of
events to move an object from memory to persistent storage is as follows:

The object is removed from its memory location, and any registration of 1.	
the object in the application environment is deleted.

Any memory addresses added to the object when references were swizzled 2.	
are removed.

If the object was modified while it was in memory, it is sent back to the 3.	
OODBMS, which stores the new version.

Persistence Using a Relational Database
When the object data is stored in a relational database, some important differ-
ences should be noted. First, everything in a relational database must be stored
in a table. Therefore, objects must be translated to and from relational tables.
Typically, each class is stored in a different relational table, with the rows in the
tables representing object instances for the corresponding classes. Second, rela-
tional tables cannot store objects in their native format because objects are
composed of methods and a class hierarchy along with the data itself. The
methods and class hierarchy are usually not stored in the relational database at
all, but rather are maintained in a file system location (directory) that is man-
aged by the application environment. Figure 13-3 illustrates this arrangement.

Take note of the differences between Figures 13-2 and 13-3. First, in the lat-
ter figure, the object data is stored in the database in tables. Second, an addi-
tional step is required when retrieving objects and making them available in
memory—the data from the relational database must be mapped to object
classes and variables. This can be accomplished in many different ways. A com-
mon approach with applications written in Java is to issue the relational SQL
directly from a Java method using a Java Database Connectivity (JDBC) driver
(introduced in Chapter 9), and within the same method, to relate the results
returned by the JDBC driver to one or more objects. This is a manual and very
labor-intensive approach for Java programmers. Fortunately, more automated
solutions are available, wherein an application server or middleware product
handles all the details of persistently storing objects in the relational database,

366 Data b a s e s Demystified

including the translation between relational tables and objects. Figure 13-3 has
been simplified to show the steps required to assemble an object stored in a
relational database and to make it available in the application environment
without any details as to which components handle the various steps.

As illustrated in Figure 13-3, here is the sequence of events required to
assemble an object from data stored in a relational database:

An SQL query is sent to the RDBMS to retrieve the table data (typically 1.	
one row) from the database. The query is executed by the RDBMS and
the resultant data sent to the application environment.

The table data is mapped to the object. Typically, this involves assigning 2.	
the table data to a class and the individual columns to variables within that
class, along with retrieving the methods defined for the class from wher-
ever they are stored in the file system. This mapping step is the proverbial
Achilles heel of this architecture—it is expensive in terms of resources,
and it requires design compromises because object data cannot always be
perfectly represented in relational database tables.

3. Object
references
“swizzled”

A3

Relational
DBMS

Active object
(in memory)

Object reference
(active in memory)

Message

Table A

Table B

Table C

Relational database

Tables hold all data

Application environment

C1

B1

A2 A1

2. Table data
mapped to
object(s)

4. Object
made

available to
application

environment

Database environment

1. Table data
retrieved from

database

Figure 13-3 • Persistence using a relational database

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 367

As with Figure 13-2, any object references are swizzled.3.	

As with Figure 13-2, the object is placed in a memory location and regis-4.	
tered with the application environment, making it available to the applica-
tion.

When an object is no longer needed in memory, it must be placed back into
persistent storage. The sequence of events is as follows:

The object is removed from memory, and any registration with the appli-1.	
cation environment deleted. If the object was not modified while it was in
memory, no other action is necessary; otherwise, the sequence continues
with the next step.

Any memory addresses added for object references are removed.2.	

The data in the object is mapped back to the relational table row(s) from 3.	
which it came. One or more SQL statements (INSERT, UPDATE, or DE-
LETE) are formed to change the relational database data to match the
object data. For efficiency, this often involves comparing before and after
versions of the object (if available) so that only variables that changed in
some way need to be referenced in the generated SQL statement(s). You
need not do anything with the class structure or methods because they do
not change when the object is used in the application environment. These
components change only when a new version of the application is in-
stalled.

The SQL statement(s) is (are) passed to the relational DBMS to be pro-4.	
cessed. If the object was not changed while it was in memory, this step is
not required.

Object-Relational Databases
This section assumes you have read and understood the section “The Object-
Relational Model” in Chapter 1. You may wish to review it before continuing.
The object-relational DBMS (ORDBMS) evolved in response to the difficulties
of mapping objects to relational databases and to market pressure from OOD-
BMS vendors. Relational database vendors such as Informix (subsequently
acquired by IBM) and Oracle added object extensions in hopes of preventing
any loss of market share to the OODBMS vendors. To a large degree, this tactic
appears to have worked, with pure OO databases gaining ground only in niche

368 Data b a s e s Demystified

markets. Moreover, the lack of ad-hoc query capability in pure OO databases
has certainly not helped them in the marketplace. The ORDBMS provides a
blend of desirable features from the object world, such as the storage of com-
plex data types, with the relative simplicity and ease of using the relational
model. Most industry experts believe that object-relational technology will
continue to gain market share.

The advantages of an object-relational database are as follows:

Complex data types (that is, data types formed by combining other data •	

types) are directly supported while preserving ad-hoc query capability.

The DBMS may be extended to perform common functions (methods) •	

centrally, which improves program logic reuse compared with a pure re-
lational DBMS.

Storing object functions (methods) in the database makes them available •	

to all applications, which improves object sharing compared with a pure
relational DBMS.

Ad-hoc query capability is fully supported, which is a feature that is not •	

supported in pure OO databases.

Here are the disadvantages of the object-relational approach:

The combination is more complex than either pure relational or pure OO •	

databases, leading to increased development costs.

Objects are •	 table-centric, meaning that all persistent objects must be stored
within a table.

Relational purists argue that the essential simplicity of the relational •	

model is clouded by the object extensions.

Object purists are not attracted to the extension of objects into relational •	

databases, arguing that the ORDBMS is little more than a relational data-
base with user-defined data types added.

Current ORDBMSs lack the class structure and inheritance that are at the •	

foundation of OODBMSs.

Object applications are not as data-centric as relational applications, and •	

therefore pure OO databases may better serve the needs of object appli-
cations.

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 369

In terms of deciding which database model is the best fit for a given applica-
tion, consider the following points:

Simple data with no requirement for ad-hoc query capability, such as •	

static web pages, can be adequately stored in ordinary file system files.

Simple data that requires ad-hoc query capability, such as customer data, •	

fits well into a relational database.

Complex data that does not require ad-hoc query capability, such as im-•	

ages, maps, and drawings, fits well into an object-oriented database.

Complex data that requires ad-hoc query capability, such as purchase •	

orders stored as composite data types, fits well into an object-relational
database.

Summary
In this chapter, we looked at the basics of XML and SQL/XML along with the
architecture of object-oriented applications and object-relational databases.
This concludes our introduction to database management systems. The best
way to learn more about databases is to get out there and use them. I hope you
find databases as fun and rewarding as I have.

370 Data b a s e s Demystified

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

Which of the following are valid type modifiers for the XML data type?1.	
DOCUMENTA.	
SEQUENCEB.	
SQLXMLC.	
CONTENTD.	
QUERYE.	

Which of the following SQL/XML functions creates an element based on a table 2.	
column?

XMLQUERYA.	
XMLELEMENTB.	
XMLFORESTC.	
XMLDOCUMENTD.	
XMLPARSEE.	

Object-oriented (OO) applications:3.	
Require the use of an OO databaseA.	
Are written in an OO languageB.	
Use development environments that usually come with predefined classesC.	
Use development environments that usually come with predefined methodsD.	
May be written in the C programming languageE.	

Smalltalk:4.	
Was developed in 1972A.	
Was developed by Linus TorvaldsB.	
Was developed at the Xerox PARC facilityC.	
Is based on the C programming languageD.	
Was the first OO programming language to include a windowing system and use E.	
of a mouse

C++:5.	
Was developed by Alan KayA.	
Was developed at AT&T Bell LaboratoriesB.	
Was developed in 1976C.	
Is based on the Java programming languageD.	
Allows programmers to ignore the object paradigm if they wishE.	

Chapter 13 I n t e g r at i n g X m l D o c u m e n t s A n d O b j e c t s I n t o D ata b a s e s 371

Java:6.	
Was developed by Sun MicrosystemsA.	
May be run only on large systems with lots of memoryB.	
Was developed around 1995C.	
Is an interpretive languageD.	
Is a general-purpose OO languageE.	

Object persistence:7.	
Preserves the state of an object between executions of an applicationA.	
Preserves the state of an object across the shutdown and startup of the computer B.	
system
Loads objects into memory to preserve them permanentlyC.	
Occurs when the application requests that an object be savedD.	
Can be accomplished only with an OO databaseE.	

The events necessary to retrieve an object from an OO database include8.	
A message is sent to the object, so the object must be loaded into memory.A.	
A request to retrieve the object is sent to the OO database.B.	
Object references are swizzled into memory addresses.C.	
Relational data is assigned to an object class.D.	
The object is made available to the application environment.E.	

The disadvantages of object-relational databases include9.	
The combination is more complex than either pure object-oriented or pure A.	
relational databases.
Ad-hoc query capability is limited.B.	
Objects are table-centric.C.	
Neither relational purists nor object purists are enamored with this combina-D.	
tion.
Object applications are not as data-centric as relational ones.E.	

When considering the selection of a database model, which of the following 10.	
facts should be taken into account?

Ordinary file system files can handle simple data, provided there are no ad-hoc A.	
query requirements.
Relational databases can handle simple data that has ad-hoc query B.	
requirements.
Object-oriented databases are best at handling complex data.C.	
Object-relational databases can handle complex data that has ad-hoc query D.	
requirements.
Object-oriented databases can handle complex data, provided there are no E.	
ad-hoc query requirements.

This page intentionally left blank

F I N A L E X A M 373

 373

Choose the correct responses to each of the multiple-choice questions. Note
that there may be more than one correct response to each question.

Examples of logical changes that can be safely made in a system that has 1.
a high degree of logical data independence are

Adding data items to existing database objectsA.

Adding new database objectsB.

Deleting database objectsC.

Deleting data items from existing database objectsD.

Moving a database object from one physical file to anotherE.

Examples of physical changes that can be safely made in a system that has 2.
a high degree of physical data independence are

Adding new user viewsA.

Adding new data filesB.

Moving a file from one disk device to anotherC.

Splitting or combining database objectsD.

Renaming a data fileE.

Final Exam

374 Data b a s e s Demystified

The main reasons that the relational model became so popular are3.	

The network model saw no commercial success.A.	

Computer systems became less expensive, so flexibility became more B.	
important than efficiency.

Products were developed that were reasonably efficient.C.	

Simple-to-use query languages such as SQL emerged.D.	

Relational calculus was invented.E.	

Logical data independence:4.	

Allows database objects to be freely added to the physical database A.	
files without disrupting existing database users and processes

Allows data to be freely deleted from the physical database files with-B.	
out disrupting existing database users and processes

Is a property that all modern computer systems have to some degreeC.	

Is achieved through the separation of the physical and logical layers of D.	
the ANSI/SPARC model

Is achieved through the separation of the logical and external layers of E.	
the ANSI/SPARC model

Physical data independence:5.	

Is something a database either has or does not haveA.	

Is achieved through the separation of the physical and logical layers of B.	
the ANSI/SPARC model

Is achieved through the separation of the logical and external layers of C.	
the ANSI/SPARC model

Is a property that all modern computer systems have to some degreeD.	

Allows nondisruptive changes to be made to the physical layer in the E.	
ANSI/SPARC model

The relational database model:6.	

Provides superior flexibility for ad hoc queriesA.	

Is difficult to understand and useB.	

Was first proposed by Dr. E.F. CoddC.	

Presents data as two-dimensional tablesD.	

Does not use physical pointers to connect database recordsE.	

F i n a l E x a m 375

User views are important because:7.	

Application programs reference them.A.	

Data updates are shown in a delayed fashion.B.	

They provide physical data independence.C.	

They can be tailored to the needs of the database user.D.	

People querying the database reference them.E.	

Currently available relational databases include8.	

OracleA.	

MySQLB.	

Microsoft SQL ServerC.	

System RD.	

IDSE.	

The object-relational model:9.	

Overcomes the ad hoc query restrictions found in the relational A.	
model

Overcomes the ad hoc query restrictions found in the object-oriented B.	
model

Combines concepts from the relational and object models in an attempt C.	
to get the best from each

Is not supported by the mainstream (bestselling) DBMS productsD.	

Was first proposed by Charles BachmanE.	

The external layer of the ANSI/SPARC model:10.	

Is directly referenced by database usersA.	

Contains the database subschemaB.	

Lies between the physical and logical layersC.	

Provides physical data independenceD.	

Contains all the user views for the databaseE.	

376 Data b a s e s Demystified

A relationship in the conceptual design becomes which object in the 11.	
logical design?

Referential constraintA.	

IndexB.	

ViewC.	

TableD.	

ColumnE.	

An entity in the conceptual design becomes which object in the logical/12.	
physical design?

TableA.	

ColumnB.	

ViewC.	

Referential constraintD.	

IndexE.	

An attribute in the conceptual design becomes which object in the logical/13.	
physical design?

TableA.	

ColumnB.	

ViewC.	

Referential constraintD.	

IndexE.	

A column in a relational table:14.	

Is derived from an entity in the conceptual designA.	

May be composed of other columnsB.	

Must be assigned a data typeC.	

Must be assigned a unique name within the tableD.	

Is the smallest named unit of storage in a relational databaseE.	

F i n a l E x a m 377

If a product can be manufactured in many plants and a plant can manu-15.	
facture many products, this is an example of which type of relationship?

One-to-oneA.	

One-to-manyB.	

Many-to-oneC.	

Many-to-manyD.	

RecursiveE.	

A referential constraint:16.	

Must have primary key and foreign key columns that have identical A.	
names

Is derived from a user view in the conceptual modelB.	

Ensures that a foreign key value always refers to an existing primary C.	
key value in the parent table

Defines a many-to-many relationship between two tablesD.	

