The Data§
Warehouse
Toolkit

Third Edition

The Definitive Guide
to Dimensional
Modeling

Ralph Kimball
Margy Ross

The Data
Warehouse
Toolkit

The Data
Warehouse
Toolkit

The Definitive Guide to
Dimensional Modeling

Third Edition

Ralph Kimball
Margy Ross

WILEY

The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, Third Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by Ralph Kimball and Margy Ross
Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-53080-1

ISBN: 978-1-118-53077-1 (ebk)
ISBN: 978-1-118-73228-1 (ebk)
ISBN: 978-1-118-73219-9 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
athttp://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-
demand. If this book refers to media such as a CD or DVD that is not included in the version you
purchased, you may download this material at http://booksupport.wiley.com. For more informa-
tion about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013936841
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written per-

mission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Ralph Kimball founded the Kimball Group. Since the mid-1980s, he has been the
data warehouse and business intelligence industry’s thought leader on the dimen-
sional approach. He has educated tens of thousands of IT professionals. The Toolkit
books written by Ralph and his colleagues have been the industry’s best sellers
since 1996. Prior to working at Metaphor and founding Red Brick Systems, Ralph
coinvented the Star workstation, the first commercial product with windows, icons,
and a mouse, at Xerox’s Palo Alto Research Center (PARC). Ralph has a PhD in
electrical engineering from Stanford University.

Margy Ross is president of the Kimball Group. She has focused exclusively on data
warehousing and business intelligence since 1982 with an emphasis on business
requirements and dimensional modeling. Like Ralph, Margy has taught the dimen-
sional best practices to thousands of students; she also coauthored five Toolkit books
with Ralph. Margy previously worked at Metaphor and cofounded DecisionWorks
Consulting. She graduated with a BS in industrial engineering from Northwestern
University.

Executive Editor
Robert Elliott

Project Editor
Maureen Spears

Senior Production Editor
Kathleen Wisor

Copy Editor
Apostrophe Editing Services

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Word One, New York

Indexer
Johnna VanHoose Dinse

Cover Image
iStockphoto.com / teekid

Cover Designer
Ryan Sneed

irst, thanks to the hundreds of thousands who have read our Toolkit books,
attended our courses, and engaged us in consulting projects. We have learned as
much from you as we have taught. Collectively, you have had a profoundly positive
impact on the data warehousing and business intelligence industry. Congratulations!

Our Kimball Group colleagues, Bob Becker, Joy Mundy, and Warren Thornthwaite,
have worked with us to apply the techniques described in this book literally thou-
sands of times, over nearly 30 years of working together. Every technique in this
book has been thoroughly vetted by practice in the real world. We appreciate their
input and feedback on this book—and more important, the years we have shared
as business partners, along with Julie Kimball.

Bob Elliott, our executive editor at John Wiley & Sons, project editor Maureen
Spears, and the rest of the Wiley team have supported this project with skill and
enthusiasm. As always, it has been a pleasure to work with them.

To our families, thank you for your unconditional support throughout our
careers. Spouses Julie Kimball and Scott Ross and children Sara Hayden Smith,
Brian Kimball, and Katie Ross all contributed in countless ways to this book.

Introduction XXVii

Data Warehousing, Business Intelligence, and Dimensional

Modeling Primer 1
Different Worlds of Data Capture and Data Analysis. 2
Goals of Data Warehousing and Business Intelligence. 3

Publishing Metaphor for DW/BI Managers. 5
Dimensional Modeling Introduction., 7
Star Schemas Versus OLAP Cubes 8
Fact Tables for Measurements 10
Dimension Tables for Descriptive Context 13
Facts and Dimensions Joined in a Star Schema. 16
Kimball’s DW/BI Architecture ool 18
Operational Source Systems.t 18
Extract, Transformation, and Load System...................... 19
Presentation Area to Support Business Intelligence. 21
Business Intelligence Applications 22
Restaurant Metaphor for the Kimball Architecture................ 23
Alternative DW/BI Architectures o i il 26
Independent Data Mart Architecture. 26
Hub-and-Spoke Corporate Information Factory Inmon Architecture . .28
Hybrid Hub-and-Spoke and Kimball Architecture................. 29
Dimensional ModelingMyths. o 30
Myth 1: Dimensional Models are Only for Summary Data 30
Myth 2: Dimensional Models are Departmental, Not Enterprise 31
Myth 3: Dimensional Models are Not Scalable. 31
Myth 4: Dimensional Models are Only for Predictable Usage. 31
Myth 5: Dimensional Models Can’t Be Integrated 32
More Reasons to Think Dimensionally 32
Agile Considerations. i 34

SUMMArY ..o 35

x Contents

Kimball Dimensional Modeling Techniques Overview. 37
Fundamental Concepts.t 37
Gather Business Requirements and Data Realities. 37
Collaborative Dimensional Modeling Workshops. 38
Four-Step Dimensional Design Process., 38
Business Processest 39
AN . e 39
Dimensions for Descriptive Context. oo, 40
Facts for Measurements.t 40
Star Schemas and OLAP Cubes 40
Graceful Extensions to Dimensional Models. 41
Basic Fact Table Techniques oo, 4
Fact Table Structure. i 4
Additive, Semi-Additive, Non-Additive Facts 42
Nullsin Fact Tables 42
Conformed Facts. iuiini i 42
Transaction Fact Tables o ... 43
Periodic Snapshot Fact Tables 43
Accumulating Snapshot Fact Tables 44
Factless Fact Tables i 44
Aggregate Fact Tables or OLAP Cubes. 45
Consolidated Fact Tables 45
Basic Dimension Table Techniques 46
Dimension Table Structure. i 46
Dimension Surrogate Keys. i 46
Natural, Durable, and Supernatural Keys 46
Driling Downo 47
Degenerate Dimensions. i 47
Denormalized Flattened Dimensions 47
Multiple Hierarchies in Dimensionscooouvien... 48
Flags and Indicators as Textual Attributes. 48
Null Attributes in Dimensions, 48
Calendar Date Dimensions.c.etne e 48
Role-Playing Dimensionsottt 49

JuNKk DIMENSIONS .« . oottt e e e e 49

Contents xi

Snowflaked Dimensions. i 50
Outrigger DImensionst i 50
Integration via Conformed Dimensions 50
Conformed Dimensions.t 51
Shrunken Dimensions i i 51
Driling ACrOSS . . . v vt 51
ValueChain 52
Enterprise Data Warehouse Bus Architecture 52
Enterprise Data Warehouse Bus Matrix. 52
Detailed Implementation Bus Matrix 53
Opportunity/Stakeholder Matrix oo ... 53
Dealing with Slowly Changing Dimension Attributes 53
Type 0: Retain Original oo, 54
Type 1: Overwriteot 54
Type 22 Add New Rowo 54
Type 3: Add New Attribute i 55
Type 4: Add Mini-Dimension.o i 55
Type 5: Add Mini-Dimension and Type 1 Outrigger. 55
Type 6: Add Type 1 Attributes to Type 2 Dimension. 56
Type 7: Dual Type 1 and Type 2 Dimensions 56
Dealing with Dimension Hierarchies. 56
Fixed Depth Positional Hierarchies................ 56
Slightly Ragged/Variable Depth Hierarchies. 57
Ragged/Variable Depth Hierarchies with Hierarchy Bridge Tables57
Ragged/Variable Depth Hierarchies with Pathstring Attributes. 57
Advanced Fact Table Techniques 58
Fact Table Surrogate Keys. oo 58
Centipede Fact Tables i, 58
Numeric Values as Attributesor Facts 59
Lag/Duration Facts.oo it 59
Header/Line Fact Tables. 59
Allocated Facts.t 60
Profit and Loss Fact Tables Using Allocations 60
Multiple Currency Facts. ... 60

Multiple Units of Measure Facts. 61

Contents

Year-to-Date Facts i 61
Multipass SQL to Avoid Fact-to-Fact Table Joins 61
Timespan Trackingin Fact Tables. 62
Late Arriving Facts oo 62
Advanced Dimension Techniques. oo n.n. 62
Dimension-to-Dimension Table Joins 62
Multivalued Dimensions and Bridge Tables 63
Time Varying Multivalued Bridge Tables 63
Behavior Tag Time Series. i 63
Behavior Study Groupst 64
Aggregated Facts as Dimension Attributes. 64
Dynamic ValueBands i 64
Text Comments Dimension 65
Multiple Time Zonesot e 65
Measure Type DImMensionsc.vvuvin i 65
Step DIMENSIONSottt 65
Hot Swappable Dimensions. i, 66
Abstract Generic Dimensions.coov .. 66
Audit DIMeNSIONS. . .« .o vttt 66
Late Arriving Dimensions. i 67
Special Purpose Schemas i 67
Supertype and Subtype Schemas for Heterogeneous Products 67
Real-Time Fact Tables. i i 68
Error EventSchemas il 68
Retail Sales. o 69
Four-Step Dimensional Design Processc.covvieennenn.n. 70
Step 1: Select the Business Process.coovvenenn... 70
Step 2: Declarethe Grain.c i 71
Step 3: Identify the Dimensions. oo, 72
Step 4: Identify the Facts. i 72
Retail Case Studyt 72
Step 1: Select the Business Process.c..oovvvenenn.... 74
Step 2: Declarethe Grain.t 74

Step 3: Identify the Dimensions. oL, 76

Contents xiif

Step 4: Identify the Facts 76
Dimension Table Details. o i 79
Date Dimension. i 79
Product DImensionvuuiine i 83
StoreDimension i 87
Promotion Dimensiont 89
Other Retail Sales Dimensions . ..o, 92
Degenerate Dimensions for Transaction Numbers 93
Retail Schemain Action i i 94
Retail Schema Extensibility o i 95
Factless Fact Tables. o i 97
Dimension and Fact Table Keys.o, 98
Dimension Table Surrogate Keys 98
Dimension Natural and Durable Supernatural Keys 100
Degenerate Dimension Surrogate Keys 101
Date Dimension SmartKeys. i i 101
Fact Table Surrogate Keys. i it 102
Resisting Normalization Urges oo n. 104
Snowflake Schemas with Normalized Dimensions 104
OULNIgQErS. o ottt e 106
Centipede Fact Tables with Too Many Dimensions. 108
SUMMAIY . o e e 109
Inventory. M
Value Chain Introduction o i m
Inventory Models. 12
Inventory Periodic Snapshot. i 13
Inventory Transactions.o iiiininenon.. 116
Inventory Accumulating Snapshot 118
Fact Table Types.ot 19
Transaction Fact Tables 120
Periodic Snapshot Fact Tables 120
Accumulating Snapshot Fact Tables 121

Complementary Fact Table Types iii.n. 122

xiv Contents

Value Chain Integrationcc.o i 122
Enterprise Data Warehouse Bus Architecture. 123
Understanding the Bus Architecture 124
Enterprise Data Warehouse Bus Matrix. 125
Conformed Dimensionsot 130
Drilling Across Fact Tables i, 130
Identical Conformed Dimensions., 131
Shrunken Rollup Conformed Dimension with Attribute Subset 132
Shrunken Conformed Dimension with Row Subset 132
Shrunken Conformed Dimensions on the Bus Matrix. 134
Limited Conformityo 135
Importance of Data Governance and Stewardship............... 135
Conformed Dimensions and the Agile Movement 137
Conformed Factso iunii e 138
SUMMAIY . oo e e 139
Procurement i 141
Procurement Case Studyo 141
Procurement Transactions and Bus Matrix 142
Single Versus Multiple Transaction Fact Tables. 143
Complementary Procurement Snapshot. 147
Slowly Changing Dimension Basicscovvuuvinn.... 147
Type 0: Retain Original oo, 148
Type T: Overwriteo 149
Type 22 AddNew ROWo 150
Type 3: Add New Attribute i 154
Type 4: Add Mini-Dimension. oo, 156
Hybrid Slowly Changing Dimension Techniques. 159
Type 5: Mini-Dimension and Type 1 Outrigger 160
Type 6: Add Type 1 Attributes to Type 2 Dimension. 160
Type 7: Dual Type 1 and Type 2 Dimensions 162
Slowly Changing Dimension Recapcooiiinninn.... 164

SUMMANY . o e e 165

Contents xv

Order Management.c..ouiiriinnineennennn.. 167
Order Management Bus Matrix iiiininnon.. 168
Order Transactions. v vt e e 168

Fact Normalization. i i 169
Dimension Role Playing e, 170
Product Dimension Revisited i 172
Customer Dimension. ...t 174
Deal DImensionooutt e 177
Degenerate Dimension for Order Number. 178
Junk DIMENSIONS . .ot e e 179
Header/Line Patternto Avoid i, 181
Multiple Currencieso vttt 182
Transaction Facts at Different Granularity 184
Another Header/Line Patternto Avoid 186
Invoice Transactionsttt 187
Service Level Performance as Facts, Dimensions, or Both.......... 188
Profitand Loss Facts.o, 189
Audit DImMensiont e 192
Accumulating Snapshot for Order Fulfillment Pipeline 194
Lag Calculations. i 196
Multiple Units of Measure, 197
Beyond the Rearview Mirror i 198
SUMMArY . oot e e e e 199

ACCOUNEING . vt 201
Accounting Case Study and Bus Matrix 202
Ceneral LedgerDatattt 203

General Ledger Periodic Snapshot 203
Chart of Accountsot 203
Period Close.ot 204
Year-to-Date Facts i i 206
Multiple Currencies Revisited i, 206

General Ledger Journal Transactions 206

xvi Contents

Multiple Fiscal Accounting Calendars. 208
Drilling Down Through a Multilevel Hierarchy 209
Financial Statements L 209
Budgeting Processottt 210
Dimension Attribute Hierarchies. 214
Fixed Depth Positional Hierarchies........................... 214
Slightly Ragged Variable Depth Hierarchies 214
Ragged Variable Depth Hierarchies 215
Shared Ownership in a Ragged Hierarchy 219
Time Varying Ragged Hierarchies 220
Modifying Ragged Hierarchies. o... 220
Alternative Ragged Hierarchy Modeling Approaches 221
Advantages of the Bridge Table Approach for Ragged Hierarchies . . .223
Consolidated Fact Tables oo, 224
Role of OLAP and Packaged Analytic Solutions. 226
SUMMArY . . ot e e e e 227
Customer Relationship Management 229
CRMOVErVIEW. . ..o 230
Operational and Analytic CRM.o it 231
Customer Dimension Attributes oo 233
Name and AddressParsingcoiiiiiinninnenn.. 233
International Name and Address Considerations 236
Customer-CentricDates. oo, 238
Aggregated Facts as Dimension Attributes. 239
Segmentation Attributes and Scores it 240
Counts with Type 2 Dimension Changes 243
Outrigger for Low Cardinality Attribute Set 243
Customer Hierarchy Considerations. 244
Bridge Tables for Multivalued Dimensions 245
Bridge Table for Sparse Attributes 247
Bridge Table for Multiple Customer Contacts. 248
Complex Customer Behavior 249

Behavior Study Groups for Cohorts 249

Contents xvii

Step Dimension for Sequential Behavior. 251
Timespan FactTables. o i 252
Tagging Fact Tables with Satisfaction Indicators. 254
Tagging Fact Tables with Abnormal Scenario Indicators. 255
Customer Data Integration Approaches 256
Master Data Management Creating a Single Customer Dimension . .256
Partial Conformity of Multiple Customer Dimensions. 258
Avoiding Fact-to-Fact Table Joins 259
Low Latency Reality Check 260
SUMMAIY . oot e e 261
Human Resources Management. 263
Employee Profile Tracking. i 263
Precise Effective and Expiration Timespans 265
Dimension Change Reason Tracking 266
Profile Changes as Type 2 Attributes or Fact Events 267
Headcount Periodic Snapshot. o o i it 267
Bus Matrix for HR Processes, 268
Packaged Analytic Solutions and Data Models 270
Recursive Employee Hierarchieso oo, 271
Change Tracking on Embedded ManagerKey 272
Drilling Up and Down Management Hierarchies 273
Multivalued Skill Keyword Attributes 274
Skill Keyword Bridgeot 275
Skill Keyword Text Stringo 276
Survey QuestionnaireData. i 277
Text Comments. i 278
SUMMAIY . oo e 279
Financial Services. i 281
Banking Case Study and Bus Matrix 282
Dimension Triage to Avoid Too Few Dimensions. 283
Household Dimension i i, 286

Multivalued Dimensions and Weighting Factors. 287

xviii Contents

Mini-Dimensions Revisited. il 289
Adding a Mini-Dimension to a Bridge Table. 290
Dynamic Value Banding of Facts 291
Supertype and Subtype Schemas for Heterogeneous Products. 293
Supertype and Subtype Products with Common Facts 295

Hot Swappable Dimensions oo 296
SUMMAIY . oo e 296
Telecommunications i, 297
Telecommunications Case Study and Bus Matrix 297
General Design Review Considerations. 299
Balance Business Requirements and Source Realities 300
Focus on Business Processes.o i 300
Granularity 300
Single Granularity for Facts o i i 301
Dimension Granularity and Hierarchies 301
Date Dimension.t 302
Degenerate DIMensions.vut et 303
Surrogate Keys.ot 303
Dimension Decodes and Descriptions 303
Conformity Commitment it 304
Design Review Guidelines.t 304
Draft Design Exercise Discussionc..ouuvinneennenn.n. 306
Remodeling Existing Data Structures 309
Geographic Location Dimensiono, 310
SUMMATY . oo e 310
Transportation. i 311
Airline Case Study and Bus Matrix oo, 311
Multiple Fact Table Granularities 312
Linking Segmentsinto Trips.o v 315
Related Fact Tables. i i 316
Extensions to Other Industries, 317
Cargo Shippert 317

Travel Services . ..o e 317

Contents xix

Combining Correlated Dimensions., 318
Classof Service i 319
Origin and Destination oo, 320

More Date and Time Considerationso, 321
Country-Specific Calendars as Outriggers 321
Date and Time in Multiple Time Zones 323

Localization Recap oo ii 324

SUMMAIY . o e e 324

Education 325

University Case Study and Bus Matrix. o.. 325

Accumulating Snapshot Fact Tables 326
Applicant Pipeline 326
Research Grant Proposal Pipeline. 329

Factless Fact Tables. i i 329
Admissions Events 330
Course Registrations i 330
Facility Utilization. o 334
Student Attendance. i 335

More Educational Analytic Opportunities. 336

SUMMArY . oo e e e 336

Healthcare....... i 339

Healthcare Case Study and Bus Matrix 339

Claims Billing and Payments. i, 342
Date Dimension Role Playing, 345
Multivalued Diagnoses.cooeiiii i 345
Supertypes and Subtypes for Charges 347

Electronic Medical Records. i 348
Measure Type Dimension for Sparse Facts 349
Freeform Text Comments o ... 350
IMages. . .ot 350

Facility/Equipment Inventory Utilization 351

Dealing with Retroactive Changes, 351

xx Contents

Electronic Commerce. oo 353
Clickstream Source Data., 353
Clickstream Data Challenges it 354
Clickstream Dimensional Models 357
Page DImension.t 358
Event Dimension i i 359
Session Dimension. i 359
Referral Dimension.ot 360
Clickstream Session Fact Table.............................. 361
Clickstream Page Event Fact Table 363
Step DIMeNsionot 366
Aggregate Clickstream Fact Tables. 366
Google Analyticst 367
Integrating Clickstream into Web Retailer’s Bus Matrix. 368
Profitability Across Channels IncludingWeb 370
SUMMArY . . ot e e 373
Insurance. 375
Insurance Case Studyttt 376
Insurance Value Chain i 377
Draft Bus Matrixt 378
Policy Transactions. ottt e e 379
Dimension Role Playing 380
Slowly Changing Dimensions.coiviiiinenn .. 380
Mini-Dimensions for Large or Rapidly Changing Dimensions. 381
Multivalued Dimension Attributes 382
Numeric Attributes as Facts or Dimensions 382
Degenerate Dimensiono 383
Low Cardinality Dimension Tables 383
Audit DImMensionvt e 383
Policy Transaction Fact Table 383
Heterogeneous Supertype and Subtype Products 384
Complementary Policy Accumulating Snapshot. 384
Premium Periodic Snapshot o i 385
Conformed DIMeNSioNso o ittt 386

Conformed Factso 386

Contents xxi

Pay-in-Advance Facts.o 386
Heterogeneous Supertypes and Subtypes Revisited 387
Multivalued Dimensions Revisited 388
More Insurance Case Study Background. 388
Updated Insurance Bus Matrix., 389
Detailed Implementation Bus Matrix 390
Claim Transactionst 390
Transaction Versus Profile Junk Dimensions 392
Claim Accumulating Snapshot o i i 392
Accumulating Snapshot for Complex Workflows 393
Timespan Accumulating Snapshot. 394
Periodic Instead of Accumulating Snapshot 395
Policy/Claim Consolidated Periodic Snapshot 395
Factless Accident Events........... ... o i i 396
Common Dimensional Modeling Mistakes to Avoid 397
Mistake 10: Place Text Attributesina Fact Table. 397
Mistake 9: Limit Verbose Descriptors to Save Space.............. 398
Mistake 8: Split Hierarchies into Multiple Dimensions 398
Mistake 7: Ignore the Need to Track Dimension Changes 398
Mistake 6: Solve All Performance Problems with More Hardware. . . .399
Mistake 5: Use Operational Keys to Join Dimensions and Facts. 399
Mistake 4: Neglect to Declare and Comply with the Fact Grain.. 399
Mistake 3: Use a Report to Design the Dimensional Model 400
Mistake 2: Expect Users to Query Normalized Atomic Data. 400
Mistake 1: Fail to Conform Facts and Dimensions 400
SUMMAIY . oo e 401
Kimball DW/BI Lifecycle Overview 403
Lifecycle Roadmapo oot 404
Roadmap Mile Markers i 405
Lifecycle Launch Activitiescoo i 406
Program/Project Planning and Management 406
Business Requirements Definition 410
Lifecycle Technology Track.t 416
Technical Architecture Design L. 416

Product Selection and Installation 418

xxii Contents

Lifecycle Data Trackoouu i 420
Dimensional Modeling. i 420
Physical Designoit i 420
ETL Design and Development, 422

Lifecycle Bl Applications Track o it 422
Bl Application Specification oL 423
Bl Application Development i, 423

Lifecycle Wrap-up Activities 424
Deployment.o 424
Maintenance and Growth L 425

Common Pitfallsto Avoid. 426

SUMMANY . oo e e 427

Dimensional Modeling Process and Tasks. 429

Modeling Process OVErvVieWve it 429

GetOrganizedcovit it e 431
Identify Participants, Especially Business Representatives 431
Review the Business Requirements. 432
Leverage a ModelingTool 432
Leverage a Data Profiling Tool 433
Leverage or Establish Naming Conventions 433
Coordinate Calendars and Facilities 433

Design the Dimensional Model it 434
Reach Consensus on High-Level Bubble Chart.................. 435
Develop the Detailed Dimensional Model 436
Review and Validate the Model 439
Finalize the Design Documentation 441

SUMMATY . oo e 441

ETL Subsystems and Techniques 443

Round Up the Requirements.t 444
Business Needsiiuii 444
Compliance oo 445
DataQualityc.oo 445
SBCUNLY . ottt 446

Data Integration i 446

Contents xxiifi

Datalatency 447
ArchivingandLineage........ i 447
Bl Delivery Interfaces.t 448
Available Skills 448
Legacy LiCensesot 449
The 34 Subsystems of ETLt 449
Extracting: Getting Data into the Data Warehouse. 450
Subsystem 1: Data Profiling i 450
Subsystem 2: Change Data Capture System. 451
Subsystem 3: Extract System i 453
Cleaning and Conforming Data oo ii... 455
Improving Data Quality Culture and Processes. 455
Subsystem 4: Data Cleansing System.......... 456
Subsystem 5: Error Event Schema, 458
Subsystem 6: Audit Dimension Assembler 460
Subsystem 7: Deduplication System. 460
Subsystem 8: Conforming System i 461
Delivering: Prepare for Presentation 463
Subsystem 9: Slowly Changing Dimension Manager 464
Subsystem 10: Surrogate Key Generator 469
Subsystem 11: Hierarchy Manager............o, 470
Subsystem 12: Special Dimensions Manager 470
Subsystem 13: Fact Table Builders 473
Subsystem 14: Surrogate Key Pipeline 475
Subsystem 15: Multivalued Dimension Bridge Table Builder. 477
Subsystem 16: Late Arriving Data Handler 478
Subsystem 17: Dimension Manager System 479
Subsystem 18: Fact Provider System. 480
Subsystem 19: Aggregate Builder. 481
Subsystem 20: OLAP Cube Builder., 481
Subsystem 21: Data Propagation Manager. 482
Managing the ETL Environment. o it 483
Subsystem 22: Job Scheduler. i L 483
Subsystem 23: Backup System oL 485

Subsystem 24: Recovery and Restart System 486

xxiv Contents

Subsystem 25: Version Control System 488
Subsystem 26: Version Migration System. 488
Subsystem 27: Workflow Monitor 489
Subsystem 28: Sorting System. 490
Subsystem 29: Lineage and Dependency Analyzer. 490
Subsystem 30: Problem Escalation System..................... 491
Subsystem 31: Parallelizing/Pipelining System 492
Subsystem 32: Security System 492
Subsystem 33: Compliance Manager......................... 493
Subsystem 34: Metadata Repository Manager 495
SUMMANY . . ot e e e 496
ETL System Design and Development Process and Tasks 497
ETL Process OVErVIEW. . ..o i it 497
Developthe ETLPIan oo e 498
Step 1: Draw the High-Level Plan. 498
Step 2: Choosean ETLToolt 499
Step 3: Develop Default Strategies., 500
Step 4: Drill Down by Target Table. 500
Develop the ETL Specification Document 502
Develop One-Time Historic Load Processing.co.... 503
Step 5: Populate Dimension Tables with Historic Data 503
Step 6: Perform the Fact Table HistoricLoad 508
Develop Incremental ETL Processing.vvvvevninneennenn... 512
Step 7: Dimension Table Incremental Processing 512
Step 8: Fact Table Incremental Processing 515
Step 9: Aggregate Table and OLAP Loads 519
Step 10: ETL System Operation and Automation 519
Real-Time Implications i 520
Real-Time Triageouiiii i 521
Real-Time Architecture Trade-Offs 522
Real-Time Partitions in the Presentation Server. 524

SUMMArY . oot e e 526

Contents xxv

Big Data Analytics 527
BigData Overview o e 527
Extended RDBMS Architecture. 529
MapReduce/Hadoop Architecture 530
Comparison of Big Data Architectures 530
Recommended Best Practices forBigData 531
Management Best Practices forBigData 531
Architecture Best Practices forBigData 533
Data Modeling Best Practices forBigData..................... 538
Data Governance Best Practices forBigData 541
SUMMArY . oo 542

he data warehousing and business intelligence (DW/B]) industry certainly has

matured since Ralph Kimball published the first edition of The Data Warehouse
Toolkit (Wiley) in 1996. Although large corporate early adopters paved the way, DW/
BI has since been embraced by organizations of all sizes. The industry has built
thousands of DW/BI systems. The volume of data continues to grow as warehouses
are populated with increasingly atomic data and updated with greater frequency.
Over the course of our careers, we have seen databases grow from megabytes to
gigabytes to terabytes to petabytes, yet the basic challenge of DW/BI systems has
remained remarkably constant. Our job is to marshal an organization’s data and
bring it to business users for their decision making. Collectively, you've delivered
on this objective; business professionals everywhere are making better decisions
and generating payback on their DW/BI investments.

Since the first edition of The Data Warehouse Toolkit was published, dimensional
modeling has been broadly accepted as the dominant technique for DW/BI presenta-
tion. Practitioners and pundits alike have recognized that the presentation of data
must be grounded in simplicity if it is to stand any chance of success. Simplicity is
the fundamental key that allows users to easily understand databases and software
to efficiently navigate databases. In many ways, dimensional modeling amounts
to holding the fort against assaults on simplicity. By consistently returning to a
business-driven perspective and by refusing to compromise on the goals of user
understandability and query performance, you establish a coherent design that
serves the organization’s analytic needs. This dimensionally modeled framework
becomes the platform for BL. Based on our experience and the overwhelming feed-
back from numerous practitioners from companies like your own, we believe that
dimensional modeling is absolutely critical to a successful DW/BI initiative.

Dimensional modeling also has emerged as the leading architecture for building
integrated DW/BI systems. When you use the conformed dimensions and con-
formed facts of a set of dimensional models, you have a practical and predictable
framework for incrementally building complex DW/BI systems that are inherently
distributed.

For all that has changed in our industry, the core dimensional modeling tech-
niques that Ralph Kimball published 17 years ago have withstood the test of time.
Concepts such as conformed dimensions, slowly changing dimensions, heteroge-
neous products, factless fact tables, and the enterprise data warehouse bus matrix

xxviia Introduction

continue to be discussed in design workshops around the globe. The original con-
cepts have been embellished and enhanced by new and complementary techniques.
We decided to publish this third edition of Kimball’s seminal work because we felt
that it would be useful to summarize our collective dimensional modeling experi-
ence under a single cover. We have each focused exclusively on decision support,
data warehousing, and business intelligence for more than three decades. We want
to share the dimensional modeling patterns that have emerged repeatedly during
the course of our careers. This book is loaded with specific, practical design recom-
mendations based on real-world scenarios.

The goal of this book is to provide a one-stop shop for dimensional modeling
techniques. True to its title, it is a toolkit of dimensional design principles and
techniques. We address the needs of those just starting in dimensional DW/BI and
we describe advanced concepts for those of you who have been at this a while. We
believe that this book stands alone in its depth of coverage on the topic of dimen-
sional modeling. It’s the definitive guide.

Intended Audience

This book is intended for data warehouse and business intelligence designers, imple-
menters, and managers. In addition, business analysts and data stewards who are
active participants in a DW/BI initiative will find the content useful.

Even if you're not directly responsible for the dimensional model, we believe it
is important for all members of a project team to be comfortable with dimensional
modeling concepts. The dimensional model has an impact on most aspects of a
DW/BI implementation, beginning with the translation of business requirements,
through the extract, transformation and load (ETL) processes, and finally, to the
unveiling of a data warehouse through business intelligence applications. Due to the
broad implications, you need to be conversant in dimensional modeling regardless
of whether you are responsible primarily for project management, business analysis,
data architecture, database design, ETL, Bl applications, or education and support.
We've written this book so it is accessible to a broad audience.

For those of you who have read the earlier editions of this book, some of the
familiar case studies will reappear in this edition; however, they have been updated
significantly and fleshed out with richer content, including sample enterprise data
warehouse bus matrices for nearly every case study. We have developed vignettes
for new subject areas, including big data analytics.

The content in this book is somewhat technical. We primarily discuss dimen-
sional modeling in the context of a relational database with nuances for online

Introduction xxix

analytical processing (OLAP) cubes noted where appropriate. We presume you
have basic knowledge of relational database concepts such as tables, rows, keys,
and joins. Given we will be discussing dimensional models in a nondenominational
manner, we won't dive into specific physical design and tuning guidance for any
given database management systems.

Chapter Preview

The book is organized around a series of business vignettes or case studies. We
believe developing the design techniques by example is an extremely effective
approach because it allows us to share very tangible guidance and the benefits of
real world experience. Although not intended to be full-scale application or indus-
try solutions, these examples serve as a framework to discuss the patterns that
emerge in dimensional modeling. In our experience, it is often easier to grasp the
main elements of a design technique by stepping away from the all-too-familiar
complexities of one’s own business. Readers of the earlier editions have responded
very favorably to this approach.

Be forewarned that we deviate from the case study approach in Chapter 2: Kimball
Dimensional Modeling Techniques Overview. Given the broad industry acceptance
of the dimensional modeling techniques invented by the Kimball Group, we have
consolidated the official listing of our techniques, along with concise descriptions
and pointers to more detailed coverage and illustrations of these techniques in
subsequent chapters. Although not intended to be read from start to finish like the
other chapters, we feel this technique-centric chapter is a useful reference and can
even serve as a professional checklist for DW/BI designers.

With the exception of Chapter 2, the other chapters of this book build on one
another. We start with basic concepts and introduce more advanced content as the
book unfolds. The chapters should be read in order by every reader. For example, it
might be difficult to comprehend Chapter 16: Insurance, unless you have read the
preceding chapters on retailing, procurement, order management, and customer
relationship management.

Those of you who have read the last edition may be tempted to skip the first
few chapters. Although some of the early fact and dimension grounding may be
familiar turf, we don’t want you to sprint too far ahead. You'll miss out on updates
to fundamental concepts if you skip ahead too quickly.

NOTE This book is laced with tips (like this note), key concept listings, and
chapter pointers to make it more useful and easily referenced in the future.

xxx Introduction

Chapter 1: Data Warehousing, Business Intelligence,
and Dimensional Modeling Primer

The book begins with a primer on data warehousing, business intelligence, and
dimensional modeling. We explore the components of the overall DW/BI archi-
tecture and establish the core vocabulary used during the remainder of the book.
Some of the myths and misconceptions about dimensional modeling are dispelled.

Chapter 2: Kimball Dimensional Modeling
Techniques Overview

This chapter describes more than 75 dimensional modeling techniques and pat-
terns. This official listing of the Kimball techniques includes forward pointers to
subsequent chapters where the techniques are brought to life in case study vignettes.

Chapter 3: Retail Sales

Retailing is the classic example used to illustrate dimensional modeling. We start
with the classic because it is one that we all understand. Hopefully, you won’t need
to think very hard about the industry because we want you to focus on core dimen-
sional modeling concepts instead. We begin by discussing the four-step process for
designing dimensional models. We explore dimension tables in depth, including
the date dimension that will be reused repeatedly throughout the book. We also
discuss degenerate dimensions, snowflaking, and surrogate keys. Even if you're not
aretailer, this chapter is required reading because it is chock full of fundamentals.

Chapter 4: Inventory

We remain within the retail industry for the second case study but turn your atten-
tion to another business process. This chapter introduces the enterprise data ware-
house bus architecture and the bus matrix with conformed dimensions. These
concepts are critical to anyone looking to construct a DW/BI architecture that is
integrated and extensible. We also compare the three fundamental types of fact
tables: transaction, periodic snapshot, and accumulating snapshot.

Chapter 5: Procurement

This chapter reinforces the importance of looking at your organization’s value chain
as you plot your DW/BI environment. We also explore a series of basic and advanced
techniques for handling slowly changing dimension attributes; we’ve built on the
long-standing foundation of type 1 (overwrite), type 2 (add a row), and type 3 (add
a column) as we introduce readers to type 0 and types 4 through 7.

Introduction xxxi

Chapter 6: Order Management

In this case study, we look at the business processes that are often the first to be
implemented in DW/BI systems as they supply core business performance met-
rics—what are we selling to which customers at what price? We discuss dimensions
that play multiple roles within a schema. We also explore the common challenges
modelers face when dealing with order management information, such as header/
line item considerations, multiple currencies or units of measure, and junk dimen-
sions with miscellaneous transaction indicators.

Chapter 7: Accounting

We discuss the modeling of general ledger information for the data warehouse in
this chapter. We describe the appropriate handling of year-to-date facts and multiple
fiscal calendars, as well as consolidated fact tables that combine data from mul-
tiple business processes. We also provide detailed guidance on dimension attribute
hierarchies, from simple denormalized fixed depth hierarchies to bridge tables for
navigating more complex ragged, variable depth hierarchies.

Chapter 8: Customer Relationship Management

Numerous DW/BI systems have been built on the premise that you need to better
understand and service your customers. This chapter discusses the customer dimen-
sion, including address standardization and bridge tables for multivalued dimension
attributes. We also describe complex customer behavior modeling patterns, as well
as the consolidation of customer data from multiple sources.

Chapter 9: Human Resources Management

This chapter explores several unique aspects of human resources dimensional
models, including the situation in which a dimension table begins to behave like a
fact table. We discuss packaged analytic solutions, the handling of recursive man-
agement hierarchies, and survey questionnaires. Several techniques for handling
multivalued skill keyword attributes are compared.

Chapter 10: Financial Services

The banking case study explores the concept of supertype and subtype schemas
for heterogeneous products in which each line of business has unique descriptive
attributes and performance metrics. Obviously, the need to handle heterogeneous
products is not unique to financial services. We also discuss the complicated rela-
tionships among accounts, customers, and households.

xxxii Introduction

Chapter 11: Telecommunications

This chapter is structured somewhat differently to encourage you to think critically
when performing a dimensional model design review. We start with a dimensional
design that looks plausible at first glance. Can you find the problems? In addition,
we explore the idiosyncrasies of geographic location dimensions.

Chapter 12: Transportation

In this case study we look at related fact tables at different levels of granularity
while pointing out the unique characteristics of fact tables describing segments in
a journey or network. We take a closer look at date and time dimensions, covering
country-specific calendars and synchronization across multiple time zones.

Chapter 13: Education

We look at several factless fact tables in this chapter. In addition, we explore accu-
mulating snapshot fact tables to handle the student application and research grant
proposal pipelines. This chapter gives you an appreciation for the diversity of busi-
ness processes in an educational institution.

Chapter 14: Healthcare

Some of the most complex models that we have ever worked with are from the
healthcare industry. This chapter illustrates the handling of such complexities,
including the use of a bridge table to model the multiple diagnoses and providers
associated with patient treatment events.

Chapter 15: Electronic Commerce

This chapter focuses on the nuances of clickstream web data, including its unique
dimensionality. We also introduce the step dimension that’s used to better under-
stand any process that consists of sequential steps.

Chapter 16: Insurance

The final case study reinforces many of the patterns we discussed earlier in the book
in a single set of interrelated schemas. It can be viewed as a pulling-it-all-together
chapter because the modeling techniques are layered on top of one another.

Introduction o0dE

Chapter 17: Kimball Lifecycle Overview

Now that you are comfortable designing dimensional models, we provide a high-
level overview of the activities encountered during the life of a typical DW/BI proj-
ect. This chapter is a lightning tour of The Data Warehouse Lifecycle Toolkit, Second
Edition (Wiley, 2008) that we coauthored with Bob Becker, Joy Mundy, and Warren
Thornthwaite.

Chapter 18: Dimensional Modeling Process and Tasks

This chapter outlines specific recommendations for tackling the dimensional mod-
eling tasks within the Kimball Lifecycle. The first 16 chapters of this book cover
dimensional modeling techniques and design patterns; this chapter describes
responsibilities, how-tos, and deliverables for the dimensional modeling design
activity.

Chapter 19: ETL Subsystems and Techniques

The extract, transformation, and load system consumes a disproportionate share
of the time and effort required to build a DW/BI environment. Careful consider-
ation of best practices has revealed 34 subsystems found in almost every dimen-
sional data warehouse back room. This chapter starts with the requirements and
constraints that must be considered before designing the ETL system and then
describes the 34 extraction, cleaning, conforming, delivery, and management
subsystems.

Chapter 20: ETL System Design and Development
Process and Tasks

This chapter delves into specific, tactical dos and don’ts surrounding the ETL
design and development activities. It is required reading for anyone tasked with
ETL responsibilities.

Chapter 21: Big Data Analytics

We focus on the popular topic of big data in the final chapter. Our perspective
is that big data is a natural extension of your DW/BI responsibilities. We begin
with an overview of several architectural alternatives, including MapReduce and

xoav Introduction

Hadoop, and describe how these alternatives can coexist with your current DW/BI
architecture. We then explore the management, architecture, data modeling, and
data governance best practices for big data.

Website Resources

The Kimball Group’s website is loaded with complementary dimensional modeling
content and resources:

Register for Kimball Design Tips to receive practical guidance about dimen-
sional modeling and DW/BI topics.

Access the archive of more than 300 Design Tips and articles.

Learn about public and onsite Kimball University classes for quality, vendor-
independent education consistent with our experiences and writings.

Learn about the Kimball Group’s consulting services to leverage our decades
of DW/BI expertise.

Pose questions to other dimensionally aware participants on the Kimball
Forum.

Summary

The goal of this book is to communicate the official dimensional design and devel-
opment techniques based on the authors’ more than 60 years of experience and
hard won lessons in real business environments. DW/BI systems must be driven
from the needs of business users, and therefore are designed and presented from a
simple dimensional perspective. We are confident you will be one giant step closer
to DW/BI success if you buy into this premise.

Now that you know where you are headed, it is time to dive into the details. We'll
begin with a primer on DW/BI and dimensional modeling in Chapter 1 to ensure that
everyone is on the same page regarding key terminology and architectural concepts.

his first chapter lays the groundwork for the following chapters. We begin by

considering data warehousing and business intelligence (DW/BI) systems from
a high-level perspective. You may be disappointed to learn that we don’t start with
technology and tools—first and foremost, the DW/BI system must consider the
needs of the business. With the business needs firmly in hand, we work backwards
through the logical and then physical designs, along with decisions about technol-
ogy and tools.

We drive stakes in the ground regarding the goals of data warehousing and busi-
ness intelligence in this chapter, while observing the uncanny similarities between
the responsibilities of a DW/BI manager and those of a publisher.

With this big picture perspective, we explore dimensional modeling core concepts
and establish fundamental vocabulary. From there, this chapter discusses the major
components of the Kimball DW/BI architecture, along with a comparison of alterna-
tive architectural approaches; fortunately, there’s a role for dimensional modeling
regardless of your architectural persuasion. Finally, we review common dimensional
modeling myths. By the end of this chapter, you'll have an appreciation for the need
to be one-half DBA (database administrator) and one-half MBA (business analyst)
as you tackle your DW/BI project.

Chapter 1 discusses the following concepts:

Business-driven goals of data warehousing and business intelligence
Publishing metaphor for DW/BI systems

Dimensional modeling core concepts and vocabulary, including fact and
dimension tables

Kimball DW/BI architecture’s components and tenets

Comparison of alternative DW/BI architectures, and the role of dimensional
modeling within each

Misunderstandings about dimensional modeling

2 Chapter 1

Different Worlds of Data Capture and
Data Analysis

One of the most important assets of any organization is its information. This asset
is almost always used for two purposes: operational record keeping and analytical
decision making. Simply speaking, the operational systems are where you put the
data in, and the DW/BI system is where you get the data out.

Users of an operational system turn the wheels of the organization. They take
orders, sign up new customers, monitor the status of operational activities, and log
complaints. The operational systems are optimized to process transactions quickly.
These systems almost always deal with one transaction record at a time. They predict-
ably perform the same operational tasks over and over, executing the organization’s
business processes. Given this execution focus, operational systems typically do not
maintain history, but rather update data to reflect the most current state.

Users of a DW/BI system, on the other hand, watch the wheels of the organiza-
tion turn to evaluate performance. They count the new orders and compare them
with last week’s orders, and ask why the new customers signed up, and what the
customers complained about. They worry about whether operational processes are
working correctly. Although they need detailed data to support their constantly
changing questions, DW/BI users almost never deal with one transaction at a time.
These systems are optimized for high-performance queries as users’ questions often
require that hundreds or hundreds of thousands of transactions be searched and
compressed into an answer set. To further complicate matters, users of a DW/BI
system typically demand that historical context be preserved to accurately evaluate
the organization’s performance over time.

In the first edition of The Data Warehouse Toolkit (Wiley, 1996), Ralph Kimball
devoted an entire chapter to describe the dichotomy between the worlds of opera-
tional processing and data warehousing. At this time, it is widely recognized that
the DW/BI system has profoundly different needs, clients, structures, and rhythms
than the operational systems of record. Unfortunately, we still encounter supposed
DWY/BI systems that are mere copies of the operational systems of record stored on
a separate hardware platform. Although these environments may address the need
to isolate the operational and analytical environments for performance reasons,
they do nothing to address the other inherent differences between the two types
of systems. Business users are underwhelmed by the usability and performance
provided by these pseudo data warehouses; these imposters do a disservice to DW/
BI because they don’t acknowledge their users have drastically different needs than
operational system users.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer

Goals of Data Warehousing and
Business Intelligence

Before we delve into the details of dimensional modeling, it is helpful to focus on
the fundamental goals of data warehousing and business intelligence. The goals can
be readily developed by walking through the halls of any organization and listening
to business management. These recurring themes have existed for more than three
decades:

“We collect tons of data, but we can’t access it.”

“We need to slice and dice the data every which way.”

“Business people need to get at the data easily.”

“Just show me what is important.”

“We spend entire meetings arguing about who has the right numbers rather
than making decisions.”

“We want people to use information to support more fact-based decision
making.”

Based on our experience, these concerns are still so universal that they drive the
bedrock requirements for the DW/BI system. Now turn these business management
quotations into requirements.

The DW/BI system must make information easily accessible. The contents
of the DW/BI system must be understandable. The data must be intuitive and
obvious to the business user, not merely the developer. The data’s structures
and labels should mimic the business users’ thought processes and vocabu-
lary. Business users want to separate and combine analytic data in endless
combinations. The business intelligence tools and applications that access
the data must be simple and easy to use. They also must return query results
to the user with minimal wait times. We can summarize this requirement by
simply saying simple and fast.

The DW/BI system must present information consistently. The data in the
DWY/BI system must be credible. Data must be carefully assembled from a
variety of sources, cleansed, quality assured, and released only when it is fit
for user consumption. Consistency also implies common labels and defini-
tions for the DW/BI system’s contents are used across data sources. If two
performance measures have the same name, they must mean the same thing.
Conversely, if two measures don’t mean the same thing, they should be labeled
differently.

3

4 Chapter 1

The DW/BI system must adapt to change. User needs, business conditions,
data, and technology are all subject to change. The DW/BI system must be
designed to handle this inevitable change gracefully so that it doesn’t invali-
date existing data or applications. Existing data and applications should not
be changed or disrupted when the business community asks new questions
or new data is added to the warehouse. Finally, if descriptive data in the DW/
BI system must be modified, you must appropriately account for the changes
and make these changes transparent to the users.

The DW/BI system must present information in a timely way. As the DW/
BI system is used more intensively for operational decisions, raw data may
need to be converted into actionable information within hours, minutes,
or even seconds. The DW/BI team and business users need to have realistic
expectations for what it means to deliver data when there is little time to
clean or validate it.

The DW/BI system must be a secure bastion that protects the information
assets. An organization’s informational crown jewels are stored in the data
warehouse. At a minimum, the warehouse likely contains information about
what you're selling to whom at what price—potentially harmful details in the
hands of the wrong people. The DW/BI system must effectively control access
to the organization’s confidential information.

The DW/BI system must serve as the authoritative and trustworthy foun-
dation for improved decision making. The data warehouse must have the
right data to support decision making. The most important outputs from a
DW/BI system are the decisions that are made based on the analytic evidence
presented; these decisions deliver the business impact and value attributable
to the DW/BI system. The original label that predates DW/BI is still the best
description of what you are designing: a decision support system.

The business community must accept the DW/BI system to deem it successful.
It doesn’t matter that you built an elegant solution using best-of-breed products
and platforms. If the business community does not embrace the DW/BI environ-
ment and actively use it, you have failed the acceptance test. Unlike an opera-
tional system implementation where business users have no choice but to use
the new system, DW/BI usage is sometimes optional. Business users will embrace
the DW/BI system if it is the “simple and fast” source for actionable information.

Although each requirement on this list is important, the final two are the most
critical, and unfortunately, often the most overlooked. Successful data warehousing
and business intelligence demands more than being a stellar architect, technician,
modeler, or database administrator. With a DW/BI initiative, you have one foot
in your information technology (IT) comfort zone while your other foot is on the

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 5

unfamiliar turf of business users. You must straddle the two, modifying some tried-
and-true skills to adapt to the unique demands of DW/BI. Clearly, you need to bring
a spectrum of skills to the party to behave like you're a hybrid DBA/MBA.

Publishing Metaphor for DW/BI Managers

With the goals of DW/BI as a backdrop, let’s compare the responsibilities of DW/BI
managers with those of a publishing editor-in-chief. As the editor of a high-quality
magazine, you would have broad latitude to manage the magazine’s content, style,
and delivery. Anyone with this job title would likely tackle the following activities:

Understand the readers:
Identify their demographic characteristics.
Find out what readers want in this kind of magazine.
Identify the “best” readers who will renew their subscriptions and buy
products from the magazine’s advertisers.
Find potential new readers and make them aware of the magazine.
Ensure the magazine appeals to the readers:
Choose interesting and compelling magazine content.
Make layout and rendering decisions that maximize the readers’
pleasure.
Uphold high-quality writing and editing standards while adopting a
consistent presentation style.
Continuously monitor the accuracy of the articles and advertisers’
claims.
Adapt to changing reader profiles and the availability of new input
from a network of writers and contributors.
Sustain the publication:
Attract advertisers and run the magazine profitably.
Publish the magazine on a regular basis.
Maintain the readers’ trust.
Keep the business owners happy.

You also can identify items that should be non-goals for the magazine’s editor-
in-chief, such as building the magazine around a particular printing technology
or exclusively putting management’s energy into operational efficiencies, such as
imposing a technical writing style that readers don’t easily understand, or creating
an intricate and crowded layout that is difficult to read.

By building the publishing business on a foundation of serving the readers effec-
tively, the magazine is likely to be successful. Conversely, go through the list and
imagine what happens if you omit any single item; ultimately, the magazine would
have serious problems.

6 Chapter 1

There are strong parallels that can be drawn between being a conventional pub-
lisher and being a DW/BI manager. Driven by the needs of the business, DW/BI
managers must publish data that has been collected from a variety of sources and
edited for quality and consistency. The main responsibility is to serve the readers,
otherwise known as business users. The publishing metaphor underscores the need
to focus outward on your customers rather than merely focusing inward on prod-
ucts and processes. Although you use technology to deliver the DW/BI system, the
technology is at best a means to an end. As such, the technology and techniques
used to build the system should not appear directly in your top job responsibilities.

Now recast the magazine publisher’s responsibilities as DW/BI manager
responsibilities:

Understand the business users:
Understand their job responsibilities, goals, and objectives.
Determine the decisions that the business users want to make with the
help of the DW/BI system.
Identify the “best” users who make effective, high-impact decisions.
Find potential new users and make them aware of the DW/BI system’s
capabilities.
Deliver high-quality, relevant, and accessible information and analytics to
the business users:
Choose the most robust, actionable data to present in the DW/BI sys-
tem, carefully selected from the vast universe of possible data sources
in your organization.
Make the user interfaces and applications simple and template-driven,
explicitly matched to the users’ cognitive processing profiles.
Make sure the data is accurate and can be trusted, labeling it consis-
tently across the enterprise.
Continuously monitor the accuracy of the data and analyses.
Adapt to changing user profiles, requirements, and business priorities,
along with the availability of new data sources.
Sustain the DW/BI environment:
Take a portion of the credit for the business decisions made using the
DW/BI system, and use these successes to justify staffing and ongoing
expenditures.
Update the DW/BI system on a regular basis.
Maintain the business users’ trust.
Keep the business users, executive sponsors, and IT management

happy.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 7

If you do a good job with all these responsibilities, you will be a great DW/BI
manager! Conversely, go through the list and imagine what happens if you omit
any single item. Ultimately, the environment would have serious problems. Now
contrast this view of a DW/BI manager’s job with your own job description. Chances
are the preceding list is more oriented toward user and business issues and may not
even sound like a job in IT. In our opinion, this is what makes data warehousing
and business intelligence interesting.

Dimensional Modeling Introduction

Now that you understand the DW/BI system’s goals, let’s consider the basics of dimen-
sional modeling. Dimensional modeling is widely accepted as the preferred technique
for presenting analytic data because it addresses two simultaneous requirements:

Deliver data that’s understandable to the business users.
Deliver fast query performance.

Dimensional modeling is a longstanding technique for making databases simple.
In case after case, for more than five decades, IT organizations, consultants, and
business users have naturally gravitated to a simple dimensional structure to match
the fundamental human need for simplicity. Simplicity is critical because it ensures
that users can easily understand the data, as well as allows software to navigate and
deliver results quickly and efficiently.

Imagine an executive who describes her business as, “We sell products in various
markets and measure our performance over time.” Dimensional designers listen
carefully to the emphasis on product, market, and time. Most people find it intui-
tive to think of such a business as a cube of data, with the edges labeled product,
market, and time. Imagine slicing and dicing along each of these dimensions. Points
inside the cube are where the measurements, such as sales volume or profit, for
that combination of product, market, and time are stored. The ability to visualize
something as abstract as a set of data in a concrete and tangible way is the secret
of understandability. If this perspective seems too simple, good! A data model that
starts simple has a chance of remaining simple at the end of the design. A model
that starts complicated surely will be overly complicated at the end, resulting in
slow query performance and business user rejection. Albert Einstein captured the
basic philosophy driving dimensional design when he said, “Make everything as
simple as possible, but not simpler.”

Although dimensional models are often instantiated in relational database man-
agement systems, they are quite different from third normal form (3NF) models which

8 Chapter 1

seek to remove data redundancies. Normalized 3NF structures divide data into
many discrete entities, each of which becomes a relational table. A database of sales
orders might start with a record for each order line but turn into a complex spider
web diagram as a 3NF model, perhaps consisting of hundreds of normalized tables.

The industry sometimes refers to 3NF models as entity-relationship (ER)
models. Entity-relationship diagrams (ER diagrams or ERDs) are drawings that com-
municate the relationships between tables. Both 3NF and dimensional models can
be represented in ERDs because both consist of joined relational tables; the key
difference between 3NF and dimensional models is the degree of normalization.
Because both model types can be presented as ERDs, we refrain from referring to
3NF models as ER models; instead, we call them normalized models to minimize
confusion.

Normalized 3NF structures are immensely useful in operational processing
because an update or insert transaction touches the database in only one place.
Normalized models, however, are too complicated for BI queries. Users can’t under-
stand, navigate, or remember normalized models that resemble a map of the Los
Angeles freeway system. Likewise, most relational database management systems
can't efficiently query a normalized model; the complexity of users’ unpredictable
queries overwhelms the database optimizers, resulting in disastrous query perfor-
mance. The use of normalized modeling in the DW/BI presentation area defeats the
intuitive and high-performance retrieval of data. Fortunately, dimensional modeling
addresses the problem of overly complex schemas in the presentation area.

NOTE A dimensional model contains the same information as a normalized
model, but packages the data in a format that delivers user understandability, query
performance, and resilience to change.

Star Schemas Versus OLAP Cubes

Dimensional models implemented in relational database management systems are
referred to as star schemas because of their resemblance to a star-like structure.
Dimensional models implemented in multidimensional database environments are
referred to as online analytical processing (OLAP) cubes, as illustrated in Figure 1-1.

If your DW/BI environment includes either star schemas or OLAP cubes, it lever-
ages dimensional concepts. Both stars and cubes have a common logical design with
recognizable dimensions; however, the physical implementation differs.

When data is loaded into an OLAP cube, it is stored and indexed using formats
and techniques that are designed for dimensional data. Performance aggregations
or precalculated summary tables are often created and managed by the OLAP cube
engine. Consequently, cubes deliver superior query performance because of the

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 9

precalculations, indexing strategies, and other optimizations. Business users can
drill down or up by adding or removing attributes from their analyses with excellent
performance without issuing new queries. OLAP cubes also provide more analyti-
cally robust functions that exceed those available with SQL. The downside is that you
pay a load performance price for these capabilities, especially with large data sets.

Market o Date
Dimension Dimension

v | Facts 3 Product
/ \ Dimension

roduct

N
\
/7

7

o

Figure 1-1: Star schema versus OLAP cube.

Fortunately, most of the recommendations in this book pertain regardless of the
relational versus multidimensional database platform. Although the capabilities
of OLAP technology are continuously improving, we generally recommend that
detailed, atomic information be loaded into a star schema; optional OLAP cubes are
then populated from the star schema. For this reason, most dimensional modeling
techniques in this book are couched in terms of a relational star schema.

OLAP Deployment Considerations

Here are some things to keep in mind if you deploy data into OLAP cubes:

A star schema hosted in a relational database is a good physical foundation
for building an OLAP cube, and is generally regarded as a more stable basis
for backup and recovery.

OLAP cubes have traditionally been noted for extreme performance advan-
tages over RDBMSs, but that distinction has become less important with
advances in computer hardware, such as appliances and in-memory databases,
and RDBMS software, such as columnar databases.

OLAP cube data structures are more variable across different vendors than
relational DBMSs, thus the final deployment details often depend on which
OLAP vendor is chosen. It is typically more difficult to port BI applications
between different OLAP tools than to port BI applications across different
relational databases.

10 Chapter 1

OLAP cubes typically offer more sophisticated security options than RDBMSs,
such as limiting access to detailed data but providing more open access to
summary data.

OLAP cubes offer significantly richer analysis capabilities than RDBMSs,
which are saddled by the constraints of SQL. This may be the main justifica-
tion for using an OLAP product.

OLAP cubes gracefully support slowly changing dimension type 2 changes
(which are discussed in Chapter 5: Procurement), but cubes often need to be
reprocessed partially or totally whenever data is overwritten using alternative
slowly changing dimension techniques.

OLAP cubes gracefully support transaction and periodic snapshot fact tables,
but do not handle accumulating snapshot fact tables because of the limitations
on overwriting data described in the previous point.

OLAP cubes typically support complex ragged hierarchies of indeterminate
depth, such as organization charts or bills of material, using native query
syntax that is superior to the approaches required for RDBMSs.

OLAP cubes may impose detailed constraints on the structure of dimension
keys that implement drill-down hierarchies compared to relational databases.
Some OLAP products do not enable dimensional roles or aliases, thus requir-
ing separate physical dimensions to be defined.

We'll return to the world of dimensional modeling in a relational platform as we
consider the two key components of a star schema.

Fact Tables for Measurements

The fact table in a dimensional model stores the performance measurements result-
ing from an organization’s business process events. You should strive to store the
low-level measurement data resulting from a business process in a single dimen-
sional model. Because measurement data is overwhelmingly the largest set of data,
it should not be replicated in multiple places for multiple organizational functions
around the enterprise. Allowing business users from multiple organizations to access
a single centralized repository for each set of measurement data ensures the use of
consistent data throughout the enterprise.

The term fact represents a business measure. Imagine standing in the marketplace
watching products being sold and writing down the unit quantity and dollar sales
amount for each product in each sales transaction. These measurements are captured
as products are scanned at the register, as illustrated in Figure 1-2.

Each row in a fact table corresponds to a measurement event. The data on each
row is at a specific level of detail, referred to as the grain, such as one row per product

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 11

sold on a sales transaction. One of the core tenets of dimensional modeling is that
all the measurement rows in a fact table must be at the same grain. Having the dis-
cipline to create fact tables with a single level of detail ensures that measurements
aren’t inappropriately double-counted.

Retail Sales Facts
Date Key (FK)
Product Key (FK)
Store Key (FK)
Promotion Key (FK)
Customer Key (FK)
Clerk Key (FK)
Transaction #
Sales Dollars
Sales Units

Translates into

Figure 1-2: Business process measurement events translate into fact tables.

NOTE The idea that a measurement event in the physical world has a one-to-one
relationship to a single row in the corresponding fact table is a bedrock principle
for dimensional modeling. Everything else builds from this foundation.

The most useful facts are numeric and additive, such as dollar sales amount.
Throughout this book we will use dollars as the standard currency to make the
case study examples more tangible—you can substitute your own local currency
if it isn’t dollars.

Additivity is crucial because BI applications rarely retrieve a single fact table
row. Rather, they bring back hundreds, thousands, or even millions of fact rows at
a time, and the most useful thing to do with so many rows is to add them up. No
matter how the user slices the data in Figure 1-2, the sales units and dollars sum
to a valid total. You will see that facts are sometimes semi-additive or even non-
additive. Semi-additive facts, such as account balances, cannot be summed across
the time dimension. Non-additive facts, such as unit prices, can never be added. You
are forced to use counts and averages or are reduced to printing out the fact rows
one at a time—an impractical exercise with a billion-row fact table.

Facts are often described as continuously valued to help sort out what is a fact
versus a dimension attribute. The dollar sales amount fact is continuously valued in
this example because it can take on virtually any value within a broad range. As an

12 Chapter 1

observer, you must stand out in the marketplace and wait for the measurement before
you have any idea what the value will be.

It is theoretically possible for a measured fact to be textual; however, the condition
rarely arises. In most cases, a textual measurement is a description of something
and is drawn from a discrete list of values. The designer should make every effort to
put textual data into dimensions where they can be correlated more effectively with
the other textual dimension attributes and consume much less space. You should
not store redundant textual information in fact tables. Unless the text is unique
for every row in the fact table, it belongs in the dimension table. A true text fact is
rare because the unpredictable content of a text fact, like a freeform text comment,
makes it nearly impossible to analyze.

Referring to the sample fact table in Figure 1-2, if there is no sales activity for a
given product, you don’t put any rows in the table. It is important that you do not
try to fill the fact table with zeros representing no activity because these zeros would
overwhelm most fact tables. By including only true activity, fact tables tend to be
quite sparse. Despite their sparsity, fact tables usually make up 90 percent or more
of the total space consumed by a dimensional model. Fact tables tend to be deep in
terms of the number of rows, but narrow in terms of the number of columns. Given
their size, you should be judicious about fact table space utilization.

As examples are developed throughout this book, you will see that all fact table
grains fall into one of three categories: transaction, periodic snapshot, and accu-
mulating snapshot. Transaction grain fact tables are the most common. We will
introduce transaction fact tables in Chapter 3: Retail Sales, and both periodic and
accumulating snapshots in Chapter 4: Inventory.

All fact tables have two or more foreign keys (refer to the FK notation in Figure 1-2)
that connect to the dimension tables’ primary keys. For example, the product key in
the fact table always matches a specific product key in the product dimension table.
When all the keys in the fact table correctly match their respective primary keys in
the corresponding dimension tables, the tables satisfy referential integrity. You access
the fact table via the dimension tables joined to it.

The fact table generally has its own primary key composed of a subset of the for-
eign keys. This key is often called a composite key. Every table that has a composite
key is a fact table. Fact tables express many-to-many relationships. All others are
dimension tables.

