

Praise for Database Design for Mere

Mortals™, Second Edition

“This book takes the somewhat daunting process of database design and breaks

it into completely manageable and understandable components. Mike’s ap-

proach whilst simple is completely professional, and I can recommend this book

to any novice database designer.”

—Sandra Barker, Lecturer, University of South Australia, Australia

“Databases are a critical infrastructure technology for information systems and

today’s business. Mike Hernandez has written a literate explanation of data-

base technology—a topic that is intricate and often obscure. If you design data-

bases yourself, this book will educate you about pitfalls and show you what to

do. If you purchase products that use a database, the book explains the tech-

nology so that you can understand what the vendor is doing and assess their

products better.”

—Michael Blaha, consultant and trainer,

author of A Manager’s Guide to Database Technology

“If you told me that Mike Hernandez could improve on the first edition of Data-

base Design for Mere Mortals I wouldn’t have believed you, but he did! The sec-

ond edition is packed with more real-world examples, detailed explanations, and

even includes database-design tools on the CD-ROM! This is a must-read for

anyone who is even remotely interested in relational database design, from the

individual who is called upon occasionally to create a useful tool at work, to the

seasoned professional who wants to brush up on the fundamentals. Simply put,

if you want to do it right, read this book!”

—Matt Greer, Process Control Development, The Dow Chemical Company

“Mike’s approach to database design is totally common-sense based, yet he’s ad-

hered to all the rules of good relational database design. I use Mike’s books in

my starter database-design class, and I recommend his books to anyone who’s

interested in learning how to design databases or how to write SQL queries.”

—Michelle Poolet, President, MVDS, Inc.

“Slapping together sophisticated applications with poorly designed data will

hurt you just as much now as when Mike wrote his first edition, perhaps even

more. Whether you’re just getting started developing with data or are a seasoned

pro; whether you’ve read Mike’s previous book or this is your first; whether

you’re happier letting someone else design your data or you love doing it your-

self—this is the book for you. Mike’s ability to explain these concepts in a way

that’s not only clear, but fun, continues to amaze me.”

—From the Foreword by Ken Getz, MCW Technologies,

coauthor ASP.NET Developer’s JumpStart

“The first edition of Mike Hernandez’s book Database Design for Mere Mortals

was one of the few books that survived the cut when I moved my office to

smaller quarters. The second edition expands and improves on the original in so

many ways. It is not only a good, clear read, but contains a remarkable quantity

of clear, concise thinking on a very complex subject. It’s a must for anyone inter-

ested in the subject of database design.”

—Malcolm C. Rubel, Performance Dynamics Associates

“Mike’s excellent guide to relational database design deserves a second edition.

His book is an essential tool for fledgling Microsoft Access and other desktop da-

tabase developers, as well as for client/server pros. I recommend it highly to all

my readers.”

—Roger Jennings, author of Special Edition Using Access 2002

“There are no silver bullets! Database technology has advanced dramatically,

the newest crop of database servers perform operations faster than anyone

could have imagined six years ago, but none of these technological advances will

help fix a bad database design, or capture data that you forgot to include! Data-

base Design for Mere Mortals™, Second Edition, helps you design your database

right in the first place!”

—Matt Nunn, Product Manager, SQL Server, Microsoft Corporation

“When my brother started his professional career as a developer, I gave him

Mike’s book to help him understand database concepts and make real-world ap-

plication of database technology. When I need a refresher on the finer points of

database design, this is the book I pick up. I do not think that there is a better

testimony to the value of a book than that it gets used. For this reason I have

wholeheartedly recommended to my peers and students that they utilize this

book in their day-to-day development tasks.”

—Chris Kunicki, Senior Consultant, OfficeZealot.com

“Mike has always had an incredible knack for taking the most complex topics,

breaking them down, and explaining them so that anyone can ‘get it.’ He has

honed and polished his first very, very good edition and made it even better. If

you’re just starting out building database applications, this book is a must-read

cover to cover. Expert designers will find Mike’s approach fresh and enlightening

and a source of great material for training others.”

—John Viescas, President, Viescas Consulting, Inc., author of Running Microsoft

Access 2000 and coauthor of SQL Queries for Mere Mortals

“Whether you need to learn about relational database design in general, design

a relational database, understand relational database terminology, or learn best

practices for implementing a relational database, Database Design for Mere Mor-

tals™, Second Edition, is an indispensable book that you’ll refer to often. With

his many years of real-world experience designing relational databases, Michael

shows you how to analyze and improve existing databases, implement keys, de-

fine table relationships and business rules, and create data views, resulting in

data integrity, uniform access to data, and reduced data-entry errors.”

—Paul Cornell, Site Editor, MSDN Office Developer Center

Praise for the First Edition

“[A]n astoundingly fresh approach to the ‘nasty’ task of database design . . .

Anyone who has anything to do with creating applications using a database

product should buy this book and read it cover to cover.”

—John Viescas, President, Viescas Consulting, Inc., author of Running Microsoft

Access 2000 and coauthor of SQL Queries for Mere Mortals

“[A] must-have for anyone new to relational database design . . . [Mike’s] atten-

tion to detail is marvelous, and the explanations of the interview process are a

must-read for anyone, including experienced relational database designers.”

—Jim Booth, Principal Consultant, James Booth Consulting

“Mike has done us a favor by taking an academic topic and making it logical, ap-

proachable, and comprehensible for us mortals. Anyone interested in making

their database design better should read this book. It contains good information

for every level of database developer.”

—Malcolm C. Rubel, Contributing Editor, Databased Advisor and FoxPro Advisor

“Database Design for Mere Mortals is sure to help both aspiring and practicing

database designers alike! Michael delivers the major points of logical database

design with a clear, common-sense approach that makes this book an excellent

resource and a pleasure to read.”

—Nick Evans, Contributing Editor, PowerBuilder Advisor Magazine

“No matter what specific database package you’re using (or, perhaps, no pack-

age at all), the concepts in this book will make sense, and will apply to your da-

tabase design projects.”

—From the Foreword by Ken Getz, MCW Technologies,

coauthor, ASP.NET Developer’s JumpStart

Database Design

for Mere

Mortals™

Second Edition

Addison-Wesley presents the

For Mere Mortals® Series

Series Editor: Michael J. Hernandez

The goal of the For Mere Mortals® Series is to present you with information on important
technology topics in an easily accessible, common-sense manner.The primary audience
for Mere Mortals books is that of readers who have little or no background or formal
training in the subject matter. Books in the Series avoid dwelling on the theoretical and
instead take you right into the heart of the topic with a matter-of-fact,hands-on approach.
The books are not designed to address all the intricacies of a given technology, but they
do not avoid or gloss over complex, essential issues either. Instead, they focus on provid-
ing core, foundational knowledge in a way that is easy to understand and that will prop-
erly ground you in the topic.This practical approach provides you with a smooth learning
curve and helps you to begin to solve your real-world problems immediately. It also pre-
pares you for more advanced treatments of the subject matter, should you decide to pur-
sue them,and even enables the books to serve as solid reference material for those of you
with more experience.The software-independent approach taken in most books within
the Series also teaches the concepts in such a way that they can be applied to whatever
particular application or system you may need to use.

Titles in the Series:

Project Management for Mere Mortals®

Claudia M. Baca. ISBN: 0321423453

User Interface Design for Mere Mortals™

Eric Butow. ISBN: 0321447735

Database Design for Mere Mortals®, Second Edition:
A Hands-On Guide to Relational Database Design

Michael J. Hernandez. ISBN: 0201752840

Microsoft Office Project for Mere Mortals®:
Solving the Mysteries of Microsoft Office Project

Patti Jansen. ISBN: 0321423429

UML for Mere Mortals®

Robert A. Maksimchuk and Eric J. Naiburg. ISBN: 0321246241

VSTO for Mere Mortals™

Kathleen McGrath and Paul Stubbs. ISBN: 0321426711

SQL Queries for Mere Mortals®:
A Hands-On Guide to Data Manipulation in SQL, Second Edition

John L.Viescas and Michael J. Hernandez. ISBN: 0321444434

For more information, check out the series web site at
www.awprofessional.com/ForMereMortalsSeries.

www.awprofessional.com/ForMereMortalsSeries

Database Design

for Mere

Mortals™

Second Edition

A Hands-On Guide

to Relational

Database Design

Michael J. Hernandez

Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

�

�

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in con-
nection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk pur-
chases and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Hernandez, Michael J. (Michael James), 1955–
Database design for mere mortals : a hands-on guide to relational database

design / Michael J. Hernandez—2nd ed.
p. cm.

Includes bibliographic references and index.
ISBN 0-201-75284-0 (alk. paper)
1. Database design. 2. Relational databases. I. Title.

QA76.9.D26 H477 2003
005.75'6—dc21 2002034545

Copyright © 2003 by Michael J. Hernandez.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior consent of the pub-
lisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-201-75284-0
Text printed in the United States on recycled paper at Courier Stoughton in Stoughton, Massachusetts.
6 7 8 9 10—CRS—07060504

Printing13th February 2008

www.awprofessional.com

For my wife, Kendra, who has always believed in me.

In loving memory of our cats, Chico and Bugs. Writing just isn’t the

same without them.

Dedicated to anyone who has unsuccessfully attempted to design

a relational database.

This page intentionally left blank

xi

About the Author

Michael J. Hernandez currently works

at Microsoft as a program manager for

the Developer Tools team of the Visual

Studio .NET group. Previously, he was

an independent relational database con-

sultant specializing in relational data-

base design. Mike is a veteran database

developer with more than 14 years of ex-

perience developing applications for a

wide variety of clients in diverse indus-

tries. He has worked with several relational database management

systems throughout his career and has been working exclusively with

Access since Version 1.0 and with SQL Server since version 7.0. Mike

is coauthor of the best-selling SQL Queries for Mere Mortals and has

been a contributing author to, columnist for, and technical editor of

various database books and periodicals.

Aside from his work on various database development projects and writ-

ing projects, Mike has also been a veteran instructor for nationally rec-

ognized training organizations such as AppDev, Deep Training, and

Focal Point, Inc., and traveled across the nation teaching Microsoft Ac-

cess, SQL Server, SQL/92 query construction, and relational database

design. For more than 13 years, Mike trained thousands of students

from Fortune 500 companies, the military, the government, and the pri-

vate sector. He consistently received top ratings from his students and

became one of the premiere instructors in the country. He’s spoken at

xii About the Author

various national and international conferences, such as the 2001 Mi-

crosoft Office Deployment and Development Conference in Orlando,

Florida, and the 2002 Microsoft Office Solutions Conference in Palm

Springs, California. Mike became deeply involved in Microsoft’s .NET ini-

tiative and was one of the first 200 Microsoft-authorized .NET instruc-

tors. He participated in Microsoft’s nationwide .NET Developers Training

Tour and in Deep Training’s .NET Training Tour in San Jose, Costa Rica.

Now he travels across the country on behalf of Microsoft.

Mike has been studying the guitar since 1967 and was actually a pro-

fessional guitarist for 15 years, playing a wide variety of styles. His abil-

ity to enthuse his audiences comes from years of entertaining, and Mike

has a reputation among his colleagues for being quite uninhibited. He’s

played the guitar for his students, subjected anyone within earshot to a

collection of the world’s worst puns, played the game Charades to illus-

trate a point, and caused minor uproars with his imitations of George

Bush, Sr., and Ross Perot.

Some of Mike’s musician friends have talked him into coming out of re-

tirement, and he is playing once again in front of gracious and apprecia-

tive audiences. He’s taken to playing a lot of Bossa Nova and finger-style

jazz and is even composing his own music. With any kind of luck, he’ll

eventually have enough material to produce his own music CD.

On those rare occasions when he has free time, Mike usually spends it

at one of three places: drinking a “Tall Americano with room” at any im-

mediately available Starbucks, hanging out in the database section at

any Barnes & Noble bookstore, or hitting golf balls at the local driving

range and pretending he is Lee Trevino.

If you’d like to contact Mike, you can e-mail him at

mjhernandez@msn.com.

xiii

Contents

Foreword xxv

Preface (Second Edition) xxix

Preface (First Edition) xxxiii

Introduction xxxvii

What’s New in the Second Edition xxxix

Who Should Read This Book xli

The Purpose of This Book xlii

How to Read This Book xlv

How This Book Is Organized xlvi

Part I: Relational Database Design xlvi

Part II: The Design Process xlvi

Part III: Other Database-Design Issues xlviii

Part IV: Appendixes xlviii

A Word About the Examples and Techniques in This Book xlix

A New Approach to Learning l

PART I: RELATIONAL DATABASE DESIGN 1

Chapter 1: The Relational Database 3

Topics Covered in This Chapter 3

Types of Databases 4

Early Database Models 5

The Hierarchical Database Model 5

The Network Database Model 9

xiv Contents

The Relational Database Model 12

Retrieving Data 15

Advantages of a Relational Database 17

Relational Database Management Systems 18

Beyond the Relational Model 21

What the Future Holds 22

A Final Note 24

Summary 24

Review Questions 26

Chapter 2: Design Objectives 27

Topics Covered in This Chapter 27

Why Should You Be Concerned with Database Design? 27

The Importance of Theory 29

The Advantage of Learning a Good Design Methodology 31

Objectives of Good Design 32

Benefits of Good Design 33

Database-Design Methods 34

Traditional Design Methods 34

The Design Method Presented in This Book 36

Summary 40

Review Questions 41

Chapter 3: Terminology 43

Topics Covered in This Chapter 43

Why This Terminology Is Important 44

Value-Related Terms 45

Data 45

Information 45

Null 47

The Value of Nulls 48

The Problem with Nulls 50

Contents xv

Structure-Related Terms 52

Table 52

Field 55

Record 56

View 57

Keys 59

Index 61

Relationship-Related Terms 62

Relationships 62

Types of Relationships 63

Types of Participation 68

Degree of Participation 69

Integrity-Related Terms 70

Field Specification 70

Data Integrity 71

Summary 72

Review Questions 73

PART II: THE DESIGN PROCESS 75

Chapter 4: Conceptual Overview 77

Topics Covered in This Chapter 77

The Importance of Completing the Design Process 78

Defining a Mission Statement and Mission Objectives 79

Analyzing the Current Database 80

Creating the Data Structures 82

Determining and Establishing Table Relationships 83

Determining and Defining Business Rules 84

Determining and Defining Views 85

Reviewing Data Integrity 85

Summary 86

Review Questions 88

xvi Contents

Chapter 5: Starting the Process 91

Topics Covered in This Chapter 91

Conducting Interviews 91

Participant Guidelines 93

Interviewer Guidelines (These Are for You) 95

The Case Study: Mike’s Bikes 100

Defining the Mission Statement 101

The Well-Written Mission Statement 102

Composing a Mission Statement 104

Case Study 106

Defining the Mission Objectives 108

Well-Written Mission Objectives 108

Composing Mission Objectives 110

Case Study 114

Summary 115

Review Questions 116

Chapter 6: Analyzing the Current Database 119

Topics Covered in This Chapter 119

Getting to Know the Current Database 119

Paper-Based Databases 123

Legacy Databases 123

Conducting the Analysis 125

Looking at How Data Is Collected 125

Looking at How Information Is Presented 129

Conducting Interviews 133

Basic Interview Techniques 135

Before You Begin the Interview Process . . . 141

Interviewing Users 142

Reviewing Data Type and Usage 142

Reviewing the Samples 144

Reviewing Information Requirements 148

Contents xvii

Interviewing Management 157

Reviewing Current Information Requirements 158

Reviewing Additional Information Requirements 159

Reviewing Future Information Requirements 160

Reviewing Overall Information Requirements 161

Compiling a Complete List of Fields 162

The Preliminary Field List 162

The Calculated-Field List 170

Reviewing Both Lists with Users and Management 171

Case Study 172

Summary 177

Review Questions 179

Chapter 7: Establishing Table Structures 181

Topics Covered in This Chapter 181

Defining the Preliminary Table List 182

Identifying Implied Subjects 182

Using the List of Subjects 184

Using the Mission Objectives 189

Defining the Final Table List 191

Refining the Table Names 193

Indicating the Table Types 198

Composing the Table Descriptions 199

Associating Fields with Each Table 205

Refining the Fields 208

Improving the Field Names 208

Using an Ideal Field to Resolve Anomalies 213

Resolving Multipart Fields 216

Resolving Multivalued Fields 219

Refining the Table Structures 226

A Word About Redundant Data and Duplicate Fields 226

Using an Ideal Table to Refine Table Structures 227

xviii Contents

Establishing Subset Tables 235

Case Study 239

Summary 248

Review Questions 249

Chapter 8: Keys 251

Topics Covered in This Chapter 251

Why Keys Are Important 252

Establishing Keys for Each Table 252

Candidate Keys 253

Primary Keys 261

Alternate Keys 268

Non-keys 268

Table-Level Integrity 269

Reviewing the Initial Table Structures 270

Case Study 271

Summary 277

Review Questions 279

Chapter 9: Field Specifications 281

Topics Covered in This Chapter 281

Why Field Specifications Are Important 282

Field-Level Integrity 283

Anatomy of a Field Specification 284

General Elements 285

Physical Elements 293

Logical Elements 300

Using Unique, Generic, and Replica Field Specifications 308

Defining Field Specifications for Each Field in the Database 314

Case Study 316

Summary 318

Review Questions 320

Contents xix

Chapter 10: Table Relationships 321

Topics Covered in This Chapter 321

Why Relationships Are Important 322

Types of Relationships 323

One-to-One Relationships 324

One-to-Many Relationships 327

Many-to-Many Relationships 330

Self-Referencing Relationships 337

Identifying Existing Relationships 341

Establishing Each Relationship 353

One-to-One and One-to-Many Relationships 353

The Many-to-Many Relationship 361

Self-Referencing Relationships 367

Reviewing the Structure of Each Table 373

Refining All Foreign Keys 374

Elements of a Foreign Key 374

Establishing Relationship Characteristics 381

Defining a Deletion Rule for Each Relationship 381

Identifying the Type of Participation for Each Table 387

Identifying the Degree of Participation for Each Table 390

Verifying Table Relationships with Users and Management 393

A Final Note 393

Relationship-Level Integrity 394

Case Study 395

Summary 400

Review Questions 402

Chapter 11: Business Rules 403

Topics Covered in This Chapter 403

What Are Business Rules? 404

Types of Business Rules 407

xx Contents

Categories of Business Rules 409

Field Specific Business Rules 409

Relationship Specific Business Rules 410

Defining and Establishing Business Rules 412

Working with Users and Management 413

Defining and Establishing Field Specific Business Rules 413

Defining and Establishing Relationship Specific Business

Rules 421

Validation Tables 428

What Are Validation Tables? 430

Using Validation Tables to Support Business Rules 431

Reviewing the Business Rule Specifications Sheets 434

Case Study 437

Summary 442

Review Questions 445

Chapter 12: Views 447

Topics Covered in This Chapter 447

What Are Views? 447

Anatomy of a View 449

Data View 449

Aggregate View 454

Validation View 458

Determining and Defining Views 460

Working with Users and Management 461

Defining Views 462

Reviewing the Documentation for Each View 470

Case Study 472

Summary 477

Review Questions 478

Contents xxi

Chapter 13: Reviewing Data Integrity 481

Topics Covered in This Chapter 481

Why You Should Review Data Integrity 482

Reviewing and Refining Data Integrity 483

At the Table Level 483

At the Field Level 484

At the Relationship Level 484

At the Level of Business Rules 484

At the Level of Views 485

Assembling the Database Documentation 486

Done at Last! 487

Case Study—Wrap Up 487

Summary 488

PART III: OTHER DATABASE-DESIGN ISSUES 489

Chapter 14: Bad Design—What Not to Do 491

Topics Covered in This Chapter 491

Flat-File Design 492

Spreadsheet Design 493

Dealing with the Spreadsheet View Mind-set 495

Database Design Based on the Database Software 497

A Final Thought 498

Summary 499

Chapter 15: Bending or Breaking the Rules 501

Topics Covered in This Chapter 501

When May You Bend or Break the Rules? 501

Designing an Analytical Database 501

Improving Processing Performance 502

xxii Contents

Documenting Your Actions 505

Summary 507

In Closing 509

PART IV APPENDIXES 511

Appendix A: Answers to Review Questions 513

Chapter 1 513

Chapter 2 514

Chapter 3 516

Chapter 4 517

Chapter 5 518

Chapter 6 520

Chapter 7 522

Chapter 8 525

Chapter 9 528

Chapter 10 530

Chapter 11 532

Chapter 12 533

Appendix B: Diagram of the Database-Design

Process 537

Appendix C: Design Guidelines 555

Defining and Establishing Field Specific Business Rules 555

Defining and Establishing Relationship Specific Business

Rules 555

Elements of a Candidate Key 556

Elements of a Foreign Key 556

Elements of a Primary Key 557

Rules for Establishing a Primary Key 557

Contents xxiii

Elements of the Ideal Field 557

Elements of the Ideal Table 558

Field-Level Integrity 558

Guidelines for Composing a Field Description 559

Guidelines for Composing a Table Description 559

Guidelines for Creating Field Names 560

Guidelines for Creating Table Names 560

Identifying Relationships 561

Identifying View Requirements 561

Interview Guidelines 562

Participant Guidelines 562

Interviewer Guidelines 562

Mission Statements 563

Mission Objectives 563

Relationship-Level Integrity 564

Resolving a Multivalued Field 564

Table-Level Integrity 565

Appendix D: Documentation Forms 567

Appendix E: Database-Design Diagram Symbols 571

Appendix F: Sample Designs 573

Appendix G: Recommended Reading 581

Glossary 583

References 599

Index 601

This page intentionally left blank

xxv

Foreword

I don’t see Mike Hernandez as much as I used to. Both our professional

lives have changed a great deal since I first wrote the foreword to his

original edition. If nothing else, we travel less, and our paths cross less

often than they did. If you’ll indulge me, I might try to add that the en-

tire world has changed since that first edition. On the most mundane

level, my whole development life has changed, since I’ve bought into this

Microsoft .NET thing whole-heartedly and full-time. One thing that hasn’t

changed, however, is the constant need for data, and well-designed data.

Slapping together sophisticated applications with poorly designed data

will hurt you just as much now as when Mike wrote his first edition—

perhaps even more. Whether you’re just getting started developing with

data, or are a seasoned pro; whether you’ve read Mike’s previous book,

or this is your first time; whether you’re happier letting someone else

design your data, or you love doing it yourself—this is the book for you.

Mike’s ability to explain these concepts in a way that’s not only clear,

but fun, continues to amaze me.

—Ken Getz

October 10, 2002

From the First Edition . . .

Perhaps you’re wondering why the world needs another book on data-

base design. When Mike Hernandez first discussed this book with me, I

wondered. But the fact is—as you may have discovered from leafing

xxvi Foreword

through pages before landing here in the foreword—the world does need

a book like this one. You can certainly find many books detailing the

theories and concepts behind the science of database design, but you

won’t find many (if any) written from Mike’s particular perspective. He

has made it his goal to provide a book that is clearly based on the

sturdy principles of mathematical study, but has geared it toward prac-

tical use instead of theoretical possibilities. No matter what specific da-

tabase package you’re using, the concepts in this book will make sense

and will apply to your database-design projects.

I knew this was the book for me when I turned to the beginning of

Chapter 6 and saw this suggestion:

Do not adopt the current database structure as the basis for the

new database structure.

If I’d had someone tell me this when I was starting out on this database

developer path years ago I could have saved a ton of time! And that’s my

point here: Mike has spent many years designing databases for clients;

he has spent lots of time thinking, reading, and studying about the right

way to create database applications; and he has put it all here, on pa-

per, for the rest of us.

This book is full of the right stuff, illustrated with easy-to-understand

examples. That’s not to say that it doesn’t contain the hardcore infor-

mation you need to do databases right—it does, of course. But it’s

geared toward real developers, not theoreticians.

I’ve spent some time talking with Mike about database design. Over cof-

fee, in meetings, writing courseware, it’s always the same: Mike is pas-

sionate about this material. Just as the operating system designer

seeks the perfect, elegant algorithm, Mike spends his time looking for

just the right way to solve a design puzzle and—as you will read in this

book—how best to explain it to others. I’ve learned much of what I know

Foreword xxvii

about database design from Mike over the years and feel sure that I

have a lot more to learn from this book. After reading through this con-

cise, detailed presentation of the information you need to know in order

to create professional databases, I’m sure you’ll feel the same way.

—Ken Getz

MCW Technologies

KenG@mcwtech.com

This page intentionally left blank

xxix

Preface
(Second Edition)

Life, as the most ancient

of all metaphors insists, is a journey . . .

—JONATHAN RABAN

FOR LOVE AND MONEY

I believe that learning about database design

is an ongoing process. I’m always learning

more and more about the intricacies

and nuances of design—and so will you.

—MICHAEL J. HERNANDEZ

DATABASE DESIGN FOR MERE MORTALS

In the six years since the first edition of this book was published, I’ve

continued my journey along the database path. I’ve dug deeper into the

intracacies of design and probed further into the philosophy of good de-

sign. I’ve learned much from numerous conversations with my database

students and industry colleagues and from the correspondence I’ve had

with those who have read my book. As a result, I’ve been able to hone

my design methodology and revise some of its processes, making it

clearer and more thorough than ever before.

Although I’ll take a brief break (writing can be quite a mental exercise), I

know that my journey will soon continue. There is still so much more to

explore, discover, and learn. I find that designing and working with da-

tabases is much like mountain climbing—there’s always a new and ex-

citing challenge ahead of you! Perhaps six years from now, I’ll have a

chance to share my experiences with you once again.

xxx Preface (Second Edition)

Acknowledgments

Despite what anyone tells you, writing is truly a cooperative effort. I am

so thankful that there are editors, colleagues, friends, and family who

continue to be ready and willing to lend their help. It is these people

who provide encouragement and keep you focused on the task at hand,

and it is to them that I extend my most heartfelt appreciation.

First, I wish to thank my editor, Mary O’Brien, for the opportunity to

write this new edition. Her patience, kindness, leadership, and steady

hand guided this project and helped me bring it to successful comple-

tion. I’d also like to thank Mary’s assistants, Alicia Carey, Stacie

Parillo, and Brenda Mulligan. Alicia and Stacey displayed great pa-

tience and provided unwavering support throughout the many months

I was working on this edition, and Brenda was an invaluable partner

throughout the production process. And a special thanks to John

Fuller and his production staff—great job, as always! A hearty thanks

to Tyrrell Albaugh for guiding the production process so smoothly, and

to Jennifer Kelland for her meticulous and thorough editing work. With

such a wonderful team as this, I just can’t imagine why I’d ever want to

write for anyone else.

Next, I’d like to acknowledge my distinguished technical review team:

Sandy Barker, Michael Blaha, Matt Greer, and Michelle Poolet. These

folks graciously and generously gave their time, effort, and expertise to

provide me with a wealth of valuable feedback and suggestions. This

book definitely benefitted from their contributions. Thanks once again

to all of you for your time and input and for helping to make this edition

even better than I first envisioned.

I want to extend a very special thanks to Ken Getz for once again provid-

ing the foreword for my book. Ken is a well-respected database/VB/

.NET expert, a colleague, and a good friend. I’m so pleased to have his

thoughts and comments at the beginning of the book.

Preface (Second Edition) xxxi

A special thanks also goes to all of those readers who took the time to

send me their thoughts and comments. I am humbled by their praise

and support and particularly appreciative of the good, constructive crit-

icism that eventually helped me to improve that material in this edition.

I also wish to thank all the academic institutions, government agencies,

and commercial organizations that have adopted my book and made it

“standard reading” for those just beginning their database careers. I am

honored by their support of my work.

Finally, I want to thank my wife, Kendra, for her unending patience

while I was enmeshed in my writing. Her help and support have been

invaluable, and yet again, I owe her a great debt. I would tell you exactly

how I feel about her, but she abhors any sort of PDA (public display of

affection). Instead of a big verbal hug, I’ll just say this:

Well, Ked, now we can take a nice, long, well-deserved break. . . .

This page intentionally left blank

xxxiii

Preface
(First Edition)

If the Lord Almighty had consulted me before

embarking upon Creation, I should

have recommended something simpler.

—ALFONSO X, KING OF CASTILE AND LEON

Creating a database can be like creating a universe,

only more complicated. At least when the universe was

created, there was no one around to complain.

—MICHAEL J. HERNANDEZ

It all started with a simple question: How do I properly design a

database?

It was a question that propelled me onto an interesting journey—a jour-

ney to find someone or some book that could provide the answer. This

journey has taken me to a number of bookstores and put me in the path

of many interesting and fascinating people. I’ve read a variety of books

on the subject, from the totally incomprehensible to the sorely lacking

in content, and had conversations with people ranging from those who

were in my position to those who really knew their craft. I was fortunate

to have a few people in the latter category become my mentors, and I

learned a great deal from them.

Books were a different story. There came a moment when I realized that

current books on database design were just not written for people like

me. If you had a background in mathematics, a computer science de-

gree, and had been working in the computer industry for some time,

xxxiv Preface (First Edition)

then you were the audience the authors of these books were trying to

reach. Otherwise, there was very little available. The few attempts at

“simplified” texts simply failed to teach effectively, often because the au-

thors seemed to assume that the reader was simpleminded.

I believed that there should be a book for people who did not have high

levels of specialized education; a book that was straightforward and

easy to read, thorough but not tedious; a book that used examples that

were relatively easy to understand. So I wrote a special report on the

fundamentals of database design for a local publisher, and it met with

some success. Encouraged by this, I decided that someday I would write

a book on the complete process of relational database design.

Early in my journey, I became a successful database developer and in-

structor. I’ve developed databases for a number of diverse organizations

and businesses and have taken pleasure in instructing people on how

to use a variety of database software programs. Throughout all this I’ve

kept my sights on my goal.

It was at the 1995 Database Summit in Seattle, Washington, that I met

Kathleen Tibbetts, a Developers Press editor for Addison-Wesley. At that

moment my journey took quite a positive turn. She was looking for peo-

ple with something to say, and I was definitely that type of person.

Kathleen listened very patiently to the story of the journey upon which I

had embarked. She determined that this would be a good time for me to

work on realizing my goal—to finally commit to paper all that I had

learned about database design.

The book you now hold in your hands is a result of the culmination of

this particular journey. I’ve shaped and molded the knowledge I accu-

mulated into what I believe is a clear and straightforward database-

design method. I’ve tried very hard to make it accessible to everyone,

regardless of previous experience. I have sought a presentation that

would be easier to learn and understand than traditional design meth-

ods, yet would yield the same results.

Preface (First Edition) xxxv

I believe that learning about database design is an ongoing process. I’m

always learning more and more about the intricacies and nuances of

design—and so will you. Database design is more of an art than an ex-

act science, involving as much intuition as pure theoretical and techni-

cal knowledge. It also involves communication skills and the ability to

see things in the long term, as well as the short term. Database design

can be a fascinating subject once you really get into it.

Acknowledgments

I’ve discovered that writing a book is something of a cooperative effort. I

am thankful that there are always editors, colleagues, friends, and fam-

ily who are ready and willing to lend their help. It is these people who

provide encouragement and keep you focused on the task at hand.

Without them, you could easily “put it off until tomorrow.”

First and foremost, I would like to thank Kathleen Tibbetts at Addison-

Wesley for her unwavering support and for providing me with the oppor-

tunity to write this book. She has been just as enthusiastic about this

project as I have been. I look forward to working with her on further

projects.

Next, my deepest thanks to my good friend, colleague, and technical ed-

itor, Jim Booth. I have a great deal of respect for Jim’s knowledge on the

subject of database design, and his comments have been invaluable. He

and I have a thick porterhouse steak and a bottle of fine red wine wait-

ing for us once this book is out on the market.

I also owe a debt of gratitude to my good friend and colleague Christo-

pher R. Weber. In spite of a busy consulting and lecture schedule, Chris

reviewed a number of chapters and provided valuable feedback. Now, if

we could both find the time to sit down and discuss music . . . (we’re

both musicians.)

xxxvi Preface (First Edition)

I’d like to acknowledge some of the many people who have shared their

experience and knowledge with me and have had a positive influence on

my career in the field of database management: Karen Watterson, Mike

Johnson, Karl Fischer, Paul Litwin, John Viescas, Ken Getz, and Gre-

gory Piercy. My thanks to you all.

My sincerest and deepest appreciation goes to my very dear friend and

mentor, Alastair Black. Not only was he gracious enough to review every

word in the entire book; he and his wife, Julia, opened their home to me

and treated me as one of their own. His immeasurable and invaluable

help in the writing of this book cannot be overstated. I’ve learned more

about the craft of writing in these past months than at any other time in

my professional or personal life.

Last, but certainly not least, a special thanks to my wife, Kendra. Every

married author realizes, by the end of the work, how much he owes to the

patience of the spouse and is moved to recognize the priceless contribu-

tion of interest and forbearance. But I am enjoined not to make as much

of this as it deserves, because Kendra strongly opposes public displays of

affection (PDAs as she calls them), whether in person or in print. So the

only thing I’ll say is this: Thanks, Ked. Now we can resume a normal life.

xxxvii

Introduction

Plain cooking cannot be entrusted to plain cooks.

—COUNTESS MORPHY

In the past, the process of designing a database has been a task per-

formed by information technology (IT) personnel and professional data-

base developers. These people usually had mathematical, computer

science, or systems design backgrounds and typically worked with large

mainframe databases. Many of them were experienced programmers

and had coded a number of database application programs consisting of

thousands of lines of code. (And these people were usually very over-

worked due to the nature and importance of their work!)

People designing database systems at that time needed to have a solid

educational background because most of the systems they created were

meant to be used companywide. Even when creating databases for sin-

gle departments within a company or for small businesses, database de-

signers still required extensive formal training because of the

complexity of the programming languages and database application

programs that they were using. As technology advanced, however, those

educational requirements evolved.

Since the mid-1980s, many software vendors have developed database

software programs that run on desktop computers and can be more

easily programmed to collect, store, and manage data than their main-

frame counterparts. They have also produced software that allows

xxxviii Introduction

groups of people to access and share centralized data within a variety of

environments, such as client/server architectures on computers con-

nected within local-area networks (LANs) and wide-area networks

(WANs), and even via the Internet. People within a company or organiza-

tion are no longer strictly dependent on mainframe databases or on

having their information needs met by centralized IT departments. Over

the years, vendors have added new features and enhanced the tool sets

in their database software, enabling database developers to create more

powerful and flexible database applications. They’ve also improved the

ease with which the software can be used, inspiring many people to cre-

ate their own database applications. Today’s database software greatly

simplifies the process of creating efficient database structures and intu-

itive user interfaces.

Most programs provide sample database structures that you can copy

and alter to suit your specific needs. Although you might initially think

that it would be quite advantageous for you to use these sample struc-

tures as the basis for a new database, you should stop and reconsider

that move for a moment. Why? Because you could easily and unwit-

tingly create an improper, inefficient, and incomplete design. Then you

would eventually encounter problems in what you believed to be a de-

pendable database design. This, of course, raises the question, “What

types of problems would I encounter?”

Most problems that surface in a database fall into two categories: appli-

cation problems and data problems. Application problems include such

things as problematic data entry/edit forms, confusing menus, confus-

ing dialog boxes, and tedious task sequences. These problems typically

arise when the database developer is inexperienced, is unfamiliar with a

good application-design methodology, or knows too little about the soft-

ware he’s using to implement the database. Problems of this nature are

common and important to address, but they are beyond the scope of

this work.

Introduction xxxix

Data problems, on the other hand, include such things as missing data,

incorrect data, mismatched data, and inaccurate information. Poor data-

base design is typically the root cause of these types of problems. A data-

base will not fulfill an organization’s information requirements if it is not

structured properly. Although poor design is typically generated by a da-

tabase developer who lacks knowledge of good database-design princi-

ples, it shouldn’t necessarily reflect negatively on the developer. Many

people, including experienced programmers and database developers,

have had little or no instruction in any form of database-design method-

ology. Many are unaware that design methodologies even exist. Data

problems and poor design are the issues that this work will address.

What’s New in the Second Edition

I revised this edition to improve readability, update or extend existing

topics, add new content, and enhance its educational value. Here is a

list of the changes you’ll find in this edition:

• Much of the text has been rewritten to improve clarity and reader

comprehension.

• Many of the figures and illustrations have been revised to improve

clarity.

❖ Note One good way to solve many of your application prob-

lems is to purchase and study third-party “developer” books that

cover the software you’re using. Such books discuss application-

design issues, advanced programming techniques, and various

tips and tricks that you can use to improve and enhance an ap-

plication. Armed with these new skills, you can revamp and fine-

tune the database application so that it works correctly,

smoothly, and efficiently.

xl Introduction

• New figures and illustrations have been added as warranted by

revisions of or additons to existing text.

• Discussions of relational database management systems and the

relational model in Chapter 1 have both been expanded to include

brief content on recent technological advances and general indus-

try direction.

• The premise behind the design methodology presented in this

book is explained in Chapter 2.

• Discussion of nulls and the many-to-many relationship in

Chapter 3 have both been expanded to provide greater detail

on these subjects.

• Web-page-based examples are now included as appropriate in

Chapter 6.

• Discussions of multivalued fields and the subset tables in

Chapter 7 have both been expanded to provide greater detail

on these subjects.

• The discussion of primary keys in Chapter 8 has been expanded

to provide greater detail on this subject.

• The Field Specifications sheet has been updated and redesigned

for improved flow and readability.

• The discussion of the Data Type field specification element in

Chapter 9 has been expanded to include an introduction to Struc-

tured Query Language (SQL) data types.

• Discussions of self-referencing relationships and the Deny, Nullify,

and Set Default deletion rules have been added to Chapter 10.

• Review questions have been added at the end of Chapters 1 through

12, and the answers to the questions appear in Appendix A.

• A flowchart of the design process has been provided as a quick

reference tool and is included in Appendix B.

Introduction xli

• All of the various design guidelines have been compiled in

Appendix C.

• A glossary has been added to provide a quick reference for various

terms used throughout the book.

• The accompanying CD includes files in Adobe Acrobat PDF for-

mat. These files contain the material in Appendixes B through F.

Who Should Read This Book

No previous background in database design is necessary to read this

book. The reason you have this book in your hands is to learn how to

design a database properly. If you’re just getting into database manage-

ment and you’re thinking about developing your own databases, this

book will be very valuable to you. It’s better that you learn how to create

a database properly from the beginning than that you learn by trial and

error. The latter method takes much longer, believe me.

If you fall into the category of those people who have been working with

database programs for a while and are ready to begin developing new

databases for your company or business, you should read this book.

You probably have a good feel for what a good database structure

should look like, but aren’t quite sure how database developers arrive at

an effective design. Maybe you’re a programmer who has created a

number of databases following a few basic guidelines, but you have al-

ways ended up writing a lot of code to get the database to work properly.

If this is the case, this book is also for you.

It would be a good idea for you to read this book even if you already have

some background in database design. Perhaps you learned a design

methodology back in college or attended a database class that discussed

design, but your memory is vague about some details, or there were

parts of the design process that you just did not completely understand.

xlii Introduction

Those points with which you had difficulty will finally become clear once

you learn and understand the design process presented in this book.

This book is also appropriate for those of you who are experienced data-

base developers and programmers. Although you may already know

many of the aspects of the design process that are presented here, you’ll

probably find that there are some elements that you’ve never before en-

countered or considered. You may even come up with fresh ideas about

how to design your databases by reviewing the material in this book be-

cause many of the design processes familiar to you are presented here

from a different viewpoint. At the very least, this book can serve as a

great refresher course in database design.

The Purpose of This Book

In general terms, there are three phases to the overall database-devel-

opment process.

1. Logical design: The first phase involves determining and defining

tables and their fields, establishing primary and foreign keys,

establishing table relationships, and determining and establishing

the various levels of data integrity.

❖ Note Those of you who have a burning desire to immerse

yourselves in the depths of the database field (i.e., to learn the in-

tricacies of database theory and design, analysis, implementa-

tion, administration, application development, and so on) should

make a point of reading most of the books on my recommended

reading list. Although I do not cover any of the aforementioned

topics, my book does serve as the beginning of your journey into

the realm of the database professional.

Introduction xliii

2. Physical implementation: The second phase entails creating the ta-

bles, establishing key fields and table relationships, and using the

proper tools to implement the various levels of data integrity.

3. Application development: The third phase involves creating an ap-

plication that allows a single user or group of users to interact with

the data stored in the database. The application-development

phase itself can be divided into separate processes, such as deter-

mining end-user tasks and their appropriate sequences, determin-

ing information requirements for report output, and creating a

menu system for navigating the application.

You should always go through the logical design first and execute it as

completely as possible. After you’ve created a sound structure, you can

then implement it within any database software you choose. As you be-

gin the implementation phase, you may find that you need to modify the

database structure based on the pros and cons or strengths and weak-

nesses of the database software you’ve chosen. You may even decide to

make structural modifications to enhance data-processing performance.

Performing the logical design first ensures that you make conscious, me-

thodical, clear, and informed decisions concerning the structure of your

database. As a result, you help minimize the potential number of further

structural modifications you might need to make during the physical-

implementation and application-development phases.

This book deals with only the logical-design phase of the overall devel-

opment process, and the book’s main purpose is to explain the process

of relational database design without using the advanced, orthodox

methodologies found in an overwhelming majority of database-design

books. I’ve taken care to avoid the complexities of these methodologies

by presenting a relatively straightforward, commonsense approach to

the design process. I also use a simple and straightforward data-model-

ing method as a supplement to this approach, and present the entire

process as clearly as possible and with a minimum of technical jargon.

xliv Introduction

There are many database-design books out on the market that include

chapters on implementing the database within a specific database prod-

uct, and some books even seem to meld the design and implementation

phases together. (I’ve never particularly agreed with the idea of combin-

ing these phases, and I’ve always maintained that a database developer

should perform the logical-design and implementation phases sepa-

rately to ensure maximum focus, effectiveness, and efficiency.) The

main drawback that I’ve encountered with these types of books is that it

can be difficult for a reader to obtain any useful or relevant information

from the implementation chapters if he or she doesn’t work with the

particular database software or programming language that the book

incorporates. It is for this reason that I decided to write a book that fo-

cuses strictly on the logical design of the database.

This book should be easier to read than other books you may have en-

countered on the subject. Many of the database-design books on the

market are highly technical and can be difficult to assimilate. I think

most of these books can be confusing and overwhelming if you are not a

computer science major, database theorist, or experienced database de-

veloper. The design principles you’ll learn within these pages are easy to

understand and remember, and the examples are common and generic

enough to be relevant to a wide variety of situations.

Most people I’ve met in my travels around the country have told me that

they just want to learn how to create a sound database structure with-

out having to learn about normal forms or advanced mathematical the-

❖ Note I do not cover implementation issues, SQL, or applica-

tion-programming issues in this work, but there are various

books that I do recommend on these topics. You can review

my recommendations by accessing my Web site at http://

www.ForMereMortals.com.

http://www.ForMereMortals.com
http://www.ForMereMortals.com

Introduction xlv

ories. Many people are not as worried about implementing a structure

within a specific database software as they are about learning how to

optimize their data structures and how to impose data integrity. In this

book, you’ll learn how to create efficient database structures, how to

impose several levels of data integrity, as well as how to relate tables to-

gether to obtain information in an almost infinite number of ways. Don’t

worry; this isn’t as difficult a task as you might think. You’ll be able to

accomplish all of this by understanding a few key terms and by learning

and using a specific set of commonsense techniques and concepts.

You’ll also learn how to analyze and leverage an existing database, de-

termine information requirements, and determine and implement busi-

ness rules. These are important topics because many of you will

probably inherit old databases that you’ll need to revamp using what

you’ll learn by reading this book. They’ll also be just as important when

you create a new database from scratch.

When you finish reading this book, you’ll have the knowledge and tools

necessary to create a good relational database structure. I’m confident

that this entire approach will work for a majority of developers and the

databases they need to create.

How to Read This Book

I strongly recommend that you read this book in sequence from begin-

ning to end, regardless of whether you are a novice or a professional.

You’ll keep everything in context this way and avoid the confusion that

generally comes from being unable to see the “big picture” first. It’s also

a good idea to learn the process as a whole before you begin to focus on

any one part.

If you are reading this book to refresh your design skills, you could read

just those sections that are of interest to you. As much as possible, I’ve

xlvi Introduction

tried to write each chapter so that it could stand on its own; nonethe-

less, I would still recommend that you glance through each of the chap-

ters to make sure that you’re not missing any new ideas or points on

design that you may not have considered up to now.

How This Book Is Organized

Here’s a brief overview of what you’ll find in each part and each chapter.

Part I: Relational Database Design

This section provides an introduction to databases, the idea of data-

base design, and some of the terminology you’ll need to be familiar

with in order to learn and understand the design process presented in

this book.

Chapter 1, The Relational Database, provides a brief discussion of the

types of databases you’ll encounter, common database models, and a

brief history of the relational database.

Chapter 2, Design Objectives, explores why you should be concerned

with design, points out the objectives and advantages of good design,

and provides a brief introduction to normalization and normal forms.

Chapter 3, Terminology, covers the terms you need to know in order to

learn and understand the design methodology presented in this book.

Part II: The Design Process

Each aspect of the database-design process is discussed in detail in

Part II, including establishing table structures, assigning primary keys,

setting field specifications, establishing table relationships, setting up

views, and establishing various levels of data integrity.

Introduction xlvii

Chapter 4, Conceptual Overview, provides an overview of the design

process, showing you how the different components of the process fit

together.

Chapter 5, Starting the Process, covers how to define a mission state-

ment and mission objectives for the database, both of which provide you

with an initial focus for creating your database.

Chapter 6, Analyzing the Current Database, covers issues concerning

the existing database. We look at reasons for analyzing the current da-

tabase, how to look at current methods of collecting and presenting

data, why and how to conduct interviews with users and management,

and how to compile initial field lists.

Chapter 7, Establishing Table Structures, covers topics such as deter-

mining and defining what subjects the database should track, associat-

ing fields with tables, and refining table structures.

Chapter 8, Keys, covers the concept of keys and their importance to the

design process, as well as how to define candidate and primary keys for

each table.

Chapter 9, Field Specifications, covers a topic that a number of data-

base developers tend to minimize. Besides indicating how each field is

created, field specifications determine the very nature of the values a

field contains. Topics in this chapter include the importance of field

specifications, types of specification characteristics, and how to define

specifications for each field in the database.

Chapter 10, Table Relationships, explains the importance of table rela-

tionships, types of relationships, setting up relationships, and estab-

lishing relationship characteristics.

Chapter 11, Business Rules, covers types of business rules, determining

and establishing business rules, and using validation tables. Business

xlviii Introduction

rules are very important in any database because they provide a distinct

level of data integrity.

Chapter 12, Views, looks into the concept of views and why they are

important, types of views, and how to determine and set up views.

Chapter 13, Reviewing Data Integrity, reviews each of the levels of in-

tegrity that have been defined and discussed in previous chapters. Here

you learn that it’s a good idea to review the final design of the database

structure to ensure that you’ve imposed data integrity as completely as

you can.

Part III: Other Database-Design Issues

This section deals with topics such as avoiding bad design and bending

the rules set forth in the design process.

Chapter 14, Bad Design—What Not to Do, covers the types of designs

you should avoid, such as a flat-file design and a spreadsheet design.

Chapter 15, Bending or Breaking the Rules, discusses those rare in-

stances in which it may be necessary to stray from the techniques and

concepts of the design process. This chapter tells you when you should

consider bending the rules, as well as how it should be done.

Part IV: Appendixes

Appendix A, Answers to Review Questions, contains the answers to all

of the review questions in Chapters 1 through 12.

Appendix B, Diagram of the Database Design Process, provides a dia-

gram that maps the entire database design process.

Appendix C, Design Guidelines, provides an easy reference to the vari-

ous sets of design guidelines that appear throughout the book.

Introduction xlix

Appendix D, Documentation Forms, provides blank copies of the Field

Specifications, Business Rule Specifications, and View Specifications

sheets, which you can copy and use on your database projects.

Appendix E, Database Design Diagram Symbols, contains a quick and

easy reference to the diagram symbols used throughout the book.

Appendix F, Sample Designs, contains sample database designs that

can serve as the basis for ideas for databases you may want or need to

create.

Appendix G, Recommended Reading, provides a list of books that you

should read if you are interested in pursuing an in-depth study of data-

base technology.

Glossary contains concise definitions of various words and phrases

used throughout the book.

A Word About the Examples

and Techniques in This Book

You’ll notice that there are a wide variety of examples in this book. I’ve

made sure that they are as generic and relevant as possible. However,

you may notice that several of the examples are rather simplified, in-

complete, or even on occasion incorrect. Believe it or not, I created them

that way on purpose.

I’ve created some examples with errors so that I could illustrate specific

concepts and techniques. Without these examples, you wouldn’t see how

the concepts or techniques are put to use, as well as the results you

should expect from using them. Other examples are simple because,

IMPORTANT: READ THIS SECTION!

l Introduction

once again, the focus is on the technique or concept and not on the ex-

ample itself. For instance, there are many ways that you can design an

order-tracking database. However, the structure of the sample order-

tracking database I use in this book is simple because the focus is spe-

cifically on the design process, not on creating an elaborate order-

tracking database system.

So what I’m really trying to emphasize here is this:

Focus on the concept or technique and its intended results, not

on the example used to illustrate it.

A New Approach to Learning

Here’s an approach to learning the design process (or pretty much any-

thing else, for that matter) that I’ve found very useful in my database-

design classes.

Think of all the techniques used in the design process as a set of tools;

each tool (or technique) is used for a specific purpose. The idea here is

that once you learn generically how a tool is used, you can then use

that tool in any number of situations. The reason you can do this is be-

cause you use the tool the same way in each situation.

Take a Crescent wrench, for example. Generically speaking, you use a

Crescent wrench to fasten and unfasten a nut to a bolt. You open or

close the jaw of the wrench to fit a given bolt by using the adjusting

screw located on the head of the wrench. Now that you have that clear,

try it out on a few bolts. Try it on the legs of an outdoor chair, or the

valve cover on an engine, or the side panel of an outdoor cooling unit, or

the hinge plates of an iron gate. Do you notice that regardless of where

you encounter a nut and bolt, you can always fasten and unfasten the

nut by using the Crescent wrench in the same manner?

Introduction li

The tools used to design a database work in exactly the same way.

Once you understand how a tool is used generically, it will work the

same way regardless of the circumstances under which it is used. For

instance, consider the tool (or technique) for decomposing a field value.

Say you have a single ADDRESS field in a CUSTOMERS table that con-

tains the street address, city, state, and zip code for a given customer.

You’ll find it difficult to use this field in your database because it con-

tains more than one item of data; you’ll certainly have a hard time re-

trieving information for a particular city or sorting the information by a

specific zip code.

The solution to this apparent dilemma is to decompose the ADDRESS field

into smaller fields. You do this by identifying the distinct items that

make up the value of the field, and then treating each item as its own

separate field. That’s all there is to it! This process constitutes a “tool”

that you can now use on any field containing a value composed of two

or more distinct data items, such as these sample fields. Figure I.1

shows the results of the decomposition process.

❖ Note You’ll learn more about decomposing field values in

Chapter 7, “Establishing Table Structures.”

Figure I.1. Decomposing fields containing multiple data items.

Current Field Name Sample Value New Field Names

Address 7402 Kingman Dr., Seattle, WA 98012 Street Address, City, State, Zip Code

Phone (206) 555-5555 Area Code, Phone Number

Name Michael J. Hernandez First Name, Middle Initial, Last Name

EmployeeCode ITDEV0516 Department, Category, ID Number

lii Introduction

You can use all of the techniques (“tools”) that are part of the design

process presented in this book in the same manner. You’ll be able to de-

sign a sound database structure using these techniques regardless of

the type of database you need to create. Just be sure to remember this:

Focus on the concept or technique being presented and its

intended results, not on the example used to illustrate it.

Part I
Relational
Database
Design

This page intentionally left blank

3

1
The Relational Database

A fish must swim three times—

in water, in butter, and in wine.

—POLISH PROVERB

Topics Covered in This Chapter

Types of Databases

Early Database Models

The Relational Database Model

Relational Database Management System

Beyond the Relational Model

What the Future Holds

Summary

Review Questions

The relational database has been in existence for over 25 years. It has

spawned a multi-billion dollar industry, is the most widely used type

of database in the world today, and is an essential part of our every-

day lives. It is very likely that you are using a relational database ev-

ery time you purchase goods at a store, make travel plans with your

travel agent, check out a book at the library, or make a purchase on

the Internet.

Before we delve into the design process, let’s take a look at a brief his-

tory of the relational database—where it has come from, where it is

now, and where it’s going in the future.

4 Chapter 1 The Relational Database

Types of Databases

What is a database? As you probably know, a database is an organized

collection of data used for the purpose of modeling some type of organi-

zation or organizational process. It really doesn’t matter whether you’re

using paper or a computer software program to collect and store the

data. As long as you’re gathering data in some organized manner for a

specific purpose, you’ve got a database. Throughout the remainder of

this discussion, we’ll assume that you’re using a computer software

program to collect and maintain your data.

There are two types of databases found in database management, oper-

ational databases and analytical databases.

Operational databases are the backbone of many companies, organiza-

tions, and institutions throughout the world today. This type of

database is primarily used in on-line transaction processing (OLTP) sce-

narios, that is, in situations where there is a need to collect, modify,

and maintain data on a daily basis. The type of data stored in an oper-

ational database is dynamic, meaning that it changes constantly and

always reflects up-to-the-minute information. Organizations, such as

retail stores, manufacturing companies, hospitals and clinics, and pub-

lishing houses, use operational databases because their data is in a

constant state of flux.

In contrast, analytical databases are primarily used in on-line analyti-

cal processing (OLAP) scenarios, where there is a need to store and

track historical and time-dependent data. An analytical database is a

valuable asset when there is a need to track trends, view statistical

data over a long period of time, and make tactical or strategic business

projections. This type of database stores static data, meaning that the

data is never (or very rarely) modified. The information gleaned from an

analytical database reflects a point-in-time snapshot of the data.

Chemical labs, geological companies, and marketing-analysis firms are

examples of organizations that use analytical databases.

Early Database Models 5

Analytical databases often use data from operational databases as their

main data source, so there can be some amount of association between

them; nevertheless, operational and analytical databases fulfill very

specific types of data-processing needs, and creating their structures

requires radically different design methodologies. This book focuses on

designing an operational database because it is still the most widely

used type of database in the world today.

Early Database Models

In the days before the relational database model, two data models were

commonly used to maintain and manipulate data—the hierarchical

database model and the network database model.

Some of the terms you’ll encounter in this section are explained in

more detail in Chapter 3, “Terminology.”

The Hierarchical Database Model

Data in this type of database is structured hierarchically and is typi-

cally diagrammed as an inverted tree. A single table in the database

acts as the “root” of the inverted tree and other tables act as the

❖ Note Although use of these models is rapidly waning, I’ve pro-

vided a brief overview of each for historical purposes. In an

overall sense, I believe it is useful for you to know what preceded

the relational model so that you have a basic understanding of

what led to its creation and evolution.

In the following overview I briefly describe how the data in each

model is structured and accessed, how the relationship between

a pair of tables is represented, and one or two of the advantages

or disadvantages of each model.

6 Chapter 1 The Relational Database

branches flowing from the root. Figure 1.1 shows a diagram of a typi-

cal hierarchical database structure.

A relationship in a hierarchical database is represented by the term

parent/child. In this type of relationship, a parent table can be associ-

ated with one or more child tables, but a single child table can be associ-

ated with only one parent table. These tables are explicitly linked via a

pointer or by the physical arrangement of the records within the tables. A

user accesses data within this model by starting at the root table and

working down through the tree to the target data. This access method

requires the user to be very familiar with the structure of the database.

Agents Database In the example shown in Figure 1.1, an agent

books several entertainers, and each entertainer has his own

schedule. An agent also maintains a number of clients whose

entertainment needs are met by the agent. A client books engage-

ments through the agent and makes payments to the agent for

his services.

Payments

Clients

Agents

Entertainers

Schedule Engagements

Figure 1.1. Diagram of a typical hierarchical database.

Early Database Models 7

One advantage to using a hierarchical database is that a user can

retrieve data very quickly because there are explicit links between the

table structures. Another advantage is that referential integrity is built

in and automatically enforced. This ensures that a record in a child

table must be linked to an existing record in a parent table, and that a

record deleted in the parent table will cause all associated records in

the child table to be deleted as well.

A problem occurs in a hierarchical database when a user needs to store

a record in a child table that is currently unrelated to any record in a

parent table. Consider an example using the Agents database shown in

Figure 1.1. A user cannot enter a new entertainer in the ENTERTAIN-

ERS table until the entertainer is assigned to an agent in the AGENTS

table. Recall that a record in a child table (in this case, ENTERTAIN-

ERS) must be related to a record in the parent table (AGENTS). Yet in

real life, entertainers commonly sign up with the agency well before

they are assigned to specific agents. This scenario is difficult to model

in a hierarchical database. The rules can be bent without breaking

them if a dummy agent record is inserted in the AGENTS table; how-

ever, this option is not really optimal.

This type of database cannot support complex relationships, and there

is often a problem with redundant data. For example, there is a many-

to-many relationship between clients and entertainers; an entertainer

will perform for many clients, and a client will hire many entertainers.

You can’t directly model this type of relationship in a hierarchical data-

base, so you’ll have to introduce redundant data into both the

SCHEDULE and ENGAGEMENTS tables.

• The SCHEDULE table will now have client data (such as client

name, address, and phone number) to show for whom and where

each entertainer is performing. This particular data is redun-

dant because it is currently stored in the CLIENTS table.

8 Chapter 1 The Relational Database

• The ENGAGEMENTS table will now contain data on entertainers

(such as entertainer name, phone number, and type of enter-

tainer) to indicate which entertainers are performing for a given

client. This data is redundant as well because it is currently

stored in the ENTERTAINERS table.

The problem with this redundancy is that it opens up the possibility of

allowing a user to enter a single piece of data inconsistently. This, in

turn, can result in producing inaccurate information.

A user can solve this problem in a roundabout manner by creating one

hierarchical database specifically for entertainers and another specifi-

cally for agents. The new Entertainers database will contain only the

ENTERTAINERS table, and the revised Agents database will contain

the AGENTS, CLIENTS, PAYMENTS, and ENGAGEMENTS tables. The

SCHEDULE table is no longer needed in the Entertainers database

because you can define a logical child relationship between the

ENGAGEMENTS table in the Agents database and the ENTERTAIN-

ERS table in the Entertainers database. With this relationship in place,

you can retrieve a variety of information, such as a list of booked enter-

tainers for a given client or a performance schedule for a given

entertainer. Figure 1.2 shows a diagram of the new model.

As you see, a person designing a hierarchical database must be able to

recognize the need to use this technique for a many-to-many relation-

ship. Here the need is relatively obvious, but many relationships are

more obscure and may not be discovered until very late in the design

process or, more disturbingly, well after the database has been put into

operation.

The hierarchical database lent itself well to the tape storage systems

used by mainframes in the 1970s and was very popular in companies

that used those systems. But, despite the fact that the hierarchical

database provided fast and direct access to data and was useful in a

number of circumstances, it was clear that a new database model was

Early Database Models 9

needed to address the growing problems of data redundancy and com-

plex relationships among data.

The Network Database Model

The network database was, for the most part, developed as an

attempt to address some of the problems of the hierarchical data-

base. The structure of a network database is represented in terms of

nodes and set structures. Figure 1.3 shows a diagram of a typical net-

work database.

Agents Database In the example shown in Figure 1.3, an agent

represents a number of clients and manages a number of enter-

tainers. Each client schedules any number of engagements and

makes payments to the agent for his or her services. Each enter-

tainer performs a number of engagements and may play a variety

of musical styles.

Agents

Clients
Entertainers

Engagements Payments

Entertainers Database

Agents Database

Logical Child Relationship

Figure 1.2. Using two hierarchical databases to resolve a many-to-many
relationship.

10 Chapter 1 The Relational Database

A node represents a collection of records, and a set structure estab-

lishes and represents a relationship in a network database. It is a

transparent construction that relates a pair of nodes together by using

one node as an owner and the other node as a member. (This is a valu-

able improvement on the parent/child relationship.) A set structure

supports a one-to-many relationship, which means that a record in the

owner node can be related to one or more records in the member node,

but a single record in the member node is related to only one record in

the owner node. Additionally, a record in the member node cannot exist

without being related to an existing record in the owner node. For

example, a client must be assigned to an agent, but an agent with no

clients can still be listed in the database. Figure 1.4 shows a diagram

of a basic set structure.

One or more sets (connections) can be defined between a specific pair

of nodes, and a single node can also be involved in other sets with

other nodes in the database. In Figure 1.3, for instance, the CLIENTS

node is related to the PAYMENTS node via the Make set structure. It is

Agents

Clients

Engagements

Entertainers

Musical StylesPayments

Represent Manage

Make Schedule PlayPerform

Figure 1.3. Diagram of a typical network database.

Early Database Models 11

also related to the ENGAGEMENTS node via the Schedule set struc-

ture. Along with being related to the CLIENTS node, the ENGAGE-

MENTS node is related to the ENTERTAINERS node via the Perform set

structure.

A user can access data within a network database by working through

the appropriate set structures. Unlike the hierarchical database, where

access must begin from a root table, a user can access data from within

the network database, starting from any node and working backward

or forward through related sets. Consider the Agents database in

Figure 1.3 once again. Say a user wants to find the agent who booked

a specific engagement. She begins by locating the appropriate engage-

ment record in the ENGAGEMENTS node, and then determines which

client “owns” that engagement record via the Schedule set structure. Fi-

nally, she identifies the agent that “owns” the client record via the Rep-

resent set structure. The user can answer a wide variety of questions as

long as she navigates properly through the appropriate set structures.

One advantage the network database provides is fast data access. It

also allows users to create queries that are more complex than those

Agents

Clients

Represent

Owner Node

Set Structure

Member Node

1

M

Figure 1.4. A basic set structure.

12 Chapter 1 The Relational Database

they created using a hierarchical database. A network database’s main

disadvantage is that a user has to be very familiar with the structure of

the database in order to work through the set structures. Consider the

Agents database in Figure 1.3 once again. It is incumbent on the user

to be familiar with the appropriate set structures if she is to determine

whether a particular engagement has been paid. Another disadvantage

is that it is not easy to change the database structure without affecting

the application programs that interact with it. Recall that a relation-

ship is explicitly defined as a set structure in a network database. You

cannot change a set structure without affecting the application pro-

grams that use this structure to navigate through the data. If you

change a set structure, you must also modify all references made from

within the application program to that structure.

Although the network database was clearly a step up from the hierar-

chical database, a few people in the database community believed that

there must be a better way to manage and maintain large amounts of

data. As each data model emerged, users found that they could ask

more complex questions, thereby increasing the demands made upon

the database. And so, we come to the relational database model.

The Relational Database Model

The relational database was first conceived in 1969 and has arguably

become the most widely used database model in database manage-

ment today. The father of the relational model, Dr. Edgar F. Codd, was

an IBM research scientist in the late 1960s and was at that time look-

ing into new ways to handle large amounts of data. His dissatisfaction

with the database models and database products of the time led him to

begin thinking of ways to apply the disciplines and structures of math-

ematics to solve the myriad of problems he had been encountering.

Being a mathematician by profession, he strongly believed that he

could apply specific branches of mathematics to solve problems, such

The Relational Database Model 13

as data redundancy, weak data integrity, and a database structure’s

overdependence on its physical implementation.

Dr. Codd formally presented his new relational model in a landmark

work entitled “A Relational Model of Data for Large Shared Data-

banks”1 in June of 1970. He based his new model on two branches of

mathematics—set theory and first-order predicate logic. Indeed, the

name of the model itself is derived from the term relation, which is part

of set theory. (A widely held misconception is that the relational model

derives its name from the fact that tables within a relational database

can be related to one another.)

A relational database stores data in relations, which the user perceives

as tables. Each relation is composed of tuples, or records, and attributes,

or fields. (I’ll use the terms tables, records, and fields throughout the

remainder of the book.) The physical order of the records or fields in a

table is completely immaterial, and each record in the table is identified

by a field that contains a unique value. These are the two characteris-

tics of a relational database that allow the data to exist independently of

the way it is physically stored in the computer. As such, a user isn’t

required to know the physical location of a record in order to retrieve its

data. This is unlike the hierarchical and network database models, in

which knowing the layout of the structures is crucial to retrieving data.

The relational model categorizes relationships as one-to-one, one-to-

many, and many-to-many. (These relationships are covered in detail in

Chapter 10.) A relationship between a pair of tables is established

implicitly through matching values of a shared field. In Figure 1.5, for

example, the CLIENTS and AGENTS tables are related via an AGENT ID

field; a specific client is associated with an agent through a matching

AGENT ID. Likewise, the ENTERTAINERS and ENGAGEMENTS tables

are related via an ENTERTAINER ID; a record in the ENTERTAINERS table

1. Edgar F. Codd, “A Relational Model of Data for Large Shared Databanks,” Communica-

tions of the ACM, June 1970, 377–87.

14 Chapter 1 The Relational Database

Agent ID

100

101

102

Agent First Name

Mike

Greg

Katherine

Agent Home Phone

553-3992

790-3992

551-4993

Date of Hire

05/16/95

10/15/95

03/01/96

Agent Last Name

Hernandez

Piercy

Ehrlich

Client ID

9001

9002

9003

Client First Name

Stewart

Shannon

Estela

Client Home Phone

553-3992

790-3992

551-4993

Client Last Name

Jameson

McLain

Pundt

Agent ID

100

101

102

......

......

......

......

Client ID

9003

9009

9001

Entertainer ID

3001

3000

3002

Start Time

1:00 PM

9:00 PM

3:00 PM

Engagement Date

04/01/96

04/13/96

05/02/96

Stop Time

3:30 PM

1:30 AM

6:00 PM

Entertainer ID

3000

3001

3002

Entertainer First Name

John

Mark

Teresa

Entertainer Last Name

Slade

Jebavy

Weiss

......

......

......

......

Agent ID

100

101

102

Agents

Clients

Entertainers

Engagements

Figure 1.5. Examples of related tables in a relational database.

The Relational Database Model 15

can be associated with a record in the ENGAGEMENTS through match-

ing ENTERTAINER IDs.

As long as a user is familiar with the relationships among the tables in

the database, he can access data in an almost unlimited number of

ways. He can access data from tables that are directly related and from

tables that are indirectly related. Consider the Agents database in

Figure 1.5. Although the CLIENTS table is indirectly related to the

ENTERTAINERS table, the user can produce a list of clients and the

entertainers who have performed for them. (Of course, it really depends

on how the tables are actually structured, but I digress. This example

serves our purpose for now.) He can do this easily because CLIENTS is

directly related to ENGAGEMENTS and ENGAGEMENTS is directly re-

lated to ENTERTAINERS.

Retrieving Data

You retrieve data in a relational database by using Structured Query

Language (SQL). SQL is the standard language used to create, modify,

maintain, and query relational databases. Figure 1.6 shows a sample

SQL query statement you can use to produce a list of all clients in the

city of El Paso.

The three components of a basic SQL query are the SELECT…FROM

statement, the WHERE clause, and the ORDER BY clause. You use the

SELECT ClientLastName, ClientFirstName, ClientPhoneNumber

FROM Clients

WHERE City = “El Paso”

ORDER BY ClientLastName, ClientFirstName;

Figure 1.6. A sample SQL query statement.

16 Chapter 1 The Relational Database

SELECT clause to indicate the fields you want to use in the query and

the FROM clause to indicate the table(s) to which the fields belong. You

can filter the records the query returns by imposing criteria against

one or more fields with the WHERE clause, and then sort the results in

ascending or descending order with the ORDER BY clause.

Most of today’s major relational database software programs incorpo-

rate various forms of SQL implementations, ranging from windows in

which users can manually enter “raw” SQL statements to graphical

tools that allow users to build queries using various graphic elements.

For example, a user working with R:BASE Technologies’s R:BASE can

opt to build and execute SQL query statements directly from a com-

mand prompt, while someone using Microsoft Access may find it easier

to build queries using Access’s graphical query builder. Regardless of

how the queries are built, the user can save them for future use.

It’s not always necessary for you to know SQL in order to work with a

database. If your database software provides a graphical query builder

or you’re using a custom-built application to work with the data in

your database, you’ll never need to write a single SQL statement. It’s a

good idea, however, for you to gain a basic understanding of SQL. It

will help those of you using query-building tools to understand and

troubleshoot the queries you create with these tools, and it will defi-

nitely be to your advantage should you need to work high-end database

software programs, such as Oracle and Microsoft SQL Server.

❖ Note Although a detailed discussion of SQL is beyond the

scope of this book, you should understand that SQL is a lan-

guage directly related to the relational database model. If you

have a desire or need to study SQL, you could start by reading

my second book, SQL Queries for Mere Mortals, and then move on

to any of the other SQL books that are on my recommended

reading list in Appendix G.

The Relational Database Model 17

Advantages of a Relational Database

The relational database provides a number of advantages over previ-

ous models, such as the following:

• Built-in multilevel integrity: Data integrity is built into the model

at the field level to ensure the accuracy of the data; at the table

level to ensure that records are not duplicated and to detect

missing primary key values; at the relationship level to ensure

that the relationship between a pair of tables is valid; and at the

business level to ensure that the data is accurate in terms of the

business itself. (Integrity is discussed in detail as the design pro-

cess unfolds.)

• Logical and physical data independence from database applica-

tions: Neither changes a user makes to the logical design of the

database, nor changes a database software vendor makes to the

physical implementation of the database, will adversely affect the

applications built upon it.

• Guaranteed data consistency and accuracy: Data is consistent

and accurate due to the various levels of integrity you can impose

within the database. (This will become quite clear as you work

through the design process.)

• Easy data retrieval: At the user’s command, data can be retrieved

either from a particular table or from any number of related

tables within the database. This enables a user to view informa-

tion in an almost unlimited number of ways.

These and other advantages have proved beneficial to the business

community and to all those who need to collect and manage data.

Indeed, the relational database has become the database of choice in

many circumstances.

Until recently, one perceived disadvantage of the relational database

was that software programs based on it ran very slowly. This was not a

18 Chapter 1 The Relational Database

fault of the relational model itself, but of the ancillary technology avail-

able at the time of the model’s introduction. Processing speed, memory,

and storage were simply insufficient to provide database software ven-

dors with a platform on which to build a full implementation of the

relational database, so the initial relational database software pro-

grams fell woefully short of their full potential. Since the early 1990s,

however, advances in both hardware technology and software engineer-

ing have made processing speed an insignificant issue and have

allowed vendors to make significant gains in their efforts to support the

model more fully.

You’ll learn more about the relational database model as you work

through the design process presented in this book. Some of the topics

you’ll encounter include creating tables, establishing data integrity,

working with relationships, and establishing business rules.

Relational Database Management

Systems

A relational database management system (RDBMS) is a software pro-

gram you use to create, maintain, modify, and manipulate a relational

database. Many RDBMS programs also provide the tools you need to

create end-user applications that interact with the data stored in the

database. Of course, the quality of an RDBMS is a direct function of

the extent to which it supports the relational database model. Even

among “true” RDBMSs, support for the relational database varies

among vendors, and there is yet to be a full implementation of the rela-

tional model’s potential. Despite this, all RDBMS programs continue to

evolve and become more full-featured and powerful than ever before.

Since the early 1970s, a number of RDBMS programs have been pro-

duced by a variety of software vendors, encompassing various types of

computer hardware, operating systems, and programming environ-

Relational Database Management Systems 19

ments. As we continue our voyage into the beginning of the twenty-first

century, it’s safe to say that RDBMS programs are as ubiquitous and

integrated into our daily lives as cellular phones.

In the earliest days of the relational database, RDBMSs were written for

use on mainframe computers. (Didn’t everything start on a main-

frame?) Two RDBMS programs prevalent in the early 1970s were

System R, developed by IBM at its San Jose Research Laboratory in

California, and Interactive Graphics Retrieval System (INGRES), devel-

oped at the University of California at Berkeley. These two programs

contributed greatly to the general appreciation of the relational model.

As the benefits of the relational database became more widely known,

many companies decided to make a slow move from hierarchical and

network database models to the relational database model, thus creat-

ing a need for more and better mainframe RDBMS programs. The

1980s saw the development of various commercial RDBMSs for main-

frame computers, such as Oracle, developed by Oracle Corporation,

and IBM’s DB2.

The early to mid-1980s saw the rise of the personal computer, and with

it the development of PC-based RDBMS programs. Some of the early

entries in this category, such as dBase by Ashton-Tate and FoxPro from

Fox Software, were nothing more than elementary file-based database-

management systems. True PC-based RDBMS programs began to

emerge with the introduction of R:BASE, originally developed by

Microrim, and Paradox, originally developed by Ansa Software. Each of

these products helped to spread the idea and potential of database

management from the mainframe-dominated domain of information

systems departments to the desktop of the common end user.

The need to share data became apparent as more and more users

worked with databases throughout the late 1980s and early 1990s. The

concept of a centrally located database that could be made available to

20 Chapter 1 The Relational Database

multiple users seemed a very promising idea. This would certainly

make data management and database security much easier to imple-

ment. Database vendors responded to this need by developing client/

server RDBMS programs.

As Figure 1.7 illustrates, the data in this type of system resides on a

computer acting as a database server, and users interact with the data

through applications residing on their own computer, or database cli-

ent. The database developer uses the client/server RDBMS program to

create and maintain the database and attendant end-user application

programs. She implements data integrity and data security on the data-

base server, giving her the ability to base a variety of user applications

on the same set of data without affecting the data’s integrity or security.

Client/server RDBMS programs have been widely used for quite some

time to manage large volumes of shared data. Some of the more recent

entries in the client/server RDBMS category are Microsoft SQL Server

Server
Client Client

Client

Client

Figure 1.7. A typical client/server architecture.

Beyond the Relational Model 21

2000 from Microsoft Corporation and Oracle9i Application Server, from

Oracle Corporation.

Beyond the Relational Model

Although RDBMSs have been widely accepted for use in typical busi-

ness applications, such as inventory control, patient management,

banking, order processing, and event scheduling, they have proven to

be (currently, at least) lacking for such applications as computer-aided

design (CAD), geographic information systems (GIS), and multimedia

storage systems. Two new database models eventually emerged in

response to this problem: the object-oriented database and the object-

relational database.

The object-oriented model incorporates all of the characteristics of an

object-oriented programming language and essentially relegates the

relational database to the status of a data store. The fundamental idea

here is that the database developer handles every aspect of the data-

base, including the sets of operations that manipulate the data in the

database from within the object-oriented database programming soft-

ware. No longer is there a clear separation between the database

software and the application programming software. (As with any other

model, there are pros and cons to this approach.) Versant ODBMS by

Versant Corporation and UniData by IBM are two of the most recent

examples of object-oriented database software.

Unlike the relational model, which has a solid theoretical basis in two

distinct branches of mathematics, the object-oriented database model

has no specific theoretical foundation. As such, there is no singular,

cohesive consensus as to its definition. There is, however, a version of

the model proposed by the Object Management Group (OMG) that has

become somewhat of a de facto standard for object-oriented database-

management systems.

22 Chapter 1 The Relational Database

The object-relational model (formerly known as the extended relational

data model), on the other hand, extended the relational database model

by incorporating various object-oriented elements and characteristics,

such as classes, encapsulation, and inheritance. The idea was that

these extensions would allow a relational database to manage and

manipulate more complex types of data, such as audio streams, video

clips, and architectural drawings. Though many in the database indus-

try believed this to be a move in the right direction, they still

maintained that it did not go far enough to deal with advanced data-

base applications. The model is still being refined and used, however,

as evidenced most recently by the entry of IBM’s IBM Informix Dynamic

Server 9.30.

Object-oriented supporters and relational database proponents are still

debating various issues to this day. Both sides agree that the rela-

tional database will not work for certain types of applications, but

disagree as to the appropriate solution to the problem. The issues are

quite complex and well beyond the scope of this work, but suffice it to

say that these debates are likely to go on until one side gives up or

technology renders them irrelevant.

What the Future Holds

The manner in which databases are used has evolved immensely in the

past several years. There came a time when many organizations began

❖ Note The OMG is a nonprofit international group that

addresses the issues of object standards. It was founded in 1989

and comprises more than 800 member organizations. It is impor-

tant to note that the OMG is not a standards body, such as the

American National Standards Institute (ANSI), but merely an

advisory and certification group.

What the Future Holds 23

to realize that there was a lot of useful information that could be gath-

ered from data they stored in various relational and nonrelational

databases. This prompted them to question whether there was a way to

mine the data for useful analytical information that they could then

use to make critical business decisions. Furthermore, they wondered if

they could consolidate and integrate their data into a viable knowledge-

base for their organizations. Indeed, these would be difficult questions

to answer.

IBM proposed the idea of a data warehouse, which, as originally con-

ceived, would allow organizations to access data stored in any number

of nonrelational databases. They were unsuccessful in their first

attempts at implementing data warehouses, primarily because of the

complexities and performance problems associated with such a task. It

has been only recently that the possibility of implementing a data ware-

house has become more viable and practical. Bill Inmon, widely

regarded as the father of the data warehouse, is a strong and vocal

advocate of the technology and has been instrumental in its evolution.

Data warehouses are now becoming more commonplace as companies

move to leverage the vast amounts of data they’ve stored in their data-

bases over the years.

The Internet has had a great influence on the way organizations use

databases. Many companies and businesses are using the Web to

expand their consumer base, and much of the data they share with

and gather from these consumers is stored in a database. The Inter-

net has even spawned a potentially viable solution to the problem of

consolidating data from various relational and nonrelational systems.

eXtensible Markup Language (XML) is quickly becoming a de facto

data transfer standard for sharing data across heterogeneous sys-

tems. It is platform- and system-agnostic, so a database system that

can write to and read from an XML document can share data with

other systems that can do the same. As the Internet continues to

become a dominant force in the world of business and commerce,

24 Chapter 1 The Relational Database

more and more database vendors are rushing to incorporate XML

capabilities into their products.

A Final Note

RDBMSs now have a long history, and they continue to play a huge

role in the way people, businesses, and organizations interact with

their data. Their role is constantly expanding and evolving as data

becomes more accessible via the Internet and businesses move at an

ever-increasing pace to gain a presence on the Web. Numerous organi-

zations are heavily invested in their relational database systems, and

they are not likely to disappear anytime soon.

Summary

We opened this chapter by defining the two types of databases cur-

rently used in database management: operational databases and

analytical databases.

We then briefly discussed the hierarchical database model and the net-

work database model. Our discussion covered the data structures,

relationships, and data-access methods used in both models, as well as

their chief disadvantages. You learned that these models were widely

used in the early days of database management and led to the even-

tual development and introduction of the relational database model.

Next, we provided a detailed discussion of the relational database model,

its history, and its features. We noted that it is based on specific

branches of mathematics and that this mathematical foundation is what

❖ Note I’ve really only pricked the surface of XML; it does far

more than I’ve suggested in this brief introduction.

Summary 25

makes the model so structurally sound. Then we explored the model’s

data structures and relationships, and the role SQL plays in accessing

data within the model. You’ll remember, no doubt, that SQL is the stan-

dard language used to work with relational databases. We ended this

section by reviewing the advantages of the relational database model.

We then took a look at a brief history of relational database manage-

ment systems, beginning with the mainframe systems of the early

1970s and progressing through the PC-based systems of the 1980s to

the client/server systems of the 1990s. At this point you should have a

sense of the progression of circumstances that have led to the develop-

ment of the database systems we use today.

The chapter continued with a brief discussion of the object-relational

and object-oriented database models. Here you learned that these mod-

els emerged ostensibly as a means to deal with advanced database

applications, and that they each incorporate various object-oriented

elements and characteristics. You also learned that object-oriented

databases are still in a state of flux and that debates still continue

between object-oriented supporters and relational database propo-

nents over the viability of object-oriented solutions.

Finally, we closed the chapter with a brief discussion of data ware-

houses and XML. You learned that data warehouses are used to con-

solidate and integrate data from heterogeneous sources and that the

possibility of truly using them has only recently become more viable

and practical. Next, you learned that XML is quickly becoming a de

facto data transfer standard for sharing data across relational and non-

relational data sources. You also understand that relational databases

are likely to be used for quite some time, despite the great impact the

Internet has had on the way organizations use databases.

In the next chapter, we’ll discuss why you should be concerned with

database design and why theory is important. We’ll also cover the

objectives and advantages of good design.

26 Chapter 1 The Relational Database

Review Questions

1. Name the two main types of databases in use today.

2. What type of data does an analytical database store?

3. True or False: An operational database is used primarily in on-line

transaction processing (OLTP) scenarios.

4. What two data models were commonly used in the days before the

relational database model?

5. Describe a parent/child relationship.

6. What is a set structure?

7. Name one of the branches of mathematics on which the relational

model is based.

8. How does a relational database store data?

9. Name the three types of relationships in a relational database.

10. How do you retrieve data in a relational database?

11. State two advantages of a relational database.

12. What is a relational database management system?

13. What is the premise behind the object-relational model?

14. What is the purpose of a data warehouse?

15. What is XML and why is it significant?

27

2
Design Objectives

Everything factual is, in a sense, theory.

The blue of the sky exhibits the basic laws of chromatics.

There is no sense in looking for something behind

phenomena; they are theory.

—GOETHE

Topics Covered in This Chapter

Why Should You Be Concerned with Database Design?

The Importance of Theory

The Advantage of Learning a Good Design Methodology

Objectives of Good Design

Benefits of Good Design

Database-Design Methods

Summary

Review Questions

Why Should You Be Concerned

with Database Design?

Some of you who work with RDBMS software programs may wonder

why you should be concerned with database design. After all, most

RDBMS programs come with sample databases that you can copy and

modify to suit your own needs, and you can even borrow tables from

the sample databases and use them in other databases that you’ve

28 Chapter 2 Design Objectives

created. Some programs also provide tools that will guide you through

the process of defining and creating tables. However, these tools don’t

actually help you design a database—they merely help you create the

physical tables that you will include in the database.

What you must understand is that it’s better for you to use these tools

after you’ve created the logical database structure. RDBMS programs

provide the design tools and the sample databases to help minimize the

time it takes you to implement the database structure physically. Theo-

retically, reducing implementation time gives you more time to focus on

creating and building end-user applications.

Yet the primary reason you should be concerned with database design

is that it’s crucial to the consistency, integrity, and accuracy of the data

in a database. If you design a database improperly, it will be difficult for

you to retrieve certain types of information, and you’ll run the risk that

your searches will produce inaccurate information. Inaccurate informa-

tion is probably the most detrimental result of improper database

design—it can adversely affect your organization’s bottom line. In fact, if

your database affects the manner in which your business performs its

daily operations, or if it’s going to influence the future direction of your

business, you must be concerned with database design.

Let’s look at this from a different perspective for a moment: Think

about how you would go about having a custom home built for you.

What’s the first thing you’re going to do? Certainly you’re not going to

hire a contractor immediately and let him build your home however he

wishes. Surely you will first engage an architect to design your new

home and then hire a contractor to build it. The architect will explore

your needs and express them as a set of blueprints, recording deci-

sions about size and shape and requirements for various systems

(structural, mechanical, electrical). Next, the contractor will procure

the labor and materials, including the listed systems, and then assem-

ble them according to the drawings and specifications.

The Importance of Theory 29

Now let’s return to our database perspective and think of the logical

database design as the architectural blueprints and the physical

database implementation as the completed home. The logical data-

base design describes the size, shape, and necessary systems for a

database; it addresses the informational and operational needs of

your business. You then build the physical implementation of the log-

ical database design, using your RDBMS software program. Once

you’ve created your tables, set up table relationships, and estab-

lished the appropriate levels of data integrity, your database is

complete. Now you’re ready to create applications that allow you to

interact easily with the data stored in the database, and you can be

confident that these applications will provide you with timely and,

above all, accurate information.

Although you can implement a poor design in an RDBMS, implement-

ing a good design is far more to your advantage because it will yield

accurate information, store data more efficiently and effectively, and

will be easier for you to manage and maintain.

The Importance of Theory

A number of major disciplines (and their associated design methodolo-

gies) have some type of theoretical basis. Structural engineers design

an unlimited variety of structures using the theories of physics. Com-

posers create beautiful symphonies and orchestral pieces using the

concepts found in music theory. The automobile industry uses aerody-

namics theories to design more fuel-efficient automobiles. The airplane

❖ Note In this chapter, I use the term theory to represent “gen-

eral propositions used as principles” and not “conjectures or

proposals.”

30 Chapter 2 Design Objectives

industry uses the same theories to design airplane wings that reduce

wind drag.

These examples demonstrate that theory is relevant and very impor-

tant. The chief advantage of theory is that it helps you predict out-

comes; it allows you to predict what will happen if you perform a

certain action or series of actions. You know if you drop a stone, it will

fall to the ground. If you are agile, you can get your toes out of the way

of Newton’s theory of gravity. The point is that it works every time. If

you chisel a stone flat and place it on another flat stone, you can pre-

dict that it will stay where you put it. This theory allows you to design

pyramids and cathedrals and brick outhouses. Now consider a data-

base example. Let’s assume you have a pair of tables that are related to

each other. You know that you can draw data from both tables simulta-

neously simply because of the way relational database theory works.

The data you draw from both tables is based on matching values of a

shared field between the tables themselves. Again, your actions have a

predictable result.

The relational database is based on two branches of mathematics

known as set theory and first-order predicate logic. This very fact is

what allows the relational database to guarantee accurate information.

These branches of mathematics also provide the basis for formulating

good design methodologies and the building blocks necessary to create

good relational database structures.

You might harbor an understandable reluctance to study complicated

mathematical concepts simply to carry out what seems to be a rather

limited task. You’re sure to hear claims that the mathematical theories

on which the relational database and its associated design methodolo-

gies are based don’t have any relevance to the real world, or that they

are somehow impractical. This is not true: Math is central to the rela-

tional model and is what guarantees the model’s viability. But cheer

The Advantage of Learning a Good Design Methodology 31

up—it isn’t really necessary for you to know anything about set theory

or first-order predicate logic in order to use a relational database! You

certainly don’t have to know all the details of aerodynamics just to

drive an automobile. Aerodynamic theories may help you understand

and appreciate how an automobile can get better gas mileage, but they

won’t help you learn how to parallel park.

Mathematical theory provides the foundation for the relational database

model, and thus makes the model predictable, reliable, and sound. The-

ory describes the basic building blocks used to create a relational

database and provides guidelines for how it should be arranged. Arrang-

ing building blocks to achieve a desired result is defined as “design.”

The Advantage of Learning a Good

Design Methodology

You could learn how to design a database properly by trial and error,

but it would take you a very long time, and you would probably have to

repair many mistakes along the way. The best approach is to learn a

good database-design methodology, such as the one in this book, and

then embark on designing your database.

You’ll gain several advantages from learning and using a good design

methodology.

• It gives you the skills you need to design a sound database struc-

ture. A large number of data-processing problems can be

attributed to the presence of redundant data, duplicate data, and

invalid data, or the absence of required data. All of these prob-

lems produce erroneous information and make certain queries

and reports difficult to run. You can avoid almost all of these

problems by employing a good design methodology.

32 Chapter 2 Design Objectives

• It provides you with an organized set of techniques that will

guide you step-by-step through the design process. The organiza-

tion of the techniques enables you to make informed decisions

on every aspect of your design.

• It helps you keep your missteps and design reiterations to a mini-

mum. Of course, you will naturally make some mistakes when

you’re designing a database, but a good methodology helps you

recognize errors in your design and gives you the tools to correct

them. Additionally, the organization of the techniques within the

methodology keeps you from unnecessarily repeating a given

design process.

• It makes the design process easier and reduces the amount of time

you spend designing the database. You will inevitably waste valu-

able time taking an arbitrary trial-and-error approach to design

because it lacks the logic and organization that a good methodol-

ogy provides.

• It will help you understand and use your RDBMS software more

fully and effectively. As your knowledge of proper design expands

and grows, you’ll actually begin to understand why a given

RDBMS provides certain tools and how you can use them to

implement the structure within the RDBMS program.

Regardless of whether you use the design methodology presented in

this book or some other established methodology, you should choose a

design methodology, learn it as well as you can, and use it faithfully to

design your databases.

Objectives of Good Design

There are distinct objectives you must achieve in order to design a

good, sound database structure. You can avoid many of the problems

Benefits of Good Design 33

mentioned in the previous section if you keep these objectives in mind

and constantly focus on them while you’re designing your database.

• The database supports both required and ad hoc information

retrieval. The database must store the data necessary to sup-

port information requirements defined during the design

process and any possible ad hoc queries that may be posed by

a user.

• The tables are constructed properly and efficiently. Each table

in the database represents a single subject, is composed of rela-

tively distinct fields, keeps redundant data to an absolute

minimum, and is identified throughout the database by a field

with unique values.

• Data integrity is imposed at the field, table, and relationship lev-

els. These levels of integrity help guarantee that the data

structures and their values will be valid and accurate at all times.

• The database supports business rules relevant to the organiza-

tion. The data must provide valid and accurate information that

is always meaningful to the business.

• The database lends itself to future growth. The database struc-

ture should be easy to modify or expand as the information

requirements of the business change and grow.

You might find it difficult at times to fulfill these objectives, but you’ll

certainly be pleased with your final database structure once you’ve met

them.

Benefits of Good Design

The time you invest in designing a sound database structure is time

well spent. Good design saves you time in the long run because you do

34 Chapter 2 Design Objectives

not have to constantly revamp a quickly and poorly designed struc-

ture. You gain the following benefits when you apply good design

techniques:

• The database structure is easy to modify and maintain. Modifi-

cations you make to a field or table will not adversely affect

other fields or tables in the database.

• The data is easy to modify. Changes you make to the value of a

given field in a table will not adversely affect the values of other

fields within the table. Furthermore, a well-designed database

keeps duplicate fields to an absolute minimum, so you typically

modify a particular data value in one field only.

• Information is easy to retrieve. You’ll be able to create queries eas-

ily because the tables are well constructed and the relationships

between them are properly established.

• End-user applications are easy to develop and build. You can

spend more time on programming and addressing the data

manipulation tasks at hand, instead of working around the inevi-

table problems that arise when you work with a poorly designed

database.

Database-Design Methods

Traditional Design Methods

In general, traditional methods of database design incorporate three

phases: requirements analysis, data modeling, and normalization.

The requirements-analysis phase involves an examination of the busi-

ness being modeled, interviews with users and management to assess

the current system and to analyze future needs, and an assessment of

information requirements for the business as a whole. This process is

Database-Design Methods 35

relatively straightforward, and, indeed, the design process presented in

this book follows the same line of thinking.

The data-modeling phase involves modeling the database structure us-

ing a data-modeling method, such as entity-relationship (ER) diagram-

ming, semantic-object modeling, or object-role modeling. Each of these

modeling methods provides a means of visually representing various

aspects of the database structure, such as the tables, table relation-

ships, and relationship characteristics. In fact, the modeling method

used in this book is a basic version of ER diagramming. Figure 2.1

shows an example of a basic ER diagram.

Each data-modeling method incorporates a set of diagramming sym-

bols used to represent a database’s structure and characteristics. For

example, the diagram in Figure 2.1 provides information on several

aspects of the database.

• The rectangles represent two tables called AGENTS and CLIENTS.

• The diamond represents a relationship between these two tables,

and the “1:N” within the diamond indicates that it is a one-to-

many relationship.

❖ Note I’ve incorporated the data-modeling method I use in this

book into the design process itself rather than treating it sepa-

rately. I’ll introduce and explain each modeling technique as

appropriate throughout the process.

Agents 1:N Clients

Figure 2.1. An example of a basic ER diagram.

36 Chapter 2 Design Objectives

• The vertical line next to the AGENTS table indicates that a client

must be associated with an agent, and the circle next to the CLI-

ENTS table indicates that an agent doesn’t necessarily have to be

associated with a client.

Fields are also defined and associated with the appropriate tables dur-

ing the data-modeling phase. Each table is assigned a primary key,

various levels of data integrity are identified and implemented, and

relationships are established via foreign keys. Once the initial table

structures are complete and the relationships have been established

according to the data model, the database is ready to go through the

normalization phase.

Normalization is the process of decomposing large tables into smaller

ones in order to eliminate redundant data and duplicate data and to

avoid problems with inserting, updating, or deleting data. During the

normalization process, table structures are tested against normal forms

and then modified if any of the aforementioned problems are found. A

normal form is a specific set of rules that can be used to test a table

structure to ensure that it is sound and free of problems. There are a

number of normal forms, and each one is used to test for a particular

set of problems. The normal forms currently in use are First Normal

Form, Second Normal Form, Third Normal Form, Fourth Normal Form,

Fifth Normal Form, Boyce-Codd Normal Form, and Domain/Key Nor-

mal Form.

The Design Method Presented in This Book

The design method that I use in this book is one that I’ve developed

over the years. It incorporates a requirements analysis and a simple

ER-diagramming method to diagram the database structure. However,

it does not incorporate the traditional normalization process or involve

the use of normal forms. The reason is simple: Normal forms can be

confusing to anyone who has not taken the time to study formal rela-

Database-Design Methods 37

tional database theory. For example, examine the following definition of

Third Normal Form:

A relvar is in 3NF if and only if it is in 2NF and every non-key

attribute is nontransitively dependent on the primary key.1

This description is relatively meaningless to a reader who is unfamiliar

with the terms relvar, 3NF, 2NF, non-key attribute, transitively depen-

dent, and primary key.

The process of designing a database is not and should not be hard to

understand. As long as the process is presented in a straightforward

manner and each concept or technique is clearly explained, anyone

should be able to design a database properly. For example, the follow-

ing definition is derived from the results of using Third Normal Form

against a table structure, and I believe most people will find it clear and

easy to understand:

A table should have a field that uniquely identifies each of its

records, and each field in the table should describe the subject

that the table represents.

The process I used to formulate this definition is the same one I used

to develop my entire design methodology.

Back in the late 1980s, it occurred to me that the relational model had

been in existence for almost 20 years and that people had been designing

databases using the same basic methodology for about 12 years. I was

using the traditional design methodology at that time, but I occasionally

found it difficult to employ. The two things that bothered me the most

about it were the normalization process (as a whole) and the seemingly

endless iterations it took to arrive at a proper design. Of course, these

seemed to be sore points with most of the other database developers that

1. C. J. Date, An Introduction to Database Systems, 7th ed. (Boston, MA: Addison-Wesley,

2000), 362; emphasis added.

38 Chapter 2 Design Objectives

I knew, so I certainly wasn’t alone in my frustrations. I thought about

these problems for quite some time, and then I came up with a solution.

I already knew that the purpose of normalization is to take an improp-

erly or poorly designed table and transform it into a table with a sound

structure. I also understood the process: Take a given table and test it

against the normal forms to determine whether it is properly designed.

If it isn’t designed properly, make the appropriate modifications, retest

it, and repeat the entire process until the table structure is sound. Fig-

ure 2.2 shows how I visualized the process at this point.

I kept these facts in mind and then posed the following questions:

1. If we assume that a thoroughly normalized table is properly and

efficiently designed, couldn’t we identify the specific characteris-

tics of such a table and state these to be the attributes of an ideal

table structure?

2. Couldn’t we then use that ideal table as a model for all tables we

create for the database throughout the design process?

Normalization Process

Non-normalized Tables

Normalized Tables

Figure 2.2. A graphic representation of the general normalization process.

Database-Design Methods 39

The answer to both questions, of course, is yes, so I began in earnest to

develop the basis for my “new” design methodology. I first compiled dis-

tinct sets of guidelines for creating sound structures by identifying the

final characteristics of a well-defined database that successfully passed

the tests of each normal form. I then conducted a few tests, using the

new guidelines to create table structures for a new database and to

correct flaws in the table structures of an existing database. These

tests went very well, so I decided to apply this technique to the entire

traditional design methodology. I formulated guidelines to address

other issues associated with the traditional design method, such as

domains, subtypes, relationships, and referential integrity. After I com-

pleted the new guidelines, I performed more tests and found that my

methodology worked quite well.