Ensures that a primary key does not have duplicate values in a tableE.	

Examples of an entity are17.	

A customer orderA.	

A customerB.	

An alphabetical listing of productsC.	

An employee’s paycheckD.	

A customer’s nameE.	

Examples of an attribute are18.	

An alphabetical listing of employeesA.	

An employeeB.	

An employee’s nameC.	

An employee’s paycheckD.	

An employee’s birth dateE.	

378 Data b a s e s Demystified

Which of the following are examples of recursive relationships?19.	

An employee who manages a departmentA.	

An organizational unit made up of other organizational unitsB.	

An organizational unit made up of departmentsC.	

An employee who manages other employeesD.	

An employee who has many dependentsE.	

Intersection tables:20.	

Are used to provide users with a customized view of their dataA.	

Resolve a one-to-many relationshipB.	

May contain intersection dataC.	

Resolve a many-to-many relationshipD.	

Appear only in the conceptual database designE.	

When a query with no criteria included is executed, the result is21.	

An error messageA.	

A Cartesian productB.	

No rows being displayedC.	

All the rows in the table being displayedD.	

None of the aboveE.	

Self-joins in a query are a method of resolving22.	

Recursive relationshipsA.	

NULLB.	 values

Cartesian productsC.	

Many-to-many relationshipsD.	

Aggregate functionsE.	

When sequencing (sorting) of rows is not included in a database query, 23.	
the rows returned by the query are in:

Ascending sequence by the first column in the query resultsA.	

No particular sequenceB.	

The order in which the rows were added to the tablesC.	

By the first column in the tableD.	

Ascending sequence by the primary keyE.	

F i n a l E x a m 379

Tables may be joined24.	

Using only the primary key in one table and a foreign key in anotherA.	

Only using the Cartesian product formulaB.	

Only to other tablesC.	

Only to themselvesD.	

Using any column in either table (theoretically)E.	

An aggregate function:25.	

May be applied to table columns but not to calculated columnsA.	

Combines data from multiple columns togetherB.	

Requires that every column in a query be either an aggregate function C.	
or named in the GROUP BY list for the query

Combines data from multiple rows togetherD.	

All of the aboveE.	

In SQL, row order in query results:26.	

May be specified only for columns in the query resultsA.	

Defaults to descending when sequence is not specifiedB.	

Is specified using the C.	 SORTED BY clause

Is unpredictable unless specified in the queryD.	

May be either descending or ascending for any columnE.	

A check constraint:27.	

Restricts a database user’s privilegesA.	

Enforces a business ruleB.	

Validates data in an indexC.	

Creates an index to assist with the constraintD.	

Enforces referential integrityE.	

In SQL, an outer join:28.	

Has proprietary syntax in older RDBMS productsA.	

Always results in a Cartesian productB.	

Can be a left, right, or full outer joinC.	

Always returns all rows in at least one of the two tablesD.	

Always returns all rows in both of the tablesE.	

380 Data b a s e s Demystified

SQL may be divided into the following subsets:29.	

Data Replication Language (DRL)A.	

Data Control Language (DCL)B.	

Data Selection Language (DSL)C.	

Data Query Language (DQL)D.	

Data Purge Language (DPL)E.	

An SQL 30.	 CREATE statement:

May be reversed later using a A.	 DROP statement

Is a form of DMLB.	

May be corrected later using an C.	 ALTER statement

Creates new user privilegesD.	

Creates a database objectE.	

A subselect in SQL:31.	

Is a powerful way of calculating columnsA.	

Allows for the flexible selection of rowsB.	

May be corrugated or noncorrugatedC.	

Must not be enclosed in parenthesesD.	

May be used to select values to be applied to E.	 WHERE clause conditions

The SQL 32.	 BETWEEN operator:

Can be rewritten using the <= and A.	 NOT = operators

Can be rewritten using the <= and >= operatorsB.	

Includes the endpoint valuesC.	

Is an Oracle extension to SQLD.	

Selects rows added to a table during a time intervalE.	

Database privileges:33.	

Are managed using an SQL A.	 GRANT and REVOKE statement

May be either system or object privilegesB.	

Must be granted using rolesC.	

May be changed with an SQL D.	 ALTER PRIVILEGE statement

Are best managed when assembled into groups using the SQL E.	 GROUP BY
clause

F i n a l E x a m 381

An SQL 34.	 DELETE statement with a column list:

Can be used to delete from a viewA.	

Deletes every column in the tableB.	

Deletes every row in the tableC.	

Results in an error messageD.	

Results in a Cartesian productE.	

An SQL 35.	 ALTER statement:

May be used to add a viewA.	

May be used to add a constraintB.	

May be used to drop a viewC.	

May be used to drop a table columnD.	

May be used to drop a constraintE.	

E.F. Codd invented:36.	

NormalizationA.	

Rapid Application Development (RAD)B.	

The SDLC methodologyC.	

The relational databaseD.	

Quality assurance testingE.	

In an SDLC methodology, normalization takes place during:37.	

Logical designA.	

Physical designB.	

ConstructionC.	

Implementation and rolloutD.	

Ongoing supportE.	

Prototyping:38.	

Is an integral part of most SDLC methodologiesA.	

Works well when requirements are sketchyB.	

May be used as a technique for gathering requirementsC.	

May be used to create complete systemsD.	

Helps in setting user expectationsE.	

382 Data b a s e s Demystified

In the N-tier client/server model:39.	

Client workstations must be high-powered systems.A.	

All application logic runs on an application server.B.	

The client workstation handles all presentation logic.C.	

A web server hosts the web pages.D.	

The database is hosted on a centralized server.E.	

The phases of the traditional system development life cycle (SDLC) 40.	
methodology include

Requirements gatheringA.	

Logical designB.	

PrototypingC.	

Physical designD.	

Ongoing supportE.	

User views are analyzed during:41.	

Requirements gatheringA.	

Logical designB.	

Physical designC.	

ConstructionD.	

Quality assurance testingE.	

The database is initially constructed in the:42.	

System test environmentA.	

Development environmentB.	

Quality assurance environmentC.	

Staging environmentD.	

Production environmentE.	

The advantages of document reviews during requirements gathering are43.	

Documents will always reflect current practices.A.	

Document reviews can be done relatively quickly.B.	

Pictures and diagrams are valuable tools for understanding systems.C.	

Documents will always be up to date.D.	

Documents often present overviews better than other techniques can.E.	

F i n a l E x a m 383

The advantages of observation during requirements gathering are44.	

The Hawthorne effect enhances your results.A.	

You may see the way things really are instead of the way management B.	
and/or documentation presents them.

You are likely to see lots of situations where exceptions are handled.C.	

You may observe events that would not be described to you by anyone.D.	

You always see people acting normally.E.	

The advantages of conducting surveys during requirements gathering 45.	
include

Surveys are simple to develop.A.	

Most survey recipients respond.B.	

A lot of ground can be covered quickly.C.	

Nonverbal responses are excluded.D.	

Prototyping of requirements is unnecessary.E.	

Most business systems require that you normalize only as far as:46.	

First normal formA.	

Second normal formB.	

Boyce-Codd normal formC.	

Third normal formD.	

Fourth normal formE.	

A foreign key in a normalized relation may be47.	

A multivalued attributeA.	

A repeating groupB.	

The entire primary key of the relationC.	

A non-key attribute in the relationD.	

Part of the primary key of the relationE.	

In general, violations of a normalization rule are resolved by:48.	

Moving attributes or groups of attributes to a new relationA.	

Creating summary tablesB.	

Combining relationsC.	

Combining attributesD.	

DenormalizationE.	

384 Data b a s e s Demystified

Criteria useful in selecting a primary key from among several candidate 49.	
keys are

Invent a surrogate key if that is the best possible key.A.	

Choose concatenated keys over single attribute keys.B.	

Choose the simplest candidate.C.	

Choose the shortest candidate.D.	

Choose the candidate most likely to have its value change.E.	

The roles of unique identifiers in normalization are50.	

You cannot choose a primary key until relations are normalized.A.	

They are unnecessary.B.	

All normalized forms require designation of a primary key.C.	

They are required once you reach third normal form.D.	

You cannot normalize relations without first choosing a primary key.E.	

The Web:51.	

Uses hyperlinks to navigate pagesA.	

Uses the Telnet protocolB.	

Is a hypermedia-based systemC.	

Uses a web browser to present pagesD.	

Supports only static web pagesE.	

The purpose of normalization is52.	

To optimize data-retrieval performanceA.	

To optimize data for inserts, updates, and deletesB.	

To eliminate redundant dataC.	

To remove certain anomalies from the relationsD.	

To provide a reason to denormalize the databaseE.	

Second normal form resolves anomalies caused by:53.	

Transitive dependenciesA.	

Repeating groupsB.	

Multivalued attributesC.	

Join dependenciesD.	

Partial dependency on the primary keyE.	

F i n a l E x a m 385

Proper handling of multivalued attributes when converting relations to 54.	
first normal form usually prevents subsequent problems with:

First normal formA.	

Second normal formB.	

Third normal formC.	

Fourth normal formD.	

Boyce-Codd normal formE.	

The delete anomaly refers to a situation where:55.	

Data deletion causes unintentional loss of another entity’s data.A.	

Data must be deleted before it can be inserted.B.	

Data must be inserted before it can be deleted.C.	

A required delete cannot be done due to referential constraints.D.	

A required delete cannot be done due to a check constraint.E.	

It is important for a database designer to understand process modeling 56.	
because:

The database design must support the intended process model.A.	

Process design is a primary responsibility of the DBA.B.	

The process model must be completed before the data model.C.	

The data model must be completed before the process model.D.	

The database designer must work closely with the process designer.E.	

The IDEF1X ERD format:57.	

Covers both data and process modelsA.	

Has many variantsB.	

Was first released in 1983C.	

Has been adopted as a U.S. federal government standardD.	

Follows a standard developed by the National Institute of Standards E.	
and Technology

386 Data b a s e s Demystified

A subtype:58.	

Shows various states of the supertypeA.	

Is a subset of the supertypeB.	

Is a superset of the supertypeC.	

Has a conditional one-to-one relationship with the supertypeD.	

Has a one-to-many relationship with the supertypeE.	

Examples of possible subtypes for an Order entity supertype include59.	

Approved order, pending order, canceled orderA.	

Office supplies order, professional services orderB.	

Auto parts order, aircraft parts order, truck parts orderC.	

Shipped order, unshipped order, invoiced orderD.	

Order line itemsE.	

When subtypes are being considered in a database design:60.	

There is a trade-off between generalization and specialization.A.	

The more subtypes that can be found, the better.B.	

They should be avoided as much as possible because they complicate C.	
the design.

There are multiple correct designs—the challenge is to find the one D.	
that best fits the organization’s intended use of the database.

There is one correct design—the challenge is to find it.E.	

The strengths of flowcharts are61.	

They are specific to application programming only.A.	

They are useful for spotting reusable components.B.	

They can be easily modified as requirements change.C.	

They are natural and easy to use for procedural language programmers.D.	

They are equally useful for nonprocedural and object-oriented E.	
languages.

F i n a l E x a m 387

The CRUD matrix helps find the following problems:62.	

Entities that are never updatedA.	

Entities that are never readB.	

Processes that only readC.	

Processes that have no create entityD.	

Processes that are never deletedE.	

The strengths of the DFD are63.	

It shows complex logic easily.A.	

It’s quick and easy to develop, even for complex systems.B.	

It’s great for presentation to management.C.	

It’s good for top-down design work.D.	

It shows overall structure without sacrificing detail.E.	

The data flow diagram (DFD):64.	

Is the most data centric of all process modelsA.	

Was first developed by E.F. CoddB.	

Was first developed in the 1980sC.	

Combines the best of the flowchart and the function diagramD.	

Combines diagram pages together hierarchicallyE.	

The strengths of the function hierarchy diagram are65.	

It provides a good overview at high and medium levels of detail.A.	

It is quick and easy to learn and use.B.	

It clearly shows the sequence of process steps.C.	

Checking quality is easy and straightforward.D.	

Complex interactions between functions are easily modeled.E.	

Physical security of the database server:66.	

Requires both physical devices and policiesA.	

Is unnecessary if the server is connected to the InternetB.	

Should include a locked room to contain the serverC.	

May include biometric controlsD.	

May include surveillance equipmentE.	

388 Data b a s e s Demystified

Network security:67.	

Must include provisions for remotely located employeesA.	

Is mandatory for all computer systems connected to any networkB.	

Can be handled by routers aloneC.	

Can be handled by encryption aloneD.	

Can be handled by firewalls aloneE.	

The web “technology stack” includes68.	

An application serverA.	

A database serverB.	

A web serverC.	

A client workstation running a web browserD.	

Network hardware (firewalls, routers, and so on)E.	

Employees connecting to the enterprise network from home or from 69.	
another remote work location:

Should have a firewall between their computer and a cable or DSL A.	
modem

Are best protected by a software firewall such as is available in Microsoft B.	
Windows

Are better protected when a VPN is usedC.	

Should not use network address translationD.	

Should have IP spoofing implementedE.	

Components of wireless access point security include70.	

Virtual private networksA.	

MAC address listsB.	

Network address translationC.	

EncryptionD.	

The organization’s security policyE.	

F i n a l E x a m 389

System-level security precautions include71.	

Using simple passwords that are easy to rememberA.	

Applying security patches in a timely mannerB.	

Installing the minimal software components necessaryC.	

Changing all default passwordsD.	

Granting only table privileges that users requireE.	

Login credentials:72.	

Should be difficult to guessA.	

Should have passwords changed periodicallyB.	

Need not be encryptedC.	

May be shared by multiple users provided all of them are trustworthyD.	

Should be governed by security policyE.	

Encryption:73.	

Should use keys of at least 28 bits in lengthA.	

Should be used for sensitive data sent over a networkB.	

Should be used for all sensitive dataC.	

Should never be used for login credentialsD.	