There are usually a handful of dimensions that together uniquely identify each
fact table row. After this subset of the overall dimension list has been identified, the
rest of the dimensions take on a single value in the context of the fact table row’s
primary key. In other words, they go along for the ride.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 13

Dimension Tables for Descriptive Context

Dimension tables are integral companions to a fact table. The dimension tables con-
tain the textual context associated with a business process measurement event. They
describe the “who, what, where, when, how, and why” associated with the event.

As illustrated in Figure 1-3, dimension tables often have many columns or
attributes. It is not uncommon for a dimension table to have 50 to 100 attributes;
although, some dimension tables naturally have only a handful of attributes.
Dimension tables tend to have fewer rows than fact tables, but can be wide with
many large text columns. Each dimension is defined by a single primary key (refer
to the PK notation in Figure 1-3), which serves as the basis for referential integrity
with any given fact table to which it is joined.

Product Dimension
Product Key (PK)
SKU Number (Natural Key)
Product Description
Brand Name
Category Name
Department Name
Package Type
Package Size
Abrasive Indicator
Weight
Weight Unit of Measure
Storage Type
Shelf Life Type
Shelf Width
Shelf Height
Shelf Depth

Figure 1-3: Dimension tables contain descriptive characteristics of business
process nouns.

Dimension attributes serve as the primary source of query constraints, group-
ings, and report labels. In a query or report request, attributes are identified as the
by words. For example, when a user wants to see dollar sales by brand, brand must
be available as a dimension attribute.

Dimension table attributes play a vital role in the DW/BI system. Because they
are the source of virtually all constraints and report labels, dimension attributes are
critical to making the DW/BI system usable and understandable. Attributes should
consist of real words rather than cryptic abbreviations. You should strive to mini-
mize the use of codes in dimension tables by replacing them with more verbose

14 Chapter 1

textual attributes. You may have already trained the business users to memorize
operational codes, but going forward, minimize their reliance on miniature notes
attached to their monitor for code translations. You should make standard decodes
for the operational codes available as dimension attributes to provide consistent
labeling on queries, reports, and Bl applications. The decode values should never be
buried in the reporting applications where inconsistency is inevitable.

Sometimes operational codes or identifiers have legitimate business significance
to users or are required to communicate back to the operational world. In these
cases, the codes should appear as explicit dimension attributes, in addition to the
corresponding user-friendly textual descriptors. Operational codes sometimes have
intelligence embedded in them. For example, the first two digits may identify the
line of business, whereas the next two digits may identify the global region. Rather
than forcing users to interrogate or filter on substrings within the operational codes,
pull out the embedded meanings and present them to users as separate dimension
attributes that can easily be filtered, grouped, or reported.

In many ways, the data warehouse is only as good as the dimension attributes; the
analytic power of the DW/BI environment is directly proportional to the quality and
depth of the dimension attributes. The more time spent providing attributes with
verbose business terminology, the better. The more time spent populating the domain
values in an attribute column, the better. The more time spent ensuring the quality
of the values in an attribute column, the better. Robust dimension attributes deliver
robust analytic slicing-and-dicing capabilities.

NOTE Dimensions provide the entry points to the data, and the final labels and
groupings on all DW/BI analyses.

When triaging operational source data, it is sometimes unclear whether a
numeric data element is a fact or dimension attribute. You often make the decision
by asking whether the column is a measurement that takes on lots of values and
participates in calculations (making it a fact) or is a discretely valued description
that is more or less constant and participates in constraints and row labels (making
it a dimensional attribute). For example, the standard cost for a product seems like
a constant attribute of the product but may be changed so often that you decide it
is more like a measured fact. Occasionally, you can’t be certain of the classification;
it is possible to model the data element either way (or both ways) as a matter of the
designer’s prerogative.

NOTE The designer’s dilemma of whether a numeric quantity is a fact or a
dimension attribute is rarely a difficult decision. Continuously valued numeric

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 15

observations are almost always facts; discrete numeric observations drawn from a
small list are almost always dimension attributes.

Figure 1-4 shows that dimension tables often represent hierarchical relation-
ships. For example, products roll up into brands and then into categories. For each
row in the product dimension, you should store the associated brand and category
description. The hierarchical descriptive information is stored redundantly in the
spirit of ease of use and query performance. You should resist the perhaps habitual
urge to normalize data by storing only the brand code in the product dimension and
creating a separate brand lookup table, and likewise for the category description in a
separate category lookup table. This normalization is called snowflaking. Instead of
third normal form, dimension tables typically are highly denormalized with flattened
many-to-one relationships within a single dimension table. Because dimension tables
typically are geometrically smaller than fact tables, improving storage efficiency by
normalizing or snowflaking has virtually no impact on the overall database size. You
should almost always trade off dimension table space for simplicity and accessibility.

Product Key | Product Description Brand Name Category Name

1 PowerAll 20 oz PowerClean All Purpose Cleaner
2 PowerAll 32 oz PowerClean All Purpose Cleaner
3 PowerAll 48 oz PowerClean All Purpose Cleaner
4 PowerAll 64 oz PowerClean All Purpose Cleaner
5 ZipAll 20 oz Zippy All Purpose Cleaner
6 ZipAll 32 oz Zippy All Purpose Cleaner
7 ZipAll 48 oz Zippy All Purpose Cleaner
8 Shiny 20 oz Clean Fast Glass Cleaner

9 Shiny 32 oz Clean Fast Glass Cleaner

10 ZipGlass 20 oz Zippy Glass Cleaner

11 ZipGlass 32 0z Zippy Glass Cleaner

Figure 1-4: Sample rows from a dimension table with denormalized hierarchies.

Contrary to popular folklore, Ralph Kimball didn’t invent the terms fact and
dimension. As best as can be determined, the dimension and fact terminology
originated from a joint research project conducted by General Mills and Dartmouth
University in the 1960s. In the 1970s, both AC Nielsen and IRI used the terms con-
sistently to describe their syndicated data offerings and gravitated to dimensional
models for simplifying the presentation of their analytic information. They under-
stood that their data wouldn’t be used unless it was packaged simply. It is probably
accurate to say that no single person invented the dimensional approach. It is an
irresistible force in designing databases that always results when the designer places
understandability and performance as the highest goals.

16 Chapter 1

Facts and Dimensions Joined in a Star Schema

Now that you understand fact and dimension tables, it’s time to bring the building blocks
together in a dimensional model, as shown in Figure 1-5. Each business process is repre-
sented by a dimensional model that consists of a fact table containing the event's numeric
measurements surrounded by a halo of dimension tables that contain the textual context
that was true at the moment the event occurred. This characteristic star-like structure
is often called a star join, a term dating back to the earliest days of relational databases.

Retail Sales Fact
| Date Dimension I— Date Key (FK)

Product Key (FK) — Product Dimension |
| Store Dimension I— Store Key (FK)
Promotion Key (FK) —| Promotion Dimension |
| Customer Dimension I— Customer Key (FK)
Clerk Key (FK) —| Clerk Dimension |
Transaction #
Sales Dollars
Sales Units

Figure 1-5: Fact and dimension tables in a dimensional model.

The first thing to notice about the dimensional schema is its simplicity and
symmetry. Obviously, business users benefit from the simplicity because the data
is easier to understand and navigate. The charm of the design in Figure 1-5 is that
it is highly recognizable to business users. We have observed literally hundreds of
instances in which users immediately agree that the dimensional model is their
business. Furthermore, the reduced number of tables and use of meaningtul busi-
ness descriptors make it easy to navigate and less likely that mistakes will occur.

The simplicity of a dimensional model also has performance benefits. Database
optimizers process these simple schemas with fewer joins more efficiently. A data-
base engine can make strong assumptions about first constraining the heavily
indexed dimension tables, and then attacking the fact table all at once with the
Cartesian product of the dimension table keys satisfying the user’s constraints.
Amazingly, using this approach, the optimizer can evaluate arbitrary n-way joins
to a fact table in a single pass through the fact table’s index.

Finally, dimensional models are gracefully extensible to accommodate change.
The predictable framework of a dimensional model withstands unexpected changes
in user behavior. Every dimension is equivalent; all dimensions are symmetrically-
equal entry points into the fact table. The dimensional model has no built-in bias
regarding expected query patterns. There are no preferences for the business ques-
tions asked this month versus the questions asked next month. You certainly don’t
want to adjust schemas if business users suggest new ways to analyze their business.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 17

This book illustrates repeatedly that the most granular or atomic data has the
most dimensionality. Atomic data that has not been aggregated is the most expres-
sive data; this atomic data should be the foundation for every fact table design to
withstand business users’ ad hoc attacks in which they pose unexpected queries.
With dimensional models, you can add completely new dimensions to the schema
as long as a single value of that dimension is defined for each existing fact row.
Likewise, you can add new facts to the fact table, assuming that the level of detail
is consistent with the existing fact table. You can supplement preexisting dimen-
sion tables with new, unanticipated attributes. In each case, existing tables can be
changed in place either by simply adding new data rows in the table or by executing
an SQL ALTER TABLE command. Data would not need to be reloaded, and existing BI
applications would continue to run without yielding different results. We examine
this graceful extensibility of dimensional models more fully in Chapter 3.

Another way to think about the complementary nature of fact and dimension
tables is to see them translated into a report. As illustrated in Figure 1-6, dimension
attributes supply the report filters and labeling, whereas the fact tables supply the
report’s numeric values.

Product Dimension Sales Fact
Product Key (PK) Date Key (FK) Date Dimension
SKU Number (Natural Key) Product Key (FK) \ Date Key (PK)

\
Product Description Store Key (FK) Date
Package Type Day of Week
Package Size Transaction #
Category Name Sales Units ...and more
...and more
l Filter
Store Dimension

Store Key (PK)
Store Number

Store Name

Store State

Store ZIP

Region

...and more

Group by Group by Sum

Sales Activity for June 2013
District Brand Name Sales Dollars
Atherton PowerClean 2,035
Atherton Zippy 707
Belmont Clean Fast 2,330
Belmont Zippy 527

Figure 1-6: Dimensional attributes and facts form a simple report.

18 Chapter 1

You can easily envision the SQL that’s written (or more likely generated by a BI
tool) to create this report:
SELECT
store.district_name,
product.brand,
sum(sales_facts.sales_dollars) AS "Sales Dollars"”
FROM
store,
product,
date,
sales_facts
WHERE
date.month_name="January" AND
date.year=2013 AND
store.store_key = sales_facts.store_key AND
product.product_key = sales_facts.product_key AND
date.date_key = sales_facts.date_key
GROUP BY
store.district_name,
product.brand

If you study this code snippet line-by-line, the first two lines under the SELECT
statement identify the dimension attributes in the report, followed by the aggre-
gated metric from the fact table. The FROM clause identifies all the tables involved
in the query. The first two lines in the WHERE clause declare the report’s filter, and
the remainder declare the joins between the dimension and fact tables. Finally, the
GROUP BY clause establishes the aggregation within the report.

Kimball’'s DW/BI Architecture

Let’s build on your understanding of DW/BI systems and dimensional modeling
fundamentals by investigating the components of a DW/BI environment based on
the Kimball architecture. You need to learn the strategic significance of each com-
ponent to avoid confusing their role and function.

As illustrated in Figure 1-7, there are four separate and distinct components to
consider in the DW/BI environment: operational source systems, ETL system, data
presentation area, and business intelligence applications.

Operational Source Systems

These are the operational systems of record that capture the business’s transactions.
Think of the source systems as outside the data warehouse because presumably you
have little or no control over the content and format of the data in these operational
systems. The main priorities of the source systems are processing performance and avail-
ability. Operational queries against source systems are narrow, one-record-at-a-time

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 19

queries that are part of the normal transaction flow and severely restricted in their
demands on the operational system. It is safe to assume that source systems are not
queried in the broad and unexpected ways that DW/BI systems typically are queried.
Source systems maintain little historical data; a good data warehouse can relieve
the source systems of much of the responsibility for representing the past. In many
cases, the source systems are special purpose applications without any commitment
to sharing common data such as product, customer, geography, or calendar with other
operational systems in the organization. Of course, a broadly adopted cross-application
enterprise resource planning (ERP) system or operational master data management
system could help address these shortcomings.

Source <«————— Back Room > <€ Front Room —mM——>
Transactions
,_I—
TN
N~ Presentation Area:
> ¢ Dimensional (star
ETL System: schema or OLAP
- be)
N4 o Transform from cube)
source-to-target * Atomic and
 Conform Eumm_arydd:ta
i i o Organized by S
| e, il
:l|> optional * :'J_ses conformed 1 Standard reports
* No usetrquery = > imensions —e Sn?lwicapps §
suppor . * Data mining an
Design Goals:
~— Design Goals: * Ease-of-use models
o Throughput o Query performance
e Integrity and

consistency

:> Enterprise DW Bus
Architecture

Figure 1-7: Core elements of the Kimball DW/BI architecture.

Extract, Transformation, and Load System

The extract, transformation, and load (ETL) system of the DW/BI environment consists
of a work area, instantiated data structures, and a set of processes. The ETL system
is everything between the operational source systems and the DW/BI presentation
area. We elaborate on the architecture of ETL systems and associated techniques
in Chapter 19: ETL Subsystems and Techniques, but we want to introduce this
fundamental piece of the overall DW/BI system puzzle.

Extraction is the first step in the process of getting data into the data warehouse
environment. Extracting means reading and understanding the source data and
copying the data needed into the ETL system for further manipulation. At this
point, the data belongs to the data warehouse.

After the data is extracted to the ETL system, there are numerous potential trans-
formations, such as cleansing the data (correcting misspellings, resolving domain

20 Chapter 1

conflicts, dealing with missing elements, or parsing into standard formats), com-
bining data from multiple sources, and de-duplicating data. The ETL system adds
value to the data with these cleansing and conforming tasks by changing the data
and enhancing it. In addition, these activities can be architected to create diagnos-
tic metadata, eventually leading to business process reengineering to improve data
quality in the source systems over time.

The final step of the ETL process is the physical structuring and loading of data
into the presentation area’s target dimensional models. Because the primary mis-
sion of the ETL system is to hand off the dimension and fact tables in the delivery
step, these subsystems are critical. Many of these defined subsystems focus on
dimension table processing, such as surrogate key assignments, code lookups to
provide appropriate descriptions, splitting, or combining columns to present the
appropriate data values, or joining underlying third normal form table structures
into flattened denormalized dimensions. In contrast, fact tables are typically large
and time consuming to load, but preparing them for the presentation area is typically
straightforward. When the dimension and fact tables in a dimensional model have
been updated, indexed, supplied with appropriate aggregates, and further quality
assured, the business community is notified that the new data has been published.

There remains industry consternation about whether the data in the ETL system
should be repurposed into physical normalized structures prior to loading into the
presentation area’s dimensional structures for querying and reporting. The ETL
system is typically dominated by the simple activities of sorting and sequential
processing. In many cases, the ETL system is not based on relational technology but
instead may rely on a system of flat files. After validating the data for conformance
with the defined one-to-one and many-to-one business rules, it may be pointless to
take the final step of building a 3NF physical database, just before transforming the
data once again into denormalized structures for the BI presentation area.

However, there are cases in which the data arrives at the doorstep of the ETL
system in a 3NF relational format. In these situations, the ETL system develop-
ers may be more comfortable performing the cleansing and transformation tasks
using normalized structures. Although a normalized database for ETL processing
is acceptable, we have some reservations about this approach. The creation of both
normalized structures for the ETL and dimensional structures for presentation
means that the data is potentially extracted, transformed, and loaded twice—once
into the normalized database and then again when you load the dimensional model.
Obviously, this two-step process requires more time and investment for the develop-
ment, more time for the periodic loading or updating of data, and more capacity to
store the multiple copies of the data. At the bottom line, this typically translates into
the need for larger development, ongoing support, and hardware platform budgets.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 21

Unfortunately, some DW/BI initiatives have failed miserably because they focused
all their energy and resources on constructing the normalized structures rather
than allocating time to developing a dimensional presentation area that supports
improved business decision making. Although enterprise-wide data consistency is a
fundamental goal of the DW/BI environment, there may be effective and less costly
approaches than physically creating normalized tables in the ETL system, if these
structures don’t already exist.

NOTE [t is acceptable to create a normalized database to support the ETL
processes; however, this is not the end goal. The normalized structures must be
off-limits to user queries because they defeat the twin goals of understandability
and performance.

Presentation Area to Support Business Intelligence

The DW/BI presentation area is where data is organized, stored, and made available
for direct querying by users, report writers, and other analytical Bl applications.
Because the back room ETL system is off-limits, the presentation area is the DW/BI
environment as far as the business community is concerned; it is all the business
sees and touches via their access tools and BI applications. The original pre-release
working title for the first edition of The Data Warehouse Toolkit was Getting the Data
Out. This is what the presentation area with its dimensional models is all about.
We have several strong opinions about the presentation area. First of all, we insist
that the data be presented, stored, and accessed in dimensional schemas, either
relational star schemas or OLAP cubes. Fortunately, the industry has matured to the
point where we’re no longer debating this approach; it has concluded that dimen-
sional modeling is the most viable technique for delivering data to DW/BI users.
Our second stake in the ground about the presentation area is that it must
contain detailed, atomic data. Atomic data is required to withstand assaults from
unpredictable ad hoc user queries. Although the presentation area also may contain
performance-enhancing aggregated data, it is not sufficient to deliver these sum-
maries without the underlying granular data in a dimensional form. In other words,
it is completely unacceptable to store only summary data in dimensional models
while the atomic data is locked up in normalized models. It is impractical to expect
auser to drill down through dimensional data almost to the most granular level and
then lose the benefits of a dimensional presentation at the final step. Although DW/
BI users and applications may look infrequently at a single line item on an order,
they may be very interested in last week’s orders for products of a given size (or
flavor, package type, or manufacturer) for customers who first purchased within

22 Chapter 1

the last 6 months (or reside in a given state or have certain credit terms). The most
finely grained data must be available in the presentation area so that users can ask
the most precise questions possible. Because users’ requirements are unpredictable
and constantly changing, you must provide access to the exquisite details so they
can roll up to address the questions of the moment.

The presentation data area should be structured around business process mea-
surement events. This approach naturally aligns with the operational source data
capture systems. Dimensional models should correspond to physical data capture
events; they should not be designed to deliver the report-of-the-day. An enterprise’s
business processes cross the boundaries of organizational departments and func-
tions. In other words, you should construct a single fact table for atomic sales metrics
rather than populating separate similar, but slightly different, databases containing
sales metrics for the sales, marketing, logistics, and finance teams.

All the dimensional structures must be built using common, conformed dimen-
sions. This is the basis of the enterprise data warehouse bus architecture described
in Chapter 4. Adherence to the bus architecture is the final stake in the ground
for the presentation area. Without shared, conformed dimensions, a dimensional
model becomes a standalone application. Isolated stovepipe data sets that cannot be
tied together are the bane of the DW/BI movement as they perpetuate incompatible
views of the enterprise. If you have any hope of building a robust and integrated
DWY/BI environment, you must commit to the enterprise bus architecture. When
dimensional models have been designed with conformed dimensions, they can be
readily combined and used together. The presentation area in a large enterprise
DW/BI solution ultimately consists of dozens of dimensional models with many of
the associated dimension tables shared across fact tables.

Using the bus architecture is the secret to building distributed DW/BI systems.
When the bus architecture is used as a framework, you can develop the enterprise
data warehouse in an agile, decentralized, realistically scoped, iterative manner.

NOTE Data in the queryable presentation area of the DW/BI system must be
dimensional, atomic (complemented by performance-enhancing aggregates), busi-
ness process-centric, and adhere to the enterprise data warehouse bus architecture.
The data must not be structured according to individual departments’ interpreta-
tion of the data.

Business Intelligence Applications

The final major component of the Kimball DW/BI architecture is the business intelligence
(BD) application. The term BI application loosely refers to the range of capabilities pro-
vided to business users to leverage the presentation area for analytic decision making.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 23

By definition, all BI applications query the data in the DW/BI presentation area.
Querying, obviously, is the whole point of using data for improved decision making.

A Bl application can be as simple as an ad hoc query tool or as complex as a sophis-
ticated data mining or modeling application. Ad hoc query tools, as powerful as they
are, can be understood and used effectively by only a small percentage of the potential
DWY/BI business user population. Most business users will likely access the data via
prebuilt parameter-driven applications and templates that do not require users to con-
struct queries directly. Some of the more sophisticated applications, such as modeling
or forecasting tools, may upload results back into the operational source systems, ETL
system, or presentation area.

Restaurant Metaphor for the Kimball Architecture

One of our favorite metaphors reinforces the importance of separating the overall
DWY/BI environment into distinct components. In this case, we'll consider the simi-
larities between a restaurant and the DW/BI environment.

ETL in the Back Room Kitchen

The ETL system is analogous to the kitchen of a restaurant. The restaurant’s kitchen
is a world unto itself. Talented chefs take raw materials and transform them into
appetizing, delicious meals for the restaurant’s diners. But long before a commercial
kitchen swings into operation, a significant amount of planning goes into designing
the workspace layout and components.

The kitchen is organized with several design goals in mind. First, the layout must
be highly efficient. Restaurant managers want high kitchen throughput. When the
restaurant is packed and everyone is hungry, there is no time for wasted movement.
Delivering consistent quality from the restaurant’s kitchen is the second important
goal. The establishment is doomed if the plates coming out of the kitchen repeat-
edly fail to meet expectations. To achieve consistency, chefs create their special
sauces once in the kitchen, rather than sending ingredients out to the table where
variations will inevitably occur. Finally, the kitchen’s output, the meals delivered
to restaurant customers, must also be of high integrity. You wouldn’t want someone
to get food poisoning from dining at your restaurant. Consequently, kitchens are
designed with integrity in mind; salad preparation doesn’t happen on the same
surfaces where raw chicken is handled.

Just as quality, consistency, and integrity are major considerations when designing
the restaurant’s kitchen, they are also ongoing concerns for everyday management
of the restaurant. Chefs strive to obtain the best raw materials possible. Procured
products must meet quality standards and are rejected if they don’t meet minimum
standards. Most fine restaurants modify their menus based on the availability of
quality ingredients.

24 Chapter 1

The restaurant staffs its kitchen with skilled professionals wielding the tools of
their trade. Cooks manipulate razor-sharp knives with incredible confidence and
ease. They operate powerful equipment and work around extremely hot surfaces
without incident.

Given the dangerous surroundings, the back room kitchen is off limits to res-
taurant patrons. Things happen in the kitchen that customers just shouldn’t see. It
simply isn't safe. Professional cooks handling sharp knives shouldn’t be distracted
by diners’ inquiries. You also wouldn’t want patrons entering the kitchen to dip their
fingers into a sauce to see whether they want to order an entree. To prevent these
intrusions, most restaurants have a closed door that separates the kitchen from the
area where diners are served. Even restaurants that boast an open kitchen format
typically have a barrier, such as a partial wall of glass, separating the two environ-
ments. Diners are invited to watch but can’t wander into the kitchen. Although part
of the kitchen may be visible, there are always out-of-view back rooms where the
less visually desirable preparation occurs.

The data warehouse’s ETL system resembles the restaurant’s kitchen. Source data
is magically transformed into meaningful, presentable information. The back room
ETL system must be laid out and architected long before any data is extracted from
the source. Like the kitchen, the ETL system is designed to ensure throughput.
It must transform raw source data into the target model efficiently, minimizing
unnecessary movement.

Obviously, the ETL system is also highly concerned about data quality, integrity, and
consistency. Incoming data is checked for reasonable quality as it enters. Conditions
are continually monitored to ensure ETL outputs are of high integrity. Business rules
to consistently derive value-add metrics and attributes are applied once by skilled
professionals in the ETL system rather than relying on each patron to develop them
independently. Yes, that puts extra burden on the ETL team, but it's done to deliver a
better, more consistent product to the DW/BI patrons.

NOTE A properly designed DW/BI environment trades off work in the front
room BI applications in favor of work in the back room ETL system. Front room
work must be done over and over by business users, whereas back room work is
done once by the ETL staff.

Finally, ETL system should be off limits to the business users and BI application
developers. Just as you don’t want restaurant patrons wandering into the kitchen
and potentially consuming semi-cooked food, you don’t want busy ETL profession-
als distracted by unpredictable inquiries from BI users. The consequences might
be highly unpleasant if users dip their fingers into interim staging pots while data
preparation is still in process. As with the restaurant kitchen, activities occur in

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 25

the ETL system that the DW/BI patrons shouldn’t see. When the data is ready and
quality checked for user consumption, it’s brought through the doorway into the
DW/BI presentation area.

Data Presentation and Bl in the Front Dining Room

Now turn your attention to the restaurant’s dining room. What are the key fac-
tors that differentiate restaurants? According to the popular restaurant ratings and
reviews, restaurants are typically scored on four distinct qualities:

Food (quality, taste, and presentation)

Decor (appealing, comfortable surroundings for the patrons)

Service (prompt food delivery, attentive support staff, and food received

as ordered)

Cost

Most patrons focus initially on the food score when theyre evaluating dining
options. First and foremost, does the restaurant serve good food? That’s the res-
taurant’s primary deliverable. However, the decor, service, and cost factors also
affect the patrons’ overall dining experience and are considerations when evaluating
whether to eat at a restaurant.

Of course, the primary deliverable from the DW/BI kitchen is the data in
the presentation area. What data is available? Like the restaurant, the DW/BI
system provides “menus” to describe what’s available via metadata, published
reports, and parameterized analytic applications. The DW/BI patrons expect con-
sistency and high quality. The presentation area’s data must be properly prepared
and safe to consume.

The presentation area’s decor should be organized for the patrons’ comfort. It
must be designed based on the preferences of the BI diners, not the development
staff. Service is also critical in the DW/BI system. Data must be delivered, as ordered,
promptly in a form that is appealing to the business user or Bl application developer.

Finally, cost is a factor for the DW/BI system. The kitchen staff may be dream-
ing up elaborate, expensive meals, but if there’s no market at that price point, the
restaurant won't survive.

If restaurant patrons like their dining experience, then everything is rosy for
the restaurant manager. The dining room is always busy; sometimes there’s even
a waiting list. The restaurant manager’s performance metrics are all promising:
high numbers of diners, table turnovers, and nightly revenue and profit, while staff
turnover is low. Things look so good that the restaurant’s owner is considering an
expansion site to handle the traffic. On the other hand, if the restaurant’s diners
aren’t happy, things go downhill in a hurry. With a limited number of patrons,
the restaurant isn’t making enough money to cover its expenses, and the staff isn’t
making any tips. In a relatively short time, the restaurant closes.

26 Chapter 1

Restaurant managers often proactively check on their diners’ satisfaction with
the food and dining experience. If a patron is unhappy, they take immediate action
to rectify the situation. Similarly, DW/BI managers should proactively monitor sat-
isfaction. You can't afford to wait to hear complaints. Often, people will abandon
a restaurant without even voicing their concerns. Over time, managers notice that
diner counts have dropped but may not even know why.

Inevitably, the prior DW/BI patrons will locate another “restaurant” that bet-
ter suits their needs and preferences, wasting the millions of dollars invested to
design, build, and staff the DW/BI system. Of course, you can prevent this unhappy
ending by managing the restaurant proactively; make sure the kitchen is properly
organized and utilized to deliver as needed to the presentation area’s food, decor,
service, and cost.

Alternative DW/BI Architectures

Having just described the Kimball architecture, let’s discuss several other DW/BI
architectural approaches. We'll quickly review the two dominant alternatives to the
Kimball architecture, highlighting the similarities and differences. We'll then close
this section by focusing on a hybrid approach that combines alternatives.

Fortunately, over the past few decades, the differences between the Kimball
architecture and the alternatives have softened. Even more fortunate, there’s a role
for dimensional modeling regardless of your architectural predisposition.

We acknowledge that organizations have successfully constructed DW/BI systems
based on the approaches advocated by others. We strongly believe that rather than
encouraging more consternation over our philosophical differences, the industry
would be far better off devoting energy to ensure that our DW/BI deliverables are
broadly accepted by the business to make better, more informed decisions. The
architecture should merely be a means to this objective.

Independent Data Mart Architecture

With this approach, analytic data is deployed on a departmental basis without con-
cern to sharing and integrating information across the enterprise, as illustrated in
Figure 1-8. Typically, a single department identifies requirements for data from an
operational source system. The department works with IT staff or outside consul-
tants to construct a database that satisfies their departmental needs, reflecting their
business rules and preferred labeling. Working in isolation, this departmental data
mart addresses the department’s analytic requirements.

Meanwhile, another department is interested in the same source data. It’s extremely
common for multiple departments to be interested in the same performance met-
rics resulting from an organization’s core business process events. But because this

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 27

department doesn’t have access to the data mart initially constructed by the other
department, it proceeds down a similar path on its own, obtaining resources and
building a departmental solution that contains similar, but slightly different data.
When business users from these two departments discuss organizational perfor-
mance based on reports from their respective repositories, not surprisingly, none of
the numbers match because of the differences in business rules and labeling.

Source = <«———— Back Room > <€ Front Room —M——>
Transactions
N
N
ETL Data Mart for <: Bl Applications for
Department #1 Department #1
N S
£
TN
N
ETL Data Mart for <: Bl Applications for
Department #2 Department #2
N
s
N
~—— Data Mart for <:: Bl Applications for
ETL > Department #3 Department #3
N

Figure 1-8: Simplified illustration of the independent data mart “architecture.”

These standalone analytic silos represent a DW/BI “architecture” that’s essen-
tially un-architected. Although no industry leaders advocate these independent
data marts, this approach is prevalent, especially in large organizations. It mirrors
the way many organizations fund IT projects, plus it requires zero cross-organi-
zational data governance and coordination. It's the path of least resistance for fast
development at relatively low cost, at least in the short run. Of course, multiple
uncoordinated extracts from the same operational sources and redundant storage
of analytic data are inefficient and wasteful in the long run. Without any enterprise
perspective, this independent approach results in myriad standalone point solutions
that perpetuate incompatible views of the organization’s performance, resulting in
unnecessary organizational debate and reconciliation.

We strongly discourage the independent data mart approach. However, often
these independent data marts have embraced dimensional modeling because they’re
interested in delivering data that’s easy for the business to understand and highly
responsive to queries. So our concepts of dimensional modeling are often applied
in this architecture, despite the complete disregard for some of our core tenets, such
as focusing on atomic details, building by business process instead of department,
and leveraging conformed dimensions for enterprise consistency and integration.

28 Chapter 1

Hub-and-Spoke Corporate Information Factory
Inmon Architecture

The hub-and-spoke Corporate Information Factory (CIF) approach is advocated
by Bill Inmon and others in the industry. Figure 1-9 illustrates a simplified version
of the CIF, focusing on the core elements and concepts that warrant discussion.

Source <«———— Back Room >

Transactions < Front Room >
YN
_/:'>
D D
a
a Data Marts: A
TN A Enterprise Data D Dimensional p
N ¢ Warehouse (EDW) 8 o Often p
:> q :> o Normalized :> : :> summarized :
u tables (3NF) v e Often g,—
i * Atomic data e departmental :
N ? * User queryable r t
y i
} 0
n
g s

Figure 1-9: Simplified illustration of the hub-and-spoke Corporate Information Factory
architecture.

With the CIF, data is extracted from the operational source systems and processed
through an ETL system sometimes referred to as data acquisition. The atomic data
that results from this processing lands in a 3NF database; this normalized, atomic
repository is referred to as the Enterprise Data Warehouse (EDW) within the CIF
architecture. Although the Kimball architecture enables optional normalization to
support ETL processing, the normalized EDW is a mandatory construct in the CIF.
Like the Kimball approach, the CIF advocates enterprise data coordination and inte-
gration. The CIF says the normalized EDW fills this role, whereas the Kimball archi-
tecture stresses the importance of an enterprise bus with conformed dimensions.

NOTE The process of normalization does not technically speak to integration.
Normalization simply creates physical tables that implement many-to-one rela-
tionships. Integration, on the other hand, requires that inconsistencies arising
from separate sources be resolved. Separate incompatible database sources can be
normalized to the hilt without addressing integration. The Kimball architecture

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 29

based on conformed dimensions reverses this logic and focuses on resolving data
inconsistencies without explicitly requiring normalization.

Organizations who have adopted the CIF approach often have business users
accessing the EDW repository due to its level of detail or data availability timeli-
ness. However, subsequent ETL data delivery processes also populate downstream
reporting and analytic environments to support business users. Although often
dimensionally structured, the resultant analytic databases typically differ from
structures in the Kimball architecture’s presentation area in that they’re frequently
departmentally-centric (rather than organized around business processes) and popu-
lated with aggregated data (rather than atomic details). If the data delivery ETL
processes apply business rules beyond basic summarization, such as departmental
renaming of columns or alternative calculations, it may be difficult to tie these
analytic databases to the EDW’s atomic repository.

NOTE The most extreme form of a pure CIF architecture is unworkable as a data
warehouse, in our opinion. Such an architecture locks the atomic data in difficult-
to-query normalized structures, while delivering departmentally incompatible data
marts to different groups of business users. But before being too depressed by this
view, stay tuned for the next section.

Hybrid Hub-and-Spoke and Kimball Architecture

The final architecture warranting discussion is the marriage of the Kimball and
Inmon CIF architectures. As illustrated in Figure 1-10, this architecture populates
a CIF-centric EDW that is completely off-limits to business users for analysis and
reporting. It's merely the source to populate a Kimball-esque presentation area
in which the data is dimensional, atomic (complemented by aggregates), process-
centric, and conforms to the enterprise data warehouse bus architecture.

Some proponents of this blended approach claim it’s the best of both worlds. Yes, it
blends the two enterprise-oriented approaches. It may leverage a preexisting invest-
ment in an integrated repository, while addressing the performance and usability
issues associated with the 3NF EDW by offloading queries to the dimensional presen-
tation area. And because the end deliverable to the business users and Bl applications
is constructed based on Kimball tenets, who can argue with the approach?

If you've already invested in the creation of a 3NF EDW, but it’s not delivering
on the users’ expectations of fast and flexible reporting and analysis, this hybrid
approach might be appropriate for your organization. If you're starting with a blank
sheet of paper, the hybrid approach will likely cost more time and money, both dur-
ing development and ongoing operation, given the multiple movements of data and

30 Chapter1

redundant storage of atomic details. If you have the appetite, the perceived need, and
perhaps most important, the budget and organizational patience to fully normalize
and instantiate your data before loading it into dimensional structures that are well
designed according to the Kimball methods, go for it.

Source <«——— Back Room > € Front Room —— >
Transactions
,_I—
N
N]

—

Presentation Area:

e Dimensional (star
~— schema or OLAP
cube)
P e Atomic and
i summary data
N Enterprise Data .

Warehouse (EDW) Organized by
:> ETL :> * Normalized :> ETL :> business process <

tables (3NF) Uses conformed

N o Atomic data dimensions

NSO = DO —=—TT > —

:> Enterprise DW Bus
Architecture

Figure 1-10: Hybrid architecture with 3NF structures and dimensional Kimball
presentation area.

Dimensional Modeling Myths

Despite the widespread acceptance of dimensional modeling, some misperceptions
persist in the industry. These false assertions are a distraction, especially when you
want to align your team around common best practices. If folks in your organiza-
tion continually lob criticisms about dimensional modeling, this section should
be on their recommended reading list; their perceptions may be clouded by these
common misunderstandings.

Myth 1: Dimensional Models are Only
for Summary Data

This first myth is frequently the root cause of ill-designed dimensional models.
Because you can't possibly predict all the questions asked by business users, you
need to provide them with queryable access to the most detailed data so they can
roll it up based on the business question. Data at the lowest level of detail is practi-
cally impervious to surprises or changes. Summary data should complement the

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 31

granular detail solely to provide improved performance for common queries, but
not replace the details.

A related corollary to this first myth is that only a limited amount of historical
data should be stored in dimensional structures. Nothing about a dimensional model
prohibits storing substantial history. The amount of history available in dimensional
models must only be driven by the business’s requirements.

Myth 2: Dimensional Models are Departmental,
Not Enterprise

Rather than drawing boundaries based on organizational departments, dimensional
models should be organized around business processes, such as orders, invoices, and
service calls. Multiple business functions often want to analyze the same metrics
resulting from a single business process. Multiple extracts of the same source data
that create multiple, inconsistent analytic databases should be avoided.

Myth 3: Dimensional Models are Not Scalable

Dimensional models are extremely scalable. Fact tables frequently have billions of
rows; fact tables containing 2 trillion rows have been reported. The database ven-
dors have wholeheartedly embraced DW/BI and continue to incorporate capabilities
into their products to optimize dimensional models’ scalability and performance.
Both normalized and dimensional models contain the same information and data
relationships; the logical content is identical. Every data relationship expressed in
one model can be accurately expressed in the other. Both normalized and dimen-
sional models can answer exactly the same questions, albeit with varying difficulty.

Myth 4: Dimensional Models are Only
for Predictable Usage

Dimensional models should not be designed by focusing on predefined reports
or analyses; the design should center on measurement processes. Obviously, it’s
important to consider the BI application’s filtering and labeling requirements. But
you shouldn’t design for a top ten list of reports in a vacuum because this list is
bound to change, making the dimensional model a moving target. The key is to
focus on the organization’s measurement events that are typically stable, unlike
analyses that are constantly evolving.

A related corollary is that dimensional models aren’t responsive to changing busi-
ness needs. On the contrary, because of their symmetry, dimensional structures are
extremely flexible and adaptive to change. The secret to query flexibility is building

32 Chapter1

fact tables at the most granular level. Dimensional models that deliver only summary
data are bound to be problematic; users run into analytic brick walls when they try
to drill down into details not available in the summary tables. Developers also run
into brick walls because they can’t easily accommodate new dimensions, attributes,
or facts with these prematurely summarized tables. The correct starting point for
your dimensional models is to express data at the lowest detail possible for maxi-
mum flexibility and extensibility. Remember, when you pre-suppose the business
question, you'll likely pre-summarize the data, which can be fatal in the long run.
As the architect Mies van der Rohe is credited with saying, “God is in the details.”
Delivering dimensional models populated with the most detailed data possible ensures
maximum flexibility and extensibility. Delivering anything less in your dimensional
models undermines the foundation necessary for robust business intelligence.

Myth 5: Dimensional Models Can’t Be Integrated

Dimensional models most certainly can be integrated if they conform to the enterprise
data warehouse bus architecture. Conformed dimensions are built and maintained
as centralized, persistent master data in the ETL system and then reused across
dimensional models to enable data integration and ensure semantic consistency. Data
integration depends on standardized labels, values, and definitions. It is hard work
to reach organizational consensus and then implement the corresponding ETL rules,
but you can’t dodge the effort, regardless of whether you're populating normalized
or dimensional models.

Presentation area databases that don’t adhere to the bus architecture
with shared conformed dimensions lead to standalone solutions. You can’t hold
dimensional modeling responsible for organizations’ failure to embrace one of its
fundamental tenets.

More Reasons to Think Dimensionally

The majority of this book focuses on dimensional modeling for designing databases
in the DW/BI presentation area. But dimensional modeling concepts go beyond the
design of simple and fast data structures. You should think dimensionally at other
critical junctures of a DW/BI project.

When gathering requirements for a DW/BI initiative, you need to listen for and
then synthesize the findings around business processes. Sometimes teams get lulled
into focusing on a set of required reports or dashboard gauges. Instead you should
constantly ask yourself about the business process measurement events producing
the report or dashboard metrics. When specifying the project’s scope, you must stand

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 33

firm to focus on a single business process per project and not sign up to deploy a
dashboard that covers a handful of them in a single iteration.

Although it’s critical that the DW/BI team concentrates on business processes, it’s
equally important to get IT and business management on the same wavelength. Due
to historical IT funding policies, the business may be more familiar with depart-
mental data deployments. You need to shift their mindset about the DW/BI rollout
to a process perspective. When prioritizing opportunities and developing the DW/
BI roadmap, business processes are the unit of work. Fortunately, business man-
agement typically embraces this approach because it mirrors their thinking about
key performance indicators. Plus, they’ve lived with the inconsistencies, incessant
debates, and never ending reconciliations caused by the departmental approach, so
they’re ready for a fresh tactic. Working with business leadership partners, rank each
business process on business value and feasibility, then tackle processes with the
highest impact and feasibility scores first. Although prioritization is a joint activity
with the business, your underlying understanding of the organization’s business
processes is essential to its effectiveness and subsequent actionability.

If tasked with drafting the DW/BI system’s data architecture, you need to wrap
your head around the organization’s processes, along with the associated master
descriptive dimension data. The prime deliverable for this activity, the enterprise
data warehouse bus matrix, will be fully vetted in Chapter 4. The matrix also serves
as a useful tool for touting the potential benefits of a more rigorous master data
management platform.

Data stewardship or governance programs should focus first on the major dimen-
sions. Depending on the industry, the list might include date, customer, product,
employee, facility, provider, student, faculty, account, and so on. Thinking about
the central nouns used to describe the business translates into a list of data gov-
ernance efforts to be led by subject matter experts from the business community.
Establishing data governance responsibilities for these nouns is the key to eventually
deploying dimensions that deliver consistency and address the business’s needs for
analytic filtering, grouping, and labeling. Robust dimensions translate into robust
DWY/BI systems.

As you can see, the fundamental motivation for dimensional modeling is front and
center long before you design star schemas or OLAP cubes. Likewise, the dimen-
sional model will remain in the forefront during the subsequent ETL system and BI
application designs. Dimensional modeling concepts link the business and technical
communities together as they jointly design the DW/BI deliverables. We'll elaborate
on these ideas in Chapter 17: Kimball DW/BI Lifecycle Overview and Chapter 18:
Dimensional Modeling Process and Tasks, but wanted to plant the seeds early so
they have time to germinate.

34 Chapter 1

Agile Considerations

Currently, there’s significant interest within the DW/BI industry on agile development
practices. At the risk of oversimplification, agile methodologies focus on manage-
ably sized increments of work that can be completed within reasonable timeframes
measured in weeks, rather than tackling a much larger scoped (and hence riskier)
project with deliverables promised in months or years. Sounds good, doesn't it?

Many of the core tenets of agile methodologies align with Kimball best practices,
including

Focus on delivering business value. This has been the Kimball mantra for
decades.

Value collaboration between the development team and business stakehold-
ers. Like the agile camp, we strongly encourage a close partnership with the
business.

Stress ongoing face-to-face communication, feedback, and prioritization with
the business stakeholders.

Adapt quickly to inevitably evolving requirements.

Tackle development in an iterative, incremental manner.

Although this list is compelling, a common criticism of the agile approaches is the
lack of planning and architecture, coupled with ongoing governance challenges. The
enterprise data warehouse bus matrix is a powerful tool to address these shortcom-
ings. The bus matrix provides a framework and master plan for agile development,
plus identifies the reusable common descriptive dimensions that provide both data
consistency and reduced time-to-market delivery. With the right collaborative mix
of business and IT stakeholders in a room, the enterprise data warehouse bus matrix
can be produced in relatively short order. Incremental development work can produce
components of the framework until sufficient functionality is available and then
released to the business community.

Some clients and students lament that although they want to deliver consistently
defined conformed dimensions in their DW/BI environments, it’s “just not feasible.”
They explain that they would if they could, but with the focus on agile development
techniques, it'’s “impossible” to take the time to get organizational agreement on
conformed dimensions. We argue that conformed dimensions enable agile DW/BI
development, along with agile decision making. As you flesh out the portfolio of mas-
ter conformed dimensions, the development crank starts turning faster and faster.
The time-to-market for a new business process data source shrinks as developers
reuse existing conformed dimensions. Ultimately, new ETL development focuses
almost exclusively on delivering more fact tables because the associated dimension
tables are already sitting on the shelf ready to go.

Data Warehousing, Business Intelligence, and Dimensional Modeling Primer 35

Without a framework like the enterprise data warehouse bus matrix, some DW/
BI teams have fallen into the trap of using agile techniques to create analytic or
reporting solutions in a vacuum. In most situations, the team worked with a small
set of users to extract a limited set of source data and make it available to solve
their unique problems. The outcome is often a standalone data stovepipe that others
can't leverage, or worse yet, delivers data that doesn’t tie to the organization’s other
analytic information. We encourage agility, when appropriate, however building
isolated data sets should be avoided. As with most things in life, moderation and
balance between extremes is almost always prudent.

Summary

In this chapter we discussed the overriding goals for DW/BI systems and the fun-
damental concepts of dimensional modeling. The Kimball DW/BI architecture and
several alternatives were compared. We closed out the chapter by identifying com-
mon misunderstandings that some still hold about dimensional modeling, despite
its widespread acceptance across the industry, and challenged you to think dimen-
sionally beyond data modeling. In the next chapter, you get a turbocharged tour
of dimensional modeling patterns and techniques, and then begin putting these
concepts into action in your first case study in Chapter 3.

tarting with the first edition of The Data Warehouse Toolkit (Wiley, 1996), the

Kimball Group has defined the complete set of techniques for modeling data
in a dimensional way. In the first two editions of this book, we felt the techniques
needed to be introduced through familiar use cases drawn from various industries.
Although we still feel business use cases are an essential pedagogical approach, the
techniques have become so standardized that some dimensional modelers reverse
the logic by starting with the technique and then proceeding to the use case for
context. All of this is good news!

The Kimball techniques have been accepted as industry best practices.
As evidence, some former Kimball University students have published their own
dimensional modeling books. These books usually explain the Kimball techniques
accurately, but it is a sign of our techniques’ resilience that alternative books have
not extended the library of techniques in significant ways or offered conflicting
guidance.

This chapter is the “official” list of Kimball Dimensional Modeling Techniques
from the inventors of these design patterns. We don’t expect you to read this chapter
from beginning to end at first. But we intend the chapter to be a reference for our
techniques. With each technique, we’ve included pointers to subsequent chapters
for further explanation and illustrations based on the motivating use cases.

Fundamental Concepts

The techniques in this section must be considered during every dimensional
design. Nearly every chapter in the book references or illustrates the concepts in
this section.

Gather Business Requirements and Data Realities

Before launching a dimensional modeling effort, the team needs to understand the
needs of the business, as well as the realities of the underlying source data. You

38 Chapter 2

uncover the requirements via sessions with business representatives to understand
their objectives based on key performance indicators, compelling business issues,
decision-making processes, and supporting analytic needs. At the same time, data
realities are uncovered by meeting with source system experts and doing high-level
data profiling to assess data feasibilities.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 5
Chapter 3 Retail Sales, p 70

Chapter 11 ~ Telecommunications, p 297

Chapter 17 Lifecycle Overview, p 412

Chapter 18 Dimensional Modeling Process and Tasks, p 431
Chapter 19 ETL Subsystems and Techniques,p 444

Collaborative Dimensional Modeling Workshops

Dimensional models should be designed in collaboration with subject matter experts
and data governance representatives from the business. The data modeler is in
charge, but the model should unfold via a series of highly interactive workshops
with business representatives. These workshops provide another opportunity to
flesh out the requirements with the business. Dimensional models should not be
designed in isolation by folks who don’t fully understand the business and their
needs; collaboration is critical!

Chapter 3 Retail Sales, p 70
Chapter 4 Inventory, p 135
Chapter 18 Dimensional Modeling Process and Tasks, p 429

Four-Step Dimensional Design Process

The four key decisions made during the design of a dimensional model include:

Select the business process.
Declare the grain.

Identify the dimensions.
Identify the facts.

The answers to these questions are determined by considering the needs of the
business along with the realities of the underlying source data during the collab-
orative modeling sessions. Following the business process, grain, dimension, and
fact declarations, the design team determines the table and column names, sample
domain values, and business rules. Business data governance representatives must
participate in this detailed design activity to ensure business buy-in.

Kimball Dimensional Modeling Techniques Overview 39

Chapter 3 Retail Sales, p 70
Chapter 11 Telecommunications, p 300
Chapter 18 Dimensional Modeling Process and Tasks, p 434

Business Processes

Business processes are the operational activities performed by your organization,
such as taking an order, processing an insurance claim, registering students for a
class, or snapshotting every account each month. Business process events generate
or capture performance metrics that translate into facts in a fact table. Most fact
tables focus on the results of a single business process. Choosing the process is
important because it defines a specific design target and allows the grain, dimen-
sions, and facts to be declared. Each business process corresponds to a row in the
enterprise data warehouse bus matrix.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 10
Chapter 3 Retail Sales, p 70

Chapter 17 Lifecycle Overview, p 414

Chapter 18 Dimensional Modeling Process and Tasks, p 435

Grain

Declaring the grain is the pivotal step in a dimensional design. The grain establishes
exactly what a single fact table row represents. The grain declaration becomes a bind-
ing contract on the design. The grain must be declared before choosing dimensions
or facts because every candidate dimension or fact must be consistent with the grain.
This consistency enforces a uniformity on all dimensional designs that is critical to
BI application performance and ease of use. Atomic grain refers to the lowest level at
which data is captured by a given business process. We strongly encourage you to start
by focusing on atomic-grained data because it withstands the assault of unpredictable
user queries; rolled-up summary grains are important for performance tuning, but they
pre-suppose the business’s common questions. Each proposed fact table grain results
in a separate physical table; different grains must not be mixed in the same fact table.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 30
Chapter 3 Retail Sales, p 71

Chapter 4 Inventory, p 112

Chapter 6 Order Management, p 184

Chapter 11 Telecommunications, p 300

Chapter 12 Transportation, p 312

Chapter 18 Dimensional Modeling Process and Tasks, p 435

40 Chapter 2

Dimensions for Descriptive Context

Dimensions provide the “who, what, where, when, why, and how” context surround-
ing a business process event. Dimension tables contain the descriptive attributes
used by BI applications for filtering and grouping the facts. With the grain of a fact
table firmly in mind, all the possible dimensions can be identified. Whenever pos-
sible, a dimension should be single valued when associated with a given fact row.

Dimension tables are sometimes called the “soul” of the data warehouse because
they contain the entry points and descriptive labels that enable the DW/BI system
to be leveraged for business analysis. A disproportionate amount of effort is put
into the data governance and development of dimension tables because they are
the drivers of the user’s BI experience.

Chapter 1 DW/BI and Dimensional Modeling Primer, p 13
Chapter 3 Retail Sales, p 72

Chapter 11 ~ Telecommunications, p 301

Chapter 18 Dimensional Modeling Process and Tasks, p 437
Chapter 19 ETL Subsystems and Techniques, p 463

Facts for Measurements

Facts are the measurements that result from a business process event and are almost
always numeric. A single fact table row has a one-to-one relationship to a measurement
event as described by the fact table’s grain. Thus a fact table corresponds to a physi-
cal observable event, and not to the demands of a particular report. Within a fact
table, only facts consistent with the declared grain are allowed. For example, in a
retail sales transaction, the quantity of a product sold and its extended price are
good facts, whereas the store manager’s salary is disallowed.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 10
Chapter 3 Retail Sales, p 72

Chapter 4 Inventory, p 112

Chapter 18 Dimensional Modeling Process and Tasks, p 437

Star Schemas and OLAP Cubes

Star schemas are dimensional structures deployed in a relational database management
system (RDBMS). They characteristically consist of fact tables linked to associated
dimension tables via primary/foreign key relationships. An online analytical processing
(OLAP) cube is a dimensional structure implemented in a multidimensional database;
it can be equivalent in content to, or more often derived from, a relational star schema.
An OLAP cube contains dimensional attributes and facts, but it is accessed through
languages with more analytic capabilities than SQL, such as XMLA and MDX. OLAP

Kimball Dimensional Modeling Techniques Overview 41

cubes are included in this list of basic techniques because an OLAP cube is often
the final step in the deployment of a dimensional DW/BI system, or may exist as an
aggregate structure based on a more atomic relational star schema.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 8
Chapter 3 Retail Sales, p 94

Chapter 5 Procurement, p 149

Chapter 6 Order Management, p 170

Chapter 7 Accounting, p 226

Chapter 9 Human Resources Management, p 273
Chapter 13 Education, p 335

Chapter 19 ETL Subsystems and Techniques, p 481
Chapter 20 ETL System Process and Tasks, p 519

Graceful Extensions to Dimensional Models

Dimensional models are resilient when data relationships change. All the following
changes can be implemented without altering any existing BI query or application,
and without any change in query results.

Facts consistent with the grain of an existing fact table can be added by creat-
ing new columns.

Dimensions can be added to an existing fact table by creating new foreign key
columns, presuming they don’t alter the fact table’s grain.

Attributes can be added to an existing dimension table by creating new
columns.

The grain of a fact table can be made more atomic by adding attributes to an exist-
ing dimension table, and then restating the fact table at the lower grain, being
careful to preserve the existing column names in the fact and dimension tables.

Chapter 3 Retail Sales, p 95

Basic Fact Table Techniques

The techniques in this section apply to all fact tables. There are illustrations of fact
tables in nearly every chapter.

Fact Table Structure

A fact table contains the numeric measures produced by an operational measure-
ment event in the real world. At the lowest grain, a fact table row corresponds to a
measurement event and vice versa. Thus the fundamental design of a fact table is
entirely based on a physical activity and is not influenced by the eventual reports

42 Chapter 2

that may be produced. In addition to numeric measures, a fact table always contains
foreign keys for each of its associated dimensions, as well as optional degenerate
dimension keys and date/time stamps. Fact tables are the primary target of compu-
tations and dynamic aggregations arising from queries.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 10
Chapter 3 Retail Sales, p 76

Chapter 5 Procurement, p 143

Chapter 6 Order Management, p 169

Additive, Semi-Additive, Non-Additive Facts

The numeric measures in a fact table fall into three categories. The most flexible and
useful facts are fully additive; additive measures can be summed across any of the
dimensions associated with the fact table. Semi-additive measures can be summed
across some dimensions, but not all; balance amounts are common semi-additive facts
because they are additive across all dimensions except time. Finally, some measures
are completely non-additive, such as ratios. A good approach for non-additive facts is,
where possible, to store the fully additive components of the non-additive measure
and sum these components into the final answer set before calculating the final
non-additive fact. This final calculation is often done in the BI layer or OLAP cube.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 10
Chapter 3 Retail Sales, p 76

Chapter 4 Inventory, p 114

Chapter 7 Accounting, p 204

Nulls in Fact Tables

Null-valued measurements behave gracefully in fact tables. The aggregate functions
(SUM, COUNT, MIN, MAX, and AVG) all do the “right thing” with null facts. However,
nulls must be avoided in the fact table’s foreign keys because these nulls would
automatically cause a referential integrity violation. Rather than a null foreign key,
the associated dimension table must have a default row (and surrogate key) repre-
senting the unknown or not applicable condition.

Chapter 3 Retail Sales, p 92
Chapter 20 ETL System Process and Tasks, p 509

Conformed Facts

If the same measurement appears in separate fact tables, care must be taken to make
sure the technical definitions of the facts are identical if they are to be compared

Kimball Dimensional Modeling Techniques Overview 43

or computed together. If the separate fact definitions are consistent, the conformed
facts should be identically named; but if they are incompatible, they should be dif-
ferently named to alert the business users and BI applications.

Chapter 4 Inventory, p 138
Chapter 16 Insurance, p 386

Transaction Fact Tables

A row in a transaction fact table corresponds to a measurement event at a point in
space and time. Atomic transaction grain fact tables are the most dimensional and
expressive fact tables; this robust dimensionality enables the maximum slicing
and dicing of transaction data. Transaction fact tables may be dense or sparse
because rows exist only if measurements take place. These fact tables always con-
tain a foreign key for each associated dimension, and optionally contain precise
time stamps and degenerate dimension keys. The measured numeric facts must be
consistent with the transaction grain.

Chapter 3 Retail Sales, p 79

Chapter 4 Inventory, p 116

Chapter 5 Procurement, p 142

Chapter 6 Order Management, p 168
Chapter 7 Accounting, p 206

Chapter 11 Telecommunications, p 300
Chapter 12 Transportation, p 312
Chapter 14 Healthcare, p 351

Chapter 15 Electronic Commerce, p 363
Chapter 16 Insurance, p 379

Chapter 19 ETL Subsystems and Techniques, p 473

Periodic Snapshot Fact Tables

A row in a periodic snapshot fact table summarizes many measurement events occur-
ring over a standard period, such as a day, a week, or a month. The grain is the
period, not the individual transaction. Periodic snapshot fact tables often contain
many facts because any measurement event consistent with the fact table grain is
permissible. These fact tables are uniformly dense in their foreign keys because
even if no activity takes place during the period, a row is typically inserted in the
fact table containing a zero or null for each fact.

44 Chapter 2

Chapter 4 Inventory, p 113

Chapter 7 Accounting, p 204

Chapter 9 Human Resources Management, p 267
Chapter 10 Financial Services, p 283

Chapter 13 Education, p 333

Chapter 14 Healthcare, p 351

Chapter 16 Insurance, p 385

Chapter 19 ETL Subsystems and Techniques, p 474

Accumulating Snapshot Fact Tables

A row in an accumulating snapshot fact table summarizes the measurement events
occurring at predictable steps between the beginning and the end of a process.
Pipeline or workflow processes, such as order fulfillment or claim processing, that
have a defined start point, standard intermediate steps, and defined end point can be
modeled with this type of fact table. There is a date foreign key in the fact table for
each critical milestone in the process. An individual row in an accumulating snap-
shot fact table, corresponding for instance to a line on an order, is initially inserted
when the order line is created. As pipeline progress occurs, the accumulating fact
table row is revisited and updated. This consistent updating of accumulating snap-
shot fact rows is unique among the three types of fact tables. In addition to the date
foreign keys associated with each critical process step, accumulating snapshot fact
tables contain foreign keys for other dimensions and optionally contain degener-
ate dimensions. They often include numeric lag measurements consistent with the
grain, along with milestone completion counters.

Chapter 4 Inventory, p 118

Chapter 5 Procurement, p 147

Chapter 6 Order Management, p 194

Chapter 13 Education, p 326

Chapter 14 Healthcare, p 342

Chapter 16 Insurance, p 392

Chapter 19 ETL Subsystems and Techniques, p 475

Factless Fact Tables

Although most measurement events capture numerical results, it is possible that
the event merely records a set of dimensional entities coming together at a moment
in time. For example, an event of a student attending a class on a given day may
not have a recorded numeric fact, but a fact row with foreign keys for calendar day,
student, teacher, location, and class is well-defined. Likewise, customer communi-
cations are events, but there may be no associated metrics. Factless fact tables can

Kimball Dimensional Modeling Techniques Overview 45

also be used to analyze what didn’t happen. These queries always have two parts: a
factless coverage table that contains all the possibilities of events that might happen
and an activity table that contains the events that did happen. When the activity
is subtracted from the coverage, the result is the set of events that did not happen.

Chapter 3 Retail Sales, p 97
Chapter 6 Order Management, p 176
Chapter 13 Education, p 329
Chapter 16 Insurance, p 396

Aggregate Fact Tables or OLAP Cubes

Aggregate fact tables are simple numeric rollups of atomic fact table data built solely
to accelerate query performance. These aggregate fact tables should be available to
the BI layer at the same time as the atomic fact tables so that BI tools smoothly
choose the appropriate aggregate level at query time. This process, known as
aggregate navigation, must be open so that every report writer, query tool, and BI
application harvests the same performance benefits. A properly designed set of
aggregates should behave like database indexes, which accelerate query perfor-
mance but are not encountered directly by the BI applications or business users.
Aggregate fact tables contain foreign keys to shrunken conformed dimensions, as
well as aggregated facts created by summing measures from more atomic fact tables.
Finally, aggregate OLAP cubes with summarized measures are frequently built in
the same way as relational aggregates, but the OLAP cubes are meant to be accessed
directly by the business users.

Chapter 15 Electronic Commerce, p 366
Chapter 19 ETL Subsystems and Techniques, p 481
Chapter 20 ETL System Process and Tasks, p 519

Consolidated Fact Tables

It is often convenient to combine facts from multiple processes together into a single
consolidated fact table if they can be expressed at the same grain. For example, sales
actuals can be consolidated with sales forecasts in a single fact table to make the task
of analyzing actuals versus forecasts simple and fast, as compared to assembling a
drill-across application using separate fact tables. Consolidated fact tables add bur-
den to the ETL processing, but ease the analytic burden on the Bl applications. They
should be considered for cross-process metrics that are frequently analyzed together.

Chapter 7 Accounting, p 224
Chapter 16 Insurance, p 395

46 Chapter 2

Basic Dimension Table Techniques

The techniques in this section apply to all dimension tables. Dimension tables are
discussed and illustrated in every chapter.

Dimension Table Structure

Every dimension table has a single primary key column. This primary key is embedded
as a foreign key in any associated fact table where the dimension row’s descriptive
context is exactly correct for that fact table row. Dimension tables are usually wide, flat
denormalized tables with many low-cardinality text attributes. While operational codes
and indicators can be treated as attributes, the most powerful dimension attributes
are populated with verbose descriptions. Dimension table attributes are the primary
target of constraints and grouping specifications from queries and Bl applications. The
descriptive labels on reports are typically dimension attribute domain values.

Chapter 1 DW/BI and Dimensional Modeling Primer, p 13
Chapter 3 Retail Sales, p 79
Chapter 11 Telecommunications, p 301

Dimension Surrogate Keys

A dimension table is designed with one column serving as a unique primary key.
This primary key cannot be the operational system’s natural key because there will
be multiple dimension rows for that natural key when changes are tracked over time.
In addition, natural keys for a dimension may be created by more than one source
system, and these natural keys may be incompatible or poorly administered. The
DW/BI system needs to claim control of the primary keys of all dimensions; rather
than using explicit natural keys or natural keys with appended dates, you should
create anonymous integer primary keys for every dimension. These dimension sur-
rogate keys are simple integers, assigned in sequence, starting with the value 1,
every time a new key is needed. The date dimension is exempt from the surrogate
key rule; this highly predictable and stable dimension can use a more meaningful
primary key. See the section “Calendar Date Dimensions.”