The main advantage of my design methodology is that it removes many

aspects of the traditional design methodology that new database devel-

opers find intimidating. For example, normalization, in the traditional

sense, is now transparent to the developer because it has been incorpo-

rated (via the new guidelines) throughout the design process. Another

major advantage is that the methodology is clear and easy to imple-

ment. I believe much of this is due to the fact that I’ve written all the

guidelines in plain English, making them easy for most anyone to

understand.

It’s important for you to understand that this design methodology will

yield a fully normalized database structure only if you follow it as faith-

fully as you would any other design methodology. You cannot shortcut,

circumvent, de-emphasize, or omit any part of this methodology (or any

design methodology, for that matter) and expect to develop a sound

structure. You must go through the process diligently, methodically,

and completely in order reap the expected rewards.

There are a few basic terms you’ll have to learn before you delve into

the design process, and we’ll cover them in the next chapter.

40 Chapter 2 Design Objectives

Summary

At the beginning of this chapter we looked at the importance of being

concerned with database design. You now understand that database

design is crucial to the integrity and consistency of the data contained

in a database. We have seen that the chief problem resulting from

improper or poor design is inaccurate information. Proper design is of

paramount concern because bad design can adversely affect the infor-

mation used by an organization.

Next, we entered into a discussion of the importance of theory, as well

as its relevance to the relational database model, and you learned that

the model’s foundation in mathematical theory makes it a very sound

and reliable structure.

Following this discussion, we looked at the advantages gained by learn-

ing a design methodology. Among other things, using a good

methodology yields an efficient and reliable database structure,

reduces the time it takes to design a database, and allows you to avoid

the typical problems caused by poor design.

Next, we listed the objectives of good design. Meeting these objectives is

crucial to the success of the database-design process because they help

you ensure that the database structure is sound. We then enumerated

the advantages of good design, and you learned that the time you

invest in designing a sound database structure is time well spent.

We closed this chapter with a short discussion of traditional database-

design methods and an explanation of the premise behind the design

method presented in this book. By now, you understand that tradi-

tional design methods are complex and can take some time to learn

and comprehend. On the other hand, the design method used in this

book is presented in a clear and straightforward manner, is easy to

implement, and will yield the same results as the traditional design

methodology.

Review Questions 41

Review Questions

1. When is the best time to use an RDBMS program’s design tools?

2. True or False: Design is crucial to the consistency, integrity, and

accuracy of data.

3. What is the most detrimental result of improper database design?

4. What fact makes the relational database structurally sound and

able to guarantee accurate information?

5. State two advantages of learning a design methodology.

6. True or False: You will use your RDBMS program more effectively

if you understand database design.

7. State two objectives of good design.

8. What helps to guarantee that data structures and their values are

valid and accurate at all times?

9. State two benefits of applying good design techniques.

10. True or False: You can take shortcuts through some of the design

processes and still arrive at a good, sound design.

This page intentionally left blank

43

3
Terminology

“When I use a word,” Humpty Dumpty said in

rather a scornful tone, “it means just what I choose it to

mean—neither more nor less.”

—LEWIS CARROLL

THROUGH THE LOOKING GLASS

Topics Covered in This Chapter

Why This Terminology Is Important

Value-Related Terms

Structure-Related Terms

Relationship-Related Terms

Integrity-Related Terms

Summary

Review Questions

The terms in this chapter are important for you to understand before

you embark upon learning the design process. Indeed, there are other

terms that you’ll need to learn, and I’ll cover them as you work through

the process. There’s also a glossary in the back of the book that you

can use to refresh your memory on any term you learn here or in the

following chapters.

44 Chapter 3 Terminology

Why This Terminology Is Important

Relational database design has its own unique set of terms, just as any

other profession, trade, or discipline. Here are three good reasons why

it’s important for you to learn these terms.

1. They are used to express and define the special ideas and con-

cepts of the relational database model. Much of the terminology is

derived from the mathematical branches of set theory and first-

order predicate logic, which, as you already know, form the basis

of the relational database model.

2. They are used to express and define the database-design process

itself. The design process becomes clearer and much easier to

understand once you know these terms.

3. They are used anywhere a relational database or RDBMS is dis-

cussed. You’ll see these terms in publications such as trade

magazines, RDBMS software manuals, educational course materi-

als, and commercial RDBMS software books. You’ll also hear

these terms in conversations between various types of database

practitioners.

This chapter covers a majority of the terms used to define the ideas

and concepts of the design process, and each term is defined and dis-

cussed in some detail. (I provide pertinent details or necessary further

discussion for a given term at the point where the term is expressly

used within a specific technique in the design process.) There are sev-

eral other terms that I introduce and discuss later in the book because

they are more easily understood within the context of the specific idea

or concept to which they relate.

❖ Note The glossary contains concise definitions for all of the

terms presented here and throughout the book.

Value-Related Terms 45

There are four categories of terms defined in this chapter: value-related,

structure-related, relationship-related, and integrity-related.

Value-Related Terms

Data

The values you store in the database are data. Data is static in the

sense that it remains in the same state until you modify it by some

manual or automated process. Figure 3.1 shows some sample data.

On the surface, this data is meaningless. For example, there is no easy

way for you to determine what “92883” represents. Is it a zip code? Is it

a part number? Even if you know it represents a customer identifica-

tion number, is it one that is associated with George Edleman? There’s

just no way of knowing until you process the data.

Information

Information is data that you process in a manner that makes it mean-

ingful and useful to you when you work with it or view it. It is dynamic

in the sense that it constantly changes relative to the data stored in the

database, and also in the sense that it can be processed and presented

in an unlimited number of ways. You can show information as the

result of a SELECT statement, display it in a form on your computer

screen, or print it on paper as a report. The point to remember is that

you must process your data in some manner so that you can turn it into

meaningful information.

Figure 3.1. An example of basic data.

George Edleman 92883 05/16/96 95.00

46 Chapter 3 Terminology

Figure 3.2 demonstrates how the data from the previous example can

be processed and transformed into information. It has been manipu-

lated in such a way—in this case as part of a patient invoice report—

that it is now meaningful to anyone who views it.

It is very important for you to understand the difference between data

and information. A database is designed to provide meaningful informa-

tion to someone within a business or organization. This information

can be provided only if the appropriate data exists in the database and

the database is structured in such a way as to support that informa-

tion. If you ever forget the difference between data and information, just

remember this little axiom:

Data is what you store; information is what you retrieve.

When you fully understand this single, simple concept, the logic behind

the database-design process will become crystal clear.

Figure 3.2. An example of data transformed into information.

Eastside Medical Clinic
7743 Kingman Dr.
Seattle, WA 98032

(206) 555-9982

Patient Name: George Edelman
Patient ID: 10884

Visit Date: 05/16/96
Physician: Daniel Chavez

Doctors Services Service Code Fee

X

X

Consultation

EKG

Physical

Ultrasound

92883

92773

98377

97399

119.00

95.00

Nursing Services Service Code Fee

R.N. Exam

Supplies

Nurse Instruction

Insurance Report

89327

82372

88332

81368

Value-Related Terms 47

Null

A null represents a missing or unknown value. You must understand

from the outset that a null does not represent a zero or a text string of

one or more blank spaces. The reasons are quite simple.

• A zero can have a very wide variety of meanings. It can represent

the state of an account balance, the current number of available

first-class ticket upgrades, or the current stock level of a particu-

lar product.

• Although a text string of one or more blank spaces is guaranteed

to be meaningless to most of us, it is definitely meaningful to a

query language like SQL. A blank space is a valid character as far

as SQL is concerned, and a character string composed of three

blank spaces (‘ ’) is just as legitimate as a character string

composed of three letters (‘abc’). In Figure 3.3, a blank repre-

sents the fact that Washington, D.C., is not located in any county

whatsoever.

• A zero-length string—two consecutive single quotes with no space

in between (‘‘)—is also an acceptable value to languages such as

SQL, and can be meaningful under certain circumstances. In an

EMPLOYEES table, for example, a zero-length string value in a

field called MIDDLEINITIAL may represent the fact that a particular

employee does not have a middle initial in his name.

❖ Note Unfortunately, data and information are two terms that

are still frequently used interchangeably (and, therefore, errone-

ously) throughout the database industry. You’ll encounter this

error in numerous trade magazines and commercial database

books, and you’ll even see the terms misused by authors who

should know better.

48 Chapter 3 Terminology

The Value of Nulls

A null is quite useful when you use it for its stated purpose, and the

CLIENTS table in Figure 3.3 clearly illustrates this. Each null in the

CLIENT COUNTY field represents a missing or unknown county name for

the record in which it appears. In order for you to use nulls correctly,

you must first understand why they occur at all.

Missing values are commonly the result of human error. For example,

consider the record for Shannon McLain. If you’re entering the data for

Ms. McLain and you fail to ask her for the name of the county she lives

in, that data is considered missing and is represented in the record as

a null. Once you recognize the error, however, you can correct it by

calling Ms. McLain and asking her for the county name.

❖ Note Due to space restrictions, I cannot always show all of the

fields for a given sample table. I will, however, show the fields

that are most relevant to the discussion at hand and use <<other

fields>> to represent fields that are unessential to the example.

You’ll see this convention in many examples throughout the

remainder of the book.

Figure 3.3. An example of a table containing null values.

Client ID

9001

9002

9003

Client First Name

Stewart

Shannon

Estela

Client City

Seattle

Poulsbo

Fremont

Client Last Name

Jameson

McLain

Pundt

Client County

King

Alameda

Clients

9004

9005

9006

Timothy

Marvin

Kendra

Bellevue

Washington

Portland

Ennis

Russo

Bonnicksen

King

State

WA

WA

CA

WA

DC

OR

<< other fields >>

......

......

......

......

......

......

Value-Related Terms 49

Unknown values appear in a table for a variety of reasons. One reason

may be that a specific value you need for a field is as yet undefined. For

instance, you could have a CATEGORIES table in a School Scheduling

database that doesn’t currently contain a category for a new set of

classes that you want to offer beginning in the fall session. Another

reason a table might contain unknown values is that they are truly

unknown. Refer to the CLIENTS table in Figure 3.3 once again and

consider the record for Marvin Russo. Say that you’re entering the data

for Mr. Russo and you ask him for the name of the county he lives in. If

he doesn’t know the county name and you don’t happen to know the

county that includes the city in which he lives, then the value for the

county field in his record is truly unknown and is represented within

the record as a null. Obviously, you can correct the problem once

either of you determines the correct county name.

A field value may also be null if none of its values applies to a particular

record. Assume for a moment that you’re working with an EMPLOYEES

table that contains a SALARY field and a HOURLYRATE field. The value for

one of these two columns is always going to be null because an employee

cannot be paid both a fixed salary and an hourly rate.

It’s important to note that there is a very slim difference between “does

not apply” and “is not applicable.” In the previous example, the value of

one of the two fields literally does not apply. Now assume you’re work-

ing with a PATIENTS table that contains a field called HAIRCOLOR and

you’re currently updating a record for an existing male patient. If that

patient recently became bald, then the value for that field is definitely

“not applicable.” Although you could just use a null to represent a

value that is not applicable, I always recommend that you use a true

value such as “N/A” or “Not Applicable.” This will make the informa-

tion clearer in the long run.

As you can see, whether you allow nulls in a table depends on the

manner in which you’re using the data. Now that we’ve shown you the

50 Chapter 3 Terminology

positive side of using nulls, let’s take a look at the negative implication

of using them.

The Problem with Nulls

The major disadvantage of nulls is that they have an adverse effect on

mathematical operations. An operation involving a null evaluates to

null. This is logically reasonable—if a number is unknown then the

result of the operation is necessarily unknown. Note how a null alters

the outcome of the operation in the following example:

(25 × 3) + 4 = 79

(Null × 3) + 4 = Null

(25 × Null) + 4 = Null

(25 × 3) + Null = Null

The PRODUCTS table in Figure 3.4 helps to illustrate the effects nulls

have on mathematical expressions that incorporate fields from a table.

In this case, the value for the TOTAL VALUE field is derived from the

mathematical expression “[SRP] × [QTY ON HAND].” As you inspect the

records in this table, note that the value for the TOTAL VALUE field is

missing where the QTY ON HAND value is null, resulting in a null value

for the TOTAL VALUE field as well. This leads to a serious undetected error

that occurs when all the values in the TOTAL VALUE field are added

together: an inaccurate total. This error is “undetected” because an

RDBMS program will not inherently alert you of the error. The only way

to avoid this problem is to ensure that the values for the QTY ON HAND

field cannot be null.

Figure 3.5 helps to illustrate the effect nulls have on aggregate func-

tions that incorporate the values of a given field in a table. The result of

Value-Related Terms 51

an aggregate function, such as COUNT(<fieldname>), will be null if it is

based on a field that contains null values. The table in Figure 3.5 shows

the results of a summary query that counts the total number of occur-

rences of each category in the PRODUCTS table shown in Figure 3.4.

The value of the TOTAL OCCURRENCES field is the result of the function ex-

pression COUNT([CATEGORY]). Notice that the summary query shows “0”

occurrences of an unspecified category, implying that each product has

been assigned a category. This information is clearly inaccurate be-

cause there are two products in the PRODUCTS table that have not

been assigned a category.

Figure 3.4. The nulls in this table will have an effect on mathematical opera-
tions involving the table’s fields.

Products

Category

Accessories

Accessories

Components

Bikes

SRP

75.00

65.00

36.00

23.50

1,200.00

7.45

Qty On Hand

20

33

16

10

Total Value

1,300.00

1,118.00

376.00

74.50

Product ID

70001

70002

70003

70004

70005

70006

Product Description

Shur-Lok U-Lock

SpeedRite Cyclecomputer

SteelHead Microshell Helmet

SureStop 133-MB Brakes

Diablo ATM Mountain Bike

UltraVision Helmet Mount Mirrors

Figure 3.5. Nulls affect the results of an aggregate function.

Total Occurrences

0

2

1

1

Category

Accessories

Bikes

Components

Category Summary

52 Chapter 3 Terminology

The issues of missing values, unknown values, and whether a value

will be used in a mathematical expression or aggregate function are all

taken into consideration in the database-design process, and we will

revisit and discuss these issues further in later chapters.

Structure-Related Terms

Table

According to the relational model, data in a relational database is

stored in relations, which are perceived by the user as tables. Each

relation is composed of tuples (records) and attributes (fields).

Figure 3.6 shows a typical table structure.

Tables are the chief structures in the database and each table always

represents a single, specific subject. The logical order of records and

fields within a table is of absolutely no importance, and every table

contains at least one field—known as a primary key—that uniquely

Figure 3.6. A typical table structure.

Client ID

9001

9002

9003

Client First Name

Stewart

Shannon

Estela

Client City

Seattle

Poulsbo

Tacoma

Client Last Name

Jameson

McLain

Pundt

Clients

9004

9005

9006

Timothy

Marvin

Kendra

Seattle

Bellingham

Tacoma

Ennis

Russo

Bonnicksen

Records

Fields

<< other fields >>

......

......

......

......

......

......

Structure-Related Terms 53

identifies each of its records. (In Figure 3.6, for example, CLIENT ID is

the primary key of the CLIENTS table.) In fact, data in a relational

database can exist independently of the way it is physically stored in

the computer because of these last two table characteristics. This is

great news for the user because he or she isn’t required to know the

physical location of a record in order to retrieve its data.

The subject that a given table represents can either be an object or

event. When the subject is an object, it means that the table repre-

sents something that is tangible, such as a person, place, or thing.

Regardless of its type, every object has characteristics that can be

stored as data. This data can then be processed in an almost infinite

number of ways. Pilots, products, machines, students, buildings, and

equipment are all examples of objects that can be represented by a

table, and Figure 3.6 illustrates one of the most common examples of

this type of table.

When the subject of a table is an event, it means that the table repre-

sents something that occurs at a given point in time having

characteristics you wish to record. These characteristics can be stored

as data and then processed as information in exactly the same man-

ner as a table that represents some specific object. Examples of events

you may need to record include judicial hearings, distributions of

funds, lab test results, and geological surveys. Figure 3.7 shows an

example of a table representing an event that we all have experienced

at one time or another—a doctor’s appointment.

A table that stores data used to supply information is called a data

table, and it is the most common type of table in a relational database.

Data in this type of table is dynamic because you can manipulate it

(modify, delete, and so forth) and process it into information in some

form or fashion. You’ll constantly interact with these types of tables as

you work with your database.

54 Chapter 3 Terminology

A validation table (also known as a lookup table), on the other hand,

stores data that you specifically use to implement data integrity. A vali-

dation table usually represents subjects, such as city names, skill

categories, product codes, and project identification numbers. Data in

this type of table is static because it will very rarely change at all.

Although you have very little direct interaction with these tables, you’ll

frequently use them indirectly to validate values that you enter into a

data table. Figure 3.8 shows an example of a validation table.

I’ll discuss validation tables in more detail in Chapter 11.

Figure 3.7. A table representing an event.

Patient Visit

Visit Date

05/01/96

05/01/96

05/02/96

05/02/96

05/02/96

05/03/96

Blood Pressure

120/80

112/74

120/80

160/90

110/75

120/80

Visit Time

10:30

13:00

09:30

11:00

14:00

09:30

Patient ID

92001

97002

99014

96105

96203

98003

Physician

Hernandez

Piercy

Rolson

Hernandez

Hernandez

Rolson

<< other fields >>

......

......

......

......

......

......

Figure 3.8. An example of a validation table.

Category Name

Accessories

Bikes

Clothing

Components

Category ID

10000

20000

30000

40000

Categories

Structure-Related Terms 55

Field

A field (known as an attribute in relational database theory) is the

smallest structure in the database and it represents a characteristic of

the subject of the table to which it belongs. Fields are the structures

that actually store data. The data in these fields can then be retrieved

and presented as information in almost any configuration that you can

imagine. The quality of the information you get from your data is in

direct proportion to the amount of time you’ve dedicated to ensuring

the structural integrity and data integrity of the fields themselves.

There is just no way to underestimate the importance of fields.

Every field in a properly designed database contains one and only one

value, and its name will identify the type of value it holds. This makes

entering data into a field very intuitive. If you see fields with names

such as FIRSTNAME, LASTNAME, CITY, STATE, and ZIPCODE, you know

exactly what type of values go into each field. You’ll also find it very

easy to sort the data by state or look for everyone whose last name is

“Hernandez.”

You’ll typically encounter three other types of fields in an improperly or

poorly designed database.

1. A multipart field (also known as a composite field), which contains

two or more distinct items within its value.

2. A multivalued field, which contains multiple instances of the same

type of value.

3. A calculated field, which contains a concatenated text value or the

result of a mathematical expression.

Figure 3.9 shows a table with an example of each of these types of

fields.

56 Chapter 3 Terminology

I’ll cover calculated, multipart, and multivalued fields in greater detail

in Chapter 7.

Record

A record (known as a tuple in relational database theory) represents a

unique instance of the subject of a table. It is composed of the entire

set of fields in a table, regardless of whether or not the fields contain

values. Because of the manner in which a table is defined, each record

is identified throughout the database by a unique value in the primary

key field of that record.

In Figure 3.9, each record represents a unique client within the table,

and the CLIENT ID field is used to identify a given client throughout the

database. In turn, each record includes all of the fields within the table,

and each field describes some aspect of the client represented by the

record. Consider the record for Timothy Ennis, for example. His record

represents a unique instance of the table’s subject (“Clients”) and

includes the total collection of fields in the table, treated as a unit. The

Figure 3.9. A table containing regular, calculated, multipart, and multivalued
fields.

Clients

Calculated Field Multipart Field Multivalued Field

Client ID

9001

9002

9003

9004

9005

9006

Client First Name

Stewart

Shannon

Estela

Timothy

Marvin

Kendra

Client Last Name

Jameson

McLain

Pundt

Ennis

Russo

Bonnicksen

Client City, State, Zip

Seattle, WA 98125

Poulsbo, WA 98370

Bellevue, WA 98005

Seattle, WA 98115

Bellingham, WA 98225

Olympia, WA 98504

Client Full Name

Stewart Jameson

Shannon McLain

Estela Pundt

Timothy Ennis

Marvin Russo

Kendra Bonnicksen

Address

......

......

......

......

......

......

Account Rep

John, Sandi

Frits

John

Frits, Sandi

Frits, John

Sandi

Structure-Related Terms 57

values of those fields represent relevant facts about Mr. Ennis that are

important to someone in the organization.

Records are a key factor in understanding table relationships because

you’ll need to know how a record in one table relates to other records

in another table.

View

A view is a “virtual” table composed of fields from one or more tables in

the database; the tables that comprise the view are known as base

tables. The relational model refers to a view as “virtual” because it

draws data from base tables rather than storing data on its own. In

fact, the only information about a view that is stored in the database is

its structure. Many major RDBMS programs support views, but some

(such as Microsoft Access) refer to them as saved queries. Your specific

RDBMS program will determine whether you refer to this object as a

query or a view.

Views enable you to see the information in your database from many

different aspects, providing you with a great amount of flexibility when

you work with your data. You can create views in a variety of ways and

they are especially useful when you base them on multiple related

tables. In a school scheduling database, for example, you could create

a view that consolidates data from the STUDENTS, CLASSES, and

CLASS SCHEDULES tables.

Figure 3.10 shows a view called INSTRUMENT ASSIGNMENTS that is

composed of fields taken from the STUDENTS, INSTRUMENTS, and

STUDENT INSTRUMENTS tables. The view displays data that it draws

from all of these tables simultaneously, based on matching values

between the STUDENT ID fields in the STUDENTS and STUDENT

INSTRUMENTS tables, and the INSTRUMENT ID fields in the INSTRU-

MENTS and STUDENT INSTRUMENTS tables.

58 Chapter 3 Terminology

There are three major reasons that views are important.

1. They allow you to work with data from multiple tables simulta-

neously. (In order for a view to do this, the tables must have

connections, or relationships, to each other.)

2. They enable you to prevent certain users from viewing or manipu-

lating specific fields within a table or group of tables. This

capability can be very advantageous in terms of security.

3. You can use them to implement data integrity. A view you use for

this purpose is known as a validation view.

You’ll learn more about designing and using views in Chapter 12.

Figure 3.10. An example of a typical view.

Student Instruments

Student ID

60002

60003

60001

Checkout Date

09/26/01

09/28/01

09/28/01

Instrument ID

1003

1002

1000

Instruments

Instrument ID Instrument Description Category << other fields >>

......

......

......

1000 Stratocaster Guitar

1002 JCM 2000 Tube Super Lead Amplifier

1003 Twin Reverb Reissue Amplifier

1001 Player 2100 Multieffects Multieffect Unit

......

Student Phone

553-3992

790-3992

551-4993

Student Last Name

Erlich

McLain

Rosales

Student First Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

<< other fields >>

......

......

......

Instrument Assignments (View)

Student Last Name

Erlich

McLain

Rosales

Student First Name

Zachary

Susan

Joe

Checkout Date

09/26/01

09/28/01

09/28/01

Instrument Description

Stratocaster

JCM 2000 Tube Super Lead

Twin Reverb Reissue

Structure-Related Terms 59

Keys

Keys are special fields that play very specific roles within a table, and

the type of key determines its purpose within the table. There are sev-

eral types of keys a table may contain, but the two most significant

ones are the primary key and the foreign key.

A primary key is a field or group of fields that uniquely identifies each

record within a table; if a primary key is composed of two or more

fields, it is known as a composite primary key. The primary key is abso-

lutely the most important key in the entire table.

• A primary key value identifies a specific record throughout the

entire database,

• The primary key field identifies a given table throughout the

entire database.

• The primary key enforces table-level integrity and helps estab-

lish relationships with other tables in the database. (You’ll learn

more about relationships in the next section.)

Every table in your database should have a primary key!

❖ Note Although every major database vendor supports the type

of view I’ve described in this section, several vendors are now

supporting what is known as an indexed (or materialized) view.

An indexed view is different from a “regular” view in that it does

store data, and its fields can be indexed to improve the speed at

which the RDBMS processes the view’s data. A full discussion of

indexed views is beyond the scope of this book because it is a

vendor-specific implementation issue. However, you should

research this topic further if you are working with a client/server

or mainframe RDBMS program.

60 Chapter 3 Terminology

The AGENT ID field in Figure 3.11 is a good example of a primary key. It

uniquely identifies each agent within the AGENTS table and helps to

guarantee table-level integrity by ensuring nonduplicate records. It can

also be used to establish relationships between the AGENTS table and

other tables in the database, such as the ENTERTAINERS table shown

in the example.

When you determine that two tables bear a relationship to each other,

you typically establish the relationship by taking a copy of the primary

key from the first table and incorporating it into the structure of the

second table, where it becomes a foreign key. The name “foreign key” is

derived from the fact that the second table already has a primary key of

its own, and the primary key you are introducing from the first table is

“foreign” to the second table.

Figure 3.11 also shows a good example of a foreign key. Note that AGENT

ID is the primary key of the AGENTS table and a foreign key in the

Figure 3.11. An example of primary and foreign key fields.

Agents

Agent ID

100

101

102

Agent First Name

Stella

Steve

Randi

Agent Last Name

Rosales

Pundt

Nathanson

Date of Hire

05/16/95

10/15/95

03/01/96

Agent Home Phone

553-3992

790-3992

551-4993

Primary
Key

Primary
Key

Foreign Key

Entertainers

Entertainer Phone

555-9928

959-8837

709-3542

Entertainer Name

Jazz Time

The Mike Hernandez Trio

The Country Squires

Agent ID

100

101

100

Entertainer ID

9001

9002

9003

<< other fields >>

......

......

......

Structure-Related Terms 61

ENTERTAINERS table. AGENT ID assumes this role because the ENTER-

TAINERS table already has a primary key—ENTERTAINER ID. As such,

AGENT ID establishes the relationship between both of the tables.

Besides helping to establish relationships between pairs of tables, for-

eign keys also help implement and ensure relationship-level integrity.

This means that the records in both tables will always be properly

related because the values of a foreign key must match existing values

of the primary key to which it refers. Relationship-level integrity also

helps you avoid the dreaded “orphaned” record, a classic example of

which is an order record without an associated customer. If you don’t

know who made the order, you can’t process it, and you obviously can’t

invoice it. That’ll throw your quarterly sales off!

Key fields play an important part in a relational database, and you

must learn how to create and use them. You’ll learn more about pri-

mary keys in Chapters 8 and 10.

Index

An index is a structure an RDBMS provides to improve data process-

ing. Your particular RDBMS program will determine how the index

works and how you use it. However, an index has absolutely nothing

to do with the logical database structure! The only reason I include the

term index in this chapter is that people often confuse it with the

term key.

Index and key are just two more terms that are widely and frequently

misused throughout the database industry and in numerous database-

related publications. (Remember my comments on data and informa-

tion?) You’ll always know the difference between the two if you

remember that keys are logical structures you use to identify records

within a table, and indexes are physical structures you use to optimize

data processing.

62 Chapter 3 Terminology

Relationship-Related Terms

Relationships

A relationship exists between two tables when you can in some way

associate the records of the first table with those of the second. You

can establish the relationship via a set of primary and foreign keys (as

you learned in the previous section) or through a third table known as

a linking table (also known as an associative table). The manner in

which you establish the relationship really depends on the type of rela-

tionship that exists between the tables. (You’ll learn more about that in

a moment.) Figure 3.11 illustrates a relationship established via pri-

mary/foreign keys, and Figure 3.12 illustrates a relationship

established with a linking table.

Figure 3.12. A relationship established between two tables with the help of a
linking table.

Student Phone

553-3992

790-3992

551-4993

Student Last Name

Erlich

McLain

Rosales

Student First Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

Class Name

Intro. to Political Science

Adv. Music Theory

American History

Class ID

900001

900002

900003

Instructor ID

220087

220039

220148

Classes

Student Schedule (Linking Table)

Student ID

60003

60001

60003

60002

60001

Class ID

900001

900003

900003

900002

900001

<< other fields >>

......

......

......

<< other fields >>

......

......

......

Relationship-Related Terms 63

A relationship is an important component of a relational database.

• It enables you to create multitable views.

• It is crucial to data integrity because it helps reduce redundant

data and eliminate duplicate data.

You can characterize every relationship in three ways: by the type of

relationship that exists between the tables, the manner in which each

table participates, and the degree to which each table participates.

Types of Relationships

There are three specific types of relationship (traditionally known as a

cardinality) that can exist between a pair of tables: one-to-one, one-to-

many, and many-to-many.

One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in

the first table is related to only one record in the second table, and a

single record in the second table is related to only one record in the first

table. In this type of relationship, one table serves as a “parent” table

and the other serves as a “child” table. You establish the relationship by

taking a copy of the parent table’s primary key and incorporating it

within the structure of the child table, where it becomes a foreign key.

This is a special type of relationship because it is the only one in which

both tables may actually share the same primary key.

Figure 3.13 shows an example of a typical one-to-one relationship. In

this case, EMPLOYEES is the parent table and COMPENSATION is the

child table. The relationship between these tables is such that a single

record in the EMPLOYEES table can be related to only one record in the

COMPENSATION table, and a single record in the COMPENSATION

64 Chapter 3 Terminology

table can be related to only one record in the EMPLOYEES table. Note

that EMPLOYEE ID is indeed the primary key in both tables. However, it

will also serve the role of a foreign key in the child table.

One-to-Many Relationships

A one-to-many relationship exists between a pair of tables when a sin-

gle record in the first table can be related to many records in the

second table, but a single record in the second table can be related to

only one record in the first table. (The parent/child model I used to

describe a one-to-one relationship works here as well. In this case, the

table on the “one” side of the relationship is the parent table, and the

table on the “many” side is the child table.) You establish a one-to-

many relationship by taking a copy of the parent table’s primary key

and incorporating it within the structure of the child table, where it

becomes a foreign key.

Figure 3.13. An example of a one-to-one relationship.

Employees

Compensation

Home Phone

553-3992

790-3992

551-4993

Employee Last Name

Erlich

McLain

Rosales

Employee First Name

Zachary

Susan

Joe

Employee ID

100

101

102

<< other fields >>

......

......

......

Employee ID

100

Commission Rate

5.0%

Hourly Rate

25.00

<< other fields >>

......

101 3.5%19.75

102 5.0%22.50

Relationship-Related Terms 65

The example in Figure 3.14 illustrates a typical one-to-many relation-

ship. A single record in the AGENTS table can be related to one or more

records in the ENTERTAINERS table, but a single record in the EN-

TERTAINERS table is related to only one record in the AGENTS table.

As you probably have already guessed, AGENT ID is a foreign key in the

ENTERTAINERS table.

This is by far the most common relationship that exists between a pair

of tables in a database. It is crucial from a data-integrity standpoint

because it helps to eliminate duplicate data and to keep redundant

data to an absolute minimum.

Many-to-Many Relationships

A pair of tables bears a many-to-many relationship when a single

record in the first table can be related to many records in the second

table and a single record in the second table can be related to many

Figure 3.14. An example of a one-to-many relationship.

Entertainers

Entertainer Phone

709-3542

Entertainer Name

The Country Squires

Agent ID

100

Entertainer ID

9003

<< other fields >>

......

......

......

555-9928Jazz Time1019001

959-8837The Mike Hernandez Trio1009002

Agents

Agent ID

100

101

102

Agent First Name

Stella

Steve

Randi

Agent Last Name

Rosales

Pundt

Nathanson

Date of Hire

05/16/95

10/15/95

03/01/96

Agent Home Phone

553-3992

790-3992

551-4993

66 Chapter 3 Terminology

records in the first table. You establish this relationship with a linking

table. (You learned a little bit about this type of table at the beginning

of this section.) A linking table makes it easy for you to associate

records from one table with those of the other and will help to ensure

that you have no problems adding, deleting, or modifying related data.

You define a linking table by taking copies of the primary key of each

table in the relationship and using them to form the structure of the

new table. These fields actually serve two distinct roles: Together, they

form the composite primary key of the linking table; separately, they

each serve as a foreign key.

A many-to-many relationship that is not properly established is “unre-

solved.” Figure 3.15 shows a classic and clear example of an unre-

solved many-to-many relationship. In this instance, a single record in

the STUDENTS table can be related to many records in the CLASSES

table and a single record in the CLASSES table can be related to many

records in the STUDENTS table.

Figure 3.15. An example of an unresolved many-to-many relationship.

Student Phone

553-3992

790-3992

551-4993

Student Last Name

Erlich

McLain

Rosales

Student First Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

<< other fields >>

......

......

......

Class Name

Intro. to Political Science

Adv. Music Theory

American History

Class ID

900001

900002

900003

Instructor ID

220087

220039

220148

Classes

<< other fields >>

......

......

......

Relationship-Related Terms 67

This relationship is unresolved due to the inherent peculiarity of the

many-to-many relationship. The main issue is this: How do you easily

associate records from the first table with records in the second table?

To reframe the question in terms of the tables shown in Figure 3.15,

how do you associate a single student with several classes or a specific

class with several students? Do you insert a few STUDENT fields into the

CLASSES table? Or do you add several CLASS fields to the STUDENTS

table? Either of these approaches will make it difficult for you to work

with the data and will affect data integrity adversely. The best approach

for you to take is to create and use a linking table, which will resolve

the many-to-many relationship in the most appropriate and effective

manner. Figure 3.16 shows this solution in practice.

Figure 3.16. Resolving the many-to-many relationship with a linking table.

Student Phone

553-3992

790-3992

551-4993

Student Last Name

Erlich

McLain

Rosales

Student First Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

Class Name

Intro. to Political Science

Adv. Music Theory

American History

Class ID

900001

900002

900003

Instructor ID

220087

220039

220148

Classes

Student Schedule (Linking Table)

Student ID

60003

60001

60003

60002

60001

Class ID

900001

900003

900003

900002

900001

<< other fields >>

......

......

......

<< other fields >>

......

......

......

68 Chapter 3 Terminology

It’s important for you to know the type of relationship that exists

between a pair of tables because it determines how the tables are

related, whether or not records between the tables are interdependent,

and the minimum and maximum number of related records that can

exist within the relationship. You’ll learn much more about relation-

ships in Chapter 10.

Types of Participation

A table’s participation within a relationship can be either mandatory or

optional. Say there is a relationship between two tables called TABLE_A

and TABLE_B.

• TABLE_A’s participation is mandatory if you must enter at least

one record into TABLE_A before you can enter records into

TABLE_B.

• TABLE_A’s participation is optional if you are not required to

enter any records into TABLE_A before you can enter records

into TABLE_B.

Let’s take a look at an example using the AGENTS and CLIENTS tables

in Figure 3.17. The AGENTS table has a mandatory participation within

the relationship if an agent must exist before a new client can be

entered into the CLIENTS table. However, the AGENTS table’s partici-

pation is optional if there is no requirement for an agent to exist in the

table before a new client can be entered into the CLIENTS table. You

can identify the appropriate type of participation for the AGENTS table

by determining the way its data is being used in relation to the data in

the CLIENTS table. For example, when you want to ensure that each

client is assigned to an available agent, you make the AGENTS table’s

participation within the relationship mandatory.

Relationship-Related Terms 69

Degree of Participation

The degree of participation determines the minimum number of records

that a given table must have associated with a single record in the

related table and the maximum number of records that a given table is

allowed to have associated with a single record in the related table.

Consider, once again, a relationship between two tables called

TABLE_A and TABLE_B. You establish the degree of participation for

TABLE_B by indicating a minimum and maximum number of records

in TABLE_B that can be related to a single record in TABLE_A. If a sin-

gle record in TABLE_A can be related to no fewer than 1 but no more

than 10 records in TABLE_B, then the degree of participation for

TABLE_B is 1,10. (The degree of participation is notated with the mini-

mum number on the left and the maximum number on the right,

Figure 3.17. The AGENTS and CLIENTS tables.

Agents

Clients

Agent ID

100

101

102

Agent First Name

Stella

Steve

Randi

Agent Last Name

Rosales

Pundt

Nathanson

Date of Hire

05/16/95

10/15/95

03/01/96

Agent Home Phone

553-3992

790-3992

551-4993

Client Home Phone

553-3992

790-3992

551-4993

Client Last Name

Jameson

McLain

Barker

Client First Name

Stewart

Shannon

Scott

Agent ID

100

101

102

Client ID

9001

9002

9003

70 Chapter 3 Terminology

separated by a comma.) You can establish the degree of participation

for TABLE_A in the same manner. You can identify the degree of partic-

ipation for each table in a relationship by determining the way the data

in each table is related and how the data is being used.

Let’s consider the AGENTS and CLIENTS tables in Figure 3.17 once

more. If you require an agent to handle at least one client, but cer-

tainly no more than eight, then the degree of participation for the

CLIENTS table is 1,8. When you want to ensure that a client can only

be assigned to one agent, then you indicate the degree of participation

for the AGENTS table as 1,1.

Integrity-Related Terms

Field Specification

A field specification (traditionally known as a domain) represents all the

elements of a field. Each field specification incorporates three types of

elements: general, physical, and logical.

• General elements constitute the most fundamental information

about the field and include items such as Field Name, Descrip-

tion, and Parent Table.

• Physical elements determine how a field is built and how it is

represented to the person using it. This category includes items

such as Data Type, Length, and Display Format.

• Logical elements describe the values stored in a field and include

items such as Required Value, Range of Values, and Default

Value.

You’ll learn all of the elements associated with a field specification,

including those mentioned here, in Chapter 9.

Integrity-Related Terms 71

Data Integrity

Data integrity refers to the validity, consistency, and accuracy of the

data in a database. I cannot overstate the fact that the level of accu-

racy of the information you retrieve from the database is in direct

proportion to the level of data integrity you impose upon the database.

Data integrity is one of the most important aspects of the database-

design process, and you cannot underestimate, overlook, or even par-

tially neglect it. To do so would put you at risk of being plagued by

errors that are very hard to detect or identify. As a result, you would be

making important decisions on information that is inaccurate at best,

or totally invalid at worst.

There are four types of data integrity that you’ll implement during the

database-design process. Three types of data integrity are based on

various aspects of the database structure and are labeled according to

the area (level) in which they operate. The fourth type of data integrity

is based on the way an organization perceives and uses its data. The

following is a brief description of each:

1. Table-level integrity (traditionally known as entity integrity)

ensures that there are no duplicate records within the table and

that the field that identifies each record within the table is unique

and never null.

2. Field-level integrity (traditionally known as domain integrity)

ensures that the structure of every field is sound; that the values

in each field are valid, consistent, and accurate; and that fields of

the same type (such as CITY fields) are consistently defined

throughout the database.

3. Relationship-level integrity (traditionally known as referential integ-

rity) ensures that the relationship between a pair of tables is

sound and that the records in the tables are synchronized when-

ever data is entered into, updated in, or deleted from either table.

72 Chapter 3 Terminology

4. Business rules impose restrictions or limitations on certain

aspects of a database based on the ways an organization per-

ceives and uses its data. These restrictions can affect aspects of

database design, such as the range and types of values stored in a

field, the type of participation and the degree of participation of

each table within a relationship, and the type of synchronization

used for relationship-level integrity in certain relationships. All of

these restrictions are discussed in more detail in Chapter 11.

Because business rules affect integrity, they must be considered

along with the other three types of data integrity during the design

process.

Summary

This chapter began with an explanation of why terminology is impor-

tant for defining, discussing, or reading about the relational database

model and the database-design process.

The section on value-related terms showed you that there is a distinct

difference between data and information, and that understanding this

difference is crucial to understanding the database-design process. You

now know quite a bit about nulls and how they affect information you

retrieve from the database.

Structure-related terms were covered next, and you learned that the

core structures of every relational database are fields, records, and

tables. You now know that views are virtual tables that are used, in

part, to work with data from two or more tables simultaneously. We

then looked at key fields, which are used to identify records uniquely

within a table and to establish a relationship between a pair of tables.

Finally, you learned the difference between a key field and an index.

Now you know that an index is strictly a software device used to opti-

mize data processing.

Review Questions 73

In the section on relationship-related terms, you learned that a connec-

tion between a pair of tables is known as a relationship. A relationship

is used to help ensure various aspects of data integrity, and it is the

mechanism used by a view to draw data from multiple tables. You then

learned about the three characteristics of table relationships: the type

of relationship (one-to-one, one-to-many, many-to-many), the type of

participation (optional or mandatory), and the degree of participation

(minimum/maximum number of related records).

The chapter ended with a discussion of integrity-related terms. Here

you learned that a field specification establishes the general, physical,

and logical characteristics of a field—characteristics that are an inte-

gral part of every field in the database. You then learned that data

integrity is one of the most important aspects of the database-design

process because of its positive effect on the data in the database. Also,

you now know that there are four types of data integrity—three based

on database structure and one based on the way the organization

interprets and uses its data. These levels of integrity ensure the qual-

ity of your database’s design and the accuracy of the information you

retrieve from it.

Review Questions

1. Why is terminology important?

2. Name the four categories of terms.

3. What is the difference between data and information?

4. What does a null represent?

5. What is a null’s major disadvantage?

6. What are the chief structures in the database?

7. Name the three types of tables.

74 Chapter 3 Terminology

8. What is a view?

9. State the difference between a key and an index.

10. What are the three types of relationships that can exist between a

pair of tables?

11. What are the three ways in which you can characterize a

relationship?

12. What is a field specification?

13. What three types of elements does a field specification

incorporate?

14. What is data integrity?

15. Name the four types of data integrity.

Part II
The Design
Process

This page intentionally left blank

77

4
Conceptual Overview

I don’t pretend to understand the

Universe—it’s a great deal bigger than I am.

—THOMAS CARLYLE

Topics Covered in This Chapter

The Importance of Completing the Design Process

Defining a Mission Statement and Mission Objectives

Analyzing the Current Database

Creating the Data Structures

Determining and Establishing Table Relationships

Determining and Defining Business Rules

Determining and Defining Views

Reviewing Data Integrity

Summary

Review Questions

Understanding how to design a relational database isn’t quite as hard

as understanding the universe; in fact, it’s much easier. It is important

for you, however, to have an overall idea of the way the database-design

process works and a general idea of the steps involved within the pro-

cess. The purpose of this chapter is to provide an overview of the

database-design process.

78 Chapter 4 Conceptual Overview

For the purpose of this overview, I’ve consolidated all of the techniques

in the design process into seven phases, and I discuss each phase in

general terms. This discussion provides a good overall picture of the

database-design process, and I hope it will give you a much clearer

understanding of each of the design techniques covered in Chapters 5

through 13.

You can use the design methodology in this book to design a new data-

base completely from scratch, refine an existing database, or help you

analyze an existing database so that you can design a new database

based on the results of your analysis.

The Importance of Completing

the Design Process

One thing I want to make perfectly clear from the very beginning is the

importance of completing the design process. I’m often asked if it’s

truly necessary to go through the entire design process. My answer is

always a resounding yes! I’m then asked whether it’s still necessary if

someone is only going to create a “simple” database. (“Simple” is one of

the most dangerous words known to database developers. Nothing is

ever “simple.”) Again, my answer is yes, it’s still necessary. The type,

size, or purpose of the database is totally irrelevant to the value of

undertaking a fully developed design. You should implement and fol-

low the database-design process from beginning to end.

❖ Note A database can be designed by a single individual or a

design team composed of two or more individuals. Throughout

the remainder of the book, I use the phrase “database developer”

and the word “developer” to refer to the person designing the

database.

Defining a Mission Statement and Mission Objectives 79

It is a well-known and proven fact that it is a bad idea to attempt to

design a database without undertaking a complete database-design

process. Many database problems are caused by poor database design,

and partially following the design process is just about as bad as not

using it at all. An incomplete design is a poor design. Only following

through with a whole, unabbreviated design process assures a sound

structure and data integrity

An important point to keep in mind is that the level of structural integ-

rity and data integrity in your database is directly proportional to how

thoroughly you follow the design process. The less time you spend on the

design process, the greater the risk you run of encountering problems

with the database. Although thoroughly following the database-design

process may not eliminate all of the problems you may encounter when

designing a database, it will greatly help to minimize them. As you work

with your RDBMS software, you’ll find that a well-designed database is

easier to implement than a poorly designed one.

Databases are not hard to design; it just takes a little time to design

them properly. When it seems as if the design process is taking too

long, don’t allow yourself to take shortcuts—just be patient and

remember what a wise old sage once said:

There’s never time to do it right, but there’s always time to do

it over!

Defining a Mission Statement

and Mission Objectives

The first phase in the database-design process involves defining a mis-

sion statement and mission objectives for the database. The mission

statement establishes the purpose of the database and provides you

with a distinct focus for your design work.

80 Chapter 4 Conceptual Overview

Every database is created for a specific purpose, whether it’s to solve a

specific business problem, to manage the daily transactions of a busi-

ness or organization, or to be used as part of an information system.

You identify the purpose of your database and define it within a mis-

sion statement. This will help ensure that you develop an appropriate

database structure and that you collect the data necessary to support

the intended purpose of the database.

Along with the mission statement, you’ll define mission objectives in

this phase. Mission objectives are statements that represent the gen-

eral tasks your users can perform against the data in the database.

You use these objectives to support your mission statement and to help

you determine various aspects of the database structure.

There are two separate groups of people who will be involved in defin-

ing the mission statement and the mission objectives. The first group,

which includes the database developer (you), the owner or head of the

organization, and management personnel, is responsible for defining

the mission statement. The second group, which includes the data-

base developer (you again), management personnel, and end users, will

be responsible for defining the mission objectives.

Analyzing the Current Database

The second phase in the database-design process involves analyzing

the current database, if one exists. Depending on your organization,

the database will typically be a legacy database or a paper-based data-

base. A legacy database (also known as an inherited database) is one

that has been in existence and in use for several years or more. A

paper-based database, as you may already know, is a loose collection

of forms, index cards, manila folders, and the like. Whatever the data-

base type or condition, analyzing it will yield valuable information

about the way your organization is currently using and managing its

Analyzing the Current Database 81

data. In addition, the analysis involves reviewing the way your organi-

zation is currently collecting and presenting the data. As the database

developer, you look at how your organization uses paper to collect data

(via forms) and present data (via reports). If your organization uses

some software application program to manage and manipulate the data

in the database, you study the way it collects and presents the data on-

screen. Finally, you take into account how (if at all) your organization is

using its data on the Web, and you review any browser-based applica-

tions that work with the database.

Another part of the analysis involves conducting interviews with users

and management to identify how they interact with the database on a

daily basis. As the database developer, you ask users how they work

with the database and what their information requirements are at the

current time. You then interview management personnel and ask them

about the information they currently receive and about their percep-

tion of the overall information requirements for the organization. These

interviews are an important component of your analysis because the

questions you ask (or don’t ask) will have a great impact on your final

database structure. You must conduct full and complete interviews if

you are to design a database that truly meets your organization’s infor-

mation needs.

Next, you use the information you’ve gathered from the analysis and

the interviews to compile an initial list of fields. You then refine this list

by removing all calculated fields and placing them on their own list;

you’ll use these calculated fields later in the design process. The

refined list constitutes your organization’s fundamental data require-

ments and provides a starting point for the design of a new database.

(As you know, nothing is ever truly final. Rest assured that you’ll

extend and refine this field list further as you develop your design.)

Once your initial field list is complete, you send it to your users and

management for a brief review and possible refinement. You encourage

82 Chapter 4 Conceptual Overview

feedback and take their suggestions for modifications into consider-

ation. If you think the suggestions are reasonable and well supported,

you make the appropriate modifications, record the list in its current

state, and move on to the next phase.

Creating the Data Structures

Creating the data structures for the database is the third phase in the

database-design process. You define tables and fields, establish keys,

and define field specifications for every field.

Tables are the first structures you define in the database. You deter-

mine the various subjects that the tables will represent from the mis-

sion objectives you wrote during the first phase of the design process

and the data requirements you gathered during the second phase.

Then you establish these subjects as tables and associate them with

fields from the field list you compiled during the second phase of the

design process. After you’ve completed this task, you review each table

to ensure that it represents only one subject and that it does not con-

tain duplicate fields.

Now you go on to review the fields within each table. You refine all mul-

tipart or multivalued fields in the table so that they each store only a

single value, and you move or delete fields that do not represent dis-

tinct characteristics of the subject the table represents. When you

complete this review, you then review and refine the table structures.

This involves checking the work you performed on the fields to ensure

that you didn’t accidentally miss anything, and ensuring that each

table structure is properly defined. Next, you establish the appropriate

keys for each table. Your main task is to ensure that each table has a

properly defined primary key; this particular key uniquely identifies

each record within a table.

Determining and Establishing Table Relationships 83

The final step in this phase is to establish field specifications for each

field in the database. Here you conduct interviews with users and man-

agement to help you identify the specific field characteristics that are

important to them and review and discuss any characteristics with

which they may be unfamiliar. After you’ve completed these interviews,

you define and document field specifications for each field. You then

review the table structures and field specifications with users and

management once more for possible refinements. The table structures

are ready for the next phase once you complete the refinements (if any)

that you identified during the review.

Determining and Establishing Table

Relationships

The fourth phase of the database-design process involves establishing

table relationships. You conduct interviews with users and manage-

ment once again, identify relationships, identify relationship character-

istics, and establish relationship-level integrity.

Working with users and management is a prudent exercise because

they can assist you in identifying relationships among the data. You

cannot possibly be familiar with every aspect of the data your organiza-

tion uses, so leveraging whatever knowledge they have about the data

they use will be very beneficial to you.

After you’ve identified the relationships, you establish a logical connec-

tion between the tables in each relationship with a primary key or with

a linking table. What you actually use depends upon the type of rela-

tionship you’re establishing between the tables. Next, you determine

the type of participation and degree of participation for the tables in

each relationship. In some cases, these participation characteristics

will be obvious to you due to the nature of the data stored in the tables.

84 Chapter 4 Conceptual Overview

In other cases, you’ll base the participation characteristics on specific

business rules.

Determining and Defining Business Rules

Determining and defining business rules is the fifth phase of the data-

base-design process. During this phase, you’ll hold interviews, identify

limitations on various aspects of the database, establish business

rules, and define and implement validation tables.

The manner in which your organization views and uses its data will

determine a set of limitations and requirements that you must build

into the database. Your interviews with users and management will

help you identify the specific constraints you will impose on the data,

data structures, or relationships. You then establish and document

these specifications as business rules.

The interviews you conduct with users will reveal specific limitations on

various aspects of the database. For example, a user working with an

order processing database is very aware of specific details, such as the

fact that a ship date must occur later than an order date; that there

must always be a daytime phone number; and that a shipping method

should always be indicated. On the other hand, your interviews with

management reveal general limitations on various aspects of the data-

base. The office manager for an entertainment agency, for example, is

familiar with general issues, such as the fact that an agent can repre-

sent no more than 20 entertainers and that promotional information

for each entertainer must be updated every year.

Next, you define and implement validation tables as necessary to sup-

port certain business rules. For example, if you find that certain fields

have a finite range of values because of the manner in which your orga-

nization uses them, you can use validation tables to ensure the consis-

tency and validity of the values stored in those fields.

Reviewing Data Integrity 85

The level of integrity that business rules establish at this point is sig-

nificant because it relates directly to the way your organization views

and uses its data. As the organization grows, its perspective on the

data will change, which means that the business rules must change as

well. Determining and establishing business rules is an ongoing, itera-

tive process, and you must be constantly diligent if you are going to

maintain this level of integrity properly.

Determining and Defining Views

The sixth phase of the design process involves determining and defin-

ing views. Here you’ll conduct interviews (once again), identify various

ways of working with the data, and establish the views.

You identify the types of views you need to build in the database by

interviewing users and management and determining how they work

with their respective data. You may find, for example, that many users

require detailed information to perform their work, while others need

only summary information to help them make strategic decisions for

the organization. Each group of users must access information in very

specific ways, and you can use views to accommodate these situations.

Next, you define the views you’ve identified during the interview pro-

cess using the appropriate tables and fields, and establish criteria for

those views that are required to retrieve specific information. For

instance, you would establish criteria for a view that must list all cus-

tomers located in Texas or a view that must display the total number of

authorized vendors (by city) in Washington State.

Reviewing Data Integrity

The seventh and final phase in the database-design process involves

reviewing the final database structure for data integrity.

86 Chapter 4 Conceptual Overview

First, you review each table to ensure that it meets the criteria of a

properly designed table, and you check the fields within each table for

proper structure. You then resolve any inconsistencies or problems you

encounter and review the structures once more. After you’ve made the

appropriate refinements, you check table-level integrity.

Second, you review and check the field specifications for each field. You

make necessary refinements to the fields and then check field-level

integrity. This review reaffirms the field-level integrity you identified

and established earlier in the database-design process.

Third, you review the validity of each relationship, confirm the relation-

ship type, and confirm the participation characteristics for each table

within the relationship. You then study relationship integrity to ensure

that there are matching values between shared fields and that there

are no problems inserting, updating, or deleting data in either of the

tables within the relationship.

Finally, you review the business rules that you identified earlier in the

database-design process and confirm the constraints you’ve placed on

various aspects of the database. If there are any other limitations that

have come to your attention since the last set of personnel interviews,

you establish them as new business rules and add them to the exist-

ing set of business rules.

You’re ready to implement your logical database structure in an RDBMS

program once you’ve completed the entire database-design process.

However, the process is never really complete because the database

structure will always need refinement as your organization evolves.

Summary

We began this chapter with a discussion of the importance of complet-

ing the design process, and you learned that designing a database

Summary 87

without the benefit of a good design method leads to poor and improper

design. We also discussed the fact that the level of structural and data

integrity is in direct proportion to how thoroughly you follow the design

process. You then learned that inconsistent data and inaccurate infor-

mation are two problems typically associated with poorly designed

databases.

Next we looked at an overview of the entire database-design process.

The process was consolidated into the following phases in order to pro-

vide you with a clear picture of the general steps involved in designing

a database:

1. Define a mission statement and mission objectives for the data-

base. The mission statement defines the purpose of the database,

and the mission objectives define the tasks that are to be per-

formed by users against the data in the database.

2. Analyze the current database. You identify your organization’s

data requirements by reviewing the way your organization cur-

rently collects and presents its data and by conducting interviews

with users and management to determine how they use the data-

base on a daily basis.

3. Create the data structures. You establish tables by identifying the

subjects that the database will track. Next, you associate each

table with fields that represent distinct characteristics of the

table’s subject, and you designate a particular field (or group of

fields) as the primary key. You then establish field specifications

for every field in the table.

4. Determine and establish table relationships. You identify relation-

ships that exist between the tables in the database and establish

the logical connection for each relationship using primary keys

and foreign keys or by using linking tables. Then you set the

appropriate characteristics for each relationship.

88 Chapter 4 Conceptual Overview

5. Determine and define business rules. You conduct interviews with

users and management to identify constraints that must be

imposed upon the data in the database. The manner in which

your organization views and uses its data typically determines the

types of constraints you must impose on the database. You then

declare these constraints as business rules, and they will serve to

establish various levels of data integrity.

6. Determine and establish views. You interview users and manage-

ment to identify the various ways they work with the data in the

database. When your interviews are complete, you establish views

as appropriate. You define each view using the appropriate tables

and fields, and you establish criteria for those views that must

display a limited or finite set of records.

7. Review data integrity. This phase involves four steps. First, you

review each table to ensure that it meets proper design criteria.

Second, you review and check all field specifications. Third, you

test the validity of each relationship. Fourth, you review and con-

firm the business rules.

Review Questions

1. Why is it important to complete the design process thoroughly?

2. True or False: The level of structural integrity is in direct propor-

tion to how thoroughly you follow the design process.

3. What is the purpose of a mission statement?

4. What are mission objectives?

5. What constitutes your organization’s fundamental data

requirements?

6. How do you determine the various subjects that the tables will

represent?

Review Questions 89

7. True or False: You establish field specifications for each field in

the database during the second phase of the database-design

process.

8. How do you establish a logical connection between the tables in a

relationship?

9. What determines a set of limitations and requirements that you

must build into the database?

10. What is it that you can design and implement to support certain

business rules?

11. How do you determine the types of views you need to build in the

database?

12. When can you implement your logical structure in an RDBMS

program?

This page intentionally left blank

91

5
Starting the Process

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said gravely,

“and go on till you come to the end: then stop.”

—LEWIS CARROLL

ALICE’S ADVENTURES IN WONDERLAND

Topics Covered in This Chapter

Conducting Interviews

The Case Study: Mike’s Bikes

Defining the Mission Statement

Defining the Mission Objectives

Summary

Review Questions

Everything has a beginning, and the database-design process is no dif-

ferent. Interestingly enough, you start the process by defining the end

result. It is in the very first step of the database-design process that

you identify and declare the purpose of the database. You also define

and declare a list of the tasks that your users can perform against the

data in the database. Both of these items provide you with a focus and

direction for developing a database, and they help ensure that your

final database structure supports the stated purpose and tasks.

Conducting Interviews

Interviews are an integral part of database design, and they play a key

role during certain phases of the design process. Assuming that you

92 Chapter 5 Starting the Process

work within some organization and need to design a database to sup-

port the work that you and your fellow employees perform, you should

make certain that you conduct your interviews in the manner

described in this book. This means that throughout the design pro-

cess, you’ll interact with some of your fellow employees, management

personnel, and (depending on the size of the organization) the owner. If

you work for a small organization that employs only a handful of peo-

ple, or if you are only creating a database for yourself, you’ll conduct

“self-interviews”; you’ll still conduct the interviews described in this

book, but you will act as the interviewer and the interviewee. You will

be the one who provides the answers to the questions.

Interviews are important because they provide a valuable communica-

tion link between you (the developer) and the people for whom you’re

designing the database, help ensure the success of your design efforts,

and provide critical information that can affect the design of the data-

base structure. As you’re working with table relationships, for example,

you might find it difficult to determine the type of participation and

degree of participation for a specific relationship. The only way for you

to determine the proper values for these relationship characteristics is

to conduct an interview with the appropriate people in your organiza-

tion. You can then use the information you gathered during the

❖ Note Interviewing is a skill that you can learn with some

amount of patience, diligence, and practice. There are a variety of

approaches and techniques you can use to conduct an inter-

view, and there are numerous academic papers, articles, and

books that have been written on the subject. Although an in-

depth discussion of this topic is beyond the scope of this book,

I’ve included several techniques and guidelines in this chapter

that will help you conduct your interviews efficiently and

effectively.

Conducting Interviews 93

interview to set the relationship characteristics. Using an interview as

an information-gathering tool, you can gain new insights from partici-

pants regarding part of the database or clarify facts that you don’t

understand. Note that you must always conduct each of the interviews

incorporated within this design process, regardless of the type of data-

base you’re designing or the number of people involved. You will

inevitably miss some piece of important information when you neglect

or omit any of the interviews, and this could adversely affect the final

structure of your database.

Always establish guidelines for your interviews before you conduct

them. This will help ensure that you conduct your interviews in a con-

sistent manner and that they are always (or usually) successful. Here

are some guidelines you can establish for the participants and for

yourself.

Participant Guidelines

• Make the participants aware of your intentions. Many people are

wary of interviews. They don’t like to be “put on the spot” and

they don’t want to be asked “trick” questions. Let each person

know the subject you wish to discuss, the names of the other par-

ticipants, the time you want to start the session, and whether this

interview is part of an ongoing series of interviews. If everyone

participating in a given interview session knows how you’re going

to conduct it and what you expect of them, they’re more likely to

engage in the conversation at hand and be quite responsive to

❖ Note Throughout the remaining chapters, I use open-ended

questions for all interviews that are part of the concept or tech-

nique under discussion. You can use these questions as a guide

for formulating your own questions for a given interview.

94 Chapter 5 Starting the Process

your questions. Above all, reassure them that the interview is not

a disguised assessment of their performance; you want to make

certain they feel comfortable talking to you openly and without

reservation. This will go a long way toward building a foundation

of trust between you and the participants.

• Let the participants know that you appreciate their taking part in

the interview and that their responses to the interview questions

are valuable to the overall design project. Earlier experiences are

likely to make some people believe that whatever input they pro-

vide goes unnoticed and unappreciated at work. Even when in

the past their input made a significant impact on a specific

project, rarely did they get so much as a thank-you. In light of

this, there’s no real motivation for them to participate in your

interview. Many, if not all, of your participants will start out with

this attitude. But you can really increase their motivation by let-

ting them know that you truly and honestly appreciate their

participation and are very interested in their responses. Assure

them that their feedback is truly valuable to the design process

and that in many cases their responses can substantiate and val-

idate decisions made throughout the design process. If you make

yourself credible by being genuinely sincere, participants will

help you in any way they can. Your job will be much easier and

everyone will participate voluntarily and enthusiastically. It’s very

effective to show, on a second interview, how you have already

used participants’ earlier contributions.

• Make sure everyone understands that you are the official arbitra-

tor if and when a dispute arises. It’s inevitable that minor disputes

will arise during an interview and that there will be some amount

of tension until such disputes are resolved. You can avoid this sit-

uation by arbitrating these disputes yourself. As the database

developer, you’re in the best position to do this because you have

an objective viewpoint and can see both sides of an issue. Addi-

Conducting Interviews 95

tionally, the decision you make will always be in the best interests

of the database structure. Always remember that disputes deal-

ing with something other than the database structure can be

referred to a more appropriate authority, if one exists.

Interviewer Guidelines (These Are for You)

• Conduct the interview in a well-lit room, separated from distract-

ing noise, with a large table and comfortable chairs, and have

coffee and munchies on hand. You’ll greatly enhance your

chances of carrying out a successful interview when you pay

attention to atmosphere. Use a well-lit room because it allows the

participants to read your interview materials very easily. A large

table ensures that everyone has space to work, and comfortable

chairs keeps them relaxed enough to concentrate on the conver-

sation at hand. Always have plenty of coffee available, as this

seems to be the preferred beverage of businesspeople every-

where. Finally, provide a good supply of munchies to help keep

everyone in a good mood. People actually seem to think better

when they have something to munch on—it keeps their mouths

occupied while they’re thinking. (The business climate has

changed considerably since I first wrote this book. Many people

are now conducting interviews and meetings in restaurants or at

the local Starbucks. You might consider this as an option if you

can’t devise an appropriate setting for your interviews.)

• Set a limit of 10 people for each interview. Limiting the number of

participants promotes a more relaxed atmosphere and makes it

easier for you to encourage everyone to participate. One problem

you’ll find in conducting an interview with a large number of peo-

ple is that the intimidation level of some of the participants will

rise in direct proportion to the number of participants taking part

in the interview as a whole. Some people are just afraid of looking

96 Chapter 5 Starting the Process

ignorant or incompetent in front of their colleagues, whether or

not there’s truly any justification for such feelings. So, you do

have a very good reason to restrict the number of participants in

an interview.

• Conduct separate interviews for users and management. Separat-

ing the two groups is a good idea for a variety of reasons, including

the “fear factor” noted above. Primarily, you want to separate them

because each group has a different perspective on the organiza-

tion as a whole and how the organization uses its data on a daily

basis. Conducting separate interviews for each group allows you to

leverage their unique perspectives to your advantage as you work

through the database-design process. Another reason for keeping

the interviews separate is to eliminate the conflicts that can arise

when these groups disagree over certain aspects of the organiza-

tion. It’s quite common for there to be a lack of communication

between them, and the odds are 50/50 that the interview will

bring this problem to the surface. This may impel them to estab-

lish better lines of communication, or it may exacerbate the

problem further. In any case, this communication problem can

complicate and extend your interview and diffuse its results. Use

your knowledge of the organization to help you judge whether to

keep the interviews separate. If you need to conduct an interview

with both groups at the same time, do so intentionally, with a spe-

cific purpose in mind, and be prepared for distractions.

• When you have to interview several groups of people, designate a

group leader for each group. The group leader will help you

ensure that the interview runs smoothly. She will be responsible

for preparing each member of her group for the interview and for

providing you with any new information she obtained from the

group outside of the interview. During the interview, the group

leader can direct your questions to the member best equipped to

answer them.

Conducting Interviews 97

You’ll occasionally encounter a group leader who may want to

dominate the interview and answer every one of your questions.

When this happens, diplomatically and politely inform him that it

is your job (and duty) to obtain feedback from all of the partici-

pants, so that you can make a complete assessment of the

organization’s overall information requirements. If this doesn’t

rectify the problem, you have the option of designating someone

else as the group leader or refraining from including him in

future interviews.

• Prepare your questions prior to the interview. You can conduct an

interview rather easily if you have a set of prepared questions.

(Coming up with questions off the top of your head is rarely a

good idea, even if you’re an experienced interviewer and are

highly skilled at producing ad hoc questions.) Having a prepared

list of questions allows you to provide a focus and direction for

the interview, and it provides the participant with a continuity of

thought. Your interview will flow more smoothly and will be more

productive when your questions move easily from topic to topic.

As you prepare your list of interview questions, make sure you

use open-ended questions. For example, “Did you feel our service

was (a) poor, (b) average, or (c) good” is a closed question. A

closed question isn’t particularly useful because it supplies its

own set of responses and does not allow an interviewee to pro-

vide an objective opinion or elaborate answer. On the other hand,

an open-ended question, such as “How do you feel about our ser-

vice?” is far more useful because it allows the interviewee to

answer the question in a variety of ways. There are times when

you may need to use closed questions, but it’s better to use them

intentionally, sparingly, and with a specific purpose in mind.

• If you’re not very good at taking notes, either assign that task to

a dependable transcriber for each interview or get the group’s

98 Chapter 5 Starting the Process

permission to use a tape recorder to record the interview. You

conduct interviews to gather specific information about the

organization, so it’s important that you establish a detailed

record of each interview. If you find it difficult to conduct an

interview and take notes at the same time, you should enlist

one of the participants as your assistant and have him take

notes for you. (This is one good way to encourage participation

from people who are normally quiet or reserved.) Choose your

assistant carefully because the notes may suffer if he is at all

distracted by the proceedings. Another option you have avail-

able is to use a tape recorder to record the interview. This might

prove to be a better way to handle your notes because the tape

recorder will capture the interview more accurately, and you’ll

be able to determine exactly who provided you with a given

piece of information. (If you do decide to record the interview, be

sure you first obtain permission from each of the participants.

There may be privacy or confidentiality issues at stake, and you

don’t want to get yourself into any kind of trouble.)

• Give everyone your equal and undivided attention. This is a cru-

cial point for you to remember: You must pay complete attention

to the person who is speaking, and do so sincerely. If you give a

participant the impression that you’re bored, uninterested, or

preoccupied, he will immediately reduce his level of participation

within the interview. On the other hand, he will probably partici-

pate quite enthusiastically if he sees that you are interested in

what he’s saying and has your undivided attention.

There will be times when a participant responds to your ques-

tions with vague or incomplete answers. He may respond this

way for several reasons. It may be that he doesn’t quite know

how to express the ideas he wants to convey or that he’s not at

liberty to divulge certain information. It could also be that he’s

just not comfortable talking about himself and what he does or

Conducting Interviews 99

that he is suspicious of you for some reason. In any case, you’ll

have to be patient and make him feel at ease so that he will pro-

vide you with the information you need. For example, you could

try to state your best approximation of what he’s said thus far

and ask if it is what he meant to say.

• Keep the pace of the interview moving. You’ve probably attended

meetings during which a particular point was belabored or much

time was spent trying to extract information from a reluctant

participant. You can prevent this from happening during your

interviews by setting personal limits on the time you’ll allow for a

question to be answered and the time you’ll spend on a specific

topic. Don’t inform the participants about this limit; instead, try

to promote a sense of urgency.

• Always maintain control of the interview. This is the single most

important guideline for every interview you conduct. Inevitably,

something goes wrong the moment you lose control of the inter-

view. For instance, say you have a situation where one of the

participants begins to change the focus of the interview by dis-

cussing issues that have little or no relevance to the topics on

your agenda. You’ll certainly lose control of the interview unless

you do something to redirect the discussion. Regaining control of

the interview will be easy for you to do in some cases, but in oth-

ers you’ll just have to declare your portion of the interview

“complete” and let the participants carry on with their discus-

sion. You can avoid situations like this so long as you maintain

control of the interview.

Interviews are an integral part of the design process, and I provide

examples of them throughout the next several chapters. You’ll find

sample dialog that illustrates typical interview scenarios and examples

of questions you might use during a given interview. (The sample ques-

tions always relate to the type of interview you’re currently conducting.)

100 Chapter 5 Starting the Process

One final point: Keep in mind that the guidelines I’ve presented in this

section are merely recommendations. I suspect that you won’t be able

to apply all of these guidelines to every interview you conduct. How-

ever, I would expect you to apply them in an ideal situation. Yes, I

know—you don’t come across ideal situations all the time. Neither do I.

But you can still make it your goal to meet as many of these guidelines

as possible. In the end, the person who stands to gain the most is you.

The Case Study: Mike’s Bikes

There are numerous examples throughout the book that illustrate the

concepts and techniques used in the database-design process. I’ve

drawn these examples from a variety of databases and used them in an

arbitrary fashion. Using them in this manner allows me to demon-

strate that once you learn how to apply a particular concept or

technique generically, you can then apply it to any other database

you’re designing. Therefore, your focus should always be on the con-

cept or technique being presented, not on the example itself.

Nevertheless, I use a single database example as a case study to illus-

trate the steps involved in the design process. This enables me to

present the process with some degree of continuity. As the database-

design process unfolds, I apply each technique to designing the data-

base for the fictitious company in the case study. I provide only a few

details about the company in this chapter, but I’ll supply more as I

present each new concept or technique.

❖ Note The purpose of an interview example is to illustrate the

techniques you use to conduct a specific type of interview, and

I’ve kept the dialog relatively simple for this reason. However, the

dialog will still provide you with good ideas for the types of con-

versations you conduct in the interview.

Defining the Mission Statement 101

Mike’s Bikes, our case-study business, is a new bike shop located in a

small suburb called Greenlake, not far from downtown Seattle. It has

been open for only two months, and business is growing steadily. Mike,

the shop’s owner, has been conducting his daily business on paper. He

records sales on preprinted forms, maintains employee and vendor

information on sheets of paper (storing them in manila folders), and

writes information about his regular customers on index cards. As a

result, Mike spends a lot of time maintaining all of this data. He owns a

computer but uses it mainly to play games, write letters, and visit vari-

ous golf sites. The only business-related task he performs on the

computer is keeping track of the bike shop’s inventory using a spread-

sheet program.

Recently, Mike learned that using a database would be a good way to

store and work with data related to his business. Using a database

would greatly diminish the amount of time he currently spends main-

taining his data, and he could always ensure that the data is up-to-date

and that the information is accurate. Although he thinks a database is

a good idea, he’s aware of the fact that he doesn’t know the first thing

about properly designing a database. Undaunted, Mike has decided to

hire a database consultant to design the database for him.

You are, in this fable, the consultant he has hired for the project. As

the database-design process unfolds throughout the next several chap-

ters, you’ll apply each technique to design the database for Mike’s

Bikes. As you learn new concepts or techniques, Mike will supply you

with the information you need to complete the design of his database.

Defining the Mission Statement

In the previous chapter, you learned that the mission statement declares

the specific purpose of the database in general terms and that you

define it at the beginning of the database-design process. Furthermore,

102 Chapter 5 Starting the Process

it provides you with a focus for your design efforts and keeps you from

getting diverted and making the database structure unnecessarily large

or complex.

The Well-Written Mission Statement

A good mission statement is succinct and to the point. Verbose state-

ments have a tendency to be confusing, ambiguous, or vague; they do

more to obscure the purpose of the database than to clarify it. Here is

an example of a typical mission statement:

The purpose of the New Starz Talent Agency database is to

maintain the data we generate, and to supply information that

supports the engagement services we provide to our clients and

the management services we provide to our entertainers.

This mission statement is well-defined and uncluttered by unneces-

sary statements or details. It is a very general statement, just as it

should be. Think of a mission statement as the flame of a candle lo-

cated at the end of a dark tunnel. The light produced by the flame

guides you to the end of the tunnel, so long as you focus on it. In the

same manner, the mission statement guides you to the end of the data-

base-design process. Guided by your mission statement, you can focus

on designing a database structure that will support the declared pur-

pose of the database.

A well-written mission statement is free of phrases or sentences that

explicitly describe specific tasks. If your mission statement contains

these types of phrases or sentences, remove them and rewrite the

statement. Be sure to keep the discarded phrases handy, though,

because you may be able to use them to formulate mission objectives.

(You’ll learn about mission objectives in the next section.) Here’s an

example of a poorly worded mission statement:

Defining the Mission Statement 103

The purpose of the Whatcom County Hearing Examiner’s data-

base is to keep track of applications for land use, maintain data

on applicants, keep a record of all hearings, keep a record of all

decisions, keep a record of all appeals, maintain data on depart-

ment employees, and maintain data for general office use.

It should be immediately apparent that there are a few things wrong

with this mission statement.

• It’s slightly verbose. Remember that the ideal mission statement

should be succinct and to the point.

• The specific purpose of the database is unclear. This mission

statement is written in such a way that it is difficult for you to

ascertain the specific purpose of the database.

• It describes several specific tasks. Two issues arise when a mis-

sion statement is written in this manner. First, the description of

the tasks does nothing to define the specific purpose of the data-

base. Second, the statement somehow appears to be incomplete.

It raises the question “Are there any tasks we’ve forgotten to

include in the mission statement?”

You can fix this mission statement by removing the references to spe-

cific tasks (be sure to save them for the next step) and rewriting the

statement. Here is an example of one of the possible ways you could

rewrite this mission statement:

The purpose of the Whatcom County Hearing Examiner’s data-

base is to maintain the data the examiner’s office uses to make

decisions on land-use requests submitted by citizens of What-

com County.

Notice how the purpose of the database has become much clearer in

this version. Also note that the statement is more succinct and doesn’t

104 Chapter 5 Starting the Process

give the impression of being incomplete. You’ll always have a clear

focus during the database-design process when you formulate your

mission statements in this manner.

Composing a Mission Statement

The process of creating a mission statement involves conducting an

interview with the owner or manager of the organization, learning

about the organization, and determining the purpose of the new

database.

You conduct the interview for this step with the owner of the organiza-

tion or, if he directs, the appropriate staff. Either will be able to help

you define the statement because each has an overall understanding of

the organization and a general comprehension of why the database is

necessary in the first place. Besides helping you to define the mission

statement, this interview will also provide a great deal of information

about the organization itself. This information is valuable because you

can use it later in the design process.

As you conduct the interview, encourage the interview participant to

discuss as many facets of the organization as she can, even if the dis-

cussion relates to issues that aren’t directly relevant to the database.

The idea here is for you to understand what the organization does and

how it functions; the more you understand an organization, the better

prepared you will be to design a database that will fulfill its needs. The

organization’s general need for a database will become clear to you

once you have a better understanding of the organization itself. You

can then translate this need into a mission statement.

Be sure to ask open-ended questions during the interview. In some

cases, a good question can prompt the participant to state the purpose

of the database without much effort. For example, say you posed the

following question:

Defining the Mission Statement 105

“How would you describe the purpose of your organization to a

new client?”

This is a good open-ended question because it focuses on the issue

yet gives the participant the freedom to respond with what she feels is

a complete answer. Furthermore, this type of question will typically

generate a response that you can translate directly into a mission

statement.

Now assume you received the following reply:

“We supply entertainment services to our clientele for any and

all occasions. We take care of all the details for the engagement

so that it is as worry-free for the client as possible.”

You can easily rewrite this type of response and turn it into a mission

statement. In fact, when a response such as this one consists of two or

more sentences or phrases, one of the sentences or phrases typically

indicates the purpose of the database. For example, you can use the

first sentence from the reply above to construct the mission statement.

Here is one of several ways you could rewrite the reply:

The purpose of the All-Star Talent database is to maintain the

data we use in support of the entertainment services we pro-

vide to our clientele.

The most important point to remember is that the mission statement

should make sense to you (the database developer) and to those for

whom you are designing the database. Different groups of people have

different ways of phrasing statements, and the specific wording of the

statement can depend greatly on industry-specific terminology. Your

mission statement is complete when you have a sentence that

describes the specific purpose of the database and that is understood

and agreed upon by everyone concerned.

106 Chapter 5 Starting the Process

Here are a few sample questions that you can use to arrive at your mis-

sion statement:

How would you describe the purpose of your organization to a

new client?

What would you say is the purpose of your organization?

What is the major function of your organization?

How would you describe what your organization does?

How would you define the single most important reason for the

existence of your organization?

What is the main focus of your organization?

You may have noticed that some of these questions seem to be the

same question rewritten in a different manner. Keep in mind that the

observation regarding the phrasing of mission statements also applies

to the interview questions you’ll use throughout the database-design

process. You can pose the same question to several people and receive

different responses because each person may interpret the meaning of

the question a little differently. In some cases, you may just get a long,

“I haven’t had my first espresso yet” type of stare. Experiment with dif-

ferent types of phrasing and determine which type works best for you.

Your method of constructing and posing questions may be different

from someone else’s, but it doesn’t matter as long as you have a

method that suits you.

Now you need to define a mission statement for Mike’s Bikes. Before

you can define the mission statement, you must conduct an interview

with the owner to gather information about his business. Assume you

CASE STUDY

Defining the Mission Statement 107

have an assistant named Zachary who is conducting the interview for

you. The interview may go something like this:

ZACHARY: “Can you tell me why you believe you need a database?”

MIKE: “I think we need a database just to keep track of all our

inventory. I’d also like to keep track of all our sales as

well.”

ZACHARY: “I’m sure the database will address those issues. Now,

what would you say is the single most important func-

tion of your business?”

MIKE: “To provide a wide array of bicycle products and bicycle-

related services to our customers. We have a lot of great

customers. And regular ones, too! They’re our biggest

asset.”

(The interview continues until Zachary has finished asking all the

questions on his list.)

After the interview, review the information you’ve gathered and define

the mission statement. You can ascertain a few points from the previ-

ous dialog with Mike, such as the fact that he’ll need to be able to track

products, customers, and customer sales. But the most valuable point

is provided by his reply to the second question. You can use the first

sentence in that reply to formulate the mission statement. Taking into

account some of the other points you’ve identified in the interview, you

can rewrite Mike’s reply to create the following mission statement:

The purpose of the Mike’s Bikes database is to maintain the

data we need to support our retail sales business and our

customer-service operations.

When you feel you have a good mission statement, review it with Mike

and make sure that he understands and agrees with the declared pur-

pose of the database. When you and Mike are satisfied with the mission

108 Chapter 5 Starting the Process

statement, you can go on to the next step, which is defining the mis-

sion objectives.

Defining the Mission Objectives

To expand upon the overview in the previous chapter, mission objec-

tives are statements that represent the general tasks supported by the

data maintained in the database. Each mission objective represents a

single task. These mission objectives provide information that you’ll

use throughout the database-design process. For example, mission

objectives help you define table structures, field specifications, relation-

ship characteristics, and views. They also help you establish data

integrity and define business rules. Finally, mission objectives guide

your development efforts and ensure that your final database struc-

ture supports the mission statement.

Well-Written Mission Objectives

A well-written mission objective is a declarative sentence that clearly

defines a general task and is free from unnecessary details. It is

expressed in general terms, succinct and to the point, and unambigu-

ous. Here are some examples of typical mission objectives:

We need to maintain complete patient address information.

We need to keep track of all customer sales.

We need to make sure an account representative is responsible

for no more than 20 accounts at any given time.

We need to keep track of vehicle maintenance.

We need to produce employee phone directories.

Defining the Mission Objectives 109

These mission objectives are well defined and easy to understand. Each

mission objective represents a single general task and defines the task

clearly without unnecessary details. For example, the last mission

objective in the list states that employee directories need to be pro-

duced, but it doesn’t indicate how they are to be produced. It is not

necessary to indicate how the employee lists will be produced because

that issue is part of the application-development process. Remember

that the purpose of a mission objective is to help define various struc-

tures within the database and to help guide the overall direction of the

database’s development.

If a mission objective represents more than one general task, you

should decompose it into two or more mission objectives. Here is an

example of a poorly written mission objective:

We need to keep track of the entertainers we represent and the

type of entertainment they provide, as well as the engagements

that we book for them.

There are two problems with this mission objective:

1. It defines more than a single general task. It is clear that there are

two tasks represented in this statement: keeping track of enter-

tainers and keeping track of engagements.

2. It contains unnecessary detail. It’s unnecessary to refer to the

entertainer’s “type of entertainment” in this mission objective. The

phrase “type of entertainment” either refers to a distinct charac-

teristic of an entertainer, or it represents a new task that should

be declared as a mission objective. If it refers to a distinct charac-

teristic of an entertainer, it should be removed from the

statement; otherwise, it should be used as the basis for a new

mission objective.

110 Chapter 5 Starting the Process

You can fix this mission objective by removing the unnecessary detail

and rewriting it as two mission objectives. (Keep the details you dis-

card on a separate piece of paper; they may be useful later in the

design process.) Here is an example of one possible revision:

We need to maintain complete entertainer information.

We need to keep track of all the engagements we book.

Notice that each mission objective now clearly defines a single general

task and is easy to understand as well. Mission objectives such as

these are easy to use as you design the database.

Composing Mission Objectives

Defining mission objectives is a process that involves conducting inter-

views with users and management and then writing appropriate

mission objectives based on the information gathered from the

interviews.

The purpose of the interview is to determine what types of general tasks

need to be supported by the data in the database. You accomplish this

by asking the participants open-ended questions and allowing them to

elaborate on their replies as necessary. The mission statement and mis-

sion objectives interviews are the easiest ones you’ll conduct during the

design process because everyone is usually enthusiastic about partici-

pating. It’s fairly easy to get people to discuss what they do on a daily

basis and to give their perspective on the function of the organization.

This is also one of the few interviews you’ll conduct with both users and

management; there should be a lot of common ground between the two

groups due to the general nature of the interview.

One very important point to remember is that the interviews you con-

duct here involve very general discussions. The discussions are more

Defining the Mission Objectives 111

conceptual than analytical; your intent here is not to analyze the cur-

rent database or database application, but to get an overall idea of the

general tasks the database should support. Keep in mind that one of

the purposes of the mission objectives is to help guide the develop-

ment of the database structure.

As you conduct the interview, be sure, once again, to ask open-ended

questions. Remember that open-ended questions are apt to elicit bet-

ter responses from your participants. Ask the participants questions

regarding their daily work, how the organization functions, and what

type of issues they believe need to be addressed by the database.

Encourage them to discuss as many facets of their work and the orga-

nization as they possibly can. As they reply, try to record each

response as a declarative sentence. You’ll find it is much easier to

transform a sentence into a mission objective if you can do this. Here

are just a few examples of the types of questions you could pose dur-

ing the interview:

What kind of work do you perform on a daily basis?

How would you define your job description?

What kind of data do you work with?

What types of reports do you generate?

What types of things do you keep track of?

What types of services does your organization provide?

How would you describe the type of work you do?

All of these questions are likely to evoke a good, lengthy response from

the participant. One of the advantages of questions like these is that

they provide the opportunity for you to ask follow-up questions. For

112 Chapter 5 Starting the Process

example, say you received the following response to the last question in

the list:

“First, I try to determine the general problem with the vehicle.

Then I fill out a work order and note my assessment of the

problem. Finally, I send the vehicle to the next available service

team.”

You’ll immediately notice that it’s a lengthy response, which is fine. You

should also note that you could easily ask a follow-up question, such

as the following:

“Is there any type of customer information incorporated within

the procedure you just described?”

Even if the reply is no, the question is still open-ended enough for the

participant to elaborate further on his original response. This type of

follow-up question could also jar his memory and cause him to relay

other information, which may be related to the subject of the original

response.

Here is a set of mission objectives that you could derive from the par-

ticipant’s original response:

We need to maintain information on customer vehicles.

We need to keep track of work orders.

We need to maintain information on our service teams.

We need to maintain information on our mechanics.

We need to maintain information on our customers.

Three of these objectives are derived directly from the response. They’re

easy for you to determine because their subjects are explicitly stated in

the response itself. The last two mission objectives are derived from

Defining the Mission Objectives 113

assumptions based on the response. This is a technique (which you can

think of as “reading between the lines”) that experienced database

designers use quite often, and it is one that you should use when you’re

defining mission objectives. The technique relies on your ability to deter-

mine what information a response conveys implicitly, as well as what it

conveys explicitly. So pay attention. Listen for implications. Without good

assumptions, your overall set of mission objectives could be incomplete.

Review the following response and determine whether there is implicit

information hidden within the response itself:

“I book entertainment for our clientele, which consists of com-

mercial and noncommercial clients. Our noncommercial clients

are typically individuals or small groups who book weddings,

birthdays, anniversaries, and the like. Our commercial clients,

on the other hand, consist of businesses, such as nightclubs

and corporations. The nightclubs book entertainment in six-

week slots; the corporations book things, such as corporate par-

ties, product rollouts, and various types of promotional

functions.”

Aside from the explicit information that this response conveys, there

are at least two pieces of implicit information that you can uncover in

this response. The first piece of implicit information concerns the need

to maintain information on the entertainers booked for the engage-

ments. An agent needs to know things such as the entertainer’s name,

phone number, mailing address, availability, and whether he will travel

to out-of-town locations. The second piece of implicit information con-

cerns the need to maintain information on the engagements them-

selves. An agent must know all the details concerning the engagement

in order to ensure that the engagement runs smoothly.

Now that you know how important it is to look for implicit information,

keep it in mind when you’re defining mission objectives.

114 Chapter 5 Starting the Process

Here are the “final words” regarding mission objectives: Make sure that

your mission objectives are both properly defined and well defined, that

each objective makes sense to you and to those for whom you are

designing the database, and that you look for any implicit information

hidden within every participant’s response.

It’s time now to interview Mike and his staff so that they can help you

define the mission objectives for the Mike’s Bikes database. Here’s a

partial transcript of the interview with Mike. Once again, your assis-

tant, Zachary, is conducting the interview.

ZACHARY: “Can you give me an idea of the things you’d like to track

in the database?”

MIKE: “Oh sure, that’s pretty easy. I want to keep track of our

inventory, our customers, and our sales.”

ZACHARY: “Is there anything else that you can think of that is

related to these subjects?”

MIKE “Well, I guess if we’re going to keep track of our inven-

tory, we should know who our suppliers are.”

ZACHARY: “What about the sales reps involved in each sale?”

MIKE: “Oh yeah, we should definitely keep information about

our employees. If nothing else, it’s a good idea to do this

from a human-resources point of view. At least, that’s

what my wife tells me!”

(The interview continues until Zachary has finished asking all the

questions on his list.)

When the interviews are complete, review all the information you’ve

gathered and define the appropriate mission objectives. Be sure to keep

the “final words” in mind as you define them. Here are a few possible

mission objectives for the Mike’s Bikes database.

CASE STUDY

Summary 115

We need to maintain complete inventory information.

We need to maintain complete customer information.

We need to track all customer sales.

We need to maintain complete supplier information.

We need to maintain complete employee information.

Once you’ve compiled a list of mission objectives, review them with Mike

and his staff. When they are satisfied that they understand the mission

objectives and that the list is relatively complete, commit the list to a

document in your favorite word processor and save it for later use.

Summary

This chapter opened with a discussion of the interview process. You

learned why interviews are an important part of the database-design

process and why it’s important to learn how to conduct an interview

properly. You now know the difference between an open-ended question

and a closed question, as well as when to use each kind of question. We

ended this discussion by reviewing a set of interview guidelines, and

you learned that you should use them to help you ensure that the inter-

views are productive and successful.

The mission statement was our next topic of discussion. We expanded

upon the Chapter 4 overview by looking at how the mission statement

states the specific purpose of the database. You now know that the pro-

cess involves conducting interviews and learning about the organiza-

tion, then formulating the mission statement from the information you

gathered during these steps. We defined the characteristics of a good

mission statement, and you learned that a well-defined mission state-

ment establishes a clear focus for your design efforts.

116 Chapter 5 Starting the Process

Next, we discussed mission objectives, and we expanded upon the

Chapter 4 overview once again. As you now know, mission objectives

represent the tasks performed against the data in the database, and

you define them after the mission statement. We then explored how to

define a mission objective. Here, you learned that you conduct inter-

views with users and management and that the information you gather

from these interviews provides the basis for each mission objective. We

also discussed the characteristics of a well-written mission objective,

and you learned that a clearly defined mission objective will help you

define various structures within the database.

Review Questions

1. Why are interviews important?

2. What problem can arise when you conduct an interview with a

large number of people?

3. What is the primary reason for conducting separate interviews

with users and management?

4. True or False: You’ll commonly use closed questions in your

interviews.

5. What kind of responses should you try to evoke from the inter-

view participants?

6. What is the single most important guideline for every interview

you conduct?

7. What is a mission statement?

8. State two characteristics of a well-written mission statement.

9. True or False: You need not learn about the organization in order

to compose a mission statement.

10. When is your mission statement complete?

Review Questions 117

11. What is a mission objective?

12. State two characteristics of a well-written mission objective.

13. True or False: You should interview users and management to

help you define mission objectives.

14. How does the staff’s daily work relate to the mission objectives?

15. True or False: A mission objective can describe more than one

task.

16. State two ways that a mission objective can be derived from a

response.

17. When is a mission objective complete?

This page intentionally left blank

119

6
Analyzing the

Current Database

To see what is in front of one’s nose

needs a constant struggle.

—GEORGE ORWELL

IN FRONT OF YOUR NOSE

Topics Covered in This Chapter

Getting to Know the Current Database

Conducting the Analysis

Looking at How Data Is Collected

Looking at How Information Is Presented

Conducting Interviews

Interviewing Users

Interviewing Management

Compiling a Complete List of Fields

Case Study

Summary

Review Questions

Getting to Know the Current Database

To determine where you should go, you must first understand

where you are.

120 Chapter 6 Analyzing the Current Database

This maxim defines the entire philosophy behind this phase of the data-

base-design process. You must devote some time to gaining a clear un-

derstanding of your organization’s database for these reasons:

• To determine whether the database supports the organization’s

current information requirements

• Τo uncover existing structural deficiencies

• To determine how the database needs to evolve so that it will

support the organization’s future information requirements

You can use the existing database as a resource for developing a new

database. However, you must carefully judge which aspects of the cur-

rent database remain useful and which aspects should be discarded.

You can make these judgments by answering the following questions:

What types of data does the organization use?

How does the organization use that data?

How does the organization manage and maintain that data?

The answers to these questions provide you with vital information that

you can use to design a database that best suits your organization’s

needs.

You can best answer these questions by analyzing your organization’s

existing database. It’s very likely that the organization is using some

type of database, and it can probably be associated with one of the fol-

lowing categories:

• Paper-based databases—also known as file systems—typically

consist of various forms and handwritten documents stored in

file folders or bound in notebooks. The folders and notebooks are

identified by some coding scheme (e.g., unique numbers or col-

ored tabs) and stored in file cabinets. These cabinets are likely to

Getting to Know the Current Database 121

be identified by some coding scheme as well, depending on the

size of the database.

• Legacy databases have been in existence and in use for several

years or more and consist of various types of data structures and

character-based user interface screens that all reside on a main-

frame computer or personal computer. The capability,

functionality, and effectiveness of the structures and screens are

quite dependent upon the programming language and database-

management software used to create them. In general, the struc-

tures and screens are crude by today’s standards because they

were created at a time when programming languages and data-

base software were not as sophisticated as those we’ve come to

know since the mid-1990s.

• Human-knowledge bases (loosely defined) are based on the mem-

ory of one or more employees within an organization. These

individuals have a specific amount of knowledge regarding a

given aspect of the organization (e.g., customer information or

product details), and they are crucial to conducting the organiza-

tion’s business.

The goal of your analysis is to determine the types of data the organiza-

tion uses, how the organization manages and maintains that data, and

how the organization views and uses the data. You can reduce the time

it takes to define the preliminary field and table structures for the new

database if you conduct this investigation properly.

During the analysis, you review the various ways the organization col-

lects and presents its data, and you conduct a set of interviews with us-

ers and management. You then use the information you’ve gathered to

define a preliminary field list and to help you determine the tables that

should be included in the initial database structure. If your analysis re-

veals that the current database is poorly designed, you can take precau-

tions to ensure that you don’t make the same mistakes in the new

122 Chapter 6 Analyzing the Current Database

database. Despite whatever shortcomings the current database may

have, it can still help you identify a number of the fields and tables that

you should include in the new database.

There’s one rule you should keep first and foremost in your mind as

you’re analyzing the current database:

Do not adopt the current database structure as the basis for

the new database structure.

Following this rule will help you avert unnecessary errors and aid in

maximizing your design efforts.

Every so often, there’s a point during the analysis when a novice data-

base developer (and sometimes an experienced one, as well) will stop

and think, “This database doesn’t look too bad. Let’s just end the analy-

sis here and use this database as the basis for the new one.” This is a

particularly bad idea because every hidden problem within the current

database structure will be transferred into the new database. These

types of problems include awkward table structures, poorly defined re-

lationships, and inconsistent field specifications; they will invariably

surface later and at the least opportune times. Therefore, you should do

your best to avoid this perilous situation by following the rule above.

Just remember that it’s always better to define a new database struc-

ture explicitly than to copy an existing structure. After all, if the old da-

tabase didn’t have problems, you wouldn’t be building a new one.

You’ll typically analyze two types of databases during this part of the de-

sign process: paper-based databases and legacy databases. Many orga-

nizations use both types of databases to some degree, and you perform

the same basic analysis process on each of them. There are minor dif-

ferences in the way you analyze a paper-based database and a legacy

database, to be sure, but the differences have more to do with the data-

bases themselves than with the overall analysis process. You needn’t be

Getting to Know the Current Database 123

concerned with these differences, however, because I’ve seamlessly in-

corporated them into the analysis process presented in this book.

Paper-Based Databases

A paper-based database incorporates data that is literally collected,

stored, and maintained on paper. The paper used in this type of data-

base appears in a variety of shapes, sizes, and configurations. Some of

the more common formats include index cards, hand-written reports,

and various types of preprinted forms. Anyone who has ever worked in

an office for a business or organization is very familiar with this type of

database.

You’ll find that analyzing this type of database can be a daunting task.

One of your most immediate problems is finding someone who com-

pletely understands how the database works so you can learn its use

and purpose. There are several problems with the paper-based database

itself, especially in terms of the way data is collected and managed. This

type of database typically contains inconsistent data, erroneous data,

duplicate data, redundant data, incomplete entries, and old data that

should have been purged from the database long ago. Clearly, the only

reason you’d analyze this type of database is to identify items that you

could incorporate into the new database. For example, you can extract

individual pieces of data from various sections of a form in the paper-

based database and transform them into fields in the new database.

Legacy Databases

A legacy database is a database that has been in existence and in use

for five years or more. Mainframe databases typically fall into this cate-

gory, as do older PC-based databases. There are several reasons that

“legacy” is used as part of the name for this type of database. First, it

suggests that the database has been around for a long time, possibly

124 Chapter 6 Analyzing the Current Database

longer than anyone can clearly remember. Second, the word “legacy”

may mean that the individual who originally created the database has

either shifted responsibilities within the organization or is working for

someone else, and, thus, the database has become his or her legacy to

the organization. Third, the term implies the disturbing possibility that

no single individual completely understands the database structure or

how it is implemented in the DBMS software program.

Mainframe legacy databases present some special problems in the anal-

ysis process. One problem stems from the fact that a number of older

mainframe databases are based on hierarchical or network database

models. If neither you nor anyone in the organization has a firm under-

standing of these models, it will take you some time to decipher the

structure of the database. In this case, you’ll find it very helpful to make

printouts of the data in each of the database structures.

Even if a legacy database is based on the relational model, there’s no

particular guarantee that the structure is sound. Unfortunately, there

are many instances where the people who created these databases

didn’t completely understand the concept of a relational database. (After

you have read this book, you won’t fall into that group.) As a result,

many older databases have improper or inefficient structures.