Can use symmetric or asymmetric keysE.	

System privileges:74.	

Allow the grantee to perform certain administrative functions on the A.	
server, such as shutting it down

Are rescinded using the SQL B.	 REMOVE statement

Are specific to a database objectC.	

Are granted in a similar way in Oracle, Sybase, and Microsoft SQL D.	
Server

Vary across databases from different vendorsE.	

390 Data b a s e s Demystified

Views may assist with security policy implementation by:75.	

Storing database audit resultsA.	

Restricting the table columns to which a user has accessB.	

Restricting table rows to which a user has accessC.	

Restricting the databases to which a user has accessD.	

Monitoring for database intrudersE.	

A result set is76.	

A pointer into a cursorA.	

The collection of rows returned by a database queryB.	

A method to analyze the performance of SQL statementsC.	

The same as a cursorD.	

A buffer that holds rows retrieved from the databaseE.	

A transaction:77.	

May not be partially processed and committedA.	

May be partially processed and committedB.	

Is sometimes called a C.	 unit of work

Changes the database from one consistent state to anotherD.	

Has properties described by the ACID acronymE.	

ODBC is78.	

A Microsoft standardA.	

Flexible in handling proprietary SQLB.	

Independent of any particular language, operating system, or DBMSC.	

A standard API for connecting to DBMSsD.	

Used by Java programsE.	

A lock:79.	

Is usually released when a A.	 COMMIT or ROLLBACK takes place

May cause contention when other users attempt to update locked B.	
data

Is a control placed on data to reserve it so that the user may update itC.	

May have levels and an escalation protocol in some RDBMS productsD.	

Has a timeout set in DB2 and some other RDBMS productsE.	

F i n a l E x a m 391

The concurrent update problem:80.	

Is the reason that transaction locking must be supportedA.	

Cannot occur when B.	 AUTOCOMMIT is set to ON

Occurs when two database users make conflicting updates to the same C.	
data

Occurs when two database users submit conflicting D.	 SELECT state-
ments

Is a consequence of simultaneous data sharingE.	

Indexes work well at filtering rows when:81.	

The selectivity ratio is very high.A.	

They are unique.B.	

The selectivity ratio is very low.C.	

They are very selective.D.	

They are not unique.E.	

Performance tuning:82.	

Should be requirements basedA.	

Is a never-ending processB.	

Should be used only on queries that fail to conform to performance C.	
requirements

Should be used on each query until no more improvement can be D.	
realized

Involves not only SQL tuning but also CPU, file system I/O, and E.	
memory usage tuning

General SQL tuning tips include83.	

Use an A.	 ORDER BY clause whenever possible.

Use a B.	 WHERE clause to filter rows whenever possible.

Use an index whenever possible.C.	

Use views whenever possible.D.	

Avoid table scans on large tables.E.	

392 Data b a s e s Demystified

Common features of change control processes are84.	

Release numberingA.	

PrioritizationB.	

Deadlock preventionC.	

Transaction supportD.	

Version numberingE.	

Before rows may be fetched from a cursor, the cursor must first be85.	

DeclaredA.	

OpenedB.	

CommittedC.	

PurgedD.	

ClosedE.	

XML is86.	

Extensible because custom tags may be definedA.	

A subset of HTMLB.	

Used for remote database connectionsC.	

A document-formatting languageD.	

A protocol used to transfer web pagesE.	

Data warehousing:87.	

Involves storing data for day-to-day operationsA.	

May involve one or more data martsB.	

Is a form of OLAP databaseC.	

Was pioneered by Bill InmonD.	

Involves storing historical data for analysisE.	

Properties of data warehouse systems include88.	

Medium to low transaction volumeA.	

Process orientationB.	

Support for day-to-day operationsC.	

Holding historic rather than current informationD.	

Long-running queries that process many rows of dataE.	

F i n a l E x a m 393

Compared with OLTP systems, data warehouse systems:89.	

Have a relatively smaller number of usersA.	

Have data that is not normalizedB.	

Store data that is more staticC.	

Have higher transaction volumesD.	

Tend to have shorter running queriesE.	

The star schema:90.	

Always has fully normalized dimension tablesA.	

Was developed by Ralph KimballB.	

Involves multiple levels of dimension tablesC.	

Includes a dimension table and one or more fact tablesD.	

Was a key feature of the Red Brick DBMSE.	

The snowflake schema:91.	

Does not use a fact tableA.	

Can be designed by fully normalizing all the dimension tablesB.	

Allows dimensions to have dimensions of their ownC.	

Was developed by Bill InmonD.	

Is a hybrid containing both normalized and denormalized tablesE.	

A data mart:92.	

Can be a good starting point for organizations with no data warehouse A.	
experience

Can be a good starting point when requirements are sketchyB.	

Is a shop that sells data to individuals and businessesC.	

Is a subset of a data warehouseD.	

Supports the requirements of a particular department or business E.	
function

394 Data b a s e s Demystified

Object-oriented programming:93.	

Uses messages as a vehicle for object interactionA.	

Allows an object to directly access the variables in a related objectB.	

Uses methods to define the behavior of an objectC.	

Requires objects to have a primary keyD.	

Supports the use of complex objectsE.	

The advantages of object-relational databases include94.	

Objects are stored within tables.A.	

Complex data types are supported.B.	

Ad-hoc query capability is fully supported.C.	

Class structures and inheritance are fully supported.D.	

Centrally stored functions (methods) improve reuse.E.	

Which of the following are common uses of XML?95.	

Display database data on a web pageA.	

Create static web pagesB.	

Store objects in a relational databaseC.	

Transmit database data to another partyD.	

Enforce business rules on documentsE.	

General rules to follow regarding indexes include96.	

Indexes on very small tables tend not to be very useful.A.	

The more a table is updated, the more indexes will help performance.B.	

Columns that are frequently updated should always be indexed.C.	

The larger the table, the more important indexes become.D.	

Indexing foreign key columns often helps join performance.E.	

An intranet is97.	

Available to authorized outsidersA.	

Available to anyone on the InternetB.	

Available to authorized (internal) members of an organizationC.	

Typically connected to the InternetD.	

Protected by a firewallE.	

F i n a l E x a m 395

98.	 Data types:

A.	Require that precision and scale be specified also

B.	 Can be used to prevent numeric characters from being stored in char-
acter format columns

C.	Can be used to prevent alphabetic characters from being stored in
numeric columns

D.	Can be used to prevent invalid dates from being stored in date
columns

E.	 Prevent incorrect data from being inserted into a table

99.	 Primary key constraints:

A.	Require column values to be unique within the table

B.	 Require column values to be unique within the database

C.	Require columns that have check constraints

D.	Require columns that have NOT NULL constraints

E.	 Are required on foreign key columns

100.	 Business rules are implemented in the database using:

A.	Primary key constraints

B.	 Unique constraints

C.	Check constraints

D.	Referential constraints

E.	 Abbreviations

This page intentionally left blank

appendix Video store sample Database 397

 397

Chapter 1
 1. B, D, E
 2. A, B, C, D, E
 3. C, D
 4. B, E
 5. B, C, E
 6. B, D, E
 7. A, B, C, E
 8. A, D
 9. A, B, E
 10. A, B, D, E

Chapter 5
 1. B, D
 2. C, E
 3. A, B, C
 4. B, C, E
 5. A, B, D
 6. C, D
 7. B, D, E
 8. B, C, E
 9. A
 10. B, D

Chapter 2
 1. C
 2. E
 3. B
 4. A, B, E
 5. A, B, C
 6. B, C, D
 7. A, B, D
 8. B, C
 9. B, C, E
 10. A, B, D, E

Chapter 6
 1. A, B, C, D
 2. E
 3. D
 4. A, B, E
 5. B
 6. E
 7. C
 8. B
 9. E
 10. D

Chapter 3
 1. B, E
 2. D, E
 3. B
 4. E
 5. D
 6. A, B, D
 7. C
 8. C
 9. A, C, D
 10. D

Chapter 7
 1. B, D, E
 2. B
 3. D, E
 4. A, B, D
 5. A, C, D, E
 6. A, C, E
 7. B, D
 8. A, B, C
 9. A, E
 10. A, B, C

Chapter 4
 1. A, C
 2. D
 3. E
 4. B
 5. A, D
 6. C, E
 7. A, B, C
 8. B, D
 9. A, B, C, D, E
 10. B, C, D

Chapter 8
 1. B, C, D
 2. A, C
 3. B, D, E
 4. D, E
 5. B, C
 6. A, B, C
 7. A, C
 8. C, D, E
 9. A, B, C, E
 10. B, C, E

Answers to Quizzes
and Final Exam

398 Data b a s e s Demystified

Answers to Final Exam

Chapter 9
	 1. B, C, D
	 2. B, D, E
	 3. B, C
	 4. A, B, E
	 5. A, C, D, E
	 6. B, D
	 7. A, C, D
	 8. D, E
	 9. A, B, E
	10. D, E

Chapter 10
	 1. A, B, C
	 2. A, C, E
	 3. B, C, D
	 4. C, D, E
	 5. B, C, D, E
	 6. B, C, D, E
	 7. B, D, E
	 8. A, B, C
	 9. A, C, E
	10. B, C, D

Chapter 11
	 1. B
	 2. E
	 3. A, B, C
	 4. B, C
	 5. D, E
	 6. A, B, C, D
	 7. A, D
	 8. B, D, E
	 9. A, E
	10. B, D

Chapter 12
	 1. B, C
	 2. C, D, E
	 3. A, D, E
	 4. A, B, D
	 5. E
	 6. A, B, C, D
	 7. B, E
	 8. B, C, E
	 9. B, D, E
	10. B, C, D

Chapter 13
	 1. A, B, D
	 2. C
	 3. B, C, D
	 4. A, C, E
	 5. B, E
	 6. A, C, D, E
	 7. A, B, D
	 8. A, B, C, E
	 9. A, C, D, E
	10. A, B, C, D, E

	 1. A, B
	 2. B, C, E
	 3. B, C, D
	 4. A, E
	 5. B, D, E
	 6. A, C, D, E
	 7. A, D, E
	 8. A, B, C
	 9. B, C
	10. A, B, E
	11. A
	12. A
	13. B
	14. C, D, E
	15. D
	16. C
	17. A, B, D
	18. C, E
	19. B, D
	20. C, D
	21. D
	22. A
	23. B
	24. E
	25. C, D

	26. D, E
	27. B
	28. A, C, D
	29. B, D
	30. A, C, E
	31. A, B, E
	32. B, C
	33. A, B
	34. D
	35. B, D, E
	36. A, D
	37. A
	38. B, C, D
	39. B, D, E
	40. A, B, D, E
	41. A
	42. B
	43. B, C, E
	44. B, D
	45. C
	46. D
	47. C, D, E
	48. A
	49. A, C, D
	50. C, E

	51. A, C, D
	52. B, D
	53. E
	54. D
	55. A
	56. A, E
	57. D, E
	58. B, D
	59. B, C
	60. A, D
	61. B, C, D
	62. A, B
	63. C, D, E
	64. A, D, E
	65. A, B
	66. A, C, D, E
	67. A, B
	68. A, B, C, D, E
	69. A, C
	70. B, D, E
	71. B, C, D
	72. A, B, E
	73. B, C, E
	74. A, D, E
	75. B, C

	 76. B
	 77. A, C, D, E
	 78. B, C, D
	 79. A, B, C, D, E
	 80. A, C, E
	 81. A, B, D
	 82. A, B, C, E
	 83. B, C, E
	 84. A, B, E
	 85. A, B
	 86. A, D
	 87. B, C, D, E
	 88. A, D, E
	 89. A, B, C
	 90. B, E
	 91. B, C
	 92. A, B, D, E
	 93. A, C, E
	 94. B, C, E
	 95. A, D
	 96. A, D, E
	 97. C, D, E
	 98. C, D
	 99. A, D
	100. A, B, C, D

Appendix VIDEO STORE SAMPLE DATABASE 399

 399

This appendix contains an overview of the video store sample database used in this book
along with instructions for downloading and installing it so you can follow along as you read.

Overview of the Video Store Sample Database
The SQL and forms-based query examples used in this book are based on a
database for a fictitious video store. The next section provides instructions for
downloading a ZIP file that contains a Microsoft Access 2000 database for the
video store as well as the SQL statements required to create the database ob-
jects and populate them with data using MySQL, Oracle, Microsoft SQL Server,
and other SQL-based databases.

The following illustration presents the entity relationship diagram (ERD) for
the entire video store database. A PDF of this ERD is included in the ZIP file
that can be downloaded from the web site.