Chapter 3 Retail Sales, p 98
Chapter 19 ETL Subsystems and Techniques, p 469
Chapter 20 ETL System Process and Tasks, p 506

Natural, Durable, and Supernatural Keys

Natural keys created by operational source systems are subject to business rules outside
the control of the DW/BI system. For instance, an employee number (natural key) may

Kimball Dimensional Modeling Techniques Overview 47

be changed if the employee resigns and then is rehired. When the data warehouse
wants to have a single key for that employee, a new durable key must be created that is
persistent and does not change in this situation. This key is sometimes referred to as
a durable supernatural key. The best durable keys have a format that is independent of
the original business process and thus should be simple integers assigned in sequence
beginning with 1. While multiple surrogate keys may be associated with an employee
over time as their profile changes, the durable key never changes.

Chapter 3 Retail Sales, p 100
Chapter 20 ETL System Process and Tasks, p 510
Chapter 21 Big Data Analytics, p 539

Drilling Down

Drilling down is the most fundamental way data is analyzed by business users. Drilling
down simply means adding a row header to an existing query; the new row header
is a dimension attribute appended to the GROUP BY expression in an SQL query. The
attribute can come from any dimension attached to the fact table in the query. Drilling
down does not require the definition of predetermined hierarchies or drill-down paths.
See the section “Drilling Across.”

Chapter 3 Retail Sales, p 86

Degenerate Dimensions

Sometimes a dimension is defined that has no content except for its primary key.
For example, when an invoice has multiple line items, the line item fact rows inherit
all the descriptive dimension foreign keys of the invoice, and the invoice is left with
no unique content. But the invoice number remains a valid dimension key for fact
tables at the line item level. This degenerate dimension is placed in the fact table with
the explicit acknowledgment that there is no associated dimension table. Degenerate
dimensions are most common with transaction and accumulating snapshot fact tables.

Chapter 3 Retail Sales, p 93

Chapter 6 Order Management, p 178
Chapter 11 Telecommunications, p 303
Chapter 16 Insurance, p 383

Denormalized Flattened Dimensions

In general, dimensional designers must resist the normalization urges caused by years
of operational database designs and instead denormalize the many-to-one fixed depth

48 Chapter 2

hierarchies into separate attributes on a flattened dimension row. Dimension denor-
malization supports dimensional modeling’s twin objectives of simplicity and speed.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 13
Chapter 3 Retail Sales, p 84

Muiltiple Hierarchies in Dimensions

Many dimensions contain more than one natural hierarchy. For example, calendar
date dimensions may have a day to week to fiscal period hierarchy, as well as a
day to month to year hierarchy. Location intensive dimensions may have multiple
geographic hierarchies. In all of these cases, the separate hierarchies can gracefully
coexist in the same dimension table.

Chapter 3 Retail Sales, p 88
Chapter 19 ETL Subsystems and Techniques, p 470

Flags and Indicators as Textual Attributes

Cryptic abbreviations, true/false flags, and operational indicators should be sup-
plemented in dimension tables with full text words that have meaning when
independently viewed. Operational codes with embedded meaning within the
code value should be broken down with each part of the code expanded into its
own separate descriptive dimension attribute.

Chapter 3 Retail Sales, p 82
Chapter 11 Telecommunications, p 301
Chapter 16 Insurance, p 383

Null Attributes in Dimensions

Null-valued dimension attributes result when a given dimension row has not been
fully populated, or when there are attributes that are not applicable to all the dimen-
sion’s rows. In both cases, we recommend substituting a descriptive string, such as
Unknown or Not Applicable in place of the null value. Nulls in dimension attributes
should be avoided because different databases handle grouping and constraining
on nulls inconsistently.

Chapter 3 Retail Sales, p 92

Calendar Date Dimensions

Calendar date dimensions are attached to virtually every fact table to allow navigation
of the fact table through familiar dates, months, fiscal periods, and special days on

Kimball Dimensional Modeling Techniques Overview 49

the calendar. You would never want to compute Easter in SQL, but rather want to
look it up in the calendar date dimension. The calendar date dimension typically
has many attributes describing characteristics such as week number, month name,
fiscal period, and national holiday indicator. To facilitate partitioning, the primary
key of a date dimension can be more meaningful, such as an integer representing
YYYYMMDD, instead of a sequentially-assigned surrogate key. However, the date
dimension table needs a special row to represent unknown or to-be-determined
dates. When further precision is needed, a separate date/time stamp can be added
to the fact table. The date/time stamp is not a foreign key to a dimension table, but
rather is a standalone column. If business users constrain or group on time-of-day
attributes, such as day part grouping or shift number, then you would add a separate
time-of-day dimension foreign key to the fact table.

Chapter 3 Retail Sales, p 79

Chapter 7 Accounting, p 208

Chapter 8 Customer Relationship Management, p 238
Chapter 12 Transportation, p 321

Chapter 19 ETL Subsystems and Techniques, p 470

Role-Playing Dimensions

A single physical dimension can be referenced multiple times in a fact table, with
each reference linking to a logically distinct role for the dimension. For instance, a
fact table can have several dates, each of which is represented by a foreign key to the
date dimension. It is essential that each foreign key refers to a separate view of
the date dimension so that the references are independent. These separate dimen-
sion views (with unique attribute column names) are called roles.

Chapter 6 Order Management, p 170
Chapter 12 Transportation, p 312
Chapter 14 Healthcare, p 345
Chapter 16 Insurance, p 380

Junk Dimensions

Transactional business processes typically produce a number of miscellaneous, low-
cardinality flags and indicators. Rather than making separate dimensions for each
flag and attribute, you can create a single junk dimension combining them together.
This dimension, frequently labeled as a transaction profile dimension in a schema,
does not need to be the Cartesian product of all the attributes’ possible values, but
should only contain the combination of values that actually occur in the source data.

50 Chapter 2

Chapter 6 Order Management, p 179

Chapter 12 Transportation, p 318

Chapter 16 Insurance, p 392

Chapter 19 ETL Subsystems and Techniques, p 470

Snowflaked Dimensions

When a hierarchical relationship in a dimension table is normalized, low-cardinal-
ity attributes appear as secondary tables connected to the base dimension table by
an attribute key. When this process is repeated with all the dimension table’s hier-
archies, a characteristic multilevel structure is created that is called a snowflake.
Although the snowflake represents hierarchical data accurately, you should avoid
snowflakes because it is difficult for business users to understand and navigate
snowflakes. They can also negatively impact query performance. A flattened denor-
malized dimension table contains exactly the same information as a snowflaked
dimension.

Chapter 3 Retail Sales, p 104
Chapter 11 Telecommunications, p 301
Chapter 20 ETL System Process and Tasks, p 504

Outrigger Dimensions

A dimension can contain a reference to another dimension table. For instance, a
bank account dimension can reference a separate dimension representing the date
the account was opened. These secondary dimension references are called outrigger
dimensions. Outrigger dimensions are permissible, but should be used sparingly. In
most cases, the correlations between dimensions should be demoted to a fact table,
where both dimensions are represented as separate foreign keys.

Chapter 3 Retail Sales, p 106

Chapter 5 Procurement, p 160

Chapter 8 Customer Relationship Management, p 243
Chapter 12 Transportation, p 321

Integration via Conformed Dimensions

One of the marquee successes of the dimensional modeling approach has been to
define a simple but powerful recipe for integrating data from different business
processes.

Kimball Dimensional Modeling Techniques Overview 51

Conformed Dimensions

Dimension tables conform when attributes in separate dimension tables have the
same column names and domain contents. Information from separate fact tables
can be combined in a single report by using conformed dimension attributes that
are associated with each fact table. When a conformed attribute is used as the
row header (that is, the grouping column in the SQL query), the results from the
separate fact tables can be aligned on the same rows in a drill-across report. This
is the essence of integration in an enterprise DW/BI system. Conformed dimen-
sions, defined once in collaboration with the business’s data governance represen-
tatives, are reused across fact tables; they deliver both analytic consistency and
reduced future development costs because the wheel is not repeatedly re-created.

Chapter 4 Inventory, p 130

Chapter 8 Customer Relationship Management, p 256
Chapter 11 Telecommunications, p 304

Chapter 16 Insurance, p 386

Chapter 18 Dimensional Modeling Process and Tasks, p 431
Chapter 19 ETL Subsystems and Techniques, p 461

Shrunken Dimensions

Shrunken dimensions are conformed dimensions that are a subset of rows and/or
columns of a base dimension. Shrunken rollup dimensions are required when con-
structing aggregate fact tables. They are also necessary for business processes that
naturally capture data at a higher level of granularity, such as a forecast by month
and brand (instead of the more atomic date and product associated with sales data).
Another case of conformed dimension subsetting occurs when two dimensions are
at the same level of detail, but one represents only a subset of rows.

Chapter 4 Inventory, p 132
Chapter 19 ETL Subsystems and Techniques, p 472
Chapter 20 ETL System Process and Tasks, p 504

Drilling Across

Drilling across simply means making separate queries against two or more fact tables
where the row headers of each query consist of identical conformed attributes. The
answer sets from the two queries are aligned by performing a sort-merge opera-
tion on the common dimension attribute row headers. Bl tool vendors refer to this
functionality by various names, including stitch and multipass query.

Chapter 4 Inventory, p 130

52 Chapter 2

Value Chain

A value chain identifies the natural flow of an organization’s primary business
processes. For example, a retailer’s value chain may consist of purchasing to ware-
housing to retail sales. A general ledger value chain may consist of budgeting to
commitments to payments. Operational source systems typically produce transac-
tions or snapshots at each step of the value chain. Because each process produces
unique metrics at unique time intervals with unique granularity and dimensionality,
each process typically spawns at least one atomic fact table.

Chapter 4 Inventory, p 111
Chapter 7 Accounting, p 210
Chapter 16 Insurance, p 377

Enterprise Data Warehouse Bus Architecture

The enterprise data warehouse bus architecture provides an incremental approach
to building the enterprise DW/BI system. This architecture decomposes the DW/
BI planning process into manageable pieces by focusing on business processes,
while delivering integration via standardized conformed dimensions that are reused
across processes. It provides an architectural framework, while also decomposing
the program to encourage manageable agile implementations corresponding to the
rows on the enterprise data warehouse bus matrix. The bus architecture is tech-
nology and database platform independent; both relational and OLAP dimensional
structures can participate.

Chapter 1 ~ DW/BI and Dimensional Modeling Primer, p 21
Chapter 4 Inventory, p 123

Enterprise Data Warehouse Bus Matrix

The enterprise data warehouse bus matrix is the essential tool for designing and com-
municating the enterprise data warehouse bus architecture. The rows of the matrix
are business processes and the columns are dimensions. The shaded cells of the
matrix indicate whether a dimension is associated with a given business process. The
design team scans each row to test whether a candidate dimension is well-defined for
the business process and also scans each column to see where a dimension should be
conformed across multiple business processes. Besides the technical design consid-
erations, the bus matrix is used as input to prioritize DW/BI projects with business
management as teams should implement one row of the matrix at a time.

Kimball Dimensional Modeling Techniques Overview 53

Chapter 4 Inventory, p 125

Chapter 5 Procurement, p 143

Chapter 6 Order Management, p 168
Chapter 7 Accounting, p 202

Chapter 9 Human Resources Management, p 268
Chapter 10 Financial Services, p 282
Chapter 11 Telecommunications, p 297
Chapter 12 Transportation, p 311
Chapter 13 Education, p 325

Chapter 14 Healthcare, p 339

Chapter 15 Electronic Commerce, p 368
Chapter 16 Insurance, p 389

Detailed Implementation Bus Matrix

The detailed implementation bus matrix is a more granular bus matrix where each
business process row has been expanded to show specific fact tables or OLAP cubes.
At this level of detail, the precise grain statement and list of facts can be documented.

Chapter 5 Procurement, p 143
Chapter 16 Insurance, p 390

Opportunity/Stakeholder Matrix

After the enterprise data warehouse bus matrix rows have been identified, you can
draft a different matrix by replacing the dimension columns with business func-
tions, such as marketing, sales, and finance, and then shading the matrix cells to
indicate which business functions are interested in which business process rows.
The opportunity/stakeholder matrix helps identify which business groups should be
invited to the collaborative design sessions for each process-centric row.

Chapter 4 Inventory, p 127

Dealing with Slowly Changing Dimension Attributes

The following section describes the fundamental approaches for dealing with slowly
changing dimension (SCD) attributes. It is quite common to have attributes in the
same dimension table that are handled with different change tracking techniques.

54 Chapter 2

Type 0: Retain Original

With type 0, the dimension attribute value never changes, so facts are always grouped
by this original value. Type 0 is appropriate for any attribute labeled “original,” such
as a customer’s original credit score or a durable identifier. It also applies to most
attributes in a date dimension.

Chapter 5 Procurement, p 148

Type 1: Overwrite

With type 1, the old attribute value in the dimension row is overwritten with the new
value; type 1 attributes always reflects the most recent assignment, and therefore
this technique destroys history. Although this approach is easy to implement and
does not create additional dimension rows, you must be careful that aggregate fact
tables and OLAP cubes affected by this change are recomputed.

Chapter 5 Procurement, p 149
Chapter 16 Insurance, p 380
Chapter 19 ETL Subsystems and Techniques, p 465

Type 2: Add New Row

Type 2 changes add a new row in the dimension with the updated attribute values.
This requires generalizing the primary key of the dimension beyond the natural or
durable key because there will potentially be multiple rows describing each member.
When a new row is created for a dimension member, a new primary surrogate key is
assigned and used as a foreign key in all fact tables from the moment of the update
until a subsequent change creates a new dimension key and updated dimension row.

A minimum of three additional columns should be added to the dimension row
with type 2 changes: 1) row effective date or date/time stamp; 2) row expiration
date or date/time stamp; and 3) current row indicator.

Chapter 5 Procurement, p 150

Chapter 8 Customer Relationship Management, p 243
Chapter 9 Human Resources Management, p 263
Chapter 16 Insurance, p 380

Chapter 19 ETL Subsystems and Techniques, p 465
Chapter 20 ETL System Process and Tasks, p 507

Kimball Dimensional Modeling Techniques Overview 55

Type 3: Add New Attribute

Type 3 changes add a new attribute in the dimension to preserve the old attribute
value; the new value overwrites the main attribute as in a type 1 change. This kind of
type 3 change is sometimes called an alternate reality. A business user can group and
filter fact data by either the current value or alternate reality. This slowly changing
dimension technique is used relatively infrequently.

Chapter 5 Procurement, p 154
Chapter 16 Insurance, p 380
Chapter 19 ETL Subsystems and Techniques, p 467

Type 4: Add Mini-Dimension

The type 4 technique is used when a group of attributes in a dimension rapidly
changes and is split off to a mini-dimension. This situation is sometimes called a
rapidly changing monster dimension. Frequently used attributes in multimillion-row
dimension tables are mini-dimension design candidates, even if they don’t fre-
quently change. The type 4 mini-dimension requires its own unique primary key;
the primary keys of both the base dimension and mini-dimension are captured in
the associated fact tables.

Chapter 5 Procurement, p 156

Chapter 10 Financial Services, p 289

Chapter 16 Insurance, p 381

Chapter 19 ETL Subsystems and Techniques, p 467

Type 5: Add Mini-Dimension and Type 1 Outrigger

The type 5 technique is used to accurately preserve historical attribute values,
plus report historical facts according to current attribute values. Type 5 builds on
the type 4 mini-dimension by also embedding a current type 1 reference to the
mini-dimension in the base dimension. This enables the currently-assigned mini-
dimension attributes to be accessed along with the others in the base dimension
without linking through a fact table. Logically, you'd represent the base dimension
and mini-dimension outrigger as a single table in the presentation area. The ETL
team must overwrite this type 1 mini-dimension reference whenever the current
mini-dimension assignment changes.

Chapter 5 Procurement, p 160
Chapter 19 ETL Subsystems and Techniques, p 468

56 Chapter 2

Type 6: Add Type 1 Attributes to Type 2 Dimension

Like type 5, type 6 also delivers both historical and current dimension attribute
values. Type 6 builds on the type 2 technique by also embedding current type
1 versions of the same attributes in the dimension row so that fact rows can be
filtered or grouped by either the type 2 attribute value in effect when the measure-
ment occurred or the attribute’s current value. In this case, the type 1 attribute is
systematically overwritten on all rows associated with a particular durable key
whenever the attribute is updated.

Chapter 5 Procurement, p 160
Chapter 19 ETL Subsystems and Techniques, p 468

Type 7: Dual Type 1 and Type 2 Dimensions

Type 7 is the final hybrid technique used to support both as-was and as-is report-
ing. A fact table can be accessed through a dimension modeled both as a type 1
dimension showing only the most current attribute values, or as a type 2 dimen-
sion showing correct contemporary historical profiles. The same dimension table
enables both perspectives. Both the durable key and primary surrogate key of the
dimension are placed in the fact table. For the type 1 perspective, the current flag
in the dimension is constrained to be current, and the fact table is joined via the
durable key. For the type 2 perspective, the current flag is not constrained, and the
fact table is joined via the surrogate primary key. These two perspectives would be
deployed as separate views to the BI applications.

Chapter 5 Procurement, p 162
Chapter 19 ETL Subsystems and Techniques, p 468

Dealing with Dimension Hierarchies

Dimensional hierarchies are commonplace. This section describes approaches for
dealing with hierarchies, starting with the most basic.

Fixed Depth Positional Hierarchies

A fixed depth hierarchy is a series of many-to-one relationships, such as product
to brand to category to department. When a fixed depth hierarchy is defined and
the hierarchy levels have agreed upon names, the hierarchy levels should appear
as separate positional attributes in a dimension table. A fixed depth hierarchy is
by far the easiest to understand and navigate as long as the above criteria are met.
It also delivers predictable and fast query performance. When the hierarchy is not
a series of many-to-one relationships or the number of levels varies such that the

Kimball Dimensional Modeling Techniques Overview 57

levels do not have agreed upon names, a ragged hierarchy technique, described
below, must be used.

Chapter 3 Retail Sales, p 84

Chapter 7 Accounting, p 214

Chapter 19 ETL Subsystems and Techniques, p 470
Chapter 20 ETL System Process and Tasks, p 501

Slightly Ragged/Variable Depth Hierarchies

Slightly ragged hierarchies don’t have a fixed number of levels, but the range in depth
is small. Geographic hierarchies often range in depth from perhaps three levels to
six levels. Rather than using the complex machinery for unpredictably variable
hierarchies, you can force-fit slightly ragged hierarchies into a fixed depth positional
design with separate dimension attributes for the maximum number of levels, and
then populate the attribute value based on rules from the business.

Chapter 7 Accounting, p 214

Ragged/Variable Depth Hierarchies with Hierarchy Bridge Tables

Ragged hierarchies of indeterminate depth are difficult to model and query in a
relational database. Although SQL extensions and OLAP access languages provide
some support for recursive parent/child relationships, these approaches have limita-
tions. With SQL extensions, alternative ragged hierarchies cannot be substituted at
query time, shared ownership structures are not supported, and time varying ragged
hierarchies are not supported. All these objections can be overcome in relational
databases by modeling a ragged hierarchy with a specially constructed bridge table.
This bridge table contains a row for every possible path in the ragged hierarchy
and enables all forms of hierarchy traversal to be accomplished with standard SQL
rather than using special language extensions.

Chapter 7 Accounting, p 215
Chapter 9 Human Resources Management, p 273

Ragged/Variable Depth Hierarchies with Pathstring Attributes

The use of a bridge table for ragged variable depth hierarchies can be avoided by
implementing a pathstring attribute in the dimension. For each row in the dimen-
sion, the pathstring attribute contains a specially encoded text string containing
the complete path description from the supreme node of a hierarchy down to the
node described by the particular dimension row. Many of the standard hierarchy

58 Chapter 2

analysis requests can then be handled by standard SQL, without resorting to SQL
language extensions. However, the pathstring approach does not enable rapid sub-
stitution of alternative hierarchies or shared ownership hierarchies. The pathstring
approach may also be vulnerable to structure changes in the ragged hierarchy that
could force the entire hierarchy to be relabeled.

Chapter 7 Accounting, p 221

Advanced Fact Table Techniques

The techniques in this section refer to less common fact table patterns.

Fact Table Surrogate Keys

Surrogate keys are used to implement the primary keys of almost all dimension
tables. In addition, single column surrogate fact keys can be useful, albeit not
required. Fact table surrogate keys, which are not associated with any dimension,
are assigned sequentially during the ETL load process and are used 1) as the single
column primary key of the fact table; 2) to serve as an immediate identifier of a fact
table row without navigating multiple dimensions for ETL purposes; 3) to allow an
interrupted load process to either back out or resume; 4) to allow fact table update
operations to be decomposed into less risky inserts plus deletes.

Chapter 3 Retail Sales, p 102
Chapter 19 ETL Subsystems and Techniques, p 486
Chapter 20 ETL System Process and Tasks, p 520

Centipede Fact Tables

Some designers create separate normalized dimensions for each level of a many-to-
one hierarchy, such as a date dimension, month dimension, quarter dimension, and
year dimension, and then include all these foreign keys in a fact table. This results
in a centipede fact table with dozens of hierarchically related dimensions. Centipede
fact tables should be avoided. All these fixed depth, many-to-one hierarchically
related dimensions should be collapsed back to their unique lowest grains, such as
the date for the example mentioned. Centipede fact tables also result when design-
ers embed numerous foreign keys to individual low-cardinality dimension tables
rather than creating a junk dimension.

Chapter 3 Retail Sales, p 108

Kimball Dimensional Modeling Techniques Overview 59

Numeric Values as Attributes or Facts

Designers sometimes encounter numeric values that don’t clearly fall into either
the fact or dimension attribute categories. A classic example is a product’s standard
list price. If the numeric value is used primarily for calculation purposes, it likely
belongs in the fact table. If a stable numeric value is used predominantly for filtering
and grouping, it should be treated as a dimension attribute; the discrete numeric
values can be supplemented with value band attributes (such as $0-50). In some
cases, it is useful to model the numeric value as both a fact and dimension attribute,
such as a quantitative on-time delivery metric and qualitative textual descriptor.

Chapter 3 Retail Sales, p 85

Chapter 6 Order Management, p 188

Chapter 8 Customer Relationship Management, p 254
Chapter 16 Insurance, p 382

Lag/Duration Facts

Accumulating snapshot fact tables capture multiple process milestones, each with a
date foreign key and possibly a date/time stamp. Business users often want to analyze
the lags or durations between these milestones; sometimes these lags are just the
differences between dates, but other times the lags are based on more complicated
business rules. If there are dozens of steps in a pipeline, there could be hundreds
of possible lags. Rather than forcing the user’s query to calculate each possible lag
from the date/time stamps or date dimension foreign keys, just one time lag can be
stored for each step measured against the process’s start point. Then every possible
lag between two steps can be calculated as a simple subtraction between the two
lags stored in the fact table.

Chapter 6 Order Management, p 196
Chapter 16 Insurance, p 393

Header/Line Fact Tables

Operational transaction systems often consist of a transaction header row that’s
associated with multiple transaction lines. With header/line schemas (also known
as parent/child schemas), all the header-level dimension foreign keys and degenerate
dimensions should be included on the line-level fact table.

Chapter 6 Order Management, p 181
Chapter 12 Transportation, p 315
Chapter 15 Electronic Commerce, p 363

60 Chapter 2

Allocated Facts

It is quite common in header/line transaction data to encounter facts of differ-
ing granularity, such as a header freight charge. You should strive to allocate
the header facts down to the line level based on rules provided by the business, so the
allocated facts can be sliced and rolled up by all the dimensions. In many cases, you
can avoid creating a header-level fact table, unless this aggregation delivers query
performance advantages.

Chapter 6 Order Management, p 184

Profit and Loss Fact Tables Using Allocations

Fact tables that expose the full equation of profit are among the most powerful deliv-
erables of an enterprise DW/BI system. The equation of profit is (revenue) — (costs) =
(profit). Fact tables ideally implement the profit equation at the grain of the atomic
revenue transaction and contain many components of cost. Because these tables are
at the atomic grain, numerous rollups are possible, including customer profitabil-
ity, product profitability, promotion profitability, channel profitability, and others.
However, these fact tables are difficult to build because the cost components must
be allocated from their original sources to the fact table’s grain. This allocation step
is often a major ETL subsystem and is a politically charged step that requires high-
level executive support. For these reasons, profit and loss fact tables are typically
not tackled during the early implementation phases of a DW/BI program.

Chapter 6 Order Management, p 189
Chapter 15 Electronic Commerce, p 370

Multiple Currency Facts

Fact tables that record financial transactions in multiple currencies should contain
a pair of columns for every financial fact in the row. One column contains the fact
expressed in the true currency of the transaction, and the other contains the same
fact expressed in a single standard currency that is used throughout the fact table.
The standard currency value is created in an ETL process according to an approved
business rule for currency conversion. This fact table also must have a currency
dimension to identify the transaction’s true currency.

Chapter 6 Order Management, p 182
Chapter 7 Accounting, p 206

Kimball Dimensional Modeling Techniques Overview 61

Multiple Units of Measure Facts

Some business processes require facts to be stated simultaneously in several units
of measure. For example, depending on the perspective of the business user, a
supply chain may need to report the same facts as pallets, ship cases, retail cases,
or individual scan units. If the fact table contains a large number of facts, each of
which must be expressed in all units of measure, a convenient technique is to store
the facts once in the table at an agreed standard unit of measure, but also simulta-
neously store conversion factors between the standard measure and all the others.
This fact table could be deployed through views to each user constituency, using
an appropriate selected conversion factor. The conversion factors must reside in the
underlying fact table row to ensure the view calculation is simple and correct, while
minimizing query complexity.

Chapter 6 Order Management, p 197

Year-to-Date Facts

Business users often request year-to-date (YID) values in a fact table. It is hard to
argue against a single request, but YITD requests can easily morph into “YTD at the
close of the fiscal period” or “fiscal period to date.” A more reliable, extensible way
to handle these assorted requests is to calculate the YTD metrics in the BI applica-
tions or OLAP cube rather than storing YTD facts in the fact table.

Chapter 7 Accounting, p 206

Multipass SQL to Avoid Fact-to-Fact Table Joins

A BI application must never issue SQL that joins two fact tables together across the
fact table’s foreign keys. It is impossible to control the cardinality of the answer set
of such a join in a relational database, and incorrect results will be returned to the
BI tool. For instance, if two fact tables contain customer’s product shipments and
returns, these two fact tables must not be joined directly across the customer
and product foreign keys. Instead, the technique of drilling across two fact tables
should be used, where the answer sets from shipments and returns are separately
created, and the results sort-merged on the common row header attribute values to
produce the correct result.

Chapter 4 Inventory, p 130
Chapter 8 Customer Relationship Management, p 259

62 Chapter 2

Timespan Tracking in Fact Tables

There are three basic fact table grains: transaction, periodic snapshot, and accu-
mulating snapshot. In isolated cases, it is useful to add a row effective date, row
expiration date, and current row indicator to the fact table, much like you do with
type 2 slowly changing dimensions, to capture a timespan when the fact row was
effective. Although an unusual pattern, this pattern addresses scenarios such as
slowly changing inventory balances where a frequent periodic snapshot would load
identical rows with each snapshot.

Chapter 8 Customer Relationship Management, p 252
Chapter 16 Insurance, p 394

Late Arriving Facts

A fact row is late arriving if the most current dimensional context for new fact rows
does not match the incoming row. This happens when the fact row is delayed. In
this case, the relevant dimensions must be searched to find the dimension keys that
were effective when the late arriving measurement event occurred.

Chapter 14 Healthcare, p 351
Chapter 19 ETL Subsystems and Techniques, p 478

Advanced Dimension Techniques

The techniques in this section refer to more advanced dimension table patterns.

Dimension-to-Dimension Table Joins

Dimensions can contain references to other dimensions. Although these relation-
ships can be modeled with outrigger dimensions, in some cases, the existence of a
foreign key to the outrigger dimension in the base dimension can result in explosive
growth of the base dimension because type 2 changes in the outrigger force cor-
responding type 2 processing in the base dimension. This explosive growth can
often be avoided if you demote the correlation between dimensions by placing the
foreign key of the outrigger in the fact table rather than in the base dimension. This
means the correlation between the dimensions can be discovered only by traversing
the fact table, but this may be acceptable, especially if the fact table is a periodic
snapshot where all the keys for all the dimensions are guaranteed to be present for
each reporting period.

Chapter 6 Order Management, p 175

Kimball Dimensional Modeling Techniques Overview 63

Muiltivalued Dimensions and Bridge Tables

In a classic dimensional schema, each dimension attached to a fact table has a single
value consistent with the fact table’s grain. But there are a number of situations in
which a dimension is legitimately multivalued. For example, a patient receiving a
healthcare treatment may have multiple simultaneous diagnoses. In these cases, the
multivalued dimension must be attached to the fact table through a group dimen-
sion key to a bridge table with one row for each simultaneous diagnosis in a group.

Chapter 8 Customer Relationship Management, p 245
Chapter 9 Human Resources Management, p 275
Chapter 10 Financial Services, p 287

Chapter 13 Education, p 333

Chapter 14 Healthcare, p 345

Chapter 16 Insurance, p 382

Chapter 19 ETL Subsystems and Techniques, p 477

Time Varying Multivalued Bridge Tables

A multivalued bridge table may need to be based on a type 2 slowly changing dimen-
sion. For example, the bridge table that implements the many-to-many relationship
between bank accounts and individual customers usually must be based on type
2 account and customer dimensions. In this case, to prevent incorrect linkages
between accounts and customers, the bridge table must include effective and expi-
ration date/time stamps, and the requesting application must constrain the bridge
table to a specific moment in time to produce a consistent snapshot.

Chapter 7 Accounting, p 220
Chapter 10 Financial Services, p 286

Behavior Tag Time Series

Almost all text in a data warehouse is descriptive text in dimension tables. Data
mining customer cluster analyses typically results in textual behavior tags, often
identified on a periodic basis. In this case, the customers’ behavior measurements
over time become a sequence of these behavior tags; this time series should be
stored as positional attributes in the customer dimension, along with an optional
text string for the complete sequence of tags. The behavior tags are modeled in a
positional design because the behavior tags are the target of complex simultaneous
queries rather than numeric computations.

Chapter 8 Customer Relationship Management, p 240

64 Chapter 2

Behavior Study Groups

Complex customer behavior can sometimes be discovered only by running lengthy
iterative analyses. In these cases, it is impractical to embed the behavior analyses
inside every Bl application that wants to constrain all the members of the customer
dimension who exhibit the complex behavior. The results of the complex behavior
analyses, however, can be captured in a simple table, called a study group, consisting
only of the customers’ durable keys. This static table can then be used as a kind of
filter on any dimensional schema with a customer dimension by constraining the
study group column to the customer dimension’s durable key in the target schema
at query time. Multiple study groups can be defined and derivative study groups
can be created with intersections, unions, and set differences.

Chapter 8 Customer Relationship Management, p 249

Aggregated Facts as Dimension Attributes

Business users are often interested in constraining the customer dimension based
on aggregated performance metrics, such as filtering on all customers who spent
over a certain dollar amount during last year or perhaps over the customer’s lifetime.
Selected aggregated facts can be placed in a dimension as targets for constraining and
as row labels for reporting. The metrics are often presented as banded ranges in the
dimension table. Dimension attributes representing aggregated performance metrics
add burden to the ETL processing, but ease the analytic burden in the BI layer.

Chapter 8 Customer Relationship Management, p 239

Dynamic Value Bands

A dynamic value banding report is organized as a series of report row headers that
define a progressive set of varying-sized ranges of a target numeric fact. For instance,
a common value banding report in a bank has many rows with labels such as
“Balance from 0 to $10,” “Balance from $10.01 to $25,” and so on. This kind of
report is dynamic because the specific row headers are defined at query time, not
during the ETL processing. The row definitions can be implemented in a small value
banding dimension table that is joined via greater-than/less-than joins to the fact
table, or the definitions can exist only in an SQL CASE statement. The value band-
ing dimension approach is probably higher performing, especially in a columnar
database, because the CASE statement approach involves an almost unconstrained
relation scan of the fact table.

Chapter 10 Financial Services, p 291

Kimball Dimensional Modeling Techniques Overview 65

Text Comments Dimension

Rather than treating freeform comments as textual metrics in a fact table, they
should be stored outside the fact table in a separate comments dimension (or as
attributes in a dimension with one row per transaction if the comments’ cardinal-
ity matches the number of unique transactions) with a corresponding foreign key
in the fact table.

Chapter 9 Human Resources Management, p 278
Chapter 14 Healthcare, p 350

Muiltiple Time Zones

To capture both universal standard time, as well as local times in multi-time zone
applications, dual foreign keys should be placed in the affected fact tables that join
to two role-playing date (and potentially time-of-day) dimension tables.

Chapter 12 Transportation, p 323
Chapter 15 Electronic Commerce, p 361

Measure Type Dimensions

Sometimes when a fact table has a long list of facts that is sparsely populated in any
individual row, it is tempting to create a measure type dimension that collapses the
fact table row down to a single generic fact identified by the measure type dimen-
sion. We generally do not recommend this approach. Although it removes all the
empty fact columns, it multiplies the size of the fact table by the average number
of occupied columns in each row, and it makes intra-column computations much
more difficult. This technique is acceptable when the number of potential facts is
extreme (in the hundreds), but less than a handful would be applicable to any given
fact table row.

Chapter 6 Order Management, p 169
Chapter 14 Healthcare, p 349

Step Dimensions

Sequential processes, such as web page events, normally have a separate row in a
transaction fact table for each step in a process. To tell where the individual step
fits into the overall session, a step dimension is used that shows what step number
is represented by the current step and how many more steps were required to com-
plete the session.

66 Chapter 2

Chapter 8 Customer Relationship Management, p 251
Chapter 15 Electronic Commerce, p 366

Hot Swappable Dimensions

Hot swappable dimensions are used when the same fact table is alternatively paired
with different copies of the same dimension. For example, a single fact table con-
taining stock ticker quotes could be simultaneously exposed to multiple separate
investors, each of whom has unique and proprietary attributes assigned to different
stocks.

Chapter 10 Financial Services, p 296

Abstract Generic Dimensions

Some modelers are attracted to abstract generic dimensions. For example, their
schemas include a single generic location dimension rather than embedded geo-
graphic attributes in the store, warehouse, and customer dimensions. Similarly,
their person dimension includes rows for employees, customers, and vendor
contacts because they are all human beings, regardless that significantly different
attributes are collected for each type. Abstract generic dimensions should be avoided
in dimensional models. The attribute sets associated with each type often differ. If
the attributes are common, such as a geographic state, then they should be uniquely
labeled to distinguish a store’s state from a customer’s. Finally, dumping all variet-
ies of locations, people, or products into a single dimension invariably results in
a larger dimension table. Data abstraction may be appropriate in the operational
source system or ETL processing, but it negatively impacts query performance and
legibility in the dimensional model.

Chapter 9 Human Resources Management, p 270
Chapter 11 Telecommunications, p 310

Audit Dimensions

When a fact table row is created in the ETL back room, it is helpful to create
an audit dimension containing the ETL processing metadata known at the time.
A simple audit dimension row could contain one or more basic indicators of data
quality, perhaps derived from examining an error event schema that records
data quality violations encountered while processing the data. Other useful audit
dimension attributes could include environment variables describing the versions
of ETL code used to create the fact rows or the ETL process execution time stamps.

Kimball Dimensional Modeling Techniques Overview 67

These environment variables are especially useful for compliance and auditing
purposes because they enable Bl tools to drill down to determine which rows were
created with what versions of the ETL software.

Chapter 6 Order Management, p 192

Chapter 16 Insurance, p 383

Chapter 19 ETL Subsystems and Techniques, p 460
Chapter 20 ETL System Process and Tasks, p 511

Late Arriving Dimensions

Sometimes the facts from an operational business process arrive minutes, hours,
days, or weeks before the associated dimension context. For example, in a real-time
data delivery situation, an inventory depletion row may arrive showing the natural
key of a customer committing to purchase a particular product. In a real-time ETL
system, this row must be posted to the Bl layer, even if the identity of the customer
or product cannot be immediately determined. In these cases, special dimension
rows are created with the unresolved natural keys as attributes. Of course, these
dimension rows must contain generic unknown values for most of the descriptive
columns; presumably the proper dimensional context will follow from the source at
a later time. When this dimensional context is eventually supplied, the placeholder
dimension rows are updated with type 1 overwrites. Late arriving dimension data
also occurs when retroactive changes are made to type 2 dimension attributes.
In this case, a new row needs to be inserted in the dimension table, and then the
associated fact rows must be restated.

Chapter 14 Healthcare, p 351
Chapter 19 ETL Subsystems and Techniques, p 478
Chapter 20 ETL System Process and Tasks, p 523

Special Purpose Schemas

The following design patterns are needed for specific use cases.

Supertype and Subtype Schemas for Heterogeneous Products

Financial services and other businesses frequently offer a wide variety of products
in disparate lines of business. For example, a retail bank may offer dozens of types
of accounts ranging from checking accounts to mortgages to business loans, but all
are examples of an account. Attempts to build a single, consolidated fact table with
the union of all possible facts, linked to dimension tables with all possible attributes

68 Chapter 2

of these divergent products, will fail because there can be hundreds of incompatible
facts and attributes. The solution is to build a single supertype fact table that has the
intersection of the facts from all the account types (along with a supertype dimen-
sion table containing the common attributes), and then systematically build separate
fact tables (and associated dimension tables) for each of the subtypes. Supertype and
subtype fact tables are also called core and custom fact tables.

Chapter 10 Financial Services, p 293
Chapter 14 Healthcare, p 347
Chapter 16 Insurance, p 384

Real-Time Fact Tables

Real-time fact tables need to be updated more frequently than the more traditional
nightly batch process. There are many techniques for supporting this requirement,
depending on the capabilities of the DBMS or OLAP cube used for final deployment
to the BI reporting layer. For example, a “hot partition” can be defined on a fact table
that is pinned in physical memory. Aggregations and indexes are deliberately not
built on this partition. Other DBMSs or OLAP cubes may support deferred updat-
ing that allows existing queries to run to completion but then perform the updates.

Chapter 8 Customer Relationship Management, p 260
Chapter 20 ETL System Process and Tasks, p 520

Error Event Schemas

Managing data quality in a data warehouse requires a comprehensive system of
data quality screens or filters that test the data as it flows from the source sys-
tems to the BI platform. When a data quality screen detects an error, this event
is recorded in a special dimensional schema that is available only in the ETL
back room. This schema consists of an error event fact table whose grain is the
individual error event and an associated error event detail fact table whose grain
is each column in each table that participates in an error event.

Chapter 19 ETL Subsystems and Techniques, p 458

he best way to understand the principles of dimensional modeling is to work

through a series of tangible examples. By visualizing real cases, you hold the
particular design challenges and solutions in your mind more effectively than if they
are presented abstractly. This book uses case studies from a range of businesses to
help move past the idiosyncrasies of your own environment and reinforce dimen-
sional modeling best practices.

To learn dimensional modeling, please read all the chapters in this book, even
if you don’t manage a retail store or work for a telecommunications company. The
chapters are not intended to be full-scale solutions for a given industry or business
function. Each chapter covers a set of dimensional modeling patterns that comes
up in nearly every kind of business. Universities, insurance companies, banks, and
airlines alike surely need the techniques developed in this retail chapter. Besides,
thinking about someone else’s business is refreshing. It is too easy to let historical
complexities derail you when dealing with data from your company. By stepping out-
side your organization and then returning with a well-understood design principle
(or two), it is easier to remember the spirit of the design principles as you descend
into the intricate details of your business.

Chapter 3 discusses the following concepts:

Four-step process for designing dimensional models

Fact table granularity

Transaction fact tables

Additive, non-additive, and derived facts

Dimension attributes, including indicators, numeric descriptors, and multiple
hierarchies

Calendar date dimensions, plus time-of-day

Causal dimensions, such as promotion

Degenerate dimensions, such as the transaction receipt number

70 Chapter 3

Nulls in a dimensional model

Extensibility of dimension models

Factless fact tables

Surrogate, natural, and durable keys

Snowflaked dimension attributes

Centipede fact tables with “too many dimensions”

Four-Step Dimensional Design Process

Throughout this book, we will approach the design of a dimensional model by
consistently considering four steps, as the following sections discuss in more detail.

Step 1: Select the Business Process

A business process is a low-level activity performed by an organization, such as taking
orders, invoicing, receiving payments, handling service calls, registering students,
performing a medical procedure, or processing claims. To identify your organiza-
tion’s business processes, it’s helpful to understand several common characteristics:

Business processes are frequently expressed as action verbs because they repre-
sent activities that the business performs. The companion dimensions describe
descriptive context associated with each business process event.

Business processes are typically supported by an operational system, such as
the billing or purchasing system.

Business processes generate or capture key performance metrics. Sometimes
the metrics are a direct result of the business process; the measurements are
derivations at other times. Analysts invariably want to scrutinize and evaluate
these metrics by a seemingly limitless combination of filters and constraints.
Business processes are usually triggered by an input and result in output
metrics. In many organizations, there’s a series of processes in which the
outputs from one process become the inputs to the next. In the parlance of a
dimensional modeler, this series of processes results in a series of fact tables.

You need to listen carefully to the business to identify the organization’s business
processes because business users can't readily answer the question, “What busi-
ness process are you interested in?” The performance measurements users want to
analyze in the DW/BI system result from business process events.

Sometimes business users talk about strategic business initiatives instead of busi-
ness processes. These initiatives are typically broad enterprise plans championed
by executive leadership to deliver competitive advantage. In order to tie a business
initiative to a business process representing a project-sized unit of work for the

Retail Sales 71

DW/BI team, you need to decompose the business initiative into the underlying
processes. This means digging a bit deeper to understand the data and operational
systems that support the initiative’s analytic requirements.

It's also worth noting what a business process is not. Organizational business
departments or functions do not equate to business processes. By focusing on pro-
cesses, rather than on functional departments, consistent information is delivered
more economically throughout the organization. If you design departmentally bound
dimensional models, you inevitably duplicate data with different labels and data
values. The best way to ensure consistency is to publish the data once.

Step 2: Declare the Grain

Declaring the grain means specifying exactly what an individual fact table row
represents. The grain conveys the level of detail associated with the fact table
measurements. It provides the answer to the question, “How do you describe a
single row in the fact table?” The grain is determined by the physical realities of
the operational system that captures the business process’s events.

Example grain declarations include:

One row per scan of an individual product on a customer’s sales transaction
One row per line item on a bill from a doctor

One row per individual boarding pass scanned at an airport gate

One row per daily snapshot of the inventory levels for each item in a warehouse
One row per bank account each month

These grain declarations are expressed in business terms. Perhaps you were
expecting the grain to be a traditional declaration of the fact table’s primary key.
Although the grain ultimately is equivalent to the primary key, it’s a mistake to list
a set of dimensions and then assume this list is the grain declaration. Whenever
possible, you should express the grain in business terms.

Dimensional modelers sometimes try to bypass this seemingly unnecessary step
of the four-step design process. Please don't! Declaring the grain is a critical step that
can't be taken lightly. In debugging thousands of dimensional designs over the years,
the most frequent error is not declaring the grain of the fact table at the beginning
of the design process. If the grain isn’t clearly defined, the whole design rests on
quicksand; discussions about candidate dimensions go around in circles, and rogue
facts sneak into the design. An inappropriate grain haunts a DW/BI implementation!
It is extremely important that everyone on the design team reaches agreement on
the fact table’s granularity. Having said this, you may discover in steps 3 or 4 of the
design process that the grain statement is wrong. This is okay, but then you must
return to step 2, restate the grain correctly, and revisit steps 3 and 4 again.

72 Chapter 3

Step 3: Identify the Dimensions

Dimensions fall out of the question, “How do business people describe the data
resulting from the business process measurement events?” You need to decorate
fact tables with a robust set of dimensions representing all possible descriptions
that take on single values in the context of each measurement. If you are clear about
the grain, the dimensions typically can easily be identified as they represent the
“who, what, where, when, why, and how” associated with the event. Examples of
common dimensions include date, product, customer, employee, and facility. With
the choice of each dimension, you then list all the discrete, text-like attributes that
flesh out each dimension table.

Step 4: Identify the Facts

Facts are determined by answering the question, “What is the process measuring?”
Business users are keenly interested in analyzing these performance metrics. All
candidate facts in a design must be true to the grain defined in step 2. Facts that
clearly belong to a different grain must be in a separate fact table. Typical facts are
numeric additive figures, such as quantity ordered or dollar cost amount.

You need to consider both your business users’ requirements and the realities
of your source data in tandem to make decisions regarding the four steps, as illus-
trated in Figure 3-1. We strongly encourage you to resist the temptation to model
the data by looking at source data alone. It may be less intimidating to dive into the
data rather than interview a business person; however, the data is no substitute for
business user input. Unfortunately, many organizations have attempted this path-
of-least-resistance data-driven approach but without much success.

Dimensional Model
Business Process
Grain
Dimensions
Facts

Data
Realities

Business
Requirements

Figure 3-1: Key input to the four-step dimensional design process.

Retail Case Study

Let’s start with a brief description of the retail business used in this case study. We
begin with this industry simply because it is one we are all familiar with. But the
patterns discussed in the context of this case study are relevant to virtually every
dimensional model regardless of the industry.

Retail Sales 73

Imagine you work in the headquarters of a large grocery chain. The business has
100 grocery stores spread across five states. Each store has a full complement of
departments, including grocery, frozen foods, dairy, meat, produce, bakery, floral,
and health/beauty aids. Each store has approximately 60,000 individual products,
called stock keeping units (SKUs), on its shelves.

Data is collected at several interesting places in a grocery store. Some of the most
useful data is collected at the cash registers as customers purchase products. The point-
of-sale (POS) system scans product barcodes at the cash register, measuring consumer
takeaway at the front door of the grocery store, as illustrated in Figure 3-2’s cash register
receipt. Other data is captured at the store’s back door where vendors make deliveries.

Allstar Grocery

123 Loon Street
Green Prairie, MN 55555

(952) 555-1212

Store: 0022
Cashier: 00245409/Alan

0030503347 Baked Well Multigrain Muffins 2.50

2120201195 Diet Cola 12-pack 4.99
Saved $.50 off $5.49

0070806048 Sparkly Toothpaste 1.99
Coupon $.30 off $2.29

2840201912 SoySoy Milk Quart 3.19

TOTAL 12.67

AMOUNT TENDERED

CASH 12.67

ITEM COUNT: 4

Transaction: 649 4/15/2013 10:56 AM

Thank you for shopping at Allstar
0064900220415201300245409

Figure 3-2: Sample cash register receipt.

At the grocery store, management is concerned with the logistics of ordering,
stocking, and selling products while maximizing profit. The profit ultimately comes

74 Chapter 3

from charging as much as possible for each product, lowering costs for product
acquisition and overhead, and at the same time attracting as many customers as
possible in a highly competitive environment. Some of the most significant manage-
ment decisions have to do with pricing and promotions. Both store management
and headquarters marketing spend a great deal of time tinkering with pricing and
promotions. Promotions in a grocery store include temporary price reductions, ads
in newspapers and newspaper inserts, displays in the grocery store, and coupons.
The most direct and effective way to create a surge in the volume of product sold
is to lower the price dramatically. A 50-cent reduction in the price of paper towels,
especially when coupled with an ad and display, can cause the sale of the paper
towels to jump by a factor of 10. Unfortunately, such a big price reduction usually
is not sustainable because the towels probably are being sold at a loss. As a result of
these issues, the visibility of all forms of promotion is an important part of analyz-
ing the operations of a grocery store.

Now that we have described our business case study, we’ll begin to design the
dimensional model.

Step 1: Select the Business Process

The first step in the design is to decide what business process to model by combin-
ing an understanding of the business requirements with an understanding of the
available source data.

NOTE The first DW/BI project should focus on the business process that is
both the most critical to the business users, as well as the most feasible. Feasibility
covers a range of considerations, including data availability and quality, as well as
organizational readiness.

In our retail case study, management wants to better understand customer pur-
chases as captured by the POS system. Thus the business process youre modeling
is POS retail sales transactions. This data enables the business users to analyze
which products are selling in which stores on which days under what promotional
conditions in which transactions.

Step 2: Declare the Grain

After the business process has been identified, the design team faces a serious deci-
sion about the granularity. What level of data detail should be made available in
the dimensional model?

Tackling data at its lowest atomic grain makes sense for many reasons. Atomic
data is highly dimensional. The more detailed and atomic the fact measurement,

Retail Sales 75

the more things you know for sure. All those things you know for sure translate
into dimensions. In this regard, atomic data is a perfect match for the dimensional
approach.

Atomic data provides maximum analytic flexibility because it can be con-
strained and rolled up in every way possible. Detailed data in a dimensional model
is poised and ready for the ad hoc attack by business users.

NOTE You should develop dimensional models representing the most detailed,
atomic information captured by a business process.

Of course, you could declare a more summarized granularity representing an
aggregation of the atomic data. However, as soon as you select a higher level grain,
you limit yourself to fewer and/or potentially less detailed dimensions. The less
granular model is immediately vulnerable to unexpected user requests to drill down
into the details. Users inevitably run into an analytic wall when not given access to
the atomic data. Although aggregated data plays an important role for performance
tuning, it is not a substitute for giving users access to the lowest level details; users
can easily summarize atomic data, but it's impossible to create details from sum-
mary data. Unfortunately, some industry pundits remain confused about this point.
They claim dimensional models are only appropriate for summarized data and then
criticize the dimensional modeling approach for its supposed need to anticipate the
business question. This misunderstanding goes away when detailed, atomic data is
made available in a dimensional model.

In our case study, the most granular data is an individual product on a POS transac-
tion, assuming the POS system rolls up all sales for a given product within a shopping
cart into a single line item. Although users probably are not interested in analyzing
single items associated with a specific POS transaction, you can’t predict all the ways
they’ll want to cull through that data. For example, they may want to understand the
difference in sales on Monday versus Sunday. Or they may want to assess whether it’s
worthwhile to stock so many individual sizes of certain brands. Or they may want
to understand how many shoppers took advantage of the 50-cents-off promotion on
shampoo. Or they may want to determine the impact of decreased sales when a com-
petitive diet soda product was promoted heavily. Although none of these queries calls
for data from one specific transaction, they are broad questions that require detailed
data sliced in precise ways. None of them could have been answered if you elected to
provide access only to summarized data.

NOTE A DW/BI system almost always demands data expressed at the lowest
possible grain, not because queries want to see individual rows but because queries
need to cut through the details in very precise ways.

76 Chapter 3

Step 3: Identify the Dimensions

After the grain of the fact table has been chosen, the choice of dimensions is straight-
forward. The product and transaction fall out immediately. Within the framework
of the primary dimensions, you can ask whether other dimensions can be attributed
to the POS measurements, such as the date of the sale, the store where the sale
occurred, the promotion under which the product is sold, the cashier who handled
the sale, and potentially the method of payment. We express this as another design
principle.

NOTE A careful grain statement determines the primary dimensionality of the
fact table. You then add more dimensions to the fact table if these additional dimen-
sions naturally take on only one value under each combination of the primary
dimensions. If the additional dimension violates the grain by causing additional
fact rows to be generated, the dimension needs to be disqualified or the grain state-
ment needs to be revisited.

The following descriptive dimensions apply to the case: date, product, store,
promotion, cashier, and method of payment. In addition, the POS transaction ticket
number is included as a special dimension, as described in the section “Degenerate
Dimensions for Transaction Numbers” later in this chapter.

Before fleshing out the dimension tables with descriptive attributes, let'’s complete
the final step of the four-step process. You don’t want to lose sight of the forest for
the trees at this stage of the design.

Step 4: Identify the Facts

The fourth and final step in the design is to make a careful determination of which
facts will appear in the fact table. Again, the grain declaration helps anchor your
thinking. Simply put, the facts must be true to the grain: the individual product
line item on the POS transaction in this case. When considering potential facts,
you may again discover adjustments need to be made to either your earlier grain
assumptions or choice of dimensions.

The facts collected by the POS system include the sales quantity (for example,
the number of cans of chicken noodle soup), per unit regular, discount, and net
paid prices, and extended discount and sales dollar amounts. The extended sales
dollar amount equals the sales quantity multiplied by the net unit price. Likewise,
the extended discount dollar amount is the sales quantity multiplied by the unit
discount amount. Some sophisticated POS systems also provide a standard dollar
cost for the product as delivered to the store by the vendor. Presuming this cost
fact is readily available and doesn’t require a heroic activity-based costing initiative,

Retail Sales 77

you can include the extended cost amount in the fact table. The fact table begins
to take shape in Figure 3-3.

Retail Sales Fact
| Date Dimension I— Date Key (FK)

Product Key (FK) — Product Dimension |
| Store Dimension | Store Key (FK)

Promotion Key (FK) —| Promotion Dimension |
| Cashier Dimension |— Cashier Key (FK)

Payment Method Key (FK) —| Payment Method Dimension |

POS Transaction # (DD)

Sales Quantity

Regular Unit Price

Discount Unit Price

Net Unit Price

Extended Discount Dollar Amount
Extended Sales Dollar Amount
Extended Cost Dollar Amount
Extended Gross Profit Dollar Amount

Figure 3-3: Measured facts in retail sales schema.

Four of the facts, sales quantity and the extended discount, sales, and cost dollar
amounts, are beautifully additive across all the dimensions. You can slice and dice
the fact table by the dimension attributes with impunity, and every sum of these
four facts is valid and correct.

Derived Facts

You can compute the gross profit by subtracting the extended cost dollar amount
from the extended sales dollar amount, or revenue. Although computed, gross profit
is also perfectly additive across all the dimensions; you can calculate the gross
profit of any combination of products sold in any set of stores on any set of days.
Dimensional modelers sometimes question whether a calculated derived fact should
be stored in the database. We generally recommend it be stored physically. In this
case study, the gross profit calculation is straightforward, but storing it means it’s
computed consistently in the ETL process, eliminating the possibility of user cal-
culation errors. The cost of a user incorrectly representing gross profit overwhelms
the minor incremental storage cost. Storing it also ensures all users and Bl reporting
applications refer to gross profit consistently. Because gross profit can be calculated
from adjacent data within a single fact table row, some would argue that you should
perform the calculation in a view that is indistinguishable from the table. This is
a reasonable approach if all users access the data via the view and no users with
ad hoc query tools can sneak around the view to get at the physical table. Views
are a reasonable way to minimize user error while saving on storage, but the DBA

78 Chapter 3

must allow no exceptions to accessing the data through the view. Likewise, some
organizations want to perform the calculation in the BI tool. Again, this works if all
users access the data using a common tool, which is seldom the case in our expe-
rience. However, sometimes non-additive metrics on a report such as percentages
or ratios must be computed in the BI application because the calculation cannot
be precalculated and stored in a fact table. OLAP cubes excel in these situations.

Non-Additive Facts

Gross margin can be calculated by dividing the gross profit by the extended sales
dollar revenue. Gross margin is a non-additive fact because it can’t be summarized
along any dimension. You can calculate the gross margin of any set of products,
stores, or days by remembering to sum the revenues and costs respectively before
dividing.

NOTE Percentages and ratios, such as gross margin, are non-additive. The
numerator and denominator should be stored in the fact table. The ratio can then
be calculated in a BI tool for any slice of the fact table by remembering to calculate
the ratio of the sums, not the sum of the ratios.

Unit price is another non-additive fact. Unlike the extended amounts in the fact
table, summing unit price across any of the dimensions results in a meaningless,
nonsensical number. Consider this simple example: You sold one widget at a unit
price of $1.00 and four widgets at a unit price of 50 cents each. You could sum
the sales quantity to determine that five widgets were sold. Likewise, you could
sum the sales dollar amounts ($1.00 and $2.00) to arrive at a total sales amount
of $3.00. However, you can’t sum the unit prices ($1.00 and 50 cents) and declare
that the total unit price is $1.50. Similarly, you shouldn’t announce that the average
unit price is 75 cents. The properly weighted average unit price should be calcu-
lated by taking the total sales amount ($3.00) and dividing by the total quantity
(five widgets) to arrive at a 60 cent average unit price. You'd never arrive at this
conclusion by looking at the unit price for each transaction line in isolation. To
analyze the average price, you must add up the sales dollars and sales quantities
before dividing the total dollars by the total quantity sold. Fortunately, many BI
tools perform this function correctly. Some question whether non-additive facts
should be physically stored in a fact table. This is a legitimate question given
their limited analytic value, aside from printing individual values on a report or
applying a filter directly on the fact, which are both atypical. In some situations,
a fundamentally non-additive fact such as a temperature is supplied by the source
system. These non-additive facts may be averaged carefully over many records, if
the business analysts agree that this makes sense.

Retail Sales 79

Transaction Fact Tables

Transactional business processes are the most common. The fact tables representing
these processes share several characteristics:

The grain of atomic transaction fact tables can be succinctly expressed in the
context of the transaction, such as one row per transaction or one row per
transaction line.

Because these fact tables record a transactional event, they are often sparsely
populated. In our case study, we certainly wouldn’t sell every product in
every shopping cart.

Even though transaction fact tables are unpredictably and sparsely populated,
they can be truly enormous. Most billion and trillion row tables in a data
warehouse are transaction fact tables.

Transaction fact tables tend to be highly dimensional.

The metrics resulting from transactional events are typically additive as long
as they have been extended by the quantity amount, rather than capturing
per unit metrics.

At this early stage of the design, it is often helpful to estimate the number of rows
in your largest table, the fact table. In this case study, it simply may be a matter of
talking with a source system expert to understand how many POS transaction line
items are generated on a periodic basis. Retail traffic fluctuates significantly from
day to day, so you need to understand the transaction activity over a reasonable
period of time. Alternatively, you could estimate the number of rows added to the
fact table annually by dividing the chain’s annual gross revenue by the average item
selling price. Assuming that gross revenues are $4 billion per year and that the aver-
age price of an item on a customer ticket is $2.00, you can calculate that there are
approximately 2 billion transaction line items per year. This is a typical engineer’s
estimate that gets you surprisingly close to sizing a design directly from your arm-
chair. As designers, you always should be triangulating to determine whether your
calculations are reasonable.

Dimension Table Details

Now that we’ve walked through the four-step process, let’s return to the dimension
tables and focus on populating them with robust attributes.

Date Dimension

The date dimension is a special dimension because it is the one dimension nearly
guaranteed to be in every dimensional model since virtually every business process

80 Chapter3

captures a time series of performance metrics. In fact, date is usually the first dimen-
sion in the underlying partitioning scheme of the database so that the successive
time interval data loads are placed into virgin territory on the disk.

For readers of the first edition of The Data Warehouse Toolkit (Wiley, 1996), this
dimension was referred to as the time dimension. However, for more than a decade,
we’ve used the “date dimension” to mean a daily grained dimension table. This helps
distinguish between date and time-of-day dimensions.

Unlike most of the other dimensions, you can build the date dimension table in
advance. You may put 10 or 20 years of rows representing individual days in the table,
so you can cover the history you have stored, as well as several years in the future.
Even 20 years’ worth of days is only approximately 7,300 rows, which is a relatively
small dimension table. For a daily date dimension table in a retail environment, we
recommend the partial list of columns shown in Figure 3-4.

Date Dimension

Date Key (PK)

Date

Full Date Description

Day of Week

Day Number in Calendar Month
Day Number in Calendar Year
Day Number in Fiscal Month
Day Number in Fiscal Year

Last Day in Month Indicator
Calendar Week Ending Date
Calendar Week Number in Year
Calendar Month Name
Calendar Month Number in Year
Calendar Year-Month (YYYY-MM)
Calendar Quarter

Calendar Year-Quarter
Calendar Year

Fiscal Week

Fiscal Week Number in Year
Fiscal Month

Fiscal Month Number in Year
Fiscal Year-Month

Fiscal Quarter

Fiscal Year-Quarter

Fiscal Half Year

Fiscal Year

Holiday Indicator

Weekday Indicator

SQL Date Stamp

Figure 3-4: Date dimension table.

Retail Sales &1

Each column in the date dimension table is defined by the particular day that the
row represents. The day-of-week column contains the day’s name, such as Monday.
This column would be used to create reports comparing Monday business with
Sunday business. The day number in calendar month column starts with 1 at the
beginning of each month and runs to 28, 29, 30, or 31 depending on the month.
This column is useful for comparing the same day each month. Similarly, you could
have a month number in year (1, . . ., 12). All these integers support simple date
arithmetic across year and month boundaries.

For reporting, you should include both long and abbreviated labels. For exam-
ple, you would want a month name attribute with values such as January. In
addition, a year-month (YYYY-MM) column is useful as a report column header.
You likely also want a quarter number (Ql, . . ., Q4), as well as a year-quarter,
such as 2013-Ql. You would include similar columns for the fiscal periods if
they differ from calendar periods. Sample rows containing several date dimen-
sion columns are illustrated in Figure 3-5.

Full Date Day of Calendar |Calendar|Calendar |Fiscal Year- |Holiday Weekday
Date Key |Date Description Week Month Quarter |Year Month Indicator Indicator
20130101|01/01/2013 |January 1, 2013 | Tuesday January Q1 2013 F2013-01 | Holiday Weekday
20130102 01/02/2013 | January 2, 2013 |Wednesday |January Q1 2013 F2013-01 | Non-Holiday | Weekday
20130103 01/03/2013 |January 3,2013 |Thursday |January Q1 2013 F2013-01 | Non-Holiday |Weekday
20130104 01/04/2013 |January 4, 2013 | Friday January Q1 2013 F2013-01 | Non-Holiday | Weekday
20130105 01/05/2013 | January 5, 2013 | Saturday January Q1 2013 F2013-01 | Non-Holiday | Weekday
20130106 | 01/06/2013 | January 6, 2013 | Sunday January Q1 2013 F2013-01 | Non-Holiday | Weekday
20130107 01/07/2013 |January 7, 2013 | Monday January Q1 2013 F2013-01 | Non-Holiday | Weekday
20130108 | 01/08/2013 | January 8, 2013 | Tuesday January Q1 2013 F2013-01 | Non-Holiday |Weekday

Figure 3-5: Date dimension sample rows.

NOTE A sample date dimension is available at www.kimballgroup.com under
the Tools and Utilities tab for this book title.