Numerous PC-based legacy databases are improperly or inefficiently de-

signed as well. Many of them were originally designed and implemented in

dBase II and dBase III, which were nonrelational database-management

systems. As a result, the databases implemented within these systems

could not take advantage of the benefits provided by the relational

model. Two characteristics commonly associated with these types of da-

tabases are duplicate fields and redundant data, which (as you’ll learn

later) can cause serious problems with data integrity.

Analyzing a legacy database is somewhat easier than analyzing a paper-

based database because a legacy database is typically more organized

and structured than a paper-based database, the structures within the

Looking at How Data Is Collected 125

database are explicitly defined, and there is usually a software applica-

tion program that people use to interact with the data in the database.

(The application program is valuable to you during the analysis process

because it can reveal a lot of information about the data structures and

the tasks performed against the data in the legacy database.) The time it

will take you to perform a proper analysis will depend to some degree on

the platform (mainframe or PC), the DBMS used to implement the legacy

database, and the software application program.

The key point to remember when you’re analyzing either a paper-based

or a legacy database is that you should proceed through the process pa-

tiently and methodically so that you can ensure a thorough and accu-

rate analysis.

Conducting the Analysis

There are three steps in the analysis process: reviewing the way data is

collected, reviewing the manner in which information is presented, and

conducting interviews with users and management.

It will be necessary for you to speak to various people in the organiza-

tion as you conduct the first two steps in this process. Be sure your con-

versations relate purely to the reviews at hand. You’ll have the

opportunity to ask them other in-depth questions later. Keep in mind

that these reviews are an integral part of your preparation for the inter-

views that will follow. Indeed, these reviews help you determine the

types of questions you’ll need to ask in subsequent interviews.

Looking at How Data Is Collected

The first step in the analysis process involves reviewing the ways in

which data is collected. This includes everything from index cards and

126 Chapter 6 Analyzing the Current Database

hand-written lists to preprinted forms and data-entry screens (such as

those used in a database software program or Web browser).

Begin this step by reviewing all paper-based items. Find out what types of

paper documents the organization is using to record data, and then

gather a single sample of each. Assemble these samples into a stack, and

then store them in a folder for use later in the design process. For exam-

ple, assume that the organization is collecting supplier data on index

cards. Go through each of the index cards until you find one with an entry

that is as complete as possible. When you’ve found an appropriate sam-

ple, make a copy of it and place the copy in your stack of samples. Proceed

through this process for each type of paper record being used. Figure 6.1

shows two examples of how the organization might use a paper record to

collect data.

Figure 6.1. Examples of paper-based items used to collect data.

A1 Office Supplies

Suite 133

7739 Alpine Way SE

Seattle, WA 98115

Susan McLain 519-5883

FAX 519-9948

Employee Fact Sheet

Name: George Chavez

Address: 7527 Taxco Drive

SSN: 456-92-0049Date of Birth: 09/22/55

Date Hired: June 30, 1995

City: Seattle State: WA

Phone: 553-0399

Education:
Name of Academic Organization Location Year Graduated

University of Texas at El Paso El Paso, TX 1977

Zip: 98115

Looking at How Data Is Collected 127

Next, review all of the computer software programs that the organiza-

tion uses to collect data. The objective here is to gather a set of sample

screen shots that represent how the organization uses these programs

to work with data. A word of caution: Many people have discovered

unique and ingenious ways to use common programs, such as word

processors and spreadsheets, as a way to collect and manage data.

Make sure you speak with someone who is familiar with the way the

computers are being used within the organization and determine which

programs the organization is using to manage its data.

As you review each program, find a screen that best represents how

the program collects data. You’re looking for screens similar to those

in Figure 6.2.

Figure 6.2. A typical database screen and a typical spreadsheet screen.

128 Chapter 6 Analyzing the Current Database

The first screen is typical of those you would find in a database program,

and the second screen is typical of those you would find in a spreadsheet

program. When you’ve found an appropriate sample, create a screen shot

(use [ALT]-[PRTSC] or a screen-capture program), paste it into a docu-

ment in your word-processing program, indicate the name of the source

program and the date you created the screen shot, and then print the

document. Continue reviewing the program and repeat this procedure as

appropriate. Then repeat the entire process for each program. Once

you’ve printed copies of all the appropriate screen shots, assemble them

together and store them in a folder for use later in the design process.

Now examine the Web pages that the organization uses to collect data

via the Internet. The pages you’re interested in will look very similar to

the data-entry forms you would find in a database application program.

Figure 6.3 shows an example of such a page.

Figure 6.3. An example of a typical Web-based data-entry screen.

Looking at How Information Is Presented 129

You can follow the same examination procedure here that you used with

the application programs. Take a screen shot of a given Web page, paste

it into a word-processing document, indicate the program name and

screen capture date, and print it. Continue to review the Web pages and

repeat this procedure as appropriate. Once you’ve printed copies of all

the appropriate screen shots, assemble them and store them in a folder

for use later in the design process.

Make sure you clearly mark the folders containing the samples you’ve

gathered during your analysis. The small amounts of time you invest to

organize your materials pay big dividends when you use those materials

during a complex phase of the design process.

Looking at How Information Is Presented

The second step in the analysis process involves reviewing the various

ways in which the organization presents its data as information. During

this process, you’ll review items, such as hand-written documents,

computer printouts, screen presentations, and Web pages.

Here are three of the most popular presentation methods that you’ll en-

counter during this process:

1. Reports. A report is any document (hand-written, typed, or

computer-generated) used to arrange and present data in such

a way that it is meaningful to the person or people viewing it.

Although using a software program (such as a word processor

or spreadsheet) is the standard method of generating a report

nowadays, you’ll still find a number of reports written by hand or

typed on a typewriter. (Yes, a typewriter!)

2. Screen presentations (a.k.a. slide shows). This type of presenta-

tion incorporates a series of screens that discuss various topics in

an organized manner. It is generally created with a program, such

130 Chapter 6 Analyzing the Current Database

as Microsoft PowerPoint or Lotus Freelance Graphics, and exe-

cuted on a computer, but it can also be composed of a series of

plastic sheets that are displayed on a screen by an overhead pro-

jector. (For our purposes, we’ll assume that you’re reviewing a

computer-based screen presentation.)

3. Web pages. Many organizations are now making vast amounts of

information available via Web pages on their Web sites. A Web

page is used much in the same manner as a report, and, indeed,

it is really nothing more than a different type of report.

Begin this step by identifying and reviewing each report the organiza-

tion generates from the database, regardless of whether they produce

the report by hand or from within a software program. Gather samples

of the reports and assemble them in a folder as you did with the items

in the previous step. Overall, this task is easier to perform in this step

than it was in the previous step because people in the organization are

typically familiar with the reports they use. Copies of the reports are

usually readily available, and most reports can be reprinted if neces-

sary. Figure 6.4 shows an example of a report written by hand and a re-

port generated from a word-processing program.

Next, review screen presentations that use or incorporate the data in

the database. It’s unnecessary for you to review every presentation,

but you do need to review those that have a direct bearing on the data

in the database. For example, you don’t need to review a presentation

on the organization’s new product if it doesn’t draw any data from the

database. On the other hand, a presentation on sales statistics that

does incorporate data from the database is one that you do need to

review.

Once you’ve identified which presentations you need to review, go

through each one carefully and make screen shots of the slides that use

Looking at How Information Is Presented 131

or incorporate data from the database. Copy the screen shots into a

word-processing document, print the document, and then store the doc-

ument in a folder for later use. (Write the name of the presentation and

the date you captured the screen shots on the folder; you may need to

refer to it again at a later time.) Follow this procedure separately for each

presentation. You want to make sure you don’t accidentally combine two

or more presentations together, because this mistake will inevitably lead

to mass confusion and result in one huge mess!

Employee Phone List
as of 05/16/96

John Alcot 554-3002

Regina Allen 752-5593

George Chavez 623-3292

Ryan Erlich 554-2991

Product ID

9001

9002

9003

9004

Current Product Inventory

Product Description

Shur-Lok U-Lock

SpeedRite Cyclecomputer

SteelHead Microshell Helmet

SureStop 133-MB Brakes

Category

Accessories

Accessories

Components

SRP

75.00

65.00

36.00

23.50

Quantity

20

33

16

Figure 6.4. Examples of hand-written and computer-generated reports.

132 Chapter 6 Analyzing the Current Database

Figure 6.5 shows an example of the type of slides you’ll examine during

this review.

Reviewing a presentation is difficult in some cases, and deciding

whether or not a slide should be included as a sample is purely a dis-

cretionary decision. Therefore, work closely with the person most famil-

iar with the presentation to ensure that you include all appropriate

slides in the samples.

Finally, review Web pages that draw information directly from the data-

base. Perform this review in the same manner as the review for the

screen presentations. As with the previous review, you need to review

those Web pages that have a direct bearing on the data in the database.

For example, you don’t need to review a Web page that provides a his-

tory of your organization, but you do need to review a Web page that dis-

plays regional employee information.

Once you’ve identified which Web pages you need to review, take a

screen shot of each page. Copy the screen shots into a word-processing

document, print the document, and then store the document in a folder

Central

Northeast

Pacific NW

Southern

Western

1st Qtr

235

335

229

315

240

2nd Qtr

277

369

277

345

251

3rd Qtr

289

388

300

365

266

4th Qtr

316

359

315

376

289

2003
Regional Sales

Total Units Sold
per Quarter

Total Orders

Delivered

per Shipper

1 2 3 4 5 6 7

expressed in 100s

Aero-Xpress

Global

Postal Express

Figure 6.5. Examples of screen presentation slides.

Conducting Interviews 133

for later use. (Write the uniform resource locator, or URL, address, and

the current date under each screen shot in the document; you may

need to refer to a particular Web page again at a later time.)

Figure 6.6 shows an example of a Web page you would examine during

this review.

Whenever possible, work with the person (or persons) who created and

developed the organization’s Web site. She can save you a lot of time by

directing you to the exact pages you should examine for this review.

Conducting Interviews

Now that you have a general idea of how the organization collects

and presents its data, it’s time to interview users and management

Figure 6.6. Example of a Web page that presents information from a database.

134 Chapter 6 Analyzing the Current Database

to determine how the organization uses its data. Interviews are useful

in the analysis phase for these reasons:

• They provide details about the samples you assembled during the

previous reviews. The discussions you had with users and man-

agement during the previous reviews were solely meant to

identify (in general terms) how the organization collects and pre-

sents the data it uses. In this phase, however, you’ll ask specific

questions about the samples you assembled during those

reviews. This will enable you to clarify the aspects of a specific

sample that you consider to be vague or ambiguous.

• They provide information on the way the organization uses its

data. These interviews will provide you with information on how

users work with the organization’s data on a daily basis and how

management uses information based on that data to manage the

organization’s affairs.

• They are instrumental in defining preliminary field and table struc-

tures. The responses you receive from users and management

during this round of interviews will help you identify initial field

and table structures for the database.

• They help to define future information requirements. The discus-

sions you’ll have with users and management regarding the

organization’s future growth will often reveal new information

requirements that must be supported by the database.

I cannot overemphasize, and you must not underestimate, the impact

interviews have on the final database structure and how important they

are to your successful completion of the database-design process. Only

full and complete interviews will help you ensure that the database you

design fulfills your organization’s information requirements.

Conducting Interviews 135

Basic Interview Techniques

In order for you to conduct successful interviews, you must first learn a

few basic interview techniques. I address this issue here by providing

you with a set of fundamental techniques that you can use to conduct

every interview within the database-design process. These techniques

are relatively easy to learn and apply, and they’ll enable you to obtain

the information you require for the task at hand.

You’ll probably execute these techniques in a strict, mechanical fashion

as you’re just starting to learn them, but you’ll apply them more in-

stinctively and intuitively as you conduct further interviews and gain

additional experience. Conducting an interview is a skill, and, as with

any other skill, you will achieve various degrees of expertise with pa-

tience and practice.

Asking Questions

You use both open-ended and closed questions throughout an inter-

view, alternating between each type as the interview progresses; the

open-ended questions enable you to focus on specific subjects, and the

closed questions allow you to focus on specific details of a certain sub-

ject. For instance, start the interview with a few open-ended questions

to establish some general subjects for discussion, and then select a

subject and ask more specific (closed) questions relating to that subject.

You could begin by asking one of the interview participants an open-

ended question such as this:

“How would you define the work that you do on a daily basis?”

Most participants will use three or more sentences to answer this type

of question. It’s perfectly acceptable for a participant to provide you

with a long, descriptive response because you can work with this type

136 Chapter 6 Analyzing the Current Database

of response more easily than you can with one that is terse. To illus-

trate this point, assume the participant responds to your question in

this manner:

“As an account representative, I’m responsible for 10 clients.

Each of my clients makes an appointment to come into the

showroom to view the merchandise we have to offer for the cur-

rent season. Part of my job is to answer any questions they have

about our merchandise and make recommendations regarding

the most popular items. Once they make a decision on the mer-

chandise they’d like to purchase, I write up a sales order for the

client. Then I give the sales order to my assistant, who promptly

fills the order and sends it to the client.”

This is a very good response. The participant not only answered your

question, but also provided you with the opportunity to begin asking

follow-up questions. His response also suggests several subjects that

you can discuss later in the interview.

Identifying Subjects

As you ask each open-ended question, identify the subjects suggested

within the response to the question. You can identify subjects by look-

ing for nouns within the sentences that make up the response. Subjects

❖ Note When you receive a terse response such as “I fill out cus-

tomer sales orders,” you’ll have to work a little harder with the

participant to obtain the information you need. Terse responses

commonly indicate that the participant is just nervous or uncom-

fortable. In this case, you could put him at ease by discussing an

unrelated topic for a few moments, or by allowing him to select a

more familiar or comfortable subject.

Conducting Interviews 137

are always represented by nouns and identify a person, place, or thing

or an event (something that occurs at a given point in time). There are

some nouns, however, that represent a characteristic of a person, place,

or thing or event; you don’t need to concern yourself with these just yet.

Therefore, make sure you only look for nouns that specifically represent

a person, place, or thing or event. You can ensure that you account for

every subject you need to discuss by marking the nouns with a double-

underline as you identify them, as in this example:

“As an account representative, I’m responsible for 10 clients.

Each of my clients makes an appointment to come into the

showroom to view the merchandise we have to offer for the cur-

rent season. Part of my job is to answer any questions they have

about our merchandise and make recommendations regarding

the most popular items. Once they make a decision on the mer-

chandise they’d like to purchase, I write up a sales order for the

client. Then I give the sales order to my assistant, who promptly

fills the order and sends it to the client.”

After you’ve identified all of the appropriate nouns within the response,

list them on a sheet of paper; this becomes your list of subjects. You’ll

add more subjects to the list as you continue to work through the de-

sign process. Compile this list carefully and methodically because you’ll

use it to generate further discussions as the interview progresses and to

help you define tables later in the design process.

Here are subjects that are represented in the previous response:

Account Representative

Appointment

Assistant

Clients

Items

Job

Merchandise

Sales Order

Season

Showroom

138 Chapter 6 Analyzing the Current Database

You can now use this list as the basis of further questions during the

interview.

Verify that the nouns you’ve underlined are genuine subjects by review-

ing the way they’re used in the response. For example, “account repre-

sentative” is a subject suggested by a noun in the first sentence, and

you can assume that the subject identifies an object (person, place, or

thing) by the way the noun is used in the sentence. “Appointment” is

another subject suggested by a noun in the second sentence, and you

can assume this subject represents an event (something that occurs at

a given point in time) by the way it is used in the sentence.

Identifying Characteristics

After you’ve identified the subjects suggested within the response, pick

a particular subject and begin to ask follow-up questions related to that

subject. You use this line of questioning to obtain as much detailed in-

formation as possible about the subject you’ve selected. Therefore,

make your follow-up questions more specific as you progress through

this part of the discussion. The nature of your follow-up questions will

depend on the responses you receive from the participant. Based on our

sample response, for example, you could continue the discussion by

asking more specific questions about sales orders, or you could begin

an entirely new line of questioning regarding clients. Assume, for now,

that you ask the following question to learn more about sales orders:

“Let’s discuss sales orders for a moment. What does it take to

complete a sales order for a client?”

Note that this question begins with a statement directing the interview

participant to focus on a particular subject. This is a technique you

❖Note I refer to this entire procedure as the subject-identification

technique throughout the remainder of the book.

Conducting Interviews 139

should use to guide your conversation after you’ve selected a specific

subject to discuss. Also note that the question is open-ended; it prompts

the participant for details related to the subject you’ve selected (sales

orders) and allows you to establish the focus of the participant’s subse-

quent responses.

Now, assume that the participant gives the following reply:

“Well, I enter all the client information first, such as the client’s

name, address, and phone number. Then I enter the items the

client wants to purchase. After I’ve entered all the items, I tally

up the totals and I’m done. Oh, I forgot to mention: I enter the

client’s fax number and shipping address—if they have one.”

Analyze this response with the subject-identification technique to deter-

mine whether there are subjects suggested within the response. Then

add the new subjects to your list of subjects. Remember: List only those

nouns that represent person, place, or thing or event.

After you’ve finished identifying new subjects, begin looking for details

regarding the subject under discussion. Your objective here is to obtain

as many facts about the subject as possible. Now you’re interested in

nouns that represent characteristics of a subject—they describe particu-

lar aspects of that subject. You can identify these nouns quite easily be-

cause they are usually in singular form (“phone number,” “address”). In

contrast, nouns that identify subjects are usually in possessive form

(“the client’s phone number,” “the company’s address”).

Try to account for as many characteristics of the subject as possible.

Use a single underline to mark a noun that represents a characteristic,

as in this example:

“Well, I enter all the client information first, such as the client’s

name, address, and phone number. Then I enter the items the

client wants to purchase. After I’ve entered all the items, I tally

140 Chapter 6 Analyzing the Current Database

up the totals and I’m done. Oh, I forgot to mention that I enter

the client’s fax number and shipping address—if they have one.”

As you identify the appropriate nouns within a response, list them on a

sheet of paper; this becomes your list of characteristics. You’ll add more

characteristics to the list as you work through the design process, and

you’ll use this list later when you’re determining the fields for the data-

base. Use a separate sheet of paper for the list of characteristics. Do not

list the subjects and characteristics on the same sheet! (The reason for

keeping them on different lists will become clear when you begin to de-

fine tables for the database in Chapter 7.)

Here are the characteristics (shown in alphabetical order) that are rep-

resented in the previous response:

This constitutes the list of characteristics for the subject under discus-

sion. These characteristics will eventually become fields in the database.

Verify that the nouns you’ve marked with a single underline are genuine

characteristics by reviewing the way they’re used in the response. For

example, “name,” is a characteristic suggested by a noun in the first

sentence, and you can assume that it describes some aspect of the sub-

ject “Client” by the way the noun is used in the sentence. “Shipping ad-

dress” is another characteristic suggested by a noun in the last

Address

Fax Number

Name

Phone Number

Shipping Address

Totals

❖ Note I refer to this entire procedure as the characteristic-

identification technique throughout the remainder of the book.

Conducting Interviews 141

sentence, and you can assume that this noun also represents some as-

pect of the subject “Client” by the way the noun is used in the sentence.

After you’ve finished discussing a particular subject, move on to the

next subject on your subjects list and begin the same pattern of ques-

tioning. Start with open-ended questions, identify the subjects sug-

gested in the responses, ask more specific questions as the discussion

progresses, and identify as many of the subject’s characteristics as pos-

sible. Continue this process in an orderly manner until you’ve dis-

cussed every subject on your list.

You should learn the subject-identification technique and the

characteristic-identification technique as thoroughly as possible because

you’ll use them during your interviews with users and management and

as you identify fields and tables for the initial database structure. Note

that you won’t have to incorporate the single and double underlines for-

ever; you’ll eventually execute these techniques in your mind as you gain

experience and as they become more instinctive and intuitive.

Before You Begin the Interview Process . . .

You can use the techniques you’ve just learned in this section for both

user interviews and management interviews. The only differences

between the two sets of interviews lie in the subject matter and the

content of the questions.

The interview process involves two sets of discussions: one with users

and the other with management. You’ll speak to the users first because

they represent the “front lines” of the organization. They have the clear-

est picture of the details connected with the organization’s daily opera-

tions. Also, the information you gather from the users should help you

to understand the answers you receive from management.

142 Chapter 6 Analyzing the Current Database

Interviewing Users

The first part of the interview process involves conducting user inter-

views. The interviews focus on these four issues:

1. The types of data users are currently using

2. How users are currently using their data

3. The collection of samples you assembled during the first two steps

of the analysis

4. The types of information users require for their daily work

Because these issues are both data-centric and information-centric,

you must be certain that you understand and always keep in mind the

difference between data and information. Recall from Chapter 3 that

data are the values you store in the database, and information is data

that you process in a manner that makes it meaningful and useful to

you when you work with it or view it. Keeping these definitions in mind

will help ensure that you focus on each issue properly and conduct

each segment of the interview successfully.

Reviewing Data Type and Usage

You can usually discuss the first two issues at the same time if you care-

fully phrase your questions at the beginning of the interview. Your objec-

tive for this part of the interview is to identify the types of data the users

are currently using and how they use that data in support of the work

they do. You’ll use this information later in the design process to help de-

fine field and table structures. Use the data-collection and data-represen-

tation samples to help you formulate questions about the user’s data.

(However, don’t actually discuss the samples just yet; you should deal

with them separately.) During this discussion, you’ll start with open-

ended questions, identify subjects within the responses, and then use

specific follow-up questions to identify the characteristics of each subject.

Interviewing Users 143

As you begin the interview, ask each participant about the work he or

she performs on a daily basis. After the participant provides an overall

description of the work he does, ask him to explain his job in more de-

tail. Perhaps he can walk you through the job he performs on a daily

basis.

Here’s an example of a typical conversation that occurs during this part

of the interview:

INTERVIEWER: “What kind of work do you do on a day-to-day

basis?”

PARTICIPANT: “I accept land-use applications that are submit-

ted by various people, log them in, and set a

hearing date with the hearing examiner. I also

assist applicants if they have any questions

regarding a specific application.”

INTERVIEWER: “Let’s talk about the applications for a moment.

What types of facts are associated with an

application?”

PARTICIPANT: “There’s quite a number, actually. There are facts

concerning the type and name of the application,

its designation and address, and its location.”

INTERVIEWER: “Tell me about the facts concerning the applica-

tion’s type and name.”

PARTICIPANT: “There are four things we record: the type of appli-

cation, the name of the subdivision, the purpose

of the project, and a description of the project.”

Note how the interviewer starts the discussion with an open-ended

question. After the participant responds, the interviewer uses the sub-

ject-identification technique to identify subjects within the response. The

interviewer then chooses a particular subject and uses another open-

ended question to focus the participant’s attention on that subject.

144 Chapter 6 Analyzing the Current Database

Because the participant’s next response is general in nature, the inter-

viewer focuses on a particular aspect of the subject and uses a more spe-

cific follow-up question to elicit a detailed response from the participant.

The interviewer can continue to narrow the focus of his questions as the

discussion progresses. As the participant responds to each question,

the interviewer continues to use the characteristic-identification tech-

nique to identify characteristics of the subject that appear in the re-

sponse. After he’s identified all of the subject’s characteristics, the

interviewer then moves on to the next subject and begins the entire pro-

cess again. He’ll continue in this manner until he’s covered his entire

list of subjects. You’ll go through the same exact process when you act

as interviewer.

Reviewing the Samples

The next round of discussions centers on all the samples you assembled

earlier in the analysis process. Your objectives during these discussions

are to identify how the objects represented by the samples are used, to

clarify the aspects of the samples you don’t understand, and to assign a

description to each sample.

It should be relatively easy for you to talk to participants about the sam-

ples now that you have an idea of the data the participants use on a

daily basis. Begin the conversation by asking questions about a specific

sample. Figure 6.7 shows an example of a data-collection sample you

might use as a starting point.

Review your notes from the discussions you held at the beginning of the

interview before you ask your first question. You want to determine

whether anything you’ve already discussed is relevant to the sample

you’re about to discuss. In one of the previous discussions, for example,

a participant indicated that part of his job is to keep track of all the or-

Interviewing Users 145

ganization’s customers. Using that statement as a starting point, you

could ask him how he uses this particular data-collection sample to

perform that task.

“You mentioned in a previous discussion that you keep track of

all the customers. How does this screen help you to carry out

that task?”

This is a well-phrased question. It begins with a statement that focuses

on a particular subject and then continues by bringing the participant’s

attention to the sample. The question is open enough to elicit a clear

and complete response.

Now, assume the participant provides this response:

“This screen allows me to enter new customers, as well as modify

and maintain all the information we have on existing customers.”

If this reply answers the question to your complete satisfaction, use

it as the basis for a description of the sample. On the other hand, if

Mike's Bike Shop

File Edit View Insert Format Records Tools Window Help

Customer Information

Name (F/L):

Address:

City:

State: Zip:

John

TX 79915

725 Globe Circle

El Paso 778-9715

778-4497

Active

Phone:

FAX:

Status:

Edit< Back Next > Save

Figure 6.7. A data-collection sample.

146 Chapter 6 Analyzing the Current Database

the reply does not completely answer the question, continue with an

appropriate line of questioning until the participant clearly identifies

the purpose and use of the sample. You must supply descriptions for

all of your samples because you’ll use them again later in the design

process.

A sample’s description should be succinct, yet clear enough to indicate

the sample’s purpose and how it is used. Write the description on a slip

of paper and attach it to the sample. Here’s an example of a description

you might use for the sample in Figure 6.7:

This screen is used to collect and maintain all customer data.

It’s necessary for you to understand the sample as completely as possi-

ble so that you can write a clear and concise description. If there are as-

pects of a given sample you don’t understand, ask the participant to

clarify them for you. For example, assume you’re working with the re-

port sample shown in Figure 6.8.

Product ID

9001

9002

9003

9004

Current Product Inventory

Product Description

Shur-Lok U-Lock

SpeedRite Cyclecomputer

SteelHead Microshell Helmet

SureStop 133-MB Brakes

Category

Accessories

Accessories

Components

SRP

75.00

65.00

36.00

23.50

Quantity

20

33

16

Figure 6.8. A report sample.

Interviewing Users 147

If you don’t know what the abbreviation “SRP” represents, ask someone

to tell you what it means. A simple question such as this will often clar-

ify the issue:

“What do the letters ‘SRP’ represent in the ‘Current Product

Inventory’ report?”

As you compose descriptions for each of the samples, you might find it

difficult to write a description for a complex sample. A sample is complex

if it represents more than one subject. The sample in Figure 6.8, for ex-

ample, covers only one subject: products. The sample in Figure 6.9, how-

ever, covers at least three subjects: doctor services, nursing services, and

patients. You’ll often have to work a little harder to determine a complex

sample’s purpose and use. In some cases, you’ll have to use the subject-

identification technique to determine what subjects are represented

Eastside Medical Clinic
7743 Kingman Dr.
Seattle, WA 98032

(206) 555-9982

Patient Name: George Edelman
Patient ID: 10884

Visit Date: 05/16/96
Physician: Daniel Chavez

Doctors Services Service Code Fee

X

X

Consultation

EKG

Physical

Ultrasound

92883

92773

98377

97399

119.00

95.00

Nursing Services Service Code Fee

R.N. Exam

Supplies

Nurse Instruction

Insurance Report

89327

82372

88332

81368

Figure 6.9. An example of a complex report sample.

148 Chapter 6 Analyzing the Current Database

within the sample. Once you’ve identified the subjects, it will be easier for

you to clarify the function or functions of the sample. You can then com-

pose a description that gives a clear picture of the sample’s purpose.

Let’s say you’re working with the report sample shown in Figure 6.9 and

you have questions regarding the nursing services. You wonder whether

the organization is using this report as an indirect means of maintain-

ing a current list of nursing services. A question that elicits a yes or no

response from a participant is not going to help you much at all, so you

need to use an open-ended question that will elicit a more informative

response. You could begin your discussion of this sample with this

question:

“What nursing services do you provide besides those listed in

this sample?”

This type of question gives the participant an opportunity to provide you

with a detailed response; furthermore, you’ve given yourself the oppor-

tunity to ask follow-up questions as warranted by the participant’s re-

ply. To continue the example, say you receive the following answer:

“We provide various specialized services for the more complex

patient. You see only the general services on this report. How-

ever, I can show you a complete list of our services that

Katherine maintains on her computer.”

You can continue with the process of writing the sample’s description if

this reply clarifies the point in question and you now understand the

purpose of this report sample; otherwise, continue asking follow-up

questions until everything is explained to your satisfaction.

Reviewing Information Requirements

The final issue you’ll discuss with users concerns their information re-

quirements. The objectives of this discussion are to determine whether

Interviewing Users 149

individual users receive information based on data they don’t directly

control or maintain, to determine what types of additional information

they need, and to determine what types of information they can foresee

themselves needing in the future. You’ll use the information you gather

during this discussion later in the design process to help define and ver-

ify field and table structures. You can also use this information as yet

another way of determining whether you accidentally overlooked any-

thing during the previous discussions.

Current Information Requirements

Users typically receive the information they use through a variety of re-

ports. Therefore, the best way to begin this discussion is by reviewing

the report samples. This time around, though, you’re not so concerned

with how the reports are used as you are with the data upon which they

are based. It’s quite common that information on some of the reports a

user receives is based on data he does not personally create and main-

tain. In this situation, you must determine the origin of that data so

that you can identify all the data used by a user, whether he uses it di-

rectly or indirectly.

Select a report from the report samples and work with one of the partic-

ipants to determine what data is used to produce the report. Ask him if

he creates and maintains the data on which the report is based. You

can move on to the next sample if he answers yes, but you’ll need to

identify the origin of the data if he answers no. Here’s an example that

illustrates this process.

Say you have an assistant named Kendra who is beginning a discussion

with a participant named Joyce regarding the report sample shown in

Figure 6.10.

As Kendra begins the conversation, Joyce mentions that she works in

the telemarketing department. When Kendra first asks about the sample

150 Chapter 6 Analyzing the Current Database

report, Joyce indicates that she receives it every Monday morning. So

Kendra asks her the following question:

“Do you provide the data that’s used to generate this report?”

Her next course of action depends on Joyce’s response. Kendra can

move on to the next sample if Joyce’s answer is yes; however, it would

be a good idea for Kendra to ask a follow-up question to make certain

that Joyce’s answer is true.

“Do you personally enter and maintain this data on a daily

basis?”

If Joyce’s answer is still yes, Kendra can definitely move on to the next

sample.

On the other hand, if Joyce’s answer to the original question is no, Ken-

dra will need to ask a few follow-up questions. First, she’ll ask Joyce

whether she contributes any data to the report. If she does, Kendra will

then determine what data Joyce specifically submits. Then Kendra will

ask whether or not Joyce knows the source of the remaining data.

Last Purchase

05/21/96

03/19/96

05/16/96

04/12/96

Customer Type

Preferred

Silver

Preferred

Gold

Customer Name

Alastair Black

Dave Cunningham

Zachary Ehrlich

Frank Lerum

Phone Number

551-0993

533-9182

515-3921

552-3884

Customer Phone List

Figure 6.10. A sample report.

Interviewing Users 151

To continue the example, say Joyce’s reply to the original question is no

and that the following dialog takes place after her response:

KENDRA: “Can you tell me, then, if there is any data that you con-

tribute to the report at all?”

JOYCE: “I do supply the customer’s name and phone number.”

KENDRA: “Then you don’t supply the customer type or the last pur-

chase date. Is that correct?”

JOYCE: “Yes.”

KENDRA: “Can you tell me who provides this data?”

JOYCE: “I’m not really sure, but . . .”

KENDRA: “Do you have an idea of where these items come from?”

JOYCE: “As a matter of fact, I do. They come from the sales

department.”

KENDRA: “That sounds good to me. I’ll make a note of that on this

sample, and then we can move on to the next one.”

Note that as the dialog begins, Kendra first tries to determine whether

Joyce submits any data at all to the report. When Joyce reveals that she

contributes two of the items for the report, Kendra then poses a follow-

up question to verify that Joyce is not submitting any of the other data.

Finally, Kendra tries to identify the source of the remaining data by ask-

ing Joyce if she knows from where the data originates. In this case, it

takes only two well-phrased questions to find the answer. If Joyce could

not answer the last two questions, Kendra would need to continue her

investigation with other participants.

You’re sure to obtain all the information you need about your report

samples if your discussions progress in the same manner as the preced-

ing dialog. Remember: Follow-up questions are a crucial part of the con-

versation. You must phrase your questions properly to elicit the types of

responses you need from the participants.

152 Chapter 6 Analyzing the Current Database

Additional Information Requirements

The next subject of discussion is additional information requirements.

The objective here is to determine whether users require additional in-

formation that is not being delivered to them currently. If this is the

case, you must identify what additional information they require and

then define new data structures to support this extra information later

in the design process.

Start this conversation by directing the participants to review the re-

ports they currently receive. Ask them whether there is other informa-

tion they would like to see in their reports. Next, direct them to discuss

the additional information, which reports the information will affect,

and the reason they believe the information is necessary. Then deter-

mine whether the additional information represents new subjects or

new characteristics. If it does, identify each new item and add it to the

appropriate list. Finally, review the participants’ comments and deter-

mine whether there are further issues you need to discuss with them in

regard to the reports. Here’s an example that illustrates the process.

Say you’re beginning this discussion and you’ve just asked the partici-

pants to review the report samples they currently use. One of the partic-

ipants is reviewing the sample report shown in Figure 6.11.

Product ID

Current Product Inventory

Product Description Category SRP

9001 Shur-Lok U-Lock Accessories 75.00

Quantity

9002 SpeedRite Cyclecomputer 65.00 20

9003 SteelHead Microshell Helmet Accessories 36.00 33

9004 SureStop 133-MB Brakes Components 23.50 16

Figure 6.11. The sample report being reviewed by a participant.

Interviewing Users 153

You now instruct this particular participant to note the additional infor-

mation she would like to see on the reports and to provide a brief state-

ment indicating why the information is necessary. It doesn’t really

matter exactly how she makes the notations so long as they are clear

and attached to the report in an obvious manner. In this case, she de-

cides to use large sticky notes as a means of documenting her com-

ments. She’s specified two new fields she’d like to add to the report,

along with the reason for their inclusion. She’s also suggested possible

locations for the fields by writing their names on the report itself.

Figure 6.12 shows the sample report with her comments.

Next, determine whether there are new subjects or new characteristics

represented in the additional information. Examine each report and

apply the subject-identification technique and the characteristic-

identification technique to the comments attached to the report. Here’s

an example of how you apply these techniques to the first comment in

Figure 6.12:

“Can we include the vendor name? It would make it easier to

identify a specific product.”

Product ID

Current Product Inventory

Product Description Category SRP

9001 Shur-Lok U-Lock Accessories 75.00

Quantity

9002 SpeedRite Cyclecomputer 65.00 20

9003 SteelHead Microshell Helmet Accessories 36.00 33

9004 SureStop 133-MB Brakes Components 23.50 16

W
hol

esa
le

Cost

If
we c

ou
ld

see
 w

ho
les

ale

cos
t,

it
wou

ld
hel

p u
s

ca
lcu

lat
e m

ore
 ac

cu
ra
te

dis
cou

nts
.

Vend
or N

ame

Can
we in

clud
e th

e V
end

or

nam
e? I

t would
 make

 it

easi
er t

o id
enti

fy a
 spe

cific

prod
uct

Figure 6.12. A report sample with a participant’s comments.

154 Chapter 6 Analyzing the Current Database

Here you’ve identified both a subject and a characteristic. (Note that the

subject and characteristic aren’t directly related: “vendor name” is a

characteristic of a vendor, not of a product. There’s no problem here,

but you should be aware that this apparent mismatch of subjects and

characteristics is typical. You’ll address this issue later in the design

process.) Now, check your subjects list and characteristics list to deter-

mine whether you’ve already accounted for these items. If you have,

move on to the next comment and repeat this procedure.

If you do discover a new subject, add it to your list of subjects and then

identify as many of its characteristics as possible. When you’re finished,

add these items to your list of characteristics, move on to the next com-

ment, and repeat the entire procedure. In many instances, however,

you’ll only identify new characteristics. Don’t be alarmed. People often

want to add items to a report that are characteristics of subjects that

are already represented by the information on the report.

Finally, re-examine each report and determine if you have questions or

concerns about the notes participants have made. For instance, you

may question the rationale behind one participant’s belief that specific

fields are necessary on a given report. Or you might wonder why an-

other participant wants to exclude certain fields from one of his reports.

You definitely want to make sure that the fields he wants to exclude are

truly unnecessary and that removing them will not have an adverse ef-

fect on the information the report provides to other people. In either

case, the inclusion or exclusion of fields will affect the final database

structure.

If a report has one or more remarks that are cause for concern, review it

with the appropriate participant and settle as many of the issues as you

can. You can usually resolve all your concerns with a few simple ques-

tions, but in some cases the resolution to certain issues will not become

apparent until later in the design process. For example, you might have

noticed that certain fields appear on two or more reports. It’s difficult to

Interviewing Users 155

determine if the fields are being unnecessarily duplicated until you be-

gin to define the field and table structures. When you encounter an is-

sue that is difficult to resolve at the present time, make a note of it and

put the report aside for later review.

Future Information Requirements

The last subject of discussion concerns future information require-

ments. Your objective here is to identify the information that the partic-

ipants believe will be necessary for them to receive as the organization

evolves. Once you identify these future information requirements, you

can ensure that you define the data structures necessary to support

that information.

You first need to make sure that every participant has some idea of how

the organization is evolving. The nature of the organization’s evolution

will determine what new information participants will require. If several

people are unacquainted with these issues, you’ll need to obtain this in-

formation from management and then relay it to the participants prior

to the discussion. Once everyone is familiar with these matters, you can

begin the conversation.

Start the discussion by directing the participants to think about the fu-

ture evolution of the organization and how it may affect the work they

do on a daily basis. You’ll often find that some participants are going to

have a difficult time envisioning this scenario. When this happens, use

questions such as these to help them focus their thoughts:

How will the organization’s evolution affect the amount of infor-

mation you’ll need to do your job?

Do you think you’ll need additional types of information to carry

out your duties effectively as the organization evolves?

156 Chapter 6 Analyzing the Current Database

How will the evolution of the organization increase the time you

spend on your daily tasks?

Can you predict what types (categories, not specific items) of

new information you’ll need in order to carry out your duties as

the organization evolves?

Do you anticipate a need for new information if your duties are

increased as a result of the organization’s evolution?

Keep in mind that most of the participants’ answers will be based on

speculation. There’s no accurate way for them to predict what types of

information they’ll really need until the organization’s evolution occurs.

However, if you can anticipate their hypothetical information require-

ments, you can prepare for them by defining the necessary data struc-

tures in advance.

As the participants respond, use the subject-identification technique to

identify brand-new subjects and then add them to your list of subjects.

Then use the characteristic-identification technique to uncover new de-

tails concerning existing or new subjects and add them to your list of

characteristics.

You can sketch ideas for new reports or data-entry forms to help partic-

ipants visualize the types of information they may need in the future.

These sketches can then help you identify new subjects or characteris-

tics that the database structure needs to address. If you create several

rough drawings of sample reports, be sure to assemble them in a sepa-

rate, clearly marked folder. Then code each revision so that you can

compare it with earlier revisions. Figure 6.13 shows an example of a

preliminary design for a future report.

Continue the conversation with users until you’re satisfied that you’ve

accounted for as many of the participants’ future information require-

Interviewing Management 157

ments as possible. When you’ve completed the discussion, you’re ready

to conduct interviews with management.

Interviewing Management

The second part of the interview process involves interviewing manage-

ment personnel. This round of interviews focuses on these issues:

1. The types of information managers currently receive

2. The types of additional information they need to receive

❖ Note You can use all of the techniques you learned in this sec-

tion for the management interviews as well. Therefore, the next

section is somewhat shorter and more concise.

1st Quarter Customer Sales Statistics

Customer ID

9001

9002

9003

9004

Customer Name

Stewart Jameson

Shannon McLain

Estela Pundt

Timothy Ennis

Maximum Minimum Average

Sales Amounts

23.00

125.00

35.00

20.00

55.00

70.00

36.00

25.00

265.00

550.00

250.00

325.00

Figure 6.13. An example of a design for a new report.

158 Chapter 6 Analyzing the Current Database

3. The types of information they foresee themselves needing

4. Their perception of the organization’s overall information

requirements

Reviewing Current Information Requirements

Your objectives during the first part of this interview are to identify the

information that management routinely receives and to determine

whether it receives reports that are not represented in your group of re-

port samples.

As you begin the interview, ask each participant about the work he per-

forms and the responsibilities associated with his position. A manager

typically has a number of issues on his mind, so these questions will help

him focus his attention on the matters at hand. His answers will give you

some idea of how he might use the information on the reports he receives

and will provide you with a perspective on his need for that information.

Next, ask each participant if he uses any of the reports in your collection

of report samples. Proceed with the next step if he says he doesn’t use

any of the reports; otherwise, examine each report and ask him to help

you identify other subjects that you might have previously overlooked.

Use the subject-identification technique as necessary to aid you in this

process. If the manager identifies a new subject, add it to your list of sub-

jects and use the characteristic-identification technique to determine the

subject’s characteristics. Then add the new characteristics to your list of

characteristics. Repeat this entire procedure for each sample report.

❖ Note Throughout the remainder of the book, I use the term

management to refer to the person or persons controlling or

directing the organization.

Interviewing Management 159

Continue the discussion by asking each participant whether he receives

reports that are not represented in your report samples. If he answers

yes, obtain a sample of each new report and review it with the partici-

pant. Use the subject-identification technique and the characteristic-

identification technique to identify the subjects (and their associated

characteristics) represented within the report and then add the subjects

and characteristics to their respective lists. Finally, attach a description

to the report and add it to your collection of report samples. Repeat this

procedure until you’ve accounted for every new report.

Reviewing Additional Information Requirements

The next subject of discussion concerns management’s need for addi-

tional information. Your objective is to determine whether it requires

supplemental information that is currently missing from the reports it

receives. If you conclude that this is the case, you must identify that ad-

ditional information. You’ll then define new data structures (as appro-

priate) to support this information later in the design process. However,

you can move on to the next part of the interview if management doesn’t

require additional information.

You use the same techniques for this discussion as those you used for

this segment of the user interviews. Here are the steps you’ll follow:

1. Review the report samples with the participants once again and

ask them if there is additional information they would like to

include in any of the reports.

2. Have the participants note the additional information—including

the reasons that they believe it’s necessary—on the appropriate

reports. Remember that it doesn’t matter how the participants

make the notations so long as they are clear, noticeable, and are

attached to the appropriate report.

160 Chapter 6 Analyzing the Current Database

3. Identify new subjects or characteristics within the information

and add them to the appropriate list.

4. Review the reports and discuss any concerns you have about

them with the participants. Once your concerns are resolved, this

process is complete.

Reviewing Future Information Requirements

Future information requirements are the next subject of discussion.

Your objective here is to determine what information management fore-

sees itself needing in the future. Once you’ve identified these require-

ments, you can ensure that there are data structures in place to support

this information as the need for it arises.

As you begin the discussion, have the participants consider how the or-

ganization is currently evolving. Then ask them how this evolution will

affect the information they require to make sound decisions and how it

will influence the way they guide or direct the organization. Remember

that their answers are going to be based on speculation, as was the case

with the similar questions you asked users; there’s no way for manage-

ment to predict its future needs accurately until the organization actu-

ally begins to evolve. (It’s always a good idea, however, to plan for the

future as much as possible.) Use the subject-identification technique

and characteristic-identification technique to identify new subjects and

characteristics within the participants’ responses and then add the new

items (if any) to the appropriate lists.

Next, make sketches of any new reports the participants might have in

mind. Identify new subjects and characteristics within each report and

add them to the appropriate lists. Then assemble these new reports in a

clearly marked folder and add it to your collection of samples.

Interviewing Management 161

You’re ready to move on to the last subject when you’ve accounted for as

many of management’s future information requirements as possible.

Reviewing Overall Information Requirements

The last topic of discussion concerns the organization’s overall informa-

tion requirements. In management’s opinion, what generic class of in-

formation does the organization need? Your objective here is to discover

whether there is data that the organization needs to maintain that has

not been previously discussed in either the user interviews or the man-

agement interviews. If you determine that there is such data, you must

account for it in the database structure.

Take all of the reports that you’ve gathered throughout the analysis

and interview processes and review them with the participants once

more. Then ask the participants to consider the information the reports

provide and how they might use that information. (Note that they’ll

have to make assumptions about how they might use the information

from the new reports.) Next, ask participants to determine whether

there is information that would be useful or valuable to the organiza-

tion, but that is not currently being received by anyone within the orga-

nization. If they determine that there is indeed some new information

that the organization could use, go through the normal process of iden-

tifying that information and the subjects and characteristics repre-

sented within it. Sketch samples of new reports for the information,

as appropriate, and add the samples to your existing collection of new

reports.

For example, assume that one of the participants has identified a need

for demographic information; she believes that it would help the organi-

zation identify a more specific target market for its product. None of the

existing reports furnishes this information, so you identify exactly what

162 Chapter 6 Analyzing the Current Database

she needs by working with her to create a sketch of a report that will

present this information. (She might actually sketch more than one re-

port, but this is neither a problem nor a cause for your concern.) You

then use the appropriate techniques to identify and note the subjects

and characteristics represented within the report and add it to your ex-

isting collection of new reports. Later in the design process, you’ll define

the data structures necessary to support the new information.

Repeat this procedure until the participants can no longer identify any

further information that the organization might find useful or valuable.

After you’re reasonably confident that you’ve accounted for all of the or-

ganization’s information requirements, suspend the interview process

and begin the process of compiling the preliminary field list.

It’s important for you to understand that you may have to revisit this

process, even though you and the participants may believe that you’ve

accounted for all the information the organization could possibly use.

You’ll commonly identify new information as the database-design pro-

cess unfolds.

Compiling a Complete List of Fields

The Preliminary Field List

Now that you have completed your analysis of the current database and

the interviews with users and management, you can create a preliminary

field list. This list represents the organization’s fundamental data re-

quirements and constitutes the core set of fields that you’ll define in the

database. You create the preliminary field list using a two-step process.

Step One: Review and Refine the List of Characteristics

The first step involves reviewing and refining the list of characteristics

you compiled throughout the analysis and interview process. As you

Compiling a Complete List of Fields 163

learned in Chapter 3, a field represents a characteristic of a particular

subject; therefore, each item on your list of characteristics will be-

come a field. Before you transform those characteristics into fields,

however, you first need to review the list to identify and remove dupli-

cate characteristics.

During the interviews, you identified various characteristics within each

participant’s responses, compiling them into a list as the interview pro-

gressed. There were probably times when you mistakenly added the

same characteristic to the list more than once, or unknowingly referred

to the same characteristic by two or more different names. As a result,

your list of characteristics requires some refinement.

Refining Items with the Same Name

Begin refining your list of characteristics by looking for items with the

same name. When you find one or more occurrences of a particular

name, determine whether they all represent the same characteristic.

Remove all but one occurrence of the name from the list if they do rep-

resent the same characteristic; otherwise, determine what each in-

stance of the name represents. You’ll often find that a duplicate name

represents the same type of characteristic as its original counterpart,

but should be associated with a different subject than its counterpart.

In this case, you rename the duplicate to reflect how it relates to the ap-

propriate subject.

Assume, for example, that the item “Name” appears three times on your

list of characteristics. Your first inclination will probably be to remove

two of the occurrences because your current objective is to eliminate

duplicate characteristics. However, you should determine whether each

instance of “Name” represents a distinct characteristic before you re-

move it. You can easily make this determination by examining your in-

terview notes; this will help you remember when and why you added the

item to the list.

164 Chapter 6 Analyzing the Current Database

After careful examination, you discover that the first occurrence of

“Name” represents a characteristic of the subject “Clients,” the second, a

characteristic of the subject “Employees,” and the third, a characteristic

of the subject “Contacts.” You resolve this duplication by renaming each

occurrence of “Name” (using the subject as a prefix) to reflect its true

meaning. Now you’ll have three new characteristics called “Client Name,”

“Employee Name,” and “Contact Name.”

Items similar to “Name” commonly appear on a list of characteristics,

and you must address them in the same manner. You’ll commonly see

one or more occurrences of items such as “Address,” “City,” “State,” “Zip

Code,” and “Phone Number,” and you can refer to them collectively as

generic items. The point here is that you must rename each instance of

a generic item to reflect its true relationship to a particular subject,

thus ensuring that you have as accurate a field list as possible.

Refining Items Representing the Same Characteristic

Now look for items that represent the same characteristic and remove

all but one. The idea here is that a given characteristic should appear

only once in the list of characteristics. For example, assume that “Prod-

uct #,” “Product No.,” and “Product Number” appear on your list of

characteristics. It’s evident that these items all represent the same

characteristic, and you need only one of them on your list. Choose the

one that conveys the intended meaning clearly, completely, and unam-

biguously and remove the remaining items from the list of characteris-

tics. (In this case, the best choice is “Product Number” because it fulfills

the previous criteria.)

Ensuring Items Represent Characteristics

Finally, make sure that each item on your list represents a characteristic.

It’s easy to place items accidentally on the list that represents subjects.

You can test each item by asking yourself questions such as these:

Compiling a Complete List of Fields 165

Can this word be used to describe something?

Does this word represent a component, detail, or piece of some-

thing in particular?

Does this word represent a collection of things?

Does this word represent something that can be broken down

into smaller pieces?

Depending on the item you’re working with, some questions are easier

to answer than others. When you find that an item represents a subject

rather than a characteristic, remove it from the list of characteristics

and add it to the list of subjects. Be sure to identify the new subject’s

characteristics and add them to the existing list of characteristics.

For example, say “Item” appears on your list of characteristics, and

you’re not quite sure whether it represents a characteristic or a subject.

Use the questions above to help you make a determination.

Can “Item” be used to describe something?

Does “Item” represent a component, detail, or piece of something

in particular?

You could make a case that “Item” helps to describe a sale inasmuch as

it identifies what a customer purchased. On the other hand, you could

also say that “Item” isn’t a characteristic because it doesn’t represent a

singular aspect of a sale. “Date Sold,” for example, represents a singular

characteristic of a sale. Leaving the quandary surrounding these ques-

tions unresolved, you go on to the next question.

Does “Item” represent a collection of things?

You can answer this question easily by looking at the plural form of the

word, which in this case is “Items.” If “Items” can be referred to as a

166 Chapter 6 Analyzing the Current Database

collection, it is a subject. It’s beginning to become clear that “Item”

does represent a collection of some sort, and you can make a final de-

termination by asking yourself the last question:

Does “Items” represent something that can be broken down into

smaller pieces?

You can answer this question by determining whether you can identify

any characteristics for “Items.” If you can, then “Items” definitely rep-

resents a subject and you should move it to the list of subjects. You

also need to identify its characteristics and add them to your list of

characteristics.

Continue with this procedure until you’ve reviewed and refined the en-

tire list of characteristics to your satisfaction. When you are through,

you have your first version of the preliminary field list. Now you’ll add

new items to it and refine it further during the next step.

Step Two: Determine Whether There Are New Characteristics

in Any of Your Samples

This step involves an examination of all the samples you gathered

throughout the analysis process. Your goal is to determine whether

there are characteristics on the samples that need to be added to the

preliminary field list.

Begin this step by highlighting every characteristic you find on each

sample. Then, examine each characteristic and determine whether it’s

already on the preliminary field list; cross it out on the sample if it’s al-

ready on the list. Next, study the remaining characteristics and deter-

mine whether any of them has the same meaning as an existing field; if

it does, cross it out on the sample. (Use the same procedure you used in

the first step to make this determination.) Finally, add any highlighted

characteristics remaining on the samples to the preliminary field list.

Compiling a Complete List of Fields 167

For example, say you’re working with the data-collection sample shown

in Figure 6.14.

Highlight each characteristic you find on the sample, as shown in Fig-

ure 6.15.

You’re likely to find multiple occurrences of various characteristics in

some of the samples. As you can see, both “Name” and “Phone No.” ap-

pear twice on this particular sample. You can cross out the duplicates in

this case because they have the same meaning as the original instances.

To continue with the example, say you reviewed the preliminary field list

and found that every characteristic on the sample is already on the list

with the exception of “Name” and “Phone No.” Cross out the existing

items on the sample to show that you have accounted for them. Before

Mike's Bike Shop

File Edit View Insert Format Records Tools Window Help

Edit< Back Next > Save

Supplier Information

Company:

Address:

City:

State: Zip:

Acme Power Tools

TX 79925

635 Montana Ave

El Paso 598-4455

598-5715

Active

Office Phone:

FAX Number:

Status:

Contacts

Name: George Barlett

Name:

532-9228Phone No.:

Phone No.:

Figure 6.14. An example of a data-collection sample.

168 Chapter 6 Analyzing the Current Database

you add “Name” and “Phone No.” to the preliminary field list, however,

make sure that the names of these items properly describe their rela-

tionship to the subject represented within the sample. In this case, the

two remaining items represent characteristics of a group of people

known as “Contacts.” Therefore, you rename these characteristics (us-

ing the subject as a prefix) as “Contact Name” and “Contact Phone

Number,” and then add them to the preliminary field list. Repeat this

procedure for each sample you’ve gathered until you’ve gone through all

the samples you’ve collected. When you’re through, you have the second

version of the preliminary field list.

A Side Note: Value Lists

As you examine the characteristics on a database, spreadsheet, or Web

page sample, record on a sheet of paper the name of each characteristic

that incorporates a value list (also known as an enumerated list). This

list specifies the acceptable range of values for a particular characteris-

Mike's Bike Shop

File Edit View Insert Format Records Tools Window Help

Edit< Back Next > Save

Supplier Information

Company:

Address:

City:

State: Zip:

Acme Power Tools

TX 79925

635 Montana Ave

El Paso 598-4455

598-5715

Active

Office Phone:

FAX Number:

Status:

Contacts

Name: George Barlett

Name:

532-9228Phone No.:

Phone No.:

Figure 6.15. A sample with highlighted characteristics

Compiling a Complete List of Fields 169

tic and often enforces a given business rule. (You’ll learn about business

rules in Chapter 11.) For example, say you work for a manufacturing

company that uses four specific vendors to deliver its goods to custom-

ers across the nation. You could use a value list to ensure that a user

selects one of those four vendors to ship a particular order. Figure 6.16

illustrates this example (note SHIP VIA) and also shows two common

types of value list.

When you record the name of a characteristic that incorporates a value

list, also record the values within the list. If the list contains a large

number of values, write a brief description of the type of values in the

list and (if possible) a minimum and maximum value; otherwise, write

down each of the values. Figure 6.17 shows an example of the record

you’re creating.

Mike's Bike Shop

File Edit View Insert Format Records Tools Window Help

Edit< Back Next > Save

Sales Order Information

Order #:

Order Date:

Ship Date:

Sales Rep:

May 16, 2002

May 20, 2002

Processing

Ship Via:

Status:901225

Airborne

DHL

FedEx

UPSHernandez, Mike

Hernandez, Mike
Howard, Ed
Hughes, Mark
Jamison, Jonah
Jordan, Mark

Hernandez, Mike

Figure 6.16. A database screen with two value lists.

A value list can appear
as a drop-down list or
scrollable list.

A value list can also
appear as a set of
buttons or check boxes

170 Chapter 6 Analyzing the Current Database

You can be discerning about the characteristics you choose to record.

For example, it’s unnecessary for you to record characteristics that ac-

cept simple or obvious sets of values, such as “yes/no,” “true/false,” or

“active/inactive.” Instead, you should record characteristics that accept

distinct, specific sets of values.

Set this sheet (or sheets) aside after you’ve finished recording the appro-

priate characteristics. You’ll refer to this sheet when you define field

specifications for the fields in the database and again when you define

business rules.

The Calculated-Field List

There’s one final refinement you must make to the preliminary field

list before you can consider it complete: You must remove every calcu-

lated field and place it on a separate list. This new list becomes your

Characteristics Incorporating a Value List

Characteristic

Sales Rep The name of every employee within the

organization whose position is that of a sales rep.

Value List

Ship Via Airborne, DHL, FedEx, UPS

Category Accessories, Bikes, Clothing, Components,

Maintenance, Racks, Wheels

Department Accessories, Bikes, Clothing, Service,

Figure 6.17. Recording characteristics that incorporate value lists.

Compiling a Complete List of Fields 171

calculated-field list. Recall from Chapter 3 that a calculated field is one

that stores the result of a string concatenation or mathematical expres-

sion as its value. You list calculated fields separately because you’ll use

them in a specific manner later in the design process.

You build the calculated-field list using existing fields from the prelimi-

nary field list. Examine the preliminary field list and determine whether

there are fields that fit the description of a calculated field. Fields that

have names containing words such as “amount,” “total,” “sum,” “aver-

age,” “minimum,” “maximum,” and “count” are likely candidates for the

calculated-field list. Common names for calculated fields include “Sub-

total,” “Average Age,” “Discount Amount,” and “Customer Count.” As

you identify each calculated field, remove it from the preliminary field

list and place it on the calculated-field list. When you’ve completed your

examination of all of the fields in the preliminary field list, you’ll have

two completely new lists: a third version of the preliminary field list and

a calculated-field list.

Reviewing Both Lists with Users and Management

Conduct brief interviews with users and management to review the items

that appear on the preliminary field list and the calculated-field list. Your

objective here is to determine whether there are fields that have been

omitted from either list. You can continue with the next step in the design

process when everyone is satisfied that the lists are complete; otherwise,

identify the fields that are missing and add them to the appropriate list.

Once the interviews are complete, you’ll have a “final” version of each list.

Be sure you conduct these interviews because the participants’ feed-

back provides you with a means of verifying the fields on both lists. Let

me remind you once again to avoid becoming too invested in the idea

that these lists are absolutely complete and final. At this point you still

may not have identified every field that needs to be included in the data-

base—inadvertently, you’re almost sure to miss a few fields—but if you

172 Chapter 6 Analyzing the Current Database

strive to make your lists as complete as you can, the inevitable addi-

tions or deletions will be quick and easy to make.

You’ve already defined the mission statement and mission objectives for

Mike’s new database. Now it’s time to perform an analysis, conduct in-

terviews, and compile a preliminary field list.

First, analyze Mike’s current database. As you already know, he keeps

most of his data on paper; the only exception is the product inventory

he maintains in a spreadsheet program. Gather samples of the various

papers Mike uses to collect data and a screen shot or printout of the

spreadsheet he uses to maintain the product inventory. Assemble these

samples together in a folder for later use. For example, Figure 6.18

shows a sample of the index cards Mike uses to collect customer infor-

mation, along with a screen shot of his spreadsheet program.

Next, identify the methods Mike uses to present information. He and his

staff currently produce a variety of reports that present the information

they need to conduct their daily affairs. They generate most of the re-

ports using an old typewriter and the rest using a word-processing pro-

gram on the computer. Gather samples of all the reports and place them

in a folder for later use. Figure 6.19 shows a sample report that Mike

creates with his typewriter.

Now you’re ready to interview Mike’s staff. Here are some points to re-

member as you’re conducting the interviews:

1. Identify the types of data staff members are using and how they

use that data. Be sure to use the subject-identification technique

and the characteristic-identification technique to help you ana-

lyze responses and formulate follow-up questions.

CASE STUDY

Case Study 173

2. Review all the samples you gathered during the beginning of the

analysis process. Determine how each sample is used, write an

appropriate description, and attach the description to the sample.

3. Identify the staff’s information requirements. Determine what

information they’re currently using, what additional information

they need (remember to use the samples), and what kind of infor-

mation they believe they’ll need as the business evolves.

Steven Pundt 363-9755

Apartment 2B

2380 Redbird Lane

Seattle, WA 98115

He’s primarily interested in mountain bike stuff.

Keep him abreast of the summer bike tours.

Mike's Bike Shop - Product Information

File Edit View Insert Format Tools Data Window Help

Product Description

Shur-Lok U-Lock

SpeedRite Cyclecomputer

SteelHead Microshell Helmet

SureStop 133-MB Brakes

Diablo ATM Mountain Bike

UltraVision Helmet Mount Mirrors

SRP

75.00

65.00

36.00

23.50

1,200.00

7.45

Product ID

9001

9002

9003

9004

9005

9006

1

2

3

4

5

6

7

B C D EA

Qty On Hand

20

33

16

10

Category

Accessories

Accessories

Components

Bikes

Figure 6.18. A paper-based and a computer-generated sample from Mike’s Bikes.

174 Chapter 6 Analyzing the Current Database

During the interview, one of the employees wonders whether she can

add a new field to the supplier phone list report. How do you respond?

You hand her the report and ask her to attach a note indicating the

name of the new field and a brief explanation of why she believes it’s

necessary. When she’s finished, return the sample to the report sam-

ples folder. Figure 6.20 shows the report sample with the attached note.

Company Name

ACME Cycle Supplies

B & M Bike Supplies

CycleWorks

Evanstone's Cycle Warehouse

Contact Name

George Chavez

Carol Ortner

Julia Black

Allan Davis

Phone Number

633-9910

527-3817

527-0019

636-9360

Supplier Phone List

Figure 6.19. A report sample from Mike’s Bikes.

Supplier Phone List

Company Name

ACME Cycle Supplies

B & M Bike Supplies

CycleWorks

Evanstone's Cycle Warehouse

Contact Name

George Chavez

Carol Ortner

Julia Black

Allan Davis

Phone Number

633-9910

527-3817

527-0019

636-9360

Can we include fax number?

We can process special

orders more quickly via fax.

Figure 6.20. A report sample with attached note suggesting a new field.

Case Study 175

You’ll conduct the final interview with Mike. Keep the following points in

mind as you speak with him:

1. Identify the reports he currently receives; you need to know what

kind of information he uses to make business decisions. If he

receives reports that are not represented in your group of report

samples, obtain a sample of each report and add it to the group,

updating the subject and characteristic lists as needed.

2. Review the group of report samples with him and determine

whether he can identify subjects or characteristics that have been

overlooked by his staff. Use the appropriate techniques to identify

these items and then add them to the appropriate list.

3. Determine whether there is any additional information Mike needs

to supplement the information he currently receives.

4. Determine what types of information Mike will need as the busi-

ness evolves.

As you and Mike discuss his future information needs, he indicates that

there is some new information he’d like to receive once the business re-

ally gets rolling: He’d like to see total bike sales by manufacturer. He be-

lieves this information would help him determine which bikes should

be consistently well stocked. Such a report does not currently exist,

so have Mike sketch it out on a sheet of paper. Next, identify the sub-

jects and characteristics represented within the report and add them

to the appropriate list. Then add the new report to your group of re-

port samples. Figure 6.21 shows the sketch of Mike’s new report.

Your analysis is now complete. You’ve interviewed Mike and his staff,

you’ve gathered all the relevant samples, and you’ve created a list of

subjects and a list of characteristics. A partial list of subjects and char-

acteristics is shown in Figure 6.22. All you need to do now is to create

your preliminary field list.

176 Chapter 6 Analyzing the Current Database

As you already know, you need to refine the list of characteristics before

it can become the first version of the preliminary field list. Remove all

duplicate characteristics, delete items that represent the same charac-

teristic, and refine those items that have generic names. (Remember the

problem with the characteristic called “Name”? If you find such charac-

teristics, now is the time to resolve them.) Next, review all your samples

Bike Sales Summary

Company Name

Altair Bicycles

Bandido Bikes

Bike Model

ATB 600-A

Cruiser 500

Baja Delight

Diablo Rojo

Total Units Sold

12

7

16

9

Figure 6.21. The sketch of Mike’s new report.

List of Characteristics
as of 06/15/02

Address Home Phone

Birth Date Last Name

Category Name

City Phone

Comments Product No.

First Name State

List of Subjects
as of 06/15/02

Customers Sales

Employees Suppliers

Products

Figure 6.22. Partial lists of subjects and characteristics for Mike’s Bikes.

Summary 177

and determine whether they contain characteristics that do not cur-

rently appear on the preliminary field list. Add to the list any new char-

acteristics that you find. When you complete these tasks, you have the

first version of your preliminary field list.

Now you remove all the calculated fields from the preliminary field list

and place them on their own list; this becomes your new calculated-field

list. Figure 6.23 shows a small portion of your final preliminary field list

and calculated-field list.

Summary

This chapter begins by discussing why you should analyze the organiza-

tion’s current database. You learned that the analysis helps you identify

❖ Note You may have noticed that each list includes a date in

the title. It’s a good idea to date your lists so that you can main-

tain a clear history of their development.

Preliminary Field List
as of 07/05/02

Office PhoneBirth Date

Unit PriceEmployee City

CategoryEmployee Address

Product NameEmployee Name

Invoice NumberCustomer Name

Invoice DateCustomer Address

Calculated Field List

as of 07/05/02

Discount Amount

Grand Total

Item Total

Subtotal

Figure 6.23. A partial preliminary field list and a calculated-field list.

178 Chapter 6 Analyzing the Current Database

aspects of the current database that will be useful to you when you de-

sign the new database. Armed with this information, you can design a

database that best suits the organization’s needs. Next, we briefly

looked at the two types of databases organizations commonly used:

paper-based databases and legacy databases. We ended this discussion

by identifying the three steps used in the analysis process: reviewing the

way data is collected, reviewing the way information is presented, and

conducting interviews with the organization’s staff.

The chapter continues with a discussion of the review process. You

learned how to review the ways the organization collects its data and

how to assemble a set of data-collection samples. Then you learned how

to review the ways the organization presents information and how to as-

semble a set of report samples.

Next, we discussed the process you use to conduct interviews, and you

learned why interviews are useful at this stage of the design process.

During this discussion you learned two techniques that are crucial to

the success of interviews: the subject-identification technique and the

characteristic-identification technique.

Conducting user interviews was the next subject of discussion. We ex-

amined the four issues you must address during these interviews, along

with the techniques you use to address them. Next, we discussed con-

ducting management interviews. Here you learned about the issues and

techniques these interviews incorporate.

Finally, we discussed the process of compiling a list of fields based on

the list of characteristics and the characteristics that appear in the

samples. You learned that you decompose the field list into two separate

lists: a preliminary field list and a calculated-field list. The preliminary

field list enumerates the organization’s fundamental data requirements

and establishes the core set of fields you must define in the database.

The calculated-field list consists of fields that contain values resulting

from string concatenations or mathematical expressions.

Review Questions 179

Review Questions

1. State two goals of analyzing the current database.

2. True or False: You can adopt the current database structure as

the basis for the new structure.

3. What is a legacy database?

4. State two steps of the analysis process.

5. Which types of computer software programs should you review

during the analysis?

6. Why should you conduct interviews after you gather data-collection

and information-presentation samples?

7. How do you use “open” and “closed” questions?

8. What is the subject-identification technique?

9. How do you identify specific attributes for a particular subject?

10. True or False: You should interview users and management at the

same time.

11. What three basic types of information requirements must you

identify?

12. What is the preliminary field list?

13. State why each item on this list should have a unique name.

14. What is a value list?

15. What are calculated fields? What (if anything) should you do

about them?

This page intentionally left blank

181

7
Establishing Table Structures

It is a capital mistake to theorize

before one has data.

—SHERLOCK HOLMES,
THE ADVENTURES OF SHERLOCK HOLMES

Topics Covered in This Chapter

Defining the Preliminary Table List

Defining the Final Table List

Associating Fields with Each Table

Refining the Fields

Refining the Table Structures

Case Study

Summary

Review Questions

Organizations use databases to keep track of various subjects that are

important to them. For example, a medical clinic keeps track of, among

other things, its patients, doctors, and appointments; an equipment-

rental business must maintain data on its customers, equipment, and

rental agreements; and a registrar’s office is concerned (at the very

least) with students, teaching staff, and courses. In every case—and in

any other scenario you can imagine—a table within the database repre-

sents each subject. Furthermore, each table is composed of fields,

which represent the characteristics that define or describe the subject

182 Chapter 7 Establishing Table Structures

of the table. Tables constitute the very foundation of the database, and

they guarantee a solid and sound foundation when they are properly

designed.

Defining the Preliminary Table List

During this portion of the database-design process, you’ll define a pre-

liminary table list that you’ll use to identify and establish the tables for

the new database. You’ll use three procedures to develop this list. The

first involves using the preliminary field list, the second involves using

the list of subjects you gathered during the interviewing process, and

the third involves using the mission objectives you defined at the begin-

ning of the database-design process. You’ll then move on to build the

structure of each table using fields from the preliminary field list.

Identifying Implied Subjects

The process of defining the tables for the database begins with a review

of the preliminary field list. Your objective is to identify subjects that are

implied by the fields on the list.

You may wonder why you’re reviewing the preliminary field list instead

of starting with the list of subjects. The list of subjects does seem to be a

more intuitive place to start. After all, you’ve carefully built this list dur-

ing the interview process, and you’ve been influenced by the conversa-

tions you’ve had with the users and management. Surely, all of this has

helped you identify every subject that needs to be represented in the da-

tabase. You may be correct, but you could have a minor problem if

you’re wrong: missing tables.

Studying the fields on the primary field list helps you identify subjects

from an unbiased viewpoint—you’re letting the fields “talk” to you. It’s

crucial that you now look at this list as objectively as possible—as

Defining the Preliminary Table List 183

though you’ve never seen it before—without any of the biases you’ve as-

similated during the interview process. This enables you to see how cer-

tain groups of fields suggest specific subjects, some of which may not

have been identified during the interview process. You can also use the

preliminary field list to verify many of the subjects on the list of sub-

jects. Using the preliminary field list in these ways allows you to cross-

check your previous work and helps you ensure that the new database

structure includes all of the necessary subjects.

As you review the preliminary field list, ask yourself whether a certain

set of fields defines or describes a particular subject. Move on to an-

other set of fields if nothing readily comes to mind. When you can infer

a subject from the field in the list, enter that subject on a new prelimi-

nary table list. Figure 7.1 shows a partial sample of a preliminary field

list and illustrates how a subject can be suggested by a set of fields.

Figure 7.1. Using the preliminary field list to identify subjects.

Preliminary Field List

Phone Extension

Status

Student First Name

Student Last Name

Home Phone

Address

City

State

Course Code

Course Name

Course Description

Lab Fee

Faculty First Name

Faculty Last Name

Date Hired

Phone Extension

These fields

suggest

“Courses.”

These fields

suggest

“Faculty.”

These fields

suggest

“Students.”

184 Chapter 7 Establishing Table Structures

Continue your review until you’ve scanned all the fields and identified

as many subjects as possible. Be sure to add each subject you identify

to the preliminary table list. This list will grow as you work with the list

of subjects and mission objectives. Figure 7.2 shows an example of the

first version of a preliminary table list.

Using the List of Subjects

Now, create a second version of the preliminary table list by merging the

list of subjects (created during the interviews with users and manage-

ment) with the first version of the preliminary table list (compiled by

studying the preliminary field list). This new version contains a more com-

plete list of tables. Merging the two lists is a three-step process, which in-

volves resolving duplicate items, resolving items that represent the same

subject, and combining the remaining items together into one list.

Step One: Resolve Duplicate Items

Start this step by reviewing and crosschecking each item on the list of

subjects against the items on the preliminary table list. Your objective

here is to identify duplicate items, which are items on the list of subjects

Figure 7.2. The first version of the preliminary table list.

Preliminary Table List

Courses

Faculty

Labs

Students

Classrooms

Defining the Preliminary Table List 185

that already appear on the preliminary table list. You must be very care-

ful how you resolve the duplicate items that you find. Begin by deter-

mining whether the items represent different subjects, despite the fact

that they share the same name. (Use your interview notes as necessary

to help you make the determination.) If they do represent different sub-

jects, rename each item so that it accurately identifies the subject it

represents and then add both items to the preliminary table list; other-

wise, determine whether they truly represent the same subject. When

you determine that both items do represent the same subject, cross out

the item on the list of subjects and keep the one that appears on the

preliminary table list. Then resume the review until you’ve examined all

of the items on both the list of subjects and the preliminary table list.

Let’s take a look at an example of this process.

Assume that you’re developing a database for an equipment rental busi-

ness, and you’re working with the list of subjects and the preliminary

table list shown in Figure 7.3.

As you review these lists, you discover two duplicate items: “Equipment”

and “Rental Agreements.” These items warrant further examination, so

Figure 7.3. The list of subjects and the preliminary table list for an equipment
rental business.

Preliminary Table ListList of Subjects

Clients

Equipment

Rental Agreements

Services

Employees

Customers

Rental Agreements

Sales Reps

Equipment

186 Chapter 7 Establishing Table Structures

you start with “Equipment” and try to determine whether each occur-

rence represents a different subject. In reviewing your interview notes,

you find that “Equipment” on the list of subjects represents items such

as tools, appliances, and audiovisual equipment. Then you remember

that “Equipment” on the preliminary table list also includes trucks,

vans, and trailers. You review your interview notes further and discover

that vehicle rentals are treated differently from “regular” equipment

rentals. Therefore, each occurrence of “Equipment” does represent a

different subject. You resolve the duplication by keeping one occurrence

of “Equipment” and renaming the other “Vehicles.” You then list both

items on the preliminary table list.

Now you go through the same process with “Rental Agreements.” For-

tunately, you discover that both occurrences share exactly the same

meaning. The only thing you have to do in this case is cross out

“Rental Agreements” on the list of subjects. Now you can continue

your review until you’ve inspected each item on the list of subjects.

Figure 7.4 shows the revised list of subjects and the preliminary

table list.

Figure 7.4. The revised list of subjects and the revised preliminary table list
(first view).

Preliminary Table ListList of Subjects

Clients

Equipment

Rental Agreements

Services

Employees

Customers

Rental Agreements

Sales Reps

Equipment

Vehicles

Defining the Preliminary Table List 187

Step Two: Resolve Items That Represent the Same Subject

Your objective during this step of the merge process is to determine

whether an item on the list of subjects and an item on the preliminary

table list represent the same subject even though they have different

names. When you identify such a set of items, select the name that best

represents the subject and use it as the sole identifier for that subject.

Then deal with the name in this manner:

• If the name you’ve selected already appears on the preliminary ta-

ble list, cross out its counterpart on the list of subjects.

• If the name appears on the list of subjects, remove its counterpart

on the preliminary table list and replace it with the name from the

list of subjects.

Repeat this process until you’ve covered all the items on the list of

subjects.

Continuing with the equipment rental business example, assume you’ve

discovered that “Clients” and “Employees” on the list of subjects and

“Customers” and “Sales Reps” on the preliminary table list represent

(respectively) the same subject (see Figure 7.4). Deciding to deal with

“Clients” and “Customers” first, you review your interview notes and de-

termine that “Customers” is the name that best represents both the

people and the organizations that rent equipment from the business.

You then resolve the duplication by keeping “Customers” and crossing

out “Clients.” Moving on to the next set of duplicate items, you decide to

keep “Employees” and discard “Sales Reps” because you believe that

“Employees” best describes those people who are employed by the busi-

ness, regardless of their position. Figure 7.5 shows a revised version of

both lists and the resolution of the duplicate items.

188 Chapter 7 Establishing Table Structures

Step Three: Combine the Items on the List of Subjects and the

Preliminary Field List

The final step of this process is the easiest of the three. All you do is add

the remaining items from the list of subjects to the preliminary table

list. Then throw away the list of subjects—you won’t need it anymore.

The list that remains becomes the second version of the preliminary ta-

ble list. That’s all there is to it! Figure 7.6 shows the second version of

Figure 7.5. The revised list of subjects and the revised preliminary table list
(second view).

Preliminary Table ListList of Subjects

Clients

Equipment

Rental Agreements

Services

Employees

Customers

Rental Agreements

Vehicles

Equipment

Employees

Figure 7.6. The second version of the preliminary table list.

Preliminary Table List

Customers

Rental Agreements

Employees

Equipment

Services

Vehicles

Defining the Preliminary Table List 189

the preliminary table list, which is the result of merging the two lists

shown in Figure 7.5.

Using the Mission Objectives

In this third and final procedure, you use the mission objectives to de-

termine whether you’ve overlooked any subjects during the previous

two procedures. This is your final opportunity to add tables to the pre-

liminary table list.

Start with the first mission objective, and use the subject-identification

technique to identify the subjects represented in that statement. Under-

line each subject you identify and then crosscheck it against the items

on the preliminary table list. Use the same techniques here that you

used in the previous procedure.

1. When an item you underlined in a mission objective statement

matches an item on the preliminary table list, determine whether

the items represent different subjects. If they do, assign an appro-

priate name to each occurrence and then add each one to the

preliminary table list; otherwise, cross out the duplicate item on

the mission objective.

2. When an item you underlined in the mission objective statement

has a name that is synonymous with the name of an item on the

preliminary table list and both items represent the same subject,

select the name that best identifies that subject and use it in the

preliminary table list.

3. When an item you underlined in the mission objective statement

represents a new subject, add it to the preliminary table list.

Repeat these steps until you’ve worked through all the mission objec-

tives. Here’s an example of how you use these techniques to review the

mission objectives.

190 Chapter 7 Establishing Table Structures

Assume that you’re designing a database for a flight training school.

You’re just starting this particular process, and you’ve just used the

subject-identification technique on the following statement:

We need to maintain data on our pilots and their certifications.

You now crosscheck the subjects you identified in this mission objective

against the items in the preliminary table list shown in Figure 7.7.

In this case, you cross out “pilots” in the mission objective statement

because it already exists on the preliminary table list and it represents

the same subject. You then decide to examine “certifications” further,

and, after some careful thought, you make these observations:

1. It does not appear on the preliminary table list.

2. It doesn’t duplicate any item on the preliminary table list.

Figure 7.7. The preliminary table list for a flight training school.

Preliminary Table List

Courses

Employees

Maintenance History

Pilots

Planes

Students

Defining the Final Table List 191

3. Its name is not synonymous with any item on the preliminary table

list.

4. It doesn’t represent the same subject as any other item on the

preliminary table list.

These findings indicate that “certifications” is a new item and should be

added to the preliminary table list. So, you add it to the preliminary ta-

ble list and cross it out on the mission objective statement; this shows

you that you’ve already dealt with this particular item. Figure 7.8 shows

the revised version of the preliminary table list.

Defining the Final Table List

Your preliminary table list is as complete as it can be at this point, so

you’ll now transform it into a final table list. This new list incorporates two

elements that are not currently on the preliminary table list: table type

and table description. Figure 7.9 shows an example of a final table list.

Figure 7.8. The revised preliminary table list.

Preliminary Table List

Courses

Employees

Maintenance History

Pilots

Planes

Students

Certifications

192 Chapter 7 Establishing Table Structures

A table type allows you to classify a table by the role it plays within the

database and provides you with a means of identifying tables that func-

tion in a similar manner. The table’s role determines its type, and there

are four table types that you can associate with a given table:

1. A data table represents a subject that is important to the organiza-

tion and is the primary foundation of the information that the

database provides. (You’ll learn more about data tables later in this

chapter.)

2. A linking table establishes a link between two tables in a many-

to-many relationship. (Chapter 10 covers linking tables in more

detail.)

Figure 7.9. An example of a final table list.

Final Table List

Courses

Classrooms

Name

Data

Data

Type

The spaces or areas within a facility

reserved for the purpose of conducting class

proceedings. Information regarding the

physical aspects, on-site resources, and

availability of these areas is useful because

it allows us to assign classes to the facility

that can make the best use of these areas.

Description

The programs of instruction conducted through

courses offered by this institution. Course

information must always reflect the addtion of

new courses, the deletion of old courses, and

the continuing evolution of existing courses.

Defining the Final Table List 193

3. A subset table contains fields that are related to a particular data

table and further describes the data table’s subject in a very spe-

cific manner. (You’ll learn more about subset tables later in this

chapter.)

4. A validation table contains relatively static data and is a crucial

component of data integrity. (Chapter 11 provides further details

on this type of table.)

A table description provides a clear definition of the subject represented

by the table and states why the subject is important to the organization.

There are certain guidelines that govern how you create a table descrip-

tion, and you’ll learn about them later in this chapter. There is a final

task you have to perform before you transform your preliminary table

list into the final table list: refining the table names.

Refining the Table Names

Naming a table is a more complex affair than you may realize at the mo-

ment. As you learned in Chapter 3, a table represents a single subject;

therefore, its name must clearly identify the subject it represents. The

following guidelines will help you create table names that are clear, un-

ambiguous, descriptive, and meaningful. They will also help ensure that

you name your tables in a consistent manner.

Guidelines for Creating Table Names

• Create a unique, descriptive name that is meaningful to the entire

organization. Using unique names helps to ensure that each table

clearly represents a different subject and that everyone in the or-

ganization will understand what the table represents. (If you en-

counter duplicate table names at this point, resolve the problem

using the techniques you learned earlier in this chapter.) Choose

names that are descriptive enough to be self-explanatory. “Vehicle

194 Chapter 7 Establishing Table Structures

Maintenance” is an example of a good, descriptive name. Defining

a unique and descriptive name does take some work on your part,

but it’s well worth the effort in the long run.

• Create a name that accurately, clearly, and unambiguously identi-

fies the subject of the table. Vague or ambiguous names usually

indicate that the table represents more than one subject. When

you encounter such a name, identify the subjects the table truly

represents and then treat each subject as a separate table.

“Dates” is a good example of a vague table name. You really don’t

know what the table represents without referring to its descrip-

tion. For example, assume you’re designing a database for an en-

tertainment agency and this table appears in the preliminary

table list. Upon seeing this table name, you decide to review your

interview notes. You discover that one person says “Dates” repre-

sents appointments for client meetings, and another person says

it represents booking dates for the agency’s stable of entertainers.

This table clearly represents two subjects, so you remove “Dates”

from the preliminary table list and replace it with two new tables

called “Client Meetings” and “Entertainer Schedules.”

Possibly the most vague and ambiguous name you could assign to

a table is “Miscellaneous”—it doesn’t identify a single subject

whatsoever. You might occasionally feel compelled to create a

“Miscellaneous” table because you just can’t figure out what to do

with certain fields on your preliminary field list. When that hap-

pens, stop, take a break, and then come back and re-examine

those fields. Carefully and methodically apply the design tech-

niques you’ve learned, and you’re sure to determine what to do

with the fields after all.

• Use the minimum number of words necessary to convey the subject

of the table. Everyone in the organization should be able to iden-

tify what the table represents without having to read its descrip-

tion. Although your objective is to create a short, succinct table

Defining the Final Table List 195

name, avoid using a minimalist approach. “TD_1” is a good exam-

ple of a name that is exceedingly short. You won’t have the slight-

est idea what this table represents unless you know the meaning

of each character in the name. You should also avoid going in the

opposite direction as well. “Multiuse Vehicle Maintenance Equip-

ment” is much too long and can easily be shortened to just

“Equipment.”

• Do not use words that convey physical characteristics. Avoid using

words such as “file,” “record,” and “table” in the table name be-

cause they add a level of confusion that you don’t need. A table

name that includes this type of word is very likely to represent

more than one subject. Consider the name “Patient Record.” On

the surface, this may appear to be an acceptable name. You’ll re-

alize, however, that there are potential problems with this name

when you take some time to think about what a “patient record”

is supposed to represent. The name contains a word that you’re

trying hard to avoid (“record”) and it potentially represents three

subjects: “patients,” “doctors,” and “examinations.” With this in

mind, remove “patients” from the preliminary table list and re-

place it with three new tables, one for each of the three subjects.

• Do not use acronyms and abbreviations. Acronyms are hard to de-

cipher, abbreviations rarely convey the subject of the table, and

both violate the first guideline in this list. Take acronyms, for ex-

ample. Say you’re helping an organization revise its database

structure and you encounter a table named “SC.” How do you

know what the table represents without knowing the meaning of

the letters themselves? The fact is that you can’t easily identify

the subject of the table. What’s more, you may find that the table

means different things to different departments in the organiza-

tion. So, you decide to conduct a brief interview with some of the

staff in order to determine what the letters represent. (Now, this is

the scary part.) To your disbelief, you discover that the folks in

196 Chapter 7 Establishing Table Structures

personnel think it stands for “Steering Committees”; the informa-

tion systems staff believes it to be “System Configurations”; and

the people in security insist that it represents “Security Codes.”

This example clearly illustrates why you should make every effort

to avoid using abbreviations and acronyms in a table name.

• Do not use proper names or other words that will unduly restrict

the data that can be entered into the table. This guideline will keep

you from falling into the trap of creating duplicate table struc-

tures. A name such as “Southwest Region Employees,” for exam-

ple, severely restricts the data that you can enter into this table.

As the organization grows, how will you deal with employees from

other regions? When the organization begins to hire employees in

Washington, Oregon, and Idaho, you’ll have to create a “Pacific

Northwest Region Employees” table, and you’ll have to create a

“Western Region Employees” table when the organization begins

to hire folks in Arizona, Utah, Nevada, and California.

Proper database-design principles dictate that you should not

create duplicate structures such as these because they can be

quite problematic.

1. Users could have a difficult time retrieving data from all three

tables simultaneously.

2. The person maintaining the database would have the added

responsibility of ensuring that the tables are always structur-

ally synchronized. If he adds, modifies, or deletes a field in one

table, he must take the same action on all the other tables.

3. The person maintaining the database would also have the

added responsibility of ensuring synchronized data integrity

between the tables. He must be able to guarantee that data is

completely and accurately transferred from one table to the

other when an employee relocates from one region to another.

Defining the Final Table List 197

• Do not use a name that implicitly or explicitly identifies more than

one subject. This is one of the most common mistakes you can

make with a table name, and it is relatively easy to identify. This

type of name typically contains the words “and” or “or” and char-

acters such as the slash (\) or ampersand (&); examples include

“Department or Branch” and “Facility\Building.” A table with an

ambiguous name suggests that you may have not identified the

subject clearly or accurately during the analysis and interview

processes. You can rectify this problem by reviewing your notes

and conducting further analysis and interviews as necessary.

Just remember that you must always ensure that each table rep-

resents only one subject.

Another name that falls under this category is “Miscellaneous.”

(Yes, here’s that name again!) A moment ago, I said that this

name didn’t identify a single subject whatsoever; this is a correct

and valid assertion. It is also true, however, that the name im-

plicitly identifies more than one subject; you can’t specifically

identify the subjects because the name is vague and ambiguous.

The Concise Oxford Dictionary, Ninth Edition, defines the word it-

self as follows:

Miscellaneous adj. 1. of mixed composition or character. 2. of

various kinds.

You can clearly see the problems that this name creates, so you

should not use it as a table name at all. There are certainly good

reasons not to do so.

• Do use the plural form of the name. As you know, a table repre-

sents a single subject, which can be an object or event. You can

take this definition one step further and state that a table repre-

sents a collection of similar objects or events. For example, a sales

representative wants to maintain data on all of his customers, not

just a single one; and a car rental business wants to keep track of

198 Chapter 7 Establishing Table Structures

all its vehicles, not just the blue BMW. Using the plural form of

the table name is a sound idea because it makes clear your inten-

tion to refer to a collection. Collections, of course, always take the

plural (“Boats,” not “Boat”). In contrast, words that identify fields

are always singular (“Home Phone,” not “Home Phones”). Follow-

ing this rule will make it easy for you to differentiate between ta-

ble names and field names in any documentation you create for

the database. (As you rename your tables, remember that the plu-

ral form of some words does not end in s or es. For instance, the

singular and plural forms of “equipment” are exactly the same.)

Use these guidelines to refine each table name on the preliminary table

list. When you’re finished, this list becomes your final table list and re-

mains so for the duration of the database-design process. Note that the

list is “final” only in the sense that you’ve accounted for all the tables

that you identified throughout the entire analysis process. It’s very likely

that you’ll add new tables to this list based on requirements imposed by

relationships, data integrity, or other information that you develop.

Indicating the Table Types

As you learned earlier in this chapter, you indicate each table’s type on

the final table list. Recall that the four classifications you can use to

identify the table type are data, linking, subset, and validation.

When you first create your final table list, every item on the list is a data

table because it represents a subject that is important to the organiza-

tion and serves as the primary foundation of the information that the

database provides. There will be no linking tables or validation tables on

the list because you have not yet defined relationships or imposed data

integrity. (You’ll address these issues later in the design process.) The

list will not contain subset tables because you define them after you as-

sign fields to the data tables.

Defining the Final Table List 199

For the moment, designate each table on the final table list as a data ta-

ble. You’ll assign other table types later as the database-design process

continues to unfold.

Composing the Table Descriptions

The table description is another aspect of a table that you record on the

final table list. A table description is crucial because it helps everyone

understand why a given table exists and why the organization is con-

cerned with collecting the data for that table. In fact, the description

must explicitly define the table and state its importance to the organiza-

tion. It doesn’t matter whether the definition comes first or you use

more than one sentence to convey this information—both the definition

and the explanation of the table’s importance must be in the descrip-

tion. The table description also provides a means of validating the need

for a table—if you are unable to explain why a table is important to the

organization, then you need to determine when and how the table was

identified and whether it really is necessary at all.

Just as you had guidelines to help define table names, you also have a

set of guidelines to help you compose a table description that is focused,

concise, unambiguous, and clear.

Guidelines for Composing a Table Description

• Include a statement that accurately defines the table. Anyone

should easily be able to determine the identity of the table from its

description without any confusion or ambiguity. Here’s an exam-

ple of a poor definition for a table named “Suppliers” in a bakery

database. As you can see, it’s not very accurate.

Suppliers—the companies that supply us with ingredients

and equipment

200 Chapter 7 Establishing Table Structures

What if the bakery receives some of its ingredients from local

farmers? The farmers certainly don’t qualify as “companies.”

What type of equipment do these suppliers supply? Cooking uten-

sils? Hand trucks? Delivery racks? Here’s a much better defini-

tion of suppliers.

Suppliers—the people and organizations from whom we

purchase ingredients and equipment

This statement can be used in the table description as the table

definition.

• Include a statement that explains why this table is important to the

organization. A table contains data that is collected, maintained,

manipulated, and retrieved by the organization for a particular

reason. Your statement should explain why the data is important

to the organization. Keeping in mind that this statement becomes

part of your table description, you might be tempted to construct

a statement such as this:

We need the Suppliers table to keep track of the names,

addresses, phone numbers, and contact names of all our

suppliers.

This statement is inadequate because it emphasizes only what

needs to be stored in the Suppliers table instead of amplifying

why the data is important to the business. The next example con-

veys a better sense of why the information is important.

Supplier information is vital to the bakery because it al-

lows us to maintain a constant supply of ingredients and

ensure that our equipment is always in working order.

This is a more effective statement because it conveys the impor-

tance of the data by identifying the services the suppliers provide

to the bakery. It also implies that the bakery could run out of in-

Defining the Final Table List 201

gredients or have a hard time keeping its equipment in top shape

without the suppliers’ services. This statement now reflects why

the table is important to the organization.

• Compose a description that is clear and succinct. Avoid the com-

mon mistake of restating or rephrasing the table name in your ta-

ble description, as in this example:

Student Schedule—the class schedule of the student

Don’t be too brief or too verbose. You want to make sure that ev-

eryone can identify the table and understand its importance to

the organization, but you also want to avoid furnishing too much

information. Here’s an example of a description that is quite

lengthy and provides more information than is necessary:

Student Schedule—All the classes that a student will at-

tend (including the days, times, and the faculty conduct-

ing the class) during the course of the school year. The

data in this table is important because it will let the stu-

dent know the name of the class and when and where he’s

supposed to be. Also the student will know the duration of

the class, as well as the name of the teacher who is teach-

ing the class.

This can be recast more clearly and succinctly as follows:

Student Schedule—Those classes that the student is

scheduled to attend during this school year. The informa-

tion provided by this table helps the student implement ef-

fective time management and enables the school to figure

class loads and student loads.

The first sentence in this example provides the definition of the

table, and the second sentence states why the table is important

to the academic organization.

202 Chapter 7 Establishing Table Structures

• Do not include implementation-specific information in your table de-

scription, such as how or where the table is used. Avoid state-

ments that indicate how you will specifically use this table, or

how you will physically access it. This type of information is ger-

mane to the database implementation process, which is wholly

separate from the database-design process you’re learning in this

book. Here is an example of a description containing this type of

inappropriate information:

Student Schedule—Those classes that the student is

scheduled to attend during this school year. This informa-

tion is used by the registrar and is accessed from the Stu-

dent Admissions menu in the Registration Program.

• Do not make the table description for one table dependent upon the

table description of another table. Each table description should

be self-explanatory and independent from every other table de-

scription; it should be absolutely unnecessary for you to cross-

reference one table description against another. This is the type of

statement you’re trying to avoid:

Dependents—the spouse, children, or wards of a given

employee. (See description of Employee table for further

information.)

Here’s a much better description:

Dependents—the spouse, children, or wards of a given em-

ployee. This information allows us to make the appropriate

tax deductions for the employee, and is necessary for the

benefits programs in which the employee is enrolled.

• Do not use examples in a table description. An example is a valu-

able communication tool that helps you convey a particular

meaning or concept and is very effective when you use it wisely.

But an example depends on supplemental information (and, in

Defining the Final Table List 203

some cases, further examples) to complete the idea it’s supposed

to convey. For instance, just think of the number of examples you

would have to use in order to define fully what a table represents.

A well-defined description is clear, succinct, and self-explanatory;

therefore, it does not require an example to convey its meaning.

Interviewing Users and Management

Now you’ll define table descriptions for the tables on the final table list.

You’ll conduct interviews with both users and management, and enlist

their aid in establishing each table’s definition and importance to the

organization. (This is one of the few times that you’ll actually interview

both groups together.) Your main objective is to get a consensus on gen-

eral descriptions for the tables. When your interviews are complete, take

your notes and compose final table descriptions, making sure to follow

the guidelines outlined above. Then confer with both parties once more

to make certain that the descriptions are acceptable and easily under-

stood by all. The final table list is complete when everyone has agreed

on the descriptions.

Consider this example: Assume you’re developing a database for a local

software training organization. Your assistant, John, is conducting an in-

terview with some of the people from the organization. Specifically, he’s

speaking to Mark from the administration department; Frits, the instruc-

tor coordinator; Sara, the vice president of sales; and Caroline, the head

of the organization. The dialogue on the next page is a partial transcript

of John’s interview. John is currently discussing the Students table.

❖Note Unlike the interviews you conducted during the analysis

and requirements review stages of the design process, you no longer

need to involve everyone in the organization. But you will work with

a representative group of users and management for the interviews

you’ll conduct throughout the remainder of the design process.

204 Chapter 7 Establishing Table Structures

JOHN: “Okay, let’s talk about the Students table. How

would you describe a ‘student’?”

FRITS: “A student is a private individual who comes in for one of

our classes.”

SARA: “That’s only partially true. A student can also be an indi-

vidual that an organization sends to our classes. For ex-

ample, many of our students come from local banks and

insurance companies, and those organizations pay for

the students’ tuitions.”

MARK: “Yes, you’re quite right. I guess we can simply say that a

student is an individual who comes in for one of our

classes.”

(John makes a note of what Mark just said.)

JOHN: “Good—got it. Does everyone agree with Mark?”

(Everyone nods in approval.)

“Great. Now, how would you explain to someone why stu-

dent information is important to this organization?”

CAROLINE: “Without students, we don’t have a business!”

FRITS: “If we can keep track of the students who attend our

classes, we can send them information regarding our

new classes.”

SARA: “Keeping track of this information allows us to keep bill-

ing and contact information current. This is especially

true for organizations that send their employees to our

classes. Training coordinators move on to other posi-

tions, and we have to know the name of the new person

we’ll be dealing with.”

JOHN: “Good point. Does anyone have anything further to add?

No? Okay, does everyone agree with what has been said

so far?”

(Everyone once again nods in approval. Because no additional com-

ments are made, John jots down some final notes and moves on to

the next table.)

Associating Fields with Each Table 205

As you can see, conducting this type of interview is a fairly straightfor-

ward affair. Notice how John attempts to get a consensus as he recog-

nizes that no one has anything else to say about the topic at hand. He

then makes note of the points that will help him compose the descrip-

tion and moves on to his next topic.