Appendix
Video Store Sample
Database

400 Data b a s e s Demystified

MPAA_RATING

MPAA_RATING_CODE

MPAA_RATING_DESCRIPTION

MOVIE

MOVIE_I D

MOVIE_GENRE_CODE (FK)

MPAA_RATING_CODE (FK)

MOVIE_TITLE

RETAIL_PRICE_VHS

RETAIL_PRICE_DVD

YEAR_PRODUCED

MOVIE_GENRE

MOVIE_GENRE_CODE

MOVIE_GENRE_DESCRIPTION

MOVIE_LANGUAGE

MOVIE_ID (FK)

LANGUAGE_CODE (FK)

LANGUAGE

LANGUAGE_CODE

LANGUAGE_NAME

MOVIE_COPY

MOVIE_ID

COPY_NUMBER

DATE_ACQUIRED

DATE_SOLD

MEDIA_FORMAT

MOVIE_RENTAL

MOVIE_ID (FK)

COPY_NUMBER (FK)

TRANSACTION_ID (FK)

DUE_DATE

RENTAL_FEE

LATE_OR_LOSS_FEE

RETURNED_DATE

CUSTOMER_TRANSACTION

TRANSACTION_ID

CUSTOMER_ACCOUNT_ID (FK)

EMPLOYEE_PERSON_ID (FK)

TRANSACTION_DATE

SALES_TAX

EMPLOYEE

PERSON_ID (FK)

SUPERVISOR_PERSON_ID (FK)

EMPLOYEE_TAX_ID

EMPLOYEE_JOB_CATEGORY

EMPLOYEE_HOURLY_RATE

HIRE_DATE

TERMINATION_DATE

CUSTOMER_ACCOUNT

CUSTOMER_ACCOUNT_ID

CUSTOMER_HOLD_INDIC

DATE_ENROLLED

DATE_TERMINATED

CUSTOMER_DEPOSIT_AMOUNT

CREDIT_CARD_ON_FILE_INDIC

CHILD_RENTAL_ALLOWED_INDIC

CUSTOMER_ACCOUNT_PERSON

CUSTOMER_ACCOUNT_ID (FK)

PERSON_ID (FK)

PERSON

PERSON_ID

PERSON_GIVEN_NAME

PERSON_MIDDLE_NAME

PERSON_FAMILY_NAME

PERSON_ADDRESS_1

PERSON_ADDRESS_2

PERSON_ADDRESS_CITY

PERSON_ADDRESS_STATE_PROV

PERSON_ADDRESS_POSTAL_CODE

PERSON_ADDRESS_COUNTRY

PERSON_PHONE

BIRTH_DATE

DEATH_DATE

Supervises

The video store for which the sample database was designed is a small family-
owned and -operated store that rents videos in both VHS and DVD formats.
However, the VHS format is being discontinued. The store manager expects to
expand into selling videos as well as other product lines, such as snack foods,
but the plans to do so were not firm enough to be included in the current data-
base design.

Table A-1 gives some information about each table included in the design.

appendix ViDeO stOre saMple Database 401

TABLE A-1 Video store Database tables

Table Name Description Primary Key Parent Table(s)
CUSTOMER_
ACCOUNT

Contains one row for each
customer account opened with
the video store.

CUSTOMER_
ACCOUNT_ID

None

CUSTOMER_
ACCOUNT_PERSON

Intersection table that shows
which people are associated
with each customer account.

CUSTOMER_
ACCOUNT_ID,
PERSON_ID

CUSTOMER_
ACCOUNT,
PERSON

CUSTOMER_
TRANSACTION

Contains one row for each trans-
action initiated by a customer.
Each transaction may contain
one or more movie rentals.

TRANSACTION_ID CUSTOMER_
ACCOUNT,
EMPLOYEE

EMPLOYEE Contains one row for each em-
ployee of the video store. This
table is a subclass of Person (each
Employee will have a matching
row with the same primary key
value in the PERSON table).

PERSON_ID PERSON

LANGUAGE Lookup table of language codes
and names (used to show
language options for movies).

LANGUAGE_CODE None

MOVIE Contains one row for each movie
title. Child table MOVIE_COPY
shows copies of the movie
owned by the store.

MOVIE_ID MPAA_RATING,
MOVIE_GENRE

MOVIE_COPY Contains one row for each movie
copy available for rent.

MOVIE_ID,
COPY_NUMBER

MOVIE

MOVIE_GENRE Lookup table of genre codes and
descriptions (used to categorize
movies).

MOVIE_GENRE_CODE None

MOVIE_LANGUAGE Intersection table that shows lan-
guages available for each movie.

MOVIE_ID,
LANGUAGE_CODE

MOVIE,
LANGUAGE

MOVIE_RENTAL Contains one row for each time
the movie was rented.

MOVIE_ID,
COPY_NUMBER,
TRANSACTION_ID

MOVIE_COPY,
CUSTOMER_
TRANSACTION

MPAA_RATING Lookup table of MPAA rating
codes and descriptions.

MPAA_RATING_CODE None

PERSON Contains one row for each
individual associated with the
video store. Each person may be
a customer (associated with a
Customer Account), an
Employee, or both.

PERSON_ID None

402 Data b a s e s DemystifieD

Table A-2 gives some information about the columns in the database
tables.

TABLE A-2 Video store Database table Columns

Table Name Column Name Description
CUSTOMER_ACCOUNT CHILD_RENTAL_ALLOWED_

INDIC
Yes/No indicator as to whether persons
under 18 are permitted to check out
movies using this account

CUSTOMER_ACCOUNT CREDIT_CARD_ON_FILE_
INDIC

Yes/No indicator as to whether the
customer left a credit card imprint on file
to guarantee payment of their account

CUSTOMER_ACCOUNT CUSTOMER_ACCOUNT_ID Primary key—sequential number
assigned to each customer account

CUSTOMER_ACCOUNT CUSTOMER_DEPOSIT_
AMOUNT

For customers who did not provide a
credit card, the amount of the cash
deposit they provided to the store

CUSTOMER_ACCOUNT CUSTOMER_HOLD_INDIC Yes/No indicator as to whether customer
account is on hold; rentals are not
permitted against accounts on hold

CUSTOMER_ACCOUNT DATE_ENROLLED The date the account with the store was
opened

CUSTOMER_ACCOUNT DATE_TERMINATED If account was closed, the date of closure
(null for active accounts)

CUSTOMER_ACCOUNT_
PERSON

CUSTOMER_ACCOUNT_ID Part of primary key—foreign key to
CUSTOMER_ACCOUNT table

CUSTOMER_ACCOUNT_
PERSON

PERSON_ID Part of primary key—foreign key to
PERSON table

CUSTOMER_
TRANSACTION

CUSTOMER_ACCOUNT_ID Foreign key to CUSTOMER_ACCOUNT
table

CUSTOMER_
TRANSACTION

EMPLOYEE_PERSON_ID Foreign key (PERSON_ID) to EMPLOYEE
table

CUSTOMER_
TRANSACTION

SALES_TAX Sales tax charged for the transaction

CUSTOMER_
TRANSACTION

TRANSACTION_DATE Date of the transaction

CUSTOMER_
TRANSACTION

TRANSACTION_ID Primary key—sequential number
assigned to each new transaction

EMPLOYEE EMPLOYEE_HOURLY_RATE Pay rate per hour for the employee
EMPLOYEE EMPLOYEE_JOB_CATEGORY Job category for the employee (manager

or clerk)

appendix ViDeO stOre saMple Database 403

TABLE A-2 Video store Database table Columns

Table Name Column Name Description
EMPLOYEE EMPLOYEE_TAX_ID ID used for reporting payroll taxes for

the employee (usually a social security
number)

EMPLOYEE HIRE_DATE Date the employee was hired by the
store

EMPLOYEE PERSON_ID Primary key—foreign key to the PERSON
table

EMPLOYEE SUPERVISOR_PERSON_ID Foreign key to the EMPLOYEE table (to
show the person to whom they report)

EMPLOYEE TERMINATION_DATE For former employees, the date their
employment was terminated

LANGUAGE LANGUAGE_CODE Primary key—ISO (International
Organization for Standardization)
standard two-character code for a
language

LANGUAGE LANGUAGE_NAME Name (in English) for the language
MOVIE MOVIE_GENRE_CODE Foreign key to MOVIE_GENRE table
MOVIE MOVIE_ID Primary key—values are assigned

sequentially as new movies become
available

MOVIE MOVIE_TITLE Official title of the movie (movie titles
are not necessarily unique)

MOVIE MPAA_RATING_CODE Foreign key to MPAA_RATING table
MOVIE RETAIL_PRICE_DVD Retail list price for DVD copies of the

movie
MOVIE RETAIL_PRICE_VHS Retail list price for VHS copies of the

movie
MOVIE YEAR_PRODUCED The year the movie completed

production; year released by studio
MOVIE_COPY COPY_NUMBER Part of primary key—sequential number

assigned to each copy of a movie
(number unique only within a given movie)

MOVIE_COPY DATE_ACQUIRED Date movie copy was acquired by the
video store

MOVIE_COPY DATE_SOLD Date movie copy was sold (null if movie
has not been sold); lost rentals are
considered sold when customer pays for
them

(continued)

404 Data b a s e s DemystifieD

TABLE A-2 Video store Database table Columns

Table Name Column Name Description
MOVIE_COPY MEDIA_FORMAT Recording format of the movie copy

(DVD or VHS)
MOVIE_COPY MOVIE_ID Part of primary key—foreign key to

MOVIE table
MOVIE_GENRE MOVIE_GENRE_CODE Primary key—a code used to place

movies into categories such as Comedy,
Drama, Action-Adventure, and so forth

MOVIE_GENRE MOVIE_GENRE_
DESCRIPTION

Text description of a movie category (see
MOVIE_GENRE_CODE)

MOVIE_LANGUAGE LANGUAGE_CODE Part of primary key—foreign key to
LANGUAGE table

MOVIE_LANGUAGE MOVIE_ID Part of primary key—foreign key to
MOVIE table

MOVIE_RENTAL COPY_NUMBER Part of primary key—foreign key to
MOVIE_COPY table

MOVIE_RENTAL DUE_DATE The date a rented movie is due to be
returned to the store

MOVIE_RENTAL LATE_OR_LOSS_FEE Fee charged (if any) because the movie
copy was returned late or was
permanently lost

MOVIE_RENTAL MOVIE_ID Part of primary key—foreign key to
MOVIE_COPY table

MOVIE_RENTAL RENTAL_FEE Fee charged for the rental (adjusted for
any coupons or discounts)

MOVIE_RENTAL RETURNED_DATE Date movie copy was returned (null until
movie is checked in as returned)

MOVIE_RENTAL TRANSACTION_ID Part of primary key—foreign key to
CUSTOMER_ TRANSACTION table

MPAA_RATING MPAA_RATING_CODE Primary key—movie rating code supplied
by Motion Picture Association of America
(MPAA), including G, PG, PG-13, R,
NC-17, and NR (not rated)

MPAA_RATING MPAA_RATING_
DESCRIPTION

Text description of rating, as supplied by
the MPAA

PERSON BIRTH_DATE The personʼs date of birth
PERSON DEATH_DATE The personʼs date of death (if person

reported as deceased)
PERSON PERSON_ADDRESS_1 First line of the personʼs street address

(continued)

appendix ViDeO stOre saMple Database 405

TABLE A-2 Video store Database table Columns

Table Name Column Name Description
PERSON PERSON_ADDRESS_2 Optional second line of the personʼs

street address
PERSON PERSON_ADDRESS_CITY The municipality for the personʼs mailing

address
PERSON PERSON_ADDRESS_

COUNTRY
The ISO abbreviation for the country for
the personʼs mailing address

PERSON PERSON_ADDRESS_
POSTAL_CODE

The postal code (ZIP code in the U.S.) for
the personʼs mailing address

PERSON PERSON_ADDRESS_STATE_
PROV

The state or province for the personʼs
mailing address

PERSON PERSON_FAMILY_NAME The last name of the person
PERSON PERSON_GIVEN_NAME The first name of the person
PERSON PERSON_ID Primary key—sequential number

assigned to each person who has an
affiliation with the video store

PERSON PERSON_MIDDLE_NAME The middle name (or initial) of the
person

PERSON PERSON_PHONE The personʼs primary phone number

Instructions for Downloading and Installing the Sample Database
To enhance your learning of database concepts and SQL, I have provided a
Microsoft Access 2000 database containing the video store sample database as
well as scripts containing SQL statements tailored for MySQL (version 5.1),
Oracle (version 7.0 and above), and SQL Server (version 2000 and above) in a
ZIP file that is available for download from the McGraw-Hill web site. The
SQL scripts include not only the statements required to create the database
tables and other objects, but also the INSERT statements required to load sam-
ple data rows into the tables. The ZIP file also includes a PDF of the ERD for
the sample database that you can print as a reference. To access the downloads
page, follow these steps:

Open your web browser and go to www.mhprofessional.com.1.

On the banner across the top of the page, click COMPUTING.2.

(continued)

www.mhprofessional.com

406 Data b a s e s Demystified

Along the left margin about halfway down the page, click DOWN-3.	
LOADS.

Scroll down the page to the line for this title (4.	 Databases Demystified, 2nd
Edition).

Click the title and your browser will open a dialog box with options for 5.	
opening or saving the ZIP file. Choose the option that opens the file im-
mediately after it is downloaded.

When the ZIP file opens, extract the files to a local directory where you 6.	
can run the files. On Windows systems, I highly recommend that you put
the files in a simply named directory that is immediately below your root
directory, such as C:\sql. In most DBMS products, you must type in the
path to the file in order to run it from within the database, and some of
the products do not deal well with file paths such as “My Documents” that
contain spaces.

Follow the instructions in the topic for your DBMS product.7.	

Using the Microsoft Access Sample Database
In Microsoft Access 2000 or higher, follow these steps:

Double-click the file video_store_Access_2000.mdb.1.	

If you see a yellow security warning on the startup screen, enable the con-2.	
tent as follows:

a.	In Access 2000 and 2007, click the Options button next to the security
warning, and select the option that enables the content.

b.	In Access 2010, simply click the Enable Content button next to the
security warning.

Follow the examples in Chapter 3 to run forms-based or SQL queries.3.	

Installing the Sample Database in MySQL
MySQL is an attractive choice because versions are available for Microsoft
Windows, Mac OS X, several versions of Linux, and several versions of Unix.
To install the sample database on MySQL, follow these steps:

If you have not yet installed MySQL, you can download the Community 1.	
Server edition free of charge from www.mysql.com/downloads.

Launch the MySQL Command Line Client. On Windows systems you 2.	
will find it on the Start menu under MySQL and then MySQL Server x.y

www.mysql.com/downloads

Appendix Video Store Sample Database 407

(x.y being the version number, such as 5.1). You will be prompted for the
MySQL root password in order to connect. You should see a window like
the one shown in the following illustration. (Note that the default window
is a black background with white letters on most systems—I reversed mine
so it shows up better in print.)