Some designers pause at this point to ask why an explicit date dimension table is
needed. They reason that if the date key in the fact table is a date type column, then
any SQL query can directly constrain on the fact table date key and use natural SQL
date semantics to filter on month or year while avoiding a supposedly expensive
join. This reasoning falls apart for several reasons. First, if your relational database
can’t handle an efficient join to the date dimension table, you're in deep trouble.
Most database optimizers are quite efficient at resolving dimensional queries; it is
not necessary to avoid joins like the plague.

Since the average business user is not versed in SQL date semantics, he would
be unable to request typical calendar groupings. SQL date functions do not support

82 Chapter3

filtering by attributes such as weekdays versus weekends, holidays, fiscal periods,
or seasons. Presuming the business needs to slice data by these nonstandard date
attributes, then an explicit date dimension table is essential. Calendar logic belongs
in a dimension table, not in the application code.

NOTE Dimensional models always need an explicit date dimension table. There
are many date attributes not supported by the SQL date function, including week
numbers, fiscal periods, seasons, holidays, and weekends. Rather than attempting
to determine these nonstandard calendar calculations in a query, you should look
them up in a date dimension table.

Flags and Indicators as Textual Attributes

Like many operational flags and indicators, the date dimension’s holiday indicator
is a simple indicator with two potential values. Because dimension table attributes
serve as report labels and values in pull-down query filter lists, this indicator should
be populated with meaningful values such as Holiday or Non-holiday instead of
the cryptic Y/N, 1/0, or True/False. As illustrated in Figure 3-6, imagine a report
comparing holiday versus non-holiday sales for a product. More meaningful domain
values for this indicator translate into a more meaningful, self-explanatory report.
Rather than decoding flags into understandable labels in the BI application, we prefer
that decoded values be stored in the database so they’re consistently available to all
users regardless of their BI reporting environment or tools.

Monthly Sales Monthly Sales

Period: June 2013 Period: June 2013

Product Baked Well Sourdough Product Baked Well Sourdough
Holiday Extended Sales OR Holiday Extended Sales
Indicator Dollar Amount Indicator Dollar Amount
N 1,009 Holiday 6,298
Y 6,298 Non-holiday 1,009

Figure 3-6: Sample reports with cryptic versus textual indicators.

A similar argument holds true for the weekday indicator that would have a value
of Weekday or Weekend. Saturdays and Sundays obviously would be assigned the
weekend value. Of course, multiple date table attributes can be jointly constrained,
so you can easily compare weekday holidays with weekend holidays.

Current and Relative Date Attributes

Most date dimension attributes are not subject to updates. June 1, 2013 will always
roll up to June, Calendar Q2, and 2013. However, there are attributes you can add

Retail Sales 83

to the basic date dimension that will change over time, including IsCurrentDay,
IsCurrentMonth, IsPrior60Days, and so on. IsCurrentDay obviously must be updated
each day; the attribute is useful for generating reports that always run for today. A
nuance to consider is the day that IsCurrentDay refers to. Most data warehouses
load data daily, so IsCurrentDay would refer to yesterday (or more accurately, the
most recent day loaded). You might also add attributes to the date dimension that
are unique to your corporate calendar, such as IsFiscalMonthEnd.

Some date dimensions include updated lag attributes. The lag day column would
take the value O for today, -1 for yesterday, +1 for tomorrow, and so on. This attribute
could easily be a computed column rather than physically stored. It might be useful
to set up similar structures for month, quarter, and year. Many BI tools include func-
tionality to do prior period calculations, so these lag columns may be unnecessary.

Time-of-Day as a Dimension or Fact

Although date and time are comingled in an operational date/time stamp, time-of-
day is typically separated from the date dimension to avoid a row count explosion
in the date dimension. As noted earlier, a date dimension with 20 years of history
contains approximately 7,300 rows. If you changed the grain of this dimension to
one row per minute in a day, you'd end up with over 10 million rows to accommodate
the 1,440 minutes per day. If you tracked time to the second, you'd have more than
31 million rows per year! Because the date dimension is likely the most frequently
constrained dimension in a schema, it should be kept as small and manageable as
possible.

If you want to filter or roll up time periods based on summarized day part group-
ings, such as activity during 15-minute intervals, hours, shifts, lunch hour, or prime
time, time-of-day would be treated as a full-fledged dimension table with one row per
discrete time period, such as one row per minute within a 24-hour period resulting
in a dimension with 1,440 rows.

If there’s no need to roll up or filter on time-of-day groupings, time-of-day should
be handled as a simple date/time fact in the fact table. By the way, business users
are often more interested in time lags, such as the transaction’s duration, rather
than discreet start and stop times. Time lags can easily be computed by taking the
difference between date/time stamps. These date/time stamps also allow an applica-
tion to determine the time gap between two transactions of interest, even if these
transactions exist in different days, months, or years.

Product Dimension

The product dimension describes every SKU in the grocery store. Although a typi-
cal store may stock 60,000 SKUs, when you account for different merchandising
schemes and historical products that are no longer available, the product dimension

84 Chapter 3

may have 300,000 or more rows. The product dimension is almost always sourced
from the operational product master file. Most retailers administer their product
master file at headquarters and download a subset to each store’s POS system at
frequent intervals. It is headquarters’ responsibility to define the appropriate product
master record (and unique SKU number) for each new product.

Flatten Many-to-One Hierarchies

The product dimension represents the many descriptive attributes of each SKU. The
merchandise hierarchy is an important group of attributes. Typically, individual
SKUs roll up to brands, brands roll up to categories, and categories roll up to depart-
ments. Each of these is a many-to-one relationship. This merchandise hierarchy and
additional attributes are shown for a subset of products in Figure 3-7.

Product Brand Subcategory | Category Department

Key Product Description Description Description Description Description Fat Content
1 Baked Well Light Sourdough Fresh Bread | Baked Well Fresh Bread Bakery Reduced Fat
2 Fluffy Sliced Whole Wheat Fluffy Pre-Packaged |Bread Bakery Regular Fat
3 Fluffy Light Sliced Whole Wheat Fluffy Pre-Packaged |Bread Bakery Reduced Fat
4 Light Mini Cinnamon Rolls Light Pre-Packaged |Sweeten Bread | Bakery Non-Fat

5 Diet Lovers Vanilla 2 Gallon Coldpack Ice Cream Frozen Desserts | Frozen Foods | Non-Fat

6 Light and Creamy Butter Pecan 1 Pint Freshlike Ice Cream Frozen Desserts |Frozen Foods |Reduced Fat
7 Chocolate Lovers 1/2 Gallon Frigid Ice Cream Frozen Desserts | Frozen Foods |Regular Fat
8 Strawberry Ice Creamy 1 Pint Icy Ice Cream Frozen Desserts | Frozen Foods | Regular Fat
9 Icy Ice Cream Sandwiches Icy Novelties Frozen Desserts | Frozen Foods | Regular Fat

Figure 3-7: Product dimension sample rows.

For each SKU, all levels of the merchandise hierarchy are well defined. Some
attributes, such as the SKU description, are unique. In this case, there are 300,000
different values in the SKU description column. At the other extreme, there are only
perhaps 50 distinct values of the department attribute. Thus, on average, there are
6,000 repetitions of each unique value in the department attribute. This is perfectly
acceptable! You do not need to separate these repeated values into a second nor-
malized table to save space. Remember dimension table space requirements pale in
comparison with fact table space considerations.

NOTE Keeping the repeated low cardinality values in the primary dimension
table is a fundamental dimensional modeling technique. Normalizing these values
into separate tables defeats the primary goals of simplicity and performance, as
discussed in “Resisting Normalization Urges” later in this chapter.

Many of the attributes in the product dimension table are not part of the mer-
chandise hierarchy. The package type attribute might have values such as Bottle,
Bag, Box, or Can. Any SKU in any department could have one of these values.

Retail Sales 85

It often makes sense to combine a constraint on this attribute with a constraint
on a merchandise hierarchy attribute. For example, you could look at all the SKUs
in the Cereal category packaged in Bags. Put another way, you can browse among
dimension attributes regardless of whether they belong to the merchandise hier-
archy. Product dimension tables typically have more than one explicit hierarchy.

A recommended partial product dimension for a retail grocery dimensional model
is shown in Figure 3-8.

Product Dimension

Product Key (PK)

SKU Number (NK)
Product Description
Brand Description
Subcategory Description
Category Description
Department Number
Department Description
Package Type Description
Package Size

Fat Content

Diet Type

Weight

Weight Unit of Measure
Storage Type

Shelf Life Type

Shelf Width

Shelf Height

Shelf Depth

Figure 3-8: Product dimension table.

Attributes with Embedded Meaning

Often operational product codes, identified in the dimension table by the NK notation
for natural key, have embedded meaning with different parts of the code representing
significant characteristics of the product. In this case, the multipart attribute should
be both preserved in its entirety within the dimension table, as well as broken down
into its component parts, which are handled as separate attributes. For example, if
the fifth through ninth characters in the operational code identify the manufacturer,
the manufacturer’s name should also be included as a dimension table attribute.

Numeric Values as Attributes or Facts

You will sometimes encounter numeric values that don’t clearly fall into either the
fact or dimension attribute categories. A classic example is the standard list price

86 Chapter3

for a product. It’s definitely a numeric value, so the initial instinct is to place it in
the fact table. But typically the standard price changes infrequently, unlike most
facts that are often differently valued on every measurement event.

If the numeric value is used primarily for calculation purposes, it likely belongs
in the fact table. Because standard price is non-additive, you might multiply it by
the quantity for an extended amount which would be additive. Alternatively, if the
standard price is used primarily for price variance analysis, perhaps the variance
metric should be stored in the fact table instead. If the stable numeric value is used
predominantly for filtering and grouping, it should be treated as a product dimen-
sion attribute.

Sometimes numeric values serve both calculation and filtering/grouping func-
tions. In these cases, you should store the value in both the fact and dimension
tables. Perhaps the standard price in the fact table represents the valuation at the
time of the sales transaction, whereas the dimension attribute is labeled to indicate
it’s the current standard price.

NOTE Data elements that are used both for fact calculations and dimension
constraining, grouping, and labeling should be stored in both locations, even
though a clever programmer could write applications that access these data
elements from a single location. It is important that dimensional models be as
consistent as possible and application development be predictably simple. Data
involved in calculations should be in fact tables and data involved in constraints,
groups and labels should be in dimension tables.

Drilling Down on Dimension Attributes

A reasonable product dimension table can have 50 or more descriptive attributes.
Each attribute is a rich source for constraining and constructing row header labels.
Drilling down is nothing more than asking for a row header from a dimension that
provides more information.

Let’s say you have a simple report summarizing the sales dollar amount by depart-
ment. As illustrated in Figure 3-9, if you want to drill down, you can drag any
other attribute, such as brand, from the product dimension into the report next to
department, and you can automatically drill down to this next level of detail. You
could drill down by the fat content attribute, even though it isn’t in the merchandise
hierarchy rollup.

NOTE Drilling down in a dimensional model is nothing more than adding row
header attributes from the dimension tables. Drilling up is removing row headers.
You can drill down or up on attributes from more than one explicit hierarchy and
with attributes that are part of no hierarchy.

Retail Sales 87

Department Sales Dollar
Name Amount
Bakery 12,331
Frozen Foods 31,776

Drill down by brand name:

Department Brand Sales Dollar
Name Name Amount
Bakery Baked Well 3,009
Bakery Fluffy 3,024
Bakery Light 6,298
Frozen Foods Coldpack 5,321
Frozen Foods Freshlike 10,476
Frozen Foods Frigid 7,328
Frozen Foods lcy 2,184
Frozen Foods QuickFreeze 6,467

Or drill down by fat content:

Department Fat Sales Dollar
Name Content Amount
Bakery Nonfat 6,298
Bakery Reduced fat 5,027
Bakery Regular fat 1,006
Frozen Foods Nonfat 5,321
Frozen Foods Reduced fat 10,476
Frozen Foods Regular fat 15,979

Figure 3-9: Drilling down on dimension attributes.

The product dimension is a common dimension in many dimensional models.
Great care should be taken to fill this dimension with as many descriptive attributes
as possible. A robust and complete set of dimension attributes translates into robust
and complete analysis capabilities for the business users. We'll further explore the
product dimension in Chapter 5: Procurement where we'll also discuss the handling
of product attribute changes.

Store Dimension

The store dimension describes every store in the grocery chain. Unlike the product
master file that is almost guaranteed to be available in every large grocery business,
there may not be a comprehensive store master file. POS systems may simply sup-
ply a store number on the transaction records. In these cases, project teams must
assemble the necessary components of the store dimension from multiple opera-
tional sources. Often there will be a store real estate department at headquarters
who will help define a detailed store master file.

88 Chapter3

Multiple Hierarchies in Dimension Tables

The store dimension is the case study’s primary geographic dimension. Each store
can be thought of as a location. You can roll stores up to any geographic attribute,
such as ZIP code, county, and state in the United States. Contrary to popular
belief, cities and states within the United States are not a hierarchy. Since many
states have identically named cities, you'll want to include a City-State attribute
in the store dimension.

Stores likely also roll up an internal organization hierarchy consisting of store
districts and regions. These two different store hierarchies are both easily repre-
sented in the dimension because both the geographic and organizational hierarchies
are well defined for a single store row.

NOTE It is not uncommon to represent multiple hierarchies in a dimension
table. The attribute names and values should be unique across the multiple

hierarchies.

A recommended retail store dimension table is shown in Figure 3-10.

Store Dimension
Store Key (PK)
Store Number (NK)
Store Name
Store Street Address
Store City
Store County
Store City-State
Store State
Store Zip Code
Store Manager
Store District
Store Region
Floor Plan Type
Photo Processing Type
Financial Service Type
Selling Square Footage
Total Square Footage
First Open Date
Last Remodel Date

Figure 3-10: Store dimension table.

The floor plan type, photo processing type, and finance services type are all short
text descriptors that describe the particular store. These should not be one-character
codes but rather should be 10- to 20-character descriptors that make sense when
viewed in a pull-down filter list or used as a report label.

Retail Sales 89

The column describing selling square footage is numeric and theoretically addi-
tive across stores. You might be tempted to place it in the fact table. However, it is
clearly a constant attribute of a store and is used as a constraint or label more often
than it is used as an additive element in a summation. For these reasons, selling
square footage belongs in the store dimension table.

Dates Within Dimension Tables

The first open date and last remodel date in the store dimension could be date type
columns. However, if users want to group and constrain on nonstandard calendar
attributes (like the open date’s fiscal period), then they are typically join keys to
copies of the date dimension table. These date dimension copies are declared in SQL
by the view construct and are semantically distinct from the primary date dimen-
sion. The view declaration would look like the following:

create view first_open_date (first_open_day_number, first_open_month,

)

as select day_number, month,
from date

Now the system acts as if there is another physical copy of the date dimension
table called FIRST_OPEN_DATE. Constraints on this new date table have nothing to
do with constraints on the primary date dimension joined to the fact table. The first
open date view is a permissible outrigger to the store dimension; outriggers will be
described in more detail later in this chapter. Notice we have carefully relabeled all
the columns in the view so they cannot be confused with columns from the primary
date dimension. These distinct logical views on a single physical date dimension are
an example of dimension role playing, which we’ll discuss more fully in Chapter 6:
Order Management.

Promotion Dimension

The promotion dimension is potentially the most interesting dimension in the
retail sales schema. The promotion dimension describes the promotion condi-
tions under which a product is sold. Promotion conditions include temporary
price reductions, end aisle displays, newspaper ads, and coupons. This dimension
is often called a causal dimension because it describes factors thought to cause a
change in product sales.

Business analysts at both headquarters and the stores are interested in determin-
ing whether a promotion is effective. Promotions are judged on one or more of the
following factors:

Whether the products under promotion experienced a gain in sales, called
lift, during the promotional period. The lift can be measured only if the store
can agree on what the baseline sales of the promoted products would have

90 Chapter3

been without the promotion. Baseline values can be estimated from prior sales
history and, in some cases, with the help of sophisticated models.

Whether the products under promotion showed a drop in sales just prior to
or after the promotion, canceling the gain in sales during the promotion (time
shifting). In other words, did you transfer sales from regularly priced products
to temporarily reduced priced products?

Whether the products under promotion showed a gain in sales but other
products nearby on the shelf showed a corresponding sales decrease
(cannibalization).

Whether all the products in the promoted category of products experienced a
net overall gain in sales taking into account the time periods before, during,
and after the promotion (market growth).

Whether the promotion was profitable. Usually the profit of a promotion is
taken to be the incremental gain in profit of the promoted category over the
baseline sales taking into account time shifting and cannibalization, as well
as the costs of the promotion.

The causal conditions potentially affecting a sale are not necessarily tracked
directly by the POS system. The transaction system keeps track of price reduc-
tions and markdowns. The presence of coupons also typically is captured with
the transaction because the customer either presents coupons at the time of sale
or does not. Ads and in-store display conditions may need to be linked from other
sources.

The various possible causal conditions are highly correlated. A temporary price
reduction usually is associated with an ad and perhaps an end aisle display. For
this reason, it makes sense to create one row in the promotion dimension for each
combination of promotion conditions that occurs. Over the course of a year, there
may be 1,000 ads, 5,000 temporary price reductions, and 1,000 end aisle displays,
but there may be only 10,000 combinations of these three conditions affecting any
particular product. For example, in a given promotion, most of the stores would run
all three promotion mechanisms simultaneously, but a few of the stores may not
deploy the end aisle displays. In this case, two separate promotion condition rows
would be needed, one for the normal price reduction plus ad plus display and one
for the price reduction plus ad only. A recommended promotion dimension table
is shown in Figure 3-11.

From a purely logical point of view, you could record similar information about
the promotions by separating the four causal mechanisms (price reductions, ads,
displays, and coupons) into separate dimensions rather than combining them into
one dimension. Ultimately, this choice is the designer’s prerogative. The trade-offs
in favor of keeping the four dimensions together include the following:

Retail Sales 91

If the four causal mechanisms are highly correlated, the combined single
dimension is not much larger than any one of the separated dimensions
would be.

The combined single dimension can be browsed efficiently to see how the vari-
ous price reductions, ads, displays, and coupons are used together. However,
this browsing only shows the possible promotion combinations. Browsing in
the dimension table does not reveal which stores or products were affected
by the promotion; this information is found in the fact table.

Promotion Dimension
Promotion Key (PK)
Promotion Code
Promotion Name
Price Reduction Type
Promotion Media Type
Ad Type
Display Type
Coupon Type
Ad Media Name
Display Provider
Promotion Cost
Promotion Begin Date
Promotion End Date

Figure 3-11: Promotion dimension table.

The trade-offs in favor of separating the causal mechanisms into four distinct
dimension tables include the following:

The separated dimensions may be more understandable to the business com-
munity if users think of these mechanisms separately. This would be revealed
during the business requirement interviews.

Administration of the separate dimensions may be more straightforward than
administering a combined dimension.

Keep in mind there is no difference in the content between these two choices.

NOTE The inclusion of promotion cost attribute in the promotion dimension
should be done with careful thought. This attribute can be used for constraining
and grouping. However, this cost should not appear in the POS transaction fact
table representing individual product sales because it is at the wrong grain; this
cost would have to reside in a fact table whose grain is the overall promotion.

92 Chapter 3

Null Foreign Keys, Attributes, and Facts

Typically, many sales transactions include products that are not being promoted.
Hopefully, consumers aren’t just filling their shopping cart with promoted products;
you want them paying full price for some products in their cart! The promotion
dimension must include a row, with a unique key such as 0 or -1, to identify this
no promotion condition and avoid a null promotion key in the fact table. Referential
integrity is violated if you put a null in a fact table column declared as a foreign key
to a dimension table. In addition to the referential integrity alarms, null keys are
the source of great confusion to users because they can’t join on null keys.

WARNING You must avoid null keys in the fact table. A proper design includes
a row in the corresponding dimension table to identify that the dimension is not
applicable to the measurement.

We sometimes encounter nulls as dimension attribute values. These usually result
when a given dimension row has not been fully populated, or when there are attri-
butes that are not applicable to all the dimension’s rows. In either case, we recom-
mend substituting a descriptive string, such as Unknown or Not Applicable, in place
of the null value. Null values essentially disappear in pull-down menus of possible
attribute values or in report groupings; special syntax is required to identify them.
If users sum up facts by grouping on a fully populated dimension attribute, and then
alternatively, sum by grouping on a dimension attribute with null values, they’ll get
different query results. And you'll get a phone call because the data doesn’t appear to
be consistent. Rather than leaving the attribute null, or substituting a blank space or
a period, it’s best to label the condition; users can then purposely decide to exclude
the Unknown or Not Applicable from their query. It's worth noting that some OLAP
products prohibit null attribute values, so this is one more reason to avoid them.

Finally, we can also encounter nulls as metrics in the fact table. We generally
leave these null so that they’re properly handled in aggregate functions such as SUM,
MIN, MAX, COUNT, and AVG which do the “right thing” with nulls. Substituting a zero
instead would improperly skew these aggregated calculations.

Data mining tools may use different techniques for tracking nulls. You may need
to do some additional transformation work beyond the above recommendations if
creating an observation set for data mining.

Other Retail Sales Dimensions

Any descriptive attribute that takes on a single value in the presence of a fact table
measurement event is a good candidate to be added to an existing dimension or

Retail Sales 93

be its own dimension. The decision whether a dimension should be associated
with a fact table should be a binary yes/no based on the fact table’s declared
grain. For example, there’s probably a cashier identified for each transaction. The
corresponding cashier dimension would likely contain a small subset of non-
private employee attributes. Like the promotion dimension, the cashier dimension
will likely have a No Cashier row for transactions that are processed through
self-service registers.

A trickier situation unfolds for the payment method. Perhaps the store has rigid
rules and only accepts one payment method per transaction. This would make
your life as a dimensional modeler easier because you'd attach a simple payment
method dimension to the sales schema that would likely include a payment method
description, along with perhaps a grouping of payment methods into either cash
equivalent or credit payment types.

In real life, payment methods often present a more complicated scenario. If
multiple payment methods are accepted on a single POS transaction, the payment
method does not take on a single value at the declared grain. Rather than altering
the declared grain to be something unnatural such as one row per payment method
per product on a POS transaction, you would likely capture the payment method in
a separate fact table with a granularity of either one row per transaction (then the
various payment method options would appear as separate facts) or one row per
payment method per transaction (which would require a separate payment method
dimension to associate with each row).

Degenerate Dimensions for Transaction Numbers

The retail sales fact table includes the POS transaction number on every line item
row. In an operational parent/child database, the POS transaction number would
be the key to the transaction header record, containing all the information valid
for the transaction as a whole, such as the transaction date and store identifier.
However, in the dimensional model, you have already extracted this interesting
header information into other dimensions. The POS transaction number is still
useful because it serves as the grouping key for pulling together all the products
purchased in a single market basket transaction. It also potentially enables you to
link back to the operational system.

Although the POS transaction number looks like a dimension key in the fact
table, the descriptive items that might otherwise fall in a POS transaction dimension
have been stripped off. Because the resulting dimension is empty, we refer to the
POS transaction number as a degenerate dimension (identified by the DD notation

94 Chapter 3

in this book’s figures). The natural operational ticket number, such as the POS
transaction number, sits by itself in the fact table without joining to a dimension
table. Degenerate dimensions are very common when the grain of a fact table rep-
resents a single transaction or transaction line because the degenerate dimension
represents the unique identifier of the parent. Order numbers, invoice numbers,
and bill-of-lading numbers almost always appear as degenerate dimensions in a
dimensional model.

Degenerate dimensions often play an integral role in the fact table’s primary
key. In our case study, the primary key of the retail sales fact table consists of the
degenerate POS transaction number and product key, assuming scans of identical
products in the market basket are grouped together as a single line item.

NOTE Operational transaction control numbers such as order numbers, invoice
numbers, and bill-of-lading numbers usually give rise to empty dimensions and are
represented as degenerate dimensions in transaction fact tables. The degenerate
dimension is a dimension key without a corresponding dimension table.

If, for some reason, one or more attributes are legitimately left over after all the
other dimensions have been created and seem to belong to this header entity, you
would simply create a normal dimension row with a normal join. However, you would
no longer have a degenerate dimension.

Retail Schema in Action

With our retail POS schema designed, let’s illustrate how it would be put to use in
a query environment. A business user might be interested in better understanding
weekly sales dollar volume by promotion for the snacks category during January
2013 for stores in the Boston district. As illustrated in Figure 3-12, you would place
query constraints on month and year in the date dimension, district in the store
dimension, and category in the product dimension.

If the query tool summed the sales dollar amount grouped by week ending
date and promotion, the SQL query results would look similar to those below in
Figure 3-13. You can plainly see the relationship between the dimensional model
and the associated query. High-quality dimension attributes are crucial because they
are the source of query constraints and report labels. If you use a BI tool with more
functionality, the results would likely appear as a cross-tabular “pivoted” report,
which may be more appealing to business users than the columnar data resulting
from an SQL statement.

Date Dimension

Retail Sales Facts

Retail Sales

Date Key (PK)
Date
Day of Week

Calendar Month

Calendar Quarter

Calendar Year

Date Key (FK)

Product Key (FK)

Store Key (FK)

Promotion Key (FK)
Cashier Key (FK)

Payment Method Key (FK)
POS Transaction # (DD)

Sales Quantity

Store Dimension

Regular Unit Price

Store Key (PK)

Store Name
Store District

Store Region

Store Number (NK)

Discount Unit Price

Net Unit Price

Extended Discount Dollar Amount
Extended Sales Dollar Amount
Extended Cost Dollar Amount
Extended Gross Profit Dollar Amount

Product Dimension

Product Key (PK)
SKU Number (NK)
Product Description
Brand Description
Category Description

Promotion Dimension

Cashier Dimension

Cashier Key (PK)

Cashier Name

Cashier Employee ID (NK)

Figure 3-12: Querying the retail sales schema.

Calendar Week
Ending Date

Promotion Name

Promotion Key (PK)
Promotion Code (NK)
Promotion Name
Promotion Media Type
Promotion Begin Date

Payment Method Dimension

Payment Method Key (PK)
Payment Method Description
Payment Method Group

Extended Sales
Dollar Amount

January 6, 2013

January 13, 2013
January 20, 2013
January 27, 2013

Department
Name

No Promotion
No Promotion
Super Bowl Promotion
Super Bowl Promotion

No Promotion
Extended Sales
Dollar Amount

2,647
4,851
7,248
13,798

Super Bowl Promotion
Extended Sales
Dollar Amount

January 6, 2013

January 13, 2013
January 20, 2013
January 27, 2013

2,647
4,851
0
0

Figure 3-13: Query results and cross-tabular report.

Retail Schema Extensibility

0

0
7,248
13,798

95

Let’s turn our attention to extending the initial dimensional design. Several years

after the rollout of the retail sales schema, the retailer implements a frequent shop-

per program. Rather than knowing an unidentified shopper purchased 26 items on

96 Chapter3

a cash register receipt, you can now identify the specific shopper. Just imagine the
business users’ interest in analyzing shopping patterns by a multitude of geographic,
demographic, behavioral, and other differentiating shopper characteristics.

The handling of this new frequent shopper information is relatively straightfor-
ward. You'd create a frequent shopper dimension table and add another foreign key
in the fact table. Because you can’t ask shoppers to bring in all their old cash register
receipts to tag their historical sales transactions with their new frequent shopper
number, you'd substitute a default shopper dimension surrogate key, corresponding
to a Prior to Frequent Shopper Program dimension row, on the historical fact table
rows. Likewise, not everyone who shops at the grocery store will have a frequent
shopper card, so you'd also want to include a Frequent Shopper Not Identified row
in the shopper dimension. As we discussed earlier with the promotion dimension,
you can’t have a null frequent shopper key in the fact table.

Our original schema gracefully extends to accommodate this new dimension
largely because the POS transaction data was initially modeled at its most granular
level. The addition of dimensions applicable at that granularity did not alter the
existing dimension keys or facts; all existing Bl applications continue to run without
any changes. If the grain was originally declared as daily retail sales (transactions
summarized by day, store, product, and promotion) rather than the transaction line
detail, you would not have been able to incorporate the frequent shopper dimen-
sion. Premature summarization or aggregation inherently limits your ability to add
supplemental dimensions because the additional dimensions often don’t apply at
the higher grain.

The predictable symmetry of dimensional models enable them to absorb some
rather significant changes in source data and/or modeling assumptions without
invalidating existing BI applications, including:

New dimension attributes. If you discover new textual descriptors of a dimen-
sion, you can add these attributes as new columns. All existing applications
will be oblivious to the new attributes and continue to function. If the new
attributes are available only after a specific point in time, then Not Available
or its equivalent should be populated in the old dimension rows. Be fore-
warned that this scenario is more complicated if the business users want to
track historical changes to this newly identified attribute. If this is the case,
pay close attention to the slowly changing dimension coverage in Chapter 5.
New dimensions. As we just discussed, you can add a dimension to an exist-
ing fact table by adding a new foreign key column and populating it correctly
with values of the primary key from the new dimension.

Retail Sales 97

New measured facts. If new measured facts become available, you can add
them gracefully to the fact table. The simplest case is when the new facts are
available in the same measurement event and at the same grain as the existing
facts. In this case, the fact table is altered to add the new columns, and the
values are populated into the table. If the new facts are only available from
a point in time forward, null values need to be placed in the older fact rows.
A more complex situation arises when new measured facts occur naturally
at a different grain. If the new facts cannot be allocated or assigned to the
original grain of the fact table, the new facts belong in their own fact table
because it’s a mistake to mix grains in the same fact table.

Factless Fact Tables

There is one important question that cannot be answered by the previous retail sales
schema: What products were on promotion but did not sell? The sales fact table
records only the SKUs actually sold. There are no fact table rows with zero facts
for SKUs that didn’t sell because doing so would enlarge the fact table enormously.

In the relational world, a promotion coverage or event fact table is needed to
answer the question concerning what didn’t happen. The promotion coverage fact
table keys would be date, product, store, and promotion in this case study. This
obviously looks similar to the sales fact table you just designed; however, the grain
would be significantly different. In the case of the promotion coverage fact table,
youd load one row for each product on promotion in a store each day (or week, if
retail promotions are a week in duration) regardless of whether the product sold.
This fact table enables you to see the relationship between the keys as defined by a
promotion, independent of other events, such as actual product sales. We refer to it
as a factless fact table because it has no measurement metrics; it merely captures the
relationship between the involved keys, as illustrated in Figure 3-14. To facilitate
counting, you can include a dummy fact, such as promotion count in this example,
which always contains the constant value of 1; this is a cosmetic enhancement that
enables the BI application to avoid counting one of the foreign keys.

To determine what products were on promotion but didn’t sell requires a two-
step process. First, yowd query the promotion factless fact table to determine the
universe of products that were on promotion on a given day. You'd then determine
what products sold from the POS sales fact table. The answer to our original ques-
tion is the set difference between these two lists of products. If you work with data

98 Chapter 3

in an OLAP cube, it is often easier to answer the “what didn’t happen” question
because the cube typically contains explicit cells for nonbehavior.

Date Dimension Promotion Coverage Facts
Date Key (PK) Date Key (FK) Product Dimension
Date Product Key (FK) Product Key (PK)
Day of Week Store Key (FK) SKU Number (NK)
Calendar Month Promotion Key (FK) Product Description
Calendar Quarter Promotion Count (=1) Brand Description
Calendar Year Category Description
Store Dimension Promotion Dimension
Store Key (PK) Promotion Key (PK)
Store Number (NK) Promotion Code (NK)
Store Name Promotion Name
Store District Promotion Media Type
Store Region Promotion Begin Date

Figure 3-14: Promotion coverage factless fact table.

Dimension and Fact Table Keys

Now that the schemas have been designed, we'll focus on the dimension and fact
tables’ primary keys, along with other row identifiers.

Dimension Table Surrogate Keys

The unique primary key of a dimension table should be a surrogate key rather than
relying on the operational system identifier, known as the natural key. Surrogate keys
go by many other aliases: meaningless keys, integer keys, non-natural keys, artifi-
cial keys, and synthetic keys. Surrogate keys are simply integers that are assigned
sequentially as needed to populate a dimension. The first product row is assigned a
product surrogate key with the value of 1; the next product row is assigned product
key 2; and so forth. The actual surrogate key value has no business significance. The
surrogate keys merely serve to join the dimension tables to the fact table. Throughout
this book, column names with a Key suflix, identified as a primary key (PK) or
foreign key (FK), imply a surrogate.

Modelers sometimes are reluctant to relinquish the natural keys because they
want to navigate the fact table based on the operational code while avoiding a join
to the dimension table. They also don’t want to lose the embedded intelligence
that's often part of a natural multipart key. However, you should avoid relying on

Retail Sales 99

intelligent dimension keys because any assumptions you make eventually may be
invalidated. Likewise, queries and data access applications should not have any
built-in dependency on the keys because the logic also would be vulnerable to
invalidation. Even if the natural keys appear to be stable and devoid of meaning,
don’t be tempted to use them as the dimension table’s primary key.

NOTE Every join between dimension and fact tables in the data warehouse
should be based on meaningless integer surrogate keys. You should avoid using a
natural key as the dimension table’s primary key.

Initially, it may be faster to implement a dimensional model using operational
natural keys, but surrogate keys pay off in the long run. We sometimes think of
them as being similar to a flu shot for the data warehouse—like an immunization,
there’s a small amount of pain to initiate and administer surrogate keys, but the long
run benefits are substantial, especially considering the reduced risk of substantial
rework. Here are several advantages:

Buffer the data warehouse from operational changes. Surrogate keys enable
the warehouse team to maintain control of the DW/BI environment rather
than being whipsawed by operational rules for generating, updating, deleting,
recycling, and reusing production codes. In many organizations, historical
operational codes, such as inactive account numbers or obsolete product
codes, get reassigned after a period of dormancy. If account numbers get
recycled following 12 months of inactivity, the operational systems don’t miss
a beat because their business rules prohibit data from hanging around for that
long. But the DW/BI system may retain data for years. Surrogate keys provide
the warehouse with a mechanism to differentiate these two separate instances
of the same operational account number. If you rely solely on operational
codes, you might also be vulnerable to key overlaps in the case of an acquisi-
tion or consolidation of data.

Integrate multiple source systems. Surrogate keys enable the data warehouse
team to integrate data from multiple operational source systems, even if they
lack consistent source keys by using a back room cross-reference mapping
table to link the multiple natural keys to a common surrogate.

Improve performance. The surrogate key is as small an integer as possible
while ensuring it will comfortably accommodate the future anticipated car-
dinality (number of rows in the dimension). Often the operational code is a
bulky alphanumeric character string or even a group of fields. The smaller
surrogate key translates into smaller fact tables, smaller fact table indexes,
and more fact table rows per block input-output operation. Typically, a 4-byte

100 Chapter3

integer is sufficient to handle most dimensions. A 4-byte integer is a single
integer, not four decimal digits. It has 32 bits and therefore can handle approx-
imately 2 billion positive values (232) or 4 billion total positive and negative
values (=2°% to +23?). This is more than enough for just about any dimension.
Remember, if you have a large fact table with 1 billion rows of data, every byte
in each fact table row translates into another gigabyte of storage.

Handle null or unknown conditions. As mentioned earlier, special surrogate
key values are used to record dimension conditions that may not have an
operational code, such as the No Promotion condition or the anonymous
customer. You can assign a surrogate key to identify these despite the lack of
operational coding. Similarly, fact tables sometimes have dates that are yet
to be determined. There is no SQL date type value for Date to Be Determined
or Date Not Applicable.

Support dimension attribute change tracking. One of the primary techniques
for handling changes to dimension attributes relies on surrogate keys to handle
the multiple profiles for a single natural key. This is actually one of the most
important reasons to use surrogate keys, which we’ll describe in Chapter 5.
A pseudo surrogate key created by simply gluing together the natural key
with a time stamp is perilous. You need to avoid multiple joins between the
dimension and fact tables, sometimes referred to as double-barreled joins, due
to their adverse impact on performance and ease of use.

Of course, some effort is required to assign and administer surrogate keys, but
it’s not nearly as intimidating as many people imagine. You need to establish and
maintain a cross-reference table in the ETL system that will be used to substitute the
appropriate surrogate key on each fact and dimension table row. We lay out a process
for administering surrogate keys in Chapter 19: ETL Subsystems and Techniques.

Dimension Natural and Durable Supernatural Keys

Like surrogate keys, the natural keys assigned and used by operational source sys-
tems go by other names, such as business keys, production keys, and operational
keys. They are identified with the NK notation in the book’s figures. The natural
key is often modeled as an attribute in the dimension table. If the natural key comes
from multiple sources, you might use a character data type that prepends a source
code, such as SAP|43251 or CRM|6539152. If the same entity is represented in both
operational source systems, then you'd likely have two natural key attributes in
the dimension corresponding to both sources. Operational natural keys are often
composed of meaningful constituent parts, such as the product’s line of business
or country of origin; these components should be split apart and made available as
separate attributes.

Retail Sales 1071

In a dimension table with attribute change tracking, it's important to have an iden-
tifier that uniquely and reliably identifies the dimension entity across its attribute
changes. Although the operational natural key may seem to fit this bill, sometimes
the natural key changes due to unexpected business rules (like an organizational
merger) or to handle either duplicate entries or data integration from multiple
sources. If the dimension’s natural keys are not absolutely protected and preserved
over time, the ETL system needs to assign permanent durable identifiers, also known
as supernatural keys. A persistent durable supernatural key is controlled by the DW/
BI system and remains immutable for the life of the system. Like the dimension
surrogate key, it's a simple integer sequentially assigned. And like the natural keys
discussed earlier, the durable supernatural key is handled as a dimension attribute;
it’s not a replacement for the dimension table’s surrogate primary key. Chapter 19
also discusses the ETL system’s responsibility for these durable identifiers.

Degenerate Dimension Surrogate Keys

Although surrogate keys aren’t typically assigned to degenerate dimensions, each
situation needs to be evaluated to determine if one is required. A surrogate key is
necessary if the transaction control numbers are not unique across locations or get
reused. For example, the retailer’s POS system may not assign unique transaction
numbers across stores. The system may wrap back to zero and reuse previous con-
trol numbers when its maximum has been reached. Also, the transaction control
number may be a bulky 24-byte alphanumeric column. Finally, depending on the
capabilities of the BI tool, you may need to assign a surrogate key (and create an
associated dimension table) to drill across on the transaction number. Obviously,
control number dimensions modeled in this way with corresponding dimension
tables are no longer degenerate.

Date Dimension Smart Keys

As we've noted, the date dimension has unique characteristics and requirements.
Calendar dates are fixed and predetermined; you never need to worry about deleting
dates or handling new, unexpected dates on the calendar. Because of its predict-
ability, you can use a more intelligent key for the date dimension.

If a sequential integer serves as the primary key of the date dimension, it should
be chronologically assigned. In other words, January 1 of the first year would
be assigned surrogate key value 1, January 2 would be assigned surrogate key 2,
February 1 would be assigned surrogate key 32, and so on.

More commonly, the primary key of the date dimension is a meaningful integer
formatted as yyyymmdd. The yyyymmdd key is not intended to provide business
users and their BI applications with an intelligent key so they can bypass the date
dimension and directly query the fact table. Filtering on the fact table’s yyyymmdd

102 Chapter 3

key would have a detrimental impact on usability and performance. Filtering and
grouping on calendar attributes should occur in a dimension table, not in the BI
application’s code.

However, the yyyymmdd key is useful for partitioning fact tables. Partitioning
enables a table to be segmented into smaller tables under the covers. Partitioning
a large fact table on the basis of date is effective because it allows old data to be
removed gracefully and new data to be loaded and indexed in the current parti-
tion without disturbing the rest of the fact table. It reduces the time required for
loads, backups, archiving, and query response. Programmatically updating and
maintaining partitions is straightforward if the date key is an ordered integer: year
increments by 1 up to the number of years wanted, month increments by 1 up to
12, and so on. Using a smart yyyymmdd key provides the benefits of a surrogate,
plus the advantages of easier partition management.

Although the yyyymmdd integer is the most common approach for date dimen-
sion keys, some relational database optimizers prefer a true date type column for
partitioning. In these cases, the optimizer knows there are 31 values between
March 1 and April 1, as opposed to the apparent 100 values between 20130301 and
20130401. Likewise, it understands there are 31 values between December 1 and
January 1, as opposed to the 8,900 integer values between 20121201 and 20130101.
This intelligence can impact the query strategy chosen by the optimizer and further
reduce query times. If the optimizer incorporates date type intelligence, it should
be considered for the date key. If the only rationale for a date type key is simplified
administration for the DBA, then you can feel less compelled.

With more intelligent date keys, whether chronologically assigned or a more
meaningful yyyymmdd integer or date type column, you need to reserve a special
date key value for the situation in which the date is unknown when the fact row is
initially loaded.

Fact Table Surrogate Keys

Although we're adamant about using surrogate keys for dimension tables, we're less
demanding about a surrogate key for fact tables. Fact table surrogate keys typically
only make sense for back room ETL processing. As we mentioned, the primary
key of a fact table typically consists of a subset of the table’s foreign keys and/or
degenerate dimension. However, single column surrogate keys for fact tables have
some interesting back room benefits.

Like its dimensional counterpart, a fact table surrogate key is a simple integer,
devoid of any business content, that is assigned in sequence as fact table rows are
generated. Although the fact table surrogate key is unlikely to deliver query perfor-
mance advantages, it does have the following benefits:

Retail Sales 103

Immediate unique identification. A single fact table row is immediately iden-
tified by the key. During ETL processing, a specific row can be identified
without navigating multiple dimensions.

Backing out or resuming a bulk load. If a large number of rows are being
loaded with sequentially assigned surrogate keys, and the process halts before
completion, the DBA can determine exactly where the process stopped by
finding the maximum key in the table. The DBA could back out the complete
load by specifying the range of keys just loaded or perhaps could resume the
load from exactly the correct point.

Replacing updates with inserts plus deletes. The fact table surrogate key
becomes the true physical key of the fact table. No longer is the key of the
fact table determined by a set of dimensional foreign keys, at least as far as
the RDBMS is concerned. Thus it becomes possible to replace a fact table
update operation with an insert followed by a delete. The first step is to
place the new row into the database with all the same business foreign keys
as the row it is to replace. This is now possible because the key enforce-
ment depends only on the surrogate key, and the replacement row has a
new surrogate key. Then the second step deletes the original row, thereby
accomplishing the update. For a large set of updates, this sequence is more
efficient than a set of true update operations. The insertions can be pro-
cessed with the ability to back out or resume the insertions as described in
the previous bullet. These insertions do not need to be protected with full
transaction machinery. Then the final deletion step can be performed safely
because the insertions have run to completion.

Using the fact table surrogate key as a parent in a parent/child schema. In
those cases in which one fact table contains rows that are parents of those in
a lower grain fact table, the fact table surrogate key in the parent table is also
exposed in the child table. The argument of using the fact table surrogate
key in this case rather than a natural parent key is similar to the argument
for using surrogate keys in dimension tables. Natural keys are messy and
unpredictable, whereas surrogate keys are clean integers and are assigned by
the ETL system, not the source system. Of course, in addition to including
the parent fact table’s surrogate key, the lower grained fact table should also
include the parent’s dimension foreign keys so the child facts can be sliced
and diced without traversing the parent fact table’s surrogate key. And as we’ll
discuss in Chapter 4: Inventory, you should never join fact tables directly to
other fact tables.

104 Chapter 3

Resisting Normalization Urges

In this section, let’s directly confront several of the natural urges that tempt model-
ers coming from a more normalized background. We’ve been consciously breaking
some traditional modeling rules because we're focused on delivering value through
ease of use and performance, not on transaction processing efficiencies.

Snowflake Schemas with Normalized Dimensions

The flattened, denormalized dimension tables with repeating textual values make
data modelers from the operational world uncomfortable. Let’s revisit the case study
product dimension table. The 300,000 products roll up into 50 distinct depart-
ments. Rather than redundantly storing the 20-byte department description in the
product dimension table, modelers with a normalized upbringing want to store a
2-byte department code and then create a new department dimension for the depart-
ment decodes. In fact, they would feel more comfortable if all the descriptors in the
original design were normalized into separate dimension tables. They argue this
design saves space because the 300,000-row dimension table only contains codes,
not lengthy descriptors.

In addition, some modelers contend that more normalized dimension tables are
easier to maintain. If a department description changes, they'd need to update only
the one occurrence in the department dimension rather than the 6,000 repetitions
in the original product dimension. Maintenance often is addressed by normaliza-
tion disciplines, but all this happens back in the ETL system long before the data
is loaded into a presentation area’s dimensional schema.

Dimension table normalization is referred to as snowflaking. Redundant attributes
are removed from the flat, denormalized dimension table and placed in separate
normalized dimension tables. Figure 3-15 illustrates the partial snowflaking of the
product dimension into third normal form. The contrast between Figure 3-15 and
Figure 3-8 is startling. The plethora of snowflaked tables (even in our simplistic
example) is overwhelming. Imagine the impact on Figure 3-12 if all the schema’s
hierarchies were normalized.

Snowflaking is a legal extension of the dimensional model, however, we encour-
age you to resist the urge to snowflake given the two primary design drivers: ease
of use and performance.

Product Dimension

Product Key (PK)

SKU Number (Natural Key)
Product Description
Brand Key (FK)
Package Type Key (FK)
Fat Content

Weight

Weight Unit of Measure
Storage Type Key (FK)
Shelf Width

Shelf Height

Shelf Depth

Retail Sales 105

Brand Dimension

Category Dimension

Department Dimension

Brand Key (PK)
Brand Description
Category Key (FK)

Category Key (PK)
Category Description
Department Key (FK)

Department Key (PK)
Department Number
Department Description

Package Type Dimension

Package Type Key (PK)
Package Type Description

Storage Type Dimension

Shelf Life Type Dimension

Figure 3-15: Snowflaked product dimension.

Storage Type Key (PK)
Storage Type Description
Shelf Life Type Key (FK)

Shelf Life Type Key (PK)
Shelf Life Type Description

The multitude of snowflaked tables makes for a much more complex presen-
tation. Business users inevitably will struggle with the complexity; simplicity
is one of the primary objectives of a dimensional model.

Most database optimizers also struggle with the snowflaked schema’s complex-
ity. Numerous tables and joins usually translate into slower query performance.
The complexities of the resulting join specifications increase the chances that
the optimizer will get sidetracked and choose a poor strategy.

The minor disk space savings associated with snowflaked dimension tables
are insignificant. If you replace the 20-byte department description in the
300,000 row product dimension table with a 2-byte code, you’d save a whop-
ping 5.4 MB (300,000 x 18 bytes); meanwhile, you may have a 10 GB fact
table! Dimension tables are almost always geometrically smaller than fact
tables. Efforts to normalize dimension tables to save disk space are usually
a waste of time.

Snowflaking negatively impacts the users’ ability to browse within a dimen-
sion. Browsing often involves constraining one or more dimension attributes
and looking at the distinct values of another attribute in the presence of these
constraints. Browsing allows users to understand the relationship between
dimension attribute values.

106 Chapter 3

Obviously, a snowflaked product dimension table responds well if you just
want a list of the category descriptions. However, if you want to see all the
brands within a category, you need to traverse the brand and category dimen-
sions. If you want to also list the package types for each brand in a category,
yow’d be traversing even more tables. The SQL needed to perform these seem-
ingly simple queries is complex, and you haven’t touched the other dimensions
or fact table.

Finally, snowflaking defeats the use of bitmap indexes. Bitmap indexes are
useful when indexing low-cardinality columns, such as the category and
department attributes in the product dimension table. They greatly speed
the performance of a query or constraint on the single column in question.
Snowflaking inevitably would interfere with your ability to leverage this per-
formance tuning technique.

NOTE Fixed depth hierarchies should be flattened in dimension tables.
Normalized, snowflaked dimension tables penalize cross-attribute browsing and
prohibit the use of bitmapped indexes. Disk space savings gained by normalizing
the dimension tables typically are less than 1 percent of the total disk space needed
for the overall schema. You should knowingly sacrifice this dimension table space
in the spirit of performance and ease of use advantages.

Some database vendors argue their platform has the horsepower to query a fully
normalized dimensional model without performance penalties. If you can achieve
satisfactory performance without physically denormalizing the dimension tables,
that’s fine. However, you'll still want to implement a logical dimensional model with
denormalized dimensions to present an easily understood schema to the business
users and their Bl applications.

In the past, some BI tools indicated a preference for snowflake schemas; snowflak-
ing to address the idiosyncratic requirements of a BI tool is acceptable. Likewise, if
all the data is delivered to business users via an OLAP cube (where the snowflaked
dimensions are used to populate the cube but are never visible to the users), then
snowflaking is acceptable. However, in these situations, you need to consider the
impact on users of alternative BI tools and the flexibility to migrate to alternatives
in the future.

Outriggers

Although we generally do not recommend snowflaking, there are situations in which
it is permissible to build an outrigger dimension that attaches to a dimension within

Retail Sales 107

the fact table’s immediate halo, as illustrated in Figure 3-16. In this example, the
“once removed” outrigger is a date dimension snowflaked off a primary dimension.
The outrigger date attributes are descriptively and uniquely labeled to distinguish
them from the other dates associated with the business process. It only makes
sense to outrigger a primary dimension table’s date attribute if the business wants
to filter and group this date by nonstandard calendar attributes, such as the fiscal
period, business day indicator, or holiday period. Otherwise, you could just treat
the date attribute as a standard date type column in the product dimension. If a date
outrigger is used, be careful that the outrigger dates fall within the range stored in
the standard date dimension table.

Product Dimension
Product Key (PK)
SKU Number (NK)
Product Description
Brand Description

Subcategory Description Product Introduction Date Dimension
Category Description Product Introduction Date Key (PK)
Department Number Product Introduction Date
Department Description Product Introduction Calendar Month
Package Type Description Product Introduction Calendar Year
Package Size Product Introduction Fiscal Month
Product Introduction Date Key (FK) Product Introduction Fiscal Quarter

Product Introduction Fiscal Year

Product Introduction Holiday Period Indicator

Figure 3-16: Example of a permissible outrigger.

You'll encounter more outrigger examples later in the book, such as the han-
dling of customers’ county-level demographic attributes in Chapter 8: Customer
Relationship Management.

Although outriggers may save space and ensure the same attributes are referenced
consistently, there are downsides. Outriggers introduce more joins, which can nega-
tively impact performance. More important, outriggers can negatively impact the
legibility for business users and hamper their ability to browse among attributes
within a single dimension.

WARNING Though outriggers are permissible, a dimensional model should
not be littered with outriggers given the potentially negative impact. Outriggers
should be the exception rather than the rule.

108 cChapter 3

Centipede Fact Tables with Too Many Dimensions

The fact table in a dimensional schema is naturally highly normalized and compact.
There is no way to further normalize the extremely complex many-to-many relation-
ships among the keys in the fact table because the dimensions are not correlated
with each other. Every store is open every day. Sooner or later, almost every product
is sold on promotion in most or all of our stores.

Interestingly, while uncomfortable with denormalized dimension tables, some
modelers are tempted to denormalize the fact table. They have an uncontrollable
urge to normalize dimension hierarchies but know snowflaking is highly discour-
aged, so the normalized tables end up joined to the fact table instead. Rather than
having a single product foreign key on the fact table, they include foreign keys for
the frequently analyzed elements on the product hierarchy, such as brand, category,
and department. Likewise, the date key suddenly turns into a series of keys joining
to separate week, month, quarter, and year dimension tables. Before you know it,
your compact fact table has turned into an unruly monster that joins to literally
dozens of dimension tables. We affectionately refer to these designs as centipede
fact tables because they appear to have nearly 100 legs, as shown in Figure 3-17.

POS Retail Sales Transaction Fact

Brand Key (FK)

Category Key (FK)

Department Key (FK)

Package Type Key (FK)

Store Key (FK)

Store County Key (FK)

Store State Key (FK)

Store District Key (FK)

Store Region Key (FK)

Store Floor Plan Key (FK)
Promotion Key (FK)

Promotion Reduction Type Key (FK)
Promotion Media Type Key (FK)
POS Transaction Number (DD)
Sales Quantity

Extended Discount Dollar Amount
Extended Sales Dollar Amount
Extended Cost Dollar Amount

Fiscal Year Dimension

| Date Dimension Date Key (FK) J Product Dimension |
. . Week Key (FK)
| Week Dimension Month Key (FK)] Brand Dimension |
| Month Dimension Quarter Key (FK) ,I Category Dimension |
Year Key (FK)
| Quarter Dimension Fiscal Year Key (FK) Department Dimension |
Fiscal Month Key (FK)
| Year Dimension Product Key (FK) Package Type Dimension |

Fiscal Month Dimension

Store Dimension

Promotion Dimension |

Store County Dimension

Promotion Reduction Type Dimension |

Store State Dimension

Promotion Media Type Dimension |

Store District Dimension

Store Region Dimension

SO S

Store Floor Plan Dimension

Figure 3-17: Centipede fact table with too many normalized dimensions.

Retail Sales 109

Even with its tight format, the fact table is the behemoth in a dimensional model.
Designing a fact table with too many dimensions leads to significantly increased fact
table disk space requirements. Although denormalized dimension tables consume
extra space, fact table space consumption is a concern because it is your largest
table by orders of magnitude. There is no way to index the enormous multipart
key effectively in the centipede example. The numerous joins are an issue for both
usability and query performance.

Most business processes can be represented with less than 20 dimensions in the
fact table. If a design has 25 or more dimensions, you should look for ways to com-
bine correlated dimensions into a single dimension. Perfectly correlated attributes,
such as the levels of a hierarchy, as well as attributes with a reasonable statistical
correlation, should be part of the same dimension. It’s a good decision to combine
dimensions when the resulting new single dimension is noticeably smaller than the
Cartesian product of the separate dimensions.

NOTE A very large number of dimensions typically are a sign that several
dimensions are not completely independent and should be combined into a
single dimension. It is a dimensional modeling mistake to represent elements of
a single hierarchy as separate dimensions in the fact table.

Developments with columnar databases may reduce the query and storage penal-
ties associated with wide centipede fact table designs. Rather than storing each table
row, a columnar database stores each table column as a contiguous object that is
heavily indexed for access. Even though the underlying physical storage is colum-
nar, at the query level, the table appears to be made up of familiar rows. But when
queried, only the named columns are actually retrieved from the disk, rather than
the entire row in a more conventional row-oriented relational database. Columnar
databases are much more tolerant of the centipede fact tables just described; how-
ever, the ability to browse across hierarchically related dimension attributes may
be compromised.

Summary

This chapter was your first exposure to designing a dimensional model. Regardless
of the industry, we strongly encourage the four-step process for tackling dimensional
model designs. Remember it is especially important to clearly state the grain associ-
ated with a dimensional schema. Loading the fact table with atomic data provides
the greatest flexibility because the data can be summarized “every which way.” As

110 Chapter 3

soon as the fact table is restricted to more aggregated information, you run into
walls when the summarization assumptions prove to be invalid. Also it is vitally
important to populate your dimension tables with verbose, robust descriptive attri-
butes for analytic filtering and labeling.

In the next chapter we’ll remain within the retail industry to discuss techniques
for tackling a second business process within the organization, ensuring your earlier
efforts are leveraged while avoiding stovepipes.

n Chapter 3: Retail Sales, we developed a dimensional model for the sales transac-

tions in a large grocery chain. We remain within the same industry in this chapter
but move up the value chain to tackle the inventory process. The designs developed
in this chapter apply to a broad set of inventory pipelines both inside and outside
the retail industry.

More important, this chapter provides a thorough discussion of the enterprise
data warehouse bus architecture. The bus architecture is essential to creating an
integrated DW/BI system. It provides a framework for planning the overall environ-
ment, even though it will be built incrementally. We will underscore the importance
of using common conformed dimensions and facts across dimensional models, and
will close by encouraging the adoption of an enterprise data governance program.

Chapter 4 discusses the following concepts:

Representing organizational value chains via a series of dimensional models
Semi-additive facts

Three fact table types: periodic snapshots, transaction, and accumulating
snapshots

Enterprise data warehouse bus architecture and bus matrix
Opportunity/stakeholder matrix

Conformed dimensions and facts, and their impact on agile methods
Importance of data governance

Value Chain Introduction

Most organizations have an underlying value chain of key business processes. The
value chain identifies the natural, logical flow of an organization’s primary activi-
ties. For example, a retailer issues purchase orders to product manufacturers. The
products are delivered to the retailer’s warehouse, where they are held in inven-
tory. A delivery is then made to an individual store, where again the products sit in

112 Chapter 4

inventory until a consumer makes a purchase. Figure 4-1 illustrates this subset of a
retailer’s value chain. Obviously, products sourced from manufacturers that deliver
directly to the retail store would bypass the warehousing processes.

Issue Purchase

Order to
Manufacturer
Receive
> Warehouse
Deliveries
Warehouse
> Product
Inventory
Receive
> Store
Deliveries
Store
> Product
Inventory
o Retail
Sales

Figure 4-1: Subset of a retailer’s value chain.

Operational source systems typically produce transactions or snapshots at each
step of the value chain. The primary objective of most analytic DW/BI systems is
to monitor the performance results of these key processes. Because each process
produces unique metrics at unique time intervals with unique granularity and
dimensionality, each process typically spawns one or more fact tables. To this end,
the value chain provides high-level insight into the overall data architecture for an
enterprise DW/BI environment. We'll devote more time to this topic in the “Value
Chain Integration” section later in this chapter.

Inventory Models

In the meantime, we'll discuss several complementary inventory models. The first
is the inventory periodic snapshot where product inventory levels are measured at
regular intervals and placed as separate rows in a fact table. These periodic snapshot
rows appear over time as a series of data layers in the dimensional model, much like
geologic layers represent the accumulation of sediment over long periods of time.
We'll then discuss a second inventory model where every transaction that impacts

Inventory 113

inventory levels as products move through the warehouse is recorded. Finally, in the
third model, we'll describe the inventory accumulating snapshot where a fact table
row is inserted for each product delivery and then the row is updated as the product
moves through the warehouse. Each model tells a different story. For some analytic
requirements, two or even all three models may be appropriate simultaneously.

Inventory Periodic Snapshot

Let’s return to our retail case study. Optimized inventory levels in the stores can have
a major impact on chain profitability. Making sure the right product is in the right
store at the right time minimizes out-of-stocks (where the product isn’t available
on the shelf to be sold) and reduces overall inventory carrying costs. The retailer
wants to analyze daily quantity-on-hand inventory levels by product and store.

It is time to put the four-step dimensional design process to work again. The
business process we're interested in analyzing is the periodic snapshotting of retail
store inventory. The most atomic level of detail provided by the operational inven-
tory system is a daily inventory for each product in each store. The dimensions
immediately fall out of this grain declaration: date, product, and store. This often
happens with periodic snapshot fact tables where you cannot express the granular-
ity in the context of a transaction, so a list of dimensions is needed instead. In this
case study, there are no additional descriptive dimensions at this granularity. For
example, promotion dimensions are typically associated with product movement,
such as when the product is ordered, received, or sold, but not with inventory.

The simplest view of inventory involves only a single fact: quantity on hand.
This leads to an exceptionally clean dimensional design, as shown in Figure 4-2.

Date Dimension Store Inventory Snapshot Fact Product Dimension
Date Key (PK) Date Key (FK) / Product Key (PK)
Product Key (FK) Storage Requirement Type
Store Key (FK)
Store Dimension Quantity on Hand

Store Key (PK)

Figure 4-2: Store inventory periodic snapshot schema.

The date dimension table in this case study is identical to the table developed
in Chapter 3 for retail store sales. The product and store dimensions may be deco-
rated with additional attributes that would be useful for inventory analysis. For
example, the product dimension could be enhanced with columns such as the
minimum reorder quantity or the storage requirement, assuming they are constant
and discrete descriptors of each product. If the minimum reorder quantity varies for

114 Chapter 4

a product by store, it couldn’t be included as a product dimension attribute. In the
store dimension, you might include attributes to identify the frozen and refrigerated
storage square footages.

Even a schema as simple as Figure 4-2 can be very useful. Numerous insights can
be derived if inventory levels are measured frequently for many products in many
locations. However, this periodic snapshot fact table faces a serious challenge that
Chapter 3’s sales transaction fact table did not. The sales fact table was reasonably
sparse because you don't sell every product in every shopping cart. Inventory, on
the other hand, generates dense snapshot tables. Because the retailer strives to
avoid out-of-stock situations in which the product is not available, there may be
a row in the fact table for every product in every store every day. In that case you
would include the zero out-of-stock measurements as explicit rows. For the grocery
retailer with 60,000 products stocked in 100 stores, approximately 6 million rows
(60,000 products x 100 stores) would be inserted with each nightly fact table load.
However, because the row width is just 14 bytes, the fact table would grow by only
84 MB with each load.

Although the data volumes in this case are manageable, the denseness of some
periodic snapshots may mandate compromises. Perhaps the most obvious is to
reduce the snapshot frequencies over time. It may be acceptable to keep the last 60
days of inventory at the daily level and then revert to less granular weekly snap-
shots for historical data. In this way, instead of retaining 1,095 snapshots during
a 3-year period, the number could be reduced to 208 total snapshots; the 60 daily
and 148 weekly snapshots should be stored in two separate fact tables given their
unique periodicity.

Semi-Additive Facts

We stressed the importance of fact additivity in Chapter 3. In the inventory snap-
shot schema, the quantity on hand can be summarized across products or stores
and result in a valid total. Inventory levels, however, are not additive across dates
because they represent snapshots of a level or balance at one point in time. Because
inventory levels (and all forms of financial account balances) are additive across
some dimensions but not all, we refer to them as semi-additive facts.