After John has finished conducting the interview, he uses his notes to

develop a table description for each table on the final table list. He’ll

have to interpret and study the participant’s responses in order to de-

velop a suitable table description. Based on his examination, John

writes the following description:

Students—those individuals who attend our classes. The infor-

mation provided by the data in the Students table allows our

organization to further promote our classes and supports proper

communications with the students.

John then writes a description for each table on the final table list.

When he’s finished, he’ll speak with Mark, Frits, Sara, and Caroline

once more to make sure the descriptions are acceptable and that every-

one understands them without any difficulty.

Associating Fields with Each Table

In Chapter 3 you learned that tables are composed of fields. During this

stage of the database-design process, you’ll assign fields to each table

on the final table list using fields from your preliminary field list.

Assigning fields to a table is a relatively easy process: Determine

which fields best represent characteristics of the table’s subject and

assign them to that table. Repeat this procedure for every table on the

final table list. If you think you can use a field or set of fields to repre-

sent characteristics of more than one table, then assign them accord-

ingly. You’ll discover whether you’ve assigned the appropriate fields to

206 Chapter 7 Establishing Table Structures

each table later when you go through the process of refining the table

structures.

Begin this process by taking a sheet of legal paper and laying it in

front of you lengthwise from left to right. Write the name of each ta-

ble (from the final table list) across the top of the paper, starting at

the left-hand side; leave enough space between the table names to

give you enough room to list lengthy field names underneath them.

Repeat this procedure, using as many sheets as you need to account

for every table on the list. Continuing with the school database exam-

ple, Figure 7.10 shows the set of table structures currently under

development.

Next, assign fields from the preliminary field list to each table. Deter-

mine which fields best describe or define a table’s subject and then list

these fields underneath the table name. After you’ve assigned all of the

fields you believe to be appropriate for the table, move on to the next

table and repeat the process. Continue in this manner until you’ve as-

signed fields to all the tables. Figure 7.11 shows a partial set of table

structures.

❖ Note In the following examples, you’ll note that I ask you to

use sheets of paper for specific procedures. Using paper helps you

avoid the temptation of using an RDBMS program to design your

database. I cannot overemphasize or overstate the fact that you

should not use the computer at all until the database-design pro-

cess is complete unless you’re using some type of database-

design-specific software, such as Computer-Assisted Software

Engineering (CASE) software. By heeding this advice, you will

avoid the traps I discuss later in Chapter 14.

Associating Fields with Each Table 207

Figure 7.10. Setting up a sheet for listing table structures.

Table Structures

Courses Subjects Instructors Students

Figure 7.11. Listing tables with their associated fields.

Table Structures

Subjects

Subject Name

Subject Description

Category

Credits

Classes

Class Number

Class Name

Room Number

Instructor Name

Subject Name

Students

Student Name

Student Address

Student Phone

Student SSN

Instructor Name

Instructor Address

Instructor Phone

Instructor SSN

Date Hired

Pay Rate

Instructors

208 Chapter 7 Establishing Table Structures

Refining the Fields

Now that you’ve assigned fields to each table, you’ll refine the fields by

improving the field names and resolving any structural problems that

may exist. Then you’ll refine the tables further by establishing that

you’ve assigned the appropriate fields to each table and that the table

structures are sound.

Improving the Field Names

As you know, a field represents a characteristic of the subject of the ta-

ble to which it belongs. You can easily identify the characteristic a field

is supposed to represent when that field has an appropriate name. A

field name that is ambiguous, vague, or unclear is a sure sign of trouble

❖ Note Before you work through the remainder of the chapter,

now is a good time to recall a principle I presented in the

Introduction:

Focus on the concept or technique and its intended results,

not on the example used to illustrate it.

I bring this to your attention once again because you’ll certainly

wonder why I created an example in a particular manner. Maybe

you’ve thought of a different or better approach to the problem,

and you might have thoroughly valid reasons for using it. But

don’t let the example mislead you. I’ve fashioned each example in

a specific manner for the sole reason of illustrating the concept

or technique at hand. Therefore, study the way that I correct the

problems you see in a particular example so that you can use

those techniques when you encounter similar problems in your

database.

Refining the Fields 209

and suggests that you have not thoroughly identified the purpose of

the field.

Earlier in this chapter, you learned a set of guidelines for naming a

table. Now you’ll learn another set of guidelines that you’ll apply to

field names. Fortunately, many of them are similar to the guidelines

governing table names, so you’re already familiar with most of the

concepts.

Guidelines for Creating Field Names

• Create a unique, descriptive name that is meaningful to the entire

organization. A given field name should appear only once in the

entire database; the only exception to this rule occurs when the

field serves to establish a relationship between two tables. Make

certain the name is descriptive enough to convey its meaning ac-

curately to everyone who sees it. (Chapter 10 covers this issue in

greater detail.)

• Create a name that accurately, clearly, and unambiguously identi-

fies the characteristic a field represents. “Phone Number” is a good

example of an inaccurate, ambiguous field name. What kind of

phone number does it represent? A home phone? An office

phone? A cellular phone? Learn to be specific. If you need to

record each of these types of phone numbers, then create “Home

Phone,” “Work Phone,” and “Cellular Phone” fields.

In Chapter 6, you learned how to resolve generic field names,

such as “Address,” “City,” and “State” by using the table name as

a prefix for the field name. This produces names such as “Em-

ployee Address,” “Customer Address,” and “Supplier Address.”

When you have field names such as these, you can abbreviate the

prefix (for brevity’s sake) by using the first three or four letters of

the table name as the revised prefix. This allows you to transform

210 Chapter 7 Establishing Table Structures

the previous field names into “EmpAddress,” “CustAddress,” and

“SuppAddress.” This technique helps you fulfill not only this

guideline, but the previous one as well.

• Use the minimum number of words necessary to convey the mean-

ing of the characteristic the field represents. You want to avoid

lengthy field names, but at the same time, you also want to avoid

using a single word as a field name if that word is inappropriate.

For example, if you’re trying to record the date a particular em-

ployee joined the organization, “Hired” is too short (and slightly

vague) and “Date That the Employee Was Hired” is too long! “Date

Hired,” however, is a more appropriate name and accurately rep-

resents the characteristic the field represents.

• Do not use acronyms, and use abbreviations judiciously. Acronyms

can be hard to decipher and often lead to misunderstanding.

Imagine a field named “CAD_SW.” How would you determine what

the field represents? On the other hand, you can use abbrevia-

tions so long as you use them sparingly and handle them with

care. Only use an abbreviation if it supplements or enhances the

field name in a positive manner. An abbreviation shouldn’t make

a field name ambiguous or diminish its meaning.

❖ Note The degree to which you use prefixes within a table is a

matter of style. When a table contains generic field names, some

database designers will choose to prefix the generic names only,

while others elect to prefix all of the field names within the table.

Regardless of the prefix method you choose to use, it is very im-

portant that you use it consistently throughout the database

structure.

I personally prefer to prefix the generic field names only, and I’ll

follow this preference throughout the remainder of the book.

Refining the Fields 211

• Do not use words that could confuse the meaning of the field name.

A field name that contains redundant words or synonyms can

make the name’s meaning unclear and subject to misinterpreta-

tion. For instance, consider the name “Digital Identification Code

Number.” “Digital” and “number” are redundant, so you can elimi-

nate either one without diminishing the field name’s meaning. Let’s

assume that you decide to eliminate “digital.” You can split the re-

maining name into two smaller names: “Identification Code” and

“Identification Number.” These names are often synonymous, and

you can easily use either as the final field name. In this situation,

just use the name that is most meaningful within the organization.

• Do not use names that implicitly or explicitly identify more than one

characteristic. These types of names are easy to spot because they

typically use the words “and” or “or.” Field names that contain a

slash (\) or an ampersand (&) are dead giveaways as well. When

you encounter a field with a name such as “Area or Location” or

“Phone\Fax,” identify each characteristic that the name implies,

and create a new field for the characteristic. Then test the new

field name against these guidelines to ensure that the name is

sound.

• Use the singular form of the name. A field with a plural name, such

as “Skills,” implies that it may contain two or more values for a

given record, which is not a good idea. (You’ll learn more about

this later in the chapter.) A field name is singular because it rep-

resents a single characteristic of the subject of the table to which

it belongs. A table name, on the other hand, is plural because it

represents a collection of similar objects or events. You can distin-

guish table names from field names quite easily when you use

this naming convention.

With these guidelines in mind, review each table and determine whe-

ther you can make improvements to any of the field names. When

212 Chapter 7 Establishing Table Structures

you’re finished, you’re ready to identify and resolve any problems with

the fields. Figure 7.12 shows revisions to the field names of the table

structures in Figure 7.11.

In Figure 7.12, “Classes” is shortened to “Cls,” “Subjects” is shortened

to “Subj,” “Instructors” is shortened to “Inst,” “Student” is shortened to

“Std,” and “Social Security Number” replaces “SSN.” Remember that ab-

breviations can be very useful so long as they are meaningful and un-

derstood by everyone in the organization. Using proper and appropriate

abbreviations will not detract from the meaning of the field name.

❖ Note Throughout the remainder of the chapter and the rest of

the book, table names within the text appear in all capital letters

(such as VENDORS) and field names within the text appear in

small capital letters (such as VENDOR ID NUMBER).

Figure 7.12. Revised field names.

Table Structures

InstName

InstAddress

InstPhone

InstSocial Security Number

Date Hired

Pay Rate

Instructors Students

StdName

StdAddress

StdPhone

StdSocial Security Number

Classes

ClsNumber

ClsName

Room Number

InstName

SubjName

Subjects

SubjName

SubjDescription

Category

Credits

Refining the Fields 213

Using an Ideal Field to Resolve Anomalies

Although you’ve carefully identified the fields on your preliminary field

list, you may have created a few fields that could prove problematic to

the table structure. Poorly defined fields can cause duplicate data and

redundant data, and they can be difficult to use. You might find it diffi-

cult to determine whether any of the fields in a table is going to cause

problems unless you know the warning signs. The best way to identify

potentially troublesome fields is to determine whether they comply with

the Elements of the Ideal Field. These elements constitute a set of guide-

lines you can use to create sound field structures and to spot poorly de-

signed fields easily.

Elements of the Ideal Field

• It represents a distinct characteristic of the subject of the table. As

you know, a table represents a specific subject, which can be an

object or event. The ideal field represents a distinct characteristic

of that object or event.

• It contains only a single value. A field that can potentially store

two or more occurrences of the same value is known as a multival-

ued field. A multivalued field causes data-redundancy problems

(quite obviously) and is difficult to use when you try to edit, de-

lete, or sort the data within it. The ideal field is free of these prob-

lems because it contains only a single value.

• It cannot be deconstructed into smaller components. A field that

can potentially store two or more distinct items within a value is

known as a multipart (or composite) field. Like the multivalued

field, this type of field causes problems when you try to edit, de-

lete, or sort the data within it. These problems don’t occur with an

ideal field because it represents a single, distinct characteristic of

the subject of the table to which it belongs. (You’ll learn more

about multivalued and multipart fields in just a moment.)

214 Chapter 7 Establishing Table Structures

• It does not contain a calculated or concatenated value. The values

of the fields in a table should be mutually independent; a particu-

lar field should not have to depend on the values of other fields for

its own value. A calculated field, however, does depend on the val-

ues of other fields for its own value, and therein lies the problem.

The calculated field’s value is not updated when the value of any

field participating in the calculation changes. It then becomes the

responsibility (and an undesirable burden) of the user or the da-

tabase application program to update the calculated field when

this type of change takes place. This is precisely why you deal

with calculated fields separately.

• It is unique within the entire database structure. The only dupli-

cate fields that appear in a properly designed database are those

that establish relationships between tables. If duplicate fields

other than these exist in a table, it is very likely that the table will

accumulate unnecessary redundant data and that the data within

the duplicate fields will inevitably become inconsistent.

• It retains a majority of its properties when it appears in more than

one table. A field that establishes a relationship between two

tables is a structural component of each table. A majority of the

field’s properties remain constant in each occurrence of the field.

(Chapters 9 and 10 cover this matter in greater detail.)

❖ Note Remember that you’re dealing strictly with the logi-

cal database structure at this point. You might have cause

to duplicate specific fields when you physically implement

the database in an RDBMS program. During that process,

however, you’re making a conscious decision to duplicate

the fields, and you’re prepared to deal with the conse-

quences of that decision.

Refining the Fields 215

Although you now know the specific elements of an ideal field, you’ll still

find it difficult in many instances to identify problematic fields just by

looking at their names. Figure 7.13 shows a table structure that helps to

illustrate this point. Take a moment and try to determine whether each

field complies with the Elements of the Ideal Field or needs to be modified.

Each field on the list seems to conform to the Elements of the Ideal Field.

Examine the list carefully, however, and you’ll see that some fields don’t

really comply with the second and third elements. Three fields have

anomalies that will cause problems unless you resolve them: INSTNAME,

INSTADDRESS, and CATEGORIES TAUGHT. If you doubt this assertion, you can

test it by “loading” the table with sample data. This will quickly reveal

anomalies, if any exist, and is the best way to confirm whether a field

complies with all of the Elements of the Ideal Field.

You don’t have to create a table physically to perform this test. Take a

sheet of legal paper and lay it in front of you lengthwise from left to right.

Figure 7.13. A table containing fields with questionable structures.

Table Structures

Instructors

InstName

InstAddress

InstPhone

InstSocial Security Number

Date Hired

Pay Rate

Categories Taught

216 Chapter 7 Establishing Table Structures

Write the name of each field across the top of the paper, starting from the

left-hand side; leave enough space between the field names to allow

room for the values you’re going to place underneath them. Then enter

records into the table by filling in each field with some sample data; be

sure the sample data represents the data you’re actually going to enter

into the database. You need only a few records for the test to work prop-

erly. Your sheet of paper should look similar to the one in Figure 7.14.

Now you can easily identify which fields are going to be troublesome un-

less they are resolved. As you can see, INSTNAME and INSTADDRESS are

both multipart fields, and CATEGORIES TAUGHT is a multivalued field. You

must resolve these fields before you can refine the table structure.

Resolving Multipart Fields

Working with a multipart field is difficult because its value contains two

or more distinct items. It’s hard to retrieve information from a multipart

❖ Note As I mentioned in Chapter 3, I show only those fields that

are most relevant to the discussion at hand and use <<other

fields>> to represent fields that are inessential to the example.

Figure 7.14. Testing a table with sample data.

Instructors

<< other fields >>

......

......

......

......

InstPhone

363-9948

527-4992

336-5992

322-6992

InstAddress

3131 Mockingbird Lane, Seattle, WA 98157

7402 Kingman Drive, Redmond, WA 98115

4141 Lake City Way, Seattle, WA 98136

970 Phoenix Avenue, Bellevue, WA 98046

Categories Taught

DTP, SS, WP

WP, DB, OS

DB, SS

DTP, WP, PG

InstName

Shannon McLain

Estela Pundt

Timothy Ennis

Kendra Bonnicksen

Refining the Fields 217

field, and it’s hard to sort or group the records in the table by the field’s

value. The INSTADDRESS field in Figure 7.14 illustrates these difficulties;

you’d certainly have a problem retrieving information for the city of Se-

attle or sorting information by zip code.

You resolve a multipart field by identifying the distinct items within the

field’s value and treating each item as an individual field. Accomplish

this task by asking yourself a simple question: “What specific items

does this field’s value represent?” Once you’ve answered the question

and identified the items (as best you can), transform each item into a

new field.

In Figure 7.14, the value of the field INSTNAME represents two items: the

first name and the last name of an instructor. You resolve this field by

creating a new INSTFIRST NAME field and a new INSTLAST NAME field. The

value of INSTADDRESS represents four items: the street address, city,

state, and zip code of an instructor. You transform these items into

fields as well; they will appear in the table as INSTSTREET ADDRESS, IN-

STCITY, INSTSTATE, and INSTZIPCODE. Figure 7.15 shows the newly revised

INSTRUCTORS table.

Figure 7.15. Resolving the multipart fields in the INSTRUCTORS table.

Instructors

InstFirst Name InstLast Name InstStreet Address InstCity InstState InstZipcode InstPhone Categories Taught << other fields >>

Kendra Bonnicksen 3131 Mockingbird Lane Seattle WA 98157 363-9948 DTP, SS, WP

Timothy Ennis 7402 Kingman Drive Redmond WA 98115 527-4992 WP, DB, OS

Shannon McLain 4141 Lake City Way Seattle WA 98136 336-5992 DB, SS

Estela Pundt 970 Phoenix Avenue Bellevue WA 98046 322-6992 DTP, WP, PG

218 Chapter 7 Establishing Table Structures

Some multipart fields are hard to recognize. Take a look at the INSTRU-

MENTS table in Figure 7.16. At first glance, the table doesn’t seem to

contain multipart fields. When you examine the data in the table more

closely, however, you’ll see that INSTRUMENT ID is actually a multipart

field. This field’s value represents two distinct items: the category to

which the instrument belongs—AMP (amplifier), GUIT (guitar), MFX

(multieffects unit), SFX (single-effect unit)—and the instrument’s identi-

fication number. Clearly, you should deconstruct INSTRUMENT ID into two

smaller fields in accordance with the third element of an ideal field.

Imagine how difficult it would be for you to update the field’s value if the

MFX category changed to MFU if you don’t do this. You would have to

write programming code to parse the value, test for the existence of

MFX, and then replace it with MFU if it existed within the parsed value.

It’s not so much that you can’t do this, but you would definitely be

working harder than necessary, and you shouldn’t have to go through

this at all if you have a properly designed database.

Figure 7.16. An example of a “hidden” multipart field.

Instrument ID Manufacturer Instrument Description

Instruments

<< other fields >>

Player 2100 MultieffectsZoomMFX3349

JCM 2000 Tube Super LeadMarshallAMP1001

VC60 Pro Tube AmpCrateAMP5590

Cry Baby Wah-WahDunlopSFX2227

Twin Reverb ReissueFenderAMP2766

GUIT = Category (“Guitar”)

2201 = Identification Number

StratocasterFenderGUIT2201

Refining the Fields 219

Resolving Multivalued Fields

As you know, a multivalued field can potentially store two or more oc-

currences of the same value. Fortunately, you’ll recognize a multivalued

field when you see one. The field’s name is often plural and its value al-

most invariably contains a number of commas, which serve to separate

the various occurrences that exist within the value itself.

Resolving multipart fields is not very hard at all, but resolving multival-

ued fields can be a little more difficult and will take some work. A mul-

tivalued field has the same fundamental set of problems as a multipart

field, as the CATEGORIES TAUGHT field in Figure 7.17 clearly illustrates.

For example, you’ll have difficultly retrieving information for everyone

who teaches a specific category (such as WP), you can’t sort the data in

any meaningful fashion, and, most important, you don’t have room to

enter more than four categories. What happens when one or more in-

structors teach five categories? The only option you’ll have is to make

the field larger every time you need to enter more values than it will

currently allow.

Figure 7.17. Identifying a multivalued field.

Instructors

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

970 Phoenix Avenue

InstCity

Seattle

Redmond

Seattle

Bellevue

InstFirst Name

Shannon

Estela

Timothy

Kendra

InstLast Name

McLain

Pundt

Ennis

Bonnicksen

<< other fields >>

......

......

......

......

Categories Taught

DB, SS

DTP, WP, PG

DTP, SS, WP

WP, DB, OS

Commas separate
the occurrences
within this value.

220 Chapter 7 Establishing Table Structures

So how would you resolve this multivalued field? Your first thought may

be to create a new field for each value, thus “flattening” the multivalued

field into several single-valued fields. Figure 7.18 shows what will hap-

pen if you follow through with this idea.

Unfortunately, this is not much of an improvement at all. There are

three specific problems that arise from this type of structure:

1. Retrieving category information will be tedious at best. A user

attempting to find all instructors who teach the WP category must

be sure to search for this value within each of the category fields—

there is no guarantee that WP is consistently stored in the same

field. Failure to do so means that the user runs the risk of over-

looking a qualified instructor.

2. There is no way for the RDBMS program to sort the category data in

a meaningful fashion.

3. This structure is inherently volatile. In its current state, the table

unnecessarily restricts the number of categories an instructor can

teach; you must create additional category fields when you have

instructors who teach more than three categories. Adding more

category fields just compounds the first two problems.

Realizing that flattening the CATEGORIES TAUGHT field won’t solve your prob-

lem, your next thought is to bring the field into compliance with the sec-

Figure 7.18. The result of “flattening” the CATEGORIES TAUGHT field.

Instructors

Category Taught 1

DTP

WP

DB

InstFirst Name

Shannon

Timothy

Kendra

InstLast Name

McLain

Ennis

Bonnicksen

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

InstCity

Seattle

Redmond

Seattle

Category Taught 2

SS

DB

SS

Category Taught 3

WP

OS

<< other fields >>

......

......

......

970 Phoenix Avenue BellevueEstela Pundt DTP WP PG

Refining the Fields 221

ond element of an ideal field and declare that it will contain only a single

value. Although this is a good impulse and a step in the right direction, it

will not resolve the matter completely because it will introduce yet an-

other problem: data redundancy. Figure 7.19 illustrates what happens

when you follow through with this particular idea. Note that there is now

a single value in the CATEGORIES TAUGHT field for each record in the table.

The values in CATEGORIES TAUGHT cause redundant data because you

must duplicate a given instructor record for each category that the in-

structor teaches. This redundancy is obviously unacceptable, so you’ll

have to resolve this problem in some other manner.

You can avoid this situation entirely by using these steps to resolve a

multivalued field:

1. Remove the field from the table and use it as the basis for a new

table. If necessary, rename the field in accordance with the field

name guidelines that you learned earlier in this chapter.

Figure 7.19. The result of bringing CATEGORIES TAUGHT into compliance with the
second element of an ideal field.

Instructors

InstPhone

363-9948

527-4992

336-5992

Categories Taught

DTP

DB

DB

InstFirst Name

Shannon

Timothy

Kendra

InstLast Name

McLain

Ennis

Bonnicksen

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

InstState

WA

WA

WA

InstCity

Seattle

Redmond

Seattle

InstZipcode

98157

98115

98136

363-9948 SSKendra Bonnicksen 3131 Mockingbird Lane WASeattle 98157

363-9948 WPKendra Bonnicksen 3131 Mockingbird Lane WASeattle 98157

527-4992 OSTimothy Ennis 7402 Kingman Drive WARedmond 98115

527-4992 WPTimothy Ennis 7402 Kingman Drive WARedmond 98115

322-6992 DTPEstela Pundt 970 Phoenix Avenus WABellevue 98046

336-5992 SSShannon McLain 4141 Lake City Way WASeattle 98136

322-6992 WPEstela Pundt 970 Phoenix Avenus WABellevue 98046

322-6992 PGEstela Pundt 970 Phoenix Avenus WABellevue 98046

222 Chapter 7 Establishing Table Structures

2. Use a field (or set of fields) from the original table to relate the orig-

inal table to the new table; try to select fields that represent the

subject of the table as closely as possible. The field(s) you choose

will appear in both tables. (You’ll learn more about relating tables

in Chapter 10.)

3. Assign an appropriate name, type, and description to the new

table and add it to the final table list.

These steps form a generic procedure that you can use to resolve any

multivalued field you encounter in a table. Now, apply these steps to the

CATEGORIES TAUGHT field.

1. Remove the field from the INSTRUCTORS table and use it as the

basis of a new table. Because this will now be a single-valued field,

rename the field CATEGORY TAUGHT.

2. Use INSTFIRST NAME and INSTLAST NAME as the connecting fields that

will relate the INSTRUCTORS table to the new table, and add them

to the structure of the new table.

3. Give the new table a proper name, compose a suitable descrip-

tion, and add the table to the final table list. (Indicate the table’s

type as “Data.”) Here’s one possible name and description you

might use for the new table.

Instructor Categories—the categories of software programs

that an instructor is qualified to teach. The information this

table provides allows us to make certain that there is an ade-

quate number of instructors for each software category.

Figure 7.20 shows the revised INSTRUCTORS table and the new IN-

STRUCTOR CATEGORIES table.

Note that the new INSTRUCTOR CATEGORIES table is free from the

problems typically associated with multivalued fields because CATEGORY

Refining the Fields 223

TAUGHT is a single-value field. You can easily retrieve information for a

particular instructor or category, and you can sort the records in a

meaningful manner. Also note that the INSTFIRST NAME and INSTLAST NAME

fields retain their names in the new table, making them compliant with

the fifth element of an ideal field.

Although the new table contains redundant data, the redundancy is ac-

ceptable because it is minimal. It’s a fact of life that a relational data-

base will always contain some amount of redundant data. Your goal as

the database architect is to make certain that it has only an absolute

minimum amount of redundant data.

Figure 7.20. Resolving the multivalued field in the INSTRUCTORS table.

Instructors

InstPhoneInstFirst Name InstLast Name InstStreet Address InstStateInstCity InstZipcode

363-9948Kendra Bonnicksen 3131 Mockingbird Lane WASeattle 98157

527-4992Timothy Ennis 7402 Kingman Drive WARedmond 98115

336-5992Shannon McLain 4141 Lake City Way WASeattle 98136

322-6992Estela Pundt 970 Phoenix Avenue WABellevue 98046

Category Taught

Instructor Categories

InstFirst Name InstLast Name

Kendra Bonnicksen DTP

Kendra Bonnicksen SS

Kendra Bonnicksen WP

Timothy Ennis WP

Timothy Ennis DB

Timothy Ennis OS

Shannon McLain DB

Shannon McLain SS

224 Chapter 7 Establishing Table Structures

Figure 7.21 shows a version of the INSTRUCTORS table that contains

three multivalued fields:

CATEGORIES TAUGHT—This indicates the categories of classes that

an instructor can teach.

MAXIMUM LEVEL TAUGHT—This indicates the maximum skill level

that the instructor can teach for a given category.

LANGUAGES SPOKEN—This indicates the foreign languages that an

instructor can speak.

Your task here seems relatively clear—you’re going to use the procedure

you’ve just learned to resolve these multivalued fields. You then notice

one small, relatively obscure problem: There is a distinct one-to-one as-

sociation between values in CATEGORIES TAUGHT and the values in MAXIMUM

LEVEL TAUGHT for any given record. You probably wouldn’t have noticed

this anomaly had you not carefully examined the sample data within

these fields. Don’t worry; you’ll still use the same procedure, but with

one minor modification.

You’ll occasionally encounter a situation such as this, where some given

field (whether single- or multivalued) depends on a particular multival-

ued field. You can easily fix this problem by including the dependent

Figure 7.21. A version of the INSTRUCTORS table containing three multivalued
fields.

Instructors

Campus Phone

363-9948

527-4992

336-5992

322-6992

Categories Taught

DTP, OS, SS, WP

DB, OS, UT, WP

DB, PG, SS

DTP, PG, WP

InstFirst Name

Shannon

Estela

Timothy

Kendra

InstLast Name

McLain

Pundt

Ennis

Bonnicksen

Maximum Level Taught

Intermediate, Basic, Advanced, Basic

Intermediate, Basic, Basic, Advanced

Advanced, Intermediate, Intermediate

Basic, Intermediate, Basic

Languages Spoken

French, Spanish

German, Spanish

French, German

French, Italian, Spanish

Refining the Fields 225

field in the structure of the new table you build to resolve the multival-

ued field. Figure 7.22 shows the results of consolidating this technique

with the previous one to resolve CATEGORIES TAUGHT. (It shows the resolu-

tion of LANGUAGES SPOKEN as well.)

The redundancy in the new tables is acceptable because, once again, it

is minimal. In Chapter 10, you’ll learn how to reduce this type of re-

dundancy even further by relating the tables with primary keys and

foreign keys.

Figure 7.22. Resolving the multipart fields in the INSTRUCTORS table.

Instructors

Campus PhoneInstFirst Name InstLast Name

336-5992Shannon McLain

322-6992Estela Pundt

527-4992Timothy Ennis

363-9948Kendra Bonnicksen

Language Spoken

Instructor Languages

InstFirst Name

Kendra

InstLast Name

Bonnicksen

Shannon

Kendra

McLain

Bonnicksen

Timothy Ennis

Timothy Ennis

Shannon McLain

Estela Pundt

Estela Pundt

French

Spanish

German

Spanish

French

German

French

Italian

Estela Pundt Spanish

Category Taught

Instructor Categories

InstFirst Name

Kendra

InstLast Name

Bonnicksen

Timothy

Kendra

Ennis

Bonnicksen

Kendra Bonnicksen

Kendra Bonnicksen

Timothy Ennis

Timothy Ennis

Timothy Ennis

DTP

OS

SS

WP

DB

OS

UT

 WP

Maximum Level

Intermediate

Advanced

Basic

Advanced

Intermediate

Basic

Basic

Advanced

226 Chapter 7 Establishing Table Structures

Refining the Table Structures

Now that you’ve refined the fields and made certain that each field is

sound, you can begin the process of refining the table structures. Your

objective in this phase of the design process is to make sure that you’ve

assigned the appropriate fields to each table and that you’ve properly

defined each table’s structure. This process will also reveal whether the

tables have anomalies that you need to resolve.

A Word About Redundant Data and Duplicate
Fields

You’ve seen the term redundant data used quite often in this chapter.

Redundant data was characterized as being unacceptable in many

cases, but appropriate in others. In order for you to better understand

how to determine when redundant data is acceptable, a definition of the

term is in order.

Redundant data is a value that is repeated in a field as a result of the

field’s participation in relating two tables or as a result of some field or

table anomaly. In the first instance, the redundant data is appropri-

ate; by definition, a field used to relate one table to another will con-

tain redundant data. (You’ll learn more about this in Chapter 10.)

Redundant data is entirely unacceptable in the second instance, how-

ever, because it poses problems with data consistency and data integ-

rity; therefore, you should always strive to keep redundant data to an

absolute minimum.

A duplicate field is a field that appears in two or more tables for any of

these reasons:

• It is used to relate a set of tables together.

• It indicates multiple occurrences of a particular type of value.

• There is a perceived need for supplemental information.

Refining the Table Structures 227

The only instance in which a duplicate field is necessary is when it

serves to establish a relationship between two tables; it provides the sole

means of associating records in the first table with records in the second

table. Duplicate fields are unnecessary in all other cases, and you

should avoid them because they introduce needless, redundant data.

As you refine each table structure, you’ll assess whether to retain a

given duplicate field in the table. If the reason for its existence in the ta-

ble is valid, then you’ll keep it; otherwise, you’ll remove it. You’ll learn

how to deal effectively with both redundant data and unnecessary du-

plicate fields in the following sections.

Using an Ideal Table to Refine Table Structures

Despite your efforts to refine the fields in a table, the table structure it-

self may contain anomalies that can produce unnecessary redundant

data and make it difficult to work with the data in the table. You can

identify a potentially problematic table structure by determining

whether it complies with the Elements of the Ideal Table. These ele-

ments constitute a set of guidelines you can use to create sound table

structures and to spot poorly designed tables easily.

Elements of the Ideal Table

• It represents a single subject, which can be an object or event. Yes,

I know, I’ve said this a number of times already. The fact of the

matter is that I can’t overemphasize this point. As long as you

guarantee that each of your tables represents a single subject,

you greatly reduce the risk of potential data-integrity problems.

This element validates the work you’ve done during the analysis

and interview stages of the database-design process, as well as

the work you’ve just recently performed.

• It has a primary key. This is important for two reasons: It

uniquely identifies each record within a table, and it plays a key

228 Chapter 7 Establishing Table Structures

role (no pun intended) in establishing table relationships. Addi-

tionally, it has specific characteristics that help to implement and

enforce various levels of data integrity. If you fail to assign a pri-

mary key to each table, you will eventually have data-integrity

problems. Chapter 8 covers primary keys in greater detail.

• It does not contain multipart or multivalued fields. Theoretically,

you should have resolved these issues when you refined the field

structures. Nevertheless, it’s still a good idea to review the fields

one last time to ensure that you’ve completely removed each and

every one of them.

• It does not contain calculated fields. Although you might believe

that your current table structures are free of calculated fields, you

may have accidentally overlooked one or two calculated fields dur-

ing the field refinement process. This is a good time to review the

table structures once more and make certain you remove those

calculated fields you may have missed.

• It does not contain unnecessary duplicate fields. (Note that this

guideline does not apply to fields used to relate a set of tables to-

gether, such as those used in the example in Figure 7.22.) One of

the hallmarks of a poorly designed table is the inclusion of dupli-

cate fields from other tables. You might feel compelled to add du-

plicate fields to a table for one of two reasons: to provide reference

information or to indicate multiple occurrences of a particular

type of value. Duplicate fields such as these raise various difficul-

ties when you work with the data or attempt to retrieve informa-

tion from the table.

• It contains only an absolute minimum amount of redundant data.

Remember that a relational database will never be completely free

of redundant data. But you can—and should—make certain that

each table contains as little redundant data as possible.

Refining the Table Structures 229

Resolving Unnecessary Duplicate Fields

Before you make final modifications to the table structures, you must

first remove all unnecessary duplicate fields from the database. You can

then refine the tables so that they comply with the Elements of the Ideal

Table.

Duplicate fields that serve to provide reference information (also known

as reference fields) are unnecessary and easy to resolve—you just re-

move them from the table. Unfortunately, many people believe that a ta-

ble must contain every field that will appear in the reports they generate

from it, so they introduce various duplicate fields into the table as they

deem necessary. They assume that the table will then be able to provide

all the requisite information for their reports. But they are mistaken,

and their action is both unwise and undesirable. Tables containing ref-

erence fields exhibit poor design and will have a number of problems,

many of which will become increasingly clear as the database-design

process unfolds. Reference fields force the user or database application

program to ensure that the values in all occurrences of the field are mu-

tually consistent, a process that carries a high risk of error. Figure 7.23

shows an example of a table containing reference fields.

The MANPHONE and WEB SITE fields in the INSTRUMENTS table are refer-

ence fields and, by definition, are actually unnecessary duplicate fields.

You certainly don’t need to include them in this table because they’re al-

ready part of the MANUFACTURERS table structure; therefore, you can

remove them from the INSTRUMENTS table in order to resolve the un-

necessary duplication problem. (MANUFACTURER is not a reference field be-

cause it currently relates the INSTRUMENTS table to the

MANUFACTURERS table.) You’ll learn later in Chapter 12 that you can

work with fields from the INSTRUMENTS table and the MANUFACTUR-

ERS table at the same time by combining them within a view (virtual ta-

ble). You can then use this view as the basis for compiling any reports

you require.

2
3

0
C

h
a

p
te

r 7
E

s
ta

b
lis

h
in

g
 T

a
b
le

 S
tru

c
tu

re
s

Figure 7.23. Example of a table containing reference fields.

Manufacturers

ManPhone

745-2722

596-9690

778-6565

364-2244

Manufacturer

Mesa/Boogie

Samson Technologies Corp.

Fender Musical Instruments

Dunlop Manufacturing, Inc.

ManStreet Address

PO Box 846

8860 E. Chaparral Road

1317 Ross Street

PO Box 9031

ManState

CA

AZ

CA

NY

ManCity

Benicia

Scottsdale

Petaluma

Syosset

ManZipcode

94510

85250

94954

11791

738-7563St. Louis Music, Inc. 1400 Ferguson Avenue MOSt. Louis 63133

Web Site

www.jimdunlop.com

www.fender.com

www.mesaboogie.com

www.samsontech.com

www.crateamps.com

Instruments

Instrument ID

2201

3349

1001

5590

2227

2766

Instrument Description

Stratocaster

Player 2100 Multi-Effects

JCM 2000 Tube Super Lead

Crate VC60 Pro Tube Amp

Cry Baby Wah-Wah

Twin Reverb Reissue

Amplifier

Amplifier

Single-Effect Unit

Amplifier

Category

Guitar

Multi-Effect Unit

Web Site

www.jimdunlop.com

www.fender.com

www.mesaboogie.com

www.samsontech.com

www.crateamps.com

ManPhone

745-2722

596-9690

778-6565

364-2244

738-7563

www.fender.com596-9690

Manufacturer

Fender Musical Instruments

Samson Technologies Corp.

Mesa/Boogie

St. Louis Music, Inc.

Dunlop Manufacturing, Inc.

Fender Musical Instruments

$ 549.99

$ 399.99

$ 169.99

$ 1,224.99

Price

$ 799.99

$ 174.99

These fields duplicate the MANPHONE and WEB SITE

fields in the MANUFACTURERS table.

www.crateamps.com
www.samsontech.com
www.mesaboogie.com
www.fender.com
www.jimdunlop.com
www.fender.com
www.jimdunlop.com
www.crateamps.com
www.mesaboogie.com
www.samsontech.com
www.fender.com

Refining the Table Structures 231

Duplicate fields that serve to indicate multiple occurrences of the same

type of value are unnecessary as well. For example, take a look at the

version of the STUDENTS table presented in Figure 7.24.

INSTRUMENT 1, INSTRUMENT 2, and INSTRUMENT 3 are duplicate fields that repre-

sent multiple occurrences of the same type of value. Their purpose in the

table is to enable the music department to keep track of the instruments

checked out by a given student. Aside from the difficulties these fields

pose in retrieving information about a particular instrument, the fields

also limit the number of instruments a student can check out. What hap-

pens if several students want to check out more than three instruments?

Does this type of field structure look strangely familiar? It should! It’s

similar to the one back in Figure 7.18. As you’ve probably already

guessed, it’s nothing more than a flattened multivalued field. Mind you,

the person who created this table probably didn’t have a multivalued

field in mind (and neither do most folks who create fields such as these),

but that is what it truly is.

You already know how to deal with these unnecessary duplicate fields

because you know how to resolve multivalued fields. You can easily fix

Figure 7.24. A simple example of a table containing unnecessary duplicate
fields.

Students

Instrument 1 Instrument 2 Instrument 3

These duplicate fields represent three
occurrences of the same type of value.

StdFirst Name StdLast Name StdStreet Address << other fields >>

Guitar Tenor SaxScott Barker 2904 Madison Ave

Tenor Sax Clarinet Electric PianoMichael Chow 7410 Taxco Drive

Drum Set Bass GuitarDebbie McGuire 332 158th Ave SE

Guitar Electric Piano Snare DrumAngie Thomson 970 Pine Blvd

232 Chapter 7 Establishing Table Structures

the STUDENTS table by first visualizing the INSTRUMENT 1, INSTRUMENT 2,

and INSTRUMENT 3 fields as a singular multivalued field, and then resolv-

ing it as you would any multivalued field. Figure 7.25 illustrates this

process. The shaded version of the STUDENTS table shows how you vi-

sualize the instrument fields as a singular multivalued field. You then

resolve the multivalued field by applying the three-step process you

learned earlier, which yields the revised STUDENTS table and the new

STUDENT INSTRUMENTS table. When you’re finished, you’ll be able to

enter any number of instruments for a particular student. It will then be

quite easy for you to retrieve information such as the names of the stu-

dents who have checked out a guitar, a list of the instruments that are

currently checked out by a particular student, and the number of stu-

dents who have checked out an electric piano.

Figure 7.25. Resolving a simple set of unnecessary duplicate fields.

Student Instruments

Instrument

Guitar

Tenor Sax

Clarinet

Electric Piano

Tenor Sax

Drum Set

Bass Guitar

StudLast Name

Barker

Chow

McGuire

Barker

Chow

Chow

McGuire

StudFirst Name

Scott

Michael

Debbie

Scott

Michael

Michael

Debbie

Students

StdFirst Name

Scott

Michael

Debbie

Angie

StdLast Name

Barker

Chow

McGuire

Thomson

StdStreet Address

2904 Madison Ave

7410 Taxco Drive

332 158th Ave SE

970 Pine Blvd

<< other fields >>

......

......

......

......

Students

StdFirst Name StdLast Name StdStreet Address << other fields >> Instruments

Scott Barker 2904 Madison Ave Guitar, Tenor Sax

Michael Chow 7410 Taxco Drive Tenor Sax, Clarinet, Electric Piano

Debbie McGuire 332 158th Ave SE Drum Set, Bass Guitar

Angie Thomson 970 Pine Blvd Guitar, Electric Piano, Snare Drum

Refining the Table Structures 233

In some instances, a table can contain two or more sets of duplicate

fields that represent multiple occurrences of the same type of value. Fig-

ure 7.26 shows a slightly different version of the STUDENTS table shown

in Figure 7.24; this version contains two sets of duplicate fields. You

may be thinking at this very moment, “Why is he saying there are two

sets of duplicate fields when I clearly see three?” Contrary to what you

may think, INSTRUMENT 1/CHECKOUT DATE 1, for example, does not consti-

tute a set of duplicate fields. Quite the opposite—INSTRUMENT 1/INSTRUMENT

2/INSTRUMENT 3 constitute the first set of duplicate fields, and CHECKOUT

DATE 1/CHECKOUT DATE 2/CHECKOUT DATE 3 constitute the second set of du-

plicate fields.

You’ve probably realized that these two sets of duplicate fields are actu-

ally two flattened multivalued fields and that you can resolve them in

the same manner as in the previous example. The only other issue that

you must be concerned with is the distinct one-to-one association be-

tween an instrument and a checkout date. This won’t be a problem,

however, because you’ve dealt with this type of scenario before. If you vi-

sualize one multivalued field called INSTRUMENTS and another called

CHECKOUT DATE, you’ll see that the overall table structure is quite similar

to the one in Figure 7.21. (There’s a one-to-one association between the

CATEGORIES TAUGHT and MAXIMUM LEVEL TAUGHT fields.)

Figure 7.26. Example of a table with multiple sets of duplicate fields.

Students

StdFirst Name

Scott

Michael

Debbie

Angie

StdLast Name

Barker

Chow

McGuire

Thomson

<< other fields >>

......

......

......

......

Instrument 1

Guitar

Tenor Sax

Drum Set

Guitar

Instrument 2

Tenor Sax

Clarinet

Bass Guitar

Electric Piano

Instrument 3

Electric Piano

Snare Drum

Checkout Date 1

09/26/01

09/26/01

11/14/01

11/14/01

Checkout Date 2

09/28/01

10/03/01

11/20/01

11/14/01

Checkout Date 3

10/16/01

12/05/01

234 Chapter 7 Establishing Table Structures

Figure 7.27 illustrates how you can fix this table. As before, the shaded

version of the STUDENTS table shows how you visualize the instrument

and checkout date fields as singular multivalued fields. You then re-

solve the multivalued fields by applying the three-step process you

learned earlier, yielding the revised STUDENTS table and the new STU-

DENT INSTRUMENTS table.

Now that you’re familiar with the Elements of the Ideal Table, review

your table structures and refine them as necessary. When you’re in

Figure 7.27. Resolving the multiple sets of duplicate fields in the STUDENTS
table.

Students

StdFirst Name

Scott

Michael

Debbie

Angie

StdLast Name

Barker

Chow

McGuire

Thomson

StdStreet Address

2904 Madison Ave

7410 Taxco Drive

332 158th Ave SE

970 Pine Blvd

<< other fields >>

......

......

......

......

Students

StdFirst Name StdLast Name << other fields >> Checkout DatesInstruments

Scott Barker 09/26/01, 09/28/01Guitar, Tenor Sax

Michael Chow 09/28/01, 10/03/01, 10/16/01Tenor Sax, Clarinet, Electric Piano

Debbie McGuire 11/14/01, 11/20/01Drum Set, Bass Guitar

Angie Thomson 11/14/01, 11/14/01, 12/05/01Guitar, Electric Piano, Snare Durm

Student Instruments

Instrument

Guitar

Tenor Sax

Clarinet

Electric Piano

Tenor Sax

Drum Set

Bass Guitar

StudLast Name

Barker

Chow

McGuire

Barker

Chow

Chow

McGuire

StudFirst Name

Scott

Michael

Debbie

Scott

Michael

Michael

Debbie

Checkout Date

09/26/01

10/03/01

09/28/01

09/28/01

10/16/01

11/14/01

11/20/01

Refining the Table Structures 235

doubt about a particular table, sketch its structure on a piece of paper

and load it with sample data. You’ll then be able to resolve the anoma-

lies revealed by the data.

Establishing Subset Tables

As you refine the structures of your tables, you may find that some of

the fields in a particular table do not always contain values. This situa-

tion will not affect your ability to retrieve information from the table, but

it can indicate that the table might need further refinement. Consider

the structure of the INVENTORY table in Figure 7.28.

In this scenario, the table contains data about various items in a per-

son’s office, such as office furniture, office equipment (computers,

faxes, and so forth), and books. It’s inevitable that the values of several

fields in many of the records will be blank. For example, a book will not

Figure 7.28. Structure of an office inventory table.

Table Structures

Inventory

Item Name Model

Item Description Warranty Expiration Date

Current Value Publisher

Insured Value Author

Date Entered ISBN

Manufacturer Category

236 Chapter 7 Establishing Table Structures

have a MANUFACTURER, MODEL, or WARRANTY EXPIRATION DATE, and a fax ma-

chine will not have an AUTHOR, PUBLISHER, ISBN, or CATEGORY. This doesn’t

pose a problem from a physical viewpoint (limited hard-disk space isn’t

the critical issue it was in years past), but it can pose a perceptual prob-

lem. Users (and management, for that matter) get fairly nervous when

they see a lot of blank values in a table. Is the data missing? Did some-

one forget to make entries into these fields? Has someone mistakenly

deleted the data? Did the computer accidentally destroy the original val-

ues? (Yes, the urban myth, “The computer did it!” still lives on.) The

more important question is this: If you were adhering to the Elements of

the Ideal Table as you were creating this table, how did you arrive at

this particular structure?

Fortunately, this is just another type of structural anomaly that occa-

sionally occurs as you design various tables. Your task now is to learn

how to deal with it in an appropriate manner.

The first step is to determine whether the INVENTORY table truly com-

plies with the first element of an ideal table (i.e., “It represents a single

subject”). A table that contains a large number of blank values in its

fields usually—but not always—represents more than one subject.

Think about the two sets of fields in question for a moment, and you’ll

soon realize that they represent characteristics of two distinct aspects of

the table’s subject. The first set of fields describes equipment inventory,

and the second set of fields describes books inventory; furthermore,

both types of inventory share common characteristics, such as ITEM

NAME, ITEM DESCRIPTION, and CURRENT VALUE. In essence, “Equipment” and

“Books” are subjects that are dependent upon the INVENTORY table for

their very existence; neither describes a completely distinct object or

event. As a result, they are subordinate subjects, and you’ll create a sub-

set table for each of them.

Just as a data table represents a distinct subject, a subset table repre-

sents a subordinate subject of a particular data table. The subset table

Refining the Table Structures 237

contains fields that are germane to the subordinate subject it repre-

sents, and it also includes a field (or fields) from the data table that

serves to relate the data table to the subset table. It’s important to note

that a subset table does not contain fields that represent characteristics

common to both it and the data table; these fields must remain in the

data table.

Now that you’ve determined that the INVENTORY table describes three

subjects (it doesn’t matter that two of them are subordinate subjects),

you must bring it into compliance with the first element of an ideal table

by removing the fields in question. You then use the fields as the basis

for two new subset tables, one for each subordinate subject. Here are

the steps you follow to accomplish these tasks:

1. Use the MANUFACTURER, MODEL, and WARRANTY EXPIRATION DATE fields to

create a new subset table called EQUIPMENT.

2. Use the PUBLISHER, AUTHOR, ISBN, and CATEGORY fields to create a

new subset table called BOOKS.

3. Add ITEM NAME to both tables; this field will relate each subset table

to the data table.

4. Compose a suitable description for both subset tables and add

them to the final table list. Indicate each table’s type as “Subset.”

Figure 7.29 shows the new subset table structures.

Take a moment to review your table structures once more. You may dis-

cover that you’ve created subset tables without knowing it. Tables that

have almost identical structures are commonly subset tables; there are

usually only a few unique fields that distinguish one table from the

other. For example, consider the two partial table structures in

Figure 7.30. Each table represents a distinct aspect of the same subject.

Both of these tables represent employees, but each represents a specific

type of employee. Notice, however, that there are generic fields common

238 Chapter 7 Establishing Table Structures

Figure 7.29. The new subset table structures.

Table Structures

Manufacturer

Model

Warranty Expiration Date

Item Name

Equipment

Publisher

Author

ISBN

Category

Item Name

BooksInventory

Item Name

Item Description

Current Value

Insured Value

Date Entered

Figure 7.30. Previously unidentified subset tables.

Table StructuresTable Structures

FTELast Name

FTEDate Hired

Salary Amount

Position

FTEFirst Name

Full-Time Employees

FTEStreet Address

FTECity

FTEState

PTELast Name

PTEDate Hired

Hourly Rate

PTEFirst Name

Part-Time Employees

Skill Level

PTEStreet Address

PTECity

PTEState

Case Study 239

to both tables: first name, last name, date hired, street address, city,

and state. These fields are duplicated unnecessarily, so you’ll need to

refine the table structures to resolve this problem.

Refining Previously Unidentified Subset Tables

When you identify subset tables such as these, you can refine them us-

ing these steps:

1. Remove all the fields that the subset tables have in common and

use them as the basis for a new data table.

2. Identify what subject the new data table represents, and then give

the table an appropriate name.

3. Make sure that the subset tables represent subordinate subjects of

the data table and modify the subset table names as necessary.

4. Compose a suitable description for the data table and then add it

to the final table list. Indicate the table type as “Data.”

Figure 7.31 shows the results of using these steps on the FULL-TIME

EMPLOYEES and PART-TIME EMPLOYEES tables.

At this point, all of your table structures should be in pretty good shape.

You will need to refine them even further, however, as you learn about

primary keys, foreign keys, relationships, and business rules.

You’re now going to define the preliminary table list for Mike’s Bikes. As

you know, the first thing you need to do is review the preliminary field

list to determine what subjects you can infer from the fields on the list.

Figure 7.32 shows a partial sample of that list.

CASE STUDY

240 Chapter 7 Establishing Table Structures

After carefully reviewing the entire preliminary field list, you determine

that the fields on the list suggest these subjects: customers, employees,

invoices, products, and vendors. You then compile these items into the

first version of your preliminary table list.

Figure 7.31. The results of refining the subset tables.

Table Structures

EmpLast Name

Date Hired

EmpFirst Name

Employees

EmpStreet Address

EmpCity

EmpState

EmpLast Name

Salary Amount

Position

EmpFirst Name

Full-Time Employees

EmpLast Name

Hourly Rate

EmpFirst Name

Part-Time Employees

Skill Level

Figure 7.32. The preliminary field list for Mike’s Bikes.

Preliminary Field List
as of 07/05/96

Office PhoneBirth Date

Unit PriceEmployee City

CategoryEmployee Address

Product NameEmployee Name

Invoice NumberCustomer Name

Invoice DateCustomer Address

Case Study 241

Now you create a second version of the list by merging the current pre-

liminary table list with the list of subjects you created during the analy-

sis process. Keep the following steps in mind as you merge the two lists

together:

1. Resolve items that are duplicated on both lists. Remember that a

single item can appear on both lists yet represent different sub-

jects. When you identify such items, use the appropriate

techniques to resolve this problem.

2. Resolve items that represent the same subject but have different

names. You want to ensure that only one table represents a partic-

ular subject.

3. Combine the remaining items together into one list. The combined

list becomes the second version of the preliminary table list.

After following these steps, your preliminary table list should look simi-

lar to the one shown in Figure 7.33.

You cross out “Customers,” “Employees,” and “Products” on the list of

subjects because they represent the same subjects as their counterparts

Figure 7.33. The second version of the preliminary table list.

Preliminary Table ListList of Subjects

Customers

Products

Sales

Suppliers

Employees

Customers

Products

Employees

Invoices

Vendors

242 Chapter 7 Establishing Table Structures

on the preliminary table list. The SALES table has no counterpart on

the preliminary table list, but it does represent the same subject as “In-

voices.” “Invoices” is most meaningful to Mike and his staff, however, so

you use it on the preliminary table list instead of “Sales.” A similar situ-

ation exists between “Suppliers” and “Vendors”; Mike selects “Vendors”

as the name to appear on the preliminary table list, so you cross out

“Suppliers.”

Now you’ll work toward the final version of the preliminary table list.

Use the mission objectives you created at the beginning of the database-

design process to determine whether there are subjects you may have

overlooked during the previous two procedures. Identify each subject

represented in the mission objectives using the subject-identification

technique. Once you’ve identified as many subjects as possible, you can

use the steps from the second procedure to crosscheck these subjects

against the subjects currently listed on the preliminary table list. When

you’ve completed the review and have resolved any duplicate items,

your final version of the preliminary table list is complete.

As it turns out, all of the subjects you’ve identified from the mission ob-

jectives for Mike’s Bikes already appear on the preliminary table list.

This is good news because it allows you to complete your crosscheck

quite easily. Satisfied that you’ve completed the task thoroughly, you

now have the final version of the preliminary table list.

Now that the preliminary table list is complete, you’re ready to trans-

form it into a final table list. Keep these steps in mind as you begin this

process:

❖ Note Selecting a name that best represents the subject of the

table is an arbitrary task. A good rule to follow is to use the name

that is most meaningful to everyone in the organization.

Case Study 243

1. Refine the table names. Use the appropriate guidelines to ensure

that each table name is clear, unambiguous, descriptive, and

meaningful.

2. Compose a suitable description for each table. Make certain that

the table description explicitly defines the table and states its

importance to the organization. Use the pertinent guidelines to

create each table description.

3. Indicate the table’s type. Remember that a table can be classified

in one of four ways—data, linking, subset, or validation. At this

point, all of your tables are data tables.

Figure 7.34 shows a partial example of the final table list for Mike’s

Bikes.

The next order of business is to associate fields from the preliminary

field list with each table in the final table list. Make certain you select

Figure 7.34. A partial listing of the final table list for Mike’s Bikes.

Final Table List

Employees

Customers

Name

Data

Data

Type

The people who purchase the products we

have to offer. Keeping track of our customers

allows us to promote our business and obtain

valuable feedback in assessing the quality of

our customer service.

Description

The people who work for our company in various

capacities. This information is important for tax

purposes, health benefits, and work-related

issues.

244 Chapter 7 Establishing Table Structures

the fields that best represent characteristics of each table’s subject;

each field should define or describe a particular aspect of the subject.

Figure 7.35 shows a partial example of the table structures for Mike’s

Bikes.

Now you refine the fields. Remember to follow these steps as you work

with each field:

1. Improve the field name. Use the appropriate guidelines to ensure

that each field name is as clear, unambiguous, and descriptive as

possible.

2. Determine whether the field complies with the Elements of the Ideal

Field. Make certain you check for multipart and multivalued

fields. As you learned earlier, they can cause a number of prob-

lems within a table.

As you review the fields, you decide to abbreviate some of the field

names in the CUSTOMERS, EMPLOYEES, and INVOICES tables, short-

Figure 7.35. A partial listing of the table structures for Mike’s Bikes.

Table Structures

EmployeesCustomers Invoices Products

Employee NameCustomer First Name Invoice Number Product Name

Date HiredStatus Customer First Name Retail Price

Employee AddressCustomer Last Name Invoice Date Product Description

Employee PhoneCustomer Phone Employee Name Category

SSNCustomer Address Customer Last Name Wholesale Price

Position Customer Phone Quantity

Case Study 245

ening CUSTOMER to CUST and EMPLOYEE to EMP. You also decide that

the field name QUANTITY (in the PRODUCTS table) does not completely

describe the characteristic it represents, so you change it to QUANTITY ON

HAND. The phone fields in the CUSTOMERS and EMPLOYEES tables

suffer the same problem, so you change them to CUSTHOME PHONE and

EMPHOME PHONE respectively. Furthermore, you change SSN to SOCIAL SE-

CURITY NUMBER so that the field name is absolutely unambiguous.

Further investigation of the fields reveals that almost all of them comply

with the Elements of the Ideal Field. The only exceptions are the ad-

dress fields in the CUSTOMERS and EMPLOYEES tables, and the EM-

PLOYEE NAME fields in the EMPLOYEES and INVOICES tables. After

ascertaining that you can decompose each address field into four indi-

vidual items—street address, city, state, and zip code—you transform

these items into fields and add them to the CUSTOMERS and EMPLOY-

EES tables. Similarly, you notice that the EMPLOYEE NAME field represents

two items—first name and last name—and you make the appropriate

adjustments to that field in the EMPLOYEES and INVOICES tables.

Figure 7.36 shows the result of all the changes you’ve made to the fields.

Your final task is to refine the table structures. Make certain that you

have assigned the appropriate fields to each table and that you have

properly defined each table. Remember to follow these steps as you

work with each table:

1. Resolve unnecessary duplicate fields. When you create new tables

as a result of resolving duplicate fields, make sure you properly

identify them and add them to the final table list.

2. Determine whether each table complies with the Elements of the

Ideal Table. Make certain you resolve all the anomalies you identify

in the fields or within the table structure as a whole.

3. Establish subset tables as appropriate. Make certain you properly

identify these tables and add them to the final table list as well.

246 Chapter 7 Establishing Table Structures

As you complete your review of the tables, you determine that all of them

conform to the Elements of the Ideal Table with the exception of the IN-

VOICES table. The only problem with this table is that it contains an un-

necessary duplicate field: CUSTHOME PHONE. You can remove this field

from the table, however, because it provides only reference information.

As you work with the PRODUCTS table, you notice that there are fields

you might be able to remove and then use as the basis for a subset ta-

ble. So you review the table once again. Figure 7.37 shows the PROD-

UCTS table structure you’re currently examining. (This is an expanded

version of the table structure shown in Figure 7.36.)

Your assumption proves correct. You determine that certain fields de-

scribe a service, and you can construe a service as being a different

type of product. A service is similar to a product in that it has a name,

description, and category, but it is different inasmuch as it has a type,

materials charge, and service charge. With this in mind, you create a

Figure 7.36. Refinements to the fields in the table structures.

Table Structures

ProductsCustomers Employees Invoices

Product NameCustFirst Name EmpFirst Name Invoice Number

Product DescriptionCustLast Name EmpLast Name Invoice Date

CategoryCustHome Phone EmpHome Phone EmpFirst Name

Wholesale PriceCustStreet Address Social Security Number EmpLast Name

Retail PriceCustCity EmpStreet Address CustFirst Name

Quantity On HandCustState EmpCity CustLast Name

CustZipcode EmpState CustHome Phone

Case Study 247

new subset table called SERVICES, make the appropriate modifications

to the PRODUCTS table, and use the PRODUCT NAME field to relate the

two tables to each other. You then add the suitable listing for the SER-

VICES table to the final table list. Figure 7.38 shows the revised PROD-

UCTS table and the new SERVICES subset table.

Figure 7.37. The PRODUCTS table structure (expanded version).

Table Structures

Products

Product Name Service Name

Quantity On Hand Service Charge

Product Description Service Description

Wholesale Price Service Type

Retail Price Materials Charge

Category Service Category

Figure 7.38. The new PRODUCTS and SERVICES tables.

Table Structures

ServicesProducts

Product NameProduct Name

Retail Price

Service TypeProduct Description

Materials ChargeCategory

Service ChargeWholesale Price

Quantity On Hand

248 Chapter 7 Establishing Table Structures

Summary

We opened the chapter with a discussion of the preliminary table list.

This list constitutes the initial table structures for the new database.

You learned how to develop this list using the preliminary field list, the

list of subjects, and the mission objectives, all of which you compiled

during the analysis phase of the database-design process.

Next we discussed the procedure for transforming the preliminary table

list into a final table list, which contains the name, type, and description

of each table in the database. You learned a set of guidelines for creating

table names, and another set of guidelines for composing table descrip-

tions. We then worked on creating table names that are unambiguous,

descriptive, and meaningful and descriptions that explicitly define ta-

bles, as well as stating their importance to the organization. You also

learned that enlisting the help of users and management is crucial to the

process of developing well-defined table descriptions. Table descriptions

must be suitable and easily understood by everyone in the organization.

We then discussed the process of associating fields with each table on

the final table list. Here you learned how to build a structure for a given

table using fields from the preliminary field list that best represent

characteristics of the table’s subject.

Refining fields was the next subject of discussion, and you learned a set

of guidelines for creating field names that will help you ensure that they

are clear, descriptive, and meaningful. You also learned about the Ele-

ments of the Ideal Field. Now you know that you can resolve anomalies

in a field by determining whether it complies with these elements. We

then discussed how to resolve multipart and multivalued fields. You

learned that decomposing multipart fields yields new fields, whereas de-

composing multivalued fields yields new tables.

The chapter closes with a discussion of refining table structures. You

learned to identify the Elements of the Ideal Table, and you now know

Review Questions 249

that you can ferret out a problem in table structure by determining

whether a table complies with these elements. We then discussed un-

necessary duplicate fields, and you now know that they appear in a ta-

ble for two reasons: to supply reference information or to represent

different occurrences of the same type of value. You then learned how to

resolve duplicate fields to eliminate the problems they present.

The final discussion centered on the topic of subset tables. As you now

know, a subset table represents a subordinate subject of a particular

data table, and there is a distinct relationship between the subset table

and the data table. You also know that you can explicitly create subset

tables. You then learned that you may have unknowingly created subset

tables earlier in the database-design process and that you need to look

for subset tables you have not previously identified. When you identify a

subset table, you refine it and add it to the final table list.

Review Questions

1. How do you identify and establish tables for the new database?

2. Why do you use the preliminary field list to help you define tables

for the database?

3. What action do you take when an item on the list of subjects and a

differently named item on the preliminary table list both represent

the same subject?

4. What information does the final table list provide?

5. State three guidelines for creating table names.

6. State two guidelines for composing table descriptions.

7. How do you assign fields to a table on the final table list?

8. State three guidelines for creating field names.

9. What two problems can poorly designed fields cause?

250 Chapter 7 Establishing Table Structures

10. What can you use to resolve field anomalies?

11. State three of the Elements of the Ideal Field.

12. Under what condition is redundant data acceptable?

13. In general terms, what three steps do you follow to resolve a multi-

valued field?

14. When is it necessary to use a duplicate field in a table?

15. How can you refine table structures?

16. State three of the Elements of the Ideal Table.

17. What is a subset table?

251

8
Keys

A fact in itself is nothing. It is valuable only for the idea

attached to it, or for the proof which it furnishes.

—CLAUDE BERNARD

Topics Covered in This Chapter

Why Keys Are Important

Establishing Keys for Each Table

Table-Level Integrity

Reviewing the Initial Table Structures

Case Study

Summary

Review Questions

By now you’ve identified all the subjects that the database will track

and defined the table structures that will represent those subjects. Fur-

thermore, you’ve put the structures through a screening process to con-

trol their makeup and quality. In this next stage of the database-design

process, you’ll begin the task of assigning keys to each table. You’ll soon

learn that there are different types of keys, and each plays a particular

role within the database structure. All but one key is assigned during

this stage; you’ll assign the remaining key later (in Chapter 10) as you

establish relationships between tables.

252 Chapter 8 Keys

Why Keys Are Important

Keys are crucial to a table structure for the following reasons:

• They ensure that each record in a table is precisely identified. As

you already know, a table represents a singular collection of simi-

lar objects or events. (For example, a CLASSES table represents a

collection of classes, not just a single class.) The complete set of

records within the table constitutes the collection, and each

record represents a unique instance of the table’s subject within

that collection. You must have some means of accurately identify-

ing each instance, and a key is the device that allows you to do so.

• They help establish and enforce various types of integrity. Keys are

a major component of table-level integrity and relationship-level

integrity. For instance, they enable you to ensure that a table has

unique records and that the fields you use to establish a relation-

ship between a pair of tables always contain matching values.

• They serve to establish table relationships. As you’ll learn in Chap-

ter 10, you’ll use keys to establish a relationship between a pair of

tables.

Always make certain that you define the appropriate keys for each table.

Doing so will help you guarantee that the table structures are sound,

that redundant data within each table is minimal, and that the relation-

ships between tables are solid.

Establishing Keys for Each Table

Your next task is to establish keys for each table in the database. There

are four main types of keys: candidate, primary, foreign, and non-keys.

A key’s type determines its function within the table.

Establishing Keys for Each Table 253

Candidate Keys

The first type of key you establish for a table is the candidate key, which

is a field or set of fields that uniquely identifies a single instance of the

table’s subject. Each table must have at least one candidate key. You’ll

eventually examine the table’s pool of available candidate keys and des-

ignate one of them as the official primary key for the table.

Before you can designate a field as a candidate key, you must make cer-

tain it complies with all of the Elements of a Candidate Key. These ele-

ments constitute a set of guidelines you can use to determine whether

the field is fit to serve as a candidate key. You cannot designate a field

as a candidate key if it fails to conform to any of these elements.

Elements of a Candidate Key

• It cannot be a multipart field. You’ve seen the problems with multi-

part fields, so you know that using one as an identifier is a bad

idea.

• It must contain unique values. This element helps you guard

against duplicating a given record within the table. Duplicate

records are just as bad as duplicate fields, and you must avoid

them at all costs.

• It cannot contain null values. As you already know, a null value

represents the absence of a value. There’s absolutely no way a

candidate key field can identify a given record if its value is null.

• Its value cannot cause a breach of the organization’s security or pri-

vacy rules. Values such as passwords and Social Security Num-

bers are not suitable for use as a candidate key.

• Its value is not optional in whole or in part. A value that is optional

implies that it may be null at some point. You can infer, then, that

254 Chapter 8 Keys

an optional value automatically violates the previous element and

is, therefore, unacceptable. (This caveat is especially applicable

when you want to use two or more fields as a candidate key.)

• It comprises a minimum number of fields necessary to define

uniqueness. You can use a combination of fields (treated as a

single unit) to serve as a candidate key, so long as each field

contributes to defining a unique value. Try to use as few fields as

possible, however, because overly complex candidate keys can

ultimately prove to be difficult to work with and difficult to

understand.

• Its values must uniquely and exclusively identify each record in the

table. This element helps you guard against duplicate records and

ensures that you can accurately reference any of the table’s

records from other tables in the database.

• Its value must exclusively identify the value of each field within a

given record. This element ensures that the table’s candidate keys

provide the only means of identifying each field value within the

record. (You’ll learn more about this particular element in the sec-

tion on primary keys.)

• Its value can be modified only in rare or extreme cases. You should

never change the value of a candidate key unless you have an

absolute and compelling reason to do so. A field is likely to have

difficulty conforming to the previous elements if you can change

its value arbitrarily.

Establishing a candidate key for a table is quite simple: Look for a field

or set of fields that conforms to all of the Elements of a Candidate Key.

You’ll probably be able to define more than one candidate key for a given

table. Loading a table with sample data will give you the means to iden-

tify potential candidate keys accurately. (You used this same technique

in the previous chapter.)

Establishing Keys for Each Table 255

See if you can identify any candidate keys for the table in Figure 8.1.

You probably identified EMPLOYEE ID, SOCIAL SECURITY NUMBER, EMPLAST

NAME, EMPFIRST NAME and EMPLAST NAME, EMPZIPCODE, and EMPHOME PHONE

as potential candidate keys. But you’ll need to examine these fields

more closely to determine which ones are truly eligible to become candi-

date keys. Remember that you must automatically disregard any field(s)

failing to conform to even one of the Elements of a Candidate Key.

Upon close examination, you can draw the following conclusions:

• EMPLOYEE ID is eligible. This field conforms to every element of a

candidate key.

• SOCIAL SECURITY NUMBER is ineligible because it could contain null val-

ues and will most likely compromise the organization’s privacy

rules. Contrary to what the sample data shows, this field could

contain a null value. For example, there are many people working

in the United States who do not have Social Security numbers be-

cause they are citizens of other countries.

Figure 8.1. Are there any candidate keys in this table?

Employees

EmpFirst Name

Kendra

Timothy

Shannon

Estela

Susan

Katherine

Timothy

Social Security Number

856-91-9938

901-48-0039

816-93-1299

955-92-5583

978-02-1129

886-11-2231

801-22-1734

EmpLast Name

Bonnicksen

Ennis

McLain

Pundt

McLain

Erlich

Sherman

EmpStreet Address

1204 Bryant Road

7402 Kingman Drive

4141 Lake City Way

101 C Street, Apt. 32

2100 Mineola Avenue

101 C Street, Apt. 32

66 NE 120th

EmpCity

Seattle

Redmond

Seattle

Bellevue

Seattle

Bellevue

Bothell

EmpState

WA

WA

WA

WA

WA

WA

WA

EmpZipcode

98157

98115

98136

98046

98115

98046

98216

EmpHome Phone

363-9948

527-4992

336-5992

322-6992

572-9948

322-6992

522-3232

Employee ID

1000

1002

1003

1005

1004

1001

1006

256 Chapter 8 Keys

• EMPLAST NAME is ineligible because it can contain duplicate values.

As you’ve learned, the values of a candidate key must be unique.

In this case there can be more than one occurrence of a particular

last name.

• EMPFIRST NAME and EMPLAST NAME are eligible. The combined values

of both fields will supply a unique identifier for a given record. Al-

though multiple occurrences of a particular first name or last

name will occur, the combination of a given first name and last

name will always be unique. (Some of you are probably saying,

“This is not necessarily always true.” You’re absolutely right.

Don’t worry; we’ll address this issue shortly.)

• EMPZIPCODE is ineligible because it can contain duplicate values.

Many people live in the same zip code area, so the values in

EMPZIPCODE cannot possibly be unique.

• EMPHOME PHONE is ineligible because it can contain duplicate values

and is subject to change. This field will contain duplicate values

for either of these reasons:

1. One or more family members work for the organization.

2. One or more people share a residence that contains a single

phone line.

❖ Note Despite its widespread use in many types of databases, I

would strongly recommend that you refrain from using SOCIAL SE-

CURITY NUMBER as a candidate key (or a primary key, for that mat-

ter) in any of your database structures. In many instances, it

doesn’t conform to the Elements of a Candidate Key. You can

learn some very interesting facts about Social Security numbers

(which will shed some light on why they make poor candidate/pri-

mary keys) by visiting the Social Security Adminstration’s Web

site at http://www.ssa.gov.

http://www.ssa.gov

Establishing Keys for Each Table 257

You can confidently state that the EMPLOYEES table has two candidate

keys: EMPLOYEE ID and the combination of EMPFIRST NAME and EMPLAST

NAME.

Mark candidate keys in your table structures by writing the letters “CK”

next to the name of each field you designate as a candidate key. A can-

didate key composed of two or more fields is known as a composite can-

didate key, and you’ll write “CCK” next to the names of the fields that

make up the key. When you have two or more composite candidate

keys, use a number within the mark to distinguish one from another. If

you had two composite candidate keys, for example, you would mark

one as “CCK1” and the other as “CCK2.”

Apply this technique to the candidate keys for the EMPLOYEES table in

Figure 8.1. Figure 8.2 shows how your structure should look when

you’ve completed this task.

Figure 8.2. Marking candidate keys in the EMPLOYEES table structure.

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID CK

EmpState

EmpFirst Name CCK

Social Security Number

258 Chapter 8 Keys

Now, try to identify as many candidate keys as you can for the PARTS

table in Figure 8.3.

At first glance, you may believe that PART NAME, MODEL NUMBER, the com-

bination of PART NAME and MODEL NUMBER, and the combination of MANU-

FACTURER and PART NAME are potential candidate keys. After investigating

this theory, however, you come up with the following results:

• PART NAME is ineligible because it can contain duplicate values. A

given part name will be duplicated when the part is manufactured

in several models. For example, this is the case with Faust Brake

Levers.

• MODEL NUMBER is ineligible because it can contain null values. A can-

didate key value must exist for each record in the table. As you

can see, some parts do not have a model number.

• PART NAME and MODEL NUMBER are ineligible because either field can

contain null values. The simple fact that MODEL NUMBER can con-

tain null values instantly disqualifies this combination of fields.

• MANUFACTURER and PART NAME are ineligible because the values for

these fields seem to be optional. Recall that a candidate key value

Figure 8.3. Can you identify any candidate keys in the PARTS table?

Parts

Part Name

Shimka XT Cranks

Faust Brake Levers

MiniMite Pump

Hobo Fanny Pack

Diablo Bike Pedals

Shimka Truing Stand

Faust Brake Levers

Model Number

XT-113

BL / 45

Mtn-A26

SP-100

BL / 60

Manufacturer Name

Shimka Incorporated

Faust USA

MiniMite

Hobo Bike Company

Diablo Sports

Faust USA

Retail Price

199.95

53.79

35.00

59.00

129.50

37.95

79.95

Establishing Keys for Each Table 259

cannot be optional in whole or in part. In this instance, you can

infer that entering the manufacturer name is optional when it

appears as a component of the part name; therefore, you cannot

designate this combination of fields as a candidate key.

It’s evident that you don’t have a single field or set of fields that quali-

fies as a candidate key for the PARTS table. This is a problem because

each table must have at least one candidate key. Fortunately, there is

a solution.

Artificial Candidate Keys

When you determine that a table does not contain a candidate key, you

can create and use an artificial (or surrogate) candidate key. (It’s artifi-

cial in the sense that it didn’t occur “naturally” in the table; you have to

manufacture it.) You establish an artificial candidate key by creating a

new field that conforms to all of the Elements of a Candidate Key and

then adding it to the table; this field becomes the official candidate key.

You can now solve the problem in the PARTS table. Create an artificial

candidate key called PART NUMBER and assign it to the table. (The new

field will automatically conform to the Elements of a Candidate Key be-

cause you’re creating it from scratch.) Figure 8.4 shows the revised

structure of the PARTS table.

When you’ve established an artificial candidate key for a table, mark the

field name with a “CK” in the table structure, just as you did for the EM-

PLOYEES table in the previous example.

You may also choose to create an artificial candidate key when it would

be a stronger (and thus, more appropriate) candidate key than any of

the existing candidate keys. Assume you’re working on an EMPLOYEES

table and you determine that the only available candidate key is the

combination of the EMPFIRST NAME and EMPLAST NAME fields. Although this

may be a valid candidate key, using a single-field candidate key might

260 Chapter 8 Keys

prove more efficient and may identify the subject of the table more eas-

ily. Let’s say that everyone in the organization is accustomed to using a

unique identification number rather than a name as a means of identi-

fying an employee. In this instance, you can choose to create a new field

named EMPLOYEE ID and use it as an artificial candidate key. This is an

absolutely acceptable practice—do this without hesitation or reserva-

tion if you believe it’s appropriate.

Review the candidate keys you’ve selected and make absolutely certain

that they thoroughly comply with the Elements of a Candidate Key.

Don’t be surprised if you discover that one of them is not a candidate

key after all—incorrectly identifying a field as a candidate key happens

❖ Note I commonly create an ID field (such as EMPLOYEE ID, VEN-

DOR ID, DEPARTMENT ID, CATEGORY ID, and so on) and use it as an ar-

tificial candidate key. It always conforms to the Elements of a

Candidate Key, makes a great primary key (eventually), and, as

you’ll see in Chapter 10, makes the process of establishing table

relationships much easier.

Figure 8.4. The PARTS table with the artificial candidate key PART NUMBER.

Parts

Part Number

41000

41001

41002

41003

41004

41005

41006

Part Name

Shimka XT Cranks

Faust Brake Levers

MiniMite Pump

Hobo Fanny Pack

Diablo Bike Pedals

Shimka Truing Stand

Faust Brake Levers

Model Number

XT-113

BL / 45

Mtn-A26

SP-100

BL / 60

Manufacturer Name

Shimka Incorporated

Faust USA

MiniMite

Hobo Bike Company

Diablo Sports

Faust USA

Retail Price

199.95

53.79

35.00

59.00

129.50

37.95

79.95

Establishing Keys for Each Table 261

occasionally. When this does occur, just remove the “CK” designator

from the field name in the table structure. Deleting a candidate key

won’t pose a problem as long as the table has more than one candidate

key. If you discover, however, that the only candidate key you identified

for the table is not a candidate key, you must establish an artificial can-

didate key for the table. After you’ve defined the new candidate key, re-

member to mark its name with a “CK” in the table structure.

Primary Keys

By now, you’ve established all the candidate keys that seem appropriate

for every table. Your next task is to establish a primary key for each ta-

ble, which is the most important key of all.

• A primary key field exclusively identifies the table throughout the

database structure and helps establish relationships with other

tables. (You’ll learn more about this in Chapter 10.)

• A primary key value uniquely identifies a given record within a

table and exclusively represents that record throughout the entire

database. It also helps to guard against duplicate records.

A primary key must conform to the exact same elements as a candidate

key. This requirement is easy to fulfill because you select a primary key

from a table’s pool of available candidate keys. The process of selecting

a primary key is somewhat similar to that of a presidential election. Ev-

ery four years, several people run for the office of president of the United

States. These individuals are known as “candidates” and they have all of

the qualifications required to become president. A national election is

held, and a single individual from the pool of available presidential can-

didates is elected to serve as the country’s official president. Similarly,

you identify each qualified candidate key in the table, run your own

election, and select one of them to become the official primary key of the

table. You’ve already identified the candidates, so now it’s election time!

262 Chapter 8 Keys

Assuming that there is no other marginal preference, here are a couple

of guidelines you can use to select an appropriate primary key:

1. If you have a simple (single-field) candidate key and a composite

candidate key, choose the simple candidate key. It’s always best to

use a candidate key that contains the least number of fields.

2. Choose a candidate key that incorporates part of the table name

within its own name. For example, a candidate key with a name

such as SALES INVOICE NUMBER is a good choice for the SALES

INVOICES table.

Examine the candidate keys and choose one to serve as the primary key

for the table. The choice is largely arbitrary—you can choose the one

that you believe most accurately identifies the table’s subject or the one

that is the most meaningful to everyone in the organization. For exam-

ple, consider the EMPLOYEES table again in Figure 8.5.

Either of the candidate keys you identified within the table could serve

as the primary key. You might decide to choose EMPLOYEE ID if everyone

in the organization is accustomed to using this number as a means of

identifying employees in items such as tax forms and employee benefits

programs. The candidate key you ultimately choose becomes the pri-

mary key of the table and is governed by the Elements of a Primary Key.

These elements are exactly the same as those for the candidate key, and

you should enforce them to the letter. For the sake of clarity, here are

the Elements of a Primary Key:

Elements of a Primary Key

• It cannot be a multipart field.

• It must contain unique values.

• It cannot contain null values.

Establishing Keys for Each Table 263

• Its value cannot cause a breach of the organization’s security or

privacy rules.

• Its value is not optional in whole or in part.

• It comprises a minimum number of fields necessary to define

uniqueness.

• Its values must uniquely and exclusively identify each record in

the table.

• Its value must exclusively identify the value of each field within a

given record.

• Its value can be modified only in rare or extreme cases.

Figure 8.5. Which candidate key should become the primary key of the
EMPLOYEES table?

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID CK

EmpState

EmpFirst Name CCK

Social Security Number

264 Chapter 8 Keys

Before you finalize your selection of a primary key, it is imperative that

you make absolutely certain that the primary key fully complies with

this particular element:

• Its value must exclusively identify the value of each field within a

given record.

Each field value in a given record should be unique throughout the en-

tire database (unless it is participating in establishing a relationship be-

tween a pair of tables) and should have only one exclusive means of

identification—the specific primary key value for that record.

You can determine whether a primary key fully complies with this ele-

ment by following these steps:

1. Load the table with sample data.

2. Select a record for test purposes and note the current primary key

value.

3. Examine the value of the first field (the one immediately after the

primary key) and ask yourself this question:

Does this primary key value exclusively identify the current

value of <fieldname>?

a. If the answer is yes, move to the next field and repeat the

question.

b. If the answer is no, remove the field from the table, move to the

next field and repeat the question.

4. Continue this procedure until you’ve examined every field value in

the record.

A field value that the primary key does not exclusively identify indicates

that the field itself is unnecessary to the table’s structure; therefore, you

Establishing Keys for Each Table 265

should remove the field and reconfirm that the table complies with the

Elements of the Ideal Table. You can then add the field you just removed

to another table structure, if appropriate, or you can discard it com-

pletely because it is truly unnecessary.

Here’s an example of how you might apply this technique to the partial

table structure in Figure 8.6. (Note that INVOICE NUMBER is the primary

key of the table.)

First, you load the table with sample data. You then select a record for

test purposes—we’ll use the third record for this example—and note the

value of the primary key (13002). Now, pose the question above for each

field value in the record.

Does this primary key value exclusively identify the current

value of . . .

INVOICE DATE? Yes, it does. This invoice number will always iden-

tify the specific date that the invoice was created.

CUSTFIRST NAME? Yes, it does. This invoice number will always iden-

tify the specific first name of the particular cus-

tomer who made this purchase.

Figure 8.6. Does the primary key exclusively identify the value of each field in
this table?

Sales Invoices

363-9948

527-4992

336-5992

322-6992

572-9948

322-6992

EmpHome Phone

Pundt

Bonnicksen

Bonnicksen

Pundt

McLain

Erlich

EmpLast Name

Estela

Kendra

Kendra

Estela

Shannon

Katherine

EmpFirst Name

DeSoto

Coie

Cunningham

DeSoto

Coie

Mattson

CustLast Name

Frank

Caroline

David

Frank

Caroline

Gregory

CustFirst Name

06/15/02

06/16/02

06/15/02

06/15/02

06/16/02

06/17/02

Invoice Date

13000

13003

13001

13002

13004

13005

Invoice Number

266 Chapter 8 Keys

CUSTLAST NAME? Yes, it does. This invoice number will always iden-

tify the specific last name of the particular cus-

tomer who made this purchase.

EMPFIRST NAME? Yes, it does. This invoice number will always iden-

tify the specific first name of the particular em-

ployee who served the customer for this sale.

EMPLAST NAME? Yes, it does. This invoice number will always iden-

tify the specific last name of the particular em-

ployee who served the customer for this sale.

EMPHOME PHONE? No, it doesn’t! The invoice number indirectly identi-

fies the employee’s home phone number via the

employee’s name. In fact, it is the current value of

both EMPFIRST NAME and EMPLAST NAME that exclu-

sively identifies the value of EMPHOME PHONE—

change the employee’s name and you must change

the phone number as well. You should now remove

EMPHOME PHONE from the table for two reasons: The

primary key does not exclusively identify its cur-

rent value and (as you’ve probably already ascer-

tained) it is an unnecessary field. As it turns out,

you can discard this field completely because it is

already part of the EMPLOYEES table structure.

After you’ve removed the unnecessary fields you identified during this

test, examine the revised table structure and make sure it complies with

the Elements of the Ideal Table.

The primary key should now exclusively identify the values of the re-

maining fields in the table. This means that the primary key is truly

sound and you can designate it as the official primary key for the table.

Remove the “CK” next to the field name in the table structure and re-

place it with a “PK.” (A primary key composed of two or more fields is

known as a composite primary key, and you mark it with the letters

Establishing Keys for Each Table 267

“CPK.”) Figure 8.7 shows the revised structure of the SALES INVOICE

table with INVOICE NUMBER as its primary key.

As you create a primary key for each table in the database, keep these

two rules in mind:

Rules for Establishing a Primary Key

1. Each table must have one—and only one—primary key. Because

the primary key must conform to each of the elements that govern

it, only one primary key is necessary for a particular table.

2. Each primary key within the database must be unique—no two

tables should have the same primary key unless one of them is a

subset table. You learned at the beginning of this section that the

primary key exclusively identifies a table throughout the database

structure; therefore, each table must have its own unique primary

Figure 8.7. The revised SALES INVOICES table with its new primary key.

Table Structures

Sales Invoices

CustLast Name

EmpFirst Name

EmpLast Name

Ship Date

Invoice Date

Shipper Name

CustFirst Name

Invoice Number PK

268 Chapter 8 Keys

key in order to avoid any possible confusion or ambiguity concern-

ing the table’s identity. A subset table is excluded from this rule

because it represents a more specific version of a particular data

table’s subject—both tables must share the same primary key.

Later in the database-design process, you’ll learn how to use the pri-

mary key to help establish a relationship between a pair of tables.

Alternate Keys

Now that you’ve selected a candidate key to serve as the primary key for

a particular table, you’ll designate the remaining candidate keys as alter-

nate keys. These keys can be useful to you in an RDBMS program be-

cause they provide an alternative means of uniquely identifying a

particular record within the table. If you choose to use an alternate key

in this manner, mark its name with “AK” or “CAK” (composite alternate

key) in the table structure; otherwise, remove its designation as an alter-

nate key and simply return it to the status of a normal field. You won’t

be concerned with alternate keys for the remainder of the database-

design process, but you will work with them once again as you imple-

ment the database in an RDBMS program. (Implementing and using al-

ternate keys in RDBMS programs is beyond the scope of this work—our

only objective here is to designate them as appropriate. This is in line

with the focus of the book, which is the logical design of a database.)

Figure 8.8 shows the final structure for the EMPLOYEES table with the

proper designation for both the primary key and the alternate keys.

Non-keys

A non-key is a field that does not serve as a candidate, primary, alter-

nate, or foreign key. Its sole purpose is to represent a characteristic of

the table’s subject, and its value is determined by the primary key.

Table-Level Integrity 269

There is no particular designation for a non-key, so you don’t need to

mark it in the table structure.

Table-Level Integrity

This type of integrity is a major component of overall data integrity, and

it ensures the following:

• There are no duplicate records in a table.

• The primary key exclusively identifies each record in a table.

• Every primary key value is unique.

• Primary key values are not null.

You began establishing table-level integrity when you defined a primary

key for each table and ensured its enforcement by making absolutely

Figure 8.8. The EMPLOYEES table with designated primary and alternate keys.

Table Structures

Employees

EmpLast Name CAK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee ID PK

EmpState

EmpFirst Name CAK

Social Security Number

270 Chapter 8 Keys

certain that each primary key fully complied with the Elements of a Pri-

mary Key. In the next chapter, you’ll enhance the table’s integrity fur-

ther as you establish field specifications for each field within the table.

Reviewing the Initial Table Structures

Now that the fundamental table definitions are complete, you need to

conduct interviews with users and management to review the work

you’ve done so far. This set of interviews is fairly straightforward and

should be relatively easy to conduct.

During these interviews, you will accomplish these tasks:

• Ensure that the appropriate subjects are represented in the data-

base. Although it’s highly unlikely that an important subject is

missing at this stage of the database-design process, it can hap-

pen. When it does happen, identify the subject, use the proper

techniques to transform it into a table, and develop it to the same

degree as the other tables in the database.

• Make certain that the table names and table descriptions are suit-

able and meaningful to everyone. When a name or description ap-

pears to be confusing or ambiguous to several people in the

organization, work with them to clarify the item as much as possi-

ble. It’s common for some table names and descriptions to im-

prove during the interview process.

• Make certain that the field names are suitable and meaningful to ev-

eryone. Selecting field names typically generates a great deal of dis-

cussion, especially when there is an existing database in place.

You’ll commonly find people who customarily refer to a particular

field by a certain name because “that’s what it’s called on my

screen.” When you change a field name—you have good reasons for

doing so—you must diplomatically explain to these folks that you

Case Study 271

renamed the field so that it conforms to the standards imposed by

the new database. You can also tell them that the field can appear

with the more familiar name once the database is implemented in

an RDBMS program. What you’ve said is true; many RDBMSs al-

low you to use one name for the field’s physical definition and an-

other name for display purposes. This feature, however, does not

change, reduce, or negate the need for you to follow the guidelines

for creating field names that you learned in Chapter 7.

• Verify that all the appropriate fields are assigned to each table.

This is your best opportunity to make certain that all of the neces-

sary characteristics pertaining to the subject of the table are in

place. You’ll commonly discover that you accidentally overlooked

one or two characteristics earlier in the design process. When this

happens, identify the characteristics, use the appropriate tech-

niques to transform them into fields, and follow all the necessary

steps to add them to the table.

When you’ve completed the interviews, you’ll move to the next phase of

the database-design process and establish field specifications for every

field in the database.

It’s now time to establish keys for each table in the Mike’s Bikes data-

base. As you know, your first order of business is to establish candidate

keys for each table. Let’s say you decide to start with the CUSTOMERS

table in Figure 8.9.

As you review each field, you try to determine whether it conforms to

the Elements of a Candidate Key. You determine that STATUS, CUSTHOME

PHONE, and the combination of CUSTFIRST NAME and CUSTLAST NAME are

potential candidate keys, but you’re not quite certain whether any of

CASE STUDY

272 Chapter 8 Keys

them will completely conform to all of the elements. So you decide to test

the keys by loading the table with sample data as shown in Figure 8.10.

Always remember that a field must comply with all of the Elements of a

Candidate Key in order to qualify as a candidate key. You must immedi-

ately disqualify the field if it does not fulfill this requirement.

Figure 8.9. The CUSTOMERS table structure in the Mike’s Bikes database.

Table Structures

Customers

CustStreet Address

CustCity

CustState

CustZipcode

Status

CustFirst Name

CustHome Phone

CustLast Name

Figure 8.10. Testing candidate keys in the CUSTOMERS table.

Customers

CustHome Phone

422-4982

363-9360

363-9360

365-7199

441-3987

322-1178

332-0499

Status

Valued

Valued

Preferred

Valued

Preferred

CustZipcode

98004

98225

98225

98115

98001

98126

98026

CustState

WA

WA

WA

WA

WA

WA

WA

CustCity

Bellevue

Redmond

Redmond

Seattle

Bothell

Kent

Seattle

CustStreet Address

2121 NE 35th

7525 Taxco Lane

7525 Taxco Lane

301 N Main

750 Pike Street

101 9th Avenue

115 Pine Place

CustLast Name

Berlin

Brigan

Carmichael

Chavez

Chavez

Bradley

Cooper

CustFirst Name

Bridget

Kel

Barbara

Daniel

Daniel

Phillip

Sandi

Case Study 273

As you examine the table, you draw these conclusions:

• STATUS is ineligible because it will probably contain duplicate values.

As business grows, Mike is going to have many “Valued” customers.

• CUSTHOME PHONE is ineligible because it will probably contain dupli-

cate values. The sample data reveals that two customers can live

in the same residence and have the same phone number.

• CUSTFIRST NAME and CUSTLAST NAME are ineligible because they will

probably contain duplicate values. The sample data reveals that

the combination of first name and last name can represent more

than one distinct customer.

These findings convince you to establish an artificial candidate key for

this table. You then create a field called CUSTOMER ID, confirm that it

complies with the requirements for a candidate key, and add the new

field to the table structure with the appropriate designation.

Figure 8.11 shows the revised structure of the CUSTOMERS table.

Figure 8.11. The CUSTOMERS table with the new artificial candidate key,
CUSTOMER ID.

Table Structures

Customers

CustStreet Address

CustCity

CustState

CustZipcode

Status

CustFirst Name

CustHome Phone

CustLast Name

Customer ID CK

274 Chapter 8 Keys

Now you’ll repeat this procedure for each table in the database. Remem-

ber to make certain that every table has at least one candidate key.

The next order of business is to establish a primary key for each table.

As you know, you select the primary key for a particular table from the

table’s pool of available candidate keys. Here are a few points to keep in

mind when you’re choosing a primary key for a table with more than

one candidate key:

• Choose a simple (single-field) candidate key over a composite can-

didate key.

• If possible, pick a candidate key that has the table name incorpo-

rated into its own name.

• Select the candidate key that best identifies the subject of the

table or is most meaningful to everyone in the organization.

You begin by working with the EMPLOYEES table in Figure 8.12. As you

review the candidate keys, you decide that EMPLOYEE NUMBER is a much

better choice for a primary key than the combination of EMPFIRST NAME

and EMPLAST NAME because Mike’s employees are already accustomed to

identifying themselves by their assigned numbers. Using EMPLOYEE NUM-

BER makes perfect sense, so you select it as the primary key for the table.

Now you perform one final task before you designate EMPLOYEE NUMBER

as the official primary key of the table: You make absolutely certain that

it exclusively identifies the value of each field within a given record. So,

you test EMPLOYEE NUMBER by following these steps:

1. Load the EMPLOYEES table with sample data.

2. Select a record for test purposes and note the current value of

EMPLOYEE NUMBER.

3. Examine the value of the first field (the one immediately after

EMPLOYEE NUMBER) and ask yourself this question:

Case Study 275

Does this primary key value exclusively identify the current

value of <fieldname>?

a. If the answer is yes, move to the next field and repeat the

question.

b. If the answer is no, remove the field from the table, move to the

next field and repeat the question. (Be sure to determine

whether you can add the field you just removed to another

table structure, if appropriate, or discard it completely because

it is truly unnecessary.)

4. Continue this procedure until you’ve examined every field value in

the record.

You know that you’ll have to remove any field containing a value that

EMPLOYEE NUMBER does not exclusively identify. EMPLOYEE NUMBER does ex-

clusively identify the value of each field in the test record, however, so

Figure 8.12. The EMPLOYEES table structure in the Mike’s Bikes database.

Table Structures

Employees

EmpLast Name CCK

EmpStreet Address

EmpCity

EmpZipcode

EmpHome Phone

Employee Number CK

EmpState

EmpFirst Name CCK

Social Security Number

276 Chapter 8 Keys

you use it as the official primary key for the EMPLOYEES table and

mark its name with the letters “PK” in the table structure. You then re-

peat this process with the rest of the tables in Mike’s new database until

every table has a primary key.

Remember to keep these rules in mind as you establish primary keys for

each table:

• Each table must have one—and only one—primary key.

• Each primary key within the database should be unique—no two

tables should have the same primary key (unless one of them is a

subset table).

As you work through the tables in Mike’s database, you remember that

the SERVICES table is a subset table. You created it during the previous

stage of the design process (in Chapter 7), and it represents a more spe-

cific version of the subject represented by the PRODUCTS table. The

PRODUCT NAME field is what currently relates the PRODUCTS table to the

SERVICES subset table. You now know, however, that a subset table

must have the same primary key as the table to which it is related, so

you’ll use PRODUCT NUMBER (the primary key of the PRODUCTS table) as

the primary key of the SERVICES table. Figure 8.13 shows the PROD-

UCTS and SERVICES tables with their primary keys.

The last order of business is to conduct interviews with Mike and his staff

and review all the work you’ve performed on the tables in the database.

As you conduct these interviews, make certain you check the following:

• That the appropriate subjects are represented in the database

• That the table names and descriptions are suitable and meaning-

ful to everyone

• That the field names are suitable and meaningful to everyone

• That all the appropriate fields are assigned to each table

Summary 277

By the end of the interview, everyone agrees that the tables are in good

form and that all the subjects with which they are concerned are repre-

sented in the database. Only one minor point came up during the dis-

cussions: Mike wants to add a CALL PRIORITY field to the VENDORS table.

There are instances in which more than one vendor supplies a particu-

lar product, and Mike wants to create a way to indicate which vendor he

should call first if that product is unexpectedly out of stock. So, you add

the new field to the VENDORS table and bring the interview to a close.

Summary

The chapter opened with a discussion of the importance of keys. You

learned that there are different types of keys, and each type plays a dif-

ferent role within the database. Each key performs a particular func-

tion, such as uniquely identifying records, establishing various types of

integrity, and establishing relationships between tables. You now know

that you can guarantee sound table structure by making certain that

the appropriate keys are established for each table.

Figure 8.13. Establishing the primary key for the SERVICES subset table.

Table Structures

ServicesProducts

Service TypeProduct Name

Retail Price

Materials ChargeProduct Description

Service ChargeCategory

Wholesale Price

Quantity On Hand

Product Number PKProduct Number PK

278 Chapter 8 Keys

We then discussed the process of establishing keys for each table. We

began by identifying the four main types of keys: candidate, primary,

foreign, and non-keys. First, we looked at the process of establishing

candidate keys for each table. You learned about the Elements of a Can-

didate Key and how to make certain that a field (or set of fields) complies

with these elements. Then you learned that you can create and use an

artificial candidate key when none of the fields in a table can serve as a

candidate key or when a new field would make a stronger candidate key

than any of the existing candidate key fields.

The chapter continued with a discussion of primary keys. You learned

that you select a primary key from a table’s pool of candidate keys and

that the primary key is governed by a set of specific elements. We then

covered a set of guidelines that help you determine which candidate key

to use as a primary key. Next, you learned how to ensure that the cho-

sen primary key exclusively identifies a given record and its set of field

values. When the primary key does not exclusively identify a particular

field value, you know that you must remove the field from the table in

order to ensure the table’s structural integrity. You also know that each

table must have a single, unique primary key.