Enter the 3.	 source command followed by the full path name of the video_
store_MySQL.sql file that you extracted from the downloaded ZIP file.
For example, if you placed the file in a directory named sql under the C:
root directory on a Windows system, the command would be

source c:\sql\video_store_MySQL.sql

The file is written so you can rerun it should you need to start over. There-4.	
fore it contains a DROP DATABASE command that will fail the first time
you run the script because the database to be deleted (VIDEO_STORE)
won’t exist. For all other statements in the file, you should see a message
that starts with “Query OK”, which of course means the statement was
successfully processed.

Should you wish to close your database session and return to it later, you 5.	
can just close the command-line window. When you relaunch the Com-
mand Line Client later and successfully enter the MySQL root password,
simply enter this command at the mysql> prompt to reconnect to the
database:

use VIDEO_STORE

408 Data b a s e s Demystified

Installing the Sample Database in SQL Server
To install the sample database on SQL Server, follow the steps in this section.
If you intend to use a database other than one installed on your personal com-
puter, you should solicit the help of a database administrator (DBA) who can
help you set up the database and permissions on an appropriate server. The
following steps assume installation on a personal computer:

If you have not yet installed SQL Server, you can download the Express 1.	
Edition at no charge from www.microsoft.com/express/Database. The de-
fault installation option (Database and Management Tools) is best because
the easiest way to run the sample database script is with the SQL Server
Management Studio, which is one of the tools included in the manage-
ment toolset. (If you have SQL Server installed without the management
tools, you can choose an installation option that will install only the man-
agement tools.)

Launch SQL Server Management Studio from the Start menu. Typically, 2.	
you will find it on the Start menu under Microsoft SQL Server xxxx
(where xxxx is the version).

In the Connect To Server dialog box, the default values are usually correct 3.	
for the server installed on your personal computer, but you may correct them
if you are using a different server. Click Connect to connect to the database
server. Once connected, you should see a screen like the following:

A database must be created to hold the video store objects. To create the 4.	
database:

a.	In the hierarchical list along the left margin, right-click Databases and
then click New Database.

www.microsoft.com/express/Database

Appendix Video Store Sample Database 409

b.	In the New Database dialog box, enter the Database Name video_store,
and let all the other values default as shown in the following illustration.
Click OK to create the database. (If you accidentally click Add, which
adds a line for another data file, click Remove to back up to where you
were.)

Expand the Databases list along the left margin by clicking the plus sign. 5.	
You should see the video_store database you just added. If not, try right-
clicking Databases and selecting Refresh.

Click the video_store database to make sure it is selected. Otherwise, it is 6.	
easy to accidentally run the script in the wrong database.

On the toolbar, select File | Open | File, or click the Open File icon. In the 7.	
Open File dialog box, navigate to where you placed the video_store_
SqlServer.sql file you extracted from the ZIP file you downloaded and

410 Data b a s e s Demystified

double-click it. The script should be loaded into Management Studio as
shown next:

Click the Execute icon on the toolbar (the one with the red exclamation 8.	
point) to run the script. Messages appear as shown in the following

Appendix Video Store Sample Database 411

illustration. If there are no errors, a green checkmark appears on the status
line just below the messages.

Close the script file by clicking the small black 9.	 X just above the script
along the right margin. Be careful not to click the white X on the red but-
ton at the top of the window because that will close Management Studio
instead of just the script file.

To begin writing and running your own SQL, click the New Query button 10.	
on the toolbar. Should you need to close Management Studio and return
later, just close the window, and when you relaunch Management Studio,
expand the Databases list, select video_store, and click the New Query
button to get back to where you left off.

If you need to start over from the beginning, you should drop and re-create 11.	
the database using Management Studio before rerunning the script.

412 Data b a s e s Demystified

Installing the Sample Database Schema in Oracle
To install the sample database schema in an Oracle database, follow the steps
in this topic to install the sample database. If you intend to use a database other
than one on your own personal computer, you should solicit the help of a da-
tabase administrator (DBA) who can help you set up the database and permis-
sions on an appropriate server. The following steps assume installation on a
personal computer:

If you do not have Oracle installed on your personal computer, you can 1.	
download and install Oracle XE (Express Edition) at no charge from www
.oracle.com/technology/products/database/xe.

You will need the SYSTEM user password in order to add a new user 2.	
schema to your Oracle database. Make sure you have it available.

Launch the Oracle command-line window. For Oracle 103.	 g XE, you will
find it on the Start menu as Oracle Database 10g Express Edition | Run
SQL Command Line. (Although Oracle 11g is available as of this writing,
the most recent version of XE is 10g.)

Enter the 4.	 @ command followed by the full path to the video_store_
Oracle.sql file you extracted from the ZIP file you downloaded. If the file
is in the C:\sql directory, the command would look like this:

@C:\sql\video_store_Oracle.sql

Enter the SYSTEM user password when prompted. The following illustra-5.	
tion shows the command from step 4 and the password prompt. (Note
that the default configuration is a black background with white text, which
I reversed so it shows up better in print.)

www.oracle.com/technology/products/database/xe
www.oracle.com/technology/products/database/xe

Appendix Video Store Sample Database 413

You will see a series of messages. The script is written so it can rerun, so 6.	
you will see an error caused by the DROP USER command the first time
you run it (the user will not exist prior to the first run).

You may begin entering your own SQL statements into the command-line 7.	
tool. If you need to exit and return later, you may close the window at any
time. When you relaunch the command-line tool, use the following com-
mand to connect to the video_store schema. When prompted for it, the
password will be video. (For versions prior to 11g, Oracle user IDs and
passwords are not case-sensitive.)
connect video_store

Installing the Sample Database in Other SQL-Based DBMS Products
Support for data types and syntax across available SQL products varies signifi-
cantly. The statements may require modification to run them on an SQL-based
DBMS product other than the ones previously listed. I suggest that you start
with the MySQL script because MySQL is the most compliant with the cur-
rent ISO/ANSI SQL standard. You might start out copying and pasting small
batches of statements at first to avoid being overwhelmed with error messages.
Consult an SQL guide for the DBMS you are using to correct any syntax errors
reported when you run the statements.

This page intentionally left blank

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / BM

Index

Symbols
_ (underscore character), as positional wildcard in SQL,

124
= (comparison operator), in search criteria, 84
% (percent sign), as nonpositional wildcard in SQL, 124
* (asterisk)

as nonpositional wildcard in Access, 124
for selecting all columns in table or view, 119

? (question mark), as positional wildcard in Access, 124
<> (not equal to) operator, in Access queries, 84–86

Numbers
2-D structures, tables as, 38
802.11 wireless standard, 290

A
abstraction, layers of data abstraction, 3
Access. See Microsoft Access
access control. See also privileges, 290, 297
access points, wireless, 290
ACID (atomicity, consistency, isolation, durability)

properties, 317
Active Server Pages (ASP), 276
Advanced Research Projects Agency Network (ARPANET),

271–272
aggregate functions

applying, 102–104
GROUP BY used with, 137–139
list of, 101
in SQL, 136–137

aggregations, in UML, 214–215
Agile software development, 167
ALTER statements, changing object definitions, 143

ALTER TABLE statement
check constraint used with, 146
overview of, 144
primary key constraint used with, 145
referential constraint used with, 144–145
unique constraint used with, 145–146

American National Standards Institute. See ANSI
(American National Standards Institute)

anomalies, in normalization
delete anomaly, 174–175
insert anomaly, 174
overview of, 173
update anomaly, 175

ANSI (American National Standards Institute)
handling null values, 50
RDBMS standards, 41
SQL standards, 114, 314
Standards and Planning Committee, 5, 17
storing XML in SQL databases, 352

APIs (application programming interfaces)
JDBC as, 278
JSQL as, 279
middleware solutions, 279
ODBC as, 277–278
overview of, 276

applets, Java, 278
application gateways, securing, 288
application programming interfaces. See APIs (application

programming interfaces)
application servers

in client/server model, 267–268
positioning of, 274

applications
connecting databases to, 276
connecting databases to Java application, 278–279
definition of, 3

 415

416 Databases Demystified

applications (Cont.)
middleware solutions for connecting databases

to, 279
ODBC for connecting databases to,

277–278
testing security of, 296
using with flat files, 10–11

applications, object-oriented
OO languages and, 361–362
OO programming and, 360–361
overview of, 360
persistence property, 362–363
persistence used in OO database, 363–365
persistence used in relational database,

365–367
architecture, data warehouse

multidimensional, 342–344
star schema, 340–342
summary table, 339–340

architecture, security of
MySQL, 298–300
Oracle, 302–304
overview of, 297
SQL Server and Sybase, 300–302

ARPANET (Advanced Research Projects Agency Network),
271–272

artificial identifiers. See surrogate (artificial) identifiers
artificial (surrogate) identifiers

overview of, 178–179
replacing primary key with, 182

ASP (Active Server Pages), 276
asterisk (*)

as nonpositional wildcard in Access, 124
for selecting all columns in table or view, 119

asymmetric keys, in encryption, 294
atomic nature, of attributes, 30
atomicity, consistency, isolation, durability (ACID)

properties, 317
attributes

in Chen’s format, 207
in conceptual database design, 28
entity, 29–30
functional dependence of, 183
multivalued, 176–177
naming conventions for, 221
relational format, 209
representing in ERDs, 207
type discriminator, 217
in UML, 214
unique identifiers, 178
XML, 354

auditing security, 309
AVG function

in Access, 101
in SQL, 136

B
Bachman, Charles W., 20–21
BCNF (Boyce-Codd normal form), 189–190
behavior diagrams, UML, 229
behaviors, in OO programming, 360
BETWEEN operator, for finding ranges of values, 123
biometric devices, in physical security, 285
blocks, locks and, 324
Boyce-Codd normal form (BCNF), 189–190
buffer overflow attacks, 296
buffers, 315
bugs, ongoing support and, 164
build (release) numbering, change controls, 331
business rules

in conceptual database design, 28
data integrity and, 248–250
enforcing, 237
overview of, 37

C
C, 52
C++, 351, 361
C#, 362
cable modems, securing, 288–289
calculated (derived) columns, in Access queries, 97–100
Call Level Interface (CLI)

C# and, 362
ODBC based on, 277

candidate keys
BCNF and, 190
unique identifiers for, 179–180

cardinality
in Chen’s format, 207
in IE format, 210
maximum, 30
minimum, 31
in relational format, 208
representing in ERDs, 206–207
in UML, 214

Cartesian product, joins and, 88, 128–130
cascading deletes, of child rows, 46
catalog view, finding database objects with, 116–117
centralized model, for database deployment, 262–263
CGI (Common Gateway Interface), 275
change controls, 331–332
check constraints

adding to columns to enforce business rules, 237
implementing business rules with, 253
as integrity constraints, 50–51
using with ALTER TABLE statement, 146

check-out/check-in, change controls, 332
Chen, Dr. Peter, 22
Chen’s ERD format, 207–208

I ndex 417

chicken method, of rollout, 164
cipher text, vs. plain text, 294
circuit-level gateways, securing, 288
class diagrams, in UML, 213
class hierarchy, organizing objects into, 19
classes, superclasses and subclasses, 215
CLI (Call Level Interface)

C# and, 362
ODBC based on, 277

client/server model
for database deployment, 265
n-tier client/server model, 268–270
three-tier client/server model, 267–268
two-tier client/server model, 265–267

clients
application servers and, 267–268
in client/server model, 265
data encryption for securing, 294–295
intruder security, 295–296
login credentials for, 293–294
security of, 293
workstations, 274

CODASYL (Conference on Data Systems Languages), 20–21
Codd, Dr. E.F., 16, 21, 161, 172, 335
code, program units during construction phase, 162
cold turkey method, of rollout, 164
columns

calculated (derived) columns, 97–100
check constraints, 50–51
Choose Columns to Display option in Access, 76–77
data types assigned to, 253
designing tables and, 236–237
foreign keys and, 44
locks at column-level, 324
naming conventions, 245–246
NOT NULL constraint, 50
omitting from views, 308
primary key constraints, 43
selecting, 119–120
as smallest unit of data in relational databases, 40
table definition and, 41–42

COLUMNS view, MySQL catalog views, 116–117
command-based languages. See also SQL (Structured

Query Language), 112
command-based queries, as alternative to forms-based, 58
commit, atomicity and, 317
COMMIT transactions, DML statements, 139–140
Common Gateway Interface (CGI), 275
comparison operator (=), in search criteria, 84
compilers, 361–362
compound conditions, OR operator for, 124–125
Compound Row Selection, in Access queries, 83–84
conceptual database design

attributes, 29–30
business rules, 37
entities, 29

many-to-many relationships, 34–35
one-to-many relationships, 33–34
one-to-one relationships, 32–33
overview of, 28
recursive relationships, 36
relationships, 30–31
summary and quiz, 54–56

conceptual design phase, of SDLC (system development
life cycle), 160–161

concurrent update problem
deadlocks, 324–326
locks, 322–324
overview of, 321–322

conditions, OR operator for compound conditions, 124–125
Conference on Data Systems Languages (CODASYL),

20–21
connecting databases, to applications. See also deploying

databases
Java applications and, 278–279
middleware solutions for, 279
overview of, 276
summary and quiz, 279–281
via ODBC, 277–278

connecting databases, to Web. See also deploying databases
components in Web “technology stack,” 274
introduction to Internet and the Web, 271–274
invoking transactions from web pages, 275–276
overview of, 270–271
summary and quiz, 279–281

consistency, ACID property, 317
constraints. See database constraints
construction phase, of SDLC (system development life

cycle), 162–163
cookies, browser security and, 295
correlated subqueries, 127
COUNT

aggregate functions in Access, 101
aggregate functions in SQL, 136

Create, Read, Update, and Delete (CRUD), 231–232
Create ribbon, in Access interface, 64–65
CREATE statements

creating database objects with, 143
indexes, 147
roles, 307–308
tables, 143–144
views, 147

credentials, login, 293–294
Criteria, query options in Access, 73–74
CRUD (Create, Read, Update, and Delete), 231–232
cursor processing, in database implementation, 314–316
Customer ID, as unique identifier, 30