The semi-additive nature of inventory balance facts is even more understand-
able if you think about your checking account balances. On Monday, presume
that you have $50 in your account. On Tuesday, the balance remains unchanged.
On Wednesday, you deposit another $50 so the balance is now $100. The account
has no further activity through the end of the week. On Friday, you can’t merely
add up the daily balances during the week and declare that the ending balance is
$400 (based on $50 + $50 + $100 + $100 + $100). The most useful way to combine

Inventory 115

account balances and inventory levels across dates is to average them (resulting in
an $80 average balance in the checking example). You are probably familiar with
your bank referring to the average daily balance on a monthly account summary.

NOTE All measures that record a static level (inventory levels, financial account
balances, and measures of intensity such as room temperatures) are inherently
non-additive across the date dimension and possibly other dimensions. In these
cases, the measure may be aggregated across dates by averaging over the number
of time periods.

Unfortunately, you cannot use the SQL AVG function to calculate the average
over time. This function averages over all the rows received by the query, not just
the number of dates. For example, if a query requested the average inventory for
a cluster of three products in four stores across seven dates (e.g., the average daily
inventory of a brand in a geographic region during a week), the SQL AVG function
would divide the summed inventory value by 84 (3 products x 4 stores x 7 dates).
Obviously, the correct answer is to divide the summed inventory value by 7, which
is the number of daily time periods.

OLAP products provide the capability to define aggregation rules within the
cube, so semi-additive measures like balances are less problematic if the data is
deployed via OLAP cubes.

Enhanced Inventory Facts

The simplistic view in the periodic inventory snapshot fact table enables you to see
a time series of inventory levels. For most inventory analysis, quantity on hand isn’t
enough. Quantity on hand needs to be used in conjunction with additional facts to
measure the velocity of inventory movement and develop other interesting metrics
such as the number of turns and number of days’ supply.

If quantity sold (or equivalently, quantity shipped for a warehouse location) was
added to each fact row, you could calculate the number of turns and days’ supply.
For daily inventory snapshots, the number of turns measured each day is calculated
as the quantity sold divided by the quantity on hand. For an extended time span,
such as a year, the number of turns is the total quantity sold divided by the daily
average quantity on hand. The number of days’ supply is a similar calculation. Over
a time span, the number of days’ supply is the final quantity on hand divided by
the average quantity sold.

In addition to the quantity sold, inventory analysts are also interested in the
extended value of the inventory at cost, as well as the value at the latest selling price.
The initial periodic snapshot is embellished in Figure 4-3.

116 Chapter 4

Date Dimension Store Inventory Snapshot Fact Product Dimension
Date Key (PK) — Date Key (FK) Product Key (PK)
Product Key (FK)
Store Key (FK)
Store Dimension Quantity on Hand
Store Key (PK) Quantity Sold
Inventory Dollar Value at Cost
Inventory Dollar Value at Latest Selling Price

Figure 4-3: Enhanced inventory periodic snapshot.

Notice that quantity on hand is semi-additive, but the other measures in the
enhanced periodic snapshot are all fully additive. The quantity sold amount has been
rolled up to the snapshot’s daily granularity. The valuation columns are extended,
additive amounts. In some periodic snapshot inventory schemas, it is useful to
store the beginning balance, the inventory change or delta, along with the ending
balance. In this scenario, the balances are again semi-additive, whereas the deltas
are fully additive across all the dimensions.

The periodic snapshot is the most common inventory schema. We'll briefly dis-
cuss two alternative perspectives that complement the inventory snapshot just
designed. For a change of pace, rather than describing these models in the context
of the retail store inventory, we’ll move up the value chain to discuss the inventory
located in the warehouses.

Inventory Transactions

A second way to model an inventory business process is to record every transac-
tion that affects inventory. Inventory transactions at the warehouse might include
the following:

Receive product.

Place product into inspection hold.

Release product from inspection hold.

Return product to vendor due to inspection failure.
Place product in bin.

Pick product from bin.

Package product for shipment.

Ship product to customer.

Receive product from customer.

Return product to inventory from customer return.
Remove product from inventory.

Inventory 117

Each inventory transaction identifies the date, product, warehouse, vendor, trans-
action type, and in most cases, a single amount representing the inventory quantity
impact caused by the transaction. Assuming the granularity of the fact table is one
row per inventory transaction, the resulting schema is illustrated in Figure 4-4.

Warehouse Inventory Transaction Fact

| Date Dimension F—{ Date Key (FK)
Product Key (FK) — Product Dimension |
Warehouse Dimension / Warehouse Key (FK)
Warehouse Key (PK) Inventory Transaction Type Key (FK) Inventory Transaction Type Dimension
Warehouse Number (NK) Inventory Transaction Number (DD) Inventory Transaction Type Key (PK)
Warehouse Name Inventory Transaction Dollar Amount Inventory Transaction Type Description
Warehouse Address Inventory Transaction Type Group
Warehouse City

Warehouse City-State
Warehouse State

Warehouse ZIP

Warehouse Zone

Warehouse Total Square Footage

Figure 4-4: Warehouse inventory transaction model.

Even though the transaction fact table is simple, it contains detailed information
that mirrors individual inventory manipulations. The transaction fact table is use-
ful for measuring the frequency and timing of specific transaction types to answer
questions that couldn’t be answered by the less granular periodic snapshot.

Even so, it is impractical to use the transaction fact table as the sole basis for ana-
lyzing inventory performance. Although it is theoretically possible to reconstruct the
exact inventory position at any moment in time by rolling all possible transactions
forward from a known inventory position, it is too cumbersome and impractical
for broad analytic questions that span dates, products, warehouses, or vendors.

NOTE Remember there’s more to life than transactions alone. Some form of a
snapshot table to give a more cumulative view of a process often complements
a transaction fact table.

Before leaving the transaction fact table, our example presumes each type of
transaction impacting inventory levels positively or negatively has consistent dimen-
sionality: date, product, warehouse, vendor, and transaction type. We recognize
some transaction types may have varied dimensionality in the real world. For
example, a shipper may be associated with the warehouse receipts and shipments;
customer information is likely associated with shipments and customer returns. If the

118 Chapter 4

transactions’ dimensionality varies by event, then a series of related fact tables should
be designed rather than capturing all inventory transactions in a single fact table.

NOTE If performance measurements have different natural granularity or
dimensionality, they likely result from separate processes that should be modeled
as separate fact tables.

Inventory Accumulating Snapshot

The final inventory model is the accumulating snapshot. Accumulating snapshot
fact tables are used for processes that have a definite beginning, definite end, and
identifiable milestones in between. In this inventory model, one row is placed in the
fact table when a particular product is received at the warehouse. The disposition
of the product is tracked on this single fact row until it leaves the warehouse. In
this example, the accumulating snapshot model is only possible if you can reliably
distinguish products received in one shipment from those received at a later time;
it is also appropriate if you track product movement by product serial number or
lot number.

Now assume that inventory levels for a product lot captured a series of well-
defined events or milestones as it moves through the warehouse, such as receiving,
inspection, bin placement, and shipping. As illustrated in Figure 4-5, the inventory
accumulating snapshot fact table with its multitude of dates and facts looks quite
different from the transaction or periodic snapshot schemas.

Inventory Receipt Accumulating Fact

| Date Received Dimension I\ Product Lot Receipt Number (DD)
Date Received Key (FK)

[Date Inspected Dimension |——— Date Inspected Key (FK)

Date Bin Placement Key (FK)

| Date Bin Placement Dimension :7DateInitiaIShipmentKey(FK)

Date Last Shipment Key (FK)

| Date Initial Shipment Dimension Product Key (FK) —| Product Dimension |
Warehouse Key (FK)

| Date Last Shipment Dimension Vendor Key (FK) Warehouse Dimension |
Quantity Received \
Quantity Inspected Vendor Dimension |

Quantity Returned to Vendor
Quantity Placed in Bin

Quantity Shipped to Customer
Quantity Returned by Customer
Quantity Returned to Inventory
Quantity Damaged

Receipt to Inspected Lag
Receipt to Bin Placement Lag
Receipt to Initial Shipment Lag
Initial to Last Shipment Lag

Figure 4-5: Warehouse inventory accumulating snapshot.

Inventory 119

The accumulating snapshot fact table provides an updated status of the lot as it
moves through standard milestones represented by multiple date-valued foreign
keys. Each accumulating snapshot fact table row is updated repeatedly until the
products received in a lot are completely depleted from the warehouse, as shown
in Figure 4-6.

Fact row inserted when lot received:

Lot Receipt |Date Received |Date Inspected |Date Bin Product |Quantity |Receiptto Receipt to Bin

Number Key Key Placement Key |Key Received |Inspected Lag |Placement Lag
101 20130101 0 0 1 100

Fact row updated when lot inspected:

Lot Receipt |Date Received |Date Inspected |Date Bin Product |Quantity |Receiptto Receipt to Bin

Number Key Key Placement Key |Key Received |Inspected Lag |Placement Lag
101 20130101 20130103 0 1 100 2

Fact row updated when lot placed in bin:

Lot Receipt |Date Received |Date Inspected |Date Bin Product |Quantity |Receiptto Receipt to Bin

Number Key Key Placement Key |Key Received |Inspected Lag |Placement Lag
101 20130101 20130103 20130104 1 100 2 3

Figure 4-6: Evolution of an accumulating snapshot fact row.

Fact Table Types

There are just three fundamental types of fact tables: transaction, periodic snapshot,
and accumulating snapshot. Amazingly, this simple pattern holds true regardless
of the industry. All three types serve a useful purpose; you often need two comple-
mentary fact tables to get a complete picture of the business, yet the administration
and rhythm of the three fact tables are quite different. Figure 4-7 compares and
contrasts the variations.

Transaction Periodic Snapshot Accumulating Snapshot

Discrete transaction point Recurring snapshots at Indeterminate time span for

Periodicity

in time

regular, predictable intervals

evolving pipeline/workflow

Grain

1 row per transaction or
transaction line

1 row per snapshot period
plus other dimensions

1 row per pipeline
occurrence

Date dimension(s)

Transaction date

Snapshot date

Multiple dates for pipeline’s
key milestones

Facts

Transaction performance

Cumulative performance
for time interval

Performance for pipeline
occurrence

Fact table sparsity

Sparse or dense, depending
on activity

Predictably dense

Sparse or dense, depending
on pipeline occurrence

Fact table updates

No updates, unless error
correction

No updates, unless error
correction

Updated whenever pipeline
activity occurs

Figure 4-7: Fact table type comparisons.

120 Chapter 4

Transaction Fact Tables

The most fundamental view of the business’s operations is at the individual transac-
tion or transaction line level. These fact tables represent an event that occurred at
an instantaneous point in time. A row exists in the fact table for a given customer
or product only if a transaction event occurred. Conversely, a given customer or
product likely is linked to multiple rows in the fact table because hopefully the
customer or product is involved in more than one transaction.

Transaction data fits easily into a dimensional framework. Atomic transaction
data is the most naturally dimensional data, enabling you to analyze behavior in
extreme detail. After a transaction has been posted in the fact table, you typically
don’t revisit it.

Having made a solid case for the charm of transaction detail, you may be think-
ing that all you need is a big, fast server to handle the gory transaction minutiae,
and your job is over. Unfortunately, even with transaction level data, there are busi-
ness questions that are impractical to answer using only these details. As indicated
earlier, you cannot survive on transactions alone.

Periodic Snapshot Fact Tables

Periodic snapshots are needed to see the cumulative performance of the business
at regular, predictable time intervals. Unlike the transaction fact table where a row
is loaded for each event occurrence, with the periodic snapshot, you take a picture
(hence the snapshot terminology) of the activity at the end of a day, week, or month,
then another picture at the end of the next period, and so on. The periodic snap-
shots are stacked consecutively into the fact table. The periodic snapshot fact table
often is the only place to easily retrieve a regular, predictable view of longitudinal
performance trends.

When transactions equate to little pieces of revenue, you can move easily from
individual transactions to a daily snapshot merely by adding up the transactions.
In this situation, the periodic snapshot represents an aggregation of the transac-
tional activity that occurred during a time period; you would build the snapshot
only if needed for performance reasons. The design of the snapshot table is closely
related to the design of its companion transaction table in this case. The fact tables
share many dimension tables; the snapshot usually has fewer dimensions overall.
Conversely, there are usually more facts in a summarized periodic snapshot table
than in a transactional table because any activity that happens during the period
is fair game for a metric in a periodic snapshot.

In many businesses, however, transaction details are not easily summarized to
present management performance metrics. As you saw in this inventory case study,

Inventory 121

crawling through the transactions would be extremely time-consuming, plus the
logic required to interpret the effect of different kinds of transactions on inventory
levels could be horrendously complicated, presuming you even have access to the
required historical data. The periodic snapshot again comes to the rescue to provide
management with a quick, flexible view of inventory levels. Hopefully, the data for
this snapshot schema is sourced directly from an operational system that handles
these complex calculations. If not, the ETL system must also implement this com-
plex logic to correctly interpret the impact of each transaction type.

Accumulating Snapshot Fact Tables

Last, but not least, the third type of fact table is the accumulating snapshot. Although
perhaps not as common as the other two fact table types, accumulating snapshots
can be very insightful. Accumulating snapshots represent processes that have a
definite beginning and definite end together with a standard set of intermediate
process steps. Accumulating snapshots are most appropriate when business users
want to perform workflow or pipeline analysis.

Accumulating snapshots always have multiple date foreign keys, representing the
predictable major events or process milestones; sometimes there’s an additional date
column that indicates when the snapshot row was last updated. As we’ll discuss in
Chapter 6: Order Management, these dates are each handled by a role-playing date
dimension. Because most of these dates are not known when the fact row is first
loaded, a default surrogate date key is used for the undefined dates.

Lags Between Milestones and Milestone Counts

Because accumulating snapshots often represent the efficiency and elapsed time of
a workflow or pipeline, the fact table typically contains metrics representing the
durations or lags between key milestones. It would be difficult to answer duration
questions using a transaction fact table because you would need to correlate rows
to calculate time lapses. Sometimes the lag metrics are simply the raw difference
between the milestone dates or date/time stamps. In other situations, the lag calcula-
tion is made more complicated by taking workdays and holidays into consideration.
Accumulating snapshot fact tables sometimes include milestone completion coun-
ters, valued as either O or 1. Finally, accumulating snapshots often have a foreign
key to a status dimension, which is updated to reflect the pipeline’s latest status.

Accumulating Snapshot Updates and OLAP Cubes

In sharp contrast to the other fact table types, you purposely revisit accumulating
snapshot fact table rows to update them. Unlike the periodic snapshot where the
prior snapshots are preserved, the accumulating snapshot merely reflects the most

122 Chapter 4

current status and metrics. Accumulating snapshots do not attempt to accommodate
complex scenarios that occur infrequently. The analysis of these outliers can always
be done with the transaction fact table.

It is worth noting that accumulating snapshots are typically problematic for
OLAP cubes. Because updates to an accumulating snapshot force both facts and
dimension foreign keys to change, much of the cube would need to be reprocessed
with updates to these snapshots, unless the fact row is only loaded once the pipeline
occurrence is complete.

Complementary Fact Table Types

Sometimes accumulating and periodic snapshots work in conjunction with one
another, such as when you incrementally build the monthly snapshot by adding the
effect of each day’s transactions to a rolling accumulating snapshot while also storing
36 months of historical data in a periodic snapshot. Ideally, when the last day of the
month has been reached, the accumulating snapshot simply becomes the new regular
month in the time series, and a new accumulating snapshot is started the next day.

Transactions and snapshots are the yin and yang of dimensional designs. Used
together, companion transaction and snapshot fact tables provide a complete view
of the business. Both are needed because there is often no simple way to combine
these two contrasting perspectives in a single fact table. Although there is some
theoretical data redundancy between transaction and snapshot tables, you don'’t
object to such redundancy because as DW/BI publishers, your mission is to publish
data so that the organization can effectively analyze it. These separate types of fact
tables each provide different vantage points on the same story. Amazingly, these
three types of fact tables turn out to be all the fact table types needed for the use
cases described in this book.

Value Chain Integration

Now that we’ve completed the design of three inventory models, let’s revisit our ear-
lier discussion about the retailer’s value chain. Both business and IT organizations
are typically interested in value chain integration. Business management needs to
look across the business’s processes to better evaluate performance. For example,
numerous DW/BI projects have focused on better understanding customer behavior
from an end-to-end perspective. Obviously, this requires the ability to consistently
look at customer information across processes, such as quotes, orders, invoicing,
payments, and customer service. Similarly, organizations want to analyze their
products across processes, or their employees, students, vendors, and so on.

Inventory 123

IT managers recognize integration is needed to deliver on the promises of data
warehousing and business intelligence. Many consider it their fiduciary respon-
sibility to manage the organization’s information assets. They know they’re not
fulfilling their responsibilities if they allow standalone, nonintegrated databases
to proliferate. In addition to addressing the business’s needs, IT also benefits from
integration because it allows the organization to better leverage scarce resources
and gain efficiencies through the use of reusable components.

Fortunately, the senior managers who typically are most interested in integration
also have the necessary organizational influence and economic willpower to make
it happen. If they don't place a high value on integration, you face a much more
serious organizational challenge, or put more bluntly, your integration project will
probably fail. It shouldn’t be the sole responsibility of the DW/BI manager to garner
organizational consensus for integration across the value chain. The political sup-
port of senior management is important; it takes the DW/BI manager off the hook
and places the burden on senior leadership’s shoulders where it belongs.

In Chapters 3 and 4, we modeled data from several processes of the retailer’s value
chain. Although separate fact tables in separate dimensional schemas represent the
data from each process, the models share several common business dimensions:
date, product, and store. We've logically represented this dimension sharing in
Figure 4-8. Using shared, common dimensions is absolutely critical to designing
dimensional models that can be integrated.

Retail Sales
Transaction Facts

| Store Dimension Promotion Dimension |

Retail Inventory

Snapshot Facts Product Dimension |

| Date Dimension

Ol C) Warehouse Dimension |

Transaction Facts

Figure 4-8: Sharing dimensions among business processes.

Enterprise Data Warehouse Bus Architecture

Obviously, building the enterprise’s DW/BI system in one galactic effort is too daunt-
ing, yet building it as isolated pieces defeats the overriding goal of consistency. For
long-term DW/BI success, you need to use an architected, incremental approach to
build the enterprise’s warehouse. The approach we advocate is the enterprise data
warehouse bus architecture.

124 Chapter 4

Understanding the Bus Architecture

Contrary to popular belief, the word bus is not shorthand for business; it’s an old
term from the electrical power industry that is now used in the computer industry.
A bus is a common structure to which everything connects and from which every-
thing derives power. The bus in a computer is a standard interface specification
that enables you to plug in a disk drive, DVD, or any number of other specialized
cards or devices. Because of the computer’s bus standard, these peripheral devices
work together and usefully coexist, even though they were manufactured at differ-
ent times by different vendors.

NOTE By defining a standard bus interface for the DW/BI environment, separate
dimensional models can be implemented by different groups at different times.
The separate business process subject areas plug together and usefully coexist if
they adhere to the standard.

If you refer back to the value chain diagram in Figure 4-1, you can envision many
business processes plugging into the enterprise data warehouse bus, as illustrated
in Figure 4-9. Ultimately, all the processes of an organization’s value chain create

a family of dimensional models that share a comprehensive set of common, con-
formed dimensions.

LR

¥ e v\

/ Store Sales
/PFET NN

Date Product Store Promotion Warehouse Vendor Shipper

Figure 4-9: Enterprise data warehouse bus with shared dimensions.

The enterprise data warehouse bus architecture provides a rational approach to
decomposing the enterprise DW/BI planning task. The master suite of standard-
ized dimensions and facts has a uniform interpretation across the enterprise. This
establishes the data architecture framework. You can then tackle the implementation
of separate process-centric dimensional models, with each implementation closely

Inventory 125

adhering to the architecture. As the separate dimensional models become available,
they fit together like the pieces of a puzzle. At some point, enough dimensional models
exist to make good on the promise of an integrated enterprise DW/BI environment.

The bus architecture enables DW/BI managers to get the best of both worlds.
They have an architectural framework guiding the overall design, but the problem
has been divided into bite-sized business process chunks that can be implemented
in realistic time frames. Separate development teams follow the architecture while
working fairly independently and asynchronously.

The bus architecture is independent of technology and database platforms. All
flavors of relational and OLAP-based dimensional models can be full participants
in the enterprise data warehouse bus if they are designed around conformed dimen-
sions and facts. DW/BI systems inevitably consist of separate machines with different
operating systems and database management systems. Designed coherently, they
share a common architecture of conformed dimensions and facts, allowing them

to be fused into an integrated whole.

Enterprise Data Warehouse Bus Matrix

We recommend using an enterprise data warehouse bus matrix to document and com-
municate the bus architecture, as illustrated in Figure 4-10. Others have renamed the
bus matrix, such as the conformance or event matrix, but these are merely synonyms
for this fundamental Kimball concept first introduced in the 1990s.

COMMON DIMENSIONS

./ £ S/s/ &
e /5/5/s/5/5/ %8
BUSINESS PROCESSES S /&/s /8|8 /| &
Issue Purchase Orders X X X
Receive Warehouse Deliveries X X X X
Warehouse Inventory X X X
Receive Store Deliveries X X X X X
Store Inventory X X X
Retail Sales X X X X X X
Retail Sales Forecast X X X
Retail Promotion Tracking X X X X
Customer Returns X X X X X X
Returns to Vendor X X X X
Frequent Shopper Sign-Ups X X X X

Figure 4-10: Sample enterprise data warehouse bus matrix for a retailer.

126 Chapter 4

Working in a tabular fashion, the organization’s business processes are repre-
sented as matrix rows. It is important to remember you are identifying business
processes, not the organization’s business departments. The matrix rows translate
into dimensional models representing the organization’s primary activities and
events, which are often recognizable by their operational source. When it’s time to
tackle a DW/BI development project, start with a single business process matrix row
because that minimizes the risk of signing up for an overly ambitious implementa-
tion. Most implementation risk comes from biting off too much ETL system design
and development. Focusing on the results of a single process, often captured by a
single underlying source system, reduces the ETL development risk.

After individual business processes are enumerated, you sometimes identify more
complex consolidated processes. Although dimensional models that cross processes
can be immensely beneficial in terms of both query performance and ease of use,
they are typically more difficult to implement because the ETL effort grows with
each additional major source integrated into a single dimensional model. It is pru-
dent to focus on the individual processes as building blocks before tackling the task
of consolidating. Profitability is a classic example of a consolidated process in which
separate revenue and cost factors are combined from different processes to provide a
complete view of profitability. Although a granular profitability dimensional model
is exciting, it is definitely not the first dimensional model you should attempt to
implement; you could easily drown while trying to wrangle all the revenue and
cost components.

The columns of the bus matrix represent the common dimensions used across
the enterprise. It is often helpful to create a list of core dimensions before filling
in the matrix to assess whether a given dimension should be associated with a busi-
ness process. The number of bus matrix rows and columns varies by organization.
For many, the matrix is surprisingly square with approximately 25 to 50 rows and
a comparable number of columns. In other industries, like insurance, there tend to
be more columns than rows.

After the core processes and dimensions are identified, you shade or “X” the
matrix cells to indicate which columns are related to each row. Presto! You can
immediately see the logical relationships and interplay between the organization’s
conformed dimensions and key business processes.

Multiple Matrix Uses

Creating the enterprise data warehouse bus matrix is one of the most important
DWY/BI implementation deliverables. It is a hybrid resource that serves multiple
purposes, including architecture planning, database design, data governance
coordination, project estimating, and organizational communication.

Inventory 127

Although it is relatively straightforward to lay out the rows and columns, the
enterprise bus matrix defines the overall data architecture for the DW/BI system.
The matrix delivers the big picture perspective, regardless of database or technol-
ogy preferences.

The matrix’s columns address the demands of master data management and
data integration head-on. As core dimensions participating in multiple dimensional
models are defined by folks with data governance responsibilities and built by the
DW/BI team, you can envision their use across processes rather than designing in
a vacuum based on the needs of a single process, or even worse, a single depart-
ment. Shared dimensions supply potent integration glue, allowing the business to
drill across processes.

Each business process-centric implementation project incrementally builds out
the overall architecture. Multiple development teams can work on components
of the matrix independently and asynchronously, with confidence they'll fit together.
Project managers can look across the process rows to see the dimensionality of
each dimensional model at a glance. This vantage point is useful as they’re gauging
the magnitude of the project’s effort. A project focused on a business process with
fewer dimensions usually requires less effort, especially if the politically charged
dimensions are already sitting on the shelf.

The matrix enables you to communicate effectively within and across data
governance and DW/BI teams. Even more important, you can use the matrix to
communicate upward and outward throughout the organization. The matrix is a
succinct deliverable that visually conveys the master plan. IT management needs
to understand this perspective to coordinate across project teams and resist the
organizational urge to deploy more departmental solutions quickly. IT management
must also ensure that distributed DW/BI development teams are committed to the
bus architecture. Business management needs to also appreciate the holistic plan;
you want them to understand the staging of the DW/BI rollout by business process.
In addition, the matrix illustrates the importance of identifying experts from the
business to serve as data governance leaders for the common dimensions. It is a
tribute to its simplicity that the matrix can be used effectively to communicate
with developers, architects, modelers, and project managers, as well as senior IT
and business management.

Opportunity/Stakeholder Matrix

You can draft a different matrix that leverages the same business process rows,
but replaces the dimension columns with business functions, such as merchandis-
ing, marketing, store operations, and finance. Based on each function’s requirements,
the matrix cells are shaded to indicate which business functions are interested in

128 Chapter 4

which business processes (and projects), as illustrated in Figure 4-11’s opportunity/
stakeholder matrix variation. It also identifies which groups need to be invited to
the detailed requirements, dimensional modeling, and BI application specification

parties after a process-centric row is queued up as a project.

STAKEHOLDERS

Ma'keting

BUSINESS PROCESSES

Issue Purchase Orders
Receive Warehouse Deliveries
Warehouse Inventory
Receive Store Deliveries
Store Inventory

Retail Sales

Retail Sales Forecast

Retail Promotion Tracking
Customer Returns

Returns to Vendor

Frequent Shopper Sign-Ups X

X[X< |X|Xx

><><><><><><><><><><Mercha”di
Sil'lg

><><><><><><><><><><L0gisr
Ics

><><><><><><><><><><><star80pe
fatia,,
S

apg,
e

Figure 4-11: Opportunity/stakeholder matrix.

Common Bus Matrix Mistakes
When drafting a bus matrix, people sometimes struggle with the level of detail
expressed by each row, resulting in the following missteps:

Departmental or overly encompassing rows. The matrix rows shouldn’t cor-
respond to the boxes on a corporate organization chart representing functional
groups. Some departments may be responsible or acutely interested in a single
business process, but the matrix rows shouldn’t look like a list of the CEO’s
direct reports.

Report-centric or too narrowly defined rows. At the opposite extreme, the
bus matrix shouldn’t resemble a laundry list of requested reports. A single
business process supports numerous analyses; the matrix row should refer-
ence the business process, not the derivative reports or analytics.

When defining the matrix columns, architects naturally fall into the similar traps

of defining columns that are either too broad or too narrow:

Inventory 129

Overly generalized columns. A “person” column on the bus matrix may refer
to a wide variety of people, from internal employees to external suppliers
and customer contacts. Because there’s virtually zero overlap between these
populations, it adds confusion to lump them into a single, generic dimension.
Similarly, it’s not beneficial to put internal and external addresses referring
to corporate facilities, employee addresses, and customer sites into a generic
location column in the matrix.

Separate columns for each level of a hierarchy. The columns of the bus
matrix should refer to dimensions at their most granular level. Some
business process rows may require an aggregated version of the detailed
dimension, such as inventory snapshot metrics at the weekly level. Rather
than creating separate matrix columns for each level of the calendar hierarchy,
use a single column for dates. To express levels of detail above a daily grain,
you can denote the granularity within the matrix cell; alternatively, you can
subdivide the date column to indicate the hierarchical level associated with
each business process row. It’s important to retain the overarching identifica-
tion of common dimensions deployed at different levels of granularity. Some
industry pundits advocate matrices that treat every dimension table attribute
as a separate, independent column; this defeats the concept of dimensions
and results in a completely unruly matrix.

Retrofitting Existing Models to a Bus Matrix

It is unacceptable to build separate dimensional models that ignore a framework
tying them together. Isolated, independent dimensional models are worse than
simply a lost opportunity for analysis. They deliver access to irreconcilable views
of the organization and further enshrine the reports that cannot be compared with
one another. Independent dimensional models become legacy implementations
in their own right; by their existence, they block the development of a coherent
DW/BI environment.

So what happens if you're not starting with a blank slate? Perhaps several dimen-
sional models have been constructed without regard to an architecture using
conformed dimensions. Can you rescue your stovepipes and convert them to the
bus architecture? To answer this question, you should start first with an honest
appraisal of your existing non-integrated dimensional structures. This typically
entails meetings with the separate teams (including the clandestine pseudo IT
teams within business organizations) to determine the gap between the current
environment and the organization’s architected goal. When the gap is understood,
you need to develop an incremental plan to convert the standalone dimensional
models to the enterprise architecture. The plan needs to be internally sold. Senior
IT and business management must understand the current state of data chaos, the

130 Chapter 4

risks of doing nothing, and the benefits of moving forward according to your game
plan. Management also needs to appreciate that the conversion will require a sig-
nificant commitment of support, resources, and funding.

If an existing dimensional model is based on a sound dimensional design, per-
haps you can map an existing dimension to a standardized version. The original
dimension table would be rebuilt using a cross-reference map. Likewise, the fact
table would need to be reprocessed to replace the original dimension keys with the
conformed dimension keys. Of course, if the original and conformed dimension
tables contain different attributes, rework of the preexisting BI applications and
queries is inevitable.

More typically, existing dimensional models are riddled with dimensional model-
ing errors beyond the lack of adherence to standardized dimensions. In some cases,
the stovepipe dimensional model has outlived its useful life. Isolated dimensional
models often are built for a specific functional area. When others try to leverage
the data, they typically discover that the dimensional model was implemented at
an inappropriate level of granularity and is missing key dimensionality. The effort
required to retrofit these dimensional models into the enterprise DW/BI architec-
ture may exceed the effort to start over from scratch. As difficult as it is to admit,
stovepipe dimensional models often have to be shut down and rebuilt in the proper
bus architecture framework.

Conformed Dimensions

Now that you understand the importance of the enterprise bus architecture, let’s fur-
ther explore the standardized conformed dimensions that serve as the cornerstone
of the bus because they're shared across business process fact tables. Conformed
dimensions go by many other aliases: common dimensions, master dimensions, ref-
erence dimensions, and shared dimensions. Conformed dimensions should be built
once in the ETL system and then replicated either logically or physically throughout
the enterprise DW/BI environment. When built, it's extremely important that the
DWY/BI development teams take the pledge to use these dimensions. It’s a policy
decision that is critical to making the enterprise DW/BI system function; their usage
should be mandated by the organization’s CIO.

Drilling Across Fact Tables

In addition to consistency and reusability, conformed dimensions enable you to com-
bine performance measurements from different business processes in a single report,
as illustrated in Figure 4-12. You can use multipass SQL to query each dimensional

Inventory 131

model separately and then outer-join the query results based on a common dimen-
sion attribute, such as Figure 4-12’s product name. The full outer-join ensures all
rows are included in the combined report, even if they only appear in one set of
query results. This linkage, often referred to as drill across, is straightforward if the
dimension table attribute values are identical.

Product Description Open Orders Qty Inventory Qty Sales Qty
Baked Well Sourdough 1,201 935 1,042
Fluffy Light Sliced White 1,472 801 922
Fluffy Sliced Whole Wheat 846 513 368

Figure 4-12: Drilling across fact tables with conformed dimension attributes.

Drilling across is supported by many BI products and platforms. Their implemen-
tations differ on whether the results are joined in temporary tables, the application
server, or the report. The vendors also use different terms to describe this technique,
including multipass, multi-select, multi-fact, or stitch queries. Because metrics from
different fact tables are brought together with a drill-across query, often any cross-
fact calculations must be done in the BI application after the separate conformed
results have been returned.

Conformed dimensions come in several different flavors, as described in the
following sections.

Identical Conformed Dimensions

At the most basic level, conformed dimensions mean the same thing with every pos-
sible fact table to which they are joined. The date dimension table connected to the
sales facts is identical to the date dimension table connected to the inventory facts.
Identical conformed dimensions have consistent dimension keys, attribute column
names, attribute definitions, and attribute values (which translate into consistent
report labels and groupings). Dimension attributes don’t conform if they’re called
Month in one dimension and Month Name in another; likewise, they don’t conform
if the attribute value is “July” in one dimension and “JULY” in another. Identical
conformed dimensions in two dimensional models may be the same physical table
within the database. However, given the typical complexity of the DW/BI system’s
technical environment with multiple database platforms, it is more likely that the
dimension is built once in the ETL system and then duplicated synchronously out-
ward to each dimensional model. In either case, the conformed date dimensions in
both dimensional models have the same number of rows, same key values, same
attribute labels, same attribute data definitions, and same attribute values. Attribute
column names should be uniquely labeled across dimensions.

132 Chapter 4

Most conformed dimensions are defined naturally at the most granular level
possible. The product dimension’s grain will be the individual product; the date
dimension’s grain will be the individual day. However, sometimes dimensions at the
same level of granularity do not fully conform. For example, there might be product
and store attributes needed for inventory analysis, but they aren’t appropriate for
analyzing retail sales data. The dimension tables still conform if the keys and com-
mon columns are identical, but the supplemental attributes used by the inventory
schema are not conformed. It is physically impossible to drill across processes using
these add-on attributes.

Shrunken Rollup Conformed Dimension
with Attribute Subset

Dimensions also conform when they contain a subset of attributes from a more
granular dimension. Shrunken rollup dimensions are required when a fact table
captures performance metrics at a higher level of granularity than the atomic
base dimension. This would be the case if you had a weekly inventory snapshot in
addition to the daily snapshot. In other situations, facts are generated by another
business process at a higher level of granularity. For example, the retail sales pro-
cess captures data at the atomic product level, whereas forecasting generates data
at the brand level. You couldn’t share a single product dimension table across the
two business process schemas because the granularity is different. The product
and brand dimensions still conform if the brand table attributes are a strict subset
of the atomic product table’s attributes. Attributes that are common to both the
detailed and rolled-up dimension tables, such as the brand and category descrip-
tions, should be labeled, defined, and identically valued in both tables, as illustrated
in Figure 4-13. However, the primary keys of the detailed and rollup dimension
tables are separate.

NOTE Shrunken rollup dimensions conform to the base atomic dimension if
the attributes are a strict subset of the atomic dimension’s attributes.

Shrunken Conformed Dimension with Row Subset

Another case of conformed dimension subsetting occurs when two dimensions are
at the same level of detail, but one represents only a subset of rows. For example, a
corporate product dimension contains rows for the full portfolio of products across
multiple disparate lines of business, as illustrated in Figure 4-14. Analysts in the

Inventory 133

separate businesses may want to view only their subset of the corporate dimension,
restricted to the product rows for their business. By using a subset of rows, they
aren’t encumbered with the corporation’s entire product set. Of course, the fact table
joined to this subsetted dimension must be limited to the same subset of products.
If a user attempts to use a shrunken subset dimension while accessing a fact table
consisting of the complete product set, they may encounter unexpected query results
because referential integrity would be violated. You need to be cognizant of the
potential opportunity for user confusion or error with dimension row subsetting.
We will further elaborate on dimension subsets when we discuss supertype and
subtype dimensions in Chapter 10: Financial Services.

Product Dimension
Product Key (PK)
Product Description Brand Dimension

SKUN ey) WT\
fand Description

Brand Description

Subcategory Description Subcategory Description
Category Description Category Description

artment Description ~Qgpartment Description A
Packag on
Package Size
Fat Content Description
Diet Type Description
Weight
Weight Units of Measure

Date Dimension
Date Key (PK)
Date

Full Date Description
Day of Week Month Dimension

alendar Month Name endar Month Name

Calendar Month Number Calendar Month Number
Calendar YYYY-MM Calendar YYYY-MM

dar Year [Salendar Year
Fiscal Week
Fiscal Month

Figure 4-13: Conforming shrunken rollup dimensions.

134 Chapter 4

Corporate
Product Dimension

Appliance
Products

Apparel
Products

Drilling across requires common conformed attributes.

Figure 4-14: Conforming dimension subsets at the same granularity.

Conformed date and month dimensions are a unique example of both row
and column dimension subsetting. Obviously, you can’t simply use the same date
dimension table for daily and monthly fact tables because of the difference in rollup
granularity. However, the month dimension may consist of the month-end daily
date table rows with the exclusion of all columns that don’t apply at the monthly
granularity, such as the weekday/weekend indicator, week ending date, holiday
indicator, day number within year, and others. Sometimes a month-end indicator on
the daily date dimension is used to facilitate creation of this month dimension table.

Shrunken Conformed Dimensions on the Bus Matrix

The bus matrix identifies the reuse of common dimensions across business processes.
Typically, the shaded cells of the matrix indicate that the atomic dimension is
associated with a given process. When shrunken rollup or subset dimensions are
involved, you want to reinforce their conformance with the atomic dimensions.
Therefore, you don’t want to create a new, unrelated column on the bus matrix.
Instead, there are two viable approaches to represent the shrunken dimensions within
the matrix, as illustrated in Figure 4-15:

Mark the cell for the atomic dimension, but then textually document the
rollup or row subset granularity within the cell.

Subdivide the dimension column to indicate the common rollup or subset
granularities, such as day and month if processes collect data at both of these
grains.

Inventory 135

Date
Date Day Month
Issue Purchase Orders X X
Receive Deliveries X OR X
Inventory X X
Retail Sales X X
Retail Sales Forecast M oXnth X

Figure 4-15: Alternatives for identifying shrunken dimensions on the bus matrix.

Limited Conformity

Now that we've preached about the importance of conformed dimensions, we’ll
discuss the situation in which it may not be realistic or necessary to establish con-
formed dimensions for the organization. If a conglomerate has subsidiaries spanning
widely varied industries, there may be little point in trying to integrate. If each line
of business has unique customers and unique products and there’s no interest in
cross-selling across lines, it may not make sense to attempt an enterprise archi-
tecture because there likely isn’t much perceived business value. The willingness
to seek a common definition for product, customer, or other core dimensions is a
major litmus test for an organization theoretically intent on building an enterprise
DW/BI system. If the organization is unwilling to agree on common definitions, the
organization shouldn’t attempt to build an enterprise DW/BI environment. It would
be better to build separate, self-contained data warehouses for each subsidiary. But
then don’'t complain when someone asks for “enterprise performance” without going
through this logic.

Although organizations may find it difficult to combine data across disparate lines
of business, some degree of integration is typically an ultimate goal. Rather than
throwing your hands in the air and declaring it can’t possibly be done, you should
start down the path toward conformity. Perhaps there are a handful of attributes that
can be conformed across lines of business. Even if it is merely a product description,
category, and line of business attribute that is common to all businesses, this least-
common-denominator approach is still a step in the right direction. You don’t need
to get everyone to agree on everything related to a dimension before proceeding.

Importance of Data Governance and Stewardship

We've touted the importance of conformed dimensions, but we also need to acknowl-
edge a key challenge: reaching enterprise consensus on dimension attribute names

136 Chapter 4

and contents (and the handling of content changes which we’ll discuss in Chapter 5:
Procurement). In many organizations, business rules and data definitions have
traditionally been established departmentally. The consequences of this commonly
encountered lack of data governance and control are the ubiquitous departmental
data silos that perpetuate similar but slightly different versions of the truth. Business
and IT management need to recognize the importance of addressing this shortfall
if you stand any chance of bringing order to the chaos; if management is reluctant
to drive change, the project will never achieve its goals.

Once the data governance issues and opportunities are acknowledged by senior
leadership, resources need to be identified to spearhead the effort. IT is often tempted
to try leading the charge. They are frustrated by the isolated projects re-creating
data around the organization, consuming countless IT and outside resources while
delivering inconsistent solutions that ultimately just increase the complexity of
the organization’s data architecture at significant cost. Although IT can facilitate
the definition of conformed dimensions, it is seldom successful as the sole driver,
even if it’s a temporary assignment. IT simply lacks the organizational authority to
make things happen.

Business-Driven Governance

To boost the likelihood of business acceptance, subject matter experts from the
business need to lead the initiative. Leading a cross-organizational governance
program is not for the faint of heart. The governance resources identified by busi-
ness leadership should have the following characteristics:

Respect from the organization

Broad knowledge of the enterprise’s operations

Ability to balance organizational needs against departmental requirements
Gravitas and authority to challenge the status quo and enforce policies
Strong communication skills

Politically savvy negotiation and consensus building skills

Clearly, not everyone is cut out for the job! Typically those tapped to spearhead
the governance program are highly valued and in demand. It takes the right skills,
experience, and confidence to rationalize diverse business perspectives and drive
the design of common reference data, together with the necessary organizational
compromises. Over the years, some have criticized conformed dimensions as being
too hard. Yes, it’s difficult to get people in different corners of the business to agree
on common attribute names, definitions, and values, but that’s the crux of unified,
integrated data. If everyone demands their own labels and business rules, there’s
no chance of delivering on the promises made to establish a single version of the

Inventory 137

truth. The data governance program is critical in facilitating a culture shift away
from the typical siloed environment in which each department retains control of
their data and analytics to one where information is shared and leveraged across
the organization.

Governance Objectives

One of the key objectives of the data governance function is to reach agreement on
data definitions, labels, and domain values so that everyone is speaking the same
language. Otherwise, the same words may describe different things; different words
may describe the same thing; and the same value may have different meaning.
Establishing common master data is often a politically charged issue; the chal-
lenges are cultural and geopolitical rather than technical. Defining a foundation of
master descriptive conformed dimensions requires effort. But after it’s agreed upon,
subsequent DW/BI efforts can leverage the work, both ensuring consistency and
reducing the implementation’s delivery cycle time.

In addition to tackling data definitions and contents, the data governance func-
tion also establishes policies and responsibilities for data quality and accuracy, as
well as data security and access controls.

Historically, DW/BI teams created the “recipes” for conformed dimensions and
managed the data cleansing and integration mapping in the ETL system; the opera-
tional systems focused on accurately capturing performance metrics, but there was
often little effort to ensure consistent common reference data. Enterprise resource
planning (ERP) systems promised to fill the void, but many organizations still
rely on separate best-of-breed point solutions for niche requirements. Recently,
operational master data management (MDM) solutions have addressed the need
for centralized master data at the source where the transactions are captured.
Although technology can encourage data integration, it doesn’t fix the problem.
A strong data governance function is a necessary prerequisite for conforming infor-
mation regardless of technical approach.

Conformed Dimensions and the Agile Movement

Some lament that although they want to deliver and share consistently defined
master conformed dimensions in their DW/BI environments, it’s “just not feasible.”
They explain they would if they could, but with senior management focused on
using agile development techniques, it’s “impossible” to take the time to get organi-
zational agreement on conformed dimensions. You can turn this argument upside
down by challenging that conformed dimensions enable agile DW/BI development,

along with agile decision making.

138 Chapter 4

Conformed dimensions allow a dimension table to be built and maintained once
rather than re-creating slightly different versions during each development cycle.
Reusing conformed dimensions across projects is where you get the leverage for
more agile DW/BI development. As you flesh out the portfolio of master conformed
dimensions, the development crank starts turning faster and faster. The time-to-
market for a new business process data source shrinks as developers reuse existing
conformed dimensions. Ultimately, new ETL development focuses almost exclusively
on delivering more fact tables because the associated dimension tables are already
sitting on the shelf ready to go.

Defining a conformed dimension requires organizational consensus and com-
mitment to data stewardship. But you don’t need to get everyone to agree on every
attribute in every dimension table. At a minimum, you should identify a subset
of attributes that have significance across the enterprise. These commonly referenced
descriptive characteristics become the starter set of conformed attributes, enabling
drill-across integration. Even just a single attribute, such as enterprise product
category, is a viable starting point for the integration effort. Over time, you can
iteratively expand from this minimalist starting point by adding attributes. These
dimensions could be tackled during architectural agile sprints. When a series of
sprint deliverables combine to deliver sufficient value, they constitute a release to
the business users.

If you fail to focus on conformed dimensions because you’re under pressure to
deliver something yesterday, the departmental analytic data silos will likely have
inconsistent categorizations and labels. Even more troubling, data sets may look
like they can be compared and integrated due to similar labels, but the underlying
business rules may be slightly different. Business users waste inordinate amounts
of time trying to reconcile and resolve these data inconsistencies, which negatively
impact their ability to be agile decision makers.

The senior IT managers who are demanding agile systems development practices
should be exerting even greater organizational pressure, in conjunction with their
peers in the business, on the development of consistent conformed dimensions if
they’re interested in both long-term development efficiencies and long-term decision-
making effectiveness across the enterprise.

Conformed Facts

Thus far we have considered the central task of setting up conformed dimensions to
tie dimensional models together. This is 95 percent or more of the data architecture
effort. The remaining 5 percent of the effort goes into establishing conformed fact
definitions.

Inventory 139

Revenue, profit, standard prices and costs, measures of quality and customer
satisfaction, and other key performance indicators (KPIs) are facts that must also
conform. If facts live in more than one dimensional model, the underlying defini-
tions and equations for these facts must be the same if they are to be called the
same thing. If they are labeled identically, they need to be defined in the same
dimensional context and with the same units of measure from dimensional model
to dimensional model. For example, if several business processes report revenue,
then these separate revenue metrics can be added and compared only if they have
the same financial definitions. If there are definitional differences, then it is essential
that the revenue facts be labeled uniquely.

NOTE You must be disciplined in your data naming practices. If it is impos-
sible to conform a fact exactly, you should give different names to the different
interpretations so that business users do not combine these incompatible facts in
calculations.

Sometimes a fact has a natural unit of measure in one fact table and another natu-
ral unit of measure in another fact table. For example, the flow of product down the
retail value chain may best be measured in shipping cases at the warehouse but in
scanned units at the store. Even if all the dimensional considerations have been cor-
rectly taken into account, it would be difficult to use these two incompatible units of
measure in one drill-across report. The usual solution to this kind of problem is to
refer the user to a conversion factor buried in the product dimension table and hope
that the user can find the conversion factor and correctly use it. This is unacceptable
for both overhead and vulnerability to error. The correct solution is to carry the fact
in both units of measure, so a report can easily glide down the value chain, picking
off comparable facts. Chapter 6: Order Management talks more about multiple units
of measure.

Summary

In this chapter we developed dimensional models for the three complementary
views of inventory. The periodic snapshot is a good choice for long-running, con-
tinuously replenished inventory scenarios. The accumulating snapshot is a good
choice for finite inventory pipeline situations with a definite beginning and end.
Finally, most inventory analysis will require a transactional schema to augment
these snapshot models.

We introduced key concepts surrounding the enterprise data warehouse bus
architecture and matrix. Each business process of the value chain, supported by a

140 Chapter 4

primary source system, translates into a row in the bus matrix, and eventually, a
dimensional model. The matrix rows share a surprising number of standardized,
conformed dimensions. Developing and adhering to the enterprise bus architecture
is an absolute must if you intend to build a DW/BI system composed of an integrated
set of dimensional models.

e explore procurement processes in this chapter. This subject area has
obvious cross-industry appeal because it is applicable to any organization
that acquires products or services for either use or resale.

In addition to developing several purchasing models, this chapter provides
in-depth coverage of the techniques for handling dimension table attribute value
changes. Although descriptive attributes in dimension tables are relatively static,
they are subject to change over time. Product lines are restructured, causing product
hierarchies to change. Customers move, causing their geographic information to
change. We'll describe several approaches to deal with these inevitable dimension
table changes. Followers of the Kimball methods will recognize the type 1, 2, and
3 techniques. Continuing in this tradition, we’ve expanded the slowly changing
dimension technique line-up with types 0, 4, 5, 6, and 7.

Chapter 5 discusses the following concepts:

Bus matrix snippet for procurement processes

Blended versus separate transaction schemas

Slowly changing dimension technique types 0 through 7, covering both basic
and advanced hybrid scenarios

Procurement Case Study

Thus far we have studied downstream sales and inventory processes in the retailer’s
value chain. We explained the importance of mapping out the enterprise data ware-
house bus architecture where conformed dimensions are used across process-centric
fact tables. In this chapter we'll extend these concepts as we work our way further
up the value chain to the procurement processes.

142 Chapter 5

For many companies, procurement is a critical business activity. Effective pro-
curement of products at the right price for resale is obviously important to retail-
ers and distributors. Procurement also has strong bottom line implications for any
organization that buys products as raw materials for manufacturing. Significant
cost savings opportunities are associated with reducing the number of suppliers
and negotiating agreements with preferred suppliers.

Demand planning drives efficient materials management. After demand is fore-
casted, procurement’s goal is to source the appropriate materials or products in
the most economical manner. Procurement involves a wide range of activities from
negotiating contracts to issuing purchase requisitions and purchase orders (POs)
to tracking receipts and authorizing payments. The following list gives you a better
sense of a procurement organization’s common analytic requirements:

Which materials or products are most frequently purchased? How many ven-
dors supply these products? At what prices? Looking at demand across the
enterprise (rather than at a single physical location), are there opportunities
to negotiate favorable pricing by consolidating suppliers, single sourcing, or
making guaranteed buys?

Are your employees purchasing from the preferred vendors or skirting the
negotiated vendor agreements with maverick spending?

Are you receiving the negotiated pricing from your vendors or is there vendor
contract purchase price variance?

How are your vendors performing? What is the vendor’s fill rate? On-time
delivery performance? Late deliveries outstanding? Percent back ordered?
Rejection rate based on receipt inspection?

Procurement Transactions and Bus Matrix

As you begin working through the four-step dimensional design process, you deter-
mine that procurement is the business process to be modeled. In studying the
process, you observe a flurry of procurement transactions, such as purchase requisi-
tions, purchase orders, shipping notifications, receipts, and payments. Similar to the
approach taken in Chapter 4: Inventory, you could initially design a fact table with
the grain of one row per procurement transaction with transaction date, product,
vendor, contract terms, and procurement transaction type as key dimensions. The
procurement transaction quantity and dollar amount are the facts. The resulting
design is shown in Figure 5-1.

Procurement 143

Procurement Transaction Fact
| Date Dimension |— Procurement Transaction Date Key (FK)
Product Key (FK) — Product Dimension
Vendor Dimension Vendor Key (FK)
Vendor Key (PK) Contract Terms Key (FK) Contract Terms Dimension
Vendor Name Procurement Transaction Type Key (FK) Contract Terms Key (PK)
Vendor Street Address Contract Number (DD) Contract Terms Description
Vendor City Procurement Transaction Quantity Contract Terms Type
Vendor City-State Procurement Transaction Dollar Amount
Vendor ZIP-Postal Code Procurement Transaction Type Dimension
Vendor State-Province Procurement Transaction Type Key (PK)
Vendor Country Procurement Transaction Type Description
Vendor Status Procurement Transaction Type Category
Vendor Minority Ownership Flag
Vendor Corporate Parent

Figure 5-1: Procurement fact table with multiple transaction types.

If you work for the same grocery retailer from the earlier case studies, the trans-
action date and product dimensions are the same conformed dimensions developed
originally in Chapter 3: Retail Sales. If you work with manufacturing procurement,
the raw materials products likely are located in a separate raw materials dimen-
sion table rather than included in the product dimension for salable products. The
vendor, contract terms, and procurement transaction type dimensions are new
to this schema. The vendor dimension contains one row for each vendor, along
with interesting descriptive attributes to support a variety of vendor analyses. The
contract terms dimension contains one row for each generalized set of negotiated
terms, similar to the promotion dimension in Chapter 3. The procurement trans-
action type dimension enables grouping or filtering on transaction types, such as
purchase orders. The contract number is a degenerate dimension; it could be used
to determine the volume of business conducted under each negotiated contract.

Single Versus Multiple Transaction Fact Tables

As you review the initial procurement schema design with business users, you learn
several new details. First, the business users describe the various procurement trans-
actions differently. To the business, purchase orders, shipping notices, warehouse
receipts, and vendor payments are all viewed as separate and unique processes.

Several of the procurement transactions come from different source systems.
There is a purchasing system that provides purchase requisitions and purchase
orders, a warehousing system that provides shipping notices and warehouse receipts,
and an accounts payable system that deals with vendor payments.

144 Chapter 5

You further discover that several transaction types have different dimensionality.
For example, discounts taken are applicable to vendor payments but not to the other
transaction types. Similarly, the name of the employee who received the goods at
the warehouse applies to receipts but doesn’t make sense elsewhere.

There are also a variety of interesting control numbers, such as purchase order
and payment check numbers, created at various steps in the procurement pipeline.
These control numbers are perfect candidates for degenerate dimensions. For certain
transaction types, more than one control number may apply.

As you sort through these new details, you are faced with a design decision.
Should you build a blended transaction fact table with a transaction type dimension
to view all procurement transactions together, or do you build separate fact tables
for each transaction type? This is a common design quandary that surfaces in many
transactional situations, not just procurement.

As dimensional modelers, you need to make design decisions based on a thor-
ough understanding of the business requirements weighed against the realities of
the underlying source data. There is no simple formula to make the definite deter-
mination of whether to use a single fact table or multiple fact tables. A single fact
table may be the most appropriate solution in some situations, whereas multiple
fact tables are most appropriate in others. When faced with this design decision,
the following considerations help sort out the options:

What are the users’ analytic requirements? The goal is to reduce complexity
by presenting the data in the most effective form for business users. How will
the business users most commonly analyze this data? Which approach most
naturally aligns with their business-centric perspective?

Are there really multiple unique business processes? In the procurement
example, it seems buying products (purchase orders) is distinctly different
from receiving products (receipts). The existence of separate control num-
bers for each step in the process is a clue that you are dealing with separate
processes. Given this situation, you would lean toward separate fact tables. By
contrast, in Chapter 4’s inventory example, the varied inventory transactions
were part of a single inventory process resulting in a single fact table design.
Are multiple source systems capturing metrics with unique granularities?
There are three separate source systems in this case study: purchasing, ware-
housing, and accounts payable. This would suggest separate fact tables.
What is the dimensionality of the facts? In this procurement example, several
dimensions are applicable to some transaction types but not to others. This
would again lead you to separate fact tables.

Procurement 145

A simple way to consider these trade-offs is to draft a bus matrix. As illustrated in
Figure 5-2, you can include two additional columns identifying the atomic granular-
ity and metrics for each row. These matrix embellishments cause it to more closely
resemble the detailed implementation bus matrix, which we’ll more thoroughly

discuss in Chapter 16: Insurance.

£
Ele |8

N HH
Business Processes Atomic Granularity Metrics S n‘.? L/8 15 i“" S
Purchase Requisitions |1 row per requisition line Requisition Quantity & Dollars | X | X | X | X | X
Purchase Orders 1 row per PO line PO Quantity & Dollars XIX[X|X]|X]|X]X
Shipping Notifications |1 row per shipping notice line | Shipped Quantity X|X|X X|X|X
Warehouse Receipts |1 row per receipt line Received Quantity X|X|X X|X|X
Vendor Invoices 1 row per invoice line Invoice Quantity & Dollars XIX[X[X]|X]|X
Vendor Payments 1 row per payment lF?a\;Or:\C:ﬁtD[I)S(jlc; l:Is]t & Net X|X|X|X X

Figure 5-2: Sample bus matrix rows for procurement processes.

Based on the bus matrix for this hypothetical case study, multiple transaction
fact tables would be implemented, as illustrated in Figure 5-3. In this example, there
are separate fact tables for purchase requisitions, purchase orders, shipping notices,
warehouse receipts, and vendor payments. This decision was reached because users
view these activities as separate and distinct business processes, the data comes
from different source systems, and there is unique dimensionality for the various
transaction types. Multiple fact tables enable richer, more descriptive dimensions
and attributes. The single fact table approach would have required generalized
labeling for some dimensions. For example, purchase order date and receipt date
would likely have been generalized to simply transaction date. Likewise, purchasing
agent and receiving clerk would become employee. This generalization reduces the

legibility of the resulting dimensional model. Also, with separate fact tables as you
progress from purchase requisitions to payments, the fact tables inherit dimensions
from the previous steps.

Multiple fact tables may require more time to manage and administer because
there are more tables to load, index, and aggregate. Some would argue this approach
increases the complexity of the ETL processes. Actually, it may simplify the ETL
activities. Loading the operational data from separate source systems into separate
fact tables likely requires less complex ETL processing than attempting to integrate

data from the multiple sources into a single fact table.

146 Chapter 5

Date Dimension

Vendor Dimension

Employee Dimension

Carrier Dimension

Purchase Requisition Fact

Purchase Requisition Date Key (FK)
Product Key (FK)

Vendor Key (FK)

Contract Terms Key (FK)

Employee Requested By Key (FK)
Contract Number (DD)

Purchase Requisition Number (DD)
Purchase Requisition Quantity
Purchase Requisition Dollar Amount

Purchase Order Fact

Purchase Order Date Key (FK)
Requested By Date Key (FK)
Product Key (FK)

Vendor Key (FK)

Contract Terms Key (FK)
Warehouse Key (FK)

Carrier Key (FK)

Employee Ordered By Key (FK)
Employee Purchase Agent Key (FK)
Contract Number (DD)

Purchase Requisition Number (DD)
Purchase Order Number (DD)
Purchase Order Quantity

Purchase Order Dollar Amount

Shipping Notices Fact

Shipping Notification Date Key (FK)
Estimated Arrival Date Key (FK)
Requested By Date Key (FK)
Product Key (FK)

Vendor Key (FK)

Warehouse Key (FK)

Carrier Key (FK)

Employee Ordered By Key (FK)
Purchase Order Number (DD)
Shipping Notification Number (DD)
Shipped Quantity

Warehouse Receipts Fact

Warehouse Receipt Date Key (FK)
Requested By Date Key (FK)
Product Key (FK)

Vendor Key (FK)

Warehouse Key (FK)

Carrier Key (FK)

Employee Ordered By Key (FK)
Employee Received By Key (FK)
Purchase Order Number (DD)
Shipping Notification Number (DD)
Warehouse Receipt Number (DD)
Received Quantity

Vendor Payment Fact

Vendor Payment Date Key (FK)
Product Key (FK)

Vendor Key (FK)

Warehouse Key (FK)

Contract Terms Key (FK)

Contract Number (DD)

Payment Check Number (DD)
Vendor Invoice Dollar Amount
Vendor Discount Dollar Amount
Vendor Net Payment Dollar Amount

Product Dimension

| Contract Terms Dimension |

Warehouse Dimension

Figure 5-3: Multiple fact tables for procurement processes.

Procurement 147

Complementary Procurement Snapshot

Apart from the decision regarding multiple procurement transaction fact tables,
you may also need to develop a snapshot fact table to fully address the business’s
needs. As suggested in Chapter 4, an accumulating snapshot such as Figure 5-4 that
crosses processes would be extremely useful if the business is interested in monitor-
ing product movement as it proceeds through the procurement pipeline (including
the duration of each stage). Remember that an accumulating snapshot is meant to
model processes with well-defined milestones. If the process is a continuous flow
that never really ends, it is not a good candidate for an accumulating snapshot.

Procurement Pipeline Fact
| Purchase Order Date Dimension |— Purchase Order Date Key (FK)

Requested By Date Key (FK) —! Requested By Date Dimension |
|Warehouse Receipt Date Dimension |— Warehouse Receipt Date Key (FK)

Vendor Invoice Date Key (FK) —| Vendor Invoice Date Dimension |
| Vendor Payment Date Dimension |— Vendor Payment Date Key (FK)

Product Key (FK) — Product Dimension |
| Vendor Dimension |— Vendor Key (FK)

Contract Terms Key (FK) —| Contract Terms Dimension |
| Employee Dimension — Employee Ordered By Key (FK)

Warehouse Key (FK) — Warehouse Dimension |
| Carrier Dimension |— Carrier Key (FK)

Contract Number (DD)

Purchase Order Number (DD)
Warehouse Receipt Number (DD)
Vendor Invoice Number (DD)
Payment Check Number (DD)
Purchase Order Quantity
Purchase Order Dollar Amount
Shipped Quantity

Received Quantity

Vendor Invoice Dollar Amount
Vendor Discount Dollar Amount
Vendor Net Payment Dollar Amount
PO to Requested By Date Lag

PO to Receipt Date Lag
Requested By to Receipt Date Lag
Receipt to Payment Date Lag
Invoice to Payment Date Lag

Figure 5-4: Procurement pipeline accumulating snapshot schema.

Slowly Changing Dimension Basics

To this point, we have pretended dimensions are independent of time. Unfortunately,
this is not the case in the real world. Although dimension table attributes are relatively
static, they aren’t fixed forever; attribute values change, albeit rather slowly, over time.

148 Chapter 5

Dimensional designers must proactively work with the business’s data governance
representatives to determine the appropriate change-handling strategy. You shouldn’t
simply jump to the conclusion that the business doesn’t care about dimension changes
just because they weren't mentioned during the requirements gathering. Although
IT may assume accurate change tracking is unnecessary, business users may assume
the DW/BI system will allow them to see the impact of every attribute value change.
It is obviously better to get on the same page sooner rather than later.

NOTE The business’s data governance and stewardship representatives must be
actively involved in decisions regarding the handling of slowly changing dimension
attributes; IT shouldn’t make determinations on its own.

When change tracking is needed, it might be tempting to put every changing
attribute into the fact table on the assumption that dimension tables are static. This
is unacceptable and unrealistic. Instead you need strategies to deal with slowly
changing attributes within dimension tables. Since Ralph Kimball first introduced
the notion of slowly changing dimensions in 1995, some IT professionals in a never-
ending quest to speak in acronym-ese termed them SCDs. The acronym stuck.

For each dimension table attribute, you must specify a strategy to handle change.
In other words, when an attribute value changes in the operational world, how will
you respond to the change in the dimensional model? In the following sections, we
describe several basic techniques for dealing with attribute changes, followed by
more advanced options. You may need to employ a combination of these techniques
within a single dimension table.