You then learned that you designate any remaining candidate keys as al-

ternate keys. These keys will be most useful to you when you implement

the database in an RDBMS program because they provide an alternate

means of identifying a given record. We then discussed the non-key field,

which is any field not designated as a candidate, primary, alternate, or

foreign key. You now know that a non-key field represents a characteris-

tic of the table’s subject and that the primary key exclusively identifies

its value.

Table-level integrity was the next subject of discussion, and you learned

that it is established through the use of primary keys and enforced by

the Elements of a Primary Key.

Review Questions 279

The chapter closed with some guidance on conducting further interviews

with users and management. You now know that these interviews provide

you with a means of reviewing the work you have performed on the tables

and help you to verify and validate the current database structure.

Review Questions

1. State the three reasons why keys are important.

2. What are the four main types of keys?

3. What is the purpose of a candidate key?

4. State four items of the Elements of a Candidate Key.

5. True or False: A candidate key can be composed of more than one

field.

6. Can a table have more than one candidate key?

7. What is an artificial candidate key?

8. What is the most important key you assign to a table?

9. Why is this key important?

10. How do you establish a primary key?

11. State four items of the Elements of a Primary Key.

12. What must you do before you finalize your selection of a primary

key?

13. What is an alternate key?

14. What do you ensure by establishing table-level integrity?

15. Why should you review the initial table structures?

This page intentionally left blank

281

9
Field Specifications

It has long been an axiom of mine that the

little things are infinitely the most important.

—SHERLOCK HOLMES,
THE ADVENTURES OF SHERLOCK HOLMES

Topics Covered in This Chapter

Why Field Specifications Are Important

Field-Level Integrity

Anatomy of a Field Specification

Using Unique, Generic, and Replica Field Specifications

Defining Field Specifications for Each Field in the Database

Case Study

Summary

Review Questions

Fields are the bedrock of the database. They represent characteristics of

the subjects that are important to an organization. Fields store the data

that the organization uses as the basis of information—information that

is vital to its daily operations, success, and future growth. Despite their

inherent value, fields are still the most overlooked, underutilized, and

neglected assets of the organization! Frequently, little or no time is spent

ensuring the structural and logical integrity of the fields in the database.

Much is said and written about data integrity, but little is done about

it. Many people believe that keeping an eye on their data-entry person-

nel and having a “foolproof” user interface for the database will greatly

minimize potential data-related problems. This superficial approach to

282 Chapter 9 Field Specifications

data integrity commonly stems from an incorrect belief that proper

data integrity takes too much time to establish. It’s important to note,

however, that the people who don’t have time to establish data integrity

usually spend a large amount of time fixing their improperly designed

databases—typically spending up to three times as long as it would

have taken them to design the database properly in the first place!

In this chapter, you’ll learn how to establish data integrity by defining

field specifications for each field in the database. First, you’ll learn

about the three sets of elements that compose a field specification; then

you’ll learn how to conduct interviews with users and management to

enlist their help in defining the specifications for the fields.

Why Field Specifications Are Important

Despite what you may have heard, the time it takes to establish field

specifications for each field in the database is an investment toward

building consistent data and quality information—you are not wasting

time whatsoever by performing this process. In fact, you’ll waste more

time in the end if you only partially perform this process or neglect it

entirely. Shirking this duty means you’re bound to encounter (and suf-

fer from) inconsistent and erroneous data and inaccurate information.

There are several reasons why field specifications are crucial:

• Field specifications help establish and enforce field-level integrity.

Implementing these specifications enables you to guarantee that

the data in each field is consistent and valid.

• Defining field specifications for each field enhances overall data in-

tegrity. Remember that field-level integrity is one of the four com-

ponents of overall data integrity. Field-level integrity enhances (to

some extent) the table-level integrity you established in the previ-

ous stage of the design process. (This will become apparent when

you work with the logical elements of the field specification.)

Field-Level Integrity 283

• Defining field specifications compels you to acquire a complete un-

derstanding of the nature and purpose of the data in the database.

Understanding the data means that you can judge whether the

data is truly necessary and important to the organization, and

you can learn how to use it to your best advantage.

• Field specifications constitute the “data dictionary” of the data-

base. Each field specification stores data on the characteristics of

a particular field within the database. The complete set of specifi-

cations you establish for all of the fields in the database composes

a literal dictionary of the database’s structure. This data dictio-

nary is particularly useful when you implement your database in

an RDBMS—you can use it as a guide for creating the fields and

setting their fundamental properties. These specifications will

also help you determine what type of data-entry and data-valida-

tion procedures you need to implement within any user-interface

application you create for the database.

Keep in mind that the levels of consistency, quality, and accuracy of the

data in the database (and information retrieved from that data) are in

direct proportion to the degree that you complete these specifications. It

is paramount that you establish each field specification completely if

your organization depends heavily on the information you retrieve from

the database.

Field-Level Integrity

A field attains field-level integrity after you’ve defined a complete set

of field specifications for the field. Field-level integrity warrants the

following:

• The identity and purpose of a field is clear, and all of the tables in

which it appears are properly identified.

• Field definitions are consistent throughout the database.

284 Chapter 9 Field Specifications

• The values of a field are consistent and valid.

• The types of modifications, comparisons, and operations that can

be applied to the values in the field are clearly identified.

You can guarantee that a field structure is sound and optimally de-

signed when it has a complete set of field specifications and fully con-

forms to the Elements of the Ideal Field. In fact, ensuring that the field

complies with the Elements of the Ideal Field makes defining a set of

specifications a relatively easy task.

If you’ve had any lingering doubt about a particular field’s conformance

to the Elements of the Ideal Field, now is a good time to review that field

once more. If you determine that it is not in conformance, use the ap-

propriate techniques to resolve the problem and make the proper ad-

justments to the table; otherwise, you can begin the process of defining

field specifications for each field in the database. Here are the Elements

of the Ideal Field once again for your convenience.

Elements of the Ideal Field

• It represents a distinct characteristic of the subject of the table.

• It contains only a single value.

• It cannot be deconstructed into smaller components.

• It does not contain a calculated or concatenated value.

• It is unique within the entire database structure.

• It retains a majority of its characteristics when it appears in more

than one table.

Anatomy of a Field Specification

A field specification incorporates various elements that define every at-

tribute of a field. All of the elements within the specification are catego-

Anatomy of a Field Specification 285

rized as general elements, physical elements, or logical elements. These

element categories enable you to focus on a distinct aspect of the field

as you’re defining the specification, and they provide a way for you to

find a particular element quite easily.

Here are the elements within each category:

• General Elements: Field Name, Parent Table, Label, Specification

Type, Source Specification, Shared By, Alias(es), Description

• Physical Elements: Data Type, Length, Decimal Places, Character

Support, Input Mask, Display Format

• Logical Elements: Key Type, Key Structure, Uniqueness, Null

Support, Values Entered By, Required Value, Default Value,

Range of Values, Edit Rule, Comparisons Allowed, Operations

Allowed

Figure 9.1 shows an example of a Field Specifications sheet. We’ll use

this sheet (or various portions of it) as we work on field specification ex-

amples throughout the remainder of the book.

General Elements

Items under the General Elements category represent the most funda-

mental attributes of the field. They provide information on the field’s

purpose, the name of the table(s) in which the field appears, and the

pseudonyms the field assumes under certain circumstances.

Field Name

This is the set of absolute minimal words that uniquely identifies a par-

ticular field throughout the database. You created and refined field

names earlier in the database-design process (see Chapter 7), so you’ll

just take each name and use it as the setting for this element.

286 Chapter 9 Field Specifications

Figure 9.1. Field Specifications sheet.

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters (A–Z)

Numbers (0–9)

.Keyboard (, / $ # %)

Special (© ® ™ ∑ π)

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> ≠ <=>=

Other Fields

Same Field =

Value Expression

<> ≠ <=>==

<> ≠ <=>==

All

All

All

÷Same Field

Other Fields Concatenation÷

All

All

+

+

x

x

Value Expression All Concatenation÷+ x

Concatenation

General Elements

Physical Elements

Logical Elements

FIELD SPECIFICATIONS

–

–

–

Anatomy of a Field Specification 287

Parent Table

The table that incorporates a given field within its structure is known as

the field’s parent table. This is the only table in which the field will ap-

pear unless the field is participating in establishing a relationship.

(You’ll learn more about this exception in Chapter 10.) For example,

STUDENTS is the parent table of the STUDFIRST NAME field.

Label

This is an alternate name (typically a shorter form of the field name) by

which you can identify the field within an end-user application interface

that you create for the database. For example, you might use QTY ON

HAND as a label for a field named QUANTITY ON HAND because many people

in the organization are already accustomed to this particular name. La-

bels can be particularly useful when you want to conserve space on a

data-entry screen or squeeze more fields into a particular report.

Avoid the temptation of using the label as the official field name within

the table structure; otherwise, you make it possible for someone to mis-

interpret or incorrectly identify the field. Always use the most precise

and accurate name as the official field name and then use the label (ju-

diciously, of course) within your end-user interface applications. This

will enable you to make a distinction between the two at all times.

Specification Type

The elements you set for a given field depend upon the type of specifica-

tion you define for the field. You can define a specification in three ways:

1. Unique. This is the default specification for all fields except those

that serve as a template for other fields or those that participate

within a table relationship as foreign keys. You can incorporate all

but the Source Specification element for this type of specification,

and the element settings you establish will apply only to the field

indicated in the Field Name element.

288 Chapter 9 Field Specifications

2. Generic. This specification serves as a template for other field spec-

ifications and helps you ensure consistent definitions for fields

that have the same general meaning. For example, you could cre-

ate this type of specification for a generic STATE field and then use it

as the basis for every other STATE field in the database. Fields such

as CUSTSTATE, EMPSTATE, and VENDSTATE all have the same meaning

(they represent a state within the United States), but there is

enough of an obvious distinction between them to require that

they remain separate fields. (If you recall, you learned about ge-

neric fields in Chapter 6 when you were developing the preliminary

field list and in Chapter 7 when you were working with the Ele-

ments of the Ideal Field.)

A generic specification requires you to use a nonspecific field name

and element settings that are as broad and general as possible.

You can, however, incorporate any element except Parent Table,

Label, Shared By, Alias(es), and Source Specification.

3. Replica. This is the default specification for a field based on a ge-

neric field or a field that serves as a foreign key within a table rela-

tionship, and it draws a majority of its element settings from an

existing specification. You can incorporate elements that were not

already incorporated by the source specification, and you can alter

any element settings drawn from the source specification.

You’ll learn how to define each type of specification in the section “Using

Unique, Generic, and Replica Field Specifications” later in the chapter.

Source Specification

This element is set only on a Replica specification and indicates the

name of the specific field specification upon which the current specifica-

tion is based. (You’ll see a good example of this element in the next sec-

tion as well.)

Anatomy of a Field Specification 289

Shared By

This element indicates the names of other tables that share this field.

The only table names that should appear here are those that have an

explicit relationship to the field’s parent table. For example, assume you

have a data table called EMPLOYEES that is related to two subset ta-

bles called PART-TIME EMPLOYEES and FULL-TIME EMPLOYEES via a

field called EMPLOYEE ID NUMBER. As you create a field specification for

EMPLOYEE ID NUMBER, you would use “PART-TIME EMPLOYEES, FULL-

TIME EMPLOYEES” as the setting for this element.

Alias(es)

This is a name (or set of names) that you use for the field in very rare cir-

cumstances. One instance in which you would use an alias is when there

must be two occurrences of the field in the same table. Let’s assume that

an organization is accustomed to identifying its employees by unique val-

ues within an EMPLOYEE ID NUMBER field. Now, consider the SUBSIDIARIES

table structure in Figure 9.2 (this is a partial structure only).

Figure 9.2. A table requiring two occurrences of the same field.

Table Structures

Subsidiaries

Employee ID Number

Subsidiary ID Number

Subsidiary Name

Employee ID Number

SubsStreet Address

SubsCity

290 Chapter 9 Field Specifications

In this instance, each subsidiary has a president and a vice president.

Both of these individuals must be represented in the table because of

their positions within the subsidiary organization, so there are two EM-

PLOYEE ID NUMBER fields in the table structure. Proper database design,

however, dictates that there can only be one occurrence of this field

within the table; there is an obvious problem here. The only solution is

to use an alias for one or both occurrences of the EMPLOYEE ID NUMBER

field. For instance, you could (for sake of clarity) use PRESIDENT ID as an

alias for the first occurrence of EMPLOYEE ID NUMBER and VICE PRESIDENT ID

as an alias for the second occurrence of EMPLOYEE ID NUMBER. With the

aliases in place, both employees are properly represented within the ta-

ble. Figure 9.3 shows the revised table structure.

Although using an alias is acceptable under these circumstances, you

should use them very judiciously; otherwise, they can become difficult

to manage and maintain, eventually conceal or disguise the true mean-

ing of the original fields, and cause you to misunderstand what the data

Figure 9.3. Using aliases in place of the EMPLOYEE ID NUMBER fields.

Table Structures

Subsidiaries

President ID Number

Subsidiary ID Number

Subsidiary Name

Vice President ID Number

SubsStreet Address

SubsCity

Anatomy of a Field Specification 291

actually represents. This issue will become even clearer when you begin

to establish table relationships.

Description

This is a complete interpretation of the field. Composing a field descrip-

tion is extremely beneficial because it forces you (and everyone in the

organization) to think carefully about the nature of the data that will be

stored in the field. You can be relatively sure that the field requires fur-

ther refinement if you have difficultly composing a suitable description.

Earlier in the database-design process, you learned a set of guidelines

for composing a table description. Similarly, there is a set of guidelines

that governs how you compose a proper field description.

Guidelines for Composing a Field Description

• Use a statement that accurately identifies the field and clearly

states its purpose. The description should supplement the field

name in terms of defining what the field represents. It should also

state the field’s role within the table or its relationship to the ta-

ble’s subject. Here’s an example of such a description:

CustCity—the metropolitan area in which a customer re-

sides or conducts business. This is an integral component

of a customer’s complete address.

• Write a clear and succinct statement. The description should be

free of confusing sentences or ambiguous phrases. Although the

description should be as complete as possible, use the minimum

number of words necessary to convey the required information.

As you’ve seen with table descriptions, verbose statements are dif-

ficult to read and understand.

• Refrain from restating or rephrasing the field name. Neither of these

practices does anything to illuminate the identity or purpose of the

292 Chapter 9 Field Specifications

field. Remember that the purpose of a description is to provide a

complete interpretation of the field. Here’s an example of a poor

description:

CustLast Name—the last name of a customer.

A description is far more useful when you write it in this manner:

CustLast Name—the surname of a customer, whether

original or by marriage, that we use in all formal commu-

nications and correspondence with that customer.

• Avoid using technical jargon, acronyms, or abbreviations. Although

some people within the organization will understand these types

of idioms, its better for you to use terminology that everyone un-

derstands. Remember that a description must be as clear as pos-

sible to anyone who reads it. For example, you should avoid this

type of statement:

Employee ID Number—a unique number used to identify

an employee within the organization. It is a component of

the SSP.

The problem with this description is that there is no inherent way

to determine the meaning of the acronym SSP. You could resolve

this problem by spelling out the complete term, but it would be

better for you to restate the purpose of the field.

• Do not include implementation-specific information. There’s no rea-

son to include the fact that a given field appears on a particular

data-entry screen or is used within a specific piece of program-

ming code. This type of information is more appropriate for the im-

plementation phase of the overall database-development process.

• Do not make this description dependent upon the description of an-

other field. Each description should be as complete as possible

and independent of every other description in the database. Inter-

dependent descriptions introduce unnecessary confusion and can

Anatomy of a Field Specification 293

inadvertently obscure the field’s true identity and purpose. Avoid

using a description such as this:

Item Reorder Level—minimum number of items that must

exist for a particular product. (See description for Quantity

On Hand).

• Do not use examples. As you learned in Chapter 7, using exam-

ples in a description is a bad idea because they depend on

supplemental information to convey their full meaning. You can

ensure that a description is clear and succinct by keeping it abso-

lutely free of examples.

Figure 9.4 shows the General Elements section of a Field Specifications

sheet for an EMPLOYEE ID NUMBER field.

Physical Elements

This category pertains to the structure of a field. Its elements are ex-

pressed in general terms because each RDBMS program implements

them in a slightly different manner. Establishing these elements dur-

ing this phase of the design process helps you ensure consistent field

Figure 9.4. The General Elements category for an EMPLOYEE ID NUMBER field.

A unique number used to identify each employee within our organization. It is assigned

during the first day of employee orientation and remains with the employee throughout

the duration of his or her employment.

Full-Time Employees, Part-Time Employees, Customers

Employee #

Employees

Employee ID Number

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Source

Specification Type:

Specification:

x GenericUnique Replica

294 Chapter 9 Field Specifications

definitions throughout the database and reduces the time it will take

you to implement the field structures in an RDBMS program.

Data Type

This element indicates the nature of the data that the field stores.

In Chapter 1, you learned that Structured Query Language, or SQL, is

the standard language used to create, modify, maintain, and query rela-

tional databases. SQL is actually a fully documented standard set forth

jointly by the American National Standards Institute (ANSI) and the In-

ternational Organization for Standardization (ISO). Although the cur-

rent version of the standard (as of this writing) is SQL/3, most major

RDBMS programs implement much of the previous version, SQL/92.

The SQL standard defines seven major data types, and each data type

has one or more uniquely named variations. Here’s a brief definition of

each data type.

Character This data type stores a fixed- or varying-

length character string of one or more print-

able characters. A fixed-length Character

data type is known as CHARACTER or CHAR,

and a varying-length Character data type is

known as CHARACTER VARYING, CHAR

VARYING, or VARCHAR.

National Character This data type is the same as the Character

data type, but it can also store characters

from foreign-language character sets. A fixed-

length National Character data type is known

as NATIONAL CHARACTER, NATIONAL

CHAR, and NCHAR, and a varying-length Na-

tional Character data type is known as NA-

Anatomy of a Field Specification 295

TIONAL CHARACTER VARYING, NATIONAL

CHAR VARYING, and NCHAR VARYING.

Bit This data type stores strings of binary num-

ber sequences, such as digitized images and

sound waves. This data type is often referred

to as BIT or BIT VARYING.

Exact Numeric This data type stores whole numbers and

numbers with decimal places. Most RDBMS

programs implement an Exact Numeric as NU-

MERIC, DECIMAL (DEC), INTEGER (INT), and

SMALLINT, and each variation determines the

range of values that the field will accept.

Approximate Numeric This data type stores numbers with decimal

places and exponential numbers. Most

RDBMS programs implement an Approximate

Numeric as FLOAT, REAL, and DOUBLE PRE-

CISION, and each variation determines the

range of values that the field will accept.

DateTime This data type is commonly known as TIME-

STAMP in most RDBMS programs, and it

stores dates, times, and combinations of both.

Note that the implementation of this data type

varies widely among RDBMS programs, so you

must make absolutely certain that you refer to

the RDBMS’s documentation to determine how

the RDBMS handles dates and times.

Interval This data type stores the quantity of time be-

tween two DateTime values, expressed either

as year, month, year/month day, time, or

day/time. Most major database systems do

not yet support this data type, so you needn’t

worry about it for now.

296 Chapter 9 Field Specifications

Many RDBMS programs provide additional data types beyond those

specified by the standard, which are known as extended data types. Ex-

amples of extended data types include MONEY/CURRENCY, BOOLEAN

(for True or False values), SERIAL/ROWID (for unique row identifiers),

and BYTE/BLOB (for unstructured binary data).

I’ve presented the SQL standard data types because you will encounter

them (or variations thereof) in practically every RDBMS program. I have

not provided much detail on these data types, however, because they

are not implemented consistently across all RDBMS programs; you

must consult your RDBMS’s documentation to determine which data

types the RDBMS supports and how the RDBMS implements them.

You can use any of the SQL data types (except Interval) as the setting

for the Data Type element of a given specification. Due to their inconsis-

tent implementation, however, I recommend that you use one of the fol-

lowing general data types as the setting for this element instead.

Alphanumeric This data type stores any combination of letters,

numbers, keyboard characters, or special charac-

ters. Keyboard characters include the comma, dollar

sign, exclamation mark, percentage sign, and period.

Special characters include the copyright symbol, the

trademark symbol, and the symbol for pi.

Numeric This data type stores only whole numbers and real

numbers. It will not accept numbers with leading ze-

roes (e.g., 0000234) because they are not genuine

numbers.

DateTime This data type stores dates, times, or a combination

of both.

These data types are quite suitable for indicating the nature of the data

that the field stores, and they are certainly much easier for users and

management to understand. Using general data types will help you

Anatomy of a Field Specification 297

avoid unnecessary confusion, especially when you’re reviewing the

specification with users and management.

Length

This element specifies the total number of characters that a user can

enter for any given field value. The RDBMS program you use to imple-

ment the database will determine the maximum number of characters

you can set for this element. Although you can theoretically set the

Length element for any data type, you should be aware that some

RDBMS programs do not allow you to specify a length for a numeric

field. Instead, the RDBMS program sets the length of a numeric field

based on the type of number the field stores, such as an integer, a long

integer, or a real number.

Decimal Places

This denotes the number of digits to the right of the decimal point in a

real number. The number of digits determines the real number’s preci-

sion. For example, many businesses require that all currency values

have four digits of precision to the right of the decimal point.

Character Support

This element indicates the type of characters that a user can enter into

a given field value. Setting and enforcing this element helps you ensure

that the user cannot introduce meaningless data into the field, thus en-

hancing field-level integrity.

❖ Note I use these general data types as the basis for all further

data type references and examples throughout the remainder of

the book.

298 Chapter 9 Field Specifications

Let’s say you’re working with a CUSTSTATE field and its data type is al-

phanumeric. This data type is appropriate for the field because it allows

a user to incorporate letters as part of a given field value. But it also al-

lows him to use numbers, keyboard characters, and extended charac-

ters, which means that he can enter a meaningless value into the field—

there are no state names or state abbreviations that contain characters

other than letters. You solve this problem by using the Character Sup-

port element to define the characters that the user can incorporate

within a field value. (I address the issue of a valid combination of letters

in the “Logical Elements” section.)

You can choose to include or exclude any of the following types of

characters:

• Letters—all letters of the alphabet including foreign language let-

ters such as é and ñ.

• Numbers—0 through 9.

• Keyboard characters—any standard character other than

letters and numbers, such as asterisk, ampersand, bracket,

caret, comma, equals sign, exclamation point, parenthesis,

percent sign, period, pound sign, question mark, quote, semi-

colon, slash, or vertical bar. Note that the Field Specifications

sheet includes examples of the characters that belong to this

category.

• Special characters—any character that you can produce only

through specific combinations of standard keys and the CTRL,

ALT, and SHIFT keys, or with the aid of a special software pro-

gram. Characters in this category include complex mathematical

symbols, the copyright symbol, fractions, the symbol for pi, and

the trademark symbol. The Field Specifications sheet includes

examples of these characters as well.

Anatomy of a Field Specification 299

Input Mask

This element specifies the manner in which a user should enter data

into the field. For example, there are many ways to enter a date, such as

“01/01/02,” “01-01-02,” and “01-Jan-2002.” Using an input mask helps

you ensure that a user enters values into the field consistently and (in

this case) prevents confusion over the meaning of the date sequence.

RDBMS programs implement input masks in various ways, so you

should use a relatively generic setting for this element. (You can assign

multiple input masks, if appropriate.) For example, you could use

“mm/dd/yy” as the input mask for a date field. This mask indicates the

sequence of the date components (month, day, year), the structure of

the date (two numbers per component, e.g., 05/16/02), and the date

component separator (the slash).

Display Format

This element governs the appearance of a field’s value when it is displayed

on a screen or printed within a document. A display format enables you to

present the field value in a more meaningful or readable fashion than the

manner in which it was entered. For example, “03/13/88” might be the

way you enter a given date, but “March 13, 1988” is much easier to read

and comprehend.

Use a generic setting for this element, just as you did with the Input

Mask; RDBMS programs implement display formats in various ways as

well. For example, you can use “Month Day, Year” as a display format

for a DATE HIRED field. You can also use a complete sentence to indicate a

display format, such as the one in this example of a display format set-

ting for a COMPANY NAME field.

Each word should start with a capital letter.

300 Chapter 9 Field Specifications

Figure 9.5 shows the Physical Elements section of a Field Specifications

sheet for an EMPLOYEE ID NUMBER field.

Logical Elements

This category pertains mainly to the values within a field. Its elements

govern matters such as whether each value should be unique, when a

value should be entered, whether a value can be edited, and the types of

comparisons and operations that can be performed on each value. Set-

ting these elements helps you establish and enforce a large part of field-

level integrity.

Key Type

This element designates a field’s role within a table, which you identified

as you were establishing a primary key for the table. As you already

know, a field can serve as a non-key, a primary key, or an alternate key.

In Chapter 10, you’ll learn all about foreign keys and when to designate

a field as a foreign key on the Field Specifications sheet.

Key Structure

This element denotes whether a field designated as a primary key is act-

ing as a simple (single-field) primary key or as part of a composite (mul-

tifield) primary key.

Figure 9.5. The Physical Elements category for an EMPLOYEE ID NUMBER field.

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Special (© ® ™ ∑ π)

Keyboard (. , / $ # %)Letters (A–Z)

Numbers (0–9)x

Numeric

4

0

####

0000

Anatomy of a Field Specification 301

Uniqueness

This element indicates whether a field’s values are unique. You set it as

“Unique” when the Key Type element is set to “Primary”; otherwise,

you’ll typically set this element as “Non-unique.”

When you work with a non-key field, think about how its values are go-

ing to be used so that you can determine whether they should be

unique. Consider the DEPARTMENTS table structure in Figure 9.6.

In this example, the EMPLOYEE ID NUMBER field identifies the person who

manages a particular department. Assuming that a person is allowed to

manage only one department at any given time, the values in this field

should be unique; therefore, you should set the Uniqueness element for

this field as “Unique.”

Null Support

This specifies whether a field accepts null values. “No Nulls” is the set-

ting you’ll commonly use for this element, especially when a field serves

as a primary key or an alternate key, or when the field’s Required Value

element is set to “Yes.” You can set this element to “Nulls Allowed,” how-

ever, when there is a valid reason for a field to accept null values. A

CUSTCOUNTY field, for example, must accept nulls because a customer

Figure 9.6. Should the values of EMPLOYEE ID NUMBER be unique?

Table Structures

Departments

Employee ID Number

Department ID Number

Department Name

302 Chapter 9 Field Specifications

may not know the name of the county in which she lives. (Of course, it

will no longer be null once she supplies the county name.)

Remember that a null does not represent a blank—it represents a miss-

ing or unknown value. Users commonly make the mistake of using a

blank to represent a meaningful value, such as “None,” “Not Applicable,”

“No Response,” and “Not Wanted.” If these values are valid for a particu-

lar field, then make sure you include them in the Range of Values ele-

ment for the field. Above all, use nulls judiciously and do not use blanks!

Values Entered By

This element indicates the source of a field’s values. Either a user will

enter values into the field manually or a database application program

will enter them automatically; the application program can provide val-

ues for the field only if the person who developed the program provided

a means for it to generate the values. Note that the setting that repre-

sents the database application program is “System.”

Required Value

This denotes whether a user is required to enter a value for a field. Al-

though you’ll typically set this element to “No” for most of the fields in a

table, you must set it to “Yes” when the field serves as the primary key.

You may also need to set Required Value to “Yes” for a field such as

CUSTZIPCODE—a letter or package you send to a given customer must in-

clude a zip code in order for the Postal Service to handle it properly and

accurately.

Default Value

This is a value that a user can enter into a field when a more appropri-

ate value is not yet available and nulls are disallowed. Use a default

value very judiciously, and only if it is meaningful. For example, “WA” is

Anatomy of a Field Specification 303

a meaningful default value for a CUSTSTATE field when the vast majority

of your customers live in Washington state. Conversely, “01/01/96” is

not a good default value for a DATE HIRED field because it is a completely

arbitrary value that has no real meaning.

Range of Values

This element specifies every possible valid value for a field. You can set

this element in various ways, such as with a lower and upper limit (1,000

to 9,999) or with a specific list of values (“WA,” “OR,” “ID,” “MT”). There

are three categories under which you can establish a range of values:

1. General—a complete collection of every possible value for this field.

For example, the general range of values for a CUSTSTATE field might

include all valid abbreviations for every state in the United States.

2. Integrity specific—a collection of values based on the field’s role

within a table relationship. (You’ll learn all about this category in

Chapter 10.)

3. Business specific—a collection of values generated by a particular

business requirement. Organizations commonly have various re-

quirements that limit the range of values for a field. In an organiza-

tion that conducts its business strictly in the Pacific Northwest, for

example, the valid range of values for a CUSTSTATE field are “WA,”

“OR,” “ID,” and “MT.” (You’ll learn more about this category in

Chapter 11.)

You’re concerned only with the general range of values during this stage

of the database-design process, and you’ll revisit the Range of Values el-

ement later when you establish table relationships and business rules.

It’s important to note that “Other” and “Miscellaneous” are two values

that you do not want to set within any category of the Range of Values

element. Both values are nonspecific and absolutely meaningless within

304 Chapter 9 Field Specifications

this context and are a sign of mental laziness in that their very presence

indicates a need to review the field for possible refinement. You can

avoid unnecessary confusion and potential problems by refraining from

using these values.

Edit Rule

This element designates at what point a user can enter a value into a

field and whether he can modify that value. You set this element to one

of these four options:

1. Enter Now, Edits Allowed. A user must enter a value for this field

when she creates a new record in the field’s parent table. She can

then edit the value at any time.

2. Enter Later, Edits Allowed. A user has the option of entering a value

for this field when he creates a new record in the field’s parent

table. This does not imply in any way that the field’s value can be

null for all time; the user must enter a value for this field at some

point in the near future. After he’s entered the value, he can then

edit it at any time.

3. Enter Now, Edits Not Allowed. A user must enter a value for this

field when she creates a new record in the field’s parent table, but

she cannot edit it at any time whatsoever.

4. Enter Later, Edits Not Allowed. A user has the option of entering a

value for this field when he creates a new record in the field’s par-

ent table. This does not imply in any way that the field’s value can

be null for all time; the user must enter a value for this field at

some point in the near future. After he’s entered the value, he can-

not edit it at any time whatsoever.

You should use a default value when you set the Edit Rule element to

the second or fourth option; this will keep the field’s value from being

null until such time that the user enters an appropriate value.

Anatomy of a Field Specification 305

Comparisons Allowed

This indicates the types of comparisons a user can apply to a given field

value when he’s retrieving information from the field. There are six

types of comparisons: equal to (=), not equal to (≠), greater than (>), less

than (<), greater than or equal to (>=), and less than or equal to (<=).

This element also indicates whether a user can compare a given field

value to any of the following:

• Another value within the same field. When a field serves as a pri-

mary key, this option applies to the values of related foreign key

fields. (You’ll learn more about this in the next chapter.)

• A value of another field within the parent table or from some other

table in the database.

• A value expression, which is some form of operation involving

field values, literal values, or a combination of both. It returns a

single value that you can then use for the comparison: (RETAIL

PRICE – 2.50) is an example of a value expression.

Controlling the types of comparisons a user can apply to the field’s val-

ues enables you to keep him from making meaningless comparisons.

Let’s say that he’s working with an EMPLOYEE ID NUMBER field based on a

numeric data type. Unless you indicate otherwise, he can make a com-

parison such as this one:

Is an Employee ID Number in the Employees table greater than

or equal to an Employee ID Number in the Part-Time Employees

table?

Although a “greater than or equal to” comparison is generally acceptable

in a numeric field, it is not appropriate in this instance; there is no valid

reason for him to make this type of comparison.

Similarly, it would be pointless for him to make a comparison between a

given EMPLOYEE ID NUMBER value and the value of another numeric field

306 Chapter 9 Field Specifications

within the EMPLOYEES table or some other table within the database;

therefore, a comparison such as this is invalid:

Is an Employee ID Number in the Employees table greater than

or equal to a Quantity On Hand in the Products table?

It is both suitable and reasonable, however, for him to make a compari-

son between a given EMPLOYEE ID NUMBER value within the EMPLOYEES

table and another EMPLOYEE ID NUMBER value within a related data table

or related subset table. This comparison, then, is a valid one:

Is an Employee ID Number in the Employees table equal to an

Employee ID Number in the Part-Time Employees table?”

There are instances when it is perfectly suitable for the user to compare

a particular value of one field to the value of a completely different field.

For example, it is totally logical for him to make the following compari-

son between a DATE SHIPPED field and a DATE ORDERED field:

Is the current value of Date Shipped greater than or equal to the

current value of Date Ordered?

It’s fortunate that he can make this type of comparison—he certainly

doesn’t want the value of DATE SHIPPED to be earlier than the value of

DATE ORDERED!

As you set the Comparisons Allowed element for a given field, think

about how you’re going to use the field’s values so that you can desig-

nate the appropriate comparisons. It’s very likely that you’ll review this

element later in the design process when you establish table relation-

ships and define business rules.

Operations Allowed

This element specifies the types of operations that a user can perform

on the field’s values. There are five types of operations: addition (+),

Anatomy of a Field Specification 307

subtraction (–), multiplication (×), division (÷), and concatenation. (Obvi-

ously, any combination of these operations is valid as well.) This ele-

ment also indicates whether an operation can incorporate any of the

following:

• Another value within the same field

• A value from another field within the parent table or from some

other table in the database

• The result of a value expression (which, as you recall, is itself

some form of operation involving field values, literal values, or a

combination of both, that returns a single value)

You can prevent the user from defining meaningless operations by limit-

ing the types of operations that he can perform on the field’s values.

Let’s consider the EMPLOYEE ID NUMBER, DATE SHIPPED, and DATE ORDERED

fields once again. There is no reason for the user to perform mathemat-

ical operations on a pair of EMPLOYEE ID NUMBER values within the EM-

PLOYEES table, nor is there any reason for him to perform such

operations using a given EMPLOYEE ID NUMBER value and some other nu-

meric field’s value. In the case of the DATE SHIPPED field, however, it is

suitable to perform some of these operations using a given DATE SHIPPED

value and the value of some other appropriate date field within the data-

base. For example, the user might need to subtract DATE ORDERED from

DATE SHIPPED to determine the time that elapsed between the date that

the customer placed the order and the date that the items within the or-

der were shipped to the customer.

As you set the Operations Allowed element for a given field, think about

how you’re going to use the field’s values so that you can designate the

appropriate operations. It’s very likely that you’ll review this element

later in the design process as you define business rules.

308 Chapter 9 Field Specifications

Figure 9.7 shows the Logical Elements section of a Field Specifications

sheet for an EMPLOYEE ID NUMBER field.

Using Unique, Generic, and Replica

Field Specifications

Earlier in this chapter, you learned that you could define a specification

as Unique, Generic, or Replica. You can ensure that you define the ap-

propriate type of specification for a given field by following these simple

guidelines:

Figure 9.7. The Logical Elements category for an EMPLOYEE ID NUMBER field.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

x

x

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

Systemx

Key Type:

CompositeSimplex

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Fieldx =x

Value Expressionx

<> <=>==

<> <=>==x

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

1000–9999

≠

≠

≠

÷

÷

÷

–

–

–

Using Unique, Generic, and Replica Field Specifications 309

• Use a Unique specification for any field that will appear only once

within the entire database or for a field that serves as a primary key.

• Use a Generic specification for a field that serves as a template for

other fields within the database. Remember to use a nonspecific

field name and element settings that are as broad and general as

possible.

• Use a Replica specification for a field that you base on a given

generic field or for a field that serves as a foreign key within a

table relationship.

Figure 9.8 shows the complete Unique field specification for a VENDOR ID

NUMBER field.

Here are a few things to note about this specification:

1. This field also appears in the PRODUCTS table, as indicated by the

Shared By general element. This is both reasonable and necessary

because each product must be associated with a specific vendor.

(You’ll learn more about this type of issue in the next chapter.)

2. Examine the settings for the Uniqueness, Null Support, Required

Value, and Edit Rule logical elements. They are set in this manner

because the Key Type element is set to “Primary.” You should, in

fact, use these element settings for any field that serves as a pri-

mary key.

3. The Comparisons Allowed logical element is set to “Same Field—

Equals” so that a user can compare VENDOR ID NUMBER values in the

VENDORS table to VENDOR ID NUMBER values in the PRODUCTS table.

4. The Comparisons Allowed logical element is also set to “Value Ex-

pression—Equals” so that a user can compare VENDOR ID NUMBER

values to some arbitrary numeric value.

Figure 9.9 shows the complete Generic field specification for a generic

STATE field.

310 Chapter 9 Field Specifications

Figure 9.8. Unique field specification for the VENDOR ID NUMBER field.

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters (A–Z)

Numbers (0–9) Special (© ® ™ ∑ π)

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> ≠ <=>=

Other Fields

Same Field =

Value Expression

<> ≠ <=>==

<> ≠ <=>==

All

All

All

÷Same Field

Other Fields Concatenation÷

All

All

+

+

x

x

Value Expression All Concatenation÷+ x

Concatenation

100000–200000

x

x

x

x

x

x

x

x

x

x

A unique number used to identify each vendor that supplies our organization with goods or
services. It is assigned when we place the first order for such goods or services with the
vendor.

x

Numeric

6

0

######

000000

Products

Vendor #

Vendors

Vendor ID Number

.Keyboard (, / $ # %)

–

–

–

FIELD SPECIFICATIONS

x

x

Using Unique, Generic, and Replica Field Specifications 311

Figure 9.9. Generic field specification for a generic STATE field.

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters (A–Z)

Numbers (0–9) Special (© ® ™ ∑ π)

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

x

x

x

x

x

x

x

x

x x

State

A state or territory within the United States in which a person, organization, or institution
resides or conducts business.

Alphanumeric

2

None

AA

Both letters should be capitalized.

All state abbreviations recognized by the United States Postal Service.

x

x

x

x

≠

≠

≠

÷

÷

÷

.Keyboard (, / $ # %)

FIELD SPECIFICATIONS

–

–

–

State

State

312 Chapter 9 Field Specifications

Take note of these particular items:

1. The description is very general, as it should be for this type of

specification.

2. The setting of the Display Format physical element is in the form

of an instruction. This demonstrates that you have a great deal of

flexibility in the way you set this element.

3. The Range of Values logical element is appropriately broad.

4. The Comparisons Allowed logical element is set to “Value Expres-

sion—Equals” so that a user can compare STATE values to some

arbitrary two-character alphanumeric value.

5. The Operations Allowed logical element is set to “Other Fields—

Concatenation” so that a user can concatenate a given STATE value

to the value of some other alphanumeric field.

6. The Operations Allowed logical element is also set to “Value Ex-

pression—Concatenation” so that a user can concatenate a given

STATE value to some arbitrary alphanumeric value.

This field (and its specification) now serves as a template for all other state

fields you create in the database. For example, you can create a VENDSTATE

field based on the generic STATE field. You’ll define a Replica specification

for the VENDSTATE field that is based on the STATE field’s Generic specifica-

tion. Although the VENDSTATE field’s Replica specification draws its initial

element settings from the STATE field’s Generic specification, you can mod-

ify any of the Replica specification’s element settings so that you can com-

pletely customize them for the VENDSTATE field. Figure 9.10 shows the

customized Replica field specifications for the VENDSTATE field.

Here are a few things to note about this specification:

1. The field name (VENDSTATE) accurately denotes what the field

represents.

2. The label (“State”) is what the user will see on visual displays and

printed documents.

Using Unique, Generic, and Replica Field Specifications 313

Figure 9.10. Customized Replica field specification for the VENDSTATE field.

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters (A–Z)

Numbers (0–9) Special (© ® ™ ∑ π)

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

x

x

x

x

x

x

x

x

x x

x

x

x

x

≠

≠

≠

÷

÷

÷

VendState

Vendors

The state in which the vendor's headquarters are located. This data is a component of the
vendor's overall mailing address.

Alphanumeric

2

Both letters should be capitalized.

None

AA

WA

CA, ID, MT, OR, WA

State

.Keyboard (, / $ # %)

–

–

–

State

FIELD SPECIFICATIONS

314 Chapter 9 Field Specifications

3. The Source Specification general element properly references the

generic STATE field’s specification.

4. The Description element is now specific to this field. Recall that the

description is more general in the source specification.

5. A default value has been set for this field; there is no such value in

the source specification.

6. The Range of Values element is now specific to this field; it was

much broader in the source specification.

In the next chapter, you’ll learn how to define a Replica field specifica-

tion for a field that serves as a foreign key.

Defining Field Specifications for Each

Field in the Database

Now that you have all the necessary fields assigned to each table and

you understand the various elements within a field specification, you

can begin the process of defining a field specification for each field in

the database. It will take you a considerable amount of time to com-

plete this process, but remember that you’re working diligently to es-

tablish field-level integrity by ensuring that the data is consistent,

valid, and as free from errors as possible. All your hard work will pay

great dividends because the information you retrieve from the database

will always be timely and accurate, and you will have a reliable set of

structural blueprints you can use when you implement the database in

an RDBMS program.

You can ensure that the specifications are as complete and accurate as

possible by working with both users and management to define them.

They can provide insights into the data and can be of special assistance

in refining the specification’s logical elements. You don’t have to speak

Defining Field Specifications for Each Field in the Database 315

with everyone in the organization, but you do want to assemble and

meet with a representative number of people who are very familiar with

the data and how it is used. Schedule as many meetings as are neces-

sary (or possible) to complete the interview process, and take the time

you need to be as thorough as you can. Above all, do not rush through

this phase! Doing so just diminishes the benefits of your overall efforts

and increases your chances of making unnecessary mistakes.

The best strategy for this task is to define as many of the specifications

as you can (as completely as possible) and then work with the partici-

pants to complete the rest. As you work with a field’s specifications, use

your best judgment to define the settings for each element. Don’t worry

if your settings seem slightly incorrect or if you have difficulty providing

settings for some of the elements—you’re going to review them with the

participants anyway. After you’ve defined specifications for all of the

fields that are familiar to you, begin meeting with the participants to

work on specifications for the remaining fields.

Your first order of business during the initial meeting is to explain the

various elements within a field specification and make sure that every-

one understands them as much as possible. Providing the participants

with a brief and succinct education on the specification’s elements gives

them the knowledge they need to help you define a specification prop-

erly. (In subsequent meetings, just review the elements to make certain

that everyone remembers what they represent.)

Next, review all of the specifications you’ve defined and ask the partici-

pants whether the settings for the elements are suitable and correct. In

some cases, the participants will reveal new information about a field

that will affect that field’s specification. For example, a participant may

remember (prompted by some topic in the discussion) that there is a

specific set of values that has always been used for a particular field;

therefore, you set the field’s Range of Values element to reflect this new

information. Make sure that you examine each part of the specification

316 Chapter 9 Field Specifications

and then move on to the next specification when the participants have

no further suggestions for refinement. Repeat this process for each

specification.

Now, work with the participants on the specifications you were unable

to define or complete. Try to work with the people who are most familiar

with the fields under discussion because they are likely to know what

settings should be used for the Logical Elements category. Identify the

appropriate element settings for each field and mark them on the Field

Specifications sheet. After you’ve defined specifications for every field in

the database, the entire process is complete.

The design of the new database is now close to completion. In the next

chapter, you’ll learn how to establish relationships between the tables in

the database. Relationships are important because they allow a view to

draw data from multiple tables simultaneously.

Now that you have all the appropriate fields assigned to the tables in the

Mike’s Bikes database, it’s time to define field specifications for each

field. Before you meet with Mike and his staff, you define as many field

specifications as you can. None of the tables are unusual in any way,

and the fields are pretty straightforward, so you have little difficulty in

defining the specifications. Figure 9.11 shows the specification for the

PRODUCT DESCRIPTION field in the PRODUCTS table.

Now you meet with Mike and his staff to discuss the field specifications

you’ve defined. No one seems to have problems with any of the specifica-

tions; everyone confirms that all of the element settings seem suitable

and correct. You do have a question, however, regarding the CATEGORY

field in the PRODUCTS table: You want to know the appropriate setting

for the Range of Values element. The response to your question is

mixed—no one seems to know the complete list of categories that are

CASE STUDY

Case Study 317

Figure 9.11. Field specification for the PRODUCT DESCRIPTION field.

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters (A–Z)

Numbers (0–9) Special (© ® ™ ∑ π)

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

x

x

x

x

x

x

x

x

≠

≠

≠

÷

÷

÷

Product Description

Description

Products

A statement that provides pertinent details about the product. This information is useful to
our sales and promotion efforts and is provided to our customers by means of various
promotional materials.

Alphanumeric

180

None x

x

x

.Keyboard (, / $ # %)

FIELD SPECIFICATIONS

–

–

–

318 Chapter 9 Field Specifications

valid for the field, so you decide to specify a general range of values for

now. Figure 9.12 shows the revised logical elements for the CATEGORY field.

You’ll revisit this field (and its elements) again when you establish busi-

ness rules for the database. With this problem solved, your meeting—as

well as the process of establishing field specifications—is complete.

Summary

The chapter opened with an explanation of why field specifications are

important and the benefits you derive from defining them. You learned

Figure 9.12. The logical elements for the CATEGORY field in the PRODUCTS table.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

x

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expressionx

<> <=>==

<> <=>==x

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

Any valid internal or external product category.

≠

≠

≠

÷

÷

÷

x

x

x

x x

x

–

–

–

Summary 319

that defining specifications helps you establish and enforce field-level

integrity, enhances overall data integrity, and compels you to acquire a

complete understanding of the nature and purpose of the data in the

database. This level of understanding enables you to leverage the data

to your best advantage.

Next, we discussed the anatomy of a field specification. You’re now fa-

miliar with the three categories of elements within the specification and

the sheet you use to record them. We then discussed each category and

its elements in detail. As you now know, the General Elements category

represents the most basic attributes of the field. During this discussion,

you learned a set of guidelines that will help you compose a good field

description. You also learned that you could define three types of speci-

fications, thus enabling you to establish and maintain consistent field

definitions. We examined the Physical Elements category next, and you

learned that it pertains to the structure of the field. The Logical Ele-

ments category was the last topic of discussion in this section. You now

know that it mainly pertains to a field’s values and that it includes ele-

ments such as Key Type, Null Support, Range of Values, Edit Rule,

Comparisons Allowed, and Operations Allowed.

We then discussed how to use each type of specification, and you

learned a set of guidelines that will help you determine which one to de-

fine for a given field. You also examined samples of the specifications,

and you know how they differ.

The chapter ended with a discussion of defining field specifications for

each field. Here you learned that the best way to ensure complete and

accurate specifications is to work with users and management to define

them. You should first define as many specifications as you can and

then work with the staff to define specifications for the remaining fields.

You also learned that you could work with staff to refine the specifica-

tions you initially defined.

320 Chapter 9 Field Specifications

Review Questions

1. State two major reasons why field specifications are important.

2. What do you gain by establishing field-level integrity?

3. What are the three categories of elements in a field specification?

4. Name the three types of specifications.

5. Why is it beneficial for you to compose a proper field description?

6. What does the Data Type element indicate?

7. What does the Character Support element indicate?

8. What is the purpose of the Display Format element?

9. What types of keys are indicated on a field specification?

10. True or False: A null represents a blank value.

11. What is the significance of the Range of Values element?

12. What is the purpose of an Edit Rule?

13. What is the purpose of the Comparisons Allowed element?

14. What is a value expression?

15. When do you use a generic specification?

321

10
Table Relationships

There is no substitute for the comfort supplied by the

utterly taken-for-granted relationship.

—IRIS MURDOCH

Topics Covered in This Chapter

Why Relationships Are Important

Types of Relationships

Identifying Existing Relationships

Establishing Each Relationship

Refining All Foreign Keys

Establishing Relationship Characteristics

Relationship-Level Integrity

Case Study

Summary

Review Questions

You learned in Chapter 3 that a relationship exists between two tables

when you can in some way associate the records of the first table with

those of the second. You also learned that each relationship has three

distinct characteristics: the type of relationship that exists between the

tables, the manner in which each participates, and the degree to which

each table participates.

322 Chapter 10 Table Relationships

In this chapter, I’ll discuss these topics in more detail. You’ll first learn

how to identify and establish the relationships between the tables in a

database and then how to set each relationship’s characteristics. You’ll

also learn how to diagram tables and relationships, which will enable

you to create a graphic representation of the entire database structure.

Why Relationships Are Important

A relationship is an important component of a relational database.

• It establishes a connection between a pair of tables that are logi-

cally related to each other. A pair of tables is logically related via

the data each contains. For example, consider the tables in

Figure 10.1.

A logical relationship exists between the data in the STUDENTS

table and the data in the STUDENT INSTRUMENTS table. A stu-

dent can check out one or more instruments during the course of

a school year, so a record in the STUDENTS table (representing

the student) can be related to one or more records in the STU-

DENT INSTRUMENTS table (representing the particular instru-

ments the student checks out).

Figure 10.1. A pair of logically related tables.

StudLast Name

Ehrlich

McLain

Rosales

StudFirst Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

<< other fields >>

......

......

......

ChowMichael60004

ThompsonAngie60005

Student Instruments

Student ID

60002

60003

60001

Checkout Date

09/26/01

09/28/01

09/28/01

Instrument ID

1000

1002

1010

60003 09/28/011013

60003 09/28/011011

60001

60001

10/02/01

10/02/01

1022

1021

Types of Relationships 323

• It helps to further refine table structures and minimize redundant

data. As you establish a relationship between a pair of tables, you

will inevitably make minor modifications to the table structures.

These refinements will make the structures more efficient and

minimize any redundant data that the tables may contain.

• It is the mechanism that enables you to draw data from multiple

tables simultaneously. In Chapter 12, you’ll learn how a relation-

ship enables you to construct a view using fields from two or more

related tables.

A properly defined relationship ensures relationship-level integrity, which

guarantees that the relationship itself is reliable and sound. (Recall that

relationship-level integrity is a component of overall data integrity.) You

can take advantage of the many benefits a relational database provides

only when you establish each relationship carefully and properly. Failure

to do so means that you’ll have a hard and tedious time working with

data from multiple tables, and you’ll certanly encounter problems when

you try to insert, update, or delete records in related tables. You’ll learn

more about these types of problems later as the design process unfolds.

Types of Relationships

Before you begin to establish relationships between tables in the data-

base, you must know what types of relationships can exist between a

given pair of tables. Knowing how to identify them properly is an invalu-

able skill for designing a database successfully.

There are three specific types of relationships that can exist between a

pair of tables: one-to-one, one-to-many, and many-to-many. The tables

participate in only one type of relationship at any given time. (You’ll

rarely need to change the type of relationship between a pair of tables.

Only major changes in either of the table’s structures could cause you

to change the relationship.)

324 Chapter 10 Table Relationships

One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in

the first table is related to only one record in the second table, and a

single record in the second table is related to only one record in the first

table. Figure 10.3 shows a generic example of a one-to-one relationship.

❖ Note The discussion for each type of relationship begins with a

generic example of the relationship. Learning how to visualize a

relationship generically enables you to understand the principle

behind the relationship itself. Once you understand how and why

the relationship works, you’ll be able to determine whether it ex-

ists between a given pair of tables quite easily.

Each discussion also includes an example of how to diagram the

relationship. I provide special instructions pertaining to the

diagramming process where appropriate and explain the symbols

incorporated within the diagram as necessary. This allows you to

learn the diagramming method at a reasonable pace and keeps

you from having to memorize the entire set of diagram symbols all

at once.

Figure 10.2 shows the first symbols you will use to diagram a

table relationship.

Figure 10.2. Diagramming symbols for a data table and a subset table.

Table Name

Subset TableData Table

Table Name

Types of Relationships 325

As you can see, a single record in TABLE A is related to only one record

in TABLE B, and a single record in TABLE B is related to only one record

in TABLE A. A one-to-one relationship usually (but not always) involves

a subset table. Figure 10.4 shows an example of a typical one-to-one re-

lationship that you might find in a database for an organization’s human

resources department. This example also illustrates a situation where

neither of the tables is a subset table.

Figure 10.3. A generic example of a one-to-one relationship.

Table A Table B

Figure 10.4. A typical example of a one-to-one relationship.

Employees

Compensation

Home Phone

553-3992

790-3992

551-4993

EmpLast Name

Erlich

McLain

Rosales

EmpFirst Name

Zachary

Susan

Joe

EmpID

100

101

102

<< other fields >>

......

......

......

EmpID

100

101

102

Commission Rate

5.0%

3.5%

5.0%

Hourly Rate

25.00

19.75

22.50

<< other fields >>

......

......

......

326 Chapter 10 Table Relationships

Although the fields in these tables could be combined into a single ta-

ble, the database designer chose to place the fields that can be viewed

by anyone in the organization in the EMPLOYEES table and the fields

that can be viewed only by authorized personnel in the COMPENSA-

TION table. Only one record is required to store the compensation data

for a given employee, so there is a distinct one-to-one relationship be-

tween a record in the EMPLOYEES table and a record in the COMPEN-

SATION table.

A one-to-one relationship usually (but not always) involves a subset ta-

ble. (Indeed, neither of the tables in Figure 10.4 is a subset table.) Fig-

ure 10.5 shows a generic example of how you create a relationship

diagram for a one-to-one relationship.

The line that appears between the tables in the diagram indicates the

type of relationship, and there is a particular line that you use for each

type. Later in this chapter, you’ll learn how to modify the line to show

the characteristics of the relationship as well. Figure 10.6 shows the re-

lationship diagram for the EMPLOYEES and COMPENSATION tables in

Figure 10.4. (Note that a Data Table symbol represents each table.)

Figure 10.5. Diagramming a one-to-one relationship.

Table NameTable Name

This line indicates that a single
record in TABLE B is related to
only one record in TABLE A.

This line indicates that a single
record in TABLE A is related to
only one record in TABLE B,

Types of Relationships 327

One-to-Many Relationships

A one-to-many relationship exists between a pair of tables when a single

record in the first table can be related to one or more records in the sec-

ond table, but a single record in the second table can be related to only

one record in the first table. Let’s look at a generic example of this type

of relationship.

Say you’re working with two tables, TABLE A and TABLE B, that have a

one-to-many relationship between them. Because of the relationship, a

single record in TABLE A can be related to one or more records in TABLE B.

Figure 10.7 shows the relationship from the perspective of TABLE A.

Conversely, a single record in the TABLE B can be related to only one

record in TABLE A. Figure 10.8 shows the relationship from the per-

spective of TABLE B.

Figure 10.6. The relationship diagram for the EMPLOYEES and COMPENSATION
tables.

Employees Compensation

Figure 10.7. A one-to-many relationship from the perspective of TABLE A.

Table A Table B

328 Chapter 10 Table Relationships

This is by far the most common relationship that exists between a pair

of tables in a database, and it is the easiest to identify. It is crucial from

a data-integrity standpoint because it helps to eliminate duplicate data

and to keep redundant data to an absolute minimum. Figure 10.9

shows a common example of a one-to-many relationship that you might

find in a database for a video rental store.

A customer can check out any number of videos, so a single record in

the CUSTOMERS table can be related to one or more records in the

CUSTOMER RENTALS table. A single video, however, is associated with

only one customer at any given time, so a single record in the CUS-

Figure 10.8. A one-to-many relationship from the perspective of TABLE B.

Table A Table B

Figure 10.9. A typical example of a one-to-many relationship.

CustLast Name

Litwin

Balter

Baron

CustFirst Name

Paul

Alison

Andy

Customer ID

9001

9002

9003

Customers

......

......

......

KunickiChris9004

ChipmanMary9005

Customer Rentals

Customer ID

9002

9003

9001

Checkout Date

09/26/01

09/28/01

09/28/01

Video ID

80115

64558

10202

9003 09/28/0111354

9003 10/02/0178422

9005

9004

09/26/01

10/05/01

30556

20655

<< other fields >>

Types of Relationships 329

TOMER RENTALS table is related to only one record in the CUSTOM-

ERS table.

Figure 10.10 shows a generic example of how you create a relationship

diagram for a one-to-many relationship.

Note that the crow’s foot symbol is always located next to the table on

the “many” side of the relationship. Figure 10.11 shows the relationship

diagram for the CUSTOMERS and CUSTOMER RENTALS tables in Fig-

ure 10.9.

Figure 10.10. Diagramming a one-to-many relationship.

Table A

This line indicates that a single
record in TABLE B is related to
only one record in TABLE A.

This “crow’s foot” indicates that a
single record in TABLE A is related

to many records in TABLE B.

Table B

Figure 10.11. The relationship diagram for the CUSTOMERS and CUSTOMER
RENTALS tables.

Customers Customer Rentals

330 Chapter 10 Table Relationships

Many-to-Many Relationships

A pair of tables bears a many-to-many relationship when a single record

in the first table can be related to one or more records in the second ta-

ble and a single record in the second table can be related to one or more

records in the first table.

Assume once again that you’re working with TABLE A and TABLE B

and that there is a many-to-many relationship between them. Because

of the relationship, a single record in TABLE A can be related to one or

more records (but not necessarily all) in TABLE B. Conversely, a single

record in the TABLE B can be related to one or more records (but not

necessarily all) in TABLE A. Figure 10.12 shows the relationship from

the perspective of each table.

This is the second most common relationship that exists between a pair

of tables in a database. It can be a little more difficult to identify than a

Figure 10.12. A many-to-many relationship from the perspective of both TABLE
A and TABLE B.

Table A Table B

Table A Table B

Types of Relationships 331

one-to-many relationship, so you must be sure to examine the tables

carefully. Figure 10.13 shows a typical example of a many-to-many re-

lationship that you might find in a school database, which happens to

be a classic example of this type of relationship (no pun intended!).

A student can attend one or more classes during a school year, so a sin-

gle record in the STUDENTS table can be related to one or more records

in the CLASSES table. Conversely, one or more students will attend a

given class, so a single record in the CLASSES table can be related to

one or more records in the STUDENTS table.

Figure 10.14 shows a generic example of how you create a relationship

diagram for a many-to-many relationship.

Figure 10.13. A typical example of a many-to-many relationship.

Introduction to Political Science 5900009 Political Science 2203373308

Class NameClass ID

900001

900002

900003

Instructor ID

220087

220039

220148

Classes

<< other fields >>

......

......

......

Credits

3

5

2

Classroom

2201

7012

3305

Advanced Music Theory

Computers in Business

American History

Computers in Society

Introduction to Database Design

Advanced Calculus

Introduction to Biology

Introduction to Physics

2

4

5

5

5

900004

900005

900006

900007

900008

Computer Science

Math

Music

History

Physics

Computer Science

Biology

Computer Science

Class Category

220387

220387

220498

......

......

......

5115

5117

3112

220516

220087

......

......

5105

2205

<< other fields >>

......

......

......

StudState

WA

WA

WA

WA

WA

StudStreet Address

1204 Bryant Road

201 Cherry Lane SE

4141 Lake City Way

2100 Mineola Avenue

101 C Street, Apt. 32

StudCity

Seattle

Redmond

Woodinville

Bellevue

Redmond

StudZipcode

98125

98052

98073

StudLast Name

Erlich

McLain

Rosales

StudFirst Name

Zachary

Susan

Joe

Student ID

60001

60002

60003

Students

BarletDiana60004

WickerathTom60005

98072

98006

......

......

332 Chapter 10 Table Relationships

In this case, there is a crow’s foot symbol located next to each table. Fig-

ure 10.15 shows the relationship diagram for the STUDENTS and

CLASSES tables in Figure 10.13.

Problems with Many-to-Many Relationships

A many-to-many relationship has an inherent peculiarity that you must

address before you can effectively use the data from the tables involved

in the relationship. The issue is this: How do you easily associate

records from the first table with records in the second table in order to

Figure 10.14. Diagramming a many-to-many relationship.

Table A

This crow’s foot indicates that a
single record in TABLE B is related to

many records in TABLE A.

This crow’s foot indicates that a
single record in TABLE A is related to

many records in TABLE B.

Table B

Figure 10.15. The relationship diagram for the STUDENTS and CLASSES
tables.

Students Classes

Types of Relationships 333

establish the relationship? This is an important question because you’ll

encounter problems such as these if you do not establish the relation-

ship properly:

• It will be tedious and somewhat difficult to retrieve information

from one of the tables.

• One of the tables will contain a large amount of redundant data.

• Duplicate data will exist within both tables.

• It will be difficult for you to insert, update, and delete data.

There are two common methods that novice and inexperienced develop-

ers use in a futile attempt to address this situation. I’ll demonstrate how

you might apply these methods using the STUDENTS and CLASSES ta-

bles in Figure 10.16 as examples.

Figure 10.16. Structures of the STUDENTS and CLASSES tables.

Table Structures

ClassesStudents

Class NameStudFirst Name

ClassroomStudState

Class CategoryStudLast Name

CreditsStudStreet Address

Instructor IDStudCity

Class DescriptionStudZipcode

Class ID PKStudent ID PK

Catalog CodeStudHome Phone

Social Security Number

StudEmail Address

334 Chapter 10 Table Relationships

As you can see, there is no actual connection between the two tables, so

you have no way of associating records in one table with records in the

other table. The first method you might use to attempt to establish a

connection involves taking a field from one table and incorporating it a

given number of times within the other table. (This approach usually

appeals to people who are accustomed to working with spreadsheets.)

For example, you could take the STUDENT ID field from the STUDENTS

table and incorporate it within the CLASSES table structure, creating as

many copies of the field as you need to represent the maximum number

of students that could attend any class. Figure 10.17 shows the revised

version of the CLASSES table structure.

❖Note As this example unfolds, keep in mind that every many-to-

many relationship you encounter will exhibit these same issues.

Figure 10.17. Incorporating STUDENT ID fields within the CLASSES table
structure.

Table Structures

Student ID 22Student ID 14Student ID 6

Student ID 17Student ID 9Student ID 1Class ID PK

Student ID 21Student ID 13Student ID 5Instructor ID

Student ID 18Student ID 10Student ID 2Class Name

Student ID 23Student ID 15Student ID 7Class Description

Classes

Student ID 19Student ID 11Student ID 3Class Category

Student ID 20Student ID 12Student ID 4Credits

Classroom

Student ID 24Student ID 16Student ID 8Catalog Code

Types of Relationships 335

This structure is likely to be problematic, so you might try taking the

CLASS ID field from the CLASSES table and incorporating it within the

STUDENTS table structure instead. Figure 10.18 shows the revised ver-

sion of the STUDENTS table structure.

Do these structures look (vaguely) familiar? They should. All you’ve

done using this method is introduce a “flattened” multivalued field into

the table structure. In doing so, you’ve also introduced the problems as-

sociated with a multivalued field. (If necessary, review Chapter 7.) Al-

though you know how to resolve a multivalued field, this is not a good

or proper way to establish the relationship.

The second method you might attempt to use is simply a variation of the

first method. In this case, you take one or more fields from one table

and incorporate a single instance of each field within the other table. For

Figure 10.18. Incorporating CLASS ID fields within the STUDENTS table structure.

Table Structures

Students

Social Security Number

StudEmail Address

Student ID PK Class ID 1

StudFirst Name Class ID 2

StudLast Name Class ID 3

StudStreet Address Class ID 4

StudCity Class ID 5

StudState Class ID 6

StudZipcode Class ID 7

StudHome Phone Class ID 8

336 Chapter 10 Table Relationships

example, you could take the CLASS ID, CLASS NAME, and INSTRUCTOR ID fields

from the CLASSES table and incorporate them into the STUDENTS table

in order to identify the classes in which a student is currently enrolled.

This may seem to be a distinct improvement over the first method, but

you’ll see that there are problems that arise from such modifications

when you load the revised STUDENTS table with sample data.

Figure 10.19 clearly illustrates the problems you’ll encounter using this

method.

• The table contains unnecessary duplicate fields. You learned all

about unnecessary duplicate fields and the problems they pose

back in Chapter 7, so you know that using them here is not a

good idea. Besides, it is very likely that the CLASS NAME and IN-

STRUCTOR ID fields are not appropriate in the STUDENTS table—

the CLASS ID field identifies the class sufficiently, and it is really all

you need to identify the classes a student is taking.

Figure 10.19. The revised STUDENTS table with sample data.

Student Last NameStudent First NameStudent ID

Students

Class NameClass ID Instructor ID << other fields >>

ErlichZachary60001

ErlichZachary60001

ErlichZachary60001

ErlichZachary60001

Introduction to Political Science900009 220087

Advanced Music Theory

Computers in Business

900002

900004

220039

220121

......

......

American History900003 220148

McLainSusan60002

McLainSusan60002

McLainSusan60002

Advanced Music Theory900002 220039

Introduction to Political Science900009 220087

Introduction to Biology900006 220117

RosalesJoe60003 Computers in Business900004 220121

RosalesJoe60003 Advanced Calculus900001 220101

RosalesJoe60003 Introduction to Physics900008 220075

BarletDiana60004 Introduction to Database Design900007 220120

Types of Relationships 337

• There is a large amount of redundant data. Even if you remove the

CLASS NAME and INSTRUCTOR ID fields from the STUDENTS table, the

CLASS ID field will still produce a lot of redundant data.

• It is difficult to insert a new record. If you enter a record in the

STUDENTS table for a new class (instead of entering it in the

CLASSES table) without also entering student data, the fields per-

taining to the student will be null—including the primary key of

the STUDENTS table (STUDENT ID). This will automatically trigger a

violation of the Elements of a Primary Key because the primary

key cannot be null; therefore, you cannot insert the record into

the table until you can provide a proper primary key value.

• It is difficult to delete a record. This is especially true if the only data

about a new class has been recorded in the particular student

record you want to delete. Note the record for Diana Barlet, for

example. If Diana decides not to attend any classes this year and

you delete her record, you will lose the data for the “Introduction to

Database Design” class. That might not create a serious problem—

unless someone neglected to enter the data about this class into

the CLASSES table as well. Once you delete Diana’s record, you’ll

have to re-enter all of the data for the class in the CLASSES table.

Fortunately, you will not have to worry about any of these problems be-

cause you’re going to learn the proper way to establish a many-to-many

relationship.

Self-Referencing Relationships

This particular type of relationship does not exist between a pair of ta-

bles, which is why it isn’t mentioned at the beginning of this section. It

is instead a relationship that exists between the records within a table.

Ironically, you’ll still regard this throughout the design process as a ta-

ble relationship.

338 Chapter 10 Table Relationships

A table bears a self-referencing relationship (also known as a recursive

relationship) to itself when a given record in the table is related to other

records within the table. Similar to its dual-table counterpart, a self-

referencing relationship can be one-to-one, one-to-many, or many-to-

many.

One-to-One

A self-referencing one-to-one relationship exists when a given record in

the table can be related to only one other record within the table. The

MEMBERS table in Figure 10.20 is an example of a table with this type

of relationship. In this case, a given member can sponsor only one other

member within the organization; the SPONSOR ID field stores the member

identification number of the member acting as a sponsor. Note that Su-

san McLain is Tom Wickerath’s sponsor.

Figure 10.21 shows how you diagram this type of relationship.

One-to-Many

A table bears a self-referencing one-to-many relationship to itself when a

given record in the table can be related to one or more other records

within the table. Figure 10.22 shows an example in which a given cus-

tomer can refer other customers to the organization. The REFERRED BY

Figure 10.20. Example of a self-referencing one-to-one relationship.

<< other fields >>

......

......

......

MbrLast Name

Erlich

McLain

Rosales

MbrFirst Name

Zachary

Susan

Joe

Member ID

1001

1002

1003

Members

BarletDiana1004

WickerathTom1005

......

......

Sponsor ID

1001

1003

1002

Types of Relationships 339

field stores the customer identification number of the customer making

the referral. Note that Paul Litwin referred both Andy Baron and Mary

Chipman.

Figure 10.23 shows how you diagram a self-referencing one-to-many

relationship.

Many-to-Many

A self-referencing many-to-many relationship exists when a given record

in the table can be related to one or more other records within the table

and one or more records can themselves be related to the given record.

Figure 10.21. Diagramming a self-referencing one-to-one relationship.

The line on the side of the table shows the self-

referencing (or “recursive”) nature of the relationship

and also indicates the relationship type.

Members

Figure 10.22. Example of a self-referencing one-to-many relationship.

CustLast Name

Litwin

Balter

Baron

CustFirst Name

Paul

Alison

Andy

Customer ID

9001

9002

9003

Customers

<< other fields >>

......

......

......

KunickiChris9004

ChipmanMary9005

Referred By

9001

9003

9001

340 Chapter 10 Table Relationships

This may sound somewhat confusing at first, but the example in

Figure 10.24 should help clarify the matter.

In this case, a particular part can comprise several different component

parts, and it can itself be a component of other parts. For example, a

clamp assembly (Part ID 704) is composed of a fastening bolt (Part ID

703), a bottom clamp (Part ID 702), and a top clamp (Part ID 701). Addi-

tionally, the clamp assembly is itself a component of a seat assembly

(Part ID 707) and a frame assembly (Part ID 711). Figure 10.25 shows

how you diagram this type of relationship.

Figure 10.23. Diagramming a self-referencing one-to-many relationship.

Customers

Figure 10.24. Example of a self-referencing many-to-many relationship.

Part NamePart ID

Parts

<< other fields >>

701 Top Clamp

702

......

Bottom Clamp

703

......

Fastening Bolt

704

......

Seat Assembly

705

......

Saddle

706

......

Seatpost

707

......

Frame Assembly

708

......

Body Tube

709

......

Front Fork Tube

710

......

Rear Stay Tube

711

Clamp Assembly

Identifying Existing Relationships 341

Now that you’ve learned about the various types of table relationships,

your next task is to identify the relationships that currently exist among

the tables in the database.

Identifying Existing Relationships

When you were composing the table descriptions earlier in the database-

design process (back in Chapter 7, to be exact), you assembled a

❖ Note Before you begin to work through the examples in the re-

mainder of the chapter, now is a good time to remember a princi-

ple I presented in the introduction:

Focus on the concept or technique and its intended

results, not on the example used to illustrate it.

There are, without a doubt, any number of ways in which you can

relate the tables in these examples (and in the case study as well),

depending on each table’s role within a given database. The

manner in which I use the examples here is not important; what

is important are the techniques I use to identify and establish

relationships between tables. Once you learn these techniques,

you can identify and establish relationships for any pair of tables

within any context you may encounter.

Figure 10.25. Diagramming a self-referencing many-to-many relationship.

Parts

342 Chapter 10 Table Relationships

representative group of users and management to help you with that

task. These people were also designated as representatives of the orga-

nization and granted the authority to aid in the decision-making pro-

cess throughout the remainder of the database-design process. (At

least, this is the current assumption for the sake of discussion and ex-

ample.) Now you’ll arrange meetings with this group once again so that

they can help you identify existing table relationships. These folks can

provide valuable input because they are likely to have a good perspec-

tive on how various subjects (or tables) are related. Although their per-

ceptions of the manner in which these subjects are related may not

always be complete or accurate, their contributions will still be useful in

identifying most of the relationships.

Begin the process of identifying relationships by creating a matrix of all

the tables in your database. (You can do this on a sheet of paper, a

white board, or a spreadsheet program.) For example, assume you’re

working with these tables:

List each of the tables across the top of the matrix, and then again down

the left-hand side of the matrix; make certain the table names are in the

same order. Figure 10.26 illustrates how the matrix should appear.

Select a table on the left as a starting point and determine whether it

has a relationship with any of the tables listed across the top, working

your way through the matrix as you do so. (It doesn’t matter whether

you work your way across the top or down the side. Just make sure you

work consistently, as it will make the task much easier.)

Keep in mind that you’re looking for direct relationships only—there

must be a specific connection between tables participating in the rela-

BUILDINGS

CLASSES

COMPENSATION

FACULTY

ROOMS

STAFF

STUDENTS

Identifying Existing Relationships 343

tionship. For example, the CLASSES table has a direct relationship to

the STUDENTS table because one or more students can attend a given

class. Conversely, the CLASSES table has an indirect relationship to the

STAFF table via the FACULTY table; it is a faculty member that teaches

a class, not a staff member. (You don’t have to worry about indirect rela-

tionships just yet.)

As you work with a pair of tables, ask the participants questions about

the records in each table. Your goal is to determine the relationship be-

tween a single record in one table to one or more records in the other ta-

ble, and vice versa. (Remember that each record represents a single

instance of the subject represented by the table.) When you get to a

point where you’re examining the same table on both sides of the ma-

trix, try to determine the relationship between a given record in the ta-

ble to one or more other records within the table.

There are two types of questions you can ask:

1. Associative. This is a simple and straightforward type of question

that you can generically phrase as follows: Can a single record in

(name of first table) be associated with one or more records in

Figure 10.26. Setting up a table matrix to help identify existing relationships.

Buildings

Classes

Compensation

Faculty

Rooms

Staff

Students

Buildings Classes Compensation Faculty Rooms Staff Students

344 Chapter 10 Table Relationships

(name of second table)? Considering the matrix in Figure 10.26,

you might ask an associative question such as this:

Can a single record in CLASSES be associated with one or more

records in BUILDINGS?

You can use this type of question to determine whether a table

has a self-referencing relationship by making two minor modifica-

tions to the question itself: Can a single (singular form of the table

name) be associated with one or more (plural form of the table

name)? For example, here’s a question you might pose for the

STAFF table:

Can a single staff member be associated with one or more other

staff members?

2. Contextual. This type of question contrasts a single instance of the

subject represented by the first table against multiple instances of

the subject represented by the second table. There are two catego-

ries within this type of question: ownership-oriented and action-

oriented.

a. Ownership-oriented questions include words or phrases such

as “own,” “has,” “is part of,” and “contain.” Here’s an example of

this type of question:

Can a single order contain one or more products?

You can use this question to test for a self-referencing relation-

ship by making the same modifications you made to the

associative question. Here’s an example of a question you might

pose for a PARTS table:

Can a single part contain one or more other parts?

b. Action-oriented questions incorporate action verbs such as

“make,” “visit,” “place,” “teach,” and “attend.” Here’s an exam-

ple of this type of question:

Identifying Existing Relationships 345

Does a single flight instructor teach one or more types of

classes?

As you may have already guessed, you can use this question to

test for a self-referencing relationship as well by making the

same modifications:

Does a single staff member manage one or more other staff

members?

Use the type of question you believe to be the most appropriate for the

pair of tables you’re working with. As you work down the list of tables in

the matrix, you’ll eventually realize that you’re asking questions about a

given pair of tables twice—once from the perspective of the first table

and then again from the perspective of the second table. The answers to

both of these questions will identify the type of relationship that exists

between the tables.

Continuing with the example, assume that you’ve decided to start with

the CLASSES table and this is your first question:

Is a single class held in one or more buildings?

The answer to this question will reveal the type of relationship that ex-

ists between these tables from the perspective of the CLASSES table. If

you receive the following answer, then a one-to-one relationship exists

between these tables:

A single class is held in only one building.

If you receive this answer, however, then a one-to-many relationship ex-

ists between the two tables:

A single class may be held in more than one building.

Once you’ve identified the relationship, indicate the relationship type in

the box located at the junction of the CLASSES table row (on the left)

346 Chapter 10 Table Relationships

and the BUILDINGS table column (on the top). You can use the follow-

ing shorthand symbols for the relationship types:

1:1—one-to-one

1:N—one-to-many

M:N—many-to-many

Figure 10.27 shows how the table matrix looks after you’ve finished

identifying relationships for the CLASSES table. Remember that the rela-

tionships indicated here are from the perspective of the CLASSES table.

You’ve probably noticed that some of the junction boxes are empty; this

is perfectly acceptable. It’s unnecessary for you to enter anything into

the junction box if there is no relationship between the tables at either

end of the junction.

❖ Note You won’t need the many-to-many shorthand symbol at

this point, but I’ve included it here for completeness.

Figure 10.27. Completed table-matrix entries for the CLASSES table.

Buildings

Classes

Compensation

Faculty

Rooms

Staff

Students

Buildings Classes Compensation Faculty Rooms Staff Students

1:1 1:N 1:1 1:N

Identifying Existing Relationships 347

Now you repeat this process for each table on the left-hand side of the

matrix. Remember that you can start with any table. Let’s assume that

you decide to continue with the BUILDINGS table, and you’re attempt-

ing to identify the relationship between it and the CLASSES table. Yes, I

know you’ve covered this once already, but in this case you’re identify-

ing the relationship from the perspective of the BUILDINGS table. Let’s

now assume that you ask this question:

Does a single building provide space for more than one class?

If the answer is yes, then a one-to-many relationship exists between

these tables; otherwise, it’s a one-to-one relationship. Once you’ve iden-

tified the relationship, indicate the relationship type in the box located

at the junction of the BUILDINGS table row (on the left) and the

CLASSES table column (on the top). Figure 10.28 shows the revised ta-

ble matrix with your entries for the BUILDINGS table.

You’ve just seen two examples of how to identify a relationship be-

tween a distinct pair of tables, so let’s take a look at how you identify a

self-referencing relationship for a single table. Assume you’re working

with the STAFF table, and you’re now at the junction between the

STAFF table on the left and the STAFF table on the top. Using the

Figure 10.28. Completed table-matrix entries for the BUILDINGS table.

Buildings

Classes

Compensation

Faculty

Rooms

Staff

Students

Buildings Classes Compensation Faculty Rooms Staff Students

1:1 1:N 1:1 1:N

1:N 1:N

348 Chapter 10 Table Relationships

techniques you learned earlier in this section, you might pose a ques-

tion such as this:

Can a single staff member be associated with one or more other

staff members?

As with the earlier examples, the answer will indicate the type of rela-

tionship. Say you received this answer:

Yes, a given staff member can be the spouse of another staff

member.

This indicates (rather obviously) that a self-referencing one-to-one rela-

tionship exists for the STAFF table. But assume you received this an-

swer instead:

Yes, a single staff member can manage several other staff

members.

You probably quickly realized that this answer indicates that a self-

referencing one-to-many relationship exists for the STAFF table. Identi-

fying these two types of relationships is a relatively easy task; identify-

ing a self-referencing many-to-many relationship can be slightly more

difficult.

This is the type of question you must ask in order to determine whether

a table has a self-referencing many-to-many relationship: Can a single

(singular form of the table name) be associated with one or more other

(plural form of the table name), and can any of those (plural form of the

table name) then be associated with yet one or more other (plural form of

the table name)? For example, here’s a question you might pose for the

STAFF table:

Can a single staff member be associated with one or more other

staff members, and can any one of those staff members then be

associated with one or more other staff members?

Identifying Existing Relationships 349

An answer such as the following (or one very similar to it) indicates that

the STAFF table has a self-referencing many-to-many relationship:

Yes, a given staff member can manage several other staff mem-

bers, and any one of those folks can then supervise one or more

other staff members.

Once you’ve identified the type of self-referencing relationship that ex-

ists for the table, you indicate it in the table matrix as you would any

other relationship.

Relationships will often differ from one perspective to the other, and you

must know how to determine what type of relationship officially exists

between each pair of tables on the matrix. You make this determination

using the following set of formulas; each formula corresponds to a par-

ticular relationship type definition. (I’ve provided the definitions as a

point of reference.)

1:1 + 1:1 = 1:1 A pair of tables bears a one-to-one relationship

when a single record in the first table is related

to only one record in the second table, and a sin-

gle record in the second table is related to only

one record in the first table.

1:N + 1:1 = 1:N A one-to-many relationship exists between a pair

of tables when a single record in the first table

can be related to one or more records in the sec-

ond table, but a single record in the second ta-

ble can be related to only one record in the first

table.

1:N + 1:N = M:N A pair of tables bears a many-to-many relation-

ship when a single record in the first table can be

related to one or more records in the second ta-

ble and a single record in the second table can be

related to one or more records in the first table.

350 Chapter 10 Table Relationships

Here is the specific procedure you’ll use to identify the official relation-

ship between a pair of tables in the matrix. (It incorporates the relation-

ship formulas above.) Let’s first look at a generic version of the

procedure.

1. Select a pair of tables and note the entry at the junction between

the first table and the second table.

2. Locate the second table on the same side of the matrix you’re

working on and note the entry at the junction between it and the

first table on the opposite side of the matrix.

3. Apply the appropriate formula to the two entries and identify the

official relationship between the tables.

4. Diagram the relationship in the appropriate manner.

5. Cross out both entries on the matrix.

Now, let’s take a look at how you apply this procedure to a pair of tables

in the matrix. (In this example, you’re working down the left-hand side

of the matrix.)

1. Assume you’ve selected the BUILDINGS and CLASSES tables. You

note that the entry at the junction between BUILDINGS and

CLASSES is 1:N.

2. Now you proceed down the left-hand side of the matrix until you

locate the CLASSES table and then note that the entry at the junc-

tion between the CLASSES and BUILDINGS table is 1:1.

3. Using these entries with the appropriate formula, you determine

that the official relationship between the BUILDINGS and

CLASSES tables is 1:N. (1:N + 1:1 = 1:N)

4. You create a one-to-many relationship diagram for the BUILDINGS

and CLASSES tables.

5. You cross out the entries on the matrix.

Identifying Existing Relationships 351

Figure 10.29 shows the results of your work.

Note that the relationship diagram is built from the perspective of the

BUILDINGS table. This is due to the fact that the BUILDINGS table is on

the “one” side of the relationship. When you create a simple diagram

such as this, I recommend that you always show the “one” side of the

relationship on the left and the “many” side on the right. Following this

practice will make your diagrams easy to read and help ensure that you

create them in a consistent manner. (This practice is unnecessary, how-

ever, when you create a complex diagram showing the relationships be-

tween several tables.)

At the very least, you should include each table’s primary key in the di-

agram. Doing so will prove to be a valuable visual aid when you begin to

establish the relationships. You could go so far as to display each table’s

Figure 10.29. Identifying the official relationship between the BUILDINGS and
CLASSES tables.

Buildings

Classes

Compensation

Faculty

Rooms

Staff

Students

Buildings Classes Compensation Faculty Rooms Staff Students

1:1 1:N 1:1 1:N

1:N 1:N

1:1

1:N

1:N

1:N

1:1 1:1

1:1

1:1

1:N

Buildings Classes

Building Number PK Class ID PK

352 Chapter 10 Table Relationships

complete structure (as you see in Figure 10.30), assuming you have

space on the diagram. Displaying the structures in this manner often

helps to reinforce the decision you’ve made regarding the type of rela-

tionship that exists between the tables. (I use both types of diagrams

throughout the remainder of the book.)

It’s worth mentioning that this procedure is much easier and shorter

when you work with a table that has a self-referencing relationship,

such as the STAFF table. As Figure 10.31 illustrates, all you have to do

here is diagram the relationship and cross out the entry on the matrix.

Continue this procedure until you’ve eliminated all of the entries on the

matrix. When you’ve finished identifying the official relationships

among the tables in the database, you can then go through the process

of establishing each relationship in the appropriate manner.

❖ Note You’ll occasionally find it difficult to identify the exact re-

lationship between a given pair of tables. When this happens, just

load the tables with some sample data. This usually helps to re-

veal the type of relationship that exists between the tables.

Figure 10.30. Displaying each table’s structure in a relationship diagram.

Buildings Classes

Building Number PK

Number of Floors

Elevator Access

Site Parking Available

Class ID PK

Instructor ID

Class Name

Class Description

Class Category

Credits

Classroom

Catalog Code

Establishing Each Relationship 353

Establishing Each Relationship

This process involves defining an explicit logical connection between a

pair of related tables. The type of relationship that exists between the

tables determines the manner in which you define the connection.

One-to-One and One-to-Many Relationships

You use a primary key and a foreign key to establish the connection be-

tween tables participating in a one-to-one or one-to-many relationship.

(You’ll learn the definition of a foreign key in just a moment.)

The One-to-One Relationship

In this type of relationship, one table serves as a parent table and the

other serves as a child table. A record must exist in the parent table

Figure 10.31. Working with a self-referencing relationship.

Staff

Buildings

Classes

Compensation

Faculty

Rooms

Staff

Students

Buildings Classes Compensation Faculty Rooms Staff Students

1:1 1:N 1:1 1:N

1:N 1:N

1:1

1:N

1:N

1:N

1:1 1:1

1:1

1:1

1:N

354 Chapter 10 Table Relationships

before you can enter a related record in the child table; stated another

way, a record in the child table must have a related record in the par-

ent table. The roles you assign to the tables usually depend on the

subjects they represent, although there will be instances when you

can assign the roles rather arbitrarily. In Figure 10.32, for example,

you would most likely assign the parent role to the STAFF table and

the child role to the COMPENSATION table. This is a reasonable as-

sumption because it would be completely illogical to have a record

in the COMPENSATION table that is not related to a record in the

STAFF table.

In the case where one of the tables is a subset table, you will usually as-

sign the child role to the subset table. There are instances, however,

when you can assign the parent role to the subset table.

You establish a one-to-one relationship by taking a copy of the parent

table’s primary key and incorporating it within the structure of the child

table, where it then becomes a foreign key. (The term foreign key is de-

rived from the fact that the child table already has a primary key of its

own, and the primary key you are introducing from the parent table is

Figure 10.32. Which table would you pick as the parent table?

Staff Compensation

PK Staff ID

Salary Amount

Investment Plan Type

Medical Plan Type

Life Insurance Plan

Staff ID

StaffFirst Name

StaffLast Name

StaffStreet Address

StaffCity

StaffState

StaffZipcode

StaffPhone Number

Position

Date Hired

PK

Establishing Each Relationship 355

“foreign” to the child table.) In most one-to-one relationships, however,

the foreign key also serves as the child table’s primary key.

Figure 10.33 illustrates how you would establish the relationship be-

tween the STAFF and FACULTY tables. STAFF is the parent table in this

case because a record in the FACULTY table must be related to a record

in the STAFF table; faculty members are drawn from the school’s staff.

If you were to follow the procedure you just learned, you would take a

copy of the STAFF table’s primary key and incorporate it as a foreign

key in the FACULTY table. This is unnecessary, however, because FAC-

ULTY is already a properly defined subset table. (Recall that a subset ta-

ble and the data table from which it was derived must share the same

primary key. You learned how to define a subset table in Chapter 7 and

how to establish its primary key in Chapter 8.)

Figure 10.34 shows a slightly different example of a one-to-one relation-

ship. Assume that MANAGERS is a subset table of EMPLOYEES, but has

a direct relationship to DEPARTMENTS—a single manager is associated

with only one department, and a single department is associated with only

one manager. Further assume that MANAGERS is the parent table and

Figure 10.33. Establishing the one-to-one relationship between the STAFF and
FACULTY tables.

Staff Faculty

PK Staff IDStaff ID

StaffFirst Name

StaffLast Name

StaffStreet Address

StaffCity

StaffState

StaffZipcode

StaffPhone Number

Position

Date Hired

PK

Title

Status

Tenured

356 Chapter 10 Table Relationships

DEPARTMENTS is the child table. (This is a good example of a scenario in

which you can choose the roles rather arbitrarily. It’s also an instance of

when a subset table plays the parent role within the relationship.)

Establish the relationship between these tables using the procedure

you’ve just learned, and then identify the DEPARTMENTS table’s new

foreign key (EMPLOYEE ID) by placing the letters “FK” next to its name.

Figure 10.35 shows the revised relationship diagram with the results of

your modifications.

As long as you can visualize this process generically, you’ll be able to es-

tablish any one-to-one relationship you encounter.

Figure 10.34. A one-to-one relationship with a subset table in the parent role.

Managers Departments

PK

Email Address

Cellular Phone Number

Department ID

DeptName

Maximum Staff Level

DeptCategory

PKEmployee ID

Figure 10.35. Establishing the relationship between the MANAGERS and
DEPARTMENTS tables.

Managers Departments

PK

Email Address

Cellular Phone Number

Department IDPKEmployee ID

DeptName

Maximum Staff Level

DeptCategory

Employee ID FK

Establishing Each Relationship 357

There is a small change in the way you’ll diagram the relationships from

this point forward. You should now use the primary key as the begin-

ning point and the foreign key as the end point of the relationship line.

(The only exception will be when you’re diagramming the relationship

between a subset table and its parent data table.) Making this minor

modification will help you visualize the relationships more clearly and

make it easier to identify the fields that establish the relationship.

The One-to-Many Relationship

The technique you use to establish a one-to-many relationship is similar

to the one you used to establish a one-to-one relationship. You simply

❖ Note Many database designers will use MANAGER ID as the pri-

mary key name in the MANAGERS table and the foreign key name

in the DEPARTMENTS table. I choose to use EMPLOYEE ID instead

for these reasons:

• MANAGERS is a subset of the EMPLOYEES table, so it

shares the same primary key (EMPLOYEE ID).

• It keeps the field in conformance with the Elements of the

Ideal Field. (It retains a majority of its characteristics when it

appears in more than one table.)

• It keeps the field in conformance with the Elements of a

Foreign Key. (You’ll learn about foreign keys later in this

chapter.)

• It removes any possible ambiguity or doubt about the true

nature of a foreign key. (I’ll explain this in more detail during

the discussion of the Elements of a Foreign Key.)

There is no absolute right or wrong way to do this—in the end, the

approach you use is simply a matter of style. Once you decide

which approach you want to use, however, make certain you use

it consistently.

358 Chapter 10 Table Relationships

take a copy of the primary key from the table on the “one” side of the re-

lationship and incorporate it within the table structure on the “many”

side, where it then becomes a foreign key. For example, consider the

one-to-many relationship between the BUILDINGS and ROOMS tables

shown in Figure 10.36.

The relationship between these two tables is such that a single building

can contain one or more rooms, but a single room is contained within

only one building. Using the procedure above, you establish this rela-

tionship by taking a copy of the primary key (BUILDING NUMBER) from the

BUILDINGS table and incorporating it as a foreign key within the

ROOMS table. Now, revise the relationship diagram and make the same

type of adjustments as you did with the diagram for the one-

to-one relationship. Your revised diagram should look like the one in

Figure 10.37. (Note that the middle line of the crow’s foot symbol is the

significant connection point—it should point directly to the foreign key.)

Resolving Multivalued Fields—Revisited

Back in Chapter 7 you learned how to resolve a multivalued field by us-

ing this generic procedure:

1. Remove the field from the table and use it as the basis for a new

table. If necessary, rename the field in accordance with the field

naming guidelines that you learned earlier in this chapter.

Figure 10.36. The existing one-to-many relationship between the BUILDINGS
and ROOMS tables.

Buildings Rooms

PKPKBuilding Number

Number of Floors

Elevator Access

Site Parking Available

Room Number

Square Footage

Type of Room

Phone Available

Establishing Each Relationship 359

2. Use a field (or set of fields) from the original table to relate the orig-

inal table to the new table; try to select fields that represent the

subject of the table as closely as possible. The field(s) you choose

will appear in both tables.

3. Assign an appropriate name, type, and description to the new table

and add it to the final table list.

You used this procedure to resolve a multivalued field called CATEGORIES

TAUGHT in an INSTRUCTORS table. Figure 10.38 shows the original ver-

sion of the table and the results of applying the procedure.

There’s one final fact about a multivalued field that you need to learn:

An inherent one-to-many relationship exists between a given set of val-

ues within a multivalued field and the record in which they reside.

You’ll see this when you examine the original INSTRUCTORS table in

Figure 10.38. A single instructor (such as Kendra Bonnicksen) can

teach one or more categories (DTP, SS, WP)—this holds true for every

record in the table.

When you properly resolve the multivalued field, the tables produced by

the procedure inherit the relationship. This is clearly the case with the

revised INSTRUCTORS and new INSTRUCTOR CATEGORIES tables.

You can now establish this one-to-many relationship as you would any

Figure 10.37. Establishing the one-to-many relationship between the
BUILDINGS and ROOMS tables.

Buildings Rooms

PKBuilding Number

Number of Floors

Elevator Access

Site Parking Available

PKRoom Number

Square Footage

Type of Room

Phone Available

Building Number FK

360 Chapter 10 Table Relationships

other. (Of course, this assumes that you’ve assigned a primary key to

the INSTRUCTORS table.) Figure 10.39 shows the results of properly

establishing this relationship.

The INSTRUCTOR ID field in the INSTRUCTOR CATEGORIES table serves

as a foreign key and helps to establish the one-to-many relationship

between the INSTRUCTORS and INSTRUCTOR CATEGORIES tables.

Figure 10.38. The original resolution of the CATEGORIES TAUGHT multivalued field.

Instructors

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

970 Phoenix Avenue

InstCity

Seattle

Redmond

Seattle

Bellevue

InstFirst Name

Shannon

Estela

Timothy

Kendra

InstLast Name

McLain

Pundt

Ennis

Bonnicksen

<< other fields >>

......

......

......

......

Category Taught

Instructor Categories

InstFirst Name

Kendra

InstLast Name

Bonnicksen

Timothy

Kendra

Ennis

Bonnicksen

Kendra Bonnicksen

Timothy Ennis

Timothy Ennis

Shannon McLain

DTP

SS

WP

WP

DB

OS

DB

Shannon McLain SS

Instructors

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

970 Phoenix Avenue

InstCity

Seattle

Redmond

Seattle

Bellevue

InstFirst Name

Shannon

Estela

Timothy

Kendra

InstLast Name

McLain

Pundt

Ennis

Bonnicksen

<< other fields >>

.......

.......

.......

.......

Categories Taught

DTP, SS, WP

DB, SS

DTP, WP, PG

WP, DB, OS

Figure 10.39. Establishing the one-to-many relationship between the
INSTRUCTORS and INSTRUCTOR CATEGORIES tables.

Instructors Instructor Categories

Category Taught

DTP

SS

WP

WP

DB

OS

DB

SS

Instructor ID

60001

60001

60001

60002

Instructor ID

60001

60002

60003

60004

InstStreet Address

3131 Mockingbird Lane

7402 Kingman Drive

4141 Lake City Way

970 Phoenix Avenue

InstCity

Seattle

Redmond

Seattle

Bellevue

InstFirst Name

Shannon

Estela

Timothy

Kendra

InstLast Name

McLain

Pundt

Ennis

Bonnicksen

<< other fields >>

......

......

......

......

60002

60002

60003

60003

Establishing Each Relationship 361

INSTRUCTOR ID is also part of the composite primary key for the INSTRUC-

TOR CATEGORIES table; a given combination of INSTRUCTOR ID and CATE-

GORY TAUGHT values uniquely identifies a specific record in the table.

The Many-to-Many Relationship

You establish a many-to-many relationship with a linking table. This is

a new table that you’ll create using the following three-step procedure.

1. Define the linking table by taking copies of the primary key from

each table in the relationship and using those keys to form the struc-

ture of the table. These fields will serve two distinct purposes within

the linking table: Together they constitute the table’s composite pri-

mary key, and each is a unique foreign key that helps to establish a

relationship between its parent table and the linking table.

2. Give the linking table a name that represents the nature of the

relationship between the two tables. For example, if you’re estab-

lishing a many-to-many relationship between a PILOTS table and a

CERTIFICATIONS table, you might choose to call the linking table

PILOT CERTIFICATIONS.

3. Add the linking table to the final table list and make the proper en-

tries for “Table Type” and “Table Description.”

Figure 10.40 shows how you establish the many-to-many relationship

between the STUDENTS and CLASSES tables. (Note the new diagram

symbol used to represent a linking table.)

❖ Note You could have used STUDENT SCHEDULES or CLASS

SCHEDULES as the name of the linking table; STUDENT

CLASSES just happens to be my personal preference. The point to

remember is that you should use a name that makes the most

sense to you or to the organization.

362 Chapter 10 Table Relationships

Creating a linking table produces a few noteworthy results.

• The original many-to-many relationship has been dissolved be-

cause there is no longer a direct relationship between the STU-

DENTS and CLASSES tables. The original relationship has been

replaced by two one-to-many relationships: one between STU-

DENTS and STUDENT CLASSES and another between CLASSES

and STUDENT CLASSES. In the first relationship, a single record

in STUDENTS can be associated with one or more records in STU-

DENT CLASSES, but a single record in STUDENT CLASSES table

can be associated with only one record in STUDENTS. In the sec-

ond relationship, a single record in the CLASSES table can be as-

sociated with one or more records in STUDENT CLASSES, but a

single record in STUDENT CLASSES can be associated with only

one record in CLASSES.