D
data abstraction, layers of, 3
Data Control Language. See DCL (Data Control Language)

418 Databases Demystified

Data Definition Language. See DDL (Data Definition
Language)

data encryption. See also encryption, 294–295
data flow diagram. See DFD (data flow diagram)
data integrity. See also integrity constraints

business rules and, 248–250
overview of, 49–50

Data Manipulation Language. See DML
(Data Manipulation Language)

data marts, 344–345
data mining, 346
data modelers, role in conceptual design phase, 160
data models

Chen’s ERD format, 207–208
conceptual database design and, 28, 160–161
contrasted with database models, 8–9
data-driven approach to development, 156–157
entity relationship modeling, 206
ERD formats, 206–207
guidelines for drawing ERDs, 220–221
IDEF1X ERD format, 211–212
information engineering ERD format, 209–211
overview of, 205–206
relating entities and processes, 231–232
relational ERD format, 208–209
summary and quiz, 232–234
supertypes and subtypes and, 215–220
UML (Unified Modeling Language) for, 212–214

Data Query Language. See DQL (Data Query Language)
data sources, OLTP (online transaction processing), 337
data types

assigning to columns, 253
benefits of, 40
designing tables and, 236
SQL support for DATE and TIMESTAMP, 114
standards compliance and, 41–42
XML data type, 356–357

data warehouses
history of, 335
multidimensional database architecture, 342–344
overview of, 336–338
star schema architecture, 340–342
summary table architecture, 339–340

database administrators. See DBAs (database administrators)
database connectivity. See connecting databases
database constraints

check constraints, 50–51, 237, 253
integrity constraints, 49–50
intersection tables, 48–49
in logical database design, 42–43
naming conventions, 246–247
NOT NULL constraints, 50, 250
primary key constraints, 43, 250–251
referential (foreign key) constraints, 43–48, 69, 251
triggers for enforcing, 52

unique constraints, 145–146, 237, 251–252
used with ALTER TABLE statement, 144–146

database deployment. See deploying databases
database design

conceptual. See conceptual database design
logical. See logical database design
physical. See physical database design

database designers, 37
database fundamentals

data abstraction and, 3–4
database models contrasted with data models, 8–9
DBMSs (Database Management Systems), 3
flat files, 9–11
hierarchical models, 11–14
history of databases, 20–23
layers of data abstraction, 5–8
network models, 14–16
object-oriented models, 18–20
properties and definition of databases, 2
relational models, 16–18
summary and quiz, 23–25

database implementation. See implementing databases
database-level locks, 323
database lifecycle. See life cycle, of databases
database machines, 23
Database Management Systems (DBMS)

services of, 3
translating flat files in physical layer into database

structures of logical layer, 9
database models

contrasted with data models, 8–9
definition of, 2
flat files, 9–11
hierarchical, 12–14
network, 14–16
object-oriented, 18–20
object-relational, 20
relational, 16–18, 23

database objects
contrasted with objects in OO model, 19
creating, 143–144
definition of, 2
viewing with Toad for SQL, 117–118

database owner (DBO), 304
database privileges, in MySQL, 300
database security. See security
database servers

isolating enterprise network from Internet,
286–289

network security and, 286
physical security and, 285–286
securing, 285
wireless access security and, 290–292

Database Task Group (DBTG), 20–21
Database Tools ribbon, in Access interface, 65–66

I ndex 419

Datasheet View, in Access, 69–70
Date, C.J., 192
DATE data type, SQL support for, 114
DB2

creating constraint triggers in, 52
history of, 22
as OR model, 20

DBAs (database administrators)
role in conceptual design phase, 160
role in logical database design, 37
securing schema owner accounts, 304–305

DBMS (Database Management Systems)
services of, 3
translating flat files in physical layer into database

structures of logical layer, 9
DBO (database owner), 304
DBTG (Database Task Group), 20–21
DCL (Data Control Language)
GRANT statement, 149
overview of, 148
REVOKE statement, 149
types of SQL statements, 113

DDL (Data Definition Language)
ALTER TABLE statement, 144–146
CREATE INDEX statement, 147
CREATE TABLE statement, 143–144
CREATE VIEW statement, 147
DROP statement, 147–148
overview of, 143
types of SQL statements, 113

deadlocks, 324–326
delete anomaly, in normalization, 174–175
DELETE statements

performance tuning and, 330
removing rows from tables, 142–143

deploying databases
n-tier client/server model, 268–270
overview of, 262
summary and quiz, 279–281
three-tier client/server model, 267–268
two-tier client/server model, 265–267

derived (calculated) columns, in Access queries, 97–100
Descartes, René, 88
design phases

conceptual, 160–161
logical, 161
physical, 161–162

Design View, in Access, 70
development, traditional. See SDLC (system development

life cycle)
DFD (data flow diagram)

components of, 227–229
overview of, 227
strengths/weaknesses of, 229

dimension tables, in star schema architecture, 340–341

distributed model, for database deployment, 263–265
DKNF (domain-key normal form), 192
DML (Data Manipulation Language)
COMMIT and ROLLBACK transactions, 139–140
DELETE statements, 142–143
INSERT statements, 140–142
overview of, 139
performance tuning, 329–330
types of SQL statements, 113
UPDATE statements, 142
using with views, 255

DMZ, 274
DNS (Domain Name System), 272–273
document review, in requirements gathering phase, 160
DoD (Department of Defense), 271–272
domain-key normal form (DKNF), 192
Domain Name System (DNS), 272–273
DOS (denial of service) attacks, 287–288
DQL (Data Query Language)

choosing rows to display, 122, 154
LIKE operator, 124, 287–288
listing everything in a table, 119–120, 192–193
listing specific columns, 120, 271–272
BETWEEN operator, 123, 210
OR operator for compound conditions, 124–125,

183–186
SELECT statement and clauses, 118–119, 186–188
sorting results, 121–122, 262–263
types of SQL statements, 113, 265
WHERE clause, 122–123, 263–265

DROP statement
dropping (destroying) database objects, 143
table deletion, 147–148

DSL connections, securing, 288–289
durability, ACID properties, 317
dynamic web pages, 272

E
elements, XML, 354
Ellison, Larry, 22
encapsulation, in OO model, 18
encryption

data encryption, 294
guidelines for using, 294–295
securing wireless access, 290–291
VPNs and, 289–290

enterprise network
definition of, 286
infrastructure of, 261–262
isolating from Internet, 286–289

entities
attributes of, 29–30
in conceptual database design, 28
guidelines for drawing ERDs, 220

420 Databases Demystified

entities (Cont.)
in IDEF1X format, 212
overview of, 29
relationships among. See relationships
representing in ERDs, 206
supertypes and subtypes, 215
in UML, 214

Epstein, Bob, 22
ER (entity-relational) models. See also ERDs

(entity-relationship diagrams), 22, 206
ERDs (entity-relationship diagrams)

Chen’s format, 207–208
in conceptual design, 161
formats of, 206–207
guidelines for drawing, 220–221
IDEF1X format, 211–212
information engineering format, 209–211
relating entities to processes, 231–232
relational format, 208–209
for relationships in relational databases, 17
supertypes and subtypes in, 215–220
UML (Unified Modeling Language) applied to, 212–214

errors
finding and repairing early in development process, 163
ongoing support and, 164–165

Excel. See Microsoft Excel
execution plan, queries, 327
External Data ribbon, in Access interface, 65
external design. See conceptual design phase
external entities, in conceptual database design, 29
external layer, layers of data abstraction, 6
extranets, 272

F
fact tables, in star schema, 340–342
Fagin, Ron, 192
feedback, result sets and, 120
Field, query options in Access, 73
fifth normal form, 192
File Transfer Protocol (FTP), 272
files

definition of, 2
locks at file-level, 323

Finkelstein, Clive, 209
firewalls

overview of, 272
protecting enterprise network, 287
securing LAN connections, 289
web servers and, 274

first normal form (eliminating repeating data), 180–183
flat files

alternative approaches in use of, 11
databases systems evolving from, 9
example of, 10–11

flowcharts
components of, 222–223
overview of, 222
strengths/weaknesses of, 223–224
UML structure diagrams, 229

foreign key constraints. See referential (foreign key) constraints
foreign keys

moving multivalued attributes or repeating groups to
new relation, 181–182

naming conventions for, 221
in UML, 214

forest, XML, 355
forms, as Access object type, 66
forms-based queries

overview of, 57
QBE (Query By Example) and, 58–59
summary and quiz, 107–109

forms-based queries, in Access
aggregate functions in, 101–104
Choose Columns to Display, 76–77
compound row selection in query design, 83–84
creating queries, 72–75
displaying selected rows, 81–83
exploring Access interface, 63–67
joining tables, 87–89
limiting join results, 90–91
list returned by, 75–76
multiple joins and calculated columns in, 97–100
not equal to (<>) operator used in example, 84–86
opening sample database in Access 2007, 59–60
opening sample database in Access 2010, 61–63
outer joins, 91–95
overview of, 59
Relationships panel, 67–69
self-joins, 104–107
Sorting Results, 78–81
SQL in, 95–97
summary and quiz, 107–109
table design view, 69–71

fourth normal form, 191
FROM clause
SELECT statement and, 118
table aliases in, 134

FTP (File Transfer Protocol), 272
full outer joins

in Access, 92
in SQL, 133

fully normalized data, 192
function hierarchy diagrams, in process modeling, 225–226
functional dependence

of attributes, 183
second normal form eliminates partial dependencies,

183–186
functions

aggregate, 101–104

I ndex 421

definition of, 101
SQL/XML, 358–359

G
gateways

CGI as, 275
non-CGI gateways, 276
securing, 288

generalization. See supertypes (generalization)
Generalized Update Access Method (GUAM), 20
GRANT statement, privileges and, 149, 306–307
grantee, of privileges, 148
grantor, of privileges, 148
GROUP BY clause

aggregate functions and, 137–139
SELECT statement and, 118

GUAM (Generalized Update Access Method), 20
GUI panel, for forms-based queries, 58

H
hardware, development environment for, 162
Hawthorne effect, 159–160
hierarchical database model

overview of, 11
structure of, 12–14

Home ribbon, in Access interface, 64
host variables, 316
hosts, Web, 272
HTML (Hypertext Markup Language), 273–274, 352, 354
HTTP (Hypertext Transfer Protocol), 273
hyperlinks, navigating Web via, 272

I
IBM

in development of OO databases, 22
history of SQL and, 113
IMS (Information Management System), 12, 20
JAD (Joint Application Design), 166
QBE (Query By Example) tool, 58–59
Red Brick technology, 340

IDEF1X ERD format, 211–212
identifiers

OIDs (object identifiers), 360
surrogate or artificial, 178–179, 182
unique, 30, 178–180, 214, 237

IDMS (Integrated Database Management System), 14
IDS (Integrated Data Store), 20
implementation phase, of SDLC (system development

life cycle), 163–164
implementing databases

change controls, 331–332
concurrent update problem, 321–322
cursor processing, 314–316

deadlocks, 324–326
locks, 322–324
overview of, 313
performance tuning, 326–327
summary and quiz, 332–334
transaction management, 316–317
transaction support in MySQL, 318–319
transaction support in Oracle, 320–321
transaction support in SQL Server, 319–320
tuning DML statements, 329–330
tuning queries, 327–329

IMS (Information Management System), 12, 20
inclusive joins. See outer joins
indexes

creating, 147
faster searches with, 256–257
guidelines for using, 257
maintaining, 330
naming conventions, 247
primary key constraints implemented via, 43

information engineering ERD format, 209–211
Information Management System (IMS), 12, 20
Informix

history of development of OO databases, 22
as OR model, 20

infrastructure, of enterprise, 261–262
inheritance

of join conditions, 88
objects and, 19

Inmon, William H., 335
inner joins

overview of, 91–92
of two tables, 130–131

inner queries, 126
insert anomaly, in normalization, 174
INSERT statement

overview of, 140
performance tuning and, 329–330
subquery used with, 141
using with views, 255
VALUES clause used with, 141

instances
definition of, 2
of entities, 29
of objects, 19–20
Oracle, 303

Integrated Data Store (IDS), 20
Integrated Database Management System (IDMS), 14
integrity constraints

check constraints, 50–51, 237, 253
NOT NULL constraints, 50, 250
overview of, 49–50
triggers for enforcing, 52

integrity, data. See data integrity
internal design. See logical design phase

422 Databases Demystified

Internet
introduction to, 271–274
isolating enterprise network from, 286–289

Internet computing model. See n-tier client/server model
interpretive languages, Java as, 361
intersection data, many-to-many relationships and, 34–35
intersection tables

in conceptual database design, 28
for mapping intersection data, 35
overview of, 48–49

interviews, in requirements gathering phase of
development, 158

intranets
database server located on, 274
overview of, 272

intruder access, securing clients against, 295–296
IP addresses, 273
IP spoofing attacks, 287
ISO (International Organization for Standardization)

standards for SQL, 114, 314
standards for storing XML in SQL databases, 352

isolation, ACID properties, 317
iSQL utility, for working with SQL, 114

J
JAD (Joint Application Design), 166
Java

connecting databases to Java application, 278–279
as object-oriented language, 351, 361
writing triggers in, 52, 254

Java Database Connectivity (JDBC), 278, 365
Java Relational Binding (JRB), 279
Java SQL (JSQL), 279
JavaScript, 278, 295
JDBC (Java Database Connectivity), 278, 365
Join Properties dialog, in Access, 92–93
joins

in Access queries, 87–89
Cartesian product and, 128–130
inner, 91, 130–131
limiting results from, 90–91, 133–134
to lookup tables, 308
multiple, 97–100
outer, 91–95, 131–133
in relational databases, 17
self-joins, 104–107, 134–135

Joint Application Design (JAD), 166
JRB (Java Relational Binding), 279
JScript, 278, 295
JSQL (Java SQL), 279