Kimball method followers are likely already familiar with SCD types 1, 2, and 3.
Because legibility is part of our mantra, we sometimes wish we had given these tech-
niques more descriptive names in the first place, such as “overwrite.” But after nearly
two decades, the “type numbers” are squarely part of the DW/BI vernacular. As you'll
see in the following sections, we’ve decided to expand the theme by assigning new
SCD type numbers to techniques that have been described, but less precisely labeled,
in the past; our hope is that assigning specific numbers facilitates clearer communica-
tion among team members.

Type 0O: Retain Original

This technique hasn’t been given a type number in the past, but it’s been around
since the beginning of SCDs. With type 0, the dimension attribute value never
changes, so facts are always grouped by this original value. Type O is appropriate
for any attribute labeled “original,” such as customer original credit score. It also
applies to most attributes in a date dimension.

Procurement 149

As we staunchly advocated in Chapter 3, the dimension table’s primary key is
a surrogate key rather than relying on the natural operational key. Although we
demoted the natural key to being an ordinary dimension attribute, it still has special
significance. Presuming it’s durable, it would remain inviolate. Persistent durable
keys are always type 0 attributes. Unless otherwise noted, throughout this chapter’s
SCD discussion, the durable supernatural key is assumed to remain constant, as
described in Chapter 3.

Type 1: Overwrite

With the slowly changing dimension type 1 response, you overwrite the old attri-
bute value in the dimension row, replacing it with the current value; the attribute
always reflects the most recent assignment.

Assume you work for an electronics retailer where products roll up into the retail
store’s departments. One of the products is IntelliKidz software. The existing row in
the product dimension table for IntelliKidz looks like the top half of Figure 5-5. Of
course, there would be additional descriptive attributes in the product dimension,
but we’ve abbreviated the attribute listing for clarity.

Original row in Product dimension:

Product Product Department
Key SKU (NK) Description |Name

12345 |ABC922-Z | IntelliKidz Education

Updated row in Product dimension:

Product Product Department
Key SKU (NK) Description |Name

12345 |ABC922-Z | IntelliKidz Strategy

Figure 5-5: SCD type 1 sample rows.

Suppose a new merchandising person decides IntelliKidz software should be
moved from the Education department to the Strategy department on February 1,
2013 to boost sales. With a type 1 response, you'd simply update the existing row
in the dimension table with the new department description, as illustrated in the
updated row of Figure 5-5.

In this case, no dimension or fact table keys were modified when IntelliKidz’s
department changed. The fact table rows still reference product key 12345, regardless
of IntelliKidz’s departmental location. When sales take off following the move to the
Strategy department, you have no information to explain the performance improve-
ment because the historical and more recent facts both appear as if IntelliKidz
always rolled up into Strategy.

150 Chapter 5

The type 1 response is the simplest approach for dimension attribute changes. In
the dimension table, you merely overwrite the preexisting value with the current
assignment. The fact table is untouched. The problem with a type 1 response is that
you lose all history of attribute changes. Because overwriting obliterates historical
attribute values, you're left solely with the attribute values as they exist today. A type
1 response is appropriate if the attribute change is an insignificant correction. It also
may be appropriate if there is no value in keeping the old description. However, too
often DW/BI teams use a type 1 response as the default for dealing with slowly chang-
ing dimensions and end up totally missing the mark if the business needs to track
historical changes accurately. After you implement a type 1, it's difficult to change
course in the future.

NOTE The type 1 response is easy to implement, but it does not maintain any
history of prior attribute values.

Before we leave the topic of type 1 changes, be forewarned that the same BI
applications can produce different results before versus after the type 1 attribute
change. When the dimension attribute’s type 1 overwrite occurs, the fact rows are
associated with the new descriptive context. Business users who rolled up sales by
department on January 31 will get different department totals when they run the
same report on February 1 following the type 1 overwrite.

There’s another easily overlooked catch to be aware of. With a type 1 response
to deal with the relocation of IntelliKidz, any preexisting aggregations based on the
department value need to be rebuilt. The aggregated summary data must continue
to tie to the detailed atomic data, where it now appears that IntelliKidz has always
rolled up into the Strategy department.

Finally, if a dimensional model is deployed via an OLAP cube and the type 1
attribute is a hierarchical rollup attribute, like the product’s department in our
example, the cube likely needs to be reprocessed when the type 1 attribute changes.
Ata minimum, similar to the relational environment, the cube’s performance aggre-
gations need to be recalculated.

WARNING Even though type 1 changes appear the easiest to implement,
remember they invalidate relational tables and OLAP cubes that have aggregated
data over the affected attribute.

Type 2: Add New Row

In Chapter 1: Data Warehousing, Business Intelligence, and Dimensional Modeling
Primer, we stated one of the DW/BI system’s goals was to correctly represent history.

Procurement 157

A type 2 response is the predominant technique for supporting this requirement
when it comes to slowly changing dimension attributes.

Using the type 2 approach, when IntelliKidz’s department changed on February
1, 2013, a new product dimension row for IntelliKidz is inserted to reflect the new
department attribute value. There are two product dimension rows for IntelliKidz,
as illustrated in Figure 5-6. Each row contains a version of IntelliKidz’s attribute
profile that was true for a span of time.

Original row in Product dimension:

Row Row
Product Product Department Effective Expiration Current Row
Key SKU (NK) | Description | Name ... |Date Date Indicator
12345{ABC922-Z | IntelliKidz Education ... |2012-01-01 |9999-12-31 |Current

Rows in Product dimension following department reassignment:

Row Row
Product Product Department Effective Expiration Current Row
Key SKU (NK) | Description | Name ... |Date Date Indicator
12345 | ABC922-Z | IntelliKidz Education ... 12012-01-01 |2013-01-31 | Expired
25984 | ABC922-Z | IntelliKidz Strategy ... 12013-02-01 [9999-12-31 |Current

Figure 5-6: SCD type 2 sample rows.

With type 2 changes, the fact table is again untouched; you don’t go back to
the historical fact table rows to modify the product key. In the fact table, rows for
IntelliKidz prior to February 1, 2013, would reference product key 12345 when the
product rolled up to the Education department. After February 1, new IntelliKidz
fact rows would have product key 25984 to reflect the move to the Strategy depart-
ment. This is why we say type 2 responses perfectly partition or segment history to
account for the change. Reports summarizing pre-February 1 facts look identical
whether the report is generated before or after the type 2 change.

We want to reinforce that reported results may differ depending on whether
attribute changes are handled as a type 1 or type 2. Let’s presume the electronic
retailer sells $500 of IntelliKidz software during January 2013, followed by a $100
sale in February 2013. If the department attribute is a type 1, the results from a
query reporting January and February sales would indicate $600 under Strategy.
Conversely, if the department name attribute is a type 2, the sales would be reported
as $500 for the Education department and $100 for the Strategy department.

Unlike the type 1 approach, there is no need to revisit preexisting aggregation
tables when using the type 2 technique. Likewise, OLAP cubes do not need to be
reprocessed if hierarchical attributes are handled as type 2.

If you constrain on the department attribute, the two product profiles are differ-
entiated. If you constrain on the product description, the query automatically fetches
both IntelliKidz product dimension rows and automatically joins to the fact table for

152 Chapter 5

the complete product history. If you need to count the number of products correctly,
then you would just use the SKU natural key attribute as the basis of the distinct
count rather than the surrogate key; the natural key column becomes the glue that
holds the separate type 2 rows for a single product together.

NOTE The type 2 response is the primary workhorse technique for accurately
tracking slowly changing dimension attributes. It is extremely powerful because
the new dimension row automatically partitions history in the fact table.

Type 2 is the safest response if the business is not absolutely certain about the
SCD business rules for an attribute. As we’ll discuss in the “Type 6: Add Type 1
Attributes to Type 2 Dimension” and “Type 7: Dual Type 1 and Type 2 Dimensions”
sections later in the chapter, you can provide the illusion of a type 1 overwrite when
an attribute has been handled with the type 2 response. The converse is not true. If
you treat an attribute as type 1, reverting to type 2 retroactively requires significant
effort to create new dimension rows and then appropriately rekey the fact table.

Type 2 Effective and Expiration Dates

When a dimension table includes type 2 attributes, you should include several
administrative columns on each row, as shown in Figure 5-6. The effective and
expiration dates refer to the moment when the row’s attribute values become valid
or invalid. Effective and expiration dates or date/time stamps are necessary in the
ETL system because it needs to know which surrogate key is valid when loading
historical fact rows. The effective and expiration dates support precise time slic-
ing of the dimension; however, there is no need to constrain on these dates in the
dimension table to get the right answer from the fact table. The row effective date
is the first date the descriptive profile is valid. When a new product is first loaded
in the dimension table, the expiration date is set to December 31, 9999. By avoiding
a null in the expiration date, you can reliably use a BETWEEN command to find the
dimension rows that were in effect on a certain date.

When a new profile row is added to the dimension to capture a type 2 attribute
change, the previous row is expired. We typically suggest the end date on the
old row should be just prior to the effective date of the new row leaving no gaps
between these effective and expiration dates. The definition of “just prior” depends
on the grain of the changes being tracked. Typically, the effective and expiration
dates represent changes that occur during a day; if you're tracking more granular
changes, you'd use a date/time stamp instead. In this case, you may elect to apply
different business rules, such as setting the row expiration date exactly equal to the

Procurement 153

effective date of the next row. This would require logic such as “>= effective date
and < expiration date” constraints, invalidating the use of BETWEEN.

Some argue that a single effective date is adequate, but this makes for more
complicated searches to locate the dimension row with the latest effective date
that is less than or equal to a date filter. Storing an explicit second date simpli-
fies the query processing. Likewise, a current row indicator is another useful
administrative dimension attribute to quickly constrain queries to only the cur-
rent profiles.

The type 2 response to slowly changing dimensions requires the use of surrogate
keys, but you're already using them anyhow, right? You certainly can’t use the opera-
tional natural key because there are multiple profile versions for the same natural key.
It is not sufficient to use the natural key with two or three version digits because you'd
be vulnerable to the entire list of potential operational issues discussed in Chapter 3.
Likewise, it is inadvisable to append an effective date to the otherwise primary key
of the dimension table to uniquely identify each version. With the type 2 response,
you create a new dimension row with a new single-column primary key to uniquely
identify the new product profile. This single-column primary key establishes the link-
age between the fact and dimension tables for a given set of product characteristics.
There’s no need to create a confusing secondary join based on the dimension row’s
effective or expiration dates.

We recognize some of you may be concerned about the administration of surro-
gate keys to support type 2 changes. In Chapter 19: ETL Subsystems and Techniques
and Chapter 20: ETL System Design and Development Process and Tasks, we'll dis-
cuss a workflow for managing surrogate keys and accommodating type 2 changes
in more detail.

Type 1 Attributes in Type 2 Dimensions

It is not uncommon to mix multiple slowly changing dimension techniques within
the same dimension. When type 1 and type 2 are both used in a dimension, some-
times a type 1 attribute change necessitates updating multiple dimension rows. Let’s
presume the dimension table includes a product introduction date. If this attribute
is corrected using type 1 logic after a type 2 change to another attribute occurs,
the introduction date should probably be updated on both versions of IntelliKidz’s
profile, as illustrated in Figure 5-7.

The data stewards need to be involved in defining the ETL business rules in
scenarios like this. Although the DW/BI team can facilitate discussion regarding
proper update handling, the business’s data stewards should make the final deter-
mination, not the DW/BI team.

154 Chapter 5

Original row in Product dimension:

Row Row
Product Product Department| Introduction Effective Expiration Current Row
Key SKU (NK) | Description |Name Date ... |Date Date Indicator
12345 | ABC922-Z | IntelliKidz Education [2012-12-15 | ... |2012-01-01 |9999-12-31 |Current

Rows in Product dimension following type 2 change to Department Name and type 1 change to Introduction Date:

Row Row
Product Product Department| Introduction Effective Expiration Current Row
Key SKU (NK) | Description |Name Date ... |Date Date Indicator
12345 | ABC922-Z | IntelliKidz Education |2012-01-01 .. |2012-01-01 |2013-01-31 | Expired
25984 | ABC922-Z | IntelliKidz Strategy ~ [2012-01-01 ... |2013-02-01 |9999-12-31 |Current

Figure 5-7: Type 1 updates in a dimension with type 2 attributes sample rows.

Type 3: Add New Attribute

Although the type 2 response partitions history, it does not enable you to associ-
ate the new attribute value with old fact history or vice versa. With the type 2
response, when you constrain the department attribute to Strategy, you see only
IntelliKidz facts from after February 1, 2013. In most cases, this is exactly what
you want.

However, sometimes you want to see fact data as if the change never occurred.
This happens most frequently with sales force reorganizations. District boundaries
may be redrawn, but some users still want the ability to roll up recent sales for the
prior districts just to see how they would have done under the old organizational
structure. For a few transitional months, there may be a need to track history for
the new districts and conversely to track new fact data in terms of old district
boundaries. A type 2 response won't support this requirement, but type 3 comes
to the rescue.

In our software example, let’s assume there is a legitimate business need to
track both the new and prior values of the department attribute for a period of
time around the February 1 change. With a type 3 response, you do not issue a
new dimension row, but rather add a new column to capture the attribute change,
as illustrated in Figure 5-8. You would alter the product dimension table to add
a prior department attribute, and populate this new column with the existing
department value (Education). The original department attribute is treated as a
type 1 where you overwrite to reflect the current value (Strategy). All existing
reports and queries immediately switch over to the new department description,
but you can still report on the old department value by querying on the prior
department attribute.

Procurement 155

Original row in Product dimension:

Product Product Department
Key SKU (NK) Description | Name

12345 |ABC922-Z | IntelliKidz Education

Updated row in Product dimension:

Prior
Product Product Department | Department
Key SKU (NK) Description |Name Name

12345 |ABC922-Z | IntelliKidz Strategy Education

Figure 5-8: SCD type 3 sample rows.

Don’t be fooled into thinking the higher type number associated with type 3
indicates it is the preferred approach; the techniques have not been presented in
good, better, and best practice sequence. Frankly, type 3 is infrequently used. It is
appropriate when there’s a strong need to support two views of the world simulta-
neously. Type 3 is distinguished from type 2 because the pair of current and prior
attribute values are regarded as true at the same time.

NOTE The type 3 slowly changing dimension technique enables you to see
new and historical fact data by either the new or prior attribute values, sometimes
called alternate realities.

Type 3 is not useful for attributes that change unpredictably, such as a customer’s
home state. There would be no benefit in reporting facts based on a prior home state
attribute that reflects a change from 10 days ago for some customers or 10 years
ago for others. These unpredictable changes are typically handled best with type
2 instead.

Type 3 is most appropriate when there’s a significant change impacting many
rows in the dimension table, such as a product line or sales force reorganization.
These en masse changes are prime candidates because business users often want
the ability to analyze performance metrics using either the pre- or post-hierarchy
reorganization for a period of time. With type 3 changes, the prior column is labeled
to distinctly represent the prechanged grouping, such as 2012 department or pre-
merger department. These column names provide clarity, but there may be unwanted
ripples in the BI layer.

Finally, if the type 3 attribute represents a hierarchical rollup level within the
dimension, then as discussed with type 1, the type 3 update and additional column
would likely cause OLAP cubes to be reprocessed.

156 Chapter 5

Multiple Type 3 Attributes

If a dimension attribute changes with a predictable rhythm, sometimes the business
wants to summarize performance metrics based on any of the historic attribute
values. Imagine the product line is recategorized at the start of every year and the
business wants to look at multiple years of historic facts based on the department
assignment for the current year or any prior year.

In this case, we take advantage of the regular, predictable nature of these changes
by generalizing the type 3 approach to a series of type 3 dimension attributes, as
illustrated in Figure 5-9. On every dimension row, there is a current department
attribute that is overwritten, plus attributes for each annual designation, such as
2012 department. Business users can roll up the facts with any of the department
assignments. If a product were introduced in 2013, the department attributes for
2012 and 2011 would contain Not Applicable values.

Updated row in Product dimension:

Current 2012 2011
Product Product Department | Department | Department
Key SKU (NK) Description | Name Name Name

12345 | ABC922-Z IntelliKidz Strategy Education |Not Applicable

Figure 5-9: Dimension table with multiple SCD type 3 attributes.

The most recent assignment column should be identified as the current depart-
ment. This attribute will be used most frequently; you don't want to modify existing
queries and reports to accommodate next year’s change. When the departments are
reassigned in January 2014, you'd alter the table to add a 2013 department attribute,
populate this column with the current department values, and then overwrite the
current attribute with the 2014 department assignment.

Type 4: Add Mini-Dimension

Thus far we've focused on slow evolutionary changes to dimension tables. What
happens when the rate of change speeds up, especially within a large multimillion-
row dimension table? Large dimensions present two challenges that warrant special
treatment. The size of these dimensions can negatively impact browsing and query
filtering performance. Plus our tried-and-true type 2 technique for change tracking
is unappealing because we don’t want to add more rows to a dimension that already
has millions of rows, particularly if changes happen frequently.

Fortunately, a single technique comes to the rescue to address both the browsing
performance and change tracking challenges. The solution is to break off frequently
analyzed or frequently changing attributes into a separate dimension, referred to
as a mini-dimension. For example, you could create a mini-dimension for a group

Procurement 157

of more volatile customer demographic attributes, such as age, purchase frequency
score, and income level, presuming these columns are used extensively and changes
to these attributes are important to the business. There would be one row in the
mini-dimension for each unique combination of age, purchase frequency score,
and income level encountered in the data, not one row per customer. With this
approach, the mini-dimension becomes a set of demographic profiles. Although the
number of rows in the customer dimension may be in the millions, the number of
mini-dimension rows should be a significantly smaller. You leave behind the more
constant attributes in the original multimillion-row customer table.

Sample rows for a demographic mini-dimension are illustrated in Figure 5-10.
When creating the mini-dimension, continuously variable attributes, such as income,
are converted to banded ranges. In other words, the attributes in the mini-dimension
are typically forced to take on a relatively small number of discrete values. Although
this restricts use to a set of predefined bands, it drastically reduces the number of
combinations in the mini-dimension. If you stored income at a specific dollar and
cents value in the mini-dimension, when combined with the other demographic
attributes, you could end up with as many rows in the mini-dimension as in the
customer dimension itself. The use of band ranges is probably the most significant
compromise associated with the mini-dimension technique. Although grouping
facts from multiple band values is viable, changing to more discreet bands (such
as $30,000-34,999) at a later time is difficult. If users insist on access to a specific
raw data value, such as a credit bureau score that is updated monthly, it should be
included in the fact table, in addition to being value banded in the demographic
mini-dimension. In Chapter 10: Financial Services, we'll discuss dynamic value
banding of facts; however, such queries are much less efficient than constraining
the value band in a mini-dimension table.

Purchase
Demographics Frequency
Key Age Band | Score Income Level
1 21-25 Low <$30,000
2 21-25 Medium <$30,000
3 21-25 High <$30,000
4 21-25 Low $30,000-39,999
5 21-25 Medium $30,000-39,999
6 21-25 High $30,000-39,999
142 26-30 Low <$30,000
143 26-30 Medium <$30,000
144 26-30 High <$30,000

Figure 5-10: SCD type 4 mini-dimension sample rows.

158 Chapter 5

Every time a fact table row is built, two foreign keys related to the customer would
be included: the customer dimension key and the mini-dimension demographics
key in effect at the time of the event, as shown in Figure 5-11. The mini-dimension
delivers performance benefits by providing a smaller point of entry to the facts.
Queries can avoid the huge customer dimension table unless attributes from that
table are constrained or used as report labels.

Fact Table

Customer Dimension Date Key (FK)
Customer Key (PK) Customer Key (FK) Demographics Dimension
Customer ID (NK) Demographics Key (FK) Demographics Key (PK)
Customer Name More FKs... Age Band
Customer Address Facts... Purchase Frequency Score
Customer City-State Income Level
Customer State
Customer ZIP-Postal Code
Customer Date of Birth

Figure 5-11: Type 4 mini-dimension with customer dimension.

When the mini-dimension key participates as a foreign key in the fact table, another
benefit is that the fact table captures the demographic profile changes. Let’s presume
we are loading data into a periodic snapshot fact table on a monthly basis. Referring
back to our sample demographic mini-dimension sample rows in Figure 5-10, if one
of our customers, John Smith, were 25 years old with a low purchase frequency score
and an income of $25,000, you'd begin by assigning demographics key 1 when loading
the fact table. If John has a birthday several weeks later and turns 26 years old, you'd
assign demographics key 142 when the fact table was next loaded; the demographics
key on John’s earlier fact table rows would not be changed. In this manner, the fact
table tracks the age change. Youd continue to assign demographics key 142 when
the fact table is loaded until there’s another change in John’s demographic profile. If
John receives a raise to $32,000 several months later, a new demographics key would
be reflected in the next fact table load. Again, the earlier rows would be unchanged.
OLAP cubes also readily accommodate type 4 mini-dimensions.

Customer dimensions are somewhat unique in that customer attributes frequently
are queried independently from the fact table. For example, users may want to know
how many customers live in Dade County by age bracket for segmentation and profil-
ing. Rather than forcing any analysis that combines customer and demographic data
to link through the fact table, the most recent value of the demographics key also
can exist as a foreign key on the customer dimension table. We'll further describe
this customer demographic outrigger as an SCD type 5 in the next section.

Procurement 159

The demographic dimension cannot be allowed to grow too large. If you have
five demographic attributes, each with 10 possible values, then the demographics
dimension could have 100,000 (10°) rows. This is a reasonable upper limit for the
number of rows in a mini-dimension if you build out all the possible combina-
tions in advance. An alternate ETL approach is to build only the mini-dimension
rows that actually occur in the data. However, there are certainly cases where even
this approach doesn’t help and you need to support more than five demographic
attributes with 10 values each. We'll discuss the use of multiple mini-dimensions
associated with a single fact table in Chapter 10.

Demographic profile changes sometimes occur outside a business event, such
as when a customer’s profile is updated in the absence of a sales transaction. If the
business requires accurate point-in-time profiling, a supplemental factless fact table
with effective and expiration dates can capture every relationship change between
the customer and demographics dimensions.

Hybrid Slowly Changing Dimension
Techniques

In this final section, we’ll discuss hybrid approaches that combine the basic SCD
techniques. Designers sometimes become enamored with these hybrids because they
seem to provide the best of all worlds. However, the price paid for greater analytic
flexibility is often greater complexity. Although IT professionals may be impressed
by elegant flexibility, business users may be just as easily turned off by complexity.
You should not pursue these options unless the business agrees they are needed to
address their requirements.

These final approaches are most relevant if you've been asked to preserve the
historically accurate dimension attribute associated with a fact event, while sup-
porting the option to report historical facts according to the current attribute values.
The basic slowly changing dimension techniques do not enable this requirement
easily on their own.

We'll start by considering a technique that combines type 4 with a type 1 outrig-
ger; because 4 + 1 = 5, we're calling this type 5. Next, we'll describe type 6, which
combines types 1 through 3 for a single dimension attribute; it’s aptly named type
6 because 2 + 3 + 1 or 2 x 3 x 1 both equal 6. Finally, we'll finish up with type 7,
which just happens to be the next available sequence number; there is no underly-
ing mathematical significance to this label.

160 Chapter 5

Type 5: Mini-Dimension and Type 1 Outrigger

Let’s return to the type 4 mini-dimension. An embellishment to this technique is to
add a current mini-dimension key as an attribute in the primary dimension. This
mini-dimension key reference is a type 1 attribute, overwritten with every profile
change. You wouldn’t want to track this attribute as a type 2 because then youd be
capturing volatile changes within the large multimillion-row dimension and avoid-
ing this explosive growth was one of the original motivations for type 4.

The type 5 technique is useful if you want a current profile count in the absence
of fact table metrics or want to roll up historical facts based on the customer’s cur-
rent profile. You'd logically represent the primary dimension and mini-dimension
outrigger as a single table in the presentation area, as shown in Figure 5-12. To
minimize user confusion and potential error, the current attributes in this role-
playing dimension should have distinct column names distinguishing them, such
as current age band. Even with unique labeling, be aware that presenting users with
two avenues for accessing demographic data, through either the mini-dimension
or outrigger, can deliver more functionality and complexity than some can handle.

Fact Tahle
View of Demographics Dimension Cust: Dimension Date Key (FK)
Current Demographics Di i Customer Key (PK) —1Customer Key (FK) Demographics Dimension
Current Demographics Key (PK) Customer ID (NK) Demographics Key (FK) —— Demographics Key (PK)
Current Age Band Customer Name More FKs... Age Band
Current Purchase Frequency Score Facts Purchase Frequency Score
Current Income Level Current Demographics Key (FK) Income Level
Logical representation to the Bl tools:
Fact Table
Customer Dimension Date Key (FK)
Customer Key (PK) —1Customer Key (FK) Demographics Dimension
Customer ID (NK) Demographics Key (FK) —— Demographics Key (PK)
Customer Name More FKs... Age Band
Facts Purchase Frequency Score
Current Age Band Income Level
Current Purchase Frequency Score
Current Income Level

Figure 5-12: Type 4 mini-dimension with type 1 outrigger in customer dimension.

NOTE The type 4 mini-dimension terminology refers to when the demograph-
ics key is part of the fact table composite key. If the demographics key is a foreign
key in the customer dimension, it is referred to as an outrigger.

Type 6: Add Type 1 Attributes to Type 2 Dimension

Let’s return to the electronics retailer’s product dimension. With type 6, you would
have two department attributes on each row. The current department column

Procurement 161

represents the current assignment; the historic department column is a type 2
attribute representing the historically accurate department value.

When IntelliKidz software is introduced, the product dimension row would look
like the first scenario in Figure 5-13.

Original row in Product dimension:

Historic Current Row Row
Product Product Department Department Effective Expiration Current Row
Key SKU (NK) | Description | Name Name Date Date Indicator
12345[{ABC922-Z | IntelliKidz Education Education 2012-01-01 | 9999-12-31 |Current
Rows in Product dimension following first department reassignment:
Historic Current Row Row
Product Product Department Department Effective Expiration Current Row
Key SKU (NK) |Description | Name Name Date Date Indicator
12345 | ABC922-Z | IntelliKidz Education Strategy 2012-01-01 | 2013-01-31 | Expired
25984 | ABC922-Z | IntelliKidz Strategy Strategy 2013-02-01 | 9999-12-31 | Current
Rows in Product dimension following second department reassignment:
Historic Current Row Row
Product Product Department Department Effective Expiration Current Row
Key SKU (NK) | Description | Name Name ... |Date Date Indicator
12345 | ABC922-Z | IntelliKidz Education Critical Thinking |... 2012-01-01 | 2013-01-31 | Expired
25984 | ABC922-Z | IntelliKidz Strategy Critical Thinking |... 2013-02-01 | 2013-06-30 | Expired
31726 | ABC922-Z | IntelliKidz Critical Thinking [Critical Thinking |... 2013-07-01 | 9999-12-31 | Current

Figure 5-13: SCD type 6 sample rows.

When the departments are restructured and IntelliKidz is moved to the Strategy
department, you'd use a type 2 response to capture the attribute change by issu-
ing a new row. In this new IntelliKidz dimension row, the current department will
be identical to the historical department. For all previous instances of IntelliKidz
dimension rows, the current department attribute will be overwritten to reflect the
current structure. Both IntelliKidz rows would identify the Strategy department as
the current department (refer to the second scenario in Figure 5-13).

In this manner you can use the historic attribute to group facts based on the attribute
value that was in effect when the facts occurred. Meanwhile, the current attri-
bute rolls up all the historical fact data for both product keys 12345 and 25984 into
the current department assignment. If IntelliKidz were then moved into the Critical
Thinking software department, the product table would look like Figure 5-13’s final
set of rows. The current column groups all facts by the current assignment, while
the historic column preserves the historic assignments accurately and segments the
facts accordingly.

With this hybrid approach, you issue a new row to capture the change (type 2)
and add a new column to track the current assignment (type 3), where subsequent
changes are handled as a type 1 response. An engineer at a technology company

162 Chapter 5

suggested we refer to this combo approach as type 6 because both the sum and
product of 1, 2, and 3 equals 6.

Again, although this technique may be naturally appealing to some, it is impor-
tant to always consider the business users’ perspective as you strive to arrive at a
reasonable balance between flexibility and complexity. You may want to limit which
columns are exposed to some users so they’re not overwhelmed by choices.

Type 7: Dual Type 1 and Type 2 Dimensions

When we first described type 6, someone asked if the technique would be appropri-
ate for supporting both current and historic perspectives for 150 attributes in a large
dimension table. That question sent us back to the drawing board.

In this final hybrid technique, the dimension natural key (assuming it's durable)
is included as a fact table foreign key, in addition to the surrogate key for type 2
tracking, as illustrated in Figure 5-14. If the natural key is unwieldy or ever reas-
signed, you should use a separate durable supernatural key instead. The type 2
dimension contains historically accurate attributes for filtering and grouping based
on the effective values when the fact event occurred. The durable key joins to a
dimension with just the current type 1 values. Again, the column labels in this table
should be prefaced with “current” to reduce the risk of user confusion. You can use
these dimension attributes to summarize or filter facts based on the current profile,
regardless of the attribute values in effect when the fact event occurred.

Fact Table View of Product Dimension
Product Dimension Date Key (FK) (where Current Row Indicator=Current)
Product Key (PK) — Product Key (FK) Current Product Dimension
Durable Product Key (DK) Durable Product Key (FK) —Durable Product Key (PK)
Product Description More FKs... Current Product Description
Department Name Facts Current Department Name

Row Effective Date
Row Expiration Date
Current Row Indicator

Figure 5-14: Type 7 with dual foreign keys for dual type 1 and type 2 dimension tables.

This approach delivers the same functionality as type 6. Although the type 6
response spawns more attribute columns in a single dimension table, this approach
relies on two foreign keys in the fact table. Type 7 invariably requires less ETL effort
because the current type 1 attribute table could easily be delivered via a view of
the type 2 dimension table, limited to the most current rows. The incremental cost
of this final technique is the additional column carried in the fact table; however,

Procurement 163

queries based on current attribute values would be filtering on a smaller dimension

table than previously described with type 6.

Of course, you could avoid storing the durable key in the fact table by joining the

type 1 view containing current attributes to the durable key in the type 2 dimension

table itself. In this case, however, queries that are only interested in current rollups

would need to traverse from the type 1 outrigger through the more voluminous

type 2 dimension before finally reaching the facts, which would likely negatively

impact query performance for current reporting.

A variation of this dual type 1 and type 2 dimension table approach again relies

on a view to deliver current type 1 attributes. However, in this case, the view associ-

ates the current attribute values with all the durable key’s type 2 rows, as illustrated

in Figure 5-15.

Product Dimension

Fact Table

View of Product Dimension

Product Key (PK)
Durable Product Key
Product Description
Department Name

Row Effective Date
Row Expiration Date
Current Row Indicator

Facts

Date Key (FK)
1 Product Key (FK)
More FKs...

Current Product Dimension
— Product Key (PK)

Durable Product Key
Current Product Description

Current Department Name

Figure 5-15: Type 7 variation with single surrogate key for dual type 1 and type 2

dimension tables.

Both dimension tables in Figure 5-15 have the same number of rows, but the

contents of the tables are different, as shown in Figure 5-16.

Rows in Product dimension:

Durable Row
Product Product Product Department Row Effective | Expiration Current Row
Key SKU (NK) |Key Description Name Date Date Indicator
12345 | ABC922-Z 12345 IntelliKidz Education 2012-01-01 2013-01-31 | Expired
25984 | ABC922-Z 12345 IntelliKidz Strategy . |2013-02-01 2013-06-30 | Expired
31726 | ABC922-Z 12345 | IntelliKidz Critical Thinking |... | 2013-07-01 9999-12-31 | Current

Rows in Product dimension’s current view:

Durable Current Current
Product Product Product Department
Key SKU (NK) |Key Description Name
12345 | ABC922-Z 12345 | IntelliKidz Critical Thinking |...
25984 | ABC922-Z 12345 | IntelliKidz Critical Thinking |...
31726 | ABC922-Z 12345 | IntelliKidz Critical Thinking |...

Figure 5-16: SCD type 7 variation sample rows.

164 Chapter 5

Type 7 for Random “As Of” Reporting

Finally, although it’s uncommon, you might be asked to roll up historical facts
based on any specific point-in-time profile, in addition to reporting by the attribute
values in effect when the fact event occurred or by the attribute’s current values.
For example, perhaps the business wants to report three years of historical metrics
based on the hierarchy in effect on December 1 of last year. In this case, you can
use the dual dimension keys in the fact table to your advantage. First filter on the
type 2 dimension row effective and expiration dates to locate the rows in effect on
December 1 of last year. With this constraint, a single row for each durable key
in the type 2 dimension is identified. Then join this filtered set to the durable key in
the fact table to roll up any facts based on the point-in-time attribute values. It’s as
if you're defining the meaning of “current” on-the-fly. Obviously, you must filter
on the row effective and expiration dates, or you'll have multiple type 2 rows for
each durable key. Finally, only unveil this capability to a limited, highly analytic
audience; this embellishment is not for the timid.

Slowly Changing Dimension Recap

We've summarized the techniques for tracking dimension attribute changes in
Figure 5-17. This chart highlights the implications of each slowly changing dimen-

sion technique on the analysis of performance metrics in the fact table.

SCD Type | Dimension Table Action Impact on Fact Analysis
Type 0 No change to attribute value. Facts associated with attribute’s original value.
Type 1 Overwrite attribute value. Facts associated with attribute’s current value.
Tvpe 2 Add new dimension row for profile Facts associated with attribute value in effect when
yp with new attribute value. fact occured.
Tvpe 3 Add new column to preserve attribute’s | Facts associated with both current and prior attribute
yp current and prior values. alternative values.
Type 4 Add mini-dimension table containing Facts associated with rapidly changing attributes in
yp rapidly changing attributes. effect when fact occured.
Add type 4 mini-dimension, along with | Facts associated with rapidly changing attributes in
Type 5 overwritten type 1 mini-dimension key | effect when fact occurred, plus current rapidly changing
in base dimension. attribute values.
Add type 1 overwritten attributes to) . ’ ’
Type 6 type 2 dimension row, and overwrite EzgtusrfesdsOCI'Sgeguﬁvséutaigl'Eg;e valug in etfect whan fact
all prior dimension rows. P ’
Add type 2 dimension row with new Facts associated with attribute value in effect when fact
Type 7 attribute value, plus view limited to oceurred. plus current values
current rows and/or attribute values. P ’

Figure 5-17: Slowly changing dimension techniques summary.

Procurement 165

Summary

In this chapter we discussed several approaches to handling procurement data.
Effectively managing procurement performance can have a major impact on an
organization’s bottom line.

We also introduced techniques to deal with changes to dimension attribute
values. The slowly changing responses range from doing nothing (type 0) to
overwriting the value (type 1) to complicated hybrid approaches (such as types 5
through 7) which combine techniques to support requirements for both historic
attribute preservation and current attribute reporting. You'll undoubtedly need to
re-read this section as you consider slowly changing dimension attribute strategies
for your DW/BI system.

rder management consists of several critical business processes, including

order, shipment, and invoice processing. These processes spawn metrics,
such as sales volume and invoice revenue, that are key performance indicators for
any organization that sells products or services to others. In fact, these foundation
metrics are so crucial that DW/BI teams frequently tackle one of the order manage-
ment processes for their initial implementation. Clearly, the topics in this case study
transcend industry boundaries.

In this chapter we'll explore several different order management transactions,
including the common characteristics and complications encountered when
dimensionally modeling these transactions. We'll further develop the concept of
an accumulating snapshot to analyze the order fulfillment pipeline from initial
order to invoicing.

Chapter 6 discusses the following concepts:

Bus matrix snippet for order management processes
Orders transaction schema

Fact table normalization considerations

Role-playing dimensions

Ship-to/bill-to customer dimension considerations
Factors to determine if single or multiple dimensions
Junk dimensions for miscellaneous flags and indicators versus alternative
designs

More on degenerate dimensions

Multiple currencies and units of measure

Handling of facts with different granularity

Patterns to avoid with header and line item transactions
Invoicing transaction schema with profit and loss facts
Audit dimension

168 Chapter 6

Quantitative measures and qualitative descriptors of service level performance
Order fulfillment pipeline as accumulating snapshot schema

Lag calculations

Order Management Bus Matrix

The order management function is composed of a series of business processes. In
its most simplistic form, you can envision a subset of the enterprise data warehouse

bus matrix that resembles Figure 6-1.

(-
g/ /& § /s

Q S Q& > Q = &
Quoting X X X X X
Ordering X X X X X
Shipping to Customer X X X X X X X
Shipment Invoicing X X X X X X X
Receiving Payments X X X
Customer Returns X X X X X X X

Figure 6-1: Bus matrix rows for order management processes.

As described in earlier chapters, the bus matrix closely corresponds to the orga-
nization’s value chain. In this chapter we’ll focus on the order and invoice rows
of the matrix. We'll also describe an accumulating snapshot fact table to evaluate
performance across multiple stages of the overall order fulfillment process.

Order Transactions

The natural granularity for an order transaction fact table is one row for each line
item on an order. The dimensions associated with the orders business process are
order date, requested ship date, product, customer, sales rep, and deal. The facts
include the order quantity and extended order line gross, discount, and net (equal
to the gross amount less discount) dollar amounts. The resulting schema would

look similar to Figure 6-2.

Order Management 169

Order Line Transaction Fact
| Order Date Dimension |— Order Date Key (FK)

Requested Ship Date Key (FK) /{ Customer Dimension |
[Requested Ship Date Dimension - | customer Key (FK)

Product Key (FK) — Product Dimension |
| Sales Rep Dimension |— Sales Rep Key (FK)

Deal Key (FK) — Deal Dimension |

Order Number (DD)

Order Line Number (DD)

Order Line Quantity

Extended Order Line Gross Dollar Amount
Extended Order Line Discount Dollar Amount
Extended Order Line Net Dollar Amount

Figure 6-2: Order transaction fact table.

Fact Normalization

Rather than storing the list of facts in Figure 6-2, some designers want to further nor-
malize the fact table so there’s a single, generic fact amount along with a dimension
that identifies the type of measurement. In this scenario, the fact table granularity is
one row per measurement per order line, instead of the more natural one row per order
line event. The measurement type dimension would indicate whether the fact is the
gross order amount, order discount amount, or some other measure. This technique
may make sense when the set of facts is extremely lengthy, but sparsely populated
for a given fact row, and no computations are made between facts. You could use this
technique to deal with manufacturing quality test data where the facts vary widely
depending on the test conducted.

However, you should generally resist the urge to normalize the fact table in this
way. Facts usually are not sparsely populated within a row. In the order transaction
schema, if you were to normalize the facts, you'd be multiplying the number of rows
in the fact table by the number of fact types. For example, assume you started with
10 million order line fact table rows, each with six keys and four facts. If the fact
rows were normalized, yowd end up with 40 million fact rows, each with seven
keys and one fact. In addition, if any arithmetic function is performed between
the facts (such as discount amount as a percentage of gross order amount), it is
far easier if the facts are in the same row in a relational star schema because SQL
makes it difficult to perform a ratio or difference between facts in different rows.
In Chapter 14: Healthcare, we'll explore a situation where a measurement type
dimension makes more sense. This pattern is also more appropriate if the primary
platform supporting BI applications is an OLAP cube; the cube enables computations

170 Chapter 6

that cut the cube along any dimension, regardless if it's a date, product, customer,
or measurement type.

Dimension Role Playing

By now you know to expect a date dimension in every fact table because you're
always looking at performance over time. In a transaction fact table, the primary date
column is the transaction date, such as the order date. Sometimes you discover other
dates associated with each transaction, such as the requested ship date for the order.

Each of the dates should be a foreign key in the fact table, as shown in Figure 6-3.
However, you cannot simply join these two foreign keys to the same date dimension
table. SQL would interpret this two-way simultaneous join as requiring both the
dates to be identical, which isn’t very likely.

Order Date Dimension
Order Date Key
Order Date \ Order Line Transaction Fact
Date Dimension Order Day of Week Order Date Key (FK)
Date K QOrder Month Requested Ship Date Key (FK)
ale Rey Order Quarter Customer Key (FK)
Date
Product Key (FK)
Day of Week
Month Sales Rep Key (FK)
Requested Ship Date Dimension Deal Key (FK)
Quarter -
Requested Ship Date Key Order N‘umber (DD)
Requested Ship Date Order Line Number (DD)
Requested Ship Day of Week Order Quantity
Requested Ship Month Extended Order Line Gross Dollar Amount
Requested Ship Quarter Extended Order Line Discount Dollar Amount
Extended Order Line Net Dollar Amount

Logical views or aliases of the
single physical date dimension

Figure 6-3: Role-playing date dimensions.

Even though you cannot literally join to a single date dimension table, you can
build and administer a single physical date dimension table. You then create the
illusion of two independent date dimensions by using views or aliases. Be careful to
uniquely label the columns in each of the views or aliases. For example, the order
month attribute should be uniquely labeled to distinguish it from the requested
ship month. If you don’t establish unique column names, you wouldn’t be able to
tell the columns apart when both are dragged into a report.

As we briefly described in Chapter 3: Retail Sales, we would define the order date
and requested order date views as follows:

create view order_date

(order_date_key, order_day_of_week, order_month, ...)
as select date_key, day_of_week, month, ... from date

Order Management 171

and

create view req_ship_date
(req_ship_date_key, req_ship_day_of_week, reqg_ship_month, ...)
as select date_key, day_of_week, month, ... from date

Alternatively, SQL supports the concept of aliasing. Many BI tools also enable
aliasing within their semantic layer. However, we caution against this approach
if multiple BI tools, along with direct SQL-based access, are used within the
organization.

Regardless of the implementation approach, you now have two unique logical date
dimensions that can be used as if they were independent with completely unrelated
constraints. This is referred to as role playing because the date dimension simultane-
ously serves different roles in a single fact table. You'll see additional examples of
dimension role playing sprinkled throughout this book.

NOTE Role playing in a dimensional model occurs when a single dimension
simultaneously appears several times in the same fact table. The underlying dimen-
sion may exist as a single physical table, but each of the roles should be presented
to the BI tools as a separately labeled view.

It's worth noting that some OLAP products do not support multiple roles of the
same dimension; in this scenario, you'd need to create two separate dimensions for
the two roles. In addition, some OLAP products that enable multiple roles do not
enable attribute renaming for each role. In the end, OLAP environments may be
littered with a plethora of separate dimensions, which are treated simply as roles
in the relational star schema.

To handle the multiple dates, some designers are tempted to create a single date
table with a key for each unique order date and requested ship date combination.
This approach falls apart on several fronts. First, the clean and simple daily date
table with approximately 365 rows per year would balloon in size if it needed to
handle all the date combinations. Second, a combination date table would no longer
conform to the other frequently used daily, weekly, and monthly date dimensions.

Role Playing and the Bus Matrix

The most common technique to document role playing on the bus matrix is to
indicate the multiple roles within a single cell, as illustrated in Figure 6-4. We used
a similar approach in Chapter 4: Inventory for documenting shrunken conformed
dimensions. This method is especially appropriate for the date dimension on the
bus matrix given its numerous logical roles. Alternatively, if the number of roles is
limited and frequently reused across processes, you can create subcolumns within
a single conformed dimension column on the matrix.

172 Chapter 6

g

Quoting Quote Date
Ordering Order Da.te

Requested Ship Date
Shipping to Customer Shipment Date
Shipment Invoicing Invoice Date
Receiving Payments Payment Receipt Date
Customer Returns Return Date

Figure 6-4: Communicating role-playing dimensions on the bus matrix.

Product Dimension Revisited

Each of the case study vignettes presented so far has included a product dimen-
sion. The product dimension is one of the most common and most important
dimension tables. It describes the complete portfolio of products sold by a com-
pany. In many cases, the number of products in the portfolio turns out to be sur-
prisingly large, at least from an outsider’s perspective. For example, a prominent
U.S. manufacturer of dog and cat food tracks more than 25,000 manufacturing
variations of its products, including retail products everyone (or every dog and
cat) is familiar with, as well as numerous specialized products sold through com-
mercial and veterinary channels. Some durable goods manufacturers, such as
window companies, sell millions of unique product configurations.

Most product dimension tables share the following characteristics:

Numerous verbose, descriptive columns. For manufacturers, it’s not unusual
to maintain 100 or more descriptors about the products they sell. Dimension
table attributes naturally describe the dimension row, do not vary because
of the influence of another dimension, and are virtually constant over time,
although some attributes do change slowly over time.

One or more attribute hierarchies, plus non-hierarchical attributes. Products
typically roll up according to multiple defined hierarchies. The many-to-one
fixed depth hierarchical data should be presented in a single flattened, denor-
malized product dimension table. You should resist creating normalized snow-
flaked sub-tables; the costs of a more complicated presentation and slower
intra-dimension browsing performance outweigh the minimal storage savings
benefits. Product dimension tables can have thousands of entries. With so many

Order Management 173

rows, it is not too useful to request a pull-down list of the product descriptions.
It is essential to have the ability to constrain on one attribute, such as flavor,
and then another attribute, such as package type, before attempting to display
the product descriptions. Any attributes, regardless of whether they belong to
a single hierarchy, should be used freely for browsing and drilling up or down.
Many product dimension attributes are standalone low-cardinality attributes,
not part of explicit hierarchies.

The existence of an operational product master helps create and maintain the
product dimension, but a number of transformations and administrative steps must
occur to convert the operational master file into the dimension table, including the
following:

Remap the operational product code to a surrogate key. As we discussed in
Chapter 3, this meaningless surrogate primary key is needed to avoid havoc
caused by duplicate use of an operational product code over time. It also
might be necessary to integrate product information sourced from different
operational systems. Finally, as you just learned in Chapter 5: Procurement,
the surrogate key is needed to track type 2 product attribute changes.

Add descriptive attribute values to augment or replace operational codes.
You shouldn’t accept the excuse that the business users are familiar with the
operational codes. The only reason business users are familiar with codes is that
they have been forced to use them! The columns in a product dimension are
the sole source of query constraints and report labels, so the contents must be
legible. Cryptic abbreviations are as bad as outright numeric codes; they also
should be augmented or replaced with readable text. Multiple abbreviated codes
in a single column should be expanded and separated into distinct attributes.
Quality check the attribute values to ensure no misspellings, impossible
values, or multiple variations. Bl applications and reports rely on the precise
contents of the dimension attributes. SQL will produce another line in a report
if the attribute value varies in any way based on trivial punctuation or spell-
ing differences. You should ensure that the attribute values are completely
populated because missing values easily cause misinterpretations. Incomplete
or poorly administered textual dimension attributes lead to incomplete or
poorly produced reports.

Document the attribute definitions, interpretations, and origins in the
metadata. Remember that the metadata is analogous to the DW/BI encyclo-
pedia. You must be vigilant about populating and maintaining the metadata
repository.

174 Chapter 6

Customer Dimension

The customer dimension contains one row for each discrete location to which you
ship a product. Customer dimension tables can range from moderately sized (thou-
sands of rows) to extremely large (millions of rows) depending on the nature of the
business. A typical customer dimension is shown in Figure 6-5.

Customer Dimension
Customer Key (PK)
Customer ID (Natural Key)
Customer Name
Customer Ship To Address
Customer Ship To City
Customer Ship To County
Customer Ship To City-State
Customer Ship To State
Customer Ship To ZIP
Customer Ship To ZIP Region
Customer Ship To ZIP Sectional Center
Customer Bill To Name
Customer Bill To Address
Customer Organization Name
Customer Corporate Parent Name
Customer Credit Rating

Figure 6-5: Sample customer dimension.

Several independent hierarchies typically coexist in a customer dimension. The natu-
ral geographic hierarchy is clearly defined by the ship-to location. Because the ship-to
location is a point in space, any number of geographic hierarchies may be defined by
nesting more expansive geographic entities around the point. In the United States,
the usual geographic hierarchy is city, county, and state. It is often useful to include a
city-state attribute because the same city name exists in multiple states. The ZIP code
identifies a secondary geographic breakdown. The first digit of the ZIP code identifies
a geographic region of the United States (for example, 0 for the Northeast and 9 for
certain western states), whereas the first three digits of the ZIP code identify a mailing
sectional center.

Although these geographic characteristics may be captured and managed in a
single master data management system, you should embed the attributes within
the respective dimensions rather than relying on an abstract, generic geography/
location dimension that includes one row for every point in space independent of
the dimensions. We'll talk more about this in Chapter 11: Telecommunications.

Another common hierarchy is the customer’s organizational hierarchy, assuming
the customer is a corporate entity. For each customer ship-to address, you might
have a customer bill-to and customer parent corporation. For every row in the

Order Management 175

customer dimension, both the physical geographies and organizational affiliation
are well defined, even though the hierarchies roll up differently.

NOTE Itis natural and common, especially for customer-oriented dimensions,
for a dimension to simultaneously support multiple independent hierarchies. The
hierarchies may have different numbers of levels. Drilling up and drilling down
within each of these hierarchies must be supported in a dimensional model.

The alert reader may have a concern with the implied assumption that multiple
ship-tos roll up to a single bill-to in a many-to-one relationship. The real world may
not be quite this clean and simple. There are always a few exceptions involving
ship-to addresses that are associated with more than one bill-to. Obviously, this
breaks the simple hierarchical relationship assumed in Figure 6-5. If this is a rare
occurrence, it would be reasonable to generalize the customer dimension so that the
grain of the dimension is each unique ship-to/bill-to combination. In this scenario,
if there are two sets of bill-to information associated with a given ship-to location,
then there would be two rows in the dimension, one for each combination. On the
other hand, if many of the ship-tos are associated with many bill-tos in a robust
many-to-many relationship, then the ship-to and bill-to customers probably need to
be handled as separate dimensions that are linked together by the fact table. With
either approach, exactly the same information is preserved. We'll spend more time
on organizational hierarchies, including the handling of variable depth recursive
relationships, in Chapter 7: Accounting.

Single Versus Multiple Dimension Tables

Another potential hierarchy in the customer dimension might be the manufacturer’s
sales organization. Designers sometimes question whether sales organization attri-
butes should be modeled as a separate dimension or added to the customer dimension.
If sales reps are highly correlated with customers in a one-to-one or many-to-one rela-
tionship, combining the sales organization attributes with the customer attributes in
a single dimension is a viable approach. The resulting dimension is only as big as the
larger of the two dimensions. The relationships between sales teams and customers
can be browsed efficiently in the single dimension without traversing the fact table.

However, sometimes the relationship between sales organization and customer
is more complicated. The following factors must be taken into consideration:

Is the one-to-one or many-to-one relationship actually a many-to-many?
As we discussed earlier, if the many-to-many relationship is an exceptional
condition, then you may still be tempted to combine the sales rep attributes
into the customer dimension, knowing multiple surrogate keys are needed to
handle these rare many-to-many occurrences. However, if the many-to-many

176 Chapter 6

relationship is the norm, you should handle the sales rep and customer as
separate dimensions.

Does the sales rep and customer relationship vary over time or under the
influence of another dimension? If so, you'd likely create separate dimensions
for the rep and customer.

Is the customer dimension extremely large? If there are millions of customer
rows, you'd be more likely to treat the sales rep as a separate dimension rather
than forcing all sales rep analysis through a voluminous customer dimension.
Do the sales rep and customer dimensions participate independently in
other fact tables? Again, you'd likely keep the dimensions separate. Creating a
single customer dimension with sales rep attributes exclusively around order
data may cause users to be confused when they’re analyzing other processes
involving sales reps.

Does the business think about the sales rep and customer as separate
things? This factor may be tough to discern and impossible to quantify. But
there’s no sense forcing two critical dimensions into a single blended dimen-
sion if this runs counter to the business’s perspectives.

When entities have a fixed, time-invariant, strongly correlated relationship, they
should be modeled as a single dimension. In most other cases, the design likely will
be simpler and more manageable when the entities are separated into two dimen-
sions (while remembering the general guidelines concerning too many dimensions).
If you've already identified 25 dimensions in your schema, you should consider
combining dimensions, if possible.

When the dimensions are separate, some designers want to create a little table
with just the two dimension keys to show the correlation without using the order
fact table. In many scenarios, this two-dimension table is unnecessary. There is no
reason to avoid the fact table to respond to this relationship inquiry. Fact tables are
incredibly efficient because they contain only dimension keys and measurements,
along with the occasional degenerate dimension. The fact table is created specifically
to represent the correlations and many-to-many relationships between dimensions.

As we discussed in Chapter 5, you could capture the customer’s currently assigned
sales rep by including the relevant descriptors as type 1 attributes. Alternatively, you
could use the slowly changing dimension (SCD) type 5 technique by embedding a
type 1 foreign key to a sales rep dimension outrigger within the customer dimen-
sion; the current values could be presented as if they're included on the customer
dimension via a view declaration.

Factless Fact Table for Customer/Rep Assignments

Before we leave the topic of sales rep assignments to customers, users sometimes
want the ability to analyze the complex assignment of sales reps to customers over

Order Management 177

time, even if no order activity has occurred. In this case, you could construct a
factless fact table, as illustrated in Figure 6-6, to capture the sales rep coverage.
The coverage table would provide a complete map of the historical assignments of
sales reps to customers, even if some of the assignments never resulted in a sale.
This factless fact table contains dual date keys for the effective and expiration dates
of each assignment. The expiration date on the current rep assignment row would
reference a special date dimension row that identifies a future, undetermined date.

Sales Rep-Customer Assignment Fact

| Date Dimension (views for 2 roles) |< Assignment Effective Date Key (FK)
Assignment Expiration Date Key (FK)

| Sales Rep Dimension —— Sales Rep Key (FK)
Customer Key (FK)
| Customer Dimension |/ Customer Assignment Counter (=1)

Figure 6-6: Factless fact table for sales rep assignments to customers.

You may want to compare the assignments fact table with the order transactions
fact table to identify rep assignments that have not yet resulted in order activity. You
would do so by leveraging SQLs capabilities to perform set operations (for example,
selecting all the reps in the coverage table and subtracting all the reps in the orders
table) or by writing a correlated subquery.

Deal Dimension

The deal dimension is similar to the promotion dimension from Chapter 3. The deal
dimension describes the incentives offered to customers that theoretically affect the
customers’ desire to purchase products. This dimension is also sometimes referred
to as the contract. As shown in Figure 6-7, the deal dimension describes the full
combination of terms, allowances, and incentives that pertain to the particular
order line item.

Deal Dimension
Deal Key (PK)
Deal ID (NK)
Deal Description
Deal Terms Description
Deal Terms Type Description
Allowance Description
Allowance Type Description
Special Incentive Description
Special Incentive Type Description
Local Budget Indicator

Figure 6-7: Sample deal dimension.

178 Chapter 6

The same issues you faced in the retail promotion dimension also arise with this
deal dimension. If the terms, allowances, and incentives are usefully correlated, it
makes sense to package them into a single deal dimension. If the terms, allowances,
and incentives are quite uncorrelated and you end up generating the Cartesian
product of these factors in the dimension, it probably makes sense to split the deal
dimension into its separate components. Again, this is not an issue of gaining or
losing information because the schema contains the same information in both cases.
The issues of user convenience and administrative complexity determine whether
to represent these deal factors as multiple dimensions. In a very large fact table,
with hundreds of millions or billions of rows, the desire to reduce the number of
keys in the fact table composite key favors treating the deal attributes as a single
dimension, assuming this meshes with the business users’ perspectives. Certainly
any deal dimension smaller than 100,000 rows would be tractable in this design.

Degenerate Dimension for Order Number

Each line item row in the order fact table includes the order number as a degenerate
dimension. Unlike an operational header/line or parent/child database, the order
number in a dimensional model is typically not tied to an order header table. You
can triage all the interesting details from the order header into separate dimensions
such as the order date and customer ship-to. The order number is still useful for
several reasons. It enables you to group the separate line items on the order and
answer questions such as “What is the average number of line items on an order?”
The order number is occasionally used to link the data warehouse back to the
operational world. It may also play a role in the fact table’s primary key. Because
the order number sits in the fact table without joining to a dimension table, it is a
degenerate dimension.

NOTE Degenerate dimensions typically are reserved for operational transaction
identifiers. They should not be used as an excuse to stick cryptic codes in the fact
table without joining to dimension tables for descriptive decodes.

Although there is likely no analytic purpose for the order transaction line num-
ber, it may be included in the fact table as a second degenerate dimension given its
potential role in the primary key, along with the linkage to the operational system
of record. In this case, the primary key for the line item grain fact table would be
the order number and line number.

Sometimes data elements belong to the order itself and do not naturally fall into
other dimension tables. In this situation, the order number is no longer a degenerate
dimension but is a standard dimension with its own surrogate key and attributes.

Order Management 179

However, designers with a strong operational background should resist the urge to
simply dump the traditional order header information into an order dimension. In
almost all cases, the header information belongs in other analytic dimensions that
can be associated with the line item grain fact table rather than merely being cast
off into a dimension that closely resembles the operational order header record.

Junk Dimensions

When modeling complex transactional source data, you often encounter a number
of miscellaneous indicators and flags that are populated with a small range of dis-
crete values. You have several rather unappealing options for handling these low
cardinality flags and indicators, including:

Ignore the flags and indicators. You can ask the obligatory question about
eliminating these miscellaneous flags because they seem rather insignificant,
but this notion is often vetoed quickly because someone occasionally needs
them. If the indicators are incomprehensible or inconsistently populated,
perhaps they should be left out.

Leave the flags and indicators unchanged on the fact row. You don’t want
to store illegible cryptic indicators in the fact table. Likewise, you don’t
want to store bulky descriptors on the fact row, which would cause the
table to swell alarmingly. It would be a shame to leave a handful of textual
indicators on the row.

Make each flag and indicator into its own dimension. Adding separate foreign
keys to the fact table is acceptable if the resulting number of foreign keys is
still reasonable (no more than 20 or so). However, if the list of foreign keys
is already lengthy, you should avoid adding more clutter to the fact table.
Store the flags and indicators in an order header dimension. Rather than
treating the order number as a degenerate dimension, you could make it a
regular dimension with the low cardinality flags and indicators as attributes.
Although this approach accurately represents the data relationships, it is ill-
advised, as described below.

An appropriate alternative approach for tackling these flags and indicators is to
study them carefully and then pack them into one or more junk dimensions. A junk
dimension is akin to the junk drawer in your kitchen. The kitchen junk drawer is a
dumping ground for miscellaneous household items, such as rubber bands, paper
clips, batteries, and tape. Although it may be easier to locate the rubber bands if
a separate kitchen drawer is dedicated to them, you don’t have adequate storage
capacity to do so. Besides, you don’t have enough stray rubber bands, nor do you
need them frequently, to warrant the allocation of a single-purpose storage space.

180 Chapter 6

The junk drawer provides you with satisfactory access while still retaining storage
space for the more critical and frequently accessed dishes and silverware. In the
dimensional modeling world, the junk dimension nomenclature is reserved for DW/
BI professionals. We typically refer to the junk dimension as a transaction indicator
or transaction profile dimension when talking with the business users.

NOTE A junk dimension is a grouping of low-cardinality flags and indicators.
By creating a junk dimension, you remove the flags from the fact table and place
them into a useful dimensional framework.

If a single junk dimension has 10 two-value indicators, such as cash versus credit
payment type, there would be a maximum of 1,024 (21°) rows. It probably isn’t
interesting to browse among these flags within the dimension because every flag
may occur with every other flag. However, the junk dimension is a useful holding
place for constraining or reporting on these flags. The fact table would have a single,
small surrogate key for the junk dimension.

On the other hand, if you have highly uncorrelated attributes that take on more
numerous values, it may not make sense to lump them together into a single junk
dimension. Unfortunately, the decision is not entirely formulaic. If you have five
indicators that each take on only three values, a single junk dimension is the best
route for these attributes because the dimension has only 243 (3°) possible rows.
However, if the five uncorrelated indicators each have 100 possible values, we'd
suggest creating separate dimensions because there are now 100 million (100°)
possible combinations.

Figure 6-8 illustrates sample rows from an order indicator dimension. A subtle
issue regarding junk dimensions is whether you should create rows for the full
Cartesian product of all the combinations beforehand or create junk dimension
rows for the combinations as you encounter them in the data. The answer depends
on how many possible combinations you expect and what the maximum number
could be. Generally, when the number of theoretical combinations is high and you
don’t expect to encounter them all, you build a junk dimension row at extract time
whenever you encounter a new combination of flags or indicators.

Now that junk dimensions have been explained, contrast them to the handling
of the flags and indicators as attributes in an order header dimension. If you want
to analyze order facts where the order type is Inbound (refer to Figure 6-8’s junk
dimension rows), the fact table would be constrained to order indicator key equals
1,2,5,6,9, 10, and probably a few others. On the other hand, if these attributes
were stored in an order header dimension, the constraint on the fact table would be
an enormous list of all order numbers with an inbound order type.

Order Management 181

Order Payment Type Payment Type Commission Credit
Indicator Key | Description Group Order Type Indicator

1 Cash Cash Inbound Commissionable

2 Cash Cash Inbound Non-Commissionable
3 Cash Cash Outbound Commissionable

4 Cash Cash Outbound Non-Commissionable
5 Visa Credit Inbound Commissionable

6 Visa Credit Inbound Non-Commissionable
7 Visa Credit Outbound Commissionable

8 Visa Credit Outbound Non-Commissionable
9 MasterCard Credit Inbound Commissionable

10 MasterCard Credit Inbound Non-Commissionable
11 MasterCard Credit Outbound Non-Commissionable
12 MasterCard Credit Outbound Commissionable

Figure 6-8: Sample rows of order indicator junk dimension.

Header/Line Pattern to Avoid

There are two common design mistakes to avoid when you model header/line data
dimensionally. Unfortunately, both of these patterns still accurately represent the
data relationships, so they don't stick out like a sore thumb. Perhaps equally unfor-
tunate is that both patterns often feel more comfortable to data modelers and ETL
team members with significant transaction processing experience than the patterns
we advocate. We'll discuss the first common mistake here; the other is covered in
the section “Another Header/Line Pattern to Avoid.”