• The STUDENT CLASSES linking table contains two foreign keys.

STUDENT ID and CLASS ID are both copies of the primary keys from

the STUDENTS and CLASSES tables respectively; therefore, each

Figure 10.40. Establishing the many-to-many relationship between the
STUDENTS and CLASSES tables.

Student Classes

Classes

Class ID

Instructor ID

Class Name

Class Description

Category

PK

Student ID CPK/FK

Class ID CPK/FK

Students

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

Social Security Number

PK

Establishing Each Relationship 363

is a foreign key by definition. As such, they help to establish the

relationship between their parent tables and the linking table.

• The STUDENT CLASSES linking table has a composite primary key

composed of the STUDENT ID and CLASS ID fields. Except in rare in-

stances, a linking table always contains a composite primary key.

(This rule applies to the database’s logical design only. There are

various reasons why you might break this rule when you trans-

form the logical design into a physical design, but this is a discus-

sion that is beyond the scope of this book.) It’s important to note

that you’ll occasionally have to add more fields to the linking table

in order to guarantee a unique primary key value. For example,

assume the school decides to record student schedules for every

term of the school year (fall, winter, and spring). You would have

to add a new field, perhaps called TERM, and designate it as part of

the composite primary key. This would enable you to enter an-

other instance of a given student and class into the table, but for

a different term; a student may need to retake a class during the

spring term because he failed the class in the fall term.

• The linking table helps to keep redundant data to an absolute mini-

mum. There is no superfluous data in this table at all. In fact, the

main advantage of this table structure is that it allows you to en-

ter as few or as many classes for a single student as is necessary.

Later in the database-design process, you’ll learn how to create

views to draw the data from these tables together in order to

present it as meaningful information.

• The name of the linking table reflects the purpose of the relation-

ship it helps establish. The data stored in the STUDENT CLASSES

table represents a student and the classes in which he or she is

enrolled.

As you work with many-to-many relationships, there will be instances in

which you will need to add fields to the linking table in order to reduce

364 Chapter 10 Table Relationships

data redundancy and further refine structures of the tables participating

in the relationship. For example, assume you’re working on a new data-

base with a colleague and he’s just brought the ORDERS and PROD-

UCTS tables in Figure 10.41 to your attention.

You note that there’s a many-to-many relationship between the tables

and then realize that your colleague tried to establish this relationship

by taking a copy of the PRODUCT NUMBER and QUOTE PRICE fields from the

PRODUCTS table and incorporating them into the ORDERS table. He

thought that this was the best way to associate various products with a

particular order. The presence of these fields in the ORDERS table, how-

ever, produces a large amount of redundant data. Figure 10.42 illus-

trates this problem quite clearly.

You can enter only one product number, quantity ordered, and quote

price for any given record; therefore, you’ll have to enter a new record

into the table for each item a customer places on his order. Customer

number 9001, for example, included eight items on an order he made

on May 16, so there are eight records in the table for this order alone.

Based on what you’ve learned earlier in this chapter, you know that

this is an improper way to establish this relationship. You also know

Figure 10.41. Is there a problem with either of these tables?

Orders

PK Product Number

ProdDescription

ProdName

Category

Quote Price

Wholesale Price

Customer Number

Order Date

Ship Date

Employee ID

Quote Price

Product Number

Quantity Ordered

Order Number

Products

PK

FK

FK

Establishing Each Relationship 365

that you can establish the relationship properly by creating and using

a linking table. So you remove the PRODUCT NUMBER field from the OR-

DERS table, establish the relationship in the appropriate manner, and

revise the relationship diagram. Figure 10.43 shows the results of

your work.

Figure 10.42. Redundant data caused by an improperly established many-to-
many relationship.

Orders

Order Number

1000

1000

1000

1000

1000

1000

1000

1000

1001

1001

1001

Customer Number

9001

9001

9001

9001

9001

9001

9001

9001

9012

9012

9012

Order Date

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

05/16/02

Quote Price

8.95

3.75

6.50

5.99

4.45

6.50

31.50

5.00

6.50

4.00

6.35

Product Number

410001

410004

410007

410005

410015

410011

410021

410029

410011

410015

410022

Quantity Ordered

4

12

5

6

11

5

2

8

5

3

12

<< other fields >>

......

......

......

......

......

......

......

......

......

......

......

Figure 10.43. Properly establishing the many-to-many relationship between the
ORDERS and PRODUCTS tables.

Order Details

Order Number CPK/FK

Product NumberCPK/FK

Product Number

ProdDescription

ProdName

Category

Quote Price

Wholesale Price

Products

PK

Orders

PK

Customer Number

Order Date

Ship Date

Employee ID

Quote Price

Product Number

Quantity Ordered

Order Number

FK

FK

366 Chapter 10 Table Relationships

You’ve eliminated the redundant data in the ORDERS table, but you

still have two minor problems.

1. The QUOTE PRICE and QUANTITY ORDERED fields are no longer appropri-

ate for the ORDERS table; the ORDERS table’s primary key does

not exclusively identify their values, and they bear no relationship

to any of the remaining fields in the table. They do, however, relate

to a particular PRODUCT NUMBER that’s part of a given order within

the ORDER DETAILS table.

2. You have duplicate data because there are two copies of the QUOTE

PRICE field: one in the ORDERS table and another in the PROD-

UCTS table.

So you resolve the first problem by removing the QUOTE PRICE and QUAN-

TITY ORDERED fields from the ORDERS table and incorporating them

within the ORDER DETAILS table. You then resolve the second problem

by deleting the QUOTE PRICE field from the PRODUCTS table; it makes

more sense to associate a quote price with a product as it’s being or-

dered. Finally, you modify the relationship diagram to reflect the

changes you made to the structures. Figure 10.44 shows your revised

diagram.

Figure 10.44. The revised ORDER DETAILS linking table.

Order Details

Order Number CPK/FK

Product NumberCPK/FK

Orders

PK Product Number

ProdDescription

ProdName

Category

Wholesale Price

Customer Number

Order Date

Ship Date

Employee ID

Order Number

Products

PK

FK

FK

Quantity Ordered

Quote Price

Establishing Each Relationship 367

When you establish a many-to-many relationship between a pair of ta-

bles, make certain you check each table and determine whether there

are any fields that you should transfer to the linking table. When in

doubt, load all the tables with sample data; this will usually reveal any

potential problems.

Self-Referencing Relationships

Establishing a self-referencing relationship will be a relatively simple

task now that you know how to establish a relationship between a pair

of tables.

One-to-One and One-to-Many

You use a primary key and a foreign key to establish these self-referenc-

ing relationships, just as you do with their dual-table counterparts. The

difference here, however, is that the foreign key will reside in the same

table as the primary key to which it refers. You’ll often find that the for-

eign key is already part of the table’s structure. If the foreign key does

not already exist, you’ll simply create one.

Let’s revisit the MEMBERS table example from Figure 10.20. Recall that

this table has a self-referencing one-to-one relationship because a given

member can sponsor only one other member within the organization;

❖ Note You won’t encounter this problem very often if you faith-

fully follow the design process you’ve learned thus far. It will typi-

cally arise, however, when you’re trying to incorporate a pair of

tables from an existing or legacy database and you haven’t taken

the time to refine their structures properly. You’ll also encounter

this problem when you work with someone who has little or no

database-design experience.

368 Chapter 10 Table Relationships

the SPONSOR ID field stores the member identification number of the

member acting as a sponsor. Because the SPONSOR ID field draws its val-

ues exclusively from the MEMBER ID field, it acts as the foreign key for

the relationship. You establish the relationship by officially designating

the SPONSOR ID field as the foreign key and notating it as such in the re-

lationship diagram. Figure 10.45 shows the revised relationship dia-

gram for the MEMBERS table.

Now, consider the STAFF table example in Figure 10.46. You may re-

member that this table has a self-referencing one-to-many relationship

because a single staff member can manage one or more other staff

members.

There is currently no means of associating a given staff member to other

staff members within the table; therefore, you must create a new field

that will act as the foreign key and enable you to establish the relation-

ship. Let’s assume you create a new foreign key field called MANAGER ID

Figure 10.45. Establishing the self-referencing one-to-one relationship for the
MEMBERS table.

Members

PKMember ID

MbrFirst Name

MbrLast Name

MbrStreet Address

MbrCity

MbrState

MbrZipcode

MbrPhone Number

Status

Date Enrolled

FKSponsor ID

Establishing Each Relationship 369

that will draw its values exclusively from the STAFF ID field. You now es-

tablish the relationship by officially designating MANAGER ID as the foreign

key and notating it as such in the relationship diagram. Figure 10.47

shows the revised relationship diagram for the STAFF table.

You probably noticed that the “one” side of the relationship line points

to the MANAGER ID field and the “many” side of the line points to the

STAFF ID field. This is perfectly acceptable because a manager will man-

age one or more staff members, but a given staff member reports to

only one manager. (As you may have intuitively guessed, the “one” side

of the line commonly points to the primary key and the “many” side to

the foreign key.)

As you work with self-referencing one-to-one and one-to-many relation-

ships, take a moment and examine each table’s structure carefully.

You’ll occasionally find that you can (or may need to) modify and im-

prove the existing structure in order to eliminate the relationship. I

know what you’re wondering: “But why would I want to do that?”

Figure 10.46. The current structure of the STAFF table.

Staff

PKStaff ID

StaffFirst Name

StaffLast Name

StaffStreet Address

StaffCity

StaffState

StaffZipcode

StaffPhone Number

Position

Date Hired

370 Chapter 10 Table Relationships

Retrieving information from tables with these types of relationships can

be tedious and somewhat difficult. (A discussion of the reasons for this

is, unfortunately, outside the scope of this work.) Additionally, the very

presence of the relationship can indicate the need for new field and ta-

ble structures.

Consider the STAFF table once again. Does it occur to you that if there

is a need to track staff members who are managers, there could be a

need to track the departments they manage? If this is true, then there

must be other facets of the departments that you need to track in the

database. You should now conduct a quick interview with the appropri-

ate staff members to answer these questions and then take the appro-

priate action based on their responses.

Let’s assume you were right and the organization does want to track de-

partmental data. Figure 10.48 shows one possible approach you might

use to accomplish this task.

Figure 10.47. The revised STAFF table with the new MANAGER ID foreign key.

Staff

PKStaff ID

StaffFirst Name

StaffLast Name

StaffStreet Address

StaffCity

StaffState

StaffZipcode

StaffPhone Number

Position

Date Hired

Manager ID FK

Establishing Each Relationship 371

These new structures and relationships enable you to track the data ef-

ficiently and will provide a wide variety of information about the depart-

ments. (You will, of course, ensure that the new fields and tables

conform to the various design elements that you’ve learned thus far.)

It’s important to note that self-referencing relationships do have their

place within a well-designed database. You should be vigilant, however,

and make certain that each self-referencing relationship does indeed

serve a useful purpose.

The Many-to-Many Relationship

You use a linking table to establish this type of self-referencing relation-

ship, just as you do with its dual-table counterpart. Establishing this

relationship is slightly different in that the fields you use to build the

linking table come from the same parent table.

Staff

PKStaff ID

StaffFirst Name

StaffLast Name

StaffStreet Address

StaffCity

StaffState

StaffZipcode

StaffPhone Number

Date Hired

Department ID

DeptCategory

Maximum Staff Level

DeptNameDepartment Staff

Department ID CPK/FK

Position

Section

Staff ID CPK/FK

Department

PK

Figure 10.48. Results of eliminating the self-referencing relationship and
adding new structures to track departmental data.

372 Chapter 10 Table Relationships

Let’s revisit the PARTS table example from Figure 10.24. Recall that this

table has a self-referencing many-to-many relationship because a par-

ticular part can comprise several different component parts, and that

part itself can be a component of other parts. You establish this rela-

tionship as you would any other many-to-many relationship—with a

linking table. There is currently no way to associate a given part to other

parts within the table, so you must create a new field for this purpose.

Say, for example, that you create a field called COMPONENT ID. This field

will store the part identification number of a part that serves as a com-

ponent of a parent part. You can now use the PART ID and COMPONENT ID

fields as the basis for the linking table. For the sake of our example,

we’ll assume that the name of the new linking table is PART COMPO-

NENTS. Once you’ve created and named the linking table, be sure to re-

vise the relationship diagram for the PARTS table. Figure 10.49 shows

the results of your work.

As you can see, the PARTS table now has two distinct one-to-many rela-

tionships with the PART COMPONENTS table. The first relationship is

established via the PART ID field and the second relationship is estab-

lished via the COMPONENT ID field. Figure 10.50 illustrates how these re-

Parts

PK
Part Components

CPK/FK

CPK/FK

Part ID

Part Description

Part Name

Category

Retail Price

Wholesale Price

Part ID

Component ID

Figure 10.49. Establishing the self-referencing many-to-many relationship for
the PARTS table.

Establishing Each Relationship 373

lationships work. Note that a clamp assembly (Part ID 704) contains

three components and is itself a component of a seat assembly (Part ID

707) and a frame assembly (Part ID 711).

Now, use the techniques you’ve just learned to establish all of the rela-

tionships you’ve identified among the tables in the database. Make ab-

solutely certain you create a diagram for each relationship—you’re

going to add new information to these diagrams as the design process

further unfolds.

Reviewing the Structure of Each Table

Review all of the table structures after you’ve established the relation-

ships between tables. Remember that you made modifications to the ex-

isting table structures and created several new table structures as you

established the relationships; therefore, you want to make certain that

each table conforms to the Elements of the Ideal Table.

Part NamePart ID

Parts

<< other fields >>

Clamp Assembly

701

......

Top Clamp

702

......

Bottom Clamp

703

......

Fastening Bolt

704

......

Seat Assembly

705

......

Saddle

706

......

Seatpost

707

......

Frame Assembly

708

......

Body Tube

709

......

Front Fork Tube

710

......

Rear Stay Tube

711

......

Part Components

Part ID

704

704

707

707

Component ID

702

703

704

705

707 706

711 708

711 709

704 701

711 710

711 704

Figure 10.50. Data relationships between the PARTS and PART COMPONENTS
tables.

374 Chapter 10 Table Relationships

Elements of the Ideal Table

• It represents a single subject, which can be an object or event.

• It has a primary key.

• It does not contain multipart or multivalued fields.

• It does not contain calculated fields.

• It does not contain unnecessary duplicate fields.

• It contains only an absolute minimum amount of redundant data.

When you determine that a table does not comply with the Elements of

the Ideal Table, identify the problem and make the necessary modifica-

tions. Then, take the table through the appropriate stages of the data-

base-design process until you return to this point. You shouldn’t

encounter any problems with the tables if you’ve been following proper

procedures thus far.

Refining All Foreign Keys

You now know that a primary key becomes a foreign key when you use

it to establish a relationship between a pair of tables in a one-to-one or

one-to-many relationship. As with any other key that you’ve worked

with so far, a foreign key must comply with a specific set of elements.

These elements are collectively known as the Elements of a Foreign Key.

Elements of a Foreign Key

• It has the same name as the primary key from which it was copied.

You should adhere to this rule unless there is an absolutely com-

pelling reason not to do so. (Review the discussion of the Alias

field specification element in Chapter 9. It provides an example of

an occasion when you might decide to break this rule.) Consider

the relationship diagram in Figure 10.51, and note that the for-

Refining All Foreign Keys 375

eign keys have different names than the primary keys to which

they refer.

The fact that the names are different poses a problem because

you can’t be sure that the foreign keys are truly valid and actually

refer to the primary keys. Is EMP # truly equivalent to EMPLOYEE

NUMBER? Is “Emp” really a shortened version of “Employee,” or

does it mean something else? Why did someone choose to use CLI-

ENT # in the ORDERS table instead of CUSTOMER ID? Is there any

difference between the two? Do they store the same type of data?

These are questions you must answer before you can do anything

else with these tables and their respective relationships.

You could make a relatively reasonable argument that the names

are close enough to assume that the foreign keys are indeed valid.

If there’s any doubt, you could test your assumption by loading

the tables with sample data. You really shouldn’t have to take the

time to do this, however. Imagine having to do this for 15 or 20 re-

lationships; the amount of wasted time adds up.

PK

PK

Employee

Employee Number

EmpFirst Name

EmpLast Name

EmpStreet Address

EmpCity

EmpState

EmpZipcode

EmpPhone Number

Position

Hourly Rate

Date Hired

Orders

Client # FK

Order Date

Ship Date

Emp # FK

Order Number PK

Customers

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustState

CustZipcode

CustPhone

CustEmail Address

Figure 10.51. Primary keys and foreign keys with mismatched names.

376 Chapter 10 Table Relationships

You won’t have to ask these questions or perform these tests at all

when you adhere to this element. Figure 10.52 shows a revised

version of the diagram that uses the proper foreign key names. In

this case, there is no ambiguity and little doubt that the foreign

keys are appropriate. You can examine this diagram nine months

from now and, with a quick glance, confidently ascertain the type

of relationships between the tables and how they’re established.

❖ Note I encounter this issue quite often when I’m asked to ana-

lyze certain types of database problems. In many cases, the for-

eign keys are either completely inappropriate or manifest serious

data-integrity and relationship-integrity problems. Once I identify

the appropriate foreign keys (or revise the existing ones) and en-

sure that they comply with this particular element, a number of

problems disappear.

PK

PK

Employee

Employee Number

EmpFirst Name

EmpLast Name

EmpStreet Address

EmpCity

EmpState

EmpZipcode

EmpPhone Number

Position

Hourly Rate

Date Hired

Orders

Customer ID FK

Order Date

Ship Date

Employee Number FK

Order Number PK

Customers

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustState

CustZipcode

CustPhone

CustEmail Address

CustCity

Figure 10.52. Foreign keys that comply with the first element of a foreign key.

Refining All Foreign Keys 377

• It uses a replica of the field specifications for the primary key from

which it was copied. This supports the sixth element of an ideal

field, which you learned in Chapter 7 (“It retains a majority of its

properties when it appears in more than one table”). A foreign

key, however, has a few settings in both the General Elements

and Logical Elements categories that are slightly different from

those of its parent primary key.

There are four elements in the General Elements category that

you will modify when you define a field specification for a foreign

key.

a. Specification Type. Because a foreign key is based on an exist-

ing primary key, it inherits a replica of the primary key’s field

specifications; therefore, you designate the foreign key’s specifi-

cation type as “Replica.” This designation helps you ensure that

your foreign key specifications are consistent, and reminds you

to keep this specification synchronized with the primary key’s

specification.

b. Parent Table. The name of the foreign key’s parent table goes

here.

c. Source Specification. This is where you indicate the name of

the parent primary key. (Make certain you include the name of

the primary key’s parent table as well; this will make it easier

The only time I can justify and approve of using a different name

for the foreign key field is when I establish a self-referencing

relationship for a given table. This is reasonable because the

primary key and foreign key both reside within the table (in most

cases), and each must have a unique name.

378 Chapter 10 Table Relationships

for you to find the primary key’s specification should you want

to compare it to the foreign key’s specification.)

d. Description. Compose a description that indicates the foreign

key’s purpose within the table.Figure 10.53 shows an example

of these modifications for an EMPLOYEE ID NUMBER field serving

as a foreign key in an ORDERS table.

You’ll also adjust five elements in the Logical Elements category

for the foreign key field specification.

a. Key Type. Set this element to “Foreign.” This is a rather obvi-

ous change, but one that you can accidentally overlook if

you’re not careful.

b. Uniqueness. You designate this element as “Non-unique”

because you want to be able to associate a single foreign key

value with any number of records in the parent table. In terms

of our example, you want to be able to associate a specific

Employee #

Employee ID Number

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Source Specification:

Specification Type: GenericUnique Replica

The identification number of an employee within our organization. The values in this field
enable us to identify and keep track of the employees who place orders for our customers.

Employee ID Number from the EMPLOYEES table.

Orders

x

Figure 10.53. General Elements for the EMPLOYEE ID NUMBER foreign key field in
the ORDERS table.

Refining All Foreign Keys 379

employee with any number of orders. If you set this to

“Unique” instead, you could associate a given employee with

one order only, which would greatly limit his or her sales

potential! (In the case of a one-to-one relationship, however,

you’ll designate this element as “Unique” because you want to

associate a single foreign key value in the child table with only

one record in the parent table.)

c. Values Entered By. Unlike the parent primary key, you (or a

user) will enter values into the foreign key; therefore, you set

this element to “User.”

d. Range of Values. You must set this element in such a way that

you (or a user) can enter only existing values from the parent

primary key. (You’ll learn more about this and see a good

example in just a moment.)

e. Edit Rule. You normally set this to “Enter Now, Edits Allowed,”

although there might be instances (such as when the foreign

key comes from a validation table) when you can set this to

“Enter Later, Edits Allowed.” Allowing edits of foreign key val-

ues enables you to fix mistakes. For example, you might have

mistakenly entered employee ID number “100” for a given

order when you meant to enter “110.”

Figure 10.54 shows an example of these modifications for the

EMPLOYEE ID NUMBER foreign key field. (Note the setting for the

Range of Values—this is one good way to set this element.)

In order for you to see the significance of these modifications,

Figure 10.55 shows the Logical Elements category from the

Source Specification. (Recall that this element is in the General

Elements category; see Figure 10.53.)

• It draws its values from the primary key to which it refers. By defi-

nition, a foreign key’s range of values is limited to existing values

380 Chapter 10 Table Relationships

of the primary key to which it refers. For example, you cannot

enter an invalid EMPLOYEE ID NUMBER into the ORDERS table. Any

EMPLOYEE ID NUMBER you enter into the ORDERS table must first

exist as an EMPLOYEE ID NUMBER in the EMPLOYEES table. This

ensures consistency among the values of both fields in both

tables and helps to establish relationship-level integrity.

Review the foreign keys in each table to make certain that they conform

to the Elements of a Foreign Key, and make the appropriate modifica-

tions to those that fail to do so. You really shouldn’t encounter any

problems if you’ve been faithfully following the design process up to this

point.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimplex

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Fieldx =x

Value Expressionx

<> <=>==

<> <=>==x

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Any existing Employee ID Number in the EMPLOYEES table.

Enter Now, Edits Allowedx

Non-unique

User

–

–

–

Figure 10.54. Logical Elements for the EMPLOYEE ID NUMBER foreign key field in
the ORDERS table.

Establishing Relationship Characteristics 381

Establishing Relationship

Characteristics

Now you’ll establish the characteristics of each relationship. These

characteristics indicate what will occur when you delete a record, the

type of participation each table bears within the relationship, and to

what degree each table participates in the relationship.

Defining a Deletion Rule for Each Relationship

The first characteristic you’ll establish for the relationship is a deletion

rule. This rule determines what your RDBMS should do when you place

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

x

x

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

Systemx

Key Type:

CompositeSimplex

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Fieldx =x

Value Expressionx

<> <=>==

<> <=>==x

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

1000–9999

≠

≠

≠

÷

÷

÷

–

–

–

Figure 10.55. Logical Elements for the EMPLOYEE ID NUMBER primary key field in
the EMPLOYEES table.

382 Chapter 10 Table Relationships

a request to delete a given record in the parent table of the relationship.

Deletion rules are crucial to relationship-level integrity because they

help guard against orphaned records, which are records in the child

table that have no relationship whatsoever to any records in the parent

table.

These are the five types of deletion rules you can define and the actions

the RDBMS should take when a given rule is in force:

1. Deny. The RDBMS will not delete the record in the parent table,

but will instead keep the record and designate it as “inactive.”

2. Restrict. The RDBMS will not delete the record in the parent table if

related records exist in the child table. You must have the RDBMS

delete all of the related records in the child table before you can

have it delete the record in the parent table.

3. Cascade. The RDBMS will take two specific actions: It will delete

the record in the parent table, and it will also automatically delete

all related records in the child table.

4. Nullify. The RDBMS will delete the record in the parent table and

will then update the foreign key values of related records in the

child table to null. If you are going to use this deletion rule, you

must modify the foreign key’s field specifications and set the Null

Support logical element to “Nulls Allowed.”

5. Set Default. The RDBMS will delete the record in the parent table

and will then update the foreign key values of related records in

the child table to the current Default Value logical element setting

in the foreign key’s field specifications. Obviously, you must have a

setting for the Default Value element in order to use this rule.

Use a Restrict deletion rule as a matter of course and the other rules as

appropriate. The best way to determine which deletion rule is appropri-

ate for a given relationship is to examine the relationship diagram. Con-

sider the diagram in Figure 10.56.

Establishing Relationship Characteristics 383

Select a relationship, look at the diagram, and pose the following

question:

When a record in the (name of parent table) table is deleted, what

should happen to related records in the (name of child table)

table?

Here the question is framed in a generic manner so that you can under-

stand the premise behind it. When you pose this question for a pair of

tables in a particular relationship, substitute the phrases within the pa-

rentheses with the appropriate table names. If you’re working with the

Product Number

Products

PK

Order Details

Order Number CPK/FK

Product NumberCPK/FK

Orders

PK

Customer ID

Employee Number

Order Number

FK

FK

Customers

PKCustomer ID

Employees

PK

Manager ID

Employee Number

FK

Figure 10.56. What deletion rule is appropriate for a given relationship?

384 Chapter 10 Table Relationships

relationship between the EMPLOYEES and ORDERS table, you could

pose the question in this manner:

When a record in the EMPLOYEES table is deleted, what should

happen to related records in the ORDERS table?

The answer you receive depends on how the organization is using the

data within the tables and will usually indicate which deletion rule you

should use for the relationship.

You can’t delete an employee record; you have to designate the

employee as inactive. (Use a Deny rule.)

You can’t delete an employee record if there are related order

records. (Use a Restrict rule.)

You must first delete the orders associated with the employee

from the ORDERS table and then delete the employee from the

EMPLOYEES table. (Use the Restrict rule.)

All orders associated with the employee must be deleted from

the ORDERS table as well. (Use the Cascade rule.)

The employee number for all orders associated with the

employee must be deleted. (Use a Nullify rule.)

The employee number for all orders associated with the

employee must be reset to the lead salesperson’s employee num-

ber. (Use a Set Default rule.)

If you (or the people you’re working with) cannot easily provide an an-

swer, make note of the relationship and continue with another rela-

tionship. You’ll revisit all of these relationships when you establish

business rules for the database later in Chapter 11. For now, let’s as-

sume you received the first reply and you’re going to use a Deny rule

for the relationship.

Establishing Relationship Characteristics 385

Once you’ve identified the type of deletion rule you want to use for the

relationship, designate the rule on the relationship diagram. Use (D) for

Deny, (R) for Restrict, (C) for Cascade, (N) for Nullify, and (S) for Set De-

fault. Place the designation under the connection line of the parent ta-

ble. Figure 10.57 shows the revised relationship diagram for the

EMPLOYEES and ORDERS tables.

You always set the deletion rule from the perspective of the parent table

because it is the more important of the two tables within the relation-

ship. Deleting a record in the parent table will always have some effect

on related records in the child table, but deleting a record in the child

table will have no effect on the related record in the parent table. (There

is a specific circumstance in which you might want to establish a Re-

strict deletion rule for the child table, and you’ll learn about it in Chap-

ter 11.)

The question you use to determine the deletion rule for a self-referencing

relationship is just slightly different from the one you just used for a

dual-table relationship.

When a record in the (name of parent table) table is deleted, what

should happen to the foreign key values of the other records that

were related to it?

Orders

PK

Customer ID

Employee Number

Order Number

FK

FK

Employees

PK

Manager ID

Employee Number

FK (D)

Figure 10.57. Designating a Restrict deletion rule for the relationship between
the EMPLOYEES and ORDERS tables.

386 Chapter 10 Table Relationships

If you’re working with the self-referencing relationship for the EMPLOY-

EES table, you could pose the question in this manner:

When a record in the EMPLOYEES table is deleted, what should

happen to the foreign key values of the other records that were

related to it?

Once again, the reply will usually indicate which deletion rule you

should use for the relationship.

You can’t delete a record for an employee who’s currently man-

aging other employees. (Use a Restrict rule.)

If the employee you want to delete is a manager, you cannot

delete his record until you assign the employees he manages to a

different manager. (Use the Restrict rule.)

If the employee whose record you want to delete is a manager,

the MANAGER ID must be deleted from the record of every

employee he currently manages. (Use a Nullify rule.)

If the employee whose record you want to delete is a manager,

the MANAGER ID must be reset to the senior manager’s employee

number in the record of every employee he currently manages.

(Use a Set Default rule.)

Say that you received the fourth reply and have determined that you’re

going to use a Set Default deletion rule for the relationship. You now

❖ Note The Cascade rule is notably absent from this example be-

cause it doesn’t apply to the relationship at all; you don’t want to

fire employees just because their manager is leaving the organiza-

tion. This rule is still a viable option in some instances, so do

keep it in mind when you’re establishing deletion rules for other

self-referencing relationships.

Establishing Relationship Characteristics 387

complete the process by designating the rule on the relationship dia-

gram. Figure 10.58 shows the results of your work.

Identifying the Type of Participation for Each Table

When you establish a relationship between a pair of tables, each table

participates in a particular manner. The type of participation you assign

to a given table determines whether a record must exist in that table be-

fore you can enter records into the related table. There are two types of

participation:

1. Mandatory. There must be at least one record in this table before

you can enter any records into the related table.

2. Optional. There is no requirement for any records to exist in this

table before you can enter records into the related table.

You’ll commonly determine the type of participation for most tables later

when you’re defining business rules, although you can quite often es-

tablish the type of participation for tables in relationships where the

type of participation for each table is obvious, is a result of common

sense, or is in accordance with some particular set of standards. For ex-

ample, consider the one-to-many relationship between the EMPLOYEES

and CUSTOMERS tables in Figure 10.59. (These are slightly different

versions of the tables in Figure 10.56.)

Employees

PK

Manager ID

Employee Number

FK

(S)

Figure 10.58. Designating a Set Default deletion rule for the EMPLOYEES table
self-referencing relationship.

388 Chapter 10 Table Relationships

Assume that each customer must be assigned to a particular employee.

This employee acts as the customer’s account representative and takes

care of all transactions and communications between the organization

and that customer. Although each customer must be associated with a

particular employee, a given employee does not have to be associated

with any customer at all. Many employees perform other functions

within the organization that do not require customer interaction.

This scenario neither implies nor defines any special circumstances,

but does indicate the manner in which the organization conducts this

part of its business. As such, you can infer the following:

• You should designate a Mandatory type of participation for the EM-

PLOYEES table. This ensures that there is at least one employee

for you to assign to a given customer.

• You should designate an optional type of participation for the CUS-

TOMERS table. This allows you to enter any person employed by

the organization.

Once you’ve determined the type of participation for each table within

the relationship, designate each table’s participation on the relation-

ship diagram. Use a vertical line to represent a Mandatory type of par-

ticipation and a circle to represent an optional type of participation.

Figure 10.60 shows the revised relationship diagram for the EMPLOY-

EES and CUSTOMERS tables and also demonstrates how you indicate

Customers

Customer ID

Employee Number FK

PK

Employees

PKEmployee Number

(D)

Figure 10.59. What type of participation should you assign to each table?

Establishing Relationship Characteristics 389

each type of participation. Note that you place the symbol representing

the type of participation outside of the symbol that represents the type

of relationship.

The type of participation also applies to a self-referencing relationship,

although in a slightly different manner. Because of the nature of a self-

referencing relationship, you designate the type of participation for the

primary key and foreign key fields in the table. Figure 10.61 shows a re-

vised relationship diagram for the STAFF table you worked with earlier

in this chapter.

Customers

Customer ID

Employee Number FK

PK

Employees

PKEmployee Number

(D)

This line symbolizes a mandatory
type of participation for this table.

This circle symbolizes an optional
type of participation for this table.

Figure 10.60. Designating the type of participation for the EMPLOYEES and
CUSTOMERS tables.

Staff

PK

Manager ID

Staff ID

FK

(S)

Figure 10.61. Designating the type of particpation for the primary and foreign
keys of the STAFF table.

390 Chapter 10 Table Relationships

In this case, you must have at least one staff member with a valid staff

identification number (the primary key) who can serve as a manager.

Conversely, you need not provide a manager identification number (the

foreign key) for a brand-new staff member; this person may have just

been hired earlier today and has not yet been assigned to a particular

department or project.

Identifying the Degree of Participation
for Each Table

Now that you’ve determined how each table will participate within the

relationship, you must determine the degree to which each table will

participate. The degree of participation indicates the minimum number

of records that a given table must have associated with a single record

in the related table and the maximum number of records that the table

is allowed to have associated with a single record in the related table.

The factors you use to determine the degree of participation—obvious

circumstances, common sense, or conformance to some set of stan-

dards—are the same as those you used to determine the type of partici-

pation. You’ll commonly identify the degree of participation for some

tables now and revisit the remaining tables when you define business

rules for the database.

You use two numbers separated by a comma and enclosed within pa-

rentheses to represent the degree of participation for a given table. The

first number indicates the required minimum number of related records

and the second number indicates the allowable maximum number of re-

lated records. For example, a degree of participation such as (2,11) indi-

cates that the table must have at least 2 but no more than 11 of its

records related to a single record in the other table.

Consider the EMPLOYEES and CUSTOMERS tables once again. There

is a one-to-many relationship between these tables, which means that a

given customer can be associated with only one employee and a given

Establishing Relationship Characteristics 391

employee can be associated with any number of customers. (Yes, I

know; this is the obvious part.) Assume, however, that your organiza-

tion has just instituted a new policy that focuses sharply on quality

customer service. In order to ensure that each account representative

can deliver the level of service the organization requires, the policy stip-

ulates that he cannot be assigned to more than 15 customers at the

same time. Based on this scenario, you can infer that the degree of par-

ticipation for the EMPLOYEES table is (1,1) and the degree of participa-

tion for the CUSTOMERS table is (0,15).

Once you’ve identified the degree of participation for a particular table,

add the information to the relationship diagram. Designate the degree

of participation over the connection line of the appropriate table.

Figure 10.62 shows the revised relationship diagram for the EMPLOY-

EES and CUSTOMERS tables.

The degree of participation also applies to a self-referencing relation-

ship, although you designate it for the primary key and foreign key fields

in the table, just as you did with the type of participation. Figure 10.63

shows an updated version of the relationship diagram for the STAFF ta-

ble that includes the degree of participation information.

Customers

Customer ID

Employee Number FK

PK

Employees

PKEmployee Number

(D)

This indicates the minimum
and maximum number of

customers to which an
employee can be related.

This indicates the minimum
and maximum number of

employees to which a
customer can be related.

(1,1)

(0,15)

Figure 10.62. Designating the degree of participation for the EMPLOYEES and
CUSTOMERS tables.

392 Chapter 10 Table Relationships

STAFF ID has a degree of participation of (0,12) because a manager can

manage up to 12 staff members; a new manager who hasn’t yet been as-

signed to a department or project will have no (or 0) staff members to

manage. The degree of participation for MANAGER ID is (1,1) because a

given staff member is managed by only one manager.

You can designate an unlimited degree of participation for any table in a

dual-table relationship or key field in a self-referencing relationship by

using an “N” in place of the second number. For example, the ORDERS

table in Figure 10.64 has an unlimited degree of participation. Although

a new customer may have not yet placed an order, you will allow him to

place as many orders as he wishes. Imagine the impact on your organi-

zation’s business if you limited each customer to 35 orders! Your orga-

nization would soon be out of business, unless it could continually and

consistently acquire new customers.

Staff

PK

Manager ID

Staff ID

FK

(S)

(1,1)

(0,12)

Figure 10.63. Designating the degree of participation for the primary and
foreign keys of the STAFF table.

Customers

Customer ID

Employee Number FK

PK

Orders

PKOrder Number

(R)

(1,1)

(0,N)

Employee Number FK

Figure 10.64. Designating an unlimited degree of participation for the ORDERS
table.

Establishing Relationship Characteristics 393

Your task now is to set the relationship characteristics for every rela-

tionship you’ve established thus far. As you complete work on a given

relationship, be sure to update the relationship diagram so that it re-

flects the results of your work.

Verifying Table Relationships with Users
and Management

The very last order of business is to verify the relationships. You can

perform this task relatively easily by using the following checklist:

1. Make sure that you’ve properly identified each relationship.

2. Make certain that you’ve properly established each relationship.

3. Make certain that each foreign key complies with the Elements of a

Foreign Key.

4. Make sure that you’ve established an appropriate deletion rule for

each relationship.

5. Make certain that you’ve identified the proper type of participation

for each table within a dual-table relationship and for the appro-

priate key fields in a self-referencing relationship.

6. Make certain that you’ve identified the proper degree of participa-

tion for each table within a dual-table relationship and for the ap-

propriate key fields in a self-referencing relationship.

If all the relationships check out and everyone you’re working with

agrees to this assessment, you can be confident that the relationships

are sound and ready to be incorporated into views.

A Final Note

The degree to which you can easily implement these three relationship

characteristics depends greatly upon your RDBMS. Most RDBMSs do

394 Chapter 10 Table Relationships

not fully or inherently support all of the characteristics, but they do pro-

vide some basic support for the deletion rule and type of participation.

In most cases, however, you can use SQL and programming code to im-

plement these characteristics for any relationship in your database.

Relationship-Level Integrity

A relationship attains relationship-level integrity after you’ve verified

that it is properly established and its characteristics are suitably set.

Relationship-level integrity warrants the following:

• The connection between the two tables (or key fields) in a relation-

ship is sound. You accomplished this by using primary and for-

eign key fields to establish a one-to-one or a one-to-many

relationship and a linking table to establish a many-to-many

relationship.

• You can insert new records into each table in a meaningful manner.

You ensured this by designating the appropriate type of participa-

tion for each table (or key field) within the relationship.

• You can delete an existing record without producing any adverse

effects. You guaranteed this by assigning an appropriate deletion

rule for the relationship.

• There is a meaningful limit to the number of records that can be

interrelated within the relationship. You implemented this by des-

ignating the appropriate degree of participation for each table (or

key field) within the relationship.

As you know, relationship-level integrity is the third component of over-

all data integrity. (The first is table-level integrity and the second is

field-level integrity.) You’ll establish the final component of overall data

integrity in the next chapter when you learn how to establish business

rules for the database.

Case Study 395

It’s now time to identify the relationships that exist for the tables that

appear on the final table list for Mike’s Bikes. You’ve assigned your as-

sistant, Zachary, to this part of the design process, and he’s currently

working with these tables:

CUSTOMERS

EMPLOYEES

INVOICES

PRODUCTS

VENDORS

Zachary’s first order of business is to identify the relationships that cur-

rently exist between the tables. He decides to meet only with Mike be-

cause there are few tables in this database, and he figures that Mike

should be familiar enough with the tables to help him verify the rela-

tionships.

Before Zachary meets with Mike, he creates a table matrix and identifies

as many relationships as possible. Figure 10.65 shows his completed

matrix.

CASE STUDY

1:1

Customers

Employees

Invoices

Products

Vendors

Customers Employees Products Vendors

1:1 1:N

?

?

Invoices

1:N

1:N

1:N

Figure 10.65. Identifying the relationships among the tables in the Mike’s
Bikes database.

396 Chapter 10 Table Relationships

Zachary then studies the table matrix closely and uses the appropriate

formula to determine the true relationship between each pair of tables.

Here is what he’s discovered so far:

CUSTOMERS and INVOICES bear a one-to-many relationship.

(1:1 + 1:N = 1:N)

EMPLOYEES and INVOICES bear a one-to-many relationship.

(1:1 + 1:N = 1:N)

PRODUCTS and INVOICES bear a many-to-many relationship.

(1:N + 1:N = M:N)

Now he diagrams the relationships, places them in a folder, and heads

to Starbucks for his meeting with Mike.

At the meeting, Mike and Zachary work on verifying the relationships.

They both determine that the three relationships are indeed correct,

and then Zachary brings Mike’s attention to the PRODUCTS and VEN-

DORS tables. He’s not quite sure about the relationship between them,

so he discusses the matter with Mike.

ZACHARY: “I wanted to ask you about the relationship between the

PRODUCTS and VENDORS tables. Can a single product

be associated with one or more vendors?”

MIKE: “Yes, in a manner of speaking. What I mean is that a sin-

gle type of product—such as a bike lock—can be associ-

ated with one or more vendors. But I give each lock its

own product number and treat it as a distinct item, re-

gardless of the vendor who supplies it. Now, if the true

meaning of your question is whether a single record in the

PRODUCTS table can be associated with one or more

records in the VENDORS table, then the answer is no be-

Case Study 397

cause each record in the PRODUCTS table contains a ref-

erence to only one vendor in the VENDORS table.”

ZACHARY: “I thought as much. In that case, there’s a one-to-many

relationship between the VENDORS and PRODUCTS ta-

bles. I automatically figured that a single vendor could be

associated with many products in the PRODUCTS table.”

Zachary now diagrams the one-to-many relationship between the VEN-

DORS and PRODUCTS tables and continues with the next step.

He establishes each one-to-many relationship by taking a copy of the

primary key from the parent table and incorporating it within the struc-

ture of the child table (where it serves as a foreign key) and then revises

the relationship diagram accordingly. Figure 10.66 shows one of his re-

vised diagrams.

Now Zachary establishes the many-to-many relationship between the

INVOICES and PRODUCTS tables by creating a new linking table called

INVOICE PRODUCTS. He bases the new table on the INVOICE NUMBER field

from the INVOICES table and the PRODUCT NUMBER field from the PROD-

UCTS table. Figure 10.67 shows the revised relationship diagram for

these tables.

Invoices

PK

Customer Number

Employee Number

Invoice Number

FK

FK

Employees

PKEmployee Number

Figure 10.66. The relationship diagram for the EMPLOYEES and INVOICES
tables.

398 Chapter 10 Table Relationships

Zachary reviews each table structure to ensure that it conforms to the

Elements of the Ideal Table. Fortunately, he doesn’t have to make any

modifications because all of the table structures are sound. He now re-

fines the foreign keys in each table by making certain that each one

complies with the Elements of a Foreign Key. Finally, Zachary modifies

the appropriate items in the General Elements and Logical Elements

sections of each foreign key’s Field Specifications sheet. Figure 10.68

shows the modifications he’s made for one of the foreign keys. (I’ve high-

lighted the changes so that you can recognize them more easily.)

Zachary’s next task is to establish the appropriate relationship charac-

teristics for each relationship. He begins by defining a deletion rule for

each relationship and then identifies both the type of participation and

the degree of participation for each table within the relationship. He

completes his task by designating these characteristics on the relation-

ship diagram. Figure 10.69 shows one of the completed diagrams.

Mike and Zachary review and verify all the relationships one last time.

They agree that everything is complete, so they celebrate with a couple

of Mocha Brèves.

Invoice Products

Invoice Number CPK/FK

Product NumberCPK/FK

Invoices

PK Product Number

ProdDescription

ProdName

Category

Wholesale Price

Customer Number

Invoice Date

Ship Date

Employee ID

Invoice Number

Products

PK

FK

FK

Quantity Ordered

Quote Price Retail Price

Figure 10.67. Establishing and diagramming the many-to-many relationship
between the INVOICES and PRODUCTS tables.

Case Study 399

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

Alternate

No Nulls

Uniqueness: Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimplex

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Fieldx =x

Value Expressionx

<> <=>==

<> <=>==x

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Any existing Customer Number in the CUSTOMERS table.

Enter Now, Edits Allowedx

Non-unique

User

Customer Number

General Elements

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Source Specification:

Specification Type: GenericUnique Replica

Customer Number from the CUSTOMERS table.

Invoices

x

The identification number of a given customer. The values in this field enable us to identify
and keep track of the customers who place orders for the products we provide.

–

–

–

Foreign

Figure 10.68. The General Elements and Logical Elements sections of the Field
Specifications sheet for the CUSTOMER ID foreign key field in the INVOICES table.

400 Chapter 10 Table Relationships

Summary

We opened this chapter with a discussion of the three types of relation-

ships that can exist between a particular pair of tables—one-to-one, one-

to-many, and many-to-many. You now know that the one-to-many rela-

tionship is the most common type of dual-table relationship and that

the many-to-many relationship gives rise to problems that must be re-

solved. You then learned about a self-referencing relationship, which is a

type of relationship that occurs between the records within a given ta-

ble. It is similar to a dual-table relationship in that it can be one-to-one,

one-to-many, or many-to-many.

Next, we discussed how to identify the relationships that exist among

the tables in a database. First you learned how to construct and use a

table matrix, and then you learned how to use associative and contex-

tual questions to help you identify a given relationship. We then dis-

cussed three formulas you could use to determine the true relationship

that exists between the tables in a dual-table relationship or between

the records in a self-referencing relationship.

The chapter continued with a discussion of how relationships are es-

tablished. You learned that one-to-one and one-to-many relationships

Invoices

PK

Customer Number

Employee Number

Invoice Number

FK

FK

Employees

PKEmployee Number

(R)

(1,1)

(0,N)

Figure 10.69. The completed relationship diagram for the EMPLOYEES and
INVOICES tables.

Summary 401

are established by using primary keys and foreign keys, and that

many-to-many relationships are established using linking tables. We

then briefly revisited multivalued fields, and you learned how to use a

proper one-to-many relationship to resolve a multivalued field more ef-

ficiently. Next, we discussed self-referencing relationships, and you

now know that you establish them in a very similar manner to dual-

table relationships. You then learned that you must review all of the

table structures and ensure that they still conform to the Elements of

the Ideal Table.

Foreign keys were the next topic of discussion, and you learned that

every foreign key must comply with the Elements of a Foreign Key. You

now know that it can be very important for a foreign key to share the

same name as its parent primary key, that you must modify certain el-

ements of a field specification for a field that serves as a foreign key,

and that a foreign key must draw its values from the parent primary

key.

We then discussed relationship characteristics. You learned how to de-

fine a deletion rule for a relationship and that there are four ways you

can define it. Next, you learned how to identify the type of participation

and degree of participation for each table within a dual-table relation-

ship and for each key field in a self-referencing relationship. As you now

know, you can designate the type of participation as Mandatory or Op-

tional. You also know that the degree of participation gauges the mini-

mum and maximum number of interrelated records that can exist

within a given relationship. Finally, you learned that you must verify

the relationships with users and management and that you can use a

checklist to accomplish this task.

The chapter closed with a look at relationship-level integrity. You learned

that a relationship attains this type of integrity after you’ve verified that

it is properly established and its characteristics are suitably set.

402 Chapter 10 Table Relationships

Review Questions

1. State two major reasons why a relationship is important.

2. Name the three types of relationships.

3. Which relationship will pose the most problems?

4. State two problems you could possibly encounter with a many-to-

many relationship.

5. What is a self-referencing relationship?

6. How do you begin the process of identifying the relationships

among the tables in the database?

7. What are the two types of questions you can ask to help you iden-

tify existing relationships?

8. What shorthand symbol do you use to designate a one-to-many

relationship in the table matrix?

9. How do you determine what type of relationship officially exists

between each pair of tables in the matrix?

10. How do you establish a one-to-many relationship?

11. True or False: Retrieving information from tables with a self-

referencing relationship can be tedious and somewhat difficult.

12. How do you establish a self-referencing many-to-many

relationship?

13. How do you refine the foreign keys in the database?

14. What two element categories must you modify for a foreign key’s

field specification?

15. What is the function of a deletion rule?

16. What two types of participation can you designate for a table?

17. What does the degree of participation indicate?

18. When does a relationship attain relationship-level integrity?

403

11
Business Rules

You are remembered for the rules you break.

—GENERAL DOUGLAS MACARTHUR

Topics Covered in This Chapter

What Are Business Rules?

Categories of Business Rules

Defining and Establishing Business Rules

Validation Tables

Reviewing the Business Rule Specifications Sheets

Case Study

Summary

Review Questions

Throughout the database-design process, you’ve performed tasks that

helped to establish various levels of data integrity. You’ve established

table-level integrity, field-level integrity, and relationship-level integrity

thus far. In doing so, you’ve ensured that the table and field structures

are sound, that data entered into the fields will be consistent and basi-

cally valid, and that relationships are meaningful and properly estab-

lished. In this chapter you’ll learn how to establish the final component

of overall data integrity: business rules.

404 Chapter 11 Business Rules

What Are Business Rules?

A business rule is a statement that imposes some form of constraint on

a specific aspect of the database, such as the elements within a field

specification for a particular field or the characteristics of a given rela-

tionship. You base a business rule on the way the organization per-

ceives and uses its data, which you determine from the manner in

which the organization functions or conducts its business.

An important aspect of any design process is making choices. In data-

base design, for example, you must choose which data to store in the

database; you would not necessarily want or need to store every last

piece of data the organization might possibly use. The data you finally

choose to store and how you decide to store it will be determined by the

way the organization uses its data. A hospital may wish to store times of

various events to the second, whereas a warehouse requires only the

date for any given event.

To guide these and other choices you’ll be required to make during the

database-design process (and later, when you implement the database

in an RDBMS), you need a formal statement of the organization’s busi-

ness rules. These rules will influence a wide variety of database issues,

such as the data you collect and store, the manner in which you define

and establish relationships, the types of information that the database

can provide, and the very security and confidentiality of the data itself.

It is next to impossible to create a generic set of business rules that

could apply to two or more organizations. Each organization has its own

data and information requirements, and each has its own unique way of

conducting its business; therefore, every organization needs its own

specific set of business rules.

The following statement is an example of a typical business rule:

A SHIP DATE cannot be prior to an ORDER DATE for any given order.

What Are Business Rules? 405

This particular business rule imposes a constraint on the Range of Val-

ues element of the field specifications for a SHIP DATE field. It will help

ensure that the value of SHIP DATE is meaningful within the context of a

sales order. Without this constraint, you could enter any date into the

field (including one prior to the ORDER DATE), making the SHIP DATE field’s

value absolutely meaningless. The business rule is what makes the SHIP

DATE field’s value contextually meaningful.

Because business rules depend on the manner in which an organization

perceives and uses its data, it is quite possible that a particular rule can

be used by several organizations, but for completely different reasons.

For example, say that the music department at Bel Air High School is

known far and wide for the quality of musicianship it develops in its

student musicians. The students are able to attain this level of musi-

cianship because they’re encouraged to focus their musical studies and

restrict themselves to learning no more than two instruments. In an-

other part of town, the music department at Lake City High School (a

private school) also imbues its student musicians with a high quality of

musicianship by helping the students focus their musical studies. The

students at this school, however, are restricted to learning no more than

two instruments due to school policy; the school’s inventory of musical

instruments is very limited.

Coincidentally, both schools are in the process of designing their own

database. In each case, the school will use the database to support its

daily operations and administrative functions. It so happens that each

database contains the tables shown in Figure 11.1.

Both schools are at the same stage of the database-design process and

are currently establishing business rules. As it turns out, each school is

using the following business rule in their respective databases:

A student cannot have more than two instruments checked out

at the same time.

406 Chapter 11 Business Rules

This business rule applies to the degree of participation between the

STUDENTS table and STUDENT INSTRUMENTS table. In this instance,

a single record in the STUDENTS table cannot be associated with more

than two records in the STUDENT INSTRUMENTS table where the value

of CHECK-IN DATE for each record is null; a null value in the CHECK-IN DATE

field indicates that the instrument is still in the student’s possession.

The rule does apply to both schools, yet each school requires it for a dif-

ferent reason. Bel Air High School requires the rule because of the man-

ner in which its music program has been established, whereas Lake

City High School requires the constraint because of the physical limita-

tions of its instrument inventory. The fact that both schools developed

an identical rule is pure coincidence. This example illustrates both that

a business rule is, indeed, based on the way an organization functions

or conducts its business and why every organization must have its own

specific set of business rules.

The example also illustrates another issue: You cannot establish con-

straints imposed by certain business rules, such as this one, within the

logical design of the database. For instance, there is no clear way for

Figure 11.1. Tables from the Bel Air High School and Lake City High School
databases.

Student Instruments

Student ID

Instrument ID

Check-Out Date

Check-In Date

(1,1) (1,1)

(0,2)

(R)(R)

Instruments

Instrument ID

Product Line

Category

InstDescription

InstrName

Manufacturer ID

Model

Estimated Value

Date Acquired

Students

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

Social Security Number

CPK/FK

CPK/FK
(0,N)

CPK/FK

FK

PKPK

What Are Business Rules? 407

you to indicate that the CHECK-IN DATE values must be tested in order to

determine whether a student can check out another instrument. You

must instead address and establish the constraint outside of the logical

design of the database. How do you determine whether you can properly

represent a given constraint within this process? You do so by identify-

ing the type of business rule you’re defining.

Types of Business Rules

There are two major types of business rules: database oriented and

application oriented. Both types of business rules impose some form

of constraint and help enforce and maintain overall data integrity, but

they differ with regard to where and how they are established.

Database oriented business rules impose constraints that you can es-

tablish within the logical design of the database. You implement a given

constraint by modifying various field specification elements, relation-

ship characteristics, or a combination of the two. The statement from

which you derive the constraint is a database oriented business rule if

you can meaningfully and clearly establish the constraint by either of

these means. For example, say you have a VENDORS table and define

the following business rule for the VENDSTATE field in that table:

We conduct business exclusively with vendors from the Pacific

Northwest.

This business rule limits the values that you can enter into the VEND-

STATE field to WA, OR, ID, and MT. You can establish the business rule’s

constraint in a meaningful manner by modifying the Range of Values el-

ement in the field specifications for the VENDSTATE field. Figure 11.2

shows the modification.

Application oriented business rules impose constraints that you cannot

establish within the logical design of the database. You must instead es-

408 Chapter 11 Business Rules

tablish them within the physical design of the database or within the

design of a database application, where they will be more applicable and

meaningful. (I use the term database application here to refer to a pro-

gram written in some RDBMS software that allows people in the organi-

zation to use the database easily and to perform tasks related to their

daily work activities.)

Here is an example of a typical application oriented business rule:

A customer with a “Preferred” status receives a 15% discount on

all purchases.

This business rule determines the amount of discount applied to a cus-

tomer’s purchases, based on a particular status. You cannot establish

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Unique

Required Value: No Yes

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Fieldx =x

Value Expression

<> <=>==

<> <=>==

All

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

ID, MT, OR, WA

Enter Now, Edits Allowed

x

Non-unique

User

None

–

–

–

Figure 11.2. Implementing a constraint imposed by a database oriented busi-
ness rule.

Categories of Business Rules 409

this constraint meaningfully in the logical design for two reasons: There

is no field in which to store the discount amount (the amount is a result

of a calculation, and calculated fields are not allowed in a table), and

there is no way to indicate the criterion used—the customer’s status—to

determine the discount. This is a rule that you must establish within the

physical design of the database or the design of the database application.

Although both types of business rules are important, you’ll focus on

database oriented business rules during this stage of the database-

design process.

Categories of Business Rules

It will be easier for you to understand and define business rules if you

divide them into two distinct categories: field specific and relationship

specific.

Field Specific Business Rules

Business rules under this category impose constraints on the elements

of a field specification for a particular field. The number of elements a

❖ Note The manner in which you actually define and establish

application oriented business rules is a topic that is beyond the

scope of this book. Some RDBMSs provide tools that allow you to

implement common application oriented business rules relatively

easily; most RDBMSs will require you to write programming code

to implement and enforce these rules.

❖ Note Throughout the remainder of the book, I’ll refer to data-

base oriented business rules simply as business rules.

410 Chapter 11 Business Rules

given rule affects depends on the manner in which you define that rule.

For example, this rule only affects one element:

Order dates are to be displayed in long form, such as “January

10, 2003.”

This rule affects the Display Format element of the ORDER DATE field in

an ORDERS table. You establish this rule by modifying the Display For-

mat element of the field specifications for the ORDER DATE field to indi-

cate the manner in which the date should be displayed.

Here’s a rule that affects more than one element:

We must be able to store a zip code for our Canadian customers.

This rule affects the Data Type, Character Support, and Display Format

elements of the field specifications for the CUSTZIPCODE field in a CUS-

TOMERS table. Canadian zip codes include letters, so you must make

the following modifications to these elements in order to impose the

constraints defined by this rule:

1. Change the Data Type setting to “Alphanumeric.”

2. Include “Letters” under the Character Support element.

3. Modify the Display Format element to ensure that the letters in

Canadian zip codes will be capitalized.

Figure 11.3 shows the modified Physical Elements section of CUSTZIP-

CODE’s field specifications.

Relationship Specific Business Rules

These types of business rules impose constraints that affect the charac-

teristics of a relationship. For instance, assume you’re working with the

tables and relationships in Figure 11.4.

Categories of Business Rules 411

Say you determine that there must be a limit to the number of students

for each class and you define the following business rule:

Each class must have a minimum of 5 students, but cannot

have more than 20.

This business rule affects the degree of participation between the

CLASSES and STUDENT CLASSES tables. You enforce the constraint

this rule defines by modifying the relationship diagram to show that a

single record in the CLASSES table must be related to at least 5—but no

more than 20—records in the STUDENT CLASSES table. (Depending on

Figure 11.3. Establishing a field specific business rule for CUSTZIPCODE.

Physical Elements

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Numbers (0–9)

.Keyboard (, / $ # %)

Special (© ® ™ ∑ π)

x6

Not Applicable x

Alphanumeric

Letters (A–Z)

Uppercase letters where applicable.

Not Applicable

Figure 11.4. Tables and relationships from a school database.

Student Classes

Student ID

Class ID

ClassesStudents

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

Social Security Number

CPK/FK

CPK/FK

FK

PKPK Class ID

Instructor ID

Class Name

Class Description

Category

(1,1) (1,1)

(0,N)

(R)(R)

(0,N)

412 Chapter 11 Business Rules

your point of view, you could also infer from this business rule that the

type of participation for the STUDENT CLASSES table is now manda-

tory. You can enter a new class or keep an existing class in the

CLASSES table if and only if there are at least five students registered

for that class.) Figure 11.5 shows the modification you must make to

the diagram in order to establish the business rule.

Defining and Establishing Business Rules

You’ll define and establish business rules for the database during this

stage of the design process. Remember that you must base these rules

on the manner in which your organization perceives and uses its data,

which (as you well know) will depend on the way the organization func-

tions or conducts its business. The best approach to this task is to de-

fine and establish the field specific business rules first, followed by the

relationship specific business rules. This approach helps you to remain

focused on the type of rule you’re defining. It also keeps you from jump-

Figure 11.5. Establishing a relationship specific business rule.

Student Classes

Student ID

Class ID

ClassesStudents

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

Social Security Number

CPK/FK

CPK/FK

FK

PKPK Class ID

Instructor ID

Class Name

Class Description

Category

(1,1) (1,1)

(0,N)

(R)(R)

(5,20)

Modification made to the
Degree of Participation for

the CLASSES table

Defining and Establishing Business Rules 413

ing back and forth between different types of business rules, which can

often lead to confusion and some amount of frustration.

Working with Users and Management

Once again, you’ll work with the representative group of users and man-

agement. Schedule new meetings with them so that you can work to-

gether to define and establish the appropriate business rules for the

database. Working as a group enables you to make certain that the con-

straints imposed by the business rules you define are meaningful and

that there is no confusion or ambiguity as to the necessity of imposing

each constraint. If you or anyone in the group has some doubt about a

constraint, you can discuss the effect it will have on the field or relation-

ship involved and the advantages and disadvantages of imposing the

constraint. Then, you can decide whether to keep the rule or disregard

it completely based on the results of your discussion.

Defining and Establishing Field Specific Business Rules

Begin the process of establishing business rules for the database by

working on field specific rules. You define and establish each rule using

these steps:

1. Select a table.

2. Review each field and determine whether it requires any

constraints.

3. Define the necessary business rules for the field.

4. Establish the rules by modifying the appropriate field specification

elements.

5. Determine what actions test the rule.

6. Record the rule on a Business Rule Specifications sheet.

414 Chapter 11 Business Rules

Let’s now take a look at each step in greater detail.

Step 1: Select a Table

It doesn’t matter which table you start with because you’ll eventually

apply this procedure to every table within the database. If you choose a

table with a familiar structure, however, you can focus a little more on

learning the steps within the procedure. This extra effort will pay divi-

dends when you begin to work with tables containing fields that bear

closer attention and examination.

Think about the subject the table represents and then pose these

questions:

How does the organization use information based on or related

to this subject?

What relationships does this table have to itself or to other

tables in the database?

When necessary, consult the final table list and read the description for

this table, and refer to any relationship diagrams that incorporate this

table. The answers to these questions will be useful to you while you’re

defining rules for this table, and focusing on the table in this manner

prepares you for the next step.

Step 2: Review Each Field and Determine Whether It Requires

Any Constraints

Examine the Field Specifications sheet for each field and determine

whether you should apply a constraint to any of its elements. Keep the

questions from Step 1 in mind as you review a given specification sheet,

and then pose this question:

Based on how the table is used within the database, is a con-

straint necessary for any element within this specification?

Defining and Establishing Business Rules 415

If the answer is no, move on to the next field; otherwise, go on to the

next step. For example, assume you’re working with the CUSTCOUNTY

field in a CUSTOMERS table and you have just posed the question

about the need for a constraint. (Figure 11.6 shows the current Logical

Elements category for this field.)

You should move on to the next step if you receive an answer such as this:

“Well, the boss wants to begin tracking our customers by

county, so we must make certain we record a county for every

customer. In fact, we’ve just added Pierce County and Snohom-

ish County to our sales region, so it’ll be imperative that the

county names get recorded.”

Figure 11.6. Current settings for the Logical Elements category of the CUST-

COUNTY field.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

Uniqueness: Unique

Required Value: No

Comparisons Allowed:

x x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Enter Now, Edits Allowed

x

Non-unique

User

None

King, Kitsap

Allx x

x

x

x

x

Yes

No Nullsx

x

x

–

–

–

416 Chapter 11 Business Rules

This response clearly is a yes, so you will go on to define business rules

for this field in the next step.

Step 3: Define the Necessary Business Rules for the Field

You define the appropriate business rules for the CUSTCOUNTY field by

identifying the constraints implied by the response in Step 2. Then you

transform each constraint into a rule.

The response in Step 2 suggests two possible constraints that you

should impose upon the CUSTCOUNTY field: A county name is required for

each customer, and the range of values for this field is limited to four

specific counties (the two currently on the field specification and the two

new counties indicated in the response). Here are two statements you

might use to begin transforming these constraints into business rules:

A county must be associated with each customer.

The only counties that can be entered into this field are King,

Kitsap, Pierce, and Snohomish.

Once you’ve defined the appropriate business rules, you can move on to

Step 4.

Step 4: Establish the Rules by Modifying the Appropriate Field

Specification Elements

Establish each business rule you defined in Step 3 by modifying the ap-

propriate elements on the Field Specifications sheet. (Remember that

some rules may affect more than one element.) First, however, you must

identify which elements of the field specifications the rule affects. For

example, consider the first business rule you defined for the CUSTCOUNTY

field in Step 3:

A county must be associated with each customer.

You can deduce that the rule affects the Required Value, Null Support,

and Edit Rule elements because it explicitly states that a county “must

Defining and Establishing Business Rules 417

be associated” with a customer. Now you can make the appropriate

modifications to these elements. In this particular case, you’ll set Re-

quired Value to “Yes,” Null Support to “No Nulls,” and Edit Rule to “En-

ter Now, Edits Allowed.”

As you can see, it’s important for you to examine each business rule

very carefully in order to determine which field specification elements

it’s going to affect. When you first begin to define business rules, it’s

best to have a Field Specifications sheet handy so that you can refer to

it as necessary. Many of the elements will come to mind more easily as

you become more experienced at establishing business rules.

Now, consider the next business rule in the example:

The only counties that can be entered into this field are King,

Kitsap, Pierce, and Snohomish.

This business rule affects the Range of Values element, and you’ll now

revise its setting to “King, Kitsap, Pierce, and Snohomish.” Figure 11.7

shows the revised Logical Elements category of the Field Specifications

sheet for the CUSTCOUNTY field.

Step 5: Determine What Actions Test the Rule

The constraint the business rule imposes is tested when you attempt to

perform one of three actions: inserting a record into the table or an en-

try into a field, deleting a record from the table or a value within a field,

or updating a field’s value. Now that you’ve established a business rule

and understand the constraint it will impose, determine what actions

test the rule by identifying when a violation of the rule is most likely to

occur. You can make this a relatively easy task by asking yourself the

following questions:

Will this rule be violated if I enter a new record into this table?

Will this rule be violated if I do not enter a new record into this table?

Will this rule be violated if I delete a record from this table?

418 Chapter 11 Business Rules

Will this rule be violated if I enter a value into this field?

Will this rule be violated if I do not enter a value into this field?

Will this rule be violated if I update the value of this field?

Will this rule be violated if I delete the value of this field?

Once you’ve determined which actions will trigger a violation of the rule,

make note of them; you’ll use them in the next step. This information

will also help you to establish this rule in the most effective manner

possible when you implement the database in your RDBMS.

In this case, the business rule for the CUSTCOUNTY field will be tested

when you try to insert a value into the field because the value must be

Figure 11.7. Revised settings for the Logical Elements category of the CUST-

COUNTY field.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

Uniqueness: Unique

Required Value: No

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Enter Now, Edits Allowed

x

Non-unique

User

None

King, Kitsap, Pierce, Snohomish

Allx x

x

x

x

x

Yes

No Nulls

–

–

–

Defining and Establishing Business Rules 419

within a specific range of values. The rule will also be tested when you

try to delete a value in the field because the value cannot be null.

Step 6: Record the Rule on a Business Rule Specifications Sheet

You can document a given business rule for future reference by filling

out a Business Rule Specifications sheet. This is something you should

do for every rule, regardless of its type or category. The Business Rule

Specifications sheet provides three advantages:

1. It allows you to document every database oriented business rule.

This helps you ensure that you have appropriately defined and

properly established each rule.

2. It allows you to document every application oriented business rule.

Although you cannot establish this type of rule within the logical

design of the database, you can at least indicate its basic elements.

The information you document for this type of business rule will

prove invaluable to you when you implement the database within

your RDBMS or when you create the application program that peo-

ple will use to work with the database.

3. It provides a standard method for recording all business rules. Busi-

ness rules are easier to track and maintain if you record them in a

consistent manner. Using a uniform format also makes it easier for

you to troubleshoot business rules; every aspect of the rule ap-

pears on the specification sheet.

The Business Rule Specifications sheet contains the following items:

• Statement. This is the text of the business rule itself. It should be

clear and succinct and should convey the required constraints

without any confusion or ambiguity. Here’s an example of a well-

framed statement:

A booking agent cannot be assigned to more than 25

entertainers.

420 Chapter 11 Business Rules

• Constraint. This is a brief explanation of how the constraint ap-

plies to the tables and fields. For instance, you can use the follow-

ing explanation for the constraint imposed by the business rule in

the preceding example:

A single record in the AGENTS table can be associated with

no more than 25 records in the ENTERTAINERS table.

• Type. Here is where you indicate whether the rule is database

oriented or application oriented.

• Category. This is where you indicate whether the rule is field

specific or relationship specific.

• Test on. Here is where you indicate which actions (insert, delete,

update) will test the constraint the business rule imposes.

• Structures Affected. Depending on the type of business rule, the

constraint will affect either a field or a relationship. This is where

you designate the name of the field(s) the rule will affect or the

name of the table(s) involved in the relationship that the rule

affects.

• Field Elements Affected. A business rule that pertains to a field

can affect one or more elements of that field’s specifications. This

is where you indicate the elements the rule affects.

• Relationship Characteristics Affected. A business rule that per-

tains to a relationship will affect one or more of the relationship’s

characteristics. Here is where you indicate the characteristics

that the rule affects.

• Action Taken. Here you indicate the modifications you’ve made to

the elements of a field specification or to a relationship diagram. It

is very important that the statement you enter here be as clear

and unambiguous as possible. Should a problem occur as a

result of enforcing this business rule, this statement serves as

accurate documentation of the steps you have taken to establish

Defining and Establishing Business Rules 421

the rule. You can use this statement to make certain that these

steps were actually carried out and that the rule has been prop-

erly established.

Now, fill out a Business Rule Specifications sheet for the rule you estab-

lished in Step 4. Figure 11.8 shows a completed Business Rule Specifi-

cations sheet that documents the business rules you established for the

CUSTCOUNTY field.

Defining and Establishing Relationship Specific
Business Rules

After defining and establishing field specific business rules, the next or-

der of business is to tackle relationship specific business rules. The pro-

cedure for performing this task involves the following steps:

1. Select a relationship.

2. Review the relationship and determine whether it requires any

constraints.

3. Define the necessary business rules for the relationship.

4. Establish the rule by modifying the appropriate relationship

characteristics.

5. Determine what actions will test the rule.

6. Record the rule on a Business Rule Specifications sheet.

As you can see, this procedure is similar to the one you used for field

specific business rules. Now, let’s take a look at each step in more detail.

❖Note You can apply this entire procedure to both self-referencing

and dual-table relationships. I’ve based the remainder of the dis-

cussion on a dual-table relationship, however, because it is the type

of relationship you are likely to work with the majority of the time.

422 Chapter 11 Business Rules

Figure 11.8. An example of a Business Rule Specifications sheet.

Action Taken

Structures Affected

Field Names:

Table Names:

Rule Information

Statement:

Constraint:

Test On: Insert

Delete

x

x

UpdateCategory: Field Specific

Relationship Specific

xType: Database Oriented

Application Oriented

x

Field Elements Affected

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

x

x Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

x

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Relationship Characteristics Affected

Degree of ParticipationType of ParticipationDeletion Rule

CUST COUNTY

Required Value was set to “Yes,” Null Support was set to “No Nulls,” and Edit Rule was set to
“Enter Now, Edits Allowed.”

A county must be associated with each customer.

An entry must be made into the CustCounty field; it cannot be Null.

BUSINESS RULE SPECIFICATIONS

Defining and Establishing Business Rules 423

Step 1: Select a Relationship

Which relationship you choose is a relatively trivial matter because

you’ll eventually apply this procedure to every relationship anyway.

Once you select a specific relationship, review its relationship diagram.

Then think about what the tables represent and why they are related

and pose the following questions:

What kind of information do these tables provide?

Why is the relationship between these two tables important?

The answer to these questions will help you define any necessary busi-

ness rules for the relationship, and keeping them in mind will prepare

you for the next step.

Step 2: Review the Relationship and Determine Whether It

Requires Any Constraints

Briefly review each relationship characteristic and keep its current set-

ting in mind. Then examine the relationship as a whole and determine

whether it requires some form of constraint. As you review the relation-

ship, remember the answers to the questions you posed in Step 1. You

now pose a question such as this to help you determine whether a con-

straint is necessary:

Is there a need to impose some type of limitation on this rela-

tionship based on the way the organization functions or

conducts its business?

If the answer is yes, then go to the next step; otherwise, review the next

relationship and perform this step once again. For example, assume

you’re designing a database for a small dance studio, and you’re work-

ing with the relationship between the INSTRUCTORS and INSTRUCTOR

CLASSES tables in Figure 11.9.

424 Chapter 11 Business Rules

Now, pose a question to help you determine whether the relationship re-

quires a constraint.

Is there a need to impose some type of limitation on this rela-

tionship based on the way the dance studio functions or

conducts its business?

Move to the next step if you receive an answer such as this:

Yes, there is. We require all instructors to teach at least one

class. We limit them, however, to teaching no more than eight

classes.

You’ll use this response as the basis of a business rule in the next step.

Step 3: Define the Necessary Business Rules for the Relationship

Next, define an appropriate business rule based on the response you re-

ceived in Step 2. Identify the constraint the response implies and then

transform it into a business rule. For example, you can infer two con-

straints from the response: The minimum number of classes an instruc-

Figure 11.9. A relationship diagram for tables from a dance studio database.

Instructor Classes

Instructor ID

Class ID

(1,1) (1,1)

(0,N)

(R)(R)

Instructors

CPK/FK

CPK/FK
(0,N)

PK

Classes

PKClass ID

Class Name

Class Description

Category

Instructor ID

InstFirst Name

InstLast Name

InstStreet Address

InstCity

InstState

InstZipcode

InstHome Phone

InstEmail Address

Date Hired

Defining and Establishing Business Rules 425

tor can teach is one, and the maximum number is eight. Transform

these constraints into a business rule by composing a statement such

as this one:

An instructor must teach one class, but no more than eight

classes.

After you’ve defined the rule, continue with the next step.

Step 4: Establish the Rule by Modifying the Appropriate

Relationship Characteristics

Establish the business rule you just defined by modifying the appropri-

ate characteristics in the relationship diagram. Before you make any

modifications, consider the business rule statement once again and

identify which relationship characteristics the rule affects.

An instructor must teach one class, but no more than eight

classes.

The constraint affects the number of classes an instructor can teach,

so you modify the degree of participation characteristic of the IN-

STRUCTOR CLASSES table by setting it to “(1,8).” This rule also af-

fects the type of participation characteristic of the INSTRUCTOR

CLASSES table. You must set the table’s type of participation to “Man-

datory” because a single record in the INSTRUCTORS table must be

associated with at least one record in the INSTRUCTOR CLASSES ta-

ble. Figure 11.10 shows the revised relationship diagram with your

modifications.

Step 5: Determine What Actions Will Test the Rule

As you know, the constraint the business rule imposes is tested when

you attempt to insert, delete, or update a table record or field value. Now

that you’ve established the business rule and understand how it affects

426 Chapter 11 Business Rules

the relationship, determine what actions test the rule by identifying

when a violation of the rule is most likely to occur. Use the following

questions to help you make your decision:

Are there circumstances under which this rule will be violated if

I enter a new record into this table?

Will this rule be violated if I do not enter a new record into this

table?

Will this rule be violated if I delete a record from this table?

Figure 11.10. The revised relationship diagram that establishes the new busi-
ness rule.

Instructor Classes

Instructor ID

Class ID

(1,1) (1,1)

(R)(R)

Instructors

CPK/FK

CPK/FK
(0,N)

PK

Classes

PKClass ID

Class Name

Class Description

Category

Instructor ID

InstFirst Name

InstLast Name

InstStreet Address

InstCity

InstState

InstZipcode

InstHome Phone

InstEmail Address

Date Hired

Modification made to the
Degree of Participation for the
INSTRUCTOR CLASSES table

Modification made to the

Type of Participation for the

INSTRUCTOR CLASSES table

(1,8)

Defining and Establishing Business Rules 427

Once you’ve determined which actions will trigger a violation of the rule,

make note of them; you’ll use them in the next step. This information

will also help you to establish this rule in the most effective manner

possible when you implement the database in your RDBMS.

Here’s an important point to note: When you determine that a rule will

be violated when you attempt to delete a record, then you must alter the

current deletion rule for the relationship accordingly or add a new dele-

tion rule to the relationship.

You learned in Chapter 10 that you don’t need to worry about deleting

records in the child table of a relationship because there can be no ad-

verse effects from doing so. We must now amend this assertion by stat-

ing that an exception occurs when deleting a record in the child table

would violate a required business rule. You handle this exception by es-

tablishing a Restrict deletion rule for the child table. Make absolutely

certain that you keep this in mind as you’re determining when a rule

will be tested.

The new business rule for the dance studio database will be tested

when you attempt to insert a record into the INSTRUCTOR CLASSES ta-

ble; you can associate a maximum of only eight records with a particu-

lar instructor. The rule will also be tested when you attempt to delete a

record from the INSTRUCTOR CLASSES table; each instructor must be

associated with at least one class. As a result, you must establish a Re-

strict deletion rule for this table. Figure 11.11 shows the modifications

you’ve made to this relationship’s diagram.

Step 6: Record the Rule on a Business Rule Specifications Sheet

Finally, fill out a Business Rule Specifications sheet for the business

rule you established in Step 4. Figure 11.12 shows the completed Busi-

ness Rule Specifications sheet for your new rule.

428 Chapter 11 Business Rules

Validation Tables

As you define field specific business rules, there will be instances in

which a rule imposes a constraint that defines a distinct set of valid val-

ues for a given field’s range of values. (This obviously affects the field’s

Range of Values element in its field specification.) This set of values

commonly comprises a relatively fixed number of entries, and the values

themselves will rarely change. If the number of entries is rather high,

however, you might discover that it’s going to be slightly difficult for you

to implement this rule. For example, you’ll probably run out of room

very quickly when you attempt to enumerate each of the values within

the Range of Values element on the Field Specifications sheet, and im-

plementing the entire set of values within the RDBMS could prove to be

somewhat complicated. You can avoid problems such as these by stor-

ing all of the values in a validation table.

Figure 11.11. Establishing a Restrict deletion rule for the INSTRUCTOR
CLASSES table to support the new business rule.

Instructor Classes

Instructor ID

Class ID

(1,1) (1,1)

(R)(R)

Instructors

CPK/FK

CPK/FK
(0,N)

PK

Classes

PKClass ID

Class Name

Class Description

Category

Instructor ID

InstFirst Name

InstLast Name

InstStreet Address

InstCity

InstState

InstZipcode

InstHome Phone

InstEmail Address

Date Hired

New Restrict deletion rule added for
the INSTRUCTOR CLASSES table

(1,8)

(R)

Validation Tables 429

Figure 11.12. The completed Business Rule Specifications sheet for the new
business rule.

Action Taken

Structures Affected

Field Names:

Table Names:

Rule Information

Statement:

Constraint:

Test On: Insert

Delete

x

x

UpdateCategory: Field Specific

Relationship Specific

Type: Database Oriented

Application Oriented

x

Field Elements Affected

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Relationship Characteristics Affected

Degree of ParticipationType of ParticipationDeletion Rule

The type of participation for the INSTRUCTOR CLASSES table was changed to Mandatory.
The degree of participation for the INSTRUCTORS CLASSES table was changed to (1,8).
A new Restrict deletion rule was added to the relationship for the INSTRUCTOR CLASSES table.

INSTRUCTORS, INSTRUCTOR CLASSES

An instructor must teach one class, but no more than eight (8) classes.

The participation of INSTRUCTORS within the relationship is Mandatory. Also, a single record in
INSTRUCTORS can be related to only eight (8) records in INSTRUCTOR CLASSES.

xx x

x

BUSINESS RULE SPECIFICATIONS

430 Chapter 11 Business Rules

What Are Validation Tables?

As you learned in Chapter 3, a validation table (also known as a lookup

table) stores data that you specifically use to implement data integrity.

You won’t often insert, update, or delete any records within the table

once you populate the table with the data you require. Validation tables

usually (but not always) comprise two fields: The first acts as the pri-

mary key and is what you’ll use to help you enforce data integrity, and

the second is simply a non-key field that stores a set of values required

by some other field in the database. Figure 11.13 shows two examples

of validation tables.

In this section, you’ll learn how to use the primary key field to help en-

force a business rule. You’ll learn how to use the non-key field later in

Chapter 12.

Figure 11.13. Examples of validation tables.

Category

Architects

General Contractors

Attorneys

Computer Consultants

Category ID

60002

60003

60004

60001

Categories States

State

AL

AK

AR

CA

State Name

Alabama

Arizona

Arkansas

California

Primary Key Field

Non-Key Field

Validation Tables 431

Using Validation Tables to Support Business Rules

When a business rule limits a field’s range of values, you can enforce

the constraint by using a validation table; the field will then draw its

values from an appropriate field in the validation table. Establishing

this type of rule involves two steps: defining a relationship between the

parent table of the field affected by the rule and the validation table and

making a modification to the Range of Values element of the field speci-

fications for the affected field in the parent table.

For example, assume you’re working with the SUPPSTATE field of a SUP-

PLIERS table, and you’ve defined the following business rule:

Any supplier we use must be based in one of the 11 contiguous

Western states, Alaska, or Hawaii.

You can see that this rule imposes a constraint on the SUPPSTATE field’s

range of values, limiting them to AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR,

UT, WA, and WY. (According to the rule, you can’t use a supplier based in

some other state.) The easiest and most efficient way to establish this rule

is to store these values in a validation table called STATES and then use

the validation table as the source of the SUPPSTATE field’s range of values.

Consider the tables in Figure 11.14. (Note the new symbol that is used

to represent a validation table.) The SUPPLIERS table stores all the req-

uisite data on the SUPPLIERS engaged by the organization, and the

STATES table is a new validation table that will store the names and ab-

breviations of the specified STATES.

Your first order of business (no pun intended) is to establish a relation-

ship between these tables. As you can see, there is a one-to-many rela-

tionship between them—a single record in STATES can be associated

with one or more records in SUPPLIERS, but a single record in SUPPLI-

ERS will be associated with only one record in STATES. You already

know that you establish a one-to-many relationship by taking a copy of

432 Chapter 11 Business Rules

the parent table’s primary key and incorporating it within the structure

of the child table where it becomes a foreign key. Although the SUPPLI-

ERS table already has a field named SUPPSTATE, you’ll replace it with the

STATE field from the STATES validation table. (This is a reasonable mod-

ification because it is in accordance with the Elements of the Ideal Field

and is consistent with the manner in which you establish one-to-many

relationships.) Figure 11.15 shows the new relationship diagram for

these two tables.

Figure 11.14. The SUPPLIERS table and the STATES validation table.

Suppliers

PKSupplier ID

SuppName

SuppFax Number

Supp Address

SuppCity

SuppState

SuppZipcode

SuppPhone Number

State

State Name

States

PK

Figure 11.15. A relationship diagram for the SUPPLIERS and STATES tables.

Suppliers

PKSupplier ID

SuppName

SuppFax Number

Supp Address

SuppCity

State

SuppZipcode

SuppPhone Number

State

State Name

States

PK

(1,1)

(0,N)

(R)

FK

Validation Tables 433

Now that the STATE field is a foreign key in the SUPPLIERS table, make

certain that it conforms to the Elements of a Foreign Key (as outlined in

Chapter 10) and set its field specification in the appropriate manner.

Then set the relationship’s characteristics in this manner:

• Deletion Rule. Define a Restrict deletion rule for this relationship.

You do not want to delete a state in the STATES table that is being

referenced by records in the SUPPLIERS table.

• Type of Participation. Designate an Optional type of participation

for the SUPPLIERS table and a Mandatory type of participation for

the STATES table. Although it’s unnecessary for the SUPPLIERS

table to contain any records before you can enter a new record in

the STATES table, there must be at least one record in the STATES

table before you can enter records into the SUPPLIERS table.

• Degree of Participation. Assign a (1,1) degree of participation for

the STATES table; as you already know, there must be at least

one record in the STATES table before you can enter records into

the SUPPLIERS table. Assign a (0,N) degree of participation for the

SUPPLIERS table; any number of records in this table can be

associated with a particular record in the STATES table.

Next, modify the Range of Values element of the field specification for

the STATE field in the SUPPLIERS table using a setting such as this:

Any value within the STATE field of the STATES table.

Figure 11.16 shows the settings you’ve made within the Logical Ele-

ments category of the Field Specifications sheet for this field.

Now you must decide which actions test the rule. When you use a valida-

tion table to enforce a business rule, you typically want to test the rule

when a user attempts to insert a new value into the field or update an ex-

isting value within the field. In either case, a violation will occur when the

user attempts to enter a value that does not exist in the validation table.

434 Chapter 11 Business Rules

Finally, fill out a Business Rule Specifications sheet for the business

rule you’ve just established. Be sure to indicate the modifications you’ve

made to both the field and the new relationship. Figure 11.17 shows the

completed Business Rule Specifications sheet for your new rule.

Reviewing the Business Rule

Specifications Sheets

After you’ve established the business rules you believe to be appropriate,

review their specifications sheets. Carefully examine each specification

sheet and make certain that you’ve properly established the rule and

Figure 11.16. Setting the Logical Elements category for the STATE foreign key
field in the SUPPLIERS table.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

Alternate

Uniqueness: Unique

Required Value: No

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Enter Now, Edits Allowedx

User

None

Any value within the State field of the STATES table

Allx x

Yes

No Nulls

Non-unique

Foreign

xx

–

–

–

Reviewing the Business Rule Specifications Sheets 435

Figure 11.17. A completed Business Rule Specifications sheet for the new busi-
ness rule.

Field Names:

Table Names:

Statement:

Constraint:

Test On: Insert

Delete

x UpdateCategory: Field Specific

Relationship Specific

Type: Database Oriented

Application Oriented

x

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Degree of ParticipationType of ParticipationDeletion Rule xx x

x

Any supplier we use must be based in one the eleven (11) contiguous Western states, Alaska, or
Hawaii.

Entries for the State field in the SUPPLIERS table are limited to existing values of the State field
in the STATES table.

SUPPLIERS, STATES

STATE

The Range of Values was set to “Any value within the State field of the STATES table.”

The type of participation for each table was changed: STATES is Mandatory; SUPPLIERS is Optional.

The degree of participation for each table was changed: SUPPLIERS is (0,N); STATES is (1,1).

A Restrict deletion rule was defined for the relationship between SUPPLIERS and STATES.

x

x

BUSINESS RULE SPECIFICATIONS

Action Taken

Structures Affected

Rule Information

Field Elements Affected

Relationship Characteristics Affected

436 Chapter 11 Business Rules

that you’ve clearly marked all of the appropriate areas on the sheet. If

you find an error, make the necessary modifications and review it once

more. Repeat this process until you’ve reviewed every business rule.

Business rules are an important component of the database. They con-

tribute to overall data integrity and impose integrity constraints that are

specific to the organization. As you’ve seen, these rules help to ensure

the validity and consistency of the data according to the manner in

which the organization functions or conducts its business. Additionally,

these rules will eventually influence the manner in which you imple-

ment the database within your RDBMS and how you design and develop

end-user application programs for the database.

It’s important to understand that you will revisit these rules quite often.

As you review the final structure, for example, you may determine that

additional business rules are necessary. You may discover that some of

the rules will not provide the results you had initially envisioned, so

you’ll need to modify them. It’s also possible for you to determine that

some of the rules aren’t necessary after all. (In this instance, be abso-

lutely sure to examine the rules carefully before you remove them.)

Keep in mind that the business rules you define now are bound to re-

quire modifications in the future; you will most likely need to add busi-

ness rules in due course because of changes in the way the organization

functions or conducts its business. The need to modify existing busi-

ness rules or develop new ones is quite normal—the organization inevi-

tably grows and matures, and so does the manner in which it acts upon

or reacts to external forces. These forces affect the manner in which the

organization perceives and uses its data, which, in turn, changes the

nature of the organization’s business-rule requirements.

The task of defining and establishing business rules is—as are so many

other tasks within the database-design process—ongoing. Don’t be dis-

couraged if you have to perform this task several times. Your efforts will

pay great dividends in the long run.

Case Study 437

Now it’s time to establish business rules for Mike’s database. You

schedule a meeting with Mike and his staff to review the tables and rela-

tionships in their database. The first order of business is to define and

establish field specific business rules.

You start the process by reviewing the PRODUCTS table. As you exam-

ine each field, you determine whether it requires any constraints. When

you come upon the CATEGORY field, you remember that there was some

question regarding its range of values. (Refer to the Case Study in Chap-

ter 9.) You discuss this issue once again with Mike and his staff, and

you finally come to a consensus on a distinct list of categories. Mike

then decides that the values for the CATEGORY field should be limited to

those on this list to make certain that the staff does not arbitrarily in-

vent new categories. Based on Mike’s decision, you define an appropri-

ate business rule to establish the constraint.

Invalid product categories are not allowed.

There are a number of items in the list of possible categories, so you de-

cide that the best way to establish this rule is to use a validation table.

You create a new table called CATEGORIES and then establish a rela-

tionship between it and the PRODUCTS table. Next, you diagram the re-

lationship and set the relationship’s characteristics in the appropriate

manner. Figure 11.18 shows the results of your work.

Here are the settings you used for the relationship’s characteristics:

• There is a Restrict deletion rule for the relationship.

• The CATEGORIES table has a mandatory type of participation.

• The PRODUCTS table has an optional type of participation.

• The CATEGORIES table has a (1,1) degree of participation.

• The PRODUCTS table has a (0,N) degree of participation.

CASE STUDY

438 Chapter 11 Business Rules

Remember that by establishing this relationship, you’ve replaced the ex-

isting CATEGORY field in the PRODUCTS table with a copy of the CATEGORY

ID field from the new CATEGORIES table. You must now make certain

that the CATEGORY ID field in the PRODUCTS table conforms to the Ele-

ments of a Foreign Key and then make the appropriate modifications to

its field specification. Finally, set the field’s Range of Values element to

something such as this:

Any value within the CATEGORY ID field in the CATEGORIES table

Figure 11.19 shows the settings you’ve made to the Logical Elements

category of the field specifications for the CATEGORY ID field in the PROD-

UCTS table.

Now you must decide when the rule should be tested. As you already

know, you typically want to test a rule established with a validation ta-

ble if the user attempts to insert a value into the field or update an ex-

isting value within the field.

Finally, you complete a Business Rule Specifications sheet for this new

business rule. This specification sheet will reflect the modifications

Figure 11.18. The relationship diagram for the PRODUCTS and CATEGORIES
tables.

Products

PK

Categories

PK

(1,1)

(R)

(0,N)

Category ID

CategoryDescription

Product Number

ProdDescription

ProdName

Retail Price

Wholesale Price

Category ID FK

Case Study 439

you’ve made to the field specifications for the CATEGORY ID field, as well

as the characteristics of the relationship between the CATEGORIES and

PRODUCTS tables. Figure 11.20 shows the completed Business Rule

Specifications sheet.

You repeat this process for the remaining fields in this table and for the

fields in the remaining tables. After you’re finished, you move on to the

next task.

The next order of business is to establish relationship specific business

rules. You begin by reviewing the relationship between the EMPLOYEES

and INVOICES tables, and you review the relationship diagram to deter-

mine whether the relationship requires any constraints. Everything

Figure 11.19. Logical Elements settings for the CATEGORY ID foreign key field in
the PRODUCTS table.

Logical Elements

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

Alternate

Uniqueness: Unique

Required Value: No

Comparisons Allowed:

x

x

x

x

Range of Values:

Default Value:

Values Entered By:

Operations Allowed:

Systemx

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> <=>=

Other Fields

Same Field =

Value Expression

<> <=>==

<> <=>==

All

All

Same Field

Other Fields Concatenation

All

All

+

+

x

x

Value Expression All Concatenation+ x

Concatenation

≠

≠

≠

÷

÷

÷

Enter Now, Edits Allowedx

User

None

Any value within the Category ID field in the CATEGORIES table

Allx x

x

x

Yes

No Nulls

Non-unique

Foreign

xx

x

–

–

–

440 Chapter 11 Business Rules

Figure 11.20. The completed Business Rule Specifications sheet for the new
business rule.

Field Names:

Table Names:

Statement:

Constraint:

Test On: Insert

Delete

x UpdateCategory: Field Specific

Relationship Specific

Type: Database Oriented

Application Oriented

x

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Degree of ParticipationType of ParticipationDeletion Rule xx x

x

PRODUCTS, CATEGORIES

CATEGORY ID

x

x

The Range of Values was set to “Any value within the Category ID field of the CATEGORIES table.”

The type of participation for each table was changed: PRODUCTS is Optional; CATEGORIES is Mandatory.

The degree of participation for each table was changed: PRODUCTS is (0,N); CATEGORIES is (1,1).

A Restrict deletion rule was defined for the relationship between PRODUCTS and CATEGORIES.

Entries for the Category ID field in the CATEGORIES table are limited to existing values of the

Category ID field in the CATEGORIES table.

Invalid product categories are not allowed.

Action Taken

Structures Affected

Rule Information

Field Elements Affected

Relationship Characteristics Affected

BUSINESS RULE SPECIFICATIONS

Case Study 441

seems to be in order, so you move to the relationship between the VEN-

DORS and PRODUCTS tables. Figure 11.21 shows the relationship dia-

gram for these tables.

As you and Mike discuss whether you should impose any constraints

on this relationship, Mike determines that there should be a constraint

on the PRODUCTS table. He wants to make sure that every vendor in

the VENDORS table is associated with at least one product; he figures

that it’s unnecessary to keep data on a vendor who’s not supplying him

with any products. So you define the following business rule for this

constraint:

Every vendor must supply at least one product.

Now you establish the rule by modifying the appropriate relationship

characteristics. You begin by designating a Mandatory type of participa-

tion and assigning a (1,N) degree of participation to the PRODUCTS ta-

ble. You then define a Restrict deletion rule for the relationship based

on the PRODUCTS table; this will keep you from accidentally deleting

the only product associated with a given vendor. Figure 11.22 shows the

results of your modifications.

Figure 11.21. The relationship diagram for the VENDORS and PRODUCTS
tables.

Vendors

PK

(1,1)

(0,N)

(R)

Products

PKProduct Number

ProdDescription

ProdName

Category ID

Retail Price

Wholesale Price

Vendor ID

Vendor ID

VendName

VendFax Number

Vend Address

VendCity

VendState

VendZipcode

VendPhone Number

FK

FK

442 Chapter 11 Business Rules

You already know that this type of business rule will be tested when a

user attempts to insert a record into or delete a record from the PROD-

UCTS table, so you complete this process by filling out a Business

Rule Specifications sheet for this rule. Figure 11.23 shows the com-

pleted specification sheet.

Now you repeat this process for the remaining relationships. When

you’re finished, the process is complete and you’re ready for the next

stage of the database-design process.

Summary

This chapter opened with a definition of business rules. You learned

that a business rule is a constraint imposed on a field or a relationship

that is based on the way the organization perceives and uses its data

and that it is derived from the manner in which the organization func-

tions or conducts its business. You now know that there are two major

types of business rules: database oriented and application oriented. Al-

though our focus here is on database oriented business rules, you

Figure 11.22. The revised relationship diagram for the VENDORS and PROD-
UCTS tables.

Vendors

PK

(1,1)

(R)

Products

PKProduct Number

ProdDescription

ProdName

Category ID

Retail Price

Wholesale Price

Vendor ID

Vendor ID

VendName

VendFax Number

Vend Address

VendCity

VendState

VendZipcode

VendPhone Number

FK

FK
(1,N)

(R)

Summary 443

Figure 11.23. A completed Business Rule Specifications sheet.

Field Names:

Table Names:

Statement:

Constraint:

Test On: Insert

Delete

x UpdateCategory: Field Specific

Relationship Specific

Type: Database Oriented

Application Oriented

x

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Degree of ParticipationType of ParticipationDeletion Rule xx x

x

VENDORS, PRODUCTS

x

The type of participation for PRODUCTS was changed to Mandatory.

The degree of participation for PRODUCTS was changed to (1,N).

A Restrict deletion rule was defined for the PRODUCTS table.

A single record in the VENDORS table must be associated with at least one record in the

PRODUCTS table.

Every vendor must supply at least one product.

Action Taken

Structures Affected

Rule Information

Field Elements Affected

Relationship Characteristics Affected

BUSINESS RULE SPECIFICATIONS

444 Chapter 11 Business Rules

know that you can at least record the basic elements of application

oriented business rules for use later in the implementation process.

You then learned that database oriented business rules are divided into

two categories: field specific business rules, which affect the elements of

a field specification for a particular field; and relationship specific busi-

ness rules, which affect the characteristics of a relationship.

The chapter continued with a discussion of defining and establishing

business rules. Here you learned that you work with users and manage-

ment to define the business rules required by the organization. You also

learned that it is best to establish the field specific business rules first,

followed by the relationship specific business rules.

Next, you learned the steps necessary to define and establish each type

of business rule. You now know that, in general, you work with a field or

relationship, review the field or relationship in light of the rule to deter-

mine whether any constraints are necessary, define the appropriate

business rule, establish the rule by modifying the appropriate field

specification elements or relationship characteristics, decide which ac-

tions test the rule, and then complete a Business Rule Specifications

sheet for the rule.

The chapter continued with a discussion of the elements of the Busi-

ness Rule Specifications sheet, and how each element on the sheet is

defined. As you now know, using Business Rule Specifications sheets

allows you to document all of your rules and provides you with a stan-

dard method for recording and reviewing them.