K
Kay, Alan, 361
KEY_COLUMN_USAGE, MySQL catalog views, 117

Kimball, Ralph, 336, 340
King, Frank, 22

L
LANs (local area networks), securing, 288–289
layers of data abstraction

external layer, 6
logical data independence, 8
logical layer, 6
overview of, 4
physical data independence, 6–7
physical layer, 5

least recently used (LRU) algorithm, 364–365
left outer joins

in Access, 92
in SQL, 132

life cycle, of databases
Agile software development, 167
conceptual design phase, 160–161
construction phase, 162–163
implementation and rollout phases, 163–164
logical design phase, 161
ongoing support, 164–165
overview of, 153–154
physical design phase, 161–162
planning phase, 156–157
prototyping approach, 165–166
RAD approach, 165–166
requirements gathering phase, 157–160
SDLC approach, 154–155
summary and quiz, 167–169

LIKE operator, searching character columns
with, 124

lists, Access query returning, 75–76
local area networks (LANs), securing, 288–289
lock escalation, 323
lock granularity, 323
lock wait state, 323
locks

deadlocks and, 324–326
updating databases and, 322–324

logical data independence, 8
logical database design

check constraints, 50–51
columns and data types, 40–42
constraints, 42–43
integrity constraints, 49–50
intersection tables, 48–49
NOT NULL constraints, 50
overview of, 37–38
primary key constraints, 43
referential constraints, 43–48
summary and quiz, 54–56
tables, 38–40
triggers for constraint enforcement, 52

I ndex 423

using normalization. See normalization
views, 52–54

logical design phase, of SDLC (system development
life cycle), 161

logical layer, layers of data abstraction, 6
logical terms, in normalization, 173
login

credentials, 293–294
SQL Server and, 300–301

lookup tables, joins to, 308
LRU (least recently used) algorithm, 364–365

M
MAC (Media Access Control) address list, 292
macros, as Access object type, 66
Management Studio. See SQL Server Management Studio
mandatory relationships, 32
many-to-many relationships

in Chen’s format, 207
intersection tables and, 48–49
overview of, 34–35
recursive, 36

mapping
conceptual design to logical design, 37
logical design to physical design, 161–162

markup languages, 352
Martin, James, 209
MAX

aggregate functions in Access, 101
aggregate functions in SQL, 136

maximum cardinality
in Chen’s format, 207
in IE format, 210
of relationships, 30
representing in ERDs, 206

McClure, Carma, 209
Media Access Control (MAC) address list, 292
messages, in OO programming, 360
metadata

in data warehouse architecture, 340
definition of, 9
in Design View panel, 70–71

methods, in OO programming, 18, 360
Microsoft Access

data types, 42
exploring interface of, 63–66
forms-based queries. See forms-based queries, in Access
NOT NULL constraint, 50
object types, 66–67
opening sample database in Access 2007, 59–60
opening sample database in Access 2010, 61–63
referential constraints in, 44–48
Relationships panel, 47, 67–69
standards compliance and, 41–42

table design view, 69–71
triggers for enforcing constraints, 52
views are called queries in, 52–54
wildcard operators, 124

Microsoft Excel, databases compared with spreadsheets, 4
Microsoft Office suite, 64
Microsoft SQL Server. See SQL Server
middleware solutions, for connecting databases

to applications, 279
MIN

aggregate functions in Access, 101
aggregate functions in SQL, 136

minimum cardinality
in Chen’s format, 207
in IE format, 210
of relationships, 31
representing in ERDs, 207

modules
as Access object type, 66
in logical design, 161

MOLAP (multidimensional OLAP) databases, 342–344
monitoring security, 309
multidimensional database architecture, 342–344
multidimensional OLAP (MOLAP) databases, 342–344
multiple joins, in Access queries, 97–100
multivalued attributes

first normal form not containing, 180–182
in normalization, 176–177

MySQL
cursor support in, 314
data types, 42
database security in, 298–300
finding database objects with catalog views, 116–117
getting started with, 114–115
standards compliance and, 41
system privileges in, 305–306
transaction support in, 318–319

MySQL Reference Manual, 116–117
MySQL Workbench, 117

N
n-tier client/server model, 268–270
namespace, of tables, 119
naming conventions

for attributes and keys, 221
for columns, 245–246
for constraints, 246–247
for indexes, 247
for tables, 39–40, 244–245
for views, 247–248

NAT (network address translation), 288
National Institute of Standards and Technology (NIST), 211
Navigation Pane, in Access interface, 65–66, 69
Netscape Server API, 276

424 Databases Demystified

network address translation (NAT), 288
network database model

history of development of, 20–21
overview of, 14
structure of, 14–16

network security
isolating enterprise network from Internet, 286–289
overview of, 286
securing wireless access, 290–292

NIST (National Institute of Standards and Technology), 211
nodes (records)

in hierarchical database model, 12
in network databases, 14

noncorrelated subqueries, 126–127
nonprocedural languages, 224–225
normalization

BCNF (Boyce-Codd normal form), 189–190
CBC (Computer Books Company) example, 199–202
delete anomaly and, 174–175
denormalization and, 192–193
designing tables and, 236
DKNF (domain-key normal form), 192
fifth normal form, 192
first normal form (eliminating repeating data), 180–183
fourth normal form, 191
insert anomaly and, 174
during logical design phase, 161
mapping entities to tables, 38
need for, 173–174
overview of, 171–173
primary key selection, 178–180
process of, 175–178
second normal form (eliminating partial dependencies),

183–186
summary and quiz, 202–204
third normal form (eliminating transitive dependencies),

186–188
update anomaly and, 175
UTLA (University of Three-Letter Acronyms) example,

193–198
not equal to (<>) operator, in Access queries, 84–86
NOT NULL constraint

implementing business rules with, 250
as integrity constraints, 50

null values, 50

O
object identifiers (OIDs), 360
object instances, in OO model, 19
object-orientation. See OO (object-orientation)
object-oriented (OO) database model

history of development of, 22
overview of, 18–19
structure of, 19–20

object privileges
granting/revoking, 306–307
in MySQL, 300
overview of, 148
in SQL Server, 302

object-relational (OR) databases, 20, 367–369
object request brokers, 264
objects

contrasted with database objects, 19
definition of, 18
types supported by Access, 66–67

observation, in requirements gathering phase of
development, 159–160

ODBC (Open Database Connectivity), 277–278
ODS (Operational Data Store), 337
Office suite (Microsoft), 64
OIDs (object identifiers), 360
OLAP (online analytical processing)

data marts, 344–345
data mining, 346
data warehousing and, 336–338
multidimensional database architecture, 342–344
overview of, 335–336
star schema data warehouse architecture, 340–342
summary and quiz, 347–349
summary table data warehouse architecture,

339–340
OLTP (online transaction processing)

compared with data warehouses, 336–338
overview of, 335
transactions and, 317

one-to-many relationships
foreign keys and, 43–44
in hierarchical databases, 12
in network databases, 14
overview of, 33–34
recursive, 36
in relational databases, 17

one-to-one relationships
among entities, 32–33
implementing, 237
recursive, 36

ongoing support phase, of SDLC (system development
life cycle), 164–165

online analytical processing. See OLAP (online analytical
processing)

online transaction processing. See OLTP (online transaction
processing)

OO (object-orientation)
languages, 360–362
OR (object-relational) databases, 367–369
overview of, 360
persistence property, 362–363
persistence used in OO database, 363–365
persistence used in relational database, 365–367

I ndex 425

programming, 360
superclasses and subclasses, 215

OO (object-oriented) database model
history of development of, 22
overview of, 18–19
structure of, 19–20

Open Database Connectivity (ODBC), 277–278
operating system (OSs), system-level security and, 292
Operational Data Store (ODS), 337
operational databases, 335
optional (conditional) relationships, 33
OR (object-relational) databases, 20, 367–369
OR operator, for compound conditions, 124–125
Oracle

creating constraint triggers, 52
cursor support in, 314
data types, 42
GUI tools for working with SQL, 115
history of development of OO databases, 22
multidimensional database architectures, 342
as OR (object-relational) model, 20
query execution plan, 327
security in, 302–304
system privileges in, 306
transaction support in, 320–321

ORDER BY clause
SELECT statement and, 118
sorting SQL queries with, 121–122

OSs (operating system), system-level security and, 292
outer joins

exercise applying, 93–95
overview of, 91–92
with SQL, 131–133
types of, 92

outer queries, 126
owner-member relationships, in network databases, 14

P
packet filtering, 287
packets, 286
page locks, 324
parent-child relationships

in hierarchical databases, 12
in network databases, 14

partitioning
large tables, 238
tablespaces, 38

partitioning column, 238
passwords

login credentials and, 293–294
system-level security and, 293

patches
ongoing support and, 165
system-level security and, 293

percent sign (%), as nonpositional wildcard in SQL, 124

performance tuning
ongoing support and, 165
overview of, 326–327
tuning DML statements, 329–330
tuning queries, 327–329

permissions, SQL Server, 302
persistence property, in object orientation

overview of, 362–363
used in OO database, 363–365
used in relational database, 365–367

physical data independence, 6–7
physical database design

adding business rules and integrity constraints,
248–250

adding indexes, 256–257
check constraints, 253
data types, precision, and scale, 253
designing tables, 236–240
designing views, 254–256
implementing supertypes and subtypes, 240–244
naming columns, 245–246
naming constraints, 246–247
naming indexes, 247
naming tables, 244–245
naming views, 247–248
NOT NULL constraint, 250
overview of, 37, 235
primary key constraints, 250–251
referential constraints, 251
summary and quiz, 257–259
triggers, 254
unique constraints, 251–252

physical design phase, of SDLC (system development
life cycle), 161–162

physical layer, layers of data abstraction, 5
physical security, 285–286
physical terms, in normalization, 173
PL/SQL

cursor support in Oracle via, 314
writing triggers in, 52, 254

plain text, vs. cipher text, 294
planning phase, of SDLC (system development life cycle),

156–157
pointers, to records in hierarchical databases, 12
policies

in physical security, 285–286
securing wireless access, 291

POP (Post Office Protocol), 272
port scans, 289
Post Office Protocol (POP), 272
precision, numeric data types and, 253
precompilers, JSQL (Java SQL), 279
predicates, conditions of joins, 88
primary key constraints

implementing business rules with, 250–251
in logical database design, 43

426 Databases Demystified

primary key constraints (Cont.)
maintaining relationships in Access, 68
using with ALTER TABLE statement, 145

primary keys
BCNF (Boyce-Codd normal form) and, 190
choosing from unique identifiers, 178–180
copying to new relation as foreign key, 181–182
fourth normal form and, 191
naming conventions for, 221
in second normal form, 184
of tables, 237

prioritization, change controls, 331
private keys, in encryption, 294
privileges

granting, 149
in MySQL, 299–300
object privileges, 306–307
in Oracle, 302
overview of, 148
revoking, 149–150
roles and, 307–308
in SQL Server, 302
system privileges, 293, 305–306
views and, 255

procedural languages, 224–225
process models

DFD (data flow diagram), 227–229
flowcharts, 222–224
function hierarchy diagrams, 225–226
overview of, 205, 221–222
process-driven approach to development, 156–157
relating entities and processes, 231–232
summary and quiz, 232–234
swim lane diagram, 226–227

program units, coding and testing during construction
phase, 162

properties, encapsulation of, 18
protocols, Internet, 272
prototyping, as approach to development life cycle, 165–166
proxy servers, in network security, 288
public keys, in encryption, 294

Q
QA (quality assurance), 162–163
QBE (Query By Example), 58–59
queries

as Access object type, 66
command-based, 58
creating in Access, 72–75
execution plan, 327
forms-based. See forms-based queries
performance tuning, 327–329
in relational databases, 16
result sets, 314

Query By Example (QBE), 58–59
Query Design panel, in Access

Advanced Sorting, 79–81
aggregate functions in, 101–104
Choose Columns to Display, 76–77
Choose Rows to Display, 81–83
components of, 72–73
Compound Row Selection, 83–84
joining tables, 87–89
limiting join results, 90–91
list example, 75–76
multiple joins, 97–100
multiple joins and calculated columns in, 97–100
not equal to (<>) operator used in searches, 84–86
outer (inclusive) joins, 91–95
overview of, 52–53
self-joins, 104–107
Sorting Results, 78–79
SQL and, 95–97

query languages, in history of development of relational
databases, 21

Query View panel, in Access, 102
question mark (?), as positional wildcard in Access, 124
Quick Access Toolbar, in Access, 64

R
RAD (Rapid Application Development), 165–166
Rational Unified Process (RUP), 213
RDBMS (relational database management systems)

ANSI standards, 41–42
primary key constraints in, 43
referential constraints, 44–48

records (nodes)
in hierarchical database model, 12
in network databases, 14

recursive relationships
overview of, 36
self-joins and, 104

references, object, 360
referential (foreign key) constraints

editing relationships in Access, 69
enforcing, 45–46
implementing business rules with, 251
intersection tables and, 48–49
overview of, 44
relationships as, 237
SQL statements for defining, 46–48
using with ALTER TABLE statement, 144–145

relational calculus, 21
relational database model

advantages of, 23
history of development of, 21–22
overview of, 16
structure of, 17–18

I ndex 427

relational databases, persistence property in, 365–367
relational ERD format, 208–209
“A Relational Model of Data for Large Shared Data Banks”

(Codd), 21
relations, in normalization, 172–173, 176
relationships

associations among entities, 30–31
in Chen’s format, 207
guidelines for drawing ERDs, 220
in IDEF1X format, 212
in IE format, 210
maintaining in Access, 68–69
many-to-many relationships, 34–35
in Northwind example of conceptual database design, 28
one-to-many relationships, 33–34
one-to-one relationships, 32–33
recursive relationships, 36
as referential constraints, 237
representing in ERDs, 206
in UML, 214