Figure 6-9 illustrates a header/line modeling pattern we frequently observe when
conducting design reviews. In this example, the operational order header is virtually
replicated in the dimensional model as a dimension. The header dimension contains
all the data from its operational equivalent. The natural key for this dimension is
the order number. The grain of the fact table is one row per order line item, but
there’s not much dimensionality associated with it because most descriptive context
is embedded in the order header dimension.

Although this design accurately represents the header/line relationship, there are
obvious flaws. The order header dimension is likely very large, especially relative to
the fact table itself. If there are typically five line items per order, the dimension is
20 percent as large as the fact table; there should be orders of magnitude differences
between the size of a fact table and its associated dimensions. Also, dimension tables
don’t normally grow at nearly the same rate as the fact table. With this design, you
would add one row to the dimension table and an average of five rows to the fact
table for every new order. Any analysis of the order’s interesting characteristics,

182 Chapter 6

such as the customer, sales rep, or deal involved, would need to traverse this large
dimension table.

Order Header Dimension Order Line Transaction Fact
Order Number (PK) Order Number (FK) - -
Order Date Product Key (FK) _| LI T
Order Month Order Line Number (DD)
Order Line Quantity
Requested Ship Date Extended Order Line Gross Dollar Amount
Requested Ship Month Extended Order Line Discount Dollar Amount

Extended Order Line Net Dollar Amount

Customer ID
Customer Name

)

1 row per Order Line
Sales Rep Number
Sales Rep Name

Deal ID
Deal Description

0

1 row per Order Header

Figure 6-9: Pattern to avoid: treating transaction header as a dimension.

Multiple Currencies

Suppose you track the orders of a large multinational U.S.-based company with sales
offices around the world. You may be capturing order transactions in more than
15 different currencies. You certainly wouldn’t want to include columns in the fact
table for each currency.

The most common analytic requirement is that order transactions be expressed
in both the local transaction currency and the standardized corporate currency,
such as U.S. dollars in this example. To satisfy this need, each order fact would be
replaced with a pair of facts, one for the applicable local currency and another for
the equivalent standard corporate currency, as illustrated in Figure 6-10. The con-
version rate used to construct each fact row with the dual metrics would depend
on the business’s requirements. It might be the rate at the moment the order was
captured, an end of day rate, or some other rate based on defined business rules. This
technique would preserve the transactional metrics, plus allow all transactions to
easily roll up to the corporate currency without complicated reporting application
coding. The metrics in standard currency would be fully additive. The local currency
metrics would be additive only for a single specified currency; otherwise, youd be
trying to sum Japanese yen, Thai bhat, and British pounds. You'd also supplement

Order Management 183

the fact table with a currency dimension to identify the currency type associated
with the local currency facts; a currency dimension is needed even if the location
of the transaction is otherwise known because the location does not necessarily
guarantee which currency was used.

Order Line Transaction Fact
Order Date Key (FK)
Requested Ship Date Key (FK)
Customer Key (FK)

Product Key (FK)
Sales Rep Key (FK)
Local Currency Dimension Deal Key (FK)
Local Currency Key (PK) Local Currency Dimension Key (FK)
Local Currency Name Order Number (DD)
Local Gurrency Abbreviation Order Line Number (DD)

Order Line Quantity

Extended Order Line Gross USD Amount

Extended Order Line Discount USD Amount

Extended Order Line Net USD Amount

Extended Order Line Gross Local Currency Amount
Extended Order Line Discount Local Gurrency Amount
Extended Order Line Net Local Currency Amount

Figure 6-10: Metrics in multiple currencies within the fact table.

This technique can be expanded to support other relatively common examples.
If the business’s sales offices roll up into a handful of regional centers, you could
supplement the fact table with a third set of metrics representing the transactional
amounts converted into the appropriate regional currency. Likewise, the fact table
columns could represent currencies for the customer ship-to and customer bill-to,
or the currencies as quoted and shipped.

In each of the scenarios, the fact table could physically contain a full set of metrics
in one currency, along with the appropriate currency conversion rate(s) for that row.
Rather than burdening the business users with appropriately multiplying or divid-
ing by the stored rate, the intra-row extrapolation should be done in a view behind
the scenes; all reporting applications would access the facts via this logical layer.

Sometimes the multi-currency support requirements are more complicated than
just described. You may need to allow a manager in any country to see order volume
in any currency. In this case, you can embellish the initial design with an additional
currency conversion fact table, as shown in Figure 6-11. The dimensions in this
fact table represent currencies, not countries, because the relationship between
currencies and countries is not one-to-one. The more common needs of the local
sales rep and sales management in headquarters would be met simply by querying
the orders fact table, but those with less predictable requirements would use the

184 Chapter 6

currency conversion table in a specially crafted query. Navigating the currency
conversion table is obviously more complicated than using the converted metrics
on the orders fact table.

Currency Conversion Fact
Conversion Date Key (FK)
Source Currency Key (FK)
Destination Currency Key (FK)
Source-Destination Exchange Rate
Destination-Source Exchange Rate

Figure 6-11: Tracking multiple currencies with daily currency exchange fact table.

Within each currency conversion fact table row, the amount expressed in local
currency is absolutely accurate because the sale occurred in that currency on that
day. The equivalent U.S. dollar value would be based on a conversion rate to U.S.
dollars for that day. The conversion rate table contains the combinations of rel-
evant currency exchange rates going in both directions because the symmetric
rates between two currencies are not equal. It is unlikely this conversion fact table
needs to include the full Cartesian product of all possible currency combinations.
Although there are approximately 100 unique currencies globally, there wouldn’t
need to be 10,000 daily rows in this currency fact table as there’s not a meaningful
market for every possible pair; likewise, all theoretical combinations are probably
overkill for the business users.

The use of a currency conversion table may also be required to support the busi-
ness’s need for multiple rates, such as an end of month or end of quarter close rate,
which may not be defined until long after the transactions have been loaded into
the orders fact table.

Transaction Facts at Different Granularity

It is quite common in header/line operational data to encounter facts of differing
granularity. On an order, there may be a shipping charge that applies to the entire
order. The designer’s first response should be to try to force all the facts down to
the lowest level, as illustrated in Figure 6-12. This procedure is broadly referred
to as allocating. Allocating the parent order facts to the child line item level is
critical if you want the ability to slice and dice and roll up all order facts by all
dimensions, including product.

Unfortunately, allocating header-level facts down to the line item level may entail
a political wrestling match. It is wonderful if the entire allocation issue is handled by
the finance department, not by the DW/BI team. Getting organizational agreement
on allocation rules is often a controversial and complicated process. The DW/BI team

Order Management 185

shouldn’t be distracted and delayed by the inevitable organizational negotiation.
Fortunately, in many companies, the need to rationally allocate costs has already
been recognized. A task force, independent of the DW/BI project, already may have
established activity-based costing measures. This is just another name for allocating.

Order Line Transaction Fact
Order Date Key (FK)
Requested Ship Date Key (FK)
Customer Key (FK)
Product Key (FK)
Sales Rep Key (FK)

Order Header Transaction Fact Deal Key (FK)
Order Date Key (FK) Order Number (DD)
Requested Ship Date Key (FK) Order Line Number (DD)
Customer Key (FK) Order Line Quantity
Sales Rep Key (FK) Extended Order Line Gross Dollar Amount
Deal Key (FK) Extended Order Line Discount Dollar Amount
Order Number (PK) Extended Order Line Net Dollar Amount
Order Shipping Charges Dollar Amount Allocated Order Line Shipping Charges Dollar Amount

Figure 6-12: Allocating header facts to line items.

If the shipping charges and other header-level facts cannot be successfully allo-
cated, they must be presented in an aggregate table for the overall order. We clearly
prefer the allocation approach, if possible, because the separate higher-level fact
table has some inherent usability issues. Without allocations, you cannot explore
header facts by product because the product isn’t identified in a header-grain fact
table. If you are successful in allocating facts down to the lowest level, the problem
goes away.

WARNING You shouldn’t mix fact granularities such as order header and order
line facts within a single fact table. Instead, either allocate the higher-level facts
to a more detailed level or create two separate fact tables to handle the differently
grained facts. Allocation is the preferred approach.

Optimally, the business data stewards obtain enterprise consensus on the allocation
rules. But sometimes organizations refuse to agree. For example, the finance depart-
ment may want to allocate the header freight charged based on the extended gross
order amount on each line; meanwhile, the logistics group wants the freight charge
to be allocated based on the weight of the line’s products. In this case, you would
have two allocated freight charges on every order line fact table row; the uniquely
calculated metrics would also be uniquely labeled. Obviously, agreeing on a single,
standard allocation scheme is preferable.

186 Chapter 6

Design teams sometimes attempt to devise alternative techniques for handling

header/line facts at different granularity, including the following:

Repeat the unallocated header fact on every line. This approach is fraught
with peril given the risk of overstating the header amount when it's summed
on every line.

Store the unallocated amount on the transaction’s first or last line. This tac-
tic eliminates the risk of overcounting, but if the first or last lines are excluded
from the query results due to a filter constraint on the product dimension, it
appears there were no header facts associated with this transaction.

Set up a special product key for the header fact. Teams who adopt this
approach sometimes recycle an existing line fact column. For example, if
product key = 99999, then the gross order metric is a header fact, like the
freight charge. Dimensional models should be straightforward and legible. You
don’t want to embed complexities requiring a business user to wear a special
decoder ring to navigate the dimensional model successfully.

Another Header/Line Pattern to Avoid

The second header/line pattern to avoid is illustrated in Figure 6-13. In this example,

the order header is no longer treated as a monolithic dimension but as a fact table

instead. The header’s associated descriptive information is grouped into dimen-

sions surrounding the order fact. The line item fact table (identical in structure and

granularity as the first diagram) joins to the header fact based on the order number.

Order Header Transaction Fact

Order Date Dimension | Order Date Key (FK)

Requested Ship Date Key (FK) /{ Customer Dimension |
| Requested Ship Date Dimension |/ Customer Key (FK)

Sales Rep Key (FK) — Sales Rep Dimension |
| Deal Dimension F— Deal Key (FK)

Order Number (PK)

Extended Order Total Gross Dollar Amount
Extended Order Total Discount Dollar Amount
Extended Order Total Net Dollar Amount
Order Total Shipping Charges Dollar Amount

Order Line Transaction Fact
Order Number (FK)
Order Line Number (DD)
Product Key (FK) —| Product Dimension
Order Line Quantity
Extended Order Line Gross Dollar Amount
Extended Order Line Discount Dollar Amount
Extended Order Line Net Dollar Amount

Figure 6-13: Pattern to avoid: not inheriting header dimensionality in line facts.

Order Management 187

Again, this design accurately represents the parent/child relationship of the order
header and line items, but there are still flaws. Every time the user wants to slice
and dice the line facts by any of the header attributes, a large header fact table needs
to be associated with an even larger line fact table.

Invoice Transactions

In a manufacturing company, invoicing typically occurs when products are shipped
from your facility to the customer. Visualize shipments at the loading dock as boxes
of product are placed into a truck destined for a particular customer address. The
invoice associated with the shipment is created at this time. The invoice has mul-
tiple line items, each corresponding to a particular product being shipped. Various
prices, discounts, and allowances are associated with each line item. The extended
net amount for each line item is also available.

Although you don’t show it on the invoice to the customer, a number of other
interesting facts are potentially known about each product at the time of shipment.
You certainly know list prices; manufacturing and distribution costs may be avail-
able as well. Thus you know a lot about the state of your business at the moment
of customer invoicing.

In the invoice fact table, you can see all the company’s products, customers,
contracts and deals, off-invoice discounts and allowances, revenue generated by
customers, variable and fixed costs associated with manufacturing and delivering
products (if available), money left over after delivery of product (profit contribution),
and customer satisfaction metrics such as on-time shipment.

NOTE For any company that ships products to customers or bills customers
for services rendered, the optimal place to start a DW/BI project typically is with
invoices. We often refer to invoicing as the most powerful data because it combines
the company’s customers, products, and components of profitability.

You should choose the grain of the invoice fact table to be the individual invoice
line item. A sample invoice fact table associated with manufacturer shipments is
illustrated in Figure 6-14.

As expected, the invoice fact table contains a number of dimensions from earlier
in this chapter. The conformed date dimension table again would play multiple
roles in the fact table. The customer, product, and deal dimensions also would
conform, so you can drill across fact tables using common attributes. If a single
order number is associated with each invoice line item, it would be included as a
second degenerate dimension.

188 Chapter 6

Shipment Invoice Line Transaction Fact

Invoice Date Key (FK)
| Date Dimension (views for 3 roles)}< Requested Ship Date Key (FK)
Actual Ship Date Key (FK)

Customer Key (FK) —| Customer Dimension |
| Product Dimension I— Product Key (FK)

Sales Rep Key (FK) —| Sales Rep Dimension |
| Deal Dimension |— Deal Key (FK)

Warehouse Key (FK) —| Warehouse Dimension |
| Shipper Dimension |— Shipper Key (FK)

Service Level Key (FK) —| Service Level Dimension |

Invoice Number (DD)

Invoice Line Number (DD)

Invoice Line Quantity

Extended Invoice Line Gross Dollar Amount

Extended Invoice Line Allowance Dollar Amount
Extended Invoice Line Discount Dollar Amount
Extended Invoice Line Net Dollar Amount

Extended Invoice Line Fixed Mfg Cost Dollar Amount
Extended Invoice Line Variable Mfg Cost Dollar Amount
Extended Invoice Line Storage Cost Dollar Amount
Extended Invoice Line Distribution Cost Dollar Amount
Extended Invoice Line Contribution Dollar Amount
Shipment On-Time Counter

Requested to Actual Ship Lag

Figure 6-14: Shipment invoice fact table.

The shipment invoice fact table also contains some interesting new dimensions.
The warehouse dimension contains one row for each manufacturer warehouse loca-
tion. This is a relatively simple dimension with name, address, contact person, and
storage facility type. The attributes are somewhat reminiscent of the store dimension
from Chapter 3. The shipper dimension describes the method and carrier by which
the product was shipped from the manufacturer to the customer.

Service Level Performance as Facts,
Dimensions, or Both

The fact table in Figure 6-14 includes several critical dates intended to capture
shipment service levels. All these dates are known when the operational invoicing
process occurs. Delivering the multiple event dates in the invoicing fact table with
corresponding role-playing date dimensions allows business users to filter, group,
and trend on any of these dates. But sometimes the business requirements are more
demanding.

You could include an additional on-time counter in the fact table that’s set to an
additive zero or one depending on whether the line shipped on time. Likewise, you
could include lag metrics representing the number of days, positive or negative,
between the requested and actual ship dates. As described later in this chapter, the
lag calculation may be more sophisticated than the simple difference between dates.

Order Management 189

In addition to the quantitative service metrics, you could also include a qualita-

tive assessment of performance by adding either a new dimension or adding more

columns to the junk dimension. Either way, the attribute values might look similar

to those shown in Figure 6-15.

Service Level |Service Level Service Level
Key Description Group

1 On-time On-time
2 1 day early Early

3 2 days early Early

4 3 days early Early

5 > 3 days early Too early
6 1 day late Late

7 2 days late Late

8 3 days late Late

9 > 3 days late Too late

Figure 6-15: Sample qualitative service level descriptors.

If service level performance at the invoice line is closely watched by business
users, you may embrace all the patterns just described, since quantitative metrics
with qualitative text provide different perspectives on the same performance.

Profit and Loss Facts

If your organization has tackled activity-based costing or implemented a robust
enterprise resource planning (ERP) system, you might be in a position to identify
many of the incremental revenues and costs associated with shipping finished prod-
ucts to the customer. It is traditional to arrange these revenues and costs in sequence
from the top line, which represents the undiscounted value of the products shipped
to the customer, down to the bottom line, which represents the money left over after
discounts, allowances, and costs. This list of revenues and costs is referred to as a
profit and loss (P&L) statement. You typically don't attempt to carry it all the way
to a complete view of company profit including general and administrative costs.
For this reason, the bottom line in the P&L statement is referred to as contribution.

Keeping in mind that each row in the invoice fact table represents a single line
item on the invoice, the elements of the P&L statement shown in Figure 6-14 have
the following interpretations:

Quantity shipped: Number of cases of the particular line item’s product.
The use of multiple equivalent quantities with different units of measure is
discussed in the section “Multiple Units of Measure.”

Extended gross amount: Also known as extended list price because it is the
quantity shipped multiplied by the list unit price. This and all subsequent

190 Chapter 6

dollar values are extended amounts or, in other words, unit rates multiplied by
the quantity shipped. This insistence on additive values simplifies most access
and reporting applications. It is relatively rare for a business user to ask for
the unit price from a single fact table row. When the user wants an average
price drawn from many rows, the extended prices are first added, and then
the result is divided by the sum of the quantities.

Extended allowance amount: Amount subtracted from the invoice line gross
amount for deal-related allowances. The allowances are described in the
adjoined deal dimension. The allowance amount is often called an off-invoice
allowance. The actual invoice may have several allowances for a given line
item; the allowances are combined together in this simplified example. If
the allowances need to be tracked separately and there are potentially many
simultaneous allowances on a given line item, an allowance detail fact table
could augment the invoice line fact table, serving as a drill-down for details
on the allowance total in the invoice line fact table.

Extended discount amount: Amount subtracted for volume or payment term
discounts. The discount descriptions are found in the deal dimension. As
discussed earlier regarding the deal dimension, the decision to describe the
allowances and discount types together is the designer’s prerogative. It makes
sense to do this if allowances and discounts are correlated and business users
want to browse within the deal dimension to study the relationships between
allowances and discounts.

All allowances and discounts in this fact table are represented at the line
item level. As discussed earlier, some allowances and discounts may be cal-
culated operationally at the invoice level, not at the line item level. An effort
should be made to allocate them down to the line item. An invoice P&L state-
ment that does not include the product dimension poses a serious limitation
on your ability to present meaningful contribution slices of the business.
Extended net amount: Amount the customer is expected to pay for this line
item before tax. It is equal to the gross invoice amount less the allowances
and discounts.

The facts described so far likely would be displayed to the customer on the invoice
document. The following cost amounts, leading to a bottom line contribution, are
for internal consumption only.

Extended fixed manufacturing cost: Amount identified by manufacturing as
the pro rata fixed manufacturing cost of the invoice line’s product.

Extended variable manufacturing cost: Amount identified by manufacturing
as the variable manufacturing cost of the product on the invoice line. This
amount may be more or less activity-based, reflecting the actual location and

Order Management 191

time of the manufacturing run that produced the product being shipped to
the customer. Conversely, this number may be a standard value set by a com-
mittee. If the manufacturing costs or any of the other storage and distribution
costs are averages of averages, the detailed P&Ls may become meaningless.
The DW/BI system may illuminate this problem and accelerate the adoption
of activity-based costing methods.

Extended storage cost: Cost charged to the invoice line for storage prior to
being shipped to the customer.

Extended distribution cost: Cost charged to the invoice line for transportation
from the point of manufacture to the point of shipment. This cost is notori-
ous for not being activity-based. The distribution cost possibly can include
freight to the customer if the company pays the freight, or the freight cost
can be presented as a separate line item in the P&L.

Contribution amount: Extended net invoice less all the costs just discussed. This
is not the true bottom line of the overall company because general and admin-
istrative expenses and other financial adjustments have not been made, but it is
important nonetheless. This column sometimes has alternative labels, such as
margin, depending on the company culture.

You should step back and admire the robust dimensional model you just built.
You constructed a detailed P&L view of your business, showing all the activity-based
elements of revenue and costs. You have a full equation of profitability. However,
what makes this design so compelling is that the P&L view sits inside a rich dimen-
sional framework of dates, customers, products, and causal factors. Do you want
to see customer profitability? Just constrain and group on the customer dimension
and bring the components of the P&L into the report. Do you want to see product
profitability? Do you want to see deal profitability? All these analyses are equally
easy and take the same analytic form in the BI applications. Somewhat tongue in
cheek, we recommend you not deliver this dimensional model too early in your
career because you will get promoted and won’t be able to work directly on any
more DW/BI systems!

Profitability Words of Warning

We must balance the last paragraph with a more sober note and pass along some
cautionary words of warning. It goes without saying that most of the business users
probably are very interested in granular P&L data that can be rolled up to analyze
customer and product profitability. The reality is that delivering these detailed
P&L statements often is easier said than done. The problems arise with the cost
facts. Even with advanced ERP implementations, it is fairly common to be unable
to capture the cost facts at this atomic level of granularity. You will face a complex
process of mapping or allocating the original cost data down to the invoice line

192 cChapter 6

level. Furthermore, each type of cost may require a separate extraction from a
source system. Ten cost facts may mean 10 different extract and transformation
programs. Before signing up for mission impossible, be certain to perform a detailed
assessment of what is available and feasible from the source systems. You certainly
don’t want the DW/BI team saddled with driving the organization to consensus on
activity-based costing as a side project, on top of managing a number of parallel
extract implementations. If time and organization patience permits, profitability is
often tackled as a consolidated dimensional model after the components of revenue
and cost have been sourced and delivered separately to business users in the DW/
BI environment.

Audit Dimension

As mentioned, Figure 6-14’s invoice line item design is one of the most powerful
because it provides a detailed look at customers, products, revenues, costs, and
bottom line profit in one schema. During the building of rows for this fact table,
a wealth of interesting back room metadata is generated, including data quality
indicators, unusual processing requirements, and environment version numbers
that identify how the data was processed during the ETL. Although this metadata is
frequently of interest to ETL developers and IT management, there are times when
it can be interesting to the business users, too. For instance, business users might
want to ask the following:

What is my confidence in these reported numbers?

Were there any anomalous values encountered while processing this source
data?

What version of the cost allocation logic was used when calculating the costs?
What version of the foreign currency conversion rules was used when calcu-
lating the revenues?

These kinds of questions are often hard to answer because the metadata required
is not readily available. However, if you anticipate these kinds of questions, you can
include an audit dimension with any fact table to expose the metadata context that
was true when the fact table rows were built. Figure 6-16 illustrates an example
audit dimension.

The audit dimension is added to the fact table by including an audit dimension
foreign key. The audit dimension itself contains the metadata conditions encountered
when processing fact table rows. It is best to start with a modest audit dimension
design, such as shown in Figure 6-16, both to keep the ETL processing from getting
too complicated and to limit the number of possible audit dimension rows. The first
three attributes (quality indicator, out of bounds indicator, and amount adjusted flag)
are all sourced from a special ETL processing table called the error event table, which

Order Management 193

is discussed in Chapter 19: ETL Subsystems and Techniques. The cost allocation and

foreign currency versions are environmental variables that should be available in an
ETL back room status table.

Shipment Invoice Line Transaction Fact

| Date Dimension (views for 3 roles) ’<

l_
l_
l_

| Product Dimension

| Deal Dimension

| Shipper Dimension

Audit Dimension

Audit Key (PK)

Quality Indicator

Out of Bounds Indicator
Amount Adjusted Flag
Cost Allocation Version

Invoice Date Key (FK)
Requested Ship Date Key (FK)
Actual Ship Date Key (FK)
Customer Key (FK)

Product Key (FK)

Sales Rep Key (FK)

Deal Key (FK)

Warehouse Key (FK)

Shipper Key (FK)

Service Level Key (FK)

Audit Key (FK)

Invoice Number (DD)

Invoice Line Number (DD)
Invoice Line Quantity
Extended Invoice Line Gross Dollar Amount

_|
_|

—| Warehouse Dimension |

Customer Dimension |

Sales Rep Dimension |

— Senvice Level Dimension |

Foreign Currency Version

Figure 6-16: Sample audit dimension included on invoice fact table.

Armed with the audit dimension, some powerful queries can be performed. You

might want to take this morning’s invoice report and ask if any of the reported

numbers were based on out-of-bounds measures. Because the audit dimension is

now just an ordinary dimension, you can just add the out-of-bounds indicator to

your standard report. In the resulting “instrumented” report shown in Figure 6-17,

you see multiple rows showing normal and abnormal out-of-bounds results.

Standard Report:

Invoice Line Extended Invoice Line
Product Warehouse Quantity Gross Amount
Axon East 1,438 235,000
Axon West 2,249 480,000
Instrumented Reported (with Out of Bounds Indicator added):

Out of Bounds Invoice Line Extended Invoice Line
Product Warehouse Indicator Quantity Gross Amount
Axon East Abnormal 14 2,350
Axon East Normal 1.424 232,650
Axon West < Abnormal 675 1440
Axon West Normal 1,574 336,000

Figure 6-17: Audit dimension attribute included on standard report.

194 Chapter 6

Accumulating Snapshot for Order
Fulfillment Pipeline

The order management process can be thought of as a pipeline, especially in a
build-to-order manufacturing business, as illustrated in Figure 6-18. Customers
place an order that goes into the backlog until it is released to manufacturing to be
built. The manufactured products are placed in finished goods inventory and then
shipped to the customers and invoiced. Unique transactions are generated at each
spigot of the pipeline. Thus far we've considered each of these pipeline activities as
a separate transaction fact table. Doing so allows you to decorate the detailed facts
generated by each process with the greatest number of detailed dimensions. It also
allows you to isolate analysis to the performance of a single business process, which
is often precisely what the business users want.

Finished
Release to ' -
> Orders >> Backlog >>Manufacturin>> In(\alggtd;ry >> Shipment >> Invoicing >

Figure 6-18: Order fulfillment pipeline diagram.

However, there are times when business users want to analyze the entire order
fulfillment pipeline. They want to better understand product velocity, or how quickly
products move through the pipeline. The accumulating snapshot fact table provides
this perspective of the business, as illustrated in Figure 6-19. It enables you to see
an updated status and ultimately the final disposition of each order.

The accumulating snapshot complements alternative schemas’ perspectives of
the pipeline. If you're interested in understanding the amount of product flowing
through the pipeline, such as the quantity ordered, produced, or shipped, transac-
tion schemas monitor each of the pipeline’s major events. Periodic snapshots would
provide insight into the amount of product sitting in the pipeline, such as the
backorder or finished goods inventories, or the amount of product flowing through
a pipeline spigot during a predefined interval. The accumulating snapshot helps
you better understand the current state of an order, as well as product movement
velocities to identify pipeline bottlenecks and inefficiencies. If you only captured
performance in transaction event fact tables, it would be wildly difficult to calculate
the average number of days to move between milestones.

The accumulating snapshot looks different from the transaction fact tables
designed thus far in this chapter. The reuse of conformed dimensions is to be
expected, but the number of date and fact columns is larger. Each date represents
a major milestone of the fulfillment pipeline. The dates are handled as dimension

Order Management 195

roles by creating either physically distinct tables or logically distinct views. The date
dimension needs to have a row for Unknown or To Be Determined because many of
these fact table dates are unknown when a pipeline row is initially loaded. Obviously,
you don’t need to declare all the date columns in the fact table’s primary key.

Order Fulfillment Accumulating Fact

Order Date Key (FK)

Backlog Date Key (FK)

Release to Manufacturing Date Key (FK)
Date Dimension (views for 9 roles) Finished Inventory Placement Date Key (FK)
Requested Ship Date Key (FK)

Scheduled Ship Date Key (FK)

Actual Ship Date Key (FK)

Arrival Date Key (FK)

Invoice Date Key (FK)

Product Key (FK) — Product Dimension |
| Customer Dimension I Customer Key (FK)

Sales Rep Key (FK) — Sales Rep Dimension |
| Deal Dimension — Deal Key (FK)

Manufacturing Facility Key (FK) —! Manufacturing Facility Dimension |
| Warehouse Dimension F— Warehouse Key (FK)

Shipper Key (FK) — Shipper Dimension |

Order Number (DD)

Order Line Number (DD)

Invoice Number (DD)

Order Quantity

Extended Order Line Dollar Amount
Release to Manufacturing Quantity
Manufacturing Pass Inspection Quantity
Manufacturing Fail Inspection Quantity
Finished Goods Inventory Quantity
Authorized to Sell Quantity

Shipment Quantity

Shipment Damage Quantity

Customer Return Quantity

Invoice Quantity

Extended Invoice Dollar Amount
Order to Manufacturing Release Lag
Manufacturing Release to Inventory Lag
Inventory to Shipment Lag

Order to Shipment Lag

Figure 6-19: Order fulfillment accumulating snapshot fact table.

The fundamental difference between accumulating snapshots and other fact tables
is that you can revisit and update existing fact table rows as more information becomes
available. The grain of an accumulating snapshot fact table in Figure 6-19 is one row
per order line item. However, unlike the order transaction fact table illustrated in
Figure 6-2 with the same granularity, accumulating snapshot fact rows are modified
while the order moves through the pipeline as more information is collected from
every stage of the cycle.

196 Chapter 6

NOTE Accumulating snapshot fact tables typically have multiple dates repre-
senting the major milestones of the process. However, just because a fact table
has several dates doesn’t dictate that it is an accumulating snapshot. The primary
differentiator of an accumulating snapshot is that you revisit the fact rows as
activity occurs.

The accumulating snapshot technique is especially useful when the product mov-
ing through the pipeline is uniquely identified, such as an automobile with a vehicle
identification number, electronics equipment with a serial number, lab specimens
with an identification number, or process manufacturing batches with a lot num-
ber. The accumulating snapshot helps you understand throughput and yield. If the
granularity of an accumulating snapshot is at the serial or lot number, you can see
the disposition of a discrete product as it moves through the manufacturing and test
pipeline. The accumulating snapshot fits most naturally with short-lived processes
with a definite beginning and end. Long-lived processes, such as bank accounts,
are typically better modeled with periodic snapshot fact tables.

Accumulating Snapshots and Type 2 Dimensions

Accumulating snapshots present the latest state of a workflow or pipeline. If the
dimensions associated with an accumulating snapshot contain type 2 attributes,
the fact table should be updated to reference the most current surrogate dimension
key for active pipelines. When a single fact table pipeline row is complete, the row
is typically not revisited to reflect future type 2 changes.

Lag Calculations

The lengthy list of date columns captures the spans of time over which the order is
processed through the fulfillment pipeline. The numerical difference between any
two of these dates is a number that can be usefully averaged over all the dimensions.
These date lag calculations represent basic measures of fulfillment efficiency. You
could build a view on this fact table that calculated a large number of these date
differences and presented them as if they were stored in the underlying table. These
view columns could include metrics such as orders to manufacturing release lag,
manufacturing release to finished goods lag, and order to shipment lag, depending
on the date spans monitored by the organization.

Rather than calculating a simple difference between two dates via a view, the
ETL system may calculate elapsed times that incorporate more intelligence, such
as workday lags that account for weekends and holidays rather than just the raw
number of days between milestone dates. The lag metrics may also be calculated
by the ETL system at a lower level of granularity (such as the number of hours or

Order Management 197

minutes between milestone events based on operational timestamps) for short-lived
and closely monitored processes.

Multiple Units of Measure

Sometimes, different functional organizations within the business want to see the
same performance metrics expressed in different units of measure. For instance,
manufacturing managers may want to see the product flow in terms of pallets or
shipping cases. Sales and marketing managers, on the other hand, may want to see
the quantities in retail cases, scan units (sales packs), or equivalized consumer units
(such as individual cans of soda).

Designers are tempted to bury the unit-of-measure conversion factors, such as
ship case factor, in the product dimension. Business users are then required to
appropriately multiply (or was it divide?) the order quantity by the conversion factor.
Obviously, this approach places a burden on users, in addition to being susceptible
to calculation errors. The situation is further complicated because the conversion
factors may change over time, so users would also need to determine which factor
is applicable at a specific point in time.

Rather than risk miscalculating the equivalent quantities by placing conversion
factors in a dimension table, they should be stored in the fact table instead. In the
orders pipeline fact table, assume you have 10 basic fundamental quantity facts, in
addition to five units of measure. If you physically store all the facts expressed in
the different units of measure, you end up with 50 (10 x 5) facts in each fact row.
Instead, you can compromise by building an underlying physical row with 10 quan-
tity facts and 4 unit-of-measure conversion factors. You need only four conversion
factors rather than five because the base facts are already expressed in one of the
units of measure. The physical design now has 14 quantity-related facts (10 + 4), as
shown in Figure 6-20. With this design, you can see performance across the value
chain based on different units of measure.

Of course, you would deliver this fact table to the business users through one
or more views. The extra computation involved in multiplying quantities by con-
version factors is negligible; intra-row computations are very efficient. The most
comprehensive view could show all 50 facts expressed in every unit of measure,
but the view could be simplified to deliver only a subset of the quantities in units
of measure relevant to a user. Obviously, each unit of measures’ metrics should be
uniquely labeled.

NOTE Packaging all the facts and conversion factors together in the same fact
table row provides the safest guarantee that these factors will be used correctly.
The converted facts are presented in a view(s) to the users.

198 Chapter 6

Order Fulfillment Accumulating Fact
Date Keys (FKs)
Product Key (FK)
More FKs...
Order Quantity Shipping Cases
Release to Manufacturing Quantity Shipping Cases
Manufacturing Pass Inspection Quantity Shipping Cases
Manufacturing Fail Inspection Quantity Shipping Cases
Finished Goods Inventory Quantity Shipping Cases
Authorized to Sell Quantity Shipping Cases
Shipment Quantity Shipping Cases
Shipment Damage Quantity Shipping Cases
Customer Return Quantity Shipping Cases
Invoice Quantity Shipping Cases
Pallet Conversion Factor
Retail Cases Conversion Factor
Scan Units Conversion Factor
Equivalized Consumer Units Conversion Factor

Figure 6-20: Physical fact table supporting multiple units of measure with conversion
factors.

Finally, another side benefit of storing these factors in the fact table is it reduces
the pressure on the product dimension table to issue new product rows to reflect
minor conversion factor modifications. These factors, especially if they evolve rou-
tinely over time, behave more like facts than dimension attributes.

Beyond the Rearview Mirror

Much of what we've discussed in this chapter focuses on effective ways to analyze
historical product movement performance. People sometimes refer to these as rear-
view mirror metrics because they enable you to look backward and see where you've
been. As the brokerage industry reminds people, past performance is no guarantee of
future results. Many organizations want to supplement these historical performance
metrics with facts from other processes to help project what lies ahead. For example,
rather than focusing on the pipeline at the time an order is received, organizations
are analyzing the key drivers impacting the creation of an order. In a sales organiza-
tion, drivers such as prospecting or quoting activity can be extrapolated to provide
visibility to the expected order activity volume. Many organizations do a better job
collecting the rearview mirror information than they do the early indicators. As these
front window leading indicators are captured, they can be added gracefully to the
DW/BI environment. They’re just more rows on the enterprise data warehouse bus
matrix sharing common dimensions.

Order Management 199

Summary

This chapter covered a lengthy laundry list of topics in the context of the order
management process. Multiples were discussed on several fronts: multiple references
to the same dimension in a fact table (role-playing dimensions), multiple equivalent
units of measure, and multiple currencies. We explored several of the common chal-
lenges encountered when modeling header/line transaction data, including facts at
different levels of granularity and junk dimensions, plus design patterns to avoid.
We also explored the rich set of facts associated with invoice transactions. Finally,
the order fulfillment pipeline illustrated the power of accumulating snapshot fact
tables where you can see the updated status of a specific product or order as it moves
through a finite pipeline.

inancial analysis spans a variety of accounting applications, including the gen-

eral ledger, as well as detailed subledgers for purchasing and accounts payable,
invoicing and accounts receivable, and fixed assets. Because we've already touched
upon purchase orders and invoices earlier in this book, we’ll focus on the general
ledger in this chapter. Given the need for accurate handling of a company’s financial
records, general ledgers were one of the first applications to be computerized decades
ago. Perhaps some of you are still running your business on a 20-year-old ledger
system. In this chapter, we’ll discuss the data collected by the general ledger, both
in terms of journal entry transactions and snapshots at the close of an accounting
period. We'll also talk about the budgeting process.

Chapter 7 discusses the following concepts:

Bus matrix snippet for accounting processes

General ledger periodic snapshots and journal transactions

Chart of accounts

Period close

Year-to-date facts

Multiple fiscal accounting calendars

Drilling down through a multi-ledger hierarchy

Budgeting chain and associated processes

Fixed depth position hierarchies

Slightly ragged, variable depth hierarchies

Totally ragged hierarchies of indeterminate depth using a bridge table and
alternative modeling techniques

Shared ownership in a ragged hierarchy

Time varying ragged hierarchies

Consolidated fact tables that combine metrics from multiple business processes
Role of OLAP and packaged analytic financial solutions

202 Chapter 7

Accounting Case Study and Bus Matrix

Because finance was an early adopter of technology, it comes as no surprise that
early decision support solutions focused on the analysis of financial data. Financial
analysts are some of the most data-literate and spreadsheet-savvy individuals. Often
their analysis is disseminated or leveraged by many others in the organization.
Managers at all levels need timely access to key financial metrics. In addition to
receiving standard reports, they need the ability to analyze performance trends, vari-
ances, and anomalies with relative speed and minimal effort. Like many operational
source systems, the data in the general ledger is likely scattered among hundreds of
tables. Gaining access to financial data and/or creating ad hoc reports may require
a decoder ring to navigate through the maze of screens. This runs counter to many
organizations’ objective to push fiscal responsibility and accountability to the line
managers.

The DW/BI system can provide a single source of usable, understandable finan-
cial information, ensuring everyone is working off the same data with common
definitions and common tools. The audience for financial data is quite diverse in
many organizations, ranging from analysts to operational managers to executives.
For each group, you need to determine which subset of corporate financial data is
needed, in which format, and with what frequency. Analysts and managers want to
view information at a high level and then drill to the journal entries for more detail.
For executives, financial data from the DW/BI system often feeds their dashboard or
scorecard of key performance indicators. Armed with direct access to information,
managers can obtain answers to questions more readily than when forced to work
through a middleman. Meanwhile, finance can turn their attention to information
dissemination and value-added analysis, rather than focusing on report creation.

Improved access to accounting data allows you to focus on opportunities to better
manage risk, streamline operations, and identify potential cost savings. Although it
has cross-organization impact, many businesses focus their initial DW/BI implemen-
tation on strategic, revenue-generating opportunities. Consequently, accounting data
is often not the first subject area tackled by the DW/BI team. Given its proficiency
with technology, the finance department has often already performed magic with
spreadsheets and desktop databases to create workaround analytic solutions, per-
haps to its short-term detriment, as these imperfect interim fixes are likely stressed
to their limits.

Figure 7-1 illustrates an accounting-focused excerpt from an organization’s bus
matrix. The dimensions associated with accounting processes, such as the general
ledger account or organizational cost center, are frequently used solely by these
processes, unlike the core customer, product, and employee dimensions which are
used repeatedly across many diverse business processes.

Accounting 203

S/ g/§
o = g S /52 E .

2/ &/5/5)5/5§8/85

s /| 3 < /S s /8 /&
General Ledger Transactions X X X X
General Ledger Snapshot X X X X
Budget X X X X X
Commitment X X X X X X
Payments X X X X X X X
Actual-Budget Variance X X X X

Figure 7-1: Bus matrix rows for accounting processes.

General Ledger Data

The general ledger (G/L) is a core foundation financial system that ties together the
detailed information collected by subledgers or separate systems for purchasing,
payables (what you owe to others), and receivables (what others owe you). As we
work through a basic design for G/L data, you'll discover the need for two comple-
mentary schemas with periodic snapshot and transaction fact tables.

General Ledger Periodic Snapshot

We'll begin by delving into a snapshot of the general ledger accounts at the end of
each fiscal period (or month if the fiscal accounting periods align with calendar
months). Referring back to our four-step process for designing dimensional models
(see Chapter 3: Retail Sales), the business process is the general ledger. The grain
of this periodic snapshot is one row per accounting period for the most granular

level in the general ledger’s chart of accounts.

Chart of Accounts

The cornerstone of the general ledger is the chart of accounts. The ledger’s chart of
accounts is the epitome of an intelligent key because it usually consists of a series of
identifiers. For example, the first set of digits may identify the account, account type
(for example, asset, liability, equity, income, or expense), and other account rollups.
Sometimes intelligence is embedded in the account numbering scheme. For example,
account numbers from 1,000 through 1,999 might be asset accounts, whereas account
numbers ranging from 2,000 to 2,999 may identify liabilities. Obviously, in the data

204 Chapter 7

warehouse, youd include the account type as a dimension attribute rather than forc-
ing users to filter on the first digit of the account number.

The chart of accounts likely associates the organization cost center with the
account. Typically, the organization attributes provide a complete rollup from cost
center to department to division, for example. If the corporate general ledger com-
bines data across multiple business units, the chart of accounts would also indicate
the business unit or subsidiary company.

Obviously, charts of accounts vary from organization to organization. They’re
often extremely complicated, with hundreds or even thousands of cost centers in
large organizations. In this case study vignette, the chart of accounts naturally
decomposes into two dimensions. One dimension represents accounts in the general
ledger, whereas the other represents the organization rollup.

The organization rollup may be a fixed depth hierarchy, which would be handled
as separate hierarchical attributes in the cost center dimension. If the organization
hierarchy is ragged with an unbalanced rollup structure, you need the more power-
ful variable depth hierarchy techniques described in the section “Ragged Variable
Depth Hierarchies.”

If you are tasked with building a comprehensive general ledger spanning multiple
organizations in the DW/BI system, you should try to conform the chart of accounts
so the account types mean the same thing across organizations. At the data level,
this means the master conformed account dimension contains carefully defined
account names. Capital Expenditures and Office Supplies need to have the same
financial meaning across organizations. Of course, this kind of conformed dimen-
sion has an old and familiar name in financial circles: the uniform chart of accounts.

The G/L sometimes tracks financial results for multiple sets of books or sub-
ledgers to support different requirements, such as taxation or regulatory agency
reporting. You can treat this as a separate dimension because it’s such a fundamen-
tal filter, but we alert you to carefully read the cautionary note in the next section.

Period Close

At the end of each accounting period, the finance organization is responsible for
finalizing the financial results so that they can be officially reported internally
and externally. It typically takes several days at the end of each period to recon-
cile and balance the books before they can be closed with finance’s official stamp
of approval. From there, finance’s focus turns to reporting and interpreting the
results. It often produces countless reports and responds to countless variations
on the same questions each month.

Financial analysts are constantly looking to streamline the processes for period-
end closing, reconciliation, and reporting of general ledger results. Although

Accounting 205

operational general ledger systems often support these requisite capabilities, they
may be cumbersome, especially if youre not dealing with a modern G/L. This chap-
ter focuses on easily analyzing the closed financial results, rather than facilitating
the close. However, in many organizations, general ledger trial balances are loaded
into the DW/BI system leveraging the capabilities of the DW/BI presentation area
to find the needles in the general ledger haystack, and then making the appropriate
operational adjustments before the period ends.

The sample schema in Figure 7-2 shows general ledger account balances at the
end of each accounting period which would be very useful for many kinds of finan-
cial analyses, such as account rankings, trending patterns, and period-to-period
comparisons.

Accounting Period Dimension General Ledger Snapshot Fact Ledger Dimension
Accounting Period Key (PK) —— Accounting Period Key (FK) Ledger Key (PK)
Accounting Period Number Ledger Key (FK) Ledger Book Name
Accounting Period Description Account Key (FK)

Accounting Period Fiscal Year Organization Key (FK) Organization Dimension
Period End Balance Amount Organization Key (PK)
Account Dimension Period Debit Amount Cost Center Name
Account Key (PK) Period Credit Amount Cost Center Number
Account Name Period Net Change Amount Department Name
Account Category Department Number
Account Type Division Name
Business Unit Name
Company Name

Figure 7-2: General ledger periodic snapshot.

For the moment, we're just representing actual ledger facts in the Figure 7-2
schema; we’ll expand our view to cover budget data in the section “Budgeting
Process.” In this table, the balance amount is a semi-additive fact. Although the
balance doesn’t represent G/L activity, we include the fact in the design because
it is so useful. Otherwise, you would need to go back to the beginning of time to
calculate an accurate end-of-period balance.

WARNING The ledger dimension is a convenient and intuitive dimension
that enables multiple ledgers to be stored in the same fact table. However, every
query that accesses this fact table must constrain the ledger dimension to a single
value (for example, Final Approved Domestic Ledger) or the queries will double
count values from the various ledgers in this table. The best way to deploy this
schema is to release separate views to the business users with the ledger dimension
pre-constrained to a single value.

206 Chapter 7

The two most important dimensions in the proposed general ledger design are
account and organization. The account dimension is carefully derived from the
uniform chart of accounts in the enterprise. The organization dimension describes
the financial reporting entities in the enterprise. Unfortunately, these two crucial
dimensions almost never conform to operational dimensions such as customer,
product, service, or facility. This leads to a characteristic but unavoidable business
user frustration that the “GL doesn't tie to my operational reports.” It is best to gently
explain this to the business users in the interview process, rather than promising
to fix it because this is a deep seated issue in the underlying data.

Year-to-Date Facts

Designers are often tempted to store “to-date” columns in fact tables. They think
it would be helpful to store quarter-to-date or year-to-date additive totals on each
fact row so they don’t need to calculate them. Remember that numeric facts must
be consistent with the grain. To-date facts are not true to the grain and are fraught
with peril. When fact rows are queried and summarized in arbitrary ways, these
untrue-to-the-grain facts produce nonsensical, overstated results. They should be
left out of the relational schema design and calculated in the BI reporting application
instead. It's worth noting that OLAP cubes handle to-date metrics more gracefully.

NOTE In general, “to-date” totals should be calculated, not stored in the
fact table.

Multiple Currencies Revisited

If the general ledger consolidates data that has been captured in multiple curren-
cies, you would handle it much as we discussed in Chapter 6: Order Management.
With financial data, you typically want to represent the facts both in terms of the
local currency, as well as a standardized corporate currency. In this case, each
fact table row would represent one set of fact amounts expressed in local currency
and a separate set of fact amounts on the same row expressed in the equivalent
corporate currency. Doing so allows you to easily summarize the facts in a com-
mon corporate currency without jumping through hoops in the BI applications.
Of course, youd also add a currency dimension as a foreign key in the fact table
to identify the local currency type.

General Ledger Journal Transactions

While the end-of-period snapshot addresses a multitude of financial analyses, many
users need to dive into the underlying details. If an anomaly is identified at the

Accounting 207

summary level, analysts want to look at the detailed transactions to sort through
the issue. Others need access to the details because the summarized monthly bal-
ances may obscure large disparities at the granular transaction level. Again, you
can complement the periodic snapshot with a detailed journal entry transaction
schema. Of course, the accounts payable and receivable subledgers may contain
transactions at progressively lower levels of detail, which would be captured in
separate fact tables with additional dimensionality.

The grain of the fact table is now one row for every general ledger journal entry
transaction. The journal entry transaction identifies the G/L account and the appli-
cable debit or credit amount. As illustrated in Figure 7-3, several dimensions from
the last schema are reused, including the account and organization. If the ledger
tracks multiple sets of books, you'd also include the ledger/book dimension. You
would normally capture journal entry transactions by transaction posting date,
so use a daily-grained date table in this schema. Depending on the business rules
associated with the source data, you may need a second role-playing date dimension
to distinguish the posting date from the effective accounting date.

General Ledger Journal Entry Fact
| Post Date Dimension I Post Date Key (FK)
Journal Entry Effective Date/Time

Ledger Key (FK) —{ Ledger Dimension |
| Account Dimension — Account Key (FK)
Organization Key (FK) — Organization Dimension |
Dehit-Credit Indicator Dimension Debit-Credit Indicator Key (FK)
Debit-Credit Indicator Key (PK) Journal Entry Number (DD)
Debit-Credit Indicator Description Journal Entry Amount

Figure 7-3: General ledger journal entry transactions.

The journal entry number is likely a degenerate dimension with no linkage to
an associated dimension table. If the journal entry numbers from the source are
ordered, then this degenerate dimension can be used to order the journal entries
because the calendar date dimension on this fact table is too coarse to provide this
sorting. If the journal entry numbers do not easily support the sort, then an effective
date/time stamp must be added to the fact table. Depending on the source data, you
may have a journal entry transaction type and even a description. In this situation,
you would create a separate journal entry transaction profile dimension (not shown).
Assuming the descriptions are not just freeform text, this dimension would have
significantly fewer rows than the fact table, which would have one row per journal
entry line. The specific journal entry number would still be treated as degenerate.

Each row in the journal entry fact table is identified as either a credit or a debit.
The debit/credit indicator takes on two, and only two, values.

208 Chapter 7

Multiple Fiscal Accounting Calendars

In Figure 7-3, the data is captured by posting date, but users may also want to
summarize the data by fiscal account period. Unfortunately, fiscal accounting peri-
ods often do not align with standard Gregorian calendar months. For example, a
company may have 13 4-week accounting periods in a fiscal year that begins on
September 1 rather than 12 monthly periods beginning on January 1. If you deal
with a single fiscal calendar, then each day in a year corresponds to a single calendar
month, as well as a single accounting period. Given these relationships, the calendar
and accounting periods are merely hierarchical attributes on the daily date dimen-
sion. The daily date dimension table would simultaneously conform to a calendar
month dimension table, as well as to a fiscal accounting period dimension table.

In other situations, you may deal with multiple fiscal accounting calendars that
vary by subsidiary or line of business. If the number of unique fiscal calendars is a
fixed, low number, then you can include each set of uniquely labeled fiscal calendar
attributes on a single date dimension. A given row in the daily date dimension would
be identified as belonging to accounting period 1 for subsidiary A but accounting
period 7 for subsidiary B.

In a more complex situation with a large number of different fiscal calendars,
you could identify the official corporate fiscal calendar in the date dimension. You
then have several options to address the subsidiary-specific fiscal calendars. The
most common approach is to create a date dimension outrigger with a multipart key
consisting of the date and subsidiary keys. There would be one row in this table for
each day for each subsidiary. The attributes in this outrigger would consist of fis-
cal groupings (such as fiscal week end date and fiscal period end date). You would
need a mechanism for filtering on a specific subsidiary in the outrigger. Doing so
through a view would then allow the outrigger to be presented as if it were logically
part of the date dimension table.

A second approach for tackling the subsidiary-specific calendars would be to
create separate physical date dimensions for each subsidiary calendar, using a
common set of surrogate date keys. This option would likely be used if the fact
data were decentralized by subsidiary. Depending on the BI tool’s capabilities, it
may be easier to either filter on the subsidiary outrigger as described in option
1 or ensure usage of the appropriate subsidiary-specific physical date dimension
table (option 2). Finally, you could allocate another foreign key in the fact table to
a subsidiary fiscal period dimension table. The number of rows in this table would
be the number of fiscal periods (approximately 36 for 3 years) times the number of
unique calendars. This approach simplifies user access but puts additional strain
on the ETL system because it must insert the appropriate fiscal period key during
the transformation process.

Accounting 209

Drilling Down Through a Multilevel Hierarchy

Very large enterprises or government agencies may have multiple ledgers arranged
in an ascending hierarchy, perhaps by enterprise, division, and department. At the
lowest level, department ledger entries may be consolidated to roll up to a single
division ledger entry. Then the division ledger entries may be consolidated to the
enterprise level. This would be particularly common for the periodic snapshot grain
of these ledgers. One way to model this hierarchy is by introducing the parent snap-
shot’s fact table surrogate key in the fact table, as shown in Figure 7-4. In this case,
because you define a parent/child relationship between rows, you add an explicit
fact table surrogate key, a single column numeric identifier incremented as you add
rows to the fact table.

General Ledger Snapshot Fact
Fact Table Surrogate Key (PK)
| Accounting Period Dimension |— Accounting Period Key (FK)

Ledger Key (FK) — Ledger Dimension |
| Account Dimension — Account Key (FK)
Organization Key (FK) —| Organization Dimension |

Parent Snapshot Key (FK)
Period End Balance Amount
Period Debit Amount
Period Credit Amount
Period Net Change Amount

Figure 7-4: Design for drilling down through multiple ledgers.

You can use the parent snapshot surrogate key to drill down in your multilayer
general ledger. Suppose that you detect a large travel amount at the top level of the
ledger. You grab the surrogate key for that high-level entry and then fetch all the entries
whose parent snapshot key equals that key. This exposes the entries at the next lower
level that contribute to the original high-level record of interest. The SQL would look
something like this:

Select * from GL_Fact where Parent_Snapshot_key =

(select fact_table_surrogate_key from GL_Fact f, Account a
where <joins> and a.Account = 'Travel' and f.Amount > 1000)

Financial Statements

One of the primary functions of a general ledger system is to produce the organiza-
tion’s official financial reports, such as the balance sheet and income statement. The
operational system typically handles the production of these reports. You wouldn’t
want the DW/BI system to attempt to replace the reports published by the opera-
tional financial systems.

210 Chapter 7

However, DW/BI teams sometimes create complementary aggregated data that
provides simplified access to report information that can be more widely dissemi-
nated throughout the organization. Dimensions in the financial statement schema
would include the accounting period and cost center. Rather than looking at general
ledger account level data, the fact data would be aggregated and tagged with the
appropriate financial statement line number and label. In this manner, managers
could easily look at performance trends for a given line in the financial statement
over time for their organization. Similarly, key performance indicators and financial
ratios may be made available at the same level of detail.

Budgeting Process

Most modern general ledger systems include the capability to integrate budget data
into the general ledger. However, if the G/L either lacks this capability or it has not
been implemented, you need to provide an alternative mechanism for supporting
the budgeting process and variance comparisons.

Within most organizations, the budgeting process can be viewed as a series of
events. Prior to the start of a fiscal year, each cost center manager typically creates a
budget, broken down by budget line items, which is then approved. In reality, bud-
geting is seldom simply a once-per-year event. Budgets are becoming more dynamic
because there are budget adjustments as the year progresses, reflecting changes in
business conditions or the realities of actual spending versus the original budget.
Managers want to see the current budget’s status, as well as how the budget has
been altered since the first approved version. As the year unfolds, commitments to
spend the budgeted monies are made. Finally, payments are processed.

As a dimensional modeler, you can view the budgeting chain as a series of fact
tables, as shown in Figure 7-5. This chain consists of a budget fact table, commit-
ments fact table, and payments fact table, where there is a logical flow that starts
with a budget being established for each organization and each account. Then dur-
ing the operational period, commitments are made against the budgets, and finally
payments are made against those commitments.

We'll begin with the budget fact table. For an expense budget line item, each row
identifies what an organization in the company is allowed to spend for what purpose
during a given time frame. Similarly, if the line item reflects an income forecast,
which is just another variation of a budget, it would identify what an organization
intends to earn from what source during a time frame.

You could further identify the grain to be a snapshot of the current status of
each line item in each budget each month. Although this grain has a familiar ring
to it (because it feels like a management report), it is a poor choice as the fact table

Accounting 211

grain. The facts in such a “status report” are all semi-additive balances, rather than

fully additive facts. Also, this grain makes it difficult to determine how much has

changed since the previous month or quarter because you must obtain the rows

from several time periods and then subtract them from each other. Finally, this grain

choice would require the fact table to contain many duplicated rows when nothing

changes in successive months for a given line item.

Budget Fact

| Month Dimension

| Account Dimension

|_
|_

Month Key (FK)
Organization Key (FK)
Account Key (FK)
Budget Key (FK)
Budget Amount

—

Organization Dimension

Budget Dimension

Budget Name

Budget Key (PK)

Budget Version
Budget Approval Date

Commitment Fact

| Month Dimension

| Account Dimension

Commitment Dimension

Commitment Key (PK)
Commitment Description
Commitment Party

\]

Month Key (FK)
Organization Key (FK)
Account Key (FK)
Budget Key (FK)
Commitment Key (FK)
Commitment Amount

]

Organization Dimension |

—

Budget Dimension |

Payment Fact

| Month Dimension

| Account Dimension

| Commitment Dimension

LI

Month Key (FK)
Organization Key (FK)
Account Key (FK)
Budget Key (FK)
Commitment Key (FK)
Payment Key (FK)
Payment Amount

—

Organization Dimension |

—

Budget Dimension |

Payment Dimension

\ Payment Key (PK)

Figure 7-5: Chain of budget processes.

Payment Description
Payment Party

Instead, the grain you're interested in is the net change of the budget line item

in an organizational cost center that occurred during the month. Although this

suffices for budget reporting purposes, the accountants eventually need to tie the

budget line item back to a specific general ledger account that’s affected, so you'll

also go down to the G/L account level.

212 Chapter 7

Given the grain, the associated budget dimensions would include effective
month, organization cost center, budget line item, and G/L account, as illustrated
in Figure 7-6. The organization is identical to the dimension used earlier with the
general ledger data. The account dimension is also a reused dimension. The only
complication regarding the account dimension is that sometimes a single budget
line item impacts more than one G/L account. In that case, you would need to
allocate the budget line to the individual G/L accounts. Because the grain of the
budget fact table is by G/L account, a single budget line for a cost center may be
represented as several rows in the fact table.

Effective Date Dimension Budget Fact Budget Line Item Dimension

Budget Effective Date Key (PK) — Budget Effective Date Key (FK) Budget Line ltem Key (PK)

Budget Effective Date Month Budget Line Item Key (FK) / Budget Name

Budget Effective Date Year Account Key (FK) Budget Version
Organization Key (FK) Budget Line Description
Budget Amount Budget Year

Account Dimension Budget Line Subcategory Description
Budget Line Category Description

‘1 Organization Dimension

Figure 7-6: Budget schema.

The budget line item identifies the purpose of the proposed spending, such as
employee wages or office supplies. There are typically several levels of summariza-
tion categories associated with a budget line item. All the budget line items may not
have the same number of levels in their summarization hierarchy, such as when some
only have a category rollup, but not a subcategory. In this case, you may populate the
dimension attributes by replicating the category name in the subcategory column to
avoid having line items roll up to a Not Applicable subcategory bucket. The budget
line item dimension would also identify the budget year and/or budget version.

The effective month is the month during which the budget changes are posted.
The first entries for a given budget year would show the effective month when the
budget is first approved. If the budget is updated or modified as the budget year
gets underway, the effective months would occur during the budget year. If you
don’t adjust a budget throughout the year, then the only entries would be the first
ones when the budget is initially approved. This is what is meant when the grain
is specified to be the net change. It’s critical that you understand this point, or you
won't understand what is in this budget fact table or how it’s used.

Sometimes budgets are created as annual spending plans; other times, they're
broken down by month or quarter. Figure 7-6 assumes the budget is an annual
amount, with the budget year identified in the budget line item dimension. If you
need to express the budget data by spending month, you would need to include a
second month dimension table that plays the role of spending month.

Accounting 213

The budget fact table has a single budget amount fact that is fully additive. If you
budget for a multinational organization, the budget amount may be tagged with the
expected currency conversion factor for planning purposes. If the budget amount
for a given budget line and account is modified during the year, an additional row
is added to the budget fact table representing the net change. For example, if the
original budget were $200,000, you might have another row in June for a $40,000
increase and then another in October for a negative $25,000 as you tighten your
belt going into year-end.

When the budget year begins, managers make commitments to spend the budget
through purchase orders, work orders, or other forms of contracts. Managers are
keenly interested in monitoring their commitments and comparing them to the
annual budget to manage their spending. We can envision a second fact table for
the commitments (refer to Figure 7-5) that shares the same dimensions, in addi-
tion to dimensions identifying the specific commitment document (purchase order,
work order, or contract) and commitment party. In this case, the fact would be the
committed amount.

Finally, payments are made as monies are transferred to the party named in the
commitment. From a practical point of view, the money is no longer available in
the budget when the commitment is made. But the finance department is interested
in the relationship between commitments and payments because it manages the
company’s cash. The dimensions associated with the payments fact table would
include the commitment fact table dimensions, plus a payment dimension to identify
the type of payment, as well as the payee to whom the payment was actually made.
Referring the budgeting chain shown in Figure 7-5, the list of dimensions expands
as you move from the budget to commitments to payments.

With this design, you can create a number of interesting analyses. To look at
the current budgeted amount by department and line item, you can constrain
on all dates up to the present, adding the amounts by department and line item.
Because the grain is the net change of the line items, adding up all the entries
over time does exactly the right thing. You end up with the current approved
budget amount, and you get exactly those line items in the given departments
that have a budget.

To ask for all the changes to the budget for various line items, simply constrain
on a single month. You'll report only those line items that experienced a change
during the month.

To compare current commitments to the current budget, separately sum the
commitment amounts and budget amounts from the beginning of time to the cur-
rent date (or any date of interest). Then combine the two answer sets on the row
headers. This is a standard drill-across application using multipass SQL. Similarly,
you could drill across commitments and payments.

214 Chapter 7

Dimension Attribute Hierarchies

Although the budget chain use case described in this chapter is reasonably simple,
it contains a number of hierarchies, along with a number of choices for the designer.
Remember a hierarchy is defined by a series of many-to-one relationships. You likely
have at least four hierarchies: calendar levels, account levels, geographic levels, and
organization levels.

Fixed Depth Positional Hierarchies

In the budget chain, the calendar levels are familiar fixed depth position hierarchies.
As the name suggests, a fixed position hierarchy has a fixed set of levels, all with
meaningful labels. Think of these levels as rollups. One calendar hierarchy may
be day = fiscal period = year. Another could be day = month = year. These two
hierarchies may be different if there is no simple relationship between fiscal periods
and months. For example, some organizations have 5-4-4 fiscal periods, consisting
of a 5-week span followed by two 4-week spans. A single calendar date dimension
can comfortably represent these two hierarches at the same time in sets of parallel
attributes since the grain of the date dimension is the individual day.

The account dimension may also have a fixed many-to-one hierarchy such as
executive level, director level, and manager level accounts. The grain of the dimen-
sion is the manager level account, but the detailed accounts at the lowest grain roll
up to the director and executive levels.

In a fixed position hierarchy, it is important that each level have a specific name.
That way the business user knows how to constrain and interpret each level.

WARNING Avoid fixed position hierarchies with abstract names such as Level-1,
Level-2, and so on. This is a cheap way to avoid correctly modeling a ragged hierar-
chy. When the levels have abstract names, the business user has no way of knowing
where to place a constraint, or what the attribute values in a level mean in a report.
If a ragged hierarchy attempts to hide within a fixed position hierarchy with abstract
names, the individual levels are essentially meaningless.