We closed the chapter by discussing validation tables. You learned that

you can create and use a validation table to support a business rule

that limits the range of values for a particular field. In this manner, the

validation table helps to enforce data integrity. You also learned that

you need to establish new relationships when you use validation tables

Review Questions 445

and that these relationships have the same types of characteristics as

any other types of relationships in the database.

Review Questions

1. What is a business rule?

2. Name the two major types of business rules.

3. Can you establish application oriented business rules within the

logical design of the database?

4. What are the two categories of database oriented business rules?

5. What is a field specific business rule?

6. When is a business rule tested?

7. How do you document a business rule?

8. State two advantages a Business Rule Specifications sheet

provides.

9. What is the purpose of the Action Taken section of a Business Rule

Specifications sheet?

10. What is the purpose of a validation table?

11. What is the typical structure of a validation table?

12. What is the association between a business rule and a validation

table?

13. Why should you review all of your completed Business Rule Speci-

fications sheets?

This page intentionally left blank

447

12
Views

There is no object on earth which cannot be

looked at from a cosmic point of view.

—FYODOR MIKHAYLOVICH DOSTOYEVSKY

Topics Covered in This Chapter

What Are Views?

Anatomy of a View

Determining and Defining Views

Case Study

Summary

Review Questions

What Are Views?

As you learned in Chapter 3, a view is a virtual table composed of fields

from one or more tables in the database; it can also include fields from

other views. The tables and views that comprise a given view are known

as the view’s base tables. A view is “virtual” because it draws data from

base tables rather than storing data on its own. In fact, the only infor-

mation about a view that is stored in the database is its structure; the

RDBMS rebuilds and “repopulates” the view every time you access the

view in some manner. Many major RDBMS programs support views, but

some (such as Microsoft Access) refer to them as saved queries. Your

specific RDBMS program will determine whether you refer to this object

as a query or a view.

448 Chapter 12 Views

Views enable you to see the information in your database from many dif-

ferent aspects, providing you with a great amount of flexibility when you

work with your data. You can create views in a variety of ways, and they

are especially useful when you base them on multiple related tables.

There are several reasons why you should define and use views in your

database.

• You can use them to work with data from multiple tables simulta-

neously. During the database-design process, you established re-

lationships between various pairs of tables bearing one-to-many

or many-to-many relationships to each other. (Recall that you re-

solved the many-to-many relationships via linking tables.) A view

provides the mechanism that allows you to work with data from

two or more related tables simultaneously.

• They reflect the most current information. Because the RDBMS re-

builds and repopulates the view every time you access it, the in-

formation displayed by the view exhibits the most recent changes

to the data in its base tables.

• You can customize them to the specific needs of an individual or

group of individuals. You can build a view to suit any set of re-

quirements, such as providing the data for a particular report or

❖ Note Although every major database vendor supports the view

I’ve just described, several vendors are now supporting what is

known as an indexed (or materialized) view. An indexed view is dif-

ferent from a regular view in that it does store data, and its fields

can be indexed to improve the speed at which the RDBMS pro-

cesses the view’s data. A full discussion of indexed views is beyond

the scope of this book because it is a vendor-specific implementa-

tion issue. However, you should research this topic further if you

are working with a client/server or mainframe RDBMS program.

Anatomy of a View 449

providing a means of examining specific information that is com-

mon to several departments within an organization.

• You can use them to help enforce data integrity. You can define a

validation view that works in the same manner as a validation ta-

ble—its purpose is to provide a valid range of values for a given

field in the database.

• You can use them for security or confidentiality purposes. You can

determine what data is available to a particular user or group of

users by defining a view on select fields from the view’s base tables.

Define your views carefully and skillfully, and they will become a valu-

able asset after you’ve implemented the database within your RDBMS.

Anatomy of a View

There are three types of views (data, aggregate, validation) that you can

define as you design the logical structure of the database and two types

of views (materialized and partitioned) that you can define as you imple-

ment your database within an RDBMS. The ability to define the latter

two types of views and the manner in which you do so are highly depen-

dent upon your RDBMS, so they are beyond the scope of this book. We

will, therefore, focus our attention on the first three types of views.

Data View

You use this type of view to examine and manipulate data from a single

base table or multiple base tables.

Single-Table Data View

Although you could use all of the fields from the base table to build this

type of view, you’ll usually just use selected fields. (Building a view using

450 Chapter 12 Views

all of the base table’s fields would simply produce a virtual copy of the

base table.) For example, say you want to make a list of employee names

and phone numbers available to everyone in the organization. You can

construct an EMPLOYEE PHONE LIST view based on the EMPLOYEES

table using just the EMPLOYEE ID, EMPFIRST NAME, EMPLAST NAME, and EMP-

PHONE NUMBER fields. Figure 12.1 shows a diagram of this particular view.

(Note the new symbol used to indicate a view.)

Your RDBMS will rebuild and repopulate the EMPLOYEE PHONE LIST

view each time you access it, and the view will reflect the latest changes

you’ve made to the data in the EMPLOYEES table. Figure 12.2 shows

how an RDBMS will typically display the data within a view. Note that

the view’s appearance is quite similar to that of a table; this is yet an-

other reason why a view is known as a “virtual table.”

Figure 12.1. The EMPLOYEE PHONE LIST view.

Employees

PKEmployee ID

EmpFirst Name

EmpLast Name

EmpStreet Address

EmpCity

EmpState

EmpZipcode

EmpHome Phone

Employee Phone List

EmpFirst Name

EmpLast Name

EmpPhone Number

Employee ID

Anatomy of a View 451

You can modify the data within a single-table data view at any time, and

the modifications you make will flow through the view and into the base

table. Keep in mind, however, that field specifications and business

rules will determine what types of modifications you can make to the

data. For example, you won’t be able to delete a last name in the EM-

PLOYEE PHONE LIST view if the Null Support element of the field spec-

ification for the EMPLAST NAME field is set to “No Nulls.”

Multitable Data View

As I mentioned at the beginning of this section, you can define a data

view using two or more tables. The only requirement is that the tables

you use to create the view must bear a relationship to each other; this

❖ Note View implementation varies to some degree among most

RDBMS software. Make sure you examine your RDBMS’s docu-

mentation to determine how fully the RDBMS supports views and

what types of constraints it imposes (if any) on modifying the data

in a view.

Figure 12.2. Information from the EMPLOYEE PHONE LIST view.

EmpPhone NumberEmpLast Name

Erlich

McLain

Rosales

EmpFirst Name

Zachary

Susan

Joe

Employee ID

Employee Phone List

Black

Christian

Barlet

Alastair

Katie

Diana

553-3992

790-3992

551-4993

227-4992

525-2993

248-4953

100

101

102

103

104

105

452 Chapter 12 Views

helps ensure that the information the view presents is both valid and

meaningful. For example, assume you’re designing a database for a lo-

cal community college and that the tables in Figure 12.3 are part of the

database. You’ve just decided that you need to create a view called

CLASS ROSTER that shows the name of each class and the names of

the students who are currently registered to attend it. This will be an

easy task for you to perform because you can use these three tables as

the basis of the view; they contain the fields you need to define the view,

and they bear a relationship to one another.

Now you define the CLASS ROSTER view by using the CLASS NAME field

from the CLASSES table and the STUDFIRST NAME and STUDLAST NAME

fields from the STUDENTS table. The appropriate student names will

appear for each class because CLASSES and STUDENTS are related

(and therefore connected) through the STUDENT CLASSES linking ta-

ble. Figure 12.4 shows the diagram for the CLASS ROSTER view. Note

that no changes have been made to any of the base tables.

Every time you access the CLASS ROSTER view, the RDBMS will re-

build and repopulate it using the most current data from the view’s

base tables. Figure 12.5 shows a sample of the view’s data.

Figure 12.3. Base tables for the CLASS ROSTER view.

Student Classes

Student ID

Class ID

Students

CPK/FK

CPK/FK

PK

Classes

FK

PKClass ID

Class Name

Class Description

Category

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

Instructor ID

Anatomy of a View 453

Figure 12.4. The diagram for the CLASS ROSTER view.

Students Classes

Student ID

Class ID

Students

CPK/FK

CPK/FK

PK

Classes

PKClass ID

Class Name

Class Description

Category

Student ID

StudFirst Name

StudLast Name

StudStreet Address

StudCity

StudState

StudZipcode

StudHome Phone

StudEmail Address

FKInstructor ID

Class Roster

Class Name

StudFirst Name

StudLast Name

Figure 12.5. A partial sample of data from the CLASS ROSTER view.

Class Roster

Class Name

Advanced Music Theory

American History

Advanced Calculus

StudLast Name

Carter

StudFirst Name

Gina

ApplebeeMartin

CarterGina

RosalesJoe

UlrichSara

HernandezMike

McLainSusan

TurnerLee

McLainSusan

BarletGeorge

RosalesJoe

Advanced Calculus

Advanced Calculus

Advanced Calculus

Advanced Music Theory

Advanced Music Theory

American History

American History

American History

454 Chapter 12 Views

You can modify most of the data within a multitable data view at any

time, and the modifications you make will flow through the view and

into the base tables. Quite obviously, you can’t modify the value of any

primary keys that you incorporate from the base tables. As in the case

of a single-table view, field specifications and business rules will deter-

mine what types of modifications you can make to the data. (Again, be

sure to check your RDBMS documentation for any further constraints it

may place upon your views.)

The redundant data in the CLASS ROSTER view (which you should

have noticed) is the result of merging a record from the CLASSES table

with two or more records from the STUDENTS table; the number of

times a particular class name appears is equal to the number of stu-

dents that are registered to attend that class. This apparent redun-

dancy is acceptable because the data is not physically stored in the

view—rather, it is drawn from the view’s base tables, where it is stored

in accordance with the rules of proper database design. RDBMSs com-

monly display data from multitable views in this fashion.

Another point to note is that a data view does not contain its own pri-

mary key. It lacks a primary key because it is not a table; a true table

stores data and requires a primary key to serve as a unique identifier for

each of its records. You can incorporate a primary key from any (or all)

of the base tables within the view, however, when you determine it will

contribute to the information the view provides.

Aggregate View

You use this type of view to display information produced by aggregat-

ing a particular set of data in a specific manner. As with a data view,

❖ Note In order to avoid any unnecessary ambiguity or confu-

sion, make certain you do not have any primary key indicators

within the view symbol when you diagram a data view.

Anatomy of a View 455

you can define an aggregate view using one or more base tables. You

can then include one or more calculated fields that incorporate the

functions that aggregate the data and one or more data fields (drawn

from the view’s base tables) to group the aggregated data. Sum, Average

(arithmetic mean), Minimum, Maximum, and Count are the most com-

mon aggregate functions that you can apply to a set of data, and every

major RDBMS supports them.

Let’s say that you wanted to know how many students are registered

for each class, and you’re using the tables from the school example

shown in Figure 12.3. Your first impulse is to define a data view called

CLASS REGISTRATION that will provide the information you need to

answer your question. So, you use the CLASS NAME field from the

CLASSES table and the STUDENT ID field from the STUDENT CLASSES

table to build the view. Figure 12.6 shows a diagram for the new CLASS

REGISTRATION view.

Figure 12.6. View diagram for the new CLASS REGISTRATION view.

Students Classes

Student ID

Class ID

CPK/FK

CPK/FK

Classes

PKClass ID

Class Name

Class Description

Category

FKInstructor ID

Class Registration

Class Name

Student ID

456 Chapter 12 Views

Now you access the view so that you can answer your question.

Figure 12.7 shows a partial sample of the data in the view.

In order to answer your question, you must now count each instance of

a given class name so that you can determine how many students are

registered for that class. Imagine the work you have ahead of you—this

will not be an easy task! Rather than going though all this tedious work,

you can answer your question quite easily (and more efficiently) using

an aggregate view.

There’s no need to define a new view because you can modify the one you

have just now. Remove the STUDENT ID field from the view and replace it

with a calculated field called TOTAL STUDENTS REGISTERED that counts the

number of students per class. (When you work with a calculated field,

make certain that you give it a name that is meaningful and that will dis-

tinguish it from other calculated fields in the view.) The calculated field

will use a Count function to count the number of STUDENT IDs in the

Figure 12.7. A partial sample of data from the CLASS REGISTRATION view.

Class Registration

Class Name

Advanced Music Theory

Business Administration

Advanced Calculus

Advanced Calculus

Advanced Calculus

Advanced Calculus

Advanced Music Theory

Advanced Music Theory

Business Administration

Business Administration

Business Administration

Student ID

1003

1025

1073

1110

1045

1066

1085

1025

1066

1017

1073

Anatomy of a View 457

STUDENT CLASSES table that are associated with each CLASS ID in

the STUDENT CLASSES table. (Later, you’ll learn how to document a

view and record the expression the calculated field will use.) Figure 12.8

shows the revised diagram for the CLASS REGISTRATION view.

As was the case with the data view, the RDBMS will rebuild and repop-

ulate the CLASS REGISTRATION view every time you access it, using

the most current data from the view’s base tables. Figure 12.9 shows a

sample of the view’s data.

There are three things to note about this view:

1. The TOTAL STUDENTS REGISTERED field displays a single number for

each class name, which represents the total number of students

registered for that class.

Figure 12.8. Revised diagram for the CLASS REGISTRATION view.

Students Classes

Student ID

Class ID

CPK/FK

CPK/FK

Classes

PKClass ID

Class Name

Class Description

Category

FKInstructor ID

Class Registration

Class Name

Total Students Registered

458 Chapter 12 Views

2. The redundancy within the CLASS NAME field has been eliminated;

all instances of a given class name have been grouped into a single

instance. As a result, CLASS NAME is now a grouping field, and its

values cannot be modified in any way.

3. Because an aggregate view is composed entirely of grouping fields

and calculated fields, you cannot modify any of its data.

An aggregate view is most useful as the basis of a report or as a means

of providing various types of statistical information. You’ll learn later

that you can apply filtering criteria to this (or any) view in order to con-

trol and restrict the data that the view displays.

Validation View

A validation view is similar to a validation table in that it can help im-

plement data integrity. When a business rule limits a particular field’s

❖ Note All data fields in an aggregate view are grouping fields.

Figure 12.9. A sample of data from the revised CLASS REGISTRATION view.

Class Registration

Class Name

Advanced Calculus

Total Students Registered

80

92

80

84

98

80

60

84

Advanced Music Theory

Business Administration

Introduction to Database Design

Introduction to Biology

English Literature

Pan-American Studies

Computers in Business

Anatomy of a View 459

range of values, you can enforce the constraint just as easily with a val-

idation view as you can with a validation table. The difference between

the two lies in their construction—a validation table stores its own data,

whereas a validation view draws data from its base tables. Although you

can define a validation view using one or more base tables, you’ll com-

monly define a validation table using a single base table and incorporate

only two or three of the base table’s fields. (This structure is quite simi-

lar to that of a validation table.)

For example, let’s say you’re designing a database for a small contractor

and you’re working with the tables in Figure 12.10.

As you can see, the SUBCONTRACTOR ID field in the SUBCONTRACTORS

table provides the range of values for the SUBCONTRACTOR ID field in the

PROJECT SUBCONTRACTORS table. (Recall that a foreign key draws

its values from the primary key to which it refers.) You’ve determined,

however, that you want to restrict the access users currently have to

certain fields in the SUBCONTRACTORS table; you’ve decided that the

only fields users should be able to access are the SUBCONTRACTOR ID, SC-

NAME, SCPHONE NUMBER, and SCFAX NUMBER fields. So, you define a vali-

dation view called APPROVED SUBCONTRACTORS that will incorporate

Figure 12.10. Tables from a database for a small contractor.

Project Subcontractors

Subcontractors

CPK/FK

CPK/FK

PK

Projects

PK

FK

Project ID

Project End Date

Project Name

Project Start Date

Category ID

Subcontractor ID

Project ID

Subcontractor ID

SCName

SCStreet Address

SCCity

SCState

SCZipcode

SCPhone Number

SCFAX Number

460 Chapter 12 Views

these fields and still provide the range of values for the SUBCONTRACTOR ID

field in the PROJECT SUBCONTRACTORS table. Figure 12.11 shows a

revised diagram of the tables, including the new view.

The APPROVED SUBCONTRACTORS view now gives users access only

to those fields that you’ve indicated and provides the appropriate range

of values for the SUBCONTRACTOR ID field in the PROJECT SUBCONTRAC-

TORS table. Additionally, the view will still enforce the relationship

characteristics that exist for the SUBCONTRACTORS table because it

(as you will recall) is the view’s base table.

Determining and Defining Views

By now you’ve probably realized that views can be a substantial asset to

the database. During this stage of the database-design process, you’ll

define a fundamental set of views for the database. Your definition of

views won’t stop here—you’ll probably define more views when you im-

plement the database within your RDBMS and as you create your end-

user application programs. In these instances, you’ll use views as a tool

to support particular aspects of the implementation or application pro-

gram. The views you define during the database-design process, how-

ever, will focus strictly on data-access and information-retrieval issues.

Figure 12.11. Revised table diagram; note the new APPROVED SUBCONTRAC-
TORS view.

Approved Subcontractors

PK

Projects

PK

FK

Project ID

Project End Date

Project Name

Project Start Date

Category ID

Project Subcontractors

CPK/FK

CPK/FK

Subcontractor ID

Project ID

Subcontractor ID

SCName

SCPhone Number

SCFAX Number

Determining and Defining Views 461

Working with Users and Management

You’ll work once again with the organization’s representative group of

users and management to identify the types of views the organization

requires. After you identify these views, you’ll establish and document

them, and then you and the group will review the views to make certain

that they are properly defined.

Before you conduct your first meeting with the group, review the notes

you’ve taken throughout the entire design process. Your objective is to get

an idea of the types of views the organization might need. Almost every

organization spends a large amount of time producing and reading re-

ports, so you should focus on that aspect of your notes. You should also

review the report samples you assembled during the analysis process.

When you and the group meet, consider the following points to help you

identify view requirements:

• Review your notes with the group. In many instances, talking

about a specific topic will spark an idea for a new or required

view. For example, someone may realize a need for a view during a

discussion of mission objectives.

• Review the data-entry, report, and presentation samples you gath-

ered during the early stages of the design process. Examining

these samples, especially summary-style reports, could easily il-

luminate the need for certain types of views.

• Examine the tables and the subjects they represent. Some individu-

als in the group may identify the need for a view based solely on a

specific subject. If someone mentions a subject, such as Employ-

ees, it may cause someone else to say, “We definitely need a view

that restricts certain employee data for confidentiality reasons.”

• Analyze the table relationships. You’ll most likely identify a num-

ber of multitable views that you should create for many of the

462 Chapter 12 Views

relationships. Several of these views will coincide with views you

identified for the report samples.

• Study the business rules. As you already know, you can use a val-

idation view to enforce a rule that imposes a constraint on a

particular field’s range of values.

You and the group should be able to identify a number of views by going

over the items on this list. After you’ve identified as many of the re-

quired views as possible, your next task is to define them.

Defining Views

You’ll now define each view that you’ve identified using the appropriate

tables and fields. Review the relationship diagrams to identify which ta-

bles and fields you need for the view’s structure. When you’ve deter-

mined what you need, define the view and record it in a view diagram.

For example, say you’ve determined that you can use a view for the re-

port shown in Figure 12.12; the name of the new view will be CUS-

TOMER CALL LIST.

The notes you’ve taken throughout the design process become useful

once again. You reviewed this report during the analysis stage of the de-

sign process, and you’ve noted that this report represents information

about customers and their orders; it is from the order data that you can

determine when a given customer made his last purchase. Now, review

the relationship diagram for the CUSTOMERS and ORDERS tables;

you’ll use fields from these tables to create the CUSTOMER CALL LIST

view. Figure 12.13 shows the relationship diagram for these tables.

After examining the relationship diagram, you determine you need to

use five fields to build this view: CUSTFIRST NAME, CUSTLAST NAME, CUST-

PHONE NUMBER, and CUSTCITY from the CUSTOMERS table, and ORDER

DATE from the ORDERS table. You now define the CUSTOMER CALL

Determining and Defining Views 463

Figure 12.12. Report sample requiring a view.

Bothell Sara Anderson 542-0039 05/16/02

City Customer Name Phone Number Last Purchase

Jim Booth 367-4495 02/11/02

Larry Currey 445-3394 02/06/02

Bellevue Jim Davis 545-9932 05/10/02

Larry Lang 545-3384 01/22/02

Sandra Wasser 367-2293 06/30/02

Edmonds Julia Black 223-9943 04/12/02

Lynnwood Mary McLain 562-1274 02/28/02

Barbara Reeves 445-2094 03/07/02

Customer Call List

Figure 12.13. Relationship diagram for the CUSTOMERS and ORDERS tables.

Orders

PKOrder Number

Employee ID FK

Customer ID FK
(R)

PK

Customers

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustState

CustZipcode

CustPhone Number

Status

CustCIty

Ship Date

(1,1)

(0,N)

Order Date

464 Chapter 12 Views

LIST view by assigning the fields to the view and then recording them in

a view diagram. When you’re finished, your diagram should look like the

one in Figure 12.14.

Using Calculated Fields Where Appropriate

Earlier in the database-design process, you learned that tables couldn’t

contain calculated fields for a number of good reasons. But one of the

characteristics of a view that makes it so useful is that it can contain

calculated fields. Recall that calculated fields will display the result of a

Figure 12.14. View diagram for the CUSTOMER CALL LIST view.

Orders

(R)

PK

Customers

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustState

CustZipcode

CustPhone Number

Status

CustCIty

(1,1)

(0,N)

Customer Call LIst

CustFirst Name

CustLast Name

CustCity

CustPhone Number

Order Date

PKOrder Number

Employee ID FK

Customer ID FK

Ship Date

Order Date

Determining and Defining Views 465

concatenation, expression, or aggregate function; this makes them an

extremely flexible structure to include in a view.

For example, consider the new CUSTOMER CALL LIST view. Although

you have the fields you need for the view, you’ll have to make one minor

modification to the view so that it can display the appropriate data. One

of the requirements for this view is that it must display the date of the

last purchase made by each customer. In order to retrieve and display

the proper date, you’ll have to add a calculated field to the view. This

field will use the Maximum function [commonly known as Max()] to re-

trieve the correct date from the ORDER DATE field. Name the new field LAST

PURCHASE DATE and add it to the CUSTOMER CALL LIST view diagram.

(You no longer need the ORDER DATE field in the view, so you can remove

it from the view’s structure.) This is the expression you’ll use in the cal-

culated field to retrieve the appropriate date:

Max(Order Date)

Later in this section, you’ll learn where and how to record this expression.

Another calculated field you might include in this view is one that dis-

plays the complete customer name by concatenating CUSTFIRST NAME and

CUSTLAST NAME. Say, for example, that you want to display the customer

name in this manner: “Hernandez, Michael.” Create a calculated field

called CUSTOMER NAME and use the following concatenation expression:

CustLast Name & “, “ & CustFirst Name

Add the new calculated field to the CUSTOMER CALL LIST view diagram

and remove the CUSTFIRST NAME and CUSTLAST NAME fields from the view;

❖ Note Be sure to refer to your RDMBS’s documentation to de-

termine the correct syntax for this function and all of the other

functions used in this chapter.

466 Chapter 12 Views

you don’t need these fields anymore because you’re now using the CUS-

TOMER NAME calculated field. (You’ll soon properly record this expression

as well.)

Figure 12.15 shows how your revised view diagram should look after

you’ve completed these modifications.

As you’ve just learned, calculated fields can be quite an asset because

you can use them to enhance the information a view provides. You also

learned earlier in this chapter that calculated fields are particularly cru-

Figure 12.15. Revised view diagram for the CUSTOMER CALL LIST.

Orders

(R)

PK

Customers

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustState

CustZipcode

CustPhone Number

Status

CustCity

(1,1)

(0,N)

Customer Call LIst

CustCity

Customer Phone Number

PKOrder Number

Employee ID FK

Customer ID FK

Ship Date

Order Date

Customer Name

Last Purchase Date

Determining and Defining Views 467

cial in aggregate views. A good rule of thumb to follow when you think

you may need calculated fields is to use them if they will provide perti-

nent and meaningful information or if they will enhance the manner in

which the view uses its data.

If you recall, you created a calculated-field list earlier in the design pro-

cess (refer to Chapter 6). You can now use this list as a source of calcu-

lated fields that you might (or should) use in your views. Review the list

as you define each new view and determine whether you can use one of

the calculated fields on the list. When you find one that you can use,

create it in the same manner as you did in the preceding examples. (If

you create a new calculated field that does not appear on your list, how-

ever, be sure to add it to the list. This will help you keep your calcu-

lated-field list current and in order.)

Imposing Criteria to Filter the Data

Views have another characteristic that makes them extremely useful:

You can impose criteria against one or more fields in the view to filter the

records it displays. For example, say that the CUSTOMER CALL LIST

view included the CUSTSTATE field. Although the view would continue to

display the set of records it did before, you would also see the state in

which each customer lives. Assume, however, that you want the view to

show a particular set of records, such as those for customers who live in

the state of Washington. You can accomplish this by setting a specific

criterion on the CUSTSTATE field that will filter the data so that the view

displays only those records of customers from Washington State.

❖ Note In database work, the word “criterion” refers to an ex-

pression that is tested against the value of a particular field. The

view will include a given record if the value of the field meets the

criterion.

468 Chapter 12 Views

This is the expression you will use to filter the records for the CUS-

TOMER CALL LIST view:

CustState = “WA”

Now the view will display only customers from Washington. If you want

to filter the records further to show only those customers who live in

specific cities, you add a criterion such as this:

CustCity In (“Bellevue,” “Olympia,” “Redmond,” “Seattle,”

“Spokane,” “Tacoma”)

The view will now display Washington State customers who live in the

cities specified in the expression. You may wonder why both criteria are

necessary—the criterion for the CUSTCITY field should retrieve the appro-

priate records by itself. The trouble is that many cities are named for

other cities, so that cities in two or three different states could have the

same name. For example, there is a Portland, Oregon, and a Portland,

Maine, both named after Portland, England. The point to remember is

that you must use your best judgment when you establish criteria for a

view—use the minimum number of criteria that will cause the view to

display the records you require.

When you use a criterion in a view, you must make certain that the field

you’re testing in the criterion is included in the view’s structure. If you

do not include the field in the view, you have no way of imposing the cri-

terion. This is an important point to remember because it is a require-

ment when you logically define a view and when you implement the view

in your RDBMS.

The one problem with applying a filter to a view is that there is no way

to indicate it on a view diagram; therefore, you must record it on a View

Specifications sheet.

Determining and Defining Views 469

Using a View Specifications Sheet to Record the View

A View Specifications sheet must accompany each view diagram you

create. It is on this sheet that you will record the characteristics of the

view. The View Specifications sheet contains the following items:

• Name. This is where you indicate the name of the view. Before you

record the name, however, test it against the guidelines for creat-

ing table names you learned in Chapter 7. These guidelines gov-

ern the naming of views as well, with one exception: The name of

a view can implicitly or explicitly identify more than one subject.

This is because you can define views from two or more base ta-

bles, so they do, indeed, represent more than one subject.

• Type. This is where you indicate whether you’re defining a data,

aggregate, or validation view.

• Base tables. This is where you specify the names of the view’s base

tables. Although the view diagram shows these tables, they appear

here as a matter of convenience. The View Specifications sheet

does not include field names, however, because you can record

and display them more easily and efficiently on the view diagram.

• Calculated-field expressions. This is where you record the expres-

sions for the calculated fields you included in the view. As you

record the name of the calculated field, test it against the guide-

lines for creating field names you learned in Chapter 7. Calcu-

lated field names are governed by these guidelines with two

exceptions: You can implicitly or explicitly identify more than one

characteristic in a name, and you can use the plural form of the

name. But it’s still desirable to use the singular form of the name

whenever possible.

• Filters. This is where you record the criteria that the view will use

to filter the records it displays. You’ll record both the field being

tested and the expression used to test it.

470 Chapter 12 Views

Fill out a View Specifications sheet for each view you create and attach

the sheet to the proper view diagram. Both of these items will serve to

document the view fully. Figure 12.16 shows a completed View Specifi-

cations sheet for the CUSTOMER CALL LIST view. (Keep in mind that

the view has been updated to include the CUSTSTATE field.)

Reviewing the Documentation for Each View

Once you’ve completed the task of defining and documenting each view,

review all of your views once more—ensuring that the quality of the in-

formation each view provides is well worth the effort. As you review each

view, keep the following points in mind:

• Make certain that you’ve defined the view properly. Think about

the information the view should provide. Are you establishing the

correct type of view for the required information? Did you use the

appropriate base tables to define the view? Did you include all

the necessary fields within the view’s structure?

• Make certain that the calculated fields you’ve created are suitable

for the view. Do they provide pertinent and meaningful informa-

tion? Do they serve to enhance the manner in which the view dis-

plays its data?

• Make certain that the filters will retrieve the required records. First

of all, do you need a filter for this view? If the answer is yes, do

you know exactly which records you want the view to display? Do

you believe that the filter will work correctly?

• Above all, make certain that you have a view diagram and View

Specifications sheet for each view. This documentation will be very

useful when you finally implement the database in an RDBMS.

❖ Note When you fill out the Calculated-Field Expressions and

Filters sections of a View Specifications sheet, use the expres-

sions with which you are most familiar. You’ll modify them as

necessary when you implement the database in an RDBMS.

Determining and Defining Views 471

Figure 12.16. Completed View Specifications sheet for the CUSTOMER CALL
LIST view.

Description:

Field Name

VIEW SPECIFICATIONS

Base Tables

General Information

Calculated Field Expressions

Filters

Field Name Condition

Expression

This view provides information that allows us to execute follow-up calls to our customers in

Washington. Also indicated is the date of the customer's last purchase.

CUSTOMERS, ORDERS

CUST STATE

CUST CITY

CUSTOMER NAME

LAST PURCHASE DATE Max(ORDER DATE)

="WA"

In ("Bellevue", "Olympia", "Redmond", "Seattle", "Spokane", "Tacoma")

CUST LAST NAME & ", " & CUST FIRST NAME

Customer Call ListName: Type: Data ValidationX Aggregate

472 Chapter 12 Views

Your work on Mike’s database is finally nearing an end. You meet with

Mike and his staff to determine whether there is a need to establish

views for the database. The agenda you’ve set up for the meeting in-

volves the following steps:

1. Review the notes you’ve compiled during the design process.

2. Review each of the various samples you gathered during the early

stages of the design process.

3. Examine the subjects represented by the tables in the database.

4. Analyze the table relationships.

5. Review and study the business rules.

As the meeting progresses, you identify several views that you need to

define, including a PREFERRED CUSTOMERS view and a VENDOR

PRODUCT COUNT view. The first view will provide the name and phone

number of each customer who has a “Preferred” status, and the second

view will provide information on the total number of different products

each vendor supplies.

You base the PREFERRED CUSTOMERS view on the CUSTOMERS ta-

ble and use the CUSTOMERID, CUSTFIRST NAME, CUSTLAST NAME, CUSTHOME

PHONE, and STATUS fields for the view’s structure. Before you construct

the view, however, Mike asks if there’s any way to display the first name

and last name together. You respond that it can be done, so you create a

calculated field called CUSTOMER NAME that concatenates both of the

fields together; this field will now replace the CUSTFIRST NAME and CUST-

LAST NAME fields. Figure 12.17 shows the view diagram for the PRE-

FERRED CUSTOMERS view.

CASE STUDY

Case Study 473

After you create the view diagram, you make note of the expression that

you’ll use to filter the view’s data:

Status = “Preferred.”

Then you complete a View Specifications sheet for the PREFERRED

CUSTOMERS view. Figure 12.18 shows the results of your work.

Now you define the VENDOR PRODUCT COUNT view using the VENDORS

and PRODUCTS tables as the view’s base tables. You use the VENDOR

NAME field from the VENDORS table to display the names of the vendors.

Figure 12.17. View diagram for the PREFERRED CUSTOMERS view.

Customer ID

CustFirst Name

CustLast Name

CustStreet Address

CustCity

CustState

CustZipcode

CustPhone Number

Status

Customers

PK

Customer Name

CustHome Phone

Status

Customer ID

Preferred Customers

474 Chapter 12 Views

Figure 12.18. The View Specifications sheet for the PREFERRED CUSTOMERS
view.

Description:

Field Name

Field Name Condition

Expression

Name: Type: Data ValidationX Aggregate

This View provides the names and phone numbers of our Preferred customers. We use this

information in support of the services we provide to these customers.

CUSTOMERS

CUSTFIRST NAME & “ ” & CUSTLAST NAME

Preferred Customers

STATUS

CUSTOMER NAME

=“Preferred”

VIEW SPECIFICATIONS

Base Tables

General Information

Calculated Field Expressions

Filters

Case Study 475

Next, you create a calculated field called PRODUCT COUNT to display the

total number of products each vendor supplies. This is the expression

the field uses to calculate the total:

Count(ProdName)

Now you create a diagram for the view, as shown in Figure 12.19.

After determining that a filter is unnecessary for this view, you finish

documenting the view by completing the View Specifications sheet

shown in Figure 12.20.

You then repeat this process for every view you’ve identified for Mike’s

database.

Figure 12.19. View diagram for the VENDOR PRODUCT COUNT view.

(R)

PK
(1,1)

(0,N)

Vendor Product Count

Product Count

Vendor Name

Products

Product Number

ProdDescription

ProdName

Category

Retail Price

Wholesale Price

Vendor ID

Vendors

Vendor ID

VendName

VendFax Number

VendStreet Address

VendCity

State

VendZipcode

VendPhone Number

FK

PK

FK

476 Chapter 12 Views

Figure 12.20. View Specifications sheet for the VENDOR PRODUCT COUNT view.

Description:

Field Name

Field Name Condition

Expression

Name: Type: Data ValidationAggregate

This view tells us how many products are supplied by each vendor. This information will help

us determine which vendors we might need to drop.

VENDORS, PRODUCTS

Count(PRODNAME)

Vendor Product Count

PRODUCT COUNT

X

VIEW SPECIFICATIONS

Base Tables

General Information

Calculated Field Expressions

Filters

Summary 477

Summary

We began this chapter with a definition of a view, and you learned that

it is a virtual table that does not contain or store data. Views are useful

for several reasons—they provide a means for you to work with data

from multiple tables, they help enforce data integrity, and they help

keep data secure or confidential.

We then discussed the three types of views: data, aggregate, and valida-

tion. You learned that each type of view can be based on one or more ta-

bles, other views, or a combination of both. Your RDBMS will rebuild

and repopulate a view every time you access it, using the most current

data from the view’s base tables. As you now know, there must be rela-

tionships between tables in a multitable view (thus making the view’s

information valid and meaningful), and the characteristics of those rela-

tionships are carried forth through the view. Additionally, you can mod-

ify most views, and all the modifications you make to the data are

passed through the view to the base tables. You also learned that vali-

dation views work in the same manner as validation tables and that

they have distinct advantages over validation tables. For instance, vali-

dation views can incorporate data from multiple tables.

The chapter then continued with a discussion of determining and defin-

ing views for the database. Here you learned several specific points to

keep in mind while you work with users and management to identify the

organization’s view requirements. Next, we discussed how to define a

view, and you learned how to create a view diagram to document the

view. Now you know how to select fields from the base tables and assign

them to the view.

We then discussed how to use calculated fields in a view. You learned

that you could use them to help provide pertinent information and to

enhance how the view displays its data. You also learned that calculated

fields are especially crucial in aggregate views and that each calculated

478 Chapter 12 Views

field uses an expression to derive the value it displays. Next, you learned

how to apply a filter to a view so that it will retrieve and display a spe-

cific set of records. The view will display a given record only if it meets

the criteria you’ve imposed against one or more fields in the view. You

frame each criterion as an expression and use it to test the value of a

particular field.

The chapter closed with a discussion of the View Specifications sheet.

Here you learned how to document the characteristics of the view, such

as its name and type. You also learned about the items that compose

the View Specifications sheet and how you use them to record the view’s

characteristics.

Review Questions

1. Why can you refer to a view as a virtual table?

2. State two reasons why views are valuable.

3. Name the types of views you can define as you design the logical

structure of the database.

4. What does your RDMBS do each time you access a data view (or

any type of view, for that matter)?

5. What determines the type of modifications you can make to a

view’s data?

6. What is the only requirement you must fulfill in order to define a

multitable data view?

7. Why doesn’t a data view contain its own primary key?

8. What is the purpose of an aggregate view?

9. What are the most common aggregate functions that you can apply

to a set of data?

Review Questions 479

10. What is a grouping field?

11. True or False: You can modify the data in an aggregate view.

12. What is the difference between a validation table and a validation

view?

13. Name two points you would consider when identifying view

requirements.

14. When should you use calculated fields?

15. How do you define a view that displays only science-fiction books?

16. Why must you complete a View Specifications sheet for every view

in the database?

This page intentionally left blank

481

13
Reviewing Data Integrity

When you have eliminated the impossible, whatever

remains, however improbable, must be the truth.

—SHERLOCK HOLMES,
THE SIGN OF FOUR

Topics Covered in This Chapter

Why You Should Review Data Integrity

Reviewing and Refining Data Integrity

Assembling the Database Documentation

Done at Last!

Case Study—Wrap Up

Summary

You are now at the final stage of the database-design process. You’ve ac-

complished many things since you started the process. Thus far you

have

• Perceived the advantages of the relational database model and

how it compares to other database models

• Created a mission statement for a new database

• Defined mission objectives for the new database

• Performed a complete analysis of an old database

• Identified the organization’s information requirements

482 Chapter 13 Reviewing Data Integrity

• Defined all the appropriate table structures

• Assigned a primary key to each table

• Established field specifications for each field

• Established table relationships

• Defined and established business rules

• Defined all the appropriate views

• Established overall data integrity

For all intents and purposes, your new database is complete; neverthe-

less, it would be to your advantage to perform one final review of the

overall data integrity of your database.

Why You Should Review Data Integrity

You’re probably wondering why you should review the database struc-

ture one last time, given that you’ve paid attention to every detail and

have focused on data integrity throughout the entire design process.

The answer is simple: You want to make certain that the data integrity

you’ve been so careful to establish is absolutely as sound as possible.

As you well know, a crack in the integrity could result in inconsistent

data or inaccurate information. However improbable, it is possible that

you may have overlooked something. The peace of mind you gain from

knowing that you have a solidly designed database is well worth the

time and effort of this final review.

❖ Note Remember: Garbage in, garbage out!

Reviewing and Refining Data Integrity 483

Reviewing and Refining Data Integrity

Reviewing data integrity is a simple task if you take a modular ap-

proach, that is, if you sequentially review each component of overall

data integrity: table-level, field-level, and relationship-level integrity and

business rules. If you have carefully followed the design method pre-

sented in this book, you should encounter very few problems here. The

following sections briefly outline the points you should keep in mind as

you conduct the review, and they contain references to earlier chapters

in case you encounter any problems.

At the Table Level

In order to ensure that you’ve properly established table-level integrity,

review each table and make certain that the table conforms to all of the

following points:

• There are no duplicate fields in the table.

• There are no calculated fields in the table.

• There are no multivalued fields in the table.

• There are no multipart fields in the table.

• There are no duplicate records in the table.

• Every record in the table is identified by a primary key value.

• Each primary key conforms to the Elements of a Primary Key.

If you believe you have problems with any of these items, resolve them

using the techniques and concepts discussed in Chapters 6 through 8.

484 Chapter 13 Reviewing Data Integrity

At the Field Level

You can ensure that you’ve properly established field-level integrity after

you’ve done the following:

• Made sure each field conforms to the Elements of the Ideal Field

• Made certain you’ve defined a set of field specifications for each

field

You can resolve field-level integrity problems with the techniques dis-

cussed in Chapter 9.

At the Relationship Level

Examine each table relationship to ensure that you’ve properly estab-

lished relationship-level integrity. You’ve achieved this level of integrity

when you’ve completed these tasks:

• Properly established the relationship

• Defined the appropriate deletion rules

• Correctly identified the type of participation for each table

• Established the proper degree of participation for each table

If you identify a problem with a relationship, use the techniques in

Chapter 10 to resolve it.

At the Level of Business Rules

You can ensure that your business rules are sound by making certain

these tasks are complete:

• You’re sure that each rule imposes a meaningful constraint.

• You’ve determined the proper category for the rule.

Reviewing and Refining Data Integrity 485

• You’ve properly defined and established each rule.

• You’ve modified the appropriate field specification elements or

table-relationship characteristics.

• You’ve established the appropriate validation tables.

• You’ve completed a Business Rule Specifications sheet for each

rule.

If you encounter problems with any of your business rules, refer to

Chapter 11 for the techniques necessary to solve them.

At the Level of Views

Although views are not directly connected to any component of data in-

tegrity, you should nevertheless review all of your view structures. As

you examine each view, make certain you’ve addressed these items:

• Each view contains the base tables necessary to provide the re-

quired information.

• You’ve assigned the appropriate fields to each view.

• Each calculated field provides pertinent information or enhances

the manner in which the view presents its data.

• Each filter returns the appropriate set of records.

• Each view has a view diagram.

• Each view diagram is accompanied by a View Specifications sheet.

If you encounter problems with any view, resolve them by using the

techniques discussed in Chapter 12.

Once you’ve completed this entire review, you can be confident that the

database structure is sound, the data within the database is consistent

486 Chapter 13 Reviewing Data Integrity

and valid, and the information you retrieve from the database will be

accurate.

Assembling the Database Documentation

Throughout the database-design process, you’ve generated a number of

lists, specification sheets, and diagrams used to record various aspects

of the database-design. You should now assemble them into a central

repository, preferably in a set of binders. (Incidentally, you could gener-

ate and store these documents using a computer program.) The design

repository should consist of the following sets of documents:

Two additional sets of items you may consider keeping with this docu-

mentation are the notes you compiled during the design process and

the samples you gathered during the analysis stage of the design pro-

cess. You can keep each of these items in a separate appendix at the

end of the documentation.

All of these items constitute the complete set of documentation for the

logical design of the database. This documentation is vital for three

reasons:

1. It provides a complete record of the database structure. You can find

every aspect of the logical structure of the database within the doc-

umentation. Additionally, you can answer almost any question

concerning the database simply by referring to the documentation.

2. It provides a complete set of specifications and instructions on how

the database should be created during the implementation process.

Final table list

Field Specifications sheets

Calculated-field list

Table structure diagrams

Relationship diagrams

Business Rule Specifications sheets

View diagrams

View Specifications sheets

Case Study—Wrap Up 487

This documentation is similar to an architect’s blueprints: It indi-

cates how the database is to be constructed. It also identifies the

integrity that needs to be established for the database. Because

the database design is not directed to a particular RDBMS, the

individuals implementing the database have full latitude concern-

ing the manner in which they physically implement the database.

3. Should it seem necessary to modify the database structure during

the implementation process, the design documentation can be used

to determine the effects and consequences of any modifications. Any

modifications you make to the database structure should be the

result of an informed decision. You can make certain that a pro-

posed modification will not have an adverse effect on the database

structure by referencing the documentation first.

Done at Last!

Now that you’ve completed the integrity review and assembled all of the

documentation for the database, the logical database-design process is

complete. You can rest assured that you have a properly designed data-

base and that its implementation will proceed smoothly. On to the next

client and the next database design!

This is your last meeting with Mike and his staff. Your objective is to re-

view his database and its integrity one final time. Although you’re confi-

dent that you will not find any problems, you want to give the database

one final quality-control review.

During the meeting, you review each of the database structures to en-

sure that they are in accordance with the various elements that govern

CASE STUDY—WRAP UP

488 Chapter 13 Reviewing Data Integrity

them. Then you review each component of overall data integrity to make

certain that you’ve properly established table-level, field-level, and rela-

tionship-level integrity, as well as business rules. Finally you gather all

of the documentation you’ve generated throughout the design process.

After you’ve assembled all of the documentation into a set of binders,

you give them to Mike and declare that his database is now complete.

Mike expresses his thanks and gratitude for a job well done and prom-

ises your check will be in the mail by the 15th of the month. You ex-

press your thanks to Mike and his staff, say your good-byes and depart

for new horizons. As you leave, Mike stares in your direction; one final

thought occurs to him.

“Now, if I could just get you to implement my database for me . . .”

Summary

The chapter opened with a list of your accomplishments since you be-

gan the database-design process. It then continued with a discussion of

why you should review overall data integrity one final time. This was fol-

lowed by a brief discussion of the points to keep in mind as you review

each component of overall data integrity. We close the chapter by dis-

cussing the importance of the documentation you’ve assembled during

the entire design process.

Part III
Other
Database-
Design Issues

This page intentionally left blank

491

14
Bad Design—What Not to Do

Mistakes are always initial.

—CESARE PAVESE

Topics Covered in This Chapter

Flat-File Design

Spreadsheet Design

Database Design Based on the Database Software

A Final Thought

Summary

You may have wondered why this chapter appears at the end of the

book instead of at the beginning. The reason is simple: You can appreci-

ate the dangers presented by a poorly designed database now that

you’ve learned how to design a database properly. Additionally, you will

be able to determine for yourself why a particular design is bad—you’ll

look at the design and be able to identify the problems with the struc-

ture immediately. You also possess the knowledge required to identify

possible solutions to these problems.

In this chapter, you’ll see the three most common design approaches

that lead to poorly structured databases. The discussions are brief be-

cause they are only meant to illustrate types of design you should

avoid. It should now be obvious that the way to resolve an improperly

designed database is to take it through the complete design process

you’ve just learned.

492 Chapter 14 Bad Design—What Not to Do

Flat-File Design

This type of design (sometimes known as the “throw-everything-into-

one-big-table” design) has been in existence for many years and is com-

mon in databases that have been designed for implementation in nonre-

lational database-management systems. A flat-file design is fraught with

problems, as you can see by examining the structure in Figure 14.1.

This diagram represents the structure of a single table. (Imagine how

other tables within the database are structured!) You can readily see

that this structure will inevitably cause problems with redundant data

and inconsistent data and that it suffers from a lack of data integrity.

As you’ve probably already noted, there are a few other problems with

this structure:

Figure 14.1. An example of a flat-file structure.

Customer Orders

Table Structures

Customer Number Item 2

Customer Name Quantity 2

Customer Address Price 2

Order Number Customer Phone Item 2 Extension

Order Date Item 1 Item 3

Ship Date Quantity 1 Quantity 3

Order Amount Price 1 Price 3

Sales Rep Name Item 1 Extension Item 3 Extension

Spreadsheet Design 493

• Multipart fields. SALES REP NAME includes the sales rep’s first and

last name, CUSTOMER NAME includes the customer’s first and last

name, and CUSTOMER ADDRESS includes the customer’s street ad-

dress, city, state, and zip code.

• Calculated fields. The ORDER AMOUNT field contains a value that is

most likely manually calculated, especially if the customer is or-

dering more than three items. The ITEM # EXTENSION fields are all

likely to be manually calculated as well. The value for a given ITEM

EXTENSION field is the result of multiplying the value of a related

QUANTITY # field by the value of a related PRICE # field. (For exam-

ple: ITEM 3 EXTENSION = QUANTITY 3 × PRICE 3)

• Unnecessary duplicate fields. Each of the fields pertaining to a

particular item is a duplicate. For example, the ITEM 1, ITEM 2, and

ITEM 3 fields are unnecessary duplicate fields.

• No true primary key. There is no field or group of fields that can

uniquely identify a single record in this table. The ORDER NUMBER

field is not a primary key in this table; if a customer orders more

than three items, you’ll have to enter another record into the table

using the same order number.

• The table represents more than one subject. This table represents

three subjects: customers, orders, and items. (Depending on your

point of view, it also represents sales reps.)

Now that you know the elements of good database design, you’re sure to

avoid a design such as this.

Spreadsheet Design

A spreadsheet is certainly a good tool if you use it properly and for the

purpose for which it was designed. For example, it is quite suitable for

work that involves complex mathematical calculations and statistical

494 Chapter 14 Bad Design—What Not to Do

analysis. Contrary to popular myth, however, a spreadsheet does not

make a good relational database. If your organization has a need to col-

lect, store, maintain, and manipulate various types of data, then use

the proper tool for the job by designing and implementing a real data-

base. For example, consider the spreadsheet in Figure 14.2.

This spreadsheet is being used to keep track of store managers for a

small chain of retail stores. As you can see, this approach has problems

as well.

• Duplicate fields. Each field on this spreadsheet is a duplicate field.

If you take the fields at face value, there are basically three fields

in each instance: STORE NUMBER, MANAGER NAME, and ASSISTANT MAN-

AGER NAME.

• Multipart fields. Each field holds two values. The first field stores

the store number and phone number, the second field stores the

Figure 14.2. An example of a typical spreadsheet “database.”

B C

Store 103 (554-2993)

Manager: Katie Christian

Asst. Mgr: Terri Sharpe

Store 104 (773-1837)

Manager: Gary Holcomb

Asst. Mgr: Barbara Cooper

 and Tim Ennis

Store 105 (344-2883)

Manager: Caroline Coie

Asst. Mgr: LeRoy Bonnicksen

A

Store 100 (344-0029)

Manager: Mike Hernandez

Asst. Mgr: Bob McNeal and

1

2

3

 Suzi Thompson4

Store 101 (433-4872)5

6

7

8

9

10

11

Manager: Abe Hernandez

Asst. Mgr: Steve McMahn

Store 102 (433-4872)

Manager: Susan McLain

Asst. Mgr: Diana Barlet

Spreadsheet Design 495

manager’s first and last name, and the third field stores the assis-

tant manager’s first and last name.

• Multivalued fields. The ASSISTANT MANAGER field is a multivalued

field because there can be more than one assistant manager as-

signed to a particular store.

• This type of database is difficult to use. Data-oriented tasks that

can be performed with ease in an RDBMS program are tedious

and time-consuming to carry out in a spreadsheet. For example,

it would take you some time to create a list containing only the

name of each store manager and his or her phone number.

After seeing the problems associated with a simple spreadsheet “data-

base” such as this one, you can imagine the types of problems you

would encounter with a more complex database. If you’re currently us-

ing a spreadsheet as a database, you can improve the database’s qual-

ity, speed, and versatility if you remove it from the spreadsheet, take it

through the entire database-design process, and implement it in a suit-

able RDBMS.

Dealing with the Spreadsheet View Mind-set

When you begin to work with a true database and RDBMS, you must

break away from a spreadsheet view mind-set. This means that you’ll

have to resign yourself to the fact that certain ways of viewing the data

are now unavailable—you can no longer use typical spreadsheet layouts.

For example, consider a typical spreadsheet report shown in Figure 14.3.

You cannot produce a report with this type of layout using a database.

Whereas a spreadsheet stores the data exactly as you see it on the re-

port, a database would store it in four separate fields within a table. Fig-

ure 14.4 shows an example of a database report you could generate for

the same data. The database presentation is not the same as the

spreadsheet presentation, but it is just as clear.

496 Chapter 14 Bad Design—What Not to Do

Figure 14.3. An example of a typical spreadsheet report.

Branch Stores

Bellevue

Store 118 Store 201 Store 211

Manager: Katherine Ehrlich Manager: Kevin Christian Manager: George Chavez

Redmond

Store 27 Store 75 Store 322

Manager: Mark Rosales Manager: Chris Weber Manager: Steve Pundt

Seattle

Store 105 Store 187 Store 200

Manager: Caroline Cole Manager: Julia Black Manager: Sanjay Jacob

Figure 14.4. An example of a typical database report.

Branch Stores

Bellevue

Store 118 Manager: Katherine Ehrlich

Store 201 Manager: Kevin Christian

Store 211 Manager: George Chavez

Redmond

Store 27 Manager: Mark Rosales

Store 75 Manager: Chris Weber

Store 322 Manager: Steve Pundt

Seattle

Store 105 Manager: Caroline Cole

Store 187 Manager: Julia Black

Store 200 Manager: Sanjay Jacob

Database Design Based on the Database Software 497

The point to remember is that you’ll have to adjust the manner in which

you think about working with the data in your database. In the end,

there are far more advantages to storing and using your data in an ac-

tual database than trying to use a spreadsheet in a similar manner. A

database gives you much more control over data integrity and the con-

sistency and validity of the data. It also provides an almost unlimited

number of ways to retrieve the data, enabling you to obtain a wide vari-

ety of information.

Database Design Based on the Database

Software

An RDBMS does not provide a basis or procedure or even a reason for

designing a database in a particular fashion—it only provides the tools

that you need to implement a design. In contrast, a formal database-

design method provides both the principles and rationale necessary to

define a database properly and effectively.

Many people unwittingly fall into the trap of designing a database based

solely on the RDBMS software they will use for its implementation. In

many cases, they do so because they are already somewhat familiar and

skilled with a particular RDBMS. This is an unwise approach that you

should avoid for several reasons:

• You’re likely to make design decisions based on your perceptions of

what your RDBMS can or can’t do. For example, you may decide

not to impose a degree of participation for a given relationship be-

cause you believe the RDBMS does not provide you with the

means to do so.

• You’ll inadvertently let the RDBMS dictate the design of the data-

base as opposed to driving the design strictly from the organiza-

tion’s information requirements. This usually occurs when you

498 Chapter 14 Bad Design—What Not to Do

discover that your RDBMS provides only limited support for cer-

tain aspects of the database, such as field specifications and rela-

tionship characteristics.

• Your design will be constrained by your knowledge of the RDBMS.

For example, you may decide not to implement relationship char-

acteristics simply because you don’t know how to do so.

• Your design will be constrained by how skilled you are with your

RDBMS. Your skill level affects how efficiently and effectively you

can implement various aspects of the database, such as field

specifications and business rules.

• Using this approach to design a database commonly results in im-

proper structural design, insufficient data integrity, and problems

with inconsistent data and inaccurate information. Defining a da-

tabase within an RDBMS can be deceptively easy. You may create

a database that works, but you’re very likely to have a poor design

without knowing it.

• In the end, the RDBMS that you know and love so well may not be

suitable for your organization’s database requirements.

You should always design the logical structure of your database without

regard to any RDBMS. By doing so, you’re more likely to design a sound

structure because you’ll be focused on the organization’s information

requirements. Once your design is complete, you can then clearly deter-

mine how you should implement the database (single-user application,

client/server, Web-based, and so on) and which RDBMS you should use

to facilitate the implementation.

A Final Thought

Through years of teaching database design and instructing people in

how to use various RDBMS software programs, I’ve observed an inter-

Summary 499

esting phenomenon: People who are familiar with the fundamental prin-

ciples of proper database design have a better comprehension of their

RDBMS and the tools it provides than those who know little at all about

database design. I believe this is due to the fact that the people who

know database design are able to understand why the RDBMS provides

certain tools and how they can (and should) use them. For this reason—

as well as the many others presented in this book—it is to your distinct

advantage to learn and understand good database-design techniques.

This book does not map the only road, but it is, I believe, the straight-

est, surest, and most easily traveled.

Summary

This chapter contrasted relational database design with weaker, less ef-

fective design formats. First, we looked at flat-file design. You learned

that there are numerous fatal problems with this approach and that it

should be completely avoided. We then examined spreadsheet design

and you saw how constrained this approach can be. The chapter closed

with a discussion of designing a database using RDBMS software. You

learned that this type of design is perilously dependent on your famil-

iarity and skill level with the software. Unlike a good database-design

method, designing a database around an RDBMS does not provide you

with principles and a rationale for designing a proper database struc-

ture. Superficially, in the short run, the software product looks as

good—it just doesn’t work as well in the long run as the design method

discussed in this book.

This page intentionally left blank

501

15
Bending or Breaking the Rules

Nature never breaks her own laws.

—LEONARDO DA VINCI

Topics Covered in This Chapter

When May You Bend or Break the Rules?

Documenting Your Actions

Summary

I always advocate following proper database-design techniques. As

you’ve already learned, there are numerous reasons for doing so. But

first and foremost, you should use a good design method to ensure the

integrity of the database. I cannot overstate how important this is. You

now know the consequences of improperly establishing data integrity,

so following the rules is of paramount importance.

When May You Bend or Break the Rules?

There are only two specific circumstances under which it is at all per-

missible to bend or break the rules of proper database design. Unless

either of these is an inescapable imperative, you should use proper

database-design techniques when designing your database.

Designing an Analytical Database

As you learned in Chapter 1, an analytical database stores and tracks

historical and time-dependent data. This type of database often contains

502 Chapter 15 Bending or Breaking the Rules

calculated fields within some of its table structures. The expressions

used in many of these fields are meant to record the state of a particular

set of data at a given moment in time; other fields store the results of ag-

gregate functions.

You may have already surmised from the description that this type of

database violates proper database design because its tables contain cal-

culated fields (refer to Chapter 7). In this particular instance, the viola-

tion is acceptable because of the manner in which the data in the

database is being used. I recommend that you properly design the data-

base first and then break the rules only after judicious consideration—

you should make a deliberate decision to break a rule and understand

why doing so is necessary in the specific instance.

Improving Processing Performance

This is by far the most common reason that people feel compelled to

bend or break the rules. Whenever an RDBMS takes what seems to be

an inordinate amount of time to process multitable queries or complex

reports, many people believe that the solution to the problem is to alter

the underlying table structures. For example, they would have you

modify a table in such a way that it includes every field necessary for

the query or report. While this modification does indeed increase the

speed at which the RDBMS processes the query or report, it also intro-

duces a number of new problems, such as unnecessary duplicate fields

❖ Note Designing an analytical database requires a radically dif-

ferent design methodology than the one you learned in this book.

If you determine that your organization requires an analytical da-

tabase, I strongly recommend that you acquire a good book on the

subject and learn how to design such a database properly.

When May You Bend or Break the Rules? 503

and redundant data. This is clearly not a desirable solution, because it

violates proper database design.

Unfortunately, real life is not as ideal as we would like it to be, so you

will sometimes find that you must decide between improving processing

performance and holding to proper design principles.

Is It Worth It?

When you take a moment to really think about this dilemma, you’ll soon

realize that the question really isn’t about performance; it’s about data

integrity. Anytime you break the rules for performance’ sake (or any

other reason, for that matter), you are surely going to introduce data-

integrity problems. The question you must ask yourself, then, is this: Is

the perceived increase in processing performance worth the price of re-

duced (and, therefore, weakened) data integrity? As you well know, the

consequences of making imprudent modifications to your data struc-

tures will eventually spread, like ripples in a pond, throughout your da-

tabase. Here are just a few of the problems you’ll encounter:

• Inconsistent data. This is a result of introducing unnecessary du-

plicate fields into a table. It will be your responsibility (or that of

your application program) to ensure that the data in these fields

is synchronized; if you modify the value in a particular duplicate

field, you’ll have to make certain that the same modification is

made to the remaining duplicate fields.

• Redundant data. Redundant data is also a result of introducing

unnecessary duplicate fields into a table. When you edit a particu-

lar value in a field that contains redundant data, you must be sure

to make the same modification for each instance of that value.

• Impaired data integrity. Bending or breaking the rules often violates

one or more components of overall data integrity, such as table-

level integrity and relationship-level integrity. It will be your

504 Chapter 15 Bending or Breaking the Rules

responsibility (or that of your application program) to compensate

for the lack of integrity—in whatever way it manifests itself—as

best as you can.

• Inaccurate information. You cannot possibly expect the database

to provide accurate information if it has any of the aforementioned

problems.

Improving Performance by Other Means First

If you still think you want to pursue this course of action in order to im-

prove processing performance, do it only as a last resort. Before you

take these measures, however, try to improve performance by some

other means first. Consider these alternatives:

• Enhance or upgrade the computer hardware. In spite of the cost

involved, this is still the easiest way to increase processing perfor-

mance. A faster CPU, more memory, and a printer that better

meets your requirements will all help to greatly decrease the time

it takes the RDBMS to process a complex query or report. Using a

larger hard drive will also help increase the retrieval speed for

disk-intensive queries. Larger hard drives incorporate technology

that produces extremely fast disk-access times.

• Fine-tune the operating system software. Make certain that the

computer’s operating system is optimized for peak performance.

This is especially important for networked computers. You can

greatly enhance general processing performance by working with

the settings of the network’s configuration options. The types of

modifications you make to the operating system in general will de-

pend on the type of software you’re using for the operating sys-

tem, so you’ll have to refer to the software’s documentation to

determine what types of modifications you can make.

• Review the database structure. Make absolutely certain that the

database is properly designed. It makes quite a difference.

Documenting Your Actions 505

Poorly designed databases actually contribute to poor processing

performance.

• Review the database’s implementation. Examine how the data-

base is currently implemented within the RDBMS. Make certain

you’ve taken full advantage of the RDBMS’s capabilities and de-

fined the database as efficiently and completely as possible.

• Review the application program used to work with the database.

Here’s another area you should examine very closely. Is the

application program well-written? Does it make the best use of

the tools the RDBMS provides? Are the application’s compo-

nents well-defined? In some cases, a report may print more

slowly because it is poorly designed—there may be more effec-

tive ways to design and generate the same report. Queries may

run slowly because they are improperly defined. Make certain

that each query is defined correctly and in the most efficient

way possible.

If you believe you must depart from proper database-design techniques,

carefully examine your situation. As I mentioned earlier, it’s acceptable

to suspend the rules if you are designing an analytical database. But I

still strongly recommend that you design your database properly and

thoroughly and relax the rules only for very specific reasons.

Documenting Your Actions

If you’ve exhausted all other options and still come to the conclusion that

you need to bend or break the rules, then you must document each rule

you break and each action you take! It is important that you document

your changes because doing so will compel you to think about the conse-

quences of what you are about to do and it provides a means of recording

the changes you make to the database structure. Should you decide later

that the modifications did not provide a significant increase in processing

506 Chapter 15 Bending or Breaking the Rules

performance, you can use the documentation as a guide to reverse the

modifications you initially made.

These are the items that you should record:

• The reason you’re breaking the rules. Increasing processing per-

formance and decreasing the time it takes to print complex re-

ports are two of the most common reasons for breaking the rules.

Whatever your reason, be sure to state it thoroughly and clearly.

• The design principle you’re violating. Recording how you’ve altered

the database design will give you the means to reverse these

changes later should you determine that performance did not sig-

nificantly improve. You might indicate that you’re altering the

structure of a table, for example.

• The aspect of the database that you’re modifying. Indicate which

particular field, table, relationship, or view you are going to alter.

Once again, this information will be valuable should you decide to

reverse the modifications.

• The specific modifications you are making. Once you determine

which item you need to modify, record the exact modifications you

make to that item. For example, if you need to modify a relation-

ship, note the exact changes you make to its characteristics.

• The anticipated effects on the database and the application pro-

gram. Any modifications you make to the database are going to

affect all accompanying end-user application programs. For exam-

ple, altering the structure of a particular table can affect data

integrity, view structures, data-entry forms and reports built upon

the table (either partially or totally), and macros or programming

code that refer to the table. You must be sure to list every effect.

Add this document to the documentation you compiled for the database.

Even if you reverse the changes later, this record could prevent you from

yielding to a future impulse to attempt the same types of changes.

Summary 507

Summary

The chapter opened by examining the two circumstances under which

you might feel compelled to depart from proper database-design tech-

niques. You learned that breaking the rules is acceptable if you are de-

signing an analytical database; otherwise, you should design the

database properly first and then make deliberate decisions to break or

bend specific rules. You then learned that the most common reason for

departing from proper design techniques is to improve processing per-

formance. Although this is not a satisfactory reason for breaking the

rules, there are times when circumstances dictate that you must con-

sider such changes.

We then continued with a discussion of the alternate measures you can

take to improve processing performance, such as enhancing or upgrad-

ing the hardware and reviewing the implementation of the database.

You learned that you should do all you can to improve performance first

and depart from proper design techniques only as a last resort. The

chapter then closed with a list of items you should record if you need to

break the rules.

This page intentionally left blank

509

In Closing

I’m not a teacher: only a fellow-traveller

of whom you asked the way. I pointed

ahead—ahead of myself as well as you.

—GEORGE BERNARD SHAW

I’ve always believed that you shouldn’t have to be a rocket scientist in

order to design a database properly. It should be a relatively straightfor-

ward task that can be performed by anyone possessing a good amount

of common sense. As long as you follow a good database-design method,

you should be able to design a sound and reliable database structure.

You now possess the knowledge and skills necessary to design a rela-

tional database. You know how to define the necessary structures, es-

tablish table relationships, and implement various levels of data

integrity. If you encounter improperly or poorly designed structures,

you now know how to improve them.

Learning about database design is an ever-continuing process. You can

learn enough to design the types of databases you require, you can turn

it into a profession, or you can even make it a lifelong study. Whatever

your approach, you’ll encounter one inescapable fact: The more you

learn, the more you realize you don’t know it all. But don’t be discour-

aged; this is true of any major subject you endeavor to learn, such as

music, art, philosophy—or rocket science!

I sincerely hope you’ve enjoyed reading this book as much as I’ve en-

joyed writing it. I know that most technical books of this nature can be

510 In Closing

a little dry, so I tried to inject a little humor every now and then, partic-

ularly in the interview and meeting dialogues. Those of you who thought

the conversations were relatively realistic are quite perceptive—they

were very loosely based on a number of interviews and conversations

I’ve had with my clients over the years.

As a parting piece of advice, let me leave you with two words: Always

learn. Never be afraid or intimidated or reluctant to learn something

new. Learning opens the door to fresh ideas, different concepts, and

new perceptions. It encourages participation and communication be-

tween individuals and broadens everyone’s horizons.

Learning is a journey that begins with but one step. You’ve taken the

first step by reading this book. Now you will continue your journey by

learning about other facets of database management.

My book ends here, but your journey is just beginning. . . .

Part IV
Appendixes

This page intentionally left blank

513

A
Answers to

Review Questions

Chapter 1

1. The two main types of databases in use today are operational and

analytical.

2. An analytical database stores static data.

3. True. An operational database is used primarily in OLTP

scenarios.

4. The hierarchical and network database models were commonly

used in the days before the relational database model.

5. In a parent/child relationship, a parent table can be associated

with one or more child tables, but a single child table can be asso-

ciated with only one parent table.

6. A set structure is a transparent construction that establishes and

represents a relationship in a network database.

7. The relational model is based on two branches of mathematics—

set theory and first-order predicate logic.

8. A relational database stores data in relations, which the user per-

ceives as tables.

9. The three types of relationships in a relational database are one-to-

one, one-to-many, and many-to-many.

514 Answers to Review Questions

10. You retrieve data in a relational database by using SQL.

11. The advantages of a relational database include built-in multilevel

integrity, logical and physical data independence from database

applications, guaranteed data consistency and accuracy, and easy

data retrieval.

12. A relational database management system, or RDBMS, is a soft-

ware program you use to create, maintain, modify, and manipulate

a relational database.

13. The object-relational model extends the relational database model

by incorporating various object-oriented elements and characteris-

tics, such as classes, encapsulation, and inheritance.

14. A data warehouse allows organizations to access data stored in

any number of relational and nonrelational databases.

15. XML stands for eXtensible Markup Language and is quickly becom-

ing a de facto data-transfer standard for sharing data across heter-

ogeneous systems.

Chapter 2

1. The best time to use an RDBMS program’s design tools is after you

design the logical structure of the database.

2. True. Design is crucial to the consistency, integrity, and accuracy

of data.

3. The most detrimental result of improper database design is inac-

curate information.

4. The fact that the relational database model is based on set theory

and first-order predicate logic makes the relational database struc-

turally sound and able to guarantee accurate information.

Answers to Review Questions 515

5. These are the advantages to learning a design methodology:

a. It gives you the skills you need to design a sound database

structure.

b. It provides you with an organized set of techniques that will

guide you step-by-step through the design process.

c. It helps you keep your missteps and design reiterations to a

minimum.

d. It makes the design process easier and reduces the amount of

time you spend designing the database.

e. It will help you understand and use your RDBMS software

more fully and effectively.

6. True. Understanding database design will help you use your

RDBMS program more effectively.

7. These are the objectives of good design:

a. The database supports required and ad hoc information

retrieval.

b. The tables are constructed properly and efficiently.

c. Data integrity is imposed at the field, table, and relationship

levels.

d. The database supports business rules relevant to the

organization.

e. The database lends itself to future growth.

8. Data integrity helps to guarantee that data structures and their

values are valid and accurate at all times.

516 Answers to Review Questions

9. These are the benefits of applying good design techniques:

a. The database structure is easy to modify and maintain.

b. The data is easy to modify.

c. Information is easy to retrieve.

d. End-user applications are easy to develop and build.

10. False. You cannot take shortcuts through some of the design pro-

cesses and still arrive at a good, sound design.

Chapter 3

1. Terminology is important for the following reasons:

a. It is used to express and define the special ideas and concepts

of the relational database model.

b. It is used to express and define the database-design process

itself.

c. It is used anywhere a relational database or RDBMS is

discussed.

2. The four categories of terms are value-related, structure-related,

relationship-related, and integrity-related.

3. The values you store in the database are data. Information is data

that you process in a manner that makes it meaningful and useful

to you when you work with it or view it.

4. A null represents a missing or unknown value.

5. The major disadvantage of nulls is that they have an adverse affect

on mathematical operations.

6. Tables are the chief structures in the database.

7. The three types of tables are data tables, linking tables, and valida-

tion tables.

Answers to Review Questions 517

8. A view is a virtual table composed of fields from one or more base

tables in the database.

9. A key is a logical structure that you use to identify records within a

table, and an index is a physical structure that you use to optimize

data processing.

10. The three types of relationships that can exist between a pair of ta-

bles are one-to-one, one-to-many, and many-to-many.

11. You can characterize every relationship in three ways: by the

type of relationship that exists between the tables, the manner

in which each table participates, and the degree to which each

table participates.

12. A field specification represents all the elements of a field.

13. A field specification incorporates three types of elements: general,

physical, and logical.

14. Data integrity refers to the validity, consistency, and accuracy of

the data in a database.

15. The four types of data integrity are field-level, table-level, relation-

ship-level, and business rules.

Chapter 4

1. It is important to complete the design process thoroughly because

it helps you assure a sound structure and data integrity.

2. True. The level of structural integrity is in direct proportion to how

thoroughly you follow the design process.

3. The mission statement identifies the purpose of your database.

4. Mission objectives are statements that represent the general tasks

your users can perform against the data in the database.

518 Answers to Review Questions

5. The list of fields and calculations that you compile during the sec-

ond phase of the design process constitutes your organization’s

fundamental data requirements.

6. You determine the various subjects that the tables will represent

from the mission objectives you wrote during the first phase of the

design process and the data requirements you gathered during the

second phase.

7. False. You establish field specifications for each field in the data-

base during the third phase of the database-design process.

8. You establish a logical connection between the tables in a relation-

ship either with a primary key or with a linking table.

9. The manner in which your organization views and uses its data

will determine a set of limitations and requirements that you must

build into the database.

10. You can define and implement validation tables as necessary to

support certain business rules.

11. You identify the types of views you need to build in the database by

interviewing users and management and determining how they

work with their respective data.

12. You can implement the logical database structure in an RDBMS

program after you’ve completed the entire database-design

process.

Chapter 5

1. Interviews are important because they provide a valuable commu-

nication link between you (the developer) and the people for whom

you’re designing the database. They help ensure the success of

your design efforts, and they provide critical information that can

affect the design of the database structure.

Answers to Review Questions 519

2. The problem that arises when you conduct an interview with a

large number of people is that the intimidation level of some of the

participants will rise in direct proportion to the number of partici-

pants taking part in the interview as a whole.

3. The primary reason for conducting separate interviews with users

and management is that each group has a different perspective on

the organization as a whole and on how the organization uses its

data on a daily basis.

4. False. You’ll commonly use open-ended questions in your interviews.

5. You should try to elicit complete, descriptive responses from the

interview participants.

6. The single most important guideline for every interview you con-

duct is to always maintain control of the interview.

7. A mission statement declares the specific purpose of the database

in general terms.

8. A well-written mission statement is unambiguous, succinct and to

the point, and free of phrases or sentences that explicitly describe

specific tasks.

9. False. You must learn about the organization in order to compose

a mission statement.

10. Your mission statement is complete when you have a sentence that

describes the specific purpose of the database and that is under-

stood and agreed upon by everyone concerned.

11. A mission objective is a statement that represents a single, general

task supported by the data maintained in the database.

12. A well-written mission objective is a declarative sentence that

clearly defines a general task and is free from unnecessary details.

It is expressed in general terms, is succinct and to the point, and is

unambiguous.

520 Answers to Review Questions

13. True. You should interview users and management to help you de-

fine mission objectives.

14. The staff’s daily work relates to the mission objectives in that many

of the tasks they perform will become mission objectives.

15. False. A mission objective cannot describe more than one task.

16. A mission objective can be derived from a response either explicitly

or implicitly.

17. A mission objective is complete when it is both properly defined

and well defined, and when it makes sense to you and to those for

whom you are designing the database

Chapter 6

1. The goals of analyzing the current database are to determine the

following:

a. What types of data the organization uses

b. How the organization uses its data

c. How the organization manages and maintains its data

2. False. You should not adopt the current database structure as the

basis for the new structure.

3. A legacy database is a database that has been in existence and in

use for five years or more.

4. The analysis process incorporates these three steps:

a. Reviewing the way data is collected

b. Reviewing the manner in which information is presented

c. Conducting interviews with users and management

Answers to Review Questions 521

5. The types of computer software programs you should review dur-

ing the analysis include word processors, spreadsheets, data-

bases, and Web pages.

6. You should conduct interviews after you gather data-collection and

information-presentation samples for these reasons:

a. They provide details about the samples you assembled during

the previous reviews.

b. They provide information on the way the organization uses its

data.

c. They are instrumental in defining preliminary field and table

structures.

d. They help to define future information requirements.

7. You use open-ended questions to focus on specific subjects and

closed questions to focus on specific details of a certain subject.

8. The subject-identification technique allows you to identify subjects

within a participant’s response to a given question.

9. You identify specific attributes for a particular subject by using the

characteristic-identification technique.

10. False. You should interview users and management separately.

11. The three basic types of information requirements you must iden-

tify are current, additional, and future.

12. The preliminary field list represents the organization’s fundamental

data requirements and constitutes the core set of fields that you

must define in the database.

13. Each item on this list should have a unique name to ensure that

the characteristic appears only once on the list.

522 Answers to Review Questions

14. A value list specifies the acceptable range of values for a particular

characteristic and often enforces a given business rule.

15. A calculated field stores the result of a string concatenation or

mathematical expression as its value. You should remove calcu-

lated fields from the preliminary field list and place them on a ded-

icated calculated-field list.

Chapter 7

1. You identify and establish tables for the new database using the

preliminary table list.

2. You use the preliminary field list to help you define tables for the

database because the fields on the list may imply subjects that the

database needs to track.

3. When an item on the list of subjects and a differently named item

on the preliminary table list both represent the same subject, you

select the name that best represents the subject and use it as the

sole identifier for that subject.

4. The final table list provides the name, type, and description of each

table in the database.

5. These are the guidelines for creating table names:

a. Create a unique, descriptive name that is meaningful to the

entire organization.

b. Create a name that accurately, clearly, and unambiguously

identifies the subject of the table.

c. Use the minimum number of words necessary to convey the

subject of the table.

d. Do not use words that convey physical characteristics.

Answers to Review Questions 523

e. Do not use acronyms and abbreviations.

f. Do not use proper names or other words that will unduly

restrict the data that can be entered into the table.

g. Do not use a name that implicitly or explicitly identifies more

than one subject.

h. Use the plural form of the name.

6. These are the guidelines for composing table descriptions:

a. Include a statement that accurately defines the table.

b. Include a statement that explains why this table is important to

the organization.

c. Compose a description that is clear and succinct.

d. Do not include implementation-specific information in your

table description, such as how or where the table is used.

e. Do not make the table description for one table dependent

upon the table description for another table.

f. Do not use examples in a table description.

7. You assign fields to a table on the final table list by determining

which fields best represent characteristics of the table’s subject.

8. These are the guidelines for creating field names:

a. Create a unique, descriptive name that is meaningful to the

entire organization.

b. Create a name that accurately, clearly, and unambiguously

identifies the characteristic a field represents.

c. Use the minimum number of words necessary to convey the

meaning of the characteristic the field represents.

d. Do not use acronyms, and use abbreviations judiciously.

524 Answers to Review Questions

e. Do not use words that could confuse the meaning of the field

name.

f. Do not use names that implicitly or explicitly identify more

than one characteristic.

g. Use the singular form of the name.

9. Poorly designed fields can cause problems with duplicate data and

redundant data.

10. You can resolve field anomalies by ensuring that the field complies

with the Elements of the Ideal Field.

11. These are the Elements of the Ideal Field:

a. It represents a distinct characteristic of the subject of the table.

b. It contains only a single value.

c. It cannot be deconstructed into smaller components.

d. It does not contain a calculated or concatenated value.

e. It is unique within the entire database structure.

f. It retains a majority of its characteristics when it appears in

more than one table.

12. Redundant data is acceptable when it is the result of resolving a

multivalued field or an unnecessary duplicate field.

13. In general terms, these are the three steps you follow to resolve a

multivalued field:

a. Remove the field from the table and use it as the basis for a

new table.

b. Use a field (or set of fields) from the original table to relate the

original table to the new table.

c. Assign an appropriate name, type, and description to the new

table and add it to the final table list.

Answers to Review Questions 525

14. The only instance in which it is necessary to use a duplicate field

is when the field serves to establish a relationship between two

tables.

15. You can refine table structures by ensuring that each table com-

plies with the Elements of the Ideal Table.

16. These are the Elements of the Ideal Table:

a. It represents a single subject, which can be an object or event.

b. It has a primary key.

c. It does not contain multipart or multivalued fields.

d. It does not contain calculated fields.

e. It does not contain unnecessary duplicate fields.

f. It contains only an absolute minimum amount of redundant

data.

17. A subset table is a table that represents a subordinate subject of a

particular data table.

Chapter 8

1. Keys are important for the following reasons:

a. They ensure that each record in a table is properly identified.

b. They help establish and enforce various types of integrity.

c. They serve to establish table relationships.

2. The four main types of keys are candidate, primary, foreign, and

non.

3. The purpose of a candidate key is to uniquely identify a single in-

stance of the table’s subject.

526 Answers to Review Questions

4. These are the Elements of a Candidate Key:

a. It cannot be a multipart field.

b. It must contain unique values.

c. It cannot contain null values.

d. Its value is not optional in whole or in part.

e. It comprises a minimum number of fields necessary to define

uniqueness.

f. Its values must uniquely and exclusively identify each record in

the table.

g. Its value must exclusively identify the value of each field within

a given record.

h. Its value can be modified only in rare or extreme cases.

5. True. A candidate key can be composed of more than one field.

6. Yes, a table can have more than one candidate key.

7. A field you create for the sole purpose of serving as a candidate key

is known as an artificial candidate key. You create this type of key

when there are no “naturally occurring” candidate keys in a table.

8. The primary key is the most important key you assign to a table.

9. It is important for the following reasons:

a. A primary key field exclusively identifies the table throughout

the database structure and helps establish relationships with

other tables.

b. A primary key value uniquely identifies a given record within a

table and exclusively represents that record throughout the

entire database. It also helps to guard against duplicate

records.

Answers to Review Questions 527

10. You establish a primary key by examining the table’s pool of avail-

able candidate keys and then selecting one as the primary key.

11. These are the Elements of a Primary Key:

a. It cannot be a multipart field.

b. It must contain unique values.

c. It cannot contain null values.

d. Its value is not optional in whole or in part.

e. It comprises a minimum number of fields necessary to define

uniqueness.

f. Its values must uniquely and exclusively identify each record in

the table.

g. Its value must exclusively identify the value of each field within

a given record.

h. Its value can be modified only in rare or extreme cases.

12. Before you finalize your selection of a primary key, you must make

absolutely certain that it exclusively identifies the value of each

field within a given record.

13. An alternate key is a candidate key that was not chosen to serve as

the primary key of the table.

14. By establishing table-level integrity, you ensure the following:

a. There are no duplicate records in a table.

b. The primary key exclusively identifies each record in a table.

c. Every primary key value is unique.

d. Primary key values are not null.

528 Answers to Review Questions

15. You should review the initial table structures for the following

reasons:

a. To ensure that the appropriate subjects are represented in the

database

b. To make certain that the table names and table descriptions

are suitable and meaningful to everyone

c. To make certain that the field names are suitable and meaning-

ful to everyone

d. To verify that all the appropriate fields are assigned to each

table

Chapter 9

1. Field specifications are important for these reasons:

a. They help establish and enforce field-level integrity.

b. They help enhance overall data integrity.

c. They compel you to acquire a complete understanding of the

nature and purpose of the data in the database.

d. They constitute the “data dictionary” of the database.

2. Field-level integrity warrants the following:

a. The identity and purpose of a field is clear, and all of the tables

in which it appears are properly identified.

b. Field definitions are consistent throughout the database.

c. The values of a field are consistent and valid.

d. The types of modifications, comparisons, and operations that

can be applied to the values in the field are clearly identified.

Answers to Review Questions 529

3. The three categories of elements within a field specification are

general, physical, and logical.

4. The three types of specifications are Unique, Generic, and Replica.

5. Composing a field description is extremely beneficial because it

forces you (and everyone in the organization) to think carefully

about the nature of the data that will be stored in the field.

6. The Data Type element indicates the nature of the data that the

field stores.

7. The Character Support element indicates the type of characters

that a user can enter into a given field value.

8. The Display Format element governs the appearance of a field’s

value when it is displayed on a screen or printed within a document.

9. The types of keys indicated on a field specification are non, pri-

mary, alternate, and foreign.

10. False. Null does not represent a blank—it represents a missing or

unknown value.

11. The Range of Values element specifies every possible valid value for

a field.

12. An Edit Rule designates at what point in time a user can enter a

value into a field and whether he can modify that value.

13. The Comparisons Allowed element indicates the types of compari-

sons a user can apply to a given field value when he’s retrieving in-

formation from the field.

14. A value expression is some form of operation involving field values,

literal values, or a combination of both, and it returns a single

value that you can then use for a comparison operation.

15. You use a generic specification for a field that serves as a template

for other fields within the database.

530 Answers to Review Questions

Chapter 10

1. A relationship is important for the following reasons:

a. It establishes a connection between a pair of tables that are log-

ically related to each other.

b. It helps to refine table structures and minimize redundant data

further.

c. It is the mechanism that enables you to draw data from multi-

ple tables simultaneously.

2. The three types of relationships are one-to-one, one-to-many, and

many-to-many.

3. The many-to-many relationship will pose the most problems.

4. You could possibly encounter problems such as these with a

many-to-many relationship:

a. It will be tedious and somewhat difficult for you to retrieve

information from one of the tables.

b. One of the tables will contain a large amount of redundant data.

c. Duplicate data will exist within both tables.

d. It will be difficult to insert, update, and delete data.

5. A self-referencing relationship is a relationship that exists between

the records within a given table.

6. You begin the process of identifying the relationships among the

tables in the database by creating a matrix of all the tables.

7. The two types of questions you can ask to help you identify existing

relationships are associative and contextual.

8. You use a 1:N shorthand symbol to designate a one-to-many rela-

tionship in the table matrix.

Answers to Review Questions 531

9. You determine what type of relationship officially exists between

each pair of tables in the matrix using formulas that correspond to

the three relationship-type definitions.

10. You establish a one-to-many relationship by taking a copy of the

primary key from the table on the “one” side of the relationship

and incorporating it within the table structure on the “many” side,

where it then becomes a foreign key.

11. True. Retrieving information from tables with a self-referencing re-

lationship can be tedious and somewhat difficult.

12. You establish a self-referencing many-to-many relationship as you

would a dual-table many-to-many relationship—with a linking table.

13. You refine the foreign keys in the database by ensuring that each

one complies with the Elements of a Foreign Key.

14. The two element categories you must modify for a foreign key’s

field specification are the General Elements and Logical Elements

categories.

15. A deletion rule determines what your RDBMS should do when you

place a request to delete a given record in the parent table of the

relationship.

16. The two types of participation you can designate for a table are

Mandatory and Optional.

17. The degree of participation indicates the minimum number of

records that a given table must have associated with a single

record in the related table and the maximum number of records

that the table is allowed to have associated with a single record in

the related table.

18. A relationship attains relationship-level integrity after you’ve veri-

fied that it is properly established and its characteristics are suit-

ably set.

532 Answers to Review Questions

Chapter 11

1. A business rule is a statement that imposes some form of con-

straint on a specific aspect of the database, such as the elements

within a field specification for a particular field or the characteris-

tics of a given relationship.

2. The two major types of business rules are database oriented and

application oriented.

3. No. Application oriented business rules impose constraints that

you cannot establish within the logical design of the database.

4. The two categories of database oriented business rules are field

specific and relationship specific.

5. A field specific business rule is one that imposes constraints on the

elements of a field specification for a particular field.

6. The constraint the business rule imposes is tested when you at-

tempt to perform one of three actions: inserting a record into the

table or an entry into a field, deleting a record from the table or a

value within a field, or updating a field’s value.

7. You document a business rule by filling out a Business Rule Spec-

ifications sheet for the rule.

8. The Business Rule Specifications sheet provides three advantages:

a. It allows you to document every database oriented business

rule.

b. It allows you to document every application oriented business

rule.

c. It provides a standard method for recording all business rules.

9. The Action Taken section of a Business Rule Specifications sheet is

the area where you indicate the modifications you’ve made to the

elements of a field specification or to a relationship diagram.

Answers to Review Questions 533

10. A validation table (also known as a lookup table) stores data that

you specifically use to implement data integrity.

11. Validation tables usually (but not always) comprise two fields: The

first acts as the primary key and is what you’ll use to help you en-

force data integrity, and the second is simply a non-key field that

stores a set of values required by some other field in the database.

12. You can use a validation table to enforce a constraint that a busi-

ness rule imposes on a given field’s range of values.

13. You should review each Business Rule Specifications sheet to en-

sure that you’ve properly established the rule it records and that

you’ve clearly marked all of the appropriate areas on the sheet.

Chapter 12

1. You can refer to a view as a virtual table because it draws data

from base tables rather than storing data on its own.

2. Views are valuable for the following reasons:

a. You can use them to work with data from multiple tables

simultaneously.

b. They reflect the most current information.

c. You can customize them to the specific needs of an individual

or group of individuals.

d. You can use them to help enforce data integrity.

e. You can use them for security or confidentiality purposes.

3. The types of views you can define as you design the logical struc-

ture of the database are data, aggregate, and validation.

4. Each time you access a view, your RDBMS will rebuild and repop-

ulate it using the most current data from the view’s base tables.

534 Answers to Review Questions

5. Field specifications and business rules will determine what types

of modifications you can make to a view’s data.

6. The only requirement you must fulfill in order to define a multi-

table data view is that the tables you use to create the view must

bear a relationship to each other.

7. A data view does not contain its own primary key because it is not

a table; a true table stores data and requires a primary key to serve

as a unique identifier for each of its records.

8. The purpose of an aggregate view is to display information pro-

duced by aggregating a particular set of data in a specific manner.

9. Sum, Average (arithmetic mean), Minimum, Maximum, and Count

are the most common aggregate functions that you can apply to a

set of data.

10. A grouping field is a data field within an aggregate view that

“groups” multiple instances of a given value into a single instance

of the value.

11. False. You cannot modify the data in an aggregate view because it

is composed entirely of grouping fields and calculated fields.

12. The difference between a validation table and a validation view lies

in their construction—a validation table stores its own data,

whereas a validation view draws data from its base tables.

13. You would keep the following points in mind as you identify view

requirements:

a. Review your notes with the group.

b. Review the data-entry, report, and presentation samples you

gathered during the early stages of the design process.

c. Examine the tables and the subjects they represent.

d. Analyze the table relationships.

e. Study the business rules.

Answers to Review Questions 535

14. You should use calculated fields when they will provide pertinent

and meaningful information or when they will enhance the manner

in which the view uses its data.

15. You define a view that displays only science-fiction books by apply-

ing a filter to the appropriate field within the view.

16. You must complete a View Specifications sheet for every view in the

database because it is on this sheet that you will record the char-

acteristics of the view.

This page intentionally left blank

537

B
Diagram of the

Database-Design Process

The diagram on the following pages provides you with a map of the

entire database-design process. It indicates each design phase, proce-

dures within the phase, tasks within the procedure, and in some cases,

subtasks within a task.

This legend shows the type of symbols you’ll see in the diagram.