Relationships panel, in Access, 67–69
release (build) numbering, change controls, 331
repeating groups, first normal form not containing

repeating data, 180–182
reports, as Access object type, 66
requirements gathering phase, of SDLC

document review during, 160
interviews in, 158
observation in, 159–160
overview of, 157–158
surveys in, 159

result sets
feedback and, 120
queries, 314

REVOKE statement, privileges and, 149, 306
ribbon panel, in Access interface, 64
right outer joins

in Access, 92
in SQL, 132–133

roles, privileges and, 148, 307–308
rollback, atomicity and, 317
ROLLBACK transactions, DML statements, 139–140
rollout phase, of SDLC (system development life cycle),

163–164
routers

isolating enterprise network from Internet, 286
securing LAN connections, 289
web servers and, 274

routing tables, 286
row of data

collections of related items in normalization, 173
insert anomaly and, 174
multivalued attributes, 176–177
update anomaly and, 175
visualizing in normalization process, 176

rows
Choose Rows to Display in Access, 81–83
Compound Row Selection, 83–84
locks at row-level, 324
WHERE clause choosing which to display, 122

RUP (Rational Unified Process), 213

S
scale, numeric data types and, 253
schema, 2
schema owner accounts, 304–305
scripting languages, 295
SDLC (system development life cycle)

conceptual design phase, 160–161
construction phase, 162–163
implementation and rollout phases, 163–164
logical design phase, 161
ongoing support, 164–165
overview of, 154–155
physical design phase, 161–162
planning phase, 156–157
requirements gathering phase, 157–160

searches. See also queries
comparison operator (=) in, 84
indexes providing faster searches, 256
LIKE operator for searching character columns, 124
not equal to (<>) operator in, 84–86

second normal form (eliminating partial dependencies)
overview of, 183–186
transforming into third normal form, 187

sector size, of blocks, 324
secure sockets layer (SSL), 288
security

access control, 297
architectures, 297
client and application security, 293
data encryption, 294–295
of database server, 285
isolating enterprise network from Internet, 286–289
login credentials, 293–294
monitoring and auditing, 309
in MySQL, 298–300
necessity of, 284
network security, 286
object privileges, 306–307
in Oracle, 302–304
overview of, 283
physical security, 285–286
roles, 307–308
schema owner accounts and, 304–305
securing clients against intruder access, 295–296
securing wireless access, 290–292
in SQL Server and Sybase, 300–302
summary and quiz, 309–311

428 Databases Demystified

security (Cont.)
system-level security, 292–293
system privileges, 305–306
views and, 308

SELECT statement
choosing rows to display using WHERE clause, 122–123
listing everything in a table, 119–120
listing specific columns, 120
overview of, 118–119
sorting results with ORDER BY clause, 121–122
subqueries (subselect), 125–128

self-joins
in Access, 104–107
in SQL, 134–135

SEQUEL, 113
Server-Side Includes (SSI), 275–276
servers

in client/server model, 265
database servers, 274
privileges in MySQL, 299–300
web servers, 274

Service Set Identifiers (SSID) broadcasts, 291–292
servlets, Java, 278
sets, in network databases, 14
SGML (Standardized General Markup Language),

274, 352
Show, query options in Access, 73
Silicon Valley, history of development of databases, 23
Simple Mail Transfer Protocol (SMTP), 272
Smalltalk, as object-oriented language, 361
SMTP (Simple Mail Transfer Protocol), 272
Snowflake schema architecture, in data warehousing, 342
software

client security and, 296
development environment for, 162
system-level security and, 292–293

sorting
advanced, 79–81
with ORDER BY statement, 121–122
overview of, 78–79
query options in Access, 73

specialization. See subtypes (specialization)
spreadsheets, databases compared with, 4
SQL injection attacks, 296
SQL Server

cursor support in, 314
data types, 42
in history of development of relational databases, 22
query execution plan, 327
security in, 300–302
system privileges in, 306
transaction support in, 319–320

SQL Server Management Studio
query execution plan, 327
utility for working with SQL, 114

SQL (Structured Query Language)
aggregate functions, 136–137
ALTER TABLE statement, 144–146
Cartesian product and, 128–130
choosing rows to display using WHERE clause, 122–123
for command-based queries, 58
COMMIT and ROLLBACK transactions, 139–140
CREATE INDEX statement, 147
CREATE TABLE statement, 143–144
CREATE VIEW statement, 147
DCL statements, 148
DDL statements in, 143
defining views, 52
DELETE statement, 142–143
DML statements in, 139
DROP statement, 147–148
finding database objects with catalog views, 116–117
getting started with MySQL, 114–115
GRANT statement, 149
GROUP BY used with aggregate functions, 137–139
history of, 113–114
inner join of two tables, 130–131
INSERT statement, 140–142
LIKE operator for searching character columns, 124
limiting join results, 133–134
listing everything in a table, 119–120
listing specific columns, 120
as nonprocedural language, 224–225
BETWEEN operator for finding ranges of values, 123
OR operator for compound conditions, 124–125
outer (inclusive) joins, 131–133
overview of, 111–113
query languages in history of development of relational

databases, 21
REVOKE statement, 149
SELECT statement, 118–119
self-joins, 134–135
sorting results, 121–122
SQL statements for defining referential constraints, 46
tuning, 327–329
UPDATE statement, 142
using in Access queries, 95–97
viewing database objects with Toad for SQL, 117–118

SQL/XML. See also XML (Extensible Markup Language)
overview of, 355–356
SQL/XML functions, 358–359
XML data type and, 356–357

SQL*Plus, 115
SSI (Server-Side Includes), 275–276
SSID (Service Set Identifiers) broadcasts, 291–292
SSL (secure sockets layer), 288
Standardized General Markup Language (SGML), 274, 352
Standards and Planning Committee, ANSI, 5, 17
star schema architecture, in data warehousing, 340–342
starflake schema architecture, in data warehousing, 342

I ndex 429

static web pages, 272
Stonebraker, Michael, 22
stress tests, 163
Stroustrup, Bjarne, 361
structure charts. See flowcharts
structure diagrams, UML, 229
subclasses, 215
subqueries (subselect)

overview of, 125–128
used with INSERT statement, 141

subtypes (specialization)
creating single table for both subtypes and supertypes,

242–244
guidelines for drawing ERDs, 220–221
implementing As Is, 240–242
implementing each subtype as discrete table, 242
overview of, 215–220
in UML, 214

SUM
aggregate functions in Access, 101
aggregate functions in SQL, 136

summary table architecture, in data warehousing, 339–340
superclasses (base classes), 215
supertypes (generalization)

creating single table for both subtypes and supertypes,
242–244

implementing, 240
overview of, 215–220
in UML, 214

surrogate (artifical) identifiers
overview of, 178–179
replacing primary key with, 182

surrogate (artificial) identifiers
overview of, 125–128
replacing primary key with, 150–152

surveys, in requirements gathering phase of development, 159
swim lane diagram, in process modeling, 226–227
swizzling object references, 364
Sybase

cursor support in, 314
security in, 300–302
System 10, 22

symmetric keys, in encryption, 294
synonyms

securing schema owner accounts, 305
table or view aliases, 119

syntax, of SQL statements, 112
system-level security, 292–293
system privileges

in MySQL, 305–306
in Oracle, 306
overview of, 148, 293
in SQL Server, 306

System R, 22
system tests, 162–163

T
table design view, in Access, 69–71
Table, query options in Access, 73
TABLE_CONSTRAINTS, MySQL catalog views, 117
tables

2-D tables in relational databases, 16–17
designing, 236–240
information available in Design View, 70–71
joining. See joins
locks at table-level, 323
maintaining relationships in Access, 68–69
naming conventions for, 39–40, 244–245
primary key constraints, 43
as primary unit of storage in relational databases, 38
security-related in MySQL, 299
SELECT statement listing everything in, 119–120

TABLES view, MySQL catalog views, 116
tablespace, as logical structure tables are assigned to,

38–39
tags, in markup languages, 352, 354
TCP/IP (Transmission Control Protocol/Internet

Protocol), 272
Telnet, 272
terminal emulators, 263
testing program unit, during construction phase, 162
third normal form (eliminating transitive dependencies)

BCNF (Boyce-Codd normal form) as stronger version of,
189–190

overview of, 186–188
three-tier client/server model, 267–268
TIMESTAMP data type, SQL support for, 114
Toad for SQL

listing everything in a table, 119–120
viewing database objects with, 117–118

tokens, in physical security, 285
totals, in Query View panel, 102
tracking changes, change control and, 332
traditional development. See SDLC (system development

life cycle)
Transact-SQL

cursor support in Sybase and SQL Server, 314
writing triggers in, 52, 254

transactions. See also OLTP (online transaction processing)
DML statements supporting, 139
support in MySQL, 318–319
support in Oracle, 320–321
support in SQL Server, 319–320
what they are, 316–317

transferability, of relationships, 32
transitive dependencies, third normal form eliminating,

186–188
Transmission Control Protocol/Internet Protocol

(TCP/IP), 272
tree structures, XML, 355

430 Databases Demystified

triggers
for constraint enforcement, 52, 66
enforcing business rules with, 254

tuples. See also row of data, 172
two-tier client/server model, 265–267
type discriminator, 217

U
UML (Unified Modeling Language), 212–214
underscore character (_), as positional wildcard

in SQL, 124
Uniform Resource Locators (URLs), 272–273
unique constraints

for columns, 237
implementing business rules with, 251–252
using with ALTER TABLE statement, 145–146

unique identifiers
candidates, 179–180
choosing primary key from, 178
for entities, 30
for tables, 237
in UML, 214

unit facts, attributes as, 30
units of work. See transactions
update anomaly, in normalization, 175
UPDATE statements

performance tuning, 330
updating data values in table, 142
using with views, 255

updates, concurrent update problem, 321–322
URL spoofing attacks, 296
URLs (Uniform Resource Locators), 272–273
user ID, login credentials, 293–294
user login, SQL Server, 300–301
user training, during construction phase, 163
user views, data abstraction and, 3–4
users, in MySQL, 298–299

V
validation, check constraints and, 51
VALUES clause, used with INSERT statement, 141
variables, in OO model, 18
VBA (Visual Basic for Applications), 52
VBScript, 295–296
version numbering, change controls, 331
video surveillance, in physical security, 285
views. See also queries

advantages of, 255
creating, 147

in DBMSs, 72
designing, 254
DML statements used with, 255
managing, 256
naming conventions, 247–248
overview of, 52–53
security and, 308
useful functions of, 53–54
user views, 3–4

VIEWS, MySQL catalog views, 117
virtual private networks (VPNs), 289–290
virtual tables, 52, 254
virus scanners, 296
Visual Basic for Applications (VBA), 52
VPNs (virtual private networks), 289–290

W
Web

components in Web “technology stack,” 274
connecting databases to, 270–271
introduction to, 271–274
invoking database transactions from web pages, 275–276

Web browsers, securing, 295
web pages

invoking database transactions from, 275–276
static and dynamic, 272

web servers, 274
WHERE clause

choosing which rows to display, 122–123
limiting join results, 133–134
limiting rows in views, 308
SELECT statement and, 118
using with DELETE statement, 142–143
using with UPDATE statement, 142

wildcard operators, in SQL and Access, 124
Wong, Eugene, 22
workstations, as Web component, 274
World Wide Web. See Web

X
XML data type, in SQL/XML, 356–357
XML (Extensible Markup Language). See also SQL/XML

basics of, 352–355
components in Web “technology stack,” 273–274
integrating into databases, 351

Z
zombie attacks, 287

Dear Student:
Our name says it all: the goal of the DeMYSTiFieD series is to help you master confusing

subjects, understand complex textbooks, and succeed in your studies.

How can DeMYSTiFieD help you? It’s a no-brainer!

• �Study with the best—all DeMYSTiFieD authors are experts

in their fields of study.

• �Learn by doing—all DeMYSTiFieD books are packed

with examples and practice opportunities.

• �Grasp the critical concepts right away with

highlighted chapter objectives.

• �Get un-stuck with help from the “Still Struggling?”

feature. We all need a little help sometimes.

• �Grade your own progress with a “Final Exam”at the end

of each book and avoid the red pencil of doom.

• �Move easily from subject to subject with a “Curriculum Guide”

that gives a logical path.

DeMYSTiFieD is the series you’ll turn to again and again to help you untangle confusing

subjects, become confident in your knowledge, and achieve your goals. No matter what

subject—algebra, college Spanish, business-school accounting, specialized nursing

courses, and everything in between—DeMYSTiFieD is true to its motto:

Hard stuff made easy™

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 /

Curriculum Guide
. Beginning Level .

Introduction to Relational Database
Management Systems

Introduction to SQL

Programming Language Courses
(C, Perl, Java, etc.)

. Intermediate Level .

Advanced Database
Concepts

Advanced SQL Query
Writing

Integrating SQL with
Programming Languages
(C, Perl, Java, VBA, etc.)

Web Database
Development

DBMS Product-Specifi c
Courses (Oracle, MySQL,
SQL Server, DB2, Access, etc.)

. Advanced Level .

Data Modeling and
Database Design

Designing Business
Intelligence Systems

Designing, Building,
and Using Databases

Systems Analysis
and Design

Building Database
Systems

. Beginning Level .

Introduction to
Data Processing

Introduction to
Programming

Data Structures

Introduction to Database
Management Systems

Introduction to
Data Languages

. Intermediate Level .

Algorithm Design and Analysis

Logic and Computation

Computer Architecture

Operating Systems

Computer Networks and
Data Communications

Human-Computer
Interaction Design

Advanced Query Design

Software Testing

Security and Privacy
Issues and Solutions

. Advanced Level .

Data Modeling and
Database Design

Compiler Design

Systems Analysis

Artifi cial
Intelligence Systems

Real-Time
Computing

Computer Graphics
and Multimedia

Database Management Systems Certifi cate Courses

Computer Science Degree Courses

799_Curriculum.indd 1 10/6/10 5:41:21 PM