Slightly Ragged Variable Depth Hierarchies

Geographic hierarchies present an interesting challenge. Figure 7-7 shows three
possibilities. The simple location has four levels: address, city, state, and country.
The medium complex location adds a zone level, and the complex location adds
both district and zone levels. If you need to represent all three types of locations

Accounting 215

in a single geographic hierarchy, you have a slightly variable hierarchy. You can
combine all three types if you are willing to make a compromise. For the medium
location that has no concept of district, you can propagate the city name down into
the district attribute. For the simple location that has no concept of either district or
zone, you can propagate the city name down into both these attributes. The business
data governance representatives may instead decide to propagate labels upward or
even populate the empty levels with Not Applicable. The business representatives
need to visualize the appropriate row label values on a report if the attribute is
grouped on. Regardless of the business rules applied, you have the advantage of a
clean positional design with attribute names that make reasonable sense across all
three geographies. The key to this compromise is the narrow range of geographic
hierarchies, ranging from four levels to only six levels. If the data ranged from
four levels to eight or ten or even more, this design compromise would not work.
Remember the attribute names need to make sense.

Simple Loc Medium Loc Complex Loc
Loc Key (PK) Loc Key (PK) Loc Key (PK)
Address+ Address+ Address+
City City City
City City District
City Zone Zone
State State State
Country Country Country

Figure 7-7: Sample data values exist simultaneously in a single location dimension
containing simple, intermediate, and complex hierarchies.

Ragged Variable Depth Hierarchies

In the budget use case, the organization structure is an excellent example of a ragged
hierarchy of indeterminate depth. In this chapter, we often refer to the hierarchical struc-
ture as a “tree” and the individual organizations in that tree as “nodes.” Imagine your
enterprise consists of 13 organizations with the rollup structure shown in Figure 7-8.
Each of these organizations has its own budget, commitments, and payments.

For a single organization, you can request a specific budget for an account with a
simple join from the organization dimension to the fact table, as shown in Figure 7-9.
But you also want to roll up the budget across portions of the tree or even all the tree.
Figure 7-9 contains no information about the organizational rollup.

216 Chapter 7

Figure 7-8: Organization rollup structure.

Organization Dimension General Ledger Fact
Organization Key (PK) Posting Date Key (FK)
Organization Name \ Organization Key (FK)

Account Key (FK)
Transaction Key (FK)
Ledger Key (FK)
Transaction ID (DD)
Amount

Balance

Figure 7-9: Organization dimension joined to fact table.

The classic way to represent a parent/child tree structure is by placing recur-
sive pointers in the organization dimension from each row to its parent, as shown
in Figure 7-10. The original definition of SQL did not provide a way to evaluate
these recursive pointers. Oracle implemented a CONNECT BY function that traversed
these pointers in a downward fashion starting at a high-level parent in the tree
and progressively enumerated all the child nodes in lower levels until the tree
was exhausted. But the problem with Oracle CONNECT BY and other more general
approaches, such as SQL Server’s recursive common table expressions, is that the
representation of the tree is entangled with the organization dimension because
these approaches depend on the recursive pointer embedded in the data. It is imprac-
tical to switch from one rollup structure to another because many of the recursive
pointers would have to be destructively modified. It is also impractical to maintain
organizations as type 2 slowly changing dimension attributes because changing the
key for a high-level node would ripple key changes down to the bottom of the tree.

The solution to the problem of representing arbitrary rollup structures is to build
a special kind of bridge table that is independent from the primary dimension table
and contains all the information about the rollup. The grain of this bridge table is

Accounting 217

each path in the tree from a parent to all the children below that parent, as shown
in Figure 7-11. The first column in the map table is the primary key of the parent,
and the second column is the primary key of the child. A row must be constructed
from each possible parent to each possible child, including a row that connects the
parent to itself.

Organization Dimension
Organization Key (PK)
Organization Name

Recursive
Pointer

Organization Parent Key (FK)

Figure 7-10: Classic parent/child recursive design.

The example tree depicted in Figure 7-8 results in 43 rows in Figure 7-11. There
are 13 paths from node number 1, 5 paths from node number 2, one path from node
number 3 to itself, as so on.

The highest parent flag in the map table means the particular path comes from
the highest parent in the tree. The lowest child flag means the particular path ends
in a “leaf node” of the tree.

If you constrain the organization dimension table to a single row, you can join
the dimension table to the map table to the fact table, as shown in Figure 7-12. For
example, if you constrain the organization table to node number 1 and simply fetch
an additive fact from the fact table, you get 13 hits on the fact table, which traverses
the entire tree in a single query. If you perform the same query except constrain the
map table lowest child flag to true, then you fetch only the additive fact from the six
leaf nodes, numbers 3, 5, 6, 8, 10, and 11. Again, this answer was computed without
traversing the tree at query time!

NOTE The article “Building Hierarchy Bridge Tables” (available at www
.kimballgroup.com under the Tools and Utilities tab for this book title) provides
a code example for building the hierarchy bridge table described in this section.

You must be careful when using the map bridge table to constrain the organization
dimension to a single row, or else you risk overcounting the children and grandchil-
dren in the tree. For example, if instead of a constraint such as “Node Organization
Number = 1” you constrain on “Node Organization Location = California”, you
would have this problem. In this case you need to craft a custom query, rather than
a simple join, with the following constraint:

GLfact.orgkey in (select distinct bridge.childkey

from innerorgdim, bridge

where innerorgdim.state = 'California' and
innerorgdim.orgkey = bridge.parentkey)

http://www.kimballgroup.com

218 Chapter 7

Sample Organization Map bridge table rows for Figure 7-8:

Figure 7-11: Organization map bridge table sample rows.

Parent Child Highest | Lowest

Organization Organization | Depth from | Parent Child

Key Key Parent Flag Flag
Organization Map Bridge 1 1 0 TRUE FALSE
Parent Organization Key (FK)] g ; EHE %{'—SE
Child Organization Key (FK) 1 4 5 TRUE FALSE
Depth from Parent 1 5 3 TRUE TRUE
Highest Parent Flag 1 6 3 TRUE TRUE
Lowest Child Flag 1 7 1 TRUE FALSE
1 8 2 TRUE TRUE
1 9 2 TRUE FALSE
1 10 3 TRUE FALSE

1 11 4 TRUE TRUE

1 12 4 TRUE TRUE

1 13 3 TRUE TRUE
2 2 0 FALSE FALSE

2 3 1 FALSE TRUE
2 4 1 FALSE FALSE

2 5 2 FALSE TRUE

2 6 2 FALSE TRUE

3 3 0 FALSE TRUE
4 4 0 FALSE FALSE

4 5 1 FALSE TRUE

4 6 1 FALSE TRUE

5 5 0 FALSE TRUE

6 6 0 FALSE TRUE
7 7 0 FALSE FALSE

7 8 1 FALSE TRUE
7 9 1 FALSE FALSE
7 10 2 FALSE FALSE

7 11 3 FALSE TRUE

7 12 3 FALSE TRUE

7 13 2 FALSE TRUE

8 8 0 FALSE TRUE
9 9 0 FALSE FALSE
9 10 1 FALSE FALSE

9 11 2 FALSE TRUE

9 12 2 FALSE TRUE

9 13 1 FALSE TRUE
10 10 0 FALSE FALSE

10 11 1 FALSE TRUE

10 12 1 FALSE TRUE

11 11 0 FALSE TRUE

12 12 0 FALSE TRUE

13 13 0 FALSE TRUE

Accounting 219

Organization Dimension

Organization Map Bridge

General Ledger Fact

Organization Key (PK)
Organization Name

Parent Organization Key (FK)
Child Organization Key (FK)
Depth from Parent

Highest Parent Flag

Lowest Child Flag

Posting Date Key (FK)
Organization Key (FK)
Account Key (FK)
Transaction Profile Key (FK)
Ledger Version Key (FK)
Transaction ID (DD)
Amount

Balance

FIGURE 7-12: Joining organization map bridge table to fact table.

Shared Ownership in a Ragged Hierarchy

The map table can represent partial or shared ownership, as shown in Figure 7-13.
For instance, suppose node 10 is 50 percent owned by node 6 and 50 percent
owned by node 11. In this case, any budget or commitment or payment attributed
to node 10 flows upward through node 6 with a 50 percent weighting and also
upward through node 11 with a 50 percent weighting. You now need to add extra
path rows to the original 43 rows to accommodate the connection of node 10 up
to node 6 and its parents. All the relevant path rows ending in node 10 now need
a 50 percent weighting in the ownership percentage column in the map table.
Other path rows not ending in node 10 do not have their ownership percentage
column changed.

General Ledger Fact

Organization Dimension

Organization Map Bridge

Organization Key (PK)
Organization Name

Parent Organization Key (FK)
Child Organization Key (FK)
Depth from Parent

Highest Parent Flag

Lowest Child Flag

Percent Ownership

Posting Date Key (FK)
Organization Key (FK)
Account Key (FK)
Transaction Profile Key (FK)
Ledger Version Key (FK)
Transaction ID (DD)
Amount

Balance

FIGURE 7-13: Bridge table for ragged hierarchy with shared ownership.

220 Chapter 7

Time Varying Ragged Hierarchies

The ragged hierarchy bridge table can accommodate slowly changing hierarchies
with the addition of two date/time stamps, as shown in Figure 7-14. When a given
node no longer is a child of another node, the end effective date/time of the old
relationship must be set to the date/time of the change, and new path rows inserted

into the bridge table with the correct begin effective date/time.

Organization Dimension

Organization Key (PK)
Organization Name

Organization Map Bridge

General Ledger Fact

Parent Organization Key (FK)
Child Organization Key (FK)
Depth from Parent

Highest Parent Flag

Lowest Child Flag

Begin Effective Date/Time
End Effective Date/Time

Posting Date Key (FK)
Organization Key (FK)
Account Key (FK)
Transaction Profile Key (FK)
Ledger Version Key (FK)
Transaction ID (DD)
Amount

Balance

Figure 7-14: Bridge table for time varying ragged hierarchies.

WARNING When using the bridge table in Figure 7-14, the query must always
constrain to a single date/time to “freeze” the bridge table to a single consistent
view of the hierarchy. Failing to constrain in this way otherwise would result in
multiple paths being fetched that could not exist at the same time.

Modifying Ragged Hierarchies

The organization map bridge table can easily be modified. Suppose you want to
move nodes 4, 5, and 6 from their original location reporting up to node 2 to a new
location reporting up to node 9, as shown in Figure 7-15.

In the static case in which the bridge table only reflects the current rollup struc-
ture, you merely delete the higher level paths in the tree pointing into the group
of nodes 4, 5, and 6. Then you attach nodes 4, 5, and 6 into the parents 1, 7, and 9.
Here is the static SQL.:

Delete from Org_Map where child_org in (4, 5,6) and

parent_org not in (4,5,6)
Insert into Org_Map (parent_org, child_org)

select parent_org, 4 from Org_Map where parent_org in (1, 7, 9)
Insert into Org_Map (parent_org, child_org)

select parent_org, 5 from Org_Map where parent_org in (1, 7, 9)
Insert into Org_Map (parent_org, child_org)

select parent_org, 6 from Org_Map where parent_org in (1, 7, 9)

Accounting 221

Figure 7-15: Changes to Figure 7-8’s organization structure.

In the time varying case in which the bridge table has the pair of date/time
stamps, the logic is similar. You can find the higher level paths in the tree point-
ing into the group of nodes 4, 5, and 6 and set their end effective date/times to the
moment of the change. Then you attach nodes 4, 5, and 6 into the parents 1, 7, and
9 with the appropriate date/times. Here is the time varying SQL:

Update Org_Map set end_eff_date = ffDecember 31, 2012#

where child_org in (4, 5,6) and parent_org not in (4,5,6)
and ##Jan 1, 2013# between begin_eff_date and end_eff_date

Insert into Org_Map

(parent_org, child_org, begin_eff_date, end_eff_date)
values (1, 4, fJan 1, 20134, #Dec 31, 9999#)
Insert into Org_Map
(parent_org, child_org, begin_eff_date, end_eff_date)
values (7, 4, fJdan 1, 2013#, #Dec 31, 99994#)
Insert into Org_Map
(parent_org, child_org, begin_eff_date, end_eff_date)
values (9, 4, fJdan 1, 2013#, #Dec 31, 9999#)
Identical insert statements for nodes 5 and 6 ..

This simple recipe for changing the bridge table avoids nightmarish scenarios
when changing other types of hierarchical models. In the bridge table, only the
paths directly involved in the change are affected. All other paths are untouched.
In most other schemes with clever node labels, a change in the tree structure can
affect many or even all the nodes in the tree, as shown in the next section.

Alternative Ragged Hierarchy Modeling Approaches

In addition to using recursive pointers in the organization dimension, there are at
least two other ways to model a ragged hierarchy, both involving clever columns
placed in the organization dimension. There are two disadvantages to these schemes

222 Chapter 7

compared to the bridge table approach. First, the definition of the hierarchy is locked
into the dimension and cannot easily be replaced. Second, both of these schemes are
vulnerable to a relabeling disaster in which a large part of the tree must be relabeled
due to a single small change. Textbooks (like this one!) usually show a tiny example,
but you need to tread cautiously if there are thousands of nodes in your tree.

One scheme adds a pathstring attribute to the organization dimension table,
as shown in Figure 7-16. The values of the pathstring attribute are shown within
each node. In this scenario, there is no bridge table. At each level, the pathstring
starts with the full pathstring of the parent and then adds the letters A, B, C, and
so on, from left to right under that parent. The final character is a “+” if the node
has children and is a period if the node has no children. The tree can be navigated
by using wild cards in constraints against the pathstring, for example,

A* retrieves the whole tree where the asterisk is a variable length wild card.
*. retrieves only the leaf nodes.

?+ retrieves the topmost node where the question mark is a single character
wild card.

AA+ AB+

| AaA. | [AaB+ | | ABA. || ABB+ |

/ N\

| AABA. | | AABB. | [ABBA+| | ABBB. |

Figure 7-16: Alternate ragged hierarchy design using pathstring attribute.

The pathstring approach is fairly sensitive to relabeling ripples caused by orga-
nization changes; if a new node is inserted somewhere in the tree, all the nodes to
the right of that node under the same parent must be relabeled.

Another similar scheme, known to computer scientists as the modified preordered
tree traversal approach, numbers the tree as shown in Figure 7-17. Every node has a
pair of numbers that identifies all the nodes below that point. The whole tree can be
enumerated by using the node numbers in the topmost node. If the values in each node
have the names Left and Right, then all the nodes in the example tree can be found with

Accounting 223

the constraint “Left between 1 and 26.” Leaf nodes can be found where Left and Right
differ by 1, meaning there aren’t any children. This approach is even more vulnerable
to the relabeling disaster than the pathstring approach because the entire tree must
be carefully numbered in sequence, top to bottom and left to right. Any change to the
tree causes the entire rest of the tree to the right to be relabeled.

| 34 || 510 | [1314]] 1524]

| 67 || 89 | [1621][2223 |

Figure 7-17: Alternative ragged hierarchy design using the modified preordered tree
traversal approach.

Advantages of the Bridge Table Approach for Ragged
Hierarchies

Although the bridge table requires more ETL work to set up and more work when
querying, it offers exceptional flexibility for analyzing ragged hierarches of inde-
terminate depth. In particular, the bridge table allows

Alternative rollup structures to be selected at query time

Shared ownership rollups

Time varying ragged hierarchies

Limited impact when nodes undergo slowly changing dimension (SCD)
type 2 changes

Limited impact when the tree structure is changed

You can use the organization hierarchy bridge table to fetch a fact across all three
fact tables in the budget chain. Figure 7-18 shows how an organization map table
can connect to the three budget chain fact tables. This would allow a drill-across
report such as finding all the travel budgets, commitments, and payments made by
all the lowest leaf nodes in a complex organizational structure.

224 Chapter 7

Budget Fact
Month Key (FK)
Organization Key (FK) —| Organization Dimension l

Account Key (FK)
Budget Key (FK)
Budget Amount

Commitment Fact Organization Map Organization Dimension
Month Key (FK) Parent Organization Key (FK) — Organization Key
Organization Key (FK) —| Organization Dimension |— Child Organization Key (FK) Cost Center Number
Account Key (FK) Depth from Parent Cost Center Name
Budget Key (FK) Highest Parent Flag
Commitment Key (FK) Lowest Child Flag
Commitment Amount

|

Payment Fact
Month Key (FK)
Organization Key (FK) —| Organization Dimension [
Account Key (FK)
Budget Key (FK)
Commitment Key (FK)
Payment Key (FK)
Payment Amount

Figure 7-18: Drilling across and rolling up the budget chain.

Consolidated Fact Tables

In the last section, we discussed comparing metrics generated by separate business
processes by drilling across fact tables, such as budget and commitments. If this
type of drill-across analysis is extremely common in the user community, it likely
makes sense to create a single fact table that combines the metrics once rather than
relying on business users or their Bl reporting applications to stitch together result
sets, especially given the inherent issues of complexity, accuracy, tool capabilities,
and performance.

Most typically, business managers are interested in comparing actual to budget
variances. At this point, you can presume the annual budgets and/or forecasts have
been broken down by accounting period. Figure 7-19 shows the actual and budget
amounts, as well as the variance (which is a calculated difference) by the common
dimensions.

Accounting 225

Budget Variance Fact
| Accounting Period Dimension |— Accounting Period Key (FK)
Account Key (FK) —| Account Dimension
| Organization Dimension |— Organization Key (FK)

Accounting Period Actual Amount
Accounting Period Budget Amount
Accounting Period Budget Variance

Figure 7-19: Actual versus budget consolidated fact table.

Again, in a multinational organization, you would likely see the actual amounts
in both local and the equivalent standard currency, based on the effective conversion
rate. In addition, you may convert the actual results based on the planned currency
conversion factor. Given the unpredictable nature of currency fluctuations, it is
useful to monitor performance based on both the effective and planned conversion
rates. In this manner, remote managers aren’t penalized for currency rate changes
outside their control. Likewise, finance can better understand the big picture impact
of unexpected currency conversion fluctuations on the organization’s annual plan.

Fact tables that combine metrics from multiple business processes at a com-
mon granularity are referred to as consolidated fact tables. Although consolidated
fact tables can be useful, both in terms of performance and usability, they often
represent a dimensionality compromise as they consolidate facts at the “least
common denominator” of dimensionality. One potential risk associated with
consolidated fact tables is that project teams sometimes base designs solely on
the granularity of the consolidated table, while failing to meet user requirements
that demand the ability to dive into more granular data. These schemas run into
serious problems if project teams attempt to force a one-to-one correspondence
to combine data with different granularity or dimensionality.

NOTE When facts from multiple business processes are combined in a consoli-
dated fact table, they must live at the same level of granularity and dimensionality.
Because the separate facts seldom naturally live at a common grain, you are forced
to eliminate or aggregate some dimensions to support the one-to-one correspon-
dence, while retaining the atomic data in separate fact tables. Project teams should
not create artificial facts or dimensions in an attempt to force-fit the consolidation
of differently grained fact data.

226 Chapter 7

Role of OLAP and Packaged Analytic
Solutions

While discussing financial dimensional models in the context of relational data-
bases, it is worth noting that multidimensional OLAP vendors have long played a
role in this arena. OLAP products have been used extensively for financial reporting,
budgeting, and consolidation applications. Relational dimensional models often feed
financial OLAP cubes. OLAP cubes can deliver fast query performance that is critical
for executive usage. The data volumes, especially for general ledger balances or finan-
cial statement aggregates, do not typically overwhelm the practical size constraints
of a multidimensional product. OLAP is well suited to handle complicated organiza-
tional rollups, as well as complex calculations, including inter-row manipulations.
Most OLAP vendors provide finance-specific capabilities, such as financial functions
(for example, net present value or compound growth), the appropriate handling of
financial statement data (in the expected sequential order such as income before
expenses), and the proper treatment of debits and credits depending on the account
type, as well as more advanced functions such as financial consolidation. OLAP
cubes often also readily support complex security models, such as limiting access
to detailed data while providing more open access to summary metrics.

Given the standard nature of general ledger processing, purchasing a general
ledger package rather than attempting to build one from scratch has been a popu-
lar route for years. Nearly all the operational packages also offer a complementary
analytic solution, sometimes in partnership with an OLAP vendor. In many cases,
precanned solutions based on the vendor’s cumulative experience are a sound way
to jump start a financial DW/BI implementation with potentially reduced cost and
risk. The analytic solutions often have tools to assist with the extraction and staging
of the operational data, as well as tools to assist with analysis and interpretation.
However, when leveraging packaged solutions, you need to be cautious in order to
avoid stovepipe applications. You could easily end up with separate financial, CRM,
human resources, and ERP packaged analytic solutions from as many different
vendors, none of which integrate with other internal data. You need to conform
dimensions across the entire DW/BI environment, regardless of whether you build
a solution or implement packages. Packaged analytic solutions can turbocharge a
DW/BI implementation; however, they do not alleviate the need for conformance.
Most organizations inevitably rely on a combination of building, buying, and inte-
grating for a complete solution.

Accounting 227

Summary

In this chapter, we focused primarily on financial data in the general ledger, both in
terms of periodic snapshots as well as journal entry transactions. We discussed the
handling of common G/L data challenges, including multiple currencies, multiple
fiscal years, unbalanced organizational trees, and the urge to create to-date totals.

We used the familiar organization rollup structure to show how to model complex
ragged hierarchies of indeterminate depth. We introduced a special bridge table for
these hierarchies, and compared this approach to others.

We explored the series of events in a budgeting process chain. We described the
use of “net change” granularity in this situation rather than creating snapshots of
the budget data totals. We also discussed the concept of consolidated fact tables
that combine the results of separate business processes when they are frequently
analyzed together.

Finally, we discussed the natural fit of OLAP products for financial analysis. We
also stressed the importance of integrating analytic packages into the overall DW/
BI environment through the use of conformed dimensions.

ong before the customer relationship management (CRM) buzzword existed,

organizations were designing and developing customer-centric dimensional
models to better understand their customers’ behavior. For decades, these models
were used to respond to management’s inquiries about which customers were solic-
ited, who responded, and what was the magnitude of their response. The business
value of understanding the full spectrum of customers’ interactions and transactions
has propelled CRM to the top of the charts. CRM not only includes familiar resi-
dential and commercial customers, but also citizens, patients, students, and many
other categories of people and organizations whose behavior and preferences are
important. CRM is a mission-critical business strategy that many view as essential
to an organization’s survival.

In this chapter we start with a CRM overview, including its operational and ana-
lytic roles. We then introduce the basic design of the customer dimension, including
common attributes such as dates, segmentation attributes, repeated contact roles,
and aggregated facts. We discuss customer name and address parsing, along with
international considerations. We remind you of the challenges of modeling complex
hierarchies when we describe various kinds of customer hierarchies.

Chapter 8 discusses the following concepts:

CRM overview

Customer name and address parsing, including international considerations
Handling of dates, aggregated facts, and segmentation behavior attributes and
scores in a customer dimension

Outriggers for low cardinality attributes

Bridge tables for sparse attributes, along with trade-offs of bridge tables versus
a positional design

Bridge tables for multiple customer contacts

Behavior study groups to capture customer cohort groups

230 Chapter 8

Step dimensions to analyze sequential customer behavior

Timespan fact tables with effective and expiration dates

Embellishing fact tables with dimensions for satisfaction or abnormal scenarios
Integrating customer data via master data management or partial conformity
during the downstream ETL processing

Warnings about fact-to-fact table joins

Reality check on real time, low latency requirements

Because this chapter’s customer-centric modeling issues and patterns are relevant
across industries and functional areas, we have not included a bus matrix.

CRM Overview

Regardless of the industry, organizations have flocked to the concept of CRM.
They’ve jumped on the bandwagon in an attempt to migrate from a product-centric
orientation to one that is driven by customer needs. Although all-encompassing
terms such as customer relationship management sometimes seem ambiguous and/
or overly ambitious, the premise behind CRM is far from rocket science. It's based
on the simple notion that the better you know your customers, the better you can
maintain long-lasting, valuable relationships with them. The goal of CRM is to
maximize relationships with your customers over their lifetime. It entails focus-
ing all aspects of the business, from marketing, sales, operations, and service, on
establishing and sustaining mutually beneficial customer relations. To do so, the
organization must develop a single, integrated view of each customer.

CRM promises significant returns for organizations that embrace it, both for
increased revenue and operational efficiencies. Switching to a customer-driven
perspective can lead to increased sales effectiveness and closure rates, revenue
growth, enhanced sales productivity at reduced cost, improved customer profit-
ability margins, higher customer satisfaction, and increased customer retention.
Ultimately, every organization wants more loyal, more profitable customers. As it
often requires a sizeable investment to attract new customers, you can't afford to
have the profitable ones leave.

In many organizations, the view of the customer varies depending on the product
line business unit, business function, and/or geographic location. Each group may
use different customer data in different ways with different results. The evolution
from the existing silos to a more integrated perspective obviously requires organi-
zational commitment. CRM is like a stick of dynamite that knocks down the silo
walls. It requires the right integration of business processes, people resources, and
application technology to be effective.

Over the past decade, the explosive growth of social media, location tracking tech-
nology, network usage monitoring, multimedia applications, and sensor networks

Customer Relationship Management 237

has provided an ocean of customer behavioral data that even Main Street enterprises
recognize as providing actionable insights. Although much of this data lies outside
the comfort zone of relational databases, the new “big data” techniques can bring
this data back into the DW/BI fold. Chapter 21: Big Data Analytics discusses the
best practices for bringing this new kind of big data into the DW/BI environment.
But setting aside the purely technological challenges, the real message is the need
for profound integration. You must step up to the challenge of integrating as many
as 100 customer-facing data sources, most of which are external. These data sources
are at different grains, have incompatible customer attributes, and are not under
your control. Any questions?

Because it is human nature to resist change, it comes as no surprise that people-
related issues often challenge CRM implementations. CRM involves brand new
ways of interacting with customers and often entails radical changes to the sales
channels. CRM requires new information flows based on the complete acquisition
and dissemination of customer “touch point” data. Often organization structures and
incentive systems are dramatically altered.

In Chapter 17: Kimball DW/BI Lifecycle Overview, we'll stress the importance of
having support from both senior business and IT management for a DW/BI initiative.
This advice also applies to a CRM implementation because of its cross-functional
focus. CRM requires a clear business vision. Without business strategy, buy-in, and
authorization to change, CRM becomes an exercise in futility. Neither IT nor the
business community can successfully implement CRM on its own; CRM demands
a joint commitment of support.

Operational and Analytic CRM

It could be said that CRM suffers from a split personality syndrome because it needs
to address both operational and analytic requirements. Effective CRM relies on the
collection of data at every interaction you have with a customer and then leveraging
that breadth of data through analysis.

On the operational front, CRM calls for the synchronization of customer-facing
processes. Often operational systems must either be updated or supplemented to coor-
dinate across sales, marketing, operations, and service. Think about all the customer
interactions that occur during the purchase and usage of a product or service, from
the initial prospect contact, quote generation, purchase transaction, fulfillment, pay-
ment transaction, and on-going customer service. Rather than thinking about these
processes as independent silos (or multiple silos varying by product line), the CRM
mindset is to integrate these customer activities. Key customer metrics and charac-
teristics are collected at each touch point and made available to the others.

As data is created on the operational side of the CRM equation, you obviously
need to store and analyze the historical metrics resulting from the customer

232 Chapter 8

interaction and transaction systems. Sounds familiar, doesn’t it? The DW/BI system
sits at the core of CRM. It serves as the repository to collect and integrate the
breadth of customer information found in the operational systems, as well as from
external sources. The data warehouse is the foundation that supports the panoramic
360-degree view of your customers.

Analytic CRM is enabled via accurate, integrated, and accessible customer data
in the DW/BI system. You can measure the effectiveness of decisions made in the
past to optimize future interactions. Customer data can be leveraged to better iden-
tify up-sell and cross-sell opportunities, pinpoint inefficiencies, generate demand,
and improve retention. In addition, the historical, integrated data can be leveraged
to generate models or scores that close the loop back to the operational world.
Recalling the major components of a DW/BI environment from Chapter 1: Data
Warehousing, Business Intelligence, and Dimensional Modeling Primer, you can
envision the model results pushed back to where the relationship is operationally
managed (such as the rep, call center, or website), as illustrated in Figure 8-1. The
model output can translate into specific proactive or reactive tactics recommended
for the next point of customer contact, such as the appropriate next product offer or
anti-attrition response. The model results are also retained in the DW/BI environ-
ment for subsequent analysis.

Integrate
(ETL)

Collect
(Operational
Source System)

Store
(Data Presentation)

Model Analyze and

(Bl Applications) Report
(BI Applications)

Figure 8-1: Closed loop analytic CRM.

Customer Relationship Management 233

In other situations, information must feed back to the operational website or call
center systems on a more real-time basis. In this case, the closed loop is much tighter
than Figure 8-1 because it’s a matter of collection and storage, and then feedback
to the collection system. Today’s operational processes must combine the current
view with a historical view, so a decision maker can decide, for example, whether
to grant credit to a customer in real time, while considering the customer’s lifetime
history. But generally, the integration requirements for operational CRM are not as
far reaching as for analytic CRM.

Obviously, as the organization becomes more centered on the customer, so must
the DW/BI system. CRM will inevitably drive change in the data warehouse. DW/BI
environments will grow even more rapidly as you collect more and more informa-
tion about your customers. ETL processes will grow more complicated as you match
and integrate data from multiple sources. Most important, the need for a conformed
customer dimension becomes even more paramount.

Customer Dimension Attributes

The conformed customer dimension is a critical element for effective CRM. A well-
maintained, well-deployed conformed customer dimension is the cornerstone of
sound CRM analysis.

The customer dimension is typically the most challenging dimension for any
DW/BI system. In a large organization, the customer dimension can be extremely
deep (with many millions of rows), extremely wide (with dozens or even hundreds
of attributes), and sometimes subject to rapid change. The biggest retailers, credit
card companies, and government agencies have monster customer dimensions whose
size exceeds 100 million rows. To further complicate matters, the customer dimen-
sion often represents an amalgamation of data from multiple internal and external
source systems.

In this next section, we focus on numerous customer dimension design con-
siderations. We’'ll begin with name/address parsing and other common customer
attributes, including coverage of dimension outriggers, and then move on to other
interesting customer attributes. Of course, the list of customer attributes is typically
quite lengthy. The more descriptive information you capture about your customers,
the more robust the customer dimension, and the more interesting the analyses.

Name and Address Parsing

Regardless of whether you deal with individual human beings or commercial enti-
ties, customers’ name and address attributes are typically captured. The operational
handling of name and address information is usually too simplistic to be very useful

234 Chapter 8

in the DW/BI system. Many designers feel a liberal design of general purpose col-
umns for names and addresses, such as Name-1 through Name-3 and Address-1
through Address-6, can handle any situation. Unfortunately, these catchall columns
are virtually worthless when it comes to better understanding and segmenting
the customer base. Designing the name and location columns in a generic way
can actually contribute to data quality problems. Consider the sample design in
Figure 8-2 with general purpose columns.

Column Sample Data Value

Name Ms. R. Jane Smith, Atty

Address 1 123 Main Rd, North West, Ste 100A
Address 2 PO Box 2348

City Kensington

State Ark.

ZIP Code 88887-2348

Phone Number | 888-555-3333 x776 main, 555-4444 fax

Figure 8-2: Sample customer name/address data in overly general columns.

In this design, the name column is far too limited. There is no consistent mecha-
nism for handling salutations, titles, or suffixes. You can’t identify what the person’s
first name is, or how she should be addressed in a personalized greeting. If you
look at additional sample data from this operational system, you would potentially
find multiple customers listed in a single name attribute. You might also find addi-
tional descriptive information in the name column, such as Confidential, Trustee,
or UGMA (Uniform Gift to Minors Act).

In the sample address attributes, inconsistent abbreviations are used in various
places. The address columns may contain enough room for any address, but there
is no discipline imposed by the columns that can guarantee conformance with
postal authority regulations or support address matching and latitude/longitude
identification.

Instead of using a few, general purpose columns, the name and location attributes
should be broken down into as many elemental parts as possible. The extract process
needs to perform significant parsing on the original dirty names and addresses. After
the attributes have been parsed, they can be standardized. For example, Rd would
become Road and Ste would become Suite. The attributes can also be verified, such
as verifying the ZIP code and associated state combination is correct. Fortunately,
there are name and address data cleansing and scrubbing tools available in the
market to assist with parsing, standardization, and verification.

Customer Relationship Management 235

A sample set of name and location attributes for individuals in the United States is

shown in Figure 8-3. Every attribute is filled in with sample data to make the design

clearer, but no single real instance would look like this. Of course, the business data

governance representatives should be involved in determining the analytic value of

these parsed data elements in the customer dimension.

Column Sample Data Value
Salutation Ms.

Informal Greeting Name Jane

Formal Greeting Name Ms. Smith
First and Middle Names R. Jane
Surname Smith

Suffix Jr.

Ethnicity English

Title Attorney
Street Number 123

Street Name Main

Street Type Road

Street Direction North West
City Kensington
District Cornwall
Second District Berkeleyshire
State Arkansas
Region South
Country United States
Continent North America
Primary Postal Code 88887
Secondary Postal Code 2348

Postal Code Type

United States

Office Telephone Country Code

1

Office Telephone Area Code 888
Office Telephone Number 5553333
Office Extension 776
Mobile Telephone Country Code |1

Mobile Telephone Area Code 509
Mobile Telephone Number 5554444

E-mail

RJSmith@ABCGenintl.

com

Web Site www.ABCGenlIntl.com
Public Key Authentication X.509

Certificate Authority Verisign

Unique Individual ldentifier 7346531

Figure 8-3: Sample customer name/address data with parsed name and address

elements.

mailto:RJSmith@ABCGenIntl.com
http://www.ABCGenIntl.com

236 Chapter 8

Commercial customers typically have multiple addresses, such as physical and
shipping addresses; each of these addresses would follow much the same logic as
the address structure shown in Figure 8-3.

International Name and Address Considerations

International display and printing typically requires representing foreign characters,
including not just the accented characters from western European alphabets, but
also Cyrillic, Arabic, Japanese, Chinese, and dozens of other less familiar writing
systems. It is important to understand this is not a font problem. This is a character
set problem. A font is simply an artist’s rendering of a set of characters. There are
hundreds of fonts available for standard English, but standard English has a rela-
tively small character set that is enough for anyone’s use unless you are a professional
typographer. This small character set is usually encoded in American Standard Code
for Information Interchange (ASCII), which is an 8-bit encoding that has a maximum
of 255 possible characters. Only approximately 100 of these 255 characters have a
standard interpretation that can be invoked from a normal English keyboard, but
this is usually enough for English speaking computer users. It should be clear that
ASCII is woefully inadequate for representing the thousands of characters needed
for non-English writing systems.

An international body of system architects, the Unicode Consortium, defined a
standard known as Unicode for representing characters and alphabets in almost all
the world’s languages and cultures. Their work can be accessed on the web at www.
unicode.org. The Unicode Standard, version 6.2.0 has defined specific interpreta-
tions for 110,182 possible characters and now covers the principal written languages
of the Americas, Europe, the Middle East, Africa, India, Asia, and Pacifica. Unicode
is the foundation you must use for addressing international character sets.

But it is important to understand that implementing Unicode solutions is done in
the foundation layers of your systems. First, the operating system must be Unicode-
compliant. Fortunately, the most current releases of all the major operating systems
are Unicode-compliant.

Above the operating system, all the devices that capture, store, transmit, and
print characters must be Unicode-compliant. Data warehouse back room tools must
be Unicode-compliant, including sort packages, programming languages, and auto-
mated ETL packages. Finally, the DW/BI applications, including database engines,
BI application servers and their report writers and query tools, web servers, and
browsers must all be Unicode-compliant. The DW/BI architect should not only talk
to the vendors of each package in the data pipeline, but also should conduct various
end-to-end tests. Capture some names and addresses with Unicode characters at
the data capture screens of one of the legacy applications, and send them through the
system. Get them to print out of a final report or a final browser window from

Customer Relationship Management 237

the DW/BI system and see if the special characters are still there. That simple
test will cut through a lot of the confusion. Note that even when you do this, the
same character, such as an a-umlaut, sorts differently in different countries such as
Norway and Germany. Even though you can’t solve all the variations in international
collating sequences, at least both the Norwegians and the Germans will agree that
the character is an a-umlaut.

Customer geographic attributes become more complicated if you deal with cus-
tomers from multiple countries. Even if you don’t have international customers, you
may need to contend with international names and addresses somewhere in the
DW/BI system for international suppliers and human resources personnel records.

NOTE Customer dimensions sometimes include a full address block attribute.
This is a specially crafted column that assembles a postally-valid address for the
customer including mail stop, ZIP code, and other attributes needed to satisfy postal
authorities. This attribute is useful for international locations where addresses
have local idiosyncrasies.

International DW/BI Goals

After committing to a Unicode foundation, you need to keep the following goals in
mind, in addition to the name and address parsing requirements discussed earlier:

Universal and consistent. As they say, in for a penny, in for a pound. If you
are going to design a system for international use, you want it to work around
the world. You need to think carefully if BI tools are to produce translated ver-
sions of reports in many languages. It may be tempting to provide translated
versions of dimensions for each language, but translated dimensions give rise
to some subtle problems.

Sorting sequences will be different, so either the reports will be sorted
differently or all reports except those in the “root” language will appear
to be unsorted.

If the attribute cardinalities are not faithfully preserved across lan-
guages, then either group totals will not be the same across reports, or
some groups in various languages will contain duplicated row headers
that look like mistakes. To avoid the worst of these problems, you
should translate dimensions after the report is run; the report first
needs to be produced in a single root language, and then the report
face needs to be translated into the intended target languages.

All the BI tool messages and prompts need to be translated for the
benefit of the business user. This process is known as localization and
is further discussed in Chapter 12: Transportation.

238 Chapter 8

End-to-end data quality and downstream compatibility. The data warehouse
cannot be the only step in the data pipeline that worries about the integrity
of international names and addresses. A proper design requires support from
the first step of capturing the name and the address, through the data cleaning
and storage steps, to the final steps of performing geographic and demographic
analysis and printing reports.

Cultural correctness. In many cases, foreign customers and partners will see
the results from your DW/BI system in some form. If we don’t understand
which name is a first name and which is a last name, and if you don’t under-
stand how to refer to a person, you run the risk of insulting these individuals,
or at the very least, looking stupid. When outputs are punctuated improperly, or
misspelled, your foreign customers and partners will wish they were doing
business with a local company, rather than you.

Real-time customer response. DW/BI systems can play an operational role
by supporting real-time customer response systems. A customer service rep-
resentative may answer the telephone and may have 5 seconds or less to wait
for a greeting to appear on the screen that the data warehouse recommends
using with the customer. The greeting may include a proper salutation and
a proper use of the customer’s title and name. This greeting represents an
excellent use of a hot response cache that contains precalculated responses
for each customer.

Other kinds of addresses. We are in the midst of a revolution in communication
and networking. If you are designing a system for identifying international
names and addresses, you must anticipate the need to store electronic names,
security tokens, and internet addresses.

Similar to international addresses, telephone numbers must be presented
differently depending on where the phone call originates. You need to provide
attributes to represent the complete foreign dialing sequence, complete domestic
dialing sequence, and local dialing sequence. Unfortunately, complete foreign dial-
ing sequences vary by origin country.

Customer-Centric Dates

Customer dimensions often contains dates, such as the date of the first purchase,
date of last purchase, and date of birth. Although these dates initially may be SQL
date type columns, if you want to summarize these dates by your unique calen-
dar attributes, such as seasons, quarters, and fiscal periods, the dates should be
changed to foreign key references to the date dimension. You need to be careful
that all such dates fall within the span of the corporate date dimension. These date
dimension roles are declared as semantically distinct views, such as a First Purchase

Customer Relationship Management 239

Date dimension table with unique column labels. The system behaves as if there
is another physical date table. Constraints on any of these tables have nothing to
do with constraints on the primary date dimension table. This design, as shown
in Figure 8-4, is an example of a dimension outrigger, which is discussed in the
section “Outrigger for Low Cardinality Attribute Set.”

Date of 1st Purchase Dimension Customer Dimension Fact Table
Date of 1st Purchase Key (PK) Customer Key (PK) \ Transaction Date Key (FK)
Date of 1st Purchase Customer ID (Natural Key) Customer Key (FK)
Date of 1st Purchase Month Customer Salutation More FKs ...
Date of 1st Purchase Year Customer First Name Facts ...
Date of 1st Purchase Fiscal Month Customer Surname
Date of 1st Purchase Fiscal Quarter Customer City
Date of 1st Purchase Fiscal Year Customer State
Date of 1st Purchase Season

Date of 1st Purchase Key (FK)

Figure 8-4: Date dimension outrigger.

Aggregated Facts as Dimension Attributes

Business users are often interested in constraining the customer dimension based on
aggregated performance metrics, such as filtering on all customers who spent more
than a certain dollar amount during last year. Or to make matters worse, perhaps
they want to constrain based on how much the customer has purchased in a lifetime.
Providing aggregated facts as dimension attributes is sure to be a crowd-pleaser with
the business users. They could issue a query to identify all customers who satisfied the
spending criteria and then issue another fact query to analyze the behavior for
that customer dimension subset. But rather than all that, you can instead store
an aggregated fact as a dimension attribute. This allows business users to simply
constrain on the spending attribute just like they might on a geographic attribute.
These attributes are meant to be used for constraining and labeling; they’re not to be
used in numeric calculations. Although there are query usability and performance
advantages of storing these attributes, the main burden falls on the back room ETL
processes to ensure the attributes are accurate, up-to-date, and consistent with the
actual fact rows. These attributes can require significant care and feeding. If you
opt to include some aggregated facts as dimension attributes, be certain to focus on
those that will be frequently used. Also strive to minimize the frequency with which
these attributes need to be updated. For example, an attribute for last year’s spending
would require much less maintenance than one providing year-to-date behavior.
Rather than storing attributes down to the specific dollar value, they are sometimes

240 Chapter 8

replaced (or supplemented) with more meaningful descriptive values, such as High
Spender as discussed in the next section. These descriptive values minimize your
vulnerability that the numeric attributes might not tie back to the appropriate fact
tables. In addition, they ensure that all users have a consistent definition for high
spenders, for example, rather than resorting to their own individual business rules.

Segmentation Attributes and Scores

Some of the most powerful attributes in a customer dimension are segmentation
classifications. These attributes obviously vary greatly by business context. For an
individual customer, they may include:

Gender

Ethnicity

Age or other life stage classifications

Income or other lifestyle classifications

Status (such as new, active, inactive, and closed)

Referring source

Business-specific market segment (such as a preferred customer identifier)

Similarly, many organizations score their customers to characterize them.
Statistical segmentation models typically generate these scores which cluster cus-
tomers in a variety of ways, such as based on their purchase behavior, payment
behavior, propensity to churn, or probability to default. Each customer is tagged
with a resultant score.

Behavior Tag Time Series

One popular approach for scoring and profiling customers looks at the recency (R),
frequency (F), and intensity (I) of the customer’s behavior. These are known as the
RFI measures; sometimes intensity is replaced with monetary (M), so it’s also known
as RFM. Recency is how many days has it been since the customer last ordered
or visited your site. Frequency is how many times the customer has ordered or
visited, typically in the past year. And intensity is how much money the customer
has spent over the same time period. When dealing with a large customer base,
every customer’s behavior can be modeled as a point in an RFI cube, as depicted
in Figure 8-5. In this figure, the scales along each axis are quintiles, from 1 to 5,
which spread the actual values into even groups.

If you have millions of points in the cube, it becomes difficult to see meaning-
ful clusters of these points. This is a good time to ask a data mining professional
where the meaningful clusters are. The data mining professional may come back
with a list of behavior tags like the following, which is drawn from a slightly more
complicated scenario that includes credit behavior and returns:

Customer Relationship Management 2471

A: High volume repeat customer, good credit, few product returns
B: High volume repeat customer, good credit, many product returns
C: Recent new customer, no established credit pattern

D: Occasional customer, good credit

E: Occasional customer, poor credit

F: Former good customer, not seen recently

G: Frequent window shopper, mostly unproductive

H: Other
Highest 5
4
Recency 3 5 Highest
9 4
3 Intensity
2
Lowest 1 1 Lowest
1 2 3 4 5
Lowest Highest
Frequency

Figure 8-5: Recency, frequency, intensity (RFI) cube.

Now you can look at the customers’ time series data and associate each customer
in each reporting period with the nearest cluster. The data miner can help do this.
Thus, the last 10 observations of a customer named John Doe could look like:

John Doe: CCCDDAAABB

This time series of behavior tags is unusual because although it comes from
a regular periodic measurement process, the observed “values” are textual. The
behavior tags are not numeric and cannot be computed or averaged, but they can
be queried. For example, you may want to find all the customers who were an A
sometime in the fifth, fourth, or third prior period and were a B in the second or first
prior period. Perhaps you are concerned by progressions like this and fear losing a
valuable customer because of the increasing number of returns.

Behavior tags should not be stored as regular facts. The main use of behavior tags
is formulating complex query patterns like the example in the previous paragraph.
If the behavior tags were stored in separate fact rows, such querying would be
extremely difficult, requiring a cascade of correlated subqueries. The recommended
way to handle behavior tags is to build an explicit time series of attributes in the
customer dimension. This is another example of a positional design. Bl interfaces

242 Chapter 8

are simple because the columns are in the same table, and performance is good
because you can build bitmapped indexes on them.

In addition to the separate columns for each behavior tag time period, it would
be a good idea to create a single attribute with all the behavior tags concatenated
together, such as CCCDDAAABB. This column would support wild card searches
for exotic patterns, such as “D followed by a B.”

NOTE In addition to the customer dimension’s time series of behavior tags, it
would be reasonable to include the contemporary behavior tag value in a mini-

dimension to analyze facts by the behavior tag in effect when the fact row was
loaded.

Relationship Between Data Mining and DW/BI System

The data mining team can be a great client of the data warehouse, and especially
great users of customer behavior data. However, there can be a mismatch between
the velocity that the data warehouse can deliver data and the velocity that the data
miners can consume data. For example, a decision tree tool can process hundreds
of records per second, but a big drill-across report that produces “customer observa-
tions” can never deliver data at such speeds. Consider the following seven-way drill
across a report that might produce millions of customer observations from census,
demographic, external credit, internal credit, purchases, returns, and website data:

SELECT Customer Identifier, Census Tract, City, County, State,
Postal Code, Demographic Cluster, Age, Sex, Marital Status,
Years of Residency, Number of Dependents, Employment Profile,
Education Profile, Sports Magazine Reader Flag,
Personal Computer Owner Flag, Cellular Telephone Owner Flag,
Current Credit Rating, Worst Historical Credit Rating,
Best Historical Credit Rating, Date First Purchase,
Date Last Purchase, Number Purchases Last Year,
Change in Number Purchases vs. Previous Year,
Total Number Purchases Lifetime, Total Value Purchases Lifetime,
Number Returned Purchases Lifetime, Maximum Debt,
Average Age Customer's Debt Lifetime, Number Late Payments,
Number Fully Paid, Times Visited Web Site,
Change in Frequency of Web Site Access,
Number of Pages Visited Per Session,
Average Dwell Time Per Session, Number Web Product Orders,
Value Web Product Orders, Number Web Site Visits to Partner Web
Sites, Change in Partner Web Site Visits

FROM *** WHERE *** QRDER BY *** GROUP BY ***

Customer Relationship Management 243

Data mining teams would love this data! For example a big file of millions of these
observations could be analyzed by a decision tree tool where the tool is “aimed”
at the Total Value Purchases Lifetime column, which is highlighted above. In this
analysis, the decision tree tool would determine which of the other columns “predict
the variance” of the target field. Maybe the answer is Best Historical Credit Rating
and Number of Dependents. Armed with this answer, the enterprise now has a
simple way to predict who is going to be a good lifetime customer, without needing
to know all the other data content.

But the data mining team wants to use these observations over and over for
different kinds of analyses perhaps with neural networks or case-based reasoning
tools. Rather than producing this answer set on demand as a big, expensive query,
this answer set should be written to a file and given to the data mining team to
analyze on its servers.

Counts with Type 2 Dimension Changes

Businesses frequently want to count customers based on their attributes without
joining to a fact table. If you used type 2 to track customer dimension changes,
you need to be careful to avoid overcounting because you may have multiple rows
in the customer dimension for the same individual. Doing a COUNT DISTINCT on a
unique customer identifier is a possibility, assuming the attribute is indeed unique
and durable. A current row indicator in the customer dimension is also helpful to
do counts based on the most up-to-date descriptive values for a customer.

Things get more complicated if you need to do a customer count at a given histori-
cal point in time using effective and expiration dates in the customer dimension. For
example, if you need to know the number of customers you had at the beginning of
2013, you could constrain the row effective date <= ‘1/1/2013’ and row expiration
date >= ‘1/1/2013’ to restrict the result set to only those rows that were valid on
1/1/2013. Note the comparison operators are dependent on the business rules used
to set the row effective/expiration dates. In this example, the row expiration date on
the no longer valid customer row is 1 day less than the effective date on the new row.

Outrigger for Low Cardinality Attribute Set

In Chapter 3: Retail Sales, we encouraged designers to avoid snowflaking where low
cardinality columns in the dimension are removed to separate normalized tables,
which then link back into the original dimension table. Generally, snowflaking is
not recommended in a DW/BI environment because it almost always makes the
user presentation more complex, in addition to negatively impacting browsing per-
formance. In spite of this prohibition against snowflaking, there are some special

244 Chapter 8

situations in which it is permissible to build a dimension outrigger that begins to
look like a snowflaked table.

In Figure 8-6, the dimension outrigger is a set of data from an external data pro-
vider consisting of 150 demographic and socio-economic attributes regarding the
customers’ county of residence. The data for all customers residing in a given county
is identical. Rather than repeating this large block of data for every customer within
a county, opt to model it as an outrigger. There are several reasons for bending the
“no snowflake” rule. First, the demographic data is available at a significantly dif-
ferent grain than the primary dimension data and it’s not as analytically valuable.
It is loaded at different times than the rest of the data in the customer dimension.
Also, you do save significant space in this case if the underlying customer dimen-
sion is large. If you have a query tool that insists on a classic star schema with no
snowflakes, the outrigger can be hidden under a view declaration.

Country Demographics Outrigger Dimension Customer Dimension Fact Table
County Demographics Key (PK) Customer Key (PK) Customer Key (FK)
Total Population Customer ID (Natural Key) More FKs ...
Population under 5 Years Customer Salutation Facts ...

% Population under 5 Years Customer First Name

Population under 18 Years Customer Surname

% Population under 18 Years Customer City

Population 65 Years and Older Customer Gounty

% Population 65 Years and Older County Demographics Key (FK)

Female Population Customer State

% Female Population

Male Population

% Male Population

Number of High School Graduates
Number of College Graduates
Number of Housing Units

Home Ownership Rate

Figure 8-6: Dimension outrigger for cluster of low cardinality attributes.

WARNING Dimension outriggers are permissible, but they should be the
exception rather than the rule. A red warning flag should go up if your design
is riddled with outriggers; you may have succumbed to the temptation to overly
normalize the design.

Customer Hierarchy Considerations

One of the most challenging aspects of dealing with commercial customers is mod-
eling their internal organizational hierarchy. Commercial customers often have a

Customer Relationship Management 245

nested hierarchy of entities ranging from individual locations or organizations up
through regional offices, business unit headquarters, and ultimate parent companies.
These hierarchical relationships may change frequently as customers reorganize
themselves internally or are involved in acquisitions and divestitures.

NOTE In Chapter 7: Accounting, we described how to handle fixed hierar-
chies, slightly variable hierarchies, and ragged hierarchies of indeterminate depth.
Chapter 7 focuses on financial cost center rollups, but the techniques are exactly
transferrable to customer hierarchies. If you skipped Chapter 7, you need to back-
track to read that chapter to make sense of the following recommendations.

Although relatively uncommon, the lucky ones amongst us sometimes are
confronted with a customer hierarchy that has a highly predictable fixed number
of levels. Suppose you track a maximum of three rollup levels, such as the ultimate
corporate parent, business unit headquarters, and regional headquarters. In this
case, you have three distinct attributes in the customer dimension corresponding
to these three levels. For commercial customers with complicated organizational
hierarchies, you'd populate all three levels to appropriately represent the three differ-
ent entities involved at each rollup level. This is the fixed depth hierarchy approach
from Chapter 7.

By contrast, if another customer had a mixture of one, two, and three level
organizations, you'd duplicate the lower-level value to populate the higher-level attri-
butes. In this way, all regional headquarters would sum to the sum of all business
unit headquarters, which would sum to the sum of all ultimate corporate parents.
You can report by any level of the hierarchy and see the complete customer base
represented. This is the slightly variable hierarchy approach.

But in many cases, complex commercial customer hierarchies are ragged hier-
archies with an indeterminate depth, so you must use a ragged hierarchy modeling
technique, as described in Chapter 7. For example, if a utility company is devising a
custom rate plan for all the utility consumers that are part of a huge customer with
many levels of offices, branch locations, manufacturing locations, and sales loca-
tions, you cannot use a fixed hierarchy. As pointed out in Chapter 7, the worst design
is a set of generic levels named such as Level-1, Level-2, and so on. This makes for
an unusable customer dimension because you don’t know how to constrain against
these levels when you have a ragged hierarchy of indeterminate depth.

Bridge Tables for Multivalued Dimensions

A fundamental tenet of dimensional modeling is to decide on the grain of the fact
table, and then carefully add dimensions and facts to the design that are true to
the grain. For example, if you record customer purchase transactions, the grain of

246 Chapter 8

the individual purchase is natural and physically compelling. You do not want to
change that grain. Thus you normally require any dimension attached to this fact
table to take on a single value because then there’s a clean single foreign key in the
fact table that identifies a single member of the dimension. Dimensions such as
the customer, location, product or service, and time are always single valued. But
you may have some “problem” dimensions that take on multiple values at the grain
of the individual transaction. Common examples of these multivalued dimensions
include:

Demographic descriptors drawn from a multiplicity of sources
Contact addresses for a commercial customer

Professional skills of a job applicant

Hobbies of an individual

Diagnoses or symptoms of a patient

Optional features for an automobile or truck

Joint account holders in a bank account

Tenants in a rental property

When faced with a multivalued dimension, there are two basic choices: a posi-
tional design or bridge table design. Positional designs are very attractive because
the multivalued dimension is spread out into named columns that are easy to query.
For example, if modeling the hobbies of an individual as previously mentioned,
you could have a hobby dimension with named columns for all the hobbies gath-
ered from your customers, including stamp collecting, coin collecting, astronomy,
photography, and many others! Immediately you can see the problem. The posi-
tional design approach isn’t very scalable. You can easily run out of columns in
your database, and it is awkward to add new columns. Also if you have a column
for every possible hobby, then any single individual’s hobby dimension row will
contain mostly null values.

The bridge table approach to multivalued dimensions is powerful but comes
with a big compromise. The bridge table removes the scalability and null value
objections because rows in the bridge table exist only if they are actually needed,
and you can add hundreds or even thousands of hobbies in the previous example.
But the resulting table design requires a complex query that must be hidden from
direct view by the business users.

WARNING Be aware that complex queries using bridge tables may require SQL
that is beyond the normal reach of BI tools.

Customer Relationship Management 247

In the next two sections, we illustrate multivalued bridge table designs that
fit with the customer-centric topics of this chapter. We will revisit multivalued
bridges in Chapter 9: Human Resources Management, Chapter 10: Financial
Services, Chapter 13: Education, Chapter 14: Healthcare, and Chapter 16: Insurance.
We'll then describe how to build these bridges in Chapter 19: ETL Subsystems and
Techniques.

Bridge Table for Sparse Attributes

Organizations are increasingly collecting demographics and status information
about their customers, but the traditional fixed column modeling approach for
handling these attributes becomes difficult to scale with hundreds of attributes.

Positional designs have a named column for each attribute. BI tool interfaces are
easy to construct for positional attributes because the named columns are easily
presented in the tool. Because many columns contain low cardinality contents, the
query performance using these attributes can be very good if bitmapped indexes
are placed on each column. Positional designs can be scaled up to perhaps 100 or
so columns before the databases and user interfaces become awkward or hard to
maintain. Columnar databases are well suited to these kinds of designs because
new columns can be easily added with minimal disruption to the internal storage
of the data, and the low-cardinality columns containing only a few discrete values
are dramatically compressed.

When the number of different attributes grows beyond your comfort zone, and
if new attributes are added frequently, a bridge table is recommended. Ultimately,
when you have a very large and expanding set of demographics indicators, using
outriggers or mini-dimensions simply does not gracefully scale. For example, you
may collect loan application information as a set of open ended name-value pairs,
as shown in Figure 8-7. Name-value pair data is interesting because the values can
be numeric, textual, a file pointer, a URL, or even a recursive reference to enclosed
name-value pair data.

Over a period of time, you could collect hundreds or even thousands of different
loan application variables. For a true name-value pair data source, the value field
itself can be stored as a text string to handle the open-ended modality of the val-
ues, which is interpreted by the analysis application. In these situations whenever
the number of variables is open-ended and unpredictable, a bridge table design is
appropriate, as shown in Figure 8-8.

248 Chapter 8

Loan Application Name-Value Pair Data

Photograph: <image>

Primary Income: $72345

Other Taxable Income: $2345

Tax-Free Income: $3456

Long Term Gains: $2367

Garnished Wages: $789

Pending Judgment Potential: $555

Alimony: $666

Jointly Owned Real Estate Appraised Value: $123456
Jointly Owned Real Estate Image: <image>
Jointly Owned Real Estate MLS Listing: <URL>
Percentage Ownership Real Estate: 50
Number Dependents: 4

Pre-existing Medical Disability: Back Injury
Number of Weeks Lost to Disability: 6

Previous Bankruptcy Declaration Type: 11
Years Since Bankruptcy: 8

Spouse Financial Disclosure: <name-value pair>
... 100 more name-value pairs...

Employer Disability Support Statement: <document archive>

Figure 8-7: Loan application name-value pair data.

Loan Application Fact
Application Date Key (FK)
Applicant Key (FK)

Loan Type Key (FK)

Application ID (DD) Application Disclosure Dimension

Application Disclosure Bridge

Loan Officer Key (FK)
Underwriter Key (FK)

Application Disclosure Key (PK)
Application Disclosure Description

Application Disclosure Key (FK)
Disclosure Item Key (FK)

Disclosure ltem Dimension

Branch Key (FK)
Status Key (FK)
Application Disclosure Key (FK)

Disclosure Item Key (PK)
Item Name

Item Value Type

Item Value Text String

Figure 8-8: Bridge table for wide and sparse name-value pair data set.

Bridge Table for Multiple Customer Contacts

Large commercial customers have many points of contact, including decision mak-

ers, purchasing agents, department heads, and user liaisons; each point of contact is

associated with a specific role. Because the number of contacts is unpredictable but

possibly large, a bridge table design is a convenient way to handle this situation, as

shown in Figure 8-9. Some care should be taken not to overdo the contact dimen-

sion and make it a dumping ground for every employee or citizen or salesperson or

human being the organization interacts with. Restrict the dimension for this use

case of contacts as part of the customer relationship.

Customer Relationship Management 249

Customer Dimension Contact Group Dimension Contact Group Bridge Contact Dimension
Customer Key (PK) Contact Group Key (PK) —— Contact Group Key (FK) / Contact Key (PK)
Customer Name Contact Group Name Contact Key (FK) Contact Name
Customer Type Contact Role Contact Street Address

Customer Contact Group (FK)
Date of First Contact

Figure 8-9: Bridge table design for multiple contacts.

Complex Customer Behavior

Customer behavior can be very complex. In this section, we'll discuss the han-
dling of customer cohort groups and capturing sequential behavior. We'll also cover
precise timespan fact tables and tagging fact events with indicators of customer
satisfaction or abnormal scenarios.

Behavior Study Groups for Cohorts

With customer analysis, simple queries such as how much was sold to custom-
ers in this geographic area in the past year rapidly evolve to much more complex
inquiries, such as how many customers bought more this past month than their
average monthly purchase amount from last year. The latter question is too complex
for business users to express in a single SQL request. Some BI tool vendors allow
embedded subqueries, whereas others have implemented drill-across capabilities
in which complex requests are broken into multiple select statements and then
combined in a subsequent pass.

In other situations, you may want to capture the set of customers from a query or
exception report, such as the top 100 customers from last year, customers who spent
more than $1,000 last month, or customers who received a specific test solicitation, and
then use that group of customers, called a behavior study group, for subsequent analyses
without reprocessing to identify the initial condition. To create a behavior study group,
run a query (or series of queries) to identify the set of customers you want to further
analyze, and then capture the customer durable keys of the identified set as an actual
physical table consisting of a single customer key column. By leveraging the custom-
ers’ durable keys, the study group dimension is impervious to type 2 changes to the
customer dimension which may occur after the study group members are identified.

NOTE The secret to building complex behavioral study group queries is to
capture the keys of the customers or products whose behavior you are tracking.
You then use the captured keys to subsequently constrain other fact tables without
having to rerun the original behavior analysis.

250 Chapter 8

You can now use this special behavior study group dimension table of customer
keys whenever you want to constrain any analysis on any table to that set of spe-
cially defined customers. The only requirement is that the fact table contains a
customer key reference. The use of the behavior study group dimension is shown
in Figure 8-10.

POS Retail Sales Transaction Fact

Customer Behavior Study Customer Dimension Date Key (FK)
Group Dimension Customer Key (PK) Customer Key (FK)
Customer ID (Durable Key) Customer ID (Durable Key) More FKs ...
Sales Quantity

Sales Dollar Amount

Figure 8-10: Behavior study group dimension joined to customer dimension’s
durable key.

The behavior study group dimension is attached with an equijoin to the customer
dimension’s durable key (refer to Customer ID i