Legend

This Is a Procedure

This Is A Design Phase

this is a task

This indicates output

this is a subtask

This
Represents a

Collection
of Items

This Represents
Written Material

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

This is
a note

This Represents a
Specification

Sheet

~~~~~~~

This Represents

a Diagram



538  Diagram of the Database-Design Process

Write the Mission
Statement

Interview the Owner

Interview Users Interview Management

Define Mission Objectives Define Mission Objectives

Write Mission Objectives

Mission Objectives
• ~~ ~~~~ ~ ~~~~~
• ~~ ~~~~ ~~~ ~~~
• ~~~ ~~~ ~~ ~ ~~~
• ~~ ~~~~ ~ ~~~~~
• ~~ ~~~~ ~~~ ~~~
• ~~~ ~~~ ~~ ~ ~~~

Define a Mission Statement and Mission Objectives

Mission Statement
~~ ~~~~ ~~~~~~ ~~
~~~~~~ ~~~~ ~~~ ~~
~ ~~~~~ ~~ ~~~
~~~~~~ ~~~ ~~~ ~~

Analyze the Current Database

Data Collection
Samples

Presentation
Samples

Review How
Data Is Collected

Review How
Information Is Presented



Diagram of the Database-Design Process 539

Interview Users

Initial List
of Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

Additional
Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

review information
requirements

Verify and
note data
sources

review data
type and usage

review the samples

current information
requirements

additional information
requirements

future information requirements

Data Collection
Samples

with descriptions Presentation
Samples

with descriptions

New Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

Additional Data
Collection and
Presentation

Samples

Initial List of

Characteristics
~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Additional
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

New
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~



540  Diagram of the Database-Design Process

additional information
requirements

Additional
Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

Interview Management

review information
requirements

New Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

current information
requirements

New Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

future information requirements

New Subjects

~~ ~~
~~~~~
~~~~~~
~~~~
~~~~~

overall information
requirements

Newly
Discovered

Presentation
Samples

New Data
Collection and
Presentation

Samples

Additional Data
Collection and
Presentation

Samples

New
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

New
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

New
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Additional
Characteristics

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~



Diagram of the Database-Design Process 541

Create the Data Structures

Create a
preliminary table list

Preliminary

Table List
1st version

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Compile a Complete
List of Fields

create a
preliminary field list

Preliminary
Field List

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

review and refine
list of characteristics

create a
calculated field list

Calculated
Field List

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

review and refine
preliminary field list

Sign off on
both lists

review field lists with
users and management

identify implied
subjects from

preliminary field list



542  Diagram of the Database-Design Process

merge the
preliminary table list

with the
list of subjects

Preliminary
Table List

2nd version
~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

incorporate subjects
from the

mission objectives

Preliminary
Table List

3rd version
~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Define the Final Table List

refine table names

indicate table types

compose table
descriptions

Final Table List

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

interview users
and management

have everyone sign off on the list



Diagram of the Database-Design Process 543

Associate Fields
with Each Table

associate fields from the
preliminary field list to 

each table as appropriate

List of Table
Structures

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Refine the Fields

improve field names using
the appropriate guidelines

use the Elements of the
Ideal Field to resolve field

anomalies

resolve multipart fields

resolve multivalued fields

List of Table
Structures

with revised fields

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~



544  Diagram of the Database-Design Process

Refine the Table Structures

resolve unnecessary duplicate fields

establish subset tables

List of Table
Structures

with revised tables

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

List of Table

Structures
with subset tables

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

Establish Keys for Each Table

define candidate keys
based on the Elements

of a Candidate Key

List of Table
Structures

with candidate keys

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

use the Elements of
the Ideal Table to

refine table structures

refine previously
unidentified subset tables

create artificial candidate
keys as necessary



Diagram of the Database-Design Process 545

define primary keys
based on the Elements

of a Primary Key

List of Table
Structures

with primary keys

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

designate alternate
keys from remaining

candidate keys

List of Table
Structures

with alternate keys

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

review initial
table structures

Initial Table
Structures

~~ ~~ ~~~~
~~~~~ ~~~
~~~~~~ ~~~~~
~~~~ ~~~~
~~~~~ ~~~~~

interview users
and management

have everyone sign off
on the structures

with all keys



546  Diagram of the Database-Design Process

ensure the specifications you
completed are suitable and correct

meet with user/management
representatives and review

all of the specifications

finish the specifications you
were initially unable to complete

Define a Field Specification for
Each Field in the Database

complete as many
specifications as you can

have everyone sign off
on the completed specifications

~~~~~~~

Complete Field
Specifications

~~~~~~~

Partial Field

Specifications

~~~~~~~

Field Specification
Sheets

for all fields

Diagram of the Database-Design Process 547

Determine and Establish Table Relationships

Identify Existing Relationships

create and set up
a table matrix

review and refine table structures

Table Matrix

identify the official
relationships for the tables

within the matrix

establish each relationship
using foreign keys or linking

tables as appropriate

Refine All Foreign Keys Using
the Elements of a Foreign Key

Relationship
Diagrams

Revised
Relationship

Diagrams

Revised
Relationship

Diagrams

548 Diagram of the Database-Design Process

Establish Relationship
Characteristics

define a deletion rule

indicate the type of
participation for each table

indicate the degree of
participation for each table

have everyone sign off
on the structures

verify relationships with
user/management

representatives

Revised
Relationship

Diagrams

Revised
Relationship

Diagrams

Revised
Relationship

Diagrams

Diagram of the Database-Design Process 549

Define and Establish Business Rules

Field Specific Rules

identify any constraints
for each field

define the necessary rules

identify the actions that test
each rule

record the rule on a
Business Rule Specifications

sheet

modify the appropriate field
specification elements

~~~~~~~

Business Rule

Specifications

~~~~~~~

Revised Field
Specifications

550 Diagram of the Database-Design Process

Relationship Specific Rules

identify any constraints
for each relationship

define the necessary rules

identify the actions that test
each rule

record the rule on a
Business Rule Specifications

sheet

modify the appropriate
relationship characteristics

Review Business Rule
Specifications Sheets

revise as necessary

~~~~~~~

Business Rule

Specifications

~~~~~~~

Revised Business
Rule Specifications

Sheets

Relationship
Diagrams

Revised

Diagram of the Database-Design Process 551

Determine and Define Views

Identify the Organization's
View Requirements

collaborate with the user/
management representatives

review the materials you've
gathered and created

throughout the design process

review the tables, relationships,
and business rules

View Requirements
~~ ~~~~ ~~~~~~ ~~
~~~~~~ ~~~~ ~~~ ~~
~ ~~~~~ ~~ ~~~
~~~~~~ ~~~ ~~~ ~~

Define the Views

review relationship diagrams

identify the tables you
need for each view

diagram the view

View Diagram

552 Diagram of the Database-Design Process

review each of the
View Specifications sheets

add calculated
fields as necessary

make sure the view is properly
defined and everything is in order

impose criteria to filter
the data as necessary

record the view in a
View Specifications sheet

have everyone sign off
on the view structures

Revised

View Diagram

~~~~~~~

View

Specifications



Diagram of the Database-Design Process 553

Review Data Integrity

Review Each Component
of Data Integrity

field level

relationship level

business rules

view level

table level

Assemble Database Documentation

The Design Process Is Complete!

View Diagrams

Final Table List Relationship Diagrams

Field Specifications Sheets Business Rule Specification Sheets

Calculated Field List

Table Structure Diagrams View Specification Sheets



This page intentionally left blank 



555

C
Design Guidelines

Here, in alphabetical order, are the various sets of design guidelines 

that appear throughout the book.

Defining and Establishing Field Specific 

Business Rules

1. Select a table.

2. Review each field and determine whether it requires any constraints.

3. Define the necessary business rules for the field.

4. Establish the rules by modifying the appropriate field specification 

elements.

5. Determine what actions test the rule.

6. Record the rule on a Business Rule Specifications sheet.

Defining and Establishing Relationship 

Specific Business Rules

1. Select a relationship.

2. Review the relationship and determine whether it requires any 

constraints.

3. Define the necessary business rules for the relationship.



556  Design Guidelines

4. Establish the rule by modifying the appropriate relationship 

characteristics.

5. Determine what actions will test the rule.

6. Record the rule on a Business Rule Specifications sheet.

Elements of a Candidate Key

• It cannot be a multipart field.

• It must contain unique values.

• It cannot contain null values.

• Its value cannot cause a breach of the organization’s security or 

privacy rules.

• Its value is not optional in whole or in part.

• It comprises a minimum number of fields necessary to define 

uniqueness.

• Its values must uniquely and exclusively identify each record in 

the table.

• Its value must exclusively identify the value of each field within a 

given record.

• Its value can be modified only in rare or extreme cases.

Elements of a Foreign Key

• It has the same name as the primary key from which it was copied.

• It uses a replica of the field specifications for the primary key from 

which it was copied.

• It draws its values from the primary key to which it refers.



Design Guidelines 557

Elements of a Primary Key

• It cannot be a multipart field.

• It must contain unique values.

• It cannot contain null values.

• Its value cannot cause a breach of the organization’s security or 

privacy rules.

• Its value is not optional in whole or in part.

• It comprises a minimum number of fields necessary to define 

uniqueness.

• Its values must uniquely and exclusively identify each record in 

the table.

• Its value must exclusively identify the value of each field within a 

given record.

• Its value can be modified only in rare or extreme cases.

Rules for Establishing a Primary Key

• Each table must have one—and only one—primary key.

• Each primary key within the database must be unique—no two 

tables should have the same primary key unless one of them is a 

subset table.

Elements of the Ideal Field

• It represents a distinct characteristic of the subject of the 

table.

• It contains only a single value.



558  Design Guidelines

• It cannot be deconstructed into smaller components.

• It does not contain a calculated or concatenated value.

• It is unique within the entire database structure.

• It retains the majority of its characteristics when it appears in 

more than one table.

Elements of the Ideal Table

• It represents a single subject, which can be an object or event.

• It has a primary key.

• It does not contain multipart or multivalued fields.

• It does not contain calculated fields.

• It does not contain unnecessary duplicate fields.

• It contains only an absolute minimum amount of redundant 

data.

Field-Level Integrity

This type of integrity ensures the following:

• The identity and purpose of a field is clear, and all of the tables in 

which it appears are properly identified.

• Field definitions are consistent throughout the database.

• The values of a field are consistent and valid.

• The types of modifications, comparisons, and operations that can 

be applied to the values in the field are clearly identified.



Design Guidelines 559

Guidelines for Composing a Field 

Description

• Use a statement that accurately identifies the field and clearly 

states its purpose.

• Write a clear and succinct statement.

• Refrain from restating or rephrasing the field name.

• Avoid using technical jargon, acronyms, or abbreviations.

• Do not include implementation-specific information.

• Do not make this description dependent upon the description of 

another field.

• Do not use examples.

Guidelines for Composing a Table 

Description

• Include a statement that accurately defines the table.

• Include a statement that explains why this table is important to 

the organization.

• Compose a description that is clear and succinct.

• Do not include implementation-specific information in your table 

description, such as how or where the table is used.

• Do not make the table description for one table dependent upon 

the table description for another table.

• Do not use examples in a table description.



560  Design Guidelines

Guidelines for Creating Field Names

• Create a unique, descriptive name that is meaningful to the entire 

organization.

• Create a name that accurately, clearly, and unambiguously iden-

tifies the characteristic a field represents.

• Use the minimum number of words necessary to convey the mean-

ing of the characteristic the field represents.

• Do not use acronyms, and use abbreviations judiciously.

• Do not use words that could confuse the meaning of the field 

name.

• Do not use names that implicitly or explicitly identify more than 

one characteristic.

• Use the singular form of the name.

Guidelines for Creating Table Names

• Create a unique, descriptive name that is meaningful to the entire 

organization.

• Create a name that accurately, clearly, and unambiguously iden-

tifies the subject of the table.

• Use the minimum number of words necessary to convey the sub-

ject of the table.

• Do not use words that convey physical characteristics.

• Do not use acronyms and abbreviations.

• Do not use proper names or other words that will unduly restrict 

the data that can be entered into the table.



Design Guidelines 561

• Do not use a name that implicitly or explicitly identifies more than 

one subject.

• Use the plural form of the name.

Identifying Relationships

Use this procedure to identify the official relationship between a pair of 

tables within a table matrix:

1. Select a pair of tables and note the entry at the junction of the first 

table and the second table.

2. Locate the second table on the same side of the matrix you’re 

working on and note the entry and the junction between it and the 

first table on the opposite side of the matrix.

3. Apply the appropriate formula (shown below) to the two entries 

and identify the official relationship between the tables.

a. 1:1 + 1:1 = 1:1

b. 1:N + 1:1 = 1:N

c. 1:N + 1:N = M:N

4. Diagram the relationship in the appropriate manner.

5. Cross out both entries on the matrix.

Identifying View Requirements

Use this procedure to identify your organization’s view requirements:

• Review your notes with the group of user/management 

representatives.



562  Design Guidelines

• Review the data-entry, report, and presentation samples you 

gathered during the early stages of the design process.

• Examine the tables and the subjects they represent.

• Analyze the table relationships.

• Study the business rules.

Interview Guidelines

Participant Guidelines

• Make the participants aware of your intentions.

• Let the participants know that you appreciate their taking part in 

the interview and that their responses to the interview questions 

are valuable to the overall design project.

• Make sure everyone understands that you are the official arbitra-

tor if and when a dispute arises.

Interviewer Guidelines

• Conduct the interview in a well-lit room, separated from distract-

ing noise, with a large table and comfortable chairs, and have cof-

fee and munchies on hand.

• Set a limit of 10 people or fewer for each interview.

• Conduct separate interviews for users and management.

• When you have to interview several groups of people, designate a 

group leader for each group.

• Prepare your questions prior to the interview.



Design Guidelines 563

• If you’re not very good at taking notes, either assign that task to a 

dependable transcriber for each interview or get the group’s per-

mission to use a tape recorder to record the interview.

• Give everyone your equal and undivided attention.

• Keep the pace of the interview moving.

• Always maintain control of the interview.

Mission Statements

A well-written mission statement has the following attributes:

• It expresses its point succinctly and immediately.

• It avoids unnecessary statements or details and is well-defined.

• It avoids phrases or sentences that explicitly describe specific

tasks.

• It makes sense to you (the database developer) and to those for 

whom you are designing the database.

Mission Objectives

A well-written mission objective has the following attributes:

• It comprises a declarative sentence that clearly defines a general 

task and is free from unnecessary details.

• It expresses itself in general terms that are succinct, to the point, 

and unambiguous.

• It makes sense to you and to those for whom you are designing 

the database.



564  Design Guidelines

Relationship-Level Integrity

This type of integrity ensures the following:

• The connection between the two tables (or key fields) in a relation-

ship is sound.

• You can insert new records into each table in a meaningful 

manner.

• You can delete an existing record without producing any adverse 

affects.

• There is a meaningful limit to the number of records that can be 

interrelated within the relationship.

Resolving a Multivalued Field

Use this generic procedure to resolve a multivalued field:

1. Remove the field from the table and use it as the basis for a new 

table. If necessary, rename the field in accordance with the field 

name guidelines that you learned earlier.

2. Take the primary key from the original table and incorporate 

it into the new table structure. This field will perform two 

specific functions in the new table: It will serve as part of the 

table’s composite primary key, and it will serve as a foreign key 

that helps to establish the relationship between the new table 

and the original table.

3. Assign an appropriate name, type, and description to the new table 

and add it to the final table list.



Design Guidelines 565

Table-Level Integrity

This type of integrity ensures the following:

• There are no duplicate records in a table.

• The primary key exclusively identifies each record in a table.

• Every primary key value is unique.

• Primary key values are not null.



This page intentionally left blank 



567

D
Documentation Forms

Blank copies of the Field Specifications sheet, Business Rule Specifica-

tions sheet, and View Specifications sheet are provided here for you to 

copy and use on your database projects.



568

Field Name:

Label:

Parent Table:

Shared By:

Alias(es):

Description:

Specification Type:

Source Specification:

ReplicaUnique Generic

Length:

Decimal Places:

Input Mask:

Display Format:

Data Type: Character Support:

Letters    (A–Z)

Numbers (0–9)

.Keyboard ( ,  / $ # %)

Special ( © ® ™ ∑ π)

Key Structure:

Non

Not Determined At This Time

Edit Rule:

Null Support: Nulls Allowed

Enter Now, Edits Allowed

Enter Now, Edits Not Allowed

Enter Later, Edits Allowed

Primary

AlternateForeign

No Nulls

Uniqueness: Non-unique Unique

Required Value: No Yes

Comparisons Allowed:

Range of Values:

Default Value:

Values Entered By: User

Operations Allowed:

System

Key Type:

CompositeSimple

Enter Later, Edits Not Allowed

<> ≠ <=>=

Other Fields

Same Field =

Value Expression

<> ≠ <=>==

<> ≠ <=>==

All

All

All

÷Same Field

Other Fields Concatenation÷

All

All

+

+

x

x

Value Expression All Concatenation÷+ x

Concatenation

General Elements

Physical Elements

Logical Elements

FIELD SPECIFICATIONS

–

–

–



569

Field Names:

Table Names:

Statement:

Constraint:

Test On: Insert

Delete

UpdateCategory: Field Specific

Relationship Specific

Type: Database Oriented

Application Oriented

Logical Elements

Key Structure

Edit Rule

Null Support

Uniqueness

Required Value

Comparisons Allowed

Range of Values

Default Value

Values Entered By

Operations Allowed

Key Type

Physical Elements

Length

Input MaskDecimal Places

Character Support Display Format

Data Type

Degree of ParticipationType of ParticipationDeletion Rule

Action Taken

Structures Affected

Rule Information

Field Elements Affected

Relationship Characteristics Affected

BUSINESS RULE SPECIFICATIONS



570

Base Tables

General Information

Description:

Calculated Field Expressions

Field Name

Filters

Field Name Condition

Expression

Name: Type: Data ValidationAggregate

VIEW SPECIFICATIONS



571

E
Database-Design

Diagram Symbols

The symbols I’ve used throughout the book to diagram data structures, 

relationships, relationship characteristics, and key designations are 

presented here for quick and easy reference.

DATA TABLE

SUBSET TABLE VALIDATION TABLE

LINKING TABLE V IEW

Table and View Structures



572  Database-Design Diagram Symbols

Relationship Types

One-to-One

One-to-Many

Many-to-Many

Dual Table Single Table

(C) Cascade

(D) Deny

Deletion Rules

(N) Nullify

(R) Restrict

(S) Set Default

Type of Participation

Mandatory Participation

Optional Participation

Degree of Participation

(1,8)

Minimum number of
related records allowed

Maximum number of
related records allowed

PK Primary Key

CCK Composite Candidate KeyCK Candidate Key

AK Alternate Key

FK Foreign Key

Key Designations

CFK Composite Foreign Key

CAK Composite Alternate Key

CPK Composite Primary Key



573

F
Sample Designs

I’ve provided these sample designs to serve as ideas for databases you 

may want or need to create. I emphasize the word “ideas” because five 

people can look at the same design and come up with five distinct varia-

tions based on their needs, backgrounds, and personal points of view. 

Remember that there is no right or wrong way to design a given data-

base, but you do have to ensure that the tables, fields, relationships, 

and views all conform to the guidelines you’ve learned from this book.

I intentionally omitted all but the primary and foreign key fields from 

each table because I did not want to greatly influence you in any way as 

to how the tables should be populated. I also omitted a majority of the 

relationship characteristics for the same reason.

Should you see a design that you might be able to use, run it through 

the entire database-design process and treat it like an existing data-

base. At the end of the process, you should have a database that suits 

your needs.



574  Sample Designs

Entertainment Agency Database

Customers

Customer ID PK

Agents

Agent ID PK

Members

Member ID PK

Entertainer Members

Entertainer ID CPK/FK

Member ID CPK/FK

Musical Preferences

Customer ID CPK/FK

Style ID CPK/FK

Musical Styles

Style ID PK

Entertainers

Entertainer ID PK

Entertainer Styles

Customer ID CPK/FK

Style ID CPK/FK

Engagements

Engagement ID PK

Customer ID FK

Agent ID FK

Entertainer ID FK



Sample Designs 575

School Database

Staff

Staff ID PK

Faculty

Staff ID PK

Faculty Categories

Staff ID CPK/FK

Category ID CPK/FK

Faculty Classes

Class ID CPK/FK

Staff ID CPK/FK

Faculty Subjects

Staff ID CPK/FK

Subject ID CPK/FK

Subjects

Subject ID PK

Departments

Department ID PK

Classroomes

ClassRoom ID PK

Buildings

Building Code PK

Students

Student ID PK

Student Class Status

Class Status PK

Building Code FK

Categories

Category ID PK

Department ID FK

Category ID FK

Classes

Class ID PK

Subject ID FK

Classroom ID FK

Student Schedules

Class ID CPK/FK

Student ID CPK/FK

Class Status FK



576  Sample Designs

Sales Order Database

Customers

Customer ID PK

Employees

Employee ID PK

Orders

Order ID PK

Customer ID FK

Employee ID FK

Products

Product Number PK

Category ID FK

Order Details

Order ID CPK/FK

Product Number CPK/FK

Categories

Category ID PK

Product Vendors

Product Number CPK/FK

Vendor ID CPK/FK

Vendors

Vendor ID PK



Sample Designs 577

Office Inventory Database

Software

Item ID PK

Office Furniture

Item ID

Office Equipment

Item ID

Items

Item ID PK

Container Items

Container ID CPK/FK

Item ID CPK/FK

Containers

Container ID PK

Storage Location ID FK

Storage Locations

Storage Location ID PK

PK

PK



578  Sample Designs

Bowling League Database

Matches

Match ID PK

Tournament ID FK

Odd-lane Team ID FK

Even-lane Team ID FK

Tournaments

Tournament ID PK

Teams

Team ID PK

Bowlers

Bowler ID PK

Team Members

Team ID CPK/FK

Bowler ID CPK/FK

Matches

Match ID CPK

Game Number CPK

Winning Team ID FK

Bowler Scores

Match ID CPK

Game Number CPK

Bowler ID CPK



Sample Designs 579

Car Rental Database

Customers

Customer ID PK

Vehicles

License Number PK

Employees

Employee ID PK

Supervisor ID FK

Locations

Location ID PK

Maintenance Types

Maintenance Type ID PK

Maintenance Workorders

Workorder Number PK

License Number FK

Maintenance Type ID FK

Rentals

Rental ID PK
Customer ID FK
Employee ID FK

Location ID FK

License Number FK



This page intentionally left blank 



581

G
Recommended Reading

Should you be interested in pursuing an in-depth study of database 

technology, here are my recommendations for books on this subject. I’ve 

chosen these particular books because they have stood the test of time 

and have become standard reading within the database industry and 

academic institutions. (I’m pleased to state that my book has become 

part of this notable list.) Keep in mind that most of these books are go-

ing to be challenging to read; the authors presume that you have a fair 

amount of background in computers and programming or are pursuing 

a degree in computer science.

Codd, E. F. (1990). The Relational Model for Database Management: Ver-

sion 2. Reading, MA: Addison-Wesley. (Note: This book is hard to 

find, but it’s worth having in your library if you’re going to become 

a serious database developer.)

Connolly, Thomas, and Carolyn Begg. (2002). Database Systems—A 

Practical Approach to Design, Implementation, and Management, 

Third Edition. Boston, MA: Addison-Wesley.

Date, C. J. (2000). An Introduction to Database Systems, Seventh

Edition. Boston, MA: Addison-Wesley.

——. (2000). The Database Relational Model—A Retrospective Review 

and Analysis. Boston, MA: Addison-Wesley.

Date, C. J., and Hugh Darwen. (2000). Foundation for Future Database 

Systems—The Third Manifesto, Second Edition. Boston, MA: 

Addison-Wesley.



582  Recommended Reading

Fleming, Candace C., and Barbara von Halle. (1989). Handbook of Rela-

tional Database Design. Reading, MA: Addison-Wesley.

Hoffer, Jefferey A., Mary B. Prescott, and Fred R. McFadden. (2002). 

Modern Database Management, Sixth Edition. Upper Saddle River, 

NJ: Prentice Hall.

Kroenke, David M. (2000). Database Processing—Fundamentals, Design, 

& Design, Seventh Edition. Upper Saddle River, NJ: Prentice Hall.

I do recommend other books on a variety of subjects, such as database 

design and theory, data modeling, GUI design, SQL, Visual Basic, and 

.NET. You can review these recommendations by accessing my Web site 

at http://www.ForMereMortals.com.

http://www.ForMereMortals.com


583

Glossary

Aggregate Function A snippet of programming code that executes a 

particular type of mathematical aggregation on a set of data and re-

turns a single value.

Aggregate View A view used to display information produced by ag-

gregating a particular set of data in a specific manner.

Alternate Key A candidate key that has not been designated as a pri-

mary key.

Analytical Database A type of database that stores static data and is 

used when there is a need to track trends, view statistical data over 

a long period of time, or make tactical or strategic business projec-

tions; it is typically associated with OLAP.

Application A commercial or custom-built software program that is 

typically used to provide a user-friendly interface for a database.

Application Development The process of designing and creating an 

application that will serve as the user interface for a database.

Application Program Commercial or custom-built software that 

serves as the user-interface to a database.

Application Oriented Business Rule A rule that imposes con-

straints that you must establish within the physical design of the 

database or within the design of the database application.



584  Glossary

Artificial Candidate Key A field created for the sole purpose of serv-

ing as a candidate key. It’s existence is due to an absence of any 

“naturally occurring” candidate keys within the table.

Associative Table See Linking Table.

Attribute The relational model’s equivalent of a field.

Base Tables Tables that form the basis of a view.

Business Rule Specification Represents all of the characteristics of 

a business rule, such as the rule statement, the constraint it im-

poses, the structures it affects, and so on.

Business Rules Restrictions or limitations on certain aspects of a 

database based on the ways an organization perceives and uses 

its data.

Calculated Field A field that contains a concatenated text value or 

the result of a mathematical expression.

Calculated-Field List A list of fields that can be defined only within 

an RDBMS. (Recall that you cannot define calculated fields within a 

table structure.)

Cardinality The type of relationship that exists between a pair of ta-

bles in a relational database. See Relationship.

Child Table Within a given relationship, a table containing records 

that are explicitly dependent upon the existence of records in the re-

lated table.

Client/Server RDBMS A type of RDBMS in which data resides on a 

computer acting as a database server and users interact with the 

data through applications residing on their own computer, known 

as the database client.



Glossary 585

Closed Question A question that has a definitive, finite set of answers. 

This type of question leaves little opening for further follow-up 

questions.

Command Prompt A set of one or more symbols indicating the area 

within an operating system or command-driven software program in 

which a user can enter and execute commands. For example, C:\> 

is a command prompt within the MS-DOS operation system, and R> 

is the command prompt within R:BASE Technologies’ R:BASE data-

base software.

Composite Primary Key A primary key composed of two or more 

fields.

Data The values stored in the database.

Data Consistency Every occurrence of a given field value throughout 

the entire database is exactly the same.

Data-Entry Form A screen within an application program used to 

gather and collect data.

Data Integrity A set of rules or guidelines that governs the validity, 

consistency, and accuracy of the data in a database. There are four 

types of data integrity: table-level, field-level, relationship-level, and 

business rules.

Data Structure A particular construct used to store data, such as a 

field or table.

Data Table A table that stores data used to supply information; it is 

the most common type of table in a relational database.

Data View A view used to examine and manipulate data from one or 

more base tables.



586  Glossary

Database Application Program See Application Program.

Database Developer A person who designs and implements a 

database.

Database-Design Process The set of actions required to design the 

logical structure of a database.

Database Oriented Business Rule A rule that imposes constraints 

that you can establish within the logical design of the database.

DBMS (Database-Management System) A software program that is 

used to create, maintain, modify, and manipulate a database.

Degree of Participation Considering a given relationship between a 

pair of tables within a relational database, this is the minimum and 

maximum number of records that one table can have associated 

with a single record in the related table.

Deletion Rule A rule that determines what the RDBMS should do 

when a user places a request to delete a given record in the parent 

table of a relationship.

Domain See Field Specification.

Domain Integrity See Field-Level Integrity.

Duplicate Data A nonprimary key value that appears in more than 

one table within the database.

Duplicate Field A field that appears in two or more tables for any of 

these reasons: It is used to relate a set of tables together; it indicates 

multiple occurrences of a particular type of value; or there is a per-

ceived need for supplemental information.

Dynamic Data Data that changes constantly and always reflects up-

to-the-minute information.



Glossary 587

Elements of a Candidate Key This is a set of guidelines used to de-

termine whether a given field is fit to serve as a candidate key.

Elements of a Foreign Key This is a set of guidelines used to deter-

mine whether a given field is fit to serve as a foreign key.

Elements of a Primary Key This is a set of guidelines used to deter-

mine whether a given candidate key field is fit to serve as a primary 

key.

Elements of the Ideal Field A set of guidelines used to create sound 

field structures and to help identify poorly designed fields.

Elements of the Ideal Table A set of guidelines used to create sound 

table structures and to help identify poorly designed tables.

End User A person who uses and works with a database or database 

application program.

End-User Application Commercial or custom-built software that 

serves as the user interface to a database.

Entity Integrity See Table-Level Integrity.

Event Something that occurs at a given point in time (such as a doc-

tor’s appointment or stock transaction) that can be represented by a 

table.

Explicit Information Information that is clearly stated within the re-

sponse to a given question.

Extended Data Types Additional data types provided by many RDBMS 

programs that go beyond those specified by the SQL Standard.

Field The smallest structure in the database. It represents a character-

istic of the subject of the table to which it belongs and is the only 

structure that actually stores data within the database.



588  Glossary

Field Specification Represents all of the general, physical, and logical 

elements of a field. (This is traditionally known as a domain.)

Field-Level Integrity This type of data integrity warrants the following: 

the identity and purpose of a field is clear and all of the tables in 

which it appears are properly identified; field definitions are consis-

tent throughout the database; the values of a field are consistent and 

valid; and the types of modifications, comparisons, and operations 

that can be applied to the values in the field are clearly identified.

Field Specific Business Rule A rule that imposes constraints on the 

elements of a field specification for a given field.

Filter A set of one or more constraints imposed on a view that causes it 

to return a specific set of information.

Final Table List This list contains key information (name, type, and 

description) on every table in the database.

First-Order Predicate Logic One of the two branches of mathematics 

upon which the relational model is based.

Hierarchical Database A database in which data is structured hier-

archically and is typically diagrammed as an inverted tree.

Implementation Process The set of actions required to take a logical 

database design and incorporate it within a specific RDBMS.

Implicit Information Information that is not expressly stated within a 

response to a given question; you must derive it from your examina-

tion of the response.

Index A structure within an RDBMS program that can be used to im-

prove data processing.

Information Data that is processed in a manner that makes it mean-

ingful and useful to the person working with it or viewing it.



Glossary 589

Information Requirements Information that must be supported by 

the data in the database in order for the organization to function 

properly, effectively, and efficiently.

Inherited Database See Legacy Database.

Keys Special fields that play very specific roles within a table; the type 

of key determines its purpose within the table. There are four signif-

icant types of key: candidate, primary, alternate, and foreign.

LAN See Local Area Network.

Legacy Database A database that has been in existence and in use 

for several years or more.

Linking Table A table that helps to establish a many-to-many rela-

tionship between a given pair of tables.

List of Characteristics A collection of nouns that imply various at-

tributes of the items on the List of Subjects.

List of Subjects A collection of nouns that represent subjects that 

may be of interest to the organization.

Local Area Network (LAN) A group of computers and peripherals lo-

cated within a relatively limited geographical area that share ser-

vices and resources.

Logical Child Relationship A relationship that exists between a 

given table in one hierarchical database and another table in a sec-

ond hierarchical database.

Logical Data Independence Changes made to the logical design of 

the database will not adversely affect the applications built upon the 

database.

Lookup Table See Validation Table.



590  Glossary

Mainframe Computer A large, high-end, extremely powerful computer 

designed to handle literally millions of highly intensive computa-

tions simultaneously.

Many-to-Many Relationship A relationship between a pair of tables 

in a relational database in which a single record in the first table 

can be related to many records in the second table and a single 

record in the second table can be related to many records in the 

first table.

Member The subordinate node in a given relationship within a network 

database.

Missing Value A data value that has not been entered into a given field 

due to human error.

Mission Objective A statement that represents a general task that a 

user will perform against the data in the database.

Mission Statement A statement that establishes the purpose of the 

database and provides a distinct focus for your design work.

Multilevel Integrity This incorporates two or more of the following: 

field-level integrity, table-level integrity, relationship-level integrity, 

and business rules.

Multipart Field A field that contains more than one type of distinct 

value.

Multivalued Field A field that contains multiple instances of the same 

type of value.

Network Database A database in which data is structured hierarchi-

cally and is typically diagrammed as an inverted tree. Unlike the hi-

erarchical database, however, it can contain several inverted trees 

that share branches.



Glossary 591

Node A given collection of records within a network database.

Non-key A field that does not serve as a candidate, primary, alternate, 

or foreign key.

Normal Form A specific set of rules that can be used to test a table 

structure to ensure that it is sound and free of problems.

Normalization The process of decomposing large tables into smaller 

ones in order to eliminate redundant data and duplicate data.

Null This represents a missing or unknown value; it does not represent 

a zero or a text string of one or more blank spaces.

Object A tangible item (such as a person, place, or thing) that can be 

represented by a table.

OLAP (On-Line Analytical Processing) A method of presenting data 

from an analytical database in which the data is summarized and 

presented in the form of a table or cube.

OLTP (On-Line Transaction Processing) A system for processing 

transactions as soon as the computer receives them and updating 

master files immediately in a database-management system.

One-to-Many Relationship A relationship between a pair of tables in a 

relational database in which a single record in the first table can be 

related to many records in the second table, but a single record in 

the second table can be related to only one record in the first table.

One-to-One Relationship A relationship between a pair of tables in a 

relational database in which a single record in the first table is re-

lated to only one record in the second table, and a single record in 

the second table is related to only one record in the first table.

On-Line Analytical Processing See OLAP.



592  Glossary

On-Line Transaction Processing See OLTP.

Open-Ended Question A question that can be answered in a variety of 

ways and can lead to further follow-up questions.

Operating System The complete set of software required to manage 

and provide services for the computer’s hardware, peripheral equip-

ment (such as printers and scanners), and all other software pro-

grams. The computer cannot function without the operating system.

Operational Database A type of database that stores dynamic data 

and is used in situations where there is a need to collect, modify, 

and maintain data on a daily basis; it is typically associated with 

OLTP.

Orphaned Record Given two related tables, this is a record in one ta-

ble that is not associated with any record in the other table.

Owner The main node in a given relationship within a network database.

Owner/Member Relationship A type of relationship in a network da-

tabase in which an owner table can be associated with one or more 

member tables, but a single member table must be associated with 

a specific owner table.

Paper-Based Database A loose collection of forms, index cards, ma-

nila folders, and so on, used to collect and maintain data.

Parent/Child Relationship A type of relationship in a hierarchical 

database in which a parent table can be associated with one or more 

child tables, but a single child table can be associated with only one 

parent table.

Parent Table Within a given relationship, a table containing records 

that are not dependent upon the existence of records in the related 

table.



Glossary 593

Parse To decompose a given data value into smaller, distinct parts.

Physical Data Independence Changes the database software vendor 

makes to the physical implementation of the database will not ad-

versely affect the applications built upon the database.

Pointer A mechanism that explicitly links a parent table to a child table 

in a hierarchical database.

Preliminary Field List A list of fields that represents the organiza-

tion’s fundamental data requirements and constitutes the core set 

of fields that must be defined in the database.

Preliminary Table List The core set of tables that must be defined in 

the database.

Primary Key A field or group of fields that uniquely identifies each 

record within a table.

Programming Environment The combination of a given computing 

platform (PC, client/server, mainframe, etc.), operating system, and 

programming language.

Programming Language A software program that can be used to de-

fine sets of instructions that will ultimately be processed and exe-

cuted by the computer.

Query A request for information posed to the database via an SQL 

query statement.

Query Builder A tool within a database software program that allows a 

user to build a query via an easy-to-use graphical interface.

RDBMS (Relational Database Management System) A software 

program that is used to create, maintain, modify, and manipulate a 

relational database.



594  Glossary

Record A structure that is composed of a complete set of singular val-

ues (regardless of whether any are null) for every field within a table 

and represents a unique instance of the table’s subject.

Recursive Relationship See Self-Referencing Relationship.

Redundant Data A value that is repeated in a field as a result of the 

field’s participation in relating two tables or as a result of some field 

or table anomaly.

Reference Field See Duplicate Field.

Referential Integrity See Relationship-Level Integrity.

Relation The relational model’s equivalent of a table.

Relational Database A type of database that stores data in relations 

(perceived by the user as tables). Each relation is composed of tu-

ples (records) and attributes (fields).

Relational Database Management System See RDBMS.

Relational Model A data model based on set theory and first-order 

predicate logic invented by Dr. Edgar F. Codd.

Relationship An interdependence that exists between two tables when 

records in the first table can in some way be associated with records 

in the second table. There are three types of relationships in a rela-

tional database: one-to-one, one-to-many, and many-to-many.

Relationship Diagram A graphic representation of the relationship 

between a given pair of tables or between a given set of records 

within a table.

Relationship-Level Integrity A type of data integrity that ensures 

that the relationship between a pair of tables is sound and that the 



Glossary 595

records in the tables are synchronized whenever data is entered 

into, updated in, or deleted from either table.

Relationship Specific Business Rule A rule that imposes con-

straints that affect the characteristics of a relationship.

Report Any hand-written, typed, or computer-generated document 

used to arrange and present data in such a way that it is meaningful 

to the person or people viewing it.

Root Table The topmost table in a hierarchical database structure.

Screen Presentation A series of screens that discuss various topics in 

an organized manner.

Self-Referencing Many-to-Many Relationship A relationship that 

exists when a given record in a table can be related to one or more 

other records within the table and one or more records can them-

selves be related to the given record.

Self-Referencing One-to-Many Relationship A relationship that ex-

ists when a given record in a table can be related to one or more 

other records within the table.

Self-Referencing One-to-One Relationship A relationship that ex-

ists when a given record in a table can be related to only one other 

record within the table.

Self-Referencing Relationship A relationship that exists between the 

records within a table. Similar to its dual-table counterpart, a self-

referencing relationship can be one-to-one, one-to-many, or many-

to-many.

Set Structure A transparent construction that establishes and repre-

sents a relationship within a network database.



596  Glossary

Set Theory One of the two branches of mathematics upon which the 

relational model is based.

SQL (Structured Query Language) A standardized language used to 

create, maintain, modify, and query relational databases.

Static Data Data that is never (or very rarely) modified.

Structural Integrity A set of rules or guidelines that governs the 

manner in which fields, tables, and views are defined.

Structured Query Language See SQL.

Subset Table A table that represents a subordinate subject of a partic-

ular data table.

Table The chief structure in a database. It is composed of fields and 

records and always represents a single, specific subject.

Table Description A statement that provides a clear definition of the 

subject represented by the table and states why the subject is im-

portant to the organization.

Table-Level Integrity This type of data integrity ensures that a table is 

free of duplicate records and that the values of the table’s primary 

key are unique, never null, and exclusively identify the table records.

Tuple The relational model’s equivalent of a record.

Type of Participation The manner in which a table participates 

within a given relationship in a relational database. The type of par-

ticipation can be either mandatory or optional.

Type of Relationship The manner in which a given pair of tables can 

be related (one-to-one, one-to-many, many-to-many).

Unknown Value A value for a specific field that has yet to be deter-

mined or defined.



Glossary 597

URL An acronym for Uniform Resource Locator. It represents an 

address for a given resource on the Internet, such as http://

www.ForMereMortals.com.

Validation Table A table that stores data specifically used to imple-

ment data integrity. (This is also known as a lookup table.)

Validation View A view used specifically to implement data integrity.

View A virtual table composed of fields from one or more base tables in 

the database.

View Specification Represents all of the characteristics of a view, 

such as the name, type, base tables, and so on.

WAN See Wide Area Network

Web Page A document consisting of a Hypertext Markup Language 

(HTML) file and associated support files that can be accessed via the 

Internet.

Wide Area Network (WAN) A group of computers and peripherals lo-

cated over a widespread geographic area that depends on various 

communications devices to share services and resources.

Zero-Length String Two consecutive single quotes with no space in 

between them.

http://www.ForMereMortals.com
http://www.ForMereMortals.com


This page intentionally left blank 



599

References

Codd, E. F. (1990). “Relational Philosopher.” DBMS December 1990, 

34–40, 60.

———. (1990). The Relational Model for Database Management Version 

2. Reading, MA: Addison-Wesley.

Connolly, Thomas, and Carolyn Begg. (2002). Database System: A Prac-

tical Approach to Design, Implementation and Management, Third 

Edition. Boston, MA: Addison-Wesley.

Date, C. J. (1994). “According to Date: Many Happy Returns!” Database

Programming and Design. September 1994, 19–22.

———. (2000). An Introduction to Database Systems, Seventh Edition.

Boston, MA: Addison-Wesley.

Fleming, Candace C., and Barbara von Halle. (1989). Handbook of Rela-

tional Database Design Reading, MA: Addison-Wesley.

Hoffer, Jeffrey A., Mary B. Prescott, and Fred R. McFadden. (2002). 

Modern Database Management, Sixth Edition. Upper Saddle River, 

NJ: Prentice Hall.

Kalman, David. (1994). “Moving Forward with Relational” DBMS, Octo-

ber 1994, 62–74, 109.

Kroenke, Dr. David M. (2000). Database Processing Fundamentals, 

Design and Implementation, Seventh Edition. Upper Saddle River, 

NJ: Prentice Hall.



600  References

McGoveran, David. (1994) “The Relational Model Turns 25.” DBMS

October 1994, 46–61.

Pascal, Fabian. (2000) Practical Issues in Database Management: A Ref-

erence for the Thinking Practitioner. Boston, MA: Addison-Wesley.

Stephens, Ryan K., and Ronald R. Plew. (2001) Database Design. India-

napolis, IN: Sams.

Teorey, Toby J. (1999) Database Modeling & Design, Third Edition. San 

Francisco, CA: Morgan Kaufmann.



601

Index

Abbreviations
in field names, 210
in field specifications, 292
in final table list, 195–96

Acronyms
in field names, 210
in field specifications, 292
in final table list, 195–96

Action-oriented questions, 344
Addition (+), 306
Aerodynamic theories, 31
Aggregate views, 454–58
Aliases, 289–91
Alphanumeric data, 296
Alternate keys, 268, 300
American National Standards 

Institute (ANSI), 22, 294
Analytical database, 4–5

designing, 501–2
Anomalies, using ideal field to resolve, 

213–16
Ansa Software, 19
Application development, xiiii
Application oriented business rules, 

407–9
Application problems, xxxviii–xxxix
Application program, reviewing, 505
Approximate numeric data type, 295
Artificial candidate keys, 259–61
Ashton-Tate, 19
Associative questions, 343
Associative tables, 62
Attributes, 52, 55

Base tables, 57, 447, 469
Bit data type, 295
Blank spaces, 47
Business rules, 72, 403–45

application oriented, 407–9
categories of, 409–12
database oriented, 407
defined, 404–7
defining and establishing, 412–28
determining and defining, 84–85
field specific, 409–10, 412–13, 555
relationship specific, 410–12, 

555–56
reviewing and refining data integ-

rity at level of, 484–85
types of, 407–9
validation tables in supporting, 

431–34
Business Rule Specifications sheet, 

569
recording rule on, 419–21, 427–28
reviewing, 434–36

Calculated-field list, 170–71, 171
Calculated fields, 55, 464–67, 469

in flat-file design, 493
California, University of, at Berkeley, 

19
Candidate keys, 253–61

artificial, 259–61
composite, 257
elements of, 253–59, 556
surrogate, 259



602 Index

Cascade deletion rule, 382
Character-based user interface 

screens, 121
Character data type, 294
Characteristic-identification tech-

nique, 140–41, 156, 160
Character support, 297–98
Classes, 22
Closed question, 97
Codd, Dr. Edgar F., 12–13
Comparisons allowed, 305–6
Composite candidate key, 257, 361
Composite primary key, 59, 66, 

266–67
Computer-aided design (CAD), 21
Computer-Assisted Software Engi-

neering (CASE) software, 206
Computer hardware, enhancing or 

upgrading, 504
Concatenation, 307
Contextual questions, 344–45
Criteria, imposing, in filtering data, 

467–68
Current database, analysis of, 80–82, 

119–78

Data, 45
collection of, in database analysis, 

125–29
consistency of, 17
dynamic, 4
imposing criteria to filter, 467–68
inconsistent, 503
logical, 17
physical, 17
redundant, 124, 226, 503
retrieving, 15–16
static, 4, 45

Database(s). See also Relational 
databases

analysis of current, 80–82, 119–78
analytical, 4–5, 501–2
application problems in, 

xxxviii–xxxix

assembling documentation for, 
486–87

data problems in, xxxix
defined, 4
defining field specification for each 

field in, 314–18
future for, 22–24
hierarchical, 5–9
human-knowledge, 121
inherited, 80
legacy, 80, 121, 122, 123–25
mainframe, 123–24
object-oriented, 21
object-relational, 21
operational, 4, 5
paper-based, 80, 120–21, 122, 123
PC-based legacy, 124
relational, 3–25, 124
reviewing implementation, 505
reviewing structure, 504–5

Database analysis, 80–82
compiling list of fields in, 162–77
data collection in, 125–29
getting to know current database, 

119–25
information presentation in, 129–33
interviews in, 133–42

of management, 157–62
of users, 142–57

Database client, 20
Database design, xxxvii

advantage of learning a good meth-
odology, 31–32

analysis of current database, 80–82
bending or breaking rules, 501–7
benefits of good, 33–34
conducting interviews in, 91–100
creating the data structures, 82–83
database software as basis for, 

497–98
data modeling in, 34, 35–36
determining and defining business 

rules, 84–85
determining and defining views, 85



Index 603

determining and establishing table 
relationships, 83–84

diagram of, 537–54
symbols in, 571–72

importance of completing, 78–79
making choices in, 404
methods of, 34–39
mission objectives in, 79–80, 

108–15, 182, 189–91, 563
mission statement in, 79–80, 

101–8, 563
normalization phase in, 34, 36, 39
objectives in, 27–40
reasons for concerns with, 27–29
requirements analysis phase in, 

34–35
reviewing data integrity, 85–86
sample, 573–79
specific software for, 206
traditional methods in, 34–36

Database models
hierarchical, 5–9
network, 9–12
relational, 12–18

Database oriented business rules, 
407

Database server, 20
Database software

as basis for database design, 
497–98

programs for, xxxvii–xxxviii
Data dictionary, 283
Data integrity, 17, 33, 71–72, 281–82, 

323, 481–88
business rules and, 72
field-level, 71
impaired, 503–4
relationship-level, 71
reviewing and refining, 85–86, 483

at the field level, 484
at the level of business rules, 

484–85
at the level of views, 485–86
reasons for, 482

at the relationship level, 484
at the table level, 483

table-level, 71
using views in enforcing, 449

Data modeling, 35–36
Data problems, xxxix
Data structures, creating, 82–83
Data table, 53, 192
Data types, 294–97

alphanumeric, 296
approximate numeric, 295
bit, 295
character, 294
datetime, 295, 296
exact numeric, 295
extended, 296
interval, 295
national character, 294–95
numeric, 296
reviewing, 142–44

Data usage, reviewing, 142–44
Data view, 449–54

multitable, 451–54
single-table, 449–51

Data warehouse, 23
DateTime data type, 295, 296
DB2, 19
dBase, 19, 124
DBMS software program, 124
Decimal places, 297
Default value, 302–3
Deletion rules

cascade, 382, 384, 386
deny, 382, 384
nullify, 382, 384, 386
restrict, 382, 384, 386
set default, 382, 384, 386–87

Deny deletion rule, 382, 384
Display format, 299–300
Division (÷), 307
Documentation

assembling for database, 486–87
reviewing, for each view, 470–71

Documentation forms, 567–70



604 Index

Domain integrity, 71
Duplicate fields, 124, 226–27, 228

in flat-file design, 493
resolving unnecessary, 229–35
in spreadsheet design, 494

Duplicate items, resolving, 184–86
Dynamic data, 4

Edit rule, 304
Encapsulation, 22
End-user applications, 34
Entity integrity, 71
Entity-relationship (ER) diagram-

ming, 35
Enumerated list, 168
Exact numeric data type, 295
Explicit information, 113
Extended data types, 296
Extended relational data model, 22
eXtensible Markup Language (XML), 

23

Fear factor, 96
Field(s), 13, 36, 55–56, 163, 181, 281

associating with tables, 205–8
calculated, 55, 464–67, 469
compiling a complete list of, 162–77
composite, 55
defining field specifications for, 

314–18
duplicate, 124, 226–27, 228
elements of the ideal, 284
grouping, 458
guidelines for composing descrip-

tion of, 291–93, 559
ideal, 213–16, 557–58
multipart, 55, 216–18
multivalued, 55, 219–25, 358–61, 

564
non-key, 301
reference, 229
refining, 208–25
resolving multipart, 216–18
resolving multivalued, 219–25

reviewing and refining data integ-
rity at level of, 484

single-value, 223
using ideal, to resolve anomalies, 

213–16
Field-level integrity, 71, 282, 283–84, 

297, 558
Field list

calculated-, 170–71
preliminary, 162–70

Field names, 285
guidelines for creating, 209–12, 

560
improving, 208–12

Field specifications, 70, 281–319
anatomy of, 284–308
defining, for each field in the data-

base, 314–18
establishing, 83
general elements in, 70
logical elements in, 70
physical elements in, 70
reasons for importance of, 282–83
using unique, generic, and replica, 

308–14
Field specification sheet, 568
Field specific business rules, 409–10, 

412–13
defining and establishing, 413–21, 

555
File systems, 120–21
Filters, 469
Final table list, 361

defining, 191–205
First-order predicate logic, 30, 31
Flat-file design, 492–93
Foreign keys, 36, 59, 60, 61, 252, 

268, 287, 300, 374–81
elements of, 374–81, 556
in establishing one-to-many rela-

tionship, 357–58
in establishing one-to-one relation-

ship, 353–57
FoxPro, 19



Index 605

Fox Software, 19
Full specifications

general elements in, 285–93
logical elements in, 285, 300–308
physical elements in, 285, 

293–300

General elements, 70, 285–93
alias(es), 289–91
description, 291
elements in, 377–78
field names, 285
label, 287
parent table, 287
shared by, 289
source specification, 288
specification type, 287–88

Generic specification, 288, 309
Geographic information systems 

(GIS), 21
Grouping field, 458

Hierarchical database model, 5–9
Human-knowledge databases, 121

IBM, 19, 23
IBM Informix Dynamic Server, 22
Ideal field

elements of, 557–58
using, to resolve anomalies, 

213–16
Ideal table

elements of, 227–28, 558
using, to refine table structures, 

227–35
Implicit information, 113
Implied subjects, 182–84
Inconsistent data, 503
Index, 61
Indexed view, 58, 448
Information, 45–46

explicit, 113
future requirements, 155–57
implicit, 113

inaccurate, 504
reviewing requirements for, 148–57

additional, 152–55, 159–60
current, 149–51, 158–59
future, 155–57, 160––161
overall, 161–62

Information presentation in database 
analysis, 129–33

reports, 129, 130, 131
screen, 129–31
Web pages, 130, 132–33

Inheritance, 22
Inherited database, 80
Input mask, 299
Integrity. See also Data integrity; 

Field-level integrity; Relationship-
level integrity; Table-level 
integrity

domain, 71
entity, 71
multilevel, 17
referential, 7, 71

Integrity-related terms
data integrity, 71–72
field specification, 70

Interactive Graphics Retrieval System 
(INGRES), 19

International Organization for Stan-
dardization (ISO), 294

Internet, influence on database use, 23
Interval data type, 295
Interview(s)

asking questions in, 135–36
basic, techniques, 135
conducting, 91–100

in database analysis, 133–42
identifying characteristics in, 

138–41
identifying subjects in, 136–38
interviewer guidelines for, 95–100, 

562–63
of management, 157–62, 203–5
participant guidelines for, 93–95, 

562



606 Index

Interview(s), continued

in reviewing initial table structures, 
270–77

of users, 142–57, 203–5
Interviewer guidelines, 95–100

Jargon in field specifications, 292

Keyboard characters, 298
Keys, 59–61, 251–79

alternate, 268, 300
candidate, 253–61

artificial, 259–61
composite, 257
elements of, 253–59, 556
surrogate, 259

establishing, for each table, 
252–70

foreign, 36, 59, 60, 61, 252, 268, 
287, 300, 374–81

elements of, 374–81, 556
in establishing one-to-many 

relationship, 357–58
in establishing one-to-one 

relationship, 353–57
importance of, 252
non-, 268–69, 300
primary, 36, 52–53, 59, 227–28, 

261–68, 300
composite, 266–67, 361
elements of, 262–67, 557
in establishing one-to-many 

relationship, 357–58
in establishing one-to-one 

relationship, 353–57
field for, 261
rules for establishing, 267–68, 

557
Key structure, 300
Key type, 300

Label, 287
Legacy database, 80, 121, 122, 

123–25
Length, 297

Letters, 298
Linking tables, 62, 66, 192, 198

in establishing, many-to-many 
self-referencing relationship, 
371–73

in establishing many-to-many 
relationships, 361–67

Logical child relationship, 8
Logical design, xiii
Logical elements, 70, 285, 300–308

comparisons allowed, 305–6
default value, 302–3
edit rule, 304
elements in, 378–79
key structure, 300
key type, 300
null support, 301–2
operations allowed, 306–8
range of values, 303–4
required value, 302
uniqueness, 301
values entered by, 302

Logical relationship, 322
Lookup table, 54, 430
Lotus Freelance Graphics, 130

Mainframe databases, 123–24
Management

business rules in working with, 
413

conducting separate interviews for, 
96

interviewing, 157–62, 203–5
reviewing field lists with, 171–77
verifying table relationship with, 

393
working with views with, 461–62

Mandatory participation, 387–90
Many-to-many relationships, 65–68, 

330–32, 349
establishing, 361–67
problems with, 332–37
in relational model, 13
self-referencing, 339–41

establishing, 371–73



Index 607

Materialized view, 448
Mathematical theory, 31
Microrim, 19
Microsoft, 21

Access, 16, 57, 447
PowerPoint, 130
SQL Server 200, 20–21

Missing values, 48
Mission objectives, 79–80, 182, 

563
composing, 110–15
defining, 108–15
using, 189–91
well-written, 108–10

Mission statements, 79–80, 563
composing, 104–6
defining, 101–8
well-written, 102–4

Mulilevel integrity, 17
Multimedia storage systems, 21
Multipart fields, 55

in flat-file design, 493
resolving, 216–18
in spreadsheet design, 494–95

Multiplication (χ), 307
Multitable data view, 451–54
Multivalued fields, 55

resolving, 219–25, 358–61, 564
in spreadsheet design, 495

National character data type, 
294–95

Network database model, 9–12
Nodes, 9, 10
Non-key field, 301
Non-keys, 268–69, 300
Normal forms, 36–37
Normalization, 36, 39
Nouns, looking for, in identifying data-

base subjects, 136–38
Nullify deletion rule, 382, 384, 386
Nulls, 47

problem with, 50–52
value of, 48–50

Null support, 301–2

Numbers, 298
Numeric data type, 296

Object Management Group (OMG), 
21–22

Object-oriented database, 21
Object-oriented programming 

language, 21
Object-relational database, 21, 22
Object-role modeling, 35
One-to-many relationships, 64–65, 

327–29, 349
establishing, 357–58
in relational model, 13
self-referencing, 338–39

establishing, 367–71
One-to-one relationships, 63–64, 

324–27, 349
establishing, 353–57
in relational model, 13
self-referencing, 338

establishing, 367–71
On-line analytical processing (OLAP) 

scenarios, 4
On-line transaction processing (OLTP) 

scenarios, 4
Open-ended questions in interviews, 

93, 97, 104–5, 110
Operating system software, finetun-

ing, 504
Operational database, 4, 5
Operations allowed, 306–8
Optional participation, 387–90
Oracle9i Application Server, 19, 21
Oracle Corporation, 21
ORDER BY clause, 15, 16
Orphaned records, 382
Ownership-oriented questions, 344

Paper-based database, 80, 120–21, 
122, 123

Paradox, 19
Parent/child relationship, 6, 10, 64
Parent table, 287
Participant guidelines, 93–95



608 Index

Participation
degree of, 69–70

business rules and, 411–12
identifying, for each table, 

390–93
types of, 68–69

identifying, for each table, 
387–90

PC-based legacy database, 124
Physical elements, 70, 285, 293–300

character support, 297–98
data type, 294–97
decimal places, 297
display format, 299–300
input mask, 299
length, 297

Physical implementation, xiiii
Prefixes, use of, in tables, 210
Preliminary field list, 182, 205

existence of new characteristics in 
samples, 166–70

reviewing and refining list of char-
acteristics, 162–66

Preliminary table list, defining, 
182–91

Primary key(s), 36, 52–53, 59, 
227–28, 261–68, 300

composite, 266–67, 361
elements of, 262–67, 557
in establishing one-to-many 

relationship, 357–58
in establishing one-to-one 

relationship, 353–57
field for, 261
in flat-file design, 493
rules for establishing, 267–68, 

557
Primary key value, 261
Processing performance, improving, 

502–5

Questions
action-oriented, 344
associative, 343

closed, 97
contextual, 344–45
in interview, 135–36
open-ended, 93, 97, 104–5, 110
ownership-oriented, 344
preparing, prior to the interview, 

97

Range of values, 303–4
R:BASE, 16, 19
Records, 13, 56–57

orphaned, 382
Recursive relationship, 338
Redundant data, 124, 226, 503
Reference fields, 229
Referential integrity, 7, 71
Relational databases, 3–25, 124

advantages of, 17–18
first-order predicate logic in, 30, 

31
history of, 4–12
knowledge and skills necessary to 

design, 509
model for, 12–18
set theory in, 30, 31

Relational databases management 
systems (RDBMS), 18–21, 283

Relations, 13, 52
Relationship-level integrity, 61, 71, 

323, 394–400, 564
keys and, 252

Relationship-related terms
participation, 68–70
relationships, 62–68

Relationship specific business rules, 
410–12

defining and establishing, 421–28, 
555–56

Replica specification, 288, 309
Reports, 129
Required value, 302
Requirements analysis, 34–35
Restrict deletion rule, 382, 384, 

386



Index 609

Retrieval of data, 15–16
Rules. See also Business rules

bending or breaking, 501–7

Samples, reviewing, in interview, 144–48
Saved queries, 57, 447
Screen presentations, 129–30
SELECT...FROM statement, 15–16
SELECT statement, 45
Self-interviews, 92
Self-referencing relationships, 337–41

establishing, 367–73
many-to-many, 339–41
one-to-many, 338–39
one-to-one, 338
participation and, 389

Semantic-object modeling, 35
Set default deletion rule, 382, 384, 

386–87
Set structures, 9, 10
Set theory, 30, 31
Single-table data view, 449–51
Single-value field, 223
Slide shows, 129
Social Security number, candidate or 

primary key, 256
Source specification, 288
Special characters, 298
Specification type, 287–88
Spreadsheet design, 493–97
Spreadsheet view mind-set, 495–97
SQL. See Structured Query Language 

(SQL)
SQL/3, 294
SQL/92, 294
SQL Queries for Mere Mortals, 16
Static data, 4
Structured Query Language (SQL), 15, 

47, 294
components of basic query in, 15–16

Structure-related terms
field, 55–56
index, 61
keys, 59–61

record, 56–57
table, 52–54
view, 57–59

Subjects
identifying

implied, 182–84
in interview, 136–41
technique for, 141, 160

subordinate, 236
using the list of, 184–89

Subordinate subjects, 236
Subset tables, 193, 326

establishing, 235–47
Subtraction (-), 307
Surrogate candidate key, 259
System R, 19

Table(s), 13, 52–54, 82
associating with fields, 205–8
associative, 62
base, 57, 447, 469
data, 53, 192
degree of participation, 69–70
elements of ideal, 374
establishing keys for, 252–70
establishing subset, 235–47
ideal, 227–35, 558
identifying the degree of participa-

tion for, 390–93
identifying type of participation for, 

387–90
linking, 62, 66, 192, 198, 361–67, 

371–73
lookup, 54, 430
parent, 287
reviewing and refining data integ-

rity at level of, 483
subset, 193, 235–47, 326
types of participation, 68–69
validation, 54, 198, 428–34, 459
virtual, 447

Table description, 191
guidelines for composing, 199–203, 

559



610 Index

Table-level integrity, 71, 269–70, 282, 
565

keys and, 252
Table list

defining final, 191–205
defining preliminary, 182–91

Table names, guidelines for creating, 
193–98, 560–61

Table relationships, 62–63, 321–401
defining a deletion rule for each, 

381–87
determining and establishing, 

83–84
establishing characteristics for, 

381–84
establishing each, 353–74
identifying, 561
identifying existing, 341–53
identifying the degree of participa-

tion for each table, 390–93
identifying the type of participation 

for each table, 387–90
importance of, 322–23
keys in establishing, 252
many-to-many, 65–68, 330–32, 349

establishing, 361–67
problems with, 332–37
in relational model, 13
self-referencing, 339–41

establishing, 371–73
one-to-many, 64–65, 327–29, 349

establishing, 357–58
in relational model, 13
self-referencing, 338–39

establishing, 367–71
one-to-one, 63–64, 324–27, 349

establishing, 353–57
in relational model, 13
self-referencing, 338

establishing, 367–71
relationship-level integrity and, 

394–400
reviewing and refining data integ-

rity at level of, 484

self-referencing, 62–63, 337–341
establishing, 367–73

types of, 63–68, 323–41
verifying, with users and manage-

ment, 393
Table structures, 181–249

associating fields with each table, 
205–8

defining the final table list, 191–205
defining the preliminary table list, 

182–91
refining, 226–47
refining the fields, 208–25
reviewing the initial, 270–77

Table types, 191, 192
indicating, 198–99

Terminology
importance of, 44–45
integrity-related, 70–72
relationship-related, 62–70
structure-related, 52–61
value-related, 45–52

Theory, importance of, 29–31
Tuples, 13, 52, 56

Unbiased viewpoint, 182–83
UniData, 21
Uniqueness, 301
Unique specification, 287, 309
Unknown values, 49
Users

accessing data within a network 
database, 11

business rules in working with, 
413

conducting seperate interviews for, 
96

interviewing, 142–57, 203–5
reviewing data type and usage, 

142–44
reviewing information require-

ments, 148–57
reviewing the samples, 144–48

reviewing field lists with, 171–77



Index 611

verifying table relationship with, 
393

working with views with, 461–62

Validation, 193
Validation tables, 54, 198, 428–34, 

459
defined, 430
using, to support business rules, 

431–34
Validation views, 58, 458–60

using views in enforcing, 449
Value lists, 168–70
Value-related terms

data, 45
information, 45–46
null, 47–52

Values entered by, 302
Versant Corporation, 21
Versant ODBMS, 21
View(s), 57–59, 447–78

aggregate, 454–58
base table of, 447
data, 449–54
defined, 447

determining and defining, 85, 
460–76

identifying requirements, 561–62
indexed, 58, 448
materialized, 448
multitable data, 451–54
reasons for defining and using in 

database, 448–49
reviewing and refining data integ-

rity at level of, 485–86
reviewing the documentation for, 

470–71
single-table data, 449–51
validation, 58, 458–60

Viewpoint, unbiased, 182–83
View Specifications sheet, 470–71, 

570
recording views on, 469–70

Virtual table, 447

Web pages, 130, 132–33
WHERE clause, 15, 16

Zero, 47
Zero-length string, 47



This page intentionally left blank 



UNDERSTANDING NORMALIZATION

Understanding Normalization BC-1

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

A solid database structure is the foundation of any successful database application, and
you will inevitably encounter problems if your database is poorly designed. Regardless

of how you access your data, the information you retrieve is only as good as the data

upon which it is based. In this paper, I’ll cover a traditional database design topic that

seems to be quite a hurdle for many database designers and developers: Normalization.
Normalization is the process of refining table structures into a proper state so that they

can store data as efficiently as possible. Here you'll discover why Normalization is crucial

and learn how to normalize your tables using Normal Forms. First, you'll learn about
modification anomalies and Dependency Theory—two issues crucial to understanding

Normal Forms. Then, I’ll discuss each Normal Form in detail and you'll learn how they

resolve problems such as multivalued dependencies, transitive dependencies, and poor
data integrity.

The Normalization Process

One of the most challenging aspects of traditional database design is Normalization.

Much has been written about it, many people have struggled with it, and some have

actually understood it. Yet, despite its reputation as a difficult process to learn and
implement, it's actually pretty easy once you understand three fundamental concepts:

1. The overall premise behind Normalization

2. Modification anomalies

3. Data dependencies

If you learn about these concepts first, you'll find it easier to grasp the theories behind

each of the Normal Forms. We'll start by defining Normalization.

What is Normalization? It is the process of decomposing large, inefficiently structured
tables into smaller, more efficiently structured tables without losing any data in the

process. Normalization supports the proposition that a well-defined database contains

no duplicate data and keeps redundant data to an absolute minimum. This, in turn,
guarantees data integrity and ensures that the information retrieved from the database

will be accurate and reliable. Figure 1 illustrates the Normalization process.

Normalization Process

Non-Normalized Tables

Ideal Structures

Figure 1. A graphical representation of the Normalization process

Decomposing improperly structured tables is not an arbitrary process. It is instead a

methodical process you perform by testing each table against a set of Normal Forms.



Understanding Normalization BC-2

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

A Normal Form is an algorithm you use to test the structure of a table. It helps to
eliminate possible table or field anomalies and to ensure efficient table and field

structures. There are seven Normal Forms, and each one was created to deal with

specific types of problems. Here are the names of the Normal Forms, including the

general issue upon which each is based:

• First Normal Form Based on Functional Dependency

• Second Normal Form Based on Functional Dependency

• Third Normal Form Based on Functional Dependency

• Fourth Normal Form Based on Multivalued Dependency

• Fifth Normal Form Based on Join Dependency

• Boyce/Codd Normal Form Based on Functional Dependency

• Domain/Key Normal Form Based on the definition of Domains and Keys

Now that you have a basic idea of what the Normalization process is about, lets move on

to the second fundamental concept: modification anomalies.

Modification Anomalies

We've just discussed the concept behind the Normalization process, but we didn't
discuss why you should even go through the process in the first place. (You would have

thought I'd mention it before this moment, but you'll soon see why it makes more sense

to discuss it here.)

The main reason you put your tables through the Normalization process is to ensure
sound, efficient table structures. Improperly designed tables typically exhibit poor data

integrity and are subject to modification anomalies and data dependency problems. If

you fail to address these problems, you'll find that the information you retrieve from the
database will be inconsistent, inaccurate, and in some extreme cases, totally invalid.

In order to understand why you might consider a table to be improperly designed, you

must understand the problems it exhibits. (And rather obscurely, as you might think at
the moment.) We'll begin by discussing modification anomalies.

A constraint placed upon the ability to modify data in a table that is imposed by the

table's structure is known as a modification anomaly. There are three types of

modification anomalies that a table can exhibit: Insert, Delete, and Update.

Insert Anomaly

An Insert anomaly exists in a table when there is an unnecessary or unreasonable
constraint placed upon the task of adding a new record, or when adding a new record

will cause unnecessary or unreasonable data redundancy. Figure 2-a illustrates an

example of the first type of Insert anomaly. Because data on employees and
departments is being stored in the same table, you cannot enter data for a new

department until you have at least one employee assigned to the department.

Conversely, you cannot add a new employee unless you're ready to assign him or her to
a particular department. This type of anomaly can be hard to spot at first glance because

it is somewhat subtle.



Understanding Normalization BC-3

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeesAndDepartments

Figure 2-a. Example of an Insert anomaly imposing an unnecessary constraint.

The second type of Insert anomaly, shown in Figure 2-b, is easier to spot because of the

redundant data in the table. In this case, all of the data for a given customer must be

repeated when another sales representative is assigned to that customer. This is borne
out in the records for Kenneth Peacock.

SalesRepAccounts

Figure 2-b. Example of an Insert anomaly causing redundant data.

Delete Anomaly

A Delete anomaly exists when deleting a record would remove data not intended for
deletion. Figure 3-a shows the table used in Figure 2-a to illustrate an Insert anomaly.

The same premise holds—data on both employees and departments is being stored in

the table. However, this table also has a Delete anomaly that is just the flip side of the
Insert anomaly. In this case, it is possible to delete the only data you have for a

particular department if you delete the wrong employee. Such is the case with the

"Information Services" department; if you delete the record for John Callahan, you'll also

delete the only data you have on that department.

EmployeesAndDepartments

Figure 3-a. Example of a Delete anomaly affecting a single record.

Figure 3-b shows a table that stores data on both sales representatives and orders. This
table also has a Delete anomaly, but the results of deleting a record are more serious.

By deleting a sales representative, it is possible to delete a large number of records.

Deleting Mike Hernandez, for example, will also delete data on orders 2, 4, and 5!



Understanding Normalization BC-4

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

SalesRepOrders

Figure 3-b. Example of a Delete anomaly affecting multiple records.

Update Anomaly

An Update anomaly exists when modifying a specific value necessitates the same
modification in other records or tables. In Figure 4, you would have to make changes to

three records if Lone Star Distributors decided to change its name. On the surface, this

doesn't seem like a big deal. However, it is a significant problem when you're dealing

with a large number of records. You could write programming code to deal with the
problem, but then you're writing code that you really shouldn't have to write in the first

place. "But I could just update the data using an SQL statement," you say. Unfortunately,

that will work only if all the entries are spelled exactly the same.

CustomerOrders

Figure 4. Example of an Update anomaly imposing unnecessary modifications.

You've probably figured out by now that you want to do everything possible to avoid
modification anomalies. You can and will avoid these anomalies by putting each of your

tables through the Normalization process.

Let's now take a look at the third and final fundamental concept: dependencies.

Dependencies: The Good, the Bad, and the Ugly

The notion of dependencies (and modification anomalies, for that matter) falls under the
umbrella of Dependency Theory. Dependency Theoryis the field of study comprising

Normalization Theory, dependency principles, and other related topics. You learned

earlier that most Normal Forms are based on various types of dependencies, and it is for
this reason that you must study them. Once you understand dependencies in general,

Normal Forms are much easier to learn and understand.

Note This is by no means an exhaustive study of dependencies. The idea here is to
provide you with a solid idea of what dependencies are about and how they fit

into Normalization.



Understanding Normalization BC-5

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

There are four types of dependencies we'll discuss in this section: functional
dependencies, transitive dependencies, multivalued dependencies, and join

dependencies.

Functional Dependency—the Good

A functional dependency (FD) exists between two fields, A and B, when a distinct value

of A is directly associated with a distinct value of B. Given a value in A for a specific

record in a table, you can always retrieve the associated value in B for that record.

A FD is diagrammed as A→→→B and can be read equivalently as either of the following

statements:

The value of A determines the value of B.

The value of B is functionally dependent on the value of A.

Note In any dependency diagram you encounter, the field on the left-hand side is
called the determinant and the field on the right-hand side is called the

dependent.

Properly designed tables always contain well-defined functional dependencies. An

excellent example of a functional dependency is a primary key. The primary key
functionally determines all non-key fields in the table—given a primary key value for a

specific record in a table, you can retrieve the values of the remaining non-key fields in

that record. (This is true of candidate keys as well. But, as you know, only one candidate
key will serve as the primary key of the table.)

Figure 5 illustrates this example quite well. In this case, CustomerID determines the

values of the other fields in the table.

Customers

Figure 5. Example of a functional dependency.

Transitive Dependency—the Bad

Assume three fields, A, B and C, have the following functional dependencies:

A→→→B

B→→→C

A transitive dependency (TD) exists between A and C because a distinct value of A is

indirectly associated with distinct value of C by way of B. Here's the logic behind this

statement:

A determines the value of B.



Understanding Normalization BC-6

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

B determines the value of C.

Therefore, A transitively determines the value of C.

A TD is diagrammed as A⇒⇒⇒C and can be read equivalently as either of the following

statements.

The value of A transitively determines the value of C (via B).

The value of C is transitively dependent on the value of A (via B).

As you know, a properly designed table represents one, and only one, subject. However,

a table that contains transitive dependencies will describe two or more subjects,
depending on the number of transitive dependencies present. (For example, a table with

one transitive dependency will describe two subjects, and a table with two transitive

dependencies will describe three subjects.) A table in this state is improperly designed

and is subject to modification anomalies.

Figure 6 shows an Employee table with a transitive dependency between the

EmployeeID and Department fields. Here's the logic:

EmployeeID determines the value of DepartmentID.

DepartmentID determines the value of Department.

Therefore, EmployeeID transitively determines the value of Department.

Employees

Figure 6. Example of transitive dependency.

Based on what you've just learned, you can see that the transitive dependency causes

the table to describe two distinct subjects: employees and departments. You'll have to
put the table through the Normalization process to remove the transitive dependency

and keep the table free from all modification anomalies.

Multivalued Dependency—the Ugly

A multivalued dependency (MVD) exists between two fields, A and B, when a distinct

value of A is directly associated with two or more values of B.

An MVD is diagrammed as A→→→→→→B and can be read equivalently as either of the

following statements:

The value of A determines multiple values of B.

Multiple values of B are functionally dependent on the value of A.

A multivalued dependency can exist at the field level or the record level, and two or more

distinct, independent multivalued dependencies can appear in a table simultaneously.



Understanding Normalization BC-7

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Multivalued dependencies are similar to transitive dependencies in that their presence in
a table indicates that the table describes two or more subjects. Not surprisingly, a table

in this state is improperly designed and is subject to modification anomalies.

Figure 7-a shows a table with a field-level multivalued dependency. The transitive

dependency exists between the EmployeeID and Committees fields—a single
EmployeeID value is associated with one or more Committee values. Although it's not

obvious at this point, the table does describe two subjects: Employees and

CommitteeMembers.

EmployeeCommittees

Figure 7-a. Example of a field-level multivalued dependency.

The table in Figure 7-b shows a multivalued dependency at the record-level that exists
once again between EmployeeID and Committee. In this case, however, the employee

data is repeated for each committee in which the employee participates. And this table,

like its counterpart in the previous example, also describes the same two subjects:
Employees and CommitteeMembers.

EmployeeCommittees

Figure 7-b. Example of a record-level multivalued dependency.

Figure 7-c shows an example of a table with two independent multivalued dependencies.
One multivalued dependency exists between EmployeeID and Language, and the other

exists between EmployeeID and DeveloperCertification. Note how the employee data is

repeated for every language spoken or certification acquired. For example, if Ann

Patterson obtains a Visual Studio certification, you'll have to enter yet another record for
her in the table.



Understanding Normalization BC-8

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

These multivalued dependencies are called "independent" because one has absolutely
nothing to do with the other. Speaking Spanish is not a requirement for being a Visual

InterDev developer, and being a SQL Server developer is not a requirement for speaking

German. As you've probably already determined, this table describes three subjects

because of the two multivalued dependencies: Employees, EmployeeLanguages, and
EmployeeCertifications.

EmployeeInformation

Figure 7-c. Example of two independent multivalued dependencies.

Regardless of the type, all multivalued dependencies must be resolved by Normalization
so that the table will be free of any modification anomalies

Join Dependency—the Odd Couple

A join dependency (JD) exists in table A if every record in the table can be reconstructed

by an SQL JOIN operation that reunites all tables created by its decomposition. This

must hold true for all records existing in table A at the time of its decomposition and for

any valid record that could have been entered prior to its decomposition. (Records

added to the decomposed tables must be able to form a valid record for table A when
they are united via the JOIN.) Additionally, no records should be lost and no spurious

records should be added.

You could say that the table in Figure 8-a has a join dependency because you can
decompose it into smaller tables. (Just because you can decompose a table further

doesn't necessarily mean you should.) For example, let's say that you wanted to keep

sensitive information, such as a vendor's discount or status, from being accessed by
everyone in the office. You could decompose this table into two smaller tables

(VendorStatus and VendorInformation, respectively) as Figure 8-b shows.



Understanding Normalization BC-9

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Vendors

Figure 8-a. Example of a table with a join dependency.

VendorStatus

VendorInformation

Figure 8-b. The result of decomposing the Vendors table.

Because of the join dependency, you should be able to execute the following SQL

statement and recreate the original Vendors table. Also, you should not lose any data or

gain any bogus records in the process.

SELECT VendorInformation.VendorID, VendName, Discount,

Status, VendCity, VendPhoneNumber, VendWebPage

FROM VendorInformation

INNER JOIN VendorStatus

ON VendorInformation.VendorID = VendorStatus.VendorID

This SQL statement will, in fact, recreate the original Vendors table without any problem.

There is no requirement stating that every table must contain a join dependency. In fact,
the only tables that are candidates for join dependencies are those that can be further

decomposed into smaller tables. Once the decomposition has taken place, the rules

stated above must hold for the join dependency to be valid. Otherwise, you'll have to



Understanding Normalization BC-10

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

take the table through the Normalization process to determine whether it should indeed
contain a join dependency.

Well, we've covered all of the fundamental concepts you need to know before tackling

Normal Forms. So let's get down to business and move to our discussion on Normal

Forms.

Understanding Normal Forms

Before You Begin …

So, you've identified your tables and populated them with the fields you believe are most
appropriate at this time, and you've even gone so far as to identify relationships between

some of the tables. Now you're ready to take them through the Normalization process.

Or are you?

There are a couple of things you need to check before you start the Normalization

process.

1. Each table must have a primary key.

2. A table cannot contain repeating groups of data.

Each of your tables must be in this state in order for the Normalization process to be

effective. Otherwise, you could run into problems that might easily have been avoided.

Figure 9 shows a non-normalized Orders table. Although it's in a sad state at the
moment, it is ready for the Normalization process. It does have a primary key, and it

doesn't contain repeating groups of data, per se. (As you can see, there are repeating

groups of values within the Items field.)

However, the Items field has two obvious problems: It is a multipart field and a

multivalued field. It's a multipart field because its value can be broken down into smaller,

more distinct parts. It's a multivalued field because a single OrderID value can be

associated with one or more values within the Items field. (This is a field-level
multivalued dependency, isn't it?)

Orders

Figure 9. A non-normalized Orders table.

Because the table is in an acceptable state, you'll take it through the Normalization

process. (We'll actually work with a few different tables throughout this discussion, but

we'll start with this one first.)

Let's begin at the beginning: First Normal Form (1NF).



Understanding Normalization BC-11

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Note: As we examine each Normal Form, I'll start with its technical definition and then
provide a layman's explanation and example.

The Normal Form definitions I use here are taken from C. J. Date’s An

Introduction to Database Systems, 7th Edition (Addison Wesley, 2000).

The term relvar (for relational variable) represents the term table for our
purposes.

First Normal Form

A relvar is in 1NF if and only if in every legal value of that relvar, every tuple

contains exactly one value for each attribute.

The purpose of this Normal Form is to ensure that a table does not contain any multipart
or multivalued fields and that each field holds only a single value for any given record.

You can begin to normalize the Orders table by removing the multivalued characteristics

of the Items field.

Orders

Figure 10-a. Beginning to apply .

The result is that you now have a repeating group of fields: Item1, Quant1, Price1,

Item2, Quant2, Price2, etc. (see Figure 10-a). You take care of this problem by

consolidating them into three distinct fields: Item, Quantity, and Price. Additionally, you
should remove the multipart characteristics of the Item field by dividing it into two distinct

fields: ProductID and Product. Figure 10-b shows the results of these modifications.

Orders

Figure 10-b. The Orders table in 1NF.

Although the table is far from perfect, it is now in 1NF and is ready to be tested against
Second Normal Form (2NF).

Second Normal Form

A relvar is in 2NF if and only if it is in 1NF and every non-key attribute is

irreducibly dependent on the primary key.



Understanding Normalization BC-12

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Your table should already be in 1NF before you reach this point; 2NF then ensures that
each non-key field in the table is functionally dependent upon the primary key and that

the table does not contain calculated fields.

You can readily see that the Orders table does not conform to 2NF because it has three

distinct problems:

1. It actually describes two subjects: Orders and OrderDetails.

2. It contains a calculated field (Total).

3. It contains a transitive dependency between OrderID and Product.

Your first order of business is to decompose the table into two smaller tables called

Orders and OrderDetails (see Figure 11-a). This ensures that the Orders table describes

a one and only one subject.

Orders

OrderDetails

Figure 11-a. Applying 2NF to the Orders table.

The newly revised Orders table is now in 2NF, so you can turn your attention to the

OrderDetails table.

Note that the transitive dependency and calculated field have migrated to this table
during the decomposition process. Dealing with the calculated field is not a problem

because all you have to do is remove it from the table; the transitive dependency is

another matter. You learned earlier that the presence of a transitive dependency
indicates that the table describes two subjects. In this case, the table actually describes

OrderDetails and Products. You resolve the transitive dependency by removing the

Product field from the OrderDetails table and then creating a new Products table with

ProductID and Products as its fields. It is important that you use the ProductID field as
part of the new Products table because it is what will relate the Products table to the

OrderDetails table. Once you're finished, the OrderDetails table is in 2NF.

Figure 11-b shows the newly revised OrderDetails table and the new Products table.
Pop quiz: Is the new Products table in at least 2NF?



Understanding Normalization BC-13

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

OrderDetails

Products

Figure 11-b. The OrderDetails and Products tables in 2NF.

With the OrderDetails table in 2NF, you can now move on to Third Normal Form (3NF).

Third Normal Form

A relvar is in 3NF if and only if it is in 2NF and every non-key attribute is

nontransitively dependent on the primary key.

As the definition states, a table must already be in 2NF before you can apply 3NF. If this

is the case, you then apply 3NF to ensure that the table has the following characteristics:

• Each field value is independently updateable; changing the value for one field in

a given record does not adversely affect the value of any other field in that

record.

• Each field identifies a specific characteristic of the table's subject.

• Each non-key field in the table is functionally dependent upon the entire primary

key

• The table describes one and only one subject.

Because the Orders and OrdersDetail tables are already in 2NF, you can now apply 3NF

to both tables.

When you apply 3NF to the Orders table, you end up with the structure shown in Figure
12-a. Notice anything different about this structure and its 2NF counterpart in Figure 11-

a?



Understanding Normalization BC-14

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Orders

Figure 12-a. The Orders table in 3NF.

If your answer is no, then you're absolutely correct. It just so happens that the Orders

table already conforms to 3NF, so you don't need to make any modifications to its

structure.

If you take a look at the OrderDetails table back in Figure 11-b, you'll see that it has one
minor problem: One of its fields does not describe the table's subject. Can you determine

which field is the culprit? Here's a hint: The field in question is involved in a transitive

dependency.

The offending field is the Price field. Price doesn't represent a specific characteristic of

an order detail as much as it describes a specific characteristic of a particular product.

Additionally, its value is actually determined by ProductID. If you consider that the
OrderDetails table has a composite primary key consisting of OrderID and ProductID,

you can see that the value of Price is not dependent on the entire primary key, as

required by 3NF. You can solve this dilemma by removing Price from the table. (You

won't lose anything in the process because Price is already in the Products table.) Figure
12-b shows the result of your modification.

OrderDetails

Figure 12-b. The OrderDetails table in 3NF.

Let's now take a look at a slightly different way of arriving at the same structure by using

Boyce/Codd Normal Form.

Boyce/Codd Normal Form

A relation is in Boyce/Codd Normal Form if and only if the only determinants are

candidate keys.

Boyce/Codd Normal Form is a different version of 3NF and, indeed, was meant to

replace it. The purpose of Boyce/Codd Normal Form is twofold:



Understanding Normalization BC-15

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

1. It ensures that a field that determines the value of any or all non-key fields in a
table is be a candidate key for that table.

2. It ensures that a table describes one and only one subject. (This is implied by

enforcing candidate keys.)

Boyce/Codd Normal Form is slightly stronger than 3NF in that it deals with the possibility
of a table having more than one field that could act as the primary key. Provided that you

can identify all the valid candidate keys in a table, you can ensure that the table is free of

transitive dependencies, and by extension, of modification anomalies.

Note Review time! A candidate key is a field or group of fields that has all the required

characteristics of a primary key, the most important of which is that it determines

the values of all non-key fields in the table. After you identify the candidate keys
for a given table, you select one that will serve as the table's official primary key.

Figure 13-a shows an OrderDetails table with three determinants: OrderID and

LineItemNumber (taken as a single unit), OrderID and ProductID (taken as a single unit),

and ProductID. In order to apply Boyce/Codd Normal Form, you first need to identify
whether these determinants are candidate keys of the table. Would you say that all three

are candidate keys?

OrderDetails

Figure 13-a. An OrderDetails table containing three determinants.

You are correct if you answered no—OrderID\ProductID and OrderID\LineItemNumber
are the only candidate keys. Although ProductID is not a candidate key, it does

determine the value of Product and Price. As you may have already guessed, this

means that the Product and Price fields are involved in transitive dependencies with both
candidate keys. You will, therefore, have to remove the Product and Price fields from the

table. You'll also have to remove the Total field because neither of the candidate keys

determines its value. Instead, Quantity and Price determine the value of the Total field.

Once you remove these three fields, the table will be in Boyce/Codd Normal Form.
Figure 13-b shows the results of your modifications.



Understanding Normalization BC-16

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

OrderDetails

Figure 13-b. The OrderDetails table in Boyce/Codd Normal Form.

Most tables that are in Boyce/Codd Normal Form will require no further Normalization.

However, you'll need to take the table through Fourth Normal Form (4NF) if it contains

any multivalued dependencies.

Fourth Normal Form

Relvar Ris in 4NF if and only if, whenever there exist subsets A and Bof the

attributes of R such that the (nontrivial) MVD A→→B is satisfied, then all

attributes of R are also functionally dependent on A.

The purpose of 4NF is to ensure that a table does not contain any multivalued

dependencies and that it describes one and only one subject. (Have you noticed by now
that the latter point is a recurring theme across the higher Normal Forms?)

You learned earlier that a table containing multivalued dependencies describes two or

more subjects, depending on the number of multivalued dependencies present. You also
learned that you must remove all multivalued dependencies from the table. You'll

accomplish this by applying 4NF to the table.

Figure 14-a shows a table called EmployeeCommittees that contains a single
multivalued dependency. The first version has a field-level multivalued dependency, and

the second version contains a record-level multivalued dependency. The manner in

which you apply 4NF to each table is exactly the same and yields the same results.

EmployeeCommittees—Version 1



Understanding Normalization BC-17

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeeCommittees—Version 2

Figure 14-a. Two versions of the EmployeeCommittees table.

In applying 4NF to a table containing a single multivalued dependency, you build a new

table using a copy of the primary key and the field containing the multiple values. Using
the primary key as part of the structure of the new table is important because it relates

the new table to the original table. (Be sure to give the new table an appropriate name.)

You then decompose the original table by removing the multivalued field. And voila! Both
the newly revised table and the new table are now in 4NF.

Figure 14-b shows the results of applying these steps to the EmployeeCommittes table.

EmployeeCommittees

Employees

Figure 14-b. The Employees and EmployeeCommittees tables in 4NF.



Understanding Normalization BC-18

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

If you encounter a table with two or more multivalued dependencies, you just repeat the
same steps for each dependency. For example, Figure 14-c shows an employees table

with two independent multivalued dependencies.

EmployeeInformation

Figure 14-c. An Employees table with two independent multivalued dependencies.

You'll deal with each multivalued dependency as you did in the previous example.

1. Create a new table using the primary key (EmployeeID) and the first

multivalued field (Language). Give the new table an appropriate name.

2. Create another new table using the primary key (EmployeeID) and the

second multivalued field (DeveloperCertification). Give the new table an

appropriate name.

3. Remove the two multivalued fields from the original table.

The newly revised original table (EmployeeInformation) and the two new tables are now

in 4NF. Figure 14-d shows the results of applying 4NF to the EmployeeInformation table.

EmployeeInformation

EmployeeLanguages EmployeeCertifications

Figure 14-d. The EmployeeInformation, EmployeeLanguages, and EmployeeCertifications

tables in 4NF.



Understanding Normalization BC-19

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Fifth Normal Form

A relvar R is in Fifth Normal Form (5NF)—also called Projection/Join Normal

Form (PJ/NF)—if and only if every nontrivial join dependency that holds for R is
implied by the candidate keys of R.

You learned earlier in this discussion that a join dependency exists for a given table if

the table and all of its original records can be reconstructed by an SQL JOIN operation

that reunites all tables created by its decomposition. You can test for this type of
dependency by using 5NF.

By the time a table has achieved 4NF, it should be free of all transitive and multivalued

dependencies. In most cases, you shouldn't need to decompose the table any further.
However, if you suspect that you can (or should) decompose the table once more, you

must test whether there is a valid join dependency in the table. There are three key

questions that you must answer before decomposing the table any further:

1. Can I create the new table(s) using the primary key or a candidate key as

part of the new table structure? (Remember that this was a requirement for

resolving transitive and multivalued dependencies.)

2. Can I recreate the original table by using an SQL JOIN operation that
reunites all of the tables recreated by the decomposition?

3. Will I lose any records in the process of decomposing the table?

If the answer to each question is yes, then the table is in 5NF, and you can confidently
make the decomposition. However, just because you can decompose the table further

doesn't necessarily mean that you should.

Figure 15-a shows an Employees table that could possibly be decomposed into smaller
tables. Is it in 5NF? Study the table for a moment and use the three questions stated

above to make your determination.

Employees

Figure 15-a. Is this table in 5NF?

The answer is yes. You can use the primary key (EmployeeID) or the candidate key

(SocialSecurityNumber) as part of a new table structure; you can recreate the original
table; and you won't lose any records in the decomposition process.

Why might you possibly want to decompose this table? One possible reason is that you

want to separate sensitive employee data from general employee data. For example,

you could decompose the original table into the two new tables shown in Figure 15-b.



Understanding Normalization BC-20

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

EmployeeInformation

EmployeeConfidential

Figure 15-b. New EmployeeInformation and EmployeeConfidential tables.



Understanding Normalization BC-21

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

When you want to see the information from the original table, you can use this SQL
statement to do so:

SELECT EmployeeInformation.EmployeeID,

SocialSecurityNumber, EmpFirstName, EmpLastName,

EmpCity, EmpState, EmpPhoneNumber, MotherMaidenName,

BirthDate

FROM EmployeeInformation

INNER JOIN EmployeesConfidential

ON EmployeeInformation.EmployeeID =

EmployeesConfidential.EmployeeID

You won't often run into situations where you need 5NF, but it's good to know that it's

available when you need it.

Domain/Key Normal Form

Relvar Ris said to be in Domain/Key Normal Form (DKNF) if and only if every

constraint on R is a logical consequence of the domain constraints and key

constraints that apply to R.

DKNF is a newer Normal Form (as Normal Forms go) and is similar to Boyce/Codd

Normal Form in that it is partially based on the enforcement of primary keys and

candidate keys. So you already understand at least that much of this Normal Form.

But it is also based upon the idea of Domains. Most texts on database design state that

a Domain is merely a set of acceptable values from which a specific field can draw its

own values. That's only partially true; a Domain is much more than that. A Domain has

two sides: a logical side and a physical side. The logical side deals with issues such as
default values, range of values, whether the value is required, and whether the value can

be null. The physical side deals with issues such as data type, length, decimal places,

and allowable characters. Once you understand this idea, you can use this Normal
Form.

In order for a table to be in DKNF, it must fulfill these requirements:

1. Each field must be fully and properly defined.

2. Each field must represent a characteristic of the table's subject.

3. Each non-key field in the table must be functionally dependent upon the

entire primary key.

4. Each table should represent only a single subject. (Sound familiar?)

A table in DKNF will be free of transitive dependencies, multivalued dependencies, and

modification anomalies. In fact, a table in DKNF is automatically in 5NF.

Figure 16-a shows an Employees table that might be a candidate for DKNF. Can you
normalize this table further by applying DKNF?



Understanding Normalization BC-22

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Employees

Figure 16-a. Can you normalize this Employees table any further?

You can indeed. One of the requirements of DKNF is that the primary key determines

the value every non-key column in the table. This certainly isn't the case with the
Department field. You'll have to remove the Department field in order to place the table

in DKNF. Figure 16-b shows the result of your modification.

Employees

Figure 16-b. The Employees table in DKNF.

Using DKNF depends as much on intuition as anything else. You have to understand the

concepts of Keysand Domains thoroughly before you can really benefit from this Normal

Form. But it works pretty well once you get the hang of it.

Denormalization

Now we tackle one of the most oft' asked questions: What about Denormalization? The
real answer is this: Ask a dozen database developers and you'll get a dozen opinions.

Many people who denormalize their database structures do so for “performance

reasons”. Here are some of the problems they claim to encounter:

• Queries run slowly.

• Reports take too long to print.

• On-screen forms take time to populate.

• Web pages take too long to populate.

Speed and performance are really relative to a user's definition of the terms. What some

people may consider painfully slow may be as fast as greased lightning for others. You

should always take performance complaints with a grain of salt and try to take the time
to investigate the true nature of a perceived problem.



Understanding Normalization BC-23

Copyright © 2001-2003 Michael J. Hernandez, All Rights Reserved

Although you could justify some Denormalization from a strictly pragmatic sense, you
should always denormalize as a last resort. Instead, try some of the following remedies

before you embark upon any Denormalization:

• Update your computer equipment. Prices are really low and you can purchase a

powerful system quite inexpensively.

• Optimize the operating environment. Do what you can to optimize your network

by working closely with your network administrator.

• Optimize the RDBMS program. Make certain you're loading only those pieces of

the software that you really need, and carefully tweak any options and settings
that are available to you.

• Use indexes effectively. Indexes can speed up query processing enormously, so

using them judiciously can have a very positive effect on the time it takes to
retrieve information from your database.

• Write good, tight procedural code. Make certain that you're using optimal code

structures and that your code offers that path of least resistance to your data.

• Write well-structured SQL statements. Although there are several ways to pose

the same query, some statements are optimized better than others. Be sure to

check your database documentation for more information on this subject.

• START WITH A NORMALIZED STRUCTURE! 'Nuff said.

The most important point for you to remember is that you will always reintroduce data

integrity problems when you denormalize your structures! This means that it becomes

incumbent upon you or the user to deal with this issue. Either way, it imposes an
unnecessary burden upon the both of you. Denormalization is one issue that you'll have

to weigh and decide for yourself whether the perceived benefits are worth the extra effort

it will take to maintain the database properly.

A Final Thought

In all the years that I've been involved in the database management profession, I've
learned that database design is as much an art as it is a science. You learn the science

of database design through instruction and training and the art of database design

through personal experience. You'll find that studying database theory, design and
technology is an on-going exercise and a rewarding experience.

This job never gets boring!



SQL Queries for Mere Mortals
A Hands-On Guide to Data Manipulation in SQL
Michael J. Hernandez, John L. Viescas

If you are accessing corporate information from the Internet or from an
internal network, you are probably using SQL. SQL Queries for Mere
Mortals will help new users learn the foundations of SQL queries, and
will prove to be an essential reference guide for intermediate and ad-
vanced users. The accompanying CD contains five sample databases used
for the example queries throughout the book, plus an evaluation copy of
Microsoft SQL Server version 7.

0-201-43336-2 • Paperback with CD-ROM • 528 pages • © 2000

The Practical SQL Handbook, Fourth Edition
Using SQL Variants
Judith S. Bowman, Sandra L. Emerson, Marcy Darnovsky

This latest edition of the best-selling implementation guide to the
Structured Query Language teaches SQL fundamentals while providing
practical solutions for critical business applications. The Practical SQL
Handbook, Fourth Edition now includes expanded platform SQL cover-
age and extensive real-world examples based on feedback from actual
SQL users. This book begins with a step-by-step introduction to SQL
basics and examines the issues involved in designing SQL-based database
applications. It fully explores SQL’s most popular implementations from
industry leaders, Oracle, Microsoft, Sybase, and Informix. The Practical
SQL Handbook is the most complete reference available for day-to-day
SQL implementations.

0-201-70309-2 • Paperback with CD-ROM  • 512 pages • © 2001

Practical SQL
The Sequel
Judith S. Bowman

Written by a co-author of the best-selling Practical SQL Handbook,
Practical SQL: The Sequel picks up where the first book leaves off. It goes
beyond basic SQL query structure to explore the complexities of using
SQL for everyday business needs. It will help you make the transition
from classroom to reality, where you must design, fix, and maintain im-
perfect SQL systems. For those who are working with SQL systems—or
preparing to do so—this book offers information organized by use rather
than by feature. Readers can turn to specific business problems and learn
how to solve them with the appropriate SQL features. In particular, the
sequel focuses on the real-world challenges of dealing with legacy sys-
tems, inherited problematic code, dirty data, and query tuning for better
performance.

0-201-61638-6 • Paperback with CD-ROM • 352 pages • © 2001

Also Available from Addison-Wesley



CD-ROM Warranty

Addison-Wesley warrants the enclosed CD-ROM to be free of defects in 

materials and faulty workmanship under normal use for a period of 

ninety days after purchase. If a defect is discovered in the CD-ROM 

during this warranty period, a replacement CD-ROM can be obtained at 

no charge by sending the defective CD-ROM, postage prepaid, with 

proof of purchase to:

Editorial Department

Addison-Wesley Professional

Pearson Technology Group

75 Arlington Street, Suite 300

Boston, MA  02116

Email: AWPro@aw.com

Addison-Wesley makes no warranty or representation, either expressed 

or implied, with respect to this software, its quality, performance, mer-

chantability, or fitness for a particular purpose. In no event will Addison-

Wesley, its distributors, or dealers be liable for direct, indirect, special, 

incidental, or consequential damages arising out of the use or inability to 

use the software. The exclusion of implied warranties is not permitted in 

some states. Therefore, the above exclusion may not apply to you. This 

warranty provides you with specific legal rights. There may be other 

rights that you may have that vary from state to state. The contents of 

this CD-ROM are intended for personal use only.

More information and updates are available at:

http://www.awprofessional.com/

http://www.awprofessional.com/

	Contents
	Foreword
	Preface (Second Edition)
	Preface (First Edition)
	Introduction
	What’s New in the Second Edition
	Who Should Read This Book
	The Purpose of This Book
	How to Read This Book
	How This Book Is Organized
	Part I: Relational Database Design
	Part II: The Design Process
	Part III: Other Database-Design Issues
	Part IV: Appendixes

	A Word About the Examples and Techniques in This Book
	A New Approach to Learning


	PART I: RELATIONAL DATABASE DESIGN
	Chapter 1: The Relational Database
	Topics Covered in This Chapter
	Types of Databases
	Early Database Models
	The Relational Database Model
	Relational Database Management Systems
	Beyond the Relational Model
	What the Future Holds
	Summary
	Review Questions

	Chapter 2: Design Objectives
	Topics Covered in This Chapter
	Why Should You Be Concerned with Database Design?
	The Importance of Theory
	The Advantage of Learning a Good Design Methodology
	Objectives of Good Design
	Benefits of Good Design
	Database-Design Methods
	Summary
	Review Questions

	Chapter 3: Terminology
	Topics Covered in This Chapter
	Why This Terminology Is Important
	Value-Related Terms
	Structure-Related Terms
	Relationship-Related Terms
	Integrity-Related Terms
	Summary
	Review Questions


	PART II: THE DESIGN PROCESS
	Chapter 4: Conceptual Overview
	Topics Covered in This Chapter
	The Importance of Completing the Design Process
	Defining a Mission Statement and Mission Objectives
	Analyzing the Current Database
	Creating the Data Structures
	Determining and Establishing Table Relationships
	Determining and Defining Business Rules
	Determining and Defining Views
	Reviewing Data Integrity
	Summary
	Review Questions

	Chapter 5: Starting the Process
	Topics Covered in This Chapter
	Conducting Interviews
	The Case Study: Mike’s Bikes
	Defining the Mission Statement
	Defining the Mission Objectives
	Summary
	Review Questions

	Chapter 6: Analyzing the Current Database
	Topics Covered in This Chapter
	Getting to Know the Current Database
	Conducting the Analysis
	Looking at How Data Is Collected
	Looking at How Information Is Presented
	Conducting Interviews
	Interviewing Users
	Interviewing Management
	Compiling a Complete List of Fields
	Summary
	Review Questions

	Chapter 7: Establishing Table Structures
	Topics Covered in This Chapter
	Defining the Preliminary Table List
	Defining the Final Table List
	Associating Fields with Each Table
	Refining the Fields
	Refining the Table Structures
	Summary
	Review Questions

	Chapter 8: Keys
	Topics Covered in This Chapter
	Why Keys Are Important
	Establishing Keys for Each Table
	Table-Level Integrity
	Reviewing the Initial Table Structures
	Summary
	Review Questions

	Chapter 9: Field Specifications
	Topics Covered in This Chapter
	Why Field Specifications Are Important
	Field-Level Integrity
	Anatomy of a Field Specification
	Using Unique, Generic, and Replica Field Specifications
	Defining Field Specifications for Each Field in the Database
	Summary
	Review Questions

	Chapter 10: Table Relationships
	Topics Covered in This Chapter
	Why Relationships Are Important
	Types of Relationships
	Identifying Existing Relationships
	Establishing Each Relationship
	Refining All Foreign Keys
	Establishing Relationship Characteristics
	Relationship-Level Integrity
	Summary
	Review Questions

	Chapter 11: Business Rules
	Topics Covered in This Chapter
	What Are Business Rules?
	Categories of Business Rules
	Defining and Establishing Business Rules
	Validation Tables
	Reviewing the Business Rule Specifications Sheets
	Summary
	Review Questions

	Chapter 12: Views
	Topics Covered in This Chapter
	What Are Views?
	Anatomy of a View
	Determining and Defining Views
	Summary
	Review Questions

	Chapter 13: Reviewing Data Integrity
	Topics Covered in This Chapter
	Why You Should Review Data Integrity
	Reviewing and Refining Data Integrity
	Assembling the Database Documentation
	Done at Last!
	Summary


	PART III: OTHER DATABASE-DESIGN ISSUES
	Chapter 14: Bad Design—What Not to Do
	Topics Covered in This Chapter
	Flat-File Design
	Spreadsheet Design
	Database Design Based on the Database Software
	A Final Thought
	Summary

	Chapter 15: Bending or Breaking the Rules
	Topics Covered in This Chapter
	When May You Bend or Break the Rules?
	Documenting Your Actions
	Summary

	In Closing

	PART IV: APPENDIXES
	Appendix A: Answers to Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Appendix B: Diagram of the Database-Design Process
	Appendix C: Design Guidelines
	Defining and Establishing Field Specific Business Rules
	Defining and Establishing Relationship Specific Business Rules
	Elements of a Candidate Key
	Elements of a Foreign Key
	Elements of a Primary Key
	Elements of the Ideal Field
	Elements of the Ideal Table
	Field-Level Integrity
	Guidelines for Composing a Field Description
	Guidelines for Composing a Table Description
	Guidelines for Creating Field Names
	Guidelines for Creating Table Names
	Identifying Relationships
	Identifying View Requirements
	Interview Guidelines
	Mission Statements
	Mission Objectives
	Relationship-Level Integrity
	Resolving a Multivalued Field
	Table-Level Integrity

	Appendix D: Documentation Forms
	Appendix E: Database-Design Diagram Symbols
	Appendix F: Sample Designs
	Appendix G: Recommended Reading

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z